xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision 9b32f4858c035134b5680b27678716d63370c678)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk_cunit.h"
35 
36 #include "common/lib/ut_multithread.c"
37 #include "unit/lib/json_mock.c"
38 
39 #include "spdk/config.h"
40 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
41 #undef SPDK_CONFIG_VTUNE
42 
43 #include "bdev/bdev.c"
44 
45 struct spdk_trace_histories *g_trace_histories;
46 DEFINE_STUB_V(spdk_trace_add_register_fn, (struct spdk_trace_register_fn *reg_fn));
47 DEFINE_STUB_V(spdk_trace_register_owner, (uint8_t type, char id_prefix));
48 DEFINE_STUB_V(spdk_trace_register_object, (uint8_t type, char id_prefix));
49 DEFINE_STUB_V(spdk_trace_register_description, (const char *name,
50 		uint16_t tpoint_id, uint8_t owner_type,
51 		uint8_t object_type, uint8_t new_object,
52 		uint8_t arg1_type, const char *arg1_name));
53 DEFINE_STUB_V(_spdk_trace_record, (uint64_t tsc, uint16_t tpoint_id, uint16_t poller_id,
54 				   uint32_t size, uint64_t object_id, uint64_t arg1));
55 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
56 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
57 
58 
59 int g_status;
60 int g_count;
61 enum spdk_bdev_event_type g_event_type1;
62 enum spdk_bdev_event_type g_event_type2;
63 struct spdk_histogram_data *g_histogram;
64 void *g_unregister_arg;
65 int g_unregister_rc;
66 
67 void
68 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
69 			 int *sc, int *sk, int *asc, int *ascq)
70 {
71 }
72 
73 static int
74 null_init(void)
75 {
76 	return 0;
77 }
78 
79 static int
80 null_clean(void)
81 {
82 	return 0;
83 }
84 
85 static int
86 stub_destruct(void *ctx)
87 {
88 	return 0;
89 }
90 
91 struct ut_expected_io {
92 	uint8_t				type;
93 	uint64_t			offset;
94 	uint64_t			length;
95 	int				iovcnt;
96 	struct iovec			iov[BDEV_IO_NUM_CHILD_IOV];
97 	void				*md_buf;
98 	TAILQ_ENTRY(ut_expected_io)	link;
99 };
100 
101 struct bdev_ut_channel {
102 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
103 	uint32_t			outstanding_io_count;
104 	TAILQ_HEAD(, ut_expected_io)	expected_io;
105 };
106 
107 static bool g_io_done;
108 static struct spdk_bdev_io *g_bdev_io;
109 static enum spdk_bdev_io_status g_io_status;
110 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
111 static uint32_t g_bdev_ut_io_device;
112 static struct bdev_ut_channel *g_bdev_ut_channel;
113 static void *g_compare_read_buf;
114 static uint32_t g_compare_read_buf_len;
115 static void *g_compare_write_buf;
116 static uint32_t g_compare_write_buf_len;
117 static bool g_abort_done;
118 static enum spdk_bdev_io_status g_abort_status;
119 
120 static struct ut_expected_io *
121 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
122 {
123 	struct ut_expected_io *expected_io;
124 
125 	expected_io = calloc(1, sizeof(*expected_io));
126 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
127 
128 	expected_io->type = type;
129 	expected_io->offset = offset;
130 	expected_io->length = length;
131 	expected_io->iovcnt = iovcnt;
132 
133 	return expected_io;
134 }
135 
136 static void
137 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
138 {
139 	expected_io->iov[pos].iov_base = base;
140 	expected_io->iov[pos].iov_len = len;
141 }
142 
143 static void
144 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
145 {
146 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
147 	struct ut_expected_io *expected_io;
148 	struct iovec *iov, *expected_iov;
149 	struct spdk_bdev_io *bio_to_abort;
150 	int i;
151 
152 	g_bdev_io = bdev_io;
153 
154 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
155 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
156 
157 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
158 		CU_ASSERT(g_compare_read_buf_len == len);
159 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
160 	}
161 
162 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
163 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
164 
165 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
166 		CU_ASSERT(g_compare_write_buf_len == len);
167 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
168 	}
169 
170 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
171 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
172 
173 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
174 		CU_ASSERT(g_compare_read_buf_len == len);
175 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
176 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
177 		}
178 	}
179 
180 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
181 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
182 			TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
183 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
184 					TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
185 					ch->outstanding_io_count--;
186 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
187 					break;
188 				}
189 			}
190 		}
191 	}
192 
193 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
194 	ch->outstanding_io_count++;
195 
196 	expected_io = TAILQ_FIRST(&ch->expected_io);
197 	if (expected_io == NULL) {
198 		return;
199 	}
200 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
201 
202 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
203 		CU_ASSERT(bdev_io->type == expected_io->type);
204 	}
205 
206 	if (expected_io->md_buf != NULL) {
207 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
208 	}
209 
210 	if (expected_io->length == 0) {
211 		free(expected_io);
212 		return;
213 	}
214 
215 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
216 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
217 
218 	if (expected_io->iovcnt == 0) {
219 		free(expected_io);
220 		/* UNMAP, WRITE_ZEROES and FLUSH don't have iovs, so we can just return now. */
221 		return;
222 	}
223 
224 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
225 	for (i = 0; i < expected_io->iovcnt; i++) {
226 		iov = &bdev_io->u.bdev.iovs[i];
227 		expected_iov = &expected_io->iov[i];
228 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
229 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
230 	}
231 
232 	free(expected_io);
233 }
234 
235 static void
236 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
237 			       struct spdk_bdev_io *bdev_io, bool success)
238 {
239 	CU_ASSERT(success == true);
240 
241 	stub_submit_request(_ch, bdev_io);
242 }
243 
244 static void
245 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
246 {
247 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
248 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
249 }
250 
251 static uint32_t
252 stub_complete_io(uint32_t num_to_complete)
253 {
254 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
255 	struct spdk_bdev_io *bdev_io;
256 	static enum spdk_bdev_io_status io_status;
257 	uint32_t num_completed = 0;
258 
259 	while (num_completed < num_to_complete) {
260 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
261 			break;
262 		}
263 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
264 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
265 		ch->outstanding_io_count--;
266 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
267 			    g_io_exp_status;
268 		spdk_bdev_io_complete(bdev_io, io_status);
269 		num_completed++;
270 	}
271 
272 	return num_completed;
273 }
274 
275 static struct spdk_io_channel *
276 bdev_ut_get_io_channel(void *ctx)
277 {
278 	return spdk_get_io_channel(&g_bdev_ut_io_device);
279 }
280 
281 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
282 	[SPDK_BDEV_IO_TYPE_READ]		= true,
283 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
284 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
285 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
286 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
287 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
288 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
289 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
290 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
291 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
292 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
293 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
294 };
295 
296 static void
297 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
298 {
299 	g_io_types_supported[io_type] = enable;
300 }
301 
302 static bool
303 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
304 {
305 	return g_io_types_supported[io_type];
306 }
307 
308 static struct spdk_bdev_fn_table fn_table = {
309 	.destruct = stub_destruct,
310 	.submit_request = stub_submit_request,
311 	.get_io_channel = bdev_ut_get_io_channel,
312 	.io_type_supported = stub_io_type_supported,
313 };
314 
315 static int
316 bdev_ut_create_ch(void *io_device, void *ctx_buf)
317 {
318 	struct bdev_ut_channel *ch = ctx_buf;
319 
320 	CU_ASSERT(g_bdev_ut_channel == NULL);
321 	g_bdev_ut_channel = ch;
322 
323 	TAILQ_INIT(&ch->outstanding_io);
324 	ch->outstanding_io_count = 0;
325 	TAILQ_INIT(&ch->expected_io);
326 	return 0;
327 }
328 
329 static void
330 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
331 {
332 	CU_ASSERT(g_bdev_ut_channel != NULL);
333 	g_bdev_ut_channel = NULL;
334 }
335 
336 struct spdk_bdev_module bdev_ut_if;
337 
338 static int
339 bdev_ut_module_init(void)
340 {
341 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
342 				sizeof(struct bdev_ut_channel), NULL);
343 	spdk_bdev_module_init_done(&bdev_ut_if);
344 	return 0;
345 }
346 
347 static void
348 bdev_ut_module_fini(void)
349 {
350 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
351 }
352 
353 struct spdk_bdev_module bdev_ut_if = {
354 	.name = "bdev_ut",
355 	.module_init = bdev_ut_module_init,
356 	.module_fini = bdev_ut_module_fini,
357 	.async_init = true,
358 };
359 
360 static void vbdev_ut_examine(struct spdk_bdev *bdev);
361 
362 static int
363 vbdev_ut_module_init(void)
364 {
365 	return 0;
366 }
367 
368 static void
369 vbdev_ut_module_fini(void)
370 {
371 }
372 
373 struct spdk_bdev_module vbdev_ut_if = {
374 	.name = "vbdev_ut",
375 	.module_init = vbdev_ut_module_init,
376 	.module_fini = vbdev_ut_module_fini,
377 	.examine_config = vbdev_ut_examine,
378 };
379 
380 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
381 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
382 
383 static void
384 vbdev_ut_examine(struct spdk_bdev *bdev)
385 {
386 	spdk_bdev_module_examine_done(&vbdev_ut_if);
387 }
388 
389 static struct spdk_bdev *
390 allocate_bdev(char *name)
391 {
392 	struct spdk_bdev *bdev;
393 	int rc;
394 
395 	bdev = calloc(1, sizeof(*bdev));
396 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
397 
398 	bdev->name = name;
399 	bdev->fn_table = &fn_table;
400 	bdev->module = &bdev_ut_if;
401 	bdev->blockcnt = 1024;
402 	bdev->blocklen = 512;
403 
404 	rc = spdk_bdev_register(bdev);
405 	CU_ASSERT(rc == 0);
406 
407 	return bdev;
408 }
409 
410 static struct spdk_bdev *
411 allocate_vbdev(char *name)
412 {
413 	struct spdk_bdev *bdev;
414 	int rc;
415 
416 	bdev = calloc(1, sizeof(*bdev));
417 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
418 
419 	bdev->name = name;
420 	bdev->fn_table = &fn_table;
421 	bdev->module = &vbdev_ut_if;
422 
423 	rc = spdk_bdev_register(bdev);
424 	CU_ASSERT(rc == 0);
425 
426 	return bdev;
427 }
428 
429 static void
430 free_bdev(struct spdk_bdev *bdev)
431 {
432 	spdk_bdev_unregister(bdev, NULL, NULL);
433 	poll_threads();
434 	memset(bdev, 0xFF, sizeof(*bdev));
435 	free(bdev);
436 }
437 
438 static void
439 free_vbdev(struct spdk_bdev *bdev)
440 {
441 	spdk_bdev_unregister(bdev, NULL, NULL);
442 	poll_threads();
443 	memset(bdev, 0xFF, sizeof(*bdev));
444 	free(bdev);
445 }
446 
447 static void
448 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
449 {
450 	const char *bdev_name;
451 
452 	CU_ASSERT(bdev != NULL);
453 	CU_ASSERT(rc == 0);
454 	bdev_name = spdk_bdev_get_name(bdev);
455 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
456 
457 	free(stat);
458 	free_bdev(bdev);
459 
460 	*(bool *)cb_arg = true;
461 }
462 
463 static void
464 bdev_unregister_cb(void *cb_arg, int rc)
465 {
466 	g_unregister_arg = cb_arg;
467 	g_unregister_rc = rc;
468 }
469 
470 static void
471 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
472 {
473 }
474 
475 static void
476 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
477 {
478 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
479 
480 	g_event_type1 = type;
481 	if (SPDK_BDEV_EVENT_REMOVE == type) {
482 		spdk_bdev_close(desc);
483 	}
484 }
485 
486 static void
487 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
488 {
489 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
490 
491 	g_event_type2 = type;
492 	if (SPDK_BDEV_EVENT_REMOVE == type) {
493 		spdk_bdev_close(desc);
494 	}
495 }
496 
497 static void
498 get_device_stat_test(void)
499 {
500 	struct spdk_bdev *bdev;
501 	struct spdk_bdev_io_stat *stat;
502 	bool done;
503 
504 	bdev = allocate_bdev("bdev0");
505 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
506 	if (stat == NULL) {
507 		free_bdev(bdev);
508 		return;
509 	}
510 
511 	done = false;
512 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
513 	while (!done) { poll_threads(); }
514 
515 
516 }
517 
518 static void
519 open_write_test(void)
520 {
521 	struct spdk_bdev *bdev[9];
522 	struct spdk_bdev_desc *desc[9] = {};
523 	int rc;
524 
525 	/*
526 	 * Create a tree of bdevs to test various open w/ write cases.
527 	 *
528 	 * bdev0 through bdev3 are physical block devices, such as NVMe
529 	 * namespaces or Ceph block devices.
530 	 *
531 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
532 	 * caching or RAID use cases.
533 	 *
534 	 * bdev5 through bdev7 are all virtual bdevs with the same base
535 	 * bdev (except bdev7). This models partitioning or logical volume
536 	 * use cases.
