xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision afdec00e1724f79bc502355ac0ab5bdff6ad1504)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2017 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk_internal/cunit.h"
8 
9 #include "common/lib/ut_multithread.c"
10 #include "unit/lib/json_mock.c"
11 
12 #include "spdk/config.h"
13 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
14 #undef SPDK_CONFIG_VTUNE
15 
16 #include "bdev/bdev.c"
17 
18 #include "common/lib/bdev/common_stubs.h"
19 
20 static bool g_memory_domain_pull_data_called;
21 static bool g_memory_domain_push_data_called;
22 static int g_accel_io_device;
23 
24 DEFINE_RETURN_MOCK(spdk_memory_domain_pull_data, int);
25 int
26 spdk_memory_domain_pull_data(struct spdk_memory_domain *src_domain, void *src_domain_ctx,
27 			     struct iovec *src_iov, uint32_t src_iov_cnt, struct iovec *dst_iov, uint32_t dst_iov_cnt,
28 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
29 {
30 	g_memory_domain_pull_data_called = true;
31 	HANDLE_RETURN_MOCK(spdk_memory_domain_pull_data);
32 	cpl_cb(cpl_cb_arg, 0);
33 	return 0;
34 }
35 
36 DEFINE_RETURN_MOCK(spdk_memory_domain_push_data, int);
37 int
38 spdk_memory_domain_push_data(struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
39 			     struct iovec *dst_iov, uint32_t dst_iovcnt, struct iovec *src_iov, uint32_t src_iovcnt,
40 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
41 {
42 	g_memory_domain_push_data_called = true;
43 	HANDLE_RETURN_MOCK(spdk_memory_domain_push_data);
44 	cpl_cb(cpl_cb_arg, 0);
45 	return 0;
46 }
47 
48 struct spdk_io_channel *
49 spdk_accel_get_io_channel(void)
50 {
51 	return spdk_get_io_channel(&g_accel_io_device);
52 }
53 
54 int g_status;
55 int g_count;
56 enum spdk_bdev_event_type g_event_type1;
57 enum spdk_bdev_event_type g_event_type2;
58 enum spdk_bdev_event_type g_event_type3;
59 enum spdk_bdev_event_type g_event_type4;
60 struct spdk_histogram_data *g_histogram;
61 void *g_unregister_arg;
62 int g_unregister_rc;
63 
64 void
65 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
66 			 int *sc, int *sk, int *asc, int *ascq)
67 {
68 }
69 
70 static int
71 ut_accel_ch_create_cb(void *io_device, void *ctx)
72 {
73 	return 0;
74 }
75 
76 static void
77 ut_accel_ch_destroy_cb(void *io_device, void *ctx)
78 {
79 }
80 
81 static int
82 ut_bdev_setup(void)
83 {
84 	spdk_io_device_register(&g_accel_io_device, ut_accel_ch_create_cb,
85 				ut_accel_ch_destroy_cb, 0, NULL);
86 	return 0;
87 }
88 
89 static int
90 ut_bdev_teardown(void)
91 {
92 	spdk_io_device_unregister(&g_accel_io_device, NULL);
93 
94 	return 0;
95 }
96 
97 static int
98 stub_destruct(void *ctx)
99 {
100 	return 0;
101 }
102 
103 struct ut_expected_io {
104 	uint8_t				type;
105 	uint64_t			offset;
106 	uint64_t			src_offset;
107 	uint64_t			length;
108 	int				iovcnt;
109 	struct iovec			iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
110 	void				*md_buf;
111 	TAILQ_ENTRY(ut_expected_io)	link;
112 };
113 
114 struct bdev_ut_io {
115 	TAILQ_ENTRY(bdev_ut_io)		link;
116 };
117 
118 struct bdev_ut_channel {
119 	TAILQ_HEAD(, bdev_ut_io)	outstanding_io;
120 	uint32_t			outstanding_io_count;
121 	TAILQ_HEAD(, ut_expected_io)	expected_io;
122 };
123 
124 static bool g_io_done;
125 static struct spdk_bdev_io *g_bdev_io;
126 static enum spdk_bdev_io_status g_io_status;
127 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
128 static uint32_t g_bdev_ut_io_device;
129 static struct bdev_ut_channel *g_bdev_ut_channel;
130 static void *g_compare_read_buf;
131 static uint32_t g_compare_read_buf_len;
132 static void *g_compare_write_buf;
133 static uint32_t g_compare_write_buf_len;
134 static void *g_compare_md_buf;
135 static bool g_abort_done;
136 static enum spdk_bdev_io_status g_abort_status;
137 static void *g_zcopy_read_buf;
138 static uint32_t g_zcopy_read_buf_len;
139 static void *g_zcopy_write_buf;
140 static uint32_t g_zcopy_write_buf_len;
141 static struct spdk_bdev_io *g_zcopy_bdev_io;
142 static uint64_t g_seek_data_offset;
143 static uint64_t g_seek_hole_offset;
144 static uint64_t g_seek_offset;
145 
146 static struct ut_expected_io *
147 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
148 {
149 	struct ut_expected_io *expected_io;
150 
151 	expected_io = calloc(1, sizeof(*expected_io));
152 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
153 
154 	expected_io->type = type;
155 	expected_io->offset = offset;
156 	expected_io->length = length;
157 	expected_io->iovcnt = iovcnt;
158 
159 	return expected_io;
160 }
161 
162 static struct ut_expected_io *
163 ut_alloc_expected_copy_io(uint8_t type, uint64_t offset, uint64_t src_offset, uint64_t length)
164 {
165 	struct ut_expected_io *expected_io;
166 
167 	expected_io = calloc(1, sizeof(*expected_io));
168 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
169 
170 	expected_io->type = type;
171 	expected_io->offset = offset;
172 	expected_io->src_offset = src_offset;
173 	expected_io->length = length;
174 
175 	return expected_io;
176 }
177 
178 static void
179 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
180 {
181 	expected_io->iov[pos].iov_base = base;
182 	expected_io->iov[pos].iov_len = len;
183 }
184 
185 static void
186 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
187 {
188 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
189 	struct ut_expected_io *expected_io;
190 	struct iovec *iov, *expected_iov;
191 	struct spdk_bdev_io *bio_to_abort;
192 	struct bdev_ut_io *bio;
193 	int i;
194 
195 	g_bdev_io = bdev_io;
196 
197 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
198 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
199 
200 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
201 		CU_ASSERT(g_compare_read_buf_len == len);
202 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
203 		if (bdev_io->bdev->md_len && bdev_io->u.bdev.md_buf && g_compare_md_buf) {
204 			memcpy(bdev_io->u.bdev.md_buf, g_compare_md_buf,
205 			       bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks);
206 		}
207 	}
208 
209 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
210 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
211 
212 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
213 		CU_ASSERT(g_compare_write_buf_len == len);
214 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
215 	}
216 
217 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
218 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
219 
220 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
221 		CU_ASSERT(g_compare_read_buf_len == len);
222 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
223 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
224 		}
225 		if (bdev_io->u.bdev.md_buf &&
226 		    memcmp(bdev_io->u.bdev.md_buf, g_compare_md_buf,
227 			   bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks)) {
228 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
229 		}
230 	}
231 
232 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
233 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
234 			TAILQ_FOREACH(bio, &ch->outstanding_io, link) {
235 				bio_to_abort = spdk_bdev_io_from_ctx(bio);
236 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
237 					TAILQ_REMOVE(&ch->outstanding_io, bio, link);
238 					ch->outstanding_io_count--;
239 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
240 					break;
241 				}
242 			}
243 		}
244 	}
245 
246 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) {
247 		if (bdev_io->u.bdev.zcopy.start) {
248 			g_zcopy_bdev_io = bdev_io;
249 			if (bdev_io->u.bdev.zcopy.populate) {
250 				/* Start of a read */
251 				CU_ASSERT(g_zcopy_read_buf != NULL);
252 				CU_ASSERT(g_zcopy_read_buf_len > 0);
253 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_read_buf;
254 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_read_buf_len;
255 				bdev_io->u.bdev.iovcnt = 1;
256 			} else {
257 				/* Start of a write */
258 				CU_ASSERT(g_zcopy_write_buf != NULL);
259 				CU_ASSERT(g_zcopy_write_buf_len > 0);
260 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_write_buf;
261 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_write_buf_len;
262 				bdev_io->u.bdev.iovcnt = 1;
263 			}
264 		} else {
265 			if (bdev_io->u.bdev.zcopy.commit) {
266 				/* End of write */
267 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_write_buf);
268 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_write_buf_len);
269 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
270 				g_zcopy_write_buf = NULL;
271 				g_zcopy_write_buf_len = 0;
272 			} else {
273 				/* End of read */
274 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_read_buf);
275 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_read_buf_len);
276 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
277 				g_zcopy_read_buf = NULL;
278 				g_zcopy_read_buf_len = 0;
279 			}
280 		}
281 	}
282 
283 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_DATA) {
284 		bdev_io->u.bdev.seek.offset = g_seek_data_offset;
285 	}
286 
287 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_HOLE) {
288 		bdev_io->u.bdev.seek.offset = g_seek_hole_offset;
289 	}
290 
291 	TAILQ_INSERT_TAIL(&ch->outstanding_io, (struct bdev_ut_io *)bdev_io->driver_ctx, link);
292 	ch->outstanding_io_count++;
293 
294 	expected_io = TAILQ_FIRST(&ch->expected_io);
295 	if (expected_io == NULL) {
296 		return;
297 	}
298 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
299 
300 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
301 		CU_ASSERT(bdev_io->type == expected_io->type);
302 	}
303 
304 	if (expected_io->md_buf != NULL) {
305 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
306 	}
307 
308 	if (expected_io->length == 0) {
309 		free(expected_io);
310 		return;
311 	}
312 
313 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
314 	CU_ASSERT(expected_io->length == bdev_io->u.bdev.num_blocks);
315 	if (expected_io->type == SPDK_BDEV_IO_TYPE_COPY) {
316 		CU_ASSERT(expected_io->src_offset == bdev_io->u.bdev.copy.src_offset_blocks);
317 	}
318 
319 	if (expected_io->iovcnt == 0) {
320 		free(expected_io);
321 		/* UNMAP, WRITE_ZEROES, FLUSH and COPY don't have iovs, so we can just return now. */
322 		return;
323 	}
324 
325 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
326 	for (i = 0; i < expected_io->iovcnt; i++) {
327 		expected_iov = &expected_io->iov[i];
328 		if (bdev_io->internal.f.has_bounce_buf == false) {
329 			iov = &bdev_io->u.bdev.iovs[i];
330 		} else {
331 			iov = bdev_io->internal.bounce_buf.orig_iovs;
332 		}
333 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
334 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
335 	}
336 
337 	free(expected_io);
338 }
339 
340 static void
341 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
342 			       struct spdk_bdev_io *bdev_io, bool success)
343 {
344 	CU_ASSERT(success == true);
345 
346 	stub_submit_request(_ch, bdev_io);
347 }
348 
349 static void
350 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
351 {
352 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
353 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
354 }
355 
356 static uint32_t
357 stub_complete_io(uint32_t num_to_complete)
358 {
359 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
360 	struct bdev_ut_io *bio;
361 	struct spdk_bdev_io *bdev_io;
362 	static enum spdk_bdev_io_status io_status;
363 	uint32_t num_completed = 0;
364 
365 	while (num_completed < num_to_complete) {
366 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
367 			break;
368 		}
369 		bio = TAILQ_FIRST(&ch->outstanding_io);
370 		TAILQ_REMOVE(&ch->outstanding_io, bio, link);
371 		bdev_io = spdk_bdev_io_from_ctx(bio);
372 		ch->outstanding_io_count--;
373 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
374 			    g_io_exp_status;
375 		spdk_bdev_io_complete(bdev_io, io_status);
376 		num_completed++;
377 	}
378 
379 	return num_completed;
380 }
381 
382 static struct spdk_io_channel *
383 bdev_ut_get_io_channel(void *ctx)
384 {
385 	return spdk_get_io_channel(&g_bdev_ut_io_device);
386 }
387 
388 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
389 	[SPDK_BDEV_IO_TYPE_READ]		= true,
390 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
391 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
392 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
393 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
394 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
395 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
396 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
397 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
398 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
399 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
400 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
401 	[SPDK_BDEV_IO_TYPE_SEEK_HOLE]		= true,
402 	[SPDK_BDEV_IO_TYPE_SEEK_DATA]		= true,
403 	[SPDK_BDEV_IO_TYPE_COPY]		= true,
404 };
405 
406 static void
407 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
408 {
409 	g_io_types_supported[io_type] = enable;
410 }
411 
412 static bool
413 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
414 {
415 	return g_io_types_supported[io_type];
416 }
417 
418 static struct spdk_bdev_fn_table fn_table = {
419 	.destruct = stub_destruct,
420 	.submit_request = stub_submit_request,
421 	.get_io_channel = bdev_ut_get_io_channel,
422 	.io_type_supported = stub_io_type_supported,
423 };
424 
425 static int
426 bdev_ut_create_ch(void *io_device, void *ctx_buf)
427 {
428 	struct bdev_ut_channel *ch = ctx_buf;
429 
430 	CU_ASSERT(g_bdev_ut_channel == NULL);
431 	g_bdev_ut_channel = ch;
432 
433 	TAILQ_INIT(&ch->outstanding_io);
434 	ch->outstanding_io_count = 0;
435 	TAILQ_INIT(&ch->expected_io);
436 	return 0;
437 }
438 
439 static void
440 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
441 {
442 	CU_ASSERT(g_bdev_ut_channel != NULL);
443 	g_bdev_ut_channel = NULL;
444 }
445 
446 struct spdk_bdev_module bdev_ut_if;
447 
448 static int
449 bdev_ut_module_init(void)
450 {
451 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
452 				sizeof(struct bdev_ut_channel), NULL);
453 	spdk_bdev_module_init_done(&bdev_ut_if);
454 	return 0;
455 }
456 
457 static void
458 bdev_ut_module_fini(void)
459 {
460 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
461 }
462 
463 struct spdk_bdev_module bdev_ut_if = {
464 	.name = "bdev_ut",
465 	.module_init = bdev_ut_module_init,
466 	.module_fini = bdev_ut_module_fini,
467 	.async_init = true,
468 };
469 
470 static void vbdev_ut_examine_config(struct spdk_bdev *bdev);
471 static void vbdev_ut_examine_disk(struct spdk_bdev *bdev);
472 
473 static int
474 vbdev_ut_module_init(void)
475 {
476 	return 0;
477 }
478 
479 static void
480 vbdev_ut_module_fini(void)
481 {
482 }
483 
484 static int
485 vbdev_ut_get_ctx_size(void)
486 {
487 	return sizeof(struct bdev_ut_io);
488 }
489 
490 struct spdk_bdev_module vbdev_ut_if = {
491 	.name = "vbdev_ut",
492 	.module_init = vbdev_ut_module_init,
493 	.module_fini = vbdev_ut_module_fini,
494 	.examine_config = vbdev_ut_examine_config,
495 	.examine_disk = vbdev_ut_examine_disk,
496 	.get_ctx_size = vbdev_ut_get_ctx_size,
497 };
498 
499 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
500 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
501 
502 struct ut_examine_ctx {
503 	void (*examine_config)(struct spdk_bdev *bdev);
504 	void (*examine_disk)(struct spdk_bdev *bdev);
505 	uint32_t examine_config_count;
506 	uint32_t examine_disk_count;
507 };
508 
509 static void
510 vbdev_ut_examine_config(struct spdk_bdev *bdev)
511 {
512 	struct ut_examine_ctx *ctx = bdev->ctxt;
513 
514 	if (ctx != NULL) {
515 		ctx->examine_config_count++;
516 		if (ctx->examine_config != NULL) {
517 			ctx->examine_config(bdev);
518 		}
519 	}
520 
521 	spdk_bdev_module_examine_done(&vbdev_ut_if);
522 }
523 
524 static void
525 vbdev_ut_examine_disk(struct spdk_bdev *bdev)
526 {
527 	struct ut_examine_ctx *ctx = bdev->ctxt;
528 
529 	if (ctx != NULL) {
530 		ctx->examine_disk_count++;
531 		if (ctx->examine_disk != NULL) {
532 			ctx->examine_disk(bdev);
533 		}
534 	}
535 
536 	spdk_bdev_module_examine_done(&vbdev_ut_if);
537 }
538 
539 static void
540 bdev_init_cb(void *arg, int rc)
541 {
542 	CU_ASSERT(rc == 0);
543 }
544 
545 static void
546 bdev_fini_cb(void *arg)
547 {
548 }
549 
550 static void
551 ut_init_bdev(struct spdk_bdev_opts *opts)
552 {
553 	int rc;
554 
555 	if (opts != NULL) {
556 		rc = spdk_bdev_set_opts(opts);
557 		CU_ASSERT(rc == 0);
558 	}
559 	rc = spdk_iobuf_initialize();
560 	CU_ASSERT(rc == 0);
561 	spdk_bdev_initialize(bdev_init_cb, NULL);
562 	poll_threads();
563 }
564 
565 static void
566 ut_fini_bdev(void)
567 {
568 	spdk_bdev_finish(bdev_fini_cb, NULL);
569 	spdk_iobuf_finish(bdev_fini_cb, NULL);
570 	poll_threads();
571 }
572 
573 static struct spdk_bdev *
574 allocate_bdev_ctx(char *name, void *ctx)
575 {
576 	struct spdk_bdev *bdev;
577 	int rc;
578 
579 	bdev = calloc(1, sizeof(*bdev));
580 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
581 
582 	bdev->ctxt = ctx;
583 	bdev->name = name;
584 	bdev->fn_table = &fn_table;
585 	bdev->module = &bdev_ut_if;
586 	bdev->blockcnt = 1024;
587 	bdev->blocklen = 512;
588 
589 	spdk_uuid_generate(&bdev->uuid);
590 
591 	rc = spdk_bdev_register(bdev);
592 	poll_threads();
593 	CU_ASSERT(rc == 0);
594 
595 	return bdev;
596 }
597 
598 static struct spdk_bdev *
599 allocate_bdev(char *name)
600 {
601 	return allocate_bdev_ctx(name, NULL);
602 }
603 
604 static struct spdk_bdev *
605 allocate_vbdev(char *name)
606 {
607 	struct spdk_bdev *bdev;
608 	int rc;
609 
610 	bdev = calloc(1, sizeof(*bdev));
611 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
612 
613 	bdev->name = name;
614 	bdev->fn_table = &fn_table;
615 	bdev->module = &vbdev_ut_if;
616 	bdev->blockcnt = 1024;
617 	bdev->blocklen = 512;
618 
619 	rc = spdk_bdev_register(bdev);
620 	poll_threads();
621 	CU_ASSERT(rc == 0);
622 
623 	return bdev;
624 }
625 
626 static void
627 free_bdev(struct spdk_bdev *bdev)
628 {
629 	spdk_bdev_unregister(bdev, NULL, NULL);
630 	poll_threads();
631 	memset(bdev, 0xFF, sizeof(*bdev));
632 	free(bdev);
633 }
634 
635 static void
636 free_vbdev(struct spdk_bdev *bdev)
637 {
638 	spdk_bdev_unregister(bdev, NULL, NULL);
639 	poll_threads();
640 	memset(bdev, 0xFF, sizeof(*bdev));
641 	free(bdev);
642 }
643 
644 static void
645 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
646 {
647 	const char *bdev_name;
648 
649 	CU_ASSERT(bdev != NULL);
650 	CU_ASSERT(rc == 0);
651 	bdev_name = spdk_bdev_get_name(bdev);
652 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
653 
654 	free(stat);
655 
656 	*(bool *)cb_arg = true;
657 }
658 
659 static void
660 bdev_unregister_cb(void *cb_arg, int rc)
661 {
662 	g_unregister_arg = cb_arg;
663 	g_unregister_rc = rc;
664 }
665 
666 static void
667 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
668 {
669 }
670 
671 static void
672 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
673 {
674 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
675 
676 	g_event_type1 = type;
677 	if (SPDK_BDEV_EVENT_REMOVE == type) {
678 		spdk_bdev_close(desc);
679 	}
680 }
681 
682 static void
683 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
684 {
685 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
686 
687 	g_event_type2 = type;
688 	if (SPDK_BDEV_EVENT_REMOVE == type) {
689 		spdk_bdev_close(desc);
690 	}
691 }
692 
693 static void
694 bdev_open_cb3(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
695 {
696 	g_event_type3 = type;
697 }
698 
699 static void
700 bdev_open_cb4(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
701 {
702 	g_event_type4 = type;
703 }
704 
705 static void
706 bdev_seek_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
707 {
708 	g_seek_offset = spdk_bdev_io_get_seek_offset(bdev_io);
709 	spdk_bdev_free_io(bdev_io);
710 }
711 
712 static void
713 get_device_stat_test(void)
714 {
715 	struct spdk_bdev *bdev;
716 	struct spdk_bdev_io_stat *stat;
717 	bool done;
718 
719 	bdev = allocate_bdev("bdev0");
720 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
721 	if (stat == NULL) {
722 		free_bdev(bdev);
723 		return;
724 	}
725 
726 	done = false;
727 	spdk_bdev_get_device_stat(bdev, stat, SPDK_BDEV_RESET_STAT_NONE, get_device_stat_cb, &done);
728 	while (!done) { poll_threads(); }
729 
730 	free_bdev(bdev);
731 }
732 
733 static void
734 open_write_test(void)
735 {
736 	struct spdk_bdev *bdev[9];
737 	struct spdk_bdev_desc *desc[9] = {};
738 	int rc;
739 
740 	ut_init_bdev(NULL);
741 
742 	/*
743 	 * Create a tree of bdevs to test various open w/ write cases.
744 	 *
745 	 * bdev0 through bdev3 are physical block devices, such as NVMe
746 	 * namespaces or Ceph block devices.
747 	 *
748 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
749 	 * caching or RAID use cases.
750 	 *
751 	 * bdev5 through bdev7 are all virtual bdevs with the same base
752 	 * bdev (except bdev7). This models partitioning or logical volume
753 	 * use cases.
754 	 *
755 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
756 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
757 	 * models caching, RAID, partitioning or logical volumes use cases.
758 	 *
759 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
760 	 * base bdevs are themselves virtual bdevs.
761 	 *
762 	 *                bdev8
763 	 *                  |
764 	 *            +----------+
765 	 *            |          |
766 	 *          bdev4      bdev5   bdev6   bdev7
767 	 *            |          |       |       |
768 	 *        +---+---+      +---+   +   +---+---+
769 	 *        |       |           \  |  /         \
770 	 *      bdev0   bdev1          bdev2         bdev3
771 	 */
772 
773 	bdev[0] = allocate_bdev("bdev0");
774 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
775 	CU_ASSERT(rc == 0);
776 
777 	bdev[1] = allocate_bdev("bdev1");
778 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
779 	CU_ASSERT(rc == 0);
780 
781 	bdev[2] = allocate_bdev("bdev2");
782 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
783 	CU_ASSERT(rc == 0);
784 
785 	bdev[3] = allocate_bdev("bdev3");
786 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
787 	CU_ASSERT(rc == 0);
788 
789 	bdev[4] = allocate_vbdev("bdev4");
790 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
791 	CU_ASSERT(rc == 0);
792 
793 	bdev[5] = allocate_vbdev("bdev5");
794 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
795 	CU_ASSERT(rc == 0);
796 
797 	bdev[6] = allocate_vbdev("bdev6");
798 
799 	bdev[7] = allocate_vbdev("bdev7");
800 
801 	bdev[8] = allocate_vbdev("bdev8");
802 
803 	/* Open bdev0 read-only.  This should succeed. */
804 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
805 	CU_ASSERT(rc == 0);
806 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
807 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
808 	spdk_bdev_close(desc[0]);
809 
810 	/*
811 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
812 	 * by a vbdev module.
813 	 */
814 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
815 	CU_ASSERT(rc == -EPERM);
816 
817 	/*
818 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
819 	 * by a vbdev module.
820 	 */
821 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
822 	CU_ASSERT(rc == -EPERM);
823 
824 	/* Open bdev4 read-only.  This should succeed. */
825 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
826 	CU_ASSERT(rc == 0);
827 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
828 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
829 	spdk_bdev_close(desc[4]);
830 
831 	/*
832 	 * Open bdev8 read/write.  This should succeed since it is a leaf
833 	 * bdev.
834 	 */
835 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
836 	CU_ASSERT(rc == 0);
837 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
838 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
839 	spdk_bdev_close(desc[8]);
840 
841 	/*
842 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
843 	 * by a vbdev module.
844 	 */
845 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
846 	CU_ASSERT(rc == -EPERM);
847 
848 	/* Open bdev4 read-only.  This should succeed. */
849 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
850 	CU_ASSERT(rc == 0);
851 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
852 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
853 	spdk_bdev_close(desc[5]);
854 
855 	free_vbdev(bdev[8]);
856 
857 	free_vbdev(bdev[5]);
858 	free_vbdev(bdev[6]);
859 	free_vbdev(bdev[7]);
860 
861 	free_vbdev(bdev[4]);
862 
863 	free_bdev(bdev[0]);
864 	free_bdev(bdev[1]);
865 	free_bdev(bdev[2]);
866 	free_bdev(bdev[3]);
867 
868 	ut_fini_bdev();
869 }
870 
871 static void
872 claim_test(void)
873 {
874 	struct spdk_bdev *bdev;
875 	struct spdk_bdev_desc *desc, *open_desc;
876 	int rc;
877 	uint32_t count;
878 
879 	ut_init_bdev(NULL);
880 
881 	/*
882 	 * A vbdev that uses a read-only bdev may need it to remain read-only.
883 	 * To do so, it opens the bdev read-only, then claims it without
884 	 * passing a spdk_bdev_desc.
885 	 */
886 	bdev = allocate_bdev("bdev0");
887 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
888 	CU_ASSERT(rc == 0);
889 	CU_ASSERT(desc->write == false);
890 
891 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
892 	CU_ASSERT(rc == 0);
893 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
894 	CU_ASSERT(bdev->internal.claim.v1.module == &bdev_ut_if);
895 
896 	/* There should be only one open descriptor and it should still be ro */
897 	count = 0;
898 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
899 		CU_ASSERT(open_desc == desc);
900 		CU_ASSERT(!open_desc->write);
901 		count++;
902 	}
903 	CU_ASSERT(count == 1);
904 
905 	/* A read-only bdev is upgraded to read-write if desc is passed. */
906 	spdk_bdev_module_release_bdev(bdev);
907 	rc = spdk_bdev_module_claim_bdev(bdev, desc, &bdev_ut_if);
908 	CU_ASSERT(rc == 0);
909 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
910 	CU_ASSERT(bdev->internal.claim.v1.module == &bdev_ut_if);
911 
912 	/* There should be only one open descriptor and it should be rw */
913 	count = 0;
914 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
915 		CU_ASSERT(open_desc == desc);
916 		CU_ASSERT(open_desc->write);
917 		count++;
918 	}
919 	CU_ASSERT(count == 1);
920 
921 	spdk_bdev_close(desc);
922 	free_bdev(bdev);
923 	ut_fini_bdev();
924 }
925 
926 static void
927 bytes_to_blocks_test(void)
928 {
929 	struct spdk_bdev_desc desc = {0};
930 	struct spdk_bdev bdev = {0};
931 	uint64_t offset_blocks, num_blocks;
932 
933 
934 	desc.bdev = &bdev;
935 	memset(&bdev, 0, sizeof(bdev));
936 
937 	bdev.blocklen = 512;
938 
939 	/* All parameters valid */
940 	offset_blocks = 0;
941 	num_blocks = 0;
942 	CU_ASSERT(bdev_bytes_to_blocks(&desc, 512, &offset_blocks, 1024, &num_blocks) == 0);
943 	CU_ASSERT(offset_blocks == 1);
944 	CU_ASSERT(num_blocks == 2);
945 
946 	/* Offset not a block multiple */
947 	CU_ASSERT(bdev_bytes_to_blocks(&desc, 3, &offset_blocks, 512, &num_blocks) != 0);
948 
949 	/* Length not a block multiple */
950 	CU_ASSERT(bdev_bytes_to_blocks(&desc, 512, &offset_blocks, 3, &num_blocks) != 0);
951 
952 	/* In case blocklen not the power of two */
953 	bdev.blocklen = 100;
954 	CU_ASSERT(bdev_bytes_to_blocks(&desc, 100, &offset_blocks, 200, &num_blocks) == 0);
955 	CU_ASSERT(offset_blocks == 1);
956 	CU_ASSERT(num_blocks == 2);
957 
958 	/* Offset not a block multiple */
959 	CU_ASSERT(bdev_bytes_to_blocks(&desc, 3, &offset_blocks, 100, &num_blocks) != 0);
960 
961 	/* Length not a block multiple */
962 	CU_ASSERT(bdev_bytes_to_blocks(&desc, 100, &offset_blocks, 3, &num_blocks) != 0);
963 }
964 
965 static void
966 num_blocks_test(void)
967 {
968 	struct spdk_bdev *bdev;
969 	struct spdk_bdev_desc *desc = NULL;
970 	int rc;
971 
972 	ut_init_bdev(NULL);
973 	bdev = allocate_bdev("num_blocks");
974 
975 	spdk_bdev_notify_blockcnt_change(bdev, 50);
976 
977 	/* Growing block number */
978 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 70) == 0);
979 	/* Shrinking block number */
980 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 30) == 0);
981 
982 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc, &desc);
983 	CU_ASSERT(rc == 0);
984 	SPDK_CU_ASSERT_FATAL(desc != NULL);
985 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
986 
987 	/* Growing block number */
988 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 80) == 0);
989 	/* Shrinking block number */
990 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 20) != 0);
991 
992 	g_event_type1 = 0xFF;
993 	/* Growing block number */
994 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 90) == 0);
995 
996 	poll_threads();
997 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
998 
999 	g_event_type1 = 0xFF;
1000 	/* Growing block number and closing */
1001 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 100) == 0);
1002 
1003 	spdk_bdev_close(desc);
1004 	free_bdev(bdev);
1005 	ut_fini_bdev();
1006 
1007 	poll_threads();
1008 
1009 	/* Callback is not called for closed device */
1010 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
1011 }
1012 
1013 static void
1014 io_valid_test(void)
1015 {
1016 	struct spdk_bdev bdev;
1017 
1018 	memset(&bdev, 0, sizeof(bdev));
1019 
1020 	bdev.blocklen = 512;
1021 	spdk_spin_init(&bdev.internal.spinlock);
1022 
1023 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
1024 
1025 	/* All parameters valid */
1026 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
1027 
1028 	/* Last valid block */
1029 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
1030 
1031 	/* Offset past end of bdev */
1032 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
1033 
1034 	/* Offset + length past end of bdev */
1035 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
1036 
1037 	/* Offset near end of uint64_t range (2^64 - 1) */
1038 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
1039 
1040 	spdk_spin_destroy(&bdev.internal.spinlock);
1041 }
1042 
1043 static void
1044 alias_add_del_test(void)
1045 {
1046 	struct spdk_bdev *bdev[3];
1047 	int rc;
1048 
1049 	ut_init_bdev(NULL);
1050 
1051 	/* Creating and registering bdevs */
1052 	bdev[0] = allocate_bdev("bdev0");
1053 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
1054 
1055 	bdev[1] = allocate_bdev("bdev1");
1056 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
1057 
1058 	bdev[2] = allocate_bdev("bdev2");
1059 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
1060 
1061 	poll_threads();
1062 
1063 	/*
1064 	 * Trying adding an alias identical to name.
