xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision a0d24145bf3d795cf89adc414320b138fae480ab)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2017 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk_cunit.h"
8 
9 #include "common/lib/ut_multithread.c"
10 #include "unit/lib/json_mock.c"
11 
12 #include "spdk/config.h"
13 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
14 #undef SPDK_CONFIG_VTUNE
15 
16 #include "bdev/bdev.c"
17 
18 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
19 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
20 DEFINE_STUB(spdk_memory_domain_get_dma_device_id, const char *, (struct spdk_memory_domain *domain),
21 	    "test_domain");
22 DEFINE_STUB(spdk_memory_domain_get_dma_device_type, enum spdk_dma_device_type,
23 	    (struct spdk_memory_domain *domain), 0);
24 DEFINE_STUB(spdk_accel_sequence_finish, int,
25 	    (struct spdk_accel_sequence *seq, spdk_accel_completion_cb cb_fn, void *cb_arg), 0);
26 DEFINE_STUB_V(spdk_accel_sequence_abort, (struct spdk_accel_sequence *seq));
27 DEFINE_STUB_V(spdk_accel_sequence_reverse, (struct spdk_accel_sequence *seq));
28 DEFINE_STUB(spdk_accel_append_copy, int,
29 	    (struct spdk_accel_sequence **seq, struct spdk_io_channel *ch, struct iovec *dst_iovs,
30 	     uint32_t dst_iovcnt, struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
31 	     struct iovec *src_iovs, uint32_t src_iovcnt, struct spdk_memory_domain *src_domain,
32 	     void *src_domain_ctx, int flags, spdk_accel_step_cb cb_fn, void *cb_arg), 0);
33 DEFINE_STUB(spdk_accel_get_memory_domain, struct spdk_memory_domain *, (void), NULL);
34 
35 static bool g_memory_domain_pull_data_called;
36 static bool g_memory_domain_push_data_called;
37 static int g_accel_io_device;
38 
39 DEFINE_RETURN_MOCK(spdk_memory_domain_pull_data, int);
40 int
41 spdk_memory_domain_pull_data(struct spdk_memory_domain *src_domain, void *src_domain_ctx,
42 			     struct iovec *src_iov, uint32_t src_iov_cnt, struct iovec *dst_iov, uint32_t dst_iov_cnt,
43 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
44 {
45 	g_memory_domain_pull_data_called = true;
46 	HANDLE_RETURN_MOCK(spdk_memory_domain_pull_data);
47 	cpl_cb(cpl_cb_arg, 0);
48 	return 0;
49 }
50 
51 DEFINE_RETURN_MOCK(spdk_memory_domain_push_data, int);
52 int
53 spdk_memory_domain_push_data(struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
54 			     struct iovec *dst_iov, uint32_t dst_iovcnt, struct iovec *src_iov, uint32_t src_iovcnt,
55 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
56 {
57 	g_memory_domain_push_data_called = true;
58 	HANDLE_RETURN_MOCK(spdk_memory_domain_push_data);
59 	cpl_cb(cpl_cb_arg, 0);
60 	return 0;
61 }
62 
63 struct spdk_io_channel *
64 spdk_accel_get_io_channel(void)
65 {
66 	return spdk_get_io_channel(&g_accel_io_device);
67 }
68 
69 int g_status;
70 int g_count;
71 enum spdk_bdev_event_type g_event_type1;
72 enum spdk_bdev_event_type g_event_type2;
73 enum spdk_bdev_event_type g_event_type3;
74 enum spdk_bdev_event_type g_event_type4;
75 struct spdk_histogram_data *g_histogram;
76 void *g_unregister_arg;
77 int g_unregister_rc;
78 
79 void
80 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
81 			 int *sc, int *sk, int *asc, int *ascq)
82 {
83 }
84 
85 static int
86 ut_accel_ch_create_cb(void *io_device, void *ctx)
87 {
88 	return 0;
89 }
90 
91 static void
92 ut_accel_ch_destroy_cb(void *io_device, void *ctx)
93 {
94 }
95 
96 static int
97 ut_bdev_setup(void)
98 {
99 	spdk_io_device_register(&g_accel_io_device, ut_accel_ch_create_cb,
100 				ut_accel_ch_destroy_cb, 0, NULL);
101 	return 0;
102 }
103 
104 static int
105 ut_bdev_teardown(void)
106 {
107 	spdk_io_device_unregister(&g_accel_io_device, NULL);
108 
109 	return 0;
110 }
111 
112 static int
113 stub_destruct(void *ctx)
114 {
115 	return 0;
116 }
117 
118 struct ut_expected_io {
119 	uint8_t				type;
120 	uint64_t			offset;
121 	uint64_t			src_offset;
122 	uint64_t			length;
123 	int				iovcnt;
124 	struct iovec			iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
125 	void				*md_buf;
126 	TAILQ_ENTRY(ut_expected_io)	link;
127 };
128 
129 struct bdev_ut_channel {
130 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
131 	uint32_t			outstanding_io_count;
132 	TAILQ_HEAD(, ut_expected_io)	expected_io;
133 };
134 
135 static bool g_io_done;
136 static struct spdk_bdev_io *g_bdev_io;
137 static enum spdk_bdev_io_status g_io_status;
138 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
139 static uint32_t g_bdev_ut_io_device;
140 static struct bdev_ut_channel *g_bdev_ut_channel;
141 static void *g_compare_read_buf;
142 static uint32_t g_compare_read_buf_len;
143 static void *g_compare_write_buf;
144 static uint32_t g_compare_write_buf_len;
145 static void *g_compare_md_buf;
146 static bool g_abort_done;
147 static enum spdk_bdev_io_status g_abort_status;
148 static void *g_zcopy_read_buf;
149 static uint32_t g_zcopy_read_buf_len;
150 static void *g_zcopy_write_buf;
151 static uint32_t g_zcopy_write_buf_len;
152 static struct spdk_bdev_io *g_zcopy_bdev_io;
153 static uint64_t g_seek_data_offset;
154 static uint64_t g_seek_hole_offset;
155 static uint64_t g_seek_offset;
156 
157 static struct ut_expected_io *
158 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
159 {
160 	struct ut_expected_io *expected_io;
161 
162 	expected_io = calloc(1, sizeof(*expected_io));
163 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
164 
165 	expected_io->type = type;
166 	expected_io->offset = offset;
167 	expected_io->length = length;
168 	expected_io->iovcnt = iovcnt;
169 
170 	return expected_io;
171 }
172 
173 static struct ut_expected_io *
174 ut_alloc_expected_copy_io(uint8_t type, uint64_t offset, uint64_t src_offset, uint64_t length)
175 {
176 	struct ut_expected_io *expected_io;
177 
178 	expected_io = calloc(1, sizeof(*expected_io));
179 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
180 
181 	expected_io->type = type;
182 	expected_io->offset = offset;
183 	expected_io->src_offset = src_offset;
184 	expected_io->length = length;
185 
186 	return expected_io;
187 }
188 
189 static void
190 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
191 {
192 	expected_io->iov[pos].iov_base = base;
193 	expected_io->iov[pos].iov_len = len;
194 }
195 
196 static void
197 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
198 {
199 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
200 	struct ut_expected_io *expected_io;
201 	struct iovec *iov, *expected_iov;
202 	struct spdk_bdev_io *bio_to_abort;
203 	int i;
204 
205 	g_bdev_io = bdev_io;
206 
207 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
208 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
209 
210 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
211 		CU_ASSERT(g_compare_read_buf_len == len);
212 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
213 		if (bdev_io->bdev->md_len && bdev_io->u.bdev.md_buf && g_compare_md_buf) {
214 			memcpy(bdev_io->u.bdev.md_buf, g_compare_md_buf,
215 			       bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks);
216 		}
217 	}
218 
219 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
220 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
221 
222 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
223 		CU_ASSERT(g_compare_write_buf_len == len);
224 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
225 	}
226 
227 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
228 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
229 
230 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
231 		CU_ASSERT(g_compare_read_buf_len == len);
232 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
233 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
234 		}
235 		if (bdev_io->u.bdev.md_buf &&
236 		    memcmp(bdev_io->u.bdev.md_buf, g_compare_md_buf,
237 			   bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks)) {
238 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
239 		}
240 	}
241 
242 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
243 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
244 			TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
245 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
246 					TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
247 					ch->outstanding_io_count--;
248 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
249 					break;
250 				}
251 			}
252 		}
253 	}
254 
255 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) {
256 		if (bdev_io->u.bdev.zcopy.start) {
257 			g_zcopy_bdev_io = bdev_io;
258 			if (bdev_io->u.bdev.zcopy.populate) {
259 				/* Start of a read */
260 				CU_ASSERT(g_zcopy_read_buf != NULL);
261 				CU_ASSERT(g_zcopy_read_buf_len > 0);
262 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_read_buf;
263 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_read_buf_len;
264 				bdev_io->u.bdev.iovcnt = 1;
265 			} else {
266 				/* Start of a write */
267 				CU_ASSERT(g_zcopy_write_buf != NULL);
268 				CU_ASSERT(g_zcopy_write_buf_len > 0);
269 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_write_buf;
270 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_write_buf_len;
271 				bdev_io->u.bdev.iovcnt = 1;
272 			}
273 		} else {
274 			if (bdev_io->u.bdev.zcopy.commit) {
275 				/* End of write */
276 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_write_buf);
277 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_write_buf_len);
278 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
279 				g_zcopy_write_buf = NULL;
280 				g_zcopy_write_buf_len = 0;
281 			} else {
282 				/* End of read */
283 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_read_buf);
284 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_read_buf_len);
285 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
286 				g_zcopy_read_buf = NULL;
287 				g_zcopy_read_buf_len = 0;
288 			}
289 		}
290 	}
291 
292 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_DATA) {
293 		bdev_io->u.bdev.seek.offset = g_seek_data_offset;
294 	}
295 
296 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_HOLE) {
297 		bdev_io->u.bdev.seek.offset = g_seek_hole_offset;
298 	}
299 
300 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
301 	ch->outstanding_io_count++;
302 
303 	expected_io = TAILQ_FIRST(&ch->expected_io);
304 	if (expected_io == NULL) {
305 		return;
306 	}
307 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
308 
309 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
310 		CU_ASSERT(bdev_io->type == expected_io->type);
311 	}
312 
313 	if (expected_io->md_buf != NULL) {
314 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
315 	}
316 
317 	if (expected_io->length == 0) {
318 		free(expected_io);
319 		return;
320 	}
321 
322 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
323 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
324 	if (expected_io->type == SPDK_BDEV_IO_TYPE_COPY) {
325 		CU_ASSERT(expected_io->src_offset == bdev_io->u.bdev.copy.src_offset_blocks);
326 	}
327 
328 	if (expected_io->iovcnt == 0) {
329 		free(expected_io);
330 		/* UNMAP, WRITE_ZEROES, FLUSH and COPY don't have iovs, so we can just return now. */
331 		return;
332 	}
333 
334 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
335 	for (i = 0; i < expected_io->iovcnt; i++) {
336 		expected_iov = &expected_io->iov[i];
337 		if (bdev_io->internal.orig_iovcnt == 0) {
338 			iov = &bdev_io->u.bdev.iovs[i];
339 		} else {
340 			iov = bdev_io->internal.orig_iovs;
341 		}
342 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
343 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
344 	}
345 
346 	free(expected_io);
347 }
348 
349 static void
350 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
351 			       struct spdk_bdev_io *bdev_io, bool success)
352 {
353 	CU_ASSERT(success == true);
354 
355 	stub_submit_request(_ch, bdev_io);
356 }
357 
358 static void
359 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
360 {
361 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
362 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
363 }
364 
365 static uint32_t
366 stub_complete_io(uint32_t num_to_complete)
367 {
368 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
369 	struct spdk_bdev_io *bdev_io;
370 	static enum spdk_bdev_io_status io_status;
371 	uint32_t num_completed = 0;
372 
373 	while (num_completed < num_to_complete) {
374 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
375 			break;
376 		}
377 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
378 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
379 		ch->outstanding_io_count--;
380 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
381 			    g_io_exp_status;
382 		spdk_bdev_io_complete(bdev_io, io_status);
383 		num_completed++;
384 	}
385 
386 	return num_completed;
387 }
388 
389 static struct spdk_io_channel *
390 bdev_ut_get_io_channel(void *ctx)
391 {
392 	return spdk_get_io_channel(&g_bdev_ut_io_device);
393 }
394 
395 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
396 	[SPDK_BDEV_IO_TYPE_READ]		= true,
397 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
398 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
399 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
400 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
401 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
402 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
403 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
404 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
405 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
406 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
407 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
408 	[SPDK_BDEV_IO_TYPE_SEEK_HOLE]		= true,
409 	[SPDK_BDEV_IO_TYPE_SEEK_DATA]		= true,
410 	[SPDK_BDEV_IO_TYPE_COPY]		= true,
411 };
412 
413 static void
414 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
415 {
416 	g_io_types_supported[io_type] = enable;
417 }
418 
419 static bool
420 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
421 {
422 	return g_io_types_supported[io_type];
423 }
424 
425 static struct spdk_bdev_fn_table fn_table = {
426 	.destruct = stub_destruct,
427 	.submit_request = stub_submit_request,
428 	.get_io_channel = bdev_ut_get_io_channel,
429 	.io_type_supported = stub_io_type_supported,
430 };
431 
432 static int
433 bdev_ut_create_ch(void *io_device, void *ctx_buf)
434 {
435 	struct bdev_ut_channel *ch = ctx_buf;
436 
437 	CU_ASSERT(g_bdev_ut_channel == NULL);
438 	g_bdev_ut_channel = ch;
439 
440 	TAILQ_INIT(&ch->outstanding_io);
441 	ch->outstanding_io_count = 0;
442 	TAILQ_INIT(&ch->expected_io);
443 	return 0;
444 }
445 
446 static void
447 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
448 {
449 	CU_ASSERT(g_bdev_ut_channel != NULL);
450 	g_bdev_ut_channel = NULL;
451 }
452 
453 struct spdk_bdev_module bdev_ut_if;
454 
455 static int
456 bdev_ut_module_init(void)
457 {
458 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
459 				sizeof(struct bdev_ut_channel), NULL);
460 	spdk_bdev_module_init_done(&bdev_ut_if);
461 	return 0;
462 }
463 
464 static void
465 bdev_ut_module_fini(void)
466 {
467 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
468 }
469 
470 struct spdk_bdev_module bdev_ut_if = {
471 	.name = "bdev_ut",
472 	.module_init = bdev_ut_module_init,
473 	.module_fini = bdev_ut_module_fini,
474 	.async_init = true,
475 };
476 
477 static void vbdev_ut_examine_config(struct spdk_bdev *bdev);
478 static void vbdev_ut_examine_disk(struct spdk_bdev *bdev);
479 
480 static int
481 vbdev_ut_module_init(void)
482 {
483 	return 0;
484 }
485 
486 static void
487 vbdev_ut_module_fini(void)
488 {
489 }
490 
491 struct spdk_bdev_module vbdev_ut_if = {
492 	.name = "vbdev_ut",
493 	.module_init = vbdev_ut_module_init,
494 	.module_fini = vbdev_ut_module_fini,
495 	.examine_config = vbdev_ut_examine_config,
496 	.examine_disk = vbdev_ut_examine_disk,
497 };
498 
499 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
500 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
501 
502 struct ut_examine_ctx {
503 	void (*examine_config)(struct spdk_bdev *bdev);
504 	void (*examine_disk)(struct spdk_bdev *bdev);
505 	uint32_t examine_config_count;
506 	uint32_t examine_disk_count;
507 };
508 
509 static void
510 vbdev_ut_examine_config(struct spdk_bdev *bdev)
511 {
512 	struct ut_examine_ctx *ctx = bdev->ctxt;
513 
514 	if (ctx != NULL) {
515 		ctx->examine_config_count++;
516 		if (ctx->examine_config != NULL) {
517 			ctx->examine_config(bdev);
518 		}
519 	}
520 
521 	spdk_bdev_module_examine_done(&vbdev_ut_if);
522 }
523 
524 static void
525 vbdev_ut_examine_disk(struct spdk_bdev *bdev)
526 {
527 	struct ut_examine_ctx *ctx = bdev->ctxt;
528 
529 	if (ctx != NULL) {
530 		ctx->examine_disk_count++;
531 		if (ctx->examine_disk != NULL) {
532 			ctx->examine_disk(bdev);
533 		}
534 	}
535 
536 	spdk_bdev_module_examine_done(&vbdev_ut_if);
537 }
538 
539 static struct spdk_bdev *
540 allocate_bdev_ctx(char *name, void *ctx)
541 {
542 	struct spdk_bdev *bdev;
543 	int rc;
544 
545 	bdev = calloc(1, sizeof(*bdev));
546 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
547 
548 	bdev->ctxt = ctx;
549 	bdev->name = name;
550 	bdev->fn_table = &fn_table;
551 	bdev->module = &bdev_ut_if;
552 	bdev->blockcnt = 1024;
553 	bdev->blocklen = 512;
554 
555 	spdk_uuid_generate(&bdev->uuid);
556 
557 	rc = spdk_bdev_register(bdev);
558 	poll_threads();
559 	CU_ASSERT(rc == 0);
560 
561 	return bdev;
562 }
563 
564 static struct spdk_bdev *
565 allocate_bdev(char *name)
566 {
567 	return allocate_bdev_ctx(name, NULL);
568 }
569 
570 static struct spdk_bdev *
571 allocate_vbdev(char *name)
572 {
573 	struct spdk_bdev *bdev;
574 	int rc;
575 
576 	bdev = calloc(1, sizeof(*bdev));
577 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
578 
579 	bdev->name = name;
580 	bdev->fn_table = &fn_table;
581 	bdev->module = &vbdev_ut_if;
582 
583 	rc = spdk_bdev_register(bdev);
584 	poll_threads();
585 	CU_ASSERT(rc == 0);
586 
587 	return bdev;
588 }
589 
590 static void
591 free_bdev(struct spdk_bdev *bdev)
592 {
593 	spdk_bdev_unregister(bdev, NULL, NULL);
594 	poll_threads();
595 	memset(bdev, 0xFF, sizeof(*bdev));
596 	free(bdev);
597 }
598 
599 static void
600 free_vbdev(struct spdk_bdev *bdev)
601 {
602 	spdk_bdev_unregister(bdev, NULL, NULL);
603 	poll_threads();
604 	memset(bdev, 0xFF, sizeof(*bdev));
605 	free(bdev);
606 }
607 
608 static void
609 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
610 {
611 	const char *bdev_name;
612 
613 	CU_ASSERT(bdev != NULL);
614 	CU_ASSERT(rc == 0);
615 	bdev_name = spdk_bdev_get_name(bdev);
616 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
617 
618 	free(stat);
619 
620 	*(bool *)cb_arg = true;
621 }
622 
623 static void
624 bdev_unregister_cb(void *cb_arg, int rc)
625 {
626 	g_unregister_arg = cb_arg;
627 	g_unregister_rc = rc;
628 }
629 
630 static void
631 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
632 {
633 }
634 
635 static void
636 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
637 {
638 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
639 
640 	g_event_type1 = type;
641 	if (SPDK_BDEV_EVENT_REMOVE == type) {
642 		spdk_bdev_close(desc);
643 	}
644 }
645 
646 static void
647 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
648 {
649 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
650 
651 	g_event_type2 = type;
652 	if (SPDK_BDEV_EVENT_REMOVE == type) {
653 		spdk_bdev_close(desc);
654 	}
655 }
656 
657 static void
658 bdev_open_cb3(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
659 {
660 	g_event_type3 = type;
661 }
662 
663 static void
664 bdev_open_cb4(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
665 {
666 	g_event_type4 = type;
667 }
668 
669 static void
670 bdev_seek_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
671 {
672 	g_seek_offset = spdk_bdev_io_get_seek_offset(bdev_io);
673 	spdk_bdev_free_io(bdev_io);
674 }
675 
676 static void
677 get_device_stat_test(void)
678 {
679 	struct spdk_bdev *bdev;
680 	struct spdk_bdev_io_stat *stat;
681 	bool done;
682 
683 	bdev = allocate_bdev("bdev0");
684 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
685 	if (stat == NULL) {
686 		free_bdev(bdev);
687 		return;
688 	}
689 
690 	done = false;
691 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
692 	while (!done) { poll_threads(); }
693 
694 	free_bdev(bdev);
695 }
696 
697 static void
698 open_write_test(void)
699 {
700 	struct spdk_bdev *bdev[9];
701 	struct spdk_bdev_desc *desc[9] = {};
702 	int rc;
703 
704 	/*
705 	 * Create a tree of bdevs to test various open w/ write cases.
706 	 *
707 	 * bdev0 through bdev3 are physical block devices, such as NVMe
708 	 * namespaces or Ceph block devices.
709 	 *
710 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
711 	 * caching or RAID use cases.
712 	 *
713 	 * bdev5 through bdev7 are all virtual bdevs with the same base
714 	 * bdev (except bdev7). This models partitioning or logical volume
715 	 * use cases.
716 	 *
717 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
718 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
719 	 * models caching, RAID, partitioning or logical volumes use cases.
720 	 *
721 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
722 	 * base bdevs are themselves virtual bdevs.
723 	 *
724 	 *                bdev8
725 	 *                  |
726 	 *            +----------+
727 	 *            |          |
728 	 *          bdev4      bdev5   bdev6   bdev7
729 	 *            |          |       |       |
730 	 *        +---+---+      +---+   +   +---+---+
731 	 *        |       |           \  |  /         \
732 	 *      bdev0   bdev1          bdev2         bdev3
733 	 */
734 
735 	bdev[0] = allocate_bdev("bdev0");
736 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
737 	CU_ASSERT(rc == 0);
738 
739 	bdev[1] = allocate_bdev("bdev1");
740 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
741 	CU_ASSERT(rc == 0);
742 
743 	bdev[2] = allocate_bdev("bdev2");
744 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
745 	CU_ASSERT(rc == 0);
746 
747 	bdev[3] = allocate_bdev("bdev3");
748 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
749 	CU_ASSERT(rc == 0);
750 
751 	bdev[4] = allocate_vbdev("bdev4");
752 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
753 	CU_ASSERT(rc == 0);
754 
755 	bdev[5] = allocate_vbdev("bdev5");
756 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
757 	CU_ASSERT(rc == 0);
758 
759 	bdev[6] = allocate_vbdev("bdev6");
760 
761 	bdev[7] = allocate_vbdev("bdev7");
762 
763 	bdev[8] = allocate_vbdev("bdev8");
764 
765 	/* Open bdev0 read-only.  This should succeed. */
766 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
767 	CU_ASSERT(rc == 0);
768 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
769 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
770 	spdk_bdev_close(desc[0]);
771 
772 	/*
773 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
774 	 * by a vbdev module.
775 	 */
776 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
777 	CU_ASSERT(rc == -EPERM);
778 
779 	/*
780 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
781 	 * by a vbdev module.
782 	 */
783 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
784 	CU_ASSERT(rc == -EPERM);
785 
786 	/* Open bdev4 read-only.  This should succeed. */
787 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
788 	CU_ASSERT(rc == 0);
789 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
790 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
791 	spdk_bdev_close(desc[4]);
792 
793 	/*
794 	 * Open bdev8 read/write.  This should succeed since it is a leaf
795 	 * bdev.
796 	 */
797 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
798 	CU_ASSERT(rc == 0);
799 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
800 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
801 	spdk_bdev_close(desc[8]);
802 
803 	/*
804 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
805 	 * by a vbdev module.
806 	 */
807 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
808 	CU_ASSERT(rc == -EPERM);
809 
810 	/* Open bdev4 read-only.  This should succeed. */
811 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
812 	CU_ASSERT(rc == 0);
813 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
814 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
815 	spdk_bdev_close(desc[5]);
816 
817 	free_vbdev(bdev[8]);
818 
819 	free_vbdev(bdev[5]);
820 	free_vbdev(bdev[6]);
821 	free_vbdev(bdev[7]);
822 
823 	free_vbdev(bdev[4]);
824 
825 	free_bdev(bdev[0]);
826 	free_bdev(bdev[1]);
827 	free_bdev(bdev[2]);
828 	free_bdev(bdev[3]);
829 }
830 
831 static void
832 claim_test(void)
833 {
834 	struct spdk_bdev *bdev;
835 	struct spdk_bdev_desc *desc, *open_desc;
836 	int rc;
837 	uint32_t count;
838 
839 	/*
840 	 * A vbdev that uses a read-only bdev may need it to remain read-only.
841 	 * To do so, it opens the bdev read-only, then claims it without
842 	 * passing a spdk_bdev_desc.
843 	 */
844 	bdev = allocate_bdev("bdev0");
845 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
846 	CU_ASSERT(rc == 0);
847 	CU_ASSERT(desc->write == false);
848 
849 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
850 	CU_ASSERT(rc == 0);
851 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
852 	CU_ASSERT(bdev->internal.claim.v1.module == &bdev_ut_if);
853 
854 	/* There should be only one open descriptor and it should still be ro */
855 	count = 0;
856 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
857 		CU_ASSERT(open_desc == desc);
858 		CU_ASSERT(!open_desc->write);
859 		count++;
860 	}
861 	CU_ASSERT(count == 1);
862 
863 	/* A read-only bdev is upgraded to read-write if desc is passed. */
864 	spdk_bdev_module_release_bdev(bdev);
865 	rc = spdk_bdev_module_claim_bdev(bdev, desc, &bdev_ut_if);
866 	CU_ASSERT(rc == 0);
867 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
868 	CU_ASSERT(bdev->internal.claim.v1.module == &bdev_ut_if);
869 
870 	/* There should be only one open descriptor and it should be rw */
871 	count = 0;
872 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
873 		CU_ASSERT(open_desc == desc);
874 		CU_ASSERT(open_desc->write);
875 		count++;
876 	}
877 	CU_ASSERT(count == 1);
878 
879 	spdk_bdev_close(desc);
880 	free_bdev(bdev);
881 }
882 
883 static void
884 bytes_to_blocks_test(void)
885 {
886 	struct spdk_bdev bdev;
887 	uint64_t offset_blocks, num_blocks;
888 
889 	memset(&bdev, 0, sizeof(bdev));
890 
891 	bdev.blocklen = 512;
892 
893 	/* All parameters valid */
894 	offset_blocks = 0;
895 	num_blocks = 0;
896 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
897 	CU_ASSERT(offset_blocks == 1);
898 	CU_ASSERT(num_blocks == 2);
899 
900 	/* Offset not a block multiple */
901 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
902 
903 	/* Length not a block multiple */
904 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
905 
906 	/* In case blocklen not the power of two */
907 	bdev.blocklen = 100;
908 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
909 	CU_ASSERT(offset_blocks == 1);
910 	CU_ASSERT(num_blocks == 2);
911 
912 	/* Offset not a block multiple */
913 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
914 
915 	/* Length not a block multiple */
916 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
917 }
918 
919 static void
920 num_blocks_test(void)
921 {
922 	struct spdk_bdev bdev;
923 	struct spdk_bdev_desc *desc = NULL;
924 	int rc;
925 
926 	memset(&bdev, 0, sizeof(bdev));
927 	bdev.name = "num_blocks";
928 	bdev.fn_table = &fn_table;
929 	bdev.module = &bdev_ut_if;
930 	spdk_bdev_register(&bdev);
931 	poll_threads();
932 	spdk_bdev_notify_blockcnt_change(&bdev, 50);
933 
934 	/* Growing block number */
935 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
936 	/* Shrinking block number */
937 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
938 
939 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc, &desc);
940 	CU_ASSERT(rc == 0);
941 	SPDK_CU_ASSERT_FATAL(desc != NULL);
942 	CU_ASSERT(&bdev == spdk_bdev_desc_get_bdev(desc));
943 
944 	/* Growing block number */
945 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
946 	/* Shrinking block number */
947 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
948 
949 	g_event_type1 = 0xFF;
950 	/* Growing block number */
951 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
952 
953 	poll_threads();
954 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
955 
956 	g_event_type1 = 0xFF;
957 	/* Growing block number and closing */
958 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
959 
960 	spdk_bdev_close(desc);
961 	spdk_bdev_unregister(&bdev, NULL, NULL);
962 
963 	poll_threads();
964 
965 	/* Callback is not called for closed device */
966 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
967 }
968 
969 static void
970 io_valid_test(void)
971 {
972 	struct spdk_bdev bdev;
973 
974 	memset(&bdev, 0, sizeof(bdev));
975 
976 	bdev.blocklen = 512;
977 	spdk_spin_init(&bdev.internal.spinlock);
978 
979 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
980 
981 	/* All parameters valid */
982 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
983 
984 	/* Last valid block */
985 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
986 
987 	/* Offset past end of bdev */
988 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
989 
990 	/* Offset + length past end of bdev */
991 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
992 
993 	/* Offset near end of uint64_t range (2^64 - 1) */
994 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
995 
996 	spdk_spin_destroy(&bdev.internal.spinlock);
997 }
998 
999 static void
1000 alias_add_del_test(void)
1001 {
1002 	struct spdk_bdev *bdev[3];
1003 	int rc;
1004 
1005 	/* Creating and registering bdevs */
1006 	bdev[0] = allocate_bdev("bdev0");
1007 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
1008 
1009 	bdev[1] = allocate_bdev("bdev1");
1010 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
1011 
1012 	bdev[2] = allocate_bdev("bdev2");
1013 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
1014 
1015 	poll_threads();
1016 
1017 	/*
1018 	 * Trying adding an alias identical to name.