537 	 *
538 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
539 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
540 	 * models caching, RAID, partitioning or logical volumes use cases.
541 	 *
542 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
543 	 * base bdevs are themselves virtual bdevs.
544 	 *
545 	 *                bdev8
546 	 *                  |
547 	 *            +----------+
548 	 *            |          |
549 	 *          bdev4      bdev5   bdev6   bdev7
550 	 *            |          |       |       |
551 	 *        +---+---+      +---+   +   +---+---+
552 	 *        |       |           \  |  /         \
553 	 *      bdev0   bdev1          bdev2         bdev3
554 	 */
555 
556 	bdev[0] = allocate_bdev("bdev0");
557 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
558 	CU_ASSERT(rc == 0);
559 
560 	bdev[1] = allocate_bdev("bdev1");
561 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
562 	CU_ASSERT(rc == 0);
563 
564 	bdev[2] = allocate_bdev("bdev2");
565 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
566 	CU_ASSERT(rc == 0);
567 
568 	bdev[3] = allocate_bdev("bdev3");
569 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
570 	CU_ASSERT(rc == 0);
571 
572 	bdev[4] = allocate_vbdev("bdev4");
573 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
574 	CU_ASSERT(rc == 0);
575 
576 	bdev[5] = allocate_vbdev("bdev5");
577 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
578 	CU_ASSERT(rc == 0);
579 
580 	bdev[6] = allocate_vbdev("bdev6");
581 
582 	bdev[7] = allocate_vbdev("bdev7");
583 
584 	bdev[8] = allocate_vbdev("bdev8");
585 
586 	/* Open bdev0 read-only.  This should succeed. */
587 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
588 	CU_ASSERT(rc == 0);
589 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
590 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
591 	spdk_bdev_close(desc[0]);
592 
593 	/*
594 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
595 	 * by a vbdev module.
596 	 */
597 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
598 	CU_ASSERT(rc == -EPERM);
599 
600 	/*
601 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
602 	 * by a vbdev module.
603 	 */
604 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
605 	CU_ASSERT(rc == -EPERM);
606 
607 	/* Open bdev4 read-only.  This should succeed. */
608 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
609 	CU_ASSERT(rc == 0);
610 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
611 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
612 	spdk_bdev_close(desc[4]);
613 
614 	/*
615 	 * Open bdev8 read/write.  This should succeed since it is a leaf
616 	 * bdev.
617 	 */
618 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
619 	CU_ASSERT(rc == 0);
620 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
621 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
622 	spdk_bdev_close(desc[8]);
623 
624 	/*
625 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
626 	 * by a vbdev module.
627 	 */
628 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
629 	CU_ASSERT(rc == -EPERM);
630 
631 	/* Open bdev4 read-only.  This should succeed. */
632 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
633 	CU_ASSERT(rc == 0);
634 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
635 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
636 	spdk_bdev_close(desc[5]);
637 
638 	free_vbdev(bdev[8]);
639 
640 	free_vbdev(bdev[5]);
641 	free_vbdev(bdev[6]);
642 	free_vbdev(bdev[7]);
643 
644 	free_vbdev(bdev[4]);
645 
646 	free_bdev(bdev[0]);
647 	free_bdev(bdev[1]);
648 	free_bdev(bdev[2]);
649 	free_bdev(bdev[3]);
650 }
651 
652 static void
653 bytes_to_blocks_test(void)
654 {
655 	struct spdk_bdev bdev;
656 	uint64_t offset_blocks, num_blocks;
657 
658 	memset(&bdev, 0, sizeof(bdev));
659 
660 	bdev.blocklen = 512;
661 
662 	/* All parameters valid */
663 	offset_blocks = 0;
664 	num_blocks = 0;
665 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
666 	CU_ASSERT(offset_blocks == 1);
667 	CU_ASSERT(num_blocks == 2);
668 
669 	/* Offset not a block multiple */
670 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
671 
672 	/* Length not a block multiple */
673 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
674 
675 	/* In case blocklen not the power of two */
676 	bdev.blocklen = 100;
677 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
678 	CU_ASSERT(offset_blocks == 1);
679 	CU_ASSERT(num_blocks == 2);
680 
681 	/* Offset not a block multiple */
682 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
683 
684 	/* Length not a block multiple */
685 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
686 }
687 
688 static void
689 num_blocks_test(void)
690 {
691 	struct spdk_bdev bdev;
692 	struct spdk_bdev_desc *desc = NULL;
693 	struct spdk_bdev_desc *desc_ext = NULL;
694 	int rc;
695 
696 	memset(&bdev, 0, sizeof(bdev));
697 	bdev.name = "num_blocks";
698 	bdev.fn_table = &fn_table;
699 	bdev.module = &bdev_ut_if;
700 	spdk_bdev_register(&bdev);
701 	spdk_bdev_notify_blockcnt_change(&bdev, 50);
702 
703 	/* Growing block number */
704 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
705 	/* Shrinking block number */
706 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
707 
708 	/* In case bdev opened */
709 	rc = spdk_bdev_open(&bdev, false, NULL, NULL, &desc);
710 	CU_ASSERT(rc == 0);
711 	SPDK_CU_ASSERT_FATAL(desc != NULL);
712 
713 	/* Growing block number */
714 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
715 	/* Shrinking block number */
716 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
717 
718 	/* In case bdev opened with ext API */
719 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc_ext, &desc_ext);
720 	CU_ASSERT(rc == 0);
721 	SPDK_CU_ASSERT_FATAL(desc_ext != NULL);
722 	CU_ASSERT(&bdev == spdk_bdev_desc_get_bdev(desc_ext));
723 
724 	g_event_type1 = 0xFF;
725 	/* Growing block number */
726 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
727 
728 	poll_threads();
729 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
730 
731 	g_event_type1 = 0xFF;
732 	/* Growing block number and closing */
733 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
734 
735 	spdk_bdev_close(desc);
736 	spdk_bdev_close(desc_ext);
737 	spdk_bdev_unregister(&bdev, NULL, NULL);
738 
739 	poll_threads();
740 
741 	/* Callback is not called for closed device */
742 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
743 }
744 
745 static void
746 io_valid_test(void)
747 {
748 	struct spdk_bdev bdev;
749 
750 	memset(&bdev, 0, sizeof(bdev));
751 
752 	bdev.blocklen = 512;
753 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
754 
755 	/* All parameters valid */
756 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
757 
758 	/* Last valid block */
759 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
760 
761 	/* Offset past end of bdev */
762 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
763 
764 	/* Offset + length past end of bdev */
765 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
766 
767 	/* Offset near end of uint64_t range (2^64 - 1) */
768 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
769 }
770 
771 static void
772 alias_add_del_test(void)
773 {
774 	struct spdk_bdev *bdev[3];
775 	int rc;
776 
777 	/* Creating and registering bdevs */
778 	bdev[0] = allocate_bdev("bdev0");
779 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
780 
781 	bdev[1] = allocate_bdev("bdev1");
782 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
783 
784 	bdev[2] = allocate_bdev("bdev2");
785 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
786 
787 	poll_threads();
788 
789 	/*
790 	 * Trying adding an alias identical to name.
791 	 * Alias is identical to name, so it can not be added to aliases list
792 	 */
793 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
794 	CU_ASSERT(rc == -EEXIST);
795 
796 	/*
797 	 * Trying to add empty alias,
798 	 * this one should fail
799 	 */
800 	rc = spdk_bdev_alias_add(bdev[0], NULL);
801 	CU_ASSERT(rc == -EINVAL);
802 
803 	/* Trying adding same alias to two different registered bdevs */
804 
805 	/* Alias is used first time, so this one should pass */
806 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
807 	CU_ASSERT(rc == 0);
808 
809 	/* Alias was added to another bdev, so this one should fail */
810 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
811 	CU_ASSERT(rc == -EEXIST);
812 
813 	/* Alias is used first time, so this one should pass */
814 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
815 	CU_ASSERT(rc == 0);
816 
817 	/* Trying removing an alias from registered bdevs */
818 
819 	/* Alias is not on a bdev aliases list, so this one should fail */
820 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
821 	CU_ASSERT(rc == -ENOENT);
822 
823 	/* Alias is present on a bdev aliases list, so this one should pass */
824 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
825 	CU_ASSERT(rc == 0);
826 
827 	/* Alias is present on a bdev aliases list, so this one should pass */
828 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
829 	CU_ASSERT(rc == 0);
830 
831 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
832 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
833 	CU_ASSERT(rc != 0);
834 
835 	/* Trying to del all alias from empty alias list */
836 	spdk_bdev_alias_del_all(bdev[2]);
837 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
838 
839 	/* Trying to del all alias from non-empty alias list */
840 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
841 	CU_ASSERT(rc == 0);
842 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
843 	CU_ASSERT(rc == 0);
844 	spdk_bdev_alias_del_all(bdev[2]);
845 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
846 
847 	/* Unregister and free bdevs */
848 	spdk_bdev_unregister(bdev[0], NULL, NULL);
849 	spdk_bdev_unregister(bdev[1], NULL, NULL);
850 	spdk_bdev_unregister(bdev[2], NULL, NULL);
851 
852 	poll_threads();
853 
854 	free(bdev[0]);
855 	free(bdev[1]);
856 	free(bdev[2]);
857 }
858 
859 static void
860 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
861 {
862 	g_io_done = true;
863 	g_io_status = bdev_io->internal.status;
864 	spdk_bdev_free_io(bdev_io);
865 }
866 
867 static void
868 bdev_init_cb(void *arg, int rc)
869 {
870 	CU_ASSERT(rc == 0);
871 }
872 
873 static void
874 bdev_fini_cb(void *arg)
875 {
876 }
877 
878 struct bdev_ut_io_wait_entry {
879 	struct spdk_bdev_io_wait_entry	entry;
880 	struct spdk_io_channel		*io_ch;
881 	struct spdk_bdev_desc		*desc;
882 	bool				submitted;
883 };
884 
885 static void
886 io_wait_cb(void *arg)
887 {
888 	struct bdev_ut_io_wait_entry *entry = arg;
889 	int rc;
890 
891 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
892 	CU_ASSERT(rc == 0);
893 	entry->submitted = true;
894 }
895 
896 static void
897 bdev_io_types_test(void)
898 {
899 	struct spdk_bdev *bdev;
900 	struct spdk_bdev_desc *desc = NULL;
901 	struct spdk_io_channel *io_ch;
902 	struct spdk_bdev_opts bdev_opts = {
903 		.bdev_io_pool_size = 4,
904 		.bdev_io_cache_size = 2,
905 	};
906 	int rc;
907 
908 	rc = spdk_bdev_set_opts(&bdev_opts);
909 	CU_ASSERT(rc == 0);
910 	spdk_bdev_initialize(bdev_init_cb, NULL);
911 	poll_threads();
912 
913 	bdev = allocate_bdev("bdev0");
914 
915 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
916 	CU_ASSERT(rc == 0);
917 	poll_threads();
918 	SPDK_CU_ASSERT_FATAL(desc != NULL);
919 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
920 	io_ch = spdk_bdev_get_io_channel(desc);
921 	CU_ASSERT(io_ch != NULL);
922 
923 	/* WRITE and WRITE ZEROES are not supported */
924 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
925 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
926 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
927 	CU_ASSERT(rc == -ENOTSUP);
928 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
929 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
930 
931 	spdk_put_io_channel(io_ch);
932 	spdk_bdev_close(desc);
933 	free_bdev(bdev);
934 	spdk_bdev_finish(bdev_fini_cb, NULL);
935 	poll_threads();
936 }
937 
938 static void
939 bdev_io_wait_test(void)
940 {
941 	struct spdk_bdev *bdev;
942 	struct spdk_bdev_desc *desc = NULL;
943 	struct spdk_io_channel *io_ch;
944 	struct spdk_bdev_opts bdev_opts = {
945 		.bdev_io_pool_size = 4,
946 		.bdev_io_cache_size = 2,
947 	};
948 	struct bdev_ut_io_wait_entry io_wait_entry;
949 	struct bdev_ut_io_wait_entry io_wait_entry2;
950 	int rc;
951 
952 	rc = spdk_bdev_set_opts(&bdev_opts);
953 	CU_ASSERT(rc == 0);
954 	spdk_bdev_initialize(bdev_init_cb, NULL);
955 	poll_threads();
956 
957 	bdev = allocate_bdev("bdev0");
958 
959 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
960 	CU_ASSERT(rc == 0);
961 	poll_threads();
962 	SPDK_CU_ASSERT_FATAL(desc != NULL);
963 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
964 	io_ch = spdk_bdev_get_io_channel(desc);
965 	CU_ASSERT(io_ch != NULL);
966 
967 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
968 	CU_ASSERT(rc == 0);
969 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
970 	CU_ASSERT(rc == 0);
971 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
972 	CU_ASSERT(rc == 0);
973 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
974 	CU_ASSERT(rc == 0);
975 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
976 
977 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
978 	CU_ASSERT(rc == -ENOMEM);
979 
980 	io_wait_entry.entry.bdev = bdev;
981 	io_wait_entry.entry.cb_fn = io_wait_cb;
982 	io_wait_entry.entry.cb_arg = &io_wait_entry;
983 	io_wait_entry.io_ch = io_ch;
984 	io_wait_entry.desc = desc;
985 	io_wait_entry.submitted = false;
986 	/* Cannot use the same io_wait_entry for two different calls. */
987 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
988 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
989 
990 	/* Queue two I/O waits. */
991 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
992 	CU_ASSERT(rc == 0);
993 	CU_ASSERT(io_wait_entry.submitted == false);
994 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
995 	CU_ASSERT(rc == 0);
996 	CU_ASSERT(io_wait_entry2.submitted == false);
997 
998 	stub_complete_io(1);
999 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1000 	CU_ASSERT(io_wait_entry.submitted == true);
1001 	CU_ASSERT(io_wait_entry2.submitted == false);
1002 
1003 	stub_complete_io(1);
1004 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1005 	CU_ASSERT(io_wait_entry2.submitted == true);
1006 
1007 	stub_complete_io(4);
1008 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1009 
1010 	spdk_put_io_channel(io_ch);
1011 	spdk_bdev_close(desc);
1012 	free_bdev(bdev);
1013 	spdk_bdev_finish(bdev_fini_cb, NULL);
1014 	poll_threads();
1015 }
1016 
1017 static void
1018 bdev_io_spans_boundary_test(void)
1019 {
1020 	struct spdk_bdev bdev;
1021 	struct spdk_bdev_io bdev_io;
1022 
1023 	memset(&bdev, 0, sizeof(bdev));
1024 
1025 	bdev.optimal_io_boundary = 0;
1026 	bdev_io.bdev = &bdev;
1027 
1028 	/* bdev has no optimal_io_boundary set - so this should return false. */
1029 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1030 
1031 	bdev.optimal_io_boundary = 32;
1032 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1033 
1034 	/* RESETs are not based on LBAs - so this should return false. */
1035 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1036 
1037 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1038 	bdev_io.u.bdev.offset_blocks = 0;
1039 	bdev_io.u.bdev.num_blocks = 32;
1040 
1041 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1042 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1043 
1044 	bdev_io.u.bdev.num_blocks = 33;
1045 
1046 	/* This I/O spans a boundary. */
1047 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1048 }
1049 
1050 static void
1051 bdev_io_split_test(void)
1052 {
1053 	struct spdk_bdev *bdev;
1054 	struct spdk_bdev_desc *desc = NULL;
1055 	struct spdk_io_channel *io_ch;
1056 	struct spdk_bdev_opts bdev_opts = {
1057 		.bdev_io_pool_size = 512,
1058 		.bdev_io_cache_size = 64,
1059 	};
1060 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1061 	struct ut_expected_io *expected_io;
1062 	uint64_t i;
1063 	int rc;
1064 
1065 	rc = spdk_bdev_set_opts(&bdev_opts);
1066 	CU_ASSERT(rc == 0);
1067 	spdk_bdev_initialize(bdev_init_cb, NULL);
1068 
1069 	bdev = allocate_bdev("bdev0");
1070 
1071 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1072 	CU_ASSERT(rc == 0);
1073 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1074 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1075 	io_ch = spdk_bdev_get_io_channel(desc);
1076 	CU_ASSERT(io_ch != NULL);
1077 
1078 	bdev->optimal_io_boundary = 16;
1079 	bdev->split_on_optimal_io_boundary = false;
1080 
1081 	g_io_done = false;
1082 
1083 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1084 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1085 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1086 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1087 
1088 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1089 	CU_ASSERT(rc == 0);
1090 	CU_ASSERT(g_io_done == false);
1091 
1092 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1093 	stub_complete_io(1);
1094 	CU_ASSERT(g_io_done == true);
1095 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1096 
1097 	bdev->split_on_optimal_io_boundary = true;
1098 
1099 	/* Now test that a single-vector command is split correctly.
