xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision aaba5d9c9e8fca9925d5812030ff3ec9ba869fa3)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2017 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk_cunit.h"
8 
9 #include "common/lib/ut_multithread.c"
10 #include "unit/lib/json_mock.c"
11 
12 #include "spdk/config.h"
13 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
14 #undef SPDK_CONFIG_VTUNE
15 
16 #include "bdev/bdev.c"
17 
18 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
19 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
20 DEFINE_STUB(spdk_memory_domain_get_dma_device_id, const char *, (struct spdk_memory_domain *domain),
21 	    "test_domain");
22 DEFINE_STUB(spdk_memory_domain_get_dma_device_type, enum spdk_dma_device_type,
23 	    (struct spdk_memory_domain *domain), 0);
24 DEFINE_STUB(spdk_accel_sequence_finish, int,
25 	    (struct spdk_accel_sequence *seq, spdk_accel_completion_cb cb_fn, void *cb_arg), 0);
26 DEFINE_STUB_V(spdk_accel_sequence_abort, (struct spdk_accel_sequence *seq));
27 DEFINE_STUB_V(spdk_accel_sequence_reverse, (struct spdk_accel_sequence *seq));
28 DEFINE_STUB(spdk_accel_append_copy, int,
29 	    (struct spdk_accel_sequence **seq, struct spdk_io_channel *ch, struct iovec *dst_iovs,
30 	     uint32_t dst_iovcnt, struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
31 	     struct iovec *src_iovs, uint32_t src_iovcnt, struct spdk_memory_domain *src_domain,
32 	     void *src_domain_ctx, int flags, spdk_accel_step_cb cb_fn, void *cb_arg), 0);
33 DEFINE_STUB(spdk_accel_get_memory_domain, struct spdk_memory_domain *, (void), NULL);
34 
35 static bool g_memory_domain_pull_data_called;
36 static bool g_memory_domain_push_data_called;
37 static int g_accel_io_device;
38 
39 DEFINE_RETURN_MOCK(spdk_memory_domain_pull_data, int);
40 int
41 spdk_memory_domain_pull_data(struct spdk_memory_domain *src_domain, void *src_domain_ctx,
42 			     struct iovec *src_iov, uint32_t src_iov_cnt, struct iovec *dst_iov, uint32_t dst_iov_cnt,
43 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
44 {
45 	g_memory_domain_pull_data_called = true;
46 	HANDLE_RETURN_MOCK(spdk_memory_domain_pull_data);
47 	cpl_cb(cpl_cb_arg, 0);
48 	return 0;
49 }
50 
51 DEFINE_RETURN_MOCK(spdk_memory_domain_push_data, int);
52 int
53 spdk_memory_domain_push_data(struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
54 			     struct iovec *dst_iov, uint32_t dst_iovcnt, struct iovec *src_iov, uint32_t src_iovcnt,
55 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
56 {
57 	g_memory_domain_push_data_called = true;
58 	HANDLE_RETURN_MOCK(spdk_memory_domain_push_data);
59 	cpl_cb(cpl_cb_arg, 0);
60 	return 0;
61 }
62 
63 struct spdk_io_channel *
64 spdk_accel_get_io_channel(void)
65 {
66 	return spdk_get_io_channel(&g_accel_io_device);
67 }
68 
69 int g_status;
70 int g_count;
71 enum spdk_bdev_event_type g_event_type1;
72 enum spdk_bdev_event_type g_event_type2;
73 enum spdk_bdev_event_type g_event_type3;
74 enum spdk_bdev_event_type g_event_type4;
75 struct spdk_histogram_data *g_histogram;
76 void *g_unregister_arg;
77 int g_unregister_rc;
78 
79 void
80 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
81 			 int *sc, int *sk, int *asc, int *ascq)
82 {
83 }
84 
85 static int
86 ut_accel_ch_create_cb(void *io_device, void *ctx)
87 {
88 	return 0;
89 }
90 
91 static void
92 ut_accel_ch_destroy_cb(void *io_device, void *ctx)
93 {
94 }
95 
96 static int
97 ut_bdev_setup(void)
98 {
99 	spdk_io_device_register(&g_accel_io_device, ut_accel_ch_create_cb,
100 				ut_accel_ch_destroy_cb, 0, NULL);
101 	return 0;
102 }
103 
104 static int
105 ut_bdev_teardown(void)
106 {
107 	spdk_io_device_unregister(&g_accel_io_device, NULL);
108 
109 	return 0;
110 }
111 
112 static int
113 stub_destruct(void *ctx)
114 {
115 	return 0;
116 }
117 
118 struct ut_expected_io {
119 	uint8_t				type;
120 	uint64_t			offset;
121 	uint64_t			src_offset;
122 	uint64_t			length;
123 	int				iovcnt;
124 	struct iovec			iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
125 	void				*md_buf;
126 	TAILQ_ENTRY(ut_expected_io)	link;
127 };
128 
129 struct bdev_ut_channel {
130 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
131 	uint32_t			outstanding_io_count;
132 	TAILQ_HEAD(, ut_expected_io)	expected_io;
133 };
134 
135 static bool g_io_done;
136 static struct spdk_bdev_io *g_bdev_io;
137 static enum spdk_bdev_io_status g_io_status;
138 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
139 static uint32_t g_bdev_ut_io_device;
140 static struct bdev_ut_channel *g_bdev_ut_channel;
141 static void *g_compare_read_buf;
142 static uint32_t g_compare_read_buf_len;
143 static void *g_compare_write_buf;
144 static uint32_t g_compare_write_buf_len;
145 static void *g_compare_md_buf;
146 static bool g_abort_done;
147 static enum spdk_bdev_io_status g_abort_status;
148 static void *g_zcopy_read_buf;
149 static uint32_t g_zcopy_read_buf_len;
150 static void *g_zcopy_write_buf;
151 static uint32_t g_zcopy_write_buf_len;
152 static struct spdk_bdev_io *g_zcopy_bdev_io;
153 static uint64_t g_seek_data_offset;
154 static uint64_t g_seek_hole_offset;
155 static uint64_t g_seek_offset;
156 
157 static struct ut_expected_io *
158 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
159 {
160 	struct ut_expected_io *expected_io;
161 
162 	expected_io = calloc(1, sizeof(*expected_io));
163 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
164 
165 	expected_io->type = type;
166 	expected_io->offset = offset;
167 	expected_io->length = length;
168 	expected_io->iovcnt = iovcnt;
169 
170 	return expected_io;
171 }
172 
173 static struct ut_expected_io *
174 ut_alloc_expected_copy_io(uint8_t type, uint64_t offset, uint64_t src_offset, uint64_t length)
175 {
176 	struct ut_expected_io *expected_io;
177 
178 	expected_io = calloc(1, sizeof(*expected_io));
179 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
180 
181 	expected_io->type = type;
182 	expected_io->offset = offset;
183 	expected_io->src_offset = src_offset;
184 	expected_io->length = length;
185 
186 	return expected_io;
187 }
188 
189 static void
190 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
191 {
192 	expected_io->iov[pos].iov_base = base;
193 	expected_io->iov[pos].iov_len = len;
194 }
195 
196 static void
197 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
198 {
199 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
200 	struct ut_expected_io *expected_io;
201 	struct iovec *iov, *expected_iov;
202 	struct spdk_bdev_io *bio_to_abort;
203 	int i;
204 
205 	g_bdev_io = bdev_io;
206 
207 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
208 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
209 
210 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
211 		CU_ASSERT(g_compare_read_buf_len == len);
212 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
213 		if (bdev_io->bdev->md_len && bdev_io->u.bdev.md_buf && g_compare_md_buf) {
214 			memcpy(bdev_io->u.bdev.md_buf, g_compare_md_buf,
215 			       bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks);
216 		}
217 	}
218 
219 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
220 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
221 
222 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
223 		CU_ASSERT(g_compare_write_buf_len == len);
224 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
225 	}
226 
227 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
228 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
229 
230 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
231 		CU_ASSERT(g_compare_read_buf_len == len);
232 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
233 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
234 		}
235 		if (bdev_io->u.bdev.md_buf &&
236 		    memcmp(bdev_io->u.bdev.md_buf, g_compare_md_buf,
237 			   bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks)) {
238 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
239 		}
240 	}
241 
242 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
243 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
244 			TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
245 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
246 					TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
247 					ch->outstanding_io_count--;
248 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
249 					break;
250 				}
251 			}
252 		}
253 	}
254 
255 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) {
256 		if (bdev_io->u.bdev.zcopy.start) {
257 			g_zcopy_bdev_io = bdev_io;
258 			if (bdev_io->u.bdev.zcopy.populate) {
259 				/* Start of a read */
260 				CU_ASSERT(g_zcopy_read_buf != NULL);
261 				CU_ASSERT(g_zcopy_read_buf_len > 0);
262 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_read_buf;
263 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_read_buf_len;
264 				bdev_io->u.bdev.iovcnt = 1;
265 			} else {
266 				/* Start of a write */
267 				CU_ASSERT(g_zcopy_write_buf != NULL);
268 				CU_ASSERT(g_zcopy_write_buf_len > 0);
269 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_write_buf;
270 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_write_buf_len;
271 				bdev_io->u.bdev.iovcnt = 1;
272 			}
273 		} else {
274 			if (bdev_io->u.bdev.zcopy.commit) {
275 				/* End of write */
276 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_write_buf);
277 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_write_buf_len);
278 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
279 				g_zcopy_write_buf = NULL;
280 				g_zcopy_write_buf_len = 0;
281 			} else {
282 				/* End of read */
283 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_read_buf);
284 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_read_buf_len);
285 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
286 				g_zcopy_read_buf = NULL;
287 				g_zcopy_read_buf_len = 0;
288 			}
289 		}
290 	}
291 
292 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_DATA) {
293 		bdev_io->u.bdev.seek.offset = g_seek_data_offset;
294 	}
295 
296 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_HOLE) {
297 		bdev_io->u.bdev.seek.offset = g_seek_hole_offset;
298 	}
299 
300 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
301 	ch->outstanding_io_count++;
302 
303 	expected_io = TAILQ_FIRST(&ch->expected_io);
304 	if (expected_io == NULL) {
305 		return;
306 	}
307 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
308 
309 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
310 		CU_ASSERT(bdev_io->type == expected_io->type);
311 	}
312 
313 	if (expected_io->md_buf != NULL) {
314 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
315 	}
316 
317 	if (expected_io->length == 0) {
318 		free(expected_io);
319 		return;
320 	}
321 
322 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
323 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
324 	if (expected_io->type == SPDK_BDEV_IO_TYPE_COPY) {
325 		CU_ASSERT(expected_io->src_offset == bdev_io->u.bdev.copy.src_offset_blocks);
326 	}
327 
328 	if (expected_io->iovcnt == 0) {
329 		free(expected_io);
330 		/* UNMAP, WRITE_ZEROES, FLUSH and COPY don't have iovs, so we can just return now. */
331 		return;
332 	}
333 
334 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
335 	for (i = 0; i < expected_io->iovcnt; i++) {
336 		expected_iov = &expected_io->iov[i];
337 		if (bdev_io->internal.orig_iovcnt == 0) {
338 			iov = &bdev_io->u.bdev.iovs[i];
339 		} else {
340 			iov = bdev_io->internal.orig_iovs;
341 		}
342 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
343 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
344 	}
345 
346 	free(expected_io);
347 }
348 
349 static void
350 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
351 			       struct spdk_bdev_io *bdev_io, bool success)
352 {
353 	CU_ASSERT(success == true);
354 
355 	stub_submit_request(_ch, bdev_io);
356 }
357 
358 static void
359 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
360 {
361 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
362 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
363 }
364 
365 static uint32_t
366 stub_complete_io(uint32_t num_to_complete)
367 {
368 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
369 	struct spdk_bdev_io *bdev_io;
370 	static enum spdk_bdev_io_status io_status;
371 	uint32_t num_completed = 0;
372 
373 	while (num_completed < num_to_complete) {
374 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
375 			break;
376 		}
377 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
378 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
379 		ch->outstanding_io_count--;
380 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
381 			    g_io_exp_status;
382 		spdk_bdev_io_complete(bdev_io, io_status);
383 		num_completed++;
384 	}
385 
386 	return num_completed;
387 }
388 
389 static struct spdk_io_channel *
390 bdev_ut_get_io_channel(void *ctx)
391 {
392 	return spdk_get_io_channel(&g_bdev_ut_io_device);
393 }
394 
395 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
396 	[SPDK_BDEV_IO_TYPE_READ]		= true,
397 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
398 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
399 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
400 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
401 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
402 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
403 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
404 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
405 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
406 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
407 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
408 	[SPDK_BDEV_IO_TYPE_SEEK_HOLE]		= true,
409 	[SPDK_BDEV_IO_TYPE_SEEK_DATA]		= true,
410 	[SPDK_BDEV_IO_TYPE_COPY]		= true,
411 };
412 
413 static void
414 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
415 {
416 	g_io_types_supported[io_type] = enable;
417 }
418 
419 static bool
420 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
421 {
422 	return g_io_types_supported[io_type];
423 }
424 
425 static struct spdk_bdev_fn_table fn_table = {
426 	.destruct = stub_destruct,
427 	.submit_request = stub_submit_request,
428 	.get_io_channel = bdev_ut_get_io_channel,
429 	.io_type_supported = stub_io_type_supported,
430 };
431 
432 static int
433 bdev_ut_create_ch(void *io_device, void *ctx_buf)
434 {
435 	struct bdev_ut_channel *ch = ctx_buf;
436 
437 	CU_ASSERT(g_bdev_ut_channel == NULL);
438 	g_bdev_ut_channel = ch;
439 
440 	TAILQ_INIT(&ch->outstanding_io);
441 	ch->outstanding_io_count = 0;
442 	TAILQ_INIT(&ch->expected_io);
443 	return 0;
444 }
445 
446 static void
447 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
448 {
449 	CU_ASSERT(g_bdev_ut_channel != NULL);
450 	g_bdev_ut_channel = NULL;
451 }
452 
453 struct spdk_bdev_module bdev_ut_if;
454 
455 static int
456 bdev_ut_module_init(void)
457 {
458 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
459 				sizeof(struct bdev_ut_channel), NULL);
460 	spdk_bdev_module_init_done(&bdev_ut_if);
461 	return 0;
462 }
463 
464 static void
465 bdev_ut_module_fini(void)
466 {
467 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
468 }
469 
470 struct spdk_bdev_module bdev_ut_if = {
471 	.name = "bdev_ut",
472 	.module_init = bdev_ut_module_init,
473 	.module_fini = bdev_ut_module_fini,
474 	.async_init = true,
475 };
476 
477 static void vbdev_ut_examine_config(struct spdk_bdev *bdev);
478 static void vbdev_ut_examine_disk(struct spdk_bdev *bdev);
479 
480 static int
481 vbdev_ut_module_init(void)
482 {
483 	return 0;
484 }
485 
486 static void
487 vbdev_ut_module_fini(void)
488 {
489 }
490 
491 struct spdk_bdev_module vbdev_ut_if = {
492 	.name = "vbdev_ut",
493 	.module_init = vbdev_ut_module_init,
494 	.module_fini = vbdev_ut_module_fini,
495 	.examine_config = vbdev_ut_examine_config,
496 	.examine_disk = vbdev_ut_examine_disk,
497 };
498 
499 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
500 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
501 
502 struct ut_examine_ctx {
503 	void (*examine_config)(struct spdk_bdev *bdev);
504 	void (*examine_disk)(struct spdk_bdev *bdev);
505 	uint32_t examine_config_count;
506 	uint32_t examine_disk_count;
507 };
508 
509 static void
510 vbdev_ut_examine_config(struct spdk_bdev *bdev)
511 {
512 	struct ut_examine_ctx *ctx = bdev->ctxt;
513 
514 	if (ctx != NULL) {
515 		ctx->examine_config_count++;
516 		if (ctx->examine_config != NULL) {
517 			ctx->examine_config(bdev);
518 		}
519 	}
520 
521 	spdk_bdev_module_examine_done(&vbdev_ut_if);
522 }
523 
524 static void
525 vbdev_ut_examine_disk(struct spdk_bdev *bdev)
526 {
527 	struct ut_examine_ctx *ctx = bdev->ctxt;
528 
529 	if (ctx != NULL) {
530 		ctx->examine_disk_count++;
531 		if (ctx->examine_disk != NULL) {
532 			ctx->examine_disk(bdev);
533 		}
534 	}
535 
536 	spdk_bdev_module_examine_done(&vbdev_ut_if);
537 }
538 
539 static struct spdk_bdev *
540 allocate_bdev_ctx(char *name, void *ctx)
541 {
542 	struct spdk_bdev *bdev;
543 	int rc;
544 
545 	bdev = calloc(1, sizeof(*bdev));
546 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
547 
548 	bdev->ctxt = ctx;
549 	bdev->name = name;
550 	bdev->fn_table = &fn_table;
551 	bdev->module = &bdev_ut_if;
552 	bdev->blockcnt = 1024;
553 	bdev->blocklen = 512;
554 
555 	spdk_uuid_generate(&bdev->uuid);
556 
557 	rc = spdk_bdev_register(bdev);
558 	poll_threads();
559 	CU_ASSERT(rc == 0);
560 
561 	return bdev;
562 }
563 
564 static struct spdk_bdev *
565 allocate_bdev(char *name)
566 {
567 	return allocate_bdev_ctx(name, NULL);
568 }
569 
570 static struct spdk_bdev *
571 allocate_vbdev(char *name)
572 {
573 	struct spdk_bdev *bdev;
574 	int rc;
575 
576 	bdev = calloc(1, sizeof(*bdev));
577 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
578 
579 	bdev->name = name;
580 	bdev->fn_table = &fn_table;
581 	bdev->module = &vbdev_ut_if;
582 
583 	rc = spdk_bdev_register(bdev);
584 	poll_threads();
585 	CU_ASSERT(rc == 0);
586 
587 	return bdev;
588 }
589 
590 static void
591 free_bdev(struct spdk_bdev *bdev)
592 {
593 	spdk_bdev_unregister(bdev, NULL, NULL);
594 	poll_threads();
595 	memset(bdev, 0xFF, sizeof(*bdev));
596 	free(bdev);
597 }
598 
599 static void
600 free_vbdev(struct spdk_bdev *bdev)
601 {
602 	spdk_bdev_unregister(bdev, NULL, NULL);
603 	poll_threads();
604 	memset(bdev, 0xFF, sizeof(*bdev));
605 	free(bdev);
606 }
607 
608 static void
609 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
610 {
611 	const char *bdev_name;
612 
613 	CU_ASSERT(bdev != NULL);
614 	CU_ASSERT(rc == 0);
615 	bdev_name = spdk_bdev_get_name(bdev);
616 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
617 
618 	free(stat);
619 
620 	*(bool *)cb_arg = true;
621 }
622 
623 static void
624 bdev_unregister_cb(void *cb_arg, int rc)
625 {
626 	g_unregister_arg = cb_arg;
627 	g_unregister_rc = rc;
628 }
629 
630 static void
631 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
632 {
633 }
634 
635 static void
636 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
637 {
638 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
639 
640 	g_event_type1 = type;
641 	if (SPDK_BDEV_EVENT_REMOVE == type) {
642 		spdk_bdev_close(desc);
643 	}
644 }
645 
646 static void
647 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
648 {
649 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
650 
651 	g_event_type2 = type;
652 	if (SPDK_BDEV_EVENT_REMOVE == type) {
653 		spdk_bdev_close(desc);
654 	}
655 }
656 
657 static void
658 bdev_open_cb3(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
659 {
660 	g_event_type3 = type;
661 }
662 
663 static void
664 bdev_open_cb4(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
665 {
666 	g_event_type4 = type;
667 }
668 
669 static void
670 bdev_seek_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
671 {
672 	g_seek_offset = spdk_bdev_io_get_seek_offset(bdev_io);
673 	spdk_bdev_free_io(bdev_io);
674 }
675 
676 static void
677 get_device_stat_test(void)
678 {
679 	struct spdk_bdev *bdev;
680 	struct spdk_bdev_io_stat *stat;
681 	bool done;
682 
683 	bdev = allocate_bdev("bdev0");
684 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
685 	if (stat == NULL) {
686 		free_bdev(bdev);
687 		return;
688 	}
689 
690 	done = false;
691 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
692 	while (!done) { poll_threads(); }
693 
694 	free_bdev(bdev);
695 }
696 
697 static void
698 open_write_test(void)
699 {
700 	struct spdk_bdev *bdev[9];
701 	struct spdk_bdev_desc *desc[9] = {};
702 	int rc;
703 
704 	/*
705 	 * Create a tree of bdevs to test various open w/ write cases.
706 	 *
707 	 * bdev0 through bdev3 are physical block devices, such as NVMe
708 	 * namespaces or Ceph block devices.
709 	 *
710 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
711 	 * caching or RAID use cases.
712 	 *
713 	 * bdev5 through bdev7 are all virtual bdevs with the same base
714 	 * bdev (except bdev7). This models partitioning or logical volume
715 	 * use cases.
716 	 *
717 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
718 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
719 	 * models caching, RAID, partitioning or logical volumes use cases.
720 	 *
721 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
722 	 * base bdevs are themselves virtual bdevs.
723 	 *
724 	 *                bdev8
725 	 *                  |
726 	 *            +----------+
727 	 *            |          |
728 	 *          bdev4      bdev5   bdev6   bdev7
729 	 *            |          |       |       |
730 	 *        +---+---+      +---+   +   +---+---+
731 	 *        |       |           \  |  /         \
732 	 *      bdev0   bdev1          bdev2         bdev3
733 	 */
734 
735 	bdev[0] = allocate_bdev("bdev0");
736 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
737 	CU_ASSERT(rc == 0);
738 
739 	bdev[1] = allocate_bdev("bdev1");
740 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
741 	CU_ASSERT(rc == 0);
742 
743 	bdev[2] = allocate_bdev("bdev2");
744 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
745 	CU_ASSERT(rc == 0);
746 
747 	bdev[3] = allocate_bdev("bdev3");
748 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
749 	CU_ASSERT(rc == 0);
750 
751 	bdev[4] = allocate_vbdev("bdev4");
752 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
753 	CU_ASSERT(rc == 0);
754 
755 	bdev[5] = allocate_vbdev("bdev5");
756 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
757 	CU_ASSERT(rc == 0);
758 
759 	bdev[6] = allocate_vbdev("bdev6");
760 
761 	bdev[7] = allocate_vbdev("bdev7");
762 
763 	bdev[8] = allocate_vbdev("bdev8");
764 
765 	/* Open bdev0 read-only.  This should succeed. */
766 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
767 	CU_ASSERT(rc == 0);
768 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
769 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
770 	spdk_bdev_close(desc[0]);
771 
772 	/*
773 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
774 	 * by a vbdev module.
775 	 */
776 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
777 	CU_ASSERT(rc == -EPERM);
778 
779 	/*
780 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
781 	 * by a vbdev module.
782 	 */
783 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
784 	CU_ASSERT(rc == -EPERM);
785 
786 	/* Open bdev4 read-only.  This should succeed. */
787 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
788 	CU_ASSERT(rc == 0);
789 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
790 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
791 	spdk_bdev_close(desc[4]);
792 
793 	/*
794 	 * Open bdev8 read/write.  This should succeed since it is a leaf
795 	 * bdev.
796 	 */
797 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
798 	CU_ASSERT(rc == 0);
799 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
800 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
801 	spdk_bdev_close(desc[8]);
802 
803 	/*
804 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
805 	 * by a vbdev module.
806 	 */
807 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
808 	CU_ASSERT(rc == -EPERM);
809 
810 	/* Open bdev4 read-only.  This should succeed. */
811 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
812 	CU_ASSERT(rc == 0);
813 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
814 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
815 	spdk_bdev_close(desc[5]);
816 
817 	free_vbdev(bdev[8]);
818 
819 	free_vbdev(bdev[5]);
820 	free_vbdev(bdev[6]);
821 	free_vbdev(bdev[7]);
822 
823 	free_vbdev(bdev[4]);
824 
825 	free_bdev(bdev[0]);
826 	free_bdev(bdev[1]);
827 	free_bdev(bdev[2]);
828 	free_bdev(bdev[3]);
829 }
830 
831 static void
832 claim_test(void)
833 {
834 	struct spdk_bdev *bdev;
835 	struct spdk_bdev_desc *desc, *open_desc;
836 	int rc;
837 	uint32_t count;
838 
839 	/*
840 	 * A vbdev that uses a read-only bdev may need it to remain read-only.
841 	 * To do so, it opens the bdev read-only, then claims it without
842 	 * passing a spdk_bdev_desc.
843 	 */
844 	bdev = allocate_bdev("bdev0");
845 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
846 	CU_ASSERT(rc == 0);
847 	CU_ASSERT(desc->write == false);
848 
849 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
850 	CU_ASSERT(rc == 0);
851 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
852 	CU_ASSERT(bdev->internal.claim.v1.module == &bdev_ut_if);
853 
854 	/* There should be only one open descriptor and it should still be ro */
855 	count = 0;
856 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
857 		CU_ASSERT(open_desc == desc);
858 		CU_ASSERT(!open_desc->write);
859 		count++;
860 	}
861 	CU_ASSERT(count == 1);
862 
863 	/* A read-only bdev is upgraded to read-write if desc is passed. */
864 	spdk_bdev_module_release_bdev(bdev);
865 	rc = spdk_bdev_module_claim_bdev(bdev, desc, &bdev_ut_if);
866 	CU_ASSERT(rc == 0);
867 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
868 	CU_ASSERT(bdev->internal.claim.v1.module == &bdev_ut_if);
869 
870 	/* There should be only one open descriptor and it should be rw */
871 	count = 0;
872 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
873 		CU_ASSERT(open_desc == desc);
874 		CU_ASSERT(open_desc->write);
875 		count++;
876 	}
877 	CU_ASSERT(count == 1);
878 
879 	spdk_bdev_close(desc);
880 	free_bdev(bdev);
881 }
882 
883 static void
884 bytes_to_blocks_test(void)
885 {
886 	struct spdk_bdev bdev;
887 	uint64_t offset_blocks, num_blocks;
888 
889 	memset(&bdev, 0, sizeof(bdev));
890 
891 	bdev.blocklen = 512;
892 
893 	/* All parameters valid */
894 	offset_blocks = 0;
895 	num_blocks = 0;
896 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
897 	CU_ASSERT(offset_blocks == 1);
898 	CU_ASSERT(num_blocks == 2);
899 
900 	/* Offset not a block multiple */
901 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
902 
903 	/* Length not a block multiple */
904 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
905 
906 	/* In case blocklen not the power of two */
907 	bdev.blocklen = 100;
908 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
909 	CU_ASSERT(offset_blocks == 1);
910 	CU_ASSERT(num_blocks == 2);
911 
912 	/* Offset not a block multiple */
913 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
914 
915 	/* Length not a block multiple */
916 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
917 }
918 
919 static void
920 num_blocks_test(void)
921 {
922 	struct spdk_bdev bdev;
923 	struct spdk_bdev_desc *desc = NULL;
924 	int rc;
925 
926 	memset(&bdev, 0, sizeof(bdev));
927 	bdev.name = "num_blocks";
928 	bdev.fn_table = &fn_table;
929 	bdev.module = &bdev_ut_if;
930 	spdk_bdev_register(&bdev);
931 	poll_threads();
932 	spdk_bdev_notify_blockcnt_change(&bdev, 50);
933 
934 	/* Growing block number */
935 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
936 	/* Shrinking block number */
937 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
938 
939 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc, &desc);
940 	CU_ASSERT(rc == 0);
941 	SPDK_CU_ASSERT_FATAL(desc != NULL);
942 	CU_ASSERT(&bdev == spdk_bdev_desc_get_bdev(desc));
943 
944 	/* Growing block number */
945 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
946 	/* Shrinking block number */
947 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
948 
949 	g_event_type1 = 0xFF;
950 	/* Growing block number */
951 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
952 
953 	poll_threads();
954 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
955 
956 	g_event_type1 = 0xFF;
957 	/* Growing block number and closing */
958 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
959 
960 	spdk_bdev_close(desc);
961 	spdk_bdev_unregister(&bdev, NULL, NULL);
962 
963 	poll_threads();
964 
965 	/* Callback is not called for closed device */
966 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
967 }
968 
969 static void
970 io_valid_test(void)
971 {
972 	struct spdk_bdev bdev;
973 
974 	memset(&bdev, 0, sizeof(bdev));
975 
976 	bdev.blocklen = 512;
977 	spdk_spin_init(&bdev.internal.spinlock);
978 
979 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
980 
981 	/* All parameters valid */
982 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
983 
984 	/* Last valid block */
985 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
986 
987 	/* Offset past end of bdev */
988 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
989 
990 	/* Offset + length past end of bdev */
991 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
992 
993 	/* Offset near end of uint64_t range (2^64 - 1) */
994 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
995 
996 	spdk_spin_destroy(&bdev.internal.spinlock);
997 }
998 
999 static void
1000 alias_add_del_test(void)
1001 {
1002 	struct spdk_bdev *bdev[3];
1003 	int rc;
1004 
1005 	/* Creating and registering bdevs */
1006 	bdev[0] = allocate_bdev("bdev0");
1007 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
1008 
1009 	bdev[1] = allocate_bdev("bdev1");
1010 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
1011 
1012 	bdev[2] = allocate_bdev("bdev2");
1013 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
1014 
1015 	poll_threads();
1016 
1017 	/*
1018 	 * Trying adding an alias identical to name.