1065 	 * Alias is identical to name, so it can not be added to aliases list
1066 	 */
1067 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
1068 	CU_ASSERT(rc == -EEXIST);
1069 
1070 	/*
1071 	 * Trying to add empty alias,
1072 	 * this one should fail
1073 	 */
1074 	rc = spdk_bdev_alias_add(bdev[0], NULL);
1075 	CU_ASSERT(rc == -EINVAL);
1076 
1077 	/* Trying adding same alias to two different registered bdevs */
1078 
1079 	/* Alias is used first time, so this one should pass */
1080 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
1081 	CU_ASSERT(rc == 0);
1082 
1083 	/* Alias was added to another bdev, so this one should fail */
1084 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
1085 	CU_ASSERT(rc == -EEXIST);
1086 
1087 	/* Alias is used first time, so this one should pass */
1088 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
1089 	CU_ASSERT(rc == 0);
1090 
1091 	/* Trying removing an alias from registered bdevs */
1092 
1093 	/* Alias is not on a bdev aliases list, so this one should fail */
1094 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
1095 	CU_ASSERT(rc == -ENOENT);
1096 
1097 	/* Alias is present on a bdev aliases list, so this one should pass */
1098 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
1099 	CU_ASSERT(rc == 0);
1100 
1101 	/* Alias is present on a bdev aliases list, so this one should pass */
1102 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
1103 	CU_ASSERT(rc == 0);
1104 
1105 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
1106 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
1107 	CU_ASSERT(rc != 0);
1108 
1109 	/* Trying to del all alias from empty alias list */
1110 	spdk_bdev_alias_del_all(bdev[2]);
1111 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
1112 
1113 	/* Trying to del all alias from non-empty alias list */
1114 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
1115 	CU_ASSERT(rc == 0);
1116 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
1117 	CU_ASSERT(rc == 0);
1118 	spdk_bdev_alias_del_all(bdev[2]);
1119 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
1120 
1121 	/* Unregister and free bdevs */
1122 	spdk_bdev_unregister(bdev[0], NULL, NULL);
1123 	spdk_bdev_unregister(bdev[1], NULL, NULL);
1124 	spdk_bdev_unregister(bdev[2], NULL, NULL);
1125 
1126 	poll_threads();
1127 
1128 	free(bdev[0]);
1129 	free(bdev[1]);
1130 	free(bdev[2]);
1131 
1132 	ut_fini_bdev();
1133 }
1134 
1135 static void
1136 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
1137 {
1138 	g_io_done = true;
1139 	g_io_status = bdev_io->internal.status;
1140 	if ((bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) &&
1141 	    (bdev_io->u.bdev.zcopy.start)) {
1142 		g_zcopy_bdev_io = bdev_io;
1143 	} else {
1144 		spdk_bdev_free_io(bdev_io);
1145 		g_zcopy_bdev_io = NULL;
1146 	}
1147 }
1148 
1149 struct bdev_ut_io_wait_entry {
1150 	struct spdk_bdev_io_wait_entry	entry;
1151 	struct spdk_io_channel		*io_ch;
1152 	struct spdk_bdev_desc		*desc;
1153 	bool				submitted;
1154 };
1155 
1156 static void
1157 io_wait_cb(void *arg)
1158 {
1159 	struct bdev_ut_io_wait_entry *entry = arg;
1160 	int rc;
1161 
1162 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
1163 	CU_ASSERT(rc == 0);
1164 	entry->submitted = true;
1165 }
1166 
1167 static void
1168 bdev_io_types_test(void)
1169 {
1170 	struct spdk_bdev *bdev;
1171 	struct spdk_bdev_desc *desc = NULL;
1172 	struct spdk_io_channel *io_ch;
1173 	struct spdk_bdev_opts bdev_opts = {};
1174 	int rc;
1175 
1176 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1177 	bdev_opts.bdev_io_pool_size = 4;
1178 	bdev_opts.bdev_io_cache_size = 2;
1179 	ut_init_bdev(&bdev_opts);
1180 
1181 	bdev = allocate_bdev("bdev0");
1182 
1183 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1184 	CU_ASSERT(rc == 0);
1185 	poll_threads();
1186 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1187 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1188 	io_ch = spdk_bdev_get_io_channel(desc);
1189 	CU_ASSERT(io_ch != NULL);
1190 
1191 	/* WRITE and WRITE ZEROES are not supported */
1192 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
1193 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
1194 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
1195 	CU_ASSERT(rc == -ENOTSUP);
1196 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
1197 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
1198 
1199 	/* NVME_IO, NVME_IO_MD and NVME_ADMIN are not supported */
1200 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, false);
1201 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, false);
1202 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, false);
1203 	rc = spdk_bdev_nvme_io_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1204 	CU_ASSERT(rc == -ENOTSUP);
1205 	rc = spdk_bdev_nvme_io_passthru_md(desc, io_ch, NULL, NULL, 0, NULL, 0, NULL, NULL);
1206 	CU_ASSERT(rc == -ENOTSUP);
1207 	rc = spdk_bdev_nvme_admin_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1208 	CU_ASSERT(rc == -ENOTSUP);
1209 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, true);
1210 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, true);
1211 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, true);
1212 
1213 	spdk_put_io_channel(io_ch);
1214 	spdk_bdev_close(desc);
1215 	free_bdev(bdev);
1216 	ut_fini_bdev();
1217 }
1218 
1219 static void
1220 bdev_io_wait_test(void)
1221 {
1222 	struct spdk_bdev *bdev;
1223 	struct spdk_bdev_desc *desc = NULL;
1224 	struct spdk_io_channel *io_ch;
1225 	struct spdk_bdev_opts bdev_opts = {};
1226 	struct bdev_ut_io_wait_entry io_wait_entry;
1227 	struct bdev_ut_io_wait_entry io_wait_entry2;
1228 	int rc;
1229 
1230 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1231 	bdev_opts.bdev_io_pool_size = 4;
1232 	bdev_opts.bdev_io_cache_size = 2;
1233 	ut_init_bdev(&bdev_opts);
1234 
1235 	bdev = allocate_bdev("bdev0");
1236 
1237 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1238 	CU_ASSERT(rc == 0);
1239 	poll_threads();
1240 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1241 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1242 	io_ch = spdk_bdev_get_io_channel(desc);
1243 	CU_ASSERT(io_ch != NULL);
1244 
1245 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1246 	CU_ASSERT(rc == 0);
1247 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1248 	CU_ASSERT(rc == 0);
1249 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1250 	CU_ASSERT(rc == 0);
1251 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1252 	CU_ASSERT(rc == 0);
1253 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1254 
1255 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1256 	CU_ASSERT(rc == -ENOMEM);
1257 
1258 	io_wait_entry.entry.bdev = bdev;
1259 	io_wait_entry.entry.cb_fn = io_wait_cb;
1260 	io_wait_entry.entry.cb_arg = &io_wait_entry;
1261 	io_wait_entry.io_ch = io_ch;
1262 	io_wait_entry.desc = desc;
1263 	io_wait_entry.submitted = false;
1264 	/* Cannot use the same io_wait_entry for two different calls. */
1265 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
1266 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
1267 
1268 	/* Queue two I/O waits. */
1269 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
1270 	CU_ASSERT(rc == 0);
1271 	CU_ASSERT(io_wait_entry.submitted == false);
1272 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
1273 	CU_ASSERT(rc == 0);
1274 	CU_ASSERT(io_wait_entry2.submitted == false);
1275 
1276 	stub_complete_io(1);
1277 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1278 	CU_ASSERT(io_wait_entry.submitted == true);
1279 	CU_ASSERT(io_wait_entry2.submitted == false);
1280 
1281 	stub_complete_io(1);
1282 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1283 	CU_ASSERT(io_wait_entry2.submitted == true);
1284 
1285 	stub_complete_io(4);
1286 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1287 
1288 	spdk_put_io_channel(io_ch);
1289 	spdk_bdev_close(desc);
1290 	free_bdev(bdev);
1291 	ut_fini_bdev();
1292 }
1293 
1294 static void
1295 bdev_io_spans_split_test(void)
1296 {
1297 	struct spdk_bdev bdev;
1298 	struct spdk_bdev_io bdev_io;
1299 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
1300 
1301 	memset(&bdev, 0, sizeof(bdev));
1302 	bdev_io.u.bdev.iovs = iov;
1303 
1304 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1305 	bdev.optimal_io_boundary = 0;
1306 	bdev.max_segment_size = 0;
1307 	bdev.max_num_segments = 0;
1308 	bdev_io.bdev = &bdev;
1309 
1310 	/* bdev has no optimal_io_boundary and max_size set - so this should return false. */
1311 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1312 
1313 	bdev.split_on_optimal_io_boundary = true;
1314 	bdev.optimal_io_boundary = 32;
1315 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1316 
1317 	/* RESETs are not based on LBAs - so this should return false. */
1318 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1319 
1320 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1321 	bdev_io.u.bdev.offset_blocks = 0;
1322 	bdev_io.u.bdev.num_blocks = 32;
1323 
1324 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1325 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1326 
1327 	bdev_io.u.bdev.num_blocks = 33;
1328 
1329 	/* This I/O spans a boundary. */
1330 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1331 
1332 	bdev_io.u.bdev.num_blocks = 32;
1333 	bdev.max_segment_size = 512 * 32;
1334 	bdev.max_num_segments = 1;
1335 	bdev_io.u.bdev.iovcnt = 1;
1336 	iov[0].iov_len = 512;
1337 
1338 	/* Does not cross and exceed max_size or max_segs */
1339 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1340 
1341 	bdev.split_on_optimal_io_boundary = false;
1342 	bdev.max_segment_size = 512;
1343 	bdev.max_num_segments = 1;
1344 	bdev_io.u.bdev.iovcnt = 2;
1345 
1346 	/* Exceed max_segs */
1347 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1348 
1349 	bdev.max_num_segments = 2;
1350 	iov[0].iov_len = 513;
1351 	iov[1].iov_len = 512;
1352 
1353 	/* Exceed max_sizes */
1354 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1355 
1356 	bdev.max_segment_size = 0;
1357 	bdev.write_unit_size = 32;
1358 	bdev.split_on_write_unit = true;
1359 	bdev_io.type = SPDK_BDEV_IO_TYPE_WRITE;
1360 
1361 	/* This I/O is one write unit */
1362 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1363 
1364 	bdev_io.u.bdev.num_blocks = 32 * 2;
1365 
1366 	/* This I/O is more than one write unit */
1367 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1368 
1369 	bdev_io.u.bdev.offset_blocks = 1;
1370 	bdev_io.u.bdev.num_blocks = 32;
1371 
1372 	/* This I/O is not aligned to write unit size */
1373 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1374 }
1375 
1376 static void
1377 bdev_io_boundary_split_test(void)
1378 {
1379 	struct spdk_bdev *bdev;
1380 	struct spdk_bdev_desc *desc = NULL;
1381 	struct spdk_io_channel *io_ch;
1382 	struct spdk_bdev_opts bdev_opts = {};
1383 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
1384 	struct ut_expected_io *expected_io;
1385 	void *md_buf = (void *)0xFF000000;
1386 	uint64_t i;
1387 	int rc;
1388 
1389 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1390 	bdev_opts.bdev_io_pool_size = 512;
1391 	bdev_opts.bdev_io_cache_size = 64;
1392 	ut_init_bdev(&bdev_opts);
1393 
1394 	bdev = allocate_bdev("bdev0");
1395 
1396 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1397 	CU_ASSERT(rc == 0);
1398 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1399 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1400 	io_ch = spdk_bdev_get_io_channel(desc);
1401 	CU_ASSERT(io_ch != NULL);
1402 
1403 	bdev->optimal_io_boundary = 16;
1404 	bdev->split_on_optimal_io_boundary = false;
1405 
1406 	g_io_done = false;
1407 
1408 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1409 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1410 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1411 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1412 
1413 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1414 	CU_ASSERT(rc == 0);
1415 	CU_ASSERT(g_io_done == false);
1416 
1417 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1418 	stub_complete_io(1);
1419 	CU_ASSERT(g_io_done == true);
1420 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1421 
1422 	bdev->split_on_optimal_io_boundary = true;
1423 	bdev->md_interleave = false;
1424 	bdev->md_len = 8;
1425 
1426 	/* Now test that a single-vector command is split correctly.
1427 	 * Offset 14, length 8, payload 0xF000
1428 	 *  Child - Offset 14, length 2, payload 0xF000
1429 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1430 	 *
1431 	 * Set up the expected values before calling spdk_bdev_read_blocks
1432 	 */
1433 	g_io_done = false;
1434 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1435 	expected_io->md_buf = md_buf;
1436 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1437 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1438 
1439 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1440 	expected_io->md_buf = md_buf + 2 * 8;
1441 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1442 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1443 
1444 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1445 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1446 					   14, 8, io_done, NULL);
1447 	CU_ASSERT(rc == 0);
1448 	CU_ASSERT(g_io_done == false);
1449 
1450 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1451 	stub_complete_io(2);
1452 	CU_ASSERT(g_io_done == true);
1453 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1454 
1455 	/* Now set up a more complex, multi-vector command that needs to be split,
1456 	 *  including splitting iovecs.
1457 	 */
1458 	iov[0].iov_base = (void *)0x10000;
1459 	iov[0].iov_len = 512;
1460 	iov[1].iov_base = (void *)0x20000;
1461 	iov[1].iov_len = 20 * 512;
1462 	iov[2].iov_base = (void *)0x30000;
1463 	iov[2].iov_len = 11 * 512;
1464 
1465 	g_io_done = false;
1466 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1467 	expected_io->md_buf = md_buf;
1468 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1469 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1470 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1471 
1472 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1473 	expected_io->md_buf = md_buf + 2 * 8;
1474 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1475 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1476 
1477 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1478 	expected_io->md_buf = md_buf + 18 * 8;
1479 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1480 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1481 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1482 
1483 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1484 					     14, 32, io_done, NULL);
1485 	CU_ASSERT(rc == 0);
1486 	CU_ASSERT(g_io_done == false);
1487 
1488 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1489 	stub_complete_io(3);
1490 	CU_ASSERT(g_io_done == true);
1491 
1492 	/* Test multi vector command that needs to be split by strip and then needs to be
1493 	 * split further due to the capacity of child iovs.
1494 	 */
1495 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1496 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1497 		iov[i].iov_len = 512;
1498 	}
1499 
1500 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1501 	g_io_done = false;
1502 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
1503 					   SPDK_BDEV_IO_NUM_CHILD_IOV);
1504 	expected_io->md_buf = md_buf;
1505 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1506 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1507 	}
1508 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1509 
1510 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1511 					   SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
1512 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1513 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1514 		ut_expected_io_set_iov(expected_io, i,
1515 				       (void *)((i + 1 + SPDK_BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1516 	}
1517 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1518 
1519 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1520 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1521 	CU_ASSERT(rc == 0);
1522 	CU_ASSERT(g_io_done == false);
1523 
1524 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1525 	stub_complete_io(1);
1526 	CU_ASSERT(g_io_done == false);
1527 
1528 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1529 	stub_complete_io(1);
1530 	CU_ASSERT(g_io_done == true);
1531 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1532 
1533 	/* Test multi vector command that needs to be split by strip and then needs to be
1534 	 * split further due to the capacity of child iovs. In this case, the length of
1535 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1536 	 */
1537 
1538 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1539 	 * is SPDK_BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1540 	 */
1541 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1542 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1543 		iov[i].iov_len = 512;
1544 	}
1545 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1546 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1547 		iov[i].iov_len = 256;
1548 	}
1549 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1550 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1551 
1552 	/* Add an extra iovec to trigger split */
1553 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1554 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1555 
1556 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1557 	g_io_done = false;
1558 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1559 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV);
1560 	expected_io->md_buf = md_buf;
1561 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1562 		ut_expected_io_set_iov(expected_io, i,
1563 				       (void *)((i + 1) * 0x10000), 512);
1564 	}
1565 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1566 		ut_expected_io_set_iov(expected_io, i,
1567 				       (void *)((i + 1) * 0x10000), 256);
1568 	}
1569 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1570 
1571 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1572 					   1, 1);
1573 	expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1574 	ut_expected_io_set_iov(expected_io, 0,
1575 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1576 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1577 
1578 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1579 					   1, 1);
1580 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1581 	ut_expected_io_set_iov(expected_io, 0,
1582 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1583 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1584 
1585 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1586 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1587 	CU_ASSERT(rc == 0);
1588 	CU_ASSERT(g_io_done == false);
1589 
1590 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1591 	stub_complete_io(1);
1592 	CU_ASSERT(g_io_done == false);
1593 
1594 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1595 	stub_complete_io(2);
1596 	CU_ASSERT(g_io_done == true);
1597 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1598 
1599 	/* Test multi vector command that needs to be split by strip and then needs to be
1600 	 * split further due to the capacity of child iovs, the child request offset should
1601 	 * be rewind to last aligned offset and go success without error.
1602 	 */
1603 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1604 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1605 		iov[i].iov_len = 512;
1606 	}
1607 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
1608 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1609 
1610 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1611 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1612 
1613 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1614 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1615 
1616 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1617 	g_io_done = false;
1618 	g_io_status = 0;
1619 	/* The first expected io should be start from offset 0 to SPDK_BDEV_IO_NUM_CHILD_IOV - 1 */
1620 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1621 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
1622 	expected_io->md_buf = md_buf;
1623 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1624 		ut_expected_io_set_iov(expected_io, i,
1625 				       (void *)((i + 1) * 0x10000), 512);
1626 	}
1627 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1628 	/* The second expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV - 1 to SPDK_BDEV_IO_NUM_CHILD_IOV */
1629 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1630 					   1, 2);
1631 	expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1632 	ut_expected_io_set_iov(expected_io, 0,
1633 			       (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1634 	ut_expected_io_set_iov(expected_io, 1,
1635 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1636 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1637 	/* The third expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV to SPDK_BDEV_IO_NUM_CHILD_IOV + 1 */
1638 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1639 					   1, 1);
1640 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1641 	ut_expected_io_set_iov(expected_io, 0,
1642 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1643 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1644 
1645 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1646 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1647 	CU_ASSERT(rc == 0);
1648 	CU_ASSERT(g_io_done == false);
1649 
1650 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1651 	stub_complete_io(1);
1652 	CU_ASSERT(g_io_done == false);
1653 
1654 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1655 	stub_complete_io(2);
1656 	CU_ASSERT(g_io_done == true);
1657 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1658 
1659 	/* Test multi vector command that needs to be split due to the IO boundary and
1660 	 * the capacity of child iovs. Especially test the case when the command is
1661 	 * split due to the capacity of child iovs, the tail address is not aligned with
1662 	 * block size and is rewinded to the aligned address.
1663 	 *
1664 	 * The iovecs used in read request is complex but is based on the data
1665 	 * collected in the real issue. We change the base addresses but keep the lengths
1666 	 * not to loose the credibility of the test.
1667 	 */
1668 	bdev->optimal_io_boundary = 128;
1669 	g_io_done = false;
1670 	g_io_status = 0;
1671 
1672 	for (i = 0; i < 31; i++) {
1673 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1674 		iov[i].iov_len = 1024;
1675 	}
1676 	iov[31].iov_base = (void *)0xFEED1F00000;
1677 	iov[31].iov_len = 32768;
1678 	iov[32].iov_base = (void *)0xFEED2000000;
1679 	iov[32].iov_len = 160;
1680 	iov[33].iov_base = (void *)0xFEED2100000;
1681 	iov[33].iov_len = 4096;
1682 	iov[34].iov_base = (void *)0xFEED2200000;
1683 	iov[34].iov_len = 4096;
1684 	iov[35].iov_base = (void *)0xFEED2300000;
1685 	iov[35].iov_len = 4096;
1686 	iov[36].iov_base = (void *)0xFEED2400000;
1687 	iov[36].iov_len = 4096;
1688 	iov[37].iov_base = (void *)0xFEED2500000;
1689 	iov[37].iov_len = 4096;
1690 	iov[38].iov_base = (void *)0xFEED2600000;
1691 	iov[38].iov_len = 4096;
1692 	iov[39].iov_base = (void *)0xFEED2700000;
1693 	iov[39].iov_len = 4096;
1694 	iov[40].iov_base = (void *)0xFEED2800000;
1695 	iov[40].iov_len = 4096;
1696 	iov[41].iov_base = (void *)0xFEED2900000;
1697 	iov[41].iov_len = 4096;
1698 	iov[42].iov_base = (void *)0xFEED2A00000;
1699 	iov[42].iov_len = 4096;
1700 	iov[43].iov_base = (void *)0xFEED2B00000;
1701 	iov[43].iov_len = 12288;
1702 	iov[44].iov_base = (void *)0xFEED2C00000;
1703 	iov[44].iov_len = 8192;
1704 	iov[45].iov_base = (void *)0xFEED2F00000;
1705 	iov[45].iov_len = 4096;
1706 	iov[46].iov_base = (void *)0xFEED3000000;
1707 	iov[46].iov_len = 4096;
1708 	iov[47].iov_base = (void *)0xFEED3100000;
1709 	iov[47].iov_len = 4096;
1710 	iov[48].iov_base = (void *)0xFEED3200000;
1711 	iov[48].iov_len = 24576;
1712 	iov[49].iov_base = (void *)0xFEED3300000;
1713 	iov[49].iov_len = 16384;
1714 	iov[50].iov_base = (void *)0xFEED3400000;
1715 	iov[50].iov_len = 12288;
1716 	iov[51].iov_base = (void *)0xFEED3500000;
1717 	iov[51].iov_len = 4096;
1718 	iov[52].iov_base = (void *)0xFEED3600000;
1719 	iov[52].iov_len = 4096;
1720 	iov[53].iov_base = (void *)0xFEED3700000;
1721 	iov[53].iov_len = 4096;
1722 	iov[54].iov_base = (void *)0xFEED3800000;
1723 	iov[54].iov_len = 28672;
1724 	iov[55].iov_base = (void *)0xFEED3900000;
1725 	iov[55].iov_len = 20480;
1726 	iov[56].iov_base = (void *)0xFEED3A00000;
1727 	iov[56].iov_len = 4096;
1728 	iov[57].iov_base = (void *)0xFEED3B00000;
1729 	iov[57].iov_len = 12288;
1730 	iov[58].iov_base = (void *)0xFEED3C00000;
1731 	iov[58].iov_len = 4096;
1732 	iov[59].iov_base = (void *)0xFEED3D00000;
1733 	iov[59].iov_len = 4096;
1734 	iov[60].iov_base = (void *)0xFEED3E00000;
1735 	iov[60].iov_len = 352;
1736 
1737 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1738 	 * of child iovs,
1739 	 */
1740 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1741 	expected_io->md_buf = md_buf;
1742 	for (i = 0; i < 32; i++) {
1743 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1744 	}
1745 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1746 
1747 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1748 	 * split by the IO boundary requirement.
1749 	 */
1750 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1751 	expected_io->md_buf = md_buf + 126 * 8;
1752 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1753 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1754 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1755 
1756 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1757 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1758 	 */
1759 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1760 	expected_io->md_buf = md_buf + 128 * 8;
1761 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1762 			       iov[33].iov_len - 864);
1763 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1764 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1765 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1766 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1767 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1768 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1769 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1770 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1771 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1772 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1773 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1774 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1775 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1776 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1777 
1778 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1779 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1780 	 */
1781 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1782 	expected_io->md_buf = md_buf + 256 * 8;
1783 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1784 			       iov[46].iov_len - 864);
1785 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1786 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1787 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1788 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1789 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1790 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1791 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1792 
1793 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1794 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1795 	 */
1796 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1797 	expected_io->md_buf = md_buf + 384 * 8;
1798 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1799 			       iov[52].iov_len - 864);
1800 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1801 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1802 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1803 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1804 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1805 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1806 
1807 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1808 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1809 	 */
1810 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1811 	expected_io->md_buf = md_buf + 512 * 8;
1812 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1813 			       iov[57].iov_len - 4960);
1814 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1815 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1816 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1817 
1818 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1819 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1820 	expected_io->md_buf = md_buf + 542 * 8;
1821 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1822 			       iov[59].iov_len - 3936);
1823 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1824 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1825 
1826 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1827 					    0, 543, io_done, NULL);
1828 	CU_ASSERT(rc == 0);
1829 	CU_ASSERT(g_io_done == false);
1830 
1831 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1832 	stub_complete_io(1);
1833 	CU_ASSERT(g_io_done == false);
1834 
1835 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1836 	stub_complete_io(5);
1837 	CU_ASSERT(g_io_done == false);
1838 
1839 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1840 	stub_complete_io(1);
1841 	CU_ASSERT(g_io_done == true);
1842 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1843 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1844 
1845 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1846 	 * split, so test that.
1847 	 */
1848 	bdev->optimal_io_boundary = 15;
1849 	g_io_done = false;
1850 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1851 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1852 
1853 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1854 	CU_ASSERT(rc == 0);
1855 	CU_ASSERT(g_io_done == false);
1856 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1857 	stub_complete_io(1);
1858 	CU_ASSERT(g_io_done == true);
1859 
1860 	/* Test an UNMAP.  This should also not be split. */
1861 	bdev->optimal_io_boundary = 16;
1862 	g_io_done = false;
1863 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1864 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1865 
1866 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1867 	CU_ASSERT(rc == 0);
1868 	CU_ASSERT(g_io_done == false);
1869 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1870 	stub_complete_io(1);
1871 	CU_ASSERT(g_io_done == true);
1872 
1873 	/* Test a FLUSH.  This should also not be split. */
1874 	bdev->optimal_io_boundary = 16;
1875 	g_io_done = false;
1876 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1877 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1878 
1879 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1880 	CU_ASSERT(rc == 0);
1881 	CU_ASSERT(g_io_done == false);
1882 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1883 	stub_complete_io(1);
1884 	CU_ASSERT(g_io_done == true);
1885 
1886 	/* Test a COPY.  This should also not be split. */
1887 	bdev->optimal_io_boundary = 15;
1888 	g_io_done = false;
1889 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
1890 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1891 
1892 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
1893 	CU_ASSERT(rc == 0);
1894 	CU_ASSERT(g_io_done == false);
1895 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1896 	stub_complete_io(1);
1897 	CU_ASSERT(g_io_done == true);
1898 
1899 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1900 
1901 	/* Children requests return an error status */
1902 	bdev->optimal_io_boundary = 16;
1903 	iov[0].iov_base = (void *)0x10000;
1904 	iov[0].iov_len = 512 * 64;
1905 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1906 	g_io_done = false;
1907 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1908 
1909 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1910 	CU_ASSERT(rc == 0);
1911 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1912 	stub_complete_io(4);
1913 	CU_ASSERT(g_io_done == false);
1914 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1915 	stub_complete_io(1);
1916 	CU_ASSERT(g_io_done == true);
1917 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1918 
1919 	/* Test if a multi vector command terminated with failure before continuing
1920 	 * splitting process when one of child I/O failed.
1921 	 * The multi vector command is as same as the above that needs to be split by strip
1922 	 * and then needs to be split further due to the capacity of child iovs.
1923 	 */
1924 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1925 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1926 		iov[i].iov_len = 512;
1927 	}
1928 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
1929 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1930 
1931 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1932 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1933 
1934 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1935 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1936 
1937 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1938 
1939 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1940 	g_io_done = false;
1941 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1942 
1943 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
1944 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1945 	CU_ASSERT(rc == 0);
1946 	CU_ASSERT(g_io_done == false);
1947 
1948 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1949 	stub_complete_io(1);
1950 	CU_ASSERT(g_io_done == true);
1951 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1952 
1953 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1954 
1955 	/* for this test we will create the following conditions to hit the code path where
1956 	 * we are trying to send and IO following a split that has no iovs because we had to
1957 	 * trim them for alignment reasons.
1958 	 *
1959 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1960 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1961 	 *   position 30 and overshoot by 0x2e.
1962 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1963 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1964 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1965 	 *   and let the completion pick up the last 2 vectors.
1966 	 */
1967 	bdev->optimal_io_boundary = 32;
1968 	bdev->split_on_optimal_io_boundary = true;
1969 	g_io_done = false;
1970 
1971 	/* Init all parent IOVs to 0x212 */
1972 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1973 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1974 		iov[i].iov_len = 0x212;
1975 	}
1976 
1977 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
1978 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
1979 	/* expect 0-29 to be 1:1 with the parent iov */
1980 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1981 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1982 	}
1983 
1984 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1985 	 * where 0x1e is the amount we overshot the 16K boundary
1986 	 */
1987 	ut_expected_io_set_iov(expected_io, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
1988 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1989 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1990 
1991 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1992 	 * shortened that take it to the next boundary and then a final one to get us to
1993 	 * 0x4200 bytes for the IO.
1994 	 */
1995 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1996 					   1, 2);
1997 	/* position 30 picked up the remaining bytes to the next boundary */
1998 	ut_expected_io_set_iov(expected_io, 0,
1999 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
2000 
2001 	/* position 31 picked the the rest of the transfer to get us to 0x4200 */
2002 	ut_expected_io_set_iov(expected_io, 1,
2003 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
2004 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2005 
2006 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, 0,
2007 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
2008 	CU_ASSERT(rc == 0);
2009 	CU_ASSERT(g_io_done == false);
2010 
2011 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2012 	stub_complete_io(1);
2013 	CU_ASSERT(g_io_done == false);
2014 
2015 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2016 	stub_complete_io(1);
2017 	CU_ASSERT(g_io_done == true);
2018 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2019 
2020 	spdk_put_io_channel(io_ch);
2021 	spdk_bdev_close(desc);
2022 	free_bdev(bdev);
2023 	ut_fini_bdev();
2024 }
2025 
2026 static void
2027 bdev_io_max_size_and_segment_split_test(void)
2028 {
2029 	struct spdk_bdev *bdev;
2030 	struct spdk_bdev_desc *desc = NULL;
2031 	struct spdk_io_channel *io_ch;
2032 	struct spdk_bdev_opts bdev_opts = {};
2033 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
2034 	struct ut_expected_io *expected_io;
2035 	uint64_t i;
2036 	int rc;
2037 
2038 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2039 	bdev_opts.bdev_io_pool_size = 512;
2040 	bdev_opts.bdev_io_cache_size = 64;
2041 	bdev_opts.opts_size = sizeof(bdev_opts);
2042 	ut_init_bdev(&bdev_opts);
2043 
2044 	bdev = allocate_bdev("bdev0");
2045 
2046 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2047 	CU_ASSERT(rc == 0);
2048 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2049 	io_ch = spdk_bdev_get_io_channel(desc);
2050 	CU_ASSERT(io_ch != NULL);
2051 
2052 	bdev->split_on_optimal_io_boundary = false;
2053 	bdev->optimal_io_boundary = 0;
2054 
2055 	/* Case 0 max_num_segments == 0.
2056 	 * but segment size 2 * 512 > 512
2057 	 */
2058 	bdev->max_segment_size = 512;
2059 	bdev->max_num_segments = 0;
2060 	g_io_done = false;
2061 
2062 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2063 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2064 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2065 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2066 
2067 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2068 	CU_ASSERT(rc == 0);
2069 	CU_ASSERT(g_io_done == false);
2070 
2071 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2072 	stub_complete_io(1);
2073 	CU_ASSERT(g_io_done == true);
2074 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2075 
2076 	/* Case 1 max_segment_size == 0
2077 	 * but iov num 2 > 1.
2078 	 */
2079 	bdev->max_segment_size = 0;
2080 	bdev->max_num_segments = 1;
2081 	g_io_done = false;
2082 
2083 	iov[0].iov_base = (void *)0x10000;
2084 	iov[0].iov_len = 512;
2085 	iov[1].iov_base = (void *)0x20000;
2086 	iov[1].iov_len = 8 * 512;
2087 
2088 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2089 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len);
2090 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2091 
2092 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1);
2093 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len);
2094 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2095 
2096 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL);
2097 	CU_ASSERT(rc == 0);
2098 	CU_ASSERT(g_io_done == false);
2099 
2100 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2101 	stub_complete_io(2);
2102 	CU_ASSERT(g_io_done == true);
2103 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2104 
2105 	/* Test that a non-vector command is split correctly.
2106 	 * Set up the expected values before calling spdk_bdev_read_blocks
2107 	 */
2108 	bdev->max_segment_size = 512;
2109 	bdev->max_num_segments = 1;
2110 	g_io_done = false;
2111 
2112 	/* Child IO 0 */
2113 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2114 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2115 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2116 
2117 	/* Child IO 1 */
2118 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2119 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512);
2120 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2121 
2122 	/* spdk_bdev_read_blocks will submit the first child immediately. */
2123 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2124 	CU_ASSERT(rc == 0);
2125 	CU_ASSERT(g_io_done == false);
2126 
2127 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2128 	stub_complete_io(2);
2129 	CU_ASSERT(g_io_done == true);
2130 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2131 
2132 	/* Now set up a more complex, multi-vector command that needs to be split,
2133 	 * including splitting iovecs.
