xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision 927f1fd57bd004df581518466ec4c1b8083e5d23)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
6  *   Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include "spdk_cunit.h"
36 
37 #include "common/lib/ut_multithread.c"
38 #include "unit/lib/json_mock.c"
39 
40 #include "spdk/config.h"
41 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
42 #undef SPDK_CONFIG_VTUNE
43 
44 #include "bdev/bdev.c"
45 
46 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
47 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
48 DEFINE_STUB(spdk_memory_domain_get_dma_device_id, const char *, (struct spdk_memory_domain *domain),
49 	    "test_domain");
50 DEFINE_STUB(spdk_memory_domain_get_dma_device_type, enum spdk_dma_device_type,
51 	    (struct spdk_memory_domain *domain), 0);
52 
53 static bool g_memory_domain_pull_data_called;
54 static bool g_memory_domain_push_data_called;
55 
56 DEFINE_RETURN_MOCK(spdk_memory_domain_pull_data, int);
57 int
58 spdk_memory_domain_pull_data(struct spdk_memory_domain *src_domain, void *src_domain_ctx,
59 			     struct iovec *src_iov, uint32_t src_iov_cnt, struct iovec *dst_iov, uint32_t dst_iov_cnt,
60 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
61 {
62 	g_memory_domain_pull_data_called = true;
63 	HANDLE_RETURN_MOCK(spdk_memory_domain_pull_data);
64 	cpl_cb(cpl_cb_arg, 0);
65 	return 0;
66 }
67 
68 DEFINE_RETURN_MOCK(spdk_memory_domain_push_data, int);
69 int
70 spdk_memory_domain_push_data(struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
71 			     struct iovec *dst_iov, uint32_t dst_iovcnt, struct iovec *src_iov, uint32_t src_iovcnt,
72 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
73 {
74 	g_memory_domain_push_data_called = true;
75 	HANDLE_RETURN_MOCK(spdk_memory_domain_push_data);
76 	cpl_cb(cpl_cb_arg, 0);
77 	return 0;
78 }
79 
80 int g_status;
81 int g_count;
82 enum spdk_bdev_event_type g_event_type1;
83 enum spdk_bdev_event_type g_event_type2;
84 enum spdk_bdev_event_type g_event_type3;
85 enum spdk_bdev_event_type g_event_type4;
86 struct spdk_histogram_data *g_histogram;
87 void *g_unregister_arg;
88 int g_unregister_rc;
89 
90 void
91 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
92 			 int *sc, int *sk, int *asc, int *ascq)
93 {
94 }
95 
96 static int
97 null_init(void)
98 {
99 	return 0;
100 }
101 
102 static int
103 null_clean(void)
104 {
105 	return 0;
106 }
107 
108 static int
109 stub_destruct(void *ctx)
110 {
111 	return 0;
112 }
113 
114 struct ut_expected_io {
115 	uint8_t				type;
116 	uint64_t			offset;
117 	uint64_t			length;
118 	int				iovcnt;
119 	struct iovec			iov[BDEV_IO_NUM_CHILD_IOV];
120 	void				*md_buf;
121 	struct spdk_bdev_ext_io_opts	*ext_io_opts;
122 	TAILQ_ENTRY(ut_expected_io)	link;
123 };
124 
125 struct bdev_ut_channel {
126 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
127 	uint32_t			outstanding_io_count;
128 	TAILQ_HEAD(, ut_expected_io)	expected_io;
129 };
130 
131 static bool g_io_done;
132 static struct spdk_bdev_io *g_bdev_io;
133 static enum spdk_bdev_io_status g_io_status;
134 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
135 static uint32_t g_bdev_ut_io_device;
136 static struct bdev_ut_channel *g_bdev_ut_channel;
137 static void *g_compare_read_buf;
138 static uint32_t g_compare_read_buf_len;
139 static void *g_compare_write_buf;
140 static uint32_t g_compare_write_buf_len;
141 static bool g_abort_done;
142 static enum spdk_bdev_io_status g_abort_status;
143 static void *g_zcopy_read_buf;
144 static uint32_t g_zcopy_read_buf_len;
145 static void *g_zcopy_write_buf;
146 static uint32_t g_zcopy_write_buf_len;
147 static struct spdk_bdev_io *g_zcopy_bdev_io;
148 
149 static struct ut_expected_io *
150 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
151 {
152 	struct ut_expected_io *expected_io;
153 
154 	expected_io = calloc(1, sizeof(*expected_io));
155 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
156 
157 	expected_io->type = type;
158 	expected_io->offset = offset;
159 	expected_io->length = length;
160 	expected_io->iovcnt = iovcnt;
161 
162 	return expected_io;
163 }
164 
165 static void
166 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
167 {
168 	expected_io->iov[pos].iov_base = base;
169 	expected_io->iov[pos].iov_len = len;
170 }
171 
172 static void
173 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
174 {
175 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
176 	struct ut_expected_io *expected_io;
177 	struct iovec *iov, *expected_iov;
178 	struct spdk_bdev_io *bio_to_abort;
179 	int i;
180 
181 	g_bdev_io = bdev_io;
182 
183 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
184 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
185 
186 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
187 		CU_ASSERT(g_compare_read_buf_len == len);
188 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
189 	}
190 
191 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
192 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
193 
194 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
195 		CU_ASSERT(g_compare_write_buf_len == len);
196 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
197 	}
198 
199 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
200 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
201 
202 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
203 		CU_ASSERT(g_compare_read_buf_len == len);
204 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
205 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
206 		}
207 	}
208 
209 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
210 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
211 			TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
212 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
213 					TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
214 					ch->outstanding_io_count--;
215 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
216 					break;
217 				}
218 			}
219 		}
220 	}
221 
222 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) {
223 		if (bdev_io->u.bdev.zcopy.start) {
224 			g_zcopy_bdev_io = bdev_io;
225 			if (bdev_io->u.bdev.zcopy.populate) {
226 				/* Start of a read */
227 				CU_ASSERT(g_zcopy_read_buf != NULL);
228 				CU_ASSERT(g_zcopy_read_buf_len > 0);
229 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_read_buf;
230 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_read_buf_len;
231 				bdev_io->u.bdev.iovcnt = 1;
232 			} else {
233 				/* Start of a write */
234 				CU_ASSERT(g_zcopy_write_buf != NULL);
235 				CU_ASSERT(g_zcopy_write_buf_len > 0);
236 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_write_buf;
237 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_write_buf_len;
238 				bdev_io->u.bdev.iovcnt = 1;
239 			}
240 		} else {
241 			if (bdev_io->u.bdev.zcopy.commit) {
242 				/* End of write */
243 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_write_buf);
244 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_write_buf_len);
245 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
246 				g_zcopy_write_buf = NULL;
247 				g_zcopy_write_buf_len = 0;
248 			} else {
249 				/* End of read */
250 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_read_buf);
251 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_read_buf_len);
252 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
253 				g_zcopy_read_buf = NULL;
254 				g_zcopy_read_buf_len = 0;
255 			}
256 		}
257 	}
258 
259 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
260 	ch->outstanding_io_count++;
261 
262 	expected_io = TAILQ_FIRST(&ch->expected_io);
263 	if (expected_io == NULL) {
264 		return;
265 	}
266 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
267 
268 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
269 		CU_ASSERT(bdev_io->type == expected_io->type);
270 	}
271 
272 	if (expected_io->md_buf != NULL) {
273 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
274 		if (bdev_io->u.bdev.ext_opts) {
275 			CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.ext_opts->metadata);
276 		}
277 	}
278 
279 	if (expected_io->length == 0) {
280 		free(expected_io);
281 		return;
282 	}
283 
284 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
285 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
286 
287 	if (expected_io->iovcnt == 0) {
288 		free(expected_io);
289 		/* UNMAP, WRITE_ZEROES and FLUSH don't have iovs, so we can just return now. */
290 		return;
291 	}
292 
293 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
294 	for (i = 0; i < expected_io->iovcnt; i++) {
295 		expected_iov = &expected_io->iov[i];
296 		if (bdev_io->internal.orig_iovcnt == 0) {
297 			iov = &bdev_io->u.bdev.iovs[i];
298 		} else {
299 			iov = bdev_io->internal.orig_iovs;
300 		}
301 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
302 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
303 	}
304 
305 	if (expected_io->ext_io_opts) {
306 		CU_ASSERT(expected_io->ext_io_opts == bdev_io->internal.ext_opts)
307 	}
308 
309 	free(expected_io);
310 }
311 
312 static void
313 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
314 			       struct spdk_bdev_io *bdev_io, bool success)
315 {
316 	CU_ASSERT(success == true);
317 
318 	stub_submit_request(_ch, bdev_io);
319 }
320 
321 static void
322 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
323 {
324 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
325 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
326 }
327 
328 static uint32_t
329 stub_complete_io(uint32_t num_to_complete)
330 {
331 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
332 	struct spdk_bdev_io *bdev_io;
333 	static enum spdk_bdev_io_status io_status;
334 	uint32_t num_completed = 0;
335 
336 	while (num_completed < num_to_complete) {
337 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
338 			break;
339 		}
340 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
341 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
342 		ch->outstanding_io_count--;
343 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
344 			    g_io_exp_status;
345 		spdk_bdev_io_complete(bdev_io, io_status);
346 		num_completed++;
347 	}
348 
349 	return num_completed;
350 }
351 
352 static struct spdk_io_channel *
353 bdev_ut_get_io_channel(void *ctx)
354 {
355 	return spdk_get_io_channel(&g_bdev_ut_io_device);
356 }
357 
358 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
359 	[SPDK_BDEV_IO_TYPE_READ]		= true,
360 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
361 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
362 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
363 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
364 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
365 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
366 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
367 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
368 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
369 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
370 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
371 };
372 
373 static void
374 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
375 {
376 	g_io_types_supported[io_type] = enable;
377 }
378 
379 static bool
380 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
381 {
382 	return g_io_types_supported[io_type];
383 }
384 
385 static struct spdk_bdev_fn_table fn_table = {
386 	.destruct = stub_destruct,
387 	.submit_request = stub_submit_request,
388 	.get_io_channel = bdev_ut_get_io_channel,
389 	.io_type_supported = stub_io_type_supported,
390 };
391 
392 static int
393 bdev_ut_create_ch(void *io_device, void *ctx_buf)
394 {
395 	struct bdev_ut_channel *ch = ctx_buf;
396 
397 	CU_ASSERT(g_bdev_ut_channel == NULL);
398 	g_bdev_ut_channel = ch;
399 
400 	TAILQ_INIT(&ch->outstanding_io);
401 	ch->outstanding_io_count = 0;
402 	TAILQ_INIT(&ch->expected_io);
403 	return 0;
404 }
405 
406 static void
407 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
408 {
409 	CU_ASSERT(g_bdev_ut_channel != NULL);
410 	g_bdev_ut_channel = NULL;
411 }
412 
413 struct spdk_bdev_module bdev_ut_if;
414 
415 static int
416 bdev_ut_module_init(void)
417 {
418 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
419 				sizeof(struct bdev_ut_channel), NULL);
420 	spdk_bdev_module_init_done(&bdev_ut_if);
421 	return 0;
422 }
423 
424 static void
425 bdev_ut_module_fini(void)
426 {
427 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
428 }
429 
430 struct spdk_bdev_module bdev_ut_if = {
431 	.name = "bdev_ut",
432 	.module_init = bdev_ut_module_init,
433 	.module_fini = bdev_ut_module_fini,
434 	.async_init = true,
435 };
436 
437 static void vbdev_ut_examine(struct spdk_bdev *bdev);
438 
439 static int
440 vbdev_ut_module_init(void)
441 {
442 	return 0;
443 }
444 
445 static void
446 vbdev_ut_module_fini(void)
447 {
448 }
449 
450 struct spdk_bdev_module vbdev_ut_if = {
451 	.name = "vbdev_ut",
452 	.module_init = vbdev_ut_module_init,
453 	.module_fini = vbdev_ut_module_fini,
454 	.examine_config = vbdev_ut_examine,
455 };
456 
457 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
458 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
459 
460 static void
461 vbdev_ut_examine(struct spdk_bdev *bdev)
462 {
463 	spdk_bdev_module_examine_done(&vbdev_ut_if);
464 }
465 
466 static struct spdk_bdev *
467 allocate_bdev(char *name)
468 {
469 	struct spdk_bdev *bdev;
470 	int rc;
471 
472 	bdev = calloc(1, sizeof(*bdev));
473 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
474 
475 	bdev->name = name;
476 	bdev->fn_table = &fn_table;
477 	bdev->module = &bdev_ut_if;
478 	bdev->blockcnt = 1024;
479 	bdev->blocklen = 512;
480 
481 	rc = spdk_bdev_register(bdev);
482 	CU_ASSERT(rc == 0);
483 
484 	return bdev;
485 }
486 
487 static struct spdk_bdev *
488 allocate_vbdev(char *name)
489 {
490 	struct spdk_bdev *bdev;
491 	int rc;
492 
493 	bdev = calloc(1, sizeof(*bdev));
494 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
495 
496 	bdev->name = name;
497 	bdev->fn_table = &fn_table;
498 	bdev->module = &vbdev_ut_if;
499 
500 	rc = spdk_bdev_register(bdev);
501 	CU_ASSERT(rc == 0);
502 
503 	return bdev;
504 }
505 
506 static void
507 free_bdev(struct spdk_bdev *bdev)
508 {
509 	spdk_bdev_unregister(bdev, NULL, NULL);
510 	poll_threads();
511 	memset(bdev, 0xFF, sizeof(*bdev));
512 	free(bdev);
513 }
514 
515 static void
516 free_vbdev(struct spdk_bdev *bdev)
517 {
518 	spdk_bdev_unregister(bdev, NULL, NULL);
519 	poll_threads();
520 	memset(bdev, 0xFF, sizeof(*bdev));
521 	free(bdev);
522 }
523 
524 static void
525 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
526 {
527 	const char *bdev_name;
528 
529 	CU_ASSERT(bdev != NULL);
530 	CU_ASSERT(rc == 0);
531 	bdev_name = spdk_bdev_get_name(bdev);
532 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
533 
534 	free(stat);
535 
536 	*(bool *)cb_arg = true;
537 }
538 
539 static void
540 bdev_unregister_cb(void *cb_arg, int rc)
541 {
542 	g_unregister_arg = cb_arg;
543 	g_unregister_rc = rc;
544 }
545 
546 static void
547 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
548 {
549 }
550 
551 static void
552 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
553 {
554 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
555 
556 	g_event_type1 = type;
557 	if (SPDK_BDEV_EVENT_REMOVE == type) {
558 		spdk_bdev_close(desc);
559 	}
560 }
561 
562 static void
563 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
564 {
565 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
566 
567 	g_event_type2 = type;
568 	if (SPDK_BDEV_EVENT_REMOVE == type) {
569 		spdk_bdev_close(desc);
570 	}
571 }
572 
573 static void
574 bdev_open_cb3(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
575 {
576 	g_event_type3 = type;
577 }
578 
579 static void
580 bdev_open_cb4(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
581 {
582 	g_event_type4 = type;
583 }
584 
585 static void
586 get_device_stat_test(void)
587 {
588 	struct spdk_bdev *bdev;
589 	struct spdk_bdev_io_stat *stat;
590 	bool done;
591 
592 	bdev = allocate_bdev("bdev0");
593 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
594 	if (stat == NULL) {
595 		free_bdev(bdev);
596 		return;
597 	}
598 
599 	done = false;
600 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
601 	while (!done) { poll_threads(); }
602 
603 	free_bdev(bdev);
604 }
605 
606 static void
607 open_write_test(void)
608 {
609 	struct spdk_bdev *bdev[9];
610 	struct spdk_bdev_desc *desc[9] = {};
611 	int rc;
612 
613 	/*
614 	 * Create a tree of bdevs to test various open w/ write cases.
615 	 *
616 	 * bdev0 through bdev3 are physical block devices, such as NVMe
617 	 * namespaces or Ceph block devices.
618 	 *
619 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
620 	 * caching or RAID use cases.
621 	 *
622 	 * bdev5 through bdev7 are all virtual bdevs with the same base
623 	 * bdev (except bdev7). This models partitioning or logical volume
624 	 * use cases.
625 	 *
626 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
627 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
628 	 * models caching, RAID, partitioning or logical volumes use cases.
629 	 *
630 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
631 	 * base bdevs are themselves virtual bdevs.
632 	 *
633 	 *                bdev8
634 	 *                  |
635 	 *            +----------+
636 	 *            |          |
637 	 *          bdev4      bdev5   bdev6   bdev7
638 	 *            |          |       |       |
639 	 *        +---+---+      +---+   +   +---+---+
640 	 *        |       |           \  |  /         \
641 	 *      bdev0   bdev1          bdev2         bdev3
642 	 */
643 
644 	bdev[0] = allocate_bdev("bdev0");
645 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
646 	CU_ASSERT(rc == 0);
647 
648 	bdev[1] = allocate_bdev("bdev1");
649 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
650 	CU_ASSERT(rc == 0);
651 
652 	bdev[2] = allocate_bdev("bdev2");
653 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
654 	CU_ASSERT(rc == 0);
655 
656 	bdev[3] = allocate_bdev("bdev3");
657 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
658 	CU_ASSERT(rc == 0);
659 
660 	bdev[4] = allocate_vbdev("bdev4");
661 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
662 	CU_ASSERT(rc == 0);
663 
664 	bdev[5] = allocate_vbdev("bdev5");
665 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
666 	CU_ASSERT(rc == 0);
667 
668 	bdev[6] = allocate_vbdev("bdev6");
669 
670 	bdev[7] = allocate_vbdev("bdev7");
671 
672 	bdev[8] = allocate_vbdev("bdev8");
673 
674 	/* Open bdev0 read-only.  This should succeed. */
675 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
676 	CU_ASSERT(rc == 0);
677 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
678 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
679 	spdk_bdev_close(desc[0]);
680 
681 	/*
682 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
683 	 * by a vbdev module.
684 	 */
685 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
686 	CU_ASSERT(rc == -EPERM);
687 
688 	/*
689 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
690 	 * by a vbdev module.
691 	 */
692 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
693 	CU_ASSERT(rc == -EPERM);
694 
695 	/* Open bdev4 read-only.  This should succeed. */
696 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
697 	CU_ASSERT(rc == 0);
698 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
699 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
700 	spdk_bdev_close(desc[4]);
701 
702 	/*
703 	 * Open bdev8 read/write.  This should succeed since it is a leaf
704 	 * bdev.
705 	 */
706 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
707 	CU_ASSERT(rc == 0);
708 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
709 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
710 	spdk_bdev_close(desc[8]);
711 
712 	/*
713 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
714 	 * by a vbdev module.
715 	 */
716 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
717 	CU_ASSERT(rc == -EPERM);
718 
719 	/* Open bdev4 read-only.  This should succeed. */
720 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
721 	CU_ASSERT(rc == 0);
722 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
723 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
724 	spdk_bdev_close(desc[5]);
725 
726 	free_vbdev(bdev[8]);
727 
728 	free_vbdev(bdev[5]);
729 	free_vbdev(bdev[6]);
730 	free_vbdev(bdev[7]);
731 
732 	free_vbdev(bdev[4]);
733 
734 	free_bdev(bdev[0]);
735 	free_bdev(bdev[1]);
736 	free_bdev(bdev[2]);
737 	free_bdev(bdev[3]);
738 }
739 
740 static void
741 claim_test(void)
742 {
743 	struct spdk_bdev *bdev;
744 	struct spdk_bdev_desc *desc, *open_desc;
745 	int rc;
746 	uint32_t count;
747 
748 	/*
749 	 * A vbdev that uses a read-only bdev may need it to remain read-only.
750 	 * To do so, it opens the bdev read-only, then claims it without
751 	 * passing a spdk_bdev_desc.