1100 	 * Offset 14, length 8, payload 0xF000
1101 	 *  Child - Offset 14, length 2, payload 0xF000
1102 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1103 	 *
1104 	 * Set up the expected values before calling spdk_bdev_read_blocks
1105 	 */
1106 	g_io_done = false;
1107 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1108 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1109 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1110 
1111 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1112 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1113 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1114 
1115 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1116 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1117 	CU_ASSERT(rc == 0);
1118 	CU_ASSERT(g_io_done == false);
1119 
1120 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1121 	stub_complete_io(2);
1122 	CU_ASSERT(g_io_done == true);
1123 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1124 
1125 	/* Now set up a more complex, multi-vector command that needs to be split,
1126 	 *  including splitting iovecs.
1127 	 */
1128 	iov[0].iov_base = (void *)0x10000;
1129 	iov[0].iov_len = 512;
1130 	iov[1].iov_base = (void *)0x20000;
1131 	iov[1].iov_len = 20 * 512;
1132 	iov[2].iov_base = (void *)0x30000;
1133 	iov[2].iov_len = 11 * 512;
1134 
1135 	g_io_done = false;
1136 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1137 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1138 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1139 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1140 
1141 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1142 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1143 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1144 
1145 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1146 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1147 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1148 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1149 
1150 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
1151 	CU_ASSERT(rc == 0);
1152 	CU_ASSERT(g_io_done == false);
1153 
1154 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1155 	stub_complete_io(3);
1156 	CU_ASSERT(g_io_done == true);
1157 
1158 	/* Test multi vector command that needs to be split by strip and then needs to be
1159 	 * split further due to the capacity of child iovs.
1160 	 */
1161 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1162 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1163 		iov[i].iov_len = 512;
1164 	}
1165 
1166 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1167 	g_io_done = false;
1168 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1169 					   BDEV_IO_NUM_CHILD_IOV);
1170 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1171 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1172 	}
1173 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1174 
1175 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1176 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
1177 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1178 		ut_expected_io_set_iov(expected_io, i,
1179 				       (void *)((i + 1 + BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1180 	}
1181 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1182 
1183 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
1184 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1185 	CU_ASSERT(rc == 0);
1186 	CU_ASSERT(g_io_done == false);
1187 
1188 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1189 	stub_complete_io(1);
1190 	CU_ASSERT(g_io_done == false);
1191 
1192 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1193 	stub_complete_io(1);
1194 	CU_ASSERT(g_io_done == true);
1195 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1196 
1197 	/* Test multi vector command that needs to be split by strip and then needs to be
1198 	 * split further due to the capacity of child iovs. In this case, the length of
1199 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1200 	 */
1201 
1202 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1203 	 * is BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1204 	 */
1205 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1206 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1207 		iov[i].iov_len = 512;
1208 	}
1209 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1210 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1211 		iov[i].iov_len = 256;
1212 	}
1213 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1214 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1215 
1216 	/* Add an extra iovec to trigger split */
1217 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1218 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1219 
1220 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1221 	g_io_done = false;
1222 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1223 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV);
1224 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1225 		ut_expected_io_set_iov(expected_io, i,
1226 				       (void *)((i + 1) * 0x10000), 512);
1227 	}
1228 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1229 		ut_expected_io_set_iov(expected_io, i,
1230 				       (void *)((i + 1) * 0x10000), 256);
1231 	}
1232 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1233 
1234 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1235 					   1, 1);
1236 	ut_expected_io_set_iov(expected_io, 0,
1237 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1238 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1239 
1240 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1241 					   1, 1);
1242 	ut_expected_io_set_iov(expected_io, 0,
1243 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1244 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1245 
1246 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
1247 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1248 	CU_ASSERT(rc == 0);
1249 	CU_ASSERT(g_io_done == false);
1250 
1251 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1252 	stub_complete_io(1);
1253 	CU_ASSERT(g_io_done == false);
1254 
1255 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1256 	stub_complete_io(2);
1257 	CU_ASSERT(g_io_done == true);
1258 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1259 
1260 	/* Test multi vector command that needs to be split by strip and then needs to be
1261 	 * split further due to the capacity of child iovs, the child request offset should
1262 	 * be rewind to last aligned offset and go success without error.
1263 	 */
1264 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1265 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1266 		iov[i].iov_len = 512;
1267 	}
1268 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1269 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1270 
1271 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1272 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1273 
1274 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1275 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1276 
1277 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1278 	g_io_done = false;
1279 	g_io_status = 0;
1280 	/* The first expected io should be start from offset 0 to BDEV_IO_NUM_CHILD_IOV - 1 */
1281 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1282 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV - 1);
1283 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1284 		ut_expected_io_set_iov(expected_io, i,
1285 				       (void *)((i + 1) * 0x10000), 512);
1286 	}
1287 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1288 	/* The second expected io should be start from offset BDEV_IO_NUM_CHILD_IOV - 1 to BDEV_IO_NUM_CHILD_IOV */
1289 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1290 					   1, 2);
1291 	ut_expected_io_set_iov(expected_io, 0,
1292 			       (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1293 	ut_expected_io_set_iov(expected_io, 1,
1294 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1295 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1296 	/* The third expected io should be start from offset BDEV_IO_NUM_CHILD_IOV to BDEV_IO_NUM_CHILD_IOV + 1 */
1297 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1298 					   1, 1);
1299 	ut_expected_io_set_iov(expected_io, 0,
1300 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1301 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1302 
1303 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
1304 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1305 	CU_ASSERT(rc == 0);
1306 	CU_ASSERT(g_io_done == false);
1307 
1308 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1309 	stub_complete_io(1);
1310 	CU_ASSERT(g_io_done == false);
1311 
1312 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1313 	stub_complete_io(2);
1314 	CU_ASSERT(g_io_done == true);
1315 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1316 
1317 	/* Test multi vector command that needs to be split due to the IO boundary and
1318 	 * the capacity of child iovs. Especially test the case when the command is
1319 	 * split due to the capacity of child iovs, the tail address is not aligned with
1320 	 * block size and is rewinded to the aligned address.
1321 	 *
1322 	 * The iovecs used in read request is complex but is based on the data
1323 	 * collected in the real issue. We change the base addresses but keep the lengths
1324 	 * not to loose the credibility of the test.
1325 	 */
1326 	bdev->optimal_io_boundary = 128;
1327 	g_io_done = false;
1328 	g_io_status = 0;
1329 
1330 	for (i = 0; i < 31; i++) {
1331 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1332 		iov[i].iov_len = 1024;
1333 	}
1334 	iov[31].iov_base = (void *)0xFEED1F00000;
1335 	iov[31].iov_len = 32768;
1336 	iov[32].iov_base = (void *)0xFEED2000000;
1337 	iov[32].iov_len = 160;
1338 	iov[33].iov_base = (void *)0xFEED2100000;
1339 	iov[33].iov_len = 4096;
1340 	iov[34].iov_base = (void *)0xFEED2200000;
1341 	iov[34].iov_len = 4096;
1342 	iov[35].iov_base = (void *)0xFEED2300000;
1343 	iov[35].iov_len = 4096;
1344 	iov[36].iov_base = (void *)0xFEED2400000;
1345 	iov[36].iov_len = 4096;
1346 	iov[37].iov_base = (void *)0xFEED2500000;
1347 	iov[37].iov_len = 4096;
1348 	iov[38].iov_base = (void *)0xFEED2600000;
1349 	iov[38].iov_len = 4096;
1350 	iov[39].iov_base = (void *)0xFEED2700000;
1351 	iov[39].iov_len = 4096;
1352 	iov[40].iov_base = (void *)0xFEED2800000;
1353 	iov[40].iov_len = 4096;
1354 	iov[41].iov_base = (void *)0xFEED2900000;
1355 	iov[41].iov_len = 4096;
1356 	iov[42].iov_base = (void *)0xFEED2A00000;
1357 	iov[42].iov_len = 4096;
1358 	iov[43].iov_base = (void *)0xFEED2B00000;
1359 	iov[43].iov_len = 12288;
1360 	iov[44].iov_base = (void *)0xFEED2C00000;
1361 	iov[44].iov_len = 8192;
1362 	iov[45].iov_base = (void *)0xFEED2F00000;
1363 	iov[45].iov_len = 4096;
1364 	iov[46].iov_base = (void *)0xFEED3000000;
1365 	iov[46].iov_len = 4096;
1366 	iov[47].iov_base = (void *)0xFEED3100000;
1367 	iov[47].iov_len = 4096;
1368 	iov[48].iov_base = (void *)0xFEED3200000;
1369 	iov[48].iov_len = 24576;
1370 	iov[49].iov_base = (void *)0xFEED3300000;
1371 	iov[49].iov_len = 16384;
1372 	iov[50].iov_base = (void *)0xFEED3400000;
1373 	iov[50].iov_len = 12288;
1374 	iov[51].iov_base = (void *)0xFEED3500000;
1375 	iov[51].iov_len = 4096;
1376 	iov[52].iov_base = (void *)0xFEED3600000;
1377 	iov[52].iov_len = 4096;
1378 	iov[53].iov_base = (void *)0xFEED3700000;
1379 	iov[53].iov_len = 4096;
1380 	iov[54].iov_base = (void *)0xFEED3800000;
1381 	iov[54].iov_len = 28672;
1382 	iov[55].iov_base = (void *)0xFEED3900000;
1383 	iov[55].iov_len = 20480;
1384 	iov[56].iov_base = (void *)0xFEED3A00000;
1385 	iov[56].iov_len = 4096;
1386 	iov[57].iov_base = (void *)0xFEED3B00000;
1387 	iov[57].iov_len = 12288;
1388 	iov[58].iov_base = (void *)0xFEED3C00000;
1389 	iov[58].iov_len = 4096;
1390 	iov[59].iov_base = (void *)0xFEED3D00000;
1391 	iov[59].iov_len = 4096;
1392 	iov[60].iov_base = (void *)0xFEED3E00000;
1393 	iov[60].iov_len = 352;
1394 
1395 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1396 	 * of child iovs,
1397 	 */
1398 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1399 	for (i = 0; i < 32; i++) {
1400 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1401 	}
1402 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1403 
1404 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1405 	 * split by the IO boundary requirement.