2134 	 */
2135 	bdev->max_segment_size = 2 * 512;
2136 	bdev->max_num_segments = 1;
2137 	g_io_done = false;
2138 
2139 	iov[0].iov_base = (void *)0x10000;
2140 	iov[0].iov_len = 2 * 512;
2141 	iov[1].iov_base = (void *)0x20000;
2142 	iov[1].iov_len = 4 * 512;
2143 	iov[2].iov_base = (void *)0x30000;
2144 	iov[2].iov_len = 6 * 512;
2145 
2146 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2147 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2);
2148 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2149 
2150 	/* Split iov[1].size to 2 iov entries then split the segments */
2151 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2152 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2);
2153 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2154 
2155 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1);
2156 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2);
2157 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2158 
2159 	/* Split iov[2].size to 3 iov entries then split the segments */
2160 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1);
2161 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2);
2162 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2163 
2164 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1);
2165 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2);
2166 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2167 
2168 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1);
2169 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2);
2170 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2171 
2172 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL);
2173 	CU_ASSERT(rc == 0);
2174 	CU_ASSERT(g_io_done == false);
2175 
2176 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2177 	stub_complete_io(6);
2178 	CU_ASSERT(g_io_done == true);
2179 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2180 
2181 	/* Test multi vector command that needs to be split by strip and then needs to be
2182 	 * split further due to the capacity of parent IO child iovs.
2183 	 */
2184 	bdev->max_segment_size = 512;
2185 	bdev->max_num_segments = 1;
2186 	g_io_done = false;
2187 
2188 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2189 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2190 		iov[i].iov_len = 512 * 2;
2191 	}
2192 
2193 	/* Each input iov.size is split into 2 iovs,
2194 	 * half of the input iov can fill all child iov entries of a single IO.
2195 	 */
2196 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i++) {
2197 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1);
2198 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2199 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2200 
2201 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1);
2202 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2203 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2204 	}
2205 
2206 	/* The remaining iov is split in the second round */
2207 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2208 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1);
2209 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2210 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2211 
2212 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1);
2213 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2214 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2215 	}
2216 
2217 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
2218 				    SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
2219 	CU_ASSERT(rc == 0);
2220 	CU_ASSERT(g_io_done == false);
2221 
2222 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2223 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2224 	CU_ASSERT(g_io_done == false);
2225 
2226 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2227 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2228 	CU_ASSERT(g_io_done == true);
2229 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2230 
2231 	/* A wrong case, a child IO that is divided does
2232 	 * not meet the principle of multiples of block size,
2233 	 * and exits with error
2234 	 */
2235 	bdev->max_segment_size = 512;
2236 	bdev->max_num_segments = 1;
2237 	g_io_done = false;
2238 
2239 	iov[0].iov_base = (void *)0x10000;
2240 	iov[0].iov_len = 512 + 256;
2241 	iov[1].iov_base = (void *)0x20000;
2242 	iov[1].iov_len = 256;
2243 
2244 	/* iov[0] is split to 512 and 256.
2245 	 * 256 is less than a block size, and it is found
2246 	 * in the next round of split that it is the first child IO smaller than
2247 	 * the block size, so the error exit
2248 	 */
2249 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1);
2250 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512);
2251 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2252 
2253 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL);
2254 	CU_ASSERT(rc == 0);
2255 	CU_ASSERT(g_io_done == false);
2256 
2257 	/* First child IO is OK */
2258 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2259 	stub_complete_io(1);
2260 	CU_ASSERT(g_io_done == true);
2261 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2262 
2263 	/* error exit */
2264 	stub_complete_io(1);
2265 	CU_ASSERT(g_io_done == true);
2266 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
2267 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2268 
2269 	/* Test multi vector command that needs to be split by strip and then needs to be
2270 	 * split further due to the capacity of child iovs.
2271 	 *
2272 	 * In this case, the last two iovs need to be split, but it will exceed the capacity
2273 	 * of child iovs, so it needs to wait until the first batch completed.
2274 	 */
2275 	bdev->max_segment_size = 512;
2276 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2277 	g_io_done = false;
2278 
2279 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2280 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2281 		iov[i].iov_len = 512;
2282 	}
2283 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2284 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2285 		iov[i].iov_len = 512 * 2;
2286 	}
2287 
2288 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2289 					   SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
2290 	/* 0 ~ (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */
2291 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2292 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2293 	}
2294 	/* (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) is split */
2295 	ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512);
2296 	ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512);
2297 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2298 
2299 	/* Child iov entries exceed the max num of parent IO so split it in next round */
2300 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV, 2, 2);
2301 	ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512);
2302 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512);
2303 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2304 
2305 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
2306 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL);
2307 	CU_ASSERT(rc == 0);
2308 	CU_ASSERT(g_io_done == false);
2309 
2310 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2311 	stub_complete_io(1);
2312 	CU_ASSERT(g_io_done == false);
2313 
2314 	/* Next round */
2315 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2316 	stub_complete_io(1);
2317 	CU_ASSERT(g_io_done == true);
2318 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2319 
2320 	/* This case is similar to the previous one, but the io composed of
2321 	 * the last few entries of child iov is not enough for a blocklen, so they
2322 	 * cannot be put into this IO, but wait until the next time.
2323 	 */
2324 	bdev->max_segment_size = 512;
2325 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2326 	g_io_done = false;
2327 
2328 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2329 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2330 		iov[i].iov_len = 512;
2331 	}
2332 
2333 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2334 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2335 		iov[i].iov_len = 128;
2336 	}
2337 
2338 	/* First child iovcnt is't SPDK_BDEV_IO_NUM_CHILD_IOV but SPDK_BDEV_IO_NUM_CHILD_IOV - 2.
2339 	 * Because the left 2 iov is not enough for a blocklen.
2340 	 */
2341 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2342 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 2, SPDK_BDEV_IO_NUM_CHILD_IOV - 2);
2343 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2344 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2345 	}
2346 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2347 
2348 	/* The second child io waits until the end of the first child io before executing.
2349 	 * Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO.
2350 	 * SPDK_BDEV_IO_NUM_CHILD_IOV - 2 to SPDK_BDEV_IO_NUM_CHILD_IOV + 2
2351 	 */
2352 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
2353 					   1, 4);
2354 	ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len);
2355 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len);
2356 	ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len);
2357 	ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len);
2358 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2359 
2360 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
2361 				    SPDK_BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL);
2362 	CU_ASSERT(rc == 0);
2363 	CU_ASSERT(g_io_done == false);
2364 
2365 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2366 	stub_complete_io(1);
2367 	CU_ASSERT(g_io_done == false);
2368 
2369 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2370 	stub_complete_io(1);
2371 	CU_ASSERT(g_io_done == true);
2372 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2373 
2374 	/* A very complicated case. Each sg entry exceeds max_segment_size and
2375 	 * needs to be split. At the same time, child io must be a multiple of blocklen.
2376 	 * At the same time, child iovcnt exceeds parent iovcnt.
2377 	 */
2378 	bdev->max_segment_size = 512 + 128;
2379 	bdev->max_num_segments = 3;
2380 	g_io_done = false;
2381 
2382 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2383 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2384 		iov[i].iov_len = 512 + 256;
2385 	}
2386 
2387 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2388 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2389 		iov[i].iov_len = 512 + 128;
2390 	}
2391 
2392 	/* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries.
2393 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2394 	 * Generate 9 child IOs.
2395 	 */
2396 	for (i = 0; i < 3; i++) {
2397 		uint32_t j = i * 4;
2398 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3);
2399 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2400 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2401 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2402 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2403 
2404 		/* Child io must be a multiple of blocklen
2405 		 * iov[j + 2] must be split. If the third entry is also added,
2406 		 * the multiple of blocklen cannot be guaranteed. But it still
2407 		 * occupies one iov entry of the parent child iov.
2408 		 */
2409 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2);
2410 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2411 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2412 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2413 
2414 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3);
2415 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2416 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2417 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2418 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2419 	}
2420 
2421 	/* Child iov position at 27, the 10th child IO
2422 	 * iov entry index is 3 * 4 and offset is 3 * 6
2423 	 */
2424 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3);
2425 	ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640);
2426 	ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128);
2427 	ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256);
2428 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2429 
2430 	/* Child iov position at 30, the 11th child IO */
2431 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2);
2432 	ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512);
2433 	ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512);
2434 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2435 
2436 	/* The 2nd split round and iovpos is 0, the 12th child IO */
2437 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3);
2438 	ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256);
2439 	ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640);
2440 	ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128);
2441 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2442 
2443 	/* Consume 9 child IOs and 27 child iov entries.
2444 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2445 	 * Parent IO iov index start from 16 and block offset start from 24
2446 	 */
2447 	for (i = 0; i < 3; i++) {
2448 		uint32_t j = i * 4 + 16;
2449 		uint32_t offset = i * 6 + 24;
2450 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3);
2451 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2452 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2453 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2454 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2455 
2456 		/* Child io must be a multiple of blocklen
2457 		 * iov[j + 2] must be split. If the third entry is also added,
2458 		 * the multiple of blocklen cannot be guaranteed. But it still
2459 		 * occupies one iov entry of the parent child iov.
2460 		 */
2461 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2);
2462 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2463 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2464 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2465 
2466 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3);
2467 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2468 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2469 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2470 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2471 	}
2472 
2473 	/* The 22th child IO, child iov position at 30 */
2474 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1);
2475 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512);
2476 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2477 
2478 	/* The third round */
2479 	/* Here is the 23nd child IO and child iovpos is 0 */
2480 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3);
2481 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256);
2482 	ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640);
2483 	ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128);
2484 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2485 
2486 	/* The 24th child IO */
2487 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3);
2488 	ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640);
2489 	ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640);
2490 	ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256);
2491 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2492 
2493 	/* The 25th child IO */
2494 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2);
2495 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384);
2496 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640);
2497 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2498 
2499 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
2500 				    50, io_done, NULL);
2501 	CU_ASSERT(rc == 0);
2502 	CU_ASSERT(g_io_done == false);
2503 
2504 	/* Parent IO supports up to 32 child iovs, so it is calculated that
2505 	 * a maximum of 11 IOs can be split at a time, and the
2506 	 * splitting will continue after the first batch is over.
2507 	 */
2508 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2509 	stub_complete_io(11);
2510 	CU_ASSERT(g_io_done == false);
2511 
2512 	/* The 2nd round */
2513 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2514 	stub_complete_io(11);
2515 	CU_ASSERT(g_io_done == false);
2516 
2517 	/* The last round */
2518 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2519 	stub_complete_io(3);
2520 	CU_ASSERT(g_io_done == true);
2521 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2522 
2523 	/* Test an WRITE_ZEROES.  This should also not be split. */
2524 	bdev->max_segment_size = 512;
2525 	bdev->max_num_segments = 1;
2526 	g_io_done = false;
2527 
2528 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
2529 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2530 
2531 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
2532 	CU_ASSERT(rc == 0);
2533 	CU_ASSERT(g_io_done == false);
2534 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2535 	stub_complete_io(1);
2536 	CU_ASSERT(g_io_done == true);
2537 
2538 	/* Test an UNMAP.  This should also not be split. */
2539 	g_io_done = false;
2540 
2541 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0);
2542 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2543 
2544 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL);
2545 	CU_ASSERT(rc == 0);
2546 	CU_ASSERT(g_io_done == false);
2547 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2548 	stub_complete_io(1);
2549 	CU_ASSERT(g_io_done == true);
2550 
2551 	/* Test a FLUSH.  This should also not be split. */
2552 	g_io_done = false;
2553 
2554 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0);
2555 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2556 
2557 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 4, io_done, NULL);
2558 	CU_ASSERT(rc == 0);
2559 	CU_ASSERT(g_io_done == false);
2560 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2561 	stub_complete_io(1);
2562 	CU_ASSERT(g_io_done == true);
2563 
2564 	/* Test a COPY.  This should also not be split. */
2565 	g_io_done = false;
2566 
2567 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
2568 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2569 
2570 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
2571 	CU_ASSERT(rc == 0);
2572 	CU_ASSERT(g_io_done == false);
2573 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2574 	stub_complete_io(1);
2575 	CU_ASSERT(g_io_done == true);
2576 
2577 	/* Test that IOs are split on max_rw_size */
2578 	bdev->max_rw_size = 2;
2579 	bdev->max_segment_size = 0;
2580 	bdev->max_num_segments = 0;
2581 	g_io_done = false;
2582 
2583 	/* 5 blocks in a contiguous buffer */
2584 	iov[0].iov_base = (void *)0x10000;
2585 	iov[0].iov_len = 5 * 512;
2586 
2587 	/* First: offset=0, num_blocks=2 */
2588 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 2, 1);
2589 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 2 * 512);
2590 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2591 	/* Second: offset=2, num_blocks=2 */
2592 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2, 2, 1);
2593 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + 2 * 512, 2 * 512);
2594 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2595 	/* Third: offset=4, num_blocks=1 */
2596 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 4, 1, 1);
2597 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + 4 * 512, 512);
2598 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2599 
2600 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 0, 5, io_done, NULL);
2601 	CU_ASSERT(rc == 0);
2602 	CU_ASSERT(g_io_done == false);
2603 
2604 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2605 	stub_complete_io(3);
2606 	CU_ASSERT(g_io_done == true);
2607 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2608 
2609 	/* Check splitting on both max_rw_size + max_num_segments */
2610 	bdev->max_rw_size = 2;
2611 	bdev->max_num_segments = 2;
2612 	bdev->max_segment_size = 0;
2613 	g_io_done = false;
2614 
2615 	/* 5 blocks split across 4 iovs */
2616 	iov[0].iov_base = (void *)0x10000;
2617 	iov[0].iov_len = 3 * 512;
2618 	iov[1].iov_base = (void *)0x20000;
2619 	iov[1].iov_len = 256;
2620 	iov[2].iov_base = (void *)0x30000;
2621 	iov[2].iov_len = 256;
2622 	iov[3].iov_base = (void *)0x40000;
2623 	iov[3].iov_len = 512;
2624 
2625 	/* First: offset=0, num_blocks=2, iovcnt=1 */
2626 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 2, 1);
2627 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 2 * 512);
2628 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2629 	/* Second: offset=2, num_blocks=1, iovcnt=1 (max_segment_size prevents from submitting
2630 	 * the rest of iov[0], and iov[1]+iov[2])
2631 	 */
2632 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2, 1, 1);
2633 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + 2 * 512, 512);
2634 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2635 	/* Third: offset=3, num_blocks=1, iovcnt=2 (iov[1]+iov[2]) */
2636 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 3, 1, 2);
2637 	ut_expected_io_set_iov(expected_io, 0, (void *)0x20000, 256);
2638 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 256);
2639 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2640 	/* Fourth: offset=4, num_blocks=1, iovcnt=1 (iov[3]) */
2641 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 4, 1, 1);
2642 	ut_expected_io_set_iov(expected_io, 0, (void *)0x40000, 512);
2643 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2644 
2645 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 4, 0, 5, io_done, NULL);
2646 	CU_ASSERT(rc == 0);
2647 	CU_ASSERT(g_io_done == false);
2648 
2649 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2650 	stub_complete_io(4);
2651 	CU_ASSERT(g_io_done == true);
2652 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2653 
2654 	/* Check splitting on both max_rw_size + max_segment_size */
2655 	bdev->max_rw_size = 2;
2656 	bdev->max_segment_size = 512;
2657 	bdev->max_num_segments = 0;
2658 	g_io_done = false;
2659 
2660 	/* 6 blocks in a contiguous buffer */
2661 	iov[0].iov_base = (void *)0x10000;
2662 	iov[0].iov_len = 6 * 512;
2663 
2664 	/* We expect 3 IOs each with 2 blocks and 2 iovs */
2665 	for (i = 0; i < 3; ++i) {
2666 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 2, 2);
2667 		ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + i * 2 * 512, 512);
2668 		ut_expected_io_set_iov(expected_io, 1, (void *)0x10000 + i * 2 * 512 + 512, 512);
2669 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2670 	}
2671 
2672 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 0, 6, io_done, NULL);
2673 	CU_ASSERT(rc == 0);
2674 	CU_ASSERT(g_io_done == false);
2675 
2676 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2677 	stub_complete_io(3);
2678 	CU_ASSERT(g_io_done == true);
2679 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2680 
2681 	/* Check splitting on max_rw_size limited by SPDK_BDEV_IO_NUM_CHILD_IOV */
2682 	bdev->max_rw_size = 1;
2683 	bdev->max_segment_size = 0;
2684 	bdev->max_num_segments = 0;
2685 	g_io_done = false;
2686 
2687 	/* SPDK_BDEV_IO_NUM_CHILD_IOV + 1 blocks */
2688 	iov[0].iov_base = (void *)0x10000;
2689 	iov[0].iov_len = (SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 512;
2690 
2691 	/* We expect SPDK_BDEV_IO_NUM_CHILD_IOV + 1 IOs each with a single iov */
2692 	for (i = 0; i < 3; ++i) {
2693 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i, 1, 1);
2694 		ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + i * 512, 512);
2695 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2696 	}
2697 
2698 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
2699 	CU_ASSERT(rc == 0);
2700 	CU_ASSERT(g_io_done == false);
2701 
2702 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2703 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2704 	CU_ASSERT(g_io_done == false);
2705 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2706 	stub_complete_io(1);
2707 	CU_ASSERT(g_io_done == true);
2708 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2709 
2710 	spdk_put_io_channel(io_ch);
2711 	spdk_bdev_close(desc);
2712 	free_bdev(bdev);
2713 	ut_fini_bdev();
2714 }
2715 
2716 static void
2717 bdev_io_mix_split_test(void)
2718 {
2719 	struct spdk_bdev *bdev;
2720 	struct spdk_bdev_desc *desc = NULL;
2721 	struct spdk_io_channel *io_ch;
2722 	struct spdk_bdev_opts bdev_opts = {};
2723 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
2724 	struct ut_expected_io *expected_io;
2725 	uint64_t i;
2726 	int rc;
2727 
2728 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2729 	bdev_opts.bdev_io_pool_size = 512;
2730 	bdev_opts.bdev_io_cache_size = 64;
2731 	ut_init_bdev(&bdev_opts);
2732 
2733 	bdev = allocate_bdev("bdev0");
2734 
2735 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2736 	CU_ASSERT(rc == 0);
2737 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2738 	io_ch = spdk_bdev_get_io_channel(desc);
2739 	CU_ASSERT(io_ch != NULL);
2740 
2741 	/* First case optimal_io_boundary == max_segment_size * max_num_segments */
2742 	bdev->split_on_optimal_io_boundary = true;
2743 	bdev->optimal_io_boundary = 16;
2744 
2745 	bdev->max_segment_size = 512;
2746 	bdev->max_num_segments = 16;
2747 	g_io_done = false;
2748 
2749 	/* IO crossing the IO boundary requires split
2750 	 * Total 2 child IOs.
2751 	 */
2752 
2753 	/* The 1st child IO split the segment_size to multiple segment entry */
2754 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2755 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2756 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2757 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2758 
2759 	/* The 2nd child IO split the segment_size to multiple segment entry */
2760 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2);
2761 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512);
2762 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512);
2763 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2764 
2765 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL);
2766 	CU_ASSERT(rc == 0);
2767 	CU_ASSERT(g_io_done == false);
2768 
2769 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2770 	stub_complete_io(2);
2771 	CU_ASSERT(g_io_done == true);
2772 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2773 
2774 	/* Second case optimal_io_boundary > max_segment_size * max_num_segments */
2775 	bdev->max_segment_size = 15 * 512;
2776 	bdev->max_num_segments = 1;
2777 	g_io_done = false;
2778 
2779 	/* IO crossing the IO boundary requires split.
2780 	 * The 1st child IO segment size exceeds the max_segment_size,
2781 	 * So 1st child IO will be split to multiple segment entry.
2782 	 * Then it split to 2 child IOs because of the max_num_segments.
2783 	 * Total 3 child IOs.
2784 	 */
2785 
2786 	/* The first 2 IOs are in an IO boundary.
2787 	 * Because the optimal_io_boundary > max_segment_size * max_num_segments
2788 	 * So it split to the first 2 IOs.
2789 	 */
2790 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1);
2791 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15);
2792 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2793 
2794 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2795 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512);
2796 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2797 
2798 	/* The 3rd Child IO is because of the io boundary */
2799 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2800 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2801 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2802 
2803 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2804 	CU_ASSERT(rc == 0);
2805 	CU_ASSERT(g_io_done == false);
2806 
2807 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2808 	stub_complete_io(3);
2809 	CU_ASSERT(g_io_done == true);
2810 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2811 
2812 	/* Third case optimal_io_boundary < max_segment_size * max_num_segments */
2813 	bdev->max_segment_size = 17 * 512;
2814 	bdev->max_num_segments = 1;
2815 	g_io_done = false;
2816 
2817 	/* IO crossing the IO boundary requires split.
2818 	 * Child IO does not split.
2819 	 * Total 2 child IOs.
2820 	 */
2821 
2822 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1);
2823 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16);
2824 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2825 
2826 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2827 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2828 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2829 
2830 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2831 	CU_ASSERT(rc == 0);
2832 	CU_ASSERT(g_io_done == false);
2833 
2834 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2835 	stub_complete_io(2);
2836 	CU_ASSERT(g_io_done == true);
2837 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2838 
2839 	/* Now set up a more complex, multi-vector command that needs to be split,
2840 	 * including splitting iovecs.
2841 	 * optimal_io_boundary < max_segment_size * max_num_segments
2842 	 */
2843 	bdev->max_segment_size = 3 * 512;
2844 	bdev->max_num_segments = 6;
2845 	g_io_done = false;
2846 
2847 	iov[0].iov_base = (void *)0x10000;
2848 	iov[0].iov_len = 4 * 512;
2849 	iov[1].iov_base = (void *)0x20000;
2850 	iov[1].iov_len = 4 * 512;
2851 	iov[2].iov_base = (void *)0x30000;
2852 	iov[2].iov_len = 10 * 512;
2853 
2854 	/* IO crossing the IO boundary requires split.
2855 	 * The 1st child IO segment size exceeds the max_segment_size and after
2856 	 * splitting segment_size, the num_segments exceeds max_num_segments.
2857 	 * So 1st child IO will be split to 2 child IOs.
2858 	 * Total 3 child IOs.
2859 	 */
2860 
2861 	/* The first 2 IOs are in an IO boundary.
2862 	 * After splitting segment size the segment num exceeds.
2863 	 * So it splits to 2 child IOs.
2864 	 */
2865 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6);
2866 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3);
2867 	ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512);
2868 	ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3);
2869 	ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512);
2870 	ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3);
2871 	ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3);
2872 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2873 
2874 	/* The 2nd child IO has the left segment entry */
2875 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2876 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2);
2877 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2878 
2879 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2880 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2);
2881 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2882 
2883 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL);
2884 	CU_ASSERT(rc == 0);
2885 	CU_ASSERT(g_io_done == false);
2886 
2887 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2888 	stub_complete_io(3);
2889 	CU_ASSERT(g_io_done == true);
2890 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2891 
2892 	/* A very complicated case. Each sg entry exceeds max_segment_size
2893 	 * and split on io boundary.
2894 	 * optimal_io_boundary < max_segment_size * max_num_segments
2895 	 */
2896 	bdev->max_segment_size = 3 * 512;
2897 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2898 	g_io_done = false;
2899 
2900 	for (i = 0; i < 20; i++) {
2901 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2902 		iov[i].iov_len = 512 * 4;
2903 	}
2904 
2905 	/* IO crossing the IO boundary requires split.
2906 	 * 80 block length can split 5 child IOs base on offset and IO boundary.
2907 	 * Each iov entry needs to be split to 2 entries because of max_segment_size
2908 	 * Total 5 child IOs.
2909 	 */
2910 
2911 	/* 4 iov entries are in an IO boundary and each iov entry splits to 2.
2912 	 * So each child IO occupies 8 child iov entries.
2913 	 */
2914 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8);
2915 	for (i = 0; i < 4; i++) {
2916 		int iovcnt = i * 2;
2917 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2918 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2919 	}
2920 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2921 
2922 	/* 2nd child IO and total 16 child iov entries of parent IO */
2923 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8);
2924 	for (i = 4; i < 8; i++) {
2925 		int iovcnt = (i - 4) * 2;
2926 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2927 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2928 	}
2929 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2930 
2931 	/* 3rd child IO and total 24 child iov entries of parent IO */
2932 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8);
2933 	for (i = 8; i < 12; i++) {
2934 		int iovcnt = (i - 8) * 2;
2935 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2936 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2937 	}
2938 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2939 
2940 	/* 4th child IO and total 32 child iov entries of parent IO */
2941 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8);
2942 	for (i = 12; i < 16; i++) {
2943 		int iovcnt = (i - 12) * 2;
2944 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2945 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2946 	}
2947 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2948 
2949 	/* 5th child IO and because of the child iov entry it should be split
2950 	 * in next round.
2951 	 */
2952 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8);
2953 	for (i = 16; i < 20; i++) {
2954 		int iovcnt = (i - 16) * 2;
2955 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2956 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2957 	}
2958 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2959 
2960 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL);
2961 	CU_ASSERT(rc == 0);
2962 	CU_ASSERT(g_io_done == false);
2963 
2964 	/* First split round */
2965 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2966 	stub_complete_io(4);
2967 	CU_ASSERT(g_io_done == false);
2968 
2969 	/* Second split round */
2970 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2971 	stub_complete_io(1);
2972 	CU_ASSERT(g_io_done == true);
2973 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2974 
2975 	spdk_put_io_channel(io_ch);
2976 	spdk_bdev_close(desc);
2977 	free_bdev(bdev);
2978 	ut_fini_bdev();
2979 }
2980 
2981 static void
2982 bdev_io_split_with_io_wait(void)
2983 {
2984 	struct spdk_bdev *bdev;
2985 	struct spdk_bdev_desc *desc = NULL;
2986 	struct spdk_io_channel *io_ch;
2987 	struct spdk_bdev_channel *channel;
2988 	struct spdk_bdev_mgmt_channel *mgmt_ch;
2989 	struct spdk_bdev_opts bdev_opts = {};
2990 	struct iovec iov[3];
2991 	struct ut_expected_io *expected_io;
2992 	int rc;
2993 
2994 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2995 	bdev_opts.bdev_io_pool_size = 2;
2996 	bdev_opts.bdev_io_cache_size = 1;
2997 	ut_init_bdev(&bdev_opts);
2998 
2999 	bdev = allocate_bdev("bdev0");
3000 
3001 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3002 	CU_ASSERT(rc == 0);
3003 	CU_ASSERT(desc != NULL);
3004 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3005 	io_ch = spdk_bdev_get_io_channel(desc);
3006 	CU_ASSERT(io_ch != NULL);
3007 	channel = spdk_io_channel_get_ctx(io_ch);
3008 	mgmt_ch = channel->shared_resource->mgmt_ch;
3009 
3010 	bdev->optimal_io_boundary = 16;
3011 	bdev->split_on_optimal_io_boundary = true;
3012 
3013 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
3014 	CU_ASSERT(rc == 0);
3015 
3016 	/* Now test that a single-vector command is split correctly.
3017 	 * Offset 14, length 8, payload 0xF000
3018 	 *  Child - Offset 14, length 2, payload 0xF000
3019 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
3020 	 *
3021 	 * Set up the expected values before calling spdk_bdev_read_blocks
3022 	 */
3023 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
3024 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
3025 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3026 
3027 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
3028 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
3029 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3030 
3031 	/* The following children will be submitted sequentially due to the capacity of
3032 	 * spdk_bdev_io.
3033 	 */
3034 
3035 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
3036 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
3037 	CU_ASSERT(rc == 0);
3038 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
3039 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3040 
3041 	/* Completing the first read I/O will submit the first child */
3042 	stub_complete_io(1);
3043 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
3044 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3045 
3046 	/* Completing the first child will submit the second child */
3047 	stub_complete_io(1);
3048 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3049 
3050 	/* Complete the second child I/O.  This should result in our callback getting
3051 	 * invoked since the parent I/O is now complete.
3052 	 */
3053 	stub_complete_io(1);
3054 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3055 
3056 	/* Now set up a more complex, multi-vector command that needs to be split,
3057 	 *  including splitting iovecs.
3058 	 */
3059 	iov[0].iov_base = (void *)0x10000;
3060 	iov[0].iov_len = 512;
3061 	iov[1].iov_base = (void *)0x20000;
3062 	iov[1].iov_len = 20 * 512;
3063 	iov[2].iov_base = (void *)0x30000;
3064 	iov[2].iov_len = 11 * 512;
3065 
3066 	g_io_done = false;
3067 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
3068 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
3069 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
3070 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3071 
3072 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
3073 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
3074 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3075 
3076 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
3077 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
3078 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
3079 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3080 
3081 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
3082 	CU_ASSERT(rc == 0);
3083 	CU_ASSERT(g_io_done == false);
3084 
3085 	/* The following children will be submitted sequentially due to the capacity of
3086 	 * spdk_bdev_io.
3087 	 */
3088 
3089 	/* Completing the first child will submit the second child */
3090 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3091 	stub_complete_io(1);
3092 	CU_ASSERT(g_io_done == false);
3093 
3094 	/* Completing the second child will submit the third child */
3095 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3096 	stub_complete_io(1);
3097 	CU_ASSERT(g_io_done == false);
3098 
3099 	/* Completing the third child will result in our callback getting invoked
3100 	 * since the parent I/O is now complete.