752 	 */
753 	bdev = allocate_bdev("bdev0");
754 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
755 	CU_ASSERT(rc == 0);
756 	CU_ASSERT(desc->write == false);
757 
758 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
759 	CU_ASSERT(rc == 0);
760 	CU_ASSERT(bdev->internal.claim_module == &bdev_ut_if);
761 
762 	/* There should be only one open descriptor and it should still be ro */
763 	count = 0;
764 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
765 		CU_ASSERT(open_desc == desc);
766 		CU_ASSERT(!open_desc->write);
767 		count++;
768 	}
769 	CU_ASSERT(count == 1);
770 
771 	/* A read-only bdev is upgraded to read-write if desc is passed. */
772 	spdk_bdev_module_release_bdev(bdev);
773 	rc = spdk_bdev_module_claim_bdev(bdev, desc, &bdev_ut_if);
774 	CU_ASSERT(rc == 0);
775 	CU_ASSERT(bdev->internal.claim_module == &bdev_ut_if);
776 
777 	/* There should be only one open descriptor and it should be rw */
778 	count = 0;
779 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
780 		CU_ASSERT(open_desc == desc);
781 		CU_ASSERT(open_desc->write);
782 		count++;
783 	}
784 	CU_ASSERT(count == 1);
785 
786 	spdk_bdev_close(desc);
787 	free_bdev(bdev);
788 }
789 
790 static void
791 bytes_to_blocks_test(void)
792 {
793 	struct spdk_bdev bdev;
794 	uint64_t offset_blocks, num_blocks;
795 
796 	memset(&bdev, 0, sizeof(bdev));
797 
798 	bdev.blocklen = 512;
799 
800 	/* All parameters valid */
801 	offset_blocks = 0;
802 	num_blocks = 0;
803 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
804 	CU_ASSERT(offset_blocks == 1);
805 	CU_ASSERT(num_blocks == 2);
806 
807 	/* Offset not a block multiple */
808 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
809 
810 	/* Length not a block multiple */
811 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
812 
813 	/* In case blocklen not the power of two */
814 	bdev.blocklen = 100;
815 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
816 	CU_ASSERT(offset_blocks == 1);
817 	CU_ASSERT(num_blocks == 2);
818 
819 	/* Offset not a block multiple */
820 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
821 
822 	/* Length not a block multiple */
823 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
824 }
825 
826 static void
827 num_blocks_test(void)
828 {
829 	struct spdk_bdev bdev;
830 	struct spdk_bdev_desc *desc = NULL;
831 	int rc;
832 
833 	memset(&bdev, 0, sizeof(bdev));
834 	bdev.name = "num_blocks";
835 	bdev.fn_table = &fn_table;
836 	bdev.module = &bdev_ut_if;
837 	spdk_bdev_register(&bdev);
838 	spdk_bdev_notify_blockcnt_change(&bdev, 50);
839 
840 	/* Growing block number */
841 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
842 	/* Shrinking block number */
843 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
844 
845 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc, &desc);
846 	CU_ASSERT(rc == 0);
847 	SPDK_CU_ASSERT_FATAL(desc != NULL);
848 	CU_ASSERT(&bdev == spdk_bdev_desc_get_bdev(desc));
849 
850 	/* Growing block number */
851 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
852 	/* Shrinking block number */
853 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
854 
855 	g_event_type1 = 0xFF;
856 	/* Growing block number */
857 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
858 
859 	poll_threads();
860 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
861 
862 	g_event_type1 = 0xFF;
863 	/* Growing block number and closing */
864 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
865 
866 	spdk_bdev_close(desc);
867 	spdk_bdev_unregister(&bdev, NULL, NULL);
868 
869 	poll_threads();
870 
871 	/* Callback is not called for closed device */
872 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
873 }
874 
875 static void
876 io_valid_test(void)
877 {
878 	struct spdk_bdev bdev;
879 
880 	memset(&bdev, 0, sizeof(bdev));
881 
882 	bdev.blocklen = 512;
883 	CU_ASSERT(pthread_mutex_init(&bdev.internal.mutex, NULL) == 0);
884 
885 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
886 
887 	/* All parameters valid */
888 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
889 
890 	/* Last valid block */
891 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
892 
893 	/* Offset past end of bdev */
894 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
895 
896 	/* Offset + length past end of bdev */
897 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
898 
899 	/* Offset near end of uint64_t range (2^64 - 1) */
900 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
901 
902 	CU_ASSERT(pthread_mutex_destroy(&bdev.internal.mutex) == 0);
903 }
904 
905 static void
906 alias_add_del_test(void)
907 {
908 	struct spdk_bdev *bdev[3];
909 	int rc;
910 
911 	/* Creating and registering bdevs */
912 	bdev[0] = allocate_bdev("bdev0");
913 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
914 
915 	bdev[1] = allocate_bdev("bdev1");
916 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
917 
918 	bdev[2] = allocate_bdev("bdev2");
919 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
920 
921 	poll_threads();
922 
923 	/*
924 	 * Trying adding an alias identical to name.
925 	 * Alias is identical to name, so it can not be added to aliases list
926 	 */
927 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
928 	CU_ASSERT(rc == -EEXIST);
929 
930 	/*
931 	 * Trying to add empty alias,
932 	 * this one should fail
933 	 */
934 	rc = spdk_bdev_alias_add(bdev[0], NULL);
935 	CU_ASSERT(rc == -EINVAL);
936 
937 	/* Trying adding same alias to two different registered bdevs */
938 
939 	/* Alias is used first time, so this one should pass */
940 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
941 	CU_ASSERT(rc == 0);
942 
943 	/* Alias was added to another bdev, so this one should fail */
944 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
945 	CU_ASSERT(rc == -EEXIST);
946 
947 	/* Alias is used first time, so this one should pass */
948 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
949 	CU_ASSERT(rc == 0);
950 
951 	/* Trying removing an alias from registered bdevs */
952 
953 	/* Alias is not on a bdev aliases list, so this one should fail */
954 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
955 	CU_ASSERT(rc == -ENOENT);
956 
957 	/* Alias is present on a bdev aliases list, so this one should pass */
958 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
959 	CU_ASSERT(rc == 0);
960 
961 	/* Alias is present on a bdev aliases list, so this one should pass */
962 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
963 	CU_ASSERT(rc == 0);
964 
965 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
966 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
967 	CU_ASSERT(rc != 0);
968 
969 	/* Trying to del all alias from empty alias list */
970 	spdk_bdev_alias_del_all(bdev[2]);
971 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
972 
973 	/* Trying to del all alias from non-empty alias list */
974 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
975 	CU_ASSERT(rc == 0);
976 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
977 	CU_ASSERT(rc == 0);
978 	spdk_bdev_alias_del_all(bdev[2]);
979 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
980 
981 	/* Unregister and free bdevs */
982 	spdk_bdev_unregister(bdev[0], NULL, NULL);
983 	spdk_bdev_unregister(bdev[1], NULL, NULL);
984 	spdk_bdev_unregister(bdev[2], NULL, NULL);
985 
986 	poll_threads();
987 
988 	free(bdev[0]);
989 	free(bdev[1]);
990 	free(bdev[2]);
991 }
992 
993 static void
994 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
995 {
996 	g_io_done = true;
997 	g_io_status = bdev_io->internal.status;
998 	if ((bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) &&
999 	    (bdev_io->u.bdev.zcopy.start)) {
1000 		g_zcopy_bdev_io = bdev_io;
1001 	} else {
1002 		spdk_bdev_free_io(bdev_io);
1003 		g_zcopy_bdev_io = NULL;
1004 	}
1005 }
1006 
1007 static void
1008 bdev_init_cb(void *arg, int rc)
1009 {
1010 	CU_ASSERT(rc == 0);
1011 }
1012 
1013 static void
1014 bdev_fini_cb(void *arg)
1015 {
1016 }
1017 
1018 struct bdev_ut_io_wait_entry {
1019 	struct spdk_bdev_io_wait_entry	entry;
1020 	struct spdk_io_channel		*io_ch;
1021 	struct spdk_bdev_desc		*desc;
1022 	bool				submitted;
1023 };
1024 
1025 static void
1026 io_wait_cb(void *arg)
1027 {
1028 	struct bdev_ut_io_wait_entry *entry = arg;
1029 	int rc;
1030 
1031 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
1032 	CU_ASSERT(rc == 0);
1033 	entry->submitted = true;
1034 }
1035 
1036 static void
1037 bdev_io_types_test(void)
1038 {
1039 	struct spdk_bdev *bdev;
1040 	struct spdk_bdev_desc *desc = NULL;
1041 	struct spdk_io_channel *io_ch;
1042 	struct spdk_bdev_opts bdev_opts = {};
1043 	int rc;
1044 
1045 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1046 	bdev_opts.bdev_io_pool_size = 4;
1047 	bdev_opts.bdev_io_cache_size = 2;
1048 
1049 	rc = spdk_bdev_set_opts(&bdev_opts);
1050 	CU_ASSERT(rc == 0);
1051 	spdk_bdev_initialize(bdev_init_cb, NULL);
1052 	poll_threads();
1053 
1054 	bdev = allocate_bdev("bdev0");
1055 
1056 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1057 	CU_ASSERT(rc == 0);
1058 	poll_threads();
1059 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1060 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1061 	io_ch = spdk_bdev_get_io_channel(desc);
1062 	CU_ASSERT(io_ch != NULL);
1063 
1064 	/* WRITE and WRITE ZEROES are not supported */
1065 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
1066 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
1067 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
1068 	CU_ASSERT(rc == -ENOTSUP);
1069 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
1070 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
1071 
1072 	/* NVME_IO, NVME_IO_MD and NVME_ADMIN are not supported */
1073 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, false);
1074 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, false);
1075 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, false);
1076 	rc = spdk_bdev_nvme_io_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1077 	CU_ASSERT(rc == -ENOTSUP);
1078 	rc = spdk_bdev_nvme_io_passthru_md(desc, io_ch, NULL, NULL, 0, NULL, 0, NULL, NULL);
1079 	CU_ASSERT(rc == -ENOTSUP);
1080 	rc = spdk_bdev_nvme_admin_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1081 	CU_ASSERT(rc == -ENOTSUP);
1082 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, true);
1083 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, true);
1084 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, true);
1085 
1086 	spdk_put_io_channel(io_ch);
1087 	spdk_bdev_close(desc);
1088 	free_bdev(bdev);
1089 	spdk_bdev_finish(bdev_fini_cb, NULL);
1090 	poll_threads();
1091 }
1092 
1093 static void
1094 bdev_io_wait_test(void)
1095 {
1096 	struct spdk_bdev *bdev;
1097 	struct spdk_bdev_desc *desc = NULL;
1098 	struct spdk_io_channel *io_ch;
1099 	struct spdk_bdev_opts bdev_opts = {};
1100 	struct bdev_ut_io_wait_entry io_wait_entry;
1101 	struct bdev_ut_io_wait_entry io_wait_entry2;
1102 	int rc;
1103 
1104 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1105 	bdev_opts.bdev_io_pool_size = 4;
1106 	bdev_opts.bdev_io_cache_size = 2;
1107 
1108 	rc = spdk_bdev_set_opts(&bdev_opts);
1109 	CU_ASSERT(rc == 0);
1110 	spdk_bdev_initialize(bdev_init_cb, NULL);
1111 	poll_threads();
1112 
1113 	bdev = allocate_bdev("bdev0");
1114 
1115 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1116 	CU_ASSERT(rc == 0);
1117 	poll_threads();
1118 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1119 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1120 	io_ch = spdk_bdev_get_io_channel(desc);
1121 	CU_ASSERT(io_ch != NULL);
1122 
1123 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1124 	CU_ASSERT(rc == 0);
1125 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1126 	CU_ASSERT(rc == 0);
1127 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1128 	CU_ASSERT(rc == 0);
1129 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1130 	CU_ASSERT(rc == 0);
1131 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1132 
1133 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1134 	CU_ASSERT(rc == -ENOMEM);
1135 
1136 	io_wait_entry.entry.bdev = bdev;
1137 	io_wait_entry.entry.cb_fn = io_wait_cb;
1138 	io_wait_entry.entry.cb_arg = &io_wait_entry;
1139 	io_wait_entry.io_ch = io_ch;
1140 	io_wait_entry.desc = desc;
1141 	io_wait_entry.submitted = false;
1142 	/* Cannot use the same io_wait_entry for two different calls. */
1143 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
1144 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
1145 
1146 	/* Queue two I/O waits. */
1147 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
1148 	CU_ASSERT(rc == 0);
1149 	CU_ASSERT(io_wait_entry.submitted == false);
1150 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
1151 	CU_ASSERT(rc == 0);
1152 	CU_ASSERT(io_wait_entry2.submitted == false);
1153 
1154 	stub_complete_io(1);
1155 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1156 	CU_ASSERT(io_wait_entry.submitted == true);
1157 	CU_ASSERT(io_wait_entry2.submitted == false);
1158 
1159 	stub_complete_io(1);
1160 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1161 	CU_ASSERT(io_wait_entry2.submitted == true);
1162 
1163 	stub_complete_io(4);
1164 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1165 
1166 	spdk_put_io_channel(io_ch);
1167 	spdk_bdev_close(desc);
1168 	free_bdev(bdev);
1169 	spdk_bdev_finish(bdev_fini_cb, NULL);
1170 	poll_threads();
1171 }
1172 
1173 static void
1174 bdev_io_spans_split_test(void)
1175 {
1176 	struct spdk_bdev bdev;
1177 	struct spdk_bdev_io bdev_io;
1178 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV];
1179 
1180 	memset(&bdev, 0, sizeof(bdev));
1181 	bdev_io.u.bdev.iovs = iov;
1182 
1183 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1184 	bdev.optimal_io_boundary = 0;
1185 	bdev.max_segment_size = 0;
1186 	bdev.max_num_segments = 0;
1187 	bdev_io.bdev = &bdev;
1188 
1189 	/* bdev has no optimal_io_boundary and max_size set - so this should return false. */
1190 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1191 
1192 	bdev.split_on_optimal_io_boundary = true;
1193 	bdev.optimal_io_boundary = 32;
1194 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1195 
1196 	/* RESETs are not based on LBAs - so this should return false. */
1197 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1198 
1199 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1200 	bdev_io.u.bdev.offset_blocks = 0;
1201 	bdev_io.u.bdev.num_blocks = 32;
1202 
1203 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1204 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1205 
1206 	bdev_io.u.bdev.num_blocks = 33;
1207 
1208 	/* This I/O spans a boundary. */
1209 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1210 
1211 	bdev_io.u.bdev.num_blocks = 32;
1212 	bdev.max_segment_size = 512 * 32;
1213 	bdev.max_num_segments = 1;
1214 	bdev_io.u.bdev.iovcnt = 1;
1215 	iov[0].iov_len = 512;
1216 
1217 	/* Does not cross and exceed max_size or max_segs */
1218 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1219 
1220 	bdev.split_on_optimal_io_boundary = false;
1221 	bdev.max_segment_size = 512;
1222 	bdev.max_num_segments = 1;
1223 	bdev_io.u.bdev.iovcnt = 2;
1224 
1225 	/* Exceed max_segs */
1226 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1227 
1228 	bdev.max_num_segments = 2;
1229 	iov[0].iov_len = 513;
1230 	iov[1].iov_len = 512;
1231 
1232 	/* Exceed max_sizes */
1233 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1234 }
1235 
1236 static void
1237 bdev_io_boundary_split_test(void)
1238 {
1239 	struct spdk_bdev *bdev;
1240 	struct spdk_bdev_desc *desc = NULL;
1241 	struct spdk_io_channel *io_ch;
1242 	struct spdk_bdev_opts bdev_opts = {};
1243 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1244 	struct ut_expected_io *expected_io;
1245 	void *md_buf = (void *)0xFF000000;
1246 	uint64_t i;
1247 	int rc;
1248 
1249 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1250 	bdev_opts.bdev_io_pool_size = 512;
1251 	bdev_opts.bdev_io_cache_size = 64;
1252 
1253 	rc = spdk_bdev_set_opts(&bdev_opts);
1254 	CU_ASSERT(rc == 0);
1255 	spdk_bdev_initialize(bdev_init_cb, NULL);
1256 
1257 	bdev = allocate_bdev("bdev0");
1258 
1259 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1260 	CU_ASSERT(rc == 0);
1261 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1262 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1263 	io_ch = spdk_bdev_get_io_channel(desc);
1264 	CU_ASSERT(io_ch != NULL);
1265 
1266 	bdev->optimal_io_boundary = 16;
1267 	bdev->split_on_optimal_io_boundary = false;
1268 
1269 	g_io_done = false;
1270 
1271 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1272 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1273 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1274 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1275 
1276 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1277 	CU_ASSERT(rc == 0);
1278 	CU_ASSERT(g_io_done == false);
1279 
1280 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1281 	stub_complete_io(1);
1282 	CU_ASSERT(g_io_done == true);
1283 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1284 
1285 	bdev->split_on_optimal_io_boundary = true;
1286 	bdev->md_interleave = false;
1287 	bdev->md_len = 8;
1288 
1289 	/* Now test that a single-vector command is split correctly.
1290 	 * Offset 14, length 8, payload 0xF000
1291 	 *  Child - Offset 14, length 2, payload 0xF000
1292 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1293 	 *
1294 	 * Set up the expected values before calling spdk_bdev_read_blocks
1295 	 */
1296 	g_io_done = false;
1297 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1298 	expected_io->md_buf = md_buf;
1299 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1300 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1301 
1302 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1303 	expected_io->md_buf = md_buf + 2 * 8;
1304 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1305 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1306 
1307 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1308 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1309 					   14, 8, io_done, NULL);
1310 	CU_ASSERT(rc == 0);
1311 	CU_ASSERT(g_io_done == false);
1312 
1313 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1314 	stub_complete_io(2);
1315 	CU_ASSERT(g_io_done == true);
1316 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1317 
1318 	/* Now set up a more complex, multi-vector command that needs to be split,
1319 	 *  including splitting iovecs.
1320 	 */
1321 	iov[0].iov_base = (void *)0x10000;
1322 	iov[0].iov_len = 512;
1323 	iov[1].iov_base = (void *)0x20000;
1324 	iov[1].iov_len = 20 * 512;
1325 	iov[2].iov_base = (void *)0x30000;
1326 	iov[2].iov_len = 11 * 512;
1327 
1328 	g_io_done = false;
1329 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1330 	expected_io->md_buf = md_buf;
1331 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1332 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1333 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1334 
1335 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1336 	expected_io->md_buf = md_buf + 2 * 8;
1337 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1338 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1339 
1340 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1341 	expected_io->md_buf = md_buf + 18 * 8;
1342 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1343 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1344 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1345 
1346 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1347 					     14, 32, io_done, NULL);
1348 	CU_ASSERT(rc == 0);
1349 	CU_ASSERT(g_io_done == false);
1350 
1351 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1352 	stub_complete_io(3);
1353 	CU_ASSERT(g_io_done == true);
1354 
1355 	/* Test multi vector command that needs to be split by strip and then needs to be
1356 	 * split further due to the capacity of child iovs.
1357 	 */
1358 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1359 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1360 		iov[i].iov_len = 512;
1361 	}
1362 
1363 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1364 	g_io_done = false;
1365 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1366 					   BDEV_IO_NUM_CHILD_IOV);
1367 	expected_io->md_buf = md_buf;
1368 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1369 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1370 	}
1371 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1372 
1373 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1374 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
1375 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1376 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1377 		ut_expected_io_set_iov(expected_io, i,
1378 				       (void *)((i + 1 + BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1379 	}
1380 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1381 
1382 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1383 					    0, BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1384 	CU_ASSERT(rc == 0);
1385 	CU_ASSERT(g_io_done == false);
1386 
1387 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1388 	stub_complete_io(1);
1389 	CU_ASSERT(g_io_done == false);
1390 
1391 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1392 	stub_complete_io(1);
1393 	CU_ASSERT(g_io_done == true);
1394 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1395 
1396 	/* Test multi vector command that needs to be split by strip and then needs to be
1397 	 * split further due to the capacity of child iovs. In this case, the length of
1398 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1399 	 */
1400 
1401 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1402 	 * is BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1403 	 */
1404 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1405 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1406 		iov[i].iov_len = 512;
1407 	}
1408 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1409 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1410 		iov[i].iov_len = 256;
1411 	}
1412 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1413 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1414 
1415 	/* Add an extra iovec to trigger split */
1416 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1417 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1418 
1419 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1420 	g_io_done = false;
1421 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1422 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV);
1423 	expected_io->md_buf = md_buf;
1424 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1425 		ut_expected_io_set_iov(expected_io, i,
1426 				       (void *)((i + 1) * 0x10000), 512);
1427 	}
1428 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1429 		ut_expected_io_set_iov(expected_io, i,
1430 				       (void *)((i + 1) * 0x10000), 256);
1431 	}
1432 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1433 
1434 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1435 					   1, 1);
1436 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1437 	ut_expected_io_set_iov(expected_io, 0,
1438 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1439 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1440 
1441 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1442 					   1, 1);
1443 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1444 	ut_expected_io_set_iov(expected_io, 0,
1445 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1446 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1447 
1448 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1449 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1450 	CU_ASSERT(rc == 0);
1451 	CU_ASSERT(g_io_done == false);
1452 
1453 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1454 	stub_complete_io(1);
1455 	CU_ASSERT(g_io_done == false);
1456 
1457 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1458 	stub_complete_io(2);
1459 	CU_ASSERT(g_io_done == true);
1460 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1461 
1462 	/* Test multi vector command that needs to be split by strip and then needs to be
1463 	 * split further due to the capacity of child iovs, the child request offset should
1464 	 * be rewind to last aligned offset and go success without error.
1465 	 */
1466 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1467 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1468 		iov[i].iov_len = 512;
1469 	}
1470 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1471 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1472 
1473 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1474 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1475 
1476 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1477 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1478 
1479 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1480 	g_io_done = false;
1481 	g_io_status = 0;
1482 	/* The first expected io should be start from offset 0 to BDEV_IO_NUM_CHILD_IOV - 1 */
1483 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1484 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV - 1);
1485 	expected_io->md_buf = md_buf;
1486 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1487 		ut_expected_io_set_iov(expected_io, i,
1488 				       (void *)((i + 1) * 0x10000), 512);
1489 	}
1490 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1491 	/* The second expected io should be start from offset BDEV_IO_NUM_CHILD_IOV - 1 to BDEV_IO_NUM_CHILD_IOV */
1492 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1493 					   1, 2);
1494 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1495 	ut_expected_io_set_iov(expected_io, 0,
1496 			       (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1497 	ut_expected_io_set_iov(expected_io, 1,
1498 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1499 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1500 	/* The third expected io should be start from offset BDEV_IO_NUM_CHILD_IOV to BDEV_IO_NUM_CHILD_IOV + 1 */
1501 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1502 					   1, 1);
1503 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1504 	ut_expected_io_set_iov(expected_io, 0,
1505 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1506 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1507 
1508 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1509 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1510 	CU_ASSERT(rc == 0);
1511 	CU_ASSERT(g_io_done == false);
1512 
1513 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1514 	stub_complete_io(1);
1515 	CU_ASSERT(g_io_done == false);
1516 
1517 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1518 	stub_complete_io(2);
1519 	CU_ASSERT(g_io_done == true);
1520 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1521 
1522 	/* Test multi vector command that needs to be split due to the IO boundary and
1523 	 * the capacity of child iovs. Especially test the case when the command is
1524 	 * split due to the capacity of child iovs, the tail address is not aligned with
1525 	 * block size and is rewinded to the aligned address.