1019 	 * Alias is identical to name, so it can not be added to aliases list
1020 	 */
1021 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
1022 	CU_ASSERT(rc == -EEXIST);
1023 
1024 	/*
1025 	 * Trying to add empty alias,
1026 	 * this one should fail
1027 	 */
1028 	rc = spdk_bdev_alias_add(bdev[0], NULL);
1029 	CU_ASSERT(rc == -EINVAL);
1030 
1031 	/* Trying adding same alias to two different registered bdevs */
1032 
1033 	/* Alias is used first time, so this one should pass */
1034 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
1035 	CU_ASSERT(rc == 0);
1036 
1037 	/* Alias was added to another bdev, so this one should fail */
1038 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
1039 	CU_ASSERT(rc == -EEXIST);
1040 
1041 	/* Alias is used first time, so this one should pass */
1042 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
1043 	CU_ASSERT(rc == 0);
1044 
1045 	/* Trying removing an alias from registered bdevs */
1046 
1047 	/* Alias is not on a bdev aliases list, so this one should fail */
1048 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
1049 	CU_ASSERT(rc == -ENOENT);
1050 
1051 	/* Alias is present on a bdev aliases list, so this one should pass */
1052 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
1053 	CU_ASSERT(rc == 0);
1054 
1055 	/* Alias is present on a bdev aliases list, so this one should pass */
1056 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
1057 	CU_ASSERT(rc == 0);
1058 
1059 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
1060 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
1061 	CU_ASSERT(rc != 0);
1062 
1063 	/* Trying to del all alias from empty alias list */
1064 	spdk_bdev_alias_del_all(bdev[2]);
1065 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
1066 
1067 	/* Trying to del all alias from non-empty alias list */
1068 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
1069 	CU_ASSERT(rc == 0);
1070 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
1071 	CU_ASSERT(rc == 0);
1072 	spdk_bdev_alias_del_all(bdev[2]);
1073 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
1074 
1075 	/* Unregister and free bdevs */
1076 	spdk_bdev_unregister(bdev[0], NULL, NULL);
1077 	spdk_bdev_unregister(bdev[1], NULL, NULL);
1078 	spdk_bdev_unregister(bdev[2], NULL, NULL);
1079 
1080 	poll_threads();
1081 
1082 	free(bdev[0]);
1083 	free(bdev[1]);
1084 	free(bdev[2]);
1085 }
1086 
1087 static void
1088 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
1089 {
1090 	g_io_done = true;
1091 	g_io_status = bdev_io->internal.status;
1092 	if ((bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) &&
1093 	    (bdev_io->u.bdev.zcopy.start)) {
1094 		g_zcopy_bdev_io = bdev_io;
1095 	} else {
1096 		spdk_bdev_free_io(bdev_io);
1097 		g_zcopy_bdev_io = NULL;
1098 	}
1099 }
1100 
1101 static void
1102 bdev_init_cb(void *arg, int rc)
1103 {
1104 	CU_ASSERT(rc == 0);
1105 }
1106 
1107 static void
1108 bdev_fini_cb(void *arg)
1109 {
1110 }
1111 
1112 static void
1113 ut_init_bdev(struct spdk_bdev_opts *opts)
1114 {
1115 	int rc;
1116 
1117 	if (opts != NULL) {
1118 		rc = spdk_bdev_set_opts(opts);
1119 		CU_ASSERT(rc == 0);
1120 	}
1121 	rc = spdk_iobuf_initialize();
1122 	CU_ASSERT(rc == 0);
1123 	spdk_bdev_initialize(bdev_init_cb, NULL);
1124 	poll_threads();
1125 }
1126 
1127 static void
1128 ut_fini_bdev(void)
1129 {
1130 	spdk_bdev_finish(bdev_fini_cb, NULL);
1131 	spdk_iobuf_finish(bdev_fini_cb, NULL);
1132 	poll_threads();
1133 }
1134 
1135 struct bdev_ut_io_wait_entry {
1136 	struct spdk_bdev_io_wait_entry	entry;
1137 	struct spdk_io_channel		*io_ch;
1138 	struct spdk_bdev_desc		*desc;
1139 	bool				submitted;
1140 };
1141 
1142 static void
1143 io_wait_cb(void *arg)
1144 {
1145 	struct bdev_ut_io_wait_entry *entry = arg;
1146 	int rc;
1147 
1148 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
1149 	CU_ASSERT(rc == 0);
1150 	entry->submitted = true;
1151 }
1152 
1153 static void
1154 bdev_io_types_test(void)
1155 {
1156 	struct spdk_bdev *bdev;
1157 	struct spdk_bdev_desc *desc = NULL;
1158 	struct spdk_io_channel *io_ch;
1159 	struct spdk_bdev_opts bdev_opts = {};
1160 	int rc;
1161 
1162 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1163 	bdev_opts.bdev_io_pool_size = 4;
1164 	bdev_opts.bdev_io_cache_size = 2;
1165 	ut_init_bdev(&bdev_opts);
1166 
1167 	bdev = allocate_bdev("bdev0");
1168 
1169 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1170 	CU_ASSERT(rc == 0);
1171 	poll_threads();
1172 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1173 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1174 	io_ch = spdk_bdev_get_io_channel(desc);
1175 	CU_ASSERT(io_ch != NULL);
1176 
1177 	/* WRITE and WRITE ZEROES are not supported */
1178 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
1179 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
1180 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
1181 	CU_ASSERT(rc == -ENOTSUP);
1182 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
1183 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
1184 
1185 	/* NVME_IO, NVME_IO_MD and NVME_ADMIN are not supported */
1186 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, false);
1187 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, false);
1188 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, false);
1189 	rc = spdk_bdev_nvme_io_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1190 	CU_ASSERT(rc == -ENOTSUP);
1191 	rc = spdk_bdev_nvme_io_passthru_md(desc, io_ch, NULL, NULL, 0, NULL, 0, NULL, NULL);
1192 	CU_ASSERT(rc == -ENOTSUP);
1193 	rc = spdk_bdev_nvme_admin_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1194 	CU_ASSERT(rc == -ENOTSUP);
1195 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, true);
1196 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, true);
1197 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, true);
1198 
1199 	spdk_put_io_channel(io_ch);
1200 	spdk_bdev_close(desc);
1201 	free_bdev(bdev);
1202 	ut_fini_bdev();
1203 }
1204 
1205 static void
1206 bdev_io_wait_test(void)
1207 {
1208 	struct spdk_bdev *bdev;
1209 	struct spdk_bdev_desc *desc = NULL;
1210 	struct spdk_io_channel *io_ch;
1211 	struct spdk_bdev_opts bdev_opts = {};
1212 	struct bdev_ut_io_wait_entry io_wait_entry;
1213 	struct bdev_ut_io_wait_entry io_wait_entry2;
1214 	int rc;
1215 
1216 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1217 	bdev_opts.bdev_io_pool_size = 4;
1218 	bdev_opts.bdev_io_cache_size = 2;
1219 	ut_init_bdev(&bdev_opts);
1220 
1221 	bdev = allocate_bdev("bdev0");
1222 
1223 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1224 	CU_ASSERT(rc == 0);
1225 	poll_threads();
1226 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1227 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1228 	io_ch = spdk_bdev_get_io_channel(desc);
1229 	CU_ASSERT(io_ch != NULL);
1230 
1231 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1232 	CU_ASSERT(rc == 0);
1233 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1234 	CU_ASSERT(rc == 0);
1235 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1236 	CU_ASSERT(rc == 0);
1237 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1238 	CU_ASSERT(rc == 0);
1239 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1240 
1241 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1242 	CU_ASSERT(rc == -ENOMEM);
1243 
1244 	io_wait_entry.entry.bdev = bdev;
1245 	io_wait_entry.entry.cb_fn = io_wait_cb;
1246 	io_wait_entry.entry.cb_arg = &io_wait_entry;
1247 	io_wait_entry.io_ch = io_ch;
1248 	io_wait_entry.desc = desc;
1249 	io_wait_entry.submitted = false;
1250 	/* Cannot use the same io_wait_entry for two different calls. */
1251 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
1252 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
1253 
1254 	/* Queue two I/O waits. */
1255 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
1256 	CU_ASSERT(rc == 0);
1257 	CU_ASSERT(io_wait_entry.submitted == false);
1258 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
1259 	CU_ASSERT(rc == 0);
1260 	CU_ASSERT(io_wait_entry2.submitted == false);
1261 
1262 	stub_complete_io(1);
1263 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1264 	CU_ASSERT(io_wait_entry.submitted == true);
1265 	CU_ASSERT(io_wait_entry2.submitted == false);
1266 
1267 	stub_complete_io(1);
1268 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1269 	CU_ASSERT(io_wait_entry2.submitted == true);
1270 
1271 	stub_complete_io(4);
1272 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1273 
1274 	spdk_put_io_channel(io_ch);
1275 	spdk_bdev_close(desc);
1276 	free_bdev(bdev);
1277 	ut_fini_bdev();
1278 }
1279 
1280 static void
1281 bdev_io_spans_split_test(void)
1282 {
1283 	struct spdk_bdev bdev;
1284 	struct spdk_bdev_io bdev_io;
1285 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
1286 
1287 	memset(&bdev, 0, sizeof(bdev));
1288 	bdev_io.u.bdev.iovs = iov;
1289 
1290 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1291 	bdev.optimal_io_boundary = 0;
1292 	bdev.max_segment_size = 0;
1293 	bdev.max_num_segments = 0;
1294 	bdev_io.bdev = &bdev;
1295 
1296 	/* bdev has no optimal_io_boundary and max_size set - so this should return false. */
1297 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1298 
1299 	bdev.split_on_optimal_io_boundary = true;
1300 	bdev.optimal_io_boundary = 32;
1301 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1302 
1303 	/* RESETs are not based on LBAs - so this should return false. */
1304 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1305 
1306 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1307 	bdev_io.u.bdev.offset_blocks = 0;
1308 	bdev_io.u.bdev.num_blocks = 32;
1309 
1310 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1311 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1312 
1313 	bdev_io.u.bdev.num_blocks = 33;
1314 
1315 	/* This I/O spans a boundary. */
1316 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1317 
1318 	bdev_io.u.bdev.num_blocks = 32;
1319 	bdev.max_segment_size = 512 * 32;
1320 	bdev.max_num_segments = 1;
1321 	bdev_io.u.bdev.iovcnt = 1;
1322 	iov[0].iov_len = 512;
1323 
1324 	/* Does not cross and exceed max_size or max_segs */
1325 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1326 
1327 	bdev.split_on_optimal_io_boundary = false;
1328 	bdev.max_segment_size = 512;
1329 	bdev.max_num_segments = 1;
1330 	bdev_io.u.bdev.iovcnt = 2;
1331 
1332 	/* Exceed max_segs */
1333 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1334 
1335 	bdev.max_num_segments = 2;
1336 	iov[0].iov_len = 513;
1337 	iov[1].iov_len = 512;
1338 
1339 	/* Exceed max_sizes */
1340 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1341 
1342 	bdev.max_segment_size = 0;
1343 	bdev.write_unit_size = 32;
1344 	bdev.split_on_write_unit = true;
1345 	bdev_io.type = SPDK_BDEV_IO_TYPE_WRITE;
1346 
1347 	/* This I/O is one write unit */
1348 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1349 
1350 	bdev_io.u.bdev.num_blocks = 32 * 2;
1351 
1352 	/* This I/O is more than one write unit */
1353 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1354 
1355 	bdev_io.u.bdev.offset_blocks = 1;
1356 	bdev_io.u.bdev.num_blocks = 32;
1357 
1358 	/* This I/O is not aligned to write unit size */
1359 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1360 }
1361 
1362 static void
1363 bdev_io_boundary_split_test(void)
1364 {
1365 	struct spdk_bdev *bdev;
1366 	struct spdk_bdev_desc *desc = NULL;
1367 	struct spdk_io_channel *io_ch;
1368 	struct spdk_bdev_opts bdev_opts = {};
1369 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
1370 	struct ut_expected_io *expected_io;
1371 	void *md_buf = (void *)0xFF000000;
1372 	uint64_t i;
1373 	int rc;
1374 
1375 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1376 	bdev_opts.bdev_io_pool_size = 512;
1377 	bdev_opts.bdev_io_cache_size = 64;
1378 	ut_init_bdev(&bdev_opts);
1379 
1380 	bdev = allocate_bdev("bdev0");
1381 
1382 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1383 	CU_ASSERT(rc == 0);
1384 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1385 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1386 	io_ch = spdk_bdev_get_io_channel(desc);
1387 	CU_ASSERT(io_ch != NULL);
1388 
1389 	bdev->optimal_io_boundary = 16;
1390 	bdev->split_on_optimal_io_boundary = false;
1391 
1392 	g_io_done = false;
1393 
1394 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1395 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1396 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1397 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1398 
1399 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1400 	CU_ASSERT(rc == 0);
1401 	CU_ASSERT(g_io_done == false);
1402 
1403 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1404 	stub_complete_io(1);
1405 	CU_ASSERT(g_io_done == true);
1406 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1407 
1408 	bdev->split_on_optimal_io_boundary = true;
1409 	bdev->md_interleave = false;
1410 	bdev->md_len = 8;
1411 
1412 	/* Now test that a single-vector command is split correctly.
1413 	 * Offset 14, length 8, payload 0xF000
1414 	 *  Child - Offset 14, length 2, payload 0xF000
1415 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1416 	 *
1417 	 * Set up the expected values before calling spdk_bdev_read_blocks
1418 	 */
1419 	g_io_done = false;
1420 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1421 	expected_io->md_buf = md_buf;
1422 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1423 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1424 
1425 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1426 	expected_io->md_buf = md_buf + 2 * 8;
1427 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1428 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1429 
1430 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1431 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1432 					   14, 8, io_done, NULL);
1433 	CU_ASSERT(rc == 0);
1434 	CU_ASSERT(g_io_done == false);
1435 
1436 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1437 	stub_complete_io(2);
1438 	CU_ASSERT(g_io_done == true);
1439 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1440 
1441 	/* Now set up a more complex, multi-vector command that needs to be split,
1442 	 *  including splitting iovecs.
1443 	 */
1444 	iov[0].iov_base = (void *)0x10000;
1445 	iov[0].iov_len = 512;
1446 	iov[1].iov_base = (void *)0x20000;
1447 	iov[1].iov_len = 20 * 512;
1448 	iov[2].iov_base = (void *)0x30000;
1449 	iov[2].iov_len = 11 * 512;
1450 
1451 	g_io_done = false;
1452 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1453 	expected_io->md_buf = md_buf;
1454 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1455 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1456 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1457 
1458 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1459 	expected_io->md_buf = md_buf + 2 * 8;
1460 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1461 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1462 
1463 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1464 	expected_io->md_buf = md_buf + 18 * 8;
1465 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1466 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1467 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1468 
1469 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1470 					     14, 32, io_done, NULL);
1471 	CU_ASSERT(rc == 0);
1472 	CU_ASSERT(g_io_done == false);
1473 
1474 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1475 	stub_complete_io(3);
1476 	CU_ASSERT(g_io_done == true);
1477 
1478 	/* Test multi vector command that needs to be split by strip and then needs to be
1479 	 * split further due to the capacity of child iovs.
1480 	 */
1481 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1482 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1483 		iov[i].iov_len = 512;
1484 	}
1485 
1486 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1487 	g_io_done = false;
1488 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
1489 					   SPDK_BDEV_IO_NUM_CHILD_IOV);
1490 	expected_io->md_buf = md_buf;
1491 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1492 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1493 	}
1494 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1495 
1496 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1497 					   SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
1498 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1499 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1500 		ut_expected_io_set_iov(expected_io, i,
1501 				       (void *)((i + 1 + SPDK_BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1502 	}
1503 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1504 
1505 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1506 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1507 	CU_ASSERT(rc == 0);
1508 	CU_ASSERT(g_io_done == false);
1509 
1510 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1511 	stub_complete_io(1);
1512 	CU_ASSERT(g_io_done == false);
1513 
1514 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1515 	stub_complete_io(1);
1516 	CU_ASSERT(g_io_done == true);
1517 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1518 
1519 	/* Test multi vector command that needs to be split by strip and then needs to be
1520 	 * split further due to the capacity of child iovs. In this case, the length of
1521 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1522 	 */
1523 
1524 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1525 	 * is SPDK_BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1526 	 */
1527 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1528 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1529 		iov[i].iov_len = 512;
1530 	}
1531 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1532 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1533 		iov[i].iov_len = 256;
1534 	}
1535 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1536 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1537 
1538 	/* Add an extra iovec to trigger split */
1539 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1540 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1541 
1542 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1543 	g_io_done = false;
1544 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1545 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV);
1546 	expected_io->md_buf = md_buf;
1547 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1548 		ut_expected_io_set_iov(expected_io, i,
1549 				       (void *)((i + 1) * 0x10000), 512);
1550 	}
1551 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1552 		ut_expected_io_set_iov(expected_io, i,
1553 				       (void *)((i + 1) * 0x10000), 256);
1554 	}
1555 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1556 
1557 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1558 					   1, 1);
1559 	expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1560 	ut_expected_io_set_iov(expected_io, 0,
1561 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1562 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1563 
1564 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1565 					   1, 1);
1566 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1567 	ut_expected_io_set_iov(expected_io, 0,
1568 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1569 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1570 
1571 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1572 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1573 	CU_ASSERT(rc == 0);
1574 	CU_ASSERT(g_io_done == false);
1575 
1576 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1577 	stub_complete_io(1);
1578 	CU_ASSERT(g_io_done == false);
1579 
1580 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1581 	stub_complete_io(2);
1582 	CU_ASSERT(g_io_done == true);
1583 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1584 
1585 	/* Test multi vector command that needs to be split by strip and then needs to be
1586 	 * split further due to the capacity of child iovs, the child request offset should
1587 	 * be rewind to last aligned offset and go success without error.
1588 	 */
1589 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1590 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1591 		iov[i].iov_len = 512;
1592 	}
1593 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
1594 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1595 
1596 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1597 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1598 
1599 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1600 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1601 
1602 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1603 	g_io_done = false;
1604 	g_io_status = 0;
1605 	/* The first expected io should be start from offset 0 to SPDK_BDEV_IO_NUM_CHILD_IOV - 1 */
1606 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1607 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
1608 	expected_io->md_buf = md_buf;
1609 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1610 		ut_expected_io_set_iov(expected_io, i,
1611 				       (void *)((i + 1) * 0x10000), 512);
1612 	}
1613 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1614 	/* The second expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV - 1 to SPDK_BDEV_IO_NUM_CHILD_IOV */
1615 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1616 					   1, 2);
1617 	expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1618 	ut_expected_io_set_iov(expected_io, 0,
1619 			       (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1620 	ut_expected_io_set_iov(expected_io, 1,
1621 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1622 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1623 	/* The third expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV to SPDK_BDEV_IO_NUM_CHILD_IOV + 1 */
1624 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1625 					   1, 1);
1626 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1627 	ut_expected_io_set_iov(expected_io, 0,
1628 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1629 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1630 
1631 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1632 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1633 	CU_ASSERT(rc == 0);
1634 	CU_ASSERT(g_io_done == false);
1635 
1636 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1637 	stub_complete_io(1);
1638 	CU_ASSERT(g_io_done == false);
1639 
1640 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1641 	stub_complete_io(2);
1642 	CU_ASSERT(g_io_done == true);
1643 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1644 
1645 	/* Test multi vector command that needs to be split due to the IO boundary and
1646 	 * the capacity of child iovs. Especially test the case when the command is
1647 	 * split due to the capacity of child iovs, the tail address is not aligned with
1648 	 * block size and is rewinded to the aligned address.
1649 	 *
1650 	 * The iovecs used in read request is complex but is based on the data
1651 	 * collected in the real issue. We change the base addresses but keep the lengths
1652 	 * not to loose the credibility of the test.
1653 	 */
1654 	bdev->optimal_io_boundary = 128;
1655 	g_io_done = false;
1656 	g_io_status = 0;
1657 
1658 	for (i = 0; i < 31; i++) {
1659 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1660 		iov[i].iov_len = 1024;
1661 	}
1662 	iov[31].iov_base = (void *)0xFEED1F00000;
1663 	iov[31].iov_len = 32768;
1664 	iov[32].iov_base = (void *)0xFEED2000000;
1665 	iov[32].iov_len = 160;
1666 	iov[33].iov_base = (void *)0xFEED2100000;
1667 	iov[33].iov_len = 4096;
1668 	iov[34].iov_base = (void *)0xFEED2200000;
1669 	iov[34].iov_len = 4096;
1670 	iov[35].iov_base = (void *)0xFEED2300000;
1671 	iov[35].iov_len = 4096;
1672 	iov[36].iov_base = (void *)0xFEED2400000;
1673 	iov[36].iov_len = 4096;
1674 	iov[37].iov_base = (void *)0xFEED2500000;
1675 	iov[37].iov_len = 4096;
1676 	iov[38].iov_base = (void *)0xFEED2600000;
1677 	iov[38].iov_len = 4096;
1678 	iov[39].iov_base = (void *)0xFEED2700000;
1679 	iov[39].iov_len = 4096;
1680 	iov[40].iov_base = (void *)0xFEED2800000;
1681 	iov[40].iov_len = 4096;
1682 	iov[41].iov_base = (void *)0xFEED2900000;
1683 	iov[41].iov_len = 4096;
1684 	iov[42].iov_base = (void *)0xFEED2A00000;
1685 	iov[42].iov_len = 4096;
1686 	iov[43].iov_base = (void *)0xFEED2B00000;
1687 	iov[43].iov_len = 12288;
1688 	iov[44].iov_base = (void *)0xFEED2C00000;
1689 	iov[44].iov_len = 8192;
1690 	iov[45].iov_base = (void *)0xFEED2F00000;
1691 	iov[45].iov_len = 4096;
1692 	iov[46].iov_base = (void *)0xFEED3000000;
1693 	iov[46].iov_len = 4096;
1694 	iov[47].iov_base = (void *)0xFEED3100000;
1695 	iov[47].iov_len = 4096;
1696 	iov[48].iov_base = (void *)0xFEED3200000;
1697 	iov[48].iov_len = 24576;
1698 	iov[49].iov_base = (void *)0xFEED3300000;
1699 	iov[49].iov_len = 16384;
1700 	iov[50].iov_base = (void *)0xFEED3400000;
1701 	iov[50].iov_len = 12288;
1702 	iov[51].iov_base = (void *)0xFEED3500000;
1703 	iov[51].iov_len = 4096;
1704 	iov[52].iov_base = (void *)0xFEED3600000;
1705 	iov[52].iov_len = 4096;
1706 	iov[53].iov_base = (void *)0xFEED3700000;
1707 	iov[53].iov_len = 4096;
1708 	iov[54].iov_base = (void *)0xFEED3800000;
1709 	iov[54].iov_len = 28672;
1710 	iov[55].iov_base = (void *)0xFEED3900000;
1711 	iov[55].iov_len = 20480;
1712 	iov[56].iov_base = (void *)0xFEED3A00000;
1713 	iov[56].iov_len = 4096;
1714 	iov[57].iov_base = (void *)0xFEED3B00000;
1715 	iov[57].iov_len = 12288;
1716 	iov[58].iov_base = (void *)0xFEED3C00000;
1717 	iov[58].iov_len = 4096;
1718 	iov[59].iov_base = (void *)0xFEED3D00000;
1719 	iov[59].iov_len = 4096;
1720 	iov[60].iov_base = (void *)0xFEED3E00000;
1721 	iov[60].iov_len = 352;
1722 
1723 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1724 	 * of child iovs,
1725 	 */
1726 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1727 	expected_io->md_buf = md_buf;
1728 	for (i = 0; i < 32; i++) {
1729 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1730 	}
1731 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1732 
1733 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1734 	 * split by the IO boundary requirement.
1735 	 */
1736 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1737 	expected_io->md_buf = md_buf + 126 * 8;
1738 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1739 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1740 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1741 
1742 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1743 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1744 	 */
1745 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1746 	expected_io->md_buf = md_buf + 128 * 8;
1747 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1748 			       iov[33].iov_len - 864);
1749 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1750 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1751 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1752 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1753 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1754 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1755 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1756 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1757 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1758 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1759 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1760 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1761 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1762 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1763 
1764 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1765 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1766 	 */
1767 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1768 	expected_io->md_buf = md_buf + 256 * 8;
1769 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1770 			       iov[46].iov_len - 864);
1771 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1772 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1773 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1774 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1775 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1776 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1777 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1778 
1779 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1780 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1781 	 */
1782 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1783 	expected_io->md_buf = md_buf + 384 * 8;
1784 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1785 			       iov[52].iov_len - 864);
1786 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1787 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1788 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1789 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1790 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1791 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1792 
1793 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1794 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1795 	 */
1796 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1797 	expected_io->md_buf = md_buf + 512 * 8;
1798 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1799 			       iov[57].iov_len - 4960);
1800 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1801 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1802 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1803 
1804 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1805 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1806 	expected_io->md_buf = md_buf + 542 * 8;
1807 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1808 			       iov[59].iov_len - 3936);
1809 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1810 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1811 
1812 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1813 					    0, 543, io_done, NULL);
1814 	CU_ASSERT(rc == 0);
1815 	CU_ASSERT(g_io_done == false);
1816 
1817 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1818 	stub_complete_io(1);
1819 	CU_ASSERT(g_io_done == false);
1820 
1821 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1822 	stub_complete_io(5);
1823 	CU_ASSERT(g_io_done == false);
1824 
1825 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1826 	stub_complete_io(1);
1827 	CU_ASSERT(g_io_done == true);
1828 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1829 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1830 
1831 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1832 	 * split, so test that.
1833 	 */
1834 	bdev->optimal_io_boundary = 15;
1835 	g_io_done = false;
1836 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1837 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1838 
1839 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1840 	CU_ASSERT(rc == 0);
1841 	CU_ASSERT(g_io_done == false);
1842 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1843 	stub_complete_io(1);
1844 	CU_ASSERT(g_io_done == true);
1845 
1846 	/* Test an UNMAP.  This should also not be split. */
1847 	bdev->optimal_io_boundary = 16;
1848 	g_io_done = false;
1849 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1850 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1851 
1852 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1853 	CU_ASSERT(rc == 0);
1854 	CU_ASSERT(g_io_done == false);
1855 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1856 	stub_complete_io(1);
1857 	CU_ASSERT(g_io_done == true);
1858 
1859 	/* Test a FLUSH.  This should also not be split. */
1860 	bdev->optimal_io_boundary = 16;
1861 	g_io_done = false;
1862 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1863 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1864 
1865 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1866 	CU_ASSERT(rc == 0);
1867 	CU_ASSERT(g_io_done == false);
1868 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1869 	stub_complete_io(1);
1870 	CU_ASSERT(g_io_done == true);
1871 
1872 	/* Test a COPY.  This should also not be split. */
1873 	bdev->optimal_io_boundary = 15;
1874 	g_io_done = false;
1875 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
1876 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1877 
1878 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
1879 	CU_ASSERT(rc == 0);
1880 	CU_ASSERT(g_io_done == false);
1881 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1882 	stub_complete_io(1);
1883 	CU_ASSERT(g_io_done == true);
1884 
1885 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1886 
1887 	/* Children requests return an error status */
1888 	bdev->optimal_io_boundary = 16;
1889 	iov[0].iov_base = (void *)0x10000;
1890 	iov[0].iov_len = 512 * 64;
1891 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1892 	g_io_done = false;
1893 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1894 
1895 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1896 	CU_ASSERT(rc == 0);
1897 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1898 	stub_complete_io(4);
1899 	CU_ASSERT(g_io_done == false);
1900 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1901 	stub_complete_io(1);
1902 	CU_ASSERT(g_io_done == true);
1903 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1904 
1905 	/* Test if a multi vector command terminated with failure before continuing
1906 	 * splitting process when one of child I/O failed.