3101 	 */
3102 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3103 	stub_complete_io(1);
3104 	CU_ASSERT(g_io_done == true);
3105 
3106 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
3107 
3108 	spdk_put_io_channel(io_ch);
3109 	spdk_bdev_close(desc);
3110 	free_bdev(bdev);
3111 	ut_fini_bdev();
3112 }
3113 
3114 static void
3115 bdev_io_write_unit_split_test(void)
3116 {
3117 	struct spdk_bdev *bdev;
3118 	struct spdk_bdev_desc *desc = NULL;
3119 	struct spdk_io_channel *io_ch;
3120 	struct spdk_bdev_opts bdev_opts = {};
3121 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 4];
3122 	struct ut_expected_io *expected_io;
3123 	uint64_t i;
3124 	int rc;
3125 
3126 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3127 	bdev_opts.bdev_io_pool_size = 512;
3128 	bdev_opts.bdev_io_cache_size = 64;
3129 	ut_init_bdev(&bdev_opts);
3130 
3131 	bdev = allocate_bdev("bdev0");
3132 
3133 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
3134 	CU_ASSERT(rc == 0);
3135 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3136 	io_ch = spdk_bdev_get_io_channel(desc);
3137 	CU_ASSERT(io_ch != NULL);
3138 
3139 	/* Write I/O 2x larger than write_unit_size should get split into 2 I/Os */
3140 	bdev->write_unit_size = 32;
3141 	bdev->split_on_write_unit = true;
3142 	g_io_done = false;
3143 
3144 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 32, 1);
3145 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 32 * 512);
3146 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3147 
3148 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 32, 1);
3149 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 32 * 512), 32 * 512);
3150 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3151 
3152 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
3153 	CU_ASSERT(rc == 0);
3154 	CU_ASSERT(g_io_done == false);
3155 
3156 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3157 	stub_complete_io(2);
3158 	CU_ASSERT(g_io_done == true);
3159 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3160 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3161 
3162 	/* Same as above but with optimal_io_boundary < write_unit_size - the I/O should be split
3163 	 * based on write_unit_size, not optimal_io_boundary */
3164 	bdev->split_on_optimal_io_boundary = true;
3165 	bdev->optimal_io_boundary = 16;
3166 	g_io_done = false;
3167 
3168 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
3169 	CU_ASSERT(rc == 0);
3170 	CU_ASSERT(g_io_done == false);
3171 
3172 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3173 	stub_complete_io(2);
3174 	CU_ASSERT(g_io_done == true);
3175 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3176 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3177 
3178 	/* Write I/O should fail if it is smaller than write_unit_size */
3179 	g_io_done = false;
3180 
3181 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 31, io_done, NULL);
3182 	CU_ASSERT(rc == 0);
3183 	CU_ASSERT(g_io_done == false);
3184 
3185 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3186 	poll_threads();
3187 	CU_ASSERT(g_io_done == true);
3188 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3189 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3190 
3191 	/* Same for I/O not aligned to write_unit_size */
3192 	g_io_done = false;
3193 
3194 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 1, 32, io_done, NULL);
3195 	CU_ASSERT(rc == 0);
3196 	CU_ASSERT(g_io_done == false);
3197 
3198 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3199 	poll_threads();
3200 	CU_ASSERT(g_io_done == true);
3201 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3202 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3203 
3204 	/* Write should fail if it needs to be split but there are not enough iovs to submit
3205 	 * an entire write unit */
3206 	bdev->write_unit_size = SPDK_COUNTOF(iov) / 2;
3207 	g_io_done = false;
3208 
3209 	for (i = 0; i < SPDK_COUNTOF(iov); i++) {
3210 		iov[i].iov_base = (void *)(0x1000 + 512 * i);
3211 		iov[i].iov_len = 512;
3212 	}
3213 
3214 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, SPDK_COUNTOF(iov), 0, SPDK_COUNTOF(iov),
3215 				     io_done, NULL);
3216 	CU_ASSERT(rc == 0);
3217 	CU_ASSERT(g_io_done == false);
3218 
3219 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3220 	poll_threads();
3221 	CU_ASSERT(g_io_done == true);
3222 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3223 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3224 
3225 	spdk_put_io_channel(io_ch);
3226 	spdk_bdev_close(desc);
3227 	free_bdev(bdev);
3228 	ut_fini_bdev();
3229 }
3230 
3231 static void
3232 bdev_io_alignment(void)
3233 {
3234 	struct spdk_bdev *bdev;
3235 	struct spdk_bdev_desc *desc = NULL;
3236 	struct spdk_io_channel *io_ch;
3237 	struct spdk_bdev_opts bdev_opts = {};
3238 	int rc;
3239 	void *buf = NULL;
3240 	struct iovec iovs[2];
3241 	int iovcnt;
3242 	uint64_t alignment;
3243 
3244 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3245 	bdev_opts.bdev_io_pool_size = 20;
3246 	bdev_opts.bdev_io_cache_size = 2;
3247 	ut_init_bdev(&bdev_opts);
3248 
3249 	fn_table.submit_request = stub_submit_request_get_buf;
3250 	bdev = allocate_bdev("bdev0");
3251 
3252 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3253 	CU_ASSERT(rc == 0);
3254 	CU_ASSERT(desc != NULL);
3255 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3256 	io_ch = spdk_bdev_get_io_channel(desc);
3257 	CU_ASSERT(io_ch != NULL);
3258 
3259 	/* Create aligned buffer */
3260 	rc = posix_memalign(&buf, 4096, 8192);
3261 	SPDK_CU_ASSERT_FATAL(rc == 0);
3262 
3263 	/* Pass aligned single buffer with no alignment required */
3264 	alignment = 1;
3265 	bdev->required_alignment = spdk_u32log2(alignment);
3266 
3267 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3268 	CU_ASSERT(rc == 0);
3269 	stub_complete_io(1);
3270 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3271 				    alignment));
3272 
3273 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3274 	CU_ASSERT(rc == 0);
3275 	stub_complete_io(1);
3276 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3277 				    alignment));
3278 
3279 	/* Pass unaligned single buffer with no alignment required */
3280 	alignment = 1;
3281 	bdev->required_alignment = spdk_u32log2(alignment);
3282 
3283 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3284 	CU_ASSERT(rc == 0);
3285 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3286 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3287 	stub_complete_io(1);
3288 
3289 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3290 	CU_ASSERT(rc == 0);
3291 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3292 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3293 	stub_complete_io(1);
3294 
3295 	/* Pass unaligned single buffer with 512 alignment required */
3296 	alignment = 512;
3297 	bdev->required_alignment = spdk_u32log2(alignment);
3298 
3299 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3300 	CU_ASSERT(rc == 0);
3301 	CU_ASSERT(g_bdev_io->internal.bounce_buf.orig_iovcnt == 1);
3302 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_buf.iov);
3303 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3304 				    alignment));
3305 	stub_complete_io(1);
3306 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3307 
3308 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3309 	CU_ASSERT(rc == 0);
3310 	CU_ASSERT(g_bdev_io->internal.bounce_buf.orig_iovcnt == 1);
3311 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_buf.iov);
3312 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3313 				    alignment));
3314 	stub_complete_io(1);
3315 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3316 
3317 	/* Pass unaligned single buffer with 4096 alignment required */
3318 	alignment = 4096;
3319 	bdev->required_alignment = spdk_u32log2(alignment);
3320 
3321 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3322 	CU_ASSERT(rc == 0);
3323 	CU_ASSERT(g_bdev_io->internal.bounce_buf.orig_iovcnt == 1);
3324 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_buf.iov);
3325 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3326 				    alignment));
3327 	stub_complete_io(1);
3328 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3329 
3330 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3331 	CU_ASSERT(rc == 0);
3332 	CU_ASSERT(g_bdev_io->internal.bounce_buf.orig_iovcnt == 1);
3333 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_buf.iov);
3334 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3335 				    alignment));
3336 	stub_complete_io(1);
3337 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3338 
3339 	/* Pass aligned iovs with no alignment required */
3340 	alignment = 1;
3341 	bdev->required_alignment = spdk_u32log2(alignment);
3342 
3343 	iovcnt = 1;
3344 	iovs[0].iov_base = buf;
3345 	iovs[0].iov_len = 512;
3346 
3347 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3348 	CU_ASSERT(rc == 0);
3349 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3350 	stub_complete_io(1);
3351 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3352 
3353 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3354 	CU_ASSERT(rc == 0);
3355 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3356 	stub_complete_io(1);
3357 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3358 
3359 	/* Pass unaligned iovs with no alignment required */
3360 	alignment = 1;
3361 	bdev->required_alignment = spdk_u32log2(alignment);
3362 
3363 	iovcnt = 2;
3364 	iovs[0].iov_base = buf + 16;
3365 	iovs[0].iov_len = 256;
3366 	iovs[1].iov_base = buf + 16 + 256 + 32;
3367 	iovs[1].iov_len = 256;
3368 
3369 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3370 	CU_ASSERT(rc == 0);
3371 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3372 	stub_complete_io(1);
3373 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3374 
3375 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3376 	CU_ASSERT(rc == 0);
3377 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3378 	stub_complete_io(1);
3379 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3380 
3381 	/* Pass unaligned iov with 2048 alignment required */
3382 	alignment = 2048;
3383 	bdev->required_alignment = spdk_u32log2(alignment);
3384 
3385 	iovcnt = 2;
3386 	iovs[0].iov_base = buf + 16;
3387 	iovs[0].iov_len = 256;
3388 	iovs[1].iov_base = buf + 16 + 256 + 32;
3389 	iovs[1].iov_len = 256;
3390 
3391 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3392 	CU_ASSERT(rc == 0);
3393 	CU_ASSERT(g_bdev_io->internal.bounce_buf.orig_iovcnt == iovcnt);
3394 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_buf.iov);
3395 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3396 				    alignment));
3397 	stub_complete_io(1);
3398 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3399 
3400 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3401 	CU_ASSERT(rc == 0);
3402 	CU_ASSERT(g_bdev_io->internal.bounce_buf.orig_iovcnt == iovcnt);
3403 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_buf.iov);
3404 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3405 				    alignment));
3406 	stub_complete_io(1);
3407 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3408 
3409 	/* Pass iov without allocated buffer without alignment required */
3410 	alignment = 1;
3411 	bdev->required_alignment = spdk_u32log2(alignment);
3412 
3413 	iovcnt = 1;
3414 	iovs[0].iov_base = NULL;
3415 	iovs[0].iov_len = 0;
3416 
3417 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3418 	CU_ASSERT(rc == 0);
3419 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3420 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3421 				    alignment));
3422 	stub_complete_io(1);
3423 
3424 	/* Pass iov without allocated buffer with 1024 alignment required */
3425 	alignment = 1024;
3426 	bdev->required_alignment = spdk_u32log2(alignment);
3427 
3428 	iovcnt = 1;
3429 	iovs[0].iov_base = NULL;
3430 	iovs[0].iov_len = 0;
3431 
3432 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3433 	CU_ASSERT(rc == 0);
3434 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3435 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3436 				    alignment));
3437 	stub_complete_io(1);
3438 
3439 	spdk_put_io_channel(io_ch);
3440 	spdk_bdev_close(desc);
3441 	free_bdev(bdev);
3442 	fn_table.submit_request = stub_submit_request;
3443 	ut_fini_bdev();
3444 
3445 	free(buf);
3446 }
3447 
3448 static void
3449 bdev_io_alignment_with_boundary(void)
3450 {
3451 	struct spdk_bdev *bdev;
3452 	struct spdk_bdev_desc *desc = NULL;
3453 	struct spdk_io_channel *io_ch;
3454 	struct spdk_bdev_opts bdev_opts = {};
3455 	int rc;
3456 	void *buf = NULL;
3457 	struct iovec iovs[2];
3458 	int iovcnt;
3459 	uint64_t alignment;
3460 
3461 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3462 	bdev_opts.bdev_io_pool_size = 20;
3463 	bdev_opts.bdev_io_cache_size = 2;
3464 	bdev_opts.opts_size = sizeof(bdev_opts);
3465 	ut_init_bdev(&bdev_opts);
3466 
3467 	fn_table.submit_request = stub_submit_request_get_buf;
3468 	bdev = allocate_bdev("bdev0");
3469 
3470 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3471 	CU_ASSERT(rc == 0);
3472 	CU_ASSERT(desc != NULL);
3473 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3474 	io_ch = spdk_bdev_get_io_channel(desc);
3475 	CU_ASSERT(io_ch != NULL);
3476 
3477 	/* Create aligned buffer */
3478 	rc = posix_memalign(&buf, 4096, 131072);
3479 	SPDK_CU_ASSERT_FATAL(rc == 0);
3480 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3481 
3482 #ifdef NOTDEF
3483 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
3484 	alignment = 512;
3485 	bdev->required_alignment = spdk_u32log2(alignment);
3486 	bdev->optimal_io_boundary = 2;
3487 	bdev->split_on_optimal_io_boundary = true;
3488 
3489 	iovcnt = 1;
3490 	iovs[0].iov_base = NULL;
3491 	iovs[0].iov_len = 512 * 3;
3492 
3493 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3494 	CU_ASSERT(rc == 0);
3495 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3496 	stub_complete_io(2);
3497 
3498 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
3499 	alignment = 512;
3500 	bdev->required_alignment = spdk_u32log2(alignment);
3501 	bdev->optimal_io_boundary = 16;
3502 	bdev->split_on_optimal_io_boundary = true;
3503 
3504 	iovcnt = 1;
3505 	iovs[0].iov_base = NULL;
3506 	iovs[0].iov_len = 512 * 16;
3507 
3508 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
3509 	CU_ASSERT(rc == 0);
3510 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3511 	stub_complete_io(2);
3512 
3513 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
3514 	alignment = 512;
3515 	bdev->required_alignment = spdk_u32log2(alignment);
3516 	bdev->optimal_io_boundary = 128;
3517 	bdev->split_on_optimal_io_boundary = true;
3518 
3519 	iovcnt = 1;
3520 	iovs[0].iov_base = buf + 16;
3521 	iovs[0].iov_len = 512 * 160;
3522 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3523 	CU_ASSERT(rc == 0);
3524 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3525 	stub_complete_io(2);
3526 
3527 #endif
3528 
3529 	/* 512 * 3 with 2 IO boundary */
3530 	alignment = 512;
3531 	bdev->required_alignment = spdk_u32log2(alignment);
3532 	bdev->optimal_io_boundary = 2;
3533 	bdev->split_on_optimal_io_boundary = true;
3534 
3535 	iovcnt = 2;
3536 	iovs[0].iov_base = buf + 16;
3537 	iovs[0].iov_len = 512;
3538 	iovs[1].iov_base = buf + 16 + 512 + 32;
3539 	iovs[1].iov_len = 1024;
3540 
3541 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3542 	CU_ASSERT(rc == 0);
3543 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3544 	stub_complete_io(2);
3545 
3546 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3547 	CU_ASSERT(rc == 0);
3548 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3549 	stub_complete_io(2);
3550 
3551 	/* 512 * 64 with 32 IO boundary */
3552 	bdev->optimal_io_boundary = 32;
3553 	iovcnt = 2;
3554 	iovs[0].iov_base = buf + 16;
3555 	iovs[0].iov_len = 16384;
3556 	iovs[1].iov_base = buf + 16 + 16384 + 32;
3557 	iovs[1].iov_len = 16384;
3558 
3559 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3560 	CU_ASSERT(rc == 0);
3561 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3562 	stub_complete_io(3);
3563 
3564 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3565 	CU_ASSERT(rc == 0);
3566 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3567 	stub_complete_io(3);
3568 
3569 	/* 512 * 160 with 32 IO boundary */
3570 	iovcnt = 1;
3571 	iovs[0].iov_base = buf + 16;
3572 	iovs[0].iov_len = 16384 + 65536;
3573 
3574 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3575 	CU_ASSERT(rc == 0);
3576 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
3577 	stub_complete_io(6);
3578 
3579 	spdk_put_io_channel(io_ch);
3580 	spdk_bdev_close(desc);
3581 	free_bdev(bdev);
3582 	fn_table.submit_request = stub_submit_request;
3583 	ut_fini_bdev();
3584 
3585 	free(buf);
3586 }
3587 
3588 static void
3589 histogram_status_cb(void *cb_arg, int status)
3590 {
3591 	g_status = status;
3592 }
3593 
3594 static void
3595 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3596 {
3597 	g_status = status;
3598 	g_histogram = histogram;
3599 }
3600 
3601 static void
3602 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
3603 		   uint64_t total, uint64_t so_far)
3604 {
3605 	g_count += count;
3606 }
3607 
3608 static void
3609 histogram_channel_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3610 {
3611 	spdk_histogram_data_fn cb_fn = cb_arg;
3612 
3613 	g_status = status;
3614 
3615 	if (status == 0) {
3616 		spdk_histogram_data_iterate(histogram, cb_fn, NULL);
3617 	}
3618 }
3619 
3620 static void
3621 bdev_histograms(void)
3622 {
3623 	struct spdk_bdev *bdev;
3624 	struct spdk_bdev_desc *desc = NULL;
3625 	struct spdk_io_channel *ch;
3626 	struct spdk_histogram_data *histogram;
3627 	uint8_t buf[4096];
3628 	int rc;
3629 
3630 	ut_init_bdev(NULL);
3631 
3632 	bdev = allocate_bdev("bdev");
3633 
3634 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3635 	CU_ASSERT(rc == 0);
3636 	CU_ASSERT(desc != NULL);
3637 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3638 
3639 	ch = spdk_bdev_get_io_channel(desc);
3640 	CU_ASSERT(ch != NULL);
3641 
3642 	/* Enable histogram */
3643 	g_status = -1;
3644 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
3645 	poll_threads();
3646 	CU_ASSERT(g_status == 0);
3647 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3648 
3649 	/* Allocate histogram */
3650 	histogram = spdk_histogram_data_alloc();
3651 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
3652 
3653 	/* Check if histogram is zeroed */
3654 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3655 	poll_threads();
3656 	CU_ASSERT(g_status == 0);
3657 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3658 
3659 	g_count = 0;
3660 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3661 
3662 	CU_ASSERT(g_count == 0);
3663 
3664 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3665 	CU_ASSERT(rc == 0);
3666 
3667 	spdk_delay_us(10);
3668 	stub_complete_io(1);
3669 	poll_threads();
3670 
3671 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3672 	CU_ASSERT(rc == 0);
3673 
3674 	spdk_delay_us(10);
3675 	stub_complete_io(1);
3676 	poll_threads();
3677 
3678 	/* Check if histogram gathered data from all I/O channels */
3679 	g_histogram = NULL;
3680 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3681 	poll_threads();
3682 	CU_ASSERT(g_status == 0);
3683 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3684 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3685 
3686 	g_count = 0;
3687 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3688 	CU_ASSERT(g_count == 2);
3689 
3690 	g_count = 0;
3691 	spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, histogram_io_count);
3692 	CU_ASSERT(g_status == 0);
3693 	CU_ASSERT(g_count == 2);
3694 
3695 	/* Disable histogram */
3696 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
3697 	poll_threads();
3698 	CU_ASSERT(g_status == 0);
3699 	CU_ASSERT(bdev->internal.histogram_enabled == false);
3700 
3701 	/* Try to run histogram commands on disabled bdev */
3702 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3703 	poll_threads();
3704 	CU_ASSERT(g_status == -EFAULT);
3705 
3706 	spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, NULL);
3707 	CU_ASSERT(g_status == -EFAULT);
3708 
3709 	spdk_histogram_data_free(histogram);
3710 	spdk_put_io_channel(ch);
3711 	spdk_bdev_close(desc);
3712 	free_bdev(bdev);
3713 	ut_fini_bdev();
3714 }
3715 
3716 static void
3717 _bdev_compare(bool emulated)
3718 {
3719 	struct spdk_bdev *bdev;
3720 	struct spdk_bdev_desc *desc = NULL;
3721 	struct spdk_io_channel *ioch;
3722 	struct ut_expected_io *expected_io;
3723 	uint64_t offset, num_blocks;
3724 	uint32_t num_completed;
3725 	char aa_buf[512];
3726 	char bb_buf[512];
3727 	struct iovec compare_iov;
3728 	uint8_t expected_io_type;
3729 	int rc;
3730 
3731 	if (emulated) {
3732 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3733 	} else {
3734 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3735 	}
3736 
3737 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3738 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3739 
3740 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3741 
3742 	ut_init_bdev(NULL);
3743 	fn_table.submit_request = stub_submit_request_get_buf;
3744 	bdev = allocate_bdev("bdev");
3745 
3746 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3747 	CU_ASSERT_EQUAL(rc, 0);
3748 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3749 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3750 	ioch = spdk_bdev_get_io_channel(desc);
3751 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3752 
3753 	fn_table.submit_request = stub_submit_request_get_buf;
3754 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3755 
3756 	offset = 50;
3757 	num_blocks = 1;
3758 	compare_iov.iov_base = aa_buf;
3759 	compare_iov.iov_len = sizeof(aa_buf);
3760 
3761 	/* 1. successful comparev */
3762 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3763 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3764 
3765 	g_io_done = false;
3766 	g_compare_read_buf = aa_buf;
3767 	g_compare_read_buf_len = sizeof(aa_buf);
3768 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3769 	CU_ASSERT_EQUAL(rc, 0);
3770 	num_completed = stub_complete_io(1);
3771 	CU_ASSERT_EQUAL(num_completed, 1);
3772 	CU_ASSERT(g_io_done == true);
3773 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3774 
3775 	/* 2. miscompare comparev */
3776 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3777 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3778 
3779 	g_io_done = false;
3780 	g_compare_read_buf = bb_buf;
3781 	g_compare_read_buf_len = sizeof(bb_buf);
3782 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3783 	CU_ASSERT_EQUAL(rc, 0);
3784 	num_completed = stub_complete_io(1);
3785 	CU_ASSERT_EQUAL(num_completed, 1);
3786 	CU_ASSERT(g_io_done == true);
3787 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3788 
3789 	/* 3. successful compare */
3790 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3791 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3792 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3793 
3794 	g_io_done = false;
3795 	g_compare_read_buf = aa_buf;
3796 	g_compare_read_buf_len = sizeof(aa_buf);
3797 	rc = spdk_bdev_compare_blocks(desc, ioch, aa_buf, offset, num_blocks, io_done, NULL);
3798 	CU_ASSERT_EQUAL(rc, 0);
3799 	num_completed = stub_complete_io(1);
3800 	CU_ASSERT_EQUAL(num_completed, 1);
3801 	CU_ASSERT(g_io_done == true);
3802 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3803 
3804 	/* 4. miscompare compare */
3805 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3806 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3807 
3808 	g_io_done = false;
3809 	g_compare_read_buf = bb_buf;
3810 	g_compare_read_buf_len = sizeof(bb_buf);
3811 	rc = spdk_bdev_compare_blocks(desc, ioch, aa_buf, offset, num_blocks, io_done, NULL);
3812 	CU_ASSERT_EQUAL(rc, 0);
3813 	num_completed = stub_complete_io(1);
3814 	CU_ASSERT_EQUAL(num_completed, 1);
3815 	CU_ASSERT(g_io_done == true);
3816 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3817 
3818 	spdk_put_io_channel(ioch);
3819 	spdk_bdev_close(desc);
3820 	free_bdev(bdev);
3821 	fn_table.submit_request = stub_submit_request;
3822 	ut_fini_bdev();
3823 
3824 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3825 
3826 	g_compare_read_buf = NULL;
3827 }
3828 
3829 static void
3830 _bdev_compare_with_md(bool emulated)
3831 {
3832 	struct spdk_bdev *bdev;
3833 	struct spdk_bdev_desc *desc = NULL;
3834 	struct spdk_io_channel *ioch;
3835 	struct ut_expected_io *expected_io;
3836 	uint64_t offset, num_blocks;
3837 	uint32_t num_completed;
3838 	char buf[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3839 	char buf_interleaved_miscompare[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3840 	char buf_miscompare[1024 /* 2 * blocklen */];
3841 	char md_buf[16];
3842 	char md_buf_miscompare[16];
3843 	struct iovec compare_iov;
3844 	uint8_t expected_io_type;
3845 	int rc;
3846 
3847 	if (emulated) {
3848 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3849 	} else {
3850 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3851 	}
3852 
3853 	memset(buf, 0xaa, sizeof(buf));
3854 	memset(buf_interleaved_miscompare, 0xaa, sizeof(buf_interleaved_miscompare));
3855 	/* make last md different */
3856 	memset(buf_interleaved_miscompare + 1024 + 8, 0xbb, 8);
3857 	memset(buf_miscompare, 0xbb, sizeof(buf_miscompare));
3858 	memset(md_buf, 0xaa, 16);
3859 	memset(md_buf_miscompare, 0xbb, 16);
3860 
3861 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3862 
3863 	ut_init_bdev(NULL);
3864 	fn_table.submit_request = stub_submit_request_get_buf;
3865 	bdev = allocate_bdev("bdev");
3866 
3867 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3868 	CU_ASSERT_EQUAL(rc, 0);
3869 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3870 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3871 	ioch = spdk_bdev_get_io_channel(desc);
3872 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3873 
3874 	fn_table.submit_request = stub_submit_request_get_buf;
3875 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3876 
3877 	offset = 50;
3878 	num_blocks = 2;
3879 
3880 	/* interleaved md & data */
3881 	bdev->md_interleave = true;
3882 	bdev->md_len = 8;
3883 	bdev->blocklen = 512 + 8;
3884 	compare_iov.iov_base = buf;
3885 	compare_iov.iov_len = sizeof(buf);
3886 
3887 	/* 1. successful compare with md interleaved */
3888 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3889 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3890 
3891 	g_io_done = false;
3892 	g_compare_read_buf = buf;
3893 	g_compare_read_buf_len = sizeof(buf);
3894 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3895 	CU_ASSERT_EQUAL(rc, 0);
3896 	num_completed = stub_complete_io(1);
3897 	CU_ASSERT_EQUAL(num_completed, 1);
3898 	CU_ASSERT(g_io_done == true);
3899 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3900 
3901 	/* 2. miscompare with md interleaved */
3902 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3903 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3904 
3905 	g_io_done = false;
3906 	g_compare_read_buf = buf_interleaved_miscompare;
3907 	g_compare_read_buf_len = sizeof(buf_interleaved_miscompare);
3908 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3909 	CU_ASSERT_EQUAL(rc, 0);
3910 	num_completed = stub_complete_io(1);
3911 	CU_ASSERT_EQUAL(num_completed, 1);
3912 	CU_ASSERT(g_io_done == true);
3913 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3914 
3915 	/* Separate data & md buffers */
3916 	bdev->md_interleave = false;
3917 	bdev->blocklen = 512;
3918 	compare_iov.iov_base = buf;
3919 	compare_iov.iov_len = 1024;
3920 
3921 	/* 3. successful compare with md separated */
3922 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3923 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3924 
3925 	g_io_done = false;
3926 	g_compare_read_buf = buf;
3927 	g_compare_read_buf_len = 1024;
3928 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3929 	g_compare_md_buf = md_buf;
3930 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3931 					       offset, num_blocks, io_done, NULL);
3932 	CU_ASSERT_EQUAL(rc, 0);
3933 	num_completed = stub_complete_io(1);
3934 	CU_ASSERT_EQUAL(num_completed, 1);
3935 	CU_ASSERT(g_io_done == true);
3936 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3937 
3938 	/* 4. miscompare with md separated where md buf is different */
3939 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3940 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3941 
3942 	g_io_done = false;
3943 	g_compare_read_buf = buf;
3944 	g_compare_read_buf_len = 1024;
3945 	g_compare_md_buf = md_buf_miscompare;
3946 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3947 					       offset, num_blocks, io_done, NULL);
3948 	CU_ASSERT_EQUAL(rc, 0);
3949 	num_completed = stub_complete_io(1);
3950 	CU_ASSERT_EQUAL(num_completed, 1);
3951 	CU_ASSERT(g_io_done == true);
3952 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3953 
3954 	/* 5. miscompare with md separated where buf is different */
3955 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3956 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3957 
3958 	g_io_done = false;
3959 	g_compare_read_buf = buf_miscompare;
3960 	g_compare_read_buf_len = sizeof(buf_miscompare);
3961 	g_compare_md_buf = md_buf;
3962 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3963 					       offset, num_blocks, io_done, NULL);
3964 	CU_ASSERT_EQUAL(rc, 0);
3965 	num_completed = stub_complete_io(1);
3966 	CU_ASSERT_EQUAL(num_completed, 1);
3967 	CU_ASSERT(g_io_done == true);
3968 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3969 
3970 	bdev->md_len = 0;
3971 	g_compare_md_buf = NULL;
3972 
3973 	spdk_put_io_channel(ioch);
3974 	spdk_bdev_close(desc);
3975 	free_bdev(bdev);
3976 	fn_table.submit_request = stub_submit_request;
3977 	ut_fini_bdev();
3978 
3979 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3980 
3981 	g_compare_read_buf = NULL;
3982 }
3983 
3984 static void
3985 bdev_compare(void)
3986 {
3987 	_bdev_compare(false);
3988 	_bdev_compare_with_md(false);
3989 }
3990 
3991 static void
3992 bdev_compare_emulated(void)
3993 {
3994 	_bdev_compare(true);
3995 	_bdev_compare_with_md(true);
3996 }
3997 
3998 static void
3999 bdev_compare_and_write(void)
4000 {
4001 	struct spdk_bdev *bdev;
4002 	struct spdk_bdev_desc *desc = NULL;
4003 	struct spdk_io_channel *ioch;
4004 	struct ut_expected_io *expected_io;
4005 	uint64_t offset, num_blocks;
4006 	uint32_t num_completed;
4007 	char aa_buf[512];
4008 	char bb_buf[512];
4009 	char cc_buf[512];
4010 	char write_buf[512];
4011 	struct iovec compare_iov;
4012 	struct iovec write_iov;
4013 	int rc;
4014 
4015 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4016 	memset(bb_buf, 0xbb, sizeof(bb_buf));
4017 	memset(cc_buf, 0xcc, sizeof(cc_buf));
4018 
4019 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
4020 
4021 	ut_init_bdev(NULL);
4022 	fn_table.submit_request = stub_submit_request_get_buf;
4023 	bdev = allocate_bdev("bdev");
4024 
4025 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4026 	CU_ASSERT_EQUAL(rc, 0);
4027 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4028 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4029 	ioch = spdk_bdev_get_io_channel(desc);
4030 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4031 
4032 	fn_table.submit_request = stub_submit_request_get_buf;
4033 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4034 
4035 	offset = 50;
4036 	num_blocks = 1;
4037 	compare_iov.iov_base = aa_buf;
4038 	compare_iov.iov_len = sizeof(aa_buf);
4039 	write_iov.iov_base = bb_buf;
4040 	write_iov.iov_len = sizeof(bb_buf);
4041 
4042 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
4043 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4044 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
4045 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4046 
4047 	g_io_done = false;
4048 	g_compare_read_buf = aa_buf;
4049 	g_compare_read_buf_len = sizeof(aa_buf);
4050 	memset(write_buf, 0, sizeof(write_buf));
4051 	g_compare_write_buf = write_buf;
4052 	g_compare_write_buf_len = sizeof(write_buf);
4053 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
4054 			offset, num_blocks, io_done, NULL);
4055 	/* Trigger range locking */
4056 	poll_threads();
4057 	CU_ASSERT_EQUAL(rc, 0);
4058 	num_completed = stub_complete_io(1);
4059 	CU_ASSERT_EQUAL(num_completed, 1);
4060 	CU_ASSERT(g_io_done == false);
4061 	num_completed = stub_complete_io(1);
4062 	/* Trigger range unlocking */
4063 	poll_threads();
4064 	CU_ASSERT_EQUAL(num_completed, 1);
4065 	CU_ASSERT(g_io_done == true);
4066 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4067 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
4068 
4069 	/* Test miscompare */
4070 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
4071 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4072 
4073 	g_io_done = false;
4074 	g_compare_read_buf = cc_buf;
4075 	g_compare_read_buf_len = sizeof(cc_buf);
4076 	memset(write_buf, 0, sizeof(write_buf));
4077 	g_compare_write_buf = write_buf;
4078 	g_compare_write_buf_len = sizeof(write_buf);
4079 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
4080 			offset, num_blocks, io_done, NULL);
4081 	/* Trigger range locking */
4082 	poll_threads();
4083 	CU_ASSERT_EQUAL(rc, 0);
4084 	num_completed = stub_complete_io(1);
4085 	/* Trigger range unlocking earlier because we expect error here */
4086 	poll_threads();
4087 	CU_ASSERT_EQUAL(num_completed, 1);
4088 	CU_ASSERT(g_io_done == true);
4089 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
4090 	num_completed = stub_complete_io(1);
4091 	CU_ASSERT_EQUAL(num_completed, 0);
4092 
4093 	spdk_put_io_channel(ioch);
4094 	spdk_bdev_close(desc);
4095 	free_bdev(bdev);
4096 	fn_table.submit_request = stub_submit_request;
4097 	ut_fini_bdev();
4098 
4099 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
4100 
4101 	g_compare_read_buf = NULL;
4102 	g_compare_write_buf = NULL;
4103 }
4104 
4105 static void
4106 bdev_write_zeroes(void)
4107 {
4108 	struct spdk_bdev *bdev;
4109 	struct spdk_bdev_desc *desc = NULL;
4110 	struct spdk_io_channel *ioch;
4111 	struct ut_expected_io *expected_io;
4112 	uint64_t offset, num_io_blocks, num_blocks;
4113 	uint32_t num_completed, num_requests;
4114 	int rc;
4115 
4116 	ut_init_bdev(NULL);
4117 	bdev = allocate_bdev("bdev");
4118 
4119 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4120 	CU_ASSERT_EQUAL(rc, 0);
4121 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4122 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4123 	ioch = spdk_bdev_get_io_channel(desc);
4124 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4125 
4126 	fn_table.submit_request = stub_submit_request;
4127 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4128 
4129 	/* First test that if the bdev supports write_zeroes, the request won't be split */
4130 	bdev->md_len = 0;
4131 	bdev->blocklen = 4096;
4132 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
4133 
4134 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
4135 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4136 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4137 	CU_ASSERT_EQUAL(rc, 0);
4138 	num_completed = stub_complete_io(1);
4139 	CU_ASSERT_EQUAL(num_completed, 1);
4140 
4141 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
4142 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
4143 	bdev->max_write_zeroes = bdev_get_max_write(bdev, ZERO_BUFFER_SIZE);
4144 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
4145 	num_requests = 2;
4146 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
4147 
4148 	for (offset = 0; offset < num_requests; ++offset) {
4149 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
4150 						   offset * num_io_blocks, num_io_blocks, 0);
4151 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4152 	}
4153 
4154 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4155 	CU_ASSERT_EQUAL(rc, 0);
4156 	num_completed = stub_complete_io(num_requests);
4157 	CU_ASSERT_EQUAL(num_completed, num_requests);
4158 
4159 	/* Check that the splitting is correct if bdev has interleaved metadata */
4160 	bdev->md_interleave = true;
4161 	bdev->md_len = 64;
4162 	bdev->blocklen = 4096 + 64;
4163 	bdev->max_write_zeroes = bdev_get_max_write(bdev, ZERO_BUFFER_SIZE);
4164 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
4165 
4166 	num_requests = offset = 0;
4167 	while (offset < num_blocks) {
4168 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
4169 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
4170 						   offset, num_io_blocks, 0);
4171 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4172 		offset += num_io_blocks;
4173 		num_requests++;
4174 	}
4175 
4176 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4177 	CU_ASSERT_EQUAL(rc, 0);
4178 	num_completed = stub_complete_io(num_requests);
4179 	CU_ASSERT_EQUAL(num_completed, num_requests);
4180 	num_completed = stub_complete_io(num_requests);
4181 	assert(num_completed == 0);
4182 
4183 	/* Check the the same for separate metadata buffer */
4184 	bdev->md_interleave = false;
4185 	bdev->md_len = 64;
4186 	bdev->blocklen = 4096;
4187 	bdev->max_write_zeroes = bdev_get_max_write(bdev, ZERO_BUFFER_SIZE);
4188 
4189 	num_requests = offset = 0;
4190 	while (offset < num_blocks) {
4191 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
4192 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
4193 						   offset, num_io_blocks, 0);
4194 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
4195 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4196 		offset += num_io_blocks;
4197 		num_requests++;
4198 	}
4199 
4200 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4201 	CU_ASSERT_EQUAL(rc, 0);
4202 	num_completed = stub_complete_io(num_requests);
4203 	CU_ASSERT_EQUAL(num_completed, num_requests);
4204 
4205 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
4206 	spdk_put_io_channel(ioch);
4207 	spdk_bdev_close(desc);
4208 	free_bdev(bdev);
4209 	ut_fini_bdev();
4210 }
4211 
4212 static void
4213 bdev_zcopy_write(void)
4214 {
4215 	struct spdk_bdev *bdev;
4216 	struct spdk_bdev_desc *desc = NULL;
4217 	struct spdk_io_channel *ioch;
4218 	struct ut_expected_io *expected_io;
4219 	uint64_t offset, num_blocks;
4220 	uint32_t num_completed;
4221 	char aa_buf[512];
4222 	struct iovec iov;
4223 	int rc;
4224 	const bool populate = false;
4225 	const bool commit = true;
4226 
4227 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4228 
4229 	ut_init_bdev(NULL);
4230 	bdev = allocate_bdev("bdev");
4231 
4232 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4233 	CU_ASSERT_EQUAL(rc, 0);
4234 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4235 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4236 	ioch = spdk_bdev_get_io_channel(desc);
4237 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4238 
4239 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4240 
4241 	offset = 50;
4242 	num_blocks = 1;
4243 	iov.iov_base = NULL;
4244 	iov.iov_len = 0;
4245 
4246 	g_zcopy_read_buf = (void *) 0x1122334455667788UL;
4247 	g_zcopy_read_buf_len = (uint32_t) -1;
4248 	/* Do a zcopy start for a write (populate=false) */
4249 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4250 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4251 	g_io_done = false;
4252 	g_zcopy_write_buf = aa_buf;
4253 	g_zcopy_write_buf_len = sizeof(aa_buf);
4254 	g_zcopy_bdev_io = NULL;
4255 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4256 	CU_ASSERT_EQUAL(rc, 0);
4257 	num_completed = stub_complete_io(1);
4258 	CU_ASSERT_EQUAL(num_completed, 1);
4259 	CU_ASSERT(g_io_done == true);
4260 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4261 	/* Check that the iov has been set up */
4262 	CU_ASSERT(iov.iov_base == g_zcopy_write_buf);
4263 	CU_ASSERT(iov.iov_len == g_zcopy_write_buf_len);
4264 	/* Check that the bdev_io has been saved */
4265 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4266 	/* Now do the zcopy end for a write (commit=true) */
4267 	g_io_done = false;
4268 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4269 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4270 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4271 	CU_ASSERT_EQUAL(rc, 0);
4272 	num_completed = stub_complete_io(1);
4273 	CU_ASSERT_EQUAL(num_completed, 1);
4274 	CU_ASSERT(g_io_done == true);
4275 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4276 	/* Check the g_zcopy are reset by io_done */
4277 	CU_ASSERT(g_zcopy_write_buf == NULL);
4278 	CU_ASSERT(g_zcopy_write_buf_len == 0);
4279 	/* Check that io_done has freed the g_zcopy_bdev_io */
4280 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4281 
4282 	/* Check the zcopy read buffer has not been touched which
4283 	 * ensures that the correct buffers were used.