1526 	 *
1527 	 * The iovecs used in read request is complex but is based on the data
1528 	 * collected in the real issue. We change the base addresses but keep the lengths
1529 	 * not to loose the credibility of the test.
1530 	 */
1531 	bdev->optimal_io_boundary = 128;
1532 	g_io_done = false;
1533 	g_io_status = 0;
1534 
1535 	for (i = 0; i < 31; i++) {
1536 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1537 		iov[i].iov_len = 1024;
1538 	}
1539 	iov[31].iov_base = (void *)0xFEED1F00000;
1540 	iov[31].iov_len = 32768;
1541 	iov[32].iov_base = (void *)0xFEED2000000;
1542 	iov[32].iov_len = 160;
1543 	iov[33].iov_base = (void *)0xFEED2100000;
1544 	iov[33].iov_len = 4096;
1545 	iov[34].iov_base = (void *)0xFEED2200000;
1546 	iov[34].iov_len = 4096;
1547 	iov[35].iov_base = (void *)0xFEED2300000;
1548 	iov[35].iov_len = 4096;
1549 	iov[36].iov_base = (void *)0xFEED2400000;
1550 	iov[36].iov_len = 4096;
1551 	iov[37].iov_base = (void *)0xFEED2500000;
1552 	iov[37].iov_len = 4096;
1553 	iov[38].iov_base = (void *)0xFEED2600000;
1554 	iov[38].iov_len = 4096;
1555 	iov[39].iov_base = (void *)0xFEED2700000;
1556 	iov[39].iov_len = 4096;
1557 	iov[40].iov_base = (void *)0xFEED2800000;
1558 	iov[40].iov_len = 4096;
1559 	iov[41].iov_base = (void *)0xFEED2900000;
1560 	iov[41].iov_len = 4096;
1561 	iov[42].iov_base = (void *)0xFEED2A00000;
1562 	iov[42].iov_len = 4096;
1563 	iov[43].iov_base = (void *)0xFEED2B00000;
1564 	iov[43].iov_len = 12288;
1565 	iov[44].iov_base = (void *)0xFEED2C00000;
1566 	iov[44].iov_len = 8192;
1567 	iov[45].iov_base = (void *)0xFEED2F00000;
1568 	iov[45].iov_len = 4096;
1569 	iov[46].iov_base = (void *)0xFEED3000000;
1570 	iov[46].iov_len = 4096;
1571 	iov[47].iov_base = (void *)0xFEED3100000;
1572 	iov[47].iov_len = 4096;
1573 	iov[48].iov_base = (void *)0xFEED3200000;
1574 	iov[48].iov_len = 24576;
1575 	iov[49].iov_base = (void *)0xFEED3300000;
1576 	iov[49].iov_len = 16384;
1577 	iov[50].iov_base = (void *)0xFEED3400000;
1578 	iov[50].iov_len = 12288;
1579 	iov[51].iov_base = (void *)0xFEED3500000;
1580 	iov[51].iov_len = 4096;
1581 	iov[52].iov_base = (void *)0xFEED3600000;
1582 	iov[52].iov_len = 4096;
1583 	iov[53].iov_base = (void *)0xFEED3700000;
1584 	iov[53].iov_len = 4096;
1585 	iov[54].iov_base = (void *)0xFEED3800000;
1586 	iov[54].iov_len = 28672;
1587 	iov[55].iov_base = (void *)0xFEED3900000;
1588 	iov[55].iov_len = 20480;
1589 	iov[56].iov_base = (void *)0xFEED3A00000;
1590 	iov[56].iov_len = 4096;
1591 	iov[57].iov_base = (void *)0xFEED3B00000;
1592 	iov[57].iov_len = 12288;
1593 	iov[58].iov_base = (void *)0xFEED3C00000;
1594 	iov[58].iov_len = 4096;
1595 	iov[59].iov_base = (void *)0xFEED3D00000;
1596 	iov[59].iov_len = 4096;
1597 	iov[60].iov_base = (void *)0xFEED3E00000;
1598 	iov[60].iov_len = 352;
1599 
1600 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1601 	 * of child iovs,
1602 	 */
1603 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1604 	expected_io->md_buf = md_buf;
1605 	for (i = 0; i < 32; i++) {
1606 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1607 	}
1608 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1609 
1610 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1611 	 * split by the IO boundary requirement.
1612 	 */
1613 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1614 	expected_io->md_buf = md_buf + 126 * 8;
1615 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1616 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1617 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1618 
1619 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1620 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1621 	 */
1622 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1623 	expected_io->md_buf = md_buf + 128 * 8;
1624 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1625 			       iov[33].iov_len - 864);
1626 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1627 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1628 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1629 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1630 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1631 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1632 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1633 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1634 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1635 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1636 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1637 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1638 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1639 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1640 
1641 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1642 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1643 	 */
1644 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1645 	expected_io->md_buf = md_buf + 256 * 8;
1646 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1647 			       iov[46].iov_len - 864);
1648 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1649 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1650 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1651 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1652 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1653 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1654 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1655 
1656 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1657 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1658 	 */
1659 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1660 	expected_io->md_buf = md_buf + 384 * 8;
1661 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1662 			       iov[52].iov_len - 864);
1663 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1664 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1665 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1666 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1667 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1668 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1669 
1670 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1671 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1672 	 */
1673 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1674 	expected_io->md_buf = md_buf + 512 * 8;
1675 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1676 			       iov[57].iov_len - 4960);
1677 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1678 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1679 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1680 
1681 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1682 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1683 	expected_io->md_buf = md_buf + 542 * 8;
1684 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1685 			       iov[59].iov_len - 3936);
1686 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1687 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1688 
1689 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1690 					    0, 543, io_done, NULL);
1691 	CU_ASSERT(rc == 0);
1692 	CU_ASSERT(g_io_done == false);
1693 
1694 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1695 	stub_complete_io(1);
1696 	CU_ASSERT(g_io_done == false);
1697 
1698 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1699 	stub_complete_io(5);
1700 	CU_ASSERT(g_io_done == false);
1701 
1702 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1703 	stub_complete_io(1);
1704 	CU_ASSERT(g_io_done == true);
1705 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1706 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1707 
1708 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1709 	 * split, so test that.
1710 	 */
1711 	bdev->optimal_io_boundary = 15;
1712 	g_io_done = false;
1713 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1714 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1715 
1716 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1717 	CU_ASSERT(rc == 0);
1718 	CU_ASSERT(g_io_done == false);
1719 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1720 	stub_complete_io(1);
1721 	CU_ASSERT(g_io_done == true);
1722 
1723 	/* Test an UNMAP.  This should also not be split. */
1724 	bdev->optimal_io_boundary = 16;
1725 	g_io_done = false;
1726 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1727 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1728 
1729 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1730 	CU_ASSERT(rc == 0);
1731 	CU_ASSERT(g_io_done == false);
1732 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1733 	stub_complete_io(1);
1734 	CU_ASSERT(g_io_done == true);
1735 
1736 	/* Test a FLUSH.  This should also not be split. */
1737 	bdev->optimal_io_boundary = 16;
1738 	g_io_done = false;
1739 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1740 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1741 
1742 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1743 	CU_ASSERT(rc == 0);
1744 	CU_ASSERT(g_io_done == false);
1745 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1746 	stub_complete_io(1);
1747 	CU_ASSERT(g_io_done == true);
1748 
1749 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1750 
1751 	/* Children requests return an error status */
1752 	bdev->optimal_io_boundary = 16;
1753 	iov[0].iov_base = (void *)0x10000;
1754 	iov[0].iov_len = 512 * 64;
1755 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1756 	g_io_done = false;
1757 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1758 
1759 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1760 	CU_ASSERT(rc == 0);
1761 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1762 	stub_complete_io(4);
1763 	CU_ASSERT(g_io_done == false);
1764 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1765 	stub_complete_io(1);
1766 	CU_ASSERT(g_io_done == true);
1767 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1768 
1769 	/* Test if a multi vector command terminated with failure before continuing
1770 	 * splitting process when one of child I/O failed.
1771 	 * The multi vector command is as same as the above that needs to be split by strip
1772 	 * and then needs to be split further due to the capacity of child iovs.
1773 	 */
1774 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1775 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1776 		iov[i].iov_len = 512;
1777 	}
1778 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1779 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1780 
1781 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1782 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1783 
1784 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1785 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1786 
1787 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1788 
1789 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1790 	g_io_done = false;
1791 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1792 
1793 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
1794 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1795 	CU_ASSERT(rc == 0);
1796 	CU_ASSERT(g_io_done == false);
1797 
1798 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1799 	stub_complete_io(1);
1800 	CU_ASSERT(g_io_done == true);
1801 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1802 
1803 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1804 
1805 	/* for this test we will create the following conditions to hit the code path where
1806 	 * we are trying to send and IO following a split that has no iovs because we had to
1807 	 * trim them for alignment reasons.
1808 	 *
1809 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1810 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1811 	 *   position 30 and overshoot by 0x2e.
1812 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1813 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1814 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1815 	 *   and let the completion pick up the last 2 vectors.
1816 	 */
1817 	bdev->optimal_io_boundary = 32;
1818 	bdev->split_on_optimal_io_boundary = true;
1819 	g_io_done = false;
1820 
1821 	/* Init all parent IOVs to 0x212 */
1822 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1823 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1824 		iov[i].iov_len = 0x212;
1825 	}
1826 
1827 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1828 					   BDEV_IO_NUM_CHILD_IOV - 1);
1829 	/* expect 0-29 to be 1:1 with the parent iov */
1830 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1831 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1832 	}
1833 
1834 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1835 	 * where 0x1e is the amount we overshot the 16K boundary
1836 	 */
1837 	ut_expected_io_set_iov(expected_io, BDEV_IO_NUM_CHILD_IOV - 2,
1838 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1839 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1840 
1841 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1842 	 * shortened that take it to the next boundary and then a final one to get us to
1843 	 * 0x4200 bytes for the IO.
1844 	 */
1845 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1846 					   BDEV_IO_NUM_CHILD_IOV, 2);
1847 	/* position 30 picked up the remaining bytes to the next boundary */
1848 	ut_expected_io_set_iov(expected_io, 0,
1849 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
1850 
1851 	/* position 31 picked the the rest of the transfer to get us to 0x4200 */
1852 	ut_expected_io_set_iov(expected_io, 1,
1853 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
1854 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1855 
1856 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 1, 0,
1857 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1858 	CU_ASSERT(rc == 0);
1859 	CU_ASSERT(g_io_done == false);
1860 
1861 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1862 	stub_complete_io(1);
1863 	CU_ASSERT(g_io_done == false);
1864 
1865 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1866 	stub_complete_io(1);
1867 	CU_ASSERT(g_io_done == true);
1868 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1869 
1870 	spdk_put_io_channel(io_ch);
1871 	spdk_bdev_close(desc);
1872 	free_bdev(bdev);
1873 	spdk_bdev_finish(bdev_fini_cb, NULL);
1874 	poll_threads();
1875 }
1876 
1877 static void
1878 bdev_io_max_size_and_segment_split_test(void)
1879 {
1880 	struct spdk_bdev *bdev;
1881 	struct spdk_bdev_desc *desc = NULL;
1882 	struct spdk_io_channel *io_ch;
1883 	struct spdk_bdev_opts bdev_opts = {};
1884 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1885 	struct ut_expected_io *expected_io;
1886 	uint64_t i;
1887 	int rc;
1888 
1889 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1890 	bdev_opts.bdev_io_pool_size = 512;
1891 	bdev_opts.bdev_io_cache_size = 64;
1892 
1893 	bdev_opts.opts_size = sizeof(bdev_opts);
1894 	rc = spdk_bdev_set_opts(&bdev_opts);
1895 	CU_ASSERT(rc == 0);
1896 	spdk_bdev_initialize(bdev_init_cb, NULL);
1897 
1898 	bdev = allocate_bdev("bdev0");
1899 
1900 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
1901 	CU_ASSERT(rc == 0);
1902 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1903 	io_ch = spdk_bdev_get_io_channel(desc);
1904 	CU_ASSERT(io_ch != NULL);
1905 
1906 	bdev->split_on_optimal_io_boundary = false;
1907 	bdev->optimal_io_boundary = 0;
1908 
1909 	/* Case 0 max_num_segments == 0.
1910 	 * but segment size 2 * 512 > 512
1911 	 */
1912 	bdev->max_segment_size = 512;
1913 	bdev->max_num_segments = 0;
1914 	g_io_done = false;
1915 
1916 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
1917 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
1918 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
1919 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1920 
1921 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
1922 	CU_ASSERT(rc == 0);
1923 	CU_ASSERT(g_io_done == false);
1924 
1925 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1926 	stub_complete_io(1);
1927 	CU_ASSERT(g_io_done == true);
1928 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1929 
1930 	/* Case 1 max_segment_size == 0
1931 	 * but iov num 2 > 1.
1932 	 */
1933 	bdev->max_segment_size = 0;
1934 	bdev->max_num_segments = 1;
1935 	g_io_done = false;
1936 
1937 	iov[0].iov_base = (void *)0x10000;
1938 	iov[0].iov_len = 512;
1939 	iov[1].iov_base = (void *)0x20000;
1940 	iov[1].iov_len = 8 * 512;
1941 
1942 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
1943 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len);
1944 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1945 
1946 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1);
1947 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len);
1948 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1949 
1950 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL);
1951 	CU_ASSERT(rc == 0);
1952 	CU_ASSERT(g_io_done == false);
1953 
1954 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1955 	stub_complete_io(2);
1956 	CU_ASSERT(g_io_done == true);
1957 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1958 
1959 	/* Test that a non-vector command is split correctly.
1960 	 * Set up the expected values before calling spdk_bdev_read_blocks
1961 	 */
1962 	bdev->max_segment_size = 512;
1963 	bdev->max_num_segments = 1;
1964 	g_io_done = false;
1965 
1966 	/* Child IO 0 */
1967 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
1968 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
1969 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1970 
1971 	/* Child IO 1 */
1972 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
1973 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512);
1974 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1975 
1976 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1977 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
1978 	CU_ASSERT(rc == 0);
1979 	CU_ASSERT(g_io_done == false);
1980 
1981 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1982 	stub_complete_io(2);
1983 	CU_ASSERT(g_io_done == true);
1984 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1985 
1986 	/* Now set up a more complex, multi-vector command that needs to be split,
1987 	 * including splitting iovecs.
1988 	 */
1989 	bdev->max_segment_size = 2 * 512;
1990 	bdev->max_num_segments = 1;
1991 	g_io_done = false;
1992 
1993 	iov[0].iov_base = (void *)0x10000;
1994 	iov[0].iov_len = 2 * 512;
1995 	iov[1].iov_base = (void *)0x20000;
1996 	iov[1].iov_len = 4 * 512;
1997 	iov[2].iov_base = (void *)0x30000;
1998 	iov[2].iov_len = 6 * 512;
1999 
2000 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2001 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2);
2002 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2003 
2004 	/* Split iov[1].size to 2 iov entries then split the segments */
2005 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2006 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2);
2007 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2008 
2009 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1);
2010 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2);
2011 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2012 
2013 	/* Split iov[2].size to 3 iov entries then split the segments */
2014 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1);
2015 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2);
2016 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2017 
2018 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1);
2019 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2);
2020 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2021 
2022 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1);
2023 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2);
2024 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2025 
2026 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL);
2027 	CU_ASSERT(rc == 0);
2028 	CU_ASSERT(g_io_done == false);
2029 
2030 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2031 	stub_complete_io(6);
2032 	CU_ASSERT(g_io_done == true);
2033 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2034 
2035 	/* Test multi vector command that needs to be split by strip and then needs to be
2036 	 * split further due to the capacity of parent IO child iovs.
2037 	 */
2038 	bdev->max_segment_size = 512;
2039 	bdev->max_num_segments = 1;
2040 	g_io_done = false;
2041 
2042 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
2043 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2044 		iov[i].iov_len = 512 * 2;
2045 	}
2046 
2047 	/* Each input iov.size is split into 2 iovs,
2048 	 * half of the input iov can fill all child iov entries of a single IO.
2049 	 */
2050 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV / 2; i++) {
2051 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1);
2052 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2053 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2054 
2055 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1);
2056 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2057 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2058 	}
2059 
2060 	/* The remaining iov is split in the second round */
2061 	for (i = BDEV_IO_NUM_CHILD_IOV / 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
2062 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1);
2063 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2064 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2065 
2066 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1);
2067 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2068 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2069 	}
2070 
2071 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV, 0,
2072 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
2073 	CU_ASSERT(rc == 0);
2074 	CU_ASSERT(g_io_done == false);
2075 
2076 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == BDEV_IO_NUM_CHILD_IOV);
2077 	stub_complete_io(BDEV_IO_NUM_CHILD_IOV);
2078 	CU_ASSERT(g_io_done == false);
2079 
2080 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == BDEV_IO_NUM_CHILD_IOV);
2081 	stub_complete_io(BDEV_IO_NUM_CHILD_IOV);
2082 	CU_ASSERT(g_io_done == true);
2083 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2084 
2085 	/* A wrong case, a child IO that is divided does
2086 	 * not meet the principle of multiples of block size,
2087 	 * and exits with error
2088 	 */
2089 	bdev->max_segment_size = 512;
2090 	bdev->max_num_segments = 1;
2091 	g_io_done = false;
2092 
2093 	iov[0].iov_base = (void *)0x10000;
2094 	iov[0].iov_len = 512 + 256;
2095 	iov[1].iov_base = (void *)0x20000;
2096 	iov[1].iov_len = 256;
2097 
2098 	/* iov[0] is split to 512 and 256.
2099 	 * 256 is less than a block size, and it is found
2100 	 * in the next round of split that it is the first child IO smaller than
2101 	 * the block size, so the error exit
2102 	 */
2103 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1);
2104 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512);
2105 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2106 
2107 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL);
2108 	CU_ASSERT(rc == 0);
2109 	CU_ASSERT(g_io_done == false);
2110 
2111 	/* First child IO is OK */
2112 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2113 	stub_complete_io(1);
2114 	CU_ASSERT(g_io_done == true);
2115 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2116 
2117 	/* error exit */
2118 	stub_complete_io(1);
2119 	CU_ASSERT(g_io_done == true);
2120 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
2121 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2122 
2123 	/* Test multi vector command that needs to be split by strip and then needs to be
2124 	 * split further due to the capacity of child iovs.
2125 	 *
2126 	 * In this case, the last two iovs need to be split, but it will exceed the capacity
2127 	 * of child iovs, so it needs to wait until the first batch completed.
2128 	 */
2129 	bdev->max_segment_size = 512;
2130 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2131 	g_io_done = false;
2132 
2133 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2134 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2135 		iov[i].iov_len = 512;
2136 	}
2137 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
2138 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2139 		iov[i].iov_len = 512 * 2;
2140 	}
2141 
2142 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2143 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
2144 	/* 0 ~ (BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */
2145 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2146 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2147 	}
2148 	/* (BDEV_IO_NUM_CHILD_IOV - 2) is split */
2149 	ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512);
2150 	ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512);
2151 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2152 
2153 	/* Child iov entries exceed the max num of parent IO so split it in next round */
2154 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV, 2, 2);
2155 	ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512);
2156 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512);
2157 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2158 
2159 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV, 0,
2160 				    BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL);
2161 	CU_ASSERT(rc == 0);
2162 	CU_ASSERT(g_io_done == false);
2163 
2164 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2165 	stub_complete_io(1);
2166 	CU_ASSERT(g_io_done == false);
2167 
2168 	/* Next round */
2169 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2170 	stub_complete_io(1);
2171 	CU_ASSERT(g_io_done == true);
2172 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2173 
2174 	/* This case is similar to the previous one, but the io composed of
2175 	 * the last few entries of child iov is not enough for a blocklen, so they
2176 	 * cannot be put into this IO, but wait until the next time.
2177 	 */
2178 	bdev->max_segment_size = 512;
2179 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2180 	g_io_done = false;
2181 
2182 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2183 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2184 		iov[i].iov_len = 512;
2185 	}
2186 
2187 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2188 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2189 		iov[i].iov_len = 128;
2190 	}
2191 
2192 	/* First child iovcnt is't BDEV_IO_NUM_CHILD_IOV but BDEV_IO_NUM_CHILD_IOV - 2.
2193 	 * Because the left 2 iov is not enough for a blocklen.
2194 	 */
2195 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2196 					   BDEV_IO_NUM_CHILD_IOV - 2, BDEV_IO_NUM_CHILD_IOV - 2);
2197 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2198 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2199 	}
2200 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2201 
2202 	/* The second child io waits until the end of the first child io before executing.
2203 	 * Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO.
2204 	 * BDEV_IO_NUM_CHILD_IOV - 2 to BDEV_IO_NUM_CHILD_IOV + 2
2205 	 */
2206 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 2,
2207 					   1, 4);
2208 	ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len);
2209 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len);
2210 	ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len);
2211 	ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len);
2212 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2213 
2214 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
2215 				    BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL);
2216 	CU_ASSERT(rc == 0);
2217 	CU_ASSERT(g_io_done == false);
2218 
2219 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2220 	stub_complete_io(1);
2221 	CU_ASSERT(g_io_done == false);
2222 
2223 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2224 	stub_complete_io(1);
2225 	CU_ASSERT(g_io_done == true);
2226 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2227 
2228 	/* A very complicated case. Each sg entry exceeds max_segment_size and
2229 	 * needs to be split. At the same time, child io must be a multiple of blocklen.
