xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision 877573897ad52be4fa8989f7617bd655b87e05c4)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2017 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk_cunit.h"
8 
9 #include "common/lib/ut_multithread.c"
10 #include "unit/lib/json_mock.c"
11 
12 #include "spdk/config.h"
13 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
14 #undef SPDK_CONFIG_VTUNE
15 
16 #include "bdev/bdev.c"
17 
18 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
19 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
20 DEFINE_STUB(spdk_memory_domain_get_dma_device_id, const char *, (struct spdk_memory_domain *domain),
21 	    "test_domain");
22 DEFINE_STUB(spdk_memory_domain_get_dma_device_type, enum spdk_dma_device_type,
23 	    (struct spdk_memory_domain *domain), 0);
24 
25 static bool g_memory_domain_pull_data_called;
26 static bool g_memory_domain_push_data_called;
27 
28 DEFINE_RETURN_MOCK(spdk_memory_domain_pull_data, int);
29 int
30 spdk_memory_domain_pull_data(struct spdk_memory_domain *src_domain, void *src_domain_ctx,
31 			     struct iovec *src_iov, uint32_t src_iov_cnt, struct iovec *dst_iov, uint32_t dst_iov_cnt,
32 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
33 {
34 	g_memory_domain_pull_data_called = true;
35 	HANDLE_RETURN_MOCK(spdk_memory_domain_pull_data);
36 	cpl_cb(cpl_cb_arg, 0);
37 	return 0;
38 }
39 
40 DEFINE_RETURN_MOCK(spdk_memory_domain_push_data, int);
41 int
42 spdk_memory_domain_push_data(struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
43 			     struct iovec *dst_iov, uint32_t dst_iovcnt, struct iovec *src_iov, uint32_t src_iovcnt,
44 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
45 {
46 	g_memory_domain_push_data_called = true;
47 	HANDLE_RETURN_MOCK(spdk_memory_domain_push_data);
48 	cpl_cb(cpl_cb_arg, 0);
49 	return 0;
50 }
51 
52 int g_status;
53 int g_count;
54 enum spdk_bdev_event_type g_event_type1;
55 enum spdk_bdev_event_type g_event_type2;
56 enum spdk_bdev_event_type g_event_type3;
57 enum spdk_bdev_event_type g_event_type4;
58 struct spdk_histogram_data *g_histogram;
59 void *g_unregister_arg;
60 int g_unregister_rc;
61 
62 void
63 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
64 			 int *sc, int *sk, int *asc, int *ascq)
65 {
66 }
67 
68 static int
69 null_init(void)
70 {
71 	return 0;
72 }
73 
74 static int
75 null_clean(void)
76 {
77 	return 0;
78 }
79 
80 static int
81 stub_destruct(void *ctx)
82 {
83 	return 0;
84 }
85 
86 struct ut_expected_io {
87 	uint8_t				type;
88 	uint64_t			offset;
89 	uint64_t			src_offset;
90 	uint64_t			length;
91 	int				iovcnt;
92 	struct iovec			iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
93 	void				*md_buf;
94 	struct spdk_bdev_ext_io_opts	*ext_io_opts;
95 	bool				copy_opts;
96 	TAILQ_ENTRY(ut_expected_io)	link;
97 };
98 
99 struct bdev_ut_channel {
100 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
101 	uint32_t			outstanding_io_count;
102 	TAILQ_HEAD(, ut_expected_io)	expected_io;
103 };
104 
105 static bool g_io_done;
106 static struct spdk_bdev_io *g_bdev_io;
107 static enum spdk_bdev_io_status g_io_status;
108 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
109 static uint32_t g_bdev_ut_io_device;
110 static struct bdev_ut_channel *g_bdev_ut_channel;
111 static void *g_compare_read_buf;
112 static uint32_t g_compare_read_buf_len;
113 static void *g_compare_write_buf;
114 static uint32_t g_compare_write_buf_len;
115 static void *g_compare_md_buf;
116 static bool g_abort_done;
117 static enum spdk_bdev_io_status g_abort_status;
118 static void *g_zcopy_read_buf;
119 static uint32_t g_zcopy_read_buf_len;
120 static void *g_zcopy_write_buf;
121 static uint32_t g_zcopy_write_buf_len;
122 static struct spdk_bdev_io *g_zcopy_bdev_io;
123 static uint64_t g_seek_data_offset;
124 static uint64_t g_seek_hole_offset;
125 static uint64_t g_seek_offset;
126 
127 static struct ut_expected_io *
128 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
129 {
130 	struct ut_expected_io *expected_io;
131 
132 	expected_io = calloc(1, sizeof(*expected_io));
133 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
134 
135 	expected_io->type = type;
136 	expected_io->offset = offset;
137 	expected_io->length = length;
138 	expected_io->iovcnt = iovcnt;
139 
140 	return expected_io;
141 }
142 
143 static struct ut_expected_io *
144 ut_alloc_expected_copy_io(uint8_t type, uint64_t offset, uint64_t src_offset, uint64_t length)
145 {
146 	struct ut_expected_io *expected_io;
147 
148 	expected_io = calloc(1, sizeof(*expected_io));
149 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
150 
151 	expected_io->type = type;
152 	expected_io->offset = offset;
153 	expected_io->src_offset = src_offset;
154 	expected_io->length = length;
155 
156 	return expected_io;
157 }
158 
159 static void
160 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
161 {
162 	expected_io->iov[pos].iov_base = base;
163 	expected_io->iov[pos].iov_len = len;
164 }
165 
166 static void
167 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
168 {
169 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
170 	struct ut_expected_io *expected_io;
171 	struct iovec *iov, *expected_iov;
172 	struct spdk_bdev_io *bio_to_abort;
173 	int i;
174 
175 	g_bdev_io = bdev_io;
176 
177 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
178 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
179 
180 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
181 		CU_ASSERT(g_compare_read_buf_len == len);
182 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
183 		if (bdev_io->bdev->md_len && bdev_io->u.bdev.md_buf && g_compare_md_buf) {
184 			memcpy(bdev_io->u.bdev.md_buf, g_compare_md_buf,
185 			       bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks);
186 		}
187 	}
188 
189 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
190 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
191 
192 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
193 		CU_ASSERT(g_compare_write_buf_len == len);
194 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
195 	}
196 
197 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
198 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
199 
200 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
201 		CU_ASSERT(g_compare_read_buf_len == len);
202 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
203 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
204 		}
205 		if (bdev_io->u.bdev.md_buf &&
206 		    memcmp(bdev_io->u.bdev.md_buf, g_compare_md_buf,
207 			   bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks)) {
208 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
209 		}
210 	}
211 
212 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
213 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
214 			TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
215 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
216 					TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
217 					ch->outstanding_io_count--;
218 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
219 					break;
220 				}
221 			}
222 		}
223 	}
224 
225 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) {
226 		if (bdev_io->u.bdev.zcopy.start) {
227 			g_zcopy_bdev_io = bdev_io;
228 			if (bdev_io->u.bdev.zcopy.populate) {
229 				/* Start of a read */
230 				CU_ASSERT(g_zcopy_read_buf != NULL);
231 				CU_ASSERT(g_zcopy_read_buf_len > 0);
232 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_read_buf;
233 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_read_buf_len;
234 				bdev_io->u.bdev.iovcnt = 1;
235 			} else {
236 				/* Start of a write */
237 				CU_ASSERT(g_zcopy_write_buf != NULL);
238 				CU_ASSERT(g_zcopy_write_buf_len > 0);
239 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_write_buf;
240 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_write_buf_len;
241 				bdev_io->u.bdev.iovcnt = 1;
242 			}
243 		} else {
244 			if (bdev_io->u.bdev.zcopy.commit) {
245 				/* End of write */
246 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_write_buf);
247 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_write_buf_len);
248 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
249 				g_zcopy_write_buf = NULL;
250 				g_zcopy_write_buf_len = 0;
251 			} else {
252 				/* End of read */
253 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_read_buf);
254 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_read_buf_len);
255 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
256 				g_zcopy_read_buf = NULL;
257 				g_zcopy_read_buf_len = 0;
258 			}
259 		}
260 	}
261 
262 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_DATA) {
263 		bdev_io->u.bdev.seek.offset = g_seek_data_offset;
264 	}
265 
266 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_HOLE) {
267 		bdev_io->u.bdev.seek.offset = g_seek_hole_offset;
268 	}
269 
270 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
271 	ch->outstanding_io_count++;
272 
273 	expected_io = TAILQ_FIRST(&ch->expected_io);
274 	if (expected_io == NULL) {
275 		return;
276 	}
277 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
278 
279 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
280 		CU_ASSERT(bdev_io->type == expected_io->type);
281 	}
282 
283 	if (expected_io->md_buf != NULL) {
284 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
285 		if (bdev_io->u.bdev.ext_opts) {
286 			CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.ext_opts->metadata);
287 		}
288 	}
289 
290 	if (expected_io->copy_opts) {
291 		if (expected_io->ext_io_opts) {
292 			/* opts are not NULL so it should have been copied */
293 			CU_ASSERT(expected_io->ext_io_opts != bdev_io->u.bdev.ext_opts);
294 			CU_ASSERT(bdev_io->u.bdev.ext_opts == &bdev_io->internal.ext_opts_copy);
295 			/* internal opts always points to opts passed */
296 			CU_ASSERT(expected_io->ext_io_opts == bdev_io->internal.ext_opts);
297 		} else {
298 			/* passed opts was NULL so we expect bdev_io opts to be NULL */
299 			CU_ASSERT(bdev_io->u.bdev.ext_opts == NULL);
300 		}
301 	} else {
302 		/* opts were not copied so they should be equal */
303 		CU_ASSERT(expected_io->ext_io_opts == bdev_io->u.bdev.ext_opts);
304 	}
305 
306 	if (expected_io->length == 0) {
307 		free(expected_io);
308 		return;
309 	}
310 
311 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
312 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
313 	if (expected_io->type == SPDK_BDEV_IO_TYPE_COPY) {
314 		CU_ASSERT(expected_io->src_offset == bdev_io->u.bdev.copy.src_offset_blocks);
315 	}
316 
317 	if (expected_io->iovcnt == 0) {
318 		free(expected_io);
319 		/* UNMAP, WRITE_ZEROES, FLUSH and COPY don't have iovs, so we can just return now. */
320 		return;
321 	}
322 
323 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
324 	for (i = 0; i < expected_io->iovcnt; i++) {
325 		expected_iov = &expected_io->iov[i];
326 		if (bdev_io->internal.orig_iovcnt == 0) {
327 			iov = &bdev_io->u.bdev.iovs[i];
328 		} else {
329 			iov = bdev_io->internal.orig_iovs;
330 		}
331 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
332 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
333 	}
334 
335 	free(expected_io);
336 }
337 
338 static void
339 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
340 			       struct spdk_bdev_io *bdev_io, bool success)
341 {
342 	CU_ASSERT(success == true);
343 
344 	stub_submit_request(_ch, bdev_io);
345 }
346 
347 static void
348 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
349 {
350 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
351 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
352 }
353 
354 static uint32_t
355 stub_complete_io(uint32_t num_to_complete)
356 {
357 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
358 	struct spdk_bdev_io *bdev_io;
359 	static enum spdk_bdev_io_status io_status;
360 	uint32_t num_completed = 0;
361 
362 	while (num_completed < num_to_complete) {
363 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
364 			break;
365 		}
366 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
367 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
368 		ch->outstanding_io_count--;
369 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
370 			    g_io_exp_status;
371 		spdk_bdev_io_complete(bdev_io, io_status);
372 		num_completed++;
373 	}
374 
375 	return num_completed;
376 }
377 
378 static struct spdk_io_channel *
379 bdev_ut_get_io_channel(void *ctx)
380 {
381 	return spdk_get_io_channel(&g_bdev_ut_io_device);
382 }
383 
384 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
385 	[SPDK_BDEV_IO_TYPE_READ]		= true,
386 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
387 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
388 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
389 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
390 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
391 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
392 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
393 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
394 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
395 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
396 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
397 	[SPDK_BDEV_IO_TYPE_SEEK_HOLE]		= true,
398 	[SPDK_BDEV_IO_TYPE_SEEK_DATA]		= true,
399 	[SPDK_BDEV_IO_TYPE_COPY]		= true,
400 };
401 
402 static void
403 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
404 {
405 	g_io_types_supported[io_type] = enable;
406 }
407 
408 static bool
409 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
410 {
411 	return g_io_types_supported[io_type];
412 }
413 
414 static struct spdk_bdev_fn_table fn_table = {
415 	.destruct = stub_destruct,
416 	.submit_request = stub_submit_request,
417 	.get_io_channel = bdev_ut_get_io_channel,
418 	.io_type_supported = stub_io_type_supported,
419 };
420 
421 static int
422 bdev_ut_create_ch(void *io_device, void *ctx_buf)
423 {
424 	struct bdev_ut_channel *ch = ctx_buf;
425 
426 	CU_ASSERT(g_bdev_ut_channel == NULL);
427 	g_bdev_ut_channel = ch;
428 
429 	TAILQ_INIT(&ch->outstanding_io);
430 	ch->outstanding_io_count = 0;
431 	TAILQ_INIT(&ch->expected_io);
432 	return 0;
433 }
434 
435 static void
436 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
437 {
438 	CU_ASSERT(g_bdev_ut_channel != NULL);
439 	g_bdev_ut_channel = NULL;
440 }
441 
442 struct spdk_bdev_module bdev_ut_if;
443 
444 static int
445 bdev_ut_module_init(void)
446 {
447 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
448 				sizeof(struct bdev_ut_channel), NULL);
449 	spdk_bdev_module_init_done(&bdev_ut_if);
450 	return 0;
451 }
452 
453 static void
454 bdev_ut_module_fini(void)
455 {
456 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
457 }
458 
459 struct spdk_bdev_module bdev_ut_if = {
460 	.name = "bdev_ut",
461 	.module_init = bdev_ut_module_init,
462 	.module_fini = bdev_ut_module_fini,
463 	.async_init = true,
464 };
465 
466 static void vbdev_ut_examine(struct spdk_bdev *bdev);
467 
468 static int
469 vbdev_ut_module_init(void)
470 {
471 	return 0;
472 }
473 
474 static void
475 vbdev_ut_module_fini(void)
476 {
477 }
478 
479 struct spdk_bdev_module vbdev_ut_if = {
480 	.name = "vbdev_ut",
481 	.module_init = vbdev_ut_module_init,
482 	.module_fini = vbdev_ut_module_fini,
483 	.examine_config = vbdev_ut_examine,
484 };
485 
486 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
487 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
488 
489 static void
490 vbdev_ut_examine(struct spdk_bdev *bdev)
491 {
492 	spdk_bdev_module_examine_done(&vbdev_ut_if);
493 }
494 
495 static struct spdk_bdev *
496 allocate_bdev(char *name)
497 {
498 	struct spdk_bdev *bdev;
499 	int rc;
500 
501 	bdev = calloc(1, sizeof(*bdev));
502 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
503 
504 	bdev->name = name;
505 	bdev->fn_table = &fn_table;
506 	bdev->module = &bdev_ut_if;
507 	bdev->blockcnt = 1024;
508 	bdev->blocklen = 512;
509 
510 	spdk_uuid_generate(&bdev->uuid);
511 
512 	rc = spdk_bdev_register(bdev);
513 	poll_threads();
514 	CU_ASSERT(rc == 0);
515 
516 	return bdev;
517 }
518 
519 static struct spdk_bdev *
520 allocate_vbdev(char *name)
521 {
522 	struct spdk_bdev *bdev;
523 	int rc;
524 
525 	bdev = calloc(1, sizeof(*bdev));
526 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
527 
528 	bdev->name = name;
529 	bdev->fn_table = &fn_table;
530 	bdev->module = &vbdev_ut_if;
531 
532 	rc = spdk_bdev_register(bdev);
533 	poll_threads();
534 	CU_ASSERT(rc == 0);
535 
536 	return bdev;
537 }
538 
539 static void
540 free_bdev(struct spdk_bdev *bdev)
541 {
542 	spdk_bdev_unregister(bdev, NULL, NULL);
543 	poll_threads();
544 	memset(bdev, 0xFF, sizeof(*bdev));
545 	free(bdev);
546 }
547 
548 static void
549 free_vbdev(struct spdk_bdev *bdev)
550 {
551 	spdk_bdev_unregister(bdev, NULL, NULL);
552 	poll_threads();
553 	memset(bdev, 0xFF, sizeof(*bdev));
554 	free(bdev);
555 }
556 
557 static void
558 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
559 {
560 	const char *bdev_name;
561 
562 	CU_ASSERT(bdev != NULL);
563 	CU_ASSERT(rc == 0);
564 	bdev_name = spdk_bdev_get_name(bdev);
565 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
566 
567 	free(stat);
568 
569 	*(bool *)cb_arg = true;
570 }
571 
572 static void
573 bdev_unregister_cb(void *cb_arg, int rc)
574 {
575 	g_unregister_arg = cb_arg;
576 	g_unregister_rc = rc;
577 }
578 
579 static void
580 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
581 {
582 }
583 
584 static void
585 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
586 {
587 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
588 
589 	g_event_type1 = type;
590 	if (SPDK_BDEV_EVENT_REMOVE == type) {
591 		spdk_bdev_close(desc);
592 	}
593 }
594 
595 static void
596 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
597 {
598 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
599 
600 	g_event_type2 = type;
601 	if (SPDK_BDEV_EVENT_REMOVE == type) {
602 		spdk_bdev_close(desc);
603 	}
604 }
605 
606 static void
607 bdev_open_cb3(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
608 {
609 	g_event_type3 = type;
610 }
611 
612 static void
613 bdev_open_cb4(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
614 {
615 	g_event_type4 = type;
616 }
617 
618 static void
619 bdev_seek_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
620 {
621 	g_seek_offset = spdk_bdev_io_get_seek_offset(bdev_io);
622 	spdk_bdev_free_io(bdev_io);
623 }
624 
625 static void
626 get_device_stat_test(void)
627 {
628 	struct spdk_bdev *bdev;
629 	struct spdk_bdev_io_stat *stat;
630 	bool done;
631 
632 	bdev = allocate_bdev("bdev0");
633 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
634 	if (stat == NULL) {
635 		free_bdev(bdev);
636 		return;
637 	}
638 
639 	done = false;
640 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
641 	while (!done) { poll_threads(); }
642 
643 	free_bdev(bdev);
644 }
645 
646 static void
647 open_write_test(void)
648 {
649 	struct spdk_bdev *bdev[9];
650 	struct spdk_bdev_desc *desc[9] = {};
651 	int rc;
652 
653 	/*
654 	 * Create a tree of bdevs to test various open w/ write cases.
655 	 *
656 	 * bdev0 through bdev3 are physical block devices, such as NVMe
657 	 * namespaces or Ceph block devices.
658 	 *
659 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
660 	 * caching or RAID use cases.
661 	 *
662 	 * bdev5 through bdev7 are all virtual bdevs with the same base
663 	 * bdev (except bdev7). This models partitioning or logical volume
664 	 * use cases.
665 	 *
666 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
667 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
668 	 * models caching, RAID, partitioning or logical volumes use cases.
669 	 *
670 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
671 	 * base bdevs are themselves virtual bdevs.
672 	 *
673 	 *                bdev8
674 	 *                  |
675 	 *            +----------+
676 	 *            |          |
677 	 *          bdev4      bdev5   bdev6   bdev7
678 	 *            |          |       |       |
679 	 *        +---+---+      +---+   +   +---+---+
680 	 *        |       |           \  |  /         \
681 	 *      bdev0   bdev1          bdev2         bdev3
682 	 */
683 
684 	bdev[0] = allocate_bdev("bdev0");
685 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
686 	CU_ASSERT(rc == 0);
687 
688 	bdev[1] = allocate_bdev("bdev1");
689 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
690 	CU_ASSERT(rc == 0);
691 
692 	bdev[2] = allocate_bdev("bdev2");
693 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
694 	CU_ASSERT(rc == 0);
695 
696 	bdev[3] = allocate_bdev("bdev3");
697 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
698 	CU_ASSERT(rc == 0);
699 
700 	bdev[4] = allocate_vbdev("bdev4");
701 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
702 	CU_ASSERT(rc == 0);
703 
704 	bdev[5] = allocate_vbdev("bdev5");
705 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
706 	CU_ASSERT(rc == 0);
707 
708 	bdev[6] = allocate_vbdev("bdev6");
709 
710 	bdev[7] = allocate_vbdev("bdev7");
711 
712 	bdev[8] = allocate_vbdev("bdev8");
713 
714 	/* Open bdev0 read-only.  This should succeed. */
715 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
716 	CU_ASSERT(rc == 0);
717 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
718 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
719 	spdk_bdev_close(desc[0]);
720 
721 	/*
722 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
723 	 * by a vbdev module.
724 	 */
725 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
726 	CU_ASSERT(rc == -EPERM);
727 
728 	/*
729 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
730 	 * by a vbdev module.
731 	 */
732 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
733 	CU_ASSERT(rc == -EPERM);
734 
735 	/* Open bdev4 read-only.  This should succeed. */
736 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
737 	CU_ASSERT(rc == 0);
738 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
739 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
740 	spdk_bdev_close(desc[4]);
741 
742 	/*
743 	 * Open bdev8 read/write.  This should succeed since it is a leaf
744 	 * bdev.
745 	 */
746 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
747 	CU_ASSERT(rc == 0);
748 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
749 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
750 	spdk_bdev_close(desc[8]);
751 
752 	/*
753 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
754 	 * by a vbdev module.
755 	 */
756 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
757 	CU_ASSERT(rc == -EPERM);
758 
759 	/* Open bdev4 read-only.  This should succeed. */
760 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
761 	CU_ASSERT(rc == 0);
762 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
763 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
764 	spdk_bdev_close(desc[5]);
765 
766 	free_vbdev(bdev[8]);
767 
768 	free_vbdev(bdev[5]);
769 	free_vbdev(bdev[6]);
770 	free_vbdev(bdev[7]);
771 
772 	free_vbdev(bdev[4]);
773 
774 	free_bdev(bdev[0]);
775 	free_bdev(bdev[1]);
776 	free_bdev(bdev[2]);
777 	free_bdev(bdev[3]);
778 }
779 
780 static void
781 claim_test(void)
782 {
783 	struct spdk_bdev *bdev;
784 	struct spdk_bdev_desc *desc, *open_desc;
785 	int rc;
786 	uint32_t count;
787 
788 	/*
789 	 * A vbdev that uses a read-only bdev may need it to remain read-only.