4284 	 */
4285 	CU_ASSERT(g_zcopy_read_buf == (void *) 0x1122334455667788UL);
4286 	CU_ASSERT(g_zcopy_read_buf_len == (uint32_t) -1);
4287 
4288 	spdk_put_io_channel(ioch);
4289 	spdk_bdev_close(desc);
4290 	free_bdev(bdev);
4291 	ut_fini_bdev();
4292 }
4293 
4294 static void
4295 bdev_zcopy_read(void)
4296 {
4297 	struct spdk_bdev *bdev;
4298 	struct spdk_bdev_desc *desc = NULL;
4299 	struct spdk_io_channel *ioch;
4300 	struct ut_expected_io *expected_io;
4301 	uint64_t offset, num_blocks;
4302 	uint32_t num_completed;
4303 	char aa_buf[512];
4304 	struct iovec iov;
4305 	int rc;
4306 	const bool populate = true;
4307 	const bool commit = false;
4308 
4309 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4310 
4311 	ut_init_bdev(NULL);
4312 	bdev = allocate_bdev("bdev");
4313 
4314 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4315 	CU_ASSERT_EQUAL(rc, 0);
4316 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4317 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4318 	ioch = spdk_bdev_get_io_channel(desc);
4319 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4320 
4321 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4322 
4323 	offset = 50;
4324 	num_blocks = 1;
4325 	iov.iov_base = NULL;
4326 	iov.iov_len = 0;
4327 
4328 	g_zcopy_write_buf = (void *) 0x1122334455667788UL;
4329 	g_zcopy_write_buf_len = (uint32_t) -1;
4330 
4331 	/* Do a zcopy start for a read (populate=true) */
4332 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4333 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4334 	g_io_done = false;
4335 	g_zcopy_read_buf = aa_buf;
4336 	g_zcopy_read_buf_len = sizeof(aa_buf);
4337 	g_zcopy_bdev_io = NULL;
4338 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4339 	CU_ASSERT_EQUAL(rc, 0);
4340 	num_completed = stub_complete_io(1);
4341 	CU_ASSERT_EQUAL(num_completed, 1);
4342 	CU_ASSERT(g_io_done == true);
4343 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4344 	/* Check that the iov has been set up */
4345 	CU_ASSERT(iov.iov_base == g_zcopy_read_buf);
4346 	CU_ASSERT(iov.iov_len == g_zcopy_read_buf_len);
4347 	/* Check that the bdev_io has been saved */
4348 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4349 
4350 	/* Now do the zcopy end for a read (commit=false) */
4351 	g_io_done = false;
4352 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4353 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4354 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4355 	CU_ASSERT_EQUAL(rc, 0);
4356 	num_completed = stub_complete_io(1);
4357 	CU_ASSERT_EQUAL(num_completed, 1);
4358 	CU_ASSERT(g_io_done == true);
4359 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4360 	/* Check the g_zcopy are reset by io_done */
4361 	CU_ASSERT(g_zcopy_read_buf == NULL);
4362 	CU_ASSERT(g_zcopy_read_buf_len == 0);
4363 	/* Check that io_done has freed the g_zcopy_bdev_io */
4364 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4365 
4366 	/* Check the zcopy write buffer has not been touched which
4367 	 * ensures that the correct buffers were used.
4368 	 */
4369 	CU_ASSERT(g_zcopy_write_buf == (void *) 0x1122334455667788UL);
4370 	CU_ASSERT(g_zcopy_write_buf_len == (uint32_t) -1);
4371 
4372 	spdk_put_io_channel(ioch);
4373 	spdk_bdev_close(desc);
4374 	free_bdev(bdev);
4375 	ut_fini_bdev();
4376 }
4377 
4378 static void
4379 bdev_open_while_hotremove(void)
4380 {
4381 	struct spdk_bdev *bdev;
4382 	struct spdk_bdev_desc *desc[2] = {};
4383 	int rc;
4384 
4385 	bdev = allocate_bdev("bdev");
4386 
4387 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
4388 	CU_ASSERT(rc == 0);
4389 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
4390 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
4391 
4392 	spdk_bdev_unregister(bdev, NULL, NULL);
4393 	/* Bdev unregister is handled asynchronously. Poll thread to complete. */
4394 	poll_threads();
4395 
4396 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
4397 	CU_ASSERT(rc == -ENODEV);
4398 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
4399 
4400 	spdk_bdev_close(desc[0]);
4401 	free_bdev(bdev);
4402 }
4403 
4404 static void
4405 bdev_close_while_hotremove(void)
4406 {
4407 	struct spdk_bdev *bdev;
4408 	struct spdk_bdev_desc *desc = NULL;
4409 	int rc = 0;
4410 
4411 	bdev = allocate_bdev("bdev");
4412 
4413 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
4414 	CU_ASSERT_EQUAL(rc, 0);
4415 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4416 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4417 
4418 	/* Simulate hot-unplug by unregistering bdev */
4419 	g_event_type1 = 0xFF;
4420 	g_unregister_arg = NULL;
4421 	g_unregister_rc = -1;
4422 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4423 	/* Close device while remove event is in flight */
4424 	spdk_bdev_close(desc);
4425 
4426 	/* Ensure that unregister callback is delayed */
4427 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
4428 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
4429 
4430 	poll_threads();
4431 
4432 	/* Event callback shall not be issued because device was closed */
4433 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
4434 	/* Unregister callback is issued */
4435 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
4436 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
4437 
4438 	free_bdev(bdev);
4439 }
4440 
4441 static void
4442 bdev_open_ext_test(void)
4443 {
4444 	struct spdk_bdev *bdev;
4445 	struct spdk_bdev_desc *desc1 = NULL;
4446 	struct spdk_bdev_desc *desc2 = NULL;
4447 	int rc = 0;
4448 
4449 	bdev = allocate_bdev("bdev");
4450 
4451 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4452 	CU_ASSERT_EQUAL(rc, -EINVAL);
4453 
4454 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4455 	CU_ASSERT_EQUAL(rc, 0);
4456 
4457 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4458 	CU_ASSERT_EQUAL(rc, 0);
4459 
4460 	g_event_type1 = 0xFF;
4461 	g_event_type2 = 0xFF;
4462 
4463 	/* Simulate hot-unplug by unregistering bdev */
4464 	spdk_bdev_unregister(bdev, NULL, NULL);
4465 	poll_threads();
4466 
4467 	/* Check if correct events have been triggered in event callback fn */
4468 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4469 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4470 
4471 	free_bdev(bdev);
4472 	poll_threads();
4473 }
4474 
4475 static void
4476 bdev_open_ext_unregister(void)
4477 {
4478 	struct spdk_bdev *bdev;
4479 	struct spdk_bdev_desc *desc1 = NULL;
4480 	struct spdk_bdev_desc *desc2 = NULL;
4481 	struct spdk_bdev_desc *desc3 = NULL;
4482 	struct spdk_bdev_desc *desc4 = NULL;
4483 	int rc = 0;
4484 
4485 	bdev = allocate_bdev("bdev");
4486 
4487 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4488 	CU_ASSERT_EQUAL(rc, -EINVAL);
4489 
4490 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4491 	CU_ASSERT_EQUAL(rc, 0);
4492 
4493 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4494 	CU_ASSERT_EQUAL(rc, 0);
4495 
4496 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb3, &desc3, &desc3);
4497 	CU_ASSERT_EQUAL(rc, 0);
4498 
4499 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb4, &desc4, &desc4);
4500 	CU_ASSERT_EQUAL(rc, 0);
4501 
4502 	g_event_type1 = 0xFF;
4503 	g_event_type2 = 0xFF;
4504 	g_event_type3 = 0xFF;
4505 	g_event_type4 = 0xFF;
4506 
4507 	g_unregister_arg = NULL;
4508 	g_unregister_rc = -1;
4509 
4510 	/* Simulate hot-unplug by unregistering bdev */
4511 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4512 
4513 	/*
4514 	 * Unregister is handled asynchronously and event callback
4515 	 * (i.e., above bdev_open_cbN) will be called.
4516 	 * For bdev_open_cb3 and bdev_open_cb4, it is intended to not
4517 	 * close the desc3 and desc4 so that the bdev is not closed.
4518 	 */
4519 	poll_threads();
4520 
4521 	/* Check if correct events have been triggered in event callback fn */
4522 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4523 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4524 	CU_ASSERT_EQUAL(g_event_type3, SPDK_BDEV_EVENT_REMOVE);
4525 	CU_ASSERT_EQUAL(g_event_type4, SPDK_BDEV_EVENT_REMOVE);
4526 
4527 	/* Check that unregister callback is delayed */
4528 	CU_ASSERT(g_unregister_arg == NULL);
4529 	CU_ASSERT(g_unregister_rc == -1);
4530 
4531 	/*
4532 	 * Explicitly close desc3. As desc4 is still opened there, the
4533 	 * unergister callback is still delayed to execute.
4534 	 */
4535 	spdk_bdev_close(desc3);
4536 	CU_ASSERT(g_unregister_arg == NULL);
4537 	CU_ASSERT(g_unregister_rc == -1);
4538 
4539 	/*
4540 	 * Explicitly close desc4 to trigger the ongoing bdev unregister
4541 	 * operation after last desc is closed.
4542 	 */
4543 	spdk_bdev_close(desc4);
4544 
4545 	/* Poll the thread for the async unregister operation */
4546 	poll_threads();
4547 
4548 	/* Check that unregister callback is executed */
4549 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
4550 	CU_ASSERT(g_unregister_rc == 0);
4551 
4552 	free_bdev(bdev);
4553 	poll_threads();
4554 }
4555 
4556 struct timeout_io_cb_arg {
4557 	struct iovec iov;
4558 	uint8_t type;
4559 };
4560 
4561 static int
4562 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
4563 {
4564 	struct spdk_bdev_io *bdev_io;
4565 	int n = 0;
4566 
4567 	if (!ch) {
4568 		return -1;
4569 	}
4570 
4571 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
4572 		n++;
4573 	}
4574 
4575 	return n;
4576 }
4577 
4578 static void
4579 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
4580 {
4581 	struct timeout_io_cb_arg *ctx = cb_arg;
4582 
4583 	ctx->type = bdev_io->type;
4584 	ctx->iov.iov_base = bdev_io->iov.iov_base;
4585 	ctx->iov.iov_len = bdev_io->iov.iov_len;
4586 }
4587 
4588 static void
4589 bdev_set_io_timeout(void)
4590 {
4591 	struct spdk_bdev *bdev;
4592 	struct spdk_bdev_desc *desc = NULL;
4593 	struct spdk_io_channel *io_ch = NULL;
4594 	struct spdk_bdev_channel *bdev_ch = NULL;
4595 	struct timeout_io_cb_arg cb_arg;
4596 
4597 	ut_init_bdev(NULL);
4598 	bdev = allocate_bdev("bdev");
4599 
4600 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4601 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4602 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4603 
4604 	io_ch = spdk_bdev_get_io_channel(desc);
4605 	CU_ASSERT(io_ch != NULL);
4606 
4607 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4608 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4609 
4610 	/* This is the part1.
4611 	 * We will check the bdev_ch->io_submitted list
4612 	 * TO make sure that it can link IOs and only the user submitted IOs
4613 	 */
4614 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4615 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4616 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4617 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4618 	stub_complete_io(1);
4619 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4620 	stub_complete_io(1);
4621 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4622 
4623 	/* Split IO */
4624 	bdev->optimal_io_boundary = 16;
4625 	bdev->split_on_optimal_io_boundary = true;
4626 
4627 	/* Now test that a single-vector command is split correctly.
4628 	 * Offset 14, length 8, payload 0xF000
4629 	 *  Child - Offset 14, length 2, payload 0xF000
4630 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4631 	 *
4632 	 * Set up the expected values before calling spdk_bdev_read_blocks
4633 	 */
4634 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4635 	/* We count all submitted IOs including IO that are generated by splitting. */
4636 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
4637 	stub_complete_io(1);
4638 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4639 	stub_complete_io(1);
4640 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4641 
4642 	/* Also include the reset IO */
4643 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4644 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4645 	poll_threads();
4646 	stub_complete_io(1);
4647 	poll_threads();
4648 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4649 
4650 	/* This is part2
4651 	 * Test the desc timeout poller register
4652 	 */
4653 
4654 	/* Successfully set the timeout */
4655 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4656 	CU_ASSERT(desc->io_timeout_poller != NULL);
4657 	CU_ASSERT(desc->timeout_in_sec == 30);
4658 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4659 	CU_ASSERT(desc->cb_arg == &cb_arg);
4660 
4661 	/* Change the timeout limit */
4662 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4663 	CU_ASSERT(desc->io_timeout_poller != NULL);
4664 	CU_ASSERT(desc->timeout_in_sec == 20);
4665 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4666 	CU_ASSERT(desc->cb_arg == &cb_arg);
4667 
4668 	/* Disable the timeout */
4669 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
4670 	CU_ASSERT(desc->io_timeout_poller == NULL);
4671 
4672 	/* This the part3
4673 	 * We will test to catch timeout IO and check whether the IO is
4674 	 * the submitted one.
4675 	 */
4676 	memset(&cb_arg, 0, sizeof(cb_arg));
4677 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4678 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
4679 
4680 	/* Don't reach the limit */
4681 	spdk_delay_us(15 * spdk_get_ticks_hz());
4682 	poll_threads();
4683 	CU_ASSERT(cb_arg.type == 0);
4684 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4685 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4686 
4687 	/* 15 + 15 = 30 reach the limit */
4688 	spdk_delay_us(15 * spdk_get_ticks_hz());
4689 	poll_threads();
4690 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4691 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
4692 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
4693 	stub_complete_io(1);
4694 
4695 	/* Use the same split IO above and check the IO */
4696 	memset(&cb_arg, 0, sizeof(cb_arg));
4697 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4698 
4699 	/* The first child complete in time */
4700 	spdk_delay_us(15 * spdk_get_ticks_hz());
4701 	poll_threads();
4702 	stub_complete_io(1);
4703 	CU_ASSERT(cb_arg.type == 0);
4704 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4705 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4706 
4707 	/* The second child reach the limit */
4708 	spdk_delay_us(15 * spdk_get_ticks_hz());
4709 	poll_threads();
4710 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4711 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
4712 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
4713 	stub_complete_io(1);
4714 
4715 	/* Also include the reset IO */
4716 	memset(&cb_arg, 0, sizeof(cb_arg));
4717 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4718 	spdk_delay_us(30 * spdk_get_ticks_hz());
4719 	poll_threads();
4720 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
4721 	stub_complete_io(1);
4722 	poll_threads();
4723 
4724 	spdk_put_io_channel(io_ch);
4725 	spdk_bdev_close(desc);
4726 	free_bdev(bdev);
4727 	ut_fini_bdev();
4728 }
4729 
4730 static void
4731 bdev_set_qd_sampling(void)
4732 {
4733 	struct spdk_bdev *bdev;
4734 	struct spdk_bdev_desc *desc = NULL;
4735 	struct spdk_io_channel *io_ch = NULL;
4736 	struct spdk_bdev_channel *bdev_ch = NULL;
4737 	struct timeout_io_cb_arg cb_arg;
4738 
4739 	ut_init_bdev(NULL);
4740 	bdev = allocate_bdev("bdev");
4741 
4742 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4743 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4744 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4745 
4746 	io_ch = spdk_bdev_get_io_channel(desc);
4747 	CU_ASSERT(io_ch != NULL);
4748 
4749 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4750 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4751 
4752 	/* This is the part1.
4753 	 * We will check the bdev_ch->io_submitted list
4754 	 * TO make sure that it can link IOs and only the user submitted IOs
4755 	 */
4756 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4757 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4758 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4759 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4760 	stub_complete_io(1);
4761 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4762 	stub_complete_io(1);
4763 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4764 
4765 	/* This is the part2.
4766 	 * Test the bdev's qd poller register
4767 	 */
4768 	/* 1st Successfully set the qd sampling period */
4769 	spdk_bdev_set_qd_sampling_period(bdev, 10);
4770 	CU_ASSERT(bdev->internal.new_period == 10);
4771 	CU_ASSERT(bdev->internal.period == 10);
4772 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4773 	poll_threads();
4774 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4775 
4776 	/* 2nd Change the qd sampling period */
4777 	spdk_bdev_set_qd_sampling_period(bdev, 20);
4778 	CU_ASSERT(bdev->internal.new_period == 20);
4779 	CU_ASSERT(bdev->internal.period == 10);
4780 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4781 	poll_threads();
4782 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4783 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4784 
4785 	/* 3rd Change the qd sampling period and verify qd_poll_in_progress */
4786 	spdk_delay_us(20);
4787 	poll_thread_times(0, 1);
4788 	CU_ASSERT(bdev->internal.qd_poll_in_progress == true);
4789 	spdk_bdev_set_qd_sampling_period(bdev, 30);
4790 	CU_ASSERT(bdev->internal.new_period == 30);
4791 	CU_ASSERT(bdev->internal.period == 20);
4792 	poll_threads();
4793 	CU_ASSERT(bdev->internal.qd_poll_in_progress == false);
4794 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4795 
4796 	/* 4th Disable the qd sampling period */
4797 	spdk_bdev_set_qd_sampling_period(bdev, 0);
4798 	CU_ASSERT(bdev->internal.new_period == 0);
4799 	CU_ASSERT(bdev->internal.period == 30);
4800 	poll_threads();
4801 	CU_ASSERT(bdev->internal.qd_poller == NULL);
4802 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4803 	CU_ASSERT(bdev->internal.qd_desc == NULL);
4804 
4805 	/* This is the part3.
4806 	 * We will test the submitted IO and reset works
4807 	 * properly with the qd sampling.
4808 	 */
4809 	memset(&cb_arg, 0, sizeof(cb_arg));
4810 	spdk_bdev_set_qd_sampling_period(bdev, 1);
4811 	poll_threads();
4812 
4813 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4814 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4815 
4816 	/* Also include the reset IO */
4817 	memset(&cb_arg, 0, sizeof(cb_arg));
4818 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4819 	poll_threads();
4820 
4821 	/* Close the desc */
4822 	spdk_put_io_channel(io_ch);
4823 	spdk_bdev_close(desc);
4824 
4825 	/* Complete the submitted IO and reset */
4826 	stub_complete_io(2);
4827 	poll_threads();
4828 
4829 	free_bdev(bdev);
4830 	ut_fini_bdev();
4831 }
4832 
4833 static void
4834 lba_range_overlap(void)
4835 {
4836 	struct lba_range r1, r2;
4837 
4838 	r1.offset = 100;
4839 	r1.length = 50;
4840 
4841 	r2.offset = 0;
4842 	r2.length = 1;
4843 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4844 
4845 	r2.offset = 0;
4846 	r2.length = 100;
4847 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4848 
4849 	r2.offset = 0;
4850 	r2.length = 110;
4851 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4852 
4853 	r2.offset = 100;
4854 	r2.length = 10;
4855 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4856 
4857 	r2.offset = 110;
4858 	r2.length = 20;
4859 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4860 
4861 	r2.offset = 140;
4862 	r2.length = 150;
4863 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4864 
4865 	r2.offset = 130;
4866 	r2.length = 200;
4867 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4868 
4869 	r2.offset = 150;
4870 	r2.length = 100;
4871 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4872 
4873 	r2.offset = 110;
4874 	r2.length = 0;
4875 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4876 }
4877 
4878 static bool g_lock_lba_range_done;
4879 static bool g_unlock_lba_range_done;
4880 
4881 static void
4882 lock_lba_range_done(struct lba_range *range, void *ctx, int status)
4883 {
4884 	g_lock_lba_range_done = true;
4885 }
4886 
4887 static void
4888 unlock_lba_range_done(struct lba_range *range, void *ctx, int status)
4889 {
4890 	g_unlock_lba_range_done = true;
4891 }
4892 
4893 static void
4894 lock_lba_range_check_ranges(void)
4895 {
4896 	struct spdk_bdev *bdev;
4897 	struct spdk_bdev_desc *desc = NULL;
4898 	struct spdk_io_channel *io_ch;
4899 	struct spdk_bdev_channel *channel;
4900 	struct lba_range *range;
4901 	int ctx1;
4902 	int rc;
4903 
4904 	ut_init_bdev(NULL);
4905 	bdev = allocate_bdev("bdev0");
4906 
4907 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4908 	CU_ASSERT(rc == 0);
4909 	CU_ASSERT(desc != NULL);
4910 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4911 	io_ch = spdk_bdev_get_io_channel(desc);
4912 	CU_ASSERT(io_ch != NULL);
4913 	channel = spdk_io_channel_get_ctx(io_ch);
4914 
4915 	g_lock_lba_range_done = false;
4916 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4917 	CU_ASSERT(rc == 0);
4918 	poll_threads();
4919 
4920 	CU_ASSERT(g_lock_lba_range_done == true);
4921 	range = TAILQ_FIRST(&channel->locked_ranges);
4922 	SPDK_CU_ASSERT_FATAL(range != NULL);
4923 	CU_ASSERT(range->offset == 20);
4924 	CU_ASSERT(range->length == 10);
4925 	CU_ASSERT(range->owner_ch == channel);
4926 
4927 	/* Unlocks must exactly match a lock. */
4928 	g_unlock_lba_range_done = false;
4929 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
4930 	CU_ASSERT(rc == -EINVAL);
4931 	CU_ASSERT(g_unlock_lba_range_done == false);
4932 
4933 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4934 	CU_ASSERT(rc == 0);
4935 	spdk_delay_us(100);
4936 	poll_threads();
4937 
4938 	CU_ASSERT(g_unlock_lba_range_done == true);
4939 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4940 
4941 	spdk_put_io_channel(io_ch);
4942 	spdk_bdev_close(desc);
4943 	free_bdev(bdev);
4944 	ut_fini_bdev();
4945 }
4946 
4947 static void
4948 lock_lba_range_with_io_outstanding(void)
4949 {
4950 	struct spdk_bdev *bdev;
4951 	struct spdk_bdev_desc *desc = NULL;
4952 	struct spdk_io_channel *io_ch;
4953 	struct spdk_bdev_channel *channel;
4954 	struct lba_range *range;
4955 	char buf[4096];
4956 	int ctx1;
4957 	int rc;
4958 
4959 	ut_init_bdev(NULL);
4960 	bdev = allocate_bdev("bdev0");
4961 
4962 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4963 	CU_ASSERT(rc == 0);
4964 	CU_ASSERT(desc != NULL);
4965 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4966 	io_ch = spdk_bdev_get_io_channel(desc);
4967 	CU_ASSERT(io_ch != NULL);
4968 	channel = spdk_io_channel_get_ctx(io_ch);
4969 
4970 	g_io_done = false;
4971 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4972 	CU_ASSERT(rc == 0);
4973 
4974 	g_lock_lba_range_done = false;
4975 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4976 	CU_ASSERT(rc == 0);
4977 	poll_threads();
4978 
4979 	/* The lock should immediately become valid, since there are no outstanding
4980 	 * write I/O.
4981 	 */
4982 	CU_ASSERT(g_io_done == false);
4983 	CU_ASSERT(g_lock_lba_range_done == true);
4984 	range = TAILQ_FIRST(&channel->locked_ranges);
4985 	SPDK_CU_ASSERT_FATAL(range != NULL);
4986 	CU_ASSERT(range->offset == 20);
4987 	CU_ASSERT(range->length == 10);
4988 	CU_ASSERT(range->owner_ch == channel);
4989 	CU_ASSERT(range->locked_ctx == &ctx1);
4990 
4991 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4992 	CU_ASSERT(rc == 0);
4993 	stub_complete_io(1);
4994 	spdk_delay_us(100);
4995 	poll_threads();
4996 
4997 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4998 
4999 	/* Now try again, but with a write I/O. */
5000 	g_io_done = false;
5001 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
5002 	CU_ASSERT(rc == 0);
5003 
5004 	g_lock_lba_range_done = false;
5005 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
5006 	CU_ASSERT(rc == 0);
5007 	poll_threads();
5008 
5009 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
5010 	 * But note that the range should be on the channel's locked_list, to make sure no
5011 	 * new write I/O are started.
5012 	 */
5013 	CU_ASSERT(g_io_done == false);
5014 	CU_ASSERT(g_lock_lba_range_done == false);
5015 	range = TAILQ_FIRST(&channel->locked_ranges);
5016 	SPDK_CU_ASSERT_FATAL(range != NULL);
5017 	CU_ASSERT(range->offset == 20);
5018 	CU_ASSERT(range->length == 10);
5019 
5020 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
5021 	 * our callback was invoked).
5022 	 */
5023 	stub_complete_io(1);
5024 	spdk_delay_us(100);
5025 	poll_threads();
5026 	CU_ASSERT(g_io_done == true);
5027 	CU_ASSERT(g_lock_lba_range_done == true);
5028 
5029 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
5030 	CU_ASSERT(rc == 0);
5031 	poll_threads();
5032 
5033 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5034 
5035 	spdk_put_io_channel(io_ch);
5036 	spdk_bdev_close(desc);
5037 	free_bdev(bdev);
5038 	ut_fini_bdev();
5039 }
5040 
5041 static void
5042 lock_lba_range_overlapped(void)
5043 {
5044 	struct spdk_bdev *bdev;
5045 	struct spdk_bdev_desc *desc = NULL;
5046 	struct spdk_io_channel *io_ch;
5047 	struct spdk_bdev_channel *channel;
5048 	struct lba_range *range;
5049 	int ctx1;
5050 	int rc;
5051 
5052 	ut_init_bdev(NULL);
5053 	bdev = allocate_bdev("bdev0");
5054 
5055 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5056 	CU_ASSERT(rc == 0);
5057 	CU_ASSERT(desc != NULL);
5058 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5059 	io_ch = spdk_bdev_get_io_channel(desc);
5060 	CU_ASSERT(io_ch != NULL);
5061 	channel = spdk_io_channel_get_ctx(io_ch);
5062 
5063 	/* Lock range 20-29. */
5064 	g_lock_lba_range_done = false;
5065 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
5066 	CU_ASSERT(rc == 0);
5067 	poll_threads();
5068 
5069 	CU_ASSERT(g_lock_lba_range_done == true);
5070 	range = TAILQ_FIRST(&channel->locked_ranges);
5071 	SPDK_CU_ASSERT_FATAL(range != NULL);
5072 	CU_ASSERT(range->offset == 20);
5073 	CU_ASSERT(range->length == 10);
5074 
5075 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
5076 	 * 20-29.
5077 	 */
5078 	g_lock_lba_range_done = false;
5079 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
5080 	CU_ASSERT(rc == 0);
5081 	poll_threads();
5082 
5083 	CU_ASSERT(g_lock_lba_range_done == false);
5084 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
5085 	SPDK_CU_ASSERT_FATAL(range != NULL);
5086 	CU_ASSERT(range->offset == 25);
5087 	CU_ASSERT(range->length == 15);
5088 
5089 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
5090 	 * no longer overlaps with an active lock.
5091 	 */
5092 	g_unlock_lba_range_done = false;
5093 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
5094 	CU_ASSERT(rc == 0);
5095 	poll_threads();
5096 
5097 	CU_ASSERT(g_unlock_lba_range_done == true);
5098 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
5099 	range = TAILQ_FIRST(&channel->locked_ranges);
5100 	SPDK_CU_ASSERT_FATAL(range != NULL);
5101 	CU_ASSERT(range->offset == 25);
5102 	CU_ASSERT(range->length == 15);
5103 
5104 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
5105 	 * currently active 25-39 lock.