2230 	 * At the same time, child iovcnt exceeds parent iovcnt.
2231 	 */
2232 	bdev->max_segment_size = 512 + 128;
2233 	bdev->max_num_segments = 3;
2234 	g_io_done = false;
2235 
2236 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2237 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2238 		iov[i].iov_len = 512 + 256;
2239 	}
2240 
2241 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2242 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2243 		iov[i].iov_len = 512 + 128;
2244 	}
2245 
2246 	/* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries.
2247 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2248 	 * Generate 9 child IOs.
2249 	 */
2250 	for (i = 0; i < 3; i++) {
2251 		uint32_t j = i * 4;
2252 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3);
2253 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2254 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2255 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2256 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2257 
2258 		/* Child io must be a multiple of blocklen
2259 		 * iov[j + 2] must be split. If the third entry is also added,
2260 		 * the multiple of blocklen cannot be guaranteed. But it still
2261 		 * occupies one iov entry of the parent child iov.
2262 		 */
2263 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2);
2264 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2265 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2266 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2267 
2268 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3);
2269 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2270 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2271 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2272 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2273 	}
2274 
2275 	/* Child iov position at 27, the 10th child IO
2276 	 * iov entry index is 3 * 4 and offset is 3 * 6
2277 	 */
2278 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3);
2279 	ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640);
2280 	ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128);
2281 	ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256);
2282 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2283 
2284 	/* Child iov position at 30, the 11th child IO */
2285 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2);
2286 	ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512);
2287 	ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512);
2288 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2289 
2290 	/* The 2nd split round and iovpos is 0, the 12th child IO */
2291 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3);
2292 	ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256);
2293 	ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640);
2294 	ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128);
2295 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2296 
2297 	/* Consume 9 child IOs and 27 child iov entries.
2298 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2299 	 * Parent IO iov index start from 16 and block offset start from 24
2300 	 */
2301 	for (i = 0; i < 3; i++) {
2302 		uint32_t j = i * 4 + 16;
2303 		uint32_t offset = i * 6 + 24;
2304 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3);
2305 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2306 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2307 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2308 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2309 
2310 		/* Child io must be a multiple of blocklen
2311 		 * iov[j + 2] must be split. If the third entry is also added,
2312 		 * the multiple of blocklen cannot be guaranteed. But it still
2313 		 * occupies one iov entry of the parent child iov.
2314 		 */
2315 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2);
2316 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2317 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2318 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2319 
2320 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3);
2321 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2322 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2323 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2324 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2325 	}
2326 
2327 	/* The 22th child IO, child iov position at 30 */
2328 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1);
2329 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512);
2330 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2331 
2332 	/* The third round */
2333 	/* Here is the 23nd child IO and child iovpos is 0 */
2334 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3);
2335 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256);
2336 	ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640);
2337 	ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128);
2338 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2339 
2340 	/* The 24th child IO */
2341 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3);
2342 	ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640);
2343 	ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640);
2344 	ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256);
2345 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2346 
2347 	/* The 25th child IO */
2348 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2);
2349 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384);
2350 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640);
2351 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2352 
2353 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
2354 				    50, io_done, NULL);
2355 	CU_ASSERT(rc == 0);
2356 	CU_ASSERT(g_io_done == false);
2357 
2358 	/* Parent IO supports up to 32 child iovs, so it is calculated that
2359 	 * a maximum of 11 IOs can be split at a time, and the
2360 	 * splitting will continue after the first batch is over.
2361 	 */
2362 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2363 	stub_complete_io(11);
2364 	CU_ASSERT(g_io_done == false);
2365 
2366 	/* The 2nd round */
2367 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2368 	stub_complete_io(11);
2369 	CU_ASSERT(g_io_done == false);
2370 
2371 	/* The last round */
2372 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2373 	stub_complete_io(3);
2374 	CU_ASSERT(g_io_done == true);
2375 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2376 
2377 	/* Test an WRITE_ZEROES.  This should also not be split. */
2378 	bdev->max_segment_size = 512;
2379 	bdev->max_num_segments = 1;
2380 	g_io_done = false;
2381 
2382 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
2383 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2384 
2385 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
2386 	CU_ASSERT(rc == 0);
2387 	CU_ASSERT(g_io_done == false);
2388 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2389 	stub_complete_io(1);
2390 	CU_ASSERT(g_io_done == true);
2391 
2392 	/* Test an UNMAP.  This should also not be split. */
2393 	g_io_done = false;
2394 
2395 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0);
2396 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2397 
2398 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL);
2399 	CU_ASSERT(rc == 0);
2400 	CU_ASSERT(g_io_done == false);
2401 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2402 	stub_complete_io(1);
2403 	CU_ASSERT(g_io_done == true);
2404 
2405 	/* Test a FLUSH.  This should also not be split. */
2406 	g_io_done = false;
2407 
2408 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0);
2409 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2410 
2411 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
2412 	CU_ASSERT(rc == 0);
2413 	CU_ASSERT(g_io_done == false);
2414 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2415 	stub_complete_io(1);
2416 	CU_ASSERT(g_io_done == true);
2417 
2418 	spdk_put_io_channel(io_ch);
2419 	spdk_bdev_close(desc);
2420 	free_bdev(bdev);
2421 	spdk_bdev_finish(bdev_fini_cb, NULL);
2422 	poll_threads();
2423 }
2424 
2425 static void
2426 bdev_io_mix_split_test(void)
2427 {
2428 	struct spdk_bdev *bdev;
2429 	struct spdk_bdev_desc *desc = NULL;
2430 	struct spdk_io_channel *io_ch;
2431 	struct spdk_bdev_opts bdev_opts = {};
2432 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
2433 	struct ut_expected_io *expected_io;
2434 	uint64_t i;
2435 	int rc;
2436 
2437 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2438 	bdev_opts.bdev_io_pool_size = 512;
2439 	bdev_opts.bdev_io_cache_size = 64;
2440 
2441 	rc = spdk_bdev_set_opts(&bdev_opts);
2442 	CU_ASSERT(rc == 0);
2443 	spdk_bdev_initialize(bdev_init_cb, NULL);
2444 
2445 	bdev = allocate_bdev("bdev0");
2446 
2447 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2448 	CU_ASSERT(rc == 0);
2449 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2450 	io_ch = spdk_bdev_get_io_channel(desc);
2451 	CU_ASSERT(io_ch != NULL);
2452 
2453 	/* First case optimal_io_boundary == max_segment_size * max_num_segments */
2454 	bdev->split_on_optimal_io_boundary = true;
2455 	bdev->optimal_io_boundary = 16;
2456 
2457 	bdev->max_segment_size = 512;
2458 	bdev->max_num_segments = 16;
2459 	g_io_done = false;
2460 
2461 	/* IO crossing the IO boundary requires split
2462 	 * Total 2 child IOs.
2463 	 */
2464 
2465 	/* The 1st child IO split the segment_size to multiple segment entry */
2466 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2467 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2468 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2469 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2470 
2471 	/* The 2nd child IO split the segment_size to multiple segment entry */
2472 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2);
2473 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512);
2474 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512);
2475 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2476 
2477 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL);
2478 	CU_ASSERT(rc == 0);
2479 	CU_ASSERT(g_io_done == false);
2480 
2481 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2482 	stub_complete_io(2);
2483 	CU_ASSERT(g_io_done == true);
2484 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2485 
2486 	/* Second case optimal_io_boundary > max_segment_size * max_num_segments */
2487 	bdev->max_segment_size = 15 * 512;
2488 	bdev->max_num_segments = 1;
2489 	g_io_done = false;
2490 
2491 	/* IO crossing the IO boundary requires split.
2492 	 * The 1st child IO segment size exceeds the max_segment_size,
2493 	 * So 1st child IO will be splitted to multiple segment entry.
2494 	 * Then it split to 2 child IOs because of the max_num_segments.
2495 	 * Total 3 child IOs.
2496 	 */
2497 
2498 	/* The first 2 IOs are in an IO boundary.
2499 	 * Because the optimal_io_boundary > max_segment_size * max_num_segments
2500 	 * So it split to the first 2 IOs.
2501 	 */
2502 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1);
2503 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15);
2504 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2505 
2506 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2507 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512);
2508 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2509 
2510 	/* The 3rd Child IO is because of the io boundary */
2511 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2512 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2513 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2514 
2515 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2516 	CU_ASSERT(rc == 0);
2517 	CU_ASSERT(g_io_done == false);
2518 
2519 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2520 	stub_complete_io(3);
2521 	CU_ASSERT(g_io_done == true);
2522 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2523 
2524 	/* Third case optimal_io_boundary < max_segment_size * max_num_segments */
2525 	bdev->max_segment_size = 17 * 512;
2526 	bdev->max_num_segments = 1;
2527 	g_io_done = false;
2528 
2529 	/* IO crossing the IO boundary requires split.
2530 	 * Child IO does not split.
2531 	 * Total 2 child IOs.
2532 	 */
2533 
2534 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1);
2535 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16);
2536 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2537 
2538 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2539 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2540 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2541 
2542 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2543 	CU_ASSERT(rc == 0);
2544 	CU_ASSERT(g_io_done == false);
2545 
2546 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2547 	stub_complete_io(2);
2548 	CU_ASSERT(g_io_done == true);
2549 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2550 
2551 	/* Now set up a more complex, multi-vector command that needs to be split,
2552 	 * including splitting iovecs.
2553 	 * optimal_io_boundary < max_segment_size * max_num_segments
2554 	 */
2555 	bdev->max_segment_size = 3 * 512;
2556 	bdev->max_num_segments = 6;
2557 	g_io_done = false;
2558 
2559 	iov[0].iov_base = (void *)0x10000;
2560 	iov[0].iov_len = 4 * 512;
2561 	iov[1].iov_base = (void *)0x20000;
2562 	iov[1].iov_len = 4 * 512;
2563 	iov[2].iov_base = (void *)0x30000;
2564 	iov[2].iov_len = 10 * 512;
2565 
2566 	/* IO crossing the IO boundary requires split.
2567 	 * The 1st child IO segment size exceeds the max_segment_size and after
2568 	 * splitting segment_size, the num_segments exceeds max_num_segments.
2569 	 * So 1st child IO will be splitted to 2 child IOs.
2570 	 * Total 3 child IOs.
2571 	 */
2572 
2573 	/* The first 2 IOs are in an IO boundary.
2574 	 * After splitting segment size the segment num exceeds.
2575 	 * So it splits to 2 child IOs.
2576 	 */
2577 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6);
2578 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3);
2579 	ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512);
2580 	ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3);
2581 	ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512);
2582 	ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3);
2583 	ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3);
2584 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2585 
2586 	/* The 2nd child IO has the left segment entry */
2587 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2588 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2);
2589 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2590 
2591 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2592 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2);
2593 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2594 
2595 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL);
2596 	CU_ASSERT(rc == 0);
2597 	CU_ASSERT(g_io_done == false);
2598 
2599 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2600 	stub_complete_io(3);
2601 	CU_ASSERT(g_io_done == true);
2602 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2603 
2604 	/* A very complicated case. Each sg entry exceeds max_segment_size
2605 	 * and split on io boundary.
2606 	 * optimal_io_boundary < max_segment_size * max_num_segments
2607 	 */
2608 	bdev->max_segment_size = 3 * 512;
2609 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2610 	g_io_done = false;
2611 
2612 	for (i = 0; i < 20; i++) {
2613 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2614 		iov[i].iov_len = 512 * 4;
2615 	}
2616 
2617 	/* IO crossing the IO boundary requires split.
2618 	 * 80 block length can split 5 child IOs base on offset and IO boundary.
2619 	 * Each iov entry needs to be splitted to 2 entries because of max_segment_size
2620 	 * Total 5 child IOs.
2621 	 */
2622 
2623 	/* 4 iov entries are in an IO boundary and each iov entry splits to 2.
2624 	 * So each child IO occupies 8 child iov entries.
2625 	 */
2626 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8);
2627 	for (i = 0; i < 4; i++) {
2628 		int iovcnt = i * 2;
2629 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2630 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2631 	}
2632 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2633 
2634 	/* 2nd child IO and total 16 child iov entries of parent IO */
2635 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8);
2636 	for (i = 4; i < 8; i++) {
2637 		int iovcnt = (i - 4) * 2;
2638 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2639 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2640 	}
2641 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2642 
2643 	/* 3rd child IO and total 24 child iov entries of parent IO */
2644 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8);
2645 	for (i = 8; i < 12; i++) {
2646 		int iovcnt = (i - 8) * 2;
2647 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2648 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2649 	}
2650 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2651 
2652 	/* 4th child IO and total 32 child iov entries of parent IO */
2653 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8);
2654 	for (i = 12; i < 16; i++) {
2655 		int iovcnt = (i - 12) * 2;
2656 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2657 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2658 	}
2659 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2660 
2661 	/* 5th child IO and because of the child iov entry it should be splitted
2662 	 * in next round.
2663 	 */
2664 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8);
2665 	for (i = 16; i < 20; i++) {
2666 		int iovcnt = (i - 16) * 2;
2667 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2668 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2669 	}
2670 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2671 
2672 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL);
2673 	CU_ASSERT(rc == 0);
2674 	CU_ASSERT(g_io_done == false);
2675 
2676 	/* First split round */
2677 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2678 	stub_complete_io(4);
2679 	CU_ASSERT(g_io_done == false);
2680 
2681 	/* Second split round */
2682 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2683 	stub_complete_io(1);
2684 	CU_ASSERT(g_io_done == true);
2685 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2686 
2687 	spdk_put_io_channel(io_ch);
2688 	spdk_bdev_close(desc);
2689 	free_bdev(bdev);
2690 	spdk_bdev_finish(bdev_fini_cb, NULL);
2691 	poll_threads();
2692 }
2693 
2694 static void
2695 bdev_io_split_with_io_wait(void)
2696 {
2697 	struct spdk_bdev *bdev;
2698 	struct spdk_bdev_desc *desc = NULL;
2699 	struct spdk_io_channel *io_ch;
2700 	struct spdk_bdev_channel *channel;
2701 	struct spdk_bdev_mgmt_channel *mgmt_ch;
2702 	struct spdk_bdev_opts bdev_opts = {};
2703 	struct iovec iov[3];
2704 	struct ut_expected_io *expected_io;
2705 	int rc;
2706 
2707 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2708 	bdev_opts.bdev_io_pool_size = 2;
2709 	bdev_opts.bdev_io_cache_size = 1;
2710 
2711 	rc = spdk_bdev_set_opts(&bdev_opts);
2712 	CU_ASSERT(rc == 0);
2713 	spdk_bdev_initialize(bdev_init_cb, NULL);
2714 
2715 	bdev = allocate_bdev("bdev0");
2716 
2717 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2718 	CU_ASSERT(rc == 0);
2719 	CU_ASSERT(desc != NULL);
2720 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2721 	io_ch = spdk_bdev_get_io_channel(desc);
2722 	CU_ASSERT(io_ch != NULL);
2723 	channel = spdk_io_channel_get_ctx(io_ch);
2724 	mgmt_ch = channel->shared_resource->mgmt_ch;
2725 
2726 	bdev->optimal_io_boundary = 16;
2727 	bdev->split_on_optimal_io_boundary = true;
2728 
2729 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
2730 	CU_ASSERT(rc == 0);
2731 
2732 	/* Now test that a single-vector command is split correctly.
2733 	 * Offset 14, length 8, payload 0xF000
2734 	 *  Child - Offset 14, length 2, payload 0xF000
2735 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
2736 	 *
2737 	 * Set up the expected values before calling spdk_bdev_read_blocks
2738 	 */
2739 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
2740 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
2741 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2742 
2743 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
2744 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
2745 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2746 
2747 	/* The following children will be submitted sequentially due to the capacity of
2748 	 * spdk_bdev_io.
2749 	 */
2750 
2751 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
2752 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
2753 	CU_ASSERT(rc == 0);
2754 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2755 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2756 
2757 	/* Completing the first read I/O will submit the first child */
2758 	stub_complete_io(1);
2759 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2760 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2761 
2762 	/* Completing the first child will submit the second child */
2763 	stub_complete_io(1);
2764 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2765 
2766 	/* Complete the second child I/O.  This should result in our callback getting
2767 	 * invoked since the parent I/O is now complete.
2768 	 */
2769 	stub_complete_io(1);
2770 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2771 
2772 	/* Now set up a more complex, multi-vector command that needs to be split,
2773 	 *  including splitting iovecs.
2774 	 */
2775 	iov[0].iov_base = (void *)0x10000;
2776 	iov[0].iov_len = 512;
2777 	iov[1].iov_base = (void *)0x20000;
2778 	iov[1].iov_len = 20 * 512;
2779 	iov[2].iov_base = (void *)0x30000;
2780 	iov[2].iov_len = 11 * 512;
2781 
2782 	g_io_done = false;
2783 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
2784 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
2785 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
2786 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2787 
2788 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
2789 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
2790 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2791 
2792 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
2793 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
2794 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
2795 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2796 
2797 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
2798 	CU_ASSERT(rc == 0);
2799 	CU_ASSERT(g_io_done == false);
2800 
2801 	/* The following children will be submitted sequentially due to the capacity of
2802 	 * spdk_bdev_io.
2803 	 */
2804 
2805 	/* Completing the first child will submit the second child */
2806 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2807 	stub_complete_io(1);
2808 	CU_ASSERT(g_io_done == false);
2809 
2810 	/* Completing the second child will submit the third child */
2811 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2812 	stub_complete_io(1);
2813 	CU_ASSERT(g_io_done == false);
2814 
2815 	/* Completing the third child will result in our callback getting invoked
2816 	 * since the parent I/O is now complete.