1406 	 */
1407 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1408 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1409 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1410 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1411 
1412 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1413 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1414 	 */
1415 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1416 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1417 			       iov[33].iov_len - 864);
1418 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1419 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1420 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1421 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1422 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1423 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1424 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1425 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1426 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1427 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1428 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1429 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1430 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1431 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1432 
1433 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1434 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1435 	 */
1436 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1437 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1438 			       iov[46].iov_len - 864);
1439 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1440 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1441 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1442 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1443 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1444 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1445 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1446 
1447 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1448 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1449 	 */
1450 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1451 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1452 			       iov[52].iov_len - 864);
1453 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1454 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1455 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1456 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1457 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1458 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1459 
1460 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1461 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1462 	 */
1463 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1464 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1465 			       iov[57].iov_len - 4960);
1466 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1467 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1468 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1469 
1470 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1471 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1472 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1473 			       iov[59].iov_len - 3936);
1474 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1475 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1476 
1477 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 61, 0, 543, io_done, NULL);
1478 	CU_ASSERT(rc == 0);
1479 	CU_ASSERT(g_io_done == false);
1480 
1481 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1482 	stub_complete_io(1);
1483 	CU_ASSERT(g_io_done == false);
1484 
1485 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1486 	stub_complete_io(5);
1487 	CU_ASSERT(g_io_done == false);
1488 
1489 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1490 	stub_complete_io(1);
1491 	CU_ASSERT(g_io_done == true);
1492 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1493 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1494 
1495 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1496 	 * split, so test that.
1497 	 */
1498 	bdev->optimal_io_boundary = 15;
1499 	g_io_done = false;
1500 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1501 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1502 
1503 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1504 	CU_ASSERT(rc == 0);
1505 	CU_ASSERT(g_io_done == false);
1506 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1507 	stub_complete_io(1);
1508 	CU_ASSERT(g_io_done == true);
1509 
1510 	/* Test an UNMAP.  This should also not be split. */
1511 	bdev->optimal_io_boundary = 16;
1512 	g_io_done = false;
1513 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1514 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1515 
1516 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1517 	CU_ASSERT(rc == 0);
1518 	CU_ASSERT(g_io_done == false);
1519 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1520 	stub_complete_io(1);
1521 	CU_ASSERT(g_io_done == true);
1522 
1523 	/* Test a FLUSH.  This should also not be split. */
1524 	bdev->optimal_io_boundary = 16;
1525 	g_io_done = false;
1526 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1527 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1528 
1529 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1530 	CU_ASSERT(rc == 0);
1531 	CU_ASSERT(g_io_done == false);
1532 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1533 	stub_complete_io(1);
1534 	CU_ASSERT(g_io_done == true);
1535 
1536 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1537 
1538 	/* Children requests return an error status */
1539 	bdev->optimal_io_boundary = 16;
1540 	iov[0].iov_base = (void *)0x10000;
1541 	iov[0].iov_len = 512 * 64;
1542 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1543 	g_io_done = false;
1544 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1545 
1546 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1547 	CU_ASSERT(rc == 0);
1548 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1549 	stub_complete_io(4);
1550 	CU_ASSERT(g_io_done == false);
1551 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1552 	stub_complete_io(1);
1553 	CU_ASSERT(g_io_done == true);
1554 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1555 
1556 	/* Test if a multi vector command terminated with failure before continueing
1557 	 * splitting process when one of child I/O failed.
1558 	 * The multi vector command is as same as the above that needs to be split by strip
1559 	 * and then needs to be split further due to the capacity of child iovs.
1560 	 */
1561 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1562 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1563 		iov[i].iov_len = 512;
1564 	}
1565 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1566 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1567 
1568 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1569 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1570 
1571 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1572 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1573 
1574 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1575 
1576 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1577 	g_io_done = false;
1578 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1579 
1580 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
1581 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1582 	CU_ASSERT(rc == 0);
1583 	CU_ASSERT(g_io_done == false);
1584 
1585 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1586 	stub_complete_io(1);
1587 	CU_ASSERT(g_io_done == true);
1588 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1589 
1590 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1591 
1592 	/* for this test we will create the following conditions to hit the code path where
1593 	 * we are trying to send and IO following a split that has no iovs because we had to
1594 	 * trim them for alignment reasons.
1595 	 *
1596 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1597 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1598 	 *   position 30 and overshoot by 0x2e.
1599 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1600 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1601 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1602 	 *   and let the completion pick up the last 2 vectors.
1603 	 */
1604 	bdev->optimal_io_boundary = 32;
1605 	bdev->split_on_optimal_io_boundary = true;
1606 	g_io_done = false;
1607 
1608 	/* Init all parent IOVs to 0x212 */
1609 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1610 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1611 		iov[i].iov_len = 0x212;
1612 	}
1613 
1614 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1615 					   BDEV_IO_NUM_CHILD_IOV - 1);
1616 	/* expect 0-29 to be 1:1 with the parent iov */
1617 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1618 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1619 	}
1620 
1621 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1622 	 * where 0x1e is the amount we overshot the 16K boundary
1623 	 */
1624 	ut_expected_io_set_iov(expected_io, BDEV_IO_NUM_CHILD_IOV - 2,
1625 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1626 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1627 
1628 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1629 	 * shortened that take it to the next boundary and then a final one to get us to
1630 	 * 0x4200 bytes for the IO.
1631 	 */
1632 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1633 					   BDEV_IO_NUM_CHILD_IOV, 2);
1634 	/* position 30 picked up the remaining bytes to the next boundary */
1635 	ut_expected_io_set_iov(expected_io, 0,
1636 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
1637 
1638 	/* position 31 picked the the rest of the trasnfer to get us to 0x4200 */
1639 	ut_expected_io_set_iov(expected_io, 1,
1640 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
1641 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1642 
1643 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 1, 0,
1644 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1645 	CU_ASSERT(rc == 0);
1646 	CU_ASSERT(g_io_done == false);
1647 
1648 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1649 	stub_complete_io(1);
1650 	CU_ASSERT(g_io_done == false);
1651 
1652 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1653 	stub_complete_io(1);
1654 	CU_ASSERT(g_io_done == true);
1655 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1656 
1657 	spdk_put_io_channel(io_ch);
1658 	spdk_bdev_close(desc);
1659 	free_bdev(bdev);
1660 	spdk_bdev_finish(bdev_fini_cb, NULL);
1661 	poll_threads();
1662 }
1663 
1664 static void
1665 bdev_io_split_with_io_wait(void)
1666 {
1667 	struct spdk_bdev *bdev;
1668 	struct spdk_bdev_desc *desc = NULL;
1669 	struct spdk_io_channel *io_ch;
1670 	struct spdk_bdev_channel *channel;
1671 	struct spdk_bdev_mgmt_channel *mgmt_ch;
1672 	struct spdk_bdev_opts bdev_opts = {
1673 		.bdev_io_pool_size = 2,
1674 		.bdev_io_cache_size = 1,
1675 	};
1676 	struct iovec iov[3];
1677 	struct ut_expected_io *expected_io;
1678 	int rc;
1679 
1680 	rc = spdk_bdev_set_opts(&bdev_opts);
1681 	CU_ASSERT(rc == 0);
1682 	spdk_bdev_initialize(bdev_init_cb, NULL);
1683 
1684 	bdev = allocate_bdev("bdev0");
1685 
1686 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1687 	CU_ASSERT(rc == 0);
1688 	CU_ASSERT(desc != NULL);
1689 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1690 	io_ch = spdk_bdev_get_io_channel(desc);
1691 	CU_ASSERT(io_ch != NULL);
1692 	channel = spdk_io_channel_get_ctx(io_ch);
1693 	mgmt_ch = channel->shared_resource->mgmt_ch;
1694 
1695 	bdev->optimal_io_boundary = 16;
1696 	bdev->split_on_optimal_io_boundary = true;
1697 
1698 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1699 	CU_ASSERT(rc == 0);
1700 
1701 	/* Now test that a single-vector command is split correctly.
1702 	 * Offset 14, length 8, payload 0xF000
1703 	 *  Child - Offset 14, length 2, payload 0xF000
1704 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1705 	 *
1706 	 * Set up the expected values before calling spdk_bdev_read_blocks
1707 	 */
1708 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1709 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1710 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1711 
1712 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1713 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1714 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1715 
1716 	/* The following children will be submitted sequentially due to the capacity of
1717 	 * spdk_bdev_io.
1718 	 */
1719 
1720 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
1721 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1722 	CU_ASSERT(rc == 0);
1723 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
1724 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1725 
1726 	/* Completing the first read I/O will submit the first child */
1727 	stub_complete_io(1);
1728 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
1729 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1730 
1731 	/* Completing the first child will submit the second child */
1732 	stub_complete_io(1);
1733 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1734 
1735 	/* Complete the second child I/O.  This should result in our callback getting
1736 	 * invoked since the parent I/O is now complete.
1737 	 */
1738 	stub_complete_io(1);
1739 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1740 
1741 	/* Now set up a more complex, multi-vector command that needs to be split,
1742 	 *  including splitting iovecs.
1743 	 */
1744 	iov[0].iov_base = (void *)0x10000;
1745 	iov[0].iov_len = 512;
1746 	iov[1].iov_base = (void *)0x20000;
1747 	iov[1].iov_len = 20 * 512;
1748 	iov[2].iov_base = (void *)0x30000;
1749 	iov[2].iov_len = 11 * 512;
1750 
1751 	g_io_done = false;
1752 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1753 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1754 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1755 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1756 
1757 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1758 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1759 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1760 
1761 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1762 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1763 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1764 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1765 
1766 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
1767 	CU_ASSERT(rc == 0);
1768 	CU_ASSERT(g_io_done == false);
1769 
1770 	/* The following children will be submitted sequentially due to the capacity of
1771 	 * spdk_bdev_io.
1772 	 */
1773 
1774 	/* Completing the first child will submit the second child */
1775 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1776 	stub_complete_io(1);
1777 	CU_ASSERT(g_io_done == false);
1778 
1779 	/* Completing the second child will submit the third child */
1780 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1781 	stub_complete_io(1);
1782 	CU_ASSERT(g_io_done == false);
1783 
1784 	/* Completing the third child will result in our callback getting invoked
1785 	 * since the parent I/O is now complete.