1019 	 * Alias is identical to name, so it can not be added to aliases list
1020 	 */
1021 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
1022 	CU_ASSERT(rc == -EEXIST);
1023 
1024 	/*
1025 	 * Trying to add empty alias,
1026 	 * this one should fail
1027 	 */
1028 	rc = spdk_bdev_alias_add(bdev[0], NULL);
1029 	CU_ASSERT(rc == -EINVAL);
1030 
1031 	/* Trying adding same alias to two different registered bdevs */
1032 
1033 	/* Alias is used first time, so this one should pass */
1034 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
1035 	CU_ASSERT(rc == 0);
1036 
1037 	/* Alias was added to another bdev, so this one should fail */
1038 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
1039 	CU_ASSERT(rc == -EEXIST);
1040 
1041 	/* Alias is used first time, so this one should pass */
1042 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
1043 	CU_ASSERT(rc == 0);
1044 
1045 	/* Trying removing an alias from registered bdevs */
1046 
1047 	/* Alias is not on a bdev aliases list, so this one should fail */
1048 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
1049 	CU_ASSERT(rc == -ENOENT);
1050 
1051 	/* Alias is present on a bdev aliases list, so this one should pass */
1052 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
1053 	CU_ASSERT(rc == 0);
1054 
1055 	/* Alias is present on a bdev aliases list, so this one should pass */
1056 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
1057 	CU_ASSERT(rc == 0);
1058 
1059 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
1060 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
1061 	CU_ASSERT(rc != 0);
1062 
1063 	/* Trying to del all alias from empty alias list */
1064 	spdk_bdev_alias_del_all(bdev[2]);
1065 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
1066 
1067 	/* Trying to del all alias from non-empty alias list */
1068 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
1069 	CU_ASSERT(rc == 0);
1070 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
1071 	CU_ASSERT(rc == 0);
1072 	spdk_bdev_alias_del_all(bdev[2]);
1073 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
1074 
1075 	/* Unregister and free bdevs */
1076 	spdk_bdev_unregister(bdev[0], NULL, NULL);
1077 	spdk_bdev_unregister(bdev[1], NULL, NULL);
1078 	spdk_bdev_unregister(bdev[2], NULL, NULL);
1079 
1080 	poll_threads();
1081 
1082 	free(bdev[0]);
1083 	free(bdev[1]);
1084 	free(bdev[2]);
1085 }
1086 
1087 static void
1088 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
1089 {
1090 	g_io_done = true;
1091 	g_io_status = bdev_io->internal.status;
1092 	if ((bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) &&
1093 	    (bdev_io->u.bdev.zcopy.start)) {
1094 		g_zcopy_bdev_io = bdev_io;
1095 	} else {
1096 		spdk_bdev_free_io(bdev_io);
1097 		g_zcopy_bdev_io = NULL;
1098 	}
1099 }
1100 
1101 static void
1102 bdev_init_cb(void *arg, int rc)
1103 {
1104 	CU_ASSERT(rc == 0);
1105 }
1106 
1107 static void
1108 bdev_fini_cb(void *arg)
1109 {
1110 }
1111 
1112 static void
1113 ut_init_bdev(struct spdk_bdev_opts *opts)
1114 {
1115 	int rc;
1116 
1117 	if (opts != NULL) {
1118 		rc = spdk_bdev_set_opts(opts);
1119 		CU_ASSERT(rc == 0);
1120 	}
1121 	rc = spdk_iobuf_initialize();
1122 	CU_ASSERT(rc == 0);
1123 	spdk_bdev_initialize(bdev_init_cb, NULL);
1124 	poll_threads();
1125 }
1126 
1127 static void
1128 ut_fini_bdev(void)
1129 {
1130 	spdk_bdev_finish(bdev_fini_cb, NULL);
1131 	spdk_iobuf_finish(bdev_fini_cb, NULL);
1132 	poll_threads();
1133 }
1134 
1135 struct bdev_ut_io_wait_entry {
1136 	struct spdk_bdev_io_wait_entry	entry;
1137 	struct spdk_io_channel		*io_ch;
1138 	struct spdk_bdev_desc		*desc;
1139 	bool				submitted;
1140 };
1141 
1142 static void
1143 io_wait_cb(void *arg)
1144 {
1145 	struct bdev_ut_io_wait_entry *entry = arg;
1146 	int rc;
1147 
1148 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
1149 	CU_ASSERT(rc == 0);
1150 	entry->submitted = true;
1151 }
1152 
1153 static void
1154 bdev_io_types_test(void)
1155 {
1156 	struct spdk_bdev *bdev;
1157 	struct spdk_bdev_desc *desc = NULL;
1158 	struct spdk_io_channel *io_ch;
1159 	struct spdk_bdev_opts bdev_opts = {};
1160 	int rc;
1161 
1162 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1163 	bdev_opts.bdev_io_pool_size = 4;
1164 	bdev_opts.bdev_io_cache_size = 2;
1165 	ut_init_bdev(&bdev_opts);
1166 
1167 	bdev = allocate_bdev("bdev0");
1168 
1169 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1170 	CU_ASSERT(rc == 0);
1171 	poll_threads();
1172 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1173 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1174 	io_ch = spdk_bdev_get_io_channel(desc);
1175 	CU_ASSERT(io_ch != NULL);
1176 
1177 	/* WRITE and WRITE ZEROES are not supported */
1178 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
1179 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
1180 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
1181 	CU_ASSERT(rc == -ENOTSUP);
1182 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
1183 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
1184 
1185 	/* NVME_IO, NVME_IO_MD and NVME_ADMIN are not supported */
1186 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, false);
1187 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, false);
1188 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, false);
1189 	rc = spdk_bdev_nvme_io_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1190 	CU_ASSERT(rc == -ENOTSUP);
1191 	rc = spdk_bdev_nvme_io_passthru_md(desc, io_ch, NULL, NULL, 0, NULL, 0, NULL, NULL);
1192 	CU_ASSERT(rc == -ENOTSUP);
1193 	rc = spdk_bdev_nvme_admin_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1194 	CU_ASSERT(rc == -ENOTSUP);
1195 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, true);
1196 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, true);
1197 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, true);
1198 
1199 	spdk_put_io_channel(io_ch);
1200 	spdk_bdev_close(desc);
1201 	free_bdev(bdev);
1202 	ut_fini_bdev();
1203 }
1204 
1205 static void
1206 bdev_io_wait_test(void)
1207 {
1208 	struct spdk_bdev *bdev;
1209 	struct spdk_bdev_desc *desc = NULL;
1210 	struct spdk_io_channel *io_ch;
1211 	struct spdk_bdev_opts bdev_opts = {};
1212 	struct bdev_ut_io_wait_entry io_wait_entry;
1213 	struct bdev_ut_io_wait_entry io_wait_entry2;
1214 	int rc;
1215 
1216 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1217 	bdev_opts.bdev_io_pool_size = 4;
1218 	bdev_opts.bdev_io_cache_size = 2;
1219 	ut_init_bdev(&bdev_opts);
1220 
1221 	bdev = allocate_bdev("bdev0");
1222 
1223 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1224 	CU_ASSERT(rc == 0);
1225 	poll_threads();
1226 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1227 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1228 	io_ch = spdk_bdev_get_io_channel(desc);
1229 	CU_ASSERT(io_ch != NULL);
1230 
1231 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1232 	CU_ASSERT(rc == 0);
1233 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1234 	CU_ASSERT(rc == 0);
1235 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1236 	CU_ASSERT(rc == 0);
1237 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1238 	CU_ASSERT(rc == 0);
1239 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1240 
1241 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1242 	CU_ASSERT(rc == -ENOMEM);
1243 
1244 	io_wait_entry.entry.bdev = bdev;
1245 	io_wait_entry.entry.cb_fn = io_wait_cb;
1246 	io_wait_entry.entry.cb_arg = &io_wait_entry;
1247 	io_wait_entry.io_ch = io_ch;
1248 	io_wait_entry.desc = desc;
1249 	io_wait_entry.submitted = false;
1250 	/* Cannot use the same io_wait_entry for two different calls. */
1251 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
1252 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
1253 
1254 	/* Queue two I/O waits. */
1255 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
1256 	CU_ASSERT(rc == 0);
1257 	CU_ASSERT(io_wait_entry.submitted == false);
1258 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
1259 	CU_ASSERT(rc == 0);
1260 	CU_ASSERT(io_wait_entry2.submitted == false);
1261 
1262 	stub_complete_io(1);
1263 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1264 	CU_ASSERT(io_wait_entry.submitted == true);
1265 	CU_ASSERT(io_wait_entry2.submitted == false);
1266 
1267 	stub_complete_io(1);
1268 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1269 	CU_ASSERT(io_wait_entry2.submitted == true);
1270 
1271 	stub_complete_io(4);
1272 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1273 
1274 	spdk_put_io_channel(io_ch);
1275 	spdk_bdev_close(desc);
1276 	free_bdev(bdev);
1277 	ut_fini_bdev();
1278 }
1279 
1280 static void
1281 bdev_io_spans_split_test(void)
1282 {
1283 	struct spdk_bdev bdev;
1284 	struct spdk_bdev_io bdev_io;
1285 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
1286 
1287 	memset(&bdev, 0, sizeof(bdev));
1288 	bdev_io.u.bdev.iovs = iov;
1289 
1290 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1291 	bdev.optimal_io_boundary = 0;
1292 	bdev.max_segment_size = 0;
1293 	bdev.max_num_segments = 0;
1294 	bdev_io.bdev = &bdev;
1295 
1296 	/* bdev has no optimal_io_boundary and max_size set - so this should return false. */
1297 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1298 
1299 	bdev.split_on_optimal_io_boundary = true;
1300 	bdev.optimal_io_boundary = 32;
1301 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1302 
1303 	/* RESETs are not based on LBAs - so this should return false. */
1304 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1305 
1306 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1307 	bdev_io.u.bdev.offset_blocks = 0;
1308 	bdev_io.u.bdev.num_blocks = 32;
1309 
1310 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1311 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1312 
1313 	bdev_io.u.bdev.num_blocks = 33;
1314 
1315 	/* This I/O spans a boundary. */
1316 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1317 
1318 	bdev_io.u.bdev.num_blocks = 32;
1319 	bdev.max_segment_size = 512 * 32;
1320 	bdev.max_num_segments = 1;
1321 	bdev_io.u.bdev.iovcnt = 1;
1322 	iov[0].iov_len = 512;
1323 
1324 	/* Does not cross and exceed max_size or max_segs */
1325 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1326 
1327 	bdev.split_on_optimal_io_boundary = false;
1328 	bdev.max_segment_size = 512;
1329 	bdev.max_num_segments = 1;
1330 	bdev_io.u.bdev.iovcnt = 2;
1331 
1332 	/* Exceed max_segs */
1333 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1334 
1335 	bdev.max_num_segments = 2;
1336 	iov[0].iov_len = 513;
1337 	iov[1].iov_len = 512;
1338 
1339 	/* Exceed max_sizes */
1340 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1341 
1342 	bdev.max_segment_size = 0;
1343 	bdev.write_unit_size = 32;
1344 	bdev.split_on_write_unit = true;
1345 	bdev_io.type = SPDK_BDEV_IO_TYPE_WRITE;
1346 
1347 	/* This I/O is one write unit */
1348 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1349 
1350 	bdev_io.u.bdev.num_blocks = 32 * 2;
1351 
1352 	/* This I/O is more than one write unit */
1353 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1354 
1355 	bdev_io.u.bdev.offset_blocks = 1;
1356 	bdev_io.u.bdev.num_blocks = 32;
1357 
1358 	/* This I/O is not aligned to write unit size */
1359 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1360 }
1361 
1362 static void
1363 bdev_io_boundary_split_test(void)
1364 {
1365 	struct spdk_bdev *bdev;
1366 	struct spdk_bdev_desc *desc = NULL;
1367 	struct spdk_io_channel *io_ch;
1368 	struct spdk_bdev_opts bdev_opts = {};
1369 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
1370 	struct ut_expected_io *expected_io;
1371 	void *md_buf = (void *)0xFF000000;
1372 	uint64_t i;
1373 	int rc;
1374 
1375 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1376 	bdev_opts.bdev_io_pool_size = 512;
1377 	bdev_opts.bdev_io_cache_size = 64;
1378 	ut_init_bdev(&bdev_opts);
1379 
1380 	bdev = allocate_bdev("bdev0");
1381 
1382 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1383 	CU_ASSERT(rc == 0);
1384 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1385 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1386 	io_ch = spdk_bdev_get_io_channel(desc);
1387 	CU_ASSERT(io_ch != NULL);
1388 
1389 	bdev->optimal_io_boundary = 16;
1390 	bdev->split_on_optimal_io_boundary = false;
1391 
1392 	g_io_done = false;
1393 
1394 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1395 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1396 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1397 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1398 
1399 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1400 	CU_ASSERT(rc == 0);
1401 	CU_ASSERT(g_io_done == false);
1402 
1403 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1404 	stub_complete_io(1);
1405 	CU_ASSERT(g_io_done == true);
1406 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1407 
1408 	bdev->split_on_optimal_io_boundary = true;
1409 	bdev->md_interleave = false;
1410 	bdev->md_len = 8;
1411 
1412 	/* Now test that a single-vector command is split correctly.
1413 	 * Offset 14, length 8, payload 0xF000
1414 	 *  Child - Offset 14, length 2, payload 0xF000
1415 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1416 	 *
1417 	 * Set up the expected values before calling spdk_bdev_read_blocks
1418 	 */
1419 	g_io_done = false;
1420 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1421 	expected_io->md_buf = md_buf;
1422 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1423 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1424 
1425 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1426 	expected_io->md_buf = md_buf + 2 * 8;
1427 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1428 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1429 
1430 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1431 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1432 					   14, 8, io_done, NULL);
1433 	CU_ASSERT(rc == 0);
1434 	CU_ASSERT(g_io_done == false);
1435 
1436 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1437 	stub_complete_io(2);
1438 	CU_ASSERT(g_io_done == true);
1439 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1440 
1441 	/* Now set up a more complex, multi-vector command that needs to be split,
1442 	 *  including splitting iovecs.
1443 	 */
1444 	iov[0].iov_base = (void *)0x10000;
1445 	iov[0].iov_len = 512;
1446 	iov[1].iov_base = (void *)0x20000;
1447 	iov[1].iov_len = 20 * 512;
1448 	iov[2].iov_base = (void *)0x30000;
1449 	iov[2].iov_len = 11 * 512;
1450 
1451 	g_io_done = false;
1452 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1453 	expected_io->md_buf = md_buf;
1454 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1455 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1456 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1457 
1458 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1459 	expected_io->md_buf = md_buf + 2 * 8;
1460 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1461 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1462 
1463 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1464 	expected_io->md_buf = md_buf + 18 * 8;
1465 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1466 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1467 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1468 
1469 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1470 					     14, 32, io_done, NULL);
1471 	CU_ASSERT(rc == 0);
1472 	CU_ASSERT(g_io_done == false);
1473 
1474 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1475 	stub_complete_io(3);
1476 	CU_ASSERT(g_io_done == true);
1477 
1478 	/* Test multi vector command that needs to be split by strip and then needs to be
1479 	 * split further due to the capacity of child iovs.
1480 	 */
1481 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1482 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1483 		iov[i].iov_len = 512;
1484 	}
1485 
1486 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1487 	g_io_done = false;
1488 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
1489 					   SPDK_BDEV_IO_NUM_CHILD_IOV);
1490 	expected_io->md_buf = md_buf;
1491 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1492 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1493 	}
1494 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1495 
1496 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1497 					   SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
1498 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1499 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1500 		ut_expected_io_set_iov(expected_io, i,
1501 				       (void *)((i + 1 + SPDK_BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1502 	}
1503 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1504 
1505 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1506 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1507 	CU_ASSERT(rc == 0);
1508 	CU_ASSERT(g_io_done == false);
1509 
1510 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1511 	stub_complete_io(1);
1512 	CU_ASSERT(g_io_done == false);
1513 
1514 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1515 	stub_complete_io(1);
1516 	CU_ASSERT(g_io_done == true);
1517 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1518 
1519 	/* Test multi vector command that needs to be split by strip and then needs to be
1520 	 * split further due to the capacity of child iovs. In this case, the length of
1521 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1522 	 */
1523 
1524 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1525 	 * is SPDK_BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1526 	 */
1527 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1528 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1529 		iov[i].iov_len = 512;
1530 	}
1531 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1532 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1533 		iov[i].iov_len = 256;
1534 	}
1535 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1536 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1537 
1538 	/* Add an extra iovec to trigger split */
1539 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1540 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1541 
1542 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1543 	g_io_done = false;
1544 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1545 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV);
1546 	expected_io->md_buf = md_buf;
1547 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1548 		ut_expected_io_set_iov(expected_io, i,
1549 				       (void *)((i + 1) * 0x10000), 512);
1550 	}
1551 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1552 		ut_expected_io_set_iov(expected_io, i,
1553 				       (void *)((i + 1) * 0x10000), 256);
1554 	}
1555 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1556 
1557 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1558 					   1, 1);
1559 	expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1560 	ut_expected_io_set_iov(expected_io, 0,
1561 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1562 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1563 
1564 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1565 					   1, 1);
1566 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1567 	ut_expected_io_set_iov(expected_io, 0,
1568 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1569 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1570 
1571 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1572 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1573 	CU_ASSERT(rc == 0);
1574 	CU_ASSERT(g_io_done == false);
1575 
1576 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1577 	stub_complete_io(1);
1578 	CU_ASSERT(g_io_done == false);
1579 
1580 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1581 	stub_complete_io(2);
1582 	CU_ASSERT(g_io_done == true);
1583 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1584 
1585 	/* Test multi vector command that needs to be split by strip and then needs to be
1586 	 * split further due to the capacity of child iovs, the child request offset should
1587 	 * be rewind to last aligned offset and go success without error.
1588 	 */
1589 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1590 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1591 		iov[i].iov_len = 512;
1592 	}
1593 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
1594 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1595 
1596 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1597 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1598 
1599 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1600 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1601 
1602 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1603 	g_io_done = false;
1604 	g_io_status = 0;
1605 	/* The first expected io should be start from offset 0 to SPDK_BDEV_IO_NUM_CHILD_IOV - 1 */
1606 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1607 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
1608 	expected_io->md_buf = md_buf;
1609 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1610 		ut_expected_io_set_iov(expected_io, i,
1611 				       (void *)((i + 1) * 0x10000), 512);
1612 	}
1613 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1614 	/* The second expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV - 1 to SPDK_BDEV_IO_NUM_CHILD_IOV */
1615 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1616 					   1, 2);
1617 	expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1618 	ut_expected_io_set_iov(expected_io, 0,
1619 			       (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1620 	ut_expected_io_set_iov(expected_io, 1,
1621 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1622 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1623 	/* The third expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV to SPDK_BDEV_IO_NUM_CHILD_IOV + 1 */
1624 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1625 					   1, 1);
1626 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1627 	ut_expected_io_set_iov(expected_io, 0,
1628 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1629 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1630 
1631 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1632 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1633 	CU_ASSERT(rc == 0);
1634 	CU_ASSERT(g_io_done == false);
1635 
1636 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1637 	stub_complete_io(1);
1638 	CU_ASSERT(g_io_done == false);
1639 
1640 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1641 	stub_complete_io(2);
1642 	CU_ASSERT(g_io_done == true);
1643 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1644 
1645 	/* Test multi vector command that needs to be split due to the IO boundary and
1646 	 * the capacity of child iovs. Especially test the case when the command is
1647 	 * split due to the capacity of child iovs, the tail address is not aligned with
1648 	 * block size and is rewinded to the aligned address.
1649 	 *
1650 	 * The iovecs used in read request is complex but is based on the data
1651 	 * collected in the real issue. We change the base addresses but keep the lengths
1652 	 * not to loose the credibility of the test.
1653 	 */
1654 	bdev->optimal_io_boundary = 128;
1655 	g_io_done = false;
1656 	g_io_status = 0;
1657 
1658 	for (i = 0; i < 31; i++) {
1659 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1660 		iov[i].iov_len = 1024;
1661 	}
1662 	iov[31].iov_base = (void *)0xFEED1F00000;
1663 	iov[31].iov_len = 32768;
1664 	iov[32].iov_base = (void *)0xFEED2000000;
1665 	iov[32].iov_len = 160;
1666 	iov[33].iov_base = (void *)0xFEED2100000;
1667 	iov[33].iov_len = 4096;
1668 	iov[34].iov_base = (void *)0xFEED2200000;
1669 	iov[34].iov_len = 4096;
1670 	iov[35].iov_base = (void *)0xFEED2300000;
1671 	iov[35].iov_len = 4096;
1672 	iov[36].iov_base = (void *)0xFEED2400000;
1673 	iov[36].iov_len = 4096;
1674 	iov[37].iov_base = (void *)0xFEED2500000;
1675 	iov[37].iov_len = 4096;
1676 	iov[38].iov_base = (void *)0xFEED2600000;
1677 	iov[38].iov_len = 4096;
1678 	iov[39].iov_base = (void *)0xFEED2700000;
1679 	iov[39].iov_len = 4096;
1680 	iov[40].iov_base = (void *)0xFEED2800000;
1681 	iov[40].iov_len = 4096;
1682 	iov[41].iov_base = (void *)0xFEED2900000;
1683 	iov[41].iov_len = 4096;
1684 	iov[42].iov_base = (void *)0xFEED2A00000;
1685 	iov[42].iov_len = 4096;
1686 	iov[43].iov_base = (void *)0xFEED2B00000;
1687 	iov[43].iov_len = 12288;
1688 	iov[44].iov_base = (void *)0xFEED2C00000;
1689 	iov[44].iov_len = 8192;
1690 	iov[45].iov_base = (void *)0xFEED2F00000;
1691 	iov[45].iov_len = 4096;
1692 	iov[46].iov_base = (void *)0xFEED3000000;
1693 	iov[46].iov_len = 4096;
1694 	iov[47].iov_base = (void *)0xFEED3100000;
1695 	iov[47].iov_len = 4096;
1696 	iov[48].iov_base = (void *)0xFEED3200000;
1697 	iov[48].iov_len = 24576;
1698 	iov[49].iov_base = (void *)0xFEED3300000;
1699 	iov[49].iov_len = 16384;
1700 	iov[50].iov_base = (void *)0xFEED3400000;
1701 	iov[50].iov_len = 12288;
1702 	iov[51].iov_base = (void *)0xFEED3500000;
1703 	iov[51].iov_len = 4096;
1704 	iov[52].iov_base = (void *)0xFEED3600000;
1705 	iov[52].iov_len = 4096;
1706 	iov[53].iov_base = (void *)0xFEED3700000;
1707 	iov[53].iov_len = 4096;
1708 	iov[54].iov_base = (void *)0xFEED3800000;
1709 	iov[54].iov_len = 28672;
1710 	iov[55].iov_base = (void *)0xFEED3900000;
1711 	iov[55].iov_len = 20480;
1712 	iov[56].iov_base = (void *)0xFEED3A00000;
1713 	iov[56].iov_len = 4096;
1714 	iov[57].iov_base = (void *)0xFEED3B00000;
1715 	iov[57].iov_len = 12288;
1716 	iov[58].iov_base = (void *)0xFEED3C00000;
1717 	iov[58].iov_len = 4096;
1718 	iov[59].iov_base = (void *)0xFEED3D00000;
1719 	iov[59].iov_len = 4096;
1720 	iov[60].iov_base = (void *)0xFEED3E00000;
1721 	iov[60].iov_len = 352;
1722 
1723 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1724 	 * of child iovs,
1725 	 */
1726 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1727 	expected_io->md_buf = md_buf;
1728 	for (i = 0; i < 32; i++) {
1729 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1730 	}
1731 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1732 
1733 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1734 	 * split by the IO boundary requirement.
1735 	 */
1736 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1737 	expected_io->md_buf = md_buf + 126 * 8;
1738 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1739 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1740 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1741 
1742 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1743 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1744 	 */
1745 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1746 	expected_io->md_buf = md_buf + 128 * 8;
1747 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1748 			       iov[33].iov_len - 864);
1749 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1750 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1751 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1752 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1753 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1754 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1755 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1756 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1757 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1758 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1759 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1760 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1761 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1762 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1763 
1764 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1765 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1766 	 */
1767 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1768 	expected_io->md_buf = md_buf + 256 * 8;
1769 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1770 			       iov[46].iov_len - 864);
1771 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1772 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1773 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1774 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1775 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1776 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1777 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1778 
1779 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1780 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1781 	 */
1782 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1783 	expected_io->md_buf = md_buf + 384 * 8;
1784 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1785 			       iov[52].iov_len - 864);
1786 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1787 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1788 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1789 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1790 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1791 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1792 
1793 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1794 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1795 	 */
1796 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1797 	expected_io->md_buf = md_buf + 512 * 8;
1798 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1799 			       iov[57].iov_len - 4960);
1800 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1801 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1802 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1803 
1804 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1805 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1806 	expected_io->md_buf = md_buf + 542 * 8;
1807 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1808 			       iov[59].iov_len - 3936);
1809 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1810 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1811 
1812 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1813 					    0, 543, io_done, NULL);
1814 	CU_ASSERT(rc == 0);
1815 	CU_ASSERT(g_io_done == false);
1816 
1817 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1818 	stub_complete_io(1);
1819 	CU_ASSERT(g_io_done == false);
1820 
1821 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1822 	stub_complete_io(5);
1823 	CU_ASSERT(g_io_done == false);
1824 
1825 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1826 	stub_complete_io(1);
1827 	CU_ASSERT(g_io_done == true);
1828 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1829 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1830 
1831 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1832 	 * split, so test that.
1833 	 */
1834 	bdev->optimal_io_boundary = 15;
1835 	g_io_done = false;
1836 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1837 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1838 
1839 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1840 	CU_ASSERT(rc == 0);
1841 	CU_ASSERT(g_io_done == false);
1842 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1843 	stub_complete_io(1);
1844 	CU_ASSERT(g_io_done == true);
1845 
1846 	/* Test an UNMAP.  This should also not be split. */
1847 	bdev->optimal_io_boundary = 16;
1848 	g_io_done = false;
1849 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1850 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1851 
1852 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1853 	CU_ASSERT(rc == 0);
1854 	CU_ASSERT(g_io_done == false);
1855 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1856 	stub_complete_io(1);
1857 	CU_ASSERT(g_io_done == true);
1858 
1859 	/* Test a FLUSH.  This should also not be split. */
1860 	bdev->optimal_io_boundary = 16;
1861 	g_io_done = false;
1862 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1863 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1864 
1865 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1866 	CU_ASSERT(rc == 0);
1867 	CU_ASSERT(g_io_done == false);
1868 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1869 	stub_complete_io(1);
1870 	CU_ASSERT(g_io_done == true);
1871 
1872 	/* Test a COPY.  This should also not be split. */
1873 	bdev->optimal_io_boundary = 15;
1874 	g_io_done = false;
1875 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
1876 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1877 
1878 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
1879 	CU_ASSERT(rc == 0);
1880 	CU_ASSERT(g_io_done == false);
1881 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1882 	stub_complete_io(1);
1883 	CU_ASSERT(g_io_done == true);
1884 
1885 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1886 
1887 	/* Children requests return an error status */
1888 	bdev->optimal_io_boundary = 16;
1889 	iov[0].iov_base = (void *)0x10000;
1890 	iov[0].iov_len = 512 * 64;
1891 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1892 	g_io_done = false;
1893 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1894 
1895 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1896 	CU_ASSERT(rc == 0);
1897 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1898 	stub_complete_io(4);
1899 	CU_ASSERT(g_io_done == false);
1900 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1901 	stub_complete_io(1);
1902 	CU_ASSERT(g_io_done == true);
1903 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1904 
1905 	/* Test if a multi vector command terminated with failure before continuing
1906 	 * splitting process when one of child I/O failed.