2817 	 */
2818 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2819 	stub_complete_io(1);
2820 	CU_ASSERT(g_io_done == true);
2821 
2822 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
2823 
2824 	spdk_put_io_channel(io_ch);
2825 	spdk_bdev_close(desc);
2826 	free_bdev(bdev);
2827 	spdk_bdev_finish(bdev_fini_cb, NULL);
2828 	poll_threads();
2829 }
2830 
2831 static void
2832 bdev_io_alignment(void)
2833 {
2834 	struct spdk_bdev *bdev;
2835 	struct spdk_bdev_desc *desc = NULL;
2836 	struct spdk_io_channel *io_ch;
2837 	struct spdk_bdev_opts bdev_opts = {};
2838 	int rc;
2839 	void *buf = NULL;
2840 	struct iovec iovs[2];
2841 	int iovcnt;
2842 	uint64_t alignment;
2843 
2844 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2845 	bdev_opts.bdev_io_pool_size = 20;
2846 	bdev_opts.bdev_io_cache_size = 2;
2847 
2848 	rc = spdk_bdev_set_opts(&bdev_opts);
2849 	CU_ASSERT(rc == 0);
2850 	spdk_bdev_initialize(bdev_init_cb, NULL);
2851 
2852 	fn_table.submit_request = stub_submit_request_get_buf;
2853 	bdev = allocate_bdev("bdev0");
2854 
2855 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2856 	CU_ASSERT(rc == 0);
2857 	CU_ASSERT(desc != NULL);
2858 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2859 	io_ch = spdk_bdev_get_io_channel(desc);
2860 	CU_ASSERT(io_ch != NULL);
2861 
2862 	/* Create aligned buffer */
2863 	rc = posix_memalign(&buf, 4096, 8192);
2864 	SPDK_CU_ASSERT_FATAL(rc == 0);
2865 
2866 	/* Pass aligned single buffer with no alignment required */
2867 	alignment = 1;
2868 	bdev->required_alignment = spdk_u32log2(alignment);
2869 
2870 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
2871 	CU_ASSERT(rc == 0);
2872 	stub_complete_io(1);
2873 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2874 				    alignment));
2875 
2876 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
2877 	CU_ASSERT(rc == 0);
2878 	stub_complete_io(1);
2879 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2880 				    alignment));
2881 
2882 	/* Pass unaligned single buffer with no alignment required */
2883 	alignment = 1;
2884 	bdev->required_alignment = spdk_u32log2(alignment);
2885 
2886 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2887 	CU_ASSERT(rc == 0);
2888 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2889 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
2890 	stub_complete_io(1);
2891 
2892 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2893 	CU_ASSERT(rc == 0);
2894 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2895 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
2896 	stub_complete_io(1);
2897 
2898 	/* Pass unaligned single buffer with 512 alignment required */
2899 	alignment = 512;
2900 	bdev->required_alignment = spdk_u32log2(alignment);
2901 
2902 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2903 	CU_ASSERT(rc == 0);
2904 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2905 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2906 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2907 				    alignment));
2908 	stub_complete_io(1);
2909 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2910 
2911 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2912 	CU_ASSERT(rc == 0);
2913 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2914 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2915 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2916 				    alignment));
2917 	stub_complete_io(1);
2918 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2919 
2920 	/* Pass unaligned single buffer with 4096 alignment required */
2921 	alignment = 4096;
2922 	bdev->required_alignment = spdk_u32log2(alignment);
2923 
2924 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
2925 	CU_ASSERT(rc == 0);
2926 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2927 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2928 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2929 				    alignment));
2930 	stub_complete_io(1);
2931 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2932 
2933 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
2934 	CU_ASSERT(rc == 0);
2935 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2936 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2937 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2938 				    alignment));
2939 	stub_complete_io(1);
2940 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2941 
2942 	/* Pass aligned iovs with no alignment required */
2943 	alignment = 1;
2944 	bdev->required_alignment = spdk_u32log2(alignment);
2945 
2946 	iovcnt = 1;
2947 	iovs[0].iov_base = buf;
2948 	iovs[0].iov_len = 512;
2949 
2950 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2951 	CU_ASSERT(rc == 0);
2952 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2953 	stub_complete_io(1);
2954 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2955 
2956 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2957 	CU_ASSERT(rc == 0);
2958 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2959 	stub_complete_io(1);
2960 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2961 
2962 	/* Pass unaligned iovs with no alignment required */
2963 	alignment = 1;
2964 	bdev->required_alignment = spdk_u32log2(alignment);
2965 
2966 	iovcnt = 2;
2967 	iovs[0].iov_base = buf + 16;
2968 	iovs[0].iov_len = 256;
2969 	iovs[1].iov_base = buf + 16 + 256 + 32;
2970 	iovs[1].iov_len = 256;
2971 
2972 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2973 	CU_ASSERT(rc == 0);
2974 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2975 	stub_complete_io(1);
2976 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2977 
2978 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2979 	CU_ASSERT(rc == 0);
2980 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2981 	stub_complete_io(1);
2982 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2983 
2984 	/* Pass unaligned iov with 2048 alignment required */
2985 	alignment = 2048;
2986 	bdev->required_alignment = spdk_u32log2(alignment);
2987 
2988 	iovcnt = 2;
2989 	iovs[0].iov_base = buf + 16;
2990 	iovs[0].iov_len = 256;
2991 	iovs[1].iov_base = buf + 16 + 256 + 32;
2992 	iovs[1].iov_len = 256;
2993 
2994 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2995 	CU_ASSERT(rc == 0);
2996 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
2997 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2998 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2999 				    alignment));
3000 	stub_complete_io(1);
3001 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3002 
3003 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3004 	CU_ASSERT(rc == 0);
3005 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3006 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3007 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3008 				    alignment));
3009 	stub_complete_io(1);
3010 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3011 
3012 	/* Pass iov without allocated buffer without alignment required */
3013 	alignment = 1;
3014 	bdev->required_alignment = spdk_u32log2(alignment);
3015 
3016 	iovcnt = 1;
3017 	iovs[0].iov_base = NULL;
3018 	iovs[0].iov_len = 0;
3019 
3020 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3021 	CU_ASSERT(rc == 0);
3022 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3023 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3024 				    alignment));
3025 	stub_complete_io(1);
3026 
3027 	/* Pass iov without allocated buffer with 1024 alignment required */
3028 	alignment = 1024;
3029 	bdev->required_alignment = spdk_u32log2(alignment);
3030 
3031 	iovcnt = 1;
3032 	iovs[0].iov_base = NULL;
3033 	iovs[0].iov_len = 0;
3034 
3035 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3036 	CU_ASSERT(rc == 0);
3037 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3038 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3039 				    alignment));
3040 	stub_complete_io(1);
3041 
3042 	spdk_put_io_channel(io_ch);
3043 	spdk_bdev_close(desc);
3044 	free_bdev(bdev);
3045 	fn_table.submit_request = stub_submit_request;
3046 	spdk_bdev_finish(bdev_fini_cb, NULL);
3047 	poll_threads();
3048 
3049 	free(buf);
3050 }
3051 
3052 static void
3053 bdev_io_alignment_with_boundary(void)
3054 {
3055 	struct spdk_bdev *bdev;
3056 	struct spdk_bdev_desc *desc = NULL;
3057 	struct spdk_io_channel *io_ch;
3058 	struct spdk_bdev_opts bdev_opts = {};
3059 	int rc;
3060 	void *buf = NULL;
3061 	struct iovec iovs[2];
3062 	int iovcnt;
3063 	uint64_t alignment;
3064 
3065 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3066 	bdev_opts.bdev_io_pool_size = 20;
3067 	bdev_opts.bdev_io_cache_size = 2;
3068 
3069 	bdev_opts.opts_size = sizeof(bdev_opts);
3070 	rc = spdk_bdev_set_opts(&bdev_opts);
3071 	CU_ASSERT(rc == 0);
3072 	spdk_bdev_initialize(bdev_init_cb, NULL);
3073 
3074 	fn_table.submit_request = stub_submit_request_get_buf;
3075 	bdev = allocate_bdev("bdev0");
3076 
3077 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3078 	CU_ASSERT(rc == 0);
3079 	CU_ASSERT(desc != NULL);
3080 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3081 	io_ch = spdk_bdev_get_io_channel(desc);
3082 	CU_ASSERT(io_ch != NULL);
3083 
3084 	/* Create aligned buffer */
3085 	rc = posix_memalign(&buf, 4096, 131072);
3086 	SPDK_CU_ASSERT_FATAL(rc == 0);
3087 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3088 
3089 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
3090 	alignment = 512;
3091 	bdev->required_alignment = spdk_u32log2(alignment);
3092 	bdev->optimal_io_boundary = 2;
3093 	bdev->split_on_optimal_io_boundary = true;
3094 
3095 	iovcnt = 1;
3096 	iovs[0].iov_base = NULL;
3097 	iovs[0].iov_len = 512 * 3;
3098 
3099 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3100 	CU_ASSERT(rc == 0);
3101 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3102 	stub_complete_io(2);
3103 
3104 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
3105 	alignment = 512;
3106 	bdev->required_alignment = spdk_u32log2(alignment);
3107 	bdev->optimal_io_boundary = 16;
3108 	bdev->split_on_optimal_io_boundary = true;
3109 
3110 	iovcnt = 1;
3111 	iovs[0].iov_base = NULL;
3112 	iovs[0].iov_len = 512 * 16;
3113 
3114 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
3115 	CU_ASSERT(rc == 0);
3116 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3117 	stub_complete_io(2);
3118 
3119 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
3120 	alignment = 512;
3121 	bdev->required_alignment = spdk_u32log2(alignment);
3122 	bdev->optimal_io_boundary = 128;
3123 	bdev->split_on_optimal_io_boundary = true;
3124 
3125 	iovcnt = 1;
3126 	iovs[0].iov_base = buf + 16;
3127 	iovs[0].iov_len = 512 * 160;
3128 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3129 	CU_ASSERT(rc == 0);
3130 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3131 	stub_complete_io(2);
3132 
3133 	/* 512 * 3 with 2 IO boundary */
3134 	alignment = 512;
3135 	bdev->required_alignment = spdk_u32log2(alignment);
3136 	bdev->optimal_io_boundary = 2;
3137 	bdev->split_on_optimal_io_boundary = true;
3138 
3139 	iovcnt = 2;
3140 	iovs[0].iov_base = buf + 16;
3141 	iovs[0].iov_len = 512;
3142 	iovs[1].iov_base = buf + 16 + 512 + 32;
3143 	iovs[1].iov_len = 1024;
3144 
3145 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3146 	CU_ASSERT(rc == 0);
3147 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3148 	stub_complete_io(2);
3149 
3150 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3151 	CU_ASSERT(rc == 0);
3152 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3153 	stub_complete_io(2);
3154 
3155 	/* 512 * 64 with 32 IO boundary */
3156 	bdev->optimal_io_boundary = 32;
3157 	iovcnt = 2;
3158 	iovs[0].iov_base = buf + 16;
3159 	iovs[0].iov_len = 16384;
3160 	iovs[1].iov_base = buf + 16 + 16384 + 32;
3161 	iovs[1].iov_len = 16384;
3162 
3163 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3164 	CU_ASSERT(rc == 0);
3165 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3166 	stub_complete_io(3);
3167 
3168 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3169 	CU_ASSERT(rc == 0);
3170 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3171 	stub_complete_io(3);
3172 
3173 	/* 512 * 160 with 32 IO boundary */
3174 	iovcnt = 1;
3175 	iovs[0].iov_base = buf + 16;
3176 	iovs[0].iov_len = 16384 + 65536;
3177 
3178 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3179 	CU_ASSERT(rc == 0);
3180 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
3181 	stub_complete_io(6);
3182 
3183 	spdk_put_io_channel(io_ch);
3184 	spdk_bdev_close(desc);
3185 	free_bdev(bdev);
3186 	fn_table.submit_request = stub_submit_request;
3187 	spdk_bdev_finish(bdev_fini_cb, NULL);
3188 	poll_threads();
3189 
3190 	free(buf);
3191 }
3192 
3193 static void
3194 histogram_status_cb(void *cb_arg, int status)
3195 {
3196 	g_status = status;
3197 }
3198 
3199 static void
3200 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3201 {
3202 	g_status = status;
3203 	g_histogram = histogram;
3204 }
3205 
3206 static void
3207 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
3208 		   uint64_t total, uint64_t so_far)
3209 {
3210 	g_count += count;
3211 }
3212 
3213 static void
3214 bdev_histograms(void)
3215 {
3216 	struct spdk_bdev *bdev;
3217 	struct spdk_bdev_desc *desc = NULL;
3218 	struct spdk_io_channel *ch;
3219 	struct spdk_histogram_data *histogram;
3220 	uint8_t buf[4096];
3221 	int rc;
3222 
3223 	spdk_bdev_initialize(bdev_init_cb, NULL);
3224 
3225 	bdev = allocate_bdev("bdev");
3226 
3227 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3228 	CU_ASSERT(rc == 0);
3229 	CU_ASSERT(desc != NULL);
3230 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3231 
3232 	ch = spdk_bdev_get_io_channel(desc);
3233 	CU_ASSERT(ch != NULL);
3234 
3235 	/* Enable histogram */
3236 	g_status = -1;
3237 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
3238 	poll_threads();
3239 	CU_ASSERT(g_status == 0);
3240 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3241 
3242 	/* Allocate histogram */
3243 	histogram = spdk_histogram_data_alloc();
3244 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
3245 
3246 	/* Check if histogram is zeroed */
3247 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3248 	poll_threads();
3249 	CU_ASSERT(g_status == 0);
3250 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3251 
3252 	g_count = 0;
3253 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3254 
3255 	CU_ASSERT(g_count == 0);
3256 
3257 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3258 	CU_ASSERT(rc == 0);
3259 
3260 	spdk_delay_us(10);
3261 	stub_complete_io(1);
3262 	poll_threads();
3263 
3264 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3265 	CU_ASSERT(rc == 0);
3266 
3267 	spdk_delay_us(10);
3268 	stub_complete_io(1);
3269 	poll_threads();
3270 
3271 	/* Check if histogram gathered data from all I/O channels */
3272 	g_histogram = NULL;
3273 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3274 	poll_threads();
3275 	CU_ASSERT(g_status == 0);
3276 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3277 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3278 
3279 	g_count = 0;
3280 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3281 	CU_ASSERT(g_count == 2);
3282 
3283 	/* Disable histogram */
3284 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
3285 	poll_threads();
3286 	CU_ASSERT(g_status == 0);
3287 	CU_ASSERT(bdev->internal.histogram_enabled == false);
3288 
3289 	/* Try to run histogram commands on disabled bdev */
3290 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3291 	poll_threads();
3292 	CU_ASSERT(g_status == -EFAULT);
3293 
3294 	spdk_histogram_data_free(histogram);
3295 	spdk_put_io_channel(ch);
3296 	spdk_bdev_close(desc);
3297 	free_bdev(bdev);
3298 	spdk_bdev_finish(bdev_fini_cb, NULL);
3299 	poll_threads();
3300 }
3301 
3302 static void
3303 _bdev_compare(bool emulated)
3304 {
3305 	struct spdk_bdev *bdev;
3306 	struct spdk_bdev_desc *desc = NULL;
3307 	struct spdk_io_channel *ioch;
3308 	struct ut_expected_io *expected_io;
3309 	uint64_t offset, num_blocks;
3310 	uint32_t num_completed;
3311 	char aa_buf[512];
3312 	char bb_buf[512];
3313 	struct iovec compare_iov;
3314 	uint8_t io_type;
3315 	int rc;
3316 
3317 	if (emulated) {
3318 		io_type = SPDK_BDEV_IO_TYPE_READ;
3319 	} else {
3320 		io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3321 	}
3322 
3323 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3324 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3325 
3326 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3327 
3328 	spdk_bdev_initialize(bdev_init_cb, NULL);
3329 	fn_table.submit_request = stub_submit_request_get_buf;
3330 	bdev = allocate_bdev("bdev");
3331 
3332 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3333 	CU_ASSERT_EQUAL(rc, 0);
3334 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3335 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3336 	ioch = spdk_bdev_get_io_channel(desc);
3337 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3338 
3339 	fn_table.submit_request = stub_submit_request_get_buf;
3340 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3341 
3342 	offset = 50;
3343 	num_blocks = 1;
3344 	compare_iov.iov_base = aa_buf;
3345 	compare_iov.iov_len = sizeof(aa_buf);
3346 
3347 	expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
3348 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3349 
3350 	g_io_done = false;
3351 	g_compare_read_buf = aa_buf;
3352 	g_compare_read_buf_len = sizeof(aa_buf);
3353 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3354 	CU_ASSERT_EQUAL(rc, 0);
3355 	num_completed = stub_complete_io(1);
3356 	CU_ASSERT_EQUAL(num_completed, 1);
3357 	CU_ASSERT(g_io_done == true);
3358 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3359 
3360 	expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
3361 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3362 
3363 	g_io_done = false;
3364 	g_compare_read_buf = bb_buf;
3365 	g_compare_read_buf_len = sizeof(bb_buf);
3366 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3367 	CU_ASSERT_EQUAL(rc, 0);
3368 	num_completed = stub_complete_io(1);
3369 	CU_ASSERT_EQUAL(num_completed, 1);
3370 	CU_ASSERT(g_io_done == true);
3371 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3372 
3373 	spdk_put_io_channel(ioch);
3374 	spdk_bdev_close(desc);
3375 	free_bdev(bdev);
3376 	fn_table.submit_request = stub_submit_request;
3377 	spdk_bdev_finish(bdev_fini_cb, NULL);
3378 	poll_threads();
3379 
3380 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3381 
3382 	g_compare_read_buf = NULL;
3383 }
3384 
3385 static void
3386 bdev_compare(void)
3387 {
3388 	_bdev_compare(true);
3389 	_bdev_compare(false);
3390 }
3391 
3392 static void
3393 bdev_compare_and_write(void)
3394 {
3395 	struct spdk_bdev *bdev;
3396 	struct spdk_bdev_desc *desc = NULL;
3397 	struct spdk_io_channel *ioch;
3398 	struct ut_expected_io *expected_io;
3399 	uint64_t offset, num_blocks;
3400 	uint32_t num_completed;
3401 	char aa_buf[512];
3402 	char bb_buf[512];
3403 	char cc_buf[512];
3404 	char write_buf[512];
3405 	struct iovec compare_iov;
3406 	struct iovec write_iov;
3407 	int rc;
3408 
3409 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3410 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3411 	memset(cc_buf, 0xcc, sizeof(cc_buf));
3412 
3413 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
3414 
3415 	spdk_bdev_initialize(bdev_init_cb, NULL);
3416 	fn_table.submit_request = stub_submit_request_get_buf;
3417 	bdev = allocate_bdev("bdev");
3418 
3419 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3420 	CU_ASSERT_EQUAL(rc, 0);
3421 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3422 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3423 	ioch = spdk_bdev_get_io_channel(desc);
3424 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3425 
3426 	fn_table.submit_request = stub_submit_request_get_buf;
3427 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3428 
3429 	offset = 50;
3430 	num_blocks = 1;
3431 	compare_iov.iov_base = aa_buf;
3432 	compare_iov.iov_len = sizeof(aa_buf);
3433 	write_iov.iov_base = bb_buf;
3434 	write_iov.iov_len = sizeof(bb_buf);
3435 
3436 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3437 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3438 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
3439 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3440 
3441 	g_io_done = false;
3442 	g_compare_read_buf = aa_buf;
3443 	g_compare_read_buf_len = sizeof(aa_buf);
3444 	memset(write_buf, 0, sizeof(write_buf));
3445 	g_compare_write_buf = write_buf;
3446 	g_compare_write_buf_len = sizeof(write_buf);
3447 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3448 			offset, num_blocks, io_done, NULL);
3449 	/* Trigger range locking */
3450 	poll_threads();
3451 	CU_ASSERT_EQUAL(rc, 0);
3452 	num_completed = stub_complete_io(1);
3453 	CU_ASSERT_EQUAL(num_completed, 1);
3454 	CU_ASSERT(g_io_done == false);
3455 	num_completed = stub_complete_io(1);
3456 	/* Trigger range unlocking */
3457 	poll_threads();
3458 	CU_ASSERT_EQUAL(num_completed, 1);
3459 	CU_ASSERT(g_io_done == true);
3460 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3461 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
3462 
3463 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3464 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3465 
3466 	g_io_done = false;
3467 	g_compare_read_buf = cc_buf;
3468 	g_compare_read_buf_len = sizeof(cc_buf);
3469 	memset(write_buf, 0, sizeof(write_buf));
3470 	g_compare_write_buf = write_buf;
3471 	g_compare_write_buf_len = sizeof(write_buf);
3472 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3473 			offset, num_blocks, io_done, NULL);
3474 	/* Trigger range locking */
3475 	poll_threads();
3476 	CU_ASSERT_EQUAL(rc, 0);
3477 	num_completed = stub_complete_io(1);
3478 	/* Trigger range unlocking earlier because we expect error here */
3479 	poll_threads();
3480 	CU_ASSERT_EQUAL(num_completed, 1);
3481 	CU_ASSERT(g_io_done == true);
3482 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3483 	num_completed = stub_complete_io(1);
3484 	CU_ASSERT_EQUAL(num_completed, 0);
3485 
3486 	spdk_put_io_channel(ioch);
3487 	spdk_bdev_close(desc);
3488 	free_bdev(bdev);
3489 	fn_table.submit_request = stub_submit_request;
3490 	spdk_bdev_finish(bdev_fini_cb, NULL);
3491 	poll_threads();
3492 
3493 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3494 
3495 	g_compare_read_buf = NULL;
3496 	g_compare_write_buf = NULL;
3497 }
3498 
3499 static void
3500 bdev_write_zeroes(void)
3501 {
3502 	struct spdk_bdev *bdev;
3503 	struct spdk_bdev_desc *desc = NULL;
3504 	struct spdk_io_channel *ioch;
3505 	struct ut_expected_io *expected_io;
3506 	uint64_t offset, num_io_blocks, num_blocks;
3507 	uint32_t num_completed, num_requests;
3508 	int rc;
3509 
3510 	spdk_bdev_initialize(bdev_init_cb, NULL);
3511 	bdev = allocate_bdev("bdev");
3512 
3513 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3514 	CU_ASSERT_EQUAL(rc, 0);
3515 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3516 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3517 	ioch = spdk_bdev_get_io_channel(desc);
3518 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3519 
3520 	fn_table.submit_request = stub_submit_request;
3521 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3522 
3523 	/* First test that if the bdev supports write_zeroes, the request won't be split */
3524 	bdev->md_len = 0;
3525 	bdev->blocklen = 4096;
3526 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3527 
3528 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
3529 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3530 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3531 	CU_ASSERT_EQUAL(rc, 0);
3532 	num_completed = stub_complete_io(1);
3533 	CU_ASSERT_EQUAL(num_completed, 1);
3534 
3535 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
3536 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
3537 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
3538 	num_requests = 2;
3539 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
3540 
3541 	for (offset = 0; offset < num_requests; ++offset) {
3542 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3543 						   offset * num_io_blocks, num_io_blocks, 0);
3544 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3545 	}
3546 
3547 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3548 	CU_ASSERT_EQUAL(rc, 0);
3549 	num_completed = stub_complete_io(num_requests);
3550 	CU_ASSERT_EQUAL(num_completed, num_requests);
3551 
3552 	/* Check that the splitting is correct if bdev has interleaved metadata */
3553 	bdev->md_interleave = true;
3554 	bdev->md_len = 64;
3555 	bdev->blocklen = 4096 + 64;
3556 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3557 
3558 	num_requests = offset = 0;
3559 	while (offset < num_blocks) {
3560 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
3561 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3562 						   offset, num_io_blocks, 0);
3563 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3564 		offset += num_io_blocks;
3565 		num_requests++;
3566 	}
3567 
3568 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3569 	CU_ASSERT_EQUAL(rc, 0);
3570 	num_completed = stub_complete_io(num_requests);
3571 	CU_ASSERT_EQUAL(num_completed, num_requests);
3572 	num_completed = stub_complete_io(num_requests);
3573 	assert(num_completed == 0);
3574 
3575 	/* Check the the same for separate metadata buffer */
3576 	bdev->md_interleave = false;
3577 	bdev->md_len = 64;
3578 	bdev->blocklen = 4096;
3579 
3580 	num_requests = offset = 0;
3581 	while (offset < num_blocks) {
3582 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
3583 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3584 						   offset, num_io_blocks, 0);
3585 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
3586 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3587 		offset += num_io_blocks;
3588 		num_requests++;
3589 	}
3590 
3591 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3592 	CU_ASSERT_EQUAL(rc, 0);
3593 	num_completed = stub_complete_io(num_requests);
3594 	CU_ASSERT_EQUAL(num_completed, num_requests);
3595 
3596 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
3597 	spdk_put_io_channel(ioch);
3598 	spdk_bdev_close(desc);
3599 	free_bdev(bdev);
3600 	spdk_bdev_finish(bdev_fini_cb, NULL);
3601 	poll_threads();
3602 }
3603 
3604 static void
3605 bdev_zcopy_write(void)
3606 {
3607 	struct spdk_bdev *bdev;
3608 	struct spdk_bdev_desc *desc = NULL;
3609 	struct spdk_io_channel *ioch;
3610 	struct ut_expected_io *expected_io;
3611 	uint64_t offset, num_blocks;
3612 	uint32_t num_completed;
3613 	char aa_buf[512];
3614 	struct iovec iov;
3615 	int rc;
3616 	const bool populate = false;
3617 	const bool commit = true;
3618 
3619 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3620 
3621 	spdk_bdev_initialize(bdev_init_cb, NULL);
3622 	bdev = allocate_bdev("bdev");
3623 
3624 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3625 	CU_ASSERT_EQUAL(rc, 0);
3626 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3627 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3628 	ioch = spdk_bdev_get_io_channel(desc);
3629 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3630 
3631 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3632 
3633 	offset = 50;
3634 	num_blocks = 1;
3635 	iov.iov_base = NULL;
3636 	iov.iov_len = 0;
3637 
3638 	g_zcopy_read_buf = (void *) 0x1122334455667788UL;
3639 	g_zcopy_read_buf_len = (uint32_t) -1;
3640 	/* Do a zcopy start for a write (populate=false) */
3641 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3642 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3643 	g_io_done = false;
3644 	g_zcopy_write_buf = aa_buf;
3645 	g_zcopy_write_buf_len = sizeof(aa_buf);
3646 	g_zcopy_bdev_io = NULL;
3647 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
3648 	CU_ASSERT_EQUAL(rc, 0);
3649 	num_completed = stub_complete_io(1);
3650 	CU_ASSERT_EQUAL(num_completed, 1);
3651 	CU_ASSERT(g_io_done == true);
3652 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3653 	/* Check that the iov has been set up */
3654 	CU_ASSERT(iov.iov_base == g_zcopy_write_buf);
3655 	CU_ASSERT(iov.iov_len == g_zcopy_write_buf_len);
3656 	/* Check that the bdev_io has been saved */
3657 	CU_ASSERT(g_zcopy_bdev_io != NULL);
3658 	/* Now do the zcopy end for a write (commit=true) */
3659 	g_io_done = false;
3660 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3661 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3662 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
3663 	CU_ASSERT_EQUAL(rc, 0);
3664 	num_completed = stub_complete_io(1);
3665 	CU_ASSERT_EQUAL(num_completed, 1);
3666 	CU_ASSERT(g_io_done == true);
3667 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3668 	/* Check the g_zcopy are reset by io_done */
3669 	CU_ASSERT(g_zcopy_write_buf == NULL);
3670 	CU_ASSERT(g_zcopy_write_buf_len == 0);
3671 	/* Check that io_done has freed the g_zcopy_bdev_io */
3672 	CU_ASSERT(g_zcopy_bdev_io == NULL);
3673 
3674 	/* Check the zcopy read buffer has not been touched which
3675 	 * ensures that the correct buffers were used.