1907 	 * The multi vector command is as same as the above that needs to be split by strip
1908 	 * and then needs to be split further due to the capacity of child iovs.
1909 	 */
1910 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1911 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1912 		iov[i].iov_len = 512;
1913 	}
1914 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
1915 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1916 
1917 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1918 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1919 
1920 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1921 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1922 
1923 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1924 
1925 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1926 	g_io_done = false;
1927 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1928 
1929 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
1930 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1931 	CU_ASSERT(rc == 0);
1932 	CU_ASSERT(g_io_done == false);
1933 
1934 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1935 	stub_complete_io(1);
1936 	CU_ASSERT(g_io_done == true);
1937 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1938 
1939 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1940 
1941 	/* for this test we will create the following conditions to hit the code path where
1942 	 * we are trying to send and IO following a split that has no iovs because we had to
1943 	 * trim them for alignment reasons.
1944 	 *
1945 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1946 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1947 	 *   position 30 and overshoot by 0x2e.
1948 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1949 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1950 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1951 	 *   and let the completion pick up the last 2 vectors.
1952 	 */
1953 	bdev->optimal_io_boundary = 32;
1954 	bdev->split_on_optimal_io_boundary = true;
1955 	g_io_done = false;
1956 
1957 	/* Init all parent IOVs to 0x212 */
1958 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1959 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1960 		iov[i].iov_len = 0x212;
1961 	}
1962 
1963 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
1964 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
1965 	/* expect 0-29 to be 1:1 with the parent iov */
1966 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1967 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1968 	}
1969 
1970 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1971 	 * where 0x1e is the amount we overshot the 16K boundary
1972 	 */
1973 	ut_expected_io_set_iov(expected_io, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
1974 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1975 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1976 
1977 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1978 	 * shortened that take it to the next boundary and then a final one to get us to
1979 	 * 0x4200 bytes for the IO.
1980 	 */
1981 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1982 					   SPDK_BDEV_IO_NUM_CHILD_IOV, 2);
1983 	/* position 30 picked up the remaining bytes to the next boundary */
1984 	ut_expected_io_set_iov(expected_io, 0,
1985 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
1986 
1987 	/* position 31 picked the the rest of the transfer to get us to 0x4200 */
1988 	ut_expected_io_set_iov(expected_io, 1,
1989 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
1990 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1991 
1992 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, 0,
1993 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1994 	CU_ASSERT(rc == 0);
1995 	CU_ASSERT(g_io_done == false);
1996 
1997 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1998 	stub_complete_io(1);
1999 	CU_ASSERT(g_io_done == false);
2000 
2001 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2002 	stub_complete_io(1);
2003 	CU_ASSERT(g_io_done == true);
2004 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2005 
2006 	spdk_put_io_channel(io_ch);
2007 	spdk_bdev_close(desc);
2008 	free_bdev(bdev);
2009 	ut_fini_bdev();
2010 }
2011 
2012 static void
2013 bdev_io_max_size_and_segment_split_test(void)
2014 {
2015 	struct spdk_bdev *bdev;
2016 	struct spdk_bdev_desc *desc = NULL;
2017 	struct spdk_io_channel *io_ch;
2018 	struct spdk_bdev_opts bdev_opts = {};
2019 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
2020 	struct ut_expected_io *expected_io;
2021 	uint64_t i;
2022 	int rc;
2023 
2024 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2025 	bdev_opts.bdev_io_pool_size = 512;
2026 	bdev_opts.bdev_io_cache_size = 64;
2027 	bdev_opts.opts_size = sizeof(bdev_opts);
2028 	ut_init_bdev(&bdev_opts);
2029 
2030 	bdev = allocate_bdev("bdev0");
2031 
2032 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2033 	CU_ASSERT(rc == 0);
2034 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2035 	io_ch = spdk_bdev_get_io_channel(desc);
2036 	CU_ASSERT(io_ch != NULL);
2037 
2038 	bdev->split_on_optimal_io_boundary = false;
2039 	bdev->optimal_io_boundary = 0;
2040 
2041 	/* Case 0 max_num_segments == 0.
2042 	 * but segment size 2 * 512 > 512
2043 	 */
2044 	bdev->max_segment_size = 512;
2045 	bdev->max_num_segments = 0;
2046 	g_io_done = false;
2047 
2048 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2049 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2050 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2051 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2052 
2053 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2054 	CU_ASSERT(rc == 0);
2055 	CU_ASSERT(g_io_done == false);
2056 
2057 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2058 	stub_complete_io(1);
2059 	CU_ASSERT(g_io_done == true);
2060 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2061 
2062 	/* Case 1 max_segment_size == 0
2063 	 * but iov num 2 > 1.
2064 	 */
2065 	bdev->max_segment_size = 0;
2066 	bdev->max_num_segments = 1;
2067 	g_io_done = false;
2068 
2069 	iov[0].iov_base = (void *)0x10000;
2070 	iov[0].iov_len = 512;
2071 	iov[1].iov_base = (void *)0x20000;
2072 	iov[1].iov_len = 8 * 512;
2073 
2074 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2075 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len);
2076 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2077 
2078 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1);
2079 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len);
2080 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2081 
2082 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL);
2083 	CU_ASSERT(rc == 0);
2084 	CU_ASSERT(g_io_done == false);
2085 
2086 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2087 	stub_complete_io(2);
2088 	CU_ASSERT(g_io_done == true);
2089 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2090 
2091 	/* Test that a non-vector command is split correctly.
2092 	 * Set up the expected values before calling spdk_bdev_read_blocks
2093 	 */
2094 	bdev->max_segment_size = 512;
2095 	bdev->max_num_segments = 1;
2096 	g_io_done = false;
2097 
2098 	/* Child IO 0 */
2099 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2100 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2101 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2102 
2103 	/* Child IO 1 */
2104 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2105 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512);
2106 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2107 
2108 	/* spdk_bdev_read_blocks will submit the first child immediately. */
2109 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2110 	CU_ASSERT(rc == 0);
2111 	CU_ASSERT(g_io_done == false);
2112 
2113 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2114 	stub_complete_io(2);
2115 	CU_ASSERT(g_io_done == true);
2116 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2117 
2118 	/* Now set up a more complex, multi-vector command that needs to be split,
2119 	 * including splitting iovecs.
2120 	 */
2121 	bdev->max_segment_size = 2 * 512;
2122 	bdev->max_num_segments = 1;
2123 	g_io_done = false;
2124 
2125 	iov[0].iov_base = (void *)0x10000;
2126 	iov[0].iov_len = 2 * 512;
2127 	iov[1].iov_base = (void *)0x20000;
2128 	iov[1].iov_len = 4 * 512;
2129 	iov[2].iov_base = (void *)0x30000;
2130 	iov[2].iov_len = 6 * 512;
2131 
2132 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2133 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2);
2134 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2135 
2136 	/* Split iov[1].size to 2 iov entries then split the segments */
2137 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2138 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2);
2139 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2140 
2141 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1);
2142 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2);
2143 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2144 
2145 	/* Split iov[2].size to 3 iov entries then split the segments */
2146 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1);
2147 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2);
2148 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2149 
2150 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1);
2151 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2);
2152 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2153 
2154 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1);
2155 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2);
2156 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2157 
2158 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL);
2159 	CU_ASSERT(rc == 0);
2160 	CU_ASSERT(g_io_done == false);
2161 
2162 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2163 	stub_complete_io(6);
2164 	CU_ASSERT(g_io_done == true);
2165 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2166 
2167 	/* Test multi vector command that needs to be split by strip and then needs to be
2168 	 * split further due to the capacity of parent IO child iovs.
2169 	 */
2170 	bdev->max_segment_size = 512;
2171 	bdev->max_num_segments = 1;
2172 	g_io_done = false;
2173 
2174 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2175 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2176 		iov[i].iov_len = 512 * 2;
2177 	}
2178 
2179 	/* Each input iov.size is split into 2 iovs,
2180 	 * half of the input iov can fill all child iov entries of a single IO.
2181 	 */
2182 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i++) {
2183 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1);
2184 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2185 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2186 
2187 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1);
2188 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2189 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2190 	}
2191 
2192 	/* The remaining iov is split in the second round */
2193 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2194 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1);
2195 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2196 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2197 
2198 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1);
2199 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2200 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2201 	}
2202 
2203 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
2204 				    SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
2205 	CU_ASSERT(rc == 0);
2206 	CU_ASSERT(g_io_done == false);
2207 
2208 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2209 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2210 	CU_ASSERT(g_io_done == false);
2211 
2212 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2213 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2214 	CU_ASSERT(g_io_done == true);
2215 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2216 
2217 	/* A wrong case, a child IO that is divided does
2218 	 * not meet the principle of multiples of block size,
2219 	 * and exits with error
2220 	 */
2221 	bdev->max_segment_size = 512;
2222 	bdev->max_num_segments = 1;
2223 	g_io_done = false;
2224 
2225 	iov[0].iov_base = (void *)0x10000;
2226 	iov[0].iov_len = 512 + 256;
2227 	iov[1].iov_base = (void *)0x20000;
2228 	iov[1].iov_len = 256;
2229 
2230 	/* iov[0] is split to 512 and 256.
2231 	 * 256 is less than a block size, and it is found
2232 	 * in the next round of split that it is the first child IO smaller than
2233 	 * the block size, so the error exit
2234 	 */
2235 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1);
2236 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512);
2237 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2238 
2239 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL);
2240 	CU_ASSERT(rc == 0);
2241 	CU_ASSERT(g_io_done == false);
2242 
2243 	/* First child IO is OK */
2244 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2245 	stub_complete_io(1);
2246 	CU_ASSERT(g_io_done == true);
2247 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2248 
2249 	/* error exit */
2250 	stub_complete_io(1);
2251 	CU_ASSERT(g_io_done == true);
2252 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
2253 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2254 
2255 	/* Test multi vector command that needs to be split by strip and then needs to be
2256 	 * split further due to the capacity of child iovs.
2257 	 *
2258 	 * In this case, the last two iovs need to be split, but it will exceed the capacity
2259 	 * of child iovs, so it needs to wait until the first batch completed.
2260 	 */
2261 	bdev->max_segment_size = 512;
2262 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2263 	g_io_done = false;
2264 
2265 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2266 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2267 		iov[i].iov_len = 512;
2268 	}
2269 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2270 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2271 		iov[i].iov_len = 512 * 2;
2272 	}
2273 
2274 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2275 					   SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
2276 	/* 0 ~ (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */
2277 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2278 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2279 	}
2280 	/* (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) is split */
2281 	ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512);
2282 	ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512);
2283 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2284 
2285 	/* Child iov entries exceed the max num of parent IO so split it in next round */
2286 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV, 2, 2);
2287 	ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512);
2288 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512);
2289 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2290 
2291 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
2292 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL);
2293 	CU_ASSERT(rc == 0);
2294 	CU_ASSERT(g_io_done == false);
2295 
2296 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2297 	stub_complete_io(1);
2298 	CU_ASSERT(g_io_done == false);
2299 
2300 	/* Next round */
2301 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2302 	stub_complete_io(1);
2303 	CU_ASSERT(g_io_done == true);
2304 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2305 
2306 	/* This case is similar to the previous one, but the io composed of
2307 	 * the last few entries of child iov is not enough for a blocklen, so they
2308 	 * cannot be put into this IO, but wait until the next time.
2309 	 */
2310 	bdev->max_segment_size = 512;
2311 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2312 	g_io_done = false;
2313 
2314 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2315 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2316 		iov[i].iov_len = 512;
2317 	}
2318 
2319 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2320 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2321 		iov[i].iov_len = 128;
2322 	}
2323 
2324 	/* First child iovcnt is't SPDK_BDEV_IO_NUM_CHILD_IOV but SPDK_BDEV_IO_NUM_CHILD_IOV - 2.
2325 	 * Because the left 2 iov is not enough for a blocklen.
2326 	 */
2327 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2328 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 2, SPDK_BDEV_IO_NUM_CHILD_IOV - 2);
2329 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2330 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2331 	}
2332 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2333 
2334 	/* The second child io waits until the end of the first child io before executing.
2335 	 * Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO.
2336 	 * SPDK_BDEV_IO_NUM_CHILD_IOV - 2 to SPDK_BDEV_IO_NUM_CHILD_IOV + 2
2337 	 */
2338 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
2339 					   1, 4);
2340 	ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len);
2341 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len);
2342 	ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len);
2343 	ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len);
2344 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2345 
2346 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
2347 				    SPDK_BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL);
2348 	CU_ASSERT(rc == 0);
2349 	CU_ASSERT(g_io_done == false);
2350 
2351 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2352 	stub_complete_io(1);
2353 	CU_ASSERT(g_io_done == false);
2354 
2355 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2356 	stub_complete_io(1);
2357 	CU_ASSERT(g_io_done == true);
2358 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2359 
2360 	/* A very complicated case. Each sg entry exceeds max_segment_size and
2361 	 * needs to be split. At the same time, child io must be a multiple of blocklen.
2362 	 * At the same time, child iovcnt exceeds parent iovcnt.
2363 	 */
2364 	bdev->max_segment_size = 512 + 128;
2365 	bdev->max_num_segments = 3;
2366 	g_io_done = false;
2367 
2368 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2369 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2370 		iov[i].iov_len = 512 + 256;
2371 	}
2372 
2373 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2374 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2375 		iov[i].iov_len = 512 + 128;
2376 	}
2377 
2378 	/* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries.
2379 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2380 	 * Generate 9 child IOs.
2381 	 */
2382 	for (i = 0; i < 3; i++) {
2383 		uint32_t j = i * 4;
2384 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3);
2385 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2386 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2387 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2388 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2389 
2390 		/* Child io must be a multiple of blocklen
2391 		 * iov[j + 2] must be split. If the third entry is also added,
2392 		 * the multiple of blocklen cannot be guaranteed. But it still
2393 		 * occupies one iov entry of the parent child iov.
2394 		 */
2395 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2);
2396 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2397 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2398 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2399 
2400 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3);
2401 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2402 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2403 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2404 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2405 	}
2406 
2407 	/* Child iov position at 27, the 10th child IO
2408 	 * iov entry index is 3 * 4 and offset is 3 * 6
2409 	 */
2410 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3);
2411 	ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640);
2412 	ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128);
2413 	ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256);
2414 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2415 
2416 	/* Child iov position at 30, the 11th child IO */
2417 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2);
2418 	ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512);
2419 	ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512);
2420 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2421 
2422 	/* The 2nd split round and iovpos is 0, the 12th child IO */
2423 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3);
2424 	ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256);
2425 	ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640);
2426 	ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128);
2427 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2428 
2429 	/* Consume 9 child IOs and 27 child iov entries.
2430 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2431 	 * Parent IO iov index start from 16 and block offset start from 24
2432 	 */
2433 	for (i = 0; i < 3; i++) {
2434 		uint32_t j = i * 4 + 16;
2435 		uint32_t offset = i * 6 + 24;
2436 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3);
2437 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2438 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2439 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2440 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2441 
2442 		/* Child io must be a multiple of blocklen
2443 		 * iov[j + 2] must be split. If the third entry is also added,
2444 		 * the multiple of blocklen cannot be guaranteed. But it still
2445 		 * occupies one iov entry of the parent child iov.
2446 		 */
2447 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2);
2448 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2449 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2450 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2451 
2452 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3);
2453 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2454 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2455 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2456 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2457 	}
2458 
2459 	/* The 22th child IO, child iov position at 30 */
2460 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1);
2461 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512);
2462 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2463 
2464 	/* The third round */
2465 	/* Here is the 23nd child IO and child iovpos is 0 */
2466 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3);
2467 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256);
2468 	ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640);
2469 	ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128);
2470 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2471 
2472 	/* The 24th child IO */
2473 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3);
2474 	ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640);
2475 	ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640);
2476 	ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256);
2477 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2478 
2479 	/* The 25th child IO */
2480 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2);
2481 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384);
2482 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640);
2483 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2484 
2485 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
2486 				    50, io_done, NULL);
2487 	CU_ASSERT(rc == 0);
2488 	CU_ASSERT(g_io_done == false);
2489 
2490 	/* Parent IO supports up to 32 child iovs, so it is calculated that
2491 	 * a maximum of 11 IOs can be split at a time, and the
2492 	 * splitting will continue after the first batch is over.
2493 	 */
2494 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2495 	stub_complete_io(11);
2496 	CU_ASSERT(g_io_done == false);
2497 
2498 	/* The 2nd round */
2499 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2500 	stub_complete_io(11);
2501 	CU_ASSERT(g_io_done == false);
2502 
2503 	/* The last round */
2504 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2505 	stub_complete_io(3);
2506 	CU_ASSERT(g_io_done == true);
2507 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2508 
2509 	/* Test an WRITE_ZEROES.  This should also not be split. */
2510 	bdev->max_segment_size = 512;
2511 	bdev->max_num_segments = 1;
2512 	g_io_done = false;
2513 
2514 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
2515 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2516 
2517 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
2518 	CU_ASSERT(rc == 0);
2519 	CU_ASSERT(g_io_done == false);
2520 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2521 	stub_complete_io(1);
2522 	CU_ASSERT(g_io_done == true);
2523 
2524 	/* Test an UNMAP.  This should also not be split. */
2525 	g_io_done = false;
2526 
2527 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0);
2528 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2529 
2530 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL);
2531 	CU_ASSERT(rc == 0);
2532 	CU_ASSERT(g_io_done == false);
2533 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2534 	stub_complete_io(1);
2535 	CU_ASSERT(g_io_done == true);
2536 
2537 	/* Test a FLUSH.  This should also not be split. */
2538 	g_io_done = false;
2539 
2540 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0);
2541 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2542 
2543 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
2544 	CU_ASSERT(rc == 0);
2545 	CU_ASSERT(g_io_done == false);
2546 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2547 	stub_complete_io(1);
2548 	CU_ASSERT(g_io_done == true);
2549 
2550 	/* Test a COPY.  This should also not be split. */
2551 	g_io_done = false;
2552 
2553 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
2554 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2555 
2556 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
2557 	CU_ASSERT(rc == 0);
2558 	CU_ASSERT(g_io_done == false);
2559 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2560 	stub_complete_io(1);
2561 	CU_ASSERT(g_io_done == true);
2562 
2563 	spdk_put_io_channel(io_ch);
2564 	spdk_bdev_close(desc);
2565 	free_bdev(bdev);
2566 	ut_fini_bdev();
2567 }
2568 
2569 static void
2570 bdev_io_mix_split_test(void)
2571 {
2572 	struct spdk_bdev *bdev;
2573 	struct spdk_bdev_desc *desc = NULL;
2574 	struct spdk_io_channel *io_ch;
2575 	struct spdk_bdev_opts bdev_opts = {};
2576 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
2577 	struct ut_expected_io *expected_io;
2578 	uint64_t i;
2579 	int rc;
2580 
2581 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2582 	bdev_opts.bdev_io_pool_size = 512;
2583 	bdev_opts.bdev_io_cache_size = 64;
2584 	ut_init_bdev(&bdev_opts);
2585 
2586 	bdev = allocate_bdev("bdev0");
2587 
2588 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2589 	CU_ASSERT(rc == 0);
2590 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2591 	io_ch = spdk_bdev_get_io_channel(desc);
2592 	CU_ASSERT(io_ch != NULL);
2593 
2594 	/* First case optimal_io_boundary == max_segment_size * max_num_segments */
2595 	bdev->split_on_optimal_io_boundary = true;
2596 	bdev->optimal_io_boundary = 16;
2597 
2598 	bdev->max_segment_size = 512;
2599 	bdev->max_num_segments = 16;
2600 	g_io_done = false;
2601 
2602 	/* IO crossing the IO boundary requires split
2603 	 * Total 2 child IOs.
2604 	 */
2605 
2606 	/* The 1st child IO split the segment_size to multiple segment entry */
2607 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2608 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2609 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2610 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2611 
2612 	/* The 2nd child IO split the segment_size to multiple segment entry */
2613 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2);
2614 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512);
2615 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512);
2616 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2617 
2618 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL);
2619 	CU_ASSERT(rc == 0);
2620 	CU_ASSERT(g_io_done == false);
2621 
2622 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2623 	stub_complete_io(2);
2624 	CU_ASSERT(g_io_done == true);
2625 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2626 
2627 	/* Second case optimal_io_boundary > max_segment_size * max_num_segments */
2628 	bdev->max_segment_size = 15 * 512;
2629 	bdev->max_num_segments = 1;
2630 	g_io_done = false;
2631 
2632 	/* IO crossing the IO boundary requires split.
2633 	 * The 1st child IO segment size exceeds the max_segment_size,
2634 	 * So 1st child IO will be split to multiple segment entry.
2635 	 * Then it split to 2 child IOs because of the max_num_segments.
2636 	 * Total 3 child IOs.
2637 	 */
2638 
2639 	/* The first 2 IOs are in an IO boundary.
2640 	 * Because the optimal_io_boundary > max_segment_size * max_num_segments
2641 	 * So it split to the first 2 IOs.
2642 	 */
2643 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1);
2644 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15);
2645 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2646 
2647 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2648 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512);
2649 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2650 
2651 	/* The 3rd Child IO is because of the io boundary */
2652 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2653 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2654 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2655 
2656 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2657 	CU_ASSERT(rc == 0);
2658 	CU_ASSERT(g_io_done == false);
2659 
2660 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2661 	stub_complete_io(3);
2662 	CU_ASSERT(g_io_done == true);
2663 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2664 
2665 	/* Third case optimal_io_boundary < max_segment_size * max_num_segments */
2666 	bdev->max_segment_size = 17 * 512;
2667 	bdev->max_num_segments = 1;
2668 	g_io_done = false;
2669 
2670 	/* IO crossing the IO boundary requires split.
2671 	 * Child IO does not split.
2672 	 * Total 2 child IOs.
2673 	 */
2674 
2675 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1);
2676 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16);
2677 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2678 
2679 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2680 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2681 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2682 
2683 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2684 	CU_ASSERT(rc == 0);
2685 	CU_ASSERT(g_io_done == false);
2686 
2687 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2688 	stub_complete_io(2);
2689 	CU_ASSERT(g_io_done == true);
2690 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2691 
2692 	/* Now set up a more complex, multi-vector command that needs to be split,
2693 	 * including splitting iovecs.
2694 	 * optimal_io_boundary < max_segment_size * max_num_segments
2695 	 */
2696 	bdev->max_segment_size = 3 * 512;
2697 	bdev->max_num_segments = 6;
2698 	g_io_done = false;
2699 
2700 	iov[0].iov_base = (void *)0x10000;
2701 	iov[0].iov_len = 4 * 512;
2702 	iov[1].iov_base = (void *)0x20000;
2703 	iov[1].iov_len = 4 * 512;
2704 	iov[2].iov_base = (void *)0x30000;
2705 	iov[2].iov_len = 10 * 512;
2706 
2707 	/* IO crossing the IO boundary requires split.
2708 	 * The 1st child IO segment size exceeds the max_segment_size and after
2709 	 * splitting segment_size, the num_segments exceeds max_num_segments.
2710 	 * So 1st child IO will be split to 2 child IOs.
2711 	 * Total 3 child IOs.
2712 	 */
2713 
2714 	/* The first 2 IOs are in an IO boundary.
2715 	 * After splitting segment size the segment num exceeds.
2716 	 * So it splits to 2 child IOs.
2717 	 */
2718 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6);
2719 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3);
2720 	ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512);
2721 	ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3);
2722 	ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512);
2723 	ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3);
2724 	ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3);
2725 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2726 
2727 	/* The 2nd child IO has the left segment entry */
2728 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2729 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2);
2730 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2731 
2732 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2733 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2);
2734 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2735 
2736 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL);
2737 	CU_ASSERT(rc == 0);
2738 	CU_ASSERT(g_io_done == false);
2739 
2740 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2741 	stub_complete_io(3);
2742 	CU_ASSERT(g_io_done == true);
2743 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2744 
2745 	/* A very complicated case. Each sg entry exceeds max_segment_size
2746 	 * and split on io boundary.
2747 	 * optimal_io_boundary < max_segment_size * max_num_segments
2748 	 */
2749 	bdev->max_segment_size = 3 * 512;
2750 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2751 	g_io_done = false;
2752 
2753 	for (i = 0; i < 20; i++) {
2754 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2755 		iov[i].iov_len = 512 * 4;
2756 	}
2757 
2758 	/* IO crossing the IO boundary requires split.
2759 	 * 80 block length can split 5 child IOs base on offset and IO boundary.
2760 	 * Each iov entry needs to be split to 2 entries because of max_segment_size
2761 	 * Total 5 child IOs.
2762 	 */
2763 
2764 	/* 4 iov entries are in an IO boundary and each iov entry splits to 2.
2765 	 * So each child IO occupies 8 child iov entries.
2766 	 */
2767 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8);
2768 	for (i = 0; i < 4; i++) {
2769 		int iovcnt = i * 2;
2770 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2771 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2772 	}
2773 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2774 
2775 	/* 2nd child IO and total 16 child iov entries of parent IO */
2776 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8);
2777 	for (i = 4; i < 8; i++) {
2778 		int iovcnt = (i - 4) * 2;
2779 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2780 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2781 	}
2782 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2783 
2784 	/* 3rd child IO and total 24 child iov entries of parent IO */
2785 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8);
2786 	for (i = 8; i < 12; i++) {
2787 		int iovcnt = (i - 8) * 2;
2788 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2789 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2790 	}
2791 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2792 
2793 	/* 4th child IO and total 32 child iov entries of parent IO */
2794 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8);
2795 	for (i = 12; i < 16; i++) {
2796 		int iovcnt = (i - 12) * 2;
2797 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2798 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2799 	}
2800 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2801 
2802 	/* 5th child IO and because of the child iov entry it should be split
2803 	 * in next round.
2804 	 */
2805 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8);
2806 	for (i = 16; i < 20; i++) {
2807 		int iovcnt = (i - 16) * 2;
2808 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2809 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2810 	}
2811 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2812 
2813 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL);
2814 	CU_ASSERT(rc == 0);
2815 	CU_ASSERT(g_io_done == false);
2816 
2817 	/* First split round */
2818 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2819 	stub_complete_io(4);
2820 	CU_ASSERT(g_io_done == false);
2821 
2822 	/* Second split round */
2823 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2824 	stub_complete_io(1);
2825 	CU_ASSERT(g_io_done == true);
2826 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2827 
2828 	spdk_put_io_channel(io_ch);
2829 	spdk_bdev_close(desc);
2830 	free_bdev(bdev);
2831 	ut_fini_bdev();
2832 }
2833 
2834 static void
2835 bdev_io_split_with_io_wait(void)
2836 {
2837 	struct spdk_bdev *bdev;
2838 	struct spdk_bdev_desc *desc = NULL;
2839 	struct spdk_io_channel *io_ch;
2840 	struct spdk_bdev_channel *channel;
2841 	struct spdk_bdev_mgmt_channel *mgmt_ch;
2842 	struct spdk_bdev_opts bdev_opts = {};
2843 	struct iovec iov[3];
2844 	struct ut_expected_io *expected_io;
2845 	int rc;
2846 
2847 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2848 	bdev_opts.bdev_io_pool_size = 2;
2849 	bdev_opts.bdev_io_cache_size = 1;
2850 	ut_init_bdev(&bdev_opts);
2851 
2852 	bdev = allocate_bdev("bdev0");
2853 
2854 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2855 	CU_ASSERT(rc == 0);
2856 	CU_ASSERT(desc != NULL);
2857 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2858 	io_ch = spdk_bdev_get_io_channel(desc);
2859 	CU_ASSERT(io_ch != NULL);
2860 	channel = spdk_io_channel_get_ctx(io_ch);
2861 	mgmt_ch = channel->shared_resource->mgmt_ch;
2862 
2863 	bdev->optimal_io_boundary = 16;
2864 	bdev->split_on_optimal_io_boundary = true;
2865 
2866 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
2867 	CU_ASSERT(rc == 0);
2868 
2869 	/* Now test that a single-vector command is split correctly.
2870 	 * Offset 14, length 8, payload 0xF000
2871 	 *  Child - Offset 14, length 2, payload 0xF000
2872 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
2873 	 *
2874 	 * Set up the expected values before calling spdk_bdev_read_blocks
2875 	 */
2876 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
2877 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
2878 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2879 
2880 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
2881 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
2882 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2883 
2884 	/* The following children will be submitted sequentially due to the capacity of
2885 	 * spdk_bdev_io.