790 	 * To do so, it opens the bdev read-only, then claims it without
791 	 * passing a spdk_bdev_desc.
792 	 */
793 	bdev = allocate_bdev("bdev0");
794 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
795 	CU_ASSERT(rc == 0);
796 	CU_ASSERT(desc->write == false);
797 
798 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
799 	CU_ASSERT(rc == 0);
800 	CU_ASSERT(bdev->internal.claim_module == &bdev_ut_if);
801 
802 	/* There should be only one open descriptor and it should still be ro */
803 	count = 0;
804 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
805 		CU_ASSERT(open_desc == desc);
806 		CU_ASSERT(!open_desc->write);
807 		count++;
808 	}
809 	CU_ASSERT(count == 1);
810 
811 	/* A read-only bdev is upgraded to read-write if desc is passed. */
812 	spdk_bdev_module_release_bdev(bdev);
813 	rc = spdk_bdev_module_claim_bdev(bdev, desc, &bdev_ut_if);
814 	CU_ASSERT(rc == 0);
815 	CU_ASSERT(bdev->internal.claim_module == &bdev_ut_if);
816 
817 	/* There should be only one open descriptor and it should be rw */
818 	count = 0;
819 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
820 		CU_ASSERT(open_desc == desc);
821 		CU_ASSERT(open_desc->write);
822 		count++;
823 	}
824 	CU_ASSERT(count == 1);
825 
826 	spdk_bdev_close(desc);
827 	free_bdev(bdev);
828 }
829 
830 static void
831 bytes_to_blocks_test(void)
832 {
833 	struct spdk_bdev bdev;
834 	uint64_t offset_blocks, num_blocks;
835 
836 	memset(&bdev, 0, sizeof(bdev));
837 
838 	bdev.blocklen = 512;
839 
840 	/* All parameters valid */
841 	offset_blocks = 0;
842 	num_blocks = 0;
843 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
844 	CU_ASSERT(offset_blocks == 1);
845 	CU_ASSERT(num_blocks == 2);
846 
847 	/* Offset not a block multiple */
848 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
849 
850 	/* Length not a block multiple */
851 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
852 
853 	/* In case blocklen not the power of two */
854 	bdev.blocklen = 100;
855 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
856 	CU_ASSERT(offset_blocks == 1);
857 	CU_ASSERT(num_blocks == 2);
858 
859 	/* Offset not a block multiple */
860 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
861 
862 	/* Length not a block multiple */
863 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
864 }
865 
866 static void
867 num_blocks_test(void)
868 {
869 	struct spdk_bdev bdev;
870 	struct spdk_bdev_desc *desc = NULL;
871 	int rc;
872 
873 	memset(&bdev, 0, sizeof(bdev));
874 	bdev.name = "num_blocks";
875 	bdev.fn_table = &fn_table;
876 	bdev.module = &bdev_ut_if;
877 	spdk_bdev_register(&bdev);
878 	poll_threads();
879 	spdk_bdev_notify_blockcnt_change(&bdev, 50);
880 
881 	/* Growing block number */
882 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
883 	/* Shrinking block number */
884 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
885 
886 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc, &desc);
887 	CU_ASSERT(rc == 0);
888 	SPDK_CU_ASSERT_FATAL(desc != NULL);
889 	CU_ASSERT(&bdev == spdk_bdev_desc_get_bdev(desc));
890 
891 	/* Growing block number */
892 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
893 	/* Shrinking block number */
894 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
895 
896 	g_event_type1 = 0xFF;
897 	/* Growing block number */
898 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
899 
900 	poll_threads();
901 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
902 
903 	g_event_type1 = 0xFF;
904 	/* Growing block number and closing */
905 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
906 
907 	spdk_bdev_close(desc);
908 	spdk_bdev_unregister(&bdev, NULL, NULL);
909 
910 	poll_threads();
911 
912 	/* Callback is not called for closed device */
913 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
914 }
915 
916 static void
917 io_valid_test(void)
918 {
919 	struct spdk_bdev bdev;
920 
921 	memset(&bdev, 0, sizeof(bdev));
922 
923 	bdev.blocklen = 512;
924 	spdk_spin_init(&bdev.internal.spinlock);
925 
926 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
927 
928 	/* All parameters valid */
929 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
930 
931 	/* Last valid block */
932 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
933 
934 	/* Offset past end of bdev */
935 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
936 
937 	/* Offset + length past end of bdev */
938 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
939 
940 	/* Offset near end of uint64_t range (2^64 - 1) */
941 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
942 
943 	spdk_spin_destroy(&bdev.internal.spinlock);
944 }
945 
946 static void
947 alias_add_del_test(void)
948 {
949 	struct spdk_bdev *bdev[3];
950 	int rc;
951 
952 	/* Creating and registering bdevs */
953 	bdev[0] = allocate_bdev("bdev0");
954 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
955 
956 	bdev[1] = allocate_bdev("bdev1");
957 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
958 
959 	bdev[2] = allocate_bdev("bdev2");
960 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
961 
962 	poll_threads();
963 
964 	/*
965 	 * Trying adding an alias identical to name.
966 	 * Alias is identical to name, so it can not be added to aliases list
967 	 */
968 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
969 	CU_ASSERT(rc == -EEXIST);
970 
971 	/*
972 	 * Trying to add empty alias,
973 	 * this one should fail
974 	 */
975 	rc = spdk_bdev_alias_add(bdev[0], NULL);
976 	CU_ASSERT(rc == -EINVAL);
977 
978 	/* Trying adding same alias to two different registered bdevs */
979 
980 	/* Alias is used first time, so this one should pass */
981 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
982 	CU_ASSERT(rc == 0);
983 
984 	/* Alias was added to another bdev, so this one should fail */
985 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
986 	CU_ASSERT(rc == -EEXIST);
987 
988 	/* Alias is used first time, so this one should pass */
989 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
990 	CU_ASSERT(rc == 0);
991 
992 	/* Trying removing an alias from registered bdevs */
993 
994 	/* Alias is not on a bdev aliases list, so this one should fail */
995 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
996 	CU_ASSERT(rc == -ENOENT);
997 
998 	/* Alias is present on a bdev aliases list, so this one should pass */
999 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
1000 	CU_ASSERT(rc == 0);
1001 
1002 	/* Alias is present on a bdev aliases list, so this one should pass */
1003 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
1004 	CU_ASSERT(rc == 0);
1005 
1006 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
1007 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
1008 	CU_ASSERT(rc != 0);
1009 
1010 	/* Trying to del all alias from empty alias list */
1011 	spdk_bdev_alias_del_all(bdev[2]);
1012 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
1013 
1014 	/* Trying to del all alias from non-empty alias list */
1015 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
1016 	CU_ASSERT(rc == 0);
1017 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
1018 	CU_ASSERT(rc == 0);
1019 	spdk_bdev_alias_del_all(bdev[2]);
1020 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
1021 
1022 	/* Unregister and free bdevs */
1023 	spdk_bdev_unregister(bdev[0], NULL, NULL);
1024 	spdk_bdev_unregister(bdev[1], NULL, NULL);
1025 	spdk_bdev_unregister(bdev[2], NULL, NULL);
1026 
1027 	poll_threads();
1028 
1029 	free(bdev[0]);
1030 	free(bdev[1]);
1031 	free(bdev[2]);
1032 }
1033 
1034 static void
1035 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
1036 {
1037 	g_io_done = true;
1038 	g_io_status = bdev_io->internal.status;
1039 	if ((bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) &&
1040 	    (bdev_io->u.bdev.zcopy.start)) {
1041 		g_zcopy_bdev_io = bdev_io;
1042 	} else {
1043 		spdk_bdev_free_io(bdev_io);
1044 		g_zcopy_bdev_io = NULL;
1045 	}
1046 }
1047 
1048 static void
1049 bdev_init_cb(void *arg, int rc)
1050 {
1051 	CU_ASSERT(rc == 0);
1052 }
1053 
1054 static void
1055 bdev_fini_cb(void *arg)
1056 {
1057 }
1058 
1059 static void
1060 ut_init_bdev(struct spdk_bdev_opts *opts)
1061 {
1062 	int rc;
1063 
1064 	if (opts != NULL) {
1065 		rc = spdk_bdev_set_opts(opts);
1066 		CU_ASSERT(rc == 0);
1067 	}
1068 	rc = spdk_iobuf_initialize();
1069 	CU_ASSERT(rc == 0);
1070 	spdk_bdev_initialize(bdev_init_cb, NULL);
1071 	poll_threads();
1072 }
1073 
1074 static void
1075 ut_fini_bdev(void)
1076 {
1077 	spdk_bdev_finish(bdev_fini_cb, NULL);
1078 	spdk_iobuf_finish(bdev_fini_cb, NULL);
1079 	poll_threads();
1080 }
1081 
1082 struct bdev_ut_io_wait_entry {
1083 	struct spdk_bdev_io_wait_entry	entry;
1084 	struct spdk_io_channel		*io_ch;
1085 	struct spdk_bdev_desc		*desc;
1086 	bool				submitted;
1087 };
1088 
1089 static void
1090 io_wait_cb(void *arg)
1091 {
1092 	struct bdev_ut_io_wait_entry *entry = arg;
1093 	int rc;
1094 
1095 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
1096 	CU_ASSERT(rc == 0);
1097 	entry->submitted = true;
1098 }
1099 
1100 static void
1101 bdev_io_types_test(void)
1102 {
1103 	struct spdk_bdev *bdev;
1104 	struct spdk_bdev_desc *desc = NULL;
1105 	struct spdk_io_channel *io_ch;
1106 	struct spdk_bdev_opts bdev_opts = {};
1107 	int rc;
1108 
1109 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1110 	bdev_opts.bdev_io_pool_size = 4;
1111 	bdev_opts.bdev_io_cache_size = 2;
1112 	ut_init_bdev(&bdev_opts);
1113 
1114 	bdev = allocate_bdev("bdev0");
1115 
1116 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1117 	CU_ASSERT(rc == 0);
1118 	poll_threads();
1119 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1120 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1121 	io_ch = spdk_bdev_get_io_channel(desc);
1122 	CU_ASSERT(io_ch != NULL);
1123 
1124 	/* WRITE and WRITE ZEROES are not supported */
1125 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
1126 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
1127 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
1128 	CU_ASSERT(rc == -ENOTSUP);
1129 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
1130 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
1131 
1132 	/* COPY is not supported */
1133 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false);
1134 	rc = spdk_bdev_copy_blocks(desc, io_ch, 128, 0, 128, io_done, NULL);
1135 	CU_ASSERT(rc == -ENOTSUP);
1136 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true);
1137 
1138 	/* NVME_IO, NVME_IO_MD and NVME_ADMIN are not supported */
1139 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, false);
1140 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, false);
1141 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, false);
1142 	rc = spdk_bdev_nvme_io_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1143 	CU_ASSERT(rc == -ENOTSUP);
1144 	rc = spdk_bdev_nvme_io_passthru_md(desc, io_ch, NULL, NULL, 0, NULL, 0, NULL, NULL);
1145 	CU_ASSERT(rc == -ENOTSUP);
1146 	rc = spdk_bdev_nvme_admin_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1147 	CU_ASSERT(rc == -ENOTSUP);
1148 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, true);
1149 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, true);
1150 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, true);
1151 
1152 	spdk_put_io_channel(io_ch);
1153 	spdk_bdev_close(desc);
1154 	free_bdev(bdev);
1155 	ut_fini_bdev();
1156 }
1157 
1158 static void
1159 bdev_io_wait_test(void)
1160 {
1161 	struct spdk_bdev *bdev;
1162 	struct spdk_bdev_desc *desc = NULL;
1163 	struct spdk_io_channel *io_ch;
1164 	struct spdk_bdev_opts bdev_opts = {};
1165 	struct bdev_ut_io_wait_entry io_wait_entry;
1166 	struct bdev_ut_io_wait_entry io_wait_entry2;
1167 	int rc;
1168 
1169 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1170 	bdev_opts.bdev_io_pool_size = 4;
1171 	bdev_opts.bdev_io_cache_size = 2;
1172 	ut_init_bdev(&bdev_opts);
1173 
1174 	bdev = allocate_bdev("bdev0");
1175 
1176 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1177 	CU_ASSERT(rc == 0);
1178 	poll_threads();
1179 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1180 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1181 	io_ch = spdk_bdev_get_io_channel(desc);
1182 	CU_ASSERT(io_ch != NULL);
1183 
1184 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1185 	CU_ASSERT(rc == 0);
1186 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1187 	CU_ASSERT(rc == 0);
1188 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1189 	CU_ASSERT(rc == 0);
1190 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1191 	CU_ASSERT(rc == 0);
1192 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1193 
1194 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1195 	CU_ASSERT(rc == -ENOMEM);
1196 
1197 	io_wait_entry.entry.bdev = bdev;
1198 	io_wait_entry.entry.cb_fn = io_wait_cb;
1199 	io_wait_entry.entry.cb_arg = &io_wait_entry;
1200 	io_wait_entry.io_ch = io_ch;
1201 	io_wait_entry.desc = desc;
1202 	io_wait_entry.submitted = false;
1203 	/* Cannot use the same io_wait_entry for two different calls. */
1204 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
1205 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
1206 
1207 	/* Queue two I/O waits. */
1208 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
1209 	CU_ASSERT(rc == 0);
1210 	CU_ASSERT(io_wait_entry.submitted == false);
1211 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
1212 	CU_ASSERT(rc == 0);
1213 	CU_ASSERT(io_wait_entry2.submitted == false);
1214 
1215 	stub_complete_io(1);
1216 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1217 	CU_ASSERT(io_wait_entry.submitted == true);
1218 	CU_ASSERT(io_wait_entry2.submitted == false);
1219 
1220 	stub_complete_io(1);
1221 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1222 	CU_ASSERT(io_wait_entry2.submitted == true);
1223 
1224 	stub_complete_io(4);
1225 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1226 
1227 	spdk_put_io_channel(io_ch);
1228 	spdk_bdev_close(desc);
1229 	free_bdev(bdev);
1230 	ut_fini_bdev();
1231 }
1232 
1233 static void
1234 bdev_io_spans_split_test(void)
1235 {
1236 	struct spdk_bdev bdev;
1237 	struct spdk_bdev_io bdev_io;
1238 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
1239 
1240 	memset(&bdev, 0, sizeof(bdev));
1241 	bdev_io.u.bdev.iovs = iov;
1242 
1243 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1244 	bdev.optimal_io_boundary = 0;
1245 	bdev.max_segment_size = 0;
1246 	bdev.max_num_segments = 0;
1247 	bdev_io.bdev = &bdev;
1248 
1249 	/* bdev has no optimal_io_boundary and max_size set - so this should return false. */
1250 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1251 
1252 	bdev.split_on_optimal_io_boundary = true;
1253 	bdev.optimal_io_boundary = 32;
1254 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1255 
1256 	/* RESETs are not based on LBAs - so this should return false. */
1257 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1258 
1259 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1260 	bdev_io.u.bdev.offset_blocks = 0;
1261 	bdev_io.u.bdev.num_blocks = 32;
1262 
1263 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1264 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1265 
1266 	bdev_io.u.bdev.num_blocks = 33;
1267 
1268 	/* This I/O spans a boundary. */
1269 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1270 
1271 	bdev_io.u.bdev.num_blocks = 32;
1272 	bdev.max_segment_size = 512 * 32;
1273 	bdev.max_num_segments = 1;
1274 	bdev_io.u.bdev.iovcnt = 1;
1275 	iov[0].iov_len = 512;
1276 
1277 	/* Does not cross and exceed max_size or max_segs */
1278 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1279 
1280 	bdev.split_on_optimal_io_boundary = false;
1281 	bdev.max_segment_size = 512;
1282 	bdev.max_num_segments = 1;
1283 	bdev_io.u.bdev.iovcnt = 2;
1284 
1285 	/* Exceed max_segs */
1286 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1287 
1288 	bdev.max_num_segments = 2;
1289 	iov[0].iov_len = 513;
1290 	iov[1].iov_len = 512;
1291 
1292 	/* Exceed max_sizes */
1293 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1294 
1295 	bdev.max_segment_size = 0;
1296 	bdev.write_unit_size = 32;
1297 	bdev.split_on_write_unit = true;
1298 	bdev_io.type = SPDK_BDEV_IO_TYPE_WRITE;
1299 
1300 	/* This I/O is one write unit */
1301 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1302 
1303 	bdev_io.u.bdev.num_blocks = 32 * 2;
1304 
1305 	/* This I/O is more than one write unit */
1306 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1307 
1308 	bdev_io.u.bdev.offset_blocks = 1;
1309 	bdev_io.u.bdev.num_blocks = 32;
1310 
1311 	/* This I/O is not aligned to write unit size */
1312 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1313 }
1314 
1315 static void
1316 bdev_io_boundary_split_test(void)
1317 {
1318 	struct spdk_bdev *bdev;
1319 	struct spdk_bdev_desc *desc = NULL;
1320 	struct spdk_io_channel *io_ch;
1321 	struct spdk_bdev_opts bdev_opts = {};
1322 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
1323 	struct ut_expected_io *expected_io;
1324 	void *md_buf = (void *)0xFF000000;
1325 	uint64_t i;
1326 	int rc;
1327 
1328 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1329 	bdev_opts.bdev_io_pool_size = 512;
1330 	bdev_opts.bdev_io_cache_size = 64;
1331 	ut_init_bdev(&bdev_opts);
1332 
1333 	bdev = allocate_bdev("bdev0");
1334 
1335 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1336 	CU_ASSERT(rc == 0);
1337 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1338 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1339 	io_ch = spdk_bdev_get_io_channel(desc);
1340 	CU_ASSERT(io_ch != NULL);
1341 
1342 	bdev->optimal_io_boundary = 16;
1343 	bdev->split_on_optimal_io_boundary = false;
1344 
1345 	g_io_done = false;
1346 
1347 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1348 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1349 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1350 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1351 
1352 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1353 	CU_ASSERT(rc == 0);
1354 	CU_ASSERT(g_io_done == false);
1355 
1356 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1357 	stub_complete_io(1);
1358 	CU_ASSERT(g_io_done == true);
1359 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1360 
1361 	bdev->split_on_optimal_io_boundary = true;
1362 	bdev->md_interleave = false;
1363 	bdev->md_len = 8;
1364 
1365 	/* Now test that a single-vector command is split correctly.
1366 	 * Offset 14, length 8, payload 0xF000
1367 	 *  Child - Offset 14, length 2, payload 0xF000
1368 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1369 	 *
1370 	 * Set up the expected values before calling spdk_bdev_read_blocks
1371 	 */
1372 	g_io_done = false;
1373 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1374 	expected_io->md_buf = md_buf;
1375 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1376 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1377 
1378 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1379 	expected_io->md_buf = md_buf + 2 * 8;
1380 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1381 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1382 
1383 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1384 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1385 					   14, 8, io_done, NULL);
1386 	CU_ASSERT(rc == 0);
1387 	CU_ASSERT(g_io_done == false);
1388 
1389 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1390 	stub_complete_io(2);
1391 	CU_ASSERT(g_io_done == true);
1392 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1393 
1394 	/* Now set up a more complex, multi-vector command that needs to be split,
1395 	 *  including splitting iovecs.
1396 	 */
1397 	iov[0].iov_base = (void *)0x10000;
1398 	iov[0].iov_len = 512;
1399 	iov[1].iov_base = (void *)0x20000;
1400 	iov[1].iov_len = 20 * 512;
1401 	iov[2].iov_base = (void *)0x30000;
1402 	iov[2].iov_len = 11 * 512;
1403 
1404 	g_io_done = false;
1405 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1406 	expected_io->md_buf = md_buf;
1407 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1408 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1409 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1410 
1411 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1412 	expected_io->md_buf = md_buf + 2 * 8;
1413 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1414 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1415 
1416 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1417 	expected_io->md_buf = md_buf + 18 * 8;
1418 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1419 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1420 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1421 
1422 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1423 					     14, 32, io_done, NULL);
1424 	CU_ASSERT(rc == 0);
1425 	CU_ASSERT(g_io_done == false);
1426 
1427 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1428 	stub_complete_io(3);
1429 	CU_ASSERT(g_io_done == true);
1430 
1431 	/* Test multi vector command that needs to be split by strip and then needs to be
1432 	 * split further due to the capacity of child iovs.
1433 	 */
1434 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1435 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1436 		iov[i].iov_len = 512;
1437 	}
1438 
1439 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1440 	g_io_done = false;
1441 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
1442 					   SPDK_BDEV_IO_NUM_CHILD_IOV);
1443 	expected_io->md_buf = md_buf;
1444 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1445 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1446 	}
1447 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1448 
1449 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1450 					   SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
1451 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1452 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1453 		ut_expected_io_set_iov(expected_io, i,
1454 				       (void *)((i + 1 + SPDK_BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1455 	}
1456 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1457 
1458 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1459 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1460 	CU_ASSERT(rc == 0);
1461 	CU_ASSERT(g_io_done == false);
1462 
1463 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1464 	stub_complete_io(1);
1465 	CU_ASSERT(g_io_done == false);
1466 
1467 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1468 	stub_complete_io(1);
1469 	CU_ASSERT(g_io_done == true);
1470 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1471 
1472 	/* Test multi vector command that needs to be split by strip and then needs to be
1473 	 * split further due to the capacity of child iovs. In this case, the length of
1474 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1475 	 */
1476 
1477 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1478 	 * is SPDK_BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1479 	 */
1480 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1481 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1482 		iov[i].iov_len = 512;
1483 	}
1484 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1485 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1486 		iov[i].iov_len = 256;
1487 	}
1488 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1489 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1490 
1491 	/* Add an extra iovec to trigger split */
1492 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1493 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1494 
1495 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1496 	g_io_done = false;
1497 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1498 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV);
1499 	expected_io->md_buf = md_buf;
1500 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1501 		ut_expected_io_set_iov(expected_io, i,
1502 				       (void *)((i + 1) * 0x10000), 512);
1503 	}
1504 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1505 		ut_expected_io_set_iov(expected_io, i,
1506 				       (void *)((i + 1) * 0x10000), 256);
1507 	}
1508 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1509 
1510 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1511 					   1, 1);
1512 	expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1513 	ut_expected_io_set_iov(expected_io, 0,
1514 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1515 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1516 
1517 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1518 					   1, 1);
1519 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1520 	ut_expected_io_set_iov(expected_io, 0,
1521 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1522 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1523 
1524 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1525 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1526 	CU_ASSERT(rc == 0);
1527 	CU_ASSERT(g_io_done == false);
1528 
1529 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1530 	stub_complete_io(1);
1531 	CU_ASSERT(g_io_done == false);
1532 
1533 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1534 	stub_complete_io(2);
1535 	CU_ASSERT(g_io_done == true);
1536 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1537 
1538 	/* Test multi vector command that needs to be split by strip and then needs to be
1539 	 * split further due to the capacity of child iovs, the child request offset should
1540 	 * be rewind to last aligned offset and go success without error.