3676 	 */
3677 	CU_ASSERT(g_zcopy_read_buf == (void *) 0x1122334455667788UL);
3678 	CU_ASSERT(g_zcopy_read_buf_len == (uint32_t) -1);
3679 
3680 	spdk_put_io_channel(ioch);
3681 	spdk_bdev_close(desc);
3682 	free_bdev(bdev);
3683 	spdk_bdev_finish(bdev_fini_cb, NULL);
3684 	poll_threads();
3685 }
3686 
3687 static void
3688 bdev_zcopy_read(void)
3689 {
3690 	struct spdk_bdev *bdev;
3691 	struct spdk_bdev_desc *desc = NULL;
3692 	struct spdk_io_channel *ioch;
3693 	struct ut_expected_io *expected_io;
3694 	uint64_t offset, num_blocks;
3695 	uint32_t num_completed;
3696 	char aa_buf[512];
3697 	struct iovec iov;
3698 	int rc;
3699 	const bool populate = true;
3700 	const bool commit = false;
3701 
3702 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3703 
3704 	spdk_bdev_initialize(bdev_init_cb, NULL);
3705 	bdev = allocate_bdev("bdev");
3706 
3707 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3708 	CU_ASSERT_EQUAL(rc, 0);
3709 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3710 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3711 	ioch = spdk_bdev_get_io_channel(desc);
3712 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3713 
3714 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3715 
3716 	offset = 50;
3717 	num_blocks = 1;
3718 	iov.iov_base = NULL;
3719 	iov.iov_len = 0;
3720 
3721 	g_zcopy_write_buf = (void *) 0x1122334455667788UL;
3722 	g_zcopy_write_buf_len = (uint32_t) -1;
3723 
3724 	/* Do a zcopy start for a read (populate=true) */
3725 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3726 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3727 	g_io_done = false;
3728 	g_zcopy_read_buf = aa_buf;
3729 	g_zcopy_read_buf_len = sizeof(aa_buf);
3730 	g_zcopy_bdev_io = NULL;
3731 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
3732 	CU_ASSERT_EQUAL(rc, 0);
3733 	num_completed = stub_complete_io(1);
3734 	CU_ASSERT_EQUAL(num_completed, 1);
3735 	CU_ASSERT(g_io_done == true);
3736 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3737 	/* Check that the iov has been set up */
3738 	CU_ASSERT(iov.iov_base == g_zcopy_read_buf);
3739 	CU_ASSERT(iov.iov_len == g_zcopy_read_buf_len);
3740 	/* Check that the bdev_io has been saved */
3741 	CU_ASSERT(g_zcopy_bdev_io != NULL);
3742 
3743 	/* Now do the zcopy end for a read (commit=false) */
3744 	g_io_done = false;
3745 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3746 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3747 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
3748 	CU_ASSERT_EQUAL(rc, 0);
3749 	num_completed = stub_complete_io(1);
3750 	CU_ASSERT_EQUAL(num_completed, 1);
3751 	CU_ASSERT(g_io_done == true);
3752 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3753 	/* Check the g_zcopy are reset by io_done */
3754 	CU_ASSERT(g_zcopy_read_buf == NULL);
3755 	CU_ASSERT(g_zcopy_read_buf_len == 0);
3756 	/* Check that io_done has freed the g_zcopy_bdev_io */
3757 	CU_ASSERT(g_zcopy_bdev_io == NULL);
3758 
3759 	/* Check the zcopy write buffer has not been touched which
3760 	 * ensures that the correct buffers were used.
3761 	 */
3762 	CU_ASSERT(g_zcopy_write_buf == (void *) 0x1122334455667788UL);
3763 	CU_ASSERT(g_zcopy_write_buf_len == (uint32_t) -1);
3764 
3765 	spdk_put_io_channel(ioch);
3766 	spdk_bdev_close(desc);
3767 	free_bdev(bdev);
3768 	spdk_bdev_finish(bdev_fini_cb, NULL);
3769 	poll_threads();
3770 }
3771 
3772 static void
3773 bdev_open_while_hotremove(void)
3774 {
3775 	struct spdk_bdev *bdev;
3776 	struct spdk_bdev_desc *desc[2] = {};
3777 	int rc;
3778 
3779 	bdev = allocate_bdev("bdev");
3780 
3781 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
3782 	CU_ASSERT(rc == 0);
3783 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
3784 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
3785 
3786 	spdk_bdev_unregister(bdev, NULL, NULL);
3787 	/* Bdev unregister is handled asynchronously. Poll thread to complete. */
3788 	poll_threads();
3789 
3790 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
3791 	CU_ASSERT(rc == -ENODEV);
3792 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
3793 
3794 	spdk_bdev_close(desc[0]);
3795 	free_bdev(bdev);
3796 }
3797 
3798 static void
3799 bdev_close_while_hotremove(void)
3800 {
3801 	struct spdk_bdev *bdev;
3802 	struct spdk_bdev_desc *desc = NULL;
3803 	int rc = 0;
3804 
3805 	bdev = allocate_bdev("bdev");
3806 
3807 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
3808 	CU_ASSERT_EQUAL(rc, 0);
3809 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3810 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3811 
3812 	/* Simulate hot-unplug by unregistering bdev */
3813 	g_event_type1 = 0xFF;
3814 	g_unregister_arg = NULL;
3815 	g_unregister_rc = -1;
3816 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
3817 	/* Close device while remove event is in flight */
3818 	spdk_bdev_close(desc);
3819 
3820 	/* Ensure that unregister callback is delayed */
3821 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
3822 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
3823 
3824 	poll_threads();
3825 
3826 	/* Event callback shall not be issued because device was closed */
3827 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
3828 	/* Unregister callback is issued */
3829 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
3830 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
3831 
3832 	free_bdev(bdev);
3833 }
3834 
3835 static void
3836 bdev_open_ext(void)
3837 {
3838 	struct spdk_bdev *bdev;
3839 	struct spdk_bdev_desc *desc1 = NULL;
3840 	struct spdk_bdev_desc *desc2 = NULL;
3841 	int rc = 0;
3842 
3843 	bdev = allocate_bdev("bdev");
3844 
3845 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
3846 	CU_ASSERT_EQUAL(rc, -EINVAL);
3847 
3848 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
3849 	CU_ASSERT_EQUAL(rc, 0);
3850 
3851 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
3852 	CU_ASSERT_EQUAL(rc, 0);
3853 
3854 	g_event_type1 = 0xFF;
3855 	g_event_type2 = 0xFF;
3856 
3857 	/* Simulate hot-unplug by unregistering bdev */
3858 	spdk_bdev_unregister(bdev, NULL, NULL);
3859 	poll_threads();
3860 
3861 	/* Check if correct events have been triggered in event callback fn */
3862 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
3863 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
3864 
3865 	free_bdev(bdev);
3866 	poll_threads();
3867 }
3868 
3869 static void
3870 bdev_open_ext_unregister(void)
3871 {
3872 	struct spdk_bdev *bdev;
3873 	struct spdk_bdev_desc *desc1 = NULL;
3874 	struct spdk_bdev_desc *desc2 = NULL;
3875 	struct spdk_bdev_desc *desc3 = NULL;
3876 	struct spdk_bdev_desc *desc4 = NULL;
3877 	int rc = 0;
3878 
3879 	bdev = allocate_bdev("bdev");
3880 
3881 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
3882 	CU_ASSERT_EQUAL(rc, -EINVAL);
3883 
3884 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
3885 	CU_ASSERT_EQUAL(rc, 0);
3886 
3887 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
3888 	CU_ASSERT_EQUAL(rc, 0);
3889 
3890 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb3, &desc3, &desc3);
3891 	CU_ASSERT_EQUAL(rc, 0);
3892 
3893 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb4, &desc4, &desc4);
3894 	CU_ASSERT_EQUAL(rc, 0);
3895 
3896 	g_event_type1 = 0xFF;
3897 	g_event_type2 = 0xFF;
3898 	g_event_type3 = 0xFF;
3899 	g_event_type4 = 0xFF;
3900 
3901 	g_unregister_arg = NULL;
3902 	g_unregister_rc = -1;
3903 
3904 	/* Simulate hot-unplug by unregistering bdev */
3905 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
3906 
3907 	/*
3908 	 * Unregister is handled asynchronously and event callback
3909 	 * (i.e., above bdev_open_cbN) will be called.
3910 	 * For bdev_open_cb3 and bdev_open_cb4, it is intended to not
3911 	 * close the desc3 and desc4 so that the bdev is not closed.
3912 	 */
3913 	poll_threads();
3914 
3915 	/* Check if correct events have been triggered in event callback fn */
3916 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
3917 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
3918 	CU_ASSERT_EQUAL(g_event_type3, SPDK_BDEV_EVENT_REMOVE);
3919 	CU_ASSERT_EQUAL(g_event_type4, SPDK_BDEV_EVENT_REMOVE);
3920 
3921 	/* Check that unregister callback is delayed */
3922 	CU_ASSERT(g_unregister_arg == NULL);
3923 	CU_ASSERT(g_unregister_rc == -1);
3924 
3925 	/*
3926 	 * Explicitly close desc3. As desc4 is still opened there, the
3927 	 * unergister callback is still delayed to execute.
3928 	 */
3929 	spdk_bdev_close(desc3);
3930 	CU_ASSERT(g_unregister_arg == NULL);
3931 	CU_ASSERT(g_unregister_rc == -1);
3932 
3933 	/*
3934 	 * Explicitly close desc4 to trigger the ongoing bdev unregister
3935 	 * operation after last desc is closed.
3936 	 */
3937 	spdk_bdev_close(desc4);
3938 
3939 	/* Poll the thread for the async unregister operation */
3940 	poll_threads();
3941 
3942 	/* Check that unregister callback is executed */
3943 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
3944 	CU_ASSERT(g_unregister_rc == 0);
3945 
3946 	free_bdev(bdev);
3947 	poll_threads();
3948 }
3949 
3950 struct timeout_io_cb_arg {
3951 	struct iovec iov;
3952 	uint8_t type;
3953 };
3954 
3955 static int
3956 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
3957 {
3958 	struct spdk_bdev_io *bdev_io;
3959 	int n = 0;
3960 
3961 	if (!ch) {
3962 		return -1;
3963 	}
3964 
3965 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
3966 		n++;
3967 	}
3968 
3969 	return n;
3970 }
3971 
3972 static void
3973 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
3974 {
3975 	struct timeout_io_cb_arg *ctx = cb_arg;
3976 
3977 	ctx->type = bdev_io->type;
3978 	ctx->iov.iov_base = bdev_io->iov.iov_base;
3979 	ctx->iov.iov_len = bdev_io->iov.iov_len;
3980 }
3981 
3982 static void
3983 bdev_set_io_timeout(void)
3984 {
3985 	struct spdk_bdev *bdev;
3986 	struct spdk_bdev_desc *desc = NULL;
3987 	struct spdk_io_channel *io_ch = NULL;
3988 	struct spdk_bdev_channel *bdev_ch = NULL;
3989 	struct timeout_io_cb_arg cb_arg;
3990 
3991 	spdk_bdev_initialize(bdev_init_cb, NULL);
3992 
3993 	bdev = allocate_bdev("bdev");
3994 
3995 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
3996 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3997 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3998 
3999 	io_ch = spdk_bdev_get_io_channel(desc);
4000 	CU_ASSERT(io_ch != NULL);
4001 
4002 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4003 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4004 
4005 	/* This is the part1.
4006 	 * We will check the bdev_ch->io_submitted list
4007 	 * TO make sure that it can link IOs and only the user submitted IOs
4008 	 */
4009 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4010 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4011 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4012 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4013 	stub_complete_io(1);
4014 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4015 	stub_complete_io(1);
4016 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4017 
4018 	/* Split IO */
4019 	bdev->optimal_io_boundary = 16;
4020 	bdev->split_on_optimal_io_boundary = true;
4021 
4022 	/* Now test that a single-vector command is split correctly.
4023 	 * Offset 14, length 8, payload 0xF000
4024 	 *  Child - Offset 14, length 2, payload 0xF000
4025 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4026 	 *
4027 	 * Set up the expected values before calling spdk_bdev_read_blocks
4028 	 */
4029 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4030 	/* We count all submitted IOs including IO that are generated by splitting. */
4031 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
4032 	stub_complete_io(1);
4033 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4034 	stub_complete_io(1);
4035 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4036 
4037 	/* Also include the reset IO */
4038 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4039 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4040 	poll_threads();
4041 	stub_complete_io(1);
4042 	poll_threads();
4043 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4044 
4045 	/* This is part2
4046 	 * Test the desc timeout poller register
4047 	 */
4048 
4049 	/* Successfully set the timeout */
4050 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4051 	CU_ASSERT(desc->io_timeout_poller != NULL);
4052 	CU_ASSERT(desc->timeout_in_sec == 30);
4053 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4054 	CU_ASSERT(desc->cb_arg == &cb_arg);
4055 
4056 	/* Change the timeout limit */
4057 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4058 	CU_ASSERT(desc->io_timeout_poller != NULL);
4059 	CU_ASSERT(desc->timeout_in_sec == 20);
4060 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4061 	CU_ASSERT(desc->cb_arg == &cb_arg);
4062 
4063 	/* Disable the timeout */
4064 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
4065 	CU_ASSERT(desc->io_timeout_poller == NULL);
4066 
4067 	/* This the part3
4068 	 * We will test to catch timeout IO and check whether the IO is
4069 	 * the submitted one.
4070 	 */
4071 	memset(&cb_arg, 0, sizeof(cb_arg));
4072 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4073 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
4074 
4075 	/* Don't reach the limit */
4076 	spdk_delay_us(15 * spdk_get_ticks_hz());
4077 	poll_threads();
4078 	CU_ASSERT(cb_arg.type == 0);
4079 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4080 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4081 
4082 	/* 15 + 15 = 30 reach the limit */
4083 	spdk_delay_us(15 * spdk_get_ticks_hz());
4084 	poll_threads();
4085 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4086 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
4087 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
4088 	stub_complete_io(1);
4089 
4090 	/* Use the same split IO above and check the IO */
4091 	memset(&cb_arg, 0, sizeof(cb_arg));
4092 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4093 
4094 	/* The first child complete in time */
4095 	spdk_delay_us(15 * spdk_get_ticks_hz());
4096 	poll_threads();
4097 	stub_complete_io(1);
4098 	CU_ASSERT(cb_arg.type == 0);
4099 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4100 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4101 
4102 	/* The second child reach the limit */
4103 	spdk_delay_us(15 * spdk_get_ticks_hz());
4104 	poll_threads();
4105 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4106 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
4107 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
4108 	stub_complete_io(1);
4109 
4110 	/* Also include the reset IO */
4111 	memset(&cb_arg, 0, sizeof(cb_arg));
4112 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4113 	spdk_delay_us(30 * spdk_get_ticks_hz());
4114 	poll_threads();
4115 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
4116 	stub_complete_io(1);
4117 	poll_threads();
4118 
4119 	spdk_put_io_channel(io_ch);
4120 	spdk_bdev_close(desc);
4121 	free_bdev(bdev);
4122 	spdk_bdev_finish(bdev_fini_cb, NULL);
4123 	poll_threads();
4124 }
4125 
4126 static void
4127 lba_range_overlap(void)
4128 {
4129 	struct lba_range r1, r2;
4130 
4131 	r1.offset = 100;
4132 	r1.length = 50;
4133 
4134 	r2.offset = 0;
4135 	r2.length = 1;
4136 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4137 
4138 	r2.offset = 0;
4139 	r2.length = 100;
4140 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4141 
4142 	r2.offset = 0;
4143 	r2.length = 110;
4144 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4145 
4146 	r2.offset = 100;
4147 	r2.length = 10;
4148 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4149 
4150 	r2.offset = 110;
4151 	r2.length = 20;
4152 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4153 
4154 	r2.offset = 140;
4155 	r2.length = 150;
4156 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4157 
4158 	r2.offset = 130;
4159 	r2.length = 200;
4160 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4161 
4162 	r2.offset = 150;
4163 	r2.length = 100;
4164 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4165 
4166 	r2.offset = 110;
4167 	r2.length = 0;
4168 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4169 }
4170 
4171 static bool g_lock_lba_range_done;
4172 static bool g_unlock_lba_range_done;
4173 
4174 static void
4175 lock_lba_range_done(void *ctx, int status)
4176 {
4177 	g_lock_lba_range_done = true;
4178 }
4179 
4180 static void
4181 unlock_lba_range_done(void *ctx, int status)
4182 {
4183 	g_unlock_lba_range_done = true;
4184 }
4185 
4186 static void
4187 lock_lba_range_check_ranges(void)
4188 {
4189 	struct spdk_bdev *bdev;
4190 	struct spdk_bdev_desc *desc = NULL;
4191 	struct spdk_io_channel *io_ch;
4192 	struct spdk_bdev_channel *channel;
4193 	struct lba_range *range;
4194 	int ctx1;
4195 	int rc;
4196 
4197 	spdk_bdev_initialize(bdev_init_cb, NULL);
4198 
4199 	bdev = allocate_bdev("bdev0");
4200 
4201 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4202 	CU_ASSERT(rc == 0);
4203 	CU_ASSERT(desc != NULL);
4204 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4205 	io_ch = spdk_bdev_get_io_channel(desc);
4206 	CU_ASSERT(io_ch != NULL);
4207 	channel = spdk_io_channel_get_ctx(io_ch);
4208 
4209 	g_lock_lba_range_done = false;
4210 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4211 	CU_ASSERT(rc == 0);
4212 	poll_threads();
4213 
4214 	CU_ASSERT(g_lock_lba_range_done == true);
4215 	range = TAILQ_FIRST(&channel->locked_ranges);
4216 	SPDK_CU_ASSERT_FATAL(range != NULL);
4217 	CU_ASSERT(range->offset == 20);
4218 	CU_ASSERT(range->length == 10);
4219 	CU_ASSERT(range->owner_ch == channel);
4220 
4221 	/* Unlocks must exactly match a lock. */
4222 	g_unlock_lba_range_done = false;
4223 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
4224 	CU_ASSERT(rc == -EINVAL);
4225 	CU_ASSERT(g_unlock_lba_range_done == false);
4226 
4227 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4228 	CU_ASSERT(rc == 0);
4229 	spdk_delay_us(100);
4230 	poll_threads();
4231 
4232 	CU_ASSERT(g_unlock_lba_range_done == true);
4233 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4234 
4235 	spdk_put_io_channel(io_ch);
4236 	spdk_bdev_close(desc);
4237 	free_bdev(bdev);
4238 	spdk_bdev_finish(bdev_fini_cb, NULL);
4239 	poll_threads();
4240 }
4241 
4242 static void
4243 lock_lba_range_with_io_outstanding(void)
4244 {
4245 	struct spdk_bdev *bdev;
4246 	struct spdk_bdev_desc *desc = NULL;
4247 	struct spdk_io_channel *io_ch;
4248 	struct spdk_bdev_channel *channel;
4249 	struct lba_range *range;
4250 	char buf[4096];
4251 	int ctx1;
4252 	int rc;
4253 
4254 	spdk_bdev_initialize(bdev_init_cb, NULL);
4255 
4256 	bdev = allocate_bdev("bdev0");
4257 
4258 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4259 	CU_ASSERT(rc == 0);
4260 	CU_ASSERT(desc != NULL);
4261 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4262 	io_ch = spdk_bdev_get_io_channel(desc);
4263 	CU_ASSERT(io_ch != NULL);
4264 	channel = spdk_io_channel_get_ctx(io_ch);
4265 
4266 	g_io_done = false;
4267 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4268 	CU_ASSERT(rc == 0);
4269 
4270 	g_lock_lba_range_done = false;
4271 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4272 	CU_ASSERT(rc == 0);
4273 	poll_threads();
4274 
4275 	/* The lock should immediately become valid, since there are no outstanding
4276 	 * write I/O.