2886 	 */
2887 
2888 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
2889 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
2890 	CU_ASSERT(rc == 0);
2891 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2892 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2893 
2894 	/* Completing the first read I/O will submit the first child */
2895 	stub_complete_io(1);
2896 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2897 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2898 
2899 	/* Completing the first child will submit the second child */
2900 	stub_complete_io(1);
2901 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2902 
2903 	/* Complete the second child I/O.  This should result in our callback getting
2904 	 * invoked since the parent I/O is now complete.
2905 	 */
2906 	stub_complete_io(1);
2907 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2908 
2909 	/* Now set up a more complex, multi-vector command that needs to be split,
2910 	 *  including splitting iovecs.
2911 	 */
2912 	iov[0].iov_base = (void *)0x10000;
2913 	iov[0].iov_len = 512;
2914 	iov[1].iov_base = (void *)0x20000;
2915 	iov[1].iov_len = 20 * 512;
2916 	iov[2].iov_base = (void *)0x30000;
2917 	iov[2].iov_len = 11 * 512;
2918 
2919 	g_io_done = false;
2920 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
2921 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
2922 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
2923 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2924 
2925 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
2926 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
2927 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2928 
2929 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
2930 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
2931 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
2932 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2933 
2934 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
2935 	CU_ASSERT(rc == 0);
2936 	CU_ASSERT(g_io_done == false);
2937 
2938 	/* The following children will be submitted sequentially due to the capacity of
2939 	 * spdk_bdev_io.
2940 	 */
2941 
2942 	/* Completing the first child will submit the second child */
2943 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2944 	stub_complete_io(1);
2945 	CU_ASSERT(g_io_done == false);
2946 
2947 	/* Completing the second child will submit the third child */
2948 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2949 	stub_complete_io(1);
2950 	CU_ASSERT(g_io_done == false);
2951 
2952 	/* Completing the third child will result in our callback getting invoked
2953 	 * since the parent I/O is now complete.
2954 	 */
2955 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2956 	stub_complete_io(1);
2957 	CU_ASSERT(g_io_done == true);
2958 
2959 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
2960 
2961 	spdk_put_io_channel(io_ch);
2962 	spdk_bdev_close(desc);
2963 	free_bdev(bdev);
2964 	ut_fini_bdev();
2965 }
2966 
2967 static void
2968 bdev_io_write_unit_split_test(void)
2969 {
2970 	struct spdk_bdev *bdev;
2971 	struct spdk_bdev_desc *desc = NULL;
2972 	struct spdk_io_channel *io_ch;
2973 	struct spdk_bdev_opts bdev_opts = {};
2974 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 4];
2975 	struct ut_expected_io *expected_io;
2976 	uint64_t i;
2977 	int rc;
2978 
2979 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2980 	bdev_opts.bdev_io_pool_size = 512;
2981 	bdev_opts.bdev_io_cache_size = 64;
2982 	ut_init_bdev(&bdev_opts);
2983 
2984 	bdev = allocate_bdev("bdev0");
2985 
2986 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2987 	CU_ASSERT(rc == 0);
2988 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2989 	io_ch = spdk_bdev_get_io_channel(desc);
2990 	CU_ASSERT(io_ch != NULL);
2991 
2992 	/* Write I/O 2x larger than write_unit_size should get split into 2 I/Os */
2993 	bdev->write_unit_size = 32;
2994 	bdev->split_on_write_unit = true;
2995 	g_io_done = false;
2996 
2997 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 32, 1);
2998 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 32 * 512);
2999 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3000 
3001 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 32, 1);
3002 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 32 * 512), 32 * 512);
3003 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3004 
3005 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
3006 	CU_ASSERT(rc == 0);
3007 	CU_ASSERT(g_io_done == false);
3008 
3009 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3010 	stub_complete_io(2);
3011 	CU_ASSERT(g_io_done == true);
3012 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3013 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3014 
3015 	/* Same as above but with optimal_io_boundary < write_unit_size - the I/O should be split
3016 	 * based on write_unit_size, not optimal_io_boundary */
3017 	bdev->split_on_optimal_io_boundary = true;
3018 	bdev->optimal_io_boundary = 16;
3019 	g_io_done = false;
3020 
3021 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
3022 	CU_ASSERT(rc == 0);
3023 	CU_ASSERT(g_io_done == false);
3024 
3025 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3026 	stub_complete_io(2);
3027 	CU_ASSERT(g_io_done == true);
3028 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3029 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3030 
3031 	/* Write I/O should fail if it is smaller than write_unit_size */
3032 	g_io_done = false;
3033 
3034 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 31, io_done, NULL);
3035 	CU_ASSERT(rc == 0);
3036 	CU_ASSERT(g_io_done == false);
3037 
3038 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3039 	poll_threads();
3040 	CU_ASSERT(g_io_done == true);
3041 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3042 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3043 
3044 	/* Same for I/O not aligned to write_unit_size */
3045 	g_io_done = false;
3046 
3047 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 1, 32, io_done, NULL);
3048 	CU_ASSERT(rc == 0);
3049 	CU_ASSERT(g_io_done == false);
3050 
3051 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3052 	poll_threads();
3053 	CU_ASSERT(g_io_done == true);
3054 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3055 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3056 
3057 	/* Write should fail if it needs to be split but there are not enough iovs to submit
3058 	 * an entire write unit */
3059 	bdev->write_unit_size = SPDK_COUNTOF(iov) / 2;
3060 	g_io_done = false;
3061 
3062 	for (i = 0; i < SPDK_COUNTOF(iov); i++) {
3063 		iov[i].iov_base = (void *)(0x1000 + 512 * i);
3064 		iov[i].iov_len = 512;
3065 	}
3066 
3067 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, SPDK_COUNTOF(iov), 0, SPDK_COUNTOF(iov),
3068 				     io_done, NULL);
3069 	CU_ASSERT(rc == 0);
3070 	CU_ASSERT(g_io_done == false);
3071 
3072 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3073 	poll_threads();
3074 	CU_ASSERT(g_io_done == true);
3075 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3076 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3077 
3078 	spdk_put_io_channel(io_ch);
3079 	spdk_bdev_close(desc);
3080 	free_bdev(bdev);
3081 	ut_fini_bdev();
3082 }
3083 
3084 static void
3085 bdev_io_alignment(void)
3086 {
3087 	struct spdk_bdev *bdev;
3088 	struct spdk_bdev_desc *desc = NULL;
3089 	struct spdk_io_channel *io_ch;
3090 	struct spdk_bdev_opts bdev_opts = {};
3091 	int rc;
3092 	void *buf = NULL;
3093 	struct iovec iovs[2];
3094 	int iovcnt;
3095 	uint64_t alignment;
3096 
3097 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3098 	bdev_opts.bdev_io_pool_size = 20;
3099 	bdev_opts.bdev_io_cache_size = 2;
3100 	ut_init_bdev(&bdev_opts);
3101 
3102 	fn_table.submit_request = stub_submit_request_get_buf;
3103 	bdev = allocate_bdev("bdev0");
3104 
3105 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3106 	CU_ASSERT(rc == 0);
3107 	CU_ASSERT(desc != NULL);
3108 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3109 	io_ch = spdk_bdev_get_io_channel(desc);
3110 	CU_ASSERT(io_ch != NULL);
3111 
3112 	/* Create aligned buffer */
3113 	rc = posix_memalign(&buf, 4096, 8192);
3114 	SPDK_CU_ASSERT_FATAL(rc == 0);
3115 
3116 	/* Pass aligned single buffer with no alignment required */
3117 	alignment = 1;
3118 	bdev->required_alignment = spdk_u32log2(alignment);
3119 
3120 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3121 	CU_ASSERT(rc == 0);
3122 	stub_complete_io(1);
3123 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3124 				    alignment));
3125 
3126 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3127 	CU_ASSERT(rc == 0);
3128 	stub_complete_io(1);
3129 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3130 				    alignment));
3131 
3132 	/* Pass unaligned single buffer with no alignment required */
3133 	alignment = 1;
3134 	bdev->required_alignment = spdk_u32log2(alignment);
3135 
3136 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3137 	CU_ASSERT(rc == 0);
3138 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3139 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3140 	stub_complete_io(1);
3141 
3142 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3143 	CU_ASSERT(rc == 0);
3144 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3145 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3146 	stub_complete_io(1);
3147 
3148 	/* Pass unaligned single buffer with 512 alignment required */
3149 	alignment = 512;
3150 	bdev->required_alignment = spdk_u32log2(alignment);
3151 
3152 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3153 	CU_ASSERT(rc == 0);
3154 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3155 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3156 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3157 				    alignment));
3158 	stub_complete_io(1);
3159 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3160 
3161 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3162 	CU_ASSERT(rc == 0);
3163 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3164 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3165 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3166 				    alignment));
3167 	stub_complete_io(1);
3168 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3169 
3170 	/* Pass unaligned single buffer with 4096 alignment required */
3171 	alignment = 4096;
3172 	bdev->required_alignment = spdk_u32log2(alignment);
3173 
3174 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3175 	CU_ASSERT(rc == 0);
3176 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3177 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3178 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3179 				    alignment));
3180 	stub_complete_io(1);
3181 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3182 
3183 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3184 	CU_ASSERT(rc == 0);
3185 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3186 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3187 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3188 				    alignment));
3189 	stub_complete_io(1);
3190 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3191 
3192 	/* Pass aligned iovs with no alignment required */
3193 	alignment = 1;
3194 	bdev->required_alignment = spdk_u32log2(alignment);
3195 
3196 	iovcnt = 1;
3197 	iovs[0].iov_base = buf;
3198 	iovs[0].iov_len = 512;
3199 
3200 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3201 	CU_ASSERT(rc == 0);
3202 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3203 	stub_complete_io(1);
3204 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3205 
3206 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3207 	CU_ASSERT(rc == 0);
3208 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3209 	stub_complete_io(1);
3210 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3211 
3212 	/* Pass unaligned iovs with no alignment required */
3213 	alignment = 1;
3214 	bdev->required_alignment = spdk_u32log2(alignment);
3215 
3216 	iovcnt = 2;
3217 	iovs[0].iov_base = buf + 16;
3218 	iovs[0].iov_len = 256;
3219 	iovs[1].iov_base = buf + 16 + 256 + 32;
3220 	iovs[1].iov_len = 256;
3221 
3222 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3223 	CU_ASSERT(rc == 0);
3224 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3225 	stub_complete_io(1);
3226 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3227 
3228 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3229 	CU_ASSERT(rc == 0);
3230 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3231 	stub_complete_io(1);
3232 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3233 
3234 	/* Pass unaligned iov with 2048 alignment required */
3235 	alignment = 2048;
3236 	bdev->required_alignment = spdk_u32log2(alignment);
3237 
3238 	iovcnt = 2;
3239 	iovs[0].iov_base = buf + 16;
3240 	iovs[0].iov_len = 256;
3241 	iovs[1].iov_base = buf + 16 + 256 + 32;
3242 	iovs[1].iov_len = 256;
3243 
3244 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3245 	CU_ASSERT(rc == 0);
3246 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3247 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3248 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3249 				    alignment));
3250 	stub_complete_io(1);
3251 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3252 
3253 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3254 	CU_ASSERT(rc == 0);
3255 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3256 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3257 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3258 				    alignment));
3259 	stub_complete_io(1);
3260 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3261 
3262 	/* Pass iov without allocated buffer without alignment required */
3263 	alignment = 1;
3264 	bdev->required_alignment = spdk_u32log2(alignment);
3265 
3266 	iovcnt = 1;
3267 	iovs[0].iov_base = NULL;
3268 	iovs[0].iov_len = 0;
3269 
3270 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3271 	CU_ASSERT(rc == 0);
3272 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3273 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3274 				    alignment));
3275 	stub_complete_io(1);
3276 
3277 	/* Pass iov without allocated buffer with 1024 alignment required */
3278 	alignment = 1024;
3279 	bdev->required_alignment = spdk_u32log2(alignment);
3280 
3281 	iovcnt = 1;
3282 	iovs[0].iov_base = NULL;
3283 	iovs[0].iov_len = 0;
3284 
3285 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3286 	CU_ASSERT(rc == 0);
3287 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3288 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3289 				    alignment));
3290 	stub_complete_io(1);
3291 
3292 	spdk_put_io_channel(io_ch);
3293 	spdk_bdev_close(desc);
3294 	free_bdev(bdev);
3295 	fn_table.submit_request = stub_submit_request;
3296 	ut_fini_bdev();
3297 
3298 	free(buf);
3299 }
3300 
3301 static void
3302 bdev_io_alignment_with_boundary(void)
3303 {
3304 	struct spdk_bdev *bdev;
3305 	struct spdk_bdev_desc *desc = NULL;
3306 	struct spdk_io_channel *io_ch;
3307 	struct spdk_bdev_opts bdev_opts = {};
3308 	int rc;
3309 	void *buf = NULL;
3310 	struct iovec iovs[2];
3311 	int iovcnt;
3312 	uint64_t alignment;
3313 
3314 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3315 	bdev_opts.bdev_io_pool_size = 20;
3316 	bdev_opts.bdev_io_cache_size = 2;
3317 	bdev_opts.opts_size = sizeof(bdev_opts);
3318 	ut_init_bdev(&bdev_opts);
3319 
3320 	fn_table.submit_request = stub_submit_request_get_buf;
3321 	bdev = allocate_bdev("bdev0");
3322 
3323 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3324 	CU_ASSERT(rc == 0);
3325 	CU_ASSERT(desc != NULL);
3326 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3327 	io_ch = spdk_bdev_get_io_channel(desc);
3328 	CU_ASSERT(io_ch != NULL);
3329 
3330 	/* Create aligned buffer */
3331 	rc = posix_memalign(&buf, 4096, 131072);
3332 	SPDK_CU_ASSERT_FATAL(rc == 0);
3333 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3334 
3335 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
3336 	alignment = 512;
3337 	bdev->required_alignment = spdk_u32log2(alignment);
3338 	bdev->optimal_io_boundary = 2;
3339 	bdev->split_on_optimal_io_boundary = true;
3340 
3341 	iovcnt = 1;
3342 	iovs[0].iov_base = NULL;
3343 	iovs[0].iov_len = 512 * 3;
3344 
3345 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3346 	CU_ASSERT(rc == 0);
3347 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3348 	stub_complete_io(2);
3349 
3350 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
3351 	alignment = 512;
3352 	bdev->required_alignment = spdk_u32log2(alignment);
3353 	bdev->optimal_io_boundary = 16;
3354 	bdev->split_on_optimal_io_boundary = true;
3355 
3356 	iovcnt = 1;
3357 	iovs[0].iov_base = NULL;
3358 	iovs[0].iov_len = 512 * 16;
3359 
3360 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
3361 	CU_ASSERT(rc == 0);
3362 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3363 	stub_complete_io(2);
3364 
3365 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
3366 	alignment = 512;
3367 	bdev->required_alignment = spdk_u32log2(alignment);
3368 	bdev->optimal_io_boundary = 128;
3369 	bdev->split_on_optimal_io_boundary = true;
3370 
3371 	iovcnt = 1;
3372 	iovs[0].iov_base = buf + 16;
3373 	iovs[0].iov_len = 512 * 160;
3374 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3375 	CU_ASSERT(rc == 0);
3376 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3377 	stub_complete_io(2);
3378 
3379 	/* 512 * 3 with 2 IO boundary */
3380 	alignment = 512;
3381 	bdev->required_alignment = spdk_u32log2(alignment);
3382 	bdev->optimal_io_boundary = 2;
3383 	bdev->split_on_optimal_io_boundary = true;
3384 
3385 	iovcnt = 2;
3386 	iovs[0].iov_base = buf + 16;
3387 	iovs[0].iov_len = 512;
3388 	iovs[1].iov_base = buf + 16 + 512 + 32;
3389 	iovs[1].iov_len = 1024;
3390 
3391 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3392 	CU_ASSERT(rc == 0);
3393 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3394 	stub_complete_io(2);
3395 
3396 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3397 	CU_ASSERT(rc == 0);
3398 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3399 	stub_complete_io(2);
3400 
3401 	/* 512 * 64 with 32 IO boundary */
3402 	bdev->optimal_io_boundary = 32;
3403 	iovcnt = 2;
3404 	iovs[0].iov_base = buf + 16;
3405 	iovs[0].iov_len = 16384;
3406 	iovs[1].iov_base = buf + 16 + 16384 + 32;
3407 	iovs[1].iov_len = 16384;
3408 
3409 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3410 	CU_ASSERT(rc == 0);
3411 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3412 	stub_complete_io(3);
3413 
3414 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3415 	CU_ASSERT(rc == 0);
3416 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3417 	stub_complete_io(3);
3418 
3419 	/* 512 * 160 with 32 IO boundary */
3420 	iovcnt = 1;
3421 	iovs[0].iov_base = buf + 16;
3422 	iovs[0].iov_len = 16384 + 65536;
3423 
3424 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3425 	CU_ASSERT(rc == 0);
3426 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
3427 	stub_complete_io(6);
3428 
3429 	spdk_put_io_channel(io_ch);
3430 	spdk_bdev_close(desc);
3431 	free_bdev(bdev);
3432 	fn_table.submit_request = stub_submit_request;
3433 	ut_fini_bdev();
3434 
3435 	free(buf);
3436 }
3437 
3438 static void
3439 histogram_status_cb(void *cb_arg, int status)
3440 {
3441 	g_status = status;
3442 }
3443 
3444 static void
3445 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3446 {
3447 	g_status = status;
3448 	g_histogram = histogram;
3449 }
3450 
3451 static void
3452 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
3453 		   uint64_t total, uint64_t so_far)
3454 {
3455 	g_count += count;
3456 }
3457 
3458 static void
3459 histogram_channel_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3460 {
3461 	spdk_histogram_data_fn cb_fn = cb_arg;
3462 
3463 	g_status = status;
3464 
3465 	if (status == 0) {
3466 		spdk_histogram_data_iterate(histogram, cb_fn, NULL);
3467 	}
3468 }
3469 
3470 static void
3471 bdev_histograms(void)
3472 {
3473 	struct spdk_bdev *bdev;
3474 	struct spdk_bdev_desc *desc = NULL;
3475 	struct spdk_io_channel *ch;
3476 	struct spdk_histogram_data *histogram;
3477 	uint8_t buf[4096];
3478 	int rc;
3479 
3480 	ut_init_bdev(NULL);
3481 
3482 	bdev = allocate_bdev("bdev");
3483 
3484 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3485 	CU_ASSERT(rc == 0);
3486 	CU_ASSERT(desc != NULL);
3487 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3488 
3489 	ch = spdk_bdev_get_io_channel(desc);
3490 	CU_ASSERT(ch != NULL);
3491 
3492 	/* Enable histogram */
3493 	g_status = -1;
3494 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
3495 	poll_threads();
3496 	CU_ASSERT(g_status == 0);
3497 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3498 
3499 	/* Allocate histogram */
3500 	histogram = spdk_histogram_data_alloc();
3501 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
3502 
3503 	/* Check if histogram is zeroed */
3504 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3505 	poll_threads();
3506 	CU_ASSERT(g_status == 0);
3507 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3508 
3509 	g_count = 0;
3510 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3511 
3512 	CU_ASSERT(g_count == 0);
3513 
3514 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3515 	CU_ASSERT(rc == 0);
3516 
3517 	spdk_delay_us(10);
3518 	stub_complete_io(1);
3519 	poll_threads();
3520 
3521 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3522 	CU_ASSERT(rc == 0);
3523 
3524 	spdk_delay_us(10);
3525 	stub_complete_io(1);
3526 	poll_threads();
3527 
3528 	/* Check if histogram gathered data from all I/O channels */
3529 	g_histogram = NULL;
3530 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3531 	poll_threads();
3532 	CU_ASSERT(g_status == 0);
3533 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3534 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3535 
3536 	g_count = 0;
3537 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3538 	CU_ASSERT(g_count == 2);
3539 
3540 	g_count = 0;
3541 	spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, histogram_io_count);
3542 	CU_ASSERT(g_status == 0);
3543 	CU_ASSERT(g_count == 2);
3544 
3545 	/* Disable histogram */
3546 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
3547 	poll_threads();
3548 	CU_ASSERT(g_status == 0);
3549 	CU_ASSERT(bdev->internal.histogram_enabled == false);
3550 
3551 	/* Try to run histogram commands on disabled bdev */
3552 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3553 	poll_threads();
3554 	CU_ASSERT(g_status == -EFAULT);
3555 
3556 	spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, NULL);
3557 	CU_ASSERT(g_status == -EFAULT);
3558 
3559 	spdk_histogram_data_free(histogram);
3560 	spdk_put_io_channel(ch);
3561 	spdk_bdev_close(desc);
3562 	free_bdev(bdev);
3563 	ut_fini_bdev();
3564 }
3565 
3566 static void
3567 _bdev_compare(bool emulated)
3568 {
3569 	struct spdk_bdev *bdev;
3570 	struct spdk_bdev_desc *desc = NULL;
3571 	struct spdk_io_channel *ioch;
3572 	struct ut_expected_io *expected_io;
3573 	uint64_t offset, num_blocks;
3574 	uint32_t num_completed;
3575 	char aa_buf[512];
3576 	char bb_buf[512];
3577 	struct iovec compare_iov;
3578 	uint8_t expected_io_type;
3579 	int rc;
3580 
3581 	if (emulated) {
3582 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3583 	} else {
3584 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3585 	}
3586 
3587 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3588 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3589 
3590 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3591 
3592 	ut_init_bdev(NULL);
3593 	fn_table.submit_request = stub_submit_request_get_buf;
3594 	bdev = allocate_bdev("bdev");
3595 
3596 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3597 	CU_ASSERT_EQUAL(rc, 0);
3598 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3599 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3600 	ioch = spdk_bdev_get_io_channel(desc);
3601 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3602 
3603 	fn_table.submit_request = stub_submit_request_get_buf;
3604 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3605 
3606 	offset = 50;
3607 	num_blocks = 1;
3608 	compare_iov.iov_base = aa_buf;
3609 	compare_iov.iov_len = sizeof(aa_buf);
3610 
3611 	/* 1. successful comparev */
3612 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3613 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3614 
3615 	g_io_done = false;
3616 	g_compare_read_buf = aa_buf;
3617 	g_compare_read_buf_len = sizeof(aa_buf);
3618 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3619 	CU_ASSERT_EQUAL(rc, 0);
3620 	num_completed = stub_complete_io(1);
3621 	CU_ASSERT_EQUAL(num_completed, 1);
3622 	CU_ASSERT(g_io_done == true);
3623 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3624 
3625 	/* 2. miscompare comparev */
3626 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3627 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3628 
3629 	g_io_done = false;
3630 	g_compare_read_buf = bb_buf;
3631 	g_compare_read_buf_len = sizeof(bb_buf);
3632 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3633 	CU_ASSERT_EQUAL(rc, 0);
3634 	num_completed = stub_complete_io(1);
3635 	CU_ASSERT_EQUAL(num_completed, 1);
3636 	CU_ASSERT(g_io_done == true);
3637 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3638 
3639 	/* 3. successful compare */
3640 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3641 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3642 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3643 
3644 	g_io_done = false;
3645 	g_compare_read_buf = aa_buf;
3646 	g_compare_read_buf_len = sizeof(aa_buf);
3647 	rc = spdk_bdev_compare_blocks(desc, ioch, aa_buf, offset, num_blocks, io_done, NULL);
3648 	CU_ASSERT_EQUAL(rc, 0);
3649 	num_completed = stub_complete_io(1);
3650 	CU_ASSERT_EQUAL(num_completed, 1);
3651 	CU_ASSERT(g_io_done == true);
3652 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3653 
3654 	/* 4. miscompare compare */
3655 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3656 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3657 
3658 	g_io_done = false;
3659 	g_compare_read_buf = bb_buf;
3660 	g_compare_read_buf_len = sizeof(bb_buf);
3661 	rc = spdk_bdev_compare_blocks(desc, ioch, aa_buf, offset, num_blocks, io_done, NULL);
3662 	CU_ASSERT_EQUAL(rc, 0);
3663 	num_completed = stub_complete_io(1);
3664 	CU_ASSERT_EQUAL(num_completed, 1);
3665 	CU_ASSERT(g_io_done == true);
3666 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3667 
3668 	spdk_put_io_channel(ioch);
3669 	spdk_bdev_close(desc);
3670 	free_bdev(bdev);
3671 	fn_table.submit_request = stub_submit_request;
3672 	ut_fini_bdev();
3673 
3674 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3675 
3676 	g_compare_read_buf = NULL;
3677 }
3678 
3679 static void
3680 _bdev_compare_with_md(bool emulated)
3681 {
3682 	struct spdk_bdev *bdev;
3683 	struct spdk_bdev_desc *desc = NULL;
3684 	struct spdk_io_channel *ioch;
3685 	struct ut_expected_io *expected_io;
3686 	uint64_t offset, num_blocks;
3687 	uint32_t num_completed;
3688 	char buf[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3689 	char buf_interleaved_miscompare[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3690 	char buf_miscompare[1024 /* 2 * blocklen */];
3691 	char md_buf[16];
3692 	char md_buf_miscompare[16];
3693 	struct iovec compare_iov;
3694 	uint8_t expected_io_type;
3695 	int rc;
3696 
3697 	if (emulated) {
3698 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3699 	} else {
3700 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3701 	}
3702 
3703 	memset(buf, 0xaa, sizeof(buf));
3704 	memset(buf_interleaved_miscompare, 0xaa, sizeof(buf_interleaved_miscompare));
3705 	/* make last md different */
3706 	memset(buf_interleaved_miscompare + 1024 + 8, 0xbb, 8);
3707 	memset(buf_miscompare, 0xbb, sizeof(buf_miscompare));
3708 	memset(md_buf, 0xaa, 16);
3709 	memset(md_buf_miscompare, 0xbb, 16);
3710 
3711 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3712 
3713 	ut_init_bdev(NULL);
3714 	fn_table.submit_request = stub_submit_request_get_buf;
3715 	bdev = allocate_bdev("bdev");
3716 
3717 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3718 	CU_ASSERT_EQUAL(rc, 0);
3719 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3720 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3721 	ioch = spdk_bdev_get_io_channel(desc);
3722 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3723 
3724 	fn_table.submit_request = stub_submit_request_get_buf;
3725 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3726 
3727 	offset = 50;
3728 	num_blocks = 2;
3729 
3730 	/* interleaved md & data */
3731 	bdev->md_interleave = true;
3732 	bdev->md_len = 8;
3733 	bdev->blocklen = 512 + 8;
3734 	compare_iov.iov_base = buf;
3735 	compare_iov.iov_len = sizeof(buf);
3736 
3737 	/* 1. successful compare with md interleaved */
3738 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3739 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3740 
3741 	g_io_done = false;
3742 	g_compare_read_buf = buf;
3743 	g_compare_read_buf_len = sizeof(buf);
3744 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3745 	CU_ASSERT_EQUAL(rc, 0);
3746 	num_completed = stub_complete_io(1);
3747 	CU_ASSERT_EQUAL(num_completed, 1);
3748 	CU_ASSERT(g_io_done == true);
3749 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3750 
3751 	/* 2. miscompare with md interleaved */
3752 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3753 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3754 
3755 	g_io_done = false;
3756 	g_compare_read_buf = buf_interleaved_miscompare;
3757 	g_compare_read_buf_len = sizeof(buf_interleaved_miscompare);
3758 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3759 	CU_ASSERT_EQUAL(rc, 0);
3760 	num_completed = stub_complete_io(1);
3761 	CU_ASSERT_EQUAL(num_completed, 1);
3762 	CU_ASSERT(g_io_done == true);
3763 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3764 
3765 	/* Separate data & md buffers */
3766 	bdev->md_interleave = false;
3767 	bdev->blocklen = 512;
3768 	compare_iov.iov_base = buf;
3769 	compare_iov.iov_len = 1024;
3770 
3771 	/* 3. successful compare with md separated */
3772 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3773 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3774 
3775 	g_io_done = false;
3776 	g_compare_read_buf = buf;
3777 	g_compare_read_buf_len = 1024;