5106 	 */
5107 	g_lock_lba_range_done = false;
5108 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
5109 	CU_ASSERT(rc == 0);
5110 	poll_threads();
5111 
5112 	CU_ASSERT(g_lock_lba_range_done == true);
5113 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
5114 	SPDK_CU_ASSERT_FATAL(range != NULL);
5115 	range = TAILQ_NEXT(range, tailq);
5116 	SPDK_CU_ASSERT_FATAL(range != NULL);
5117 	CU_ASSERT(range->offset == 40);
5118 	CU_ASSERT(range->length == 20);
5119 
5120 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
5121 	g_lock_lba_range_done = false;
5122 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
5123 	CU_ASSERT(rc == 0);
5124 	poll_threads();
5125 
5126 	CU_ASSERT(g_lock_lba_range_done == false);
5127 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
5128 	SPDK_CU_ASSERT_FATAL(range != NULL);
5129 	CU_ASSERT(range->offset == 35);
5130 	CU_ASSERT(range->length == 10);
5131 
5132 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
5133 	 * the 40-59 lock is still active.
5134 	 */
5135 	g_unlock_lba_range_done = false;
5136 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
5137 	CU_ASSERT(rc == 0);
5138 	poll_threads();
5139 
5140 	CU_ASSERT(g_unlock_lba_range_done == true);
5141 	CU_ASSERT(g_lock_lba_range_done == false);
5142 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
5143 	SPDK_CU_ASSERT_FATAL(range != NULL);
5144 	CU_ASSERT(range->offset == 35);
5145 	CU_ASSERT(range->length == 10);
5146 
5147 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
5148 	 * no longer any active overlapping locks.
5149 	 */
5150 	g_unlock_lba_range_done = false;
5151 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
5152 	CU_ASSERT(rc == 0);
5153 	poll_threads();
5154 
5155 	CU_ASSERT(g_unlock_lba_range_done == true);
5156 	CU_ASSERT(g_lock_lba_range_done == true);
5157 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
5158 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
5159 	SPDK_CU_ASSERT_FATAL(range != NULL);
5160 	CU_ASSERT(range->offset == 35);
5161 	CU_ASSERT(range->length == 10);
5162 
5163 	/* Finally, unlock 35-44. */
5164 	g_unlock_lba_range_done = false;
5165 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
5166 	CU_ASSERT(rc == 0);
5167 	poll_threads();
5168 
5169 	CU_ASSERT(g_unlock_lba_range_done == true);
5170 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
5171 
5172 	spdk_put_io_channel(io_ch);
5173 	spdk_bdev_close(desc);
5174 	free_bdev(bdev);
5175 	ut_fini_bdev();
5176 }
5177 
5178 static void
5179 bdev_quiesce_done(void *ctx, int status)
5180 {
5181 	g_lock_lba_range_done = true;
5182 }
5183 
5184 static void
5185 bdev_unquiesce_done(void *ctx, int status)
5186 {
5187 	g_unlock_lba_range_done = true;
5188 }
5189 
5190 static void
5191 bdev_quiesce_done_unquiesce(void *ctx, int status)
5192 {
5193 	struct spdk_bdev *bdev = ctx;
5194 	int rc;
5195 
5196 	g_lock_lba_range_done = true;
5197 
5198 	rc = spdk_bdev_unquiesce(bdev, &bdev_ut_if, bdev_unquiesce_done, NULL);
5199 	CU_ASSERT(rc == 0);
5200 }
5201 
5202 static void
5203 bdev_quiesce(void)
5204 {
5205 	struct spdk_bdev *bdev;
5206 	struct spdk_bdev_desc *desc = NULL;
5207 	struct spdk_io_channel *io_ch;
5208 	struct spdk_bdev_channel *channel;
5209 	struct lba_range *range;
5210 	struct spdk_bdev_io *bdev_io;
5211 	int ctx1;
5212 	int rc;
5213 
5214 	ut_init_bdev(NULL);
5215 	bdev = allocate_bdev("bdev0");
5216 
5217 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5218 	CU_ASSERT(rc == 0);
5219 	CU_ASSERT(desc != NULL);
5220 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5221 	io_ch = spdk_bdev_get_io_channel(desc);
5222 	CU_ASSERT(io_ch != NULL);
5223 	channel = spdk_io_channel_get_ctx(io_ch);
5224 
5225 	g_lock_lba_range_done = false;
5226 	rc = spdk_bdev_quiesce(bdev, &bdev_ut_if, bdev_quiesce_done, &ctx1);
5227 	CU_ASSERT(rc == 0);
5228 	poll_threads();
5229 
5230 	CU_ASSERT(g_lock_lba_range_done == true);
5231 	range = TAILQ_FIRST(&channel->locked_ranges);
5232 	SPDK_CU_ASSERT_FATAL(range != NULL);
5233 	CU_ASSERT(range->offset == 0);
5234 	CU_ASSERT(range->length == bdev->blockcnt);
5235 	CU_ASSERT(range->owner_ch == NULL);
5236 	range = TAILQ_FIRST(&bdev_ut_if.internal.quiesced_ranges);
5237 	SPDK_CU_ASSERT_FATAL(range != NULL);
5238 	CU_ASSERT(range->offset == 0);
5239 	CU_ASSERT(range->length == bdev->blockcnt);
5240 	CU_ASSERT(range->owner_ch == NULL);
5241 
5242 	g_unlock_lba_range_done = false;
5243 	rc = spdk_bdev_unquiesce(bdev, &bdev_ut_if, bdev_unquiesce_done, &ctx1);
5244 	CU_ASSERT(rc == 0);
5245 	spdk_delay_us(100);
5246 	poll_threads();
5247 
5248 	CU_ASSERT(g_unlock_lba_range_done == true);
5249 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5250 	CU_ASSERT(TAILQ_EMPTY(&bdev_ut_if.internal.quiesced_ranges));
5251 
5252 	g_lock_lba_range_done = false;
5253 	rc = spdk_bdev_quiesce_range(bdev, &bdev_ut_if, 20, 10, bdev_quiesce_done, &ctx1);
5254 	CU_ASSERT(rc == 0);
5255 	poll_threads();
5256 
5257 	CU_ASSERT(g_lock_lba_range_done == true);
5258 	range = TAILQ_FIRST(&channel->locked_ranges);
5259 	SPDK_CU_ASSERT_FATAL(range != NULL);
5260 	CU_ASSERT(range->offset == 20);
5261 	CU_ASSERT(range->length == 10);
5262 	CU_ASSERT(range->owner_ch == NULL);
5263 	range = TAILQ_FIRST(&bdev_ut_if.internal.quiesced_ranges);
5264 	SPDK_CU_ASSERT_FATAL(range != NULL);
5265 	CU_ASSERT(range->offset == 20);
5266 	CU_ASSERT(range->length == 10);
5267 	CU_ASSERT(range->owner_ch == NULL);
5268 
5269 	/* Unlocks must exactly match a lock. */
5270 	g_unlock_lba_range_done = false;
5271 	rc = spdk_bdev_unquiesce_range(bdev, &bdev_ut_if, 20, 1, bdev_unquiesce_done, &ctx1);
5272 	CU_ASSERT(rc == -EINVAL);
5273 	CU_ASSERT(g_unlock_lba_range_done == false);
5274 
5275 	rc = spdk_bdev_unquiesce_range(bdev, &bdev_ut_if, 20, 10, bdev_unquiesce_done, &ctx1);
5276 	CU_ASSERT(rc == 0);
5277 	spdk_delay_us(100);
5278 	poll_threads();
5279 
5280 	CU_ASSERT(g_unlock_lba_range_done == true);
5281 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5282 	CU_ASSERT(TAILQ_EMPTY(&bdev_ut_if.internal.quiesced_ranges));
5283 
5284 	/* Test unquiesce from quiesce cb */
5285 	g_lock_lba_range_done = false;
5286 	g_unlock_lba_range_done = false;
5287 	rc = spdk_bdev_quiesce(bdev, &bdev_ut_if, bdev_quiesce_done_unquiesce, bdev);
5288 	CU_ASSERT(rc == 0);
5289 	poll_threads();
5290 
5291 	CU_ASSERT(g_lock_lba_range_done == true);
5292 	CU_ASSERT(g_unlock_lba_range_done == true);
5293 
5294 	/* Test quiesce with read I/O */
5295 	g_lock_lba_range_done = false;
5296 	g_unlock_lba_range_done = false;
5297 	g_io_done = false;
5298 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 20, 1, io_done, &ctx1);
5299 	CU_ASSERT(rc == 0);
5300 
5301 	rc = spdk_bdev_quiesce(bdev, &bdev_ut_if, bdev_quiesce_done, &ctx1);
5302 	CU_ASSERT(rc == 0);
5303 	poll_threads();
5304 
5305 	CU_ASSERT(g_io_done == false);
5306 	CU_ASSERT(g_lock_lba_range_done == false);
5307 	range = TAILQ_FIRST(&channel->locked_ranges);
5308 	SPDK_CU_ASSERT_FATAL(range != NULL);
5309 
5310 	stub_complete_io(1);
5311 	spdk_delay_us(100);
5312 	poll_threads();
5313 	CU_ASSERT(g_io_done == true);
5314 	CU_ASSERT(g_lock_lba_range_done == true);
5315 	CU_ASSERT(TAILQ_EMPTY(&channel->io_locked));
5316 
5317 	g_io_done = false;
5318 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 20, 1, io_done, &ctx1);
5319 	CU_ASSERT(rc == 0);
5320 
5321 	bdev_io = TAILQ_FIRST(&channel->io_locked);
5322 	SPDK_CU_ASSERT_FATAL(bdev_io != NULL);
5323 	CU_ASSERT(bdev_io->u.bdev.offset_blocks == 20);
5324 	CU_ASSERT(bdev_io->u.bdev.num_blocks == 1);
5325 
5326 	rc = spdk_bdev_unquiesce(bdev, &bdev_ut_if, bdev_unquiesce_done, &ctx1);
5327 	CU_ASSERT(rc == 0);
5328 	spdk_delay_us(100);
5329 	poll_threads();
5330 
5331 	CU_ASSERT(g_unlock_lba_range_done == true);
5332 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5333 	CU_ASSERT(TAILQ_EMPTY(&bdev_ut_if.internal.quiesced_ranges));
5334 
5335 	CU_ASSERT(TAILQ_EMPTY(&channel->io_locked));
5336 	spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
5337 	poll_threads();
5338 	CU_ASSERT(g_io_done == true);
5339 
5340 	spdk_put_io_channel(io_ch);
5341 	spdk_bdev_close(desc);
5342 	free_bdev(bdev);
5343 	ut_fini_bdev();
5344 }
5345 
5346 static void
5347 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
5348 {
5349 	g_abort_done = true;
5350 	g_abort_status = bdev_io->internal.status;
5351 	spdk_bdev_free_io(bdev_io);
5352 }
5353 
5354 static void
5355 bdev_io_abort(void)
5356 {
5357 	struct spdk_bdev *bdev;
5358 	struct spdk_bdev_desc *desc = NULL;
5359 	struct spdk_io_channel *io_ch;
5360 	struct spdk_bdev_channel *channel;
5361 	struct spdk_bdev_mgmt_channel *mgmt_ch;
5362 	struct spdk_bdev_opts bdev_opts = {};
5363 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
5364 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
5365 	int rc;
5366 
5367 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5368 	bdev_opts.bdev_io_pool_size = 7;
5369 	bdev_opts.bdev_io_cache_size = 2;
5370 	ut_init_bdev(&bdev_opts);
5371 
5372 	bdev = allocate_bdev("bdev0");
5373 
5374 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5375 	CU_ASSERT(rc == 0);
5376 	CU_ASSERT(desc != NULL);
5377 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5378 	io_ch = spdk_bdev_get_io_channel(desc);
5379 	CU_ASSERT(io_ch != NULL);
5380 	channel = spdk_io_channel_get_ctx(io_ch);
5381 	mgmt_ch = channel->shared_resource->mgmt_ch;
5382 
5383 	g_abort_done = false;
5384 
5385 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
5386 
5387 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5388 	CU_ASSERT(rc == -ENOTSUP);
5389 
5390 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
5391 
5392 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
5393 	CU_ASSERT(rc == 0);
5394 	CU_ASSERT(g_abort_done == true);
5395 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
5396 
5397 	/* Test the case that the target I/O was successfully aborted. */
5398 	g_io_done = false;
5399 
5400 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5401 	CU_ASSERT(rc == 0);
5402 	CU_ASSERT(g_io_done == false);
5403 
5404 	g_abort_done = false;
5405 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5406 
5407 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5408 	CU_ASSERT(rc == 0);
5409 	CU_ASSERT(g_io_done == true);
5410 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5411 	stub_complete_io(1);
5412 	CU_ASSERT(g_abort_done == true);
5413 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5414 
5415 	/* Test the case that the target I/O was not aborted because it completed
5416 	 * in the middle of execution of the abort.
5417 	 */
5418 	g_io_done = false;
5419 
5420 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5421 	CU_ASSERT(rc == 0);
5422 	CU_ASSERT(g_io_done == false);
5423 
5424 	g_abort_done = false;
5425 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5426 
5427 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5428 	CU_ASSERT(rc == 0);
5429 	CU_ASSERT(g_io_done == false);
5430 
5431 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5432 	stub_complete_io(1);
5433 	CU_ASSERT(g_io_done == true);
5434 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5435 
5436 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5437 	stub_complete_io(1);
5438 	CU_ASSERT(g_abort_done == true);
5439 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5440 
5441 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5442 
5443 	bdev->optimal_io_boundary = 16;
5444 	bdev->split_on_optimal_io_boundary = true;
5445 
5446 	/* Test that a single-vector command which is split is aborted correctly.
5447 	 * Offset 14, length 8, payload 0xF000
5448 	 *  Child - Offset 14, length 2, payload 0xF000
5449 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5450 	 */
5451 	g_io_done = false;
5452 
5453 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
5454 	CU_ASSERT(rc == 0);
5455 	CU_ASSERT(g_io_done == false);
5456 
5457 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5458 
5459 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5460 
5461 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5462 	CU_ASSERT(rc == 0);
5463 	CU_ASSERT(g_io_done == true);
5464 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5465 	stub_complete_io(2);
5466 	CU_ASSERT(g_abort_done == true);
5467 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5468 
5469 	/* Test that a multi-vector command that needs to be split by strip and then
5470 	 * needs to be split is aborted correctly. Abort is requested before the second
5471 	 * child I/O was submitted. The parent I/O should complete with failure without
5472 	 * submitting the second child I/O.
5473 	 */
5474 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
5475 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
5476 		iov[i].iov_len = 512;
5477 	}
5478 
5479 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
5480 	g_io_done = false;
5481 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
5482 				    SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
5483 	CU_ASSERT(rc == 0);
5484 	CU_ASSERT(g_io_done == false);
5485 
5486 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5487 
5488 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5489 
5490 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5491 	CU_ASSERT(rc == 0);
5492 	CU_ASSERT(g_io_done == true);
5493 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5494 	stub_complete_io(1);
5495 	CU_ASSERT(g_abort_done == true);
5496 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5497 
5498 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5499 
5500 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5501 
5502 	bdev->optimal_io_boundary = 16;
5503 	g_io_done = false;
5504 
5505 	/* Test that a single-vector command which is split is aborted correctly.
5506 	 * Differently from the above, the child abort request will be submitted
5507 	 * sequentially due to the capacity of spdk_bdev_io.
5508 	 */
5509 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
5510 	CU_ASSERT(rc == 0);
5511 	CU_ASSERT(g_io_done == false);
5512 
5513 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5514 
5515 	g_abort_done = false;
5516 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5517 
5518 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5519 	CU_ASSERT(rc == 0);
5520 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
5521 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5522 
5523 	stub_complete_io(1);
5524 	CU_ASSERT(g_io_done == true);
5525 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5526 	stub_complete_io(3);
5527 	CU_ASSERT(g_abort_done == true);
5528 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5529 
5530 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5531 
5532 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5533 
5534 	bdev->split_on_optimal_io_boundary = false;
5535 	bdev->split_on_write_unit = true;
5536 	bdev->write_unit_size = 16;
5537 
5538 	/* Test that a single-vector command which is split is aborted correctly.
5539 	 * Offset 16, length 32, payload 0xF000
5540 	 *  Child - Offset 16, length 16, payload 0xF000
5541 	 *  Child - Offset 32, length 16, payload 0xF000 + 16 * 512
5542 	 *
5543 	 * Use bdev->split_on_write_unit as a split condition.
5544 	 */
5545 	g_io_done = false;
5546 
5547 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 16, 32, io_done, &io_ctx1);
5548 	CU_ASSERT(rc == 0);
5549 	CU_ASSERT(g_io_done == false);
5550 
5551 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5552 
5553 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5554 
5555 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5556 	CU_ASSERT(rc == 0);
5557 	CU_ASSERT(g_io_done == true);
5558 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5559 	stub_complete_io(2);
5560 	CU_ASSERT(g_abort_done == true);
5561 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5562 
5563 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5564 
5565 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5566 
5567 	bdev->split_on_write_unit = false;
5568 	bdev->max_rw_size = 16;
5569 
5570 	/* Test that a single-vector command which is split is aborted correctly.
5571 	 * Use bdev->max_rw_size as a split condition.
5572 	 */
5573 	g_io_done = false;
5574 
5575 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 32, io_done, &io_ctx1);
5576 	CU_ASSERT(rc == 0);
5577 	CU_ASSERT(g_io_done == false);
5578 
5579 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5580 
5581 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5582 
5583 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5584 	CU_ASSERT(rc == 0);
5585 	CU_ASSERT(g_io_done == true);
5586 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5587 	stub_complete_io(2);
5588 	CU_ASSERT(g_abort_done == true);
5589 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5590 
5591 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5592 
5593 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5594 
5595 	bdev->max_rw_size = 0;
5596 	bdev->max_segment_size = 512 * 16;
5597 	bdev->max_num_segments = 1;
5598 
5599 	/* Test that a single-vector command which is split is aborted correctly.
5600 	 * Use bdev->max_segment_size and bdev->max_num_segments together as split conditions.
5601 	 *
5602 	 * One single-vector command is changed to one two-vectors command, but
5603 	 * bdev->max_num_segments is 1 and it is split into two single-vector commands.
5604 	 */
5605 	g_io_done = false;
5606 
5607 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 32, io_done, &io_ctx1);
5608 	CU_ASSERT(rc == 0);
5609 	CU_ASSERT(g_io_done == false);
5610 
5611 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5612 
5613 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5614 
5615 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5616 	CU_ASSERT(rc == 0);
5617 	CU_ASSERT(g_io_done == true);
5618 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5619 	stub_complete_io(2);
5620 	CU_ASSERT(g_abort_done == true);
5621 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5622 
5623 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5624 
5625 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5626 
5627 	spdk_put_io_channel(io_ch);
5628 	spdk_bdev_close(desc);
5629 	free_bdev(bdev);
5630 	ut_fini_bdev();
5631 }
5632 
5633 static void
5634 bdev_unmap(void)
5635 {
5636 	struct spdk_bdev *bdev;
5637 	struct spdk_bdev_desc *desc = NULL;
5638 	struct spdk_io_channel *ioch;
5639 	struct spdk_bdev_channel *bdev_ch;
5640 	struct ut_expected_io *expected_io;
5641 	struct spdk_bdev_opts bdev_opts = {};
5642 	uint32_t i, num_outstanding;
5643 	uint64_t offset, num_blocks, max_unmap_blocks, num_children;
5644 	int rc;
5645 
5646 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5647 	bdev_opts.bdev_io_pool_size = 512;
5648 	bdev_opts.bdev_io_cache_size = 64;
5649 	ut_init_bdev(&bdev_opts);
5650 
5651 	bdev = allocate_bdev("bdev");
5652 
5653 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5654 	CU_ASSERT_EQUAL(rc, 0);
5655 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5656 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5657 	ioch = spdk_bdev_get_io_channel(desc);
5658 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5659 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5660 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5661 
5662 	fn_table.submit_request = stub_submit_request;
5663 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5664 
5665 	/* Case 1: First test the request won't be split */
5666 	num_blocks = 32;
5667 
5668 	g_io_done = false;
5669 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 0, num_blocks, 0);
5670 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5671 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5672 	CU_ASSERT_EQUAL(rc, 0);
5673 	CU_ASSERT(g_io_done == false);
5674 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5675 	stub_complete_io(1);
5676 	CU_ASSERT(g_io_done == true);
5677 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5678 
5679 	/* Case 2: Test the split with 2 children requests */
5680 	bdev->max_unmap = 8;
5681 	bdev->max_unmap_segments = 2;
5682 	max_unmap_blocks = bdev->max_unmap * bdev->max_unmap_segments;
5683 	num_blocks = max_unmap_blocks * 2;
5684 	offset = 0;
5685 
5686 	g_io_done = false;
5687 	for (i = 0; i < 2; i++) {
5688 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5689 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5690 		offset += max_unmap_blocks;
5691 	}
5692 
5693 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5694 	CU_ASSERT_EQUAL(rc, 0);
5695 	CU_ASSERT(g_io_done == false);
5696 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5697 	stub_complete_io(2);
5698 	CU_ASSERT(g_io_done == true);
5699 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5700 
5701 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5702 	num_children = 15;
5703 	num_blocks = max_unmap_blocks * num_children;
5704 	g_io_done = false;
5705 	offset = 0;
5706 	for (i = 0; i < num_children; i++) {
5707 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5708 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5709 		offset += max_unmap_blocks;
5710 	}
5711 
5712 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5713 	CU_ASSERT_EQUAL(rc, 0);
5714 	CU_ASSERT(g_io_done == false);
5715 
5716 	while (num_children > 0) {
5717 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5718 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5719 		stub_complete_io(num_outstanding);
5720 		num_children -= num_outstanding;
5721 	}
5722 	CU_ASSERT(g_io_done == true);
5723 
5724 	spdk_put_io_channel(ioch);
5725 	spdk_bdev_close(desc);
5726 	free_bdev(bdev);
5727 	ut_fini_bdev();
5728 }
5729 
5730 static void
5731 bdev_write_zeroes_split_test(void)
5732 {
5733 	struct spdk_bdev *bdev;
5734 	struct spdk_bdev_desc *desc = NULL;
5735 	struct spdk_io_channel *ioch;
5736 	struct spdk_bdev_channel *bdev_ch;
5737 	struct ut_expected_io *expected_io;
5738 	struct spdk_bdev_opts bdev_opts = {};
5739 	uint32_t i, num_outstanding;
5740 	uint64_t offset, num_blocks, max_write_zeroes_blocks, num_children;
5741 	int rc;
5742 
5743 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5744 	bdev_opts.bdev_io_pool_size = 512;
5745 	bdev_opts.bdev_io_cache_size = 64;
5746 	ut_init_bdev(&bdev_opts);
5747 
5748 	bdev = allocate_bdev("bdev");
5749 
5750 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5751 	CU_ASSERT_EQUAL(rc, 0);
5752 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5753 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5754 	ioch = spdk_bdev_get_io_channel(desc);
5755 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5756 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5757 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5758 
5759 	fn_table.submit_request = stub_submit_request;
5760 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5761 
5762 	/* Case 1: First test the request won't be split */
5763 	num_blocks = 32;
5764 
5765 	g_io_done = false;
5766 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
5767 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5768 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5769 	CU_ASSERT_EQUAL(rc, 0);
5770 	CU_ASSERT(g_io_done == false);
5771 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5772 	stub_complete_io(1);
5773 	CU_ASSERT(g_io_done == true);
5774 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5775 
5776 	/* Case 2: Test the split with 2 children requests */
5777 	max_write_zeroes_blocks = 8;
5778 	bdev->max_write_zeroes = max_write_zeroes_blocks;
5779 	num_blocks = max_write_zeroes_blocks * 2;
5780 	offset = 0;
5781 
5782 	g_io_done = false;
5783 	for (i = 0; i < 2; i++) {
5784 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5785 						   0);
5786 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5787 		offset += max_write_zeroes_blocks;
5788 	}
5789 
5790 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5791 	CU_ASSERT_EQUAL(rc, 0);
5792 	CU_ASSERT(g_io_done == false);
5793 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5794 	stub_complete_io(2);
5795 	CU_ASSERT(g_io_done == true);
5796 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5797 
5798 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5799 	num_children = 15;
5800 	num_blocks = max_write_zeroes_blocks * num_children;
5801 	g_io_done = false;
5802 	offset = 0;
5803 	for (i = 0; i < num_children; i++) {
5804 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5805 						   0);
5806 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5807 		offset += max_write_zeroes_blocks;
5808 	}
5809 
5810 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5811 	CU_ASSERT_EQUAL(rc, 0);
5812 	CU_ASSERT(g_io_done == false);
5813 
5814 	while (num_children > 0) {
5815 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5816 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5817 		stub_complete_io(num_outstanding);
5818 		num_children -= num_outstanding;
5819 	}
5820 	CU_ASSERT(g_io_done == true);
5821 
5822 	spdk_put_io_channel(ioch);
5823 	spdk_bdev_close(desc);
5824 	free_bdev(bdev);
5825 	ut_fini_bdev();
5826 }
5827 
5828 static void
5829 bdev_set_options_test(void)
5830 {
5831 	struct spdk_bdev_opts bdev_opts = {};
5832 	int rc;
5833 
5834 	/* Case1: Do not set opts_size */
5835 	rc = spdk_bdev_set_opts(&bdev_opts);
5836 	CU_ASSERT(rc == -1);
5837 }
5838 
5839 static struct spdk_memory_domain *g_bdev_memory_domain = (struct spdk_memory_domain *) 0xf00df00d;
5840 
5841 static int
5842 test_bdev_get_supported_dma_device_types_op(void *ctx, struct spdk_memory_domain **domains,
5843 		int array_size)
5844 {
5845 	if (array_size > 0 && domains) {
5846 		domains[0] = g_bdev_memory_domain;
5847 	}
5848 
5849 	return 1;
5850 }
5851 
5852 static void
5853 bdev_get_memory_domains(void)
5854 {
5855 	struct spdk_bdev_fn_table fn_table = {
5856 		.get_memory_domains = test_bdev_get_supported_dma_device_types_op
5857 	};
5858 	struct spdk_bdev bdev = { .fn_table = &fn_table };
5859 	struct spdk_memory_domain *domains[2] = {};
5860 	int rc;
5861 
5862 	/* bdev is NULL */
5863 	rc = spdk_bdev_get_memory_domains(NULL, domains, 2);
5864 	CU_ASSERT(rc == -EINVAL);
5865 
5866 	/* domains is NULL */
5867 	rc = spdk_bdev_get_memory_domains(&bdev, NULL, 2);
5868 	CU_ASSERT(rc == 1);
5869 
5870 	/* array size is 0 */
5871 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 0);
5872 	CU_ASSERT(rc == 1);
5873 
5874 	/* get_supported_dma_device_types op is set */
5875 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5876 	CU_ASSERT(rc == 1);
5877 	CU_ASSERT(domains[0] == g_bdev_memory_domain);
5878 
5879 	/* get_supported_dma_device_types op is not set */
5880 	fn_table.get_memory_domains = NULL;
5881 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5882 	CU_ASSERT(rc == 0);
5883 }
5884 
5885 static void
5886 _bdev_io_ext(struct spdk_bdev_ext_io_opts *ext_io_opts)
5887 {
5888 	struct spdk_bdev *bdev;
5889 	struct spdk_bdev_desc *desc = NULL;
5890 	struct spdk_io_channel *io_ch;
5891 	char io_buf[512];
5892 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5893 	struct ut_expected_io *expected_io;
5894 	int rc;
5895 
5896 	ut_init_bdev(NULL);
5897 
5898 	bdev = allocate_bdev("bdev0");
5899 	bdev->md_interleave = false;
5900 	bdev->md_len = 8;
5901 
5902 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5903 	CU_ASSERT(rc == 0);
5904 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5905 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5906 	io_ch = spdk_bdev_get_io_channel(desc);
5907 	CU_ASSERT(io_ch != NULL);
5908 
5909 	/* read */
5910 	g_io_done = false;
5911 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5912 	if (ext_io_opts) {
5913 		expected_io->md_buf = ext_io_opts->metadata;
5914 	}
5915 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5916 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5917 
5918 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5919 
5920 	CU_ASSERT(rc == 0);
5921 	CU_ASSERT(g_io_done == false);
5922 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5923 	stub_complete_io(1);
5924 	CU_ASSERT(g_io_done == true);
5925 
5926 	/* write */
5927 	g_io_done = false;
5928 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5929 	if (ext_io_opts) {
5930 		expected_io->md_buf = ext_io_opts->metadata;
5931 	}
5932 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5933 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5934 
5935 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5936 
5937 	CU_ASSERT(rc == 0);
5938 	CU_ASSERT(g_io_done == false);
5939 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5940 	stub_complete_io(1);
5941 	CU_ASSERT(g_io_done == true);
5942 
5943 	spdk_put_io_channel(io_ch);
5944 	spdk_bdev_close(desc);
5945 	free_bdev(bdev);
5946 	ut_fini_bdev();
5947 
5948 }
5949 
5950 static void
5951 bdev_io_ext(void)
5952 {
5953 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5954 		.metadata = (void *)0xFF000000,
5955 		.size = sizeof(ext_io_opts),
5956 		.dif_check_flags_exclude_mask = 0
5957 	};
5958 
5959 	_bdev_io_ext(&ext_io_opts);
5960 }
5961 
5962 static void
5963 bdev_io_ext_no_opts(void)
5964 {
5965 	_bdev_io_ext(NULL);
5966 }
5967 
5968 static void
5969 bdev_io_ext_invalid_opts(void)
5970 {
5971 	struct spdk_bdev *bdev;
5972 	struct spdk_bdev_desc *desc = NULL;
5973 	struct spdk_io_channel *io_ch;
5974 	char io_buf[512];
5975 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5976 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5977 		.metadata = (void *)0xFF000000,
5978 		.size = sizeof(ext_io_opts),
5979 		.dif_check_flags_exclude_mask = 0
5980 	};
5981 	int rc;
5982 
5983 	ut_init_bdev(NULL);
5984 
5985 	bdev = allocate_bdev("bdev0");
5986 	bdev->md_interleave = false;
5987 	bdev->md_len = 8;
5988 
5989 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5990 	CU_ASSERT(rc == 0);
5991 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5992 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5993 	io_ch = spdk_bdev_get_io_channel(desc);
5994 	CU_ASSERT(io_ch != NULL);
5995 
5996 	/* Test invalid ext_opts size */
5997 	ext_io_opts.size = 0;
5998 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5999 	CU_ASSERT(rc == -EINVAL);
6000 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6001 	CU_ASSERT(rc == -EINVAL);
6002 
6003 	ext_io_opts.size = sizeof(ext_io_opts) * 2;
6004 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6005 	CU_ASSERT(rc == -EINVAL);
6006 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6007 	CU_ASSERT(rc == -EINVAL);
6008 
6009 	ext_io_opts.size = offsetof(struct spdk_bdev_ext_io_opts, metadata) +
6010 			   sizeof(ext_io_opts.metadata) - 1;
6011 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6012 	CU_ASSERT(rc == -EINVAL);
6013 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6014 	CU_ASSERT(rc == -EINVAL);
6015 
6016 	spdk_put_io_channel(io_ch);
6017 	spdk_bdev_close(desc);
6018 	free_bdev(bdev);
6019 	ut_fini_bdev();
6020 }
6021 
6022 static void
6023 bdev_io_ext_split(void)
6024 {
6025 	struct spdk_bdev *bdev;
6026 	struct spdk_bdev_desc *desc = NULL;
6027 	struct spdk_io_channel *io_ch;
6028 	char io_buf[512];
6029 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
6030 	struct ut_expected_io *expected_io;
6031 	struct spdk_bdev_ext_io_opts ext_io_opts = {
6032 		.metadata = (void *)0xFF000000,
6033 		.size = sizeof(ext_io_opts),
6034 		.dif_check_flags_exclude_mask = 0
6035 	};
6036 	int rc;
6037 
6038 	ut_init_bdev(NULL);
6039 