1541 	 */
1542 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1543 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1544 		iov[i].iov_len = 512;
1545 	}
1546 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
1547 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1548 
1549 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1550 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1551 
1552 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1553 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1554 
1555 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1556 	g_io_done = false;
1557 	g_io_status = 0;
1558 	/* The first expected io should be start from offset 0 to SPDK_BDEV_IO_NUM_CHILD_IOV - 1 */
1559 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1560 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
1561 	expected_io->md_buf = md_buf;
1562 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1563 		ut_expected_io_set_iov(expected_io, i,
1564 				       (void *)((i + 1) * 0x10000), 512);
1565 	}
1566 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1567 	/* The second expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV - 1 to SPDK_BDEV_IO_NUM_CHILD_IOV */
1568 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1569 					   1, 2);
1570 	expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1571 	ut_expected_io_set_iov(expected_io, 0,
1572 			       (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1573 	ut_expected_io_set_iov(expected_io, 1,
1574 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1575 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1576 	/* The third expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV to SPDK_BDEV_IO_NUM_CHILD_IOV + 1 */
1577 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1578 					   1, 1);
1579 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1580 	ut_expected_io_set_iov(expected_io, 0,
1581 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1582 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1583 
1584 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1585 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1586 	CU_ASSERT(rc == 0);
1587 	CU_ASSERT(g_io_done == false);
1588 
1589 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1590 	stub_complete_io(1);
1591 	CU_ASSERT(g_io_done == false);
1592 
1593 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1594 	stub_complete_io(2);
1595 	CU_ASSERT(g_io_done == true);
1596 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1597 
1598 	/* Test multi vector command that needs to be split due to the IO boundary and
1599 	 * the capacity of child iovs. Especially test the case when the command is
1600 	 * split due to the capacity of child iovs, the tail address is not aligned with
1601 	 * block size and is rewinded to the aligned address.
1602 	 *
1603 	 * The iovecs used in read request is complex but is based on the data
1604 	 * collected in the real issue. We change the base addresses but keep the lengths
1605 	 * not to loose the credibility of the test.
1606 	 */
1607 	bdev->optimal_io_boundary = 128;
1608 	g_io_done = false;
1609 	g_io_status = 0;
1610 
1611 	for (i = 0; i < 31; i++) {
1612 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1613 		iov[i].iov_len = 1024;
1614 	}
1615 	iov[31].iov_base = (void *)0xFEED1F00000;
1616 	iov[31].iov_len = 32768;
1617 	iov[32].iov_base = (void *)0xFEED2000000;
1618 	iov[32].iov_len = 160;
1619 	iov[33].iov_base = (void *)0xFEED2100000;
1620 	iov[33].iov_len = 4096;
1621 	iov[34].iov_base = (void *)0xFEED2200000;
1622 	iov[34].iov_len = 4096;
1623 	iov[35].iov_base = (void *)0xFEED2300000;
1624 	iov[35].iov_len = 4096;
1625 	iov[36].iov_base = (void *)0xFEED2400000;
1626 	iov[36].iov_len = 4096;
1627 	iov[37].iov_base = (void *)0xFEED2500000;
1628 	iov[37].iov_len = 4096;
1629 	iov[38].iov_base = (void *)0xFEED2600000;
1630 	iov[38].iov_len = 4096;
1631 	iov[39].iov_base = (void *)0xFEED2700000;
1632 	iov[39].iov_len = 4096;
1633 	iov[40].iov_base = (void *)0xFEED2800000;
1634 	iov[40].iov_len = 4096;
1635 	iov[41].iov_base = (void *)0xFEED2900000;
1636 	iov[41].iov_len = 4096;
1637 	iov[42].iov_base = (void *)0xFEED2A00000;
1638 	iov[42].iov_len = 4096;
1639 	iov[43].iov_base = (void *)0xFEED2B00000;
1640 	iov[43].iov_len = 12288;
1641 	iov[44].iov_base = (void *)0xFEED2C00000;
1642 	iov[44].iov_len = 8192;
1643 	iov[45].iov_base = (void *)0xFEED2F00000;
1644 	iov[45].iov_len = 4096;
1645 	iov[46].iov_base = (void *)0xFEED3000000;
1646 	iov[46].iov_len = 4096;
1647 	iov[47].iov_base = (void *)0xFEED3100000;
1648 	iov[47].iov_len = 4096;
1649 	iov[48].iov_base = (void *)0xFEED3200000;
1650 	iov[48].iov_len = 24576;
1651 	iov[49].iov_base = (void *)0xFEED3300000;
1652 	iov[49].iov_len = 16384;
1653 	iov[50].iov_base = (void *)0xFEED3400000;
1654 	iov[50].iov_len = 12288;
1655 	iov[51].iov_base = (void *)0xFEED3500000;
1656 	iov[51].iov_len = 4096;
1657 	iov[52].iov_base = (void *)0xFEED3600000;
1658 	iov[52].iov_len = 4096;
1659 	iov[53].iov_base = (void *)0xFEED3700000;
1660 	iov[53].iov_len = 4096;
1661 	iov[54].iov_base = (void *)0xFEED3800000;
1662 	iov[54].iov_len = 28672;
1663 	iov[55].iov_base = (void *)0xFEED3900000;
1664 	iov[55].iov_len = 20480;
1665 	iov[56].iov_base = (void *)0xFEED3A00000;
1666 	iov[56].iov_len = 4096;
1667 	iov[57].iov_base = (void *)0xFEED3B00000;
1668 	iov[57].iov_len = 12288;
1669 	iov[58].iov_base = (void *)0xFEED3C00000;
1670 	iov[58].iov_len = 4096;
1671 	iov[59].iov_base = (void *)0xFEED3D00000;
1672 	iov[59].iov_len = 4096;
1673 	iov[60].iov_base = (void *)0xFEED3E00000;
1674 	iov[60].iov_len = 352;
1675 
1676 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1677 	 * of child iovs,
1678 	 */
1679 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1680 	expected_io->md_buf = md_buf;
1681 	for (i = 0; i < 32; i++) {
1682 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1683 	}
1684 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1685 
1686 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1687 	 * split by the IO boundary requirement.
1688 	 */
1689 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1690 	expected_io->md_buf = md_buf + 126 * 8;
1691 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1692 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1693 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1694 
1695 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1696 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1697 	 */
1698 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1699 	expected_io->md_buf = md_buf + 128 * 8;
1700 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1701 			       iov[33].iov_len - 864);
1702 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1703 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1704 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1705 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1706 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1707 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1708 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1709 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1710 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1711 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1712 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1713 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1714 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1715 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1716 
1717 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1718 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1719 	 */
1720 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1721 	expected_io->md_buf = md_buf + 256 * 8;
1722 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1723 			       iov[46].iov_len - 864);
1724 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1725 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1726 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1727 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1728 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1729 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1730 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1731 
1732 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1733 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1734 	 */
1735 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1736 	expected_io->md_buf = md_buf + 384 * 8;
1737 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1738 			       iov[52].iov_len - 864);
1739 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1740 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1741 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1742 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1743 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1744 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1745 
1746 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1747 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1748 	 */
1749 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1750 	expected_io->md_buf = md_buf + 512 * 8;
1751 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1752 			       iov[57].iov_len - 4960);
1753 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1754 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1755 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1756 
1757 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1758 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1759 	expected_io->md_buf = md_buf + 542 * 8;
1760 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1761 			       iov[59].iov_len - 3936);
1762 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1763 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1764 
1765 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1766 					    0, 543, io_done, NULL);
1767 	CU_ASSERT(rc == 0);
1768 	CU_ASSERT(g_io_done == false);
1769 
1770 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1771 	stub_complete_io(1);
1772 	CU_ASSERT(g_io_done == false);
1773 
1774 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1775 	stub_complete_io(5);
1776 	CU_ASSERT(g_io_done == false);
1777 
1778 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1779 	stub_complete_io(1);
1780 	CU_ASSERT(g_io_done == true);
1781 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1782 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1783 
1784 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1785 	 * split, so test that.
1786 	 */
1787 	bdev->optimal_io_boundary = 15;
1788 	g_io_done = false;
1789 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1790 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1791 
1792 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1793 	CU_ASSERT(rc == 0);
1794 	CU_ASSERT(g_io_done == false);
1795 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1796 	stub_complete_io(1);
1797 	CU_ASSERT(g_io_done == true);
1798 
1799 	/* Test an UNMAP.  This should also not be split. */
1800 	bdev->optimal_io_boundary = 16;
1801 	g_io_done = false;
1802 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1803 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1804 
1805 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1806 	CU_ASSERT(rc == 0);
1807 	CU_ASSERT(g_io_done == false);
1808 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1809 	stub_complete_io(1);
1810 	CU_ASSERT(g_io_done == true);
1811 
1812 	/* Test a FLUSH.  This should also not be split. */
1813 	bdev->optimal_io_boundary = 16;
1814 	g_io_done = false;
1815 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1816 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1817 
1818 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1819 	CU_ASSERT(rc == 0);
1820 	CU_ASSERT(g_io_done == false);
1821 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1822 	stub_complete_io(1);
1823 	CU_ASSERT(g_io_done == true);
1824 
1825 	/* Test a COPY.  This should also not be split. */
1826 	bdev->optimal_io_boundary = 15;
1827 	g_io_done = false;
1828 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
1829 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1830 
1831 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
1832 	CU_ASSERT(rc == 0);
1833 	CU_ASSERT(g_io_done == false);
1834 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1835 	stub_complete_io(1);
1836 	CU_ASSERT(g_io_done == true);
1837 
1838 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1839 
1840 	/* Children requests return an error status */
1841 	bdev->optimal_io_boundary = 16;
1842 	iov[0].iov_base = (void *)0x10000;
1843 	iov[0].iov_len = 512 * 64;
1844 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1845 	g_io_done = false;
1846 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1847 
1848 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1849 	CU_ASSERT(rc == 0);
1850 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1851 	stub_complete_io(4);
1852 	CU_ASSERT(g_io_done == false);
1853 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1854 	stub_complete_io(1);
1855 	CU_ASSERT(g_io_done == true);
1856 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1857 
1858 	/* Test if a multi vector command terminated with failure before continuing
1859 	 * splitting process when one of child I/O failed.
1860 	 * The multi vector command is as same as the above that needs to be split by strip
1861 	 * and then needs to be split further due to the capacity of child iovs.
1862 	 */
1863 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1864 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1865 		iov[i].iov_len = 512;
1866 	}
1867 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
1868 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1869 
1870 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1871 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1872 
1873 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1874 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1875 
1876 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1877 
1878 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1879 	g_io_done = false;
1880 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1881 
1882 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
1883 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1884 	CU_ASSERT(rc == 0);
1885 	CU_ASSERT(g_io_done == false);
1886 
1887 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1888 	stub_complete_io(1);
1889 	CU_ASSERT(g_io_done == true);
1890 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1891 
1892 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1893 
1894 	/* for this test we will create the following conditions to hit the code path where
1895 	 * we are trying to send and IO following a split that has no iovs because we had to
1896 	 * trim them for alignment reasons.
1897 	 *
1898 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1899 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1900 	 *   position 30 and overshoot by 0x2e.
1901 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1902 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1903 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1904 	 *   and let the completion pick up the last 2 vectors.
1905 	 */
1906 	bdev->optimal_io_boundary = 32;
1907 	bdev->split_on_optimal_io_boundary = true;
1908 	g_io_done = false;
1909 
1910 	/* Init all parent IOVs to 0x212 */
1911 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1912 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1913 		iov[i].iov_len = 0x212;
1914 	}
1915 
1916 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
1917 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
1918 	/* expect 0-29 to be 1:1 with the parent iov */
1919 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1920 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1921 	}
1922 
1923 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1924 	 * where 0x1e is the amount we overshot the 16K boundary
1925 	 */
1926 	ut_expected_io_set_iov(expected_io, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
1927 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1928 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1929 
1930 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1931 	 * shortened that take it to the next boundary and then a final one to get us to
1932 	 * 0x4200 bytes for the IO.
1933 	 */
1934 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1935 					   SPDK_BDEV_IO_NUM_CHILD_IOV, 2);
1936 	/* position 30 picked up the remaining bytes to the next boundary */
1937 	ut_expected_io_set_iov(expected_io, 0,
1938 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
1939 
1940 	/* position 31 picked the the rest of the transfer to get us to 0x4200 */
1941 	ut_expected_io_set_iov(expected_io, 1,
1942 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
1943 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1944 
1945 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, 0,
1946 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1947 	CU_ASSERT(rc == 0);
1948 	CU_ASSERT(g_io_done == false);
1949 
1950 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1951 	stub_complete_io(1);
1952 	CU_ASSERT(g_io_done == false);
1953 
1954 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1955 	stub_complete_io(1);
1956 	CU_ASSERT(g_io_done == true);
1957 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1958 
1959 	spdk_put_io_channel(io_ch);
1960 	spdk_bdev_close(desc);
1961 	free_bdev(bdev);
1962 	ut_fini_bdev();
1963 }
1964 
1965 static void
1966 bdev_io_max_size_and_segment_split_test(void)
1967 {
1968 	struct spdk_bdev *bdev;
1969 	struct spdk_bdev_desc *desc = NULL;
1970 	struct spdk_io_channel *io_ch;
1971 	struct spdk_bdev_opts bdev_opts = {};
1972 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
1973 	struct ut_expected_io *expected_io;
1974 	uint64_t i;
1975 	int rc;
1976 
1977 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1978 	bdev_opts.bdev_io_pool_size = 512;
1979 	bdev_opts.bdev_io_cache_size = 64;
1980 	bdev_opts.opts_size = sizeof(bdev_opts);
1981 	ut_init_bdev(&bdev_opts);
1982 
1983 	bdev = allocate_bdev("bdev0");
1984 
1985 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
1986 	CU_ASSERT(rc == 0);
1987 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1988 	io_ch = spdk_bdev_get_io_channel(desc);
1989 	CU_ASSERT(io_ch != NULL);
1990 
1991 	bdev->split_on_optimal_io_boundary = false;
1992 	bdev->optimal_io_boundary = 0;
1993 
1994 	/* Case 0 max_num_segments == 0.
1995 	 * but segment size 2 * 512 > 512
1996 	 */
1997 	bdev->max_segment_size = 512;
1998 	bdev->max_num_segments = 0;
1999 	g_io_done = false;
2000 
2001 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2002 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2003 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2004 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2005 
2006 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2007 	CU_ASSERT(rc == 0);
2008 	CU_ASSERT(g_io_done == false);
2009 
2010 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2011 	stub_complete_io(1);
2012 	CU_ASSERT(g_io_done == true);
2013 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2014 
2015 	/* Case 1 max_segment_size == 0
2016 	 * but iov num 2 > 1.
2017 	 */
2018 	bdev->max_segment_size = 0;
2019 	bdev->max_num_segments = 1;
2020 	g_io_done = false;
2021 
2022 	iov[0].iov_base = (void *)0x10000;
2023 	iov[0].iov_len = 512;
2024 	iov[1].iov_base = (void *)0x20000;
2025 	iov[1].iov_len = 8 * 512;
2026 
2027 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2028 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len);
2029 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2030 
2031 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1);
2032 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len);
2033 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2034 
2035 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL);
2036 	CU_ASSERT(rc == 0);
2037 	CU_ASSERT(g_io_done == false);
2038 
2039 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2040 	stub_complete_io(2);
2041 	CU_ASSERT(g_io_done == true);
2042 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2043 
2044 	/* Test that a non-vector command is split correctly.
2045 	 * Set up the expected values before calling spdk_bdev_read_blocks
2046 	 */
2047 	bdev->max_segment_size = 512;
2048 	bdev->max_num_segments = 1;
2049 	g_io_done = false;
2050 
2051 	/* Child IO 0 */
2052 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2053 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2054 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2055 
2056 	/* Child IO 1 */
2057 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2058 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512);
2059 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2060 
2061 	/* spdk_bdev_read_blocks will submit the first child immediately. */
2062 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2063 	CU_ASSERT(rc == 0);
2064 	CU_ASSERT(g_io_done == false);
2065 
2066 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2067 	stub_complete_io(2);
2068 	CU_ASSERT(g_io_done == true);
2069 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2070 
2071 	/* Now set up a more complex, multi-vector command that needs to be split,
2072 	 * including splitting iovecs.
2073 	 */
2074 	bdev->max_segment_size = 2 * 512;
2075 	bdev->max_num_segments = 1;
2076 	g_io_done = false;
2077 
2078 	iov[0].iov_base = (void *)0x10000;
2079 	iov[0].iov_len = 2 * 512;
2080 	iov[1].iov_base = (void *)0x20000;
2081 	iov[1].iov_len = 4 * 512;
2082 	iov[2].iov_base = (void *)0x30000;
2083 	iov[2].iov_len = 6 * 512;
2084 
2085 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2086 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2);
2087 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2088 
2089 	/* Split iov[1].size to 2 iov entries then split the segments */
2090 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2091 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2);
2092 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2093 
2094 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1);
2095 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2);
2096 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2097 
2098 	/* Split iov[2].size to 3 iov entries then split the segments */
2099 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1);
2100 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2);
2101 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2102 
2103 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1);
2104 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2);
2105 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2106 
2107 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1);
2108 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2);
2109 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2110 
2111 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL);
2112 	CU_ASSERT(rc == 0);
2113 	CU_ASSERT(g_io_done == false);
2114 
2115 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2116 	stub_complete_io(6);
2117 	CU_ASSERT(g_io_done == true);
2118 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2119 
2120 	/* Test multi vector command that needs to be split by strip and then needs to be
2121 	 * split further due to the capacity of parent IO child iovs.
2122 	 */
2123 	bdev->max_segment_size = 512;
2124 	bdev->max_num_segments = 1;
2125 	g_io_done = false;
2126 
2127 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2128 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2129 		iov[i].iov_len = 512 * 2;
2130 	}
2131 
2132 	/* Each input iov.size is split into 2 iovs,
2133 	 * half of the input iov can fill all child iov entries of a single IO.
2134 	 */
2135 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i++) {
2136 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1);
2137 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2138 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2139 
2140 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1);
2141 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2142 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2143 	}
2144 
2145 	/* The remaining iov is split in the second round */
2146 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2147 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1);
2148 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2149 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2150 
2151 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1);
2152 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2153 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2154 	}
2155 
2156 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
2157 				    SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
2158 	CU_ASSERT(rc == 0);
2159 	CU_ASSERT(g_io_done == false);
2160 
2161 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2162 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2163 	CU_ASSERT(g_io_done == false);
2164 
2165 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2166 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2167 	CU_ASSERT(g_io_done == true);
2168 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2169 
2170 	/* A wrong case, a child IO that is divided does
2171 	 * not meet the principle of multiples of block size,
2172 	 * and exits with error
2173 	 */
2174 	bdev->max_segment_size = 512;
2175 	bdev->max_num_segments = 1;
2176 	g_io_done = false;
2177 
2178 	iov[0].iov_base = (void *)0x10000;
2179 	iov[0].iov_len = 512 + 256;
2180 	iov[1].iov_base = (void *)0x20000;
2181 	iov[1].iov_len = 256;
2182 
2183 	/* iov[0] is split to 512 and 256.
2184 	 * 256 is less than a block size, and it is found
2185 	 * in the next round of split that it is the first child IO smaller than
2186 	 * the block size, so the error exit
2187 	 */
2188 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1);
2189 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512);
2190 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2191 
2192 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL);
2193 	CU_ASSERT(rc == 0);
2194 	CU_ASSERT(g_io_done == false);
2195 
2196 	/* First child IO is OK */
2197 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2198 	stub_complete_io(1);
2199 	CU_ASSERT(g_io_done == true);
2200 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2201 
2202 	/* error exit */
2203 	stub_complete_io(1);
2204 	CU_ASSERT(g_io_done == true);
2205 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
2206 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2207 
2208 	/* Test multi vector command that needs to be split by strip and then needs to be
2209 	 * split further due to the capacity of child iovs.
2210 	 *
2211 	 * In this case, the last two iovs need to be split, but it will exceed the capacity
2212 	 * of child iovs, so it needs to wait until the first batch completed.
2213 	 */
2214 	bdev->max_segment_size = 512;
2215 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2216 	g_io_done = false;
2217 
2218 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2219 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2220 		iov[i].iov_len = 512;
2221 	}
2222 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2223 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2224 		iov[i].iov_len = 512 * 2;
2225 	}
2226 
2227 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2228 					   SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
2229 	/* 0 ~ (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */
2230 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2231 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2232 	}
2233 	/* (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) is split */
2234 	ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512);
2235 	ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512);
2236 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2237 
2238 	/* Child iov entries exceed the max num of parent IO so split it in next round */
2239 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV, 2, 2);
2240 	ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512);
2241 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512);
2242 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2243 
2244 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
2245 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL);
2246 	CU_ASSERT(rc == 0);
2247 	CU_ASSERT(g_io_done == false);
2248 
2249 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2250 	stub_complete_io(1);
2251 	CU_ASSERT(g_io_done == false);
2252 
2253 	/* Next round */
2254 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2255 	stub_complete_io(1);
2256 	CU_ASSERT(g_io_done == true);
2257 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2258 
2259 	/* This case is similar to the previous one, but the io composed of
2260 	 * the last few entries of child iov is not enough for a blocklen, so they
2261 	 * cannot be put into this IO, but wait until the next time.
2262 	 */
2263 	bdev->max_segment_size = 512;
2264 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2265 	g_io_done = false;
2266 
2267 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2268 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2269 		iov[i].iov_len = 512;
2270 	}
2271 
2272 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2273 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2274 		iov[i].iov_len = 128;
2275 	}
2276 
2277 	/* First child iovcnt is't SPDK_BDEV_IO_NUM_CHILD_IOV but SPDK_BDEV_IO_NUM_CHILD_IOV - 2.
2278 	 * Because the left 2 iov is not enough for a blocklen.