3778 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3779 	g_compare_md_buf = md_buf;
3780 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3781 					       offset, num_blocks, io_done, NULL);
3782 	CU_ASSERT_EQUAL(rc, 0);
3783 	num_completed = stub_complete_io(1);
3784 	CU_ASSERT_EQUAL(num_completed, 1);
3785 	CU_ASSERT(g_io_done == true);
3786 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3787 
3788 	/* 4. miscompare with md separated where md buf is different */
3789 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3790 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3791 
3792 	g_io_done = false;
3793 	g_compare_read_buf = buf;
3794 	g_compare_read_buf_len = 1024;
3795 	g_compare_md_buf = md_buf_miscompare;
3796 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3797 					       offset, num_blocks, io_done, NULL);
3798 	CU_ASSERT_EQUAL(rc, 0);
3799 	num_completed = stub_complete_io(1);
3800 	CU_ASSERT_EQUAL(num_completed, 1);
3801 	CU_ASSERT(g_io_done == true);
3802 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3803 
3804 	/* 5. miscompare with md separated where buf is different */
3805 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3806 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3807 
3808 	g_io_done = false;
3809 	g_compare_read_buf = buf_miscompare;
3810 	g_compare_read_buf_len = sizeof(buf_miscompare);
3811 	g_compare_md_buf = md_buf;
3812 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3813 					       offset, num_blocks, io_done, NULL);
3814 	CU_ASSERT_EQUAL(rc, 0);
3815 	num_completed = stub_complete_io(1);
3816 	CU_ASSERT_EQUAL(num_completed, 1);
3817 	CU_ASSERT(g_io_done == true);
3818 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3819 
3820 	bdev->md_len = 0;
3821 	g_compare_md_buf = NULL;
3822 
3823 	spdk_put_io_channel(ioch);
3824 	spdk_bdev_close(desc);
3825 	free_bdev(bdev);
3826 	fn_table.submit_request = stub_submit_request;
3827 	ut_fini_bdev();
3828 
3829 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3830 
3831 	g_compare_read_buf = NULL;
3832 }
3833 
3834 static void
3835 bdev_compare(void)
3836 {
3837 	_bdev_compare(false);
3838 	_bdev_compare_with_md(false);
3839 }
3840 
3841 static void
3842 bdev_compare_emulated(void)
3843 {
3844 	_bdev_compare(true);
3845 	_bdev_compare_with_md(true);
3846 }
3847 
3848 static void
3849 bdev_compare_and_write(void)
3850 {
3851 	struct spdk_bdev *bdev;
3852 	struct spdk_bdev_desc *desc = NULL;
3853 	struct spdk_io_channel *ioch;
3854 	struct ut_expected_io *expected_io;
3855 	uint64_t offset, num_blocks;
3856 	uint32_t num_completed;
3857 	char aa_buf[512];
3858 	char bb_buf[512];
3859 	char cc_buf[512];
3860 	char write_buf[512];
3861 	struct iovec compare_iov;
3862 	struct iovec write_iov;
3863 	int rc;
3864 
3865 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3866 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3867 	memset(cc_buf, 0xcc, sizeof(cc_buf));
3868 
3869 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
3870 
3871 	ut_init_bdev(NULL);
3872 	fn_table.submit_request = stub_submit_request_get_buf;
3873 	bdev = allocate_bdev("bdev");
3874 
3875 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3876 	CU_ASSERT_EQUAL(rc, 0);
3877 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3878 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3879 	ioch = spdk_bdev_get_io_channel(desc);
3880 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3881 
3882 	fn_table.submit_request = stub_submit_request_get_buf;
3883 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3884 
3885 	offset = 50;
3886 	num_blocks = 1;
3887 	compare_iov.iov_base = aa_buf;
3888 	compare_iov.iov_len = sizeof(aa_buf);
3889 	write_iov.iov_base = bb_buf;
3890 	write_iov.iov_len = sizeof(bb_buf);
3891 
3892 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3893 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3894 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
3895 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3896 
3897 	g_io_done = false;
3898 	g_compare_read_buf = aa_buf;
3899 	g_compare_read_buf_len = sizeof(aa_buf);
3900 	memset(write_buf, 0, sizeof(write_buf));
3901 	g_compare_write_buf = write_buf;
3902 	g_compare_write_buf_len = sizeof(write_buf);
3903 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3904 			offset, num_blocks, io_done, NULL);
3905 	/* Trigger range locking */
3906 	poll_threads();
3907 	CU_ASSERT_EQUAL(rc, 0);
3908 	num_completed = stub_complete_io(1);
3909 	CU_ASSERT_EQUAL(num_completed, 1);
3910 	CU_ASSERT(g_io_done == false);
3911 	num_completed = stub_complete_io(1);
3912 	/* Trigger range unlocking */
3913 	poll_threads();
3914 	CU_ASSERT_EQUAL(num_completed, 1);
3915 	CU_ASSERT(g_io_done == true);
3916 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3917 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
3918 
3919 	/* Test miscompare */
3920 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3921 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3922 
3923 	g_io_done = false;
3924 	g_compare_read_buf = cc_buf;
3925 	g_compare_read_buf_len = sizeof(cc_buf);
3926 	memset(write_buf, 0, sizeof(write_buf));
3927 	g_compare_write_buf = write_buf;
3928 	g_compare_write_buf_len = sizeof(write_buf);
3929 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3930 			offset, num_blocks, io_done, NULL);
3931 	/* Trigger range locking */
3932 	poll_threads();
3933 	CU_ASSERT_EQUAL(rc, 0);
3934 	num_completed = stub_complete_io(1);
3935 	/* Trigger range unlocking earlier because we expect error here */
3936 	poll_threads();
3937 	CU_ASSERT_EQUAL(num_completed, 1);
3938 	CU_ASSERT(g_io_done == true);
3939 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3940 	num_completed = stub_complete_io(1);
3941 	CU_ASSERT_EQUAL(num_completed, 0);
3942 
3943 	spdk_put_io_channel(ioch);
3944 	spdk_bdev_close(desc);
3945 	free_bdev(bdev);
3946 	fn_table.submit_request = stub_submit_request;
3947 	ut_fini_bdev();
3948 
3949 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3950 
3951 	g_compare_read_buf = NULL;
3952 	g_compare_write_buf = NULL;
3953 }
3954 
3955 static void
3956 bdev_write_zeroes(void)
3957 {
3958 	struct spdk_bdev *bdev;
3959 	struct spdk_bdev_desc *desc = NULL;
3960 	struct spdk_io_channel *ioch;
3961 	struct ut_expected_io *expected_io;
3962 	uint64_t offset, num_io_blocks, num_blocks;
3963 	uint32_t num_completed, num_requests;
3964 	int rc;
3965 
3966 	ut_init_bdev(NULL);
3967 	bdev = allocate_bdev("bdev");
3968 
3969 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3970 	CU_ASSERT_EQUAL(rc, 0);
3971 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3972 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3973 	ioch = spdk_bdev_get_io_channel(desc);
3974 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3975 
3976 	fn_table.submit_request = stub_submit_request;
3977 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3978 
3979 	/* First test that if the bdev supports write_zeroes, the request won't be split */
3980 	bdev->md_len = 0;
3981 	bdev->blocklen = 4096;
3982 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3983 
3984 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
3985 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3986 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3987 	CU_ASSERT_EQUAL(rc, 0);
3988 	num_completed = stub_complete_io(1);
3989 	CU_ASSERT_EQUAL(num_completed, 1);
3990 
3991 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
3992 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
3993 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
3994 	num_requests = 2;
3995 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
3996 
3997 	for (offset = 0; offset < num_requests; ++offset) {
3998 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3999 						   offset * num_io_blocks, num_io_blocks, 0);
4000 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4001 	}
4002 
4003 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4004 	CU_ASSERT_EQUAL(rc, 0);
4005 	num_completed = stub_complete_io(num_requests);
4006 	CU_ASSERT_EQUAL(num_completed, num_requests);
4007 
4008 	/* Check that the splitting is correct if bdev has interleaved metadata */
4009 	bdev->md_interleave = true;
4010 	bdev->md_len = 64;
4011 	bdev->blocklen = 4096 + 64;
4012 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
4013 
4014 	num_requests = offset = 0;
4015 	while (offset < num_blocks) {
4016 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
4017 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
4018 						   offset, num_io_blocks, 0);
4019 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4020 		offset += num_io_blocks;
4021 		num_requests++;
4022 	}
4023 
4024 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4025 	CU_ASSERT_EQUAL(rc, 0);
4026 	num_completed = stub_complete_io(num_requests);
4027 	CU_ASSERT_EQUAL(num_completed, num_requests);
4028 	num_completed = stub_complete_io(num_requests);
4029 	assert(num_completed == 0);
4030 
4031 	/* Check the the same for separate metadata buffer */
4032 	bdev->md_interleave = false;
4033 	bdev->md_len = 64;
4034 	bdev->blocklen = 4096;
4035 
4036 	num_requests = offset = 0;
4037 	while (offset < num_blocks) {
4038 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
4039 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
4040 						   offset, num_io_blocks, 0);
4041 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
4042 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4043 		offset += num_io_blocks;
4044 		num_requests++;
4045 	}
4046 
4047 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4048 	CU_ASSERT_EQUAL(rc, 0);
4049 	num_completed = stub_complete_io(num_requests);
4050 	CU_ASSERT_EQUAL(num_completed, num_requests);
4051 
4052 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
4053 	spdk_put_io_channel(ioch);
4054 	spdk_bdev_close(desc);
4055 	free_bdev(bdev);
4056 	ut_fini_bdev();
4057 }
4058 
4059 static void
4060 bdev_zcopy_write(void)
4061 {
4062 	struct spdk_bdev *bdev;
4063 	struct spdk_bdev_desc *desc = NULL;
4064 	struct spdk_io_channel *ioch;
4065 	struct ut_expected_io *expected_io;
4066 	uint64_t offset, num_blocks;
4067 	uint32_t num_completed;
4068 	char aa_buf[512];
4069 	struct iovec iov;
4070 	int rc;
4071 	const bool populate = false;
4072 	const bool commit = true;
4073 
4074 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4075 
4076 	ut_init_bdev(NULL);
4077 	bdev = allocate_bdev("bdev");
4078 
4079 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4080 	CU_ASSERT_EQUAL(rc, 0);
4081 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4082 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4083 	ioch = spdk_bdev_get_io_channel(desc);
4084 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4085 
4086 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4087 
4088 	offset = 50;
4089 	num_blocks = 1;
4090 	iov.iov_base = NULL;
4091 	iov.iov_len = 0;
4092 
4093 	g_zcopy_read_buf = (void *) 0x1122334455667788UL;
4094 	g_zcopy_read_buf_len = (uint32_t) -1;
4095 	/* Do a zcopy start for a write (populate=false) */
4096 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4097 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4098 	g_io_done = false;
4099 	g_zcopy_write_buf = aa_buf;
4100 	g_zcopy_write_buf_len = sizeof(aa_buf);
4101 	g_zcopy_bdev_io = NULL;
4102 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4103 	CU_ASSERT_EQUAL(rc, 0);
4104 	num_completed = stub_complete_io(1);
4105 	CU_ASSERT_EQUAL(num_completed, 1);
4106 	CU_ASSERT(g_io_done == true);
4107 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4108 	/* Check that the iov has been set up */
4109 	CU_ASSERT(iov.iov_base == g_zcopy_write_buf);
4110 	CU_ASSERT(iov.iov_len == g_zcopy_write_buf_len);
4111 	/* Check that the bdev_io has been saved */
4112 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4113 	/* Now do the zcopy end for a write (commit=true) */
4114 	g_io_done = false;
4115 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4116 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4117 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4118 	CU_ASSERT_EQUAL(rc, 0);
4119 	num_completed = stub_complete_io(1);
4120 	CU_ASSERT_EQUAL(num_completed, 1);
4121 	CU_ASSERT(g_io_done == true);
4122 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4123 	/* Check the g_zcopy are reset by io_done */
4124 	CU_ASSERT(g_zcopy_write_buf == NULL);
4125 	CU_ASSERT(g_zcopy_write_buf_len == 0);
4126 	/* Check that io_done has freed the g_zcopy_bdev_io */
4127 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4128 
4129 	/* Check the zcopy read buffer has not been touched which
4130 	 * ensures that the correct buffers were used.
4131 	 */
4132 	CU_ASSERT(g_zcopy_read_buf == (void *) 0x1122334455667788UL);
4133 	CU_ASSERT(g_zcopy_read_buf_len == (uint32_t) -1);
4134 
4135 	spdk_put_io_channel(ioch);
4136 	spdk_bdev_close(desc);
4137 	free_bdev(bdev);
4138 	ut_fini_bdev();
4139 }
4140 
4141 static void
4142 bdev_zcopy_read(void)
4143 {
4144 	struct spdk_bdev *bdev;
4145 	struct spdk_bdev_desc *desc = NULL;
4146 	struct spdk_io_channel *ioch;
4147 	struct ut_expected_io *expected_io;
4148 	uint64_t offset, num_blocks;
4149 	uint32_t num_completed;
4150 	char aa_buf[512];
4151 	struct iovec iov;
4152 	int rc;
4153 	const bool populate = true;
4154 	const bool commit = false;
4155 
4156 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4157 
4158 	ut_init_bdev(NULL);
4159 	bdev = allocate_bdev("bdev");
4160 
4161 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4162 	CU_ASSERT_EQUAL(rc, 0);
4163 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4164 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4165 	ioch = spdk_bdev_get_io_channel(desc);
4166 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4167 
4168 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4169 
4170 	offset = 50;
4171 	num_blocks = 1;
4172 	iov.iov_base = NULL;
4173 	iov.iov_len = 0;
4174 
4175 	g_zcopy_write_buf = (void *) 0x1122334455667788UL;
4176 	g_zcopy_write_buf_len = (uint32_t) -1;
4177 
4178 	/* Do a zcopy start for a read (populate=true) */
4179 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4180 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4181 	g_io_done = false;
4182 	g_zcopy_read_buf = aa_buf;
4183 	g_zcopy_read_buf_len = sizeof(aa_buf);
4184 	g_zcopy_bdev_io = NULL;
4185 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4186 	CU_ASSERT_EQUAL(rc, 0);
4187 	num_completed = stub_complete_io(1);
4188 	CU_ASSERT_EQUAL(num_completed, 1);
4189 	CU_ASSERT(g_io_done == true);
4190 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4191 	/* Check that the iov has been set up */
4192 	CU_ASSERT(iov.iov_base == g_zcopy_read_buf);
4193 	CU_ASSERT(iov.iov_len == g_zcopy_read_buf_len);
4194 	/* Check that the bdev_io has been saved */
4195 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4196 
4197 	/* Now do the zcopy end for a read (commit=false) */
4198 	g_io_done = false;
4199 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4200 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4201 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4202 	CU_ASSERT_EQUAL(rc, 0);
4203 	num_completed = stub_complete_io(1);
4204 	CU_ASSERT_EQUAL(num_completed, 1);
4205 	CU_ASSERT(g_io_done == true);
4206 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4207 	/* Check the g_zcopy are reset by io_done */
4208 	CU_ASSERT(g_zcopy_read_buf == NULL);
4209 	CU_ASSERT(g_zcopy_read_buf_len == 0);
4210 	/* Check that io_done has freed the g_zcopy_bdev_io */
4211 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4212 
4213 	/* Check the zcopy write buffer has not been touched which
4214 	 * ensures that the correct buffers were used.
4215 	 */
4216 	CU_ASSERT(g_zcopy_write_buf == (void *) 0x1122334455667788UL);
4217 	CU_ASSERT(g_zcopy_write_buf_len == (uint32_t) -1);
4218 
4219 	spdk_put_io_channel(ioch);
4220 	spdk_bdev_close(desc);
4221 	free_bdev(bdev);
4222 	ut_fini_bdev();
4223 }
4224 
4225 static void
4226 bdev_open_while_hotremove(void)
4227 {
4228 	struct spdk_bdev *bdev;
4229 	struct spdk_bdev_desc *desc[2] = {};
4230 	int rc;
4231 
4232 	bdev = allocate_bdev("bdev");
4233 
4234 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
4235 	CU_ASSERT(rc == 0);
4236 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
4237 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
4238 
4239 	spdk_bdev_unregister(bdev, NULL, NULL);
4240 	/* Bdev unregister is handled asynchronously. Poll thread to complete. */
4241 	poll_threads();
4242 
4243 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
4244 	CU_ASSERT(rc == -ENODEV);
4245 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
4246 
4247 	spdk_bdev_close(desc[0]);
4248 	free_bdev(bdev);
4249 }
4250 
4251 static void
4252 bdev_close_while_hotremove(void)
4253 {
4254 	struct spdk_bdev *bdev;
4255 	struct spdk_bdev_desc *desc = NULL;
4256 	int rc = 0;
4257 
4258 	bdev = allocate_bdev("bdev");
4259 
4260 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
4261 	CU_ASSERT_EQUAL(rc, 0);
4262 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4263 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4264 
4265 	/* Simulate hot-unplug by unregistering bdev */
4266 	g_event_type1 = 0xFF;
4267 	g_unregister_arg = NULL;
4268 	g_unregister_rc = -1;
4269 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4270 	/* Close device while remove event is in flight */
4271 	spdk_bdev_close(desc);
4272 
4273 	/* Ensure that unregister callback is delayed */
4274 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
4275 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
4276 
4277 	poll_threads();
4278 
4279 	/* Event callback shall not be issued because device was closed */
4280 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
4281 	/* Unregister callback is issued */
4282 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
4283 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
4284 
4285 	free_bdev(bdev);
4286 }
4287 
4288 static void
4289 bdev_open_ext(void)
4290 {
4291 	struct spdk_bdev *bdev;
4292 	struct spdk_bdev_desc *desc1 = NULL;
4293 	struct spdk_bdev_desc *desc2 = NULL;
4294 	int rc = 0;
4295 
4296 	bdev = allocate_bdev("bdev");
4297 
4298 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4299 	CU_ASSERT_EQUAL(rc, -EINVAL);
4300 
4301 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4302 	CU_ASSERT_EQUAL(rc, 0);
4303 
4304 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4305 	CU_ASSERT_EQUAL(rc, 0);
4306 
4307 	g_event_type1 = 0xFF;
4308 	g_event_type2 = 0xFF;
4309 
4310 	/* Simulate hot-unplug by unregistering bdev */
4311 	spdk_bdev_unregister(bdev, NULL, NULL);
4312 	poll_threads();
4313 
4314 	/* Check if correct events have been triggered in event callback fn */
4315 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4316 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4317 
4318 	free_bdev(bdev);
4319 	poll_threads();
4320 }
4321 
4322 static void
4323 bdev_open_ext_unregister(void)
4324 {
4325 	struct spdk_bdev *bdev;
4326 	struct spdk_bdev_desc *desc1 = NULL;
4327 	struct spdk_bdev_desc *desc2 = NULL;
4328 	struct spdk_bdev_desc *desc3 = NULL;
4329 	struct spdk_bdev_desc *desc4 = NULL;
4330 	int rc = 0;
4331 
4332 	bdev = allocate_bdev("bdev");
4333 
4334 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4335 	CU_ASSERT_EQUAL(rc, -EINVAL);
4336 
4337 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4338 	CU_ASSERT_EQUAL(rc, 0);
4339 
4340 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4341 	CU_ASSERT_EQUAL(rc, 0);
4342 
4343 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb3, &desc3, &desc3);
4344 	CU_ASSERT_EQUAL(rc, 0);
4345 
4346 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb4, &desc4, &desc4);
4347 	CU_ASSERT_EQUAL(rc, 0);
4348 
4349 	g_event_type1 = 0xFF;
4350 	g_event_type2 = 0xFF;
4351 	g_event_type3 = 0xFF;
4352 	g_event_type4 = 0xFF;
4353 
4354 	g_unregister_arg = NULL;
4355 	g_unregister_rc = -1;
4356 
4357 	/* Simulate hot-unplug by unregistering bdev */
4358 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4359 
4360 	/*
4361 	 * Unregister is handled asynchronously and event callback
4362 	 * (i.e., above bdev_open_cbN) will be called.
4363 	 * For bdev_open_cb3 and bdev_open_cb4, it is intended to not
4364 	 * close the desc3 and desc4 so that the bdev is not closed.
4365 	 */
4366 	poll_threads();
4367 
4368 	/* Check if correct events have been triggered in event callback fn */
4369 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4370 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4371 	CU_ASSERT_EQUAL(g_event_type3, SPDK_BDEV_EVENT_REMOVE);
4372 	CU_ASSERT_EQUAL(g_event_type4, SPDK_BDEV_EVENT_REMOVE);
4373 
4374 	/* Check that unregister callback is delayed */
4375 	CU_ASSERT(g_unregister_arg == NULL);
4376 	CU_ASSERT(g_unregister_rc == -1);
4377 
4378 	/*
4379 	 * Explicitly close desc3. As desc4 is still opened there, the
4380 	 * unergister callback is still delayed to execute.
4381 	 */
4382 	spdk_bdev_close(desc3);
4383 	CU_ASSERT(g_unregister_arg == NULL);
4384 	CU_ASSERT(g_unregister_rc == -1);
4385 
4386 	/*
4387 	 * Explicitly close desc4 to trigger the ongoing bdev unregister
4388 	 * operation after last desc is closed.
4389 	 */
4390 	spdk_bdev_close(desc4);
4391 
4392 	/* Poll the thread for the async unregister operation */
4393 	poll_threads();
4394 
4395 	/* Check that unregister callback is executed */
4396 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
4397 	CU_ASSERT(g_unregister_rc == 0);
4398 
4399 	free_bdev(bdev);
4400 	poll_threads();
4401 }
4402 
4403 struct timeout_io_cb_arg {
4404 	struct iovec iov;
4405 	uint8_t type;
4406 };
4407 
4408 static int
4409 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
4410 {
4411 	struct spdk_bdev_io *bdev_io;
4412 	int n = 0;
4413 
4414 	if (!ch) {
4415 		return -1;
4416 	}
4417 
4418 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
4419 		n++;
4420 	}
4421 
4422 	return n;
4423 }
4424 
4425 static void
4426 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
4427 {
4428 	struct timeout_io_cb_arg *ctx = cb_arg;
4429 
4430 	ctx->type = bdev_io->type;
4431 	ctx->iov.iov_base = bdev_io->iov.iov_base;
4432 	ctx->iov.iov_len = bdev_io->iov.iov_len;
4433 }
4434 
4435 static void
4436 bdev_set_io_timeout(void)
4437 {
4438 	struct spdk_bdev *bdev;
4439 	struct spdk_bdev_desc *desc = NULL;
4440 	struct spdk_io_channel *io_ch = NULL;
4441 	struct spdk_bdev_channel *bdev_ch = NULL;
4442 	struct timeout_io_cb_arg cb_arg;
4443 
4444 	ut_init_bdev(NULL);
4445 	bdev = allocate_bdev("bdev");
4446 
4447 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4448 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4449 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4450 
4451 	io_ch = spdk_bdev_get_io_channel(desc);
4452 	CU_ASSERT(io_ch != NULL);
4453 
4454 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4455 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4456 
4457 	/* This is the part1.
4458 	 * We will check the bdev_ch->io_submitted list
4459 	 * TO make sure that it can link IOs and only the user submitted IOs
4460 	 */
4461 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4462 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4463 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4464 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4465 	stub_complete_io(1);
4466 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4467 	stub_complete_io(1);
4468 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4469 
4470 	/* Split IO */
4471 	bdev->optimal_io_boundary = 16;
4472 	bdev->split_on_optimal_io_boundary = true;
4473 
4474 	/* Now test that a single-vector command is split correctly.
4475 	 * Offset 14, length 8, payload 0xF000
4476 	 *  Child - Offset 14, length 2, payload 0xF000
4477 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4478 	 *
4479 	 * Set up the expected values before calling spdk_bdev_read_blocks
4480 	 */
4481 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4482 	/* We count all submitted IOs including IO that are generated by splitting. */
4483 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
4484 	stub_complete_io(1);
4485 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4486 	stub_complete_io(1);
4487 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4488 
4489 	/* Also include the reset IO */
4490 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4491 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4492 	poll_threads();
4493 	stub_complete_io(1);
4494 	poll_threads();
4495 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4496 
4497 	/* This is part2
4498 	 * Test the desc timeout poller register
4499 	 */
4500 
4501 	/* Successfully set the timeout */
4502 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4503 	CU_ASSERT(desc->io_timeout_poller != NULL);
4504 	CU_ASSERT(desc->timeout_in_sec == 30);
4505 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4506 	CU_ASSERT(desc->cb_arg == &cb_arg);
4507 
4508 	/* Change the timeout limit */
4509 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4510 	CU_ASSERT(desc->io_timeout_poller != NULL);
4511 	CU_ASSERT(desc->timeout_in_sec == 20);
4512 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4513 	CU_ASSERT(desc->cb_arg == &cb_arg);
4514 
4515 	/* Disable the timeout */
4516 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
4517 	CU_ASSERT(desc->io_timeout_poller == NULL);
4518 
4519 	/* This the part3
4520 	 * We will test to catch timeout IO and check whether the IO is
4521 	 * the submitted one.
4522 	 */
4523 	memset(&cb_arg, 0, sizeof(cb_arg));
4524 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4525 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
4526 
4527 	/* Don't reach the limit */
4528 	spdk_delay_us(15 * spdk_get_ticks_hz());
4529 	poll_threads();
4530 	CU_ASSERT(cb_arg.type == 0);
4531 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4532 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4533 
4534 	/* 15 + 15 = 30 reach the limit */
4535 	spdk_delay_us(15 * spdk_get_ticks_hz());
4536 	poll_threads();
4537 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4538 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
4539 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
4540 	stub_complete_io(1);
4541 
4542 	/* Use the same split IO above and check the IO */
4543 	memset(&cb_arg, 0, sizeof(cb_arg));
4544 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4545 
4546 	/* The first child complete in time */
4547 	spdk_delay_us(15 * spdk_get_ticks_hz());
4548 	poll_threads();
4549 	stub_complete_io(1);
4550 	CU_ASSERT(cb_arg.type == 0);
4551 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4552 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4553 
4554 	/* The second child reach the limit */
4555 	spdk_delay_us(15 * spdk_get_ticks_hz());
4556 	poll_threads();
4557 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4558 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
4559 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
4560 	stub_complete_io(1);
4561 
4562 	/* Also include the reset IO */
4563 	memset(&cb_arg, 0, sizeof(cb_arg));
4564 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4565 	spdk_delay_us(30 * spdk_get_ticks_hz());
4566 	poll_threads();
4567 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
4568 	stub_complete_io(1);
4569 	poll_threads();
4570 
4571 	spdk_put_io_channel(io_ch);
4572 	spdk_bdev_close(desc);
4573 	free_bdev(bdev);
4574 	ut_fini_bdev();
4575 }
4576 
4577 static void
4578 bdev_set_qd_sampling(void)
4579 {
4580 	struct spdk_bdev *bdev;
4581 	struct spdk_bdev_desc *desc = NULL;
4582 	struct spdk_io_channel *io_ch = NULL;
4583 	struct spdk_bdev_channel *bdev_ch = NULL;
4584 	struct timeout_io_cb_arg cb_arg;
4585 
4586 	ut_init_bdev(NULL);
4587 	bdev = allocate_bdev("bdev");
4588 
4589 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4590 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4591 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4592 
4593 	io_ch = spdk_bdev_get_io_channel(desc);
4594 	CU_ASSERT(io_ch != NULL);
4595 
4596 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4597 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4598 
4599 	/* This is the part1.
4600 	 * We will check the bdev_ch->io_submitted list
4601 	 * TO make sure that it can link IOs and only the user submitted IOs
4602 	 */
4603 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4604 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4605 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4606 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4607 	stub_complete_io(1);
4608 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4609 	stub_complete_io(1);
4610 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4611 
4612 	/* This is the part2.
4613 	 * Test the bdev's qd poller register
4614 	 */
4615 	/* 1st Successfully set the qd sampling period */
4616 	spdk_bdev_set_qd_sampling_period(bdev, 10);
4617 	CU_ASSERT(bdev->internal.new_period == 10);
4618 	CU_ASSERT(bdev->internal.period == 10);
4619 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4620 	poll_threads();
4621 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4622 
4623 	/* 2nd Change the qd sampling period */
4624 	spdk_bdev_set_qd_sampling_period(bdev, 20);
4625 	CU_ASSERT(bdev->internal.new_period == 20);
4626 	CU_ASSERT(bdev->internal.period == 10);
4627 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4628 	poll_threads();
4629 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4630 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4631 
4632 	/* 3rd Change the qd sampling period and verify qd_poll_in_progress */
4633 	spdk_delay_us(20);
4634 	poll_thread_times(0, 1);
4635 	CU_ASSERT(bdev->internal.qd_poll_in_progress == true);
4636 	spdk_bdev_set_qd_sampling_period(bdev, 30);
4637 	CU_ASSERT(bdev->internal.new_period == 30);
4638 	CU_ASSERT(bdev->internal.period == 20);
4639 	poll_threads();
4640 	CU_ASSERT(bdev->internal.qd_poll_in_progress == false);
4641 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4642 
4643 	/* 4th Disable the qd sampling period */
4644 	spdk_bdev_set_qd_sampling_period(bdev, 0);
4645 	CU_ASSERT(bdev->internal.new_period == 0);
4646 	CU_ASSERT(bdev->internal.period == 30);
4647 	poll_threads();
4648 	CU_ASSERT(bdev->internal.qd_poller == NULL);
4649 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4650 	CU_ASSERT(bdev->internal.qd_desc == NULL);
4651 
4652 	/* This is the part3.