6040 	bdev = allocate_bdev("bdev0");
6041 	bdev->md_interleave = false;
6042 	bdev->md_len = 8;
6043 
6044 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6045 	CU_ASSERT(rc == 0);
6046 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6047 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6048 	io_ch = spdk_bdev_get_io_channel(desc);
6049 	CU_ASSERT(io_ch != NULL);
6050 
6051 	/* Check that IO request with ext_opts and metadata is split correctly
6052 	 * Offset 14, length 8, payload 0xF000
6053 	 *  Child - Offset 14, length 2, payload 0xF000
6054 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
6055 	 */
6056 	bdev->optimal_io_boundary = 16;
6057 	bdev->split_on_optimal_io_boundary = true;
6058 	bdev->md_interleave = false;
6059 	bdev->md_len = 8;
6060 
6061 	iov.iov_base = (void *)0xF000;
6062 	iov.iov_len = 4096;
6063 	memset(&ext_io_opts, 0, sizeof(ext_io_opts));
6064 	ext_io_opts.metadata = (void *)0xFF000000;
6065 	ext_io_opts.size = sizeof(ext_io_opts);
6066 	g_io_done = false;
6067 
6068 	/* read */
6069 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
6070 	expected_io->md_buf = ext_io_opts.metadata;
6071 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
6072 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6073 
6074 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
6075 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
6076 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
6077 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6078 
6079 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
6080 	CU_ASSERT(rc == 0);
6081 	CU_ASSERT(g_io_done == false);
6082 
6083 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
6084 	stub_complete_io(2);
6085 	CU_ASSERT(g_io_done == true);
6086 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6087 
6088 	/* write */
6089 	g_io_done = false;
6090 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
6091 	expected_io->md_buf = ext_io_opts.metadata;
6092 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
6093 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6094 
6095 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 6, 1);
6096 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
6097 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
6098 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6099 
6100 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
6101 	CU_ASSERT(rc == 0);
6102 	CU_ASSERT(g_io_done == false);
6103 
6104 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
6105 	stub_complete_io(2);
6106 	CU_ASSERT(g_io_done == true);
6107 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6108 
6109 	spdk_put_io_channel(io_ch);
6110 	spdk_bdev_close(desc);
6111 	free_bdev(bdev);
6112 	ut_fini_bdev();
6113 }
6114 
6115 static void
6116 bdev_io_ext_bounce_buffer(void)
6117 {
6118 	struct spdk_bdev *bdev;
6119 	struct spdk_bdev_desc *desc = NULL;
6120 	struct spdk_io_channel *io_ch;
6121 	char io_buf[512];
6122 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
6123 	struct ut_expected_io *expected_io, *aux_io;
6124 	struct spdk_bdev_ext_io_opts ext_io_opts = {
6125 		.metadata = (void *)0xFF000000,
6126 		.size = sizeof(ext_io_opts),
6127 		.dif_check_flags_exclude_mask = 0
6128 	};
6129 	int rc;
6130 
6131 	ut_init_bdev(NULL);
6132 
6133 	bdev = allocate_bdev("bdev0");
6134 	bdev->md_interleave = false;
6135 	bdev->md_len = 8;
6136 
6137 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6138 	CU_ASSERT(rc == 0);
6139 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6140 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6141 	io_ch = spdk_bdev_get_io_channel(desc);
6142 	CU_ASSERT(io_ch != NULL);
6143 
6144 	/* Verify data pull/push
6145 	 * bdev doesn't support memory domains, so buffers from bdev memory pool will be used */
6146 	ext_io_opts.memory_domain = (struct spdk_memory_domain *)0xdeadbeef;
6147 
6148 	/* read */
6149 	g_io_done = false;
6150 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
6151 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
6152 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6153 
6154 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6155 
6156 	CU_ASSERT(rc == 0);
6157 	CU_ASSERT(g_io_done == false);
6158 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6159 	stub_complete_io(1);
6160 	CU_ASSERT(g_memory_domain_push_data_called == true);
6161 	CU_ASSERT(g_io_done == true);
6162 
6163 	/* write */
6164 	g_io_done = false;
6165 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
6166 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
6167 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6168 
6169 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6170 
6171 	CU_ASSERT(rc == 0);
6172 	CU_ASSERT(g_memory_domain_pull_data_called == true);
6173 	CU_ASSERT(g_io_done == false);
6174 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6175 	stub_complete_io(1);
6176 	CU_ASSERT(g_io_done == true);
6177 
6178 	/* Verify the request is queued after receiving ENOMEM from pull */
6179 	g_io_done = false;
6180 	aux_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
6181 	ut_expected_io_set_iov(aux_io, 0, iov.iov_base, iov.iov_len);
6182 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, aux_io, link);
6183 	rc = spdk_bdev_writev_blocks(desc, io_ch, &iov, 1, 32, 14, io_done, NULL);
6184 	CU_ASSERT(rc == 0);
6185 	CU_ASSERT(g_io_done == false);
6186 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6187 
6188 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
6189 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
6190 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6191 
6192 	MOCK_SET(spdk_memory_domain_pull_data, -ENOMEM);
6193 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6194 	CU_ASSERT(rc == 0);
6195 	CU_ASSERT(g_io_done == false);
6196 	/* The second IO has been queued */
6197 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6198 
6199 	MOCK_CLEAR(spdk_memory_domain_pull_data);
6200 	g_memory_domain_pull_data_called = false;
6201 	stub_complete_io(1);
6202 	CU_ASSERT(g_io_done == true);
6203 	CU_ASSERT(g_memory_domain_pull_data_called == true);
6204 	/* The second IO should be submitted now */
6205 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6206 	g_io_done = false;
6207 	stub_complete_io(1);
6208 	CU_ASSERT(g_io_done == true);
6209 
6210 	/* Verify the request is queued after receiving ENOMEM from push */
6211 	g_io_done = false;
6212 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
6213 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
6214 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6215 
6216 	MOCK_SET(spdk_memory_domain_push_data, -ENOMEM);
6217 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6218 	CU_ASSERT(rc == 0);
6219 	CU_ASSERT(g_io_done == false);
6220 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6221 
6222 	aux_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
6223 	ut_expected_io_set_iov(aux_io, 0, iov.iov_base, iov.iov_len);
6224 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, aux_io, link);
6225 	rc = spdk_bdev_writev_blocks(desc, io_ch, &iov, 1, 32, 14, io_done, NULL);
6226 	CU_ASSERT(rc == 0);
6227 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
6228 
6229 	stub_complete_io(1);
6230 	/* The IO isn't done yet, it's still waiting on push */
6231 	CU_ASSERT(g_io_done == false);
6232 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6233 	MOCK_CLEAR(spdk_memory_domain_push_data);
6234 	g_memory_domain_push_data_called = false;
6235 	/* Completing the second IO should also trigger push on the first one */
6236 	stub_complete_io(1);
6237 	CU_ASSERT(g_io_done == true);
6238 	CU_ASSERT(g_memory_domain_push_data_called == true);
6239 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6240 
6241 	spdk_put_io_channel(io_ch);
6242 	spdk_bdev_close(desc);
6243 	free_bdev(bdev);
6244 	ut_fini_bdev();
6245 }
6246 
6247 static void
6248 bdev_register_uuid_alias(void)
6249 {
6250 	struct spdk_bdev *bdev, *second;
6251 	char uuid[SPDK_UUID_STRING_LEN];
6252 	int rc;
6253 
6254 	ut_init_bdev(NULL);
6255 	bdev = allocate_bdev("bdev0");
6256 
6257 	/* Make sure an UUID was generated  */
6258 	CU_ASSERT_FALSE(spdk_uuid_is_null(&bdev->uuid));
6259 
6260 	/* Check that an UUID alias was registered */
6261 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
6262 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
6263 
6264 	/* Unregister the bdev */
6265 	spdk_bdev_unregister(bdev, NULL, NULL);
6266 	poll_threads();
6267 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
6268 
6269 	/* Check the same, but this time register the bdev with non-zero UUID */
6270 	rc = spdk_bdev_register(bdev);
6271 	CU_ASSERT_EQUAL(rc, 0);
6272 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
6273 
6274 	/* Unregister the bdev */
6275 	spdk_bdev_unregister(bdev, NULL, NULL);
6276 	poll_threads();
6277 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
6278 
6279 	/* Register the bdev using UUID as the name */
6280 	bdev->name = uuid;
6281 	rc = spdk_bdev_register(bdev);
6282 	CU_ASSERT_EQUAL(rc, 0);
6283 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
6284 
6285 	/* Unregister the bdev */
6286 	spdk_bdev_unregister(bdev, NULL, NULL);
6287 	poll_threads();
6288 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
6289 
6290 	/* Check that it's not possible to register two bdevs with the same UUIDs */
6291 	bdev->name = "bdev0";
6292 	second = allocate_bdev("bdev1");
6293 	spdk_uuid_copy(&bdev->uuid, &second->uuid);
6294 	rc = spdk_bdev_register(bdev);
6295 	CU_ASSERT_EQUAL(rc, -EEXIST);
6296 
6297 	/* Regenerate the UUID and re-check */
6298 	spdk_uuid_generate(&bdev->uuid);
6299 	rc = spdk_bdev_register(bdev);
6300 	CU_ASSERT_EQUAL(rc, 0);
6301 
6302 	/* And check that both bdevs can be retrieved through their UUIDs */
6303 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
6304 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
6305 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &second->uuid);
6306 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), second);
6307 
6308 	free_bdev(second);
6309 	free_bdev(bdev);
6310 	ut_fini_bdev();
6311 }
6312 
6313 static void
6314 bdev_unregister_by_name(void)
6315 {
6316 	struct spdk_bdev *bdev;
6317 	int rc;
6318 
6319 	bdev = allocate_bdev("bdev");
6320 
6321 	g_event_type1 = 0xFF;
6322 	g_unregister_arg = NULL;
6323 	g_unregister_rc = -1;
6324 
6325 	rc = spdk_bdev_unregister_by_name("bdev1", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
6326 	CU_ASSERT(rc == -ENODEV);
6327 
6328 	rc = spdk_bdev_unregister_by_name("bdev", &vbdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
6329 	CU_ASSERT(rc == -ENODEV);
6330 
6331 	rc = spdk_bdev_unregister_by_name("bdev", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
6332 	CU_ASSERT(rc == 0);
6333 
6334 	/* Check that unregister callback is delayed */
6335 	CU_ASSERT(g_unregister_arg == NULL);
6336 	CU_ASSERT(g_unregister_rc == -1);
6337 
6338 	poll_threads();
6339 
6340 	/* Event callback shall not be issued because device was closed */
6341 	CU_ASSERT(g_event_type1 == 0xFF);
6342 	/* Unregister callback is issued */
6343 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
6344 	CU_ASSERT(g_unregister_rc == 0);
6345 
6346 	free_bdev(bdev);
6347 }
6348 
6349 static int
6350 count_bdevs(void *ctx, struct spdk_bdev *bdev)
6351 {
6352 	int *count = ctx;
6353 
6354 	(*count)++;
6355 
6356 	return 0;
6357 }
6358 
6359 static void
6360 for_each_bdev_test(void)
6361 {
6362 	struct spdk_bdev *bdev[8];
6363 	int rc, count;
6364 
6365 	bdev[0] = allocate_bdev("bdev0");
6366 	bdev[0]->internal.status = SPDK_BDEV_STATUS_REMOVING;
6367 
6368 	bdev[1] = allocate_bdev("bdev1");
6369 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
6370 	CU_ASSERT(rc == 0);
6371 
6372 	bdev[2] = allocate_bdev("bdev2");
6373 
6374 	bdev[3] = allocate_bdev("bdev3");
6375 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
6376 	CU_ASSERT(rc == 0);
6377 
6378 	bdev[4] = allocate_bdev("bdev4");
6379 
6380 	bdev[5] = allocate_bdev("bdev5");
6381 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
6382 	CU_ASSERT(rc == 0);
6383 
6384 	bdev[6] = allocate_bdev("bdev6");
6385 
6386 	bdev[7] = allocate_bdev("bdev7");
6387 
6388 	count = 0;
6389 	rc = spdk_for_each_bdev(&count, count_bdevs);
6390 	CU_ASSERT(rc == 0);
6391 	CU_ASSERT(count == 7);
6392 
6393 	count = 0;
6394 	rc = spdk_for_each_bdev_leaf(&count, count_bdevs);
6395 	CU_ASSERT(rc == 0);
6396 	CU_ASSERT(count == 4);
6397 
6398 	bdev[0]->internal.status = SPDK_BDEV_STATUS_READY;
6399 	free_bdev(bdev[0]);
6400 	free_bdev(bdev[1]);
6401 	free_bdev(bdev[2]);
6402 	free_bdev(bdev[3]);
6403 	free_bdev(bdev[4]);
6404 	free_bdev(bdev[5]);
6405 	free_bdev(bdev[6]);
6406 	free_bdev(bdev[7]);
6407 }
6408 
6409 static void
6410 bdev_seek_test(void)
6411 {
6412 	struct spdk_bdev *bdev;
6413 	struct spdk_bdev_desc *desc = NULL;
6414 	struct spdk_io_channel *io_ch;
6415 	int rc;
6416 
6417 	ut_init_bdev(NULL);
6418 	poll_threads();
6419 
6420 	bdev = allocate_bdev("bdev0");
6421 
6422 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6423 	CU_ASSERT(rc == 0);
6424 	poll_threads();
6425 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6426 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6427 	io_ch = spdk_bdev_get_io_channel(desc);
6428 	CU_ASSERT(io_ch != NULL);
6429 
6430 	/* Seek data not supported */
6431 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, false);
6432 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
6433 	CU_ASSERT(rc == 0);
6434 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6435 	poll_threads();
6436 	CU_ASSERT(g_seek_offset == 0);
6437 
6438 	/* Seek hole not supported */
6439 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, false);
6440 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
6441 	CU_ASSERT(rc == 0);
6442 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6443 	poll_threads();
6444 	CU_ASSERT(g_seek_offset == UINT64_MAX);
6445 
6446 	/* Seek data supported */
6447 	g_seek_data_offset = 12345;
6448 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, true);
6449 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
6450 	CU_ASSERT(rc == 0);
6451 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6452 	stub_complete_io(1);
6453 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6454 	CU_ASSERT(g_seek_offset == 12345);
6455 
6456 	/* Seek hole supported */
6457 	g_seek_hole_offset = 67890;
6458 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, true);
6459 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
6460 	CU_ASSERT(rc == 0);
6461 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6462 	stub_complete_io(1);
6463 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6464 	CU_ASSERT(g_seek_offset == 67890);
6465 
6466 	spdk_put_io_channel(io_ch);
6467 	spdk_bdev_close(desc);
6468 	free_bdev(bdev);
6469 	ut_fini_bdev();
6470 }
6471 
6472 static void
6473 bdev_copy(void)
6474 {
6475 	struct spdk_bdev *bdev;
6476 	struct spdk_bdev_desc *desc = NULL;
6477 	struct spdk_io_channel *ioch;
6478 	struct ut_expected_io *expected_io;
6479 	uint64_t src_offset, num_blocks;
6480 	uint32_t num_completed;
6481 	int rc;
6482 
6483 	ut_init_bdev(NULL);
6484 	bdev = allocate_bdev("bdev");
6485 
6486 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6487 	CU_ASSERT_EQUAL(rc, 0);
6488 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6489 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6490 	ioch = spdk_bdev_get_io_channel(desc);
6491 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6492 
6493 	fn_table.submit_request = stub_submit_request;
6494 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6495 
6496 	/* First test that if the bdev supports copy, the request won't be split */
6497 	bdev->md_len = 0;
6498 	bdev->blocklen = 512;
6499 	num_blocks = 128;
6500 	src_offset = bdev->blockcnt - num_blocks;
6501 
6502 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6503 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6504 
6505 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6506 	CU_ASSERT_EQUAL(rc, 0);
6507 	num_completed = stub_complete_io(1);
6508 	CU_ASSERT_EQUAL(num_completed, 1);
6509 
6510 	/* Check that if copy is not supported it'll still work */
6511 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, src_offset, num_blocks, 0);
6512 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6513 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, num_blocks, 0);
6514 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6515 
6516 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false);
6517 
6518 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6519 	CU_ASSERT_EQUAL(rc, 0);
6520 	num_completed = stub_complete_io(1);
6521 	CU_ASSERT_EQUAL(num_completed, 1);
6522 	num_completed = stub_complete_io(1);
6523 	CU_ASSERT_EQUAL(num_completed, 1);
6524 
6525 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true);
6526 	spdk_put_io_channel(ioch);
6527 	spdk_bdev_close(desc);
6528 	free_bdev(bdev);
6529 	ut_fini_bdev();
6530 }
6531 
6532 static void
6533 bdev_copy_split_test(void)
6534 {
6535 	struct spdk_bdev *bdev;
6536 	struct spdk_bdev_desc *desc = NULL;
6537 	struct spdk_io_channel *ioch;
6538 	struct spdk_bdev_channel *bdev_ch;
6539 	struct ut_expected_io *expected_io;
6540 	struct spdk_bdev_opts bdev_opts = {};
6541 	uint32_t i, num_outstanding;
6542 	uint64_t offset, src_offset, num_blocks, max_copy_blocks, num_children;
6543 	int rc;
6544 
6545 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
6546 	bdev_opts.bdev_io_pool_size = 512;
6547 	bdev_opts.bdev_io_cache_size = 64;
6548 	rc = spdk_bdev_set_opts(&bdev_opts);
6549 	CU_ASSERT(rc == 0);
6550 
6551 	ut_init_bdev(NULL);
6552 	bdev = allocate_bdev("bdev");
6553 
6554 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6555 	CU_ASSERT_EQUAL(rc, 0);
6556 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6557 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6558 	ioch = spdk_bdev_get_io_channel(desc);
6559 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6560 	bdev_ch = spdk_io_channel_get_ctx(ioch);
6561 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
6562 
6563 	fn_table.submit_request = stub_submit_request;
6564 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6565 
6566 	/* Case 1: First test the request won't be split */
6567 	num_blocks = 32;
6568 	src_offset = bdev->blockcnt - num_blocks;
6569 
6570 	g_io_done = false;
6571 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6572 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6573 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6574 	CU_ASSERT_EQUAL(rc, 0);
6575 	CU_ASSERT(g_io_done == false);
6576 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6577 	stub_complete_io(1);
6578 	CU_ASSERT(g_io_done == true);
6579 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6580 
6581 	/* Case 2: Test the split with 2 children requests */
6582 	max_copy_blocks = 8;
6583 	bdev->max_copy = max_copy_blocks;
6584 	num_children = 2;
6585 	num_blocks = max_copy_blocks * num_children;
6586 	offset = 0;
6587 	src_offset = bdev->blockcnt - num_blocks;
6588 
6589 	g_io_done = false;
6590 	for (i = 0; i < num_children; i++) {
6591 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6592 							src_offset + offset, max_copy_blocks);
6593 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6594 		offset += max_copy_blocks;
6595 	}
6596 
6597 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6598 	CU_ASSERT_EQUAL(rc, 0);
6599 	CU_ASSERT(g_io_done == false);
6600 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_children);
6601 	stub_complete_io(num_children);
6602 	CU_ASSERT(g_io_done == true);
6603 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6604 
6605 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
6606 	num_children = 15;
6607 	num_blocks = max_copy_blocks * num_children;
6608 	offset = 0;
6609 	src_offset = bdev->blockcnt - num_blocks;
6610 
6611 	g_io_done = false;
6612 	for (i = 0; i < num_children; i++) {
6613 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6614 							src_offset + offset, max_copy_blocks);
6615 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6616 		offset += max_copy_blocks;
6617 	}
6618 
6619 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6620 	CU_ASSERT_EQUAL(rc, 0);
6621 	CU_ASSERT(g_io_done == false);
6622 
6623 	while (num_children > 0) {
6624 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_COPY_REQS);
6625 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6626 		stub_complete_io(num_outstanding);
6627 		num_children -= num_outstanding;
6628 	}
6629 	CU_ASSERT(g_io_done == true);
6630 
6631 	/* Case 4: Same test scenario as the case 2 but the configuration is different.
6632 	 * Copy is not supported.
6633 	 */
6634 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false);
6635 
6636 	num_children = 2;
6637 	max_copy_blocks = spdk_bdev_get_max_copy(bdev);
6638 	num_blocks = max_copy_blocks * num_children;
6639 	src_offset = bdev->blockcnt - num_blocks;
6640 	offset = 0;
6641 
6642 	g_io_done = false;
6643 	for (i = 0; i < num_children; i++) {
6644 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, src_offset,
6645 						   max_copy_blocks, 0);
6646 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6647 		src_offset += max_copy_blocks;
6648 	}
6649 	for (i = 0; i < num_children; i++) {
6650 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset,
6651 						   max_copy_blocks, 0);
6652 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6653 		offset += max_copy_blocks;
6654 	}
6655 
6656 	src_offset = bdev->blockcnt - num_blocks;
6657 	offset = 0;
6658 
6659 	rc = spdk_bdev_copy_blocks(desc, ioch, offset, src_offset, num_blocks, io_done, NULL);
6660 	CU_ASSERT_EQUAL(rc, 0);
6661 	CU_ASSERT(g_io_done == false);
6662 
6663 	while (num_children > 0) {
6664 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_COPY_REQS);
6665 
6666 		/* One copy request is split into one read and one write requests. */
6667 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6668 		stub_complete_io(num_outstanding);
6669 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6670 		stub_complete_io(num_outstanding);
6671 
6672 		num_children -= num_outstanding;
6673 	}
6674 	CU_ASSERT(g_io_done == true);
6675 
6676 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true);
6677 
6678 	spdk_put_io_channel(ioch);
6679 	spdk_bdev_close(desc);
6680 	free_bdev(bdev);
6681 	ut_fini_bdev();
6682 }
6683 
6684 static void
6685 examine_claim_v1(struct spdk_bdev *bdev)
6686 {
6687 	int rc;
6688 
6689 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &vbdev_ut_if);
6690 	CU_ASSERT(rc == 0);
6691 }
6692 
6693 static void
6694 examine_no_lock_held(struct spdk_bdev *bdev)
6695 {
6696 	CU_ASSERT(!spdk_spin_held(&g_bdev_mgr.spinlock));
6697 	CU_ASSERT(!spdk_spin_held(&bdev->internal.spinlock));
6698 }
6699 
6700 struct examine_claim_v2_ctx {
6701 	struct ut_examine_ctx examine_ctx;
6702 	enum spdk_bdev_claim_type claim_type;
6703 	struct spdk_bdev_desc *desc;
6704 };
6705 
6706 static void
6707 examine_claim_v2(struct spdk_bdev *bdev)
6708 {
6709 	struct examine_claim_v2_ctx *ctx = bdev->ctxt;
6710 	int rc;
6711 
6712 	rc = spdk_bdev_open_ext(bdev->name, false, bdev_ut_event_cb, NULL, &ctx->desc);
6713 	CU_ASSERT(rc == 0);
6714 
6715 	rc = spdk_bdev_module_claim_bdev_desc(ctx->desc, ctx->claim_type, NULL, &vbdev_ut_if);
6716 	CU_ASSERT(rc == 0);
6717 }
6718 
6719 static void
6720 examine_locks(void)
6721 {
6722 	struct spdk_bdev *bdev;
6723 	struct ut_examine_ctx ctx = { 0 };
6724 	struct examine_claim_v2_ctx v2_ctx;
6725 
6726 	/* Without any claims, one code path is taken */
6727 	ctx.examine_config = examine_no_lock_held;
6728 	ctx.examine_disk = examine_no_lock_held;
6729 	bdev = allocate_bdev_ctx("bdev0", &ctx);
6730 	CU_ASSERT(ctx.examine_config_count == 1);
6731 	CU_ASSERT(ctx.examine_disk_count == 1);
6732 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6733 	CU_ASSERT(bdev->internal.claim.v1.module == NULL);
6734 	free_bdev(bdev);
6735 
6736 	/* Exercise another path that is taken when examine_config() takes a v1 claim. */
6737 	memset(&ctx, 0, sizeof(ctx));
6738 	ctx.examine_config = examine_claim_v1;
6739 	ctx.examine_disk = examine_no_lock_held;
6740 	bdev = allocate_bdev_ctx("bdev0", &ctx);
6741 	CU_ASSERT(ctx.examine_config_count == 1);
6742 	CU_ASSERT(ctx.examine_disk_count == 1);
6743 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
6744 	CU_ASSERT(bdev->internal.claim.v1.module == &vbdev_ut_if);
6745 	spdk_bdev_module_release_bdev(bdev);
6746 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6747 	CU_ASSERT(bdev->internal.claim.v1.module == NULL);
6748 	free_bdev(bdev);
6749 
6750 	/* Exercise the final path that comes with v2 claims. */
6751 	memset(&v2_ctx, 0, sizeof(v2_ctx));
6752 	v2_ctx.examine_ctx.examine_config = examine_claim_v2;
6753 	v2_ctx.examine_ctx.examine_disk = examine_no_lock_held;
6754 	v2_ctx.claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
6755 	bdev = allocate_bdev_ctx("bdev0", &v2_ctx);
6756 	CU_ASSERT(v2_ctx.examine_ctx.examine_config_count == 1);
6757 	CU_ASSERT(v2_ctx.examine_ctx.examine_disk_count == 1);
6758 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6759 	spdk_bdev_close(v2_ctx.desc);
6760 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6761 	free_bdev(bdev);
6762 }
6763 
6764 #define UT_ASSERT_CLAIM_V2_COUNT(bdev, expect) \
6765 	do { \
6766 		uint32_t len = 0; \
6767 		struct spdk_bdev_module_claim *claim; \
6768 		TAILQ_FOREACH(claim, &bdev->internal.claim.v2.claims, link) { \
6769 			len++; \
6770 		} \
6771 		CU_ASSERT(len == expect); \
6772 	} while (0)
6773 
6774 static void
6775 claim_v2_rwo(void)
6776 {
6777 	struct spdk_bdev *bdev;
6778 	struct spdk_bdev_desc *desc;
6779 	struct spdk_bdev_desc *desc2;
6780 	struct spdk_bdev_claim_opts opts;
6781 	int rc;
6782 
6783 	bdev = allocate_bdev("bdev0");
6784 
6785 	/* Claim without options */
6786 	desc = NULL;
6787 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6788 	CU_ASSERT(rc == 0);
6789 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6790 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6791 					      &bdev_ut_if);
6792 	CU_ASSERT(rc == 0);
6793 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6794 	CU_ASSERT(desc->claim != NULL);
6795 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6796 	CU_ASSERT(strcmp(desc->claim->name, "") == 0);
6797 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6798 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6799 
6800 	/* Release the claim by closing the descriptor */
6801 	spdk_bdev_close(desc);
6802 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6803 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6804 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6805 
6806 	/* Claim with options */
6807 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6808 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6809 	desc = NULL;
6810 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6811 	CU_ASSERT(rc == 0);
6812 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6813 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, &opts,
6814 					      &bdev_ut_if);
6815 	CU_ASSERT(rc == 0);
6816 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6817 	CU_ASSERT(desc->claim != NULL);
6818 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6819 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6820 	memset(&opts, 0, sizeof(opts));
6821 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6822 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6823 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6824 
6825 	/* The claim blocks new writers. */
6826 	desc2 = NULL;
6827 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6828 	CU_ASSERT(rc == -EPERM);
6829 	CU_ASSERT(desc2 == NULL);
6830 
6831 	/* New readers are allowed */
6832 	desc2 = NULL;
6833 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6834 	CU_ASSERT(rc == 0);
6835 	CU_ASSERT(desc2 != NULL);
6836 	CU_ASSERT(!desc2->write);
6837 
6838 	/* No new v2 RWO claims are allowed */
6839 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6840 					      &bdev_ut_if);
6841 	CU_ASSERT(rc == -EPERM);
6842 
6843 	/* No new v2 ROM claims are allowed */
6844 	CU_ASSERT(!desc2->write);
6845 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6846 					      &bdev_ut_if);
6847 	CU_ASSERT(rc == -EPERM);
6848 	CU_ASSERT(!desc2->write);
6849 
6850 	/* No new v2 RWM claims are allowed */
6851 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6852 	opts.shared_claim_key = (uint64_t)&opts;
6853 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6854 					      &bdev_ut_if);
6855 	CU_ASSERT(rc == -EPERM);
6856 	CU_ASSERT(!desc2->write);
6857 
6858 	/* No new v1 claims are allowed */
6859 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6860 	CU_ASSERT(rc == -EPERM);
6861 
6862 	/* None of the above changed the existing claim */
6863 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6864 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6865 
6866 	/* Closing the first descriptor now allows a new claim and it is promoted to rw. */
6867 	spdk_bdev_close(desc);
6868 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6869 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6870 	CU_ASSERT(!desc2->write);
6871 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6872 					      &bdev_ut_if);
6873 	CU_ASSERT(rc == 0);
6874 	CU_ASSERT(desc2->claim != NULL);
6875 	CU_ASSERT(desc2->write);
6876 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6877 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
6878 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6879 	spdk_bdev_close(desc2);
6880 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6881 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6882 
6883 	/* Cannot claim with a key */
6884 	desc = NULL;
6885 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6886 	CU_ASSERT(rc == 0);
6887 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6888 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6889 	opts.shared_claim_key = (uint64_t)&opts;
6890 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, &opts,
6891 					      &bdev_ut_if);
6892 	CU_ASSERT(rc == -EINVAL);
6893 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6894 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6895 	spdk_bdev_close(desc);
6896 
6897 	/* Clean up */
6898 	free_bdev(bdev);
6899 }
6900 
6901 static void
6902 claim_v2_rom(void)
6903 {
6904 	struct spdk_bdev *bdev;
6905 	struct spdk_bdev_desc *desc;
6906 	struct spdk_bdev_desc *desc2;
6907 	struct spdk_bdev_claim_opts opts;
6908 	int rc;
6909 
6910 	bdev = allocate_bdev("bdev0");
6911 
6912 	/* Claim without options */
6913 	desc = NULL;
6914 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6915 	CU_ASSERT(rc == 0);
6916 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6917 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6918 					      &bdev_ut_if);
6919 	CU_ASSERT(rc == 0);
6920 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6921 	CU_ASSERT(desc->claim != NULL);
6922 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6923 	CU_ASSERT(strcmp(desc->claim->name, "") == 0);
6924 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6925 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6926 
6927 	/* Release the claim by closing the descriptor */