4277 	 */
4278 	CU_ASSERT(g_io_done == false);
4279 	CU_ASSERT(g_lock_lba_range_done == true);
4280 	range = TAILQ_FIRST(&channel->locked_ranges);
4281 	SPDK_CU_ASSERT_FATAL(range != NULL);
4282 	CU_ASSERT(range->offset == 20);
4283 	CU_ASSERT(range->length == 10);
4284 	CU_ASSERT(range->owner_ch == channel);
4285 	CU_ASSERT(range->locked_ctx == &ctx1);
4286 
4287 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4288 	CU_ASSERT(rc == 0);
4289 	stub_complete_io(1);
4290 	spdk_delay_us(100);
4291 	poll_threads();
4292 
4293 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4294 
4295 	/* Now try again, but with a write I/O. */
4296 	g_io_done = false;
4297 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4298 	CU_ASSERT(rc == 0);
4299 
4300 	g_lock_lba_range_done = false;
4301 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4302 	CU_ASSERT(rc == 0);
4303 	poll_threads();
4304 
4305 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
4306 	 * But note that the range should be on the channel's locked_list, to make sure no
4307 	 * new write I/O are started.
4308 	 */
4309 	CU_ASSERT(g_io_done == false);
4310 	CU_ASSERT(g_lock_lba_range_done == false);
4311 	range = TAILQ_FIRST(&channel->locked_ranges);
4312 	SPDK_CU_ASSERT_FATAL(range != NULL);
4313 	CU_ASSERT(range->offset == 20);
4314 	CU_ASSERT(range->length == 10);
4315 
4316 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
4317 	 * our callback was invoked).
4318 	 */
4319 	stub_complete_io(1);
4320 	spdk_delay_us(100);
4321 	poll_threads();
4322 	CU_ASSERT(g_io_done == true);
4323 	CU_ASSERT(g_lock_lba_range_done == true);
4324 
4325 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4326 	CU_ASSERT(rc == 0);
4327 	poll_threads();
4328 
4329 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4330 
4331 	spdk_put_io_channel(io_ch);
4332 	spdk_bdev_close(desc);
4333 	free_bdev(bdev);
4334 	spdk_bdev_finish(bdev_fini_cb, NULL);
4335 	poll_threads();
4336 }
4337 
4338 static void
4339 lock_lba_range_overlapped(void)
4340 {
4341 	struct spdk_bdev *bdev;
4342 	struct spdk_bdev_desc *desc = NULL;
4343 	struct spdk_io_channel *io_ch;
4344 	struct spdk_bdev_channel *channel;
4345 	struct lba_range *range;
4346 	int ctx1;
4347 	int rc;
4348 
4349 	spdk_bdev_initialize(bdev_init_cb, NULL);
4350 
4351 	bdev = allocate_bdev("bdev0");
4352 
4353 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4354 	CU_ASSERT(rc == 0);
4355 	CU_ASSERT(desc != NULL);
4356 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4357 	io_ch = spdk_bdev_get_io_channel(desc);
4358 	CU_ASSERT(io_ch != NULL);
4359 	channel = spdk_io_channel_get_ctx(io_ch);
4360 
4361 	/* Lock range 20-29. */
4362 	g_lock_lba_range_done = false;
4363 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4364 	CU_ASSERT(rc == 0);
4365 	poll_threads();
4366 
4367 	CU_ASSERT(g_lock_lba_range_done == true);
4368 	range = TAILQ_FIRST(&channel->locked_ranges);
4369 	SPDK_CU_ASSERT_FATAL(range != NULL);
4370 	CU_ASSERT(range->offset == 20);
4371 	CU_ASSERT(range->length == 10);
4372 
4373 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
4374 	 * 20-29.
4375 	 */
4376 	g_lock_lba_range_done = false;
4377 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
4378 	CU_ASSERT(rc == 0);
4379 	poll_threads();
4380 
4381 	CU_ASSERT(g_lock_lba_range_done == false);
4382 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4383 	SPDK_CU_ASSERT_FATAL(range != NULL);
4384 	CU_ASSERT(range->offset == 25);
4385 	CU_ASSERT(range->length == 15);
4386 
4387 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
4388 	 * no longer overlaps with an active lock.
4389 	 */
4390 	g_unlock_lba_range_done = false;
4391 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4392 	CU_ASSERT(rc == 0);
4393 	poll_threads();
4394 
4395 	CU_ASSERT(g_unlock_lba_range_done == true);
4396 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4397 	range = TAILQ_FIRST(&channel->locked_ranges);
4398 	SPDK_CU_ASSERT_FATAL(range != NULL);
4399 	CU_ASSERT(range->offset == 25);
4400 	CU_ASSERT(range->length == 15);
4401 
4402 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
4403 	 * currently active 25-39 lock.
4404 	 */
4405 	g_lock_lba_range_done = false;
4406 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
4407 	CU_ASSERT(rc == 0);
4408 	poll_threads();
4409 
4410 	CU_ASSERT(g_lock_lba_range_done == true);
4411 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4412 	SPDK_CU_ASSERT_FATAL(range != NULL);
4413 	range = TAILQ_NEXT(range, tailq);
4414 	SPDK_CU_ASSERT_FATAL(range != NULL);
4415 	CU_ASSERT(range->offset == 40);
4416 	CU_ASSERT(range->length == 20);
4417 
4418 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
4419 	g_lock_lba_range_done = false;
4420 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
4421 	CU_ASSERT(rc == 0);
4422 	poll_threads();
4423 
4424 	CU_ASSERT(g_lock_lba_range_done == false);
4425 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4426 	SPDK_CU_ASSERT_FATAL(range != NULL);
4427 	CU_ASSERT(range->offset == 35);
4428 	CU_ASSERT(range->length == 10);
4429 
4430 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
4431 	 * the 40-59 lock is still active.
4432 	 */
4433 	g_unlock_lba_range_done = false;
4434 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
4435 	CU_ASSERT(rc == 0);
4436 	poll_threads();
4437 
4438 	CU_ASSERT(g_unlock_lba_range_done == true);
4439 	CU_ASSERT(g_lock_lba_range_done == false);
4440 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4441 	SPDK_CU_ASSERT_FATAL(range != NULL);
4442 	CU_ASSERT(range->offset == 35);
4443 	CU_ASSERT(range->length == 10);
4444 
4445 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
4446 	 * no longer any active overlapping locks.
4447 	 */
4448 	g_unlock_lba_range_done = false;
4449 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
4450 	CU_ASSERT(rc == 0);
4451 	poll_threads();
4452 
4453 	CU_ASSERT(g_unlock_lba_range_done == true);
4454 	CU_ASSERT(g_lock_lba_range_done == true);
4455 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4456 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4457 	SPDK_CU_ASSERT_FATAL(range != NULL);
4458 	CU_ASSERT(range->offset == 35);
4459 	CU_ASSERT(range->length == 10);
4460 
4461 	/* Finally, unlock 35-44. */
4462 	g_unlock_lba_range_done = false;
4463 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
4464 	CU_ASSERT(rc == 0);
4465 	poll_threads();
4466 
4467 	CU_ASSERT(g_unlock_lba_range_done == true);
4468 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
4469 
4470 	spdk_put_io_channel(io_ch);
4471 	spdk_bdev_close(desc);
4472 	free_bdev(bdev);
4473 	spdk_bdev_finish(bdev_fini_cb, NULL);
4474 	poll_threads();
4475 }
4476 
4477 static void
4478 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
4479 {
4480 	g_abort_done = true;
4481 	g_abort_status = bdev_io->internal.status;
4482 	spdk_bdev_free_io(bdev_io);
4483 }
4484 
4485 static void
4486 bdev_io_abort(void)
4487 {
4488 	struct spdk_bdev *bdev;
4489 	struct spdk_bdev_desc *desc = NULL;
4490 	struct spdk_io_channel *io_ch;
4491 	struct spdk_bdev_channel *channel;
4492 	struct spdk_bdev_mgmt_channel *mgmt_ch;
4493 	struct spdk_bdev_opts bdev_opts = {};
4494 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
4495 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
4496 	int rc;
4497 
4498 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4499 	bdev_opts.bdev_io_pool_size = 7;
4500 	bdev_opts.bdev_io_cache_size = 2;
4501 
4502 	rc = spdk_bdev_set_opts(&bdev_opts);
4503 	CU_ASSERT(rc == 0);
4504 	spdk_bdev_initialize(bdev_init_cb, NULL);
4505 
4506 	bdev = allocate_bdev("bdev0");
4507 
4508 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4509 	CU_ASSERT(rc == 0);
4510 	CU_ASSERT(desc != NULL);
4511 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4512 	io_ch = spdk_bdev_get_io_channel(desc);
4513 	CU_ASSERT(io_ch != NULL);
4514 	channel = spdk_io_channel_get_ctx(io_ch);
4515 	mgmt_ch = channel->shared_resource->mgmt_ch;
4516 
4517 	g_abort_done = false;
4518 
4519 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
4520 
4521 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4522 	CU_ASSERT(rc == -ENOTSUP);
4523 
4524 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
4525 
4526 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
4527 	CU_ASSERT(rc == 0);
4528 	CU_ASSERT(g_abort_done == true);
4529 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
4530 
4531 	/* Test the case that the target I/O was successfully aborted. */
4532 	g_io_done = false;
4533 
4534 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
4535 	CU_ASSERT(rc == 0);
4536 	CU_ASSERT(g_io_done == false);
4537 
4538 	g_abort_done = false;
4539 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4540 
4541 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4542 	CU_ASSERT(rc == 0);
4543 	CU_ASSERT(g_io_done == true);
4544 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4545 	stub_complete_io(1);
4546 	CU_ASSERT(g_abort_done == true);
4547 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4548 
4549 	/* Test the case that the target I/O was not aborted because it completed
4550 	 * in the middle of execution of the abort.
4551 	 */
4552 	g_io_done = false;
4553 
4554 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
4555 	CU_ASSERT(rc == 0);
4556 	CU_ASSERT(g_io_done == false);
4557 
4558 	g_abort_done = false;
4559 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
4560 
4561 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4562 	CU_ASSERT(rc == 0);
4563 	CU_ASSERT(g_io_done == false);
4564 
4565 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4566 	stub_complete_io(1);
4567 	CU_ASSERT(g_io_done == true);
4568 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4569 
4570 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
4571 	stub_complete_io(1);
4572 	CU_ASSERT(g_abort_done == true);
4573 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4574 
4575 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4576 
4577 	bdev->optimal_io_boundary = 16;
4578 	bdev->split_on_optimal_io_boundary = true;
4579 
4580 	/* Test that a single-vector command which is split is aborted correctly.
4581 	 * Offset 14, length 8, payload 0xF000
4582 	 *  Child - Offset 14, length 2, payload 0xF000
4583 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4584 	 */
4585 	g_io_done = false;
4586 
4587 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
4588 	CU_ASSERT(rc == 0);
4589 	CU_ASSERT(g_io_done == false);
4590 
4591 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
4592 
4593 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4594 
4595 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4596 	CU_ASSERT(rc == 0);
4597 	CU_ASSERT(g_io_done == true);
4598 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4599 	stub_complete_io(2);
4600 	CU_ASSERT(g_abort_done == true);
4601 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4602 
4603 	/* Test that a multi-vector command that needs to be split by strip and then
4604 	 * needs to be split is aborted correctly. Abort is requested before the second
4605 	 * child I/O was submitted. The parent I/O should complete with failure without
4606 	 * submitting the second child I/O.
4607 	 */
4608 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
4609 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
4610 		iov[i].iov_len = 512;
4611 	}
4612 
4613 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
4614 	g_io_done = false;
4615 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
4616 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
4617 	CU_ASSERT(rc == 0);
4618 	CU_ASSERT(g_io_done == false);
4619 
4620 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
4621 
4622 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4623 
4624 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4625 	CU_ASSERT(rc == 0);
4626 	CU_ASSERT(g_io_done == true);
4627 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4628 	stub_complete_io(1);
4629 	CU_ASSERT(g_abort_done == true);
4630 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4631 
4632 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4633 
4634 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4635 
4636 	bdev->optimal_io_boundary = 16;
4637 	g_io_done = false;
4638 
4639 	/* Test that a ingle-vector command which is split is aborted correctly.
4640 	 * Differently from the above, the child abort request will be submitted
4641 	 * sequentially due to the capacity of spdk_bdev_io.
4642 	 */
4643 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
4644 	CU_ASSERT(rc == 0);
4645 	CU_ASSERT(g_io_done == false);
4646 
4647 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
4648 
4649 	g_abort_done = false;
4650 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4651 
4652 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4653 	CU_ASSERT(rc == 0);
4654 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
4655 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
4656 
4657 	stub_complete_io(1);
4658 	CU_ASSERT(g_io_done == true);
4659 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4660 	stub_complete_io(3);
4661 	CU_ASSERT(g_abort_done == true);
4662 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4663 
4664 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4665 
4666 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4667 
4668 	spdk_put_io_channel(io_ch);
4669 	spdk_bdev_close(desc);
4670 	free_bdev(bdev);
4671 	spdk_bdev_finish(bdev_fini_cb, NULL);
4672 	poll_threads();
4673 }
4674 
4675 static void
4676 bdev_unmap(void)
4677 {
4678 	struct spdk_bdev *bdev;
4679 	struct spdk_bdev_desc *desc = NULL;
4680 	struct spdk_io_channel *ioch;
4681 	struct spdk_bdev_channel *bdev_ch;
4682 	struct ut_expected_io *expected_io;
4683 	struct spdk_bdev_opts bdev_opts = {};
4684 	uint32_t i, num_outstanding;
4685 	uint64_t offset, num_blocks, max_unmap_blocks, num_children;
4686 	int rc;
4687 
4688 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4689 	bdev_opts.bdev_io_pool_size = 512;
4690 	bdev_opts.bdev_io_cache_size = 64;
4691 	rc = spdk_bdev_set_opts(&bdev_opts);
4692 	CU_ASSERT(rc == 0);
4693 
4694 	spdk_bdev_initialize(bdev_init_cb, NULL);
4695 	bdev = allocate_bdev("bdev");
4696 
4697 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4698 	CU_ASSERT_EQUAL(rc, 0);
4699 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4700 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4701 	ioch = spdk_bdev_get_io_channel(desc);
4702 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4703 	bdev_ch = spdk_io_channel_get_ctx(ioch);
4704 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4705 
4706 	fn_table.submit_request = stub_submit_request;
4707 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4708 
4709 	/* Case 1: First test the request won't be split */
4710 	num_blocks = 32;
4711 
4712 	g_io_done = false;
4713 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 0, num_blocks, 0);
4714 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4715 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4716 	CU_ASSERT_EQUAL(rc, 0);
4717 	CU_ASSERT(g_io_done == false);
4718 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
4719 	stub_complete_io(1);
4720 	CU_ASSERT(g_io_done == true);
4721 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4722 
4723 	/* Case 2: Test the split with 2 children requests */
4724 	bdev->max_unmap = 8;
4725 	bdev->max_unmap_segments = 2;
4726 	max_unmap_blocks = bdev->max_unmap * bdev->max_unmap_segments;
4727 	num_blocks = max_unmap_blocks * 2;
4728 	offset = 0;
4729 
4730 	g_io_done = false;
4731 	for (i = 0; i < 2; i++) {
4732 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
4733 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4734 		offset += max_unmap_blocks;
4735 	}
4736 
4737 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4738 	CU_ASSERT_EQUAL(rc, 0);
4739 	CU_ASSERT(g_io_done == false);
4740 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
4741 	stub_complete_io(2);
4742 	CU_ASSERT(g_io_done == true);
4743 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4744 
4745 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
4746 	num_children = 15;
4747 	num_blocks = max_unmap_blocks * num_children;
4748 	g_io_done = false;
4749 	offset = 0;
4750 	for (i = 0; i < num_children; i++) {
4751 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
4752 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4753 		offset += max_unmap_blocks;
4754 	}
4755 
4756 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4757 	CU_ASSERT_EQUAL(rc, 0);
4758 	CU_ASSERT(g_io_done == false);
4759 
4760 	while (num_children > 0) {
4761 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
4762 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
4763 		stub_complete_io(num_outstanding);
4764 		num_children -= num_outstanding;
4765 	}
4766 	CU_ASSERT(g_io_done == true);
4767 
4768 	spdk_put_io_channel(ioch);
4769 	spdk_bdev_close(desc);
4770 	free_bdev(bdev);
4771 	spdk_bdev_finish(bdev_fini_cb, NULL);
4772 	poll_threads();
4773 }
4774 
4775 static void
4776 bdev_write_zeroes_split_test(void)
4777 {
4778 	struct spdk_bdev *bdev;
4779 	struct spdk_bdev_desc *desc = NULL;
4780 	struct spdk_io_channel *ioch;
4781 	struct spdk_bdev_channel *bdev_ch;
4782 	struct ut_expected_io *expected_io;
4783 	struct spdk_bdev_opts bdev_opts = {};
4784 	uint32_t i, num_outstanding;
4785 	uint64_t offset, num_blocks, max_write_zeroes_blocks, num_children;
4786 	int rc;
4787 
4788 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4789 	bdev_opts.bdev_io_pool_size = 512;
4790 	bdev_opts.bdev_io_cache_size = 64;
4791 	rc = spdk_bdev_set_opts(&bdev_opts);
4792 	CU_ASSERT(rc == 0);
4793 
4794 	spdk_bdev_initialize(bdev_init_cb, NULL);
4795 	bdev = allocate_bdev("bdev");
4796 
4797 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4798 	CU_ASSERT_EQUAL(rc, 0);
4799 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4800 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4801 	ioch = spdk_bdev_get_io_channel(desc);
4802 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4803 	bdev_ch = spdk_io_channel_get_ctx(ioch);
4804 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4805 
4806 	fn_table.submit_request = stub_submit_request;
4807 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4808 
4809 	/* Case 1: First test the request won't be split */
4810 	num_blocks = 32;
4811 
4812 	g_io_done = false;
4813 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
4814 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4815 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4816 	CU_ASSERT_EQUAL(rc, 0);
4817 	CU_ASSERT(g_io_done == false);
4818 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
4819 	stub_complete_io(1);
4820 	CU_ASSERT(g_io_done == true);
4821 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4822 
4823 	/* Case 2: Test the split with 2 children requests */
4824 	max_write_zeroes_blocks = 8;
4825 	bdev->max_write_zeroes = max_write_zeroes_blocks;
4826 	num_blocks = max_write_zeroes_blocks * 2;
4827 	offset = 0;
4828 
4829 	g_io_done = false;
4830 	for (i = 0; i < 2; i++) {
4831 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
4832 						   0);
4833 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4834 		offset += max_write_zeroes_blocks;
4835 	}
4836 
4837 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4838 	CU_ASSERT_EQUAL(rc, 0);
4839 	CU_ASSERT(g_io_done == false);
4840 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
4841 	stub_complete_io(2);
4842 	CU_ASSERT(g_io_done == true);
4843 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4844 
4845 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
4846 	num_children = 15;
4847 	num_blocks = max_write_zeroes_blocks * num_children;
4848 	g_io_done = false;
4849 	offset = 0;
4850 	for (i = 0; i < num_children; i++) {
4851 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
4852 						   0);
4853 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4854 		offset += max_write_zeroes_blocks;
4855 	}
4856 
4857 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4858 	CU_ASSERT_EQUAL(rc, 0);
4859 	CU_ASSERT(g_io_done == false);
4860 
4861 	while (num_children > 0) {
4862 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
4863 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
4864 		stub_complete_io(num_outstanding);
4865 		num_children -= num_outstanding;
4866 	}
4867 	CU_ASSERT(g_io_done == true);
4868 
4869 	spdk_put_io_channel(ioch);
4870 	spdk_bdev_close(desc);
4871 	free_bdev(bdev);
4872 	spdk_bdev_finish(bdev_fini_cb, NULL);
4873 	poll_threads();