1907 	 * The multi vector command is as same as the above that needs to be split by strip
1908 	 * and then needs to be split further due to the capacity of child iovs.
1909 	 */
1910 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1911 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1912 		iov[i].iov_len = 512;
1913 	}
1914 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
1915 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1916 
1917 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1918 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1919 
1920 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1921 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1922 
1923 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1924 
1925 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1926 	g_io_done = false;
1927 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1928 
1929 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
1930 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1931 	CU_ASSERT(rc == 0);
1932 	CU_ASSERT(g_io_done == false);
1933 
1934 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1935 	stub_complete_io(1);
1936 	CU_ASSERT(g_io_done == true);
1937 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1938 
1939 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1940 
1941 	/* for this test we will create the following conditions to hit the code path where
1942 	 * we are trying to send and IO following a split that has no iovs because we had to
1943 	 * trim them for alignment reasons.
1944 	 *
1945 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1946 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1947 	 *   position 30 and overshoot by 0x2e.
1948 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1949 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1950 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1951 	 *   and let the completion pick up the last 2 vectors.
1952 	 */
1953 	bdev->optimal_io_boundary = 32;
1954 	bdev->split_on_optimal_io_boundary = true;
1955 	g_io_done = false;
1956 
1957 	/* Init all parent IOVs to 0x212 */
1958 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1959 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1960 		iov[i].iov_len = 0x212;
1961 	}
1962 
1963 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
1964 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
1965 	/* expect 0-29 to be 1:1 with the parent iov */
1966 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1967 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1968 	}
1969 
1970 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1971 	 * where 0x1e is the amount we overshot the 16K boundary
1972 	 */
1973 	ut_expected_io_set_iov(expected_io, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
1974 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1975 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1976 
1977 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1978 	 * shortened that take it to the next boundary and then a final one to get us to
1979 	 * 0x4200 bytes for the IO.
1980 	 */
1981 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1982 					   SPDK_BDEV_IO_NUM_CHILD_IOV, 2);
1983 	/* position 30 picked up the remaining bytes to the next boundary */
1984 	ut_expected_io_set_iov(expected_io, 0,
1985 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
1986 
1987 	/* position 31 picked the the rest of the transfer to get us to 0x4200 */
1988 	ut_expected_io_set_iov(expected_io, 1,
1989 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
1990 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1991 
1992 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, 0,
1993 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1994 	CU_ASSERT(rc == 0);
1995 	CU_ASSERT(g_io_done == false);
1996 
1997 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1998 	stub_complete_io(1);
1999 	CU_ASSERT(g_io_done == false);
2000 
2001 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2002 	stub_complete_io(1);
2003 	CU_ASSERT(g_io_done == true);
2004 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2005 
2006 	spdk_put_io_channel(io_ch);
2007 	spdk_bdev_close(desc);
2008 	free_bdev(bdev);
2009 	ut_fini_bdev();
2010 }
2011 
2012 static void
2013 bdev_io_max_size_and_segment_split_test(void)
2014 {
2015 	struct spdk_bdev *bdev;
2016 	struct spdk_bdev_desc *desc = NULL;
2017 	struct spdk_io_channel *io_ch;
2018 	struct spdk_bdev_opts bdev_opts = {};
2019 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
2020 	struct ut_expected_io *expected_io;
2021 	uint64_t i;
2022 	int rc;
2023 
2024 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2025 	bdev_opts.bdev_io_pool_size = 512;
2026 	bdev_opts.bdev_io_cache_size = 64;
2027 	bdev_opts.opts_size = sizeof(bdev_opts);
2028 	ut_init_bdev(&bdev_opts);
2029 
2030 	bdev = allocate_bdev("bdev0");
2031 
2032 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2033 	CU_ASSERT(rc == 0);
2034 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2035 	io_ch = spdk_bdev_get_io_channel(desc);
2036 	CU_ASSERT(io_ch != NULL);
2037 
2038 	bdev->split_on_optimal_io_boundary = false;
2039 	bdev->optimal_io_boundary = 0;
2040 
2041 	/* Case 0 max_num_segments == 0.
2042 	 * but segment size 2 * 512 > 512
2043 	 */
2044 	bdev->max_segment_size = 512;
2045 	bdev->max_num_segments = 0;
2046 	g_io_done = false;
2047 
2048 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2049 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2050 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2051 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2052 
2053 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2054 	CU_ASSERT(rc == 0);
2055 	CU_ASSERT(g_io_done == false);
2056 
2057 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2058 	stub_complete_io(1);
2059 	CU_ASSERT(g_io_done == true);
2060 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2061 
2062 	/* Case 1 max_segment_size == 0
2063 	 * but iov num 2 > 1.
2064 	 */
2065 	bdev->max_segment_size = 0;
2066 	bdev->max_num_segments = 1;
2067 	g_io_done = false;
2068 
2069 	iov[0].iov_base = (void *)0x10000;
2070 	iov[0].iov_len = 512;
2071 	iov[1].iov_base = (void *)0x20000;
2072 	iov[1].iov_len = 8 * 512;
2073 
2074 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2075 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len);
2076 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2077 
2078 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1);
2079 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len);
2080 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2081 
2082 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL);
2083 	CU_ASSERT(rc == 0);
2084 	CU_ASSERT(g_io_done == false);
2085 
2086 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2087 	stub_complete_io(2);
2088 	CU_ASSERT(g_io_done == true);
2089 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2090 
2091 	/* Test that a non-vector command is split correctly.
2092 	 * Set up the expected values before calling spdk_bdev_read_blocks
2093 	 */
2094 	bdev->max_segment_size = 512;
2095 	bdev->max_num_segments = 1;
2096 	g_io_done = false;
2097 
2098 	/* Child IO 0 */
2099 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2100 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2101 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2102 
2103 	/* Child IO 1 */
2104 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2105 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512);
2106 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2107 
2108 	/* spdk_bdev_read_blocks will submit the first child immediately. */
2109 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2110 	CU_ASSERT(rc == 0);
2111 	CU_ASSERT(g_io_done == false);
2112 
2113 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2114 	stub_complete_io(2);
2115 	CU_ASSERT(g_io_done == true);
2116 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2117 
2118 	/* Now set up a more complex, multi-vector command that needs to be split,
2119 	 * including splitting iovecs.
2120 	 */
2121 	bdev->max_segment_size = 2 * 512;
2122 	bdev->max_num_segments = 1;
2123 	g_io_done = false;
2124 
2125 	iov[0].iov_base = (void *)0x10000;
2126 	iov[0].iov_len = 2 * 512;
2127 	iov[1].iov_base = (void *)0x20000;
2128 	iov[1].iov_len = 4 * 512;
2129 	iov[2].iov_base = (void *)0x30000;
2130 	iov[2].iov_len = 6 * 512;
2131 
2132 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2133 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2);
2134 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2135 
2136 	/* Split iov[1].size to 2 iov entries then split the segments */
2137 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2138 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2);
2139 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2140 
2141 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1);
2142 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2);
2143 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2144 
2145 	/* Split iov[2].size to 3 iov entries then split the segments */
2146 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1);
2147 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2);
2148 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2149 
2150 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1);
2151 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2);
2152 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2153 
2154 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1);
2155 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2);
2156 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2157 
2158 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL);
2159 	CU_ASSERT(rc == 0);
2160 	CU_ASSERT(g_io_done == false);
2161 
2162 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2163 	stub_complete_io(6);
2164 	CU_ASSERT(g_io_done == true);
2165 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2166 
2167 	/* Test multi vector command that needs to be split by strip and then needs to be
2168 	 * split further due to the capacity of parent IO child iovs.
2169 	 */
2170 	bdev->max_segment_size = 512;
2171 	bdev->max_num_segments = 1;
2172 	g_io_done = false;
2173 
2174 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2175 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2176 		iov[i].iov_len = 512 * 2;
2177 	}
2178 
2179 	/* Each input iov.size is split into 2 iovs,
2180 	 * half of the input iov can fill all child iov entries of a single IO.
2181 	 */
2182 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i++) {
2183 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1);
2184 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2185 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2186 
2187 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1);
2188 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2189 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2190 	}
2191 
2192 	/* The remaining iov is split in the second round */
2193 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2194 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1);
2195 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2196 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2197 
2198 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1);
2199 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2200 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2201 	}
2202 
2203 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
2204 				    SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
2205 	CU_ASSERT(rc == 0);
2206 	CU_ASSERT(g_io_done == false);
2207 
2208 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2209 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2210 	CU_ASSERT(g_io_done == false);
2211 
2212 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2213 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2214 	CU_ASSERT(g_io_done == true);
2215 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2216 
2217 	/* A wrong case, a child IO that is divided does
2218 	 * not meet the principle of multiples of block size,
2219 	 * and exits with error
2220 	 */
2221 	bdev->max_segment_size = 512;
2222 	bdev->max_num_segments = 1;
2223 	g_io_done = false;
2224 
2225 	iov[0].iov_base = (void *)0x10000;
2226 	iov[0].iov_len = 512 + 256;
2227 	iov[1].iov_base = (void *)0x20000;
2228 	iov[1].iov_len = 256;
2229 
2230 	/* iov[0] is split to 512 and 256.
2231 	 * 256 is less than a block size, and it is found
2232 	 * in the next round of split that it is the first child IO smaller than
2233 	 * the block size, so the error exit
2234 	 */
2235 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1);
2236 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512);
2237 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2238 
2239 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL);
2240 	CU_ASSERT(rc == 0);
2241 	CU_ASSERT(g_io_done == false);
2242 
2243 	/* First child IO is OK */
2244 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2245 	stub_complete_io(1);
2246 	CU_ASSERT(g_io_done == true);
2247 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2248 
2249 	/* error exit */
2250 	stub_complete_io(1);
2251 	CU_ASSERT(g_io_done == true);
2252 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
2253 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2254 
2255 	/* Test multi vector command that needs to be split by strip and then needs to be
2256 	 * split further due to the capacity of child iovs.
2257 	 *
2258 	 * In this case, the last two iovs need to be split, but it will exceed the capacity
2259 	 * of child iovs, so it needs to wait until the first batch completed.
2260 	 */
2261 	bdev->max_segment_size = 512;
2262 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2263 	g_io_done = false;
2264 
2265 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2266 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2267 		iov[i].iov_len = 512;
2268 	}
2269 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2270 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2271 		iov[i].iov_len = 512 * 2;
2272 	}
2273 
2274 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2275 					   SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
2276 	/* 0 ~ (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */
2277 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2278 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2279 	}
2280 	/* (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) is split */
2281 	ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512);
2282 	ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512);
2283 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2284 
2285 	/* Child iov entries exceed the max num of parent IO so split it in next round */
2286 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV, 2, 2);
2287 	ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512);
2288 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512);
2289 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2290 
2291 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
2292 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL);
2293 	CU_ASSERT(rc == 0);
2294 	CU_ASSERT(g_io_done == false);
2295 
2296 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2297 	stub_complete_io(1);
2298 	CU_ASSERT(g_io_done == false);
2299 
2300 	/* Next round */
2301 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2302 	stub_complete_io(1);
2303 	CU_ASSERT(g_io_done == true);
2304 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2305 
2306 	/* This case is similar to the previous one, but the io composed of
2307 	 * the last few entries of child iov is not enough for a blocklen, so they
2308 	 * cannot be put into this IO, but wait until the next time.
2309 	 */
2310 	bdev->max_segment_size = 512;
2311 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2312 	g_io_done = false;
2313 
2314 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2315 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2316 		iov[i].iov_len = 512;
2317 	}
2318 
2319 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2320 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2321 		iov[i].iov_len = 128;
2322 	}
2323 
2324 	/* First child iovcnt is't SPDK_BDEV_IO_NUM_CHILD_IOV but SPDK_BDEV_IO_NUM_CHILD_IOV - 2.
2325 	 * Because the left 2 iov is not enough for a blocklen.
2326 	 */
2327 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2328 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 2, SPDK_BDEV_IO_NUM_CHILD_IOV - 2);
2329 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2330 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2331 	}
2332 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2333 
2334 	/* The second child io waits until the end of the first child io before executing.
2335 	 * Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO.
2336 	 * SPDK_BDEV_IO_NUM_CHILD_IOV - 2 to SPDK_BDEV_IO_NUM_CHILD_IOV + 2
2337 	 */
2338 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
2339 					   1, 4);
2340 	ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len);
2341 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len);
2342 	ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len);
2343 	ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len);
2344 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2345 
2346 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
2347 				    SPDK_BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL);
2348 	CU_ASSERT(rc == 0);
2349 	CU_ASSERT(g_io_done == false);
2350 
2351 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2352 	stub_complete_io(1);
2353 	CU_ASSERT(g_io_done == false);
2354 
2355 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2356 	stub_complete_io(1);
2357 	CU_ASSERT(g_io_done == true);
2358 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2359 
2360 	/* A very complicated case. Each sg entry exceeds max_segment_size and
2361 	 * needs to be split. At the same time, child io must be a multiple of blocklen.
2362 	 * At the same time, child iovcnt exceeds parent iovcnt.
2363 	 */
2364 	bdev->max_segment_size = 512 + 128;
2365 	bdev->max_num_segments = 3;
2366 	g_io_done = false;
2367 
2368 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2369 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2370 		iov[i].iov_len = 512 + 256;
2371 	}
2372 
2373 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2374 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2375 		iov[i].iov_len = 512 + 128;
2376 	}
2377 
2378 	/* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries.
2379 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2380 	 * Generate 9 child IOs.
2381 	 */
2382 	for (i = 0; i < 3; i++) {
2383 		uint32_t j = i * 4;
2384 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3);
2385 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2386 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2387 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2388 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2389 
2390 		/* Child io must be a multiple of blocklen
2391 		 * iov[j + 2] must be split. If the third entry is also added,
2392 		 * the multiple of blocklen cannot be guaranteed. But it still
2393 		 * occupies one iov entry of the parent child iov.
2394 		 */
2395 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2);
2396 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2397 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2398 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2399 
2400 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3);
2401 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2402 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2403 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2404 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2405 	}
2406 
2407 	/* Child iov position at 27, the 10th child IO
2408 	 * iov entry index is 3 * 4 and offset is 3 * 6
2409 	 */
2410 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3);
2411 	ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640);
2412 	ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128);
2413 	ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256);
2414 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2415 
2416 	/* Child iov position at 30, the 11th child IO */
2417 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2);
2418 	ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512);
2419 	ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512);
2420 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2421 
2422 	/* The 2nd split round and iovpos is 0, the 12th child IO */
2423 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3);
2424 	ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256);
2425 	ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640);
2426 	ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128);
2427 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2428 
2429 	/* Consume 9 child IOs and 27 child iov entries.
2430 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2431 	 * Parent IO iov index start from 16 and block offset start from 24
2432 	 */
2433 	for (i = 0; i < 3; i++) {
2434 		uint32_t j = i * 4 + 16;
2435 		uint32_t offset = i * 6 + 24;
2436 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3);
2437 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2438 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2439 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2440 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2441 
2442 		/* Child io must be a multiple of blocklen
2443 		 * iov[j + 2] must be split. If the third entry is also added,
2444 		 * the multiple of blocklen cannot be guaranteed. But it still
2445 		 * occupies one iov entry of the parent child iov.
2446 		 */
2447 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2);
2448 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2449 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2450 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2451 
2452 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3);
2453 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2454 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2455 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2456 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2457 	}
2458 
2459 	/* The 22th child IO, child iov position at 30 */
2460 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1);
2461 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512);
2462 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2463 
2464 	/* The third round */
2465 	/* Here is the 23nd child IO and child iovpos is 0 */
2466 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3);
2467 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256);
2468 	ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640);
2469 	ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128);
2470 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2471 
2472 	/* The 24th child IO */
2473 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3);
2474 	ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640);
2475 	ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640);
2476 	ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256);
2477 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2478 
2479 	/* The 25th child IO */
2480 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2);
2481 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384);
2482 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640);
2483 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2484 
2485 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
2486 				    50, io_done, NULL);
2487 	CU_ASSERT(rc == 0);
2488 	CU_ASSERT(g_io_done == false);
2489 
2490 	/* Parent IO supports up to 32 child iovs, so it is calculated that
2491 	 * a maximum of 11 IOs can be split at a time, and the
2492 	 * splitting will continue after the first batch is over.
2493 	 */
2494 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2495 	stub_complete_io(11);
2496 	CU_ASSERT(g_io_done == false);
2497 
2498 	/* The 2nd round */
2499 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2500 	stub_complete_io(11);
2501 	CU_ASSERT(g_io_done == false);
2502 
2503 	/* The last round */
2504 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2505 	stub_complete_io(3);
2506 	CU_ASSERT(g_io_done == true);
2507 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2508 
2509 	/* Test an WRITE_ZEROES.  This should also not be split. */
2510 	bdev->max_segment_size = 512;
2511 	bdev->max_num_segments = 1;
2512 	g_io_done = false;
2513 
2514 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
2515 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2516 
2517 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
2518 	CU_ASSERT(rc == 0);
2519 	CU_ASSERT(g_io_done == false);
2520 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2521 	stub_complete_io(1);
2522 	CU_ASSERT(g_io_done == true);
2523 
2524 	/* Test an UNMAP.  This should also not be split. */
2525 	g_io_done = false;
2526 
2527 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0);
2528 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2529 
2530 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL);
2531 	CU_ASSERT(rc == 0);
2532 	CU_ASSERT(g_io_done == false);
2533 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2534 	stub_complete_io(1);
2535 	CU_ASSERT(g_io_done == true);
2536 
2537 	/* Test a FLUSH.  This should also not be split. */
2538 	g_io_done = false;
2539 
2540 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0);
2541 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2542 
2543 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
2544 	CU_ASSERT(rc == 0);
2545 	CU_ASSERT(g_io_done == false);
2546 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2547 	stub_complete_io(1);
2548 	CU_ASSERT(g_io_done == true);
2549 
2550 	/* Test a COPY.  This should also not be split. */
2551 	g_io_done = false;
2552 
2553 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
2554 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2555 
2556 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
2557 	CU_ASSERT(rc == 0);
2558 	CU_ASSERT(g_io_done == false);
2559 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2560 	stub_complete_io(1);
2561 	CU_ASSERT(g_io_done == true);
2562 
2563 	spdk_put_io_channel(io_ch);
2564 	spdk_bdev_close(desc);
2565 	free_bdev(bdev);
2566 	ut_fini_bdev();
2567 }
2568 
2569 static void
2570 bdev_io_mix_split_test(void)
2571 {
2572 	struct spdk_bdev *bdev;
2573 	struct spdk_bdev_desc *desc = NULL;
2574 	struct spdk_io_channel *io_ch;
2575 	struct spdk_bdev_opts bdev_opts = {};
2576 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
2577 	struct ut_expected_io *expected_io;
2578 	uint64_t i;
2579 	int rc;
2580 
2581 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2582 	bdev_opts.bdev_io_pool_size = 512;
2583 	bdev_opts.bdev_io_cache_size = 64;
2584 	ut_init_bdev(&bdev_opts);
2585 
2586 	bdev = allocate_bdev("bdev0");
2587 
2588 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2589 	CU_ASSERT(rc == 0);
2590 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2591 	io_ch = spdk_bdev_get_io_channel(desc);
2592 	CU_ASSERT(io_ch != NULL);
2593 
2594 	/* First case optimal_io_boundary == max_segment_size * max_num_segments */
2595 	bdev->split_on_optimal_io_boundary = true;
2596 	bdev->optimal_io_boundary = 16;
2597 
2598 	bdev->max_segment_size = 512;
2599 	bdev->max_num_segments = 16;
2600 	g_io_done = false;
2601 
2602 	/* IO crossing the IO boundary requires split
2603 	 * Total 2 child IOs.
2604 	 */
2605 
2606 	/* The 1st child IO split the segment_size to multiple segment entry */
2607 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2608 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2609 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2610 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2611 
2612 	/* The 2nd child IO split the segment_size to multiple segment entry */
2613 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2);
2614 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512);
2615 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512);
2616 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2617 
2618 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL);
2619 	CU_ASSERT(rc == 0);
2620 	CU_ASSERT(g_io_done == false);
2621 
2622 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2623 	stub_complete_io(2);
2624 	CU_ASSERT(g_io_done == true);
2625 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2626 
2627 	/* Second case optimal_io_boundary > max_segment_size * max_num_segments */
2628 	bdev->max_segment_size = 15 * 512;
2629 	bdev->max_num_segments = 1;
2630 	g_io_done = false;
2631 
2632 	/* IO crossing the IO boundary requires split.
2633 	 * The 1st child IO segment size exceeds the max_segment_size,
2634 	 * So 1st child IO will be split to multiple segment entry.
2635 	 * Then it split to 2 child IOs because of the max_num_segments.
2636 	 * Total 3 child IOs.
2637 	 */
2638 
2639 	/* The first 2 IOs are in an IO boundary.
2640 	 * Because the optimal_io_boundary > max_segment_size * max_num_segments
2641 	 * So it split to the first 2 IOs.
2642 	 */
2643 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1);
2644 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15);
2645 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2646 
2647 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2648 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512);
2649 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2650 
2651 	/* The 3rd Child IO is because of the io boundary */
2652 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2653 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2654 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2655 
2656 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2657 	CU_ASSERT(rc == 0);
2658 	CU_ASSERT(g_io_done == false);
2659 
2660 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2661 	stub_complete_io(3);
2662 	CU_ASSERT(g_io_done == true);
2663 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2664 
2665 	/* Third case optimal_io_boundary < max_segment_size * max_num_segments */
2666 	bdev->max_segment_size = 17 * 512;
2667 	bdev->max_num_segments = 1;
2668 	g_io_done = false;
2669 
2670 	/* IO crossing the IO boundary requires split.
2671 	 * Child IO does not split.
2672 	 * Total 2 child IOs.
2673 	 */
2674 
2675 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1);
2676 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16);
2677 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2678 
2679 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2680 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2681 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2682 
2683 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2684 	CU_ASSERT(rc == 0);
2685 	CU_ASSERT(g_io_done == false);
2686 
2687 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2688 	stub_complete_io(2);
2689 	CU_ASSERT(g_io_done == true);
2690 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2691 
2692 	/* Now set up a more complex, multi-vector command that needs to be split,
2693 	 * including splitting iovecs.
2694 	 * optimal_io_boundary < max_segment_size * max_num_segments
2695 	 */
2696 	bdev->max_segment_size = 3 * 512;
2697 	bdev->max_num_segments = 6;
2698 	g_io_done = false;
2699 
2700 	iov[0].iov_base = (void *)0x10000;
2701 	iov[0].iov_len = 4 * 512;
2702 	iov[1].iov_base = (void *)0x20000;
2703 	iov[1].iov_len = 4 * 512;
2704 	iov[2].iov_base = (void *)0x30000;
2705 	iov[2].iov_len = 10 * 512;
2706 
2707 	/* IO crossing the IO boundary requires split.
2708 	 * The 1st child IO segment size exceeds the max_segment_size and after
2709 	 * splitting segment_size, the num_segments exceeds max_num_segments.
2710 	 * So 1st child IO will be split to 2 child IOs.
2711 	 * Total 3 child IOs.
2712 	 */
2713 
2714 	/* The first 2 IOs are in an IO boundary.
2715 	 * After splitting segment size the segment num exceeds.
2716 	 * So it splits to 2 child IOs.
2717 	 */
2718 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6);
2719 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3);
2720 	ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512);
2721 	ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3);
2722 	ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512);
2723 	ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3);
2724 	ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3);
2725 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2726 
2727 	/* The 2nd child IO has the left segment entry */
2728 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2729 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2);
2730 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2731 
2732 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2733 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2);
2734 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2735 
2736 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL);
2737 	CU_ASSERT(rc == 0);
2738 	CU_ASSERT(g_io_done == false);
2739 
2740 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2741 	stub_complete_io(3);
2742 	CU_ASSERT(g_io_done == true);
2743 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2744 
2745 	/* A very complicated case. Each sg entry exceeds max_segment_size
2746 	 * and split on io boundary.
2747 	 * optimal_io_boundary < max_segment_size * max_num_segments
2748 	 */
2749 	bdev->max_segment_size = 3 * 512;
2750 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2751 	g_io_done = false;
2752 
2753 	for (i = 0; i < 20; i++) {
2754 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2755 		iov[i].iov_len = 512 * 4;
2756 	}
2757 
2758 	/* IO crossing the IO boundary requires split.
2759 	 * 80 block length can split 5 child IOs base on offset and IO boundary.
2760 	 * Each iov entry needs to be split to 2 entries because of max_segment_size
2761 	 * Total 5 child IOs.
2762 	 */
2763 
2764 	/* 4 iov entries are in an IO boundary and each iov entry splits to 2.
2765 	 * So each child IO occupies 8 child iov entries.
2766 	 */
2767 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8);
2768 	for (i = 0; i < 4; i++) {
2769 		int iovcnt = i * 2;
2770 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2771 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2772 	}
2773 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2774 
2775 	/* 2nd child IO and total 16 child iov entries of parent IO */
2776 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8);
2777 	for (i = 4; i < 8; i++) {
2778 		int iovcnt = (i - 4) * 2;
2779 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2780 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2781 	}
2782 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2783 
2784 	/* 3rd child IO and total 24 child iov entries of parent IO */
2785 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8);
2786 	for (i = 8; i < 12; i++) {
2787 		int iovcnt = (i - 8) * 2;
2788 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2789 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2790 	}
2791 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2792 
2793 	/* 4th child IO and total 32 child iov entries of parent IO */
2794 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8);
2795 	for (i = 12; i < 16; i++) {
2796 		int iovcnt = (i - 12) * 2;
2797 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2798 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2799 	}
2800 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2801 
2802 	/* 5th child IO and because of the child iov entry it should be split
2803 	 * in next round.
2804 	 */
2805 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8);
2806 	for (i = 16; i < 20; i++) {
2807 		int iovcnt = (i - 16) * 2;
2808 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2809 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2810 	}
2811 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2812 
2813 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL);
2814 	CU_ASSERT(rc == 0);
2815 	CU_ASSERT(g_io_done == false);
2816 
2817 	/* First split round */
2818 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2819 	stub_complete_io(4);
2820 	CU_ASSERT(g_io_done == false);
2821 
2822 	/* Second split round */
2823 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2824 	stub_complete_io(1);
2825 	CU_ASSERT(g_io_done == true);
2826 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2827 
2828 	spdk_put_io_channel(io_ch);
2829 	spdk_bdev_close(desc);
2830 	free_bdev(bdev);
2831 	ut_fini_bdev();
2832 }
2833 
2834 static void
2835 bdev_io_split_with_io_wait(void)
2836 {
2837 	struct spdk_bdev *bdev;
2838 	struct spdk_bdev_desc *desc = NULL;
2839 	struct spdk_io_channel *io_ch;
2840 	struct spdk_bdev_channel *channel;
2841 	struct spdk_bdev_mgmt_channel *mgmt_ch;
2842 	struct spdk_bdev_opts bdev_opts = {};
2843 	struct iovec iov[3];
2844 	struct ut_expected_io *expected_io;
2845 	int rc;
2846 
2847 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2848 	bdev_opts.bdev_io_pool_size = 2;
2849 	bdev_opts.bdev_io_cache_size = 1;
2850 	ut_init_bdev(&bdev_opts);
2851 
2852 	bdev = allocate_bdev("bdev0");
2853 
2854 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2855 	CU_ASSERT(rc == 0);
2856 	CU_ASSERT(desc != NULL);
2857 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2858 	io_ch = spdk_bdev_get_io_channel(desc);
2859 	CU_ASSERT(io_ch != NULL);
2860 	channel = spdk_io_channel_get_ctx(io_ch);
2861 	mgmt_ch = channel->shared_resource->mgmt_ch;
2862 
2863 	bdev->optimal_io_boundary = 16;
2864 	bdev->split_on_optimal_io_boundary = true;
2865 
2866 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
2867 	CU_ASSERT(rc == 0);
2868 
2869 	/* Now test that a single-vector command is split correctly.