1786 	 */
1787 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1788 	stub_complete_io(1);
1789 	CU_ASSERT(g_io_done == true);
1790 
1791 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1792 
1793 	spdk_put_io_channel(io_ch);
1794 	spdk_bdev_close(desc);
1795 	free_bdev(bdev);
1796 	spdk_bdev_finish(bdev_fini_cb, NULL);
1797 	poll_threads();
1798 }
1799 
1800 static void
1801 bdev_io_alignment(void)
1802 {
1803 	struct spdk_bdev *bdev;
1804 	struct spdk_bdev_desc *desc = NULL;
1805 	struct spdk_io_channel *io_ch;
1806 	struct spdk_bdev_opts bdev_opts = {
1807 		.bdev_io_pool_size = 20,
1808 		.bdev_io_cache_size = 2,
1809 	};
1810 	int rc;
1811 	void *buf = NULL;
1812 	struct iovec iovs[2];
1813 	int iovcnt;
1814 	uint64_t alignment;
1815 
1816 	rc = spdk_bdev_set_opts(&bdev_opts);
1817 	CU_ASSERT(rc == 0);
1818 	spdk_bdev_initialize(bdev_init_cb, NULL);
1819 
1820 	fn_table.submit_request = stub_submit_request_get_buf;
1821 	bdev = allocate_bdev("bdev0");
1822 
1823 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1824 	CU_ASSERT(rc == 0);
1825 	CU_ASSERT(desc != NULL);
1826 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1827 	io_ch = spdk_bdev_get_io_channel(desc);
1828 	CU_ASSERT(io_ch != NULL);
1829 
1830 	/* Create aligned buffer */
1831 	rc = posix_memalign(&buf, 4096, 8192);
1832 	SPDK_CU_ASSERT_FATAL(rc == 0);
1833 
1834 	/* Pass aligned single buffer with no alignment required */
1835 	alignment = 1;
1836 	bdev->required_alignment = spdk_u32log2(alignment);
1837 
1838 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
1839 	CU_ASSERT(rc == 0);
1840 	stub_complete_io(1);
1841 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1842 				    alignment));
1843 
1844 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
1845 	CU_ASSERT(rc == 0);
1846 	stub_complete_io(1);
1847 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1848 				    alignment));
1849 
1850 	/* Pass unaligned single buffer with no alignment required */
1851 	alignment = 1;
1852 	bdev->required_alignment = spdk_u32log2(alignment);
1853 
1854 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
1855 	CU_ASSERT(rc == 0);
1856 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1857 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
1858 	stub_complete_io(1);
1859 
1860 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
1861 	CU_ASSERT(rc == 0);
1862 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1863 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
1864 	stub_complete_io(1);
1865 
1866 	/* Pass unaligned single buffer with 512 alignment required */
1867 	alignment = 512;
1868 	bdev->required_alignment = spdk_u32log2(alignment);
1869 
1870 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
1871 	CU_ASSERT(rc == 0);
1872 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
1873 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1874 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1875 				    alignment));
1876 	stub_complete_io(1);
1877 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1878 
1879 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
1880 	CU_ASSERT(rc == 0);
1881 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
1882 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1883 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1884 				    alignment));
1885 	stub_complete_io(1);
1886 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1887 
1888 	/* Pass unaligned single buffer with 4096 alignment required */
1889 	alignment = 4096;
1890 	bdev->required_alignment = spdk_u32log2(alignment);
1891 
1892 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
1893 	CU_ASSERT(rc == 0);
1894 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
1895 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1896 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1897 				    alignment));
1898 	stub_complete_io(1);
1899 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1900 
1901 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
1902 	CU_ASSERT(rc == 0);
1903 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
1904 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1905 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1906 				    alignment));
1907 	stub_complete_io(1);
1908 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1909 
1910 	/* Pass aligned iovs with no alignment required */
1911 	alignment = 1;
1912 	bdev->required_alignment = spdk_u32log2(alignment);
1913 
1914 	iovcnt = 1;
1915 	iovs[0].iov_base = buf;
1916 	iovs[0].iov_len = 512;
1917 
1918 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1919 	CU_ASSERT(rc == 0);
1920 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1921 	stub_complete_io(1);
1922 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
1923 
1924 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1925 	CU_ASSERT(rc == 0);
1926 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1927 	stub_complete_io(1);
1928 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
1929 
1930 	/* Pass unaligned iovs with no alignment required */
1931 	alignment = 1;
1932 	bdev->required_alignment = spdk_u32log2(alignment);
1933 
1934 	iovcnt = 2;
1935 	iovs[0].iov_base = buf + 16;
1936 	iovs[0].iov_len = 256;
1937 	iovs[1].iov_base = buf + 16 + 256 + 32;
1938 	iovs[1].iov_len = 256;
1939 
1940 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1941 	CU_ASSERT(rc == 0);
1942 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1943 	stub_complete_io(1);
1944 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
1945 
1946 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1947 	CU_ASSERT(rc == 0);
1948 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1949 	stub_complete_io(1);
1950 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
1951 
1952 	/* Pass unaligned iov with 2048 alignment required */
1953 	alignment = 2048;
1954 	bdev->required_alignment = spdk_u32log2(alignment);
1955 
1956 	iovcnt = 2;
1957 	iovs[0].iov_base = buf + 16;
1958 	iovs[0].iov_len = 256;
1959 	iovs[1].iov_base = buf + 16 + 256 + 32;
1960 	iovs[1].iov_len = 256;
1961 
1962 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1963 	CU_ASSERT(rc == 0);
1964 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
1965 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1966 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1967 				    alignment));
1968 	stub_complete_io(1);
1969 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1970 
1971 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1972 	CU_ASSERT(rc == 0);
1973 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
1974 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1975 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1976 				    alignment));
1977 	stub_complete_io(1);
1978 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1979 
1980 	/* Pass iov without allocated buffer without alignment required */
1981 	alignment = 1;
1982 	bdev->required_alignment = spdk_u32log2(alignment);
1983 
1984 	iovcnt = 1;
1985 	iovs[0].iov_base = NULL;
1986 	iovs[0].iov_len = 0;
1987 
1988 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1989 	CU_ASSERT(rc == 0);
1990 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1991 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1992 				    alignment));
1993 	stub_complete_io(1);
1994 
1995 	/* Pass iov without allocated buffer with 1024 alignment required */
1996 	alignment = 1024;
1997 	bdev->required_alignment = spdk_u32log2(alignment);
1998 
1999 	iovcnt = 1;
2000 	iovs[0].iov_base = NULL;
2001 	iovs[0].iov_len = 0;
2002 
2003 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2004 	CU_ASSERT(rc == 0);
2005 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2006 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2007 				    alignment));
2008 	stub_complete_io(1);
2009 
2010 	spdk_put_io_channel(io_ch);
2011 	spdk_bdev_close(desc);
2012 	free_bdev(bdev);
2013 	fn_table.submit_request = stub_submit_request;
2014 	spdk_bdev_finish(bdev_fini_cb, NULL);
2015 	poll_threads();
2016 
2017 	free(buf);
2018 }
2019 
2020 static void
2021 bdev_io_alignment_with_boundary(void)
2022 {
2023 	struct spdk_bdev *bdev;
2024 	struct spdk_bdev_desc *desc = NULL;
2025 	struct spdk_io_channel *io_ch;
2026 	struct spdk_bdev_opts bdev_opts = {
2027 		.bdev_io_pool_size = 20,
2028 		.bdev_io_cache_size = 2,
2029 	};
2030 	int rc;
2031 	void *buf = NULL;
2032 	struct iovec iovs[2];
2033 	int iovcnt;
2034 	uint64_t alignment;
2035 
2036 	rc = spdk_bdev_set_opts(&bdev_opts);
2037 	CU_ASSERT(rc == 0);
2038 	spdk_bdev_initialize(bdev_init_cb, NULL);
2039 
2040 	fn_table.submit_request = stub_submit_request_get_buf;
2041 	bdev = allocate_bdev("bdev0");
2042 
2043 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2044 	CU_ASSERT(rc == 0);
2045 	CU_ASSERT(desc != NULL);
2046 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2047 	io_ch = spdk_bdev_get_io_channel(desc);
2048 	CU_ASSERT(io_ch != NULL);
2049 
2050 	/* Create aligned buffer */
2051 	rc = posix_memalign(&buf, 4096, 131072);
2052 	SPDK_CU_ASSERT_FATAL(rc == 0);
2053 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2054 
2055 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
2056 	alignment = 512;
2057 	bdev->required_alignment = spdk_u32log2(alignment);
2058 	bdev->optimal_io_boundary = 2;
2059 	bdev->split_on_optimal_io_boundary = true;
2060 
2061 	iovcnt = 1;
2062 	iovs[0].iov_base = NULL;
2063 	iovs[0].iov_len = 512 * 3;
2064 
2065 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
2066 	CU_ASSERT(rc == 0);
2067 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2068 	stub_complete_io(2);
2069 
2070 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
2071 	alignment = 512;
2072 	bdev->required_alignment = spdk_u32log2(alignment);
2073 	bdev->optimal_io_boundary = 16;
2074 	bdev->split_on_optimal_io_boundary = true;
2075 
2076 	iovcnt = 1;
2077 	iovs[0].iov_base = NULL;
2078 	iovs[0].iov_len = 512 * 16;
2079 
2080 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
2081 	CU_ASSERT(rc == 0);
2082 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2083 	stub_complete_io(2);
2084 
2085 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
2086 	alignment = 512;
2087 	bdev->required_alignment = spdk_u32log2(alignment);
2088 	bdev->optimal_io_boundary = 128;
2089 	bdev->split_on_optimal_io_boundary = true;
2090 
2091 	iovcnt = 1;
2092 	iovs[0].iov_base = buf + 16;
2093 	iovs[0].iov_len = 512 * 160;
2094 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
2095 	CU_ASSERT(rc == 0);
2096 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2097 	stub_complete_io(2);
2098 
2099 	/* 512 * 3 with 2 IO boundary */
2100 	alignment = 512;
2101 	bdev->required_alignment = spdk_u32log2(alignment);
2102 	bdev->optimal_io_boundary = 2;
2103 	bdev->split_on_optimal_io_boundary = true;
2104 
2105 	iovcnt = 2;
2106 	iovs[0].iov_base = buf + 16;
2107 	iovs[0].iov_len = 512;
2108 	iovs[1].iov_base = buf + 16 + 512 + 32;
2109 	iovs[1].iov_len = 1024;
2110 
2111 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
2112 	CU_ASSERT(rc == 0);
2113 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2114 	stub_complete_io(2);
2115 
2116 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
2117 	CU_ASSERT(rc == 0);
2118 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2119 	stub_complete_io(2);
2120 
2121 	/* 512 * 64 with 32 IO boundary */
2122 	bdev->optimal_io_boundary = 32;
2123 	iovcnt = 2;
2124 	iovs[0].iov_base = buf + 16;
2125 	iovs[0].iov_len = 16384;
2126 	iovs[1].iov_base = buf + 16 + 16384 + 32;
2127 	iovs[1].iov_len = 16384;
2128 
2129 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
2130 	CU_ASSERT(rc == 0);
2131 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2132 	stub_complete_io(3);
2133 
2134 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
2135 	CU_ASSERT(rc == 0);
2136 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2137 	stub_complete_io(3);
2138 
2139 	/* 512 * 160 with 32 IO boundary */
2140 	iovcnt = 1;
2141 	iovs[0].iov_base = buf + 16;
2142 	iovs[0].iov_len = 16384 + 65536;
2143 
2144 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
2145 	CU_ASSERT(rc == 0);
2146 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2147 	stub_complete_io(6);
2148 
2149 	spdk_put_io_channel(io_ch);
2150 	spdk_bdev_close(desc);
2151 	free_bdev(bdev);
2152 	fn_table.submit_request = stub_submit_request;
2153 	spdk_bdev_finish(bdev_fini_cb, NULL);
2154 	poll_threads();
2155 
2156 	free(buf);
2157 }
2158 
2159 static void
2160 histogram_status_cb(void *cb_arg, int status)
2161 {
2162 	g_status = status;
2163 }
2164 
2165 static void
2166 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
2167 {
2168 	g_status = status;
2169 	g_histogram = histogram;
2170 }
2171 
2172 static void
2173 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
2174 		   uint64_t total, uint64_t so_far)
2175 {
2176 	g_count += count;
2177 }
2178 
2179 static void
2180 bdev_histograms(void)
2181 {
2182 	struct spdk_bdev *bdev;
2183 	struct spdk_bdev_desc *desc = NULL;
2184 	struct spdk_io_channel *ch;
2185 	struct spdk_histogram_data *histogram;
2186 	uint8_t buf[4096];
2187 	int rc;
2188 
2189 	spdk_bdev_initialize(bdev_init_cb, NULL);
2190 
2191 	bdev = allocate_bdev("bdev");
2192 
2193 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
2194 	CU_ASSERT(rc == 0);
2195 	CU_ASSERT(desc != NULL);
2196 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2197 
2198 	ch = spdk_bdev_get_io_channel(desc);
2199 	CU_ASSERT(ch != NULL);
2200 
2201 	/* Enable histogram */
2202 	g_status = -1;
2203 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
2204 	poll_threads();
2205 	CU_ASSERT(g_status == 0);
2206 	CU_ASSERT(bdev->internal.histogram_enabled == true);
2207 
2208 	/* Allocate histogram */
2209 	histogram = spdk_histogram_data_alloc();
2210 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
2211 
2212 	/* Check if histogram is zeroed */
2213 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
2214 	poll_threads();
2215 	CU_ASSERT(g_status == 0);
2216 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
2217 
2218 	g_count = 0;
2219 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
2220 
2221 	CU_ASSERT(g_count == 0);
2222 
2223 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
2224 	CU_ASSERT(rc == 0);
2225 
2226 	spdk_delay_us(10);
2227 	stub_complete_io(1);
2228 	poll_threads();
2229 
2230 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
2231 	CU_ASSERT(rc == 0);
2232 
2233 	spdk_delay_us(10);
2234 	stub_complete_io(1);
2235 	poll_threads();
2236 
2237 	/* Check if histogram gathered data from all I/O channels */
2238 	g_histogram = NULL;
2239 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
2240 	poll_threads();
2241 	CU_ASSERT(g_status == 0);
2242 	CU_ASSERT(bdev->internal.histogram_enabled == true);
2243 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
2244 
2245 	g_count = 0;
2246 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
2247 	CU_ASSERT(g_count == 2);
2248 
2249 	/* Disable histogram */
2250 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
2251 	poll_threads();
2252 	CU_ASSERT(g_status == 0);
2253 	CU_ASSERT(bdev->internal.histogram_enabled == false);
2254 