4874 }
4875 
4876 static void
4877 bdev_set_options_test(void)
4878 {
4879 	struct spdk_bdev_opts bdev_opts = {};
4880 	int rc;
4881 
4882 	/* Case1: Do not set opts_size */
4883 	rc = spdk_bdev_set_opts(&bdev_opts);
4884 	CU_ASSERT(rc == -1);
4885 
4886 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4887 	bdev_opts.bdev_io_pool_size = 4;
4888 	bdev_opts.bdev_io_cache_size = 2;
4889 	bdev_opts.small_buf_pool_size = 4;
4890 
4891 	/* Case 2: Do not set valid small_buf_pool_size and large_buf_pool_size */
4892 	rc = spdk_bdev_set_opts(&bdev_opts);
4893 	CU_ASSERT(rc == -1);
4894 
4895 	/* Case 3: Do not set valid large_buf_pool_size */
4896 	bdev_opts.small_buf_pool_size = BUF_SMALL_POOL_SIZE;
4897 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE - 1;
4898 	rc = spdk_bdev_set_opts(&bdev_opts);
4899 	CU_ASSERT(rc == -1);
4900 
4901 	/* Case4: set valid large buf_pool_size */
4902 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE;
4903 	rc = spdk_bdev_set_opts(&bdev_opts);
4904 	CU_ASSERT(rc == 0);
4905 
4906 	/* Case5: Set different valid value for small and large buf pool */
4907 	bdev_opts.large_buf_pool_size = BUF_SMALL_POOL_SIZE + 3;
4908 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE + 3;
4909 	rc = spdk_bdev_set_opts(&bdev_opts);
4910 	CU_ASSERT(rc == 0);
4911 }
4912 
4913 static uint64_t
4914 get_ns_time(void)
4915 {
4916 	int rc;
4917 	struct timespec ts;
4918 
4919 	rc = clock_gettime(CLOCK_MONOTONIC, &ts);
4920 	CU_ASSERT(rc == 0);
4921 	return ts.tv_sec * 1000 * 1000 * 1000 + ts.tv_nsec;
4922 }
4923 
4924 static int
4925 rb_tree_get_height(struct spdk_bdev_name *bdev_name)
4926 {
4927 	int h1, h2;
4928 
4929 	if (bdev_name == NULL) {
4930 		return -1;
4931 	} else {
4932 		h1 = rb_tree_get_height(RB_LEFT(bdev_name, node));
4933 		h2 = rb_tree_get_height(RB_RIGHT(bdev_name, node));
4934 
4935 		return spdk_max(h1, h2) + 1;
4936 	}
4937 }
4938 
4939 static void
4940 bdev_multi_allocation(void)
4941 {
4942 	const int max_bdev_num = 1024 * 16;
4943 	char name[max_bdev_num][16];
4944 	char noexist_name[] = "invalid_bdev";
4945 	struct spdk_bdev *bdev[max_bdev_num];
4946 	int i, j;
4947 	uint64_t last_time;
4948 	int bdev_num;
4949 	int height;
4950 
4951 	for (j = 0; j < max_bdev_num; j++) {
4952 		snprintf(name[j], sizeof(name[j]), "bdev%d", j);
4953 	}
4954 
4955 	for (i = 0; i < 16; i++) {
4956 		last_time = get_ns_time();
4957 		bdev_num = 1024 * (i + 1);
4958 		for (j = 0; j < bdev_num; j++) {
4959 			bdev[j] = allocate_bdev(name[j]);
4960 			height = rb_tree_get_height(&bdev[j]->internal.bdev_name);
4961 			CU_ASSERT(height <= (int)(spdk_u32log2(2 * j + 2)));
4962 		}
4963 		SPDK_NOTICELOG("alloc bdev num %d takes %" PRIu64 " ms\n", bdev_num,
4964 			       (get_ns_time() - last_time) / 1000 / 1000);
4965 		for (j = 0; j < bdev_num; j++) {
4966 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) != NULL);
4967 		}
4968 		CU_ASSERT(spdk_bdev_get_by_name(noexist_name) == NULL);
4969 
4970 		for (j = 0; j < bdev_num; j++) {
4971 			free_bdev(bdev[j]);
4972 		}
4973 		for (j = 0; j < bdev_num; j++) {
4974 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) == NULL);
4975 		}
4976 	}
4977 }
4978 
4979 static struct spdk_memory_domain *g_bdev_memory_domain = (struct spdk_memory_domain *) 0xf00df00d;
4980 
4981 static int
4982 test_bdev_get_supported_dma_device_types_op(void *ctx, struct spdk_memory_domain **domains,
4983 		int array_size)
4984 {
4985 	if (array_size > 0 && domains) {
4986 		domains[0] = g_bdev_memory_domain;
4987 	}
4988 
4989 	return 1;
4990 }
4991 
4992 static void
4993 bdev_get_memory_domains(void)
4994 {
4995 	struct spdk_bdev_fn_table fn_table = {
4996 		.get_memory_domains = test_bdev_get_supported_dma_device_types_op
4997 	};
4998 	struct spdk_bdev bdev = { .fn_table = &fn_table };
4999 	struct spdk_memory_domain *domains[2] = {};
5000 	int rc;
5001 
5002 	/* bdev is NULL */
5003 	rc = spdk_bdev_get_memory_domains(NULL, domains, 2);
5004 	CU_ASSERT(rc == -EINVAL);
5005 
5006 	/* domains is NULL */
5007 	rc = spdk_bdev_get_memory_domains(&bdev, NULL, 2);
5008 	CU_ASSERT(rc == 1);
5009 
5010 	/* array size is 0 */
5011 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 0);
5012 	CU_ASSERT(rc == 1);
5013 
5014 	/* get_supported_dma_device_types op is set */
5015 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5016 	CU_ASSERT(rc == 1);
5017 	CU_ASSERT(domains[0] == g_bdev_memory_domain);
5018 
5019 	/* get_supported_dma_device_types op is not set */
5020 	fn_table.get_memory_domains = NULL;
5021 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5022 	CU_ASSERT(rc == 0);
5023 }
5024 
5025 static void
5026 bdev_writev_readv_ext(void)
5027 {
5028 	struct spdk_bdev *bdev;
5029 	struct spdk_bdev_desc *desc = NULL;
5030 	struct spdk_io_channel *io_ch;
5031 	char io_buf[512];
5032 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5033 	struct ut_expected_io *expected_io;
5034 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5035 		.metadata = (void *)0xFF000000,
5036 		.size = sizeof(ext_io_opts)
5037 	};
5038 	int rc;
5039 
5040 	spdk_bdev_initialize(bdev_init_cb, NULL);
5041 
5042 	bdev = allocate_bdev("bdev0");
5043 	bdev->md_interleave = false;
5044 	bdev->md_len = 8;
5045 
5046 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5047 	CU_ASSERT(rc == 0);
5048 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5049 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5050 	io_ch = spdk_bdev_get_io_channel(desc);
5051 	CU_ASSERT(io_ch != NULL);
5052 
5053 	/* Test 1, Simple test */
5054 	g_io_done = false;
5055 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5056 	expected_io->md_buf = ext_io_opts.metadata;
5057 	expected_io->ext_io_opts = &ext_io_opts;
5058 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5059 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5060 
5061 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5062 
5063 	CU_ASSERT(rc == 0);
5064 	CU_ASSERT(g_io_done == false);
5065 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5066 	stub_complete_io(1);
5067 	CU_ASSERT(g_io_done == true);
5068 
5069 	g_io_done = false;
5070 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5071 	expected_io->md_buf = ext_io_opts.metadata;
5072 	expected_io->ext_io_opts = &ext_io_opts;
5073 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5074 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5075 
5076 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5077 
5078 	CU_ASSERT(rc == 0);
5079 	CU_ASSERT(g_io_done == false);
5080 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5081 	stub_complete_io(1);
5082 	CU_ASSERT(g_io_done == true);
5083 
5084 	/* Test 2, invalid ext_opts size */
5085 	ext_io_opts.size = 0;
5086 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5087 	CU_ASSERT(rc != 0);
5088 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5089 	CU_ASSERT(rc != 0);
5090 
5091 	ext_io_opts.size = sizeof(ext_io_opts) * 2;
5092 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5093 	CU_ASSERT(rc != 0);
5094 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5095 	CU_ASSERT(rc != 0);
5096 
5097 	/* Test 3, Check that IO request with ext_opts and metadata is split correctly
5098 	 * Offset 14, length 8, payload 0xF000
5099 	 *  Child - Offset 14, length 2, payload 0xF000
5100 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5101 	 */
5102 	bdev->optimal_io_boundary = 16;
5103 	bdev->split_on_optimal_io_boundary = true;
5104 	bdev->md_interleave = false;
5105 	bdev->md_len = 8;
5106 
5107 	iov.iov_base = (void *)0xF000;
5108 	iov.iov_len = 4096;
5109 	memset(&ext_io_opts, 0, sizeof(ext_io_opts));
5110 	ext_io_opts.metadata = (void *)0xFF000000;
5111 	ext_io_opts.size = sizeof(ext_io_opts);
5112 	g_io_done = false;
5113 
5114 	/* read */
5115 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
5116 	expected_io->md_buf = ext_io_opts.metadata;
5117 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5118 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5119 
5120 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
5121 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5122 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5123 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5124 
5125 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5126 	CU_ASSERT(rc == 0);
5127 	CU_ASSERT(g_io_done == false);
5128 
5129 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5130 	stub_complete_io(2);
5131 	CU_ASSERT(g_io_done == true);
5132 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5133 
5134 	/* write */
5135 	g_io_done = false;
5136 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
5137 	expected_io->md_buf = ext_io_opts.metadata;
5138 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5139 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5140 
5141 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 6, 1);
5142 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5143 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5144 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5145 
5146 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5147 	CU_ASSERT(rc == 0);
5148 	CU_ASSERT(g_io_done == false);
5149 
5150 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5151 	stub_complete_io(2);
5152 	CU_ASSERT(g_io_done == true);
5153 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5154 
5155 	/* ext_opts contains metadata but ext_opts::size doesn't cover metadata pointer.
5156 	 * Check that IO request with ext_opts and metadata is split correctly - metadata pointer is not copied, so split
5157 	 * requests do not have metadata
5158 	 * Offset 14, length 8, payload 0xF000
5159 	 *  Child - Offset 14, length 2, payload 0xF000
5160 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5161 	 */
5162 	iov.iov_base = (void *)0xF000;
5163 	iov.iov_len = 4096;
5164 	memset(&ext_io_opts, 0, sizeof(ext_io_opts));
5165 	ext_io_opts.metadata = (void *)0xFF000000;
5166 	ext_io_opts.size = offsetof(struct spdk_bdev_ext_io_opts, metadata);;
5167 	g_io_done = false;
5168 
5169 	/* read */
5170 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
5171 	/* Split request must not contain metadata pointer */
5172 	expected_io->md_buf = NULL;
5173 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5174 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5175 
5176 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
5177 	expected_io->md_buf = NULL;
5178 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5179 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5180 
5181 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5182 	CU_ASSERT(rc == 0);
5183 	CU_ASSERT(g_io_done == false);
5184 
5185 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5186 	stub_complete_io(2);
5187 	CU_ASSERT(g_io_done == true);
5188 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5189 
5190 	/* write */
5191 	g_io_done = false;
5192 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
5193 	expected_io->md_buf = NULL;
5194 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5195 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5196 
5197 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 6, 1);
5198 	/* Split request must not contain metadata pointer */
5199 	expected_io->md_buf = NULL;
5200 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5201 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5202 
5203 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5204 	CU_ASSERT(rc == 0);
5205 	CU_ASSERT(g_io_done == false);
5206 
5207 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5208 	stub_complete_io(2);
5209 	CU_ASSERT(g_io_done == true);
5210 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5211 
5212 	/* Test 4, Verify data pull/push
5213 	 * bdev doens't support memory domains, so buffers from bdev memory pool will be used */
5214 	ext_io_opts.memory_domain = (struct spdk_memory_domain *)0xdeadbeef;
5215 
5216 	g_io_done = false;
5217 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5218 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5219 	expected_io->ext_io_opts = &ext_io_opts;
5220 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5221 
5222 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5223 
5224 	CU_ASSERT(rc == 0);
5225 	CU_ASSERT(g_io_done == false);
5226 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5227 	stub_complete_io(1);
5228 	CU_ASSERT(g_memory_domain_push_data_called == true);
5229 	CU_ASSERT(g_io_done == true);
5230 
5231 	g_io_done = false;
5232 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5233 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5234 	expected_io->ext_io_opts = &ext_io_opts;
5235 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5236 
5237 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5238 
5239 	CU_ASSERT(rc == 0);
5240 	CU_ASSERT(g_memory_domain_pull_data_called == true);
5241 	CU_ASSERT(g_io_done == false);
5242 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5243 	stub_complete_io(1);
5244 	CU_ASSERT(g_io_done == true);
5245 
5246 	spdk_put_io_channel(io_ch);
5247 	spdk_bdev_close(desc);
5248 	free_bdev(bdev);
5249 	spdk_bdev_finish(bdev_fini_cb, NULL);
5250 	poll_threads();
5251 }
5252 
5253 static void
5254 bdev_register_uuid_alias(void)
5255 {
5256 	struct spdk_bdev *bdev, *second;
5257 	char uuid[SPDK_UUID_STRING_LEN];
5258 	int rc;
5259 
5260 	spdk_bdev_initialize(bdev_init_cb, NULL);
5261 	bdev = allocate_bdev("bdev0");
5262 
5263 	/* Make sure an UUID was generated  */
5264 	CU_ASSERT_FALSE(spdk_mem_all_zero(&bdev->uuid, sizeof(bdev->uuid)));
5265 
5266 	/* Check that an UUID alias was registered */
5267 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5268 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5269 
5270 	/* Unregister the bdev */
5271 	spdk_bdev_unregister(bdev, NULL, NULL);
5272 	poll_threads();
5273 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5274 
5275 	/* Check the same, but this time register the bdev with non-zero UUID */
5276 	rc = spdk_bdev_register(bdev);
5277 	CU_ASSERT_EQUAL(rc, 0);
5278 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5279 
5280 	/* Unregister the bdev */
5281 	spdk_bdev_unregister(bdev, NULL, NULL);
5282 	poll_threads();
5283 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5284 
5285 	/* Regiser the bdev using UUID as the name */
5286 	bdev->name = uuid;
5287 	rc = spdk_bdev_register(bdev);
5288 	CU_ASSERT_EQUAL(rc, 0);
5289 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5290 
5291 	/* Unregister the bdev */
5292 	spdk_bdev_unregister(bdev, NULL, NULL);
5293 	poll_threads();
5294 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5295 
5296 	/* Check that it's not possible to register two bdevs with the same UUIDs */
5297 	bdev->name = "bdev0";
5298 	second = allocate_bdev("bdev1");
5299 	spdk_uuid_copy(&bdev->uuid, &second->uuid);
5300 	rc = spdk_bdev_register(bdev);
5301 	CU_ASSERT_EQUAL(rc, -EEXIST);
5302 
5303 	/* Regenerate the UUID and re-check */
5304 	spdk_uuid_generate(&bdev->uuid);
5305 	rc = spdk_bdev_register(bdev);
5306 	CU_ASSERT_EQUAL(rc, 0);
5307 
5308 	/* And check that both bdevs can be retrieved through their UUIDs */
5309 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5310 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5311 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &second->uuid);
5312 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), second);
5313 
5314 	free_bdev(second);
5315 	free_bdev(bdev);
5316 	spdk_bdev_finish(bdev_fini_cb, NULL);
5317 	poll_threads();
5318 }
5319 
5320 static void
5321 bdev_unregister_by_name(void)
5322 {
5323 	struct spdk_bdev *bdev;
5324 	int rc;
5325 
5326 	bdev = allocate_bdev("bdev");
5327 
5328 	g_event_type1 = 0xFF;
5329 	g_unregister_arg = NULL;
5330 	g_unregister_rc = -1;
5331 
5332 	rc = spdk_bdev_unregister_by_name("bdev1", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5333 	CU_ASSERT(rc == -ENODEV);
5334 
5335 	rc = spdk_bdev_unregister_by_name("bdev", &vbdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5336 	CU_ASSERT(rc == -ENODEV);
5337 
5338 	rc = spdk_bdev_unregister_by_name("bdev", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5339 	CU_ASSERT(rc == 0);
5340 
5341 	/* Check that unregister callback is delayed */
5342 	CU_ASSERT(g_unregister_arg == NULL);
5343 	CU_ASSERT(g_unregister_rc == -1);
5344 
5345 	poll_threads();
5346 
5347 	/* Event callback shall not be issued because device was closed */
5348 	CU_ASSERT(g_event_type1 == 0xFF);
5349 	/* Unregister callback is issued */
5350 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
5351 	CU_ASSERT(g_unregister_rc == 0);
5352 
5353 	free_bdev(bdev);
5354 }
5355 
5356 static int
5357 count_bdevs(void *ctx, struct spdk_bdev *bdev)
5358 {
5359 	int *count = ctx;
5360 
5361 	(*count)++;
5362 
5363 	return 0;
5364 }
5365 
5366 static void
5367 for_each_bdev_test(void)
5368 {
5369 	struct spdk_bdev *bdev[8];
5370 	int rc, count;
5371 
5372 	bdev[0] = allocate_bdev("bdev0");
5373 
5374 	bdev[1] = allocate_bdev("bdev1");
5375 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
5376 	CU_ASSERT(rc == 0);
5377 
5378 	bdev[2] = allocate_bdev("bdev2");
5379 
5380 	bdev[3] = allocate_bdev("bdev3");
5381 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
5382 	CU_ASSERT(rc == 0);
5383 
5384 	bdev[4] = allocate_bdev("bdev4");
5385 
5386 	bdev[5] = allocate_bdev("bdev5");
5387 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
5388 	CU_ASSERT(rc == 0);
5389 
5390 	bdev[6] = allocate_bdev("bdev6");
5391 
5392 	bdev[7] = allocate_bdev("bdev7");
5393 
5394 	count = 0;
5395 	rc = spdk_for_each_bdev(&count, count_bdevs);
5396 	CU_ASSERT(rc == 0);
5397 	CU_ASSERT(count == 8);
5398 
5399 	count = 0;
5400 	rc = spdk_for_each_bdev_leaf(&count, count_bdevs);
5401 	CU_ASSERT(rc == 0);
5402 	CU_ASSERT(count == 5);
5403 
5404 	free_bdev(bdev[0]);
5405 	free_bdev(bdev[1]);
5406 	free_bdev(bdev[2]);
5407 	free_bdev(bdev[3]);
5408 	free_bdev(bdev[4]);
5409 	free_bdev(bdev[5]);
5410 	free_bdev(bdev[6]);
5411 	free_bdev(bdev[7]);
5412 }
5413 
5414 int
5415 main(int argc, char **argv)
5416 {
5417 	CU_pSuite		suite = NULL;
5418 	unsigned int		num_failures;
5419 
5420 	CU_set_error_action(CUEA_ABORT);
5421 	CU_initialize_registry();
5422 
5423 	suite = CU_add_suite("bdev", null_init, null_clean);
5424 
5425 	CU_ADD_TEST(suite, bytes_to_blocks_test);
5426 	CU_ADD_TEST(suite, num_blocks_test);
5427 	CU_ADD_TEST(suite, io_valid_test);
5428 	CU_ADD_TEST(suite, open_write_test);
5429 	CU_ADD_TEST(suite, claim_test);
5430 	CU_ADD_TEST(suite, alias_add_del_test);
5431 	CU_ADD_TEST(suite, get_device_stat_test);
5432 	CU_ADD_TEST(suite, bdev_io_types_test);
5433 	CU_ADD_TEST(suite, bdev_io_wait_test);
5434 	CU_ADD_TEST(suite, bdev_io_spans_split_test);
5435 	CU_ADD_TEST(suite, bdev_io_boundary_split_test);
5436 	CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test);
5437 	CU_ADD_TEST(suite, bdev_io_mix_split_test);
5438 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
5439 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
5440 	CU_ADD_TEST(suite, bdev_io_alignment);
5441 	CU_ADD_TEST(suite, bdev_histograms);
5442 	CU_ADD_TEST(suite, bdev_write_zeroes);
5443 	CU_ADD_TEST(suite, bdev_compare_and_write);
5444 	CU_ADD_TEST(suite, bdev_compare);
5445 	CU_ADD_TEST(suite, bdev_zcopy_write);
5446 	CU_ADD_TEST(suite, bdev_zcopy_read);
5447 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
5448 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
5449 	CU_ADD_TEST(suite, bdev_open_ext);
5450 	CU_ADD_TEST(suite, bdev_open_ext_unregister);
5451 	CU_ADD_TEST(suite, bdev_set_io_timeout);
5452 	CU_ADD_TEST(suite, lba_range_overlap);
5453 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
5454 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
5455 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
5456 	CU_ADD_TEST(suite, bdev_io_abort);
5457 	CU_ADD_TEST(suite, bdev_unmap);
5458 	CU_ADD_TEST(suite, bdev_write_zeroes_split_test);
5459 	CU_ADD_TEST(suite, bdev_set_options_test);
5460 	CU_ADD_TEST(suite, bdev_multi_allocation);
5461 	CU_ADD_TEST(suite, bdev_get_memory_domains);
5462 	CU_ADD_TEST(suite, bdev_writev_readv_ext);
5463 	CU_ADD_TEST(suite, bdev_register_uuid_alias);
5464 	CU_ADD_TEST(suite, bdev_unregister_by_name);
5465 	CU_ADD_TEST(suite, for_each_bdev_test);
5466 
5467 	allocate_cores(1);
5468 	allocate_threads(1);
5469 	set_thread(0);
5470 
5471 	CU_basic_set_mode(CU_BRM_VERBOSE);
5472 	CU_basic_run_tests();
5473 	num_failures = CU_get_number_of_failures();
5474 	CU_cleanup_registry();
5475 
5476 	free_threads();
5477 	free_cores();
5478 
5479 	return num_failures;
5480 }
5481