6928 	spdk_bdev_close(desc);
6929 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6930 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6931 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6932 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6933 
6934 	/* Claim with options */
6935 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6936 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6937 	desc = NULL;
6938 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6939 	CU_ASSERT(rc == 0);
6940 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6941 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, &opts,
6942 					      &bdev_ut_if);
6943 	CU_ASSERT(rc == 0);
6944 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6945 	SPDK_CU_ASSERT_FATAL(desc->claim != NULL);
6946 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6947 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6948 	memset(&opts, 0, sizeof(opts));
6949 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6950 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6951 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6952 
6953 	/* The claim blocks new writers. */
6954 	desc2 = NULL;
6955 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6956 	CU_ASSERT(rc == -EPERM);
6957 	CU_ASSERT(desc2 == NULL);
6958 
6959 	/* New readers are allowed */
6960 	desc2 = NULL;
6961 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6962 	CU_ASSERT(rc == 0);
6963 	CU_ASSERT(desc2 != NULL);
6964 	CU_ASSERT(!desc2->write);
6965 
6966 	/* No new v2 RWO claims are allowed */
6967 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6968 					      &bdev_ut_if);
6969 	CU_ASSERT(rc == -EPERM);
6970 
6971 	/* No new v2 RWM claims are allowed */
6972 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6973 	opts.shared_claim_key = (uint64_t)&opts;
6974 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6975 					      &bdev_ut_if);
6976 	CU_ASSERT(rc == -EPERM);
6977 	CU_ASSERT(!desc2->write);
6978 
6979 	/* No new v1 claims are allowed */
6980 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6981 	CU_ASSERT(rc == -EPERM);
6982 
6983 	/* None of the above messed up the existing claim */
6984 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6985 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6986 
6987 	/* New v2 ROM claims are allowed and the descriptor stays read-only. */
6988 	CU_ASSERT(!desc2->write);
6989 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6990 					      &bdev_ut_if);
6991 	CU_ASSERT(rc == 0);
6992 	CU_ASSERT(!desc2->write);
6993 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6994 	CU_ASSERT(TAILQ_NEXT(desc->claim, link) == desc2->claim);
6995 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 2);
6996 
6997 	/* Claim remains when closing the first descriptor */
6998 	spdk_bdev_close(desc);
6999 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
7000 	CU_ASSERT(!TAILQ_EMPTY(&bdev->internal.open_descs));
7001 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
7002 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
7003 
7004 	/* Claim removed when closing the other descriptor */
7005 	spdk_bdev_close(desc2);
7006 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7007 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
7008 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
7009 
7010 	/* Cannot claim with a key */
7011 	desc = NULL;
7012 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
7013 	CU_ASSERT(rc == 0);
7014 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7015 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7016 	opts.shared_claim_key = (uint64_t)&opts;
7017 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, &opts,
7018 					      &bdev_ut_if);
7019 	CU_ASSERT(rc == -EINVAL);
7020 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7021 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
7022 	spdk_bdev_close(desc);
7023 
7024 	/* Cannot claim with a read-write descriptor */
7025 	desc = NULL;
7026 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
7027 	CU_ASSERT(rc == 0);
7028 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7029 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
7030 					      &bdev_ut_if);
7031 	CU_ASSERT(rc == -EINVAL);
7032 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7033 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
7034 	spdk_bdev_close(desc);
7035 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
7036 
7037 	/* Clean up */
7038 	free_bdev(bdev);
7039 }
7040 
7041 static void
7042 claim_v2_rwm(void)
7043 {
7044 	struct spdk_bdev *bdev;
7045 	struct spdk_bdev_desc *desc;
7046 	struct spdk_bdev_desc *desc2;
7047 	struct spdk_bdev_claim_opts opts;
7048 	char good_key, bad_key;
7049 	int rc;
7050 
7051 	bdev = allocate_bdev("bdev0");
7052 
7053 	/* Claim without options should fail */
7054 	desc = NULL;
7055 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
7056 	CU_ASSERT(rc == 0);
7057 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7058 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, NULL,
7059 					      &bdev_ut_if);
7060 	CU_ASSERT(rc == -EINVAL);
7061 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7062 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
7063 	CU_ASSERT(desc->claim == NULL);
7064 
7065 	/* Claim with options */
7066 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7067 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
7068 	opts.shared_claim_key = (uint64_t)&good_key;
7069 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
7070 					      &bdev_ut_if);
7071 	CU_ASSERT(rc == 0);
7072 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED);
7073 	SPDK_CU_ASSERT_FATAL(desc->claim != NULL);
7074 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
7075 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
7076 	memset(&opts, 0, sizeof(opts));
7077 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
7078 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
7079 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
7080 
7081 	/* The claim blocks new writers. */
7082 	desc2 = NULL;
7083 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
7084 	CU_ASSERT(rc == -EPERM);
7085 	CU_ASSERT(desc2 == NULL);
7086 
7087 	/* New readers are allowed */
7088 	desc2 = NULL;
7089 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
7090 	CU_ASSERT(rc == 0);
7091 	CU_ASSERT(desc2 != NULL);
7092 	CU_ASSERT(!desc2->write);
7093 
7094 	/* No new v2 RWO claims are allowed */
7095 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
7096 					      &bdev_ut_if);
7097 	CU_ASSERT(rc == -EPERM);
7098 
7099 	/* No new v2 ROM claims are allowed and the descriptor stays read-only. */
7100 	CU_ASSERT(!desc2->write);
7101 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
7102 					      &bdev_ut_if);
7103 	CU_ASSERT(rc == -EPERM);
7104 	CU_ASSERT(!desc2->write);
7105 
7106 	/* No new v1 claims are allowed */
7107 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
7108 	CU_ASSERT(rc == -EPERM);
7109 
7110 	/* No new v2 RWM claims are allowed if the key does not match */
7111 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7112 	opts.shared_claim_key = (uint64_t)&bad_key;
7113 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
7114 					      &bdev_ut_if);
7115 	CU_ASSERT(rc == -EPERM);
7116 	CU_ASSERT(!desc2->write);
7117 
7118 	/* None of the above messed up the existing claim */
7119 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
7120 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
7121 
7122 	/* New v2 RWM claims are allowed and the descriptor is promoted if the key matches. */
7123 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7124 	opts.shared_claim_key = (uint64_t)&good_key;
7125 	CU_ASSERT(!desc2->write);
7126 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
7127 					      &bdev_ut_if);
7128 	CU_ASSERT(rc == 0);
7129 	CU_ASSERT(desc2->write);
7130 	CU_ASSERT(TAILQ_NEXT(desc->claim, link) == desc2->claim);
7131 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 2);
7132 
7133 	/* Claim remains when closing the first descriptor */
7134 	spdk_bdev_close(desc);
7135 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED);
7136 	CU_ASSERT(!TAILQ_EMPTY(&bdev->internal.open_descs));
7137 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
7138 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
7139 
7140 	/* Claim removed when closing the other descriptor */
7141 	spdk_bdev_close(desc2);
7142 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7143 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
7144 
7145 	/* Cannot claim without a key */
7146 	desc = NULL;
7147 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
7148 	CU_ASSERT(rc == 0);
7149 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7150 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7151 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
7152 					      &bdev_ut_if);
7153 	CU_ASSERT(rc == -EINVAL);
7154 	spdk_bdev_close(desc);
7155 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7156 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
7157 
7158 	/* Clean up */
7159 	free_bdev(bdev);
7160 }
7161 
7162 static void
7163 claim_v2_existing_writer(void)
7164 {
7165 	struct spdk_bdev *bdev;
7166 	struct spdk_bdev_desc *desc;
7167 	struct spdk_bdev_desc *desc2;
7168 	struct spdk_bdev_claim_opts opts;
7169 	enum spdk_bdev_claim_type type;
7170 	enum spdk_bdev_claim_type types[] = {
7171 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
7172 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
7173 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
7174 	};
7175 	size_t i;
7176 	int rc;
7177 
7178 	bdev = allocate_bdev("bdev0");
7179 
7180 	desc = NULL;
7181 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
7182 	CU_ASSERT(rc == 0);
7183 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7184 	desc2 = NULL;
7185 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
7186 	CU_ASSERT(rc == 0);
7187 	SPDK_CU_ASSERT_FATAL(desc2 != NULL);
7188 
7189 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
7190 		type = types[i];
7191 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7192 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
7193 			opts.shared_claim_key = (uint64_t)&opts;
7194 		}
7195 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
7196 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE) {
7197 			CU_ASSERT(rc == -EINVAL);
7198 		} else {
7199 			CU_ASSERT(rc == -EPERM);
7200 		}
7201 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7202 		rc = spdk_bdev_module_claim_bdev_desc(desc2, type, &opts, &bdev_ut_if);
7203 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE) {
7204 			CU_ASSERT(rc == -EINVAL);
7205 		} else {
7206 			CU_ASSERT(rc == -EPERM);
7207 		}
7208 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7209 	}
7210 
7211 	spdk_bdev_close(desc);
7212 	spdk_bdev_close(desc2);
7213 
7214 	/* Clean up */
7215 	free_bdev(bdev);
7216 }
7217 
7218 static void
7219 claim_v2_existing_v1(void)
7220 {
7221 	struct spdk_bdev *bdev;
7222 	struct spdk_bdev_desc *desc;
7223 	struct spdk_bdev_claim_opts opts;
7224 	enum spdk_bdev_claim_type type;
7225 	enum spdk_bdev_claim_type types[] = {
7226 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
7227 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
7228 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
7229 	};
7230 	size_t i;
7231 	int rc;
7232 
7233 	bdev = allocate_bdev("bdev0");
7234 
7235 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
7236 	CU_ASSERT(rc == 0);
7237 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
7238 
7239 	desc = NULL;
7240 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
7241 	CU_ASSERT(rc == 0);
7242 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7243 
7244 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
7245 		type = types[i];
7246 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7247 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
7248 			opts.shared_claim_key = (uint64_t)&opts;
7249 		}
7250 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
7251 		CU_ASSERT(rc == -EPERM);
7252 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
7253 	}
7254 
7255 	spdk_bdev_module_release_bdev(bdev);
7256 	spdk_bdev_close(desc);
7257 
7258 	/* Clean up */
7259 	free_bdev(bdev);
7260 }
7261 
7262 static void
7263 claim_v1_existing_v2(void)
7264 {
7265 	struct spdk_bdev *bdev;
7266 	struct spdk_bdev_desc *desc;
7267 	struct spdk_bdev_claim_opts opts;
7268 	enum spdk_bdev_claim_type type;
7269 	enum spdk_bdev_claim_type types[] = {
7270 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
7271 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
7272 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
7273 	};
7274 	size_t i;
7275 	int rc;
7276 
7277 	bdev = allocate_bdev("bdev0");
7278 
7279 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
7280 		type = types[i];
7281 
7282 		desc = NULL;
7283 		rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
7284 		CU_ASSERT(rc == 0);
7285 		SPDK_CU_ASSERT_FATAL(desc != NULL);
7286 
7287 		/* Get a v2 claim */
7288 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7289 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
7290 			opts.shared_claim_key = (uint64_t)&opts;
7291 		}
7292 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
7293 		CU_ASSERT(rc == 0);
7294 
7295 		/* Fail to get a v1 claim */
7296 		rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
7297 		CU_ASSERT(rc == -EPERM);
7298 
7299 		spdk_bdev_close(desc);
7300 
7301 		/* Now v1 succeeds */
7302 		rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
7303 		CU_ASSERT(rc == 0)
7304 		spdk_bdev_module_release_bdev(bdev);
7305 	}
7306 
7307 	/* Clean up */
7308 	free_bdev(bdev);
7309 }
7310 
7311 static int ut_examine_claimed_init0(void);
7312 static int ut_examine_claimed_init1(void);
7313 static void ut_examine_claimed_config0(struct spdk_bdev *bdev);
7314 static void ut_examine_claimed_disk0(struct spdk_bdev *bdev);
7315 static void ut_examine_claimed_config1(struct spdk_bdev *bdev);
7316 static void ut_examine_claimed_disk1(struct spdk_bdev *bdev);
7317 
7318 #define UT_MAX_EXAMINE_MODS 2
7319 struct spdk_bdev_module examine_claimed_mods[UT_MAX_EXAMINE_MODS] = {
7320 	{
7321 		.name = "vbdev_ut_examine0",
7322 		.module_init = ut_examine_claimed_init0,
7323 		.module_fini = vbdev_ut_module_fini,
7324 		.examine_config = ut_examine_claimed_config0,
7325 		.examine_disk = ut_examine_claimed_disk0,
7326 	},
7327 	{
7328 		.name = "vbdev_ut_examine1",
7329 		.module_init = ut_examine_claimed_init1,
7330 		.module_fini = vbdev_ut_module_fini,
7331 		.examine_config = ut_examine_claimed_config1,
7332 		.examine_disk = ut_examine_claimed_disk1,
7333 	}
7334 };
7335 
7336 SPDK_BDEV_MODULE_REGISTER(bdev_ut_claimed0, &examine_claimed_mods[0])
7337 SPDK_BDEV_MODULE_REGISTER(bdev_ut_claimed1, &examine_claimed_mods[1])
7338 
7339 struct ut_examine_claimed_ctx {
7340 	uint32_t examine_config_count;
7341 	uint32_t examine_disk_count;
7342 
7343 	/* Claim type to take, with these options */
7344 	enum spdk_bdev_claim_type claim_type;
7345 	struct spdk_bdev_claim_opts claim_opts;
7346 
7347 	/* Expected return value from spdk_bdev_module_claim_bdev_desc() */
7348 	int expect_claim_err;
7349 
7350 	/* Descriptor used for a claim */
7351 	struct spdk_bdev_desc *desc;
7352 } examine_claimed_ctx[UT_MAX_EXAMINE_MODS];
7353 
7354 bool ut_testing_examine_claimed;
7355 
7356 /*
7357  * Store the order in which the modules were initialized,
7358  * since we have no guarantee on the order of execution of the constructors.
7359  * Modules are examined in reverse order of their initialization.
7360  */
7361 static int g_ut_examine_claimed_order[UT_MAX_EXAMINE_MODS];
7362 static int
7363 ut_examine_claimed_init(uint32_t modnum)
7364 {
7365 	static int current = UT_MAX_EXAMINE_MODS;
7366 
7367 	/* Only do this for the first initialization of the bdev framework */
7368 	if (current == 0) {
7369 		return 0;
7370 	}
7371 	g_ut_examine_claimed_order[modnum] = --current;
7372 
7373 	return 0;
7374 }
7375 
7376 static int
7377 ut_examine_claimed_init0(void)
7378 {
7379 	return ut_examine_claimed_init(0);
7380 }
7381 
7382 static int
7383 ut_examine_claimed_init1(void)
7384 {
7385 	return ut_examine_claimed_init(1);
7386 }
7387 
7388 static void
7389 reset_examine_claimed_ctx(void)
7390 {
7391 	struct ut_examine_claimed_ctx *ctx;
7392 	uint32_t i;
7393 
7394 	for (i = 0; i < SPDK_COUNTOF(examine_claimed_ctx); i++) {
7395 		ctx = &examine_claimed_ctx[i];
7396 		if (ctx->desc != NULL) {
7397 			spdk_bdev_close(ctx->desc);
7398 		}
7399 		memset(ctx, 0, sizeof(*ctx));
7400 		spdk_bdev_claim_opts_init(&ctx->claim_opts, sizeof(ctx->claim_opts));
7401 	}
7402 }
7403 
7404 static void
7405 examine_claimed_config(struct spdk_bdev *bdev, uint32_t modnum)
7406 {
7407 	SPDK_CU_ASSERT_FATAL(modnum < UT_MAX_EXAMINE_MODS);
7408 	struct spdk_bdev_module *module = &examine_claimed_mods[modnum];
7409 	struct ut_examine_claimed_ctx *ctx = &examine_claimed_ctx[modnum];
7410 	int rc;
7411 
7412 	if (!ut_testing_examine_claimed) {
7413 		spdk_bdev_module_examine_done(module);
7414 		return;
7415 	}
7416 
7417 	ctx->examine_config_count++;
7418 
7419 	if (ctx->claim_type != SPDK_BDEV_CLAIM_NONE) {
7420 		rc = spdk_bdev_open_ext(bdev->name, false, bdev_ut_event_cb, &ctx->claim_opts,
7421 					&ctx->desc);
7422 		CU_ASSERT(rc == 0);
7423 
7424 		rc = spdk_bdev_module_claim_bdev_desc(ctx->desc, ctx->claim_type, NULL, module);
7425 		CU_ASSERT(rc == ctx->expect_claim_err);
7426 	}
7427 	spdk_bdev_module_examine_done(module);
7428 }
7429 
7430 static void
7431 ut_examine_claimed_config0(struct spdk_bdev *bdev)
7432 {
7433 	examine_claimed_config(bdev, g_ut_examine_claimed_order[0]);
7434 }
7435 
7436 static void
7437 ut_examine_claimed_config1(struct spdk_bdev *bdev)
7438 {
7439 	examine_claimed_config(bdev, g_ut_examine_claimed_order[1]);
7440 }
7441 
7442 static void
7443 examine_claimed_disk(struct spdk_bdev *bdev, uint32_t modnum)
7444 {
7445 	SPDK_CU_ASSERT_FATAL(modnum < UT_MAX_EXAMINE_MODS);
7446 	struct spdk_bdev_module *module = &examine_claimed_mods[modnum];
7447 	struct ut_examine_claimed_ctx *ctx = &examine_claimed_ctx[modnum];
7448 
7449 	if (!ut_testing_examine_claimed) {
7450 		spdk_bdev_module_examine_done(module);
7451 		return;
7452 	}
7453 
7454 	ctx->examine_disk_count++;
7455 
7456 	spdk_bdev_module_examine_done(module);
7457 }
7458 
7459 static void
7460 ut_examine_claimed_disk0(struct spdk_bdev *bdev)
7461 {
7462 	examine_claimed_disk(bdev, 0);
7463 }
7464 
7465 static void
7466 ut_examine_claimed_disk1(struct spdk_bdev *bdev)
7467 {
7468 	examine_claimed_disk(bdev, 1);
7469 }
7470 
7471 static bool g_examine_done = false;
7472 
7473 static void
7474 ut_examine_done_cb(void *ctx)
7475 {
7476 	g_examine_done = true;
7477 }
7478 
7479 static void
7480 examine_claimed_common(bool autoexamine)
7481 {
7482 	struct spdk_bdev *bdev;
7483 	struct spdk_bdev_module *mod = examine_claimed_mods;
7484 	struct ut_examine_claimed_ctx *ctx = examine_claimed_ctx;
7485 	struct spdk_bdev_opts bdev_opts = {};
7486 	int rc;
7487 
7488 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
7489 	bdev_opts.bdev_auto_examine = autoexamine;
7490 	ut_init_bdev(&bdev_opts);
7491 
7492 	ut_testing_examine_claimed = true;
7493 	reset_examine_claimed_ctx();
7494 
7495 	/*
7496 	 * With one module claiming, both modules' examine_config should be called, but only the
7497 	 * claiming module's examine_disk should be called.
7498 	 */
7499 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7500 	g_examine_done = false;
7501 	bdev = allocate_bdev("bdev0");
7502 
7503 	if (!autoexamine) {
7504 		rc = spdk_bdev_examine("bdev0");
7505 		CU_ASSERT(rc == 0);
7506 		rc = spdk_bdev_wait_for_examine(ut_examine_done_cb, NULL);
7507 		CU_ASSERT(rc == 0);
7508 		CU_ASSERT(!g_examine_done);
7509 		poll_threads();
7510 		CU_ASSERT(g_examine_done);
7511 	}
7512 
7513 	CU_ASSERT(ctx[0].examine_config_count == 1);
7514 	CU_ASSERT(ctx[0].examine_disk_count == 1);
7515 	SPDK_CU_ASSERT_FATAL(ctx[0].desc != NULL);
7516 	CU_ASSERT(ctx[0].desc->claim->module == &mod[0]);
7517 	CU_ASSERT(ctx[1].examine_config_count == 1);
7518 	CU_ASSERT(ctx[1].examine_disk_count == 0);
7519 	CU_ASSERT(ctx[1].desc == NULL);
7520 	reset_examine_claimed_ctx();
7521 	free_bdev(bdev);
7522 
7523 	/*
7524 	 * With two modules claiming, both modules' examine_config and examine_disk should be
7525 	 * called.
7526 	 */
7527 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7528 	ctx[1].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7529 	g_examine_done = false;
7530 	bdev = allocate_bdev("bdev0");
7531 
7532 	if (!autoexamine) {
7533 		rc = spdk_bdev_examine("bdev0");
7534 		CU_ASSERT(rc == 0);
7535 		rc = spdk_bdev_wait_for_examine(ut_examine_done_cb, NULL);
7536 		CU_ASSERT(rc == 0);
7537 		CU_ASSERT(!g_examine_done);
7538 		poll_threads();
7539 		CU_ASSERT(g_examine_done);
7540 	}
7541 
7542 	CU_ASSERT(ctx[0].examine_config_count == 1);
7543 	CU_ASSERT(ctx[0].examine_disk_count == 1);
7544 	SPDK_CU_ASSERT_FATAL(ctx[0].desc != NULL);
7545 	CU_ASSERT(ctx[0].desc->claim->module == &mod[0]);
7546 	CU_ASSERT(ctx[1].examine_config_count == 1);
7547 	CU_ASSERT(ctx[1].examine_disk_count == 1);
7548 	SPDK_CU_ASSERT_FATAL(ctx[1].desc != NULL);
7549 	CU_ASSERT(ctx[1].desc->claim->module == &mod[1]);
7550 	reset_examine_claimed_ctx();
7551 	free_bdev(bdev);
7552 
7553 	/*
7554 	 * If two vbdev modules try to claim with conflicting claim types, the module that was added
7555 	 * last wins. The winner gets the claim and is the only one that has its examine_disk
7556 	 * callback invoked.
7557 	 */
7558 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7559 	ctx[0].expect_claim_err = -EPERM;
7560 	ctx[1].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE;
7561 	g_examine_done = false;
7562 	bdev = allocate_bdev("bdev0");
7563 
7564 	if (!autoexamine) {
7565 		rc = spdk_bdev_examine("bdev0");
7566 		CU_ASSERT(rc == 0);
7567 		rc = spdk_bdev_wait_for_examine(ut_examine_done_cb, NULL);
7568 		CU_ASSERT(rc == 0);
7569 		CU_ASSERT(!g_examine_done);
7570 		poll_threads();
7571 		CU_ASSERT(g_examine_done);
7572 	}
7573 
7574 	CU_ASSERT(ctx[0].examine_config_count == 1);
7575 	CU_ASSERT(ctx[0].examine_disk_count == 0);
7576 	CU_ASSERT(ctx[1].examine_config_count == 1);
7577 	CU_ASSERT(ctx[1].examine_disk_count == 1);
7578 	SPDK_CU_ASSERT_FATAL(ctx[1].desc != NULL);
7579 	CU_ASSERT(ctx[1].desc->claim->module == &mod[1]);
7580 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
7581 	reset_examine_claimed_ctx();
7582 	free_bdev(bdev);
7583 
7584 	ut_testing_examine_claimed = false;
7585 
7586 	ut_fini_bdev();
7587 }
7588 
7589 static void
7590 examine_claimed(void)
7591 {
7592 	examine_claimed_common(true);
7593 }
7594 
7595 static void
7596 examine_claimed_manual(void)
7597 {
7598 	examine_claimed_common(false);
7599 }
7600 
7601 static void
7602 get_numa_id(void)
7603 {
7604 	struct spdk_bdev bdev = {};
7605 
7606 	bdev.numa.id = 0;
7607 	bdev.numa.id_valid = 0;
7608 	CU_ASSERT(spdk_bdev_get_numa_id(&bdev) == SPDK_ENV_NUMA_ID_ANY);
7609 
7610 	bdev.numa.id_valid = 1;
7611 	CU_ASSERT(spdk_bdev_get_numa_id(&bdev) == 0);
7612 
7613 	bdev.numa.id = SPDK_ENV_NUMA_ID_ANY;
7614 	CU_ASSERT(spdk_bdev_get_numa_id(&bdev) == SPDK_ENV_NUMA_ID_ANY);
7615 }
7616 
7617 static void
7618 get_device_stat_with_reset_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg,
7619 			      int rc)
7620 {
7621 	*(bool *)cb_arg = true;
7622 }
7623 
7624 static void
7625 get_device_stat_with_given_reset(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat,
7626 				 enum spdk_bdev_reset_stat_mode mode)
7627 {
7628 	bool done = false;
7629 
7630 	spdk_bdev_get_device_stat(bdev, stat, mode, get_device_stat_with_reset_cb, &done);
7631 	while (!done) { poll_threads(); }
7632 }
7633 
7634 static void
7635 get_device_stat_with_reset(void)
7636 {
7637 	struct spdk_bdev *bdev;
7638 	struct spdk_bdev_desc *desc = NULL;
7639 	struct spdk_io_channel *io_ch;
7640 	struct spdk_bdev_opts bdev_opts = {};
7641 	struct spdk_bdev_io_stat *stat;
7642 
7643 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
7644 	bdev_opts.bdev_io_pool_size = 2;
7645 	bdev_opts.bdev_io_cache_size = 1;
7646 	ut_init_bdev(&bdev_opts);
7647 	bdev = allocate_bdev("bdev0");
7648 
7649 	CU_ASSERT(spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc) == 0);
7650 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7651 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
7652 	io_ch = spdk_bdev_get_io_channel(desc);
7653 	CU_ASSERT(io_ch != NULL);
7654 
7655 	g_io_done = false;
7656 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
7657 	spdk_delay_us(10);
7658 	stub_complete_io(1);
7659 	CU_ASSERT(g_io_done == true);
7660 
7661 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
7662 	SPDK_CU_ASSERT_FATAL(stat != NULL);
7663 
7664 	/* Get stat without resetting and check that it is correct  */
7665 	get_device_stat_with_given_reset(bdev, stat, SPDK_BDEV_RESET_STAT_NONE);
7666 	CU_ASSERT(stat->bytes_read == 4096);
7667 	CU_ASSERT(stat->max_read_latency_ticks == 10);
7668 
7669 	/**
7670 	 * Check that stat was not reseted after previous step,
7671 	 * send get request with resetting maxmin stats
7672 	 */
7673 	get_device_stat_with_given_reset(bdev, stat, SPDK_BDEV_RESET_STAT_MAXMIN);
7674 	CU_ASSERT(stat->bytes_read == 4096);
7675 	CU_ASSERT(stat->max_read_latency_ticks == 10);
7676 
7677 	/**
7678 	 * Check that maxmins stats are reseted after previous step,
7679 	 * send get request with resetting all stats
7680 	 */
7681 	get_device_stat_with_given_reset(bdev, stat, SPDK_BDEV_RESET_STAT_ALL);
7682 	CU_ASSERT(stat->bytes_read == 4096);
7683 	CU_ASSERT(stat->max_read_latency_ticks == 0);
7684 
7685 	/* Check that all stats are reseted after previous step */
7686 	get_device_stat_with_given_reset(bdev, stat, SPDK_BDEV_RESET_STAT_NONE);
7687 	CU_ASSERT(stat->bytes_read == 0);
7688 	CU_ASSERT(stat->max_read_latency_ticks == 0);
7689 
7690 	free(stat);
7691 	spdk_put_io_channel(io_ch);
7692 	spdk_bdev_close(desc);
7693 	free_bdev(bdev);
7694 	ut_fini_bdev();
7695 }
7696 
7697 static void
7698 open_ext_v2_test(void)
7699 {
7700 	struct spdk_bdev_open_opts opts;
7701 	struct spdk_bdev *bdev;
7702 	struct spdk_bdev_desc *desc;
7703 	int rc;
7704 
7705 	bdev = allocate_bdev("bdev0");
7706 
7707 	rc = spdk_bdev_open_ext_v2("bdev0", true, bdev_ut_event_cb, NULL, NULL, &desc);
7708 	CU_ASSERT(rc == 0);
7709 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7710 	CU_ASSERT(desc->write == true);
7711 	CU_ASSERT(desc->opts.hide_metadata == false);
7712 
7713 	spdk_bdev_close(desc);
7714 
7715 	spdk_bdev_open_opts_init(&opts, sizeof(opts));
7716 	opts.hide_metadata = true;
7717 
7718 	rc = spdk_bdev_open_ext_v2("bdev0", true, bdev_ut_event_cb, NULL, &opts, &desc);
7719 	CU_ASSERT(rc == 0);
7720 	CU_ASSERT(desc->write == true);
7721 	CU_ASSERT(desc->opts.hide_metadata == true);
7722 
7723 	spdk_bdev_close(desc);
7724 
7725 	free_bdev(bdev);
7726 }
7727 
7728 static void
7729 bdev_io_init_dif_ctx_test(void)
7730 {
7731 	struct spdk_bdev *bdev;
7732 	struct spdk_bdev_io bdev_io;
7733 	int rc;
7734 
7735 	bdev = allocate_bdev("bdev0");
7736 
7737 	/* This is invalid because md_len should be larger than PI size. */
7738 	bdev->dif_pi_format = SPDK_DIF_PI_FORMAT_32;
7739 	bdev->blocklen = 4096 + 8;
7740 	bdev->md_len = 8;
7741 	bdev->md_interleave = true;
7742 
7743 	bdev_io.bdev = bdev;
7744 
7745 	/* Check if initialization detects error. */
7746 	rc = bdev_io_init_dif_ctx(&bdev_io);
7747 	CU_ASSERT(rc != 0);
7748 
7749 	/* Increase md_len to pass initialization check. */
7750 	bdev->blocklen = 4096 + 16;
7751 	bdev->md_len = 16;
7752 
7753 	rc = bdev_io_init_dif_ctx(&bdev_io);
7754 	CU_ASSERT(rc == 0);
7755 
7756 	free_bdev(bdev);
7757 }
7758 
7759 int
7760 main(int argc, char **argv)
7761 {
7762 	CU_pSuite		suite = NULL;
7763 	unsigned int		num_failures;
7764 
7765 	CU_initialize_registry();
7766 
7767 	suite = CU_add_suite("bdev", ut_bdev_setup, ut_bdev_teardown);
7768 
7769 	CU_ADD_TEST(suite, bytes_to_blocks_test);
7770 	CU_ADD_TEST(suite, num_blocks_test);
7771 	CU_ADD_TEST(suite, io_valid_test);
7772 	CU_ADD_TEST(suite, open_write_test);
7773 	CU_ADD_TEST(suite, claim_test);
7774 	CU_ADD_TEST(suite, alias_add_del_test);
7775 	CU_ADD_TEST(suite, get_device_stat_test);
7776 	CU_ADD_TEST(suite, bdev_io_types_test);
7777 	CU_ADD_TEST(suite, bdev_io_wait_test);
7778 	CU_ADD_TEST(suite, bdev_io_spans_split_test);
7779 	CU_ADD_TEST(suite, bdev_io_boundary_split_test);
7780 	CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test);
7781 	CU_ADD_TEST(suite, bdev_io_mix_split_test);
7782 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
7783 	CU_ADD_TEST(suite, bdev_io_write_unit_split_test);
7784 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
7785 	CU_ADD_TEST(suite, bdev_io_alignment);
7786 	CU_ADD_TEST(suite, bdev_histograms);
7787 	CU_ADD_TEST(suite, bdev_write_zeroes);
7788 	CU_ADD_TEST(suite, bdev_compare_and_write);
7789 	CU_ADD_TEST(suite, bdev_compare);
7790 	CU_ADD_TEST(suite, bdev_compare_emulated);
7791 	CU_ADD_TEST(suite, bdev_zcopy_write);
7792 	CU_ADD_TEST(suite, bdev_zcopy_read);
7793 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
7794 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
7795 	CU_ADD_TEST(suite, bdev_open_ext_test);
7796 	CU_ADD_TEST(suite, bdev_open_ext_unregister);
7797 	CU_ADD_TEST(suite, bdev_set_io_timeout);
7798 	CU_ADD_TEST(suite, bdev_set_qd_sampling);
7799 	CU_ADD_TEST(suite, lba_range_overlap);
7800 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
7801 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
7802 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
7803 	CU_ADD_TEST(suite, bdev_quiesce);
7804 	CU_ADD_TEST(suite, bdev_io_abort);
7805 	CU_ADD_TEST(suite, bdev_unmap);
7806 	CU_ADD_TEST(suite, bdev_write_zeroes_split_test);
7807 	CU_ADD_TEST(suite, bdev_set_options_test);
7808 	CU_ADD_TEST(suite, bdev_get_memory_domains);
7809 	CU_ADD_TEST(suite, bdev_io_ext);
7810 	CU_ADD_TEST(suite, bdev_io_ext_no_opts);
7811 	CU_ADD_TEST(suite, bdev_io_ext_invalid_opts);
7812 	CU_ADD_TEST(suite, bdev_io_ext_split);
7813 	CU_ADD_TEST(suite, bdev_io_ext_bounce_buffer);
7814 	CU_ADD_TEST(suite, bdev_register_uuid_alias);
7815 	CU_ADD_TEST(suite, bdev_unregister_by_name);
7816 	CU_ADD_TEST(suite, for_each_bdev_test);
7817 	CU_ADD_TEST(suite, bdev_seek_test);
7818 	CU_ADD_TEST(suite, bdev_copy);
7819 	CU_ADD_TEST(suite, bdev_copy_split_test);
7820 	CU_ADD_TEST(suite, examine_locks);
7821 	CU_ADD_TEST(suite, claim_v2_rwo);
7822 	CU_ADD_TEST(suite, claim_v2_rom);
7823 	CU_ADD_TEST(suite, claim_v2_rwm);
7824 	CU_ADD_TEST(suite, claim_v2_existing_writer);
7825 	CU_ADD_TEST(suite, claim_v2_existing_v1);
7826 	CU_ADD_TEST(suite, claim_v1_existing_v2);
7827 	CU_ADD_TEST(suite, examine_claimed);
7828 	CU_ADD_TEST(suite, examine_claimed_manual);
7829 	CU_ADD_TEST(suite, get_numa_id);
7830 	CU_ADD_TEST(suite, get_device_stat_with_reset);
7831 	CU_ADD_TEST(suite, open_ext_v2_test);
7832 	CU_ADD_TEST(suite, bdev_io_init_dif_ctx_test);
7833 
7834 	allocate_cores(1);
7835 	allocate_threads(1);
7836 	set_thread(0);
7837 
7838 	num_failures = spdk_ut_run_tests(argc, argv, NULL);
7839 	CU_cleanup_registry();
7840 
7841 	free_threads();
7842 	free_cores();
7843 
7844 	return num_failures;
7845 }
7846