2279 	 */
2280 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2281 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 2, SPDK_BDEV_IO_NUM_CHILD_IOV - 2);
2282 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2283 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2284 	}
2285 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2286 
2287 	/* The second child io waits until the end of the first child io before executing.
2288 	 * Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO.
2289 	 * SPDK_BDEV_IO_NUM_CHILD_IOV - 2 to SPDK_BDEV_IO_NUM_CHILD_IOV + 2
2290 	 */
2291 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
2292 					   1, 4);
2293 	ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len);
2294 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len);
2295 	ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len);
2296 	ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len);
2297 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2298 
2299 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
2300 				    SPDK_BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL);
2301 	CU_ASSERT(rc == 0);
2302 	CU_ASSERT(g_io_done == false);
2303 
2304 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2305 	stub_complete_io(1);
2306 	CU_ASSERT(g_io_done == false);
2307 
2308 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2309 	stub_complete_io(1);
2310 	CU_ASSERT(g_io_done == true);
2311 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2312 
2313 	/* A very complicated case. Each sg entry exceeds max_segment_size and
2314 	 * needs to be split. At the same time, child io must be a multiple of blocklen.
2315 	 * At the same time, child iovcnt exceeds parent iovcnt.
2316 	 */
2317 	bdev->max_segment_size = 512 + 128;
2318 	bdev->max_num_segments = 3;
2319 	g_io_done = false;
2320 
2321 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2322 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2323 		iov[i].iov_len = 512 + 256;
2324 	}
2325 
2326 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2327 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2328 		iov[i].iov_len = 512 + 128;
2329 	}
2330 
2331 	/* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries.
2332 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2333 	 * Generate 9 child IOs.
2334 	 */
2335 	for (i = 0; i < 3; i++) {
2336 		uint32_t j = i * 4;
2337 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3);
2338 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2339 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2340 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2341 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2342 
2343 		/* Child io must be a multiple of blocklen
2344 		 * iov[j + 2] must be split. If the third entry is also added,
2345 		 * the multiple of blocklen cannot be guaranteed. But it still
2346 		 * occupies one iov entry of the parent child iov.
2347 		 */
2348 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2);
2349 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2350 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2351 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2352 
2353 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3);
2354 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2355 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2356 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2357 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2358 	}
2359 
2360 	/* Child iov position at 27, the 10th child IO
2361 	 * iov entry index is 3 * 4 and offset is 3 * 6
2362 	 */
2363 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3);
2364 	ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640);
2365 	ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128);
2366 	ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256);
2367 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2368 
2369 	/* Child iov position at 30, the 11th child IO */
2370 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2);
2371 	ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512);
2372 	ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512);
2373 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2374 
2375 	/* The 2nd split round and iovpos is 0, the 12th child IO */
2376 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3);
2377 	ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256);
2378 	ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640);
2379 	ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128);
2380 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2381 
2382 	/* Consume 9 child IOs and 27 child iov entries.
2383 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2384 	 * Parent IO iov index start from 16 and block offset start from 24
2385 	 */
2386 	for (i = 0; i < 3; i++) {
2387 		uint32_t j = i * 4 + 16;
2388 		uint32_t offset = i * 6 + 24;
2389 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3);
2390 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2391 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2392 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2393 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2394 
2395 		/* Child io must be a multiple of blocklen
2396 		 * iov[j + 2] must be split. If the third entry is also added,
2397 		 * the multiple of blocklen cannot be guaranteed. But it still
2398 		 * occupies one iov entry of the parent child iov.
2399 		 */
2400 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2);
2401 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2402 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2403 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2404 
2405 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3);
2406 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2407 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2408 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2409 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2410 	}
2411 
2412 	/* The 22th child IO, child iov position at 30 */
2413 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1);
2414 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512);
2415 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2416 
2417 	/* The third round */
2418 	/* Here is the 23nd child IO and child iovpos is 0 */
2419 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3);
2420 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256);
2421 	ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640);
2422 	ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128);
2423 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2424 
2425 	/* The 24th child IO */
2426 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3);
2427 	ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640);
2428 	ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640);
2429 	ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256);
2430 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2431 
2432 	/* The 25th child IO */
2433 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2);
2434 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384);
2435 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640);
2436 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2437 
2438 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
2439 				    50, io_done, NULL);
2440 	CU_ASSERT(rc == 0);
2441 	CU_ASSERT(g_io_done == false);
2442 
2443 	/* Parent IO supports up to 32 child iovs, so it is calculated that
2444 	 * a maximum of 11 IOs can be split at a time, and the
2445 	 * splitting will continue after the first batch is over.
2446 	 */
2447 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2448 	stub_complete_io(11);
2449 	CU_ASSERT(g_io_done == false);
2450 
2451 	/* The 2nd round */
2452 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2453 	stub_complete_io(11);
2454 	CU_ASSERT(g_io_done == false);
2455 
2456 	/* The last round */
2457 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2458 	stub_complete_io(3);
2459 	CU_ASSERT(g_io_done == true);
2460 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2461 
2462 	/* Test an WRITE_ZEROES.  This should also not be split. */
2463 	bdev->max_segment_size = 512;
2464 	bdev->max_num_segments = 1;
2465 	g_io_done = false;
2466 
2467 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
2468 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2469 
2470 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
2471 	CU_ASSERT(rc == 0);
2472 	CU_ASSERT(g_io_done == false);
2473 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2474 	stub_complete_io(1);
2475 	CU_ASSERT(g_io_done == true);
2476 
2477 	/* Test an UNMAP.  This should also not be split. */
2478 	g_io_done = false;
2479 
2480 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0);
2481 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2482 
2483 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL);
2484 	CU_ASSERT(rc == 0);
2485 	CU_ASSERT(g_io_done == false);
2486 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2487 	stub_complete_io(1);
2488 	CU_ASSERT(g_io_done == true);
2489 
2490 	/* Test a FLUSH.  This should also not be split. */
2491 	g_io_done = false;
2492 
2493 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0);
2494 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2495 
2496 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
2497 	CU_ASSERT(rc == 0);
2498 	CU_ASSERT(g_io_done == false);
2499 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2500 	stub_complete_io(1);
2501 	CU_ASSERT(g_io_done == true);
2502 
2503 	/* Test a COPY.  This should also not be split. */
2504 	g_io_done = false;
2505 
2506 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
2507 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2508 
2509 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
2510 	CU_ASSERT(rc == 0);
2511 	CU_ASSERT(g_io_done == false);
2512 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2513 	stub_complete_io(1);
2514 	CU_ASSERT(g_io_done == true);
2515 
2516 	spdk_put_io_channel(io_ch);
2517 	spdk_bdev_close(desc);
2518 	free_bdev(bdev);
2519 	ut_fini_bdev();
2520 }
2521 
2522 static void
2523 bdev_io_mix_split_test(void)
2524 {
2525 	struct spdk_bdev *bdev;
2526 	struct spdk_bdev_desc *desc = NULL;
2527 	struct spdk_io_channel *io_ch;
2528 	struct spdk_bdev_opts bdev_opts = {};
2529 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
2530 	struct ut_expected_io *expected_io;
2531 	uint64_t i;
2532 	int rc;
2533 
2534 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2535 	bdev_opts.bdev_io_pool_size = 512;
2536 	bdev_opts.bdev_io_cache_size = 64;
2537 	ut_init_bdev(&bdev_opts);
2538 
2539 	bdev = allocate_bdev("bdev0");
2540 
2541 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2542 	CU_ASSERT(rc == 0);
2543 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2544 	io_ch = spdk_bdev_get_io_channel(desc);
2545 	CU_ASSERT(io_ch != NULL);
2546 
2547 	/* First case optimal_io_boundary == max_segment_size * max_num_segments */
2548 	bdev->split_on_optimal_io_boundary = true;
2549 	bdev->optimal_io_boundary = 16;
2550 
2551 	bdev->max_segment_size = 512;
2552 	bdev->max_num_segments = 16;
2553 	g_io_done = false;
2554 
2555 	/* IO crossing the IO boundary requires split
2556 	 * Total 2 child IOs.
2557 	 */
2558 
2559 	/* The 1st child IO split the segment_size to multiple segment entry */
2560 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2561 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2562 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2563 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2564 
2565 	/* The 2nd child IO split the segment_size to multiple segment entry */
2566 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2);
2567 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512);
2568 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512);
2569 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2570 
2571 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL);
2572 	CU_ASSERT(rc == 0);
2573 	CU_ASSERT(g_io_done == false);
2574 
2575 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2576 	stub_complete_io(2);
2577 	CU_ASSERT(g_io_done == true);
2578 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2579 
2580 	/* Second case optimal_io_boundary > max_segment_size * max_num_segments */
2581 	bdev->max_segment_size = 15 * 512;
2582 	bdev->max_num_segments = 1;
2583 	g_io_done = false;
2584 
2585 	/* IO crossing the IO boundary requires split.
2586 	 * The 1st child IO segment size exceeds the max_segment_size,
2587 	 * So 1st child IO will be split to multiple segment entry.
2588 	 * Then it split to 2 child IOs because of the max_num_segments.
2589 	 * Total 3 child IOs.
2590 	 */
2591 
2592 	/* The first 2 IOs are in an IO boundary.
2593 	 * Because the optimal_io_boundary > max_segment_size * max_num_segments
2594 	 * So it split to the first 2 IOs.
2595 	 */
2596 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1);
2597 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15);
2598 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2599 
2600 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2601 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512);
2602 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2603 
2604 	/* The 3rd Child IO is because of the io boundary */
2605 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2606 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2607 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2608 
2609 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2610 	CU_ASSERT(rc == 0);
2611 	CU_ASSERT(g_io_done == false);
2612 
2613 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2614 	stub_complete_io(3);
2615 	CU_ASSERT(g_io_done == true);
2616 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2617 
2618 	/* Third case optimal_io_boundary < max_segment_size * max_num_segments */
2619 	bdev->max_segment_size = 17 * 512;
2620 	bdev->max_num_segments = 1;
2621 	g_io_done = false;
2622 
2623 	/* IO crossing the IO boundary requires split.
2624 	 * Child IO does not split.
2625 	 * Total 2 child IOs.
2626 	 */
2627 
2628 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1);
2629 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16);
2630 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2631 
2632 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2633 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2634 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2635 
2636 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2637 	CU_ASSERT(rc == 0);
2638 	CU_ASSERT(g_io_done == false);
2639 
2640 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2641 	stub_complete_io(2);
2642 	CU_ASSERT(g_io_done == true);
2643 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2644 
2645 	/* Now set up a more complex, multi-vector command that needs to be split,
2646 	 * including splitting iovecs.
2647 	 * optimal_io_boundary < max_segment_size * max_num_segments
2648 	 */
2649 	bdev->max_segment_size = 3 * 512;
2650 	bdev->max_num_segments = 6;
2651 	g_io_done = false;
2652 
2653 	iov[0].iov_base = (void *)0x10000;
2654 	iov[0].iov_len = 4 * 512;
2655 	iov[1].iov_base = (void *)0x20000;
2656 	iov[1].iov_len = 4 * 512;
2657 	iov[2].iov_base = (void *)0x30000;
2658 	iov[2].iov_len = 10 * 512;
2659 
2660 	/* IO crossing the IO boundary requires split.
2661 	 * The 1st child IO segment size exceeds the max_segment_size and after
2662 	 * splitting segment_size, the num_segments exceeds max_num_segments.
2663 	 * So 1st child IO will be split to 2 child IOs.
2664 	 * Total 3 child IOs.
2665 	 */
2666 
2667 	/* The first 2 IOs are in an IO boundary.
2668 	 * After splitting segment size the segment num exceeds.
2669 	 * So it splits to 2 child IOs.
2670 	 */
2671 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6);
2672 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3);
2673 	ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512);
2674 	ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3);
2675 	ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512);
2676 	ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3);
2677 	ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3);
2678 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2679 
2680 	/* The 2nd child IO has the left segment entry */
2681 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2682 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2);
2683 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2684 
2685 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2686 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2);
2687 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2688 
2689 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL);
2690 	CU_ASSERT(rc == 0);
2691 	CU_ASSERT(g_io_done == false);
2692 
2693 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2694 	stub_complete_io(3);
2695 	CU_ASSERT(g_io_done == true);
2696 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2697 
2698 	/* A very complicated case. Each sg entry exceeds max_segment_size
2699 	 * and split on io boundary.
2700 	 * optimal_io_boundary < max_segment_size * max_num_segments
2701 	 */
2702 	bdev->max_segment_size = 3 * 512;
2703 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2704 	g_io_done = false;
2705 
2706 	for (i = 0; i < 20; i++) {
2707 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2708 		iov[i].iov_len = 512 * 4;
2709 	}
2710 
2711 	/* IO crossing the IO boundary requires split.
2712 	 * 80 block length can split 5 child IOs base on offset and IO boundary.
2713 	 * Each iov entry needs to be split to 2 entries because of max_segment_size
2714 	 * Total 5 child IOs.
2715 	 */
2716 
2717 	/* 4 iov entries are in an IO boundary and each iov entry splits to 2.
2718 	 * So each child IO occupies 8 child iov entries.
2719 	 */
2720 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8);
2721 	for (i = 0; i < 4; i++) {
2722 		int iovcnt = i * 2;
2723 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2724 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2725 	}
2726 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2727 
2728 	/* 2nd child IO and total 16 child iov entries of parent IO */
2729 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8);
2730 	for (i = 4; i < 8; i++) {
2731 		int iovcnt = (i - 4) * 2;
2732 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2733 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2734 	}
2735 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2736 
2737 	/* 3rd child IO and total 24 child iov entries of parent IO */
2738 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8);
2739 	for (i = 8; i < 12; i++) {
2740 		int iovcnt = (i - 8) * 2;
2741 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2742 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2743 	}
2744 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2745 
2746 	/* 4th child IO and total 32 child iov entries of parent IO */
2747 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8);
2748 	for (i = 12; i < 16; i++) {
2749 		int iovcnt = (i - 12) * 2;
2750 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2751 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2752 	}
2753 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2754 
2755 	/* 5th child IO and because of the child iov entry it should be split
2756 	 * in next round.
2757 	 */
2758 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8);
2759 	for (i = 16; i < 20; i++) {
2760 		int iovcnt = (i - 16) * 2;
2761 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2762 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2763 	}
2764 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2765 
2766 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL);
2767 	CU_ASSERT(rc == 0);
2768 	CU_ASSERT(g_io_done == false);
2769 
2770 	/* First split round */
2771 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2772 	stub_complete_io(4);
2773 	CU_ASSERT(g_io_done == false);
2774 
2775 	/* Second split round */
2776 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2777 	stub_complete_io(1);
2778 	CU_ASSERT(g_io_done == true);
2779 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2780 
2781 	spdk_put_io_channel(io_ch);
2782 	spdk_bdev_close(desc);
2783 	free_bdev(bdev);
2784 	ut_fini_bdev();
2785 }
2786 
2787 static void
2788 bdev_io_split_with_io_wait(void)
2789 {
2790 	struct spdk_bdev *bdev;
2791 	struct spdk_bdev_desc *desc = NULL;
2792 	struct spdk_io_channel *io_ch;
2793 	struct spdk_bdev_channel *channel;
2794 	struct spdk_bdev_mgmt_channel *mgmt_ch;
2795 	struct spdk_bdev_opts bdev_opts = {};
2796 	struct iovec iov[3];
2797 	struct ut_expected_io *expected_io;
2798 	int rc;
2799 
2800 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2801 	bdev_opts.bdev_io_pool_size = 2;
2802 	bdev_opts.bdev_io_cache_size = 1;
2803 	ut_init_bdev(&bdev_opts);
2804 
2805 	bdev = allocate_bdev("bdev0");
2806 
2807 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2808 	CU_ASSERT(rc == 0);
2809 	CU_ASSERT(desc != NULL);
2810 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2811 	io_ch = spdk_bdev_get_io_channel(desc);
2812 	CU_ASSERT(io_ch != NULL);
2813 	channel = spdk_io_channel_get_ctx(io_ch);
2814 	mgmt_ch = channel->shared_resource->mgmt_ch;
2815 
2816 	bdev->optimal_io_boundary = 16;
2817 	bdev->split_on_optimal_io_boundary = true;
2818 
2819 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
2820 	CU_ASSERT(rc == 0);
2821 
2822 	/* Now test that a single-vector command is split correctly.
2823 	 * Offset 14, length 8, payload 0xF000
2824 	 *  Child - Offset 14, length 2, payload 0xF000
2825 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
2826 	 *
2827 	 * Set up the expected values before calling spdk_bdev_read_blocks
2828 	 */
2829 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
2830 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
2831 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2832 
2833 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
2834 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
2835 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2836 
2837 	/* The following children will be submitted sequentially due to the capacity of
2838 	 * spdk_bdev_io.
2839 	 */
2840 
2841 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
2842 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
2843 	CU_ASSERT(rc == 0);
2844 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2845 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2846 
2847 	/* Completing the first read I/O will submit the first child */
2848 	stub_complete_io(1);
2849 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2850 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2851 
2852 	/* Completing the first child will submit the second child */
2853 	stub_complete_io(1);
2854 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2855 
2856 	/* Complete the second child I/O.  This should result in our callback getting
2857 	 * invoked since the parent I/O is now complete.
2858 	 */
2859 	stub_complete_io(1);
2860 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2861 
2862 	/* Now set up a more complex, multi-vector command that needs to be split,
2863 	 *  including splitting iovecs.
2864 	 */
2865 	iov[0].iov_base = (void *)0x10000;
2866 	iov[0].iov_len = 512;
2867 	iov[1].iov_base = (void *)0x20000;
2868 	iov[1].iov_len = 20 * 512;
2869 	iov[2].iov_base = (void *)0x30000;
2870 	iov[2].iov_len = 11 * 512;
2871 
2872 	g_io_done = false;
2873 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
2874 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
2875 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
2876 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2877 
2878 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
2879 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
2880 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2881 
2882 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
2883 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
2884 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
2885 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2886 
2887 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
2888 	CU_ASSERT(rc == 0);
2889 	CU_ASSERT(g_io_done == false);
2890 
2891 	/* The following children will be submitted sequentially due to the capacity of
2892 	 * spdk_bdev_io.
2893 	 */
2894 
2895 	/* Completing the first child will submit the second child */
2896 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2897 	stub_complete_io(1);
2898 	CU_ASSERT(g_io_done == false);
2899 
2900 	/* Completing the second child will submit the third child */
2901 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2902 	stub_complete_io(1);
2903 	CU_ASSERT(g_io_done == false);
2904 
2905 	/* Completing the third child will result in our callback getting invoked
2906 	 * since the parent I/O is now complete.