4653 	 * We will test the submitted IO and reset works
4654 	 * properly with the qd sampling.
4655 	 */
4656 	memset(&cb_arg, 0, sizeof(cb_arg));
4657 	spdk_bdev_set_qd_sampling_period(bdev, 1);
4658 	poll_threads();
4659 
4660 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4661 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4662 
4663 	/* Also include the reset IO */
4664 	memset(&cb_arg, 0, sizeof(cb_arg));
4665 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4666 	poll_threads();
4667 
4668 	/* Close the desc */
4669 	spdk_put_io_channel(io_ch);
4670 	spdk_bdev_close(desc);
4671 
4672 	/* Complete the submitted IO and reset */
4673 	stub_complete_io(2);
4674 	poll_threads();
4675 
4676 	free_bdev(bdev);
4677 	ut_fini_bdev();
4678 }
4679 
4680 static void
4681 lba_range_overlap(void)
4682 {
4683 	struct lba_range r1, r2;
4684 
4685 	r1.offset = 100;
4686 	r1.length = 50;
4687 
4688 	r2.offset = 0;
4689 	r2.length = 1;
4690 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4691 
4692 	r2.offset = 0;
4693 	r2.length = 100;
4694 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4695 
4696 	r2.offset = 0;
4697 	r2.length = 110;
4698 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4699 
4700 	r2.offset = 100;
4701 	r2.length = 10;
4702 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4703 
4704 	r2.offset = 110;
4705 	r2.length = 20;
4706 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4707 
4708 	r2.offset = 140;
4709 	r2.length = 150;
4710 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4711 
4712 	r2.offset = 130;
4713 	r2.length = 200;
4714 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4715 
4716 	r2.offset = 150;
4717 	r2.length = 100;
4718 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4719 
4720 	r2.offset = 110;
4721 	r2.length = 0;
4722 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4723 }
4724 
4725 static bool g_lock_lba_range_done;
4726 static bool g_unlock_lba_range_done;
4727 
4728 static void
4729 lock_lba_range_done(void *ctx, int status)
4730 {
4731 	g_lock_lba_range_done = true;
4732 }
4733 
4734 static void
4735 unlock_lba_range_done(void *ctx, int status)
4736 {
4737 	g_unlock_lba_range_done = true;
4738 }
4739 
4740 static void
4741 lock_lba_range_check_ranges(void)
4742 {
4743 	struct spdk_bdev *bdev;
4744 	struct spdk_bdev_desc *desc = NULL;
4745 	struct spdk_io_channel *io_ch;
4746 	struct spdk_bdev_channel *channel;
4747 	struct lba_range *range;
4748 	int ctx1;
4749 	int rc;
4750 
4751 	ut_init_bdev(NULL);
4752 	bdev = allocate_bdev("bdev0");
4753 
4754 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4755 	CU_ASSERT(rc == 0);
4756 	CU_ASSERT(desc != NULL);
4757 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4758 	io_ch = spdk_bdev_get_io_channel(desc);
4759 	CU_ASSERT(io_ch != NULL);
4760 	channel = spdk_io_channel_get_ctx(io_ch);
4761 
4762 	g_lock_lba_range_done = false;
4763 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4764 	CU_ASSERT(rc == 0);
4765 	poll_threads();
4766 
4767 	CU_ASSERT(g_lock_lba_range_done == true);
4768 	range = TAILQ_FIRST(&channel->locked_ranges);
4769 	SPDK_CU_ASSERT_FATAL(range != NULL);
4770 	CU_ASSERT(range->offset == 20);
4771 	CU_ASSERT(range->length == 10);
4772 	CU_ASSERT(range->owner_ch == channel);
4773 
4774 	/* Unlocks must exactly match a lock. */
4775 	g_unlock_lba_range_done = false;
4776 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
4777 	CU_ASSERT(rc == -EINVAL);
4778 	CU_ASSERT(g_unlock_lba_range_done == false);
4779 
4780 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4781 	CU_ASSERT(rc == 0);
4782 	spdk_delay_us(100);
4783 	poll_threads();
4784 
4785 	CU_ASSERT(g_unlock_lba_range_done == true);
4786 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4787 
4788 	spdk_put_io_channel(io_ch);
4789 	spdk_bdev_close(desc);
4790 	free_bdev(bdev);
4791 	ut_fini_bdev();
4792 }
4793 
4794 static void
4795 lock_lba_range_with_io_outstanding(void)
4796 {
4797 	struct spdk_bdev *bdev;
4798 	struct spdk_bdev_desc *desc = NULL;
4799 	struct spdk_io_channel *io_ch;
4800 	struct spdk_bdev_channel *channel;
4801 	struct lba_range *range;
4802 	char buf[4096];
4803 	int ctx1;
4804 	int rc;
4805 
4806 	ut_init_bdev(NULL);
4807 	bdev = allocate_bdev("bdev0");
4808 
4809 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4810 	CU_ASSERT(rc == 0);
4811 	CU_ASSERT(desc != NULL);
4812 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4813 	io_ch = spdk_bdev_get_io_channel(desc);
4814 	CU_ASSERT(io_ch != NULL);
4815 	channel = spdk_io_channel_get_ctx(io_ch);
4816 
4817 	g_io_done = false;
4818 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4819 	CU_ASSERT(rc == 0);
4820 
4821 	g_lock_lba_range_done = false;
4822 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4823 	CU_ASSERT(rc == 0);
4824 	poll_threads();
4825 
4826 	/* The lock should immediately become valid, since there are no outstanding
4827 	 * write I/O.
4828 	 */
4829 	CU_ASSERT(g_io_done == false);
4830 	CU_ASSERT(g_lock_lba_range_done == true);
4831 	range = TAILQ_FIRST(&channel->locked_ranges);
4832 	SPDK_CU_ASSERT_FATAL(range != NULL);
4833 	CU_ASSERT(range->offset == 20);
4834 	CU_ASSERT(range->length == 10);
4835 	CU_ASSERT(range->owner_ch == channel);
4836 	CU_ASSERT(range->locked_ctx == &ctx1);
4837 
4838 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4839 	CU_ASSERT(rc == 0);
4840 	stub_complete_io(1);
4841 	spdk_delay_us(100);
4842 	poll_threads();
4843 
4844 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4845 
4846 	/* Now try again, but with a write I/O. */
4847 	g_io_done = false;
4848 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4849 	CU_ASSERT(rc == 0);
4850 
4851 	g_lock_lba_range_done = false;
4852 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4853 	CU_ASSERT(rc == 0);
4854 	poll_threads();
4855 
4856 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
4857 	 * But note that the range should be on the channel's locked_list, to make sure no
4858 	 * new write I/O are started.
4859 	 */
4860 	CU_ASSERT(g_io_done == false);
4861 	CU_ASSERT(g_lock_lba_range_done == false);
4862 	range = TAILQ_FIRST(&channel->locked_ranges);
4863 	SPDK_CU_ASSERT_FATAL(range != NULL);
4864 	CU_ASSERT(range->offset == 20);
4865 	CU_ASSERT(range->length == 10);
4866 
4867 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
4868 	 * our callback was invoked).
4869 	 */
4870 	stub_complete_io(1);
4871 	spdk_delay_us(100);
4872 	poll_threads();
4873 	CU_ASSERT(g_io_done == true);
4874 	CU_ASSERT(g_lock_lba_range_done == true);
4875 
4876 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4877 	CU_ASSERT(rc == 0);
4878 	poll_threads();
4879 
4880 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4881 
4882 	spdk_put_io_channel(io_ch);
4883 	spdk_bdev_close(desc);
4884 	free_bdev(bdev);
4885 	ut_fini_bdev();
4886 }
4887 
4888 static void
4889 lock_lba_range_overlapped(void)
4890 {
4891 	struct spdk_bdev *bdev;
4892 	struct spdk_bdev_desc *desc = NULL;
4893 	struct spdk_io_channel *io_ch;
4894 	struct spdk_bdev_channel *channel;
4895 	struct lba_range *range;
4896 	int ctx1;
4897 	int rc;
4898 
4899 	ut_init_bdev(NULL);
4900 	bdev = allocate_bdev("bdev0");
4901 
4902 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4903 	CU_ASSERT(rc == 0);
4904 	CU_ASSERT(desc != NULL);
4905 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4906 	io_ch = spdk_bdev_get_io_channel(desc);
4907 	CU_ASSERT(io_ch != NULL);
4908 	channel = spdk_io_channel_get_ctx(io_ch);
4909 
4910 	/* Lock range 20-29. */
4911 	g_lock_lba_range_done = false;
4912 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4913 	CU_ASSERT(rc == 0);
4914 	poll_threads();
4915 
4916 	CU_ASSERT(g_lock_lba_range_done == true);
4917 	range = TAILQ_FIRST(&channel->locked_ranges);
4918 	SPDK_CU_ASSERT_FATAL(range != NULL);
4919 	CU_ASSERT(range->offset == 20);
4920 	CU_ASSERT(range->length == 10);
4921 
4922 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
4923 	 * 20-29.
4924 	 */
4925 	g_lock_lba_range_done = false;
4926 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
4927 	CU_ASSERT(rc == 0);
4928 	poll_threads();
4929 
4930 	CU_ASSERT(g_lock_lba_range_done == false);
4931 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4932 	SPDK_CU_ASSERT_FATAL(range != NULL);
4933 	CU_ASSERT(range->offset == 25);
4934 	CU_ASSERT(range->length == 15);
4935 
4936 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
4937 	 * no longer overlaps with an active lock.
4938 	 */
4939 	g_unlock_lba_range_done = false;
4940 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4941 	CU_ASSERT(rc == 0);
4942 	poll_threads();
4943 
4944 	CU_ASSERT(g_unlock_lba_range_done == true);
4945 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4946 	range = TAILQ_FIRST(&channel->locked_ranges);
4947 	SPDK_CU_ASSERT_FATAL(range != NULL);
4948 	CU_ASSERT(range->offset == 25);
4949 	CU_ASSERT(range->length == 15);
4950 
4951 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
4952 	 * currently active 25-39 lock.
4953 	 */
4954 	g_lock_lba_range_done = false;
4955 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
4956 	CU_ASSERT(rc == 0);
4957 	poll_threads();
4958 
4959 	CU_ASSERT(g_lock_lba_range_done == true);
4960 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4961 	SPDK_CU_ASSERT_FATAL(range != NULL);
4962 	range = TAILQ_NEXT(range, tailq);
4963 	SPDK_CU_ASSERT_FATAL(range != NULL);
4964 	CU_ASSERT(range->offset == 40);
4965 	CU_ASSERT(range->length == 20);
4966 
4967 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
4968 	g_lock_lba_range_done = false;
4969 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
4970 	CU_ASSERT(rc == 0);
4971 	poll_threads();
4972 
4973 	CU_ASSERT(g_lock_lba_range_done == false);
4974 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4975 	SPDK_CU_ASSERT_FATAL(range != NULL);
4976 	CU_ASSERT(range->offset == 35);
4977 	CU_ASSERT(range->length == 10);
4978 
4979 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
4980 	 * the 40-59 lock is still active.
4981 	 */
4982 	g_unlock_lba_range_done = false;
4983 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
4984 	CU_ASSERT(rc == 0);
4985 	poll_threads();
4986 
4987 	CU_ASSERT(g_unlock_lba_range_done == true);
4988 	CU_ASSERT(g_lock_lba_range_done == false);
4989 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4990 	SPDK_CU_ASSERT_FATAL(range != NULL);
4991 	CU_ASSERT(range->offset == 35);
4992 	CU_ASSERT(range->length == 10);
4993 
4994 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
4995 	 * no longer any active overlapping locks.
4996 	 */
4997 	g_unlock_lba_range_done = false;
4998 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
4999 	CU_ASSERT(rc == 0);
5000 	poll_threads();
5001 
5002 	CU_ASSERT(g_unlock_lba_range_done == true);
5003 	CU_ASSERT(g_lock_lba_range_done == true);
5004 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
5005 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
5006 	SPDK_CU_ASSERT_FATAL(range != NULL);
5007 	CU_ASSERT(range->offset == 35);
5008 	CU_ASSERT(range->length == 10);
5009 
5010 	/* Finally, unlock 35-44. */
5011 	g_unlock_lba_range_done = false;
5012 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
5013 	CU_ASSERT(rc == 0);
5014 	poll_threads();
5015 
5016 	CU_ASSERT(g_unlock_lba_range_done == true);
5017 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
5018 
5019 	spdk_put_io_channel(io_ch);
5020 	spdk_bdev_close(desc);
5021 	free_bdev(bdev);
5022 	ut_fini_bdev();
5023 }
5024 
5025 static void
5026 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
5027 {
5028 	g_abort_done = true;
5029 	g_abort_status = bdev_io->internal.status;
5030 	spdk_bdev_free_io(bdev_io);
5031 }
5032 
5033 static void
5034 bdev_io_abort(void)
5035 {
5036 	struct spdk_bdev *bdev;
5037 	struct spdk_bdev_desc *desc = NULL;
5038 	struct spdk_io_channel *io_ch;
5039 	struct spdk_bdev_channel *channel;
5040 	struct spdk_bdev_mgmt_channel *mgmt_ch;
5041 	struct spdk_bdev_opts bdev_opts = {};
5042 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
5043 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
5044 	int rc;
5045 
5046 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5047 	bdev_opts.bdev_io_pool_size = 7;
5048 	bdev_opts.bdev_io_cache_size = 2;
5049 	ut_init_bdev(&bdev_opts);
5050 
5051 	bdev = allocate_bdev("bdev0");
5052 
5053 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5054 	CU_ASSERT(rc == 0);
5055 	CU_ASSERT(desc != NULL);
5056 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5057 	io_ch = spdk_bdev_get_io_channel(desc);
5058 	CU_ASSERT(io_ch != NULL);
5059 	channel = spdk_io_channel_get_ctx(io_ch);
5060 	mgmt_ch = channel->shared_resource->mgmt_ch;
5061 
5062 	g_abort_done = false;
5063 
5064 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
5065 
5066 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5067 	CU_ASSERT(rc == -ENOTSUP);
5068 
5069 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
5070 
5071 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
5072 	CU_ASSERT(rc == 0);
5073 	CU_ASSERT(g_abort_done == true);
5074 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
5075 
5076 	/* Test the case that the target I/O was successfully aborted. */
5077 	g_io_done = false;
5078 
5079 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5080 	CU_ASSERT(rc == 0);
5081 	CU_ASSERT(g_io_done == false);
5082 
5083 	g_abort_done = false;
5084 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5085 
5086 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5087 	CU_ASSERT(rc == 0);
5088 	CU_ASSERT(g_io_done == true);
5089 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5090 	stub_complete_io(1);
5091 	CU_ASSERT(g_abort_done == true);
5092 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5093 
5094 	/* Test the case that the target I/O was not aborted because it completed
5095 	 * in the middle of execution of the abort.
5096 	 */
5097 	g_io_done = false;
5098 
5099 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5100 	CU_ASSERT(rc == 0);
5101 	CU_ASSERT(g_io_done == false);
5102 
5103 	g_abort_done = false;
5104 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5105 
5106 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5107 	CU_ASSERT(rc == 0);
5108 	CU_ASSERT(g_io_done == false);
5109 
5110 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5111 	stub_complete_io(1);
5112 	CU_ASSERT(g_io_done == true);
5113 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5114 
5115 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5116 	stub_complete_io(1);
5117 	CU_ASSERT(g_abort_done == true);
5118 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5119 
5120 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5121 
5122 	bdev->optimal_io_boundary = 16;
5123 	bdev->split_on_optimal_io_boundary = true;
5124 
5125 	/* Test that a single-vector command which is split is aborted correctly.
5126 	 * Offset 14, length 8, payload 0xF000
5127 	 *  Child - Offset 14, length 2, payload 0xF000
5128 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5129 	 */
5130 	g_io_done = false;
5131 
5132 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
5133 	CU_ASSERT(rc == 0);
5134 	CU_ASSERT(g_io_done == false);
5135 
5136 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5137 
5138 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5139 
5140 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5141 	CU_ASSERT(rc == 0);
5142 	CU_ASSERT(g_io_done == true);
5143 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5144 	stub_complete_io(2);
5145 	CU_ASSERT(g_abort_done == true);
5146 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5147 
5148 	/* Test that a multi-vector command that needs to be split by strip and then
5149 	 * needs to be split is aborted correctly. Abort is requested before the second
5150 	 * child I/O was submitted. The parent I/O should complete with failure without
5151 	 * submitting the second child I/O.
5152 	 */
5153 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
5154 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
5155 		iov[i].iov_len = 512;
5156 	}
5157 
5158 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
5159 	g_io_done = false;
5160 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
5161 				    SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
5162 	CU_ASSERT(rc == 0);
5163 	CU_ASSERT(g_io_done == false);
5164 
5165 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5166 
5167 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5168 
5169 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5170 	CU_ASSERT(rc == 0);
5171 	CU_ASSERT(g_io_done == true);
5172 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5173 	stub_complete_io(1);
5174 	CU_ASSERT(g_abort_done == true);
5175 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5176 
5177 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5178 
5179 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5180 
5181 	bdev->optimal_io_boundary = 16;
5182 	g_io_done = false;
5183 
5184 	/* Test that a ingle-vector command which is split is aborted correctly.
5185 	 * Differently from the above, the child abort request will be submitted
5186 	 * sequentially due to the capacity of spdk_bdev_io.
5187 	 */
5188 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
5189 	CU_ASSERT(rc == 0);
5190 	CU_ASSERT(g_io_done == false);
5191 
5192 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5193 
5194 	g_abort_done = false;
5195 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5196 
5197 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5198 	CU_ASSERT(rc == 0);
5199 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
5200 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5201 
5202 	stub_complete_io(1);
5203 	CU_ASSERT(g_io_done == true);
5204 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5205 	stub_complete_io(3);
5206 	CU_ASSERT(g_abort_done == true);
5207 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5208 
5209 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5210 
5211 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5212 
5213 	spdk_put_io_channel(io_ch);
5214 	spdk_bdev_close(desc);
5215 	free_bdev(bdev);
5216 	ut_fini_bdev();
5217 }
5218 
5219 static void
5220 bdev_unmap(void)
5221 {
5222 	struct spdk_bdev *bdev;
5223 	struct spdk_bdev_desc *desc = NULL;
5224 	struct spdk_io_channel *ioch;
5225 	struct spdk_bdev_channel *bdev_ch;
5226 	struct ut_expected_io *expected_io;
5227 	struct spdk_bdev_opts bdev_opts = {};
5228 	uint32_t i, num_outstanding;
5229 	uint64_t offset, num_blocks, max_unmap_blocks, num_children;
5230 	int rc;
5231 
5232 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5233 	bdev_opts.bdev_io_pool_size = 512;
5234 	bdev_opts.bdev_io_cache_size = 64;
5235 	ut_init_bdev(&bdev_opts);
5236 
5237 	bdev = allocate_bdev("bdev");
5238 
5239 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5240 	CU_ASSERT_EQUAL(rc, 0);
5241 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5242 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5243 	ioch = spdk_bdev_get_io_channel(desc);
5244 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5245 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5246 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5247 
5248 	fn_table.submit_request = stub_submit_request;
5249 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5250 
5251 	/* Case 1: First test the request won't be split */
5252 	num_blocks = 32;
5253 
5254 	g_io_done = false;
5255 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 0, num_blocks, 0);
5256 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5257 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5258 	CU_ASSERT_EQUAL(rc, 0);
5259 	CU_ASSERT(g_io_done == false);
5260 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5261 	stub_complete_io(1);
5262 	CU_ASSERT(g_io_done == true);
5263 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5264 
5265 	/* Case 2: Test the split with 2 children requests */
5266 	bdev->max_unmap = 8;
5267 	bdev->max_unmap_segments = 2;
5268 	max_unmap_blocks = bdev->max_unmap * bdev->max_unmap_segments;
5269 	num_blocks = max_unmap_blocks * 2;
5270 	offset = 0;
5271 
5272 	g_io_done = false;
5273 	for (i = 0; i < 2; i++) {
5274 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5275 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5276 		offset += max_unmap_blocks;
5277 	}
5278 
5279 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5280 	CU_ASSERT_EQUAL(rc, 0);
5281 	CU_ASSERT(g_io_done == false);
5282 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5283 	stub_complete_io(2);
5284 	CU_ASSERT(g_io_done == true);
5285 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5286 
5287 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5288 	num_children = 15;
5289 	num_blocks = max_unmap_blocks * num_children;
5290 	g_io_done = false;
5291 	offset = 0;
5292 	for (i = 0; i < num_children; i++) {
5293 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5294 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5295 		offset += max_unmap_blocks;
5296 	}
5297 
5298 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5299 	CU_ASSERT_EQUAL(rc, 0);
5300 	CU_ASSERT(g_io_done == false);
5301 
5302 	while (num_children > 0) {
5303 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5304 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5305 		stub_complete_io(num_outstanding);
5306 		num_children -= num_outstanding;
5307 	}
5308 	CU_ASSERT(g_io_done == true);
5309 
5310 	spdk_put_io_channel(ioch);
5311 	spdk_bdev_close(desc);
5312 	free_bdev(bdev);
5313 	ut_fini_bdev();
5314 }
5315 
5316 static void
5317 bdev_write_zeroes_split_test(void)
5318 {
5319 	struct spdk_bdev *bdev;
5320 	struct spdk_bdev_desc *desc = NULL;
5321 	struct spdk_io_channel *ioch;
5322 	struct spdk_bdev_channel *bdev_ch;
5323 	struct ut_expected_io *expected_io;
5324 	struct spdk_bdev_opts bdev_opts = {};
5325 	uint32_t i, num_outstanding;
5326 	uint64_t offset, num_blocks, max_write_zeroes_blocks, num_children;
5327 	int rc;
5328 
5329 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5330 	bdev_opts.bdev_io_pool_size = 512;
5331 	bdev_opts.bdev_io_cache_size = 64;
5332 	ut_init_bdev(&bdev_opts);
5333 
5334 	bdev = allocate_bdev("bdev");
5335 
5336 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5337 	CU_ASSERT_EQUAL(rc, 0);
5338 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5339 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5340 	ioch = spdk_bdev_get_io_channel(desc);
5341 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5342 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5343 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5344 
5345 	fn_table.submit_request = stub_submit_request;
5346 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5347 
5348 	/* Case 1: First test the request won't be split */
5349 	num_blocks = 32;
5350 
5351 	g_io_done = false;
5352 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
5353 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5354 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5355 	CU_ASSERT_EQUAL(rc, 0);
5356 	CU_ASSERT(g_io_done == false);
5357 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5358 	stub_complete_io(1);
5359 	CU_ASSERT(g_io_done == true);
5360 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5361 
5362 	/* Case 2: Test the split with 2 children requests */
5363 	max_write_zeroes_blocks = 8;
5364 	bdev->max_write_zeroes = max_write_zeroes_blocks;
5365 	num_blocks = max_write_zeroes_blocks * 2;
5366 	offset = 0;
5367 
5368 	g_io_done = false;
5369 	for (i = 0; i < 2; i++) {
5370 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5371 						   0);
5372 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5373 		offset += max_write_zeroes_blocks;
5374 	}
5375 
5376 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5377 	CU_ASSERT_EQUAL(rc, 0);
5378 	CU_ASSERT(g_io_done == false);
5379 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5380 	stub_complete_io(2);
5381 	CU_ASSERT(g_io_done == true);
5382 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5383 
5384 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5385 	num_children = 15;
5386 	num_blocks = max_write_zeroes_blocks * num_children;
5387 	g_io_done = false;
5388 	offset = 0;
5389 	for (i = 0; i < num_children; i++) {
5390 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5391 						   0);
5392 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5393 		offset += max_write_zeroes_blocks;
5394 	}
5395 
5396 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5397 	CU_ASSERT_EQUAL(rc, 0);
5398 	CU_ASSERT(g_io_done == false);
5399 
5400 	while (num_children > 0) {
5401 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5402 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5403 		stub_complete_io(num_outstanding);
5404 		num_children -= num_outstanding;
5405 	}
5406 	CU_ASSERT(g_io_done == true);
5407 
5408 	spdk_put_io_channel(ioch);
5409 	spdk_bdev_close(desc);
5410 	free_bdev(bdev);
5411 	ut_fini_bdev();
5412 }
5413 
5414 static void
5415 bdev_set_options_test(void)
5416 {
5417 	struct spdk_bdev_opts bdev_opts = {};
5418 	int rc;
5419 
5420 	/* Case1: Do not set opts_size */
5421 	rc = spdk_bdev_set_opts(&bdev_opts);
5422 	CU_ASSERT(rc == -1);
5423 
5424 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5425 	bdev_opts.bdev_io_pool_size = 4;
5426 	bdev_opts.bdev_io_cache_size = 2;
5427 	bdev_opts.small_buf_pool_size = 4;
5428 
5429 	/* Case 2: Do not set valid small_buf_pool_size and large_buf_pool_size */
5430 	rc = spdk_bdev_set_opts(&bdev_opts);
5431 	CU_ASSERT(rc == -1);
5432 
5433 	/* Case 3: Do not set valid large_buf_pool_size */
5434 	bdev_opts.small_buf_pool_size = BUF_SMALL_POOL_SIZE;
5435 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE - 1;
5436 	rc = spdk_bdev_set_opts(&bdev_opts);
5437 	CU_ASSERT(rc == -1);
5438 
5439 	/* Case4: set valid large buf_pool_size */
5440 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE;
5441 	rc = spdk_bdev_set_opts(&bdev_opts);
5442 	CU_ASSERT(rc == 0);
5443 
5444 	/* Case5: Set different valid value for small and large buf pool */
5445 	bdev_opts.large_buf_pool_size = BUF_SMALL_POOL_SIZE + 3;
5446 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE + 3;
5447 	rc = spdk_bdev_set_opts(&bdev_opts);
5448 	CU_ASSERT(rc == 0);
5449 }
5450 
5451 static uint64_t
5452 get_ns_time(void)
5453 {
5454 	int rc;
5455 	struct timespec ts;
5456 
5457 	rc = clock_gettime(CLOCK_MONOTONIC, &ts);
5458 	CU_ASSERT(rc == 0);
5459 	return ts.tv_sec * 1000 * 1000 * 1000 + ts.tv_nsec;
5460 }
5461 
5462 static int
5463 rb_tree_get_height(struct spdk_bdev_name *bdev_name)
5464 {
5465 	int h1, h2;
5466 
5467 	if (bdev_name == NULL) {
5468 		return -1;
5469 	} else {
5470 		h1 = rb_tree_get_height(RB_LEFT(bdev_name, node));
5471 		h2 = rb_tree_get_height(RB_RIGHT(bdev_name, node));
5472 
5473 		return spdk_max(h1, h2) + 1;
5474 	}
5475 }
5476 
5477 static void
5478 bdev_multi_allocation(void)
5479 {
5480 	const int max_bdev_num = 1024 * 16;
5481 	char name[max_bdev_num][16];
5482 	char noexist_name[] = "invalid_bdev";
5483 	struct spdk_bdev *bdev[max_bdev_num];
5484 	int i, j;
5485 	uint64_t last_time;
5486 	int bdev_num;
5487 	int height;
5488 
5489 	for (j = 0; j < max_bdev_num; j++) {
5490 		snprintf(name[j], sizeof(name[j]), "bdev%d", j);
5491 	}
5492 
5493 	for (i = 0; i < 16; i++) {
5494 		last_time = get_ns_time();
5495 		bdev_num = 1024 * (i + 1);
5496 		for (j = 0; j < bdev_num; j++) {
5497 			bdev[j] = allocate_bdev(name[j]);
5498 			height = rb_tree_get_height(&bdev[j]->internal.bdev_name);
5499 			CU_ASSERT(height <= (int)(spdk_u32log2(2 * j + 2)));
5500 		}
5501 		SPDK_NOTICELOG("alloc bdev num %d takes %" PRIu64 " ms\n", bdev_num,
5502 			       (get_ns_time() - last_time) / 1000 / 1000);
5503 		for (j = 0; j < bdev_num; j++) {
5504 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) != NULL);
5505 		}
5506 		CU_ASSERT(spdk_bdev_get_by_name(noexist_name) == NULL);
5507 
5508 		for (j = 0; j < bdev_num; j++) {
5509 			free_bdev(bdev[j]);
5510 		}
5511 		for (j = 0; j < bdev_num; j++) {
5512 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) == NULL);
5513 		}
5514 	}
5515 }
5516 