2870 	 * Offset 14, length 8, payload 0xF000
2871 	 *  Child - Offset 14, length 2, payload 0xF000
2872 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
2873 	 *
2874 	 * Set up the expected values before calling spdk_bdev_read_blocks
2875 	 */
2876 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
2877 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
2878 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2879 
2880 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
2881 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
2882 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2883 
2884 	/* The following children will be submitted sequentially due to the capacity of
2885 	 * spdk_bdev_io.
2886 	 */
2887 
2888 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
2889 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
2890 	CU_ASSERT(rc == 0);
2891 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2892 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2893 
2894 	/* Completing the first read I/O will submit the first child */
2895 	stub_complete_io(1);
2896 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2897 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2898 
2899 	/* Completing the first child will submit the second child */
2900 	stub_complete_io(1);
2901 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2902 
2903 	/* Complete the second child I/O.  This should result in our callback getting
2904 	 * invoked since the parent I/O is now complete.
2905 	 */
2906 	stub_complete_io(1);
2907 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2908 
2909 	/* Now set up a more complex, multi-vector command that needs to be split,
2910 	 *  including splitting iovecs.
2911 	 */
2912 	iov[0].iov_base = (void *)0x10000;
2913 	iov[0].iov_len = 512;
2914 	iov[1].iov_base = (void *)0x20000;
2915 	iov[1].iov_len = 20 * 512;
2916 	iov[2].iov_base = (void *)0x30000;
2917 	iov[2].iov_len = 11 * 512;
2918 
2919 	g_io_done = false;
2920 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
2921 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
2922 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
2923 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2924 
2925 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
2926 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
2927 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2928 
2929 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
2930 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
2931 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
2932 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2933 
2934 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
2935 	CU_ASSERT(rc == 0);
2936 	CU_ASSERT(g_io_done == false);
2937 
2938 	/* The following children will be submitted sequentially due to the capacity of
2939 	 * spdk_bdev_io.
2940 	 */
2941 
2942 	/* Completing the first child will submit the second child */
2943 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2944 	stub_complete_io(1);
2945 	CU_ASSERT(g_io_done == false);
2946 
2947 	/* Completing the second child will submit the third child */
2948 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2949 	stub_complete_io(1);
2950 	CU_ASSERT(g_io_done == false);
2951 
2952 	/* Completing the third child will result in our callback getting invoked
2953 	 * since the parent I/O is now complete.
2954 	 */
2955 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2956 	stub_complete_io(1);
2957 	CU_ASSERT(g_io_done == true);
2958 
2959 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
2960 
2961 	spdk_put_io_channel(io_ch);
2962 	spdk_bdev_close(desc);
2963 	free_bdev(bdev);
2964 	ut_fini_bdev();
2965 }
2966 
2967 static void
2968 bdev_io_write_unit_split_test(void)
2969 {
2970 	struct spdk_bdev *bdev;
2971 	struct spdk_bdev_desc *desc = NULL;
2972 	struct spdk_io_channel *io_ch;
2973 	struct spdk_bdev_opts bdev_opts = {};
2974 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 4];
2975 	struct ut_expected_io *expected_io;
2976 	uint64_t i;
2977 	int rc;
2978 
2979 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2980 	bdev_opts.bdev_io_pool_size = 512;
2981 	bdev_opts.bdev_io_cache_size = 64;
2982 	ut_init_bdev(&bdev_opts);
2983 
2984 	bdev = allocate_bdev("bdev0");
2985 
2986 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2987 	CU_ASSERT(rc == 0);
2988 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2989 	io_ch = spdk_bdev_get_io_channel(desc);
2990 	CU_ASSERT(io_ch != NULL);
2991 
2992 	/* Write I/O 2x larger than write_unit_size should get split into 2 I/Os */
2993 	bdev->write_unit_size = 32;
2994 	bdev->split_on_write_unit = true;
2995 	g_io_done = false;
2996 
2997 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 32, 1);
2998 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 32 * 512);
2999 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3000 
3001 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 32, 1);
3002 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 32 * 512), 32 * 512);
3003 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3004 
3005 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
3006 	CU_ASSERT(rc == 0);
3007 	CU_ASSERT(g_io_done == false);
3008 
3009 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3010 	stub_complete_io(2);
3011 	CU_ASSERT(g_io_done == true);
3012 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3013 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3014 
3015 	/* Same as above but with optimal_io_boundary < write_unit_size - the I/O should be split
3016 	 * based on write_unit_size, not optimal_io_boundary */
3017 	bdev->split_on_optimal_io_boundary = true;
3018 	bdev->optimal_io_boundary = 16;
3019 	g_io_done = false;
3020 
3021 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
3022 	CU_ASSERT(rc == 0);
3023 	CU_ASSERT(g_io_done == false);
3024 
3025 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3026 	stub_complete_io(2);
3027 	CU_ASSERT(g_io_done == true);
3028 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3029 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3030 
3031 	/* Write I/O should fail if it is smaller than write_unit_size */
3032 	g_io_done = false;
3033 
3034 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 31, io_done, NULL);
3035 	CU_ASSERT(rc == 0);
3036 	CU_ASSERT(g_io_done == false);
3037 
3038 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3039 	poll_threads();
3040 	CU_ASSERT(g_io_done == true);
3041 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3042 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3043 
3044 	/* Same for I/O not aligned to write_unit_size */
3045 	g_io_done = false;
3046 
3047 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 1, 32, io_done, NULL);
3048 	CU_ASSERT(rc == 0);
3049 	CU_ASSERT(g_io_done == false);
3050 
3051 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3052 	poll_threads();
3053 	CU_ASSERT(g_io_done == true);
3054 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3055 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3056 
3057 	/* Write should fail if it needs to be split but there are not enough iovs to submit
3058 	 * an entire write unit */
3059 	bdev->write_unit_size = SPDK_COUNTOF(iov) / 2;
3060 	g_io_done = false;
3061 
3062 	for (i = 0; i < SPDK_COUNTOF(iov); i++) {
3063 		iov[i].iov_base = (void *)(0x1000 + 512 * i);
3064 		iov[i].iov_len = 512;
3065 	}
3066 
3067 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, SPDK_COUNTOF(iov), 0, SPDK_COUNTOF(iov),
3068 				     io_done, NULL);
3069 	CU_ASSERT(rc == 0);
3070 	CU_ASSERT(g_io_done == false);
3071 
3072 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3073 	poll_threads();
3074 	CU_ASSERT(g_io_done == true);
3075 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3076 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3077 
3078 	spdk_put_io_channel(io_ch);
3079 	spdk_bdev_close(desc);
3080 	free_bdev(bdev);
3081 	ut_fini_bdev();
3082 }
3083 
3084 static void
3085 bdev_io_alignment(void)
3086 {
3087 	struct spdk_bdev *bdev;
3088 	struct spdk_bdev_desc *desc = NULL;
3089 	struct spdk_io_channel *io_ch;
3090 	struct spdk_bdev_opts bdev_opts = {};
3091 	int rc;
3092 	void *buf = NULL;
3093 	struct iovec iovs[2];
3094 	int iovcnt;
3095 	uint64_t alignment;
3096 
3097 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3098 	bdev_opts.bdev_io_pool_size = 20;
3099 	bdev_opts.bdev_io_cache_size = 2;
3100 	ut_init_bdev(&bdev_opts);
3101 
3102 	fn_table.submit_request = stub_submit_request_get_buf;
3103 	bdev = allocate_bdev("bdev0");
3104 
3105 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3106 	CU_ASSERT(rc == 0);
3107 	CU_ASSERT(desc != NULL);
3108 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3109 	io_ch = spdk_bdev_get_io_channel(desc);
3110 	CU_ASSERT(io_ch != NULL);
3111 
3112 	/* Create aligned buffer */
3113 	rc = posix_memalign(&buf, 4096, 8192);
3114 	SPDK_CU_ASSERT_FATAL(rc == 0);
3115 
3116 	/* Pass aligned single buffer with no alignment required */
3117 	alignment = 1;
3118 	bdev->required_alignment = spdk_u32log2(alignment);
3119 
3120 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3121 	CU_ASSERT(rc == 0);
3122 	stub_complete_io(1);
3123 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3124 				    alignment));
3125 
3126 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3127 	CU_ASSERT(rc == 0);
3128 	stub_complete_io(1);
3129 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3130 				    alignment));
3131 
3132 	/* Pass unaligned single buffer with no alignment required */
3133 	alignment = 1;
3134 	bdev->required_alignment = spdk_u32log2(alignment);
3135 
3136 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3137 	CU_ASSERT(rc == 0);
3138 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3139 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3140 	stub_complete_io(1);
3141 
3142 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3143 	CU_ASSERT(rc == 0);
3144 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3145 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3146 	stub_complete_io(1);
3147 
3148 	/* Pass unaligned single buffer with 512 alignment required */
3149 	alignment = 512;
3150 	bdev->required_alignment = spdk_u32log2(alignment);
3151 
3152 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3153 	CU_ASSERT(rc == 0);
3154 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3155 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3156 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3157 				    alignment));
3158 	stub_complete_io(1);
3159 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3160 
3161 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3162 	CU_ASSERT(rc == 0);
3163 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3164 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3165 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3166 				    alignment));
3167 	stub_complete_io(1);
3168 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3169 
3170 	/* Pass unaligned single buffer with 4096 alignment required */
3171 	alignment = 4096;
3172 	bdev->required_alignment = spdk_u32log2(alignment);
3173 
3174 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3175 	CU_ASSERT(rc == 0);
3176 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3177 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3178 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3179 				    alignment));
3180 	stub_complete_io(1);
3181 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3182 
3183 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3184 	CU_ASSERT(rc == 0);
3185 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3186 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3187 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3188 				    alignment));
3189 	stub_complete_io(1);
3190 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3191 
3192 	/* Pass aligned iovs with no alignment required */
3193 	alignment = 1;
3194 	bdev->required_alignment = spdk_u32log2(alignment);
3195 
3196 	iovcnt = 1;
3197 	iovs[0].iov_base = buf;
3198 	iovs[0].iov_len = 512;
3199 
3200 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3201 	CU_ASSERT(rc == 0);
3202 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3203 	stub_complete_io(1);
3204 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3205 
3206 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3207 	CU_ASSERT(rc == 0);
3208 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3209 	stub_complete_io(1);
3210 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3211 
3212 	/* Pass unaligned iovs with no alignment required */
3213 	alignment = 1;
3214 	bdev->required_alignment = spdk_u32log2(alignment);
3215 
3216 	iovcnt = 2;
3217 	iovs[0].iov_base = buf + 16;
3218 	iovs[0].iov_len = 256;
3219 	iovs[1].iov_base = buf + 16 + 256 + 32;
3220 	iovs[1].iov_len = 256;
3221 
3222 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3223 	CU_ASSERT(rc == 0);
3224 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3225 	stub_complete_io(1);
3226 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3227 
3228 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3229 	CU_ASSERT(rc == 0);
3230 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3231 	stub_complete_io(1);
3232 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3233 
3234 	/* Pass unaligned iov with 2048 alignment required */
3235 	alignment = 2048;
3236 	bdev->required_alignment = spdk_u32log2(alignment);
3237 
3238 	iovcnt = 2;
3239 	iovs[0].iov_base = buf + 16;
3240 	iovs[0].iov_len = 256;
3241 	iovs[1].iov_base = buf + 16 + 256 + 32;
3242 	iovs[1].iov_len = 256;
3243 
3244 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3245 	CU_ASSERT(rc == 0);
3246 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3247 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3248 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3249 				    alignment));
3250 	stub_complete_io(1);
3251 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3252 
3253 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3254 	CU_ASSERT(rc == 0);
3255 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3256 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3257 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3258 				    alignment));
3259 	stub_complete_io(1);
3260 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3261 
3262 	/* Pass iov without allocated buffer without alignment required */
3263 	alignment = 1;
3264 	bdev->required_alignment = spdk_u32log2(alignment);
3265 
3266 	iovcnt = 1;
3267 	iovs[0].iov_base = NULL;
3268 	iovs[0].iov_len = 0;
3269 
3270 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3271 	CU_ASSERT(rc == 0);
3272 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3273 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3274 				    alignment));
3275 	stub_complete_io(1);
3276 
3277 	/* Pass iov without allocated buffer with 1024 alignment required */
3278 	alignment = 1024;
3279 	bdev->required_alignment = spdk_u32log2(alignment);
3280 
3281 	iovcnt = 1;
3282 	iovs[0].iov_base = NULL;
3283 	iovs[0].iov_len = 0;
3284 
3285 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3286 	CU_ASSERT(rc == 0);
3287 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3288 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3289 				    alignment));
3290 	stub_complete_io(1);
3291 
3292 	spdk_put_io_channel(io_ch);
3293 	spdk_bdev_close(desc);
3294 	free_bdev(bdev);
3295 	fn_table.submit_request = stub_submit_request;
3296 	ut_fini_bdev();
3297 
3298 	free(buf);
3299 }
3300 
3301 static void
3302 bdev_io_alignment_with_boundary(void)
3303 {
3304 	struct spdk_bdev *bdev;
3305 	struct spdk_bdev_desc *desc = NULL;
3306 	struct spdk_io_channel *io_ch;
3307 	struct spdk_bdev_opts bdev_opts = {};
3308 	int rc;
3309 	void *buf = NULL;
3310 	struct iovec iovs[2];
3311 	int iovcnt;
3312 	uint64_t alignment;
3313 
3314 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3315 	bdev_opts.bdev_io_pool_size = 20;
3316 	bdev_opts.bdev_io_cache_size = 2;
3317 	bdev_opts.opts_size = sizeof(bdev_opts);
3318 	ut_init_bdev(&bdev_opts);
3319 
3320 	fn_table.submit_request = stub_submit_request_get_buf;
3321 	bdev = allocate_bdev("bdev0");
3322 
3323 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3324 	CU_ASSERT(rc == 0);
3325 	CU_ASSERT(desc != NULL);
3326 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3327 	io_ch = spdk_bdev_get_io_channel(desc);
3328 	CU_ASSERT(io_ch != NULL);
3329 
3330 	/* Create aligned buffer */
3331 	rc = posix_memalign(&buf, 4096, 131072);
3332 	SPDK_CU_ASSERT_FATAL(rc == 0);
3333 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3334 
3335 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
3336 	alignment = 512;
3337 	bdev->required_alignment = spdk_u32log2(alignment);
3338 	bdev->optimal_io_boundary = 2;
3339 	bdev->split_on_optimal_io_boundary = true;
3340 
3341 	iovcnt = 1;
3342 	iovs[0].iov_base = NULL;
3343 	iovs[0].iov_len = 512 * 3;
3344 
3345 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3346 	CU_ASSERT(rc == 0);
3347 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3348 	stub_complete_io(2);
3349 
3350 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
3351 	alignment = 512;
3352 	bdev->required_alignment = spdk_u32log2(alignment);
3353 	bdev->optimal_io_boundary = 16;
3354 	bdev->split_on_optimal_io_boundary = true;
3355 
3356 	iovcnt = 1;
3357 	iovs[0].iov_base = NULL;
3358 	iovs[0].iov_len = 512 * 16;
3359 
3360 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
3361 	CU_ASSERT(rc == 0);
3362 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3363 	stub_complete_io(2);
3364 
3365 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
3366 	alignment = 512;
3367 	bdev->required_alignment = spdk_u32log2(alignment);
3368 	bdev->optimal_io_boundary = 128;
3369 	bdev->split_on_optimal_io_boundary = true;
3370 
3371 	iovcnt = 1;
3372 	iovs[0].iov_base = buf + 16;
3373 	iovs[0].iov_len = 512 * 160;
3374 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3375 	CU_ASSERT(rc == 0);
3376 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3377 	stub_complete_io(2);
3378 
3379 	/* 512 * 3 with 2 IO boundary */
3380 	alignment = 512;
3381 	bdev->required_alignment = spdk_u32log2(alignment);
3382 	bdev->optimal_io_boundary = 2;
3383 	bdev->split_on_optimal_io_boundary = true;
3384 
3385 	iovcnt = 2;
3386 	iovs[0].iov_base = buf + 16;
3387 	iovs[0].iov_len = 512;
3388 	iovs[1].iov_base = buf + 16 + 512 + 32;
3389 	iovs[1].iov_len = 1024;
3390 
3391 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3392 	CU_ASSERT(rc == 0);
3393 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3394 	stub_complete_io(2);
3395 
3396 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3397 	CU_ASSERT(rc == 0);
3398 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3399 	stub_complete_io(2);
3400 
3401 	/* 512 * 64 with 32 IO boundary */
3402 	bdev->optimal_io_boundary = 32;
3403 	iovcnt = 2;
3404 	iovs[0].iov_base = buf + 16;
3405 	iovs[0].iov_len = 16384;
3406 	iovs[1].iov_base = buf + 16 + 16384 + 32;
3407 	iovs[1].iov_len = 16384;
3408 
3409 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3410 	CU_ASSERT(rc == 0);
3411 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3412 	stub_complete_io(3);
3413 
3414 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3415 	CU_ASSERT(rc == 0);
3416 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3417 	stub_complete_io(3);
3418 
3419 	/* 512 * 160 with 32 IO boundary */
3420 	iovcnt = 1;
3421 	iovs[0].iov_base = buf + 16;
3422 	iovs[0].iov_len = 16384 + 65536;
3423 
3424 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3425 	CU_ASSERT(rc == 0);
3426 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
3427 	stub_complete_io(6);
3428 
3429 	spdk_put_io_channel(io_ch);
3430 	spdk_bdev_close(desc);
3431 	free_bdev(bdev);
3432 	fn_table.submit_request = stub_submit_request;
3433 	ut_fini_bdev();
3434 
3435 	free(buf);
3436 }
3437 
3438 static void
3439 histogram_status_cb(void *cb_arg, int status)
3440 {
3441 	g_status = status;
3442 }
3443 
3444 static void
3445 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3446 {
3447 	g_status = status;
3448 	g_histogram = histogram;
3449 }
3450 
3451 static void
3452 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
3453 		   uint64_t total, uint64_t so_far)
3454 {
3455 	g_count += count;
3456 }
3457 
3458 static void
3459 histogram_channel_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3460 {
3461 	spdk_histogram_data_fn cb_fn = cb_arg;
3462 
3463 	g_status = status;
3464 
3465 	if (status == 0) {
3466 		spdk_histogram_data_iterate(histogram, cb_fn, NULL);
3467 	}
3468 }
3469 
3470 static void
3471 bdev_histograms(void)
3472 {
3473 	struct spdk_bdev *bdev;
3474 	struct spdk_bdev_desc *desc = NULL;
3475 	struct spdk_io_channel *ch;
3476 	struct spdk_histogram_data *histogram;
3477 	uint8_t buf[4096];
3478 	int rc;
3479 
3480 	ut_init_bdev(NULL);
3481 
3482 	bdev = allocate_bdev("bdev");
3483 
3484 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3485 	CU_ASSERT(rc == 0);
3486 	CU_ASSERT(desc != NULL);
3487 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3488 
3489 	ch = spdk_bdev_get_io_channel(desc);
3490 	CU_ASSERT(ch != NULL);
3491 
3492 	/* Enable histogram */
3493 	g_status = -1;
3494 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
3495 	poll_threads();
3496 	CU_ASSERT(g_status == 0);
3497 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3498 
3499 	/* Allocate histogram */
3500 	histogram = spdk_histogram_data_alloc();
3501 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
3502 
3503 	/* Check if histogram is zeroed */
3504 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3505 	poll_threads();
3506 	CU_ASSERT(g_status == 0);
3507 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3508 
3509 	g_count = 0;
3510 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3511 
3512 	CU_ASSERT(g_count == 0);
3513 
3514 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3515 	CU_ASSERT(rc == 0);
3516 
3517 	spdk_delay_us(10);
3518 	stub_complete_io(1);
3519 	poll_threads();
3520 
3521 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3522 	CU_ASSERT(rc == 0);
3523 
3524 	spdk_delay_us(10);
3525 	stub_complete_io(1);
3526 	poll_threads();
3527 
3528 	/* Check if histogram gathered data from all I/O channels */
3529 	g_histogram = NULL;
3530 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3531 	poll_threads();
3532 	CU_ASSERT(g_status == 0);
3533 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3534 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3535 
3536 	g_count = 0;
3537 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3538 	CU_ASSERT(g_count == 2);
3539 
3540 	g_count = 0;
3541 	spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, histogram_io_count);
3542 	CU_ASSERT(g_status == 0);
3543 	CU_ASSERT(g_count == 2);
3544 
3545 	/* Disable histogram */
3546 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
3547 	poll_threads();
3548 	CU_ASSERT(g_status == 0);
3549 	CU_ASSERT(bdev->internal.histogram_enabled == false);
3550 
3551 	/* Try to run histogram commands on disabled bdev */
3552 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3553 	poll_threads();
3554 	CU_ASSERT(g_status == -EFAULT);
3555 
3556 	spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, NULL);
3557 	CU_ASSERT(g_status == -EFAULT);
3558 
3559 	spdk_histogram_data_free(histogram);
3560 	spdk_put_io_channel(ch);
3561 	spdk_bdev_close(desc);
3562 	free_bdev(bdev);
3563 	ut_fini_bdev();
3564 }
3565 
3566 static void
3567 _bdev_compare(bool emulated)
3568 {
3569 	struct spdk_bdev *bdev;
3570 	struct spdk_bdev_desc *desc = NULL;
3571 	struct spdk_io_channel *ioch;
3572 	struct ut_expected_io *expected_io;
3573 	uint64_t offset, num_blocks;
3574 	uint32_t num_completed;
3575 	char aa_buf[512];
3576 	char bb_buf[512];
3577 	struct iovec compare_iov;
3578 	uint8_t expected_io_type;
3579 	int rc;
3580 
3581 	if (emulated) {
3582 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3583 	} else {
3584 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3585 	}
3586 
3587 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3588 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3589 
3590 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3591 
3592 	ut_init_bdev(NULL);
3593 	fn_table.submit_request = stub_submit_request_get_buf;
3594 	bdev = allocate_bdev("bdev");
3595 
3596 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3597 	CU_ASSERT_EQUAL(rc, 0);
3598 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3599 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3600 	ioch = spdk_bdev_get_io_channel(desc);
3601 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3602 
3603 	fn_table.submit_request = stub_submit_request_get_buf;
3604 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3605 
3606 	offset = 50;
3607 	num_blocks = 1;
3608 	compare_iov.iov_base = aa_buf;
3609 	compare_iov.iov_len = sizeof(aa_buf);
3610 
3611 	/* 1. successful compare */
3612 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3613 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3614 
3615 	g_io_done = false;
3616 	g_compare_read_buf = aa_buf;
3617 	g_compare_read_buf_len = sizeof(aa_buf);
3618 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3619 	CU_ASSERT_EQUAL(rc, 0);
3620 	num_completed = stub_complete_io(1);
3621 	CU_ASSERT_EQUAL(num_completed, 1);
3622 	CU_ASSERT(g_io_done == true);
3623 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3624 
3625 	/* 2. miscompare */
3626 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3627 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3628 
3629 	g_io_done = false;
3630 	g_compare_read_buf = bb_buf;
3631 	g_compare_read_buf_len = sizeof(bb_buf);
3632 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3633 	CU_ASSERT_EQUAL(rc, 0);
3634 	num_completed = stub_complete_io(1);
3635 	CU_ASSERT_EQUAL(num_completed, 1);
3636 	CU_ASSERT(g_io_done == true);
3637 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3638 
3639 	spdk_put_io_channel(ioch);
3640 	spdk_bdev_close(desc);
3641 	free_bdev(bdev);
3642 	fn_table.submit_request = stub_submit_request;
3643 	ut_fini_bdev();
3644 
3645 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3646 
3647 	g_compare_read_buf = NULL;
3648 }
3649 
3650 static void
3651 _bdev_compare_with_md(bool emulated)
3652 {
3653 	struct spdk_bdev *bdev;
3654 	struct spdk_bdev_desc *desc = NULL;
3655 	struct spdk_io_channel *ioch;
3656 	struct ut_expected_io *expected_io;
3657 	uint64_t offset, num_blocks;
3658 	uint32_t num_completed;
3659 	char buf[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3660 	char buf_interleaved_miscompare[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3661 	char buf_miscompare[1024 /* 2 * blocklen */];
3662 	char md_buf[16];
3663 	char md_buf_miscompare[16];
3664 	struct iovec compare_iov;
3665 	uint8_t expected_io_type;
3666 	int rc;
3667 
3668 	if (emulated) {
3669 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3670 	} else {
3671 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3672 	}
3673 
3674 	memset(buf, 0xaa, sizeof(buf));
3675 	memset(buf_interleaved_miscompare, 0xaa, sizeof(buf_interleaved_miscompare));
3676 	/* make last md different */
3677 	memset(buf_interleaved_miscompare + 1024 + 8, 0xbb, 8);
3678 	memset(buf_miscompare, 0xbb, sizeof(buf_miscompare));
3679 	memset(md_buf, 0xaa, 16);
3680 	memset(md_buf_miscompare, 0xbb, 16);
3681 
3682 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3683 
3684 	ut_init_bdev(NULL);
3685 	fn_table.submit_request = stub_submit_request_get_buf;
3686 	bdev = allocate_bdev("bdev");
3687 
3688 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3689 	CU_ASSERT_EQUAL(rc, 0);
3690 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3691 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3692 	ioch = spdk_bdev_get_io_channel(desc);
3693 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3694 
3695 	fn_table.submit_request = stub_submit_request_get_buf;
3696 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3697 
3698 	offset = 50;
3699 	num_blocks = 2;
3700 
3701 	/* interleaved md & data */
3702 	bdev->md_interleave = true;
3703 	bdev->md_len = 8;
3704 	bdev->blocklen = 512 + 8;
3705 	compare_iov.iov_base = buf;
3706 	compare_iov.iov_len = sizeof(buf);
3707 
3708 	/* 1. successful compare with md interleaved */
3709 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3710 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3711 
3712 	g_io_done = false;
3713 	g_compare_read_buf = buf;
3714 	g_compare_read_buf_len = sizeof(buf);
3715 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3716 	CU_ASSERT_EQUAL(rc, 0);
3717 	num_completed = stub_complete_io(1);
3718 	CU_ASSERT_EQUAL(num_completed, 1);
3719 	CU_ASSERT(g_io_done == true);
3720 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3721 
3722 	/* 2. miscompare with md interleaved */
3723 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3724 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3725 
3726 	g_io_done = false;
3727 	g_compare_read_buf = buf_interleaved_miscompare;
3728 	g_compare_read_buf_len = sizeof(buf_interleaved_miscompare);
3729 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3730 	CU_ASSERT_EQUAL(rc, 0);
3731 	num_completed = stub_complete_io(1);
3732 	CU_ASSERT_EQUAL(num_completed, 1);
3733 	CU_ASSERT(g_io_done == true);
3734 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3735 
3736 	/* Separate data & md buffers */
3737 	bdev->md_interleave = false;
3738 	bdev->blocklen = 512;
3739 	compare_iov.iov_base = buf;
3740 	compare_iov.iov_len = 1024;
3741 
3742 	/* 3. successful compare with md separated */
3743 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3744 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3745 
3746 	g_io_done = false;
3747 	g_compare_read_buf = buf;
3748 	g_compare_read_buf_len = 1024;
3749 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3750 	g_compare_md_buf = md_buf;
3751 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3752 					       offset, num_blocks, io_done, NULL);
3753 	CU_ASSERT_EQUAL(rc, 0);
3754 	num_completed = stub_complete_io(1);
3755 	CU_ASSERT_EQUAL(num_completed, 1);