2907 	 */
2908 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2909 	stub_complete_io(1);
2910 	CU_ASSERT(g_io_done == true);
2911 
2912 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
2913 
2914 	spdk_put_io_channel(io_ch);
2915 	spdk_bdev_close(desc);
2916 	free_bdev(bdev);
2917 	ut_fini_bdev();
2918 }
2919 
2920 static void
2921 bdev_io_write_unit_split_test(void)
2922 {
2923 	struct spdk_bdev *bdev;
2924 	struct spdk_bdev_desc *desc = NULL;
2925 	struct spdk_io_channel *io_ch;
2926 	struct spdk_bdev_opts bdev_opts = {};
2927 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 4];
2928 	struct ut_expected_io *expected_io;
2929 	uint64_t i;
2930 	int rc;
2931 
2932 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2933 	bdev_opts.bdev_io_pool_size = 512;
2934 	bdev_opts.bdev_io_cache_size = 64;
2935 	ut_init_bdev(&bdev_opts);
2936 
2937 	bdev = allocate_bdev("bdev0");
2938 
2939 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2940 	CU_ASSERT(rc == 0);
2941 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2942 	io_ch = spdk_bdev_get_io_channel(desc);
2943 	CU_ASSERT(io_ch != NULL);
2944 
2945 	/* Write I/O 2x larger than write_unit_size should get split into 2 I/Os */
2946 	bdev->write_unit_size = 32;
2947 	bdev->split_on_write_unit = true;
2948 	g_io_done = false;
2949 
2950 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 32, 1);
2951 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 32 * 512);
2952 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2953 
2954 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 32, 1);
2955 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 32 * 512), 32 * 512);
2956 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2957 
2958 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
2959 	CU_ASSERT(rc == 0);
2960 	CU_ASSERT(g_io_done == false);
2961 
2962 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2963 	stub_complete_io(2);
2964 	CU_ASSERT(g_io_done == true);
2965 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2966 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
2967 
2968 	/* Same as above but with optimal_io_boundary < write_unit_size - the I/O should be split
2969 	 * based on write_unit_size, not optimal_io_boundary */
2970 	bdev->split_on_optimal_io_boundary = true;
2971 	bdev->optimal_io_boundary = 16;
2972 	g_io_done = false;
2973 
2974 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
2975 	CU_ASSERT(rc == 0);
2976 	CU_ASSERT(g_io_done == false);
2977 
2978 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2979 	stub_complete_io(2);
2980 	CU_ASSERT(g_io_done == true);
2981 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2982 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
2983 
2984 	/* Write I/O should fail if it is smaller than write_unit_size */
2985 	g_io_done = false;
2986 
2987 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 31, io_done, NULL);
2988 	CU_ASSERT(rc == 0);
2989 	CU_ASSERT(g_io_done == false);
2990 
2991 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2992 	poll_threads();
2993 	CU_ASSERT(g_io_done == true);
2994 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2995 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
2996 
2997 	/* Same for I/O not aligned to write_unit_size */
2998 	g_io_done = false;
2999 
3000 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 1, 32, io_done, NULL);
3001 	CU_ASSERT(rc == 0);
3002 	CU_ASSERT(g_io_done == false);
3003 
3004 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3005 	poll_threads();
3006 	CU_ASSERT(g_io_done == true);
3007 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3008 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3009 
3010 	/* Write should fail if it needs to be split but there are not enough iovs to submit
3011 	 * an entire write unit */
3012 	bdev->write_unit_size = SPDK_COUNTOF(iov) / 2;
3013 	g_io_done = false;
3014 
3015 	for (i = 0; i < SPDK_COUNTOF(iov); i++) {
3016 		iov[i].iov_base = (void *)(0x1000 + 512 * i);
3017 		iov[i].iov_len = 512;
3018 	}
3019 
3020 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, SPDK_COUNTOF(iov), 0, SPDK_COUNTOF(iov),
3021 				     io_done, NULL);
3022 	CU_ASSERT(rc == 0);
3023 	CU_ASSERT(g_io_done == false);
3024 
3025 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3026 	poll_threads();
3027 	CU_ASSERT(g_io_done == true);
3028 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3029 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3030 
3031 	spdk_put_io_channel(io_ch);
3032 	spdk_bdev_close(desc);
3033 	free_bdev(bdev);
3034 	ut_fini_bdev();
3035 }
3036 
3037 static void
3038 bdev_io_alignment(void)
3039 {
3040 	struct spdk_bdev *bdev;
3041 	struct spdk_bdev_desc *desc = NULL;
3042 	struct spdk_io_channel *io_ch;
3043 	struct spdk_bdev_opts bdev_opts = {};
3044 	int rc;
3045 	void *buf = NULL;
3046 	struct iovec iovs[2];
3047 	int iovcnt;
3048 	uint64_t alignment;
3049 
3050 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3051 	bdev_opts.bdev_io_pool_size = 20;
3052 	bdev_opts.bdev_io_cache_size = 2;
3053 	ut_init_bdev(&bdev_opts);
3054 
3055 	fn_table.submit_request = stub_submit_request_get_buf;
3056 	bdev = allocate_bdev("bdev0");
3057 
3058 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3059 	CU_ASSERT(rc == 0);
3060 	CU_ASSERT(desc != NULL);
3061 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3062 	io_ch = spdk_bdev_get_io_channel(desc);
3063 	CU_ASSERT(io_ch != NULL);
3064 
3065 	/* Create aligned buffer */
3066 	rc = posix_memalign(&buf, 4096, 8192);
3067 	SPDK_CU_ASSERT_FATAL(rc == 0);
3068 
3069 	/* Pass aligned single buffer with no alignment required */
3070 	alignment = 1;
3071 	bdev->required_alignment = spdk_u32log2(alignment);
3072 
3073 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3074 	CU_ASSERT(rc == 0);
3075 	stub_complete_io(1);
3076 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3077 				    alignment));
3078 
3079 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3080 	CU_ASSERT(rc == 0);
3081 	stub_complete_io(1);
3082 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3083 				    alignment));
3084 
3085 	/* Pass unaligned single buffer with no alignment required */
3086 	alignment = 1;
3087 	bdev->required_alignment = spdk_u32log2(alignment);
3088 
3089 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3090 	CU_ASSERT(rc == 0);
3091 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3092 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3093 	stub_complete_io(1);
3094 
3095 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3096 	CU_ASSERT(rc == 0);
3097 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3098 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3099 	stub_complete_io(1);
3100 
3101 	/* Pass unaligned single buffer with 512 alignment required */
3102 	alignment = 512;
3103 	bdev->required_alignment = spdk_u32log2(alignment);
3104 
3105 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3106 	CU_ASSERT(rc == 0);
3107 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3108 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3109 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3110 				    alignment));
3111 	stub_complete_io(1);
3112 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3113 
3114 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3115 	CU_ASSERT(rc == 0);
3116 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3117 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3118 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3119 				    alignment));
3120 	stub_complete_io(1);
3121 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3122 
3123 	/* Pass unaligned single buffer with 4096 alignment required */
3124 	alignment = 4096;
3125 	bdev->required_alignment = spdk_u32log2(alignment);
3126 
3127 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3128 	CU_ASSERT(rc == 0);
3129 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3130 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3131 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3132 				    alignment));
3133 	stub_complete_io(1);
3134 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3135 
3136 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3137 	CU_ASSERT(rc == 0);
3138 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3139 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3140 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3141 				    alignment));
3142 	stub_complete_io(1);
3143 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3144 
3145 	/* Pass aligned iovs with no alignment required */
3146 	alignment = 1;
3147 	bdev->required_alignment = spdk_u32log2(alignment);
3148 
3149 	iovcnt = 1;
3150 	iovs[0].iov_base = buf;
3151 	iovs[0].iov_len = 512;
3152 
3153 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3154 	CU_ASSERT(rc == 0);
3155 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3156 	stub_complete_io(1);
3157 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3158 
3159 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3160 	CU_ASSERT(rc == 0);
3161 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3162 	stub_complete_io(1);
3163 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3164 
3165 	/* Pass unaligned iovs with no alignment required */
3166 	alignment = 1;
3167 	bdev->required_alignment = spdk_u32log2(alignment);
3168 
3169 	iovcnt = 2;
3170 	iovs[0].iov_base = buf + 16;
3171 	iovs[0].iov_len = 256;
3172 	iovs[1].iov_base = buf + 16 + 256 + 32;
3173 	iovs[1].iov_len = 256;
3174 
3175 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3176 	CU_ASSERT(rc == 0);
3177 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3178 	stub_complete_io(1);
3179 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3180 
3181 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3182 	CU_ASSERT(rc == 0);
3183 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3184 	stub_complete_io(1);
3185 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3186 
3187 	/* Pass unaligned iov with 2048 alignment required */
3188 	alignment = 2048;
3189 	bdev->required_alignment = spdk_u32log2(alignment);
3190 
3191 	iovcnt = 2;
3192 	iovs[0].iov_base = buf + 16;
3193 	iovs[0].iov_len = 256;
3194 	iovs[1].iov_base = buf + 16 + 256 + 32;
3195 	iovs[1].iov_len = 256;
3196 
3197 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3198 	CU_ASSERT(rc == 0);
3199 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3200 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3201 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3202 				    alignment));
3203 	stub_complete_io(1);
3204 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3205 
3206 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3207 	CU_ASSERT(rc == 0);
3208 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3209 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3210 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3211 				    alignment));
3212 	stub_complete_io(1);
3213 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3214 
3215 	/* Pass iov without allocated buffer without alignment required */
3216 	alignment = 1;
3217 	bdev->required_alignment = spdk_u32log2(alignment);
3218 
3219 	iovcnt = 1;
3220 	iovs[0].iov_base = NULL;
3221 	iovs[0].iov_len = 0;
3222 
3223 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3224 	CU_ASSERT(rc == 0);
3225 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3226 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3227 				    alignment));
3228 	stub_complete_io(1);
3229 
3230 	/* Pass iov without allocated buffer with 1024 alignment required */
3231 	alignment = 1024;
3232 	bdev->required_alignment = spdk_u32log2(alignment);
3233 
3234 	iovcnt = 1;
3235 	iovs[0].iov_base = NULL;
3236 	iovs[0].iov_len = 0;
3237 
3238 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3239 	CU_ASSERT(rc == 0);
3240 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3241 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3242 				    alignment));
3243 	stub_complete_io(1);
3244 
3245 	spdk_put_io_channel(io_ch);
3246 	spdk_bdev_close(desc);
3247 	free_bdev(bdev);
3248 	fn_table.submit_request = stub_submit_request;
3249 	ut_fini_bdev();
3250 
3251 	free(buf);
3252 }
3253 
3254 static void
3255 bdev_io_alignment_with_boundary(void)
3256 {
3257 	struct spdk_bdev *bdev;
3258 	struct spdk_bdev_desc *desc = NULL;
3259 	struct spdk_io_channel *io_ch;
3260 	struct spdk_bdev_opts bdev_opts = {};
3261 	int rc;
3262 	void *buf = NULL;
3263 	struct iovec iovs[2];
3264 	int iovcnt;
3265 	uint64_t alignment;
3266 
3267 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3268 	bdev_opts.bdev_io_pool_size = 20;
3269 	bdev_opts.bdev_io_cache_size = 2;
3270 	bdev_opts.opts_size = sizeof(bdev_opts);
3271 	ut_init_bdev(&bdev_opts);
3272 
3273 	fn_table.submit_request = stub_submit_request_get_buf;
3274 	bdev = allocate_bdev("bdev0");
3275 
3276 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3277 	CU_ASSERT(rc == 0);
3278 	CU_ASSERT(desc != NULL);
3279 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3280 	io_ch = spdk_bdev_get_io_channel(desc);
3281 	CU_ASSERT(io_ch != NULL);
3282 
3283 	/* Create aligned buffer */
3284 	rc = posix_memalign(&buf, 4096, 131072);
3285 	SPDK_CU_ASSERT_FATAL(rc == 0);
3286 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3287 
3288 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
3289 	alignment = 512;
3290 	bdev->required_alignment = spdk_u32log2(alignment);
3291 	bdev->optimal_io_boundary = 2;
3292 	bdev->split_on_optimal_io_boundary = true;
3293 
3294 	iovcnt = 1;
3295 	iovs[0].iov_base = NULL;
3296 	iovs[0].iov_len = 512 * 3;
3297 
3298 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3299 	CU_ASSERT(rc == 0);
3300 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3301 	stub_complete_io(2);
3302 
3303 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
3304 	alignment = 512;
3305 	bdev->required_alignment = spdk_u32log2(alignment);
3306 	bdev->optimal_io_boundary = 16;
3307 	bdev->split_on_optimal_io_boundary = true;
3308 
3309 	iovcnt = 1;
3310 	iovs[0].iov_base = NULL;
3311 	iovs[0].iov_len = 512 * 16;
3312 
3313 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
3314 	CU_ASSERT(rc == 0);
3315 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3316 	stub_complete_io(2);
3317 
3318 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
3319 	alignment = 512;
3320 	bdev->required_alignment = spdk_u32log2(alignment);
3321 	bdev->optimal_io_boundary = 128;
3322 	bdev->split_on_optimal_io_boundary = true;
3323 
3324 	iovcnt = 1;
3325 	iovs[0].iov_base = buf + 16;
3326 	iovs[0].iov_len = 512 * 160;
3327 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3328 	CU_ASSERT(rc == 0);
3329 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3330 	stub_complete_io(2);
3331 
3332 	/* 512 * 3 with 2 IO boundary */
3333 	alignment = 512;
3334 	bdev->required_alignment = spdk_u32log2(alignment);
3335 	bdev->optimal_io_boundary = 2;
3336 	bdev->split_on_optimal_io_boundary = true;
3337 
3338 	iovcnt = 2;
3339 	iovs[0].iov_base = buf + 16;
3340 	iovs[0].iov_len = 512;
3341 	iovs[1].iov_base = buf + 16 + 512 + 32;
3342 	iovs[1].iov_len = 1024;
3343 
3344 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3345 	CU_ASSERT(rc == 0);
3346 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3347 	stub_complete_io(2);
3348 
3349 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3350 	CU_ASSERT(rc == 0);
3351 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3352 	stub_complete_io(2);
3353 
3354 	/* 512 * 64 with 32 IO boundary */
3355 	bdev->optimal_io_boundary = 32;
3356 	iovcnt = 2;
3357 	iovs[0].iov_base = buf + 16;
3358 	iovs[0].iov_len = 16384;
3359 	iovs[1].iov_base = buf + 16 + 16384 + 32;
3360 	iovs[1].iov_len = 16384;
3361 
3362 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3363 	CU_ASSERT(rc == 0);
3364 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3365 	stub_complete_io(3);
3366 
3367 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3368 	CU_ASSERT(rc == 0);
3369 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3370 	stub_complete_io(3);
3371 
3372 	/* 512 * 160 with 32 IO boundary */
3373 	iovcnt = 1;
3374 	iovs[0].iov_base = buf + 16;
3375 	iovs[0].iov_len = 16384 + 65536;
3376 
3377 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3378 	CU_ASSERT(rc == 0);
3379 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
3380 	stub_complete_io(6);
3381 
3382 	spdk_put_io_channel(io_ch);
3383 	spdk_bdev_close(desc);
3384 	free_bdev(bdev);
3385 	fn_table.submit_request = stub_submit_request;
3386 	ut_fini_bdev();
3387 
3388 	free(buf);
3389 }
3390 
3391 static void
3392 histogram_status_cb(void *cb_arg, int status)
3393 {
3394 	g_status = status;
3395 }
3396 
3397 static void
3398 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3399 {
3400 	g_status = status;
3401 	g_histogram = histogram;
3402 }
3403 
3404 static void
3405 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
3406 		   uint64_t total, uint64_t so_far)
3407 {
3408 	g_count += count;
3409 }
3410 
3411 static void
3412 histogram_channel_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3413 {
3414 	spdk_histogram_data_fn cb_fn = cb_arg;
3415 
3416 	g_status = status;
3417 
3418 	if (status == 0) {
3419 		spdk_histogram_data_iterate(histogram, cb_fn, NULL);
3420 	}
3421 }
3422 
3423 static void
3424 bdev_histograms(void)
3425 {
3426 	struct spdk_bdev *bdev;
3427 	struct spdk_bdev_desc *desc = NULL;
3428 	struct spdk_io_channel *ch;
3429 	struct spdk_histogram_data *histogram;
3430 	uint8_t buf[4096];
3431 	int rc;
3432 
3433 	ut_init_bdev(NULL);
3434 
3435 	bdev = allocate_bdev("bdev");
3436 
3437 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3438 	CU_ASSERT(rc == 0);
3439 	CU_ASSERT(desc != NULL);
3440 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3441 
3442 	ch = spdk_bdev_get_io_channel(desc);
3443 	CU_ASSERT(ch != NULL);
3444 
3445 	/* Enable histogram */
3446 	g_status = -1;
3447 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
3448 	poll_threads();
3449 	CU_ASSERT(g_status == 0);
3450 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3451 
3452 	/* Allocate histogram */
3453 	histogram = spdk_histogram_data_alloc();
3454 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
3455 
3456 	/* Check if histogram is zeroed */
3457 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3458 	poll_threads();
3459 	CU_ASSERT(g_status == 0);
3460 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3461 
3462 	g_count = 0;
3463 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3464 
3465 	CU_ASSERT(g_count == 0);
3466 
3467 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3468 	CU_ASSERT(rc == 0);
3469 
3470 	spdk_delay_us(10);
3471 	stub_complete_io(1);
3472 	poll_threads();
3473 
3474 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3475 	CU_ASSERT(rc == 0);
3476 
3477 	spdk_delay_us(10);
3478 	stub_complete_io(1);
3479 	poll_threads();
3480 
3481 	/* Check if histogram gathered data from all I/O channels */
3482 	g_histogram = NULL;
3483 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3484 	poll_threads();
3485 	CU_ASSERT(g_status == 0);
3486 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3487 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3488 
3489 	g_count = 0;
3490 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3491 	CU_ASSERT(g_count == 2);
3492 
3493 	g_count = 0;
3494 	spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, histogram_io_count);
3495 	CU_ASSERT(g_status == 0);
3496 	CU_ASSERT(g_count == 2);
3497 
3498 	/* Disable histogram */
3499 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
3500 	poll_threads();
3501 	CU_ASSERT(g_status == 0);
3502 	CU_ASSERT(bdev->internal.histogram_enabled == false);
3503 
3504 	/* Try to run histogram commands on disabled bdev */
3505 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3506 	poll_threads();
3507 	CU_ASSERT(g_status == -EFAULT);
3508 
3509 	spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, NULL);
3510 	CU_ASSERT(g_status == -EFAULT);
3511 
3512 	spdk_histogram_data_free(histogram);
3513 	spdk_put_io_channel(ch);
3514 	spdk_bdev_close(desc);
3515 	free_bdev(bdev);
3516 	ut_fini_bdev();
3517 }
3518 
3519 static void
3520 _bdev_compare(bool emulated)
3521 {
3522 	struct spdk_bdev *bdev;
3523 	struct spdk_bdev_desc *desc = NULL;
3524 	struct spdk_io_channel *ioch;
3525 	struct ut_expected_io *expected_io;
3526 	uint64_t offset, num_blocks;
3527 	uint32_t num_completed;
3528 	char aa_buf[512];
3529 	char bb_buf[512];
3530 	struct iovec compare_iov;
3531 	uint8_t expected_io_type;
3532 	int rc;
3533 
3534 	if (emulated) {
3535 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3536 	} else {
3537 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3538 	}
3539 
3540 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3541 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3542 
3543 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3544 
3545 	ut_init_bdev(NULL);
3546 	fn_table.submit_request = stub_submit_request_get_buf;
3547 	bdev = allocate_bdev("bdev");
3548 
3549 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3550 	CU_ASSERT_EQUAL(rc, 0);
3551 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3552 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3553 	ioch = spdk_bdev_get_io_channel(desc);
3554 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3555 
3556 	fn_table.submit_request = stub_submit_request_get_buf;
3557 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3558 
3559 	offset = 50;
3560 	num_blocks = 1;
3561 	compare_iov.iov_base = aa_buf;
3562 	compare_iov.iov_len = sizeof(aa_buf);
3563 
3564 	/* 1. successful compare */
3565 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3566 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3567 
3568 	g_io_done = false;
3569 	g_compare_read_buf = aa_buf;
3570 	g_compare_read_buf_len = sizeof(aa_buf);
3571 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3572 	CU_ASSERT_EQUAL(rc, 0);
3573 	num_completed = stub_complete_io(1);
3574 	CU_ASSERT_EQUAL(num_completed, 1);
3575 	CU_ASSERT(g_io_done == true);
3576 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3577 
3578 	/* 2. miscompare */
3579 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3580 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3581 
3582 	g_io_done = false;
3583 	g_compare_read_buf = bb_buf;
3584 	g_compare_read_buf_len = sizeof(bb_buf);
3585 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3586 	CU_ASSERT_EQUAL(rc, 0);
3587 	num_completed = stub_complete_io(1);
3588 	CU_ASSERT_EQUAL(num_completed, 1);
3589 	CU_ASSERT(g_io_done == true);
3590 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3591 
3592 	spdk_put_io_channel(ioch);
3593 	spdk_bdev_close(desc);
3594 	free_bdev(bdev);
3595 	fn_table.submit_request = stub_submit_request;
3596 	ut_fini_bdev();
3597 
3598 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3599 
3600 	g_compare_read_buf = NULL;
3601 }
3602 
3603 static void
3604 _bdev_compare_with_md(bool emulated)
3605 {
3606 	struct spdk_bdev *bdev;
3607 	struct spdk_bdev_desc *desc = NULL;
3608 	struct spdk_io_channel *ioch;
3609 	struct ut_expected_io *expected_io;
3610 	uint64_t offset, num_blocks;
3611 	uint32_t num_completed;
3612 	char buf[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3613 	char buf_interleaved_miscompare[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3614 	char buf_miscompare[1024 /* 2 * blocklen */];
3615 	char md_buf[16];
3616 	char md_buf_miscompare[16];
3617 	struct iovec compare_iov;
3618 	uint8_t expected_io_type;
3619 	int rc;
3620 
3621 	if (emulated) {
3622 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3623 	} else {
3624 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3625 	}
3626 
3627 	memset(buf, 0xaa, sizeof(buf));
3628 	memset(buf_interleaved_miscompare, 0xaa, sizeof(buf_interleaved_miscompare));
3629 	/* make last md different */
3630 	memset(buf_interleaved_miscompare + 1024 + 8, 0xbb, 8);
3631 	memset(buf_miscompare, 0xbb, sizeof(buf_miscompare));
3632 	memset(md_buf, 0xaa, 16);
3633 	memset(md_buf_miscompare, 0xbb, 16);
3634 
3635 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3636 
3637 	ut_init_bdev(NULL);
3638 	fn_table.submit_request = stub_submit_request_get_buf;
3639 	bdev = allocate_bdev("bdev");
3640 
3641 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3642 	CU_ASSERT_EQUAL(rc, 0);
3643 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3644 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3645 	ioch = spdk_bdev_get_io_channel(desc);
3646 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3647 
3648 	fn_table.submit_request = stub_submit_request_get_buf;
3649 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3650 
3651 	offset = 50;
3652 	num_blocks = 2;
3653 
3654 	/* interleaved md & data */
3655 	bdev->md_interleave = true;
3656 	bdev->md_len = 8;
3657 	bdev->blocklen = 512 + 8;
3658 	compare_iov.iov_base = buf;
3659 	compare_iov.iov_len = sizeof(buf);
3660 
3661 	/* 1. successful compare with md interleaved */
3662 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3663 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3664 