5517 static struct spdk_memory_domain *g_bdev_memory_domain = (struct spdk_memory_domain *) 0xf00df00d;
5518 
5519 static int
5520 test_bdev_get_supported_dma_device_types_op(void *ctx, struct spdk_memory_domain **domains,
5521 		int array_size)
5522 {
5523 	if (array_size > 0 && domains) {
5524 		domains[0] = g_bdev_memory_domain;
5525 	}
5526 
5527 	return 1;
5528 }
5529 
5530 static void
5531 bdev_get_memory_domains(void)
5532 {
5533 	struct spdk_bdev_fn_table fn_table = {
5534 		.get_memory_domains = test_bdev_get_supported_dma_device_types_op
5535 	};
5536 	struct spdk_bdev bdev = { .fn_table = &fn_table };
5537 	struct spdk_memory_domain *domains[2] = {};
5538 	int rc;
5539 
5540 	/* bdev is NULL */
5541 	rc = spdk_bdev_get_memory_domains(NULL, domains, 2);
5542 	CU_ASSERT(rc == -EINVAL);
5543 
5544 	/* domains is NULL */
5545 	rc = spdk_bdev_get_memory_domains(&bdev, NULL, 2);
5546 	CU_ASSERT(rc == 1);
5547 
5548 	/* array size is 0 */
5549 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 0);
5550 	CU_ASSERT(rc == 1);
5551 
5552 	/* get_supported_dma_device_types op is set */
5553 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5554 	CU_ASSERT(rc == 1);
5555 	CU_ASSERT(domains[0] == g_bdev_memory_domain);
5556 
5557 	/* get_supported_dma_device_types op is not set */
5558 	fn_table.get_memory_domains = NULL;
5559 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5560 	CU_ASSERT(rc == 0);
5561 }
5562 
5563 static void
5564 _bdev_io_ext(struct spdk_bdev_ext_io_opts *ext_io_opts)
5565 {
5566 	struct spdk_bdev *bdev;
5567 	struct spdk_bdev_desc *desc = NULL;
5568 	struct spdk_io_channel *io_ch;
5569 	char io_buf[512];
5570 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5571 	struct ut_expected_io *expected_io;
5572 	int rc;
5573 
5574 	ut_init_bdev(NULL);
5575 
5576 	bdev = allocate_bdev("bdev0");
5577 	bdev->md_interleave = false;
5578 	bdev->md_len = 8;
5579 
5580 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5581 	CU_ASSERT(rc == 0);
5582 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5583 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5584 	io_ch = spdk_bdev_get_io_channel(desc);
5585 	CU_ASSERT(io_ch != NULL);
5586 
5587 	/* read */
5588 	g_io_done = false;
5589 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5590 	if (ext_io_opts) {
5591 		expected_io->md_buf = ext_io_opts->metadata;
5592 	}
5593 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5594 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5595 
5596 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5597 
5598 	CU_ASSERT(rc == 0);
5599 	CU_ASSERT(g_io_done == false);
5600 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5601 	stub_complete_io(1);
5602 	CU_ASSERT(g_io_done == true);
5603 
5604 	/* write */
5605 	g_io_done = false;
5606 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5607 	if (ext_io_opts) {
5608 		expected_io->md_buf = ext_io_opts->metadata;
5609 	}
5610 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5611 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5612 
5613 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5614 
5615 	CU_ASSERT(rc == 0);
5616 	CU_ASSERT(g_io_done == false);
5617 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5618 	stub_complete_io(1);
5619 	CU_ASSERT(g_io_done == true);
5620 
5621 	spdk_put_io_channel(io_ch);
5622 	spdk_bdev_close(desc);
5623 	free_bdev(bdev);
5624 	ut_fini_bdev();
5625 
5626 }
5627 
5628 static void
5629 bdev_io_ext(void)
5630 {
5631 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5632 		.metadata = (void *)0xFF000000,
5633 		.size = sizeof(ext_io_opts)
5634 	};
5635 
5636 	_bdev_io_ext(&ext_io_opts);
5637 }
5638 
5639 static void
5640 bdev_io_ext_no_opts(void)
5641 {
5642 	_bdev_io_ext(NULL);
5643 }
5644 
5645 static void
5646 bdev_io_ext_invalid_opts(void)
5647 {
5648 	struct spdk_bdev *bdev;
5649 	struct spdk_bdev_desc *desc = NULL;
5650 	struct spdk_io_channel *io_ch;
5651 	char io_buf[512];
5652 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5653 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5654 		.metadata = (void *)0xFF000000,
5655 		.size = sizeof(ext_io_opts)
5656 	};
5657 	int rc;
5658 
5659 	ut_init_bdev(NULL);
5660 
5661 	bdev = allocate_bdev("bdev0");
5662 	bdev->md_interleave = false;
5663 	bdev->md_len = 8;
5664 
5665 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5666 	CU_ASSERT(rc == 0);
5667 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5668 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5669 	io_ch = spdk_bdev_get_io_channel(desc);
5670 	CU_ASSERT(io_ch != NULL);
5671 
5672 	/* Test invalid ext_opts size */
5673 	ext_io_opts.size = 0;
5674 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5675 	CU_ASSERT(rc == -EINVAL);
5676 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5677 	CU_ASSERT(rc == -EINVAL);
5678 
5679 	ext_io_opts.size = sizeof(ext_io_opts) * 2;
5680 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5681 	CU_ASSERT(rc == -EINVAL);
5682 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5683 	CU_ASSERT(rc == -EINVAL);
5684 
5685 	ext_io_opts.size = offsetof(struct spdk_bdev_ext_io_opts, metadata) +
5686 			   sizeof(ext_io_opts.metadata) - 1;
5687 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5688 	CU_ASSERT(rc == -EINVAL);
5689 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5690 	CU_ASSERT(rc == -EINVAL);
5691 
5692 	spdk_put_io_channel(io_ch);
5693 	spdk_bdev_close(desc);
5694 	free_bdev(bdev);
5695 	ut_fini_bdev();
5696 }
5697 
5698 static void
5699 bdev_io_ext_split(void)
5700 {
5701 	struct spdk_bdev *bdev;
5702 	struct spdk_bdev_desc *desc = NULL;
5703 	struct spdk_io_channel *io_ch;
5704 	char io_buf[512];
5705 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5706 	struct ut_expected_io *expected_io;
5707 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5708 		.metadata = (void *)0xFF000000,
5709 		.size = sizeof(ext_io_opts)
5710 	};
5711 	int rc;
5712 
5713 	ut_init_bdev(NULL);
5714 
5715 	bdev = allocate_bdev("bdev0");
5716 	bdev->md_interleave = false;
5717 	bdev->md_len = 8;
5718 
5719 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5720 	CU_ASSERT(rc == 0);
5721 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5722 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5723 	io_ch = spdk_bdev_get_io_channel(desc);
5724 	CU_ASSERT(io_ch != NULL);
5725 
5726 	/* Check that IO request with ext_opts and metadata is split correctly
5727 	 * Offset 14, length 8, payload 0xF000
5728 	 *  Child - Offset 14, length 2, payload 0xF000
5729 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5730 	 */
5731 	bdev->optimal_io_boundary = 16;
5732 	bdev->split_on_optimal_io_boundary = true;
5733 	bdev->md_interleave = false;
5734 	bdev->md_len = 8;
5735 
5736 	iov.iov_base = (void *)0xF000;
5737 	iov.iov_len = 4096;
5738 	memset(&ext_io_opts, 0, sizeof(ext_io_opts));
5739 	ext_io_opts.metadata = (void *)0xFF000000;
5740 	ext_io_opts.size = sizeof(ext_io_opts);
5741 	g_io_done = false;
5742 
5743 	/* read */
5744 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
5745 	expected_io->md_buf = ext_io_opts.metadata;
5746 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5747 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5748 
5749 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
5750 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5751 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5752 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5753 
5754 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5755 	CU_ASSERT(rc == 0);
5756 	CU_ASSERT(g_io_done == false);
5757 
5758 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5759 	stub_complete_io(2);
5760 	CU_ASSERT(g_io_done == true);
5761 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5762 
5763 	/* write */
5764 	g_io_done = false;
5765 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
5766 	expected_io->md_buf = ext_io_opts.metadata;
5767 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5768 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5769 
5770 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 6, 1);
5771 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5772 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5773 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5774 
5775 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5776 	CU_ASSERT(rc == 0);
5777 	CU_ASSERT(g_io_done == false);
5778 
5779 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5780 	stub_complete_io(2);
5781 	CU_ASSERT(g_io_done == true);
5782 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5783 
5784 	spdk_put_io_channel(io_ch);
5785 	spdk_bdev_close(desc);
5786 	free_bdev(bdev);
5787 	ut_fini_bdev();
5788 }
5789 
5790 static void
5791 bdev_io_ext_bounce_buffer(void)
5792 {
5793 	struct spdk_bdev *bdev;
5794 	struct spdk_bdev_desc *desc = NULL;
5795 	struct spdk_io_channel *io_ch;
5796 	char io_buf[512];
5797 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5798 	struct ut_expected_io *expected_io;
5799 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5800 		.metadata = (void *)0xFF000000,
5801 		.size = sizeof(ext_io_opts)
5802 	};
5803 	int rc;
5804 
5805 	ut_init_bdev(NULL);
5806 
5807 	bdev = allocate_bdev("bdev0");
5808 	bdev->md_interleave = false;
5809 	bdev->md_len = 8;
5810 
5811 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5812 	CU_ASSERT(rc == 0);
5813 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5814 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5815 	io_ch = spdk_bdev_get_io_channel(desc);
5816 	CU_ASSERT(io_ch != NULL);
5817 
5818 	/* Verify data pull/push
5819 	 * bdev doesn't support memory domains, so buffers from bdev memory pool will be used */
5820 	ext_io_opts.memory_domain = (struct spdk_memory_domain *)0xdeadbeef;
5821 
5822 	/* read */
5823 	g_io_done = false;
5824 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5825 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5826 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5827 
5828 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5829 
5830 	CU_ASSERT(rc == 0);
5831 	CU_ASSERT(g_io_done == false);
5832 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5833 	stub_complete_io(1);
5834 	CU_ASSERT(g_memory_domain_push_data_called == true);
5835 	CU_ASSERT(g_io_done == true);
5836 
5837 	/* write */
5838 	g_io_done = false;
5839 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5840 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5841 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5842 
5843 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5844 
5845 	CU_ASSERT(rc == 0);
5846 	CU_ASSERT(g_memory_domain_pull_data_called == true);
5847 	CU_ASSERT(g_io_done == false);
5848 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5849 	stub_complete_io(1);
5850 	CU_ASSERT(g_io_done == true);
5851 
5852 	spdk_put_io_channel(io_ch);
5853 	spdk_bdev_close(desc);
5854 	free_bdev(bdev);
5855 	ut_fini_bdev();
5856 }
5857 
5858 static void
5859 bdev_register_uuid_alias(void)
5860 {
5861 	struct spdk_bdev *bdev, *second;
5862 	char uuid[SPDK_UUID_STRING_LEN];
5863 	int rc;
5864 
5865 	ut_init_bdev(NULL);
5866 	bdev = allocate_bdev("bdev0");
5867 
5868 	/* Make sure an UUID was generated  */
5869 	CU_ASSERT_FALSE(spdk_mem_all_zero(&bdev->uuid, sizeof(bdev->uuid)));
5870 
5871 	/* Check that an UUID alias was registered */
5872 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5873 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5874 
5875 	/* Unregister the bdev */
5876 	spdk_bdev_unregister(bdev, NULL, NULL);
5877 	poll_threads();
5878 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5879 
5880 	/* Check the same, but this time register the bdev with non-zero UUID */
5881 	rc = spdk_bdev_register(bdev);
5882 	CU_ASSERT_EQUAL(rc, 0);
5883 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5884 
5885 	/* Unregister the bdev */
5886 	spdk_bdev_unregister(bdev, NULL, NULL);
5887 	poll_threads();
5888 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5889 
5890 	/* Regiser the bdev using UUID as the name */
5891 	bdev->name = uuid;
5892 	rc = spdk_bdev_register(bdev);
5893 	CU_ASSERT_EQUAL(rc, 0);
5894 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5895 
5896 	/* Unregister the bdev */
5897 	spdk_bdev_unregister(bdev, NULL, NULL);
5898 	poll_threads();
5899 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5900 
5901 	/* Check that it's not possible to register two bdevs with the same UUIDs */
5902 	bdev->name = "bdev0";
5903 	second = allocate_bdev("bdev1");
5904 	spdk_uuid_copy(&bdev->uuid, &second->uuid);
5905 	rc = spdk_bdev_register(bdev);
5906 	CU_ASSERT_EQUAL(rc, -EEXIST);
5907 
5908 	/* Regenerate the UUID and re-check */
5909 	spdk_uuid_generate(&bdev->uuid);
5910 	rc = spdk_bdev_register(bdev);
5911 	CU_ASSERT_EQUAL(rc, 0);
5912 
5913 	/* And check that both bdevs can be retrieved through their UUIDs */
5914 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5915 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5916 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &second->uuid);
5917 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), second);
5918 
5919 	free_bdev(second);
5920 	free_bdev(bdev);
5921 	ut_fini_bdev();
5922 }
5923 
5924 static void
5925 bdev_unregister_by_name(void)
5926 {
5927 	struct spdk_bdev *bdev;
5928 	int rc;
5929 
5930 	bdev = allocate_bdev("bdev");
5931 
5932 	g_event_type1 = 0xFF;
5933 	g_unregister_arg = NULL;
5934 	g_unregister_rc = -1;
5935 
5936 	rc = spdk_bdev_unregister_by_name("bdev1", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5937 	CU_ASSERT(rc == -ENODEV);
5938 
5939 	rc = spdk_bdev_unregister_by_name("bdev", &vbdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5940 	CU_ASSERT(rc == -ENODEV);
5941 
5942 	rc = spdk_bdev_unregister_by_name("bdev", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5943 	CU_ASSERT(rc == 0);
5944 
5945 	/* Check that unregister callback is delayed */
5946 	CU_ASSERT(g_unregister_arg == NULL);
5947 	CU_ASSERT(g_unregister_rc == -1);
5948 
5949 	poll_threads();
5950 
5951 	/* Event callback shall not be issued because device was closed */
5952 	CU_ASSERT(g_event_type1 == 0xFF);
5953 	/* Unregister callback is issued */
5954 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
5955 	CU_ASSERT(g_unregister_rc == 0);
5956 
5957 	free_bdev(bdev);
5958 }
5959 
5960 static int
5961 count_bdevs(void *ctx, struct spdk_bdev *bdev)
5962 {
5963 	int *count = ctx;
5964 
5965 	(*count)++;
5966 
5967 	return 0;
5968 }
5969 
5970 static void
5971 for_each_bdev_test(void)
5972 {
5973 	struct spdk_bdev *bdev[8];
5974 	int rc, count;
5975 
5976 	bdev[0] = allocate_bdev("bdev0");
5977 	bdev[0]->internal.status = SPDK_BDEV_STATUS_REMOVING;
5978 
5979 	bdev[1] = allocate_bdev("bdev1");
5980 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
5981 	CU_ASSERT(rc == 0);
5982 
5983 	bdev[2] = allocate_bdev("bdev2");
5984 
5985 	bdev[3] = allocate_bdev("bdev3");
5986 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
5987 	CU_ASSERT(rc == 0);
5988 
5989 	bdev[4] = allocate_bdev("bdev4");
5990 
5991 	bdev[5] = allocate_bdev("bdev5");
5992 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
5993 	CU_ASSERT(rc == 0);
5994 
5995 	bdev[6] = allocate_bdev("bdev6");
5996 
5997 	bdev[7] = allocate_bdev("bdev7");
5998 
5999 	count = 0;
6000 	rc = spdk_for_each_bdev(&count, count_bdevs);
6001 	CU_ASSERT(rc == 0);
6002 	CU_ASSERT(count == 7);
6003 
6004 	count = 0;
6005 	rc = spdk_for_each_bdev_leaf(&count, count_bdevs);
6006 	CU_ASSERT(rc == 0);
6007 	CU_ASSERT(count == 4);
6008 
6009 	bdev[0]->internal.status = SPDK_BDEV_STATUS_READY;
6010 	free_bdev(bdev[0]);
6011 	free_bdev(bdev[1]);
6012 	free_bdev(bdev[2]);
6013 	free_bdev(bdev[3]);
6014 	free_bdev(bdev[4]);
6015 	free_bdev(bdev[5]);
6016 	free_bdev(bdev[6]);
6017 	free_bdev(bdev[7]);
6018 }
6019 
6020 static void
6021 bdev_seek_test(void)
6022 {
6023 	struct spdk_bdev *bdev;
6024 	struct spdk_bdev_desc *desc = NULL;
6025 	struct spdk_io_channel *io_ch;
6026 	int rc;
6027 
6028 	ut_init_bdev(NULL);
6029 	poll_threads();
6030 
6031 	bdev = allocate_bdev("bdev0");
6032 
6033 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6034 	CU_ASSERT(rc == 0);
6035 	poll_threads();
6036 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6037 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6038 	io_ch = spdk_bdev_get_io_channel(desc);
6039 	CU_ASSERT(io_ch != NULL);
6040 
6041 	/* Seek data not supported */
6042 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, false);
6043 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
6044 	CU_ASSERT(rc == 0);
6045 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6046 	poll_threads();
6047 	CU_ASSERT(g_seek_offset == 0);
6048 
6049 	/* Seek hole not supported */
6050 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, false);
6051 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
6052 	CU_ASSERT(rc == 0);
6053 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6054 	poll_threads();
6055 	CU_ASSERT(g_seek_offset == UINT64_MAX);
6056 
6057 	/* Seek data supported */
6058 	g_seek_data_offset = 12345;
6059 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, true);
6060 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
6061 	CU_ASSERT(rc == 0);
6062 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6063 	stub_complete_io(1);
6064 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6065 	CU_ASSERT(g_seek_offset == 12345);
6066 
6067 	/* Seek hole supported */
6068 	g_seek_hole_offset = 67890;
6069 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, true);
6070 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
6071 	CU_ASSERT(rc == 0);
6072 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6073 	stub_complete_io(1);
6074 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6075 	CU_ASSERT(g_seek_offset == 67890);
6076 
6077 	spdk_put_io_channel(io_ch);
6078 	spdk_bdev_close(desc);
6079 	free_bdev(bdev);
6080 	ut_fini_bdev();
6081 }
6082 
6083 static void
6084 bdev_copy(void)
6085 {
6086 	struct spdk_bdev *bdev;
6087 	struct spdk_bdev_desc *desc = NULL;
6088 	struct spdk_io_channel *ioch;
6089 	struct ut_expected_io *expected_io;
6090 	uint64_t src_offset, num_blocks;
6091 	uint32_t num_completed;
6092 	int rc;
6093 
6094 	ut_init_bdev(NULL);
6095 	bdev = allocate_bdev("bdev");
6096 
6097 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6098 	CU_ASSERT_EQUAL(rc, 0);
6099 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6100 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6101 	ioch = spdk_bdev_get_io_channel(desc);
6102 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6103 
6104 	fn_table.submit_request = stub_submit_request;
6105 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6106 
6107 	/* First test that if the bdev supports copy, the request won't be split */
6108 	bdev->md_len = 0;
6109 	bdev->blocklen = 512;
6110 	num_blocks = 128;
6111 	src_offset = bdev->blockcnt - num_blocks;
6112 
6113 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6114 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6115 
6116 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6117 	CU_ASSERT_EQUAL(rc, 0);
6118 	num_completed = stub_complete_io(1);
6119 	CU_ASSERT_EQUAL(num_completed, 1);
6120 
6121 	/* Check that if copy is not supported it'll still work */
6122 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, src_offset, num_blocks, 0);
6123 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6124 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, num_blocks, 0);
6125 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6126 
6127 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false);
6128 
6129 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6130 	CU_ASSERT_EQUAL(rc, 0);
6131 	num_completed = stub_complete_io(1);
6132 	CU_ASSERT_EQUAL(num_completed, 1);
6133 	num_completed = stub_complete_io(1);
6134 	CU_ASSERT_EQUAL(num_completed, 1);
6135 
6136 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true);
6137 	spdk_put_io_channel(ioch);
6138 	spdk_bdev_close(desc);
6139 	free_bdev(bdev);
6140 	ut_fini_bdev();
6141 }
6142 
6143 static void
6144 bdev_copy_split_test(void)
6145 {
6146 	struct spdk_bdev *bdev;
6147 	struct spdk_bdev_desc *desc = NULL;
6148 	struct spdk_io_channel *ioch;
6149 	struct spdk_bdev_channel *bdev_ch;
6150 	struct ut_expected_io *expected_io;
6151 	struct spdk_bdev_opts bdev_opts = {};
6152 	uint32_t i, num_outstanding;
6153 	uint64_t offset, src_offset, num_blocks, max_copy_blocks, num_children;
6154 	int rc;
6155 
6156 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
6157 	bdev_opts.bdev_io_pool_size = 512;
6158 	bdev_opts.bdev_io_cache_size = 64;
6159 	rc = spdk_bdev_set_opts(&bdev_opts);
6160 	CU_ASSERT(rc == 0);
6161 
6162 	ut_init_bdev(NULL);
6163 	bdev = allocate_bdev("bdev");
6164 
6165 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6166 	CU_ASSERT_EQUAL(rc, 0);
6167 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6168 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6169 	ioch = spdk_bdev_get_io_channel(desc);
6170 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6171 	bdev_ch = spdk_io_channel_get_ctx(ioch);
6172 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
6173 
6174 	fn_table.submit_request = stub_submit_request;
6175 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6176 
6177 	/* Case 1: First test the request won't be split */
6178 	num_blocks = 32;
6179 	src_offset = bdev->blockcnt - num_blocks;
6180 
6181 	g_io_done = false;
6182 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6183 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6184 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6185 	CU_ASSERT_EQUAL(rc, 0);
6186 	CU_ASSERT(g_io_done == false);
6187 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6188 	stub_complete_io(1);
6189 	CU_ASSERT(g_io_done == true);
6190 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6191 
6192 	/* Case 2: Test the split with 2 children requests */
6193 	max_copy_blocks = 8;
6194 	bdev->max_copy = max_copy_blocks;
6195 	num_children = 2;
6196 	num_blocks = max_copy_blocks * num_children;
6197 	offset = 0;
6198 	src_offset = bdev->blockcnt - num_blocks;
6199 
6200 	g_io_done = false;
6201 	for (i = 0; i < num_children; i++) {
6202 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6203 							src_offset + offset, max_copy_blocks);
6204 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6205 		offset += max_copy_blocks;
6206 	}
6207 
6208 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6209 	CU_ASSERT_EQUAL(rc, 0);
6210 	CU_ASSERT(g_io_done == false);
6211 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_children);
6212 	stub_complete_io(num_children);
6213 	CU_ASSERT(g_io_done == true);
6214 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6215 
6216 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
6217 	num_children = 15;
6218 	num_blocks = max_copy_blocks * num_children;
6219 	offset = 0;
6220 	src_offset = bdev->blockcnt - num_blocks;
6221 
6222 	g_io_done = false;
6223 	for (i = 0; i < num_children; i++) {
6224 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6225 							src_offset + offset, max_copy_blocks);
6226 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6227 		offset += max_copy_blocks;
6228 	}
6229 
6230 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6231 	CU_ASSERT_EQUAL(rc, 0);
6232 	CU_ASSERT(g_io_done == false);
6233 
6234 	while (num_children > 0) {
6235 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_COPY_REQS);
6236 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6237 		stub_complete_io(num_outstanding);
6238 		num_children -= num_outstanding;
6239 	}
6240 	CU_ASSERT(g_io_done == true);
6241 
6242 	spdk_put_io_channel(ioch);
6243 	spdk_bdev_close(desc);
6244 	free_bdev(bdev);
6245 	ut_fini_bdev();
6246 }
6247 
6248 static void
6249 examine_claim_v1(struct spdk_bdev *bdev)
6250 {
6251 	int rc;
6252 
6253 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &vbdev_ut_if);
6254 	CU_ASSERT(rc == 0);
6255 }
6256 
6257 static void
6258 examine_no_lock_held(struct spdk_bdev *bdev)
6259 {
6260 	CU_ASSERT(!spdk_spin_held(&g_bdev_mgr.spinlock));
6261 	CU_ASSERT(!spdk_spin_held(&bdev->internal.spinlock));
6262 }
6263 
6264 struct examine_claim_v2_ctx {
6265 	struct ut_examine_ctx examine_ctx;
6266 	enum spdk_bdev_claim_type claim_type;
6267 	struct spdk_bdev_desc *desc;
6268 };
6269 
6270 static void
6271 examine_claim_v2(struct spdk_bdev *bdev)
6272 {
6273 	struct examine_claim_v2_ctx *ctx = bdev->ctxt;
6274 	int rc;
6275 
6276 	rc = spdk_bdev_open_ext(bdev->name, false, bdev_ut_event_cb, NULL, &ctx->desc);
6277 	CU_ASSERT(rc == 0);
6278 
6279 	rc = spdk_bdev_module_claim_bdev_desc(ctx->desc, ctx->claim_type, NULL, &vbdev_ut_if);
6280 	CU_ASSERT(rc == 0);
6281 }
6282 
6283 static void
6284 examine_locks(void)
6285 {
6286 	struct spdk_bdev *bdev;
6287 	struct ut_examine_ctx ctx = { 0 };
6288 	struct examine_claim_v2_ctx v2_ctx;
6289 
6290 	/* Without any claims, one code path is taken */
6291 	ctx.examine_config = examine_no_lock_held;
6292 	ctx.examine_disk = examine_no_lock_held;
6293 	bdev = allocate_bdev_ctx("bdev0", &ctx);
6294 	CU_ASSERT(ctx.examine_config_count == 1);
6295 	CU_ASSERT(ctx.examine_disk_count == 1);
6296 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6297 	CU_ASSERT(bdev->internal.claim.v1.module == NULL);
6298 	free_bdev(bdev);
6299 
6300 	/* Exercise another path that is taken when examine_config() takes a v1 claim. */
6301 	memset(&ctx, 0, sizeof(ctx));
6302 	ctx.examine_config = examine_claim_v1;
6303 	ctx.examine_disk = examine_no_lock_held;
6304 	bdev = allocate_bdev_ctx("bdev0", &ctx);
6305 	CU_ASSERT(ctx.examine_config_count == 1);
6306 	CU_ASSERT(ctx.examine_disk_count == 1);
6307 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
6308 	CU_ASSERT(bdev->internal.claim.v1.module == &vbdev_ut_if);
6309 	spdk_bdev_module_release_bdev(bdev);
6310 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6311 	CU_ASSERT(bdev->internal.claim.v1.module == NULL);
6312 	free_bdev(bdev);
6313 
6314 	/* Exercise the final path that comes with v2 claims. */
6315 	memset(&v2_ctx, 0, sizeof(v2_ctx));
6316 	v2_ctx.examine_ctx.examine_config = examine_claim_v2;
6317 	v2_ctx.examine_ctx.examine_disk = examine_no_lock_held;
6318 	v2_ctx.claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
6319 	bdev = allocate_bdev_ctx("bdev0", &v2_ctx);
6320 	CU_ASSERT(v2_ctx.examine_ctx.examine_config_count == 1);
6321 	CU_ASSERT(v2_ctx.examine_ctx.examine_disk_count == 1);
6322 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6323 	spdk_bdev_close(v2_ctx.desc);
6324 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6325 	free_bdev(bdev);
6326 }
6327 
6328 #define UT_ASSERT_CLAIM_V2_COUNT(bdev, expect) \
6329 	do { \
6330 		uint32_t len = 0; \
6331 		struct spdk_bdev_module_claim *claim; \
6332 		TAILQ_FOREACH(claim, &bdev->internal.claim.v2.claims, link) { \
6333 			len++; \
6334 		} \
6335 		CU_ASSERT(len == expect); \
6336 	} while (0)
6337 
6338 static void
6339 claim_v2_rwo(void)
6340 {
6341 	struct spdk_bdev *bdev;
6342 	struct spdk_bdev_desc *desc;
6343 	struct spdk_bdev_desc *desc2;
6344 	struct spdk_bdev_claim_opts opts;
6345 	int rc;
6346 
6347 	bdev = allocate_bdev("bdev0");
6348 
6349 	/* Claim without options */
6350 	desc = NULL;
6351 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6352 	CU_ASSERT(rc == 0);
6353 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6354 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6355 					      &bdev_ut_if);
6356 	CU_ASSERT(rc == 0);
6357 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6358 	CU_ASSERT(desc->claim != NULL);
6359 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6360 	CU_ASSERT(strcmp(desc->claim->name, "") == 0);
6361 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6362 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6363 
6364 	/* Release the claim by closing the descriptor */
6365 	spdk_bdev_close(desc);
6366 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6367 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6368 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6369 
6370 	/* Claim with options */