3756 	CU_ASSERT(g_io_done == true);
3757 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3758 
3759 	/* 4. miscompare with md separated where md buf is different */
3760 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3761 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3762 
3763 	g_io_done = false;
3764 	g_compare_read_buf = buf;
3765 	g_compare_read_buf_len = 1024;
3766 	g_compare_md_buf = md_buf_miscompare;
3767 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3768 					       offset, num_blocks, io_done, NULL);
3769 	CU_ASSERT_EQUAL(rc, 0);
3770 	num_completed = stub_complete_io(1);
3771 	CU_ASSERT_EQUAL(num_completed, 1);
3772 	CU_ASSERT(g_io_done == true);
3773 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3774 
3775 	/* 5. miscompare with md separated where buf is different */
3776 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3777 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3778 
3779 	g_io_done = false;
3780 	g_compare_read_buf = buf_miscompare;
3781 	g_compare_read_buf_len = sizeof(buf_miscompare);
3782 	g_compare_md_buf = md_buf;
3783 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3784 					       offset, num_blocks, io_done, NULL);
3785 	CU_ASSERT_EQUAL(rc, 0);
3786 	num_completed = stub_complete_io(1);
3787 	CU_ASSERT_EQUAL(num_completed, 1);
3788 	CU_ASSERT(g_io_done == true);
3789 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3790 
3791 	bdev->md_len = 0;
3792 	g_compare_md_buf = NULL;
3793 
3794 	spdk_put_io_channel(ioch);
3795 	spdk_bdev_close(desc);
3796 	free_bdev(bdev);
3797 	fn_table.submit_request = stub_submit_request;
3798 	ut_fini_bdev();
3799 
3800 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3801 
3802 	g_compare_read_buf = NULL;
3803 }
3804 
3805 static void
3806 bdev_compare(void)
3807 {
3808 	_bdev_compare(false);
3809 	_bdev_compare_with_md(false);
3810 }
3811 
3812 static void
3813 bdev_compare_emulated(void)
3814 {
3815 	_bdev_compare(true);
3816 	_bdev_compare_with_md(true);
3817 }
3818 
3819 static void
3820 bdev_compare_and_write(void)
3821 {
3822 	struct spdk_bdev *bdev;
3823 	struct spdk_bdev_desc *desc = NULL;
3824 	struct spdk_io_channel *ioch;
3825 	struct ut_expected_io *expected_io;
3826 	uint64_t offset, num_blocks;
3827 	uint32_t num_completed;
3828 	char aa_buf[512];
3829 	char bb_buf[512];
3830 	char cc_buf[512];
3831 	char write_buf[512];
3832 	struct iovec compare_iov;
3833 	struct iovec write_iov;
3834 	int rc;
3835 
3836 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3837 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3838 	memset(cc_buf, 0xcc, sizeof(cc_buf));
3839 
3840 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
3841 
3842 	ut_init_bdev(NULL);
3843 	fn_table.submit_request = stub_submit_request_get_buf;
3844 	bdev = allocate_bdev("bdev");
3845 
3846 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3847 	CU_ASSERT_EQUAL(rc, 0);
3848 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3849 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3850 	ioch = spdk_bdev_get_io_channel(desc);
3851 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3852 
3853 	fn_table.submit_request = stub_submit_request_get_buf;
3854 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3855 
3856 	offset = 50;
3857 	num_blocks = 1;
3858 	compare_iov.iov_base = aa_buf;
3859 	compare_iov.iov_len = sizeof(aa_buf);
3860 	write_iov.iov_base = bb_buf;
3861 	write_iov.iov_len = sizeof(bb_buf);
3862 
3863 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3864 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3865 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
3866 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3867 
3868 	g_io_done = false;
3869 	g_compare_read_buf = aa_buf;
3870 	g_compare_read_buf_len = sizeof(aa_buf);
3871 	memset(write_buf, 0, sizeof(write_buf));
3872 	g_compare_write_buf = write_buf;
3873 	g_compare_write_buf_len = sizeof(write_buf);
3874 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3875 			offset, num_blocks, io_done, NULL);
3876 	/* Trigger range locking */
3877 	poll_threads();
3878 	CU_ASSERT_EQUAL(rc, 0);
3879 	num_completed = stub_complete_io(1);
3880 	CU_ASSERT_EQUAL(num_completed, 1);
3881 	CU_ASSERT(g_io_done == false);
3882 	num_completed = stub_complete_io(1);
3883 	/* Trigger range unlocking */
3884 	poll_threads();
3885 	CU_ASSERT_EQUAL(num_completed, 1);
3886 	CU_ASSERT(g_io_done == true);
3887 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3888 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
3889 
3890 	/* Test miscompare */
3891 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3892 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3893 
3894 	g_io_done = false;
3895 	g_compare_read_buf = cc_buf;
3896 	g_compare_read_buf_len = sizeof(cc_buf);
3897 	memset(write_buf, 0, sizeof(write_buf));
3898 	g_compare_write_buf = write_buf;
3899 	g_compare_write_buf_len = sizeof(write_buf);
3900 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3901 			offset, num_blocks, io_done, NULL);
3902 	/* Trigger range locking */
3903 	poll_threads();
3904 	CU_ASSERT_EQUAL(rc, 0);
3905 	num_completed = stub_complete_io(1);
3906 	/* Trigger range unlocking earlier because we expect error here */
3907 	poll_threads();
3908 	CU_ASSERT_EQUAL(num_completed, 1);
3909 	CU_ASSERT(g_io_done == true);
3910 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3911 	num_completed = stub_complete_io(1);
3912 	CU_ASSERT_EQUAL(num_completed, 0);
3913 
3914 	spdk_put_io_channel(ioch);
3915 	spdk_bdev_close(desc);
3916 	free_bdev(bdev);
3917 	fn_table.submit_request = stub_submit_request;
3918 	ut_fini_bdev();
3919 
3920 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3921 
3922 	g_compare_read_buf = NULL;
3923 	g_compare_write_buf = NULL;
3924 }
3925 
3926 static void
3927 bdev_write_zeroes(void)
3928 {
3929 	struct spdk_bdev *bdev;
3930 	struct spdk_bdev_desc *desc = NULL;
3931 	struct spdk_io_channel *ioch;
3932 	struct ut_expected_io *expected_io;
3933 	uint64_t offset, num_io_blocks, num_blocks;
3934 	uint32_t num_completed, num_requests;
3935 	int rc;
3936 
3937 	ut_init_bdev(NULL);
3938 	bdev = allocate_bdev("bdev");
3939 
3940 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3941 	CU_ASSERT_EQUAL(rc, 0);
3942 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3943 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3944 	ioch = spdk_bdev_get_io_channel(desc);
3945 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3946 
3947 	fn_table.submit_request = stub_submit_request;
3948 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3949 
3950 	/* First test that if the bdev supports write_zeroes, the request won't be split */
3951 	bdev->md_len = 0;
3952 	bdev->blocklen = 4096;
3953 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3954 
3955 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
3956 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3957 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3958 	CU_ASSERT_EQUAL(rc, 0);
3959 	num_completed = stub_complete_io(1);
3960 	CU_ASSERT_EQUAL(num_completed, 1);
3961 
3962 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
3963 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
3964 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
3965 	num_requests = 2;
3966 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
3967 
3968 	for (offset = 0; offset < num_requests; ++offset) {
3969 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3970 						   offset * num_io_blocks, num_io_blocks, 0);
3971 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3972 	}
3973 
3974 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3975 	CU_ASSERT_EQUAL(rc, 0);
3976 	num_completed = stub_complete_io(num_requests);
3977 	CU_ASSERT_EQUAL(num_completed, num_requests);
3978 
3979 	/* Check that the splitting is correct if bdev has interleaved metadata */
3980 	bdev->md_interleave = true;
3981 	bdev->md_len = 64;
3982 	bdev->blocklen = 4096 + 64;
3983 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3984 
3985 	num_requests = offset = 0;
3986 	while (offset < num_blocks) {
3987 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
3988 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3989 						   offset, num_io_blocks, 0);
3990 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3991 		offset += num_io_blocks;
3992 		num_requests++;
3993 	}
3994 
3995 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3996 	CU_ASSERT_EQUAL(rc, 0);
3997 	num_completed = stub_complete_io(num_requests);
3998 	CU_ASSERT_EQUAL(num_completed, num_requests);
3999 	num_completed = stub_complete_io(num_requests);
4000 	assert(num_completed == 0);
4001 
4002 	/* Check the the same for separate metadata buffer */
4003 	bdev->md_interleave = false;
4004 	bdev->md_len = 64;
4005 	bdev->blocklen = 4096;
4006 
4007 	num_requests = offset = 0;
4008 	while (offset < num_blocks) {
4009 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
4010 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
4011 						   offset, num_io_blocks, 0);
4012 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
4013 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4014 		offset += num_io_blocks;
4015 		num_requests++;
4016 	}
4017 
4018 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4019 	CU_ASSERT_EQUAL(rc, 0);
4020 	num_completed = stub_complete_io(num_requests);
4021 	CU_ASSERT_EQUAL(num_completed, num_requests);
4022 
4023 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
4024 	spdk_put_io_channel(ioch);
4025 	spdk_bdev_close(desc);
4026 	free_bdev(bdev);
4027 	ut_fini_bdev();
4028 }
4029 
4030 static void
4031 bdev_zcopy_write(void)
4032 {
4033 	struct spdk_bdev *bdev;
4034 	struct spdk_bdev_desc *desc = NULL;
4035 	struct spdk_io_channel *ioch;
4036 	struct ut_expected_io *expected_io;
4037 	uint64_t offset, num_blocks;
4038 	uint32_t num_completed;
4039 	char aa_buf[512];
4040 	struct iovec iov;
4041 	int rc;
4042 	const bool populate = false;
4043 	const bool commit = true;
4044 
4045 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4046 
4047 	ut_init_bdev(NULL);
4048 	bdev = allocate_bdev("bdev");
4049 
4050 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4051 	CU_ASSERT_EQUAL(rc, 0);
4052 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4053 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4054 	ioch = spdk_bdev_get_io_channel(desc);
4055 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4056 
4057 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4058 
4059 	offset = 50;
4060 	num_blocks = 1;
4061 	iov.iov_base = NULL;
4062 	iov.iov_len = 0;
4063 
4064 	g_zcopy_read_buf = (void *) 0x1122334455667788UL;
4065 	g_zcopy_read_buf_len = (uint32_t) -1;
4066 	/* Do a zcopy start for a write (populate=false) */
4067 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4068 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4069 	g_io_done = false;
4070 	g_zcopy_write_buf = aa_buf;
4071 	g_zcopy_write_buf_len = sizeof(aa_buf);
4072 	g_zcopy_bdev_io = NULL;
4073 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4074 	CU_ASSERT_EQUAL(rc, 0);
4075 	num_completed = stub_complete_io(1);
4076 	CU_ASSERT_EQUAL(num_completed, 1);
4077 	CU_ASSERT(g_io_done == true);
4078 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4079 	/* Check that the iov has been set up */
4080 	CU_ASSERT(iov.iov_base == g_zcopy_write_buf);
4081 	CU_ASSERT(iov.iov_len == g_zcopy_write_buf_len);
4082 	/* Check that the bdev_io has been saved */
4083 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4084 	/* Now do the zcopy end for a write (commit=true) */
4085 	g_io_done = false;
4086 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4087 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4088 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4089 	CU_ASSERT_EQUAL(rc, 0);
4090 	num_completed = stub_complete_io(1);
4091 	CU_ASSERT_EQUAL(num_completed, 1);
4092 	CU_ASSERT(g_io_done == true);
4093 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4094 	/* Check the g_zcopy are reset by io_done */
4095 	CU_ASSERT(g_zcopy_write_buf == NULL);
4096 	CU_ASSERT(g_zcopy_write_buf_len == 0);
4097 	/* Check that io_done has freed the g_zcopy_bdev_io */
4098 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4099 
4100 	/* Check the zcopy read buffer has not been touched which
4101 	 * ensures that the correct buffers were used.
4102 	 */
4103 	CU_ASSERT(g_zcopy_read_buf == (void *) 0x1122334455667788UL);
4104 	CU_ASSERT(g_zcopy_read_buf_len == (uint32_t) -1);
4105 
4106 	spdk_put_io_channel(ioch);
4107 	spdk_bdev_close(desc);
4108 	free_bdev(bdev);
4109 	ut_fini_bdev();
4110 }
4111 
4112 static void
4113 bdev_zcopy_read(void)
4114 {
4115 	struct spdk_bdev *bdev;
4116 	struct spdk_bdev_desc *desc = NULL;
4117 	struct spdk_io_channel *ioch;
4118 	struct ut_expected_io *expected_io;
4119 	uint64_t offset, num_blocks;
4120 	uint32_t num_completed;
4121 	char aa_buf[512];
4122 	struct iovec iov;
4123 	int rc;
4124 	const bool populate = true;
4125 	const bool commit = false;
4126 
4127 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4128 
4129 	ut_init_bdev(NULL);
4130 	bdev = allocate_bdev("bdev");
4131 
4132 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4133 	CU_ASSERT_EQUAL(rc, 0);
4134 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4135 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4136 	ioch = spdk_bdev_get_io_channel(desc);
4137 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4138 
4139 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4140 
4141 	offset = 50;
4142 	num_blocks = 1;
4143 	iov.iov_base = NULL;
4144 	iov.iov_len = 0;
4145 
4146 	g_zcopy_write_buf = (void *) 0x1122334455667788UL;
4147 	g_zcopy_write_buf_len = (uint32_t) -1;
4148 
4149 	/* Do a zcopy start for a read (populate=true) */
4150 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4151 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4152 	g_io_done = false;
4153 	g_zcopy_read_buf = aa_buf;
4154 	g_zcopy_read_buf_len = sizeof(aa_buf);
4155 	g_zcopy_bdev_io = NULL;
4156 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4157 	CU_ASSERT_EQUAL(rc, 0);
4158 	num_completed = stub_complete_io(1);
4159 	CU_ASSERT_EQUAL(num_completed, 1);
4160 	CU_ASSERT(g_io_done == true);
4161 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4162 	/* Check that the iov has been set up */
4163 	CU_ASSERT(iov.iov_base == g_zcopy_read_buf);
4164 	CU_ASSERT(iov.iov_len == g_zcopy_read_buf_len);
4165 	/* Check that the bdev_io has been saved */
4166 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4167 
4168 	/* Now do the zcopy end for a read (commit=false) */
4169 	g_io_done = false;
4170 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4171 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4172 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4173 	CU_ASSERT_EQUAL(rc, 0);
4174 	num_completed = stub_complete_io(1);
4175 	CU_ASSERT_EQUAL(num_completed, 1);
4176 	CU_ASSERT(g_io_done == true);
4177 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4178 	/* Check the g_zcopy are reset by io_done */
4179 	CU_ASSERT(g_zcopy_read_buf == NULL);
4180 	CU_ASSERT(g_zcopy_read_buf_len == 0);
4181 	/* Check that io_done has freed the g_zcopy_bdev_io */
4182 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4183 
4184 	/* Check the zcopy write buffer has not been touched which
4185 	 * ensures that the correct buffers were used.
4186 	 */
4187 	CU_ASSERT(g_zcopy_write_buf == (void *) 0x1122334455667788UL);
4188 	CU_ASSERT(g_zcopy_write_buf_len == (uint32_t) -1);
4189 
4190 	spdk_put_io_channel(ioch);
4191 	spdk_bdev_close(desc);
4192 	free_bdev(bdev);
4193 	ut_fini_bdev();
4194 }
4195 
4196 static void
4197 bdev_open_while_hotremove(void)
4198 {
4199 	struct spdk_bdev *bdev;
4200 	struct spdk_bdev_desc *desc[2] = {};
4201 	int rc;
4202 
4203 	bdev = allocate_bdev("bdev");
4204 
4205 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
4206 	CU_ASSERT(rc == 0);
4207 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
4208 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
4209 
4210 	spdk_bdev_unregister(bdev, NULL, NULL);
4211 	/* Bdev unregister is handled asynchronously. Poll thread to complete. */
4212 	poll_threads();
4213 
4214 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
4215 	CU_ASSERT(rc == -ENODEV);
4216 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
4217 
4218 	spdk_bdev_close(desc[0]);
4219 	free_bdev(bdev);
4220 }
4221 
4222 static void
4223 bdev_close_while_hotremove(void)
4224 {
4225 	struct spdk_bdev *bdev;
4226 	struct spdk_bdev_desc *desc = NULL;
4227 	int rc = 0;
4228 
4229 	bdev = allocate_bdev("bdev");
4230 
4231 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
4232 	CU_ASSERT_EQUAL(rc, 0);
4233 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4234 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4235 
4236 	/* Simulate hot-unplug by unregistering bdev */
4237 	g_event_type1 = 0xFF;
4238 	g_unregister_arg = NULL;
4239 	g_unregister_rc = -1;
4240 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4241 	/* Close device while remove event is in flight */
4242 	spdk_bdev_close(desc);
4243 
4244 	/* Ensure that unregister callback is delayed */
4245 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
4246 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
4247 
4248 	poll_threads();
4249 
4250 	/* Event callback shall not be issued because device was closed */
4251 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
4252 	/* Unregister callback is issued */
4253 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
4254 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
4255 
4256 	free_bdev(bdev);
4257 }
4258 
4259 static void
4260 bdev_open_ext(void)
4261 {
4262 	struct spdk_bdev *bdev;
4263 	struct spdk_bdev_desc *desc1 = NULL;
4264 	struct spdk_bdev_desc *desc2 = NULL;
4265 	int rc = 0;
4266 
4267 	bdev = allocate_bdev("bdev");
4268 
4269 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4270 	CU_ASSERT_EQUAL(rc, -EINVAL);
4271 
4272 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4273 	CU_ASSERT_EQUAL(rc, 0);
4274 
4275 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4276 	CU_ASSERT_EQUAL(rc, 0);
4277 
4278 	g_event_type1 = 0xFF;
4279 	g_event_type2 = 0xFF;
4280 
4281 	/* Simulate hot-unplug by unregistering bdev */
4282 	spdk_bdev_unregister(bdev, NULL, NULL);
4283 	poll_threads();
4284 
4285 	/* Check if correct events have been triggered in event callback fn */
4286 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4287 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4288 
4289 	free_bdev(bdev);
4290 	poll_threads();
4291 }
4292 
4293 static void
4294 bdev_open_ext_unregister(void)
4295 {
4296 	struct spdk_bdev *bdev;
4297 	struct spdk_bdev_desc *desc1 = NULL;
4298 	struct spdk_bdev_desc *desc2 = NULL;
4299 	struct spdk_bdev_desc *desc3 = NULL;
4300 	struct spdk_bdev_desc *desc4 = NULL;
4301 	int rc = 0;
4302 
4303 	bdev = allocate_bdev("bdev");
4304 
4305 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4306 	CU_ASSERT_EQUAL(rc, -EINVAL);
4307 
4308 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4309 	CU_ASSERT_EQUAL(rc, 0);
4310 
4311 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4312 	CU_ASSERT_EQUAL(rc, 0);
4313 
4314 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb3, &desc3, &desc3);
4315 	CU_ASSERT_EQUAL(rc, 0);
4316 
4317 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb4, &desc4, &desc4);
4318 	CU_ASSERT_EQUAL(rc, 0);
4319 
4320 	g_event_type1 = 0xFF;
4321 	g_event_type2 = 0xFF;
4322 	g_event_type3 = 0xFF;
4323 	g_event_type4 = 0xFF;
4324 
4325 	g_unregister_arg = NULL;
4326 	g_unregister_rc = -1;
4327 
4328 	/* Simulate hot-unplug by unregistering bdev */
4329 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4330 
4331 	/*
4332 	 * Unregister is handled asynchronously and event callback
4333 	 * (i.e., above bdev_open_cbN) will be called.
4334 	 * For bdev_open_cb3 and bdev_open_cb4, it is intended to not
4335 	 * close the desc3 and desc4 so that the bdev is not closed.
4336 	 */
4337 	poll_threads();
4338 
4339 	/* Check if correct events have been triggered in event callback fn */
4340 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4341 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4342 	CU_ASSERT_EQUAL(g_event_type3, SPDK_BDEV_EVENT_REMOVE);
4343 	CU_ASSERT_EQUAL(g_event_type4, SPDK_BDEV_EVENT_REMOVE);
4344 
4345 	/* Check that unregister callback is delayed */
4346 	CU_ASSERT(g_unregister_arg == NULL);
4347 	CU_ASSERT(g_unregister_rc == -1);
4348 
4349 	/*
4350 	 * Explicitly close desc3. As desc4 is still opened there, the
4351 	 * unergister callback is still delayed to execute.
4352 	 */
4353 	spdk_bdev_close(desc3);
4354 	CU_ASSERT(g_unregister_arg == NULL);
4355 	CU_ASSERT(g_unregister_rc == -1);
4356 
4357 	/*
4358 	 * Explicitly close desc4 to trigger the ongoing bdev unregister
4359 	 * operation after last desc is closed.
4360 	 */
4361 	spdk_bdev_close(desc4);
4362 
4363 	/* Poll the thread for the async unregister operation */
4364 	poll_threads();
4365 
4366 	/* Check that unregister callback is executed */
4367 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
4368 	CU_ASSERT(g_unregister_rc == 0);
4369 
4370 	free_bdev(bdev);
4371 	poll_threads();
4372 }
4373 
4374 struct timeout_io_cb_arg {
4375 	struct iovec iov;
4376 	uint8_t type;
4377 };
4378 
4379 static int
4380 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
4381 {
4382 	struct spdk_bdev_io *bdev_io;
4383 	int n = 0;
4384 
4385 	if (!ch) {
4386 		return -1;
4387 	}
4388 
4389 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
4390 		n++;
4391 	}
4392 
4393 	return n;
4394 }
4395 
4396 static void
4397 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
4398 {
4399 	struct timeout_io_cb_arg *ctx = cb_arg;
4400 
4401 	ctx->type = bdev_io->type;
4402 	ctx->iov.iov_base = bdev_io->iov.iov_base;
4403 	ctx->iov.iov_len = bdev_io->iov.iov_len;
4404 }
4405 
4406 static void
4407 bdev_set_io_timeout(void)
4408 {
4409 	struct spdk_bdev *bdev;
4410 	struct spdk_bdev_desc *desc = NULL;
4411 	struct spdk_io_channel *io_ch = NULL;
4412 	struct spdk_bdev_channel *bdev_ch = NULL;
4413 	struct timeout_io_cb_arg cb_arg;
4414 
4415 	ut_init_bdev(NULL);
4416 	bdev = allocate_bdev("bdev");
4417 
4418 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4419 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4420 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4421 
4422 	io_ch = spdk_bdev_get_io_channel(desc);
4423 	CU_ASSERT(io_ch != NULL);
4424 
4425 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4426 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4427 
4428 	/* This is the part1.
4429 	 * We will check the bdev_ch->io_submitted list
4430 	 * TO make sure that it can link IOs and only the user submitted IOs
4431 	 */
4432 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4433 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4434 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4435 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4436 	stub_complete_io(1);
4437 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4438 	stub_complete_io(1);
4439 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4440 
4441 	/* Split IO */
4442 	bdev->optimal_io_boundary = 16;
4443 	bdev->split_on_optimal_io_boundary = true;
4444 
4445 	/* Now test that a single-vector command is split correctly.
4446 	 * Offset 14, length 8, payload 0xF000
4447 	 *  Child - Offset 14, length 2, payload 0xF000
4448 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4449 	 *
4450 	 * Set up the expected values before calling spdk_bdev_read_blocks
4451 	 */
4452 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4453 	/* We count all submitted IOs including IO that are generated by splitting. */
4454 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
4455 	stub_complete_io(1);
4456 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4457 	stub_complete_io(1);
4458 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4459 
4460 	/* Also include the reset IO */
4461 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4462 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4463 	poll_threads();
4464 	stub_complete_io(1);
4465 	poll_threads();
4466 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4467 
4468 	/* This is part2
4469 	 * Test the desc timeout poller register
4470 	 */
4471 
4472 	/* Successfully set the timeout */
4473 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4474 	CU_ASSERT(desc->io_timeout_poller != NULL);
4475 	CU_ASSERT(desc->timeout_in_sec == 30);
4476 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4477 	CU_ASSERT(desc->cb_arg == &cb_arg);
4478 
4479 	/* Change the timeout limit */
4480 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4481 	CU_ASSERT(desc->io_timeout_poller != NULL);
4482 	CU_ASSERT(desc->timeout_in_sec == 20);
4483 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4484 	CU_ASSERT(desc->cb_arg == &cb_arg);
4485 
4486 	/* Disable the timeout */
4487 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
4488 	CU_ASSERT(desc->io_timeout_poller == NULL);
4489 
4490 	/* This the part3
4491 	 * We will test to catch timeout IO and check whether the IO is
4492 	 * the submitted one.
4493 	 */
4494 	memset(&cb_arg, 0, sizeof(cb_arg));
4495 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4496 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
4497 
4498 	/* Don't reach the limit */
4499 	spdk_delay_us(15 * spdk_get_ticks_hz());
4500 	poll_threads();
4501 	CU_ASSERT(cb_arg.type == 0);
4502 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4503 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4504 
4505 	/* 15 + 15 = 30 reach the limit */
4506 	spdk_delay_us(15 * spdk_get_ticks_hz());
4507 	poll_threads();
4508 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4509 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
4510 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
4511 	stub_complete_io(1);
4512 
4513 	/* Use the same split IO above and check the IO */
4514 	memset(&cb_arg, 0, sizeof(cb_arg));
4515 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4516 
4517 	/* The first child complete in time */
4518 	spdk_delay_us(15 * spdk_get_ticks_hz());
4519 	poll_threads();
4520 	stub_complete_io(1);
4521 	CU_ASSERT(cb_arg.type == 0);
4522 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4523 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4524 
4525 	/* The second child reach the limit */
4526 	spdk_delay_us(15 * spdk_get_ticks_hz());
4527 	poll_threads();
4528 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4529 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
4530 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
4531 	stub_complete_io(1);
4532 
4533 	/* Also include the reset IO */
4534 	memset(&cb_arg, 0, sizeof(cb_arg));
4535 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4536 	spdk_delay_us(30 * spdk_get_ticks_hz());
4537 	poll_threads();
4538 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
4539 	stub_complete_io(1);
4540 	poll_threads();
4541 
4542 	spdk_put_io_channel(io_ch);
4543 	spdk_bdev_close(desc);
4544 	free_bdev(bdev);
4545 	ut_fini_bdev();
4546 }
4547 
4548 static void
4549 bdev_set_qd_sampling(void)
4550 {
4551 	struct spdk_bdev *bdev;
4552 	struct spdk_bdev_desc *desc = NULL;
4553 	struct spdk_io_channel *io_ch = NULL;
4554 	struct spdk_bdev_channel *bdev_ch = NULL;
4555 	struct timeout_io_cb_arg cb_arg;
4556 
4557 	ut_init_bdev(NULL);
4558 	bdev = allocate_bdev("bdev");
4559 
4560 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4561 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4562 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4563 
4564 	io_ch = spdk_bdev_get_io_channel(desc);
4565 	CU_ASSERT(io_ch != NULL);
4566 
4567 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4568 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4569 
4570 	/* This is the part1.
4571 	 * We will check the bdev_ch->io_submitted list
4572 	 * TO make sure that it can link IOs and only the user submitted IOs
4573 	 */
4574 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4575 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4576 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4577 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4578 	stub_complete_io(1);
4579 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4580 	stub_complete_io(1);
4581 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4582 
4583 	/* This is the part2.
4584 	 * Test the bdev's qd poller register
4585 	 */
4586 	/* 1st Successfully set the qd sampling period */
4587 	spdk_bdev_set_qd_sampling_period(bdev, 10);
4588 	CU_ASSERT(bdev->internal.new_period == 10);
4589 	CU_ASSERT(bdev->internal.period == 10);
4590 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4591 	poll_threads();
4592 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4593 
4594 	/* 2nd Change the qd sampling period */
4595 	spdk_bdev_set_qd_sampling_period(bdev, 20);
4596 	CU_ASSERT(bdev->internal.new_period == 20);
4597 	CU_ASSERT(bdev->internal.period == 10);
4598 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4599 	poll_threads();
4600 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4601 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4602 
4603 	/* 3rd Change the qd sampling period and verify qd_poll_in_progress */
4604 	spdk_delay_us(20);
4605 	poll_thread_times(0, 1);
4606 	CU_ASSERT(bdev->internal.qd_poll_in_progress == true);
4607 	spdk_bdev_set_qd_sampling_period(bdev, 30);
4608 	CU_ASSERT(bdev->internal.new_period == 30);
4609 	CU_ASSERT(bdev->internal.period == 20);
4610 	poll_threads();
4611 	CU_ASSERT(bdev->internal.qd_poll_in_progress == false);
4612 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4613 
4614 	/* 4th Disable the qd sampling period */
4615 	spdk_bdev_set_qd_sampling_period(bdev, 0);
4616 	CU_ASSERT(bdev->internal.new_period == 0);
4617 	CU_ASSERT(bdev->internal.period == 30);
4618 	poll_threads();
4619 	CU_ASSERT(bdev->internal.qd_poller == NULL);
4620 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4621 	CU_ASSERT(bdev->internal.qd_desc == NULL);
4622 
4623 	/* This is the part3.
4624 	 * We will test the submitted IO and reset works
4625 	 * properly with the qd sampling.