3665 	g_io_done = false;
3666 	g_compare_read_buf = buf;
3667 	g_compare_read_buf_len = sizeof(buf);
3668 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3669 	CU_ASSERT_EQUAL(rc, 0);
3670 	num_completed = stub_complete_io(1);
3671 	CU_ASSERT_EQUAL(num_completed, 1);
3672 	CU_ASSERT(g_io_done == true);
3673 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3674 
3675 	/* 2. miscompare with md interleaved */
3676 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3677 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3678 
3679 	g_io_done = false;
3680 	g_compare_read_buf = buf_interleaved_miscompare;
3681 	g_compare_read_buf_len = sizeof(buf_interleaved_miscompare);
3682 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3683 	CU_ASSERT_EQUAL(rc, 0);
3684 	num_completed = stub_complete_io(1);
3685 	CU_ASSERT_EQUAL(num_completed, 1);
3686 	CU_ASSERT(g_io_done == true);
3687 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3688 
3689 	/* Separate data & md buffers */
3690 	bdev->md_interleave = false;
3691 	bdev->blocklen = 512;
3692 	compare_iov.iov_base = buf;
3693 	compare_iov.iov_len = 1024;
3694 
3695 	/* 3. successful compare with md separated */
3696 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3697 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3698 
3699 	g_io_done = false;
3700 	g_compare_read_buf = buf;
3701 	g_compare_read_buf_len = 1024;
3702 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3703 	g_compare_md_buf = md_buf;
3704 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3705 					       offset, num_blocks, io_done, NULL);
3706 	CU_ASSERT_EQUAL(rc, 0);
3707 	num_completed = stub_complete_io(1);
3708 	CU_ASSERT_EQUAL(num_completed, 1);
3709 	CU_ASSERT(g_io_done == true);
3710 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3711 
3712 	/* 4. miscompare with md separated where md buf is different */
3713 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3714 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3715 
3716 	g_io_done = false;
3717 	g_compare_read_buf = buf;
3718 	g_compare_read_buf_len = 1024;
3719 	g_compare_md_buf = md_buf_miscompare;
3720 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3721 					       offset, num_blocks, io_done, NULL);
3722 	CU_ASSERT_EQUAL(rc, 0);
3723 	num_completed = stub_complete_io(1);
3724 	CU_ASSERT_EQUAL(num_completed, 1);
3725 	CU_ASSERT(g_io_done == true);
3726 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3727 
3728 	/* 5. miscompare with md separated where buf is different */
3729 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3730 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3731 
3732 	g_io_done = false;
3733 	g_compare_read_buf = buf_miscompare;
3734 	g_compare_read_buf_len = sizeof(buf_miscompare);
3735 	g_compare_md_buf = md_buf;
3736 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3737 					       offset, num_blocks, io_done, NULL);
3738 	CU_ASSERT_EQUAL(rc, 0);
3739 	num_completed = stub_complete_io(1);
3740 	CU_ASSERT_EQUAL(num_completed, 1);
3741 	CU_ASSERT(g_io_done == true);
3742 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3743 
3744 	bdev->md_len = 0;
3745 	g_compare_md_buf = NULL;
3746 
3747 	spdk_put_io_channel(ioch);
3748 	spdk_bdev_close(desc);
3749 	free_bdev(bdev);
3750 	fn_table.submit_request = stub_submit_request;
3751 	ut_fini_bdev();
3752 
3753 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3754 
3755 	g_compare_read_buf = NULL;
3756 }
3757 
3758 static void
3759 bdev_compare(void)
3760 {
3761 	_bdev_compare(false);
3762 	_bdev_compare_with_md(false);
3763 }
3764 
3765 static void
3766 bdev_compare_emulated(void)
3767 {
3768 	_bdev_compare(true);
3769 	_bdev_compare_with_md(true);
3770 }
3771 
3772 static void
3773 bdev_compare_and_write(void)
3774 {
3775 	struct spdk_bdev *bdev;
3776 	struct spdk_bdev_desc *desc = NULL;
3777 	struct spdk_io_channel *ioch;
3778 	struct ut_expected_io *expected_io;
3779 	uint64_t offset, num_blocks;
3780 	uint32_t num_completed;
3781 	char aa_buf[512];
3782 	char bb_buf[512];
3783 	char cc_buf[512];
3784 	char write_buf[512];
3785 	struct iovec compare_iov;
3786 	struct iovec write_iov;
3787 	int rc;
3788 
3789 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3790 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3791 	memset(cc_buf, 0xcc, sizeof(cc_buf));
3792 
3793 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
3794 
3795 	ut_init_bdev(NULL);
3796 	fn_table.submit_request = stub_submit_request_get_buf;
3797 	bdev = allocate_bdev("bdev");
3798 
3799 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3800 	CU_ASSERT_EQUAL(rc, 0);
3801 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3802 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3803 	ioch = spdk_bdev_get_io_channel(desc);
3804 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3805 
3806 	fn_table.submit_request = stub_submit_request_get_buf;
3807 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3808 
3809 	offset = 50;
3810 	num_blocks = 1;
3811 	compare_iov.iov_base = aa_buf;
3812 	compare_iov.iov_len = sizeof(aa_buf);
3813 	write_iov.iov_base = bb_buf;
3814 	write_iov.iov_len = sizeof(bb_buf);
3815 
3816 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3817 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3818 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
3819 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3820 
3821 	g_io_done = false;
3822 	g_compare_read_buf = aa_buf;
3823 	g_compare_read_buf_len = sizeof(aa_buf);
3824 	memset(write_buf, 0, sizeof(write_buf));
3825 	g_compare_write_buf = write_buf;
3826 	g_compare_write_buf_len = sizeof(write_buf);
3827 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3828 			offset, num_blocks, io_done, NULL);
3829 	/* Trigger range locking */
3830 	poll_threads();
3831 	CU_ASSERT_EQUAL(rc, 0);
3832 	num_completed = stub_complete_io(1);
3833 	CU_ASSERT_EQUAL(num_completed, 1);
3834 	CU_ASSERT(g_io_done == false);
3835 	num_completed = stub_complete_io(1);
3836 	/* Trigger range unlocking */
3837 	poll_threads();
3838 	CU_ASSERT_EQUAL(num_completed, 1);
3839 	CU_ASSERT(g_io_done == true);
3840 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3841 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
3842 
3843 	/* Test miscompare */
3844 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3845 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3846 
3847 	g_io_done = false;
3848 	g_compare_read_buf = cc_buf;
3849 	g_compare_read_buf_len = sizeof(cc_buf);
3850 	memset(write_buf, 0, sizeof(write_buf));
3851 	g_compare_write_buf = write_buf;
3852 	g_compare_write_buf_len = sizeof(write_buf);
3853 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3854 			offset, num_blocks, io_done, NULL);
3855 	/* Trigger range locking */
3856 	poll_threads();
3857 	CU_ASSERT_EQUAL(rc, 0);
3858 	num_completed = stub_complete_io(1);
3859 	/* Trigger range unlocking earlier because we expect error here */
3860 	poll_threads();
3861 	CU_ASSERT_EQUAL(num_completed, 1);
3862 	CU_ASSERT(g_io_done == true);
3863 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3864 	num_completed = stub_complete_io(1);
3865 	CU_ASSERT_EQUAL(num_completed, 0);
3866 
3867 	spdk_put_io_channel(ioch);
3868 	spdk_bdev_close(desc);
3869 	free_bdev(bdev);
3870 	fn_table.submit_request = stub_submit_request;
3871 	ut_fini_bdev();
3872 
3873 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3874 
3875 	g_compare_read_buf = NULL;
3876 	g_compare_write_buf = NULL;
3877 }
3878 
3879 static void
3880 bdev_write_zeroes(void)
3881 {
3882 	struct spdk_bdev *bdev;
3883 	struct spdk_bdev_desc *desc = NULL;
3884 	struct spdk_io_channel *ioch;
3885 	struct ut_expected_io *expected_io;
3886 	uint64_t offset, num_io_blocks, num_blocks;
3887 	uint32_t num_completed, num_requests;
3888 	int rc;
3889 
3890 	ut_init_bdev(NULL);
3891 	bdev = allocate_bdev("bdev");
3892 
3893 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3894 	CU_ASSERT_EQUAL(rc, 0);
3895 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3896 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3897 	ioch = spdk_bdev_get_io_channel(desc);
3898 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3899 
3900 	fn_table.submit_request = stub_submit_request;
3901 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3902 
3903 	/* First test that if the bdev supports write_zeroes, the request won't be split */
3904 	bdev->md_len = 0;
3905 	bdev->blocklen = 4096;
3906 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3907 
3908 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
3909 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3910 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3911 	CU_ASSERT_EQUAL(rc, 0);
3912 	num_completed = stub_complete_io(1);
3913 	CU_ASSERT_EQUAL(num_completed, 1);
3914 
3915 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
3916 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
3917 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
3918 	num_requests = 2;
3919 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
3920 
3921 	for (offset = 0; offset < num_requests; ++offset) {
3922 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3923 						   offset * num_io_blocks, num_io_blocks, 0);
3924 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3925 	}
3926 
3927 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3928 	CU_ASSERT_EQUAL(rc, 0);
3929 	num_completed = stub_complete_io(num_requests);
3930 	CU_ASSERT_EQUAL(num_completed, num_requests);
3931 
3932 	/* Check that the splitting is correct if bdev has interleaved metadata */
3933 	bdev->md_interleave = true;
3934 	bdev->md_len = 64;
3935 	bdev->blocklen = 4096 + 64;
3936 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3937 
3938 	num_requests = offset = 0;
3939 	while (offset < num_blocks) {
3940 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
3941 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3942 						   offset, num_io_blocks, 0);
3943 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3944 		offset += num_io_blocks;
3945 		num_requests++;
3946 	}
3947 
3948 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3949 	CU_ASSERT_EQUAL(rc, 0);
3950 	num_completed = stub_complete_io(num_requests);
3951 	CU_ASSERT_EQUAL(num_completed, num_requests);
3952 	num_completed = stub_complete_io(num_requests);
3953 	assert(num_completed == 0);
3954 
3955 	/* Check the the same for separate metadata buffer */
3956 	bdev->md_interleave = false;
3957 	bdev->md_len = 64;
3958 	bdev->blocklen = 4096;
3959 
3960 	num_requests = offset = 0;
3961 	while (offset < num_blocks) {
3962 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
3963 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3964 						   offset, num_io_blocks, 0);
3965 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
3966 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3967 		offset += num_io_blocks;
3968 		num_requests++;
3969 	}
3970 
3971 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3972 	CU_ASSERT_EQUAL(rc, 0);
3973 	num_completed = stub_complete_io(num_requests);
3974 	CU_ASSERT_EQUAL(num_completed, num_requests);
3975 
3976 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
3977 	spdk_put_io_channel(ioch);
3978 	spdk_bdev_close(desc);
3979 	free_bdev(bdev);
3980 	ut_fini_bdev();
3981 }
3982 
3983 static void
3984 bdev_zcopy_write(void)
3985 {
3986 	struct spdk_bdev *bdev;
3987 	struct spdk_bdev_desc *desc = NULL;
3988 	struct spdk_io_channel *ioch;
3989 	struct ut_expected_io *expected_io;
3990 	uint64_t offset, num_blocks;
3991 	uint32_t num_completed;
3992 	char aa_buf[512];
3993 	struct iovec iov;
3994 	int rc;
3995 	const bool populate = false;
3996 	const bool commit = true;
3997 
3998 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3999 
4000 	ut_init_bdev(NULL);
4001 	bdev = allocate_bdev("bdev");
4002 
4003 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4004 	CU_ASSERT_EQUAL(rc, 0);
4005 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4006 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4007 	ioch = spdk_bdev_get_io_channel(desc);
4008 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4009 
4010 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4011 
4012 	offset = 50;
4013 	num_blocks = 1;
4014 	iov.iov_base = NULL;
4015 	iov.iov_len = 0;
4016 
4017 	g_zcopy_read_buf = (void *) 0x1122334455667788UL;
4018 	g_zcopy_read_buf_len = (uint32_t) -1;
4019 	/* Do a zcopy start for a write (populate=false) */
4020 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4021 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4022 	g_io_done = false;
4023 	g_zcopy_write_buf = aa_buf;
4024 	g_zcopy_write_buf_len = sizeof(aa_buf);
4025 	g_zcopy_bdev_io = NULL;
4026 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4027 	CU_ASSERT_EQUAL(rc, 0);
4028 	num_completed = stub_complete_io(1);
4029 	CU_ASSERT_EQUAL(num_completed, 1);
4030 	CU_ASSERT(g_io_done == true);
4031 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4032 	/* Check that the iov has been set up */
4033 	CU_ASSERT(iov.iov_base == g_zcopy_write_buf);
4034 	CU_ASSERT(iov.iov_len == g_zcopy_write_buf_len);
4035 	/* Check that the bdev_io has been saved */
4036 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4037 	/* Now do the zcopy end for a write (commit=true) */
4038 	g_io_done = false;
4039 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4040 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4041 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4042 	CU_ASSERT_EQUAL(rc, 0);
4043 	num_completed = stub_complete_io(1);
4044 	CU_ASSERT_EQUAL(num_completed, 1);
4045 	CU_ASSERT(g_io_done == true);
4046 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4047 	/* Check the g_zcopy are reset by io_done */
4048 	CU_ASSERT(g_zcopy_write_buf == NULL);
4049 	CU_ASSERT(g_zcopy_write_buf_len == 0);
4050 	/* Check that io_done has freed the g_zcopy_bdev_io */
4051 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4052 
4053 	/* Check the zcopy read buffer has not been touched which
4054 	 * ensures that the correct buffers were used.
4055 	 */
4056 	CU_ASSERT(g_zcopy_read_buf == (void *) 0x1122334455667788UL);
4057 	CU_ASSERT(g_zcopy_read_buf_len == (uint32_t) -1);
4058 
4059 	spdk_put_io_channel(ioch);
4060 	spdk_bdev_close(desc);
4061 	free_bdev(bdev);
4062 	ut_fini_bdev();
4063 }
4064 
4065 static void
4066 bdev_zcopy_read(void)
4067 {
4068 	struct spdk_bdev *bdev;
4069 	struct spdk_bdev_desc *desc = NULL;
4070 	struct spdk_io_channel *ioch;
4071 	struct ut_expected_io *expected_io;
4072 	uint64_t offset, num_blocks;
4073 	uint32_t num_completed;
4074 	char aa_buf[512];
4075 	struct iovec iov;
4076 	int rc;
4077 	const bool populate = true;
4078 	const bool commit = false;
4079 
4080 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4081 
4082 	ut_init_bdev(NULL);
4083 	bdev = allocate_bdev("bdev");
4084 
4085 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4086 	CU_ASSERT_EQUAL(rc, 0);
4087 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4088 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4089 	ioch = spdk_bdev_get_io_channel(desc);
4090 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4091 
4092 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4093 
4094 	offset = 50;
4095 	num_blocks = 1;
4096 	iov.iov_base = NULL;
4097 	iov.iov_len = 0;
4098 
4099 	g_zcopy_write_buf = (void *) 0x1122334455667788UL;
4100 	g_zcopy_write_buf_len = (uint32_t) -1;
4101 
4102 	/* Do a zcopy start for a read (populate=true) */
4103 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4104 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4105 	g_io_done = false;
4106 	g_zcopy_read_buf = aa_buf;
4107 	g_zcopy_read_buf_len = sizeof(aa_buf);
4108 	g_zcopy_bdev_io = NULL;
4109 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4110 	CU_ASSERT_EQUAL(rc, 0);
4111 	num_completed = stub_complete_io(1);
4112 	CU_ASSERT_EQUAL(num_completed, 1);
4113 	CU_ASSERT(g_io_done == true);
4114 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4115 	/* Check that the iov has been set up */
4116 	CU_ASSERT(iov.iov_base == g_zcopy_read_buf);
4117 	CU_ASSERT(iov.iov_len == g_zcopy_read_buf_len);
4118 	/* Check that the bdev_io has been saved */
4119 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4120 
4121 	/* Now do the zcopy end for a read (commit=false) */
4122 	g_io_done = false;
4123 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4124 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4125 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4126 	CU_ASSERT_EQUAL(rc, 0);
4127 	num_completed = stub_complete_io(1);
4128 	CU_ASSERT_EQUAL(num_completed, 1);
4129 	CU_ASSERT(g_io_done == true);
4130 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4131 	/* Check the g_zcopy are reset by io_done */
4132 	CU_ASSERT(g_zcopy_read_buf == NULL);
4133 	CU_ASSERT(g_zcopy_read_buf_len == 0);
4134 	/* Check that io_done has freed the g_zcopy_bdev_io */
4135 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4136 
4137 	/* Check the zcopy write buffer has not been touched which
4138 	 * ensures that the correct buffers were used.
4139 	 */
4140 	CU_ASSERT(g_zcopy_write_buf == (void *) 0x1122334455667788UL);
4141 	CU_ASSERT(g_zcopy_write_buf_len == (uint32_t) -1);
4142 
4143 	spdk_put_io_channel(ioch);
4144 	spdk_bdev_close(desc);
4145 	free_bdev(bdev);
4146 	ut_fini_bdev();
4147 }
4148 
4149 static void
4150 bdev_open_while_hotremove(void)
4151 {
4152 	struct spdk_bdev *bdev;
4153 	struct spdk_bdev_desc *desc[2] = {};
4154 	int rc;
4155 
4156 	bdev = allocate_bdev("bdev");
4157 
4158 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
4159 	CU_ASSERT(rc == 0);
4160 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
4161 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
4162 
4163 	spdk_bdev_unregister(bdev, NULL, NULL);
4164 	/* Bdev unregister is handled asynchronously. Poll thread to complete. */
4165 	poll_threads();
4166 
4167 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
4168 	CU_ASSERT(rc == -ENODEV);
4169 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
4170 
4171 	spdk_bdev_close(desc[0]);
4172 	free_bdev(bdev);
4173 }
4174 
4175 static void
4176 bdev_close_while_hotremove(void)
4177 {
4178 	struct spdk_bdev *bdev;
4179 	struct spdk_bdev_desc *desc = NULL;
4180 	int rc = 0;
4181 
4182 	bdev = allocate_bdev("bdev");
4183 
4184 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
4185 	CU_ASSERT_EQUAL(rc, 0);
4186 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4187 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4188 
4189 	/* Simulate hot-unplug by unregistering bdev */
4190 	g_event_type1 = 0xFF;
4191 	g_unregister_arg = NULL;
4192 	g_unregister_rc = -1;
4193 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4194 	/* Close device while remove event is in flight */
4195 	spdk_bdev_close(desc);
4196 
4197 	/* Ensure that unregister callback is delayed */
4198 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
4199 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
4200 
4201 	poll_threads();
4202 
4203 	/* Event callback shall not be issued because device was closed */
4204 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
4205 	/* Unregister callback is issued */
4206 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
4207 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
4208 
4209 	free_bdev(bdev);
4210 }
4211 
4212 static void
4213 bdev_open_ext(void)
4214 {
4215 	struct spdk_bdev *bdev;
4216 	struct spdk_bdev_desc *desc1 = NULL;
4217 	struct spdk_bdev_desc *desc2 = NULL;
4218 	int rc = 0;
4219 
4220 	bdev = allocate_bdev("bdev");
4221 
4222 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4223 	CU_ASSERT_EQUAL(rc, -EINVAL);
4224 
4225 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4226 	CU_ASSERT_EQUAL(rc, 0);
4227 
4228 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4229 	CU_ASSERT_EQUAL(rc, 0);
4230 
4231 	g_event_type1 = 0xFF;
4232 	g_event_type2 = 0xFF;
4233 
4234 	/* Simulate hot-unplug by unregistering bdev */
4235 	spdk_bdev_unregister(bdev, NULL, NULL);
4236 	poll_threads();
4237 
4238 	/* Check if correct events have been triggered in event callback fn */
4239 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4240 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4241 
4242 	free_bdev(bdev);
4243 	poll_threads();
4244 }
4245 
4246 static void
4247 bdev_open_ext_unregister(void)
4248 {
4249 	struct spdk_bdev *bdev;
4250 	struct spdk_bdev_desc *desc1 = NULL;
4251 	struct spdk_bdev_desc *desc2 = NULL;
4252 	struct spdk_bdev_desc *desc3 = NULL;
4253 	struct spdk_bdev_desc *desc4 = NULL;
4254 	int rc = 0;
4255 
4256 	bdev = allocate_bdev("bdev");
4257 
4258 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4259 	CU_ASSERT_EQUAL(rc, -EINVAL);
4260 
4261 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4262 	CU_ASSERT_EQUAL(rc, 0);
4263 
4264 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4265 	CU_ASSERT_EQUAL(rc, 0);
4266 
4267 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb3, &desc3, &desc3);
4268 	CU_ASSERT_EQUAL(rc, 0);
4269 
4270 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb4, &desc4, &desc4);
4271 	CU_ASSERT_EQUAL(rc, 0);
4272 
4273 	g_event_type1 = 0xFF;
4274 	g_event_type2 = 0xFF;
4275 	g_event_type3 = 0xFF;
4276 	g_event_type4 = 0xFF;
4277 
4278 	g_unregister_arg = NULL;
4279 	g_unregister_rc = -1;
4280 
4281 	/* Simulate hot-unplug by unregistering bdev */
4282 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4283 
4284 	/*
4285 	 * Unregister is handled asynchronously and event callback
4286 	 * (i.e., above bdev_open_cbN) will be called.
4287 	 * For bdev_open_cb3 and bdev_open_cb4, it is intended to not
4288 	 * close the desc3 and desc4 so that the bdev is not closed.
4289 	 */
4290 	poll_threads();
4291 
4292 	/* Check if correct events have been triggered in event callback fn */
4293 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4294 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4295 	CU_ASSERT_EQUAL(g_event_type3, SPDK_BDEV_EVENT_REMOVE);
4296 	CU_ASSERT_EQUAL(g_event_type4, SPDK_BDEV_EVENT_REMOVE);
4297 
4298 	/* Check that unregister callback is delayed */
4299 	CU_ASSERT(g_unregister_arg == NULL);
4300 	CU_ASSERT(g_unregister_rc == -1);
4301 
4302 	/*
4303 	 * Explicitly close desc3. As desc4 is still opened there, the
4304 	 * unergister callback is still delayed to execute.
4305 	 */
4306 	spdk_bdev_close(desc3);
4307 	CU_ASSERT(g_unregister_arg == NULL);
4308 	CU_ASSERT(g_unregister_rc == -1);
4309 
4310 	/*
4311 	 * Explicitly close desc4 to trigger the ongoing bdev unregister
4312 	 * operation after last desc is closed.
4313 	 */
4314 	spdk_bdev_close(desc4);
4315 
4316 	/* Poll the thread for the async unregister operation */
4317 	poll_threads();
4318 
4319 	/* Check that unregister callback is executed */
4320 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
4321 	CU_ASSERT(g_unregister_rc == 0);
4322 
4323 	free_bdev(bdev);
4324 	poll_threads();
4325 }
4326 
4327 struct timeout_io_cb_arg {
4328 	struct iovec iov;
4329 	uint8_t type;
4330 };
4331 
4332 static int
4333 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
4334 {
4335 	struct spdk_bdev_io *bdev_io;
4336 	int n = 0;
4337 
4338 	if (!ch) {
4339 		return -1;
4340 	}
4341 
4342 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
4343 		n++;
4344 	}
4345 
4346 	return n;
4347 }
4348 
4349 static void
4350 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
4351 {
4352 	struct timeout_io_cb_arg *ctx = cb_arg;
4353 
4354 	ctx->type = bdev_io->type;
4355 	ctx->iov.iov_base = bdev_io->iov.iov_base;
4356 	ctx->iov.iov_len = bdev_io->iov.iov_len;
4357 }
4358 
4359 static void
4360 bdev_set_io_timeout(void)
4361 {
4362 	struct spdk_bdev *bdev;
4363 	struct spdk_bdev_desc *desc = NULL;
4364 	struct spdk_io_channel *io_ch = NULL;
4365 	struct spdk_bdev_channel *bdev_ch = NULL;
4366 	struct timeout_io_cb_arg cb_arg;
4367 
4368 	ut_init_bdev(NULL);
4369 	bdev = allocate_bdev("bdev");
4370 
4371 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4372 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4373 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4374 
4375 	io_ch = spdk_bdev_get_io_channel(desc);
4376 	CU_ASSERT(io_ch != NULL);
4377 
4378 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4379 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4380 
4381 	/* This is the part1.
4382 	 * We will check the bdev_ch->io_submitted list
4383 	 * TO make sure that it can link IOs and only the user submitted IOs
4384 	 */
4385 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4386 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4387 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4388 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4389 	stub_complete_io(1);
4390 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4391 	stub_complete_io(1);
4392 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4393 
4394 	/* Split IO */
4395 	bdev->optimal_io_boundary = 16;
4396 	bdev->split_on_optimal_io_boundary = true;
4397 
4398 	/* Now test that a single-vector command is split correctly.