2255 	/* Try to run histogram commands on disabled bdev */
2256 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
2257 	poll_threads();
2258 	CU_ASSERT(g_status == -EFAULT);
2259 
2260 	spdk_histogram_data_free(histogram);
2261 	spdk_put_io_channel(ch);
2262 	spdk_bdev_close(desc);
2263 	free_bdev(bdev);
2264 	spdk_bdev_finish(bdev_fini_cb, NULL);
2265 	poll_threads();
2266 }
2267 
2268 static void
2269 _bdev_compare(bool emulated)
2270 {
2271 	struct spdk_bdev *bdev;
2272 	struct spdk_bdev_desc *desc = NULL;
2273 	struct spdk_io_channel *ioch;
2274 	struct ut_expected_io *expected_io;
2275 	uint64_t offset, num_blocks;
2276 	uint32_t num_completed;
2277 	char aa_buf[512];
2278 	char bb_buf[512];
2279 	struct iovec compare_iov;
2280 	uint8_t io_type;
2281 	int rc;
2282 
2283 	if (emulated) {
2284 		io_type = SPDK_BDEV_IO_TYPE_READ;
2285 	} else {
2286 		io_type = SPDK_BDEV_IO_TYPE_COMPARE;
2287 	}
2288 
2289 	memset(aa_buf, 0xaa, sizeof(aa_buf));
2290 	memset(bb_buf, 0xbb, sizeof(bb_buf));
2291 
2292 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
2293 
2294 	spdk_bdev_initialize(bdev_init_cb, NULL);
2295 	fn_table.submit_request = stub_submit_request_get_buf;
2296 	bdev = allocate_bdev("bdev");
2297 
2298 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
2299 	CU_ASSERT_EQUAL(rc, 0);
2300 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2301 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2302 	ioch = spdk_bdev_get_io_channel(desc);
2303 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
2304 
2305 	fn_table.submit_request = stub_submit_request_get_buf;
2306 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2307 
2308 	offset = 50;
2309 	num_blocks = 1;
2310 	compare_iov.iov_base = aa_buf;
2311 	compare_iov.iov_len = sizeof(aa_buf);
2312 
2313 	expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
2314 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2315 
2316 	g_io_done = false;
2317 	g_compare_read_buf = aa_buf;
2318 	g_compare_read_buf_len = sizeof(aa_buf);
2319 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
2320 	CU_ASSERT_EQUAL(rc, 0);
2321 	num_completed = stub_complete_io(1);
2322 	CU_ASSERT_EQUAL(num_completed, 1);
2323 	CU_ASSERT(g_io_done == true);
2324 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
2325 
2326 	expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
2327 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2328 
2329 	g_io_done = false;
2330 	g_compare_read_buf = bb_buf;
2331 	g_compare_read_buf_len = sizeof(bb_buf);
2332 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
2333 	CU_ASSERT_EQUAL(rc, 0);
2334 	num_completed = stub_complete_io(1);
2335 	CU_ASSERT_EQUAL(num_completed, 1);
2336 	CU_ASSERT(g_io_done == true);
2337 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
2338 
2339 	spdk_put_io_channel(ioch);
2340 	spdk_bdev_close(desc);
2341 	free_bdev(bdev);
2342 	fn_table.submit_request = stub_submit_request;
2343 	spdk_bdev_finish(bdev_fini_cb, NULL);
2344 	poll_threads();
2345 
2346 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
2347 
2348 	g_compare_read_buf = NULL;
2349 }
2350 
2351 static void
2352 bdev_compare(void)
2353 {
2354 	_bdev_compare(true);
2355 	_bdev_compare(false);
2356 }
2357 
2358 static void
2359 bdev_compare_and_write(void)
2360 {
2361 	struct spdk_bdev *bdev;
2362 	struct spdk_bdev_desc *desc = NULL;
2363 	struct spdk_io_channel *ioch;
2364 	struct ut_expected_io *expected_io;
2365 	uint64_t offset, num_blocks;
2366 	uint32_t num_completed;
2367 	char aa_buf[512];
2368 	char bb_buf[512];
2369 	char cc_buf[512];
2370 	char write_buf[512];
2371 	struct iovec compare_iov;
2372 	struct iovec write_iov;
2373 	int rc;
2374 
2375 	memset(aa_buf, 0xaa, sizeof(aa_buf));
2376 	memset(bb_buf, 0xbb, sizeof(bb_buf));
2377 	memset(cc_buf, 0xcc, sizeof(cc_buf));
2378 
2379 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
2380 
2381 	spdk_bdev_initialize(bdev_init_cb, NULL);
2382 	fn_table.submit_request = stub_submit_request_get_buf;
2383 	bdev = allocate_bdev("bdev");
2384 
2385 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
2386 	CU_ASSERT_EQUAL(rc, 0);
2387 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2388 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2389 	ioch = spdk_bdev_get_io_channel(desc);
2390 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
2391 
2392 	fn_table.submit_request = stub_submit_request_get_buf;
2393 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2394 
2395 	offset = 50;
2396 	num_blocks = 1;
2397 	compare_iov.iov_base = aa_buf;
2398 	compare_iov.iov_len = sizeof(aa_buf);
2399 	write_iov.iov_base = bb_buf;
2400 	write_iov.iov_len = sizeof(bb_buf);
2401 
2402 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
2403 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2404 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
2405 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2406 
2407 	g_io_done = false;
2408 	g_compare_read_buf = aa_buf;
2409 	g_compare_read_buf_len = sizeof(aa_buf);
2410 	memset(write_buf, 0, sizeof(write_buf));
2411 	g_compare_write_buf = write_buf;
2412 	g_compare_write_buf_len = sizeof(write_buf);
2413 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
2414 			offset, num_blocks, io_done, NULL);
2415 	/* Trigger range locking */
2416 	poll_threads();
2417 	CU_ASSERT_EQUAL(rc, 0);
2418 	num_completed = stub_complete_io(1);
2419 	CU_ASSERT_EQUAL(num_completed, 1);
2420 	CU_ASSERT(g_io_done == false);
2421 	num_completed = stub_complete_io(1);
2422 	/* Trigger range unlocking */
2423 	poll_threads();
2424 	CU_ASSERT_EQUAL(num_completed, 1);
2425 	CU_ASSERT(g_io_done == true);
2426 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
2427 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
2428 
2429 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
2430 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2431 
2432 	g_io_done = false;
2433 	g_compare_read_buf = cc_buf;
2434 	g_compare_read_buf_len = sizeof(cc_buf);
2435 	memset(write_buf, 0, sizeof(write_buf));
2436 	g_compare_write_buf = write_buf;
2437 	g_compare_write_buf_len = sizeof(write_buf);
2438 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
2439 			offset, num_blocks, io_done, NULL);
2440 	/* Trigger range locking */
2441 	poll_threads();
2442 	CU_ASSERT_EQUAL(rc, 0);
2443 	num_completed = stub_complete_io(1);
2444 	/* Trigger range unlocking earlier because we expect error here */
2445 	poll_threads();
2446 	CU_ASSERT_EQUAL(num_completed, 1);
2447 	CU_ASSERT(g_io_done == true);
2448 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
2449 	num_completed = stub_complete_io(1);
2450 	CU_ASSERT_EQUAL(num_completed, 0);
2451 
2452 	spdk_put_io_channel(ioch);
2453 	spdk_bdev_close(desc);
2454 	free_bdev(bdev);
2455 	fn_table.submit_request = stub_submit_request;
2456 	spdk_bdev_finish(bdev_fini_cb, NULL);
2457 	poll_threads();
2458 
2459 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
2460 
2461 	g_compare_read_buf = NULL;
2462 	g_compare_write_buf = NULL;
2463 }
2464 
2465 static void
2466 bdev_write_zeroes(void)
2467 {
2468 	struct spdk_bdev *bdev;
2469 	struct spdk_bdev_desc *desc = NULL;
2470 	struct spdk_io_channel *ioch;
2471 	struct ut_expected_io *expected_io;
2472 	uint64_t offset, num_io_blocks, num_blocks;
2473 	uint32_t num_completed, num_requests;
2474 	int rc;
2475 
2476 	spdk_bdev_initialize(bdev_init_cb, NULL);
2477 	bdev = allocate_bdev("bdev");
2478 
2479 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
2480 	CU_ASSERT_EQUAL(rc, 0);
2481 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2482 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2483 	ioch = spdk_bdev_get_io_channel(desc);
2484 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
2485 
2486 	fn_table.submit_request = stub_submit_request;
2487 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2488 
2489 	/* First test that if the bdev supports write_zeroes, the request won't be split */
2490 	bdev->md_len = 0;
2491 	bdev->blocklen = 4096;
2492 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
2493 
2494 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
2495 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2496 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
2497 	CU_ASSERT_EQUAL(rc, 0);
2498 	num_completed = stub_complete_io(1);
2499 	CU_ASSERT_EQUAL(num_completed, 1);
2500 
2501 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
2502 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
2503 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
2504 	num_requests = 2;
2505 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
2506 
2507 	for (offset = 0; offset < num_requests; ++offset) {
2508 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
2509 						   offset * num_io_blocks, num_io_blocks, 0);
2510 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2511 	}
2512 
2513 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
2514 	CU_ASSERT_EQUAL(rc, 0);
2515 	num_completed = stub_complete_io(num_requests);
2516 	CU_ASSERT_EQUAL(num_completed, num_requests);
2517 
2518 	/* Check that the splitting is correct if bdev has interleaved metadata */
2519 	bdev->md_interleave = true;
2520 	bdev->md_len = 64;
2521 	bdev->blocklen = 4096 + 64;
2522 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
2523 
2524 	num_requests = offset = 0;
2525 	while (offset < num_blocks) {
2526 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
2527 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
2528 						   offset, num_io_blocks, 0);
2529 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2530 		offset += num_io_blocks;
2531 		num_requests++;
2532 	}
2533 
2534 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
2535 	CU_ASSERT_EQUAL(rc, 0);
2536 	num_completed = stub_complete_io(num_requests);
2537 	CU_ASSERT_EQUAL(num_completed, num_requests);
2538 	num_completed = stub_complete_io(num_requests);
2539 	assert(num_completed == 0);
2540 
2541 	/* Check the the same for separate metadata buffer */
2542 	bdev->md_interleave = false;
2543 	bdev->md_len = 64;
2544 	bdev->blocklen = 4096;
2545 
2546 	num_requests = offset = 0;
2547 	while (offset < num_blocks) {
2548 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
2549 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
2550 						   offset, num_io_blocks, 0);
2551 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
2552 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2553 		offset += num_io_blocks;
2554 		num_requests++;
2555 	}
2556 
2557 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
2558 	CU_ASSERT_EQUAL(rc, 0);
2559 	num_completed = stub_complete_io(num_requests);
2560 	CU_ASSERT_EQUAL(num_completed, num_requests);
2561 
2562 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
2563 	spdk_put_io_channel(ioch);
2564 	spdk_bdev_close(desc);
2565 	free_bdev(bdev);
2566 	spdk_bdev_finish(bdev_fini_cb, NULL);
2567 	poll_threads();
2568 }
2569 
2570 static void
2571 bdev_open_while_hotremove(void)
2572 {
2573 	struct spdk_bdev *bdev;
2574 	struct spdk_bdev_desc *desc[2] = {};
2575 	int rc;
2576 
2577 	bdev = allocate_bdev("bdev");
2578 
2579 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
2580 	CU_ASSERT(rc == 0);
2581 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
2582 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
2583 
2584 	spdk_bdev_unregister(bdev, NULL, NULL);
2585 
2586 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
2587 	CU_ASSERT(rc == -ENODEV);
2588 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
2589 
2590 	spdk_bdev_close(desc[0]);
2591 	free_bdev(bdev);
2592 }
2593 
2594 static void
2595 bdev_close_while_hotremove(void)
2596 {
2597 	struct spdk_bdev *bdev;
2598 	struct spdk_bdev_desc *desc = NULL;
2599 	int rc = 0;
2600 
2601 	bdev = allocate_bdev("bdev");
2602 
2603 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
2604 	CU_ASSERT_EQUAL(rc, 0);
2605 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2606 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2607 
2608 	/* Simulate hot-unplug by unregistering bdev */
2609 	g_event_type1 = 0xFF;
2610 	g_unregister_arg = NULL;
2611 	g_unregister_rc = -1;
2612 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
2613 	/* Close device while remove event is in flight */
2614 	spdk_bdev_close(desc);
2615 
2616 	/* Ensure that unregister callback is delayed */
2617 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
2618 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
2619 
2620 	poll_threads();
2621 
2622 	/* Event callback shall not be issued because device was closed */
2623 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
2624 	/* Unregister callback is issued */
2625 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
2626 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
2627 
2628 	free_bdev(bdev);
2629 }
2630 
2631 static void
2632 bdev_open_ext(void)
2633 {
2634 	struct spdk_bdev *bdev;
2635 	struct spdk_bdev_desc *desc1 = NULL;
2636 	struct spdk_bdev_desc *desc2 = NULL;
2637 	int rc = 0;
2638 
2639 	bdev = allocate_bdev("bdev");
2640 
2641 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
2642 	CU_ASSERT_EQUAL(rc, -EINVAL);
2643 
2644 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
2645 	CU_ASSERT_EQUAL(rc, 0);
2646 
2647 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
2648 	CU_ASSERT_EQUAL(rc, 0);
2649 
2650 	g_event_type1 = 0xFF;
2651 	g_event_type2 = 0xFF;
2652 
2653 	/* Simulate hot-unplug by unregistering bdev */
2654 	spdk_bdev_unregister(bdev, NULL, NULL);
2655 	poll_threads();
2656 
2657 	/* Check if correct events have been triggered in event callback fn */
2658 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
2659 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
2660 
2661 	free_bdev(bdev);
2662 	poll_threads();
2663 }
2664 
2665 struct timeout_io_cb_arg {
2666 	struct iovec iov;
2667 	uint8_t type;
2668 };
2669 
2670 static int
2671 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
2672 {
2673 	struct spdk_bdev_io *bdev_io;
2674 	int n = 0;
2675 
2676 	if (!ch) {
2677 		return -1;
2678 	}
2679 
2680 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
2681 		n++;
2682 	}
2683 
2684 	return n;
2685 }
2686 
2687 static void
2688 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
2689 {
2690 	struct timeout_io_cb_arg *ctx = cb_arg;
2691 
2692 	ctx->type = bdev_io->type;
2693 	ctx->iov.iov_base = bdev_io->iov.iov_base;
2694 	ctx->iov.iov_len = bdev_io->iov.iov_len;
2695 }
2696 
2697 static void
2698 bdev_set_io_timeout(void)
2699 {
2700 	struct spdk_bdev *bdev;
2701 	struct spdk_bdev_desc *desc = NULL;
2702 	struct spdk_io_channel *io_ch = NULL;
2703 	struct spdk_bdev_channel *bdev_ch = NULL;
2704 	struct timeout_io_cb_arg cb_arg;
2705 
2706 	spdk_bdev_initialize(bdev_init_cb, NULL);
2707 
2708 	bdev = allocate_bdev("bdev");
2709 
2710 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
2711 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2712 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2713 
2714 	io_ch = spdk_bdev_get_io_channel(desc);
2715 	CU_ASSERT(io_ch != NULL);
2716 
2717 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
2718 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
2719 
2720 	/* This is the part1.