6371 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6372 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6373 	desc = NULL;
6374 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6375 	CU_ASSERT(rc == 0);
6376 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6377 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, &opts,
6378 					      &bdev_ut_if);
6379 	CU_ASSERT(rc == 0);
6380 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6381 	CU_ASSERT(desc->claim != NULL);
6382 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6383 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6384 	memset(&opts, 0, sizeof(opts));
6385 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6386 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6387 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6388 
6389 	/* The claim blocks new writers. */
6390 	desc2 = NULL;
6391 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6392 	CU_ASSERT(rc == -EPERM);
6393 	CU_ASSERT(desc2 == NULL);
6394 
6395 	/* New readers are allowed */
6396 	desc2 = NULL;
6397 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6398 	CU_ASSERT(rc == 0);
6399 	CU_ASSERT(desc2 != NULL);
6400 	CU_ASSERT(!desc2->write);
6401 
6402 	/* No new v2 RWO claims are allowed */
6403 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6404 					      &bdev_ut_if);
6405 	CU_ASSERT(rc == -EPERM);
6406 
6407 	/* No new v2 ROM claims are allowed */
6408 	CU_ASSERT(!desc2->write);
6409 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6410 					      &bdev_ut_if);
6411 	CU_ASSERT(rc == -EPERM);
6412 	CU_ASSERT(!desc2->write);
6413 
6414 	/* No new v2 RWM claims are allowed */
6415 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6416 	opts.shared_claim_key = (uint64_t)&opts;
6417 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6418 					      &bdev_ut_if);
6419 	CU_ASSERT(rc == -EPERM);
6420 	CU_ASSERT(!desc2->write);
6421 
6422 	/* No new v1 claims are allowed */
6423 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6424 	CU_ASSERT(rc == -EPERM);
6425 
6426 	/* None of the above changed the existing claim */
6427 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6428 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6429 
6430 	/* Closing the first descriptor now allows a new claim and it is promoted to rw. */
6431 	spdk_bdev_close(desc);
6432 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6433 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6434 	CU_ASSERT(!desc2->write);
6435 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6436 					      &bdev_ut_if);
6437 	CU_ASSERT(rc == 0);
6438 	CU_ASSERT(desc2->claim != NULL);
6439 	CU_ASSERT(desc2->write);
6440 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6441 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
6442 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6443 	spdk_bdev_close(desc2);
6444 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6445 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6446 
6447 	/* Cannot claim with a key */
6448 	desc = NULL;
6449 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6450 	CU_ASSERT(rc == 0);
6451 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6452 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6453 	opts.shared_claim_key = (uint64_t)&opts;
6454 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, &opts,
6455 					      &bdev_ut_if);
6456 	CU_ASSERT(rc == -EINVAL);
6457 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6458 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6459 	spdk_bdev_close(desc);
6460 
6461 	/* Clean up */
6462 	free_bdev(bdev);
6463 }
6464 
6465 static void
6466 claim_v2_rom(void)
6467 {
6468 	struct spdk_bdev *bdev;
6469 	struct spdk_bdev_desc *desc;
6470 	struct spdk_bdev_desc *desc2;
6471 	struct spdk_bdev_claim_opts opts;
6472 	int rc;
6473 
6474 	bdev = allocate_bdev("bdev0");
6475 
6476 	/* Claim without options */
6477 	desc = NULL;
6478 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6479 	CU_ASSERT(rc == 0);
6480 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6481 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6482 					      &bdev_ut_if);
6483 	CU_ASSERT(rc == 0);
6484 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6485 	CU_ASSERT(desc->claim != NULL);
6486 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6487 	CU_ASSERT(strcmp(desc->claim->name, "") == 0);
6488 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6489 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6490 
6491 	/* Release the claim by closing the descriptor */
6492 	spdk_bdev_close(desc);
6493 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6494 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6495 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6496 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6497 
6498 	/* Claim with options */
6499 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6500 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6501 	desc = NULL;
6502 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6503 	CU_ASSERT(rc == 0);
6504 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6505 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, &opts,
6506 					      &bdev_ut_if);
6507 	CU_ASSERT(rc == 0);
6508 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6509 	SPDK_CU_ASSERT_FATAL(desc->claim != NULL);
6510 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6511 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6512 	memset(&opts, 0, sizeof(opts));
6513 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6514 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6515 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6516 
6517 	/* The claim blocks new writers. */
6518 	desc2 = NULL;
6519 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6520 	CU_ASSERT(rc == -EPERM);
6521 	CU_ASSERT(desc2 == NULL);
6522 
6523 	/* New readers are allowed */
6524 	desc2 = NULL;
6525 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6526 	CU_ASSERT(rc == 0);
6527 	CU_ASSERT(desc2 != NULL);
6528 	CU_ASSERT(!desc2->write);
6529 
6530 	/* No new v2 RWO claims are allowed */
6531 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6532 					      &bdev_ut_if);
6533 	CU_ASSERT(rc == -EPERM);
6534 
6535 	/* No new v2 RWM claims are allowed */
6536 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6537 	opts.shared_claim_key = (uint64_t)&opts;
6538 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6539 					      &bdev_ut_if);
6540 	CU_ASSERT(rc == -EPERM);
6541 	CU_ASSERT(!desc2->write);
6542 
6543 	/* No new v1 claims are allowed */
6544 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6545 	CU_ASSERT(rc == -EPERM);
6546 
6547 	/* None of the above messed up the existing claim */
6548 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6549 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6550 
6551 	/* New v2 ROM claims are allowed and the descriptor stays read-only. */
6552 	CU_ASSERT(!desc2->write);
6553 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6554 					      &bdev_ut_if);
6555 	CU_ASSERT(rc == 0);
6556 	CU_ASSERT(!desc2->write);
6557 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6558 	CU_ASSERT(TAILQ_NEXT(desc->claim, link) == desc2->claim);
6559 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 2);
6560 
6561 	/* Claim remains when closing the first descriptor */
6562 	spdk_bdev_close(desc);
6563 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6564 	CU_ASSERT(!TAILQ_EMPTY(&bdev->internal.open_descs));
6565 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
6566 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6567 
6568 	/* Claim removed when closing the other descriptor */
6569 	spdk_bdev_close(desc2);
6570 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6571 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6572 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6573 
6574 	/* Cannot claim with a key */
6575 	desc = NULL;
6576 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6577 	CU_ASSERT(rc == 0);
6578 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6579 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6580 	opts.shared_claim_key = (uint64_t)&opts;
6581 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, &opts,
6582 					      &bdev_ut_if);
6583 	CU_ASSERT(rc == -EINVAL);
6584 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6585 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6586 	spdk_bdev_close(desc);
6587 
6588 	/* Cannot claim with a read-write descriptor */
6589 	desc = NULL;
6590 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6591 	CU_ASSERT(rc == 0);
6592 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6593 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6594 					      &bdev_ut_if);
6595 	CU_ASSERT(rc == -EINVAL);
6596 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6597 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6598 	spdk_bdev_close(desc);
6599 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6600 
6601 	/* Clean up */
6602 	free_bdev(bdev);
6603 }
6604 
6605 static void
6606 claim_v2_rwm(void)
6607 {
6608 	struct spdk_bdev *bdev;
6609 	struct spdk_bdev_desc *desc;
6610 	struct spdk_bdev_desc *desc2;
6611 	struct spdk_bdev_claim_opts opts;
6612 	char good_key, bad_key;
6613 	int rc;
6614 
6615 	bdev = allocate_bdev("bdev0");
6616 
6617 	/* Claim without options should fail */
6618 	desc = NULL;
6619 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6620 	CU_ASSERT(rc == 0);
6621 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6622 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, NULL,
6623 					      &bdev_ut_if);
6624 	CU_ASSERT(rc == -EINVAL);
6625 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6626 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6627 	CU_ASSERT(desc->claim == NULL);
6628 
6629 	/* Claim with options */
6630 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6631 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6632 	opts.shared_claim_key = (uint64_t)&good_key;
6633 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6634 					      &bdev_ut_if);
6635 	CU_ASSERT(rc == 0);
6636 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED);
6637 	SPDK_CU_ASSERT_FATAL(desc->claim != NULL);
6638 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6639 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6640 	memset(&opts, 0, sizeof(opts));
6641 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6642 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6643 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6644 
6645 	/* The claim blocks new writers. */
6646 	desc2 = NULL;
6647 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6648 	CU_ASSERT(rc == -EPERM);
6649 	CU_ASSERT(desc2 == NULL);
6650 
6651 	/* New readers are allowed */
6652 	desc2 = NULL;
6653 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6654 	CU_ASSERT(rc == 0);
6655 	CU_ASSERT(desc2 != NULL);
6656 	CU_ASSERT(!desc2->write);
6657 
6658 	/* No new v2 RWO claims are allowed */
6659 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6660 					      &bdev_ut_if);
6661 	CU_ASSERT(rc == -EPERM);
6662 
6663 	/* No new v2 ROM claims are allowed and the descriptor stays read-only. */
6664 	CU_ASSERT(!desc2->write);
6665 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6666 					      &bdev_ut_if);
6667 	CU_ASSERT(rc == -EPERM);
6668 	CU_ASSERT(!desc2->write);
6669 
6670 	/* No new v1 claims are allowed */
6671 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6672 	CU_ASSERT(rc == -EPERM);
6673 
6674 	/* No new v2 RWM claims are allowed if the key does not match */
6675 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6676 	opts.shared_claim_key = (uint64_t)&bad_key;
6677 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6678 					      &bdev_ut_if);
6679 	CU_ASSERT(rc == -EPERM);
6680 	CU_ASSERT(!desc2->write);
6681 
6682 	/* None of the above messed up the existing claim */
6683 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6684 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6685 
6686 	/* New v2 RWM claims are allowed and the descriptor is promoted if the key matches. */
6687 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6688 	opts.shared_claim_key = (uint64_t)&good_key;
6689 	CU_ASSERT(!desc2->write);
6690 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6691 					      &bdev_ut_if);
6692 	CU_ASSERT(rc == 0);
6693 	CU_ASSERT(desc2->write);
6694 	CU_ASSERT(TAILQ_NEXT(desc->claim, link) == desc2->claim);
6695 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 2);
6696 
6697 	/* Claim remains when closing the first descriptor */
6698 	spdk_bdev_close(desc);
6699 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED);
6700 	CU_ASSERT(!TAILQ_EMPTY(&bdev->internal.open_descs));
6701 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
6702 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6703 
6704 	/* Claim removed when closing the other descriptor */
6705 	spdk_bdev_close(desc2);
6706 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6707 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6708 
6709 	/* Cannot claim without a key */
6710 	desc = NULL;
6711 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6712 	CU_ASSERT(rc == 0);
6713 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6714 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6715 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6716 					      &bdev_ut_if);
6717 	CU_ASSERT(rc == -EINVAL);
6718 	spdk_bdev_close(desc);
6719 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6720 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6721 
6722 	/* Clean up */
6723 	free_bdev(bdev);
6724 }
6725 
6726 static void
6727 claim_v2_existing_writer(void)
6728 {
6729 	struct spdk_bdev *bdev;
6730 	struct spdk_bdev_desc *desc;
6731 	struct spdk_bdev_desc *desc2;
6732 	struct spdk_bdev_claim_opts opts;
6733 	enum spdk_bdev_claim_type type;
6734 	enum spdk_bdev_claim_type types[] = {
6735 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
6736 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
6737 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
6738 	};
6739 	size_t i;
6740 	int rc;
6741 
6742 	bdev = allocate_bdev("bdev0");
6743 
6744 	desc = NULL;
6745 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6746 	CU_ASSERT(rc == 0);
6747 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6748 	desc2 = NULL;
6749 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6750 	CU_ASSERT(rc == 0);
6751 	SPDK_CU_ASSERT_FATAL(desc2 != NULL);
6752 
6753 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
6754 		type = types[i];
6755 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6756 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
6757 			opts.shared_claim_key = (uint64_t)&opts;
6758 		}
6759 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
6760 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE) {
6761 			CU_ASSERT(rc == -EINVAL);
6762 		} else {
6763 			CU_ASSERT(rc == -EPERM);
6764 		}
6765 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6766 		rc = spdk_bdev_module_claim_bdev_desc(desc2, type, &opts, &bdev_ut_if);
6767 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE) {
6768 			CU_ASSERT(rc == -EINVAL);
6769 		} else {
6770 			CU_ASSERT(rc == -EPERM);
6771 		}
6772 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6773 	}
6774 
6775 	spdk_bdev_close(desc);
6776 	spdk_bdev_close(desc2);
6777 
6778 	/* Clean up */
6779 	free_bdev(bdev);
6780 }
6781 
6782 static void
6783 claim_v2_existing_v1(void)
6784 {
6785 	struct spdk_bdev *bdev;
6786 	struct spdk_bdev_desc *desc;
6787 	struct spdk_bdev_claim_opts opts;
6788 	enum spdk_bdev_claim_type type;
6789 	enum spdk_bdev_claim_type types[] = {
6790 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
6791 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
6792 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
6793 	};
6794 	size_t i;
6795 	int rc;
6796 
6797 	bdev = allocate_bdev("bdev0");
6798 
6799 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6800 	CU_ASSERT(rc == 0);
6801 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
6802 
6803 	desc = NULL;
6804 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6805 	CU_ASSERT(rc == 0);
6806 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6807 
6808 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
6809 		type = types[i];
6810 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6811 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
6812 			opts.shared_claim_key = (uint64_t)&opts;
6813 		}
6814 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
6815 		CU_ASSERT(rc == -EPERM);
6816 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
6817 	}
6818 
6819 	spdk_bdev_module_release_bdev(bdev);
6820 	spdk_bdev_close(desc);
6821 
6822 	/* Clean up */
6823 	free_bdev(bdev);
6824 }
6825 
6826 static void
6827 claim_v1_existing_v2(void)
6828 {
6829 	struct spdk_bdev *bdev;
6830 	struct spdk_bdev_desc *desc;
6831 	struct spdk_bdev_claim_opts opts;
6832 	enum spdk_bdev_claim_type type;
6833 	enum spdk_bdev_claim_type types[] = {
6834 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
6835 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
6836 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
6837 	};
6838 	size_t i;
6839 	int rc;
6840 
6841 	bdev = allocate_bdev("bdev0");
6842 
6843 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
6844 		type = types[i];
6845 
6846 		desc = NULL;
6847 		rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6848 		CU_ASSERT(rc == 0);
6849 		SPDK_CU_ASSERT_FATAL(desc != NULL);
6850 
6851 		/* Get a v2 claim */
6852 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6853 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
6854 			opts.shared_claim_key = (uint64_t)&opts;
6855 		}
6856 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
6857 		CU_ASSERT(rc == 0);
6858 
6859 		/* Fail to get a v1 claim */
6860 		rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6861 		CU_ASSERT(rc == -EPERM);
6862 
6863 		spdk_bdev_close(desc);
6864 
6865 		/* Now v1 succeeds */
6866 		rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6867 		CU_ASSERT(rc == 0)
6868 		spdk_bdev_module_release_bdev(bdev);
6869 	}
6870 
6871 	/* Clean up */
6872 	free_bdev(bdev);
6873 }
6874 
6875 static void ut_examine_claimed_config0(struct spdk_bdev *bdev);
6876 static void ut_examine_claimed_disk0(struct spdk_bdev *bdev);
6877 static void ut_examine_claimed_config1(struct spdk_bdev *bdev);
6878 static void ut_examine_claimed_disk1(struct spdk_bdev *bdev);
6879 
6880 #define UT_MAX_EXAMINE_MODS 2
6881 struct spdk_bdev_module examine_claimed_mods[UT_MAX_EXAMINE_MODS] = {
6882 	{
6883 		.name = "vbdev_ut_examine0",
6884 		.module_init = vbdev_ut_module_init,
6885 		.module_fini = vbdev_ut_module_fini,
6886 		.examine_config = ut_examine_claimed_config0,
6887 		.examine_disk = ut_examine_claimed_disk0,
6888 	},
6889 	{
6890 		.name = "vbdev_ut_examine1",
6891 		.module_init = vbdev_ut_module_init,
6892 		.module_fini = vbdev_ut_module_fini,
6893 		.examine_config = ut_examine_claimed_config1,
6894 		.examine_disk = ut_examine_claimed_disk1,
6895 	}
6896 };
6897 
6898 SPDK_BDEV_MODULE_REGISTER(bdev_ut_claimed0, &examine_claimed_mods[0])
6899 SPDK_BDEV_MODULE_REGISTER(bdev_ut_claimed1, &examine_claimed_mods[1])
6900 
6901 struct ut_examine_claimed_ctx {
6902 	uint32_t examine_config_count;
6903 	uint32_t examine_disk_count;
6904 
6905 	/* Claim type to take, with these options */
6906 	enum spdk_bdev_claim_type claim_type;
6907 	struct spdk_bdev_claim_opts claim_opts;
6908 
6909 	/* Expected return value from spdk_bdev_module_claim_bdev_desc() */
6910 	int expect_claim_err;
6911 
6912 	/* Descriptor used for a claim */
6913 	struct spdk_bdev_desc *desc;
6914 } examine_claimed_ctx[UT_MAX_EXAMINE_MODS];
6915 
6916 bool ut_testing_examine_claimed;
6917 
6918 static void
6919 reset_examine_claimed_ctx(void)
6920 {
6921 	struct ut_examine_claimed_ctx *ctx;
6922 	uint32_t i;
6923 
6924 	for (i = 0; i < SPDK_COUNTOF(examine_claimed_ctx); i++) {
6925 		ctx = &examine_claimed_ctx[i];
6926 		if (ctx->desc != NULL) {
6927 			spdk_bdev_close(ctx->desc);
6928 		}
6929 		memset(ctx, 0, sizeof(*ctx));
6930 		spdk_bdev_claim_opts_init(&ctx->claim_opts, sizeof(ctx->claim_opts));
6931 	}
6932 }
6933 
6934 static void
6935 examine_claimed_config(struct spdk_bdev *bdev, uint32_t modnum)
6936 {
6937 	SPDK_CU_ASSERT_FATAL(modnum < UT_MAX_EXAMINE_MODS);
6938 	struct spdk_bdev_module *module = &examine_claimed_mods[modnum];
6939 	struct ut_examine_claimed_ctx *ctx = &examine_claimed_ctx[modnum];
6940 	int rc;
6941 
6942 	if (!ut_testing_examine_claimed) {
6943 		spdk_bdev_module_examine_done(module);
6944 		return;
6945 	}
6946 
6947 	ctx->examine_config_count++;
6948 
6949 	if (ctx->claim_type != SPDK_BDEV_CLAIM_NONE) {
6950 		rc = spdk_bdev_open_ext(bdev->name, false, bdev_ut_event_cb, &ctx->claim_opts,
6951 					&ctx->desc);
6952 		CU_ASSERT(rc == 0);
6953 
6954 		rc = spdk_bdev_module_claim_bdev_desc(ctx->desc, ctx->claim_type, NULL, module);
6955 		CU_ASSERT(rc == ctx->expect_claim_err);
6956 	}
6957 	spdk_bdev_module_examine_done(module);
6958 }
6959 
6960 static void
6961 ut_examine_claimed_config0(struct spdk_bdev *bdev)
6962 {
6963 	examine_claimed_config(bdev, 0);
6964 }
6965 
6966 static void
6967 ut_examine_claimed_config1(struct spdk_bdev *bdev)
6968 {
6969 	examine_claimed_config(bdev, 1);
6970 }
6971 
6972 static void
6973 examine_claimed_disk(struct spdk_bdev *bdev, uint32_t modnum)
6974 {
6975 	SPDK_CU_ASSERT_FATAL(modnum < UT_MAX_EXAMINE_MODS);
6976 	struct spdk_bdev_module *module = &examine_claimed_mods[modnum];
6977 	struct ut_examine_claimed_ctx *ctx = &examine_claimed_ctx[modnum];
6978 
6979 	if (!ut_testing_examine_claimed) {
6980 		spdk_bdev_module_examine_done(module);
6981 		return;
6982 	}
6983 
6984 	ctx->examine_disk_count++;
6985 
6986 	spdk_bdev_module_examine_done(module);
6987 }
6988 
6989 static void
6990 ut_examine_claimed_disk0(struct spdk_bdev *bdev)
6991 {
6992 	examine_claimed_disk(bdev, 0);
6993 }
6994 
6995 static void
6996 ut_examine_claimed_disk1(struct spdk_bdev *bdev)
6997 {
6998 	examine_claimed_disk(bdev, 1);
6999 }
7000 
7001 static void
7002 examine_claimed(void)
7003 {
7004 	struct spdk_bdev *bdev;
7005 	struct spdk_bdev_module *mod = examine_claimed_mods;
7006 	struct ut_examine_claimed_ctx *ctx = examine_claimed_ctx;
7007 
7008 	ut_testing_examine_claimed = true;
7009 	reset_examine_claimed_ctx();
7010 
7011 	/*
7012 	 * With one module claiming, both modules' examine_config should be called, but only the
7013 	 * claiming module's examine_disk should be called.
7014 	 */
7015 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7016 	bdev = allocate_bdev("bdev0");
7017 	CU_ASSERT(ctx[0].examine_config_count == 1);
7018 	CU_ASSERT(ctx[0].examine_disk_count == 1);
7019 	SPDK_CU_ASSERT_FATAL(ctx[0].desc != NULL);
7020 	CU_ASSERT(ctx[0].desc->claim->module == &mod[0]);
7021 	CU_ASSERT(ctx[1].examine_config_count == 1);
7022 	CU_ASSERT(ctx[1].examine_disk_count == 0);
7023 	CU_ASSERT(ctx[1].desc == NULL);
7024 	reset_examine_claimed_ctx();
7025 	free_bdev(bdev);
7026 
7027 	/*
7028 	 * With two modules claiming, both modules' examine_config and examine_disk should be
7029 	 * called.
7030 	 */
7031 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7032 	ctx[1].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7033 	bdev = allocate_bdev("bdev0");
7034 	CU_ASSERT(ctx[0].examine_config_count == 1);
7035 	CU_ASSERT(ctx[0].examine_disk_count == 1);
7036 	SPDK_CU_ASSERT_FATAL(ctx[0].desc != NULL);
7037 	CU_ASSERT(ctx[0].desc->claim->module == &mod[0]);
7038 	CU_ASSERT(ctx[1].examine_config_count == 1);
7039 	CU_ASSERT(ctx[1].examine_disk_count == 1);
7040 	SPDK_CU_ASSERT_FATAL(ctx[1].desc != NULL);
7041 	CU_ASSERT(ctx[1].desc->claim->module == &mod[1]);
7042 	reset_examine_claimed_ctx();
7043 	free_bdev(bdev);
7044 
7045 	/*
7046 	 * If two vbdev modules try to claim with conflicting claim types, the module that was added
7047 	 * last wins. The winner gets the claim and is the only one that has its examine_disk
7048 	 * callback invoked.
7049 	 */
7050 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7051 	ctx[0].expect_claim_err = -EPERM;
7052 	ctx[1].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE;
7053 	bdev = allocate_bdev("bdev0");
7054 	CU_ASSERT(ctx[0].examine_config_count == 1);
7055 	CU_ASSERT(ctx[0].examine_disk_count == 0);
7056 	CU_ASSERT(ctx[1].examine_config_count == 1);
7057 	CU_ASSERT(ctx[1].examine_disk_count == 1);
7058 	SPDK_CU_ASSERT_FATAL(ctx[1].desc != NULL);
7059 	CU_ASSERT(ctx[1].desc->claim->module == &mod[1]);
7060 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
7061 	reset_examine_claimed_ctx();
7062 	free_bdev(bdev);
7063 
7064 	ut_testing_examine_claimed = false;
7065 }
7066 
7067 int
7068 main(int argc, char **argv)
7069 {
7070 	CU_pSuite		suite = NULL;
7071 	unsigned int		num_failures;
7072 
7073 	CU_set_error_action(CUEA_ABORT);
7074 	CU_initialize_registry();
7075 
7076 	suite = CU_add_suite("bdev", ut_bdev_setup, ut_bdev_teardown);
7077 
7078 	CU_ADD_TEST(suite, bytes_to_blocks_test);
7079 	CU_ADD_TEST(suite, num_blocks_test);
7080 	CU_ADD_TEST(suite, io_valid_test);
7081 	CU_ADD_TEST(suite, open_write_test);
7082 	CU_ADD_TEST(suite, claim_test);
7083 	CU_ADD_TEST(suite, alias_add_del_test);
7084 	CU_ADD_TEST(suite, get_device_stat_test);
7085 	CU_ADD_TEST(suite, bdev_io_types_test);
7086 	CU_ADD_TEST(suite, bdev_io_wait_test);
7087 	CU_ADD_TEST(suite, bdev_io_spans_split_test);
7088 	CU_ADD_TEST(suite, bdev_io_boundary_split_test);
7089 	CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test);
7090 	CU_ADD_TEST(suite, bdev_io_mix_split_test);
7091 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
7092 	CU_ADD_TEST(suite, bdev_io_write_unit_split_test);
7093 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
7094 	CU_ADD_TEST(suite, bdev_io_alignment);
7095 	CU_ADD_TEST(suite, bdev_histograms);
7096 	CU_ADD_TEST(suite, bdev_write_zeroes);
7097 	CU_ADD_TEST(suite, bdev_compare_and_write);
7098 	CU_ADD_TEST(suite, bdev_compare);
7099 	CU_ADD_TEST(suite, bdev_compare_emulated);
7100 	CU_ADD_TEST(suite, bdev_zcopy_write);
7101 	CU_ADD_TEST(suite, bdev_zcopy_read);
7102 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
7103 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
7104 	CU_ADD_TEST(suite, bdev_open_ext);
7105 	CU_ADD_TEST(suite, bdev_open_ext_unregister);
7106 	CU_ADD_TEST(suite, bdev_set_io_timeout);
7107 	CU_ADD_TEST(suite, bdev_set_qd_sampling);
7108 	CU_ADD_TEST(suite, lba_range_overlap);
7109 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
7110 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
7111 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
7112 	CU_ADD_TEST(suite, bdev_io_abort);
7113 	CU_ADD_TEST(suite, bdev_unmap);
7114 	CU_ADD_TEST(suite, bdev_write_zeroes_split_test);
7115 	CU_ADD_TEST(suite, bdev_set_options_test);
7116 	CU_ADD_TEST(suite, bdev_multi_allocation);
7117 	CU_ADD_TEST(suite, bdev_get_memory_domains);
7118 	CU_ADD_TEST(suite, bdev_io_ext);
7119 	CU_ADD_TEST(suite, bdev_io_ext_no_opts);
7120 	CU_ADD_TEST(suite, bdev_io_ext_invalid_opts);
7121 	CU_ADD_TEST(suite, bdev_io_ext_split);
7122 	CU_ADD_TEST(suite, bdev_io_ext_bounce_buffer);
7123 	CU_ADD_TEST(suite, bdev_register_uuid_alias);
7124 	CU_ADD_TEST(suite, bdev_unregister_by_name);
7125 	CU_ADD_TEST(suite, for_each_bdev_test);
7126 	CU_ADD_TEST(suite, bdev_seek_test);
7127 	CU_ADD_TEST(suite, bdev_copy);
7128 	CU_ADD_TEST(suite, bdev_copy_split_test);
7129 	CU_ADD_TEST(suite, examine_locks);
7130 	CU_ADD_TEST(suite, claim_v2_rwo);
7131 	CU_ADD_TEST(suite, claim_v2_rom);
7132 	CU_ADD_TEST(suite, claim_v2_rwm);
7133 	CU_ADD_TEST(suite, claim_v2_existing_writer);
7134 	CU_ADD_TEST(suite, claim_v2_existing_v1);
7135 	CU_ADD_TEST(suite, claim_v1_existing_v2);
7136 	CU_ADD_TEST(suite, examine_claimed);
7137 
7138 	allocate_cores(1);
7139 	allocate_threads(1);
7140 	set_thread(0);
7141 
7142 	CU_basic_set_mode(CU_BRM_VERBOSE);
7143 	CU_basic_run_tests();
7144 	num_failures = CU_get_number_of_failures();
7145 	CU_cleanup_registry();
7146 
7147 	free_threads();
7148 	free_cores();
7149 
7150 	return num_failures;
7151 }
7152