4399 	 * Offset 14, length 8, payload 0xF000
4400 	 *  Child - Offset 14, length 2, payload 0xF000
4401 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4402 	 *
4403 	 * Set up the expected values before calling spdk_bdev_read_blocks
4404 	 */
4405 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4406 	/* We count all submitted IOs including IO that are generated by splitting. */
4407 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
4408 	stub_complete_io(1);
4409 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4410 	stub_complete_io(1);
4411 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4412 
4413 	/* Also include the reset IO */
4414 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4415 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4416 	poll_threads();
4417 	stub_complete_io(1);
4418 	poll_threads();
4419 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4420 
4421 	/* This is part2
4422 	 * Test the desc timeout poller register
4423 	 */
4424 
4425 	/* Successfully set the timeout */
4426 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4427 	CU_ASSERT(desc->io_timeout_poller != NULL);
4428 	CU_ASSERT(desc->timeout_in_sec == 30);
4429 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4430 	CU_ASSERT(desc->cb_arg == &cb_arg);
4431 
4432 	/* Change the timeout limit */
4433 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4434 	CU_ASSERT(desc->io_timeout_poller != NULL);
4435 	CU_ASSERT(desc->timeout_in_sec == 20);
4436 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4437 	CU_ASSERT(desc->cb_arg == &cb_arg);
4438 
4439 	/* Disable the timeout */
4440 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
4441 	CU_ASSERT(desc->io_timeout_poller == NULL);
4442 
4443 	/* This the part3
4444 	 * We will test to catch timeout IO and check whether the IO is
4445 	 * the submitted one.
4446 	 */
4447 	memset(&cb_arg, 0, sizeof(cb_arg));
4448 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4449 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
4450 
4451 	/* Don't reach the limit */
4452 	spdk_delay_us(15 * spdk_get_ticks_hz());
4453 	poll_threads();
4454 	CU_ASSERT(cb_arg.type == 0);
4455 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4456 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4457 
4458 	/* 15 + 15 = 30 reach the limit */
4459 	spdk_delay_us(15 * spdk_get_ticks_hz());
4460 	poll_threads();
4461 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4462 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
4463 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
4464 	stub_complete_io(1);
4465 
4466 	/* Use the same split IO above and check the IO */
4467 	memset(&cb_arg, 0, sizeof(cb_arg));
4468 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4469 
4470 	/* The first child complete in time */
4471 	spdk_delay_us(15 * spdk_get_ticks_hz());
4472 	poll_threads();
4473 	stub_complete_io(1);
4474 	CU_ASSERT(cb_arg.type == 0);
4475 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4476 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4477 
4478 	/* The second child reach the limit */
4479 	spdk_delay_us(15 * spdk_get_ticks_hz());
4480 	poll_threads();
4481 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4482 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
4483 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
4484 	stub_complete_io(1);
4485 
4486 	/* Also include the reset IO */
4487 	memset(&cb_arg, 0, sizeof(cb_arg));
4488 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4489 	spdk_delay_us(30 * spdk_get_ticks_hz());
4490 	poll_threads();
4491 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
4492 	stub_complete_io(1);
4493 	poll_threads();
4494 
4495 	spdk_put_io_channel(io_ch);
4496 	spdk_bdev_close(desc);
4497 	free_bdev(bdev);
4498 	ut_fini_bdev();
4499 }
4500 
4501 static void
4502 bdev_set_qd_sampling(void)
4503 {
4504 	struct spdk_bdev *bdev;
4505 	struct spdk_bdev_desc *desc = NULL;
4506 	struct spdk_io_channel *io_ch = NULL;
4507 	struct spdk_bdev_channel *bdev_ch = NULL;
4508 	struct timeout_io_cb_arg cb_arg;
4509 
4510 	ut_init_bdev(NULL);
4511 	bdev = allocate_bdev("bdev");
4512 
4513 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4514 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4515 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4516 
4517 	io_ch = spdk_bdev_get_io_channel(desc);
4518 	CU_ASSERT(io_ch != NULL);
4519 
4520 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4521 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4522 
4523 	/* This is the part1.
4524 	 * We will check the bdev_ch->io_submitted list
4525 	 * TO make sure that it can link IOs and only the user submitted IOs
4526 	 */
4527 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4528 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4529 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4530 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4531 	stub_complete_io(1);
4532 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4533 	stub_complete_io(1);
4534 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4535 
4536 	/* This is the part2.
4537 	 * Test the bdev's qd poller register
4538 	 */
4539 	/* 1st Successfully set the qd sampling period */
4540 	spdk_bdev_set_qd_sampling_period(bdev, 10);
4541 	CU_ASSERT(bdev->internal.new_period == 10);
4542 	CU_ASSERT(bdev->internal.period == 10);
4543 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4544 	poll_threads();
4545 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4546 
4547 	/* 2nd Change the qd sampling period */
4548 	spdk_bdev_set_qd_sampling_period(bdev, 20);
4549 	CU_ASSERT(bdev->internal.new_period == 20);
4550 	CU_ASSERT(bdev->internal.period == 10);
4551 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4552 	poll_threads();
4553 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4554 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4555 
4556 	/* 3rd Change the qd sampling period and verify qd_poll_in_progress */
4557 	spdk_delay_us(20);
4558 	poll_thread_times(0, 1);
4559 	CU_ASSERT(bdev->internal.qd_poll_in_progress == true);
4560 	spdk_bdev_set_qd_sampling_period(bdev, 30);
4561 	CU_ASSERT(bdev->internal.new_period == 30);
4562 	CU_ASSERT(bdev->internal.period == 20);
4563 	poll_threads();
4564 	CU_ASSERT(bdev->internal.qd_poll_in_progress == false);
4565 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4566 
4567 	/* 4th Disable the qd sampling period */
4568 	spdk_bdev_set_qd_sampling_period(bdev, 0);
4569 	CU_ASSERT(bdev->internal.new_period == 0);
4570 	CU_ASSERT(bdev->internal.period == 30);
4571 	poll_threads();
4572 	CU_ASSERT(bdev->internal.qd_poller == NULL);
4573 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4574 	CU_ASSERT(bdev->internal.qd_desc == NULL);
4575 
4576 	/* This is the part3.
4577 	 * We will test the submitted IO and reset works
4578 	 * properly with the qd sampling.
4579 	 */
4580 	memset(&cb_arg, 0, sizeof(cb_arg));
4581 	spdk_bdev_set_qd_sampling_period(bdev, 1);
4582 	poll_threads();
4583 
4584 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4585 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4586 
4587 	/* Also include the reset IO */
4588 	memset(&cb_arg, 0, sizeof(cb_arg));
4589 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4590 	poll_threads();
4591 
4592 	/* Close the desc */
4593 	spdk_put_io_channel(io_ch);
4594 	spdk_bdev_close(desc);
4595 
4596 	/* Complete the submitted IO and reset */
4597 	stub_complete_io(2);
4598 	poll_threads();
4599 
4600 	free_bdev(bdev);
4601 	ut_fini_bdev();
4602 }
4603 
4604 static void
4605 lba_range_overlap(void)
4606 {
4607 	struct lba_range r1, r2;
4608 
4609 	r1.offset = 100;
4610 	r1.length = 50;
4611 
4612 	r2.offset = 0;
4613 	r2.length = 1;
4614 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4615 
4616 	r2.offset = 0;
4617 	r2.length = 100;
4618 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4619 
4620 	r2.offset = 0;
4621 	r2.length = 110;
4622 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4623 
4624 	r2.offset = 100;
4625 	r2.length = 10;
4626 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4627 
4628 	r2.offset = 110;
4629 	r2.length = 20;
4630 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4631 
4632 	r2.offset = 140;
4633 	r2.length = 150;
4634 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4635 
4636 	r2.offset = 130;
4637 	r2.length = 200;
4638 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4639 
4640 	r2.offset = 150;
4641 	r2.length = 100;
4642 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4643 
4644 	r2.offset = 110;
4645 	r2.length = 0;
4646 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4647 }
4648 
4649 static bool g_lock_lba_range_done;
4650 static bool g_unlock_lba_range_done;
4651 
4652 static void
4653 lock_lba_range_done(void *ctx, int status)
4654 {
4655 	g_lock_lba_range_done = true;
4656 }
4657 
4658 static void
4659 unlock_lba_range_done(void *ctx, int status)
4660 {
4661 	g_unlock_lba_range_done = true;
4662 }
4663 
4664 static void
4665 lock_lba_range_check_ranges(void)
4666 {
4667 	struct spdk_bdev *bdev;
4668 	struct spdk_bdev_desc *desc = NULL;
4669 	struct spdk_io_channel *io_ch;
4670 	struct spdk_bdev_channel *channel;
4671 	struct lba_range *range;
4672 	int ctx1;
4673 	int rc;
4674 
4675 	ut_init_bdev(NULL);
4676 	bdev = allocate_bdev("bdev0");
4677 
4678 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4679 	CU_ASSERT(rc == 0);
4680 	CU_ASSERT(desc != NULL);
4681 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4682 	io_ch = spdk_bdev_get_io_channel(desc);
4683 	CU_ASSERT(io_ch != NULL);
4684 	channel = spdk_io_channel_get_ctx(io_ch);
4685 
4686 	g_lock_lba_range_done = false;
4687 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4688 	CU_ASSERT(rc == 0);
4689 	poll_threads();
4690 
4691 	CU_ASSERT(g_lock_lba_range_done == true);
4692 	range = TAILQ_FIRST(&channel->locked_ranges);
4693 	SPDK_CU_ASSERT_FATAL(range != NULL);
4694 	CU_ASSERT(range->offset == 20);
4695 	CU_ASSERT(range->length == 10);
4696 	CU_ASSERT(range->owner_ch == channel);
4697 
4698 	/* Unlocks must exactly match a lock. */
4699 	g_unlock_lba_range_done = false;
4700 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
4701 	CU_ASSERT(rc == -EINVAL);
4702 	CU_ASSERT(g_unlock_lba_range_done == false);
4703 
4704 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4705 	CU_ASSERT(rc == 0);
4706 	spdk_delay_us(100);
4707 	poll_threads();
4708 
4709 	CU_ASSERT(g_unlock_lba_range_done == true);
4710 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4711 
4712 	spdk_put_io_channel(io_ch);
4713 	spdk_bdev_close(desc);
4714 	free_bdev(bdev);
4715 	ut_fini_bdev();
4716 }
4717 
4718 static void
4719 lock_lba_range_with_io_outstanding(void)
4720 {
4721 	struct spdk_bdev *bdev;
4722 	struct spdk_bdev_desc *desc = NULL;
4723 	struct spdk_io_channel *io_ch;
4724 	struct spdk_bdev_channel *channel;
4725 	struct lba_range *range;
4726 	char buf[4096];
4727 	int ctx1;
4728 	int rc;
4729 
4730 	ut_init_bdev(NULL);
4731 	bdev = allocate_bdev("bdev0");
4732 
4733 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4734 	CU_ASSERT(rc == 0);
4735 	CU_ASSERT(desc != NULL);
4736 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4737 	io_ch = spdk_bdev_get_io_channel(desc);
4738 	CU_ASSERT(io_ch != NULL);
4739 	channel = spdk_io_channel_get_ctx(io_ch);
4740 
4741 	g_io_done = false;
4742 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4743 	CU_ASSERT(rc == 0);
4744 
4745 	g_lock_lba_range_done = false;
4746 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4747 	CU_ASSERT(rc == 0);
4748 	poll_threads();
4749 
4750 	/* The lock should immediately become valid, since there are no outstanding
4751 	 * write I/O.
4752 	 */
4753 	CU_ASSERT(g_io_done == false);
4754 	CU_ASSERT(g_lock_lba_range_done == true);
4755 	range = TAILQ_FIRST(&channel->locked_ranges);
4756 	SPDK_CU_ASSERT_FATAL(range != NULL);
4757 	CU_ASSERT(range->offset == 20);
4758 	CU_ASSERT(range->length == 10);
4759 	CU_ASSERT(range->owner_ch == channel);
4760 	CU_ASSERT(range->locked_ctx == &ctx1);
4761 
4762 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4763 	CU_ASSERT(rc == 0);
4764 	stub_complete_io(1);
4765 	spdk_delay_us(100);
4766 	poll_threads();
4767 
4768 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4769 
4770 	/* Now try again, but with a write I/O. */
4771 	g_io_done = false;
4772 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4773 	CU_ASSERT(rc == 0);
4774 
4775 	g_lock_lba_range_done = false;
4776 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4777 	CU_ASSERT(rc == 0);
4778 	poll_threads();
4779 
4780 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
4781 	 * But note that the range should be on the channel's locked_list, to make sure no
4782 	 * new write I/O are started.
4783 	 */
4784 	CU_ASSERT(g_io_done == false);
4785 	CU_ASSERT(g_lock_lba_range_done == false);
4786 	range = TAILQ_FIRST(&channel->locked_ranges);
4787 	SPDK_CU_ASSERT_FATAL(range != NULL);
4788 	CU_ASSERT(range->offset == 20);
4789 	CU_ASSERT(range->length == 10);
4790 
4791 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
4792 	 * our callback was invoked).
4793 	 */
4794 	stub_complete_io(1);
4795 	spdk_delay_us(100);
4796 	poll_threads();
4797 	CU_ASSERT(g_io_done == true);
4798 	CU_ASSERT(g_lock_lba_range_done == true);
4799 
4800 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4801 	CU_ASSERT(rc == 0);
4802 	poll_threads();
4803 
4804 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4805 
4806 	spdk_put_io_channel(io_ch);
4807 	spdk_bdev_close(desc);
4808 	free_bdev(bdev);
4809 	ut_fini_bdev();
4810 }
4811 
4812 static void
4813 lock_lba_range_overlapped(void)
4814 {
4815 	struct spdk_bdev *bdev;
4816 	struct spdk_bdev_desc *desc = NULL;
4817 	struct spdk_io_channel *io_ch;
4818 	struct spdk_bdev_channel *channel;
4819 	struct lba_range *range;
4820 	int ctx1;
4821 	int rc;
4822 
4823 	ut_init_bdev(NULL);
4824 	bdev = allocate_bdev("bdev0");
4825 
4826 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4827 	CU_ASSERT(rc == 0);
4828 	CU_ASSERT(desc != NULL);
4829 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4830 	io_ch = spdk_bdev_get_io_channel(desc);
4831 	CU_ASSERT(io_ch != NULL);
4832 	channel = spdk_io_channel_get_ctx(io_ch);
4833 
4834 	/* Lock range 20-29. */
4835 	g_lock_lba_range_done = false;
4836 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4837 	CU_ASSERT(rc == 0);
4838 	poll_threads();
4839 
4840 	CU_ASSERT(g_lock_lba_range_done == true);
4841 	range = TAILQ_FIRST(&channel->locked_ranges);
4842 	SPDK_CU_ASSERT_FATAL(range != NULL);
4843 	CU_ASSERT(range->offset == 20);
4844 	CU_ASSERT(range->length == 10);
4845 
4846 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
4847 	 * 20-29.
4848 	 */
4849 	g_lock_lba_range_done = false;
4850 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
4851 	CU_ASSERT(rc == 0);
4852 	poll_threads();
4853 
4854 	CU_ASSERT(g_lock_lba_range_done == false);
4855 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4856 	SPDK_CU_ASSERT_FATAL(range != NULL);
4857 	CU_ASSERT(range->offset == 25);
4858 	CU_ASSERT(range->length == 15);
4859 
4860 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
4861 	 * no longer overlaps with an active lock.
4862 	 */
4863 	g_unlock_lba_range_done = false;
4864 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4865 	CU_ASSERT(rc == 0);
4866 	poll_threads();
4867 
4868 	CU_ASSERT(g_unlock_lba_range_done == true);
4869 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4870 	range = TAILQ_FIRST(&channel->locked_ranges);
4871 	SPDK_CU_ASSERT_FATAL(range != NULL);
4872 	CU_ASSERT(range->offset == 25);
4873 	CU_ASSERT(range->length == 15);
4874 
4875 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
4876 	 * currently active 25-39 lock.
4877 	 */
4878 	g_lock_lba_range_done = false;
4879 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
4880 	CU_ASSERT(rc == 0);
4881 	poll_threads();
4882 
4883 	CU_ASSERT(g_lock_lba_range_done == true);
4884 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4885 	SPDK_CU_ASSERT_FATAL(range != NULL);
4886 	range = TAILQ_NEXT(range, tailq);
4887 	SPDK_CU_ASSERT_FATAL(range != NULL);
4888 	CU_ASSERT(range->offset == 40);
4889 	CU_ASSERT(range->length == 20);
4890 
4891 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
4892 	g_lock_lba_range_done = false;
4893 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
4894 	CU_ASSERT(rc == 0);
4895 	poll_threads();
4896 
4897 	CU_ASSERT(g_lock_lba_range_done == false);
4898 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4899 	SPDK_CU_ASSERT_FATAL(range != NULL);
4900 	CU_ASSERT(range->offset == 35);
4901 	CU_ASSERT(range->length == 10);
4902 
4903 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
4904 	 * the 40-59 lock is still active.
4905 	 */
4906 	g_unlock_lba_range_done = false;
4907 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
4908 	CU_ASSERT(rc == 0);
4909 	poll_threads();
4910 
4911 	CU_ASSERT(g_unlock_lba_range_done == true);
4912 	CU_ASSERT(g_lock_lba_range_done == false);
4913 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4914 	SPDK_CU_ASSERT_FATAL(range != NULL);
4915 	CU_ASSERT(range->offset == 35);
4916 	CU_ASSERT(range->length == 10);
4917 
4918 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
4919 	 * no longer any active overlapping locks.
4920 	 */
4921 	g_unlock_lba_range_done = false;
4922 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
4923 	CU_ASSERT(rc == 0);
4924 	poll_threads();
4925 
4926 	CU_ASSERT(g_unlock_lba_range_done == true);
4927 	CU_ASSERT(g_lock_lba_range_done == true);
4928 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4929 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4930 	SPDK_CU_ASSERT_FATAL(range != NULL);
4931 	CU_ASSERT(range->offset == 35);
4932 	CU_ASSERT(range->length == 10);
4933 
4934 	/* Finally, unlock 35-44. */
4935 	g_unlock_lba_range_done = false;
4936 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
4937 	CU_ASSERT(rc == 0);
4938 	poll_threads();
4939 
4940 	CU_ASSERT(g_unlock_lba_range_done == true);
4941 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
4942 
4943 	spdk_put_io_channel(io_ch);
4944 	spdk_bdev_close(desc);
4945 	free_bdev(bdev);
4946 	ut_fini_bdev();
4947 }
4948 
4949 static void
4950 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
4951 {
4952 	g_abort_done = true;
4953 	g_abort_status = bdev_io->internal.status;
4954 	spdk_bdev_free_io(bdev_io);
4955 }
4956 
4957 static void
4958 bdev_io_abort(void)
4959 {
4960 	struct spdk_bdev *bdev;
4961 	struct spdk_bdev_desc *desc = NULL;
4962 	struct spdk_io_channel *io_ch;
4963 	struct spdk_bdev_channel *channel;
4964 	struct spdk_bdev_mgmt_channel *mgmt_ch;
4965 	struct spdk_bdev_opts bdev_opts = {};
4966 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
4967 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
4968 	int rc;
4969 
4970 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4971 	bdev_opts.bdev_io_pool_size = 7;
4972 	bdev_opts.bdev_io_cache_size = 2;
4973 	ut_init_bdev(&bdev_opts);
4974 
4975 	bdev = allocate_bdev("bdev0");
4976 
4977 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4978 	CU_ASSERT(rc == 0);
4979 	CU_ASSERT(desc != NULL);
4980 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4981 	io_ch = spdk_bdev_get_io_channel(desc);
4982 	CU_ASSERT(io_ch != NULL);
4983 	channel = spdk_io_channel_get_ctx(io_ch);
4984 	mgmt_ch = channel->shared_resource->mgmt_ch;
4985 
4986 	g_abort_done = false;
4987 
4988 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
4989 
4990 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4991 	CU_ASSERT(rc == -ENOTSUP);
4992 
4993 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
4994 
4995 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
4996 	CU_ASSERT(rc == 0);
4997 	CU_ASSERT(g_abort_done == true);
4998 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
4999 
5000 	/* Test the case that the target I/O was successfully aborted. */
5001 	g_io_done = false;
5002 
5003 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5004 	CU_ASSERT(rc == 0);
5005 	CU_ASSERT(g_io_done == false);
5006 
5007 	g_abort_done = false;
5008 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5009 
5010 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5011 	CU_ASSERT(rc == 0);
5012 	CU_ASSERT(g_io_done == true);
5013 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5014 	stub_complete_io(1);
5015 	CU_ASSERT(g_abort_done == true);
5016 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5017 
5018 	/* Test the case that the target I/O was not aborted because it completed
5019 	 * in the middle of execution of the abort.
5020 	 */
5021 	g_io_done = false;
5022 
5023 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5024 	CU_ASSERT(rc == 0);
5025 	CU_ASSERT(g_io_done == false);
5026 
5027 	g_abort_done = false;
5028 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5029 
5030 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5031 	CU_ASSERT(rc == 0);
5032 	CU_ASSERT(g_io_done == false);
5033 
5034 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5035 	stub_complete_io(1);
5036 	CU_ASSERT(g_io_done == true);
5037 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5038 
5039 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5040 	stub_complete_io(1);
5041 	CU_ASSERT(g_abort_done == true);
5042 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5043 
5044 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5045 
5046 	bdev->optimal_io_boundary = 16;
5047 	bdev->split_on_optimal_io_boundary = true;
5048 
5049 	/* Test that a single-vector command which is split is aborted correctly.
5050 	 * Offset 14, length 8, payload 0xF000
5051 	 *  Child - Offset 14, length 2, payload 0xF000
5052 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5053 	 */
5054 	g_io_done = false;
5055 
5056 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
5057 	CU_ASSERT(rc == 0);
5058 	CU_ASSERT(g_io_done == false);
5059 
5060 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5061 
5062 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5063 
5064 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5065 	CU_ASSERT(rc == 0);
5066 	CU_ASSERT(g_io_done == true);
5067 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5068 	stub_complete_io(2);
5069 	CU_ASSERT(g_abort_done == true);
5070 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5071 
5072 	/* Test that a multi-vector command that needs to be split by strip and then
5073 	 * needs to be split is aborted correctly. Abort is requested before the second
5074 	 * child I/O was submitted. The parent I/O should complete with failure without
5075 	 * submitting the second child I/O.