2721 	 * We will check the bdev_ch->io_submitted list
2722 	 * TO make sure that it can link IOs and only the user submitted IOs
2723 	 */
2724 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
2725 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
2726 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
2727 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
2728 	stub_complete_io(1);
2729 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
2730 	stub_complete_io(1);
2731 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
2732 
2733 	/* Split IO */
2734 	bdev->optimal_io_boundary = 16;
2735 	bdev->split_on_optimal_io_boundary = true;
2736 
2737 	/* Now test that a single-vector command is split correctly.
2738 	 * Offset 14, length 8, payload 0xF000
2739 	 *  Child - Offset 14, length 2, payload 0xF000
2740 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
2741 	 *
2742 	 * Set up the expected values before calling spdk_bdev_read_blocks
2743 	 */
2744 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
2745 	/* We count all submitted IOs including IO that are generated by splitting. */
2746 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
2747 	stub_complete_io(1);
2748 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
2749 	stub_complete_io(1);
2750 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
2751 
2752 	/* Also include the reset IO */
2753 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
2754 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
2755 	poll_threads();
2756 	stub_complete_io(1);
2757 	poll_threads();
2758 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
2759 
2760 	/* This is part2
2761 	 * Test the desc timeout poller register
2762 	 */
2763 
2764 	/* Successfully set the timeout */
2765 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
2766 	CU_ASSERT(desc->io_timeout_poller != NULL);
2767 	CU_ASSERT(desc->timeout_in_sec == 30);
2768 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
2769 	CU_ASSERT(desc->cb_arg == &cb_arg);
2770 
2771 	/* Change the timeout limit */
2772 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
2773 	CU_ASSERT(desc->io_timeout_poller != NULL);
2774 	CU_ASSERT(desc->timeout_in_sec == 20);
2775 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
2776 	CU_ASSERT(desc->cb_arg == &cb_arg);
2777 
2778 	/* Disable the timeout */
2779 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
2780 	CU_ASSERT(desc->io_timeout_poller == NULL);
2781 
2782 	/* This the part3
2783 	 * We will test to catch timeout IO and check whether the IO is
2784 	 * the submitted one.
2785 	 */
2786 	memset(&cb_arg, 0, sizeof(cb_arg));
2787 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
2788 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
2789 
2790 	/* Don't reach the limit */
2791 	spdk_delay_us(15 * spdk_get_ticks_hz());
2792 	poll_threads();
2793 	CU_ASSERT(cb_arg.type == 0);
2794 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
2795 	CU_ASSERT(cb_arg.iov.iov_len == 0);
2796 
2797 	/* 15 + 15 = 30 reach the limit */
2798 	spdk_delay_us(15 * spdk_get_ticks_hz());
2799 	poll_threads();
2800 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
2801 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
2802 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
2803 	stub_complete_io(1);
2804 
2805 	/* Use the same split IO above and check the IO */
2806 	memset(&cb_arg, 0, sizeof(cb_arg));
2807 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
2808 
2809 	/* The first child complete in time */
2810 	spdk_delay_us(15 * spdk_get_ticks_hz());
2811 	poll_threads();
2812 	stub_complete_io(1);
2813 	CU_ASSERT(cb_arg.type == 0);
2814 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
2815 	CU_ASSERT(cb_arg.iov.iov_len == 0);
2816 
2817 	/* The second child reach the limit */
2818 	spdk_delay_us(15 * spdk_get_ticks_hz());
2819 	poll_threads();
2820 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
2821 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
2822 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
2823 	stub_complete_io(1);
2824 
2825 	/* Also include the reset IO */
2826 	memset(&cb_arg, 0, sizeof(cb_arg));
2827 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
2828 	spdk_delay_us(30 * spdk_get_ticks_hz());
2829 	poll_threads();
2830 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
2831 	stub_complete_io(1);
2832 	poll_threads();
2833 
2834 	spdk_put_io_channel(io_ch);
2835 	spdk_bdev_close(desc);
2836 	free_bdev(bdev);
2837 	spdk_bdev_finish(bdev_fini_cb, NULL);
2838 	poll_threads();
2839 }
2840 
2841 static void
2842 lba_range_overlap(void)
2843 {
2844 	struct lba_range r1, r2;
2845 
2846 	r1.offset = 100;
2847 	r1.length = 50;
2848 
2849 	r2.offset = 0;
2850 	r2.length = 1;
2851 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
2852 
2853 	r2.offset = 0;
2854 	r2.length = 100;
2855 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
2856 
2857 	r2.offset = 0;
2858 	r2.length = 110;
2859 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2860 
2861 	r2.offset = 100;
2862 	r2.length = 10;
2863 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2864 
2865 	r2.offset = 110;
2866 	r2.length = 20;
2867 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2868 
2869 	r2.offset = 140;
2870 	r2.length = 150;
2871 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2872 
2873 	r2.offset = 130;
2874 	r2.length = 200;
2875 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2876 
2877 	r2.offset = 150;
2878 	r2.length = 100;
2879 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
2880 
2881 	r2.offset = 110;
2882 	r2.length = 0;
2883 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
2884 }
2885 
2886 static bool g_lock_lba_range_done;
2887 static bool g_unlock_lba_range_done;
2888 
2889 static void
2890 lock_lba_range_done(void *ctx, int status)
2891 {
2892 	g_lock_lba_range_done = true;
2893 }
2894 
2895 static void
2896 unlock_lba_range_done(void *ctx, int status)
2897 {
2898 	g_unlock_lba_range_done = true;
2899 }
2900 
2901 static void
2902 lock_lba_range_check_ranges(void)
2903 {
2904 	struct spdk_bdev *bdev;
2905 	struct spdk_bdev_desc *desc = NULL;
2906 	struct spdk_io_channel *io_ch;
2907 	struct spdk_bdev_channel *channel;
2908 	struct lba_range *range;
2909 	int ctx1;
2910 	int rc;
2911 
2912 	spdk_bdev_initialize(bdev_init_cb, NULL);
2913 
2914 	bdev = allocate_bdev("bdev0");
2915 
2916 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2917 	CU_ASSERT(rc == 0);
2918 	CU_ASSERT(desc != NULL);
2919 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2920 	io_ch = spdk_bdev_get_io_channel(desc);
2921 	CU_ASSERT(io_ch != NULL);
2922 	channel = spdk_io_channel_get_ctx(io_ch);
2923 
2924 	g_lock_lba_range_done = false;
2925 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
2926 	CU_ASSERT(rc == 0);
2927 	poll_threads();
2928 
2929 	CU_ASSERT(g_lock_lba_range_done == true);
2930 	range = TAILQ_FIRST(&channel->locked_ranges);
2931 	SPDK_CU_ASSERT_FATAL(range != NULL);
2932 	CU_ASSERT(range->offset == 20);
2933 	CU_ASSERT(range->length == 10);
2934 	CU_ASSERT(range->owner_ch == channel);
2935 
2936 	/* Unlocks must exactly match a lock. */
2937 	g_unlock_lba_range_done = false;
2938 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
2939 	CU_ASSERT(rc == -EINVAL);
2940 	CU_ASSERT(g_unlock_lba_range_done == false);
2941 
2942 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
2943 	CU_ASSERT(rc == 0);
2944 	spdk_delay_us(100);
2945 	poll_threads();
2946 
2947 	CU_ASSERT(g_unlock_lba_range_done == true);
2948 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
2949 
2950 	spdk_put_io_channel(io_ch);
2951 	spdk_bdev_close(desc);
2952 	free_bdev(bdev);
2953 	spdk_bdev_finish(bdev_fini_cb, NULL);
2954 	poll_threads();
2955 }
2956 
2957 static void
2958 lock_lba_range_with_io_outstanding(void)
2959 {
2960 	struct spdk_bdev *bdev;
2961 	struct spdk_bdev_desc *desc = NULL;
2962 	struct spdk_io_channel *io_ch;
2963 	struct spdk_bdev_channel *channel;
2964 	struct lba_range *range;
2965 	char buf[4096];
2966 	int ctx1;
2967 	int rc;
2968 
2969 	spdk_bdev_initialize(bdev_init_cb, NULL);
2970 
2971 	bdev = allocate_bdev("bdev0");
2972 
2973 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2974 	CU_ASSERT(rc == 0);
2975 	CU_ASSERT(desc != NULL);
2976 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2977 	io_ch = spdk_bdev_get_io_channel(desc);
2978 	CU_ASSERT(io_ch != NULL);
2979 	channel = spdk_io_channel_get_ctx(io_ch);
2980 
2981 	g_io_done = false;
2982 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
2983 	CU_ASSERT(rc == 0);
2984 
2985 	g_lock_lba_range_done = false;
2986 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
2987 	CU_ASSERT(rc == 0);
2988 	poll_threads();
2989 
2990 	/* The lock should immediately become valid, since there are no outstanding
2991 	 * write I/O.
2992 	 */
2993 	CU_ASSERT(g_io_done == false);
2994 	CU_ASSERT(g_lock_lba_range_done == true);
2995 	range = TAILQ_FIRST(&channel->locked_ranges);
2996 	SPDK_CU_ASSERT_FATAL(range != NULL);
2997 	CU_ASSERT(range->offset == 20);
2998 	CU_ASSERT(range->length == 10);
2999 	CU_ASSERT(range->owner_ch == channel);
3000 	CU_ASSERT(range->locked_ctx == &ctx1);
3001 
3002 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3003 	CU_ASSERT(rc == 0);
3004 	stub_complete_io(1);
3005 	spdk_delay_us(100);
3006 	poll_threads();
3007 
3008 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
3009 
3010 	/* Now try again, but with a write I/O. */
3011 	g_io_done = false;
3012 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
3013 	CU_ASSERT(rc == 0);
3014 
3015 	g_lock_lba_range_done = false;
3016 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3017 	CU_ASSERT(rc == 0);
3018 	poll_threads();
3019 
3020 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
3021 	 * But note that the range should be on the channel's locked_list, to make sure no
3022 	 * new write I/O are started.
3023 	 */
3024 	CU_ASSERT(g_io_done == false);
3025 	CU_ASSERT(g_lock_lba_range_done == false);
3026 	range = TAILQ_FIRST(&channel->locked_ranges);
3027 	SPDK_CU_ASSERT_FATAL(range != NULL);
3028 	CU_ASSERT(range->offset == 20);
3029 	CU_ASSERT(range->length == 10);
3030 
3031 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
3032 	 * our callback was invoked).