4626 	 */
4627 	memset(&cb_arg, 0, sizeof(cb_arg));
4628 	spdk_bdev_set_qd_sampling_period(bdev, 1);
4629 	poll_threads();
4630 
4631 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4632 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4633 
4634 	/* Also include the reset IO */
4635 	memset(&cb_arg, 0, sizeof(cb_arg));
4636 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4637 	poll_threads();
4638 
4639 	/* Close the desc */
4640 	spdk_put_io_channel(io_ch);
4641 	spdk_bdev_close(desc);
4642 
4643 	/* Complete the submitted IO and reset */
4644 	stub_complete_io(2);
4645 	poll_threads();
4646 
4647 	free_bdev(bdev);
4648 	ut_fini_bdev();
4649 }
4650 
4651 static void
4652 lba_range_overlap(void)
4653 {
4654 	struct lba_range r1, r2;
4655 
4656 	r1.offset = 100;
4657 	r1.length = 50;
4658 
4659 	r2.offset = 0;
4660 	r2.length = 1;
4661 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4662 
4663 	r2.offset = 0;
4664 	r2.length = 100;
4665 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4666 
4667 	r2.offset = 0;
4668 	r2.length = 110;
4669 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4670 
4671 	r2.offset = 100;
4672 	r2.length = 10;
4673 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4674 
4675 	r2.offset = 110;
4676 	r2.length = 20;
4677 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4678 
4679 	r2.offset = 140;
4680 	r2.length = 150;
4681 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4682 
4683 	r2.offset = 130;
4684 	r2.length = 200;
4685 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4686 
4687 	r2.offset = 150;
4688 	r2.length = 100;
4689 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4690 
4691 	r2.offset = 110;
4692 	r2.length = 0;
4693 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4694 }
4695 
4696 static bool g_lock_lba_range_done;
4697 static bool g_unlock_lba_range_done;
4698 
4699 static void
4700 lock_lba_range_done(void *ctx, int status)
4701 {
4702 	g_lock_lba_range_done = true;
4703 }
4704 
4705 static void
4706 unlock_lba_range_done(void *ctx, int status)
4707 {
4708 	g_unlock_lba_range_done = true;
4709 }
4710 
4711 static void
4712 lock_lba_range_check_ranges(void)
4713 {
4714 	struct spdk_bdev *bdev;
4715 	struct spdk_bdev_desc *desc = NULL;
4716 	struct spdk_io_channel *io_ch;
4717 	struct spdk_bdev_channel *channel;
4718 	struct lba_range *range;
4719 	int ctx1;
4720 	int rc;
4721 
4722 	ut_init_bdev(NULL);
4723 	bdev = allocate_bdev("bdev0");
4724 
4725 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4726 	CU_ASSERT(rc == 0);
4727 	CU_ASSERT(desc != NULL);
4728 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4729 	io_ch = spdk_bdev_get_io_channel(desc);
4730 	CU_ASSERT(io_ch != NULL);
4731 	channel = spdk_io_channel_get_ctx(io_ch);
4732 
4733 	g_lock_lba_range_done = false;
4734 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4735 	CU_ASSERT(rc == 0);
4736 	poll_threads();
4737 
4738 	CU_ASSERT(g_lock_lba_range_done == true);
4739 	range = TAILQ_FIRST(&channel->locked_ranges);
4740 	SPDK_CU_ASSERT_FATAL(range != NULL);
4741 	CU_ASSERT(range->offset == 20);
4742 	CU_ASSERT(range->length == 10);
4743 	CU_ASSERT(range->owner_ch == channel);
4744 
4745 	/* Unlocks must exactly match a lock. */
4746 	g_unlock_lba_range_done = false;
4747 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
4748 	CU_ASSERT(rc == -EINVAL);
4749 	CU_ASSERT(g_unlock_lba_range_done == false);
4750 
4751 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4752 	CU_ASSERT(rc == 0);
4753 	spdk_delay_us(100);
4754 	poll_threads();
4755 
4756 	CU_ASSERT(g_unlock_lba_range_done == true);
4757 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4758 
4759 	spdk_put_io_channel(io_ch);
4760 	spdk_bdev_close(desc);
4761 	free_bdev(bdev);
4762 	ut_fini_bdev();
4763 }
4764 
4765 static void
4766 lock_lba_range_with_io_outstanding(void)
4767 {
4768 	struct spdk_bdev *bdev;
4769 	struct spdk_bdev_desc *desc = NULL;
4770 	struct spdk_io_channel *io_ch;
4771 	struct spdk_bdev_channel *channel;
4772 	struct lba_range *range;
4773 	char buf[4096];
4774 	int ctx1;
4775 	int rc;
4776 
4777 	ut_init_bdev(NULL);
4778 	bdev = allocate_bdev("bdev0");
4779 
4780 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4781 	CU_ASSERT(rc == 0);
4782 	CU_ASSERT(desc != NULL);
4783 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4784 	io_ch = spdk_bdev_get_io_channel(desc);
4785 	CU_ASSERT(io_ch != NULL);
4786 	channel = spdk_io_channel_get_ctx(io_ch);
4787 
4788 	g_io_done = false;
4789 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4790 	CU_ASSERT(rc == 0);
4791 
4792 	g_lock_lba_range_done = false;
4793 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4794 	CU_ASSERT(rc == 0);
4795 	poll_threads();
4796 
4797 	/* The lock should immediately become valid, since there are no outstanding
4798 	 * write I/O.
4799 	 */
4800 	CU_ASSERT(g_io_done == false);
4801 	CU_ASSERT(g_lock_lba_range_done == true);
4802 	range = TAILQ_FIRST(&channel->locked_ranges);
4803 	SPDK_CU_ASSERT_FATAL(range != NULL);
4804 	CU_ASSERT(range->offset == 20);
4805 	CU_ASSERT(range->length == 10);
4806 	CU_ASSERT(range->owner_ch == channel);
4807 	CU_ASSERT(range->locked_ctx == &ctx1);
4808 
4809 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4810 	CU_ASSERT(rc == 0);
4811 	stub_complete_io(1);
4812 	spdk_delay_us(100);
4813 	poll_threads();
4814 
4815 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4816 
4817 	/* Now try again, but with a write I/O. */
4818 	g_io_done = false;
4819 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4820 	CU_ASSERT(rc == 0);
4821 
4822 	g_lock_lba_range_done = false;
4823 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4824 	CU_ASSERT(rc == 0);
4825 	poll_threads();
4826 
4827 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
4828 	 * But note that the range should be on the channel's locked_list, to make sure no
4829 	 * new write I/O are started.
4830 	 */
4831 	CU_ASSERT(g_io_done == false);
4832 	CU_ASSERT(g_lock_lba_range_done == false);
4833 	range = TAILQ_FIRST(&channel->locked_ranges);
4834 	SPDK_CU_ASSERT_FATAL(range != NULL);
4835 	CU_ASSERT(range->offset == 20);
4836 	CU_ASSERT(range->length == 10);
4837 
4838 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
4839 	 * our callback was invoked).
4840 	 */
4841 	stub_complete_io(1);
4842 	spdk_delay_us(100);
4843 	poll_threads();
4844 	CU_ASSERT(g_io_done == true);
4845 	CU_ASSERT(g_lock_lba_range_done == true);
4846 
4847 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4848 	CU_ASSERT(rc == 0);
4849 	poll_threads();
4850 
4851 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4852 
4853 	spdk_put_io_channel(io_ch);
4854 	spdk_bdev_close(desc);
4855 	free_bdev(bdev);
4856 	ut_fini_bdev();
4857 }
4858 
4859 static void
4860 lock_lba_range_overlapped(void)
4861 {
4862 	struct spdk_bdev *bdev;
4863 	struct spdk_bdev_desc *desc = NULL;
4864 	struct spdk_io_channel *io_ch;
4865 	struct spdk_bdev_channel *channel;
4866 	struct lba_range *range;
4867 	int ctx1;
4868 	int rc;
4869 
4870 	ut_init_bdev(NULL);
4871 	bdev = allocate_bdev("bdev0");
4872 
4873 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4874 	CU_ASSERT(rc == 0);
4875 	CU_ASSERT(desc != NULL);
4876 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4877 	io_ch = spdk_bdev_get_io_channel(desc);
4878 	CU_ASSERT(io_ch != NULL);
4879 	channel = spdk_io_channel_get_ctx(io_ch);
4880 
4881 	/* Lock range 20-29. */
4882 	g_lock_lba_range_done = false;
4883 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4884 	CU_ASSERT(rc == 0);
4885 	poll_threads();
4886 
4887 	CU_ASSERT(g_lock_lba_range_done == true);
4888 	range = TAILQ_FIRST(&channel->locked_ranges);
4889 	SPDK_CU_ASSERT_FATAL(range != NULL);
4890 	CU_ASSERT(range->offset == 20);
4891 	CU_ASSERT(range->length == 10);
4892 
4893 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
4894 	 * 20-29.
4895 	 */
4896 	g_lock_lba_range_done = false;
4897 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
4898 	CU_ASSERT(rc == 0);
4899 	poll_threads();
4900 
4901 	CU_ASSERT(g_lock_lba_range_done == false);
4902 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4903 	SPDK_CU_ASSERT_FATAL(range != NULL);
4904 	CU_ASSERT(range->offset == 25);
4905 	CU_ASSERT(range->length == 15);
4906 
4907 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
4908 	 * no longer overlaps with an active lock.
4909 	 */
4910 	g_unlock_lba_range_done = false;
4911 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4912 	CU_ASSERT(rc == 0);
4913 	poll_threads();
4914 
4915 	CU_ASSERT(g_unlock_lba_range_done == true);
4916 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4917 	range = TAILQ_FIRST(&channel->locked_ranges);
4918 	SPDK_CU_ASSERT_FATAL(range != NULL);
4919 	CU_ASSERT(range->offset == 25);
4920 	CU_ASSERT(range->length == 15);
4921 
4922 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
4923 	 * currently active 25-39 lock.
4924 	 */
4925 	g_lock_lba_range_done = false;
4926 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
4927 	CU_ASSERT(rc == 0);
4928 	poll_threads();
4929 
4930 	CU_ASSERT(g_lock_lba_range_done == true);
4931 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4932 	SPDK_CU_ASSERT_FATAL(range != NULL);
4933 	range = TAILQ_NEXT(range, tailq);
4934 	SPDK_CU_ASSERT_FATAL(range != NULL);
4935 	CU_ASSERT(range->offset == 40);
4936 	CU_ASSERT(range->length == 20);
4937 
4938 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
4939 	g_lock_lba_range_done = false;
4940 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
4941 	CU_ASSERT(rc == 0);
4942 	poll_threads();
4943 
4944 	CU_ASSERT(g_lock_lba_range_done == false);
4945 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4946 	SPDK_CU_ASSERT_FATAL(range != NULL);
4947 	CU_ASSERT(range->offset == 35);
4948 	CU_ASSERT(range->length == 10);
4949 
4950 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
4951 	 * the 40-59 lock is still active.
4952 	 */
4953 	g_unlock_lba_range_done = false;
4954 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
4955 	CU_ASSERT(rc == 0);
4956 	poll_threads();
4957 
4958 	CU_ASSERT(g_unlock_lba_range_done == true);
4959 	CU_ASSERT(g_lock_lba_range_done == false);
4960 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4961 	SPDK_CU_ASSERT_FATAL(range != NULL);
4962 	CU_ASSERT(range->offset == 35);
4963 	CU_ASSERT(range->length == 10);
4964 
4965 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
4966 	 * no longer any active overlapping locks.
4967 	 */
4968 	g_unlock_lba_range_done = false;
4969 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
4970 	CU_ASSERT(rc == 0);
4971 	poll_threads();
4972 
4973 	CU_ASSERT(g_unlock_lba_range_done == true);
4974 	CU_ASSERT(g_lock_lba_range_done == true);
4975 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4976 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4977 	SPDK_CU_ASSERT_FATAL(range != NULL);
4978 	CU_ASSERT(range->offset == 35);
4979 	CU_ASSERT(range->length == 10);
4980 
4981 	/* Finally, unlock 35-44. */
4982 	g_unlock_lba_range_done = false;
4983 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
4984 	CU_ASSERT(rc == 0);
4985 	poll_threads();
4986 
4987 	CU_ASSERT(g_unlock_lba_range_done == true);
4988 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
4989 
4990 	spdk_put_io_channel(io_ch);
4991 	spdk_bdev_close(desc);
4992 	free_bdev(bdev);
4993 	ut_fini_bdev();
4994 }
4995 
4996 static void
4997 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
4998 {
4999 	g_abort_done = true;
5000 	g_abort_status = bdev_io->internal.status;
5001 	spdk_bdev_free_io(bdev_io);
5002 }
5003 
5004 static void
5005 bdev_io_abort(void)
5006 {
5007 	struct spdk_bdev *bdev;
5008 	struct spdk_bdev_desc *desc = NULL;
5009 	struct spdk_io_channel *io_ch;
5010 	struct spdk_bdev_channel *channel;
5011 	struct spdk_bdev_mgmt_channel *mgmt_ch;
5012 	struct spdk_bdev_opts bdev_opts = {};
5013 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
5014 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
5015 	int rc;
5016 
5017 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5018 	bdev_opts.bdev_io_pool_size = 7;
5019 	bdev_opts.bdev_io_cache_size = 2;
5020 	ut_init_bdev(&bdev_opts);
5021 
5022 	bdev = allocate_bdev("bdev0");
5023 
5024 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5025 	CU_ASSERT(rc == 0);
5026 	CU_ASSERT(desc != NULL);
5027 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5028 	io_ch = spdk_bdev_get_io_channel(desc);
5029 	CU_ASSERT(io_ch != NULL);
5030 	channel = spdk_io_channel_get_ctx(io_ch);
5031 	mgmt_ch = channel->shared_resource->mgmt_ch;
5032 
5033 	g_abort_done = false;
5034 
5035 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
5036 
5037 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5038 	CU_ASSERT(rc == -ENOTSUP);
5039 
5040 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
5041 
5042 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
5043 	CU_ASSERT(rc == 0);
5044 	CU_ASSERT(g_abort_done == true);
5045 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
5046 
5047 	/* Test the case that the target I/O was successfully aborted. */
5048 	g_io_done = false;
5049 
5050 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5051 	CU_ASSERT(rc == 0);
5052 	CU_ASSERT(g_io_done == false);
5053 
5054 	g_abort_done = false;
5055 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5056 
5057 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5058 	CU_ASSERT(rc == 0);
5059 	CU_ASSERT(g_io_done == true);
5060 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5061 	stub_complete_io(1);
5062 	CU_ASSERT(g_abort_done == true);
5063 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5064 
5065 	/* Test the case that the target I/O was not aborted because it completed
5066 	 * in the middle of execution of the abort.
5067 	 */
5068 	g_io_done = false;
5069 
5070 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5071 	CU_ASSERT(rc == 0);
5072 	CU_ASSERT(g_io_done == false);
5073 
5074 	g_abort_done = false;
5075 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5076 
5077 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5078 	CU_ASSERT(rc == 0);
5079 	CU_ASSERT(g_io_done == false);
5080 
5081 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5082 	stub_complete_io(1);
5083 	CU_ASSERT(g_io_done == true);
5084 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5085 
5086 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5087 	stub_complete_io(1);
5088 	CU_ASSERT(g_abort_done == true);
5089 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5090 
5091 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5092 
5093 	bdev->optimal_io_boundary = 16;
5094 	bdev->split_on_optimal_io_boundary = true;
5095 
5096 	/* Test that a single-vector command which is split is aborted correctly.
5097 	 * Offset 14, length 8, payload 0xF000
5098 	 *  Child - Offset 14, length 2, payload 0xF000
5099 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5100 	 */
5101 	g_io_done = false;
5102 
5103 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
5104 	CU_ASSERT(rc == 0);
5105 	CU_ASSERT(g_io_done == false);
5106 
5107 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5108 
5109 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5110 
5111 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5112 	CU_ASSERT(rc == 0);
5113 	CU_ASSERT(g_io_done == true);
5114 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5115 	stub_complete_io(2);
5116 	CU_ASSERT(g_abort_done == true);
5117 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5118 
5119 	/* Test that a multi-vector command that needs to be split by strip and then
5120 	 * needs to be split is aborted correctly. Abort is requested before the second
5121 	 * child I/O was submitted. The parent I/O should complete with failure without
5122 	 * submitting the second child I/O.
5123 	 */
5124 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
5125 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
5126 		iov[i].iov_len = 512;
5127 	}
5128 
5129 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
5130 	g_io_done = false;
5131 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
5132 				    SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
5133 	CU_ASSERT(rc == 0);
5134 	CU_ASSERT(g_io_done == false);
5135 
5136 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5137 
5138 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5139 
5140 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5141 	CU_ASSERT(rc == 0);
5142 	CU_ASSERT(g_io_done == true);
5143 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5144 	stub_complete_io(1);
5145 	CU_ASSERT(g_abort_done == true);
5146 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5147 
5148 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5149 
5150 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5151 
5152 	bdev->optimal_io_boundary = 16;
5153 	g_io_done = false;
5154 
5155 	/* Test that a ingle-vector command which is split is aborted correctly.
5156 	 * Differently from the above, the child abort request will be submitted
5157 	 * sequentially due to the capacity of spdk_bdev_io.
5158 	 */
5159 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
5160 	CU_ASSERT(rc == 0);
5161 	CU_ASSERT(g_io_done == false);
5162 
5163 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5164 
5165 	g_abort_done = false;
5166 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5167 
5168 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5169 	CU_ASSERT(rc == 0);
5170 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
5171 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5172 
5173 	stub_complete_io(1);
5174 	CU_ASSERT(g_io_done == true);
5175 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5176 	stub_complete_io(3);
5177 	CU_ASSERT(g_abort_done == true);
5178 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5179 
5180 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5181 
5182 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5183 
5184 	spdk_put_io_channel(io_ch);
5185 	spdk_bdev_close(desc);
5186 	free_bdev(bdev);
5187 	ut_fini_bdev();
5188 }
5189 
5190 static void
5191 bdev_unmap(void)
5192 {
5193 	struct spdk_bdev *bdev;
5194 	struct spdk_bdev_desc *desc = NULL;
5195 	struct spdk_io_channel *ioch;
5196 	struct spdk_bdev_channel *bdev_ch;
5197 	struct ut_expected_io *expected_io;
5198 	struct spdk_bdev_opts bdev_opts = {};
5199 	uint32_t i, num_outstanding;
5200 	uint64_t offset, num_blocks, max_unmap_blocks, num_children;
5201 	int rc;
5202 
5203 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5204 	bdev_opts.bdev_io_pool_size = 512;
5205 	bdev_opts.bdev_io_cache_size = 64;
5206 	ut_init_bdev(&bdev_opts);
5207 
5208 	bdev = allocate_bdev("bdev");
5209 
5210 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5211 	CU_ASSERT_EQUAL(rc, 0);
5212 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5213 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5214 	ioch = spdk_bdev_get_io_channel(desc);
5215 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5216 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5217 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5218 
5219 	fn_table.submit_request = stub_submit_request;
5220 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5221 
5222 	/* Case 1: First test the request won't be split */
5223 	num_blocks = 32;
5224 
5225 	g_io_done = false;
5226 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 0, num_blocks, 0);
5227 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5228 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5229 	CU_ASSERT_EQUAL(rc, 0);
5230 	CU_ASSERT(g_io_done == false);
5231 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5232 	stub_complete_io(1);
5233 	CU_ASSERT(g_io_done == true);
5234 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5235 
5236 	/* Case 2: Test the split with 2 children requests */
5237 	bdev->max_unmap = 8;
5238 	bdev->max_unmap_segments = 2;
5239 	max_unmap_blocks = bdev->max_unmap * bdev->max_unmap_segments;
5240 	num_blocks = max_unmap_blocks * 2;
5241 	offset = 0;
5242 
5243 	g_io_done = false;
5244 	for (i = 0; i < 2; i++) {
5245 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5246 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5247 		offset += max_unmap_blocks;
5248 	}
5249 
5250 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5251 	CU_ASSERT_EQUAL(rc, 0);
5252 	CU_ASSERT(g_io_done == false);
5253 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5254 	stub_complete_io(2);
5255 	CU_ASSERT(g_io_done == true);
5256 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5257 
5258 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5259 	num_children = 15;
5260 	num_blocks = max_unmap_blocks * num_children;
5261 	g_io_done = false;
5262 	offset = 0;
5263 	for (i = 0; i < num_children; i++) {
5264 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5265 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5266 		offset += max_unmap_blocks;
5267 	}
5268 
5269 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5270 	CU_ASSERT_EQUAL(rc, 0);
5271 	CU_ASSERT(g_io_done == false);
5272 
5273 	while (num_children > 0) {
5274 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5275 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5276 		stub_complete_io(num_outstanding);
5277 		num_children -= num_outstanding;
5278 	}
5279 	CU_ASSERT(g_io_done == true);
5280 
5281 	spdk_put_io_channel(ioch);
5282 	spdk_bdev_close(desc);
5283 	free_bdev(bdev);
5284 	ut_fini_bdev();
5285 }
5286 
5287 static void
5288 bdev_write_zeroes_split_test(void)
5289 {
5290 	struct spdk_bdev *bdev;
5291 	struct spdk_bdev_desc *desc = NULL;
5292 	struct spdk_io_channel *ioch;
5293 	struct spdk_bdev_channel *bdev_ch;
5294 	struct ut_expected_io *expected_io;
5295 	struct spdk_bdev_opts bdev_opts = {};
5296 	uint32_t i, num_outstanding;
5297 	uint64_t offset, num_blocks, max_write_zeroes_blocks, num_children;
5298 	int rc;
5299 
5300 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5301 	bdev_opts.bdev_io_pool_size = 512;
5302 	bdev_opts.bdev_io_cache_size = 64;
5303 	ut_init_bdev(&bdev_opts);
5304 
5305 	bdev = allocate_bdev("bdev");
5306 
5307 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5308 	CU_ASSERT_EQUAL(rc, 0);
5309 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5310 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5311 	ioch = spdk_bdev_get_io_channel(desc);
5312 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5313 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5314 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5315 
5316 	fn_table.submit_request = stub_submit_request;
5317 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5318 
5319 	/* Case 1: First test the request won't be split */
5320 	num_blocks = 32;
5321 
5322 	g_io_done = false;
5323 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
5324 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5325 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5326 	CU_ASSERT_EQUAL(rc, 0);
5327 	CU_ASSERT(g_io_done == false);
5328 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5329 	stub_complete_io(1);
5330 	CU_ASSERT(g_io_done == true);
5331 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5332 
5333 	/* Case 2: Test the split with 2 children requests */
5334 	max_write_zeroes_blocks = 8;
5335 	bdev->max_write_zeroes = max_write_zeroes_blocks;
5336 	num_blocks = max_write_zeroes_blocks * 2;
5337 	offset = 0;
5338 
5339 	g_io_done = false;
5340 	for (i = 0; i < 2; i++) {
5341 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5342 						   0);
5343 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5344 		offset += max_write_zeroes_blocks;
5345 	}
5346 
5347 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5348 	CU_ASSERT_EQUAL(rc, 0);
5349 	CU_ASSERT(g_io_done == false);
5350 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5351 	stub_complete_io(2);
5352 	CU_ASSERT(g_io_done == true);
5353 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5354 
5355 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5356 	num_children = 15;
5357 	num_blocks = max_write_zeroes_blocks * num_children;
5358 	g_io_done = false;
5359 	offset = 0;
5360 	for (i = 0; i < num_children; i++) {
5361 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5362 						   0);
5363 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5364 		offset += max_write_zeroes_blocks;
5365 	}
5366 
5367 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5368 	CU_ASSERT_EQUAL(rc, 0);
5369 	CU_ASSERT(g_io_done == false);
5370 
5371 	while (num_children > 0) {
5372 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5373 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5374 		stub_complete_io(num_outstanding);
5375 		num_children -= num_outstanding;
5376 	}
5377 	CU_ASSERT(g_io_done == true);
5378 
5379 	spdk_put_io_channel(ioch);
5380 	spdk_bdev_close(desc);
5381 	free_bdev(bdev);
5382 	ut_fini_bdev();
5383 }
5384 
5385 static void
5386 bdev_set_options_test(void)
5387 {
5388 	struct spdk_bdev_opts bdev_opts = {};
5389 	int rc;
5390 
5391 	/* Case1: Do not set opts_size */
5392 	rc = spdk_bdev_set_opts(&bdev_opts);
5393 	CU_ASSERT(rc == -1);
5394 
5395 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5396 	bdev_opts.bdev_io_pool_size = 4;
5397 	bdev_opts.bdev_io_cache_size = 2;
5398 	bdev_opts.small_buf_pool_size = 4;
5399 
5400 	/* Case 2: Do not set valid small_buf_pool_size and large_buf_pool_size */
5401 	rc = spdk_bdev_set_opts(&bdev_opts);
5402 	CU_ASSERT(rc == -1);
5403 
5404 	/* Case 3: Do not set valid large_buf_pool_size */
5405 	bdev_opts.small_buf_pool_size = BUF_SMALL_POOL_SIZE;
5406 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE - 1;
5407 	rc = spdk_bdev_set_opts(&bdev_opts);
5408 	CU_ASSERT(rc == -1);
5409 
5410 	/* Case4: set valid large buf_pool_size */
5411 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE;
5412 	rc = spdk_bdev_set_opts(&bdev_opts);
5413 	CU_ASSERT(rc == 0);
5414 
5415 	/* Case5: Set different valid value for small and large buf pool */
5416 	bdev_opts.large_buf_pool_size = BUF_SMALL_POOL_SIZE + 3;
5417 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE + 3;
5418 	rc = spdk_bdev_set_opts(&bdev_opts);
5419 	CU_ASSERT(rc == 0);
5420 }
5421 
5422 static uint64_t
5423 get_ns_time(void)
5424 {
5425 	int rc;
5426 	struct timespec ts;
5427 
5428 	rc = clock_gettime(CLOCK_MONOTONIC, &ts);
5429 	CU_ASSERT(rc == 0);
5430 	return ts.tv_sec * 1000 * 1000 * 1000 + ts.tv_nsec;
5431 }
5432 
5433 static int
5434 rb_tree_get_height(struct spdk_bdev_name *bdev_name)
5435 {
5436 	int h1, h2;
5437 
5438 	if (bdev_name == NULL) {
5439 		return -1;
5440 	} else {
5441 		h1 = rb_tree_get_height(RB_LEFT(bdev_name, node));
5442 		h2 = rb_tree_get_height(RB_RIGHT(bdev_name, node));
5443 
5444 		return spdk_max(h1, h2) + 1;
5445 	}
5446 }
5447 
5448 static void
5449 bdev_multi_allocation(void)
5450 {
5451 	const int max_bdev_num = 1024 * 16;
5452 	char name[max_bdev_num][16];
5453 	char noexist_name[] = "invalid_bdev";
5454 	struct spdk_bdev *bdev[max_bdev_num];
5455 	int i, j;
5456 	uint64_t last_time;
5457 	int bdev_num;
5458 	int height;
5459 
5460 	for (j = 0; j < max_bdev_num; j++) {
5461 		snprintf(name[j], sizeof(name[j]), "bdev%d", j);
5462 	}
5463 
5464 	for (i = 0; i < 16; i++) {
5465 		last_time = get_ns_time();
5466 		bdev_num = 1024 * (i + 1);
5467 		for (j = 0; j < bdev_num; j++) {
5468 			bdev[j] = allocate_bdev(name[j]);
5469 			height = rb_tree_get_height(&bdev[j]->internal.bdev_name);
5470 			CU_ASSERT(height <= (int)(spdk_u32log2(2 * j + 2)));
5471 		}
5472 		SPDK_NOTICELOG("alloc bdev num %d takes %" PRIu64 " ms\n", bdev_num,
5473 			       (get_ns_time() - last_time) / 1000 / 1000);
5474 		for (j = 0; j < bdev_num; j++) {
5475 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) != NULL);
5476 		}
5477 		CU_ASSERT(spdk_bdev_get_by_name(noexist_name) == NULL);
5478 
5479 		for (j = 0; j < bdev_num; j++) {
5480 			free_bdev(bdev[j]);
5481 		}
5482 		for (j = 0; j < bdev_num; j++) {
5483 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) == NULL);
5484 		}
5485 	}
5486 }
5487 
5488 static struct spdk_memory_domain *g_bdev_memory_domain = (struct spdk_memory_domain *) 0xf00df00d;
5489 
5490 static int
5491 test_bdev_get_supported_dma_device_types_op(void *ctx, struct spdk_memory_domain **domains,
5492 		int array_size)
5493 {
5494 	if (array_size > 0 && domains) {
5495 		domains[0] = g_bdev_memory_domain;
5496 	}
5497 
5498 	return 1;
5499 }
5500 
5501 static void
5502 bdev_get_memory_domains(void)
5503 {
5504 	struct spdk_bdev_fn_table fn_table = {
5505 		.get_memory_domains = test_bdev_get_supported_dma_device_types_op
5506 	};
5507 	struct spdk_bdev bdev = { .fn_table = &fn_table };
5508 	struct spdk_memory_domain *domains[2] = {};
5509 	int rc;
5510 
5511 	/* bdev is NULL */
5512 	rc = spdk_bdev_get_memory_domains(NULL, domains, 2);
5513 	CU_ASSERT(rc == -EINVAL);
5514 
5515 	/* domains is NULL */
5516 	rc = spdk_bdev_get_memory_domains(&bdev, NULL, 2);
5517 	CU_ASSERT(rc == 1);
5518 
5519 	/* array size is 0 */
5520 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 0);
5521 	CU_ASSERT(rc == 1);
5522 
5523 	/* get_supported_dma_device_types op is set */
5524 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5525 	CU_ASSERT(rc == 1);
5526 	CU_ASSERT(domains[0] == g_bdev_memory_domain);
5527 
5528 	/* get_supported_dma_device_types op is not set */
5529 	fn_table.get_memory_domains = NULL;
5530 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5531 	CU_ASSERT(rc == 0);
5532 }
5533 
5534 static void
5535 _bdev_io_ext(struct spdk_bdev_ext_io_opts *ext_io_opts)
5536 {
5537 	struct spdk_bdev *bdev;
5538 	struct spdk_bdev_desc *desc = NULL;
5539 	struct spdk_io_channel *io_ch;
5540 	char io_buf[512];
5541 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5542 	struct ut_expected_io *expected_io;
5543 	int rc;
5544 
5545 	ut_init_bdev(NULL);
5546 
5547 	bdev = allocate_bdev("bdev0");
5548 	bdev->md_interleave = false;
5549 	bdev->md_len = 8;
5550 
5551 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5552 	CU_ASSERT(rc == 0);
5553 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5554 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5555 	io_ch = spdk_bdev_get_io_channel(desc);
5556 	CU_ASSERT(io_ch != NULL);
5557 
5558 	/* read */
5559 	g_io_done = false;
5560 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5561 	if (ext_io_opts) {
5562 		expected_io->md_buf = ext_io_opts->metadata;
5563 	}
5564 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5565 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5566 
5567 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5568 
5569 	CU_ASSERT(rc == 0);
5570 	CU_ASSERT(g_io_done == false);
5571 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5572 	stub_complete_io(1);
5573 	CU_ASSERT(g_io_done == true);
5574 
5575 	/* write */
5576 	g_io_done = false;
5577 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5578 	if (ext_io_opts) {
5579 		expected_io->md_buf = ext_io_opts->metadata;
5580 	}
5581 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5582 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5583 
5584 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5585 
5586 	CU_ASSERT(rc == 0);
5587 	CU_ASSERT(g_io_done == false);
5588 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5589 	stub_complete_io(1);
5590 	CU_ASSERT(g_io_done == true);
5591 
5592 	spdk_put_io_channel(io_ch);
5593 	spdk_bdev_close(desc);
5594 	free_bdev(bdev);
5595 	ut_fini_bdev();
5596 
5597 }
5598 
5599 static void
5600 bdev_io_ext(void)
5601 {
5602 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5603 		.metadata = (void *)0xFF000000,
5604 		.size = sizeof(ext_io_opts)
5605 	};
5606 
5607 	_bdev_io_ext(&ext_io_opts);
5608 }
5609 
5610 static void
5611 bdev_io_ext_no_opts(void)
5612 {
5613 	_bdev_io_ext(NULL);
5614 }
5615 
5616 static void
5617 bdev_io_ext_invalid_opts(void)
5618 {
5619 	struct spdk_bdev *bdev;
5620 	struct spdk_bdev_desc *desc = NULL;
5621 	struct spdk_io_channel *io_ch;
5622 	char io_buf[512];
5623 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5624 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5625 		.metadata = (void *)0xFF000000,
5626 		.size = sizeof(ext_io_opts)
5627 	};
5628 	int rc;
5629 
5630 	ut_init_bdev(NULL);
5631 
5632 	bdev = allocate_bdev("bdev0");
5633 	bdev->md_interleave = false;
5634 	bdev->md_len = 8;
5635 
5636 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5637 	CU_ASSERT(rc == 0);
5638 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5639 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5640 	io_ch = spdk_bdev_get_io_channel(desc);
5641 	CU_ASSERT(io_ch != NULL);
5642 
5643 	/* Test invalid ext_opts size */
5644 	ext_io_opts.size = 0;
5645 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5646 	CU_ASSERT(rc == -EINVAL);
5647 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5648 	CU_ASSERT(rc == -EINVAL);
5649 
5650 	ext_io_opts.size = sizeof(ext_io_opts) * 2;
5651 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5652 	CU_ASSERT(rc == -EINVAL);
5653 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5654 	CU_ASSERT(rc == -EINVAL);
5655 
5656 	ext_io_opts.size = offsetof(struct spdk_bdev_ext_io_opts, metadata) +
5657 			   sizeof(ext_io_opts.metadata) - 1;
5658 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5659 	CU_ASSERT(rc == -EINVAL);
5660 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5661 	CU_ASSERT(rc == -EINVAL);
5662 
5663 	spdk_put_io_channel(io_ch);
5664 	spdk_bdev_close(desc);
5665 	free_bdev(bdev);
5666 	ut_fini_bdev();
5667 }
5668 
5669 static void
5670 bdev_io_ext_split(void)
5671 {
5672 	struct spdk_bdev *bdev;
5673 	struct spdk_bdev_desc *desc = NULL;
5674 	struct spdk_io_channel *io_ch;
5675 	char io_buf[512];
5676 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5677 	struct ut_expected_io *expected_io;
5678 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5679 		.metadata = (void *)0xFF000000,
5680 		.size = sizeof(ext_io_opts)
5681 	};
5682 	int rc;
5683 
5684 	ut_init_bdev(NULL);
5685 
5686 	bdev = allocate_bdev("bdev0");
5687 	bdev->md_interleave = false;
5688 	bdev->md_len = 8;
5689 
5690 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5691 	CU_ASSERT(rc == 0);
5692 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5693 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5694 	io_ch = spdk_bdev_get_io_channel(desc);
5695 	CU_ASSERT(io_ch != NULL);
5696 
5697 	/* Check that IO request with ext_opts and metadata is split correctly
5698 	 * Offset 14, length 8, payload 0xF000
5699 	 *  Child - Offset 14, length 2, payload 0xF000
5700 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5701 	 */
5702 	bdev->optimal_io_boundary = 16;
5703 	bdev->split_on_optimal_io_boundary = true;
5704 	bdev->md_interleave = false;
5705 	bdev->md_len = 8;
5706 
5707 	iov.iov_base = (void *)0xF000;
5708 	iov.iov_len = 4096;
5709 	memset(&ext_io_opts, 0, sizeof(ext_io_opts));
5710 	ext_io_opts.metadata = (void *)0xFF000000;
5711 	ext_io_opts.size = sizeof(ext_io_opts);
5712 	g_io_done = false;
5713 
5714 	/* read */
5715 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
5716 	expected_io->md_buf = ext_io_opts.metadata;
5717 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5718 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5719 
5720 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
5721 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5722 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5723 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5724 
5725 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5726 	CU_ASSERT(rc == 0);
5727 	CU_ASSERT(g_io_done == false);
5728 
5729 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5730 	stub_complete_io(2);
5731 	CU_ASSERT(g_io_done == true);
5732 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5733 
5734 	/* write */
5735 	g_io_done = false;
5736 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
5737 	expected_io->md_buf = ext_io_opts.metadata;
5738 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5739 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5740 
5741 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 6, 1);
5742 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5743 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5744 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5745 
5746 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5747 	CU_ASSERT(rc == 0);
5748 	CU_ASSERT(g_io_done == false);
5749 
5750 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5751 	stub_complete_io(2);
5752 	CU_ASSERT(g_io_done == true);
5753 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5754 
5755 	spdk_put_io_channel(io_ch);
5756 	spdk_bdev_close(desc);
5757 	free_bdev(bdev);
5758 	ut_fini_bdev();
5759 }
5760 
5761 static void
5762 bdev_io_ext_bounce_buffer(void)
5763 {
5764 	struct spdk_bdev *bdev;
5765 	struct spdk_bdev_desc *desc = NULL;
5766 	struct spdk_io_channel *io_ch;
5767 	char io_buf[512];
5768 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5769 	struct ut_expected_io *expected_io;
5770 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5771 		.metadata = (void *)0xFF000000,
5772 		.size = sizeof(ext_io_opts)
5773 	};
5774 	int rc;
5775 
5776 	ut_init_bdev(NULL);
5777 
5778 	bdev = allocate_bdev("bdev0");
5779 	bdev->md_interleave = false;
5780 	bdev->md_len = 8;
5781 
5782 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5783 	CU_ASSERT(rc == 0);
5784 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5785 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5786 	io_ch = spdk_bdev_get_io_channel(desc);
5787 	CU_ASSERT(io_ch != NULL);
5788 
5789 	/* Verify data pull/push
5790 	 * bdev doesn't support memory domains, so buffers from bdev memory pool will be used */
5791 	ext_io_opts.memory_domain = (struct spdk_memory_domain *)0xdeadbeef;
5792 
5793 	/* read */
5794 	g_io_done = false;
5795 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5796 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5797 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5798 
5799 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5800 
5801 	CU_ASSERT(rc == 0);
5802 	CU_ASSERT(g_io_done == false);
5803 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5804 	stub_complete_io(1);
5805 	CU_ASSERT(g_memory_domain_push_data_called == true);
5806 	CU_ASSERT(g_io_done == true);
5807 
5808 	/* write */
5809 	g_io_done = false;
5810 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5811 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5812 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5813 
5814 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5815 
5816 	CU_ASSERT(rc == 0);
5817 	CU_ASSERT(g_memory_domain_pull_data_called == true);
5818 	CU_ASSERT(g_io_done == false);
5819 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5820 	stub_complete_io(1);
5821 	CU_ASSERT(g_io_done == true);
5822 
5823 	spdk_put_io_channel(io_ch);
5824 	spdk_bdev_close(desc);
5825 	free_bdev(bdev);
5826 	ut_fini_bdev();
5827 }
5828 
5829 static void
5830 bdev_register_uuid_alias(void)
5831 {
5832 	struct spdk_bdev *bdev, *second;
5833 	char uuid[SPDK_UUID_STRING_LEN];
5834 	int rc;
5835 
5836 	ut_init_bdev(NULL);
5837 	bdev = allocate_bdev("bdev0");
5838 
5839 	/* Make sure an UUID was generated  */
5840 	CU_ASSERT_FALSE(spdk_mem_all_zero(&bdev->uuid, sizeof(bdev->uuid)));
5841 
5842 	/* Check that an UUID alias was registered */
5843 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5844 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5845 
5846 	/* Unregister the bdev */
5847 	spdk_bdev_unregister(bdev, NULL, NULL);
5848 	poll_threads();
5849 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5850 
5851 	/* Check the same, but this time register the bdev with non-zero UUID */
5852 	rc = spdk_bdev_register(bdev);
5853 	CU_ASSERT_EQUAL(rc, 0);
5854 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5855 
5856 	/* Unregister the bdev */
5857 	spdk_bdev_unregister(bdev, NULL, NULL);
5858 	poll_threads();
5859 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5860 
5861 	/* Regiser the bdev using UUID as the name */
5862 	bdev->name = uuid;
5863 	rc = spdk_bdev_register(bdev);
5864 	CU_ASSERT_EQUAL(rc, 0);
5865 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5866 
5867 	/* Unregister the bdev */
5868 	spdk_bdev_unregister(bdev, NULL, NULL);
5869 	poll_threads();
5870 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5871 
5872 	/* Check that it's not possible to register two bdevs with the same UUIDs */
5873 	bdev->name = "bdev0";
5874 	second = allocate_bdev("bdev1");
5875 	spdk_uuid_copy(&bdev->uuid, &second->uuid);
5876 	rc = spdk_bdev_register(bdev);
5877 	CU_ASSERT_EQUAL(rc, -EEXIST);
5878 
5879 	/* Regenerate the UUID and re-check */
5880 	spdk_uuid_generate(&bdev->uuid);
5881 	rc = spdk_bdev_register(bdev);
5882 	CU_ASSERT_EQUAL(rc, 0);
5883 
5884 	/* And check that both bdevs can be retrieved through their UUIDs */
5885 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5886 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5887 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &second->uuid);
5888 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), second);
5889 
5890 	free_bdev(second);
5891 	free_bdev(bdev);
5892 	ut_fini_bdev();
5893 }
5894 
5895 static void
5896 bdev_unregister_by_name(void)
5897 {
5898 	struct spdk_bdev *bdev;
5899 	int rc;
5900 
5901 	bdev = allocate_bdev("bdev");
5902 
5903 	g_event_type1 = 0xFF;
5904 	g_unregister_arg = NULL;
5905 	g_unregister_rc = -1;
5906 
5907 	rc = spdk_bdev_unregister_by_name("bdev1", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5908 	CU_ASSERT(rc == -ENODEV);
5909 
5910 	rc = spdk_bdev_unregister_by_name("bdev", &vbdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5911 	CU_ASSERT(rc == -ENODEV);
5912 
5913 	rc = spdk_bdev_unregister_by_name("bdev", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5914 	CU_ASSERT(rc == 0);
5915 
5916 	/* Check that unregister callback is delayed */
5917 	CU_ASSERT(g_unregister_arg == NULL);
5918 	CU_ASSERT(g_unregister_rc == -1);
5919 
5920 	poll_threads();
5921 
5922 	/* Event callback shall not be issued because device was closed */
5923 	CU_ASSERT(g_event_type1 == 0xFF);
5924 	/* Unregister callback is issued */
5925 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
5926 	CU_ASSERT(g_unregister_rc == 0);
5927 
5928 	free_bdev(bdev);
5929 }
5930 
5931 static int
5932 count_bdevs(void *ctx, struct spdk_bdev *bdev)
5933 {
5934 	int *count = ctx;
5935 
5936 	(*count)++;
5937 
5938 	return 0;
5939 }
5940 
5941 static void
5942 for_each_bdev_test(void)
5943 {
5944 	struct spdk_bdev *bdev[8];
5945 	int rc, count;
5946 
5947 	bdev[0] = allocate_bdev("bdev0");
5948 	bdev[0]->internal.status = SPDK_BDEV_STATUS_REMOVING;
5949 
5950 	bdev[1] = allocate_bdev("bdev1");
5951 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
5952 	CU_ASSERT(rc == 0);
5953 
5954 	bdev[2] = allocate_bdev("bdev2");
5955 
5956 	bdev[3] = allocate_bdev("bdev3");
5957 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
5958 	CU_ASSERT(rc == 0);
5959 
5960 	bdev[4] = allocate_bdev("bdev4");
5961 
5962 	bdev[5] = allocate_bdev("bdev5");
5963 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
5964 	CU_ASSERT(rc == 0);
5965 
5966 	bdev[6] = allocate_bdev("bdev6");
5967 
5968 	bdev[7] = allocate_bdev("bdev7");
5969 
5970 	count = 0;
5971 	rc = spdk_for_each_bdev(&count, count_bdevs);
5972 	CU_ASSERT(rc == 0);
5973 	CU_ASSERT(count == 7);
5974 
5975 	count = 0;
5976 	rc = spdk_for_each_bdev_leaf(&count, count_bdevs);
5977 	CU_ASSERT(rc == 0);
5978 	CU_ASSERT(count == 4);
5979 
5980 	bdev[0]->internal.status = SPDK_BDEV_STATUS_READY;
5981 	free_bdev(bdev[0]);
5982 	free_bdev(bdev[1]);
5983 	free_bdev(bdev[2]);
5984 	free_bdev(bdev[3]);
5985 	free_bdev(bdev[4]);
5986 	free_bdev(bdev[5]);
5987 	free_bdev(bdev[6]);
5988 	free_bdev(bdev[7]);
5989 }
5990 
5991 static void
5992 bdev_seek_test(void)
5993 {
5994 	struct spdk_bdev *bdev;
5995 	struct spdk_bdev_desc *desc = NULL;
5996 	struct spdk_io_channel *io_ch;
5997 	int rc;
5998 
5999 	ut_init_bdev(NULL);
6000 	poll_threads();
6001 
6002 	bdev = allocate_bdev("bdev0");
6003 
6004 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6005 	CU_ASSERT(rc == 0);
6006 	poll_threads();
6007 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6008 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6009 	io_ch = spdk_bdev_get_io_channel(desc);
6010 	CU_ASSERT(io_ch != NULL);
6011 
6012 	/* Seek data not supported */
6013 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, false);
6014 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
6015 	CU_ASSERT(rc == 0);
6016 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6017 	poll_threads();
6018 	CU_ASSERT(g_seek_offset == 0);
6019 
6020 	/* Seek hole not supported */
6021 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, false);
6022 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
6023 	CU_ASSERT(rc == 0);
6024 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6025 	poll_threads();
6026 	CU_ASSERT(g_seek_offset == UINT64_MAX);
6027 
6028 	/* Seek data supported */
6029 	g_seek_data_offset = 12345;
6030 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, true);
6031 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
6032 	CU_ASSERT(rc == 0);
6033 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6034 	stub_complete_io(1);
6035 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6036 	CU_ASSERT(g_seek_offset == 12345);
6037 
6038 	/* Seek hole supported */
6039 	g_seek_hole_offset = 67890;
6040 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, true);
6041 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
6042 	CU_ASSERT(rc == 0);
6043 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6044 	stub_complete_io(1);
6045 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6046 	CU_ASSERT(g_seek_offset == 67890);
6047 
6048 	spdk_put_io_channel(io_ch);
6049 	spdk_bdev_close(desc);
6050 	free_bdev(bdev);
6051 	ut_fini_bdev();
6052 }
6053 
6054 static void
6055 bdev_copy(void)
6056 {
6057 	struct spdk_bdev *bdev;
6058 	struct spdk_bdev_desc *desc = NULL;
6059 	struct spdk_io_channel *ioch;
6060 	struct ut_expected_io *expected_io;
6061 	uint64_t src_offset, num_blocks;
6062 	uint32_t num_completed;
6063 	int rc;
6064 
6065 	ut_init_bdev(NULL);
6066 	bdev = allocate_bdev("bdev");
6067 
6068 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6069 	CU_ASSERT_EQUAL(rc, 0);
6070 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6071 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6072 	ioch = spdk_bdev_get_io_channel(desc);
6073 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6074 
6075 	fn_table.submit_request = stub_submit_request;
6076 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6077 
6078 	/* First test that if the bdev supports copy, the request won't be split */
6079 	bdev->md_len = 0;
6080 	bdev->blocklen = 512;
6081 	num_blocks = 128;
6082 	src_offset = bdev->blockcnt - num_blocks;
6083 
6084 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6085 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6086 
6087 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6088 	CU_ASSERT_EQUAL(rc, 0);
6089 	num_completed = stub_complete_io(1);
6090 	CU_ASSERT_EQUAL(num_completed, 1);
6091 
6092 	/* Check that if copy is not supported it'll still work */
6093 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, src_offset, num_blocks, 0);
6094 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6095 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, num_blocks, 0);
6096 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6097 
6098 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false);
6099 
6100 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6101 	CU_ASSERT_EQUAL(rc, 0);
6102 	num_completed = stub_complete_io(1);
6103 	CU_ASSERT_EQUAL(num_completed, 1);
6104 	num_completed = stub_complete_io(1);
6105 	CU_ASSERT_EQUAL(num_completed, 1);
6106 
6107 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true);
6108 	spdk_put_io_channel(ioch);
6109 	spdk_bdev_close(desc);
6110 	free_bdev(bdev);
6111 	ut_fini_bdev();
6112 }
6113 
6114 static void
6115 bdev_copy_split_test(void)
6116 {
6117 	struct spdk_bdev *bdev;
6118 	struct spdk_bdev_desc *desc = NULL;
6119 	struct spdk_io_channel *ioch;
6120 	struct spdk_bdev_channel *bdev_ch;
6121 	struct ut_expected_io *expected_io;
6122 	struct spdk_bdev_opts bdev_opts = {};
6123 	uint32_t i, num_outstanding;
6124 	uint64_t offset, src_offset, num_blocks, max_copy_blocks, num_children;
6125 	int rc;
6126 
6127 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
6128 	bdev_opts.bdev_io_pool_size = 512;
6129 	bdev_opts.bdev_io_cache_size = 64;
6130 	rc = spdk_bdev_set_opts(&bdev_opts);
6131 	CU_ASSERT(rc == 0);
6132 
6133 	ut_init_bdev(NULL);
6134 	bdev = allocate_bdev("bdev");
6135 
6136 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6137 	CU_ASSERT_EQUAL(rc, 0);
6138 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6139 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6140 	ioch = spdk_bdev_get_io_channel(desc);
6141 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6142 	bdev_ch = spdk_io_channel_get_ctx(ioch);
6143 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
6144 
6145 	fn_table.submit_request = stub_submit_request;
6146 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6147 
6148 	/* Case 1: First test the request won't be split */
6149 	num_blocks = 32;
6150 	src_offset = bdev->blockcnt - num_blocks;
6151 
6152 	g_io_done = false;
6153 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6154 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6155 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6156 	CU_ASSERT_EQUAL(rc, 0);
6157 	CU_ASSERT(g_io_done == false);
6158 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6159 	stub_complete_io(1);
6160 	CU_ASSERT(g_io_done == true);
6161 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6162 
6163 	/* Case 2: Test the split with 2 children requests */
6164 	max_copy_blocks = 8;
6165 	bdev->max_copy = max_copy_blocks;
6166 	num_children = 2;
6167 	num_blocks = max_copy_blocks * num_children;
6168 	offset = 0;
6169 	src_offset = bdev->blockcnt - num_blocks;
6170 
6171 	g_io_done = false;
6172 	for (i = 0; i < num_children; i++) {
6173 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6174 							src_offset + offset, max_copy_blocks);
6175 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6176 		offset += max_copy_blocks;
6177 	}
6178 
6179 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6180 	CU_ASSERT_EQUAL(rc, 0);
6181 	CU_ASSERT(g_io_done == false);
6182 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_children);
6183 	stub_complete_io(num_children);
6184 	CU_ASSERT(g_io_done == true);
6185 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6186 
6187 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
6188 	num_children = 15;
6189 	num_blocks = max_copy_blocks * num_children;
6190 	offset = 0;
6191 	src_offset = bdev->blockcnt - num_blocks;
6192 
6193 	g_io_done = false;
6194 	for (i = 0; i < num_children; i++) {
6195 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6196 							src_offset + offset, max_copy_blocks);
6197 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6198 		offset += max_copy_blocks;
6199 	}
6200 
6201 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6202 	CU_ASSERT_EQUAL(rc, 0);
6203 	CU_ASSERT(g_io_done == false);
6204 
6205 	while (num_children > 0) {
6206 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_COPY_REQS);
6207 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6208 		stub_complete_io(num_outstanding);
6209 		num_children -= num_outstanding;
6210 	}
6211 	CU_ASSERT(g_io_done == true);
6212 
6213 	spdk_put_io_channel(ioch);
6214 	spdk_bdev_close(desc);
6215 	free_bdev(bdev);
6216 	ut_fini_bdev();
6217 }
6218 
6219 static void
6220 examine_claim_v1(struct spdk_bdev *bdev)
6221 {
6222 	int rc;
6223 
6224 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &vbdev_ut_if);
6225 	CU_ASSERT(rc == 0);
6226 }
6227 
6228 static void
6229 examine_no_lock_held(struct spdk_bdev *bdev)
6230 {
6231 	CU_ASSERT(!spdk_spin_held(&g_bdev_mgr.spinlock));
6232 	CU_ASSERT(!spdk_spin_held(&bdev->internal.spinlock));
6233 }
6234 
6235 struct examine_claim_v2_ctx {
6236 	struct ut_examine_ctx examine_ctx;
6237 	enum spdk_bdev_claim_type claim_type;
6238 	struct spdk_bdev_desc *desc;
6239 };
6240 
6241 static void
6242 examine_claim_v2(struct spdk_bdev *bdev)
6243 {
6244 	struct examine_claim_v2_ctx *ctx = bdev->ctxt;
6245 	int rc;
6246 
6247 	rc = spdk_bdev_open_ext(bdev->name, false, bdev_ut_event_cb, NULL, &ctx->desc);
6248 	CU_ASSERT(rc == 0);
6249 
6250 	rc = spdk_bdev_module_claim_bdev_desc(ctx->desc, ctx->claim_type, NULL, &vbdev_ut_if);
6251 	CU_ASSERT(rc == 0);
6252 }
6253 
6254 static void
6255 examine_locks(void)
6256 {
6257 	struct spdk_bdev *bdev;
6258 	struct ut_examine_ctx ctx = { 0 };
6259 	struct examine_claim_v2_ctx v2_ctx;
6260 
6261 	/* Without any claims, one code path is taken */
6262 	ctx.examine_config = examine_no_lock_held;
6263 	ctx.examine_disk = examine_no_lock_held;
6264 	bdev = allocate_bdev_ctx("bdev0", &ctx);
6265 	CU_ASSERT(ctx.examine_config_count == 1);
6266 	CU_ASSERT(ctx.examine_disk_count == 1);
6267 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6268 	CU_ASSERT(bdev->internal.claim.v1.module == NULL);
6269 	free_bdev(bdev);
6270 
6271 	/* Exercise another path that is taken when examine_config() takes a v1 claim. */
6272 	memset(&ctx, 0, sizeof(ctx));
6273 	ctx.examine_config = examine_claim_v1;
6274 	ctx.examine_disk = examine_no_lock_held;
6275 	bdev = allocate_bdev_ctx("bdev0", &ctx);
6276 	CU_ASSERT(ctx.examine_config_count == 1);
6277 	CU_ASSERT(ctx.examine_disk_count == 1);
6278 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
6279 	CU_ASSERT(bdev->internal.claim.v1.module == &vbdev_ut_if);
6280 	spdk_bdev_module_release_bdev(bdev);
6281 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6282 	CU_ASSERT(bdev->internal.claim.v1.module == NULL);
6283 	free_bdev(bdev);
6284 
6285 	/* Exercise the final path that comes with v2 claims. */
6286 	memset(&v2_ctx, 0, sizeof(v2_ctx));
6287 	v2_ctx.examine_ctx.examine_config = examine_claim_v2;
6288 	v2_ctx.examine_ctx.examine_disk = examine_no_lock_held;
6289 	v2_ctx.claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
6290 	bdev = allocate_bdev_ctx("bdev0", &v2_ctx);
6291 	CU_ASSERT(v2_ctx.examine_ctx.examine_config_count == 1);
6292 	CU_ASSERT(v2_ctx.examine_ctx.examine_disk_count == 1);
6293 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6294 	spdk_bdev_close(v2_ctx.desc);
6295 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6296 	free_bdev(bdev);
6297 }
6298 
6299 #define UT_ASSERT_CLAIM_V2_COUNT(bdev, expect) \
6300 	do { \
6301 		uint32_t len = 0; \
6302 		struct spdk_bdev_module_claim *claim; \
6303 		TAILQ_FOREACH(claim, &bdev->internal.claim.v2.claims, link) { \
6304 			len++; \
6305 		} \
6306 		CU_ASSERT(len == expect); \
6307 	} while (0)
6308 
6309 static void
6310 claim_v2_rwo(void)
6311 {
6312 	struct spdk_bdev *bdev;
6313 	struct spdk_bdev_desc *desc;
6314 	struct spdk_bdev_desc *desc2;
6315 	struct spdk_bdev_claim_opts opts;
6316 	int rc;
6317 
6318 	bdev = allocate_bdev("bdev0");
6319 
6320 	/* Claim without options */
6321 	desc = NULL;
6322 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6323 	CU_ASSERT(rc == 0);
6324 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6325 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6326 					      &bdev_ut_if);
6327 	CU_ASSERT(rc == 0);
6328 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6329 	CU_ASSERT(desc->claim != NULL);
6330 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6331 	CU_ASSERT(strcmp(desc->claim->name, "") == 0);
6332 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6333 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6334 
6335 	/* Release the claim by closing the descriptor */
6336 	spdk_bdev_close(desc);
6337 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6338 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6339 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6340 
6341 	/* Claim with options */
6342 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6343 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6344 	desc = NULL;