3033 	 */
3034 	stub_complete_io(1);
3035 	spdk_delay_us(100);
3036 	poll_threads();
3037 	CU_ASSERT(g_io_done == true);
3038 	CU_ASSERT(g_lock_lba_range_done == true);
3039 
3040 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
3041 	CU_ASSERT(rc == 0);
3042 	poll_threads();
3043 
3044 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
3045 
3046 	spdk_put_io_channel(io_ch);
3047 	spdk_bdev_close(desc);
3048 	free_bdev(bdev);
3049 	spdk_bdev_finish(bdev_fini_cb, NULL);
3050 	poll_threads();
3051 }
3052 
3053 static void
3054 lock_lba_range_overlapped(void)
3055 {
3056 	struct spdk_bdev *bdev;
3057 	struct spdk_bdev_desc *desc = NULL;
3058 	struct spdk_io_channel *io_ch;
3059 	struct spdk_bdev_channel *channel;
3060 	struct lba_range *range;
3061 	int ctx1;
3062 	int rc;
3063 
3064 	spdk_bdev_initialize(bdev_init_cb, NULL);
3065 
3066 	bdev = allocate_bdev("bdev0");
3067 
3068 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3069 	CU_ASSERT(rc == 0);
3070 	CU_ASSERT(desc != NULL);
3071 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3072 	io_ch = spdk_bdev_get_io_channel(desc);
3073 	CU_ASSERT(io_ch != NULL);
3074 	channel = spdk_io_channel_get_ctx(io_ch);
3075 
3076 	/* Lock range 20-29. */
3077 	g_lock_lba_range_done = false;
3078 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3079 	CU_ASSERT(rc == 0);
3080 	poll_threads();
3081 
3082 	CU_ASSERT(g_lock_lba_range_done == true);
3083 	range = TAILQ_FIRST(&channel->locked_ranges);
3084 	SPDK_CU_ASSERT_FATAL(range != NULL);
3085 	CU_ASSERT(range->offset == 20);
3086 	CU_ASSERT(range->length == 10);
3087 
3088 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
3089 	 * 20-29.
3090 	 */
3091 	g_lock_lba_range_done = false;
3092 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
3093 	CU_ASSERT(rc == 0);
3094 	poll_threads();
3095 
3096 	CU_ASSERT(g_lock_lba_range_done == false);
3097 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
3098 	SPDK_CU_ASSERT_FATAL(range != NULL);
3099 	CU_ASSERT(range->offset == 25);
3100 	CU_ASSERT(range->length == 15);
3101 
3102 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
3103 	 * no longer overlaps with an active lock.
3104 	 */
3105 	g_unlock_lba_range_done = false;
3106 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
3107 	CU_ASSERT(rc == 0);
3108 	poll_threads();
3109 
3110 	CU_ASSERT(g_unlock_lba_range_done == true);
3111 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
3112 	range = TAILQ_FIRST(&channel->locked_ranges);
3113 	SPDK_CU_ASSERT_FATAL(range != NULL);
3114 	CU_ASSERT(range->offset == 25);
3115 	CU_ASSERT(range->length == 15);
3116 
3117 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
3118 	 * currently active 25-39 lock.
3119 	 */
3120 	g_lock_lba_range_done = false;
3121 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
3122 	CU_ASSERT(rc == 0);
3123 	poll_threads();
3124 
3125 	CU_ASSERT(g_lock_lba_range_done == true);
3126 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
3127 	SPDK_CU_ASSERT_FATAL(range != NULL);
3128 	range = TAILQ_NEXT(range, tailq);
3129 	SPDK_CU_ASSERT_FATAL(range != NULL);
3130 	CU_ASSERT(range->offset == 40);
3131 	CU_ASSERT(range->length == 20);
3132 
3133 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
3134 	g_lock_lba_range_done = false;
3135 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
3136 	CU_ASSERT(rc == 0);
3137 	poll_threads();
3138 
3139 	CU_ASSERT(g_lock_lba_range_done == false);
3140 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
3141 	SPDK_CU_ASSERT_FATAL(range != NULL);
3142 	CU_ASSERT(range->offset == 35);
3143 	CU_ASSERT(range->length == 10);
3144 
3145 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
3146 	 * the 40-59 lock is still active.
3147 	 */
3148 	g_unlock_lba_range_done = false;
3149 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
3150 	CU_ASSERT(rc == 0);
3151 	poll_threads();
3152 
3153 	CU_ASSERT(g_unlock_lba_range_done == true);
3154 	CU_ASSERT(g_lock_lba_range_done == false);
3155 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
3156 	SPDK_CU_ASSERT_FATAL(range != NULL);
3157 	CU_ASSERT(range->offset == 35);
3158 	CU_ASSERT(range->length == 10);
3159 
3160 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
3161 	 * no longer any active overlapping locks.
3162 	 */
3163 	g_unlock_lba_range_done = false;
3164 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
3165 	CU_ASSERT(rc == 0);
3166 	poll_threads();
3167 
3168 	CU_ASSERT(g_unlock_lba_range_done == true);
3169 	CU_ASSERT(g_lock_lba_range_done == true);
3170 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
3171 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
3172 	SPDK_CU_ASSERT_FATAL(range != NULL);
3173 	CU_ASSERT(range->offset == 35);
3174 	CU_ASSERT(range->length == 10);
3175 
3176 	/* Finally, unlock 35-44. */
3177 	g_unlock_lba_range_done = false;
3178 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
3179 	CU_ASSERT(rc == 0);
3180 	poll_threads();
3181 
3182 	CU_ASSERT(g_unlock_lba_range_done == true);
3183 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
3184 
3185 	spdk_put_io_channel(io_ch);
3186 	spdk_bdev_close(desc);
3187 	free_bdev(bdev);
3188 	spdk_bdev_finish(bdev_fini_cb, NULL);
3189 	poll_threads();
3190 }
3191 
3192 static void
3193 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
3194 {
3195 	g_abort_done = true;
3196 	g_abort_status = bdev_io->internal.status;
3197 	spdk_bdev_free_io(bdev_io);
3198 }
3199 
3200 static void
3201 bdev_io_abort(void)
3202 {
3203 	struct spdk_bdev *bdev;
3204 	struct spdk_bdev_desc *desc = NULL;
3205 	struct spdk_io_channel *io_ch;
3206 	struct spdk_bdev_channel *channel;
3207 	struct spdk_bdev_mgmt_channel *mgmt_ch;
3208 	struct spdk_bdev_opts bdev_opts = {
3209 		.bdev_io_pool_size = 7,
3210 		.bdev_io_cache_size = 2,
3211 	};
3212 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
3213 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
3214 	int rc;
3215 
3216 	rc = spdk_bdev_set_opts(&bdev_opts);
3217 	CU_ASSERT(rc == 0);
3218 	spdk_bdev_initialize(bdev_init_cb, NULL);
3219 
3220 	bdev = allocate_bdev("bdev0");
3221 
3222 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3223 	CU_ASSERT(rc == 0);
3224 	CU_ASSERT(desc != NULL);
3225 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3226 	io_ch = spdk_bdev_get_io_channel(desc);
3227 	CU_ASSERT(io_ch != NULL);
3228 	channel = spdk_io_channel_get_ctx(io_ch);
3229 	mgmt_ch = channel->shared_resource->mgmt_ch;
3230 
3231 	g_abort_done = false;
3232 
3233 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
3234 
3235 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3236 	CU_ASSERT(rc == -ENOTSUP);
3237 
3238 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
3239 
3240 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
3241 	CU_ASSERT(rc == 0);
3242 	CU_ASSERT(g_abort_done == true);
3243 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
3244 
3245 	/* Test the case that the target I/O was successfully aborted. */
3246 	g_io_done = false;
3247 
3248 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
3249 	CU_ASSERT(rc == 0);
3250 	CU_ASSERT(g_io_done == false);
3251 
3252 	g_abort_done = false;
3253 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3254 
3255 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3256 	CU_ASSERT(rc == 0);
3257 	CU_ASSERT(g_io_done == true);
3258 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3259 	stub_complete_io(1);
3260 	CU_ASSERT(g_abort_done == true);
3261 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3262 
3263 	/* Test the case that the target I/O was not aborted because it completed
3264 	 * in the middle of execution of the abort.
3265 	 */
3266 	g_io_done = false;
3267 
3268 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
3269 	CU_ASSERT(rc == 0);
3270 	CU_ASSERT(g_io_done == false);
3271 
3272 	g_abort_done = false;
3273 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
3274 
3275 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3276 	CU_ASSERT(rc == 0);
3277 	CU_ASSERT(g_io_done == false);
3278 
3279 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3280 	stub_complete_io(1);
3281 	CU_ASSERT(g_io_done == true);
3282 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3283 
3284 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
3285 	stub_complete_io(1);
3286 	CU_ASSERT(g_abort_done == true);
3287 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3288 
3289 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3290 
3291 	bdev->optimal_io_boundary = 16;
3292 	bdev->split_on_optimal_io_boundary = true;
3293 
3294 	/* Test that a single-vector command which is split is aborted correctly.
3295 	 * Offset 14, length 8, payload 0xF000
3296 	 *  Child - Offset 14, length 2, payload 0xF000
3297 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
3298 	 */
3299 	g_io_done = false;
3300 
3301 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
3302 	CU_ASSERT(rc == 0);
3303 	CU_ASSERT(g_io_done == false);
3304 
3305 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3306 
3307 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3308 
3309 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3310 	CU_ASSERT(rc == 0);
3311 	CU_ASSERT(g_io_done == true);
3312 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3313 	stub_complete_io(2);
3314 	CU_ASSERT(g_abort_done == true);
3315 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3316 
3317 	/* Test that a multi-vector command that needs to be split by strip and then
3318 	 * needs to be split is aborted correctly. Abort is requested before the second
3319 	 * child I/O was submitted. The parent I/O should complete with failure without
3320 	 * submitting the second child I/O.
3321 	 */
3322 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
3323 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
3324 		iov[i].iov_len = 512;
3325 	}
3326 
3327 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
3328 	g_io_done = false;
3329 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
3330 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
3331 	CU_ASSERT(rc == 0);
3332 	CU_ASSERT(g_io_done == false);
3333 
3334 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3335 
3336 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3337 
3338 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3339 	CU_ASSERT(rc == 0);
3340 	CU_ASSERT(g_io_done == true);
3341 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3342 	stub_complete_io(1);
3343 	CU_ASSERT(g_abort_done == true);
3344 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3345 
3346 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3347 
3348 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3349 
3350 	bdev->optimal_io_boundary = 16;
3351 	g_io_done = false;
3352 
3353 	/* Test that a ingle-vector command which is split is aborted correctly.
3354 	 * Differently from the above, the child abort request will be submitted
3355 	 * sequentially due to the capacity of spdk_bdev_io.
3356 	 */
3357 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
3358 	CU_ASSERT(rc == 0);
3359 	CU_ASSERT(g_io_done == false);
3360 
3361 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
3362 
3363 	g_abort_done = false;
3364 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3365 
3366 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3367 	CU_ASSERT(rc == 0);
3368 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
3369 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
3370 
3371 	stub_complete_io(1);
3372 	CU_ASSERT(g_io_done == true);
3373 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3374 	stub_complete_io(3);
3375 	CU_ASSERT(g_abort_done == true);
3376 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3377 
3378 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3379 
3380 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3381 
3382 	spdk_put_io_channel(io_ch);
3383 	spdk_bdev_close(desc);
3384 	free_bdev(bdev);
3385 	spdk_bdev_finish(bdev_fini_cb, NULL);
3386 	poll_threads();
3387 }
3388 
3389 int
3390 main(int argc, char **argv)
3391 {
3392 	CU_pSuite		suite = NULL;
3393 	unsigned int		num_failures;
3394 
3395 	CU_set_error_action(CUEA_ABORT);
3396 	CU_initialize_registry();
3397 
3398 	suite = CU_add_suite("bdev", null_init, null_clean);
3399 
3400 	CU_ADD_TEST(suite, bytes_to_blocks_test);
3401 	CU_ADD_TEST(suite, num_blocks_test);
3402 	CU_ADD_TEST(suite, io_valid_test);
3403 	CU_ADD_TEST(suite, open_write_test);
3404 	CU_ADD_TEST(suite, alias_add_del_test);
3405 	CU_ADD_TEST(suite, get_device_stat_test);
3406 	CU_ADD_TEST(suite, bdev_io_types_test);
3407 	CU_ADD_TEST(suite, bdev_io_wait_test);
3408 	CU_ADD_TEST(suite, bdev_io_spans_boundary_test);
3409 	CU_ADD_TEST(suite, bdev_io_split_test);
3410 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
3411 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
3412 	CU_ADD_TEST(suite, bdev_io_alignment);
3413 	CU_ADD_TEST(suite, bdev_histograms);
3414 	CU_ADD_TEST(suite, bdev_write_zeroes);
3415 	CU_ADD_TEST(suite, bdev_compare_and_write);
3416 	CU_ADD_TEST(suite, bdev_compare);
3417 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
3418 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
3419 	CU_ADD_TEST(suite, bdev_open_ext);
3420 	CU_ADD_TEST(suite, bdev_set_io_timeout);
3421 	CU_ADD_TEST(suite, lba_range_overlap);
3422 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
3423 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
3424 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
3425 	CU_ADD_TEST(suite, bdev_io_abort);
3426 
3427 	allocate_cores(1);
3428 	allocate_threads(1);
3429 	set_thread(0);
3430 
3431 	CU_basic_set_mode(CU_BRM_VERBOSE);
3432 	CU_basic_run_tests();
3433 	num_failures = CU_get_number_of_failures();
3434 	CU_cleanup_registry();
3435 
3436 	free_threads();
3437 	free_cores();
3438 
3439 	return num_failures;
3440 }
3441