6345 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6346 	CU_ASSERT(rc == 0);
6347 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6348 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, &opts,
6349 					      &bdev_ut_if);
6350 	CU_ASSERT(rc == 0);
6351 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6352 	CU_ASSERT(desc->claim != NULL);
6353 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6354 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6355 	memset(&opts, 0, sizeof(opts));
6356 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6357 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6358 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6359 
6360 	/* The claim blocks new writers. */
6361 	desc2 = NULL;
6362 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6363 	CU_ASSERT(rc == -EPERM);
6364 	CU_ASSERT(desc2 == NULL);
6365 
6366 	/* New readers are allowed */
6367 	desc2 = NULL;
6368 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6369 	CU_ASSERT(rc == 0);
6370 	CU_ASSERT(desc2 != NULL);
6371 	CU_ASSERT(!desc2->write);
6372 
6373 	/* No new v2 RWO claims are allowed */
6374 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6375 					      &bdev_ut_if);
6376 	CU_ASSERT(rc == -EPERM);
6377 
6378 	/* No new v2 ROM claims are allowed */
6379 	CU_ASSERT(!desc2->write);
6380 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6381 					      &bdev_ut_if);
6382 	CU_ASSERT(rc == -EPERM);
6383 	CU_ASSERT(!desc2->write);
6384 
6385 	/* No new v2 RWM claims are allowed */
6386 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6387 	opts.shared_claim_key = (uint64_t)&opts;
6388 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6389 					      &bdev_ut_if);
6390 	CU_ASSERT(rc == -EPERM);
6391 	CU_ASSERT(!desc2->write);
6392 
6393 	/* No new v1 claims are allowed */
6394 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6395 	CU_ASSERT(rc == -EPERM);
6396 
6397 	/* None of the above changed the existing claim */
6398 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6399 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6400 
6401 	/* Closing the first descriptor now allows a new claim and it is promoted to rw. */
6402 	spdk_bdev_close(desc);
6403 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6404 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6405 	CU_ASSERT(!desc2->write);
6406 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6407 					      &bdev_ut_if);
6408 	CU_ASSERT(rc == 0);
6409 	CU_ASSERT(desc2->claim != NULL);
6410 	CU_ASSERT(desc2->write);
6411 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6412 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
6413 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6414 	spdk_bdev_close(desc2);
6415 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6416 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6417 
6418 	/* Cannot claim with a key */
6419 	desc = NULL;
6420 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6421 	CU_ASSERT(rc == 0);
6422 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6423 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6424 	opts.shared_claim_key = (uint64_t)&opts;
6425 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, &opts,
6426 					      &bdev_ut_if);
6427 	CU_ASSERT(rc == -EINVAL);
6428 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6429 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6430 	spdk_bdev_close(desc);
6431 
6432 	/* Clean up */
6433 	free_bdev(bdev);
6434 }
6435 
6436 static void
6437 claim_v2_rom(void)
6438 {
6439 	struct spdk_bdev *bdev;
6440 	struct spdk_bdev_desc *desc;
6441 	struct spdk_bdev_desc *desc2;
6442 	struct spdk_bdev_claim_opts opts;
6443 	int rc;
6444 
6445 	bdev = allocate_bdev("bdev0");
6446 
6447 	/* Claim without options */
6448 	desc = NULL;
6449 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6450 	CU_ASSERT(rc == 0);
6451 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6452 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6453 					      &bdev_ut_if);
6454 	CU_ASSERT(rc == 0);
6455 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6456 	CU_ASSERT(desc->claim != NULL);
6457 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6458 	CU_ASSERT(strcmp(desc->claim->name, "") == 0);
6459 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6460 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6461 
6462 	/* Release the claim by closing the descriptor */
6463 	spdk_bdev_close(desc);
6464 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6465 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6466 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6467 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6468 
6469 	/* Claim with options */
6470 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6471 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6472 	desc = NULL;
6473 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6474 	CU_ASSERT(rc == 0);
6475 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6476 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, &opts,
6477 					      &bdev_ut_if);
6478 	CU_ASSERT(rc == 0);
6479 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6480 	SPDK_CU_ASSERT_FATAL(desc->claim != NULL);
6481 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6482 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6483 	memset(&opts, 0, sizeof(opts));
6484 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6485 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6486 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6487 
6488 	/* The claim blocks new writers. */
6489 	desc2 = NULL;
6490 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6491 	CU_ASSERT(rc == -EPERM);
6492 	CU_ASSERT(desc2 == NULL);
6493 
6494 	/* New readers are allowed */
6495 	desc2 = NULL;
6496 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6497 	CU_ASSERT(rc == 0);
6498 	CU_ASSERT(desc2 != NULL);
6499 	CU_ASSERT(!desc2->write);
6500 
6501 	/* No new v2 RWO claims are allowed */
6502 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6503 					      &bdev_ut_if);
6504 	CU_ASSERT(rc == -EPERM);
6505 
6506 	/* No new v2 RWM claims are allowed */
6507 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6508 	opts.shared_claim_key = (uint64_t)&opts;
6509 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6510 					      &bdev_ut_if);
6511 	CU_ASSERT(rc == -EPERM);
6512 	CU_ASSERT(!desc2->write);
6513 
6514 	/* No new v1 claims are allowed */
6515 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6516 	CU_ASSERT(rc == -EPERM);
6517 
6518 	/* None of the above messed up the existing claim */
6519 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6520 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6521 
6522 	/* New v2 ROM claims are allowed and the descriptor stays read-only. */
6523 	CU_ASSERT(!desc2->write);
6524 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6525 					      &bdev_ut_if);
6526 	CU_ASSERT(rc == 0);
6527 	CU_ASSERT(!desc2->write);
6528 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6529 	CU_ASSERT(TAILQ_NEXT(desc->claim, link) == desc2->claim);
6530 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 2);
6531 
6532 	/* Claim remains when closing the first descriptor */
6533 	spdk_bdev_close(desc);
6534 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6535 	CU_ASSERT(!TAILQ_EMPTY(&bdev->internal.open_descs));
6536 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
6537 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6538 
6539 	/* Claim removed when closing the other descriptor */
6540 	spdk_bdev_close(desc2);
6541 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6542 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6543 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6544 
6545 	/* Cannot claim with a key */
6546 	desc = NULL;
6547 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6548 	CU_ASSERT(rc == 0);
6549 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6550 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6551 	opts.shared_claim_key = (uint64_t)&opts;
6552 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, &opts,
6553 					      &bdev_ut_if);
6554 	CU_ASSERT(rc == -EINVAL);
6555 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6556 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6557 	spdk_bdev_close(desc);
6558 
6559 	/* Cannot claim with a read-write descriptor */
6560 	desc = NULL;
6561 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6562 	CU_ASSERT(rc == 0);
6563 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6564 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6565 					      &bdev_ut_if);
6566 	CU_ASSERT(rc == -EINVAL);
6567 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6568 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6569 	spdk_bdev_close(desc);
6570 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6571 
6572 	/* Clean up */
6573 	free_bdev(bdev);
6574 }
6575 
6576 static void
6577 claim_v2_rwm(void)
6578 {
6579 	struct spdk_bdev *bdev;
6580 	struct spdk_bdev_desc *desc;
6581 	struct spdk_bdev_desc *desc2;
6582 	struct spdk_bdev_claim_opts opts;
6583 	char good_key, bad_key;
6584 	int rc;
6585 
6586 	bdev = allocate_bdev("bdev0");
6587 
6588 	/* Claim without options should fail */
6589 	desc = NULL;
6590 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6591 	CU_ASSERT(rc == 0);
6592 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6593 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, NULL,
6594 					      &bdev_ut_if);
6595 	CU_ASSERT(rc == -EINVAL);
6596 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6597 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6598 	CU_ASSERT(desc->claim == NULL);
6599 
6600 	/* Claim with options */
6601 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6602 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6603 	opts.shared_claim_key = (uint64_t)&good_key;
6604 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6605 					      &bdev_ut_if);
6606 	CU_ASSERT(rc == 0);
6607 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED);
6608 	SPDK_CU_ASSERT_FATAL(desc->claim != NULL);
6609 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6610 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6611 	memset(&opts, 0, sizeof(opts));
6612 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6613 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6614 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6615 
6616 	/* The claim blocks new writers. */
6617 	desc2 = NULL;
6618 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6619 	CU_ASSERT(rc == -EPERM);
6620 	CU_ASSERT(desc2 == NULL);
6621 
6622 	/* New readers are allowed */
6623 	desc2 = NULL;
6624 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6625 	CU_ASSERT(rc == 0);
6626 	CU_ASSERT(desc2 != NULL);
6627 	CU_ASSERT(!desc2->write);
6628 
6629 	/* No new v2 RWO claims are allowed */
6630 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6631 					      &bdev_ut_if);
6632 	CU_ASSERT(rc == -EPERM);
6633 
6634 	/* No new v2 ROM claims are allowed and the descriptor stays read-only. */
6635 	CU_ASSERT(!desc2->write);
6636 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6637 					      &bdev_ut_if);
6638 	CU_ASSERT(rc == -EPERM);
6639 	CU_ASSERT(!desc2->write);
6640 
6641 	/* No new v1 claims are allowed */
6642 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6643 	CU_ASSERT(rc == -EPERM);
6644 
6645 	/* No new v2 RWM claims are allowed if the key does not match */
6646 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6647 	opts.shared_claim_key = (uint64_t)&bad_key;
6648 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6649 					      &bdev_ut_if);
6650 	CU_ASSERT(rc == -EPERM);
6651 	CU_ASSERT(!desc2->write);
6652 
6653 	/* None of the above messed up the existing claim */
6654 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6655 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6656 
6657 	/* New v2 RWM claims are allowed and the descriptor is promoted if the key matches. */
6658 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6659 	opts.shared_claim_key = (uint64_t)&good_key;
6660 	CU_ASSERT(!desc2->write);
6661 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6662 					      &bdev_ut_if);
6663 	CU_ASSERT(rc == 0);
6664 	CU_ASSERT(desc2->write);
6665 	CU_ASSERT(TAILQ_NEXT(desc->claim, link) == desc2->claim);
6666 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 2);
6667 
6668 	/* Claim remains when closing the first descriptor */
6669 	spdk_bdev_close(desc);
6670 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED);
6671 	CU_ASSERT(!TAILQ_EMPTY(&bdev->internal.open_descs));
6672 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
6673 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6674 
6675 	/* Claim removed when closing the other descriptor */
6676 	spdk_bdev_close(desc2);
6677 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6678 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6679 
6680 	/* Cannot claim without a key */
6681 	desc = NULL;
6682 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6683 	CU_ASSERT(rc == 0);
6684 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6685 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6686 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6687 					      &bdev_ut_if);
6688 	CU_ASSERT(rc == -EINVAL);
6689 	spdk_bdev_close(desc);
6690 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6691 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6692 
6693 	/* Clean up */
6694 	free_bdev(bdev);
6695 }
6696 
6697 static void
6698 claim_v2_existing_writer(void)
6699 {
6700 	struct spdk_bdev *bdev;
6701 	struct spdk_bdev_desc *desc;
6702 	struct spdk_bdev_desc *desc2;
6703 	struct spdk_bdev_claim_opts opts;
6704 	enum spdk_bdev_claim_type type;
6705 	enum spdk_bdev_claim_type types[] = {
6706 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
6707 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
6708 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
6709 	};
6710 	size_t i;
6711 	int rc;
6712 
6713 	bdev = allocate_bdev("bdev0");
6714 
6715 	desc = NULL;
6716 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6717 	CU_ASSERT(rc == 0);
6718 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6719 	desc2 = NULL;
6720 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6721 	CU_ASSERT(rc == 0);
6722 	SPDK_CU_ASSERT_FATAL(desc2 != NULL);
6723 
6724 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
6725 		type = types[i];
6726 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6727 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
6728 			opts.shared_claim_key = (uint64_t)&opts;
6729 		}
6730 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
6731 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE) {
6732 			CU_ASSERT(rc == -EINVAL);
6733 		} else {
6734 			CU_ASSERT(rc == -EPERM);
6735 		}
6736 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6737 		rc = spdk_bdev_module_claim_bdev_desc(desc2, type, &opts, &bdev_ut_if);
6738 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE) {
6739 			CU_ASSERT(rc == -EINVAL);
6740 		} else {
6741 			CU_ASSERT(rc == -EPERM);
6742 		}
6743 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6744 	}
6745 
6746 	spdk_bdev_close(desc);
6747 	spdk_bdev_close(desc2);
6748 
6749 	/* Clean up */
6750 	free_bdev(bdev);
6751 }
6752 
6753 static void
6754 claim_v2_existing_v1(void)
6755 {
6756 	struct spdk_bdev *bdev;
6757 	struct spdk_bdev_desc *desc;
6758 	struct spdk_bdev_claim_opts opts;
6759 	enum spdk_bdev_claim_type type;
6760 	enum spdk_bdev_claim_type types[] = {
6761 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
6762 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
6763 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
6764 	};
6765 	size_t i;
6766 	int rc;
6767 
6768 	bdev = allocate_bdev("bdev0");
6769 
6770 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6771 	CU_ASSERT(rc == 0);
6772 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
6773 
6774 	desc = NULL;
6775 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6776 	CU_ASSERT(rc == 0);
6777 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6778 
6779 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
6780 		type = types[i];
6781 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6782 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
6783 			opts.shared_claim_key = (uint64_t)&opts;
6784 		}
6785 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
6786 		CU_ASSERT(rc == -EPERM);
6787 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
6788 	}
6789 
6790 	spdk_bdev_module_release_bdev(bdev);
6791 	spdk_bdev_close(desc);
6792 
6793 	/* Clean up */
6794 	free_bdev(bdev);
6795 }
6796 
6797 static void
6798 claim_v1_existing_v2(void)
6799 {
6800 	struct spdk_bdev *bdev;
6801 	struct spdk_bdev_desc *desc;
6802 	struct spdk_bdev_claim_opts opts;
6803 	enum spdk_bdev_claim_type type;
6804 	enum spdk_bdev_claim_type types[] = {
6805 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
6806 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
6807 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
6808 	};
6809 	size_t i;
6810 	int rc;
6811 
6812 	bdev = allocate_bdev("bdev0");
6813 
6814 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
6815 		type = types[i];
6816 
6817 		desc = NULL;
6818 		rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6819 		CU_ASSERT(rc == 0);
6820 		SPDK_CU_ASSERT_FATAL(desc != NULL);
6821 
6822 		/* Get a v2 claim */
6823 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6824 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
6825 			opts.shared_claim_key = (uint64_t)&opts;
6826 		}
6827 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
6828 		CU_ASSERT(rc == 0);
6829 
6830 		/* Fail to get a v1 claim */
6831 		rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6832 		CU_ASSERT(rc == -EPERM);
6833 
6834 		spdk_bdev_close(desc);
6835 
6836 		/* Now v1 succeeds */
6837 		rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6838 		CU_ASSERT(rc == 0)
6839 		spdk_bdev_module_release_bdev(bdev);
6840 	}
6841 
6842 	/* Clean up */
6843 	free_bdev(bdev);
6844 }
6845 
6846 static void ut_examine_claimed_config0(struct spdk_bdev *bdev);
6847 static void ut_examine_claimed_disk0(struct spdk_bdev *bdev);
6848 static void ut_examine_claimed_config1(struct spdk_bdev *bdev);
6849 static void ut_examine_claimed_disk1(struct spdk_bdev *bdev);
6850 
6851 #define UT_MAX_EXAMINE_MODS 2
6852 struct spdk_bdev_module examine_claimed_mods[UT_MAX_EXAMINE_MODS] = {
6853 	{
6854 		.name = "vbdev_ut_examine0",
6855 		.module_init = vbdev_ut_module_init,
6856 		.module_fini = vbdev_ut_module_fini,
6857 		.examine_config = ut_examine_claimed_config0,
6858 		.examine_disk = ut_examine_claimed_disk0,
6859 	},
6860 	{
6861 		.name = "vbdev_ut_examine1",
6862 		.module_init = vbdev_ut_module_init,
6863 		.module_fini = vbdev_ut_module_fini,
6864 		.examine_config = ut_examine_claimed_config1,
6865 		.examine_disk = ut_examine_claimed_disk1,
6866 	}
6867 };
6868 
6869 SPDK_BDEV_MODULE_REGISTER(bdev_ut_claimed0, &examine_claimed_mods[0])
6870 SPDK_BDEV_MODULE_REGISTER(bdev_ut_claimed1, &examine_claimed_mods[1])
6871 
6872 struct ut_examine_claimed_ctx {
6873 	uint32_t examine_config_count;
6874 	uint32_t examine_disk_count;
6875 
6876 	/* Claim type to take, with these options */
6877 	enum spdk_bdev_claim_type claim_type;
6878 	struct spdk_bdev_claim_opts claim_opts;
6879 
6880 	/* Expected return value from spdk_bdev_module_claim_bdev_desc() */
6881 	int expect_claim_err;
6882 
6883 	/* Descriptor used for a claim */
6884 	struct spdk_bdev_desc *desc;
6885 } examine_claimed_ctx[UT_MAX_EXAMINE_MODS];
6886 
6887 bool ut_testing_examine_claimed;
6888 
6889 static void
6890 reset_examine_claimed_ctx(void)
6891 {
6892 	struct ut_examine_claimed_ctx *ctx;
6893 	uint32_t i;
6894 
6895 	for (i = 0; i < SPDK_COUNTOF(examine_claimed_ctx); i++) {
6896 		ctx = &examine_claimed_ctx[i];
6897 		if (ctx->desc != NULL) {
6898 			spdk_bdev_close(ctx->desc);
6899 		}
6900 		memset(ctx, 0, sizeof(*ctx));
6901 		spdk_bdev_claim_opts_init(&ctx->claim_opts, sizeof(ctx->claim_opts));
6902 	}
6903 }
6904 
6905 static void
6906 examine_claimed_config(struct spdk_bdev *bdev, uint32_t modnum)
6907 {
6908 	SPDK_CU_ASSERT_FATAL(modnum < UT_MAX_EXAMINE_MODS);
6909 	struct spdk_bdev_module *module = &examine_claimed_mods[modnum];
6910 	struct ut_examine_claimed_ctx *ctx = &examine_claimed_ctx[modnum];
6911 	int rc;
6912 
6913 	if (!ut_testing_examine_claimed) {
6914 		spdk_bdev_module_examine_done(module);
6915 		return;
6916 	}
6917 
6918 	ctx->examine_config_count++;
6919 
6920 	if (ctx->claim_type != SPDK_BDEV_CLAIM_NONE) {
6921 		rc = spdk_bdev_open_ext(bdev->name, false, bdev_ut_event_cb, &ctx->claim_opts,
6922 					&ctx->desc);
6923 		CU_ASSERT(rc == 0);
6924 
6925 		rc = spdk_bdev_module_claim_bdev_desc(ctx->desc, ctx->claim_type, NULL, module);
6926 		CU_ASSERT(rc == ctx->expect_claim_err);
6927 	}
6928 	spdk_bdev_module_examine_done(module);
6929 }
6930 
6931 static void
6932 ut_examine_claimed_config0(struct spdk_bdev *bdev)
6933 {
6934 	examine_claimed_config(bdev, 0);
6935 }
6936 
6937 static void
6938 ut_examine_claimed_config1(struct spdk_bdev *bdev)
6939 {
6940 	examine_claimed_config(bdev, 1);
6941 }
6942 
6943 static void
6944 examine_claimed_disk(struct spdk_bdev *bdev, uint32_t modnum)
6945 {
6946 	SPDK_CU_ASSERT_FATAL(modnum < UT_MAX_EXAMINE_MODS);
6947 	struct spdk_bdev_module *module = &examine_claimed_mods[modnum];
6948 	struct ut_examine_claimed_ctx *ctx = &examine_claimed_ctx[modnum];
6949 
6950 	if (!ut_testing_examine_claimed) {
6951 		spdk_bdev_module_examine_done(module);
6952 		return;
6953 	}
6954 
6955 	ctx->examine_disk_count++;
6956 
6957 	spdk_bdev_module_examine_done(module);
6958 }
6959 
6960 static void
6961 ut_examine_claimed_disk0(struct spdk_bdev *bdev)
6962 {
6963 	examine_claimed_disk(bdev, 0);
6964 }
6965 
6966 static void
6967 ut_examine_claimed_disk1(struct spdk_bdev *bdev)
6968 {
6969 	examine_claimed_disk(bdev, 1);
6970 }
6971 
6972 static void
6973 examine_claimed(void)
6974 {
6975 	struct spdk_bdev *bdev;
6976 	struct spdk_bdev_module *mod = examine_claimed_mods;
6977 	struct ut_examine_claimed_ctx *ctx = examine_claimed_ctx;
6978 
6979 	ut_testing_examine_claimed = true;
6980 	reset_examine_claimed_ctx();
6981 
6982 	/*
6983 	 * With one module claiming, both modules' examine_config should be called, but only the
6984 	 * claiming module's examine_disk should be called.
6985 	 */
6986 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
6987 	bdev = allocate_bdev("bdev0");
6988 	CU_ASSERT(ctx[0].examine_config_count == 1);
6989 	CU_ASSERT(ctx[0].examine_disk_count == 1);
6990 	SPDK_CU_ASSERT_FATAL(ctx[0].desc != NULL);
6991 	CU_ASSERT(ctx[0].desc->claim->module == &mod[0]);
6992 	CU_ASSERT(ctx[1].examine_config_count == 1);
6993 	CU_ASSERT(ctx[1].examine_disk_count == 0);
6994 	CU_ASSERT(ctx[1].desc == NULL);
6995 	reset_examine_claimed_ctx();
6996 	free_bdev(bdev);
6997 
6998 	/*
6999 	 * With two modules claiming, both modules' examine_config and examine_disk should be
7000 	 * called.
7001 	 */
7002 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7003 	ctx[1].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7004 	bdev = allocate_bdev("bdev0");
7005 	CU_ASSERT(ctx[0].examine_config_count == 1);
7006 	CU_ASSERT(ctx[0].examine_disk_count == 1);
7007 	SPDK_CU_ASSERT_FATAL(ctx[0].desc != NULL);
7008 	CU_ASSERT(ctx[0].desc->claim->module == &mod[0]);
7009 	CU_ASSERT(ctx[1].examine_config_count == 1);
7010 	CU_ASSERT(ctx[1].examine_disk_count == 1);
7011 	SPDK_CU_ASSERT_FATAL(ctx[1].desc != NULL);
7012 	CU_ASSERT(ctx[1].desc->claim->module == &mod[1]);
7013 	reset_examine_claimed_ctx();
7014 	free_bdev(bdev);
7015 
7016 	/*
7017 	 * If two vbdev modules try to claim with conflicting claim types, the module that was added
7018 	 * last wins. The winner gets the claim and is the only one that has its examine_disk
7019 	 * callback invoked.
7020 	 */
7021 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7022 	ctx[0].expect_claim_err = -EPERM;
7023 	ctx[1].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE;
7024 	bdev = allocate_bdev("bdev0");
7025 	CU_ASSERT(ctx[0].examine_config_count == 1);
7026 	CU_ASSERT(ctx[0].examine_disk_count == 0);
7027 	CU_ASSERT(ctx[1].examine_config_count == 1);
7028 	CU_ASSERT(ctx[1].examine_disk_count == 1);
7029 	SPDK_CU_ASSERT_FATAL(ctx[1].desc != NULL);
7030 	CU_ASSERT(ctx[1].desc->claim->module == &mod[1]);
7031 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
7032 	reset_examine_claimed_ctx();
7033 	free_bdev(bdev);
7034 
7035 	ut_testing_examine_claimed = false;
7036 }
7037 
7038 int
7039 main(int argc, char **argv)
7040 {
7041 	CU_pSuite		suite = NULL;
7042 	unsigned int		num_failures;
7043 
7044 	CU_set_error_action(CUEA_ABORT);
7045 	CU_initialize_registry();
7046 
7047 	suite = CU_add_suite("bdev", ut_bdev_setup, ut_bdev_teardown);
7048 
7049 	CU_ADD_TEST(suite, bytes_to_blocks_test);
7050 	CU_ADD_TEST(suite, num_blocks_test);
7051 	CU_ADD_TEST(suite, io_valid_test);
7052 	CU_ADD_TEST(suite, open_write_test);
7053 	CU_ADD_TEST(suite, claim_test);
7054 	CU_ADD_TEST(suite, alias_add_del_test);
7055 	CU_ADD_TEST(suite, get_device_stat_test);
7056 	CU_ADD_TEST(suite, bdev_io_types_test);
7057 	CU_ADD_TEST(suite, bdev_io_wait_test);
7058 	CU_ADD_TEST(suite, bdev_io_spans_split_test);
7059 	CU_ADD_TEST(suite, bdev_io_boundary_split_test);
7060 	CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test);
7061 	CU_ADD_TEST(suite, bdev_io_mix_split_test);
7062 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
7063 	CU_ADD_TEST(suite, bdev_io_write_unit_split_test);
7064 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
7065 	CU_ADD_TEST(suite, bdev_io_alignment);
7066 	CU_ADD_TEST(suite, bdev_histograms);
7067 	CU_ADD_TEST(suite, bdev_write_zeroes);
7068 	CU_ADD_TEST(suite, bdev_compare_and_write);
7069 	CU_ADD_TEST(suite, bdev_compare);
7070 	CU_ADD_TEST(suite, bdev_compare_emulated);
7071 	CU_ADD_TEST(suite, bdev_zcopy_write);
7072 	CU_ADD_TEST(suite, bdev_zcopy_read);
7073 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
7074 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
7075 	CU_ADD_TEST(suite, bdev_open_ext);
7076 	CU_ADD_TEST(suite, bdev_open_ext_unregister);
7077 	CU_ADD_TEST(suite, bdev_set_io_timeout);
7078 	CU_ADD_TEST(suite, bdev_set_qd_sampling);
7079 	CU_ADD_TEST(suite, lba_range_overlap);
7080 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
7081 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
7082 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
7083 	CU_ADD_TEST(suite, bdev_io_abort);
7084 	CU_ADD_TEST(suite, bdev_unmap);
7085 	CU_ADD_TEST(suite, bdev_write_zeroes_split_test);
7086 	CU_ADD_TEST(suite, bdev_set_options_test);
7087 	CU_ADD_TEST(suite, bdev_multi_allocation);
7088 	CU_ADD_TEST(suite, bdev_get_memory_domains);
7089 	CU_ADD_TEST(suite, bdev_io_ext);
7090 	CU_ADD_TEST(suite, bdev_io_ext_no_opts);
7091 	CU_ADD_TEST(suite, bdev_io_ext_invalid_opts);
7092 	CU_ADD_TEST(suite, bdev_io_ext_split);
7093 	CU_ADD_TEST(suite, bdev_io_ext_bounce_buffer);
7094 	CU_ADD_TEST(suite, bdev_register_uuid_alias);
7095 	CU_ADD_TEST(suite, bdev_unregister_by_name);
7096 	CU_ADD_TEST(suite, for_each_bdev_test);
7097 	CU_ADD_TEST(suite, bdev_seek_test);
7098 	CU_ADD_TEST(suite, bdev_copy);
7099 	CU_ADD_TEST(suite, bdev_copy_split_test);
7100 	CU_ADD_TEST(suite, examine_locks);
7101 	CU_ADD_TEST(suite, claim_v2_rwo);
7102 	CU_ADD_TEST(suite, claim_v2_rom);
7103 	CU_ADD_TEST(suite, claim_v2_rwm);
7104 	CU_ADD_TEST(suite, claim_v2_existing_writer);
7105 	CU_ADD_TEST(suite, claim_v2_existing_v1);
7106 	CU_ADD_TEST(suite, claim_v1_existing_v2);
7107 	CU_ADD_TEST(suite, examine_claimed);
7108 
7109 	allocate_cores(1);
7110 	allocate_threads(1);
7111 	set_thread(0);
7112 
7113 	CU_basic_set_mode(CU_BRM_VERBOSE);
7114 	CU_basic_run_tests();
7115 	num_failures = CU_get_number_of_failures();
7116 	CU_cleanup_registry();
7117 
7118 	free_threads();
7119 	free_cores();
7120 
7121 	return num_failures;
7122 }
7123