5076 	 */
5077 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
5078 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
5079 		iov[i].iov_len = 512;
5080 	}
5081 
5082 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
5083 	g_io_done = false;
5084 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
5085 				    SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
5086 	CU_ASSERT(rc == 0);
5087 	CU_ASSERT(g_io_done == false);
5088 
5089 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5090 
5091 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5092 
5093 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5094 	CU_ASSERT(rc == 0);
5095 	CU_ASSERT(g_io_done == true);
5096 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5097 	stub_complete_io(1);
5098 	CU_ASSERT(g_abort_done == true);
5099 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5100 
5101 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5102 
5103 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5104 
5105 	bdev->optimal_io_boundary = 16;
5106 	g_io_done = false;
5107 
5108 	/* Test that a ingle-vector command which is split is aborted correctly.
5109 	 * Differently from the above, the child abort request will be submitted
5110 	 * sequentially due to the capacity of spdk_bdev_io.
5111 	 */
5112 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
5113 	CU_ASSERT(rc == 0);
5114 	CU_ASSERT(g_io_done == false);
5115 
5116 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5117 
5118 	g_abort_done = false;
5119 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5120 
5121 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5122 	CU_ASSERT(rc == 0);
5123 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
5124 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5125 
5126 	stub_complete_io(1);
5127 	CU_ASSERT(g_io_done == true);
5128 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5129 	stub_complete_io(3);
5130 	CU_ASSERT(g_abort_done == true);
5131 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5132 
5133 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5134 
5135 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5136 
5137 	spdk_put_io_channel(io_ch);
5138 	spdk_bdev_close(desc);
5139 	free_bdev(bdev);
5140 	ut_fini_bdev();
5141 }
5142 
5143 static void
5144 bdev_unmap(void)
5145 {
5146 	struct spdk_bdev *bdev;
5147 	struct spdk_bdev_desc *desc = NULL;
5148 	struct spdk_io_channel *ioch;
5149 	struct spdk_bdev_channel *bdev_ch;
5150 	struct ut_expected_io *expected_io;
5151 	struct spdk_bdev_opts bdev_opts = {};
5152 	uint32_t i, num_outstanding;
5153 	uint64_t offset, num_blocks, max_unmap_blocks, num_children;
5154 	int rc;
5155 
5156 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5157 	bdev_opts.bdev_io_pool_size = 512;
5158 	bdev_opts.bdev_io_cache_size = 64;
5159 	ut_init_bdev(&bdev_opts);
5160 
5161 	bdev = allocate_bdev("bdev");
5162 
5163 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5164 	CU_ASSERT_EQUAL(rc, 0);
5165 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5166 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5167 	ioch = spdk_bdev_get_io_channel(desc);
5168 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5169 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5170 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5171 
5172 	fn_table.submit_request = stub_submit_request;
5173 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5174 
5175 	/* Case 1: First test the request won't be split */
5176 	num_blocks = 32;
5177 
5178 	g_io_done = false;
5179 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 0, num_blocks, 0);
5180 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5181 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5182 	CU_ASSERT_EQUAL(rc, 0);
5183 	CU_ASSERT(g_io_done == false);
5184 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5185 	stub_complete_io(1);
5186 	CU_ASSERT(g_io_done == true);
5187 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5188 
5189 	/* Case 2: Test the split with 2 children requests */
5190 	bdev->max_unmap = 8;
5191 	bdev->max_unmap_segments = 2;
5192 	max_unmap_blocks = bdev->max_unmap * bdev->max_unmap_segments;
5193 	num_blocks = max_unmap_blocks * 2;
5194 	offset = 0;
5195 
5196 	g_io_done = false;
5197 	for (i = 0; i < 2; i++) {
5198 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5199 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5200 		offset += max_unmap_blocks;
5201 	}
5202 
5203 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5204 	CU_ASSERT_EQUAL(rc, 0);
5205 	CU_ASSERT(g_io_done == false);
5206 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5207 	stub_complete_io(2);
5208 	CU_ASSERT(g_io_done == true);
5209 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5210 
5211 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5212 	num_children = 15;
5213 	num_blocks = max_unmap_blocks * num_children;
5214 	g_io_done = false;
5215 	offset = 0;
5216 	for (i = 0; i < num_children; i++) {
5217 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5218 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5219 		offset += max_unmap_blocks;
5220 	}
5221 
5222 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5223 	CU_ASSERT_EQUAL(rc, 0);
5224 	CU_ASSERT(g_io_done == false);
5225 
5226 	while (num_children > 0) {
5227 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5228 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5229 		stub_complete_io(num_outstanding);
5230 		num_children -= num_outstanding;
5231 	}
5232 	CU_ASSERT(g_io_done == true);
5233 
5234 	spdk_put_io_channel(ioch);
5235 	spdk_bdev_close(desc);
5236 	free_bdev(bdev);
5237 	ut_fini_bdev();
5238 }
5239 
5240 static void
5241 bdev_write_zeroes_split_test(void)
5242 {
5243 	struct spdk_bdev *bdev;
5244 	struct spdk_bdev_desc *desc = NULL;
5245 	struct spdk_io_channel *ioch;
5246 	struct spdk_bdev_channel *bdev_ch;
5247 	struct ut_expected_io *expected_io;
5248 	struct spdk_bdev_opts bdev_opts = {};
5249 	uint32_t i, num_outstanding;
5250 	uint64_t offset, num_blocks, max_write_zeroes_blocks, num_children;
5251 	int rc;
5252 
5253 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5254 	bdev_opts.bdev_io_pool_size = 512;
5255 	bdev_opts.bdev_io_cache_size = 64;
5256 	ut_init_bdev(&bdev_opts);
5257 
5258 	bdev = allocate_bdev("bdev");
5259 
5260 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5261 	CU_ASSERT_EQUAL(rc, 0);
5262 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5263 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5264 	ioch = spdk_bdev_get_io_channel(desc);
5265 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5266 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5267 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5268 
5269 	fn_table.submit_request = stub_submit_request;
5270 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5271 
5272 	/* Case 1: First test the request won't be split */
5273 	num_blocks = 32;
5274 
5275 	g_io_done = false;
5276 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
5277 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5278 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5279 	CU_ASSERT_EQUAL(rc, 0);
5280 	CU_ASSERT(g_io_done == false);
5281 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5282 	stub_complete_io(1);
5283 	CU_ASSERT(g_io_done == true);
5284 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5285 
5286 	/* Case 2: Test the split with 2 children requests */
5287 	max_write_zeroes_blocks = 8;
5288 	bdev->max_write_zeroes = max_write_zeroes_blocks;
5289 	num_blocks = max_write_zeroes_blocks * 2;
5290 	offset = 0;
5291 
5292 	g_io_done = false;
5293 	for (i = 0; i < 2; i++) {
5294 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5295 						   0);
5296 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5297 		offset += max_write_zeroes_blocks;
5298 	}
5299 
5300 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5301 	CU_ASSERT_EQUAL(rc, 0);
5302 	CU_ASSERT(g_io_done == false);
5303 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5304 	stub_complete_io(2);
5305 	CU_ASSERT(g_io_done == true);
5306 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5307 
5308 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5309 	num_children = 15;
5310 	num_blocks = max_write_zeroes_blocks * num_children;
5311 	g_io_done = false;
5312 	offset = 0;
5313 	for (i = 0; i < num_children; i++) {
5314 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5315 						   0);
5316 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5317 		offset += max_write_zeroes_blocks;
5318 	}
5319 
5320 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5321 	CU_ASSERT_EQUAL(rc, 0);
5322 	CU_ASSERT(g_io_done == false);
5323 
5324 	while (num_children > 0) {
5325 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5326 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5327 		stub_complete_io(num_outstanding);
5328 		num_children -= num_outstanding;
5329 	}
5330 	CU_ASSERT(g_io_done == true);
5331 
5332 	spdk_put_io_channel(ioch);
5333 	spdk_bdev_close(desc);
5334 	free_bdev(bdev);
5335 	ut_fini_bdev();
5336 }
5337 
5338 static void
5339 bdev_set_options_test(void)
5340 {
5341 	struct spdk_bdev_opts bdev_opts = {};
5342 	int rc;
5343 
5344 	/* Case1: Do not set opts_size */
5345 	rc = spdk_bdev_set_opts(&bdev_opts);
5346 	CU_ASSERT(rc == -1);
5347 
5348 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5349 	bdev_opts.bdev_io_pool_size = 4;
5350 	bdev_opts.bdev_io_cache_size = 2;
5351 	bdev_opts.small_buf_pool_size = 4;
5352 
5353 	/* Case 2: Do not set valid small_buf_pool_size and large_buf_pool_size */
5354 	rc = spdk_bdev_set_opts(&bdev_opts);
5355 	CU_ASSERT(rc == -1);
5356 
5357 	/* Case 3: Do not set valid large_buf_pool_size */
5358 	bdev_opts.small_buf_pool_size = BUF_SMALL_POOL_SIZE;
5359 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE - 1;
5360 	rc = spdk_bdev_set_opts(&bdev_opts);
5361 	CU_ASSERT(rc == -1);
5362 
5363 	/* Case4: set valid large buf_pool_size */
5364 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE;
5365 	rc = spdk_bdev_set_opts(&bdev_opts);
5366 	CU_ASSERT(rc == 0);
5367 
5368 	/* Case5: Set different valid value for small and large buf pool */
5369 	bdev_opts.large_buf_pool_size = BUF_SMALL_POOL_SIZE + 3;
5370 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE + 3;
5371 	rc = spdk_bdev_set_opts(&bdev_opts);
5372 	CU_ASSERT(rc == 0);
5373 }
5374 
5375 static uint64_t
5376 get_ns_time(void)
5377 {
5378 	int rc;
5379 	struct timespec ts;
5380 
5381 	rc = clock_gettime(CLOCK_MONOTONIC, &ts);
5382 	CU_ASSERT(rc == 0);
5383 	return ts.tv_sec * 1000 * 1000 * 1000 + ts.tv_nsec;
5384 }
5385 
5386 static int
5387 rb_tree_get_height(struct spdk_bdev_name *bdev_name)
5388 {
5389 	int h1, h2;
5390 
5391 	if (bdev_name == NULL) {
5392 		return -1;
5393 	} else {
5394 		h1 = rb_tree_get_height(RB_LEFT(bdev_name, node));
5395 		h2 = rb_tree_get_height(RB_RIGHT(bdev_name, node));
5396 
5397 		return spdk_max(h1, h2) + 1;
5398 	}
5399 }
5400 
5401 static void
5402 bdev_multi_allocation(void)
5403 {
5404 	const int max_bdev_num = 1024 * 16;
5405 	char name[max_bdev_num][16];
5406 	char noexist_name[] = "invalid_bdev";
5407 	struct spdk_bdev *bdev[max_bdev_num];
5408 	int i, j;
5409 	uint64_t last_time;
5410 	int bdev_num;
5411 	int height;
5412 
5413 	for (j = 0; j < max_bdev_num; j++) {
5414 		snprintf(name[j], sizeof(name[j]), "bdev%d", j);
5415 	}
5416 
5417 	for (i = 0; i < 16; i++) {
5418 		last_time = get_ns_time();
5419 		bdev_num = 1024 * (i + 1);
5420 		for (j = 0; j < bdev_num; j++) {
5421 			bdev[j] = allocate_bdev(name[j]);
5422 			height = rb_tree_get_height(&bdev[j]->internal.bdev_name);
5423 			CU_ASSERT(height <= (int)(spdk_u32log2(2 * j + 2)));
5424 		}
5425 		SPDK_NOTICELOG("alloc bdev num %d takes %" PRIu64 " ms\n", bdev_num,
5426 			       (get_ns_time() - last_time) / 1000 / 1000);
5427 		for (j = 0; j < bdev_num; j++) {
5428 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) != NULL);
5429 		}
5430 		CU_ASSERT(spdk_bdev_get_by_name(noexist_name) == NULL);
5431 
5432 		for (j = 0; j < bdev_num; j++) {
5433 			free_bdev(bdev[j]);
5434 		}
5435 		for (j = 0; j < bdev_num; j++) {
5436 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) == NULL);
5437 		}
5438 	}
5439 }
5440 
5441 static struct spdk_memory_domain *g_bdev_memory_domain = (struct spdk_memory_domain *) 0xf00df00d;
5442 
5443 static int
5444 test_bdev_get_supported_dma_device_types_op(void *ctx, struct spdk_memory_domain **domains,
5445 		int array_size)
5446 {
5447 	if (array_size > 0 && domains) {
5448 		domains[0] = g_bdev_memory_domain;
5449 	}
5450 
5451 	return 1;
5452 }
5453 
5454 static void
5455 bdev_get_memory_domains(void)
5456 {
5457 	struct spdk_bdev_fn_table fn_table = {
5458 		.get_memory_domains = test_bdev_get_supported_dma_device_types_op
5459 	};
5460 	struct spdk_bdev bdev = { .fn_table = &fn_table };
5461 	struct spdk_memory_domain *domains[2] = {};
5462 	int rc;
5463 
5464 	/* bdev is NULL */
5465 	rc = spdk_bdev_get_memory_domains(NULL, domains, 2);
5466 	CU_ASSERT(rc == -EINVAL);
5467 
5468 	/* domains is NULL */
5469 	rc = spdk_bdev_get_memory_domains(&bdev, NULL, 2);
5470 	CU_ASSERT(rc == 1);
5471 
5472 	/* array size is 0 */
5473 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 0);
5474 	CU_ASSERT(rc == 1);
5475 
5476 	/* get_supported_dma_device_types op is set */
5477 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5478 	CU_ASSERT(rc == 1);
5479 	CU_ASSERT(domains[0] == g_bdev_memory_domain);
5480 
5481 	/* get_supported_dma_device_types op is not set */
5482 	fn_table.get_memory_domains = NULL;
5483 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5484 	CU_ASSERT(rc == 0);
5485 }
5486 
5487 static void
5488 _bdev_io_ext(struct spdk_bdev_ext_io_opts *ext_io_opts)
5489 {
5490 	struct spdk_bdev *bdev;
5491 	struct spdk_bdev_desc *desc = NULL;
5492 	struct spdk_io_channel *io_ch;
5493 	char io_buf[512];
5494 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5495 	struct ut_expected_io *expected_io;
5496 	int rc;
5497 
5498 	ut_init_bdev(NULL);
5499 
5500 	bdev = allocate_bdev("bdev0");
5501 	bdev->md_interleave = false;
5502 	bdev->md_len = 8;
5503 
5504 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5505 	CU_ASSERT(rc == 0);
5506 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5507 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5508 	io_ch = spdk_bdev_get_io_channel(desc);
5509 	CU_ASSERT(io_ch != NULL);
5510 
5511 	/* read */
5512 	g_io_done = false;
5513 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5514 	if (ext_io_opts) {
5515 		expected_io->md_buf = ext_io_opts->metadata;
5516 		expected_io->ext_io_opts = ext_io_opts;
5517 	}
5518 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5519 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5520 
5521 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5522 
5523 	CU_ASSERT(rc == 0);
5524 	CU_ASSERT(g_io_done == false);
5525 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5526 	stub_complete_io(1);
5527 	CU_ASSERT(g_io_done == true);
5528 
5529 	/* write */
5530 	g_io_done = false;
5531 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5532 	if (ext_io_opts) {
5533 		expected_io->md_buf = ext_io_opts->metadata;
5534 		expected_io->ext_io_opts = ext_io_opts;
5535 	}
5536 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5537 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5538 
5539 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5540 
5541 	CU_ASSERT(rc == 0);
5542 	CU_ASSERT(g_io_done == false);
5543 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5544 	stub_complete_io(1);
5545 	CU_ASSERT(g_io_done == true);
5546 
5547 	spdk_put_io_channel(io_ch);
5548 	spdk_bdev_close(desc);
5549 	free_bdev(bdev);
5550 	ut_fini_bdev();
5551 
5552 }
5553 
5554 static void
5555 bdev_io_ext(void)
5556 {
5557 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5558 		.metadata = (void *)0xFF000000,
5559 		.size = sizeof(ext_io_opts)
5560 	};
5561 
5562 	_bdev_io_ext(&ext_io_opts);
5563 }
5564 
5565 static void
5566 bdev_io_ext_no_opts(void)
5567 {
5568 	_bdev_io_ext(NULL);
5569 }
5570 
5571 static void
5572 bdev_io_ext_invalid_opts(void)
5573 {
5574 	struct spdk_bdev *bdev;
5575 	struct spdk_bdev_desc *desc = NULL;
5576 	struct spdk_io_channel *io_ch;
5577 	char io_buf[512];
5578 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5579 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5580 		.metadata = (void *)0xFF000000,
5581 		.size = sizeof(ext_io_opts)
5582 	};
5583 	int rc;
5584 
5585 	ut_init_bdev(NULL);
5586 
5587 	bdev = allocate_bdev("bdev0");
5588 	bdev->md_interleave = false;
5589 	bdev->md_len = 8;
5590 
5591 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5592 	CU_ASSERT(rc == 0);
5593 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5594 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5595 	io_ch = spdk_bdev_get_io_channel(desc);
5596 	CU_ASSERT(io_ch != NULL);
5597 
5598 	/* Test invalid ext_opts size */
5599 	ext_io_opts.size = 0;
5600 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5601 	CU_ASSERT(rc == -EINVAL);
5602 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5603 	CU_ASSERT(rc == -EINVAL);
5604 
5605 	ext_io_opts.size = sizeof(ext_io_opts) * 2;
5606 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5607 	CU_ASSERT(rc == -EINVAL);
5608 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5609 	CU_ASSERT(rc == -EINVAL);
5610 
5611 	ext_io_opts.size = offsetof(struct spdk_bdev_ext_io_opts, metadata) +
5612 			   sizeof(ext_io_opts.metadata) - 1;
5613 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5614 	CU_ASSERT(rc == -EINVAL);
5615 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5616 	CU_ASSERT(rc == -EINVAL);
5617 
5618 	spdk_put_io_channel(io_ch);
5619 	spdk_bdev_close(desc);
5620 	free_bdev(bdev);
5621 	ut_fini_bdev();
5622 }
5623 
5624 static void
5625 bdev_io_ext_split(void)
5626 {
5627 	struct spdk_bdev *bdev;
5628 	struct spdk_bdev_desc *desc = NULL;
5629 	struct spdk_io_channel *io_ch;
5630 	char io_buf[512];
5631 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5632 	struct ut_expected_io *expected_io;
5633 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5634 		.metadata = (void *)0xFF000000,
5635 		.size = sizeof(ext_io_opts)
5636 	};
5637 	int rc;
5638 
5639 	ut_init_bdev(NULL);
5640 
5641 	bdev = allocate_bdev("bdev0");
5642 	bdev->md_interleave = false;
5643 	bdev->md_len = 8;
5644 
5645 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5646 	CU_ASSERT(rc == 0);
5647 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5648 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5649 	io_ch = spdk_bdev_get_io_channel(desc);
5650 	CU_ASSERT(io_ch != NULL);
5651 
5652 	/* Check that IO request with ext_opts and metadata is split correctly
5653 	 * Offset 14, length 8, payload 0xF000
5654 	 *  Child - Offset 14, length 2, payload 0xF000
5655 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5656 	 */
5657 	bdev->optimal_io_boundary = 16;
5658 	bdev->split_on_optimal_io_boundary = true;
5659 	bdev->md_interleave = false;
5660 	bdev->md_len = 8;
5661 
5662 	iov.iov_base = (void *)0xF000;
5663 	iov.iov_len = 4096;
5664 	memset(&ext_io_opts, 0, sizeof(ext_io_opts));
5665 	ext_io_opts.metadata = (void *)0xFF000000;
5666 	ext_io_opts.size = sizeof(ext_io_opts);
5667 	g_io_done = false;
5668 
5669 	/* read */
5670 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
5671 	expected_io->md_buf = ext_io_opts.metadata;
5672 	expected_io->ext_io_opts = &ext_io_opts;
5673 	expected_io->copy_opts = true;
5674 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5675 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5676 
5677 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
5678 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5679 	expected_io->ext_io_opts = &ext_io_opts;
5680 	expected_io->copy_opts = true;
5681 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5682 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5683 
5684 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5685 	CU_ASSERT(rc == 0);
5686 	CU_ASSERT(g_io_done == false);
5687 
5688 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5689 	stub_complete_io(2);
5690 	CU_ASSERT(g_io_done == true);
5691 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5692 
5693 	/* write */
5694 	g_io_done = false;
5695 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
5696 	expected_io->md_buf = ext_io_opts.metadata;
5697 	expected_io->ext_io_opts = &ext_io_opts;
5698 	expected_io->copy_opts = true;
5699 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5700 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5701 
5702 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 6, 1);
5703 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5704 	expected_io->ext_io_opts = &ext_io_opts;
5705 	expected_io->copy_opts = true;
5706 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5707 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5708 
5709 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5710 	CU_ASSERT(rc == 0);
5711 	CU_ASSERT(g_io_done == false);
5712 
5713 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5714 	stub_complete_io(2);
5715 	CU_ASSERT(g_io_done == true);
5716 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5717 
5718 	spdk_put_io_channel(io_ch);
5719 	spdk_bdev_close(desc);
5720 	free_bdev(bdev);
5721 	ut_fini_bdev();
5722 }
5723 
5724 static void
5725 bdev_io_ext_bounce_buffer(void)
5726 {
5727 	struct spdk_bdev *bdev;
5728 	struct spdk_bdev_desc *desc = NULL;
5729 	struct spdk_io_channel *io_ch;
5730 	char io_buf[512];
5731 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5732 	struct ut_expected_io *expected_io;
5733 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5734 		.metadata = (void *)0xFF000000,
5735 		.size = sizeof(ext_io_opts)
5736 	};
5737 	int rc;
5738 
5739 	ut_init_bdev(NULL);
5740 
5741 	bdev = allocate_bdev("bdev0");
5742 	bdev->md_interleave = false;
5743 	bdev->md_len = 8;
5744 
5745 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5746 	CU_ASSERT(rc == 0);
5747 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5748 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5749 	io_ch = spdk_bdev_get_io_channel(desc);
5750 	CU_ASSERT(io_ch != NULL);
5751 
5752 	/* Verify data pull/push
5753 	 * bdev doesn't support memory domains, so buffers from bdev memory pool will be used */
5754 	ext_io_opts.memory_domain = (struct spdk_memory_domain *)0xdeadbeef;
5755 
5756 	/* read */
5757 	g_io_done = false;
5758 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5759 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5760 	expected_io->ext_io_opts = &ext_io_opts;
5761 	expected_io->copy_opts = true;
5762 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5763 
5764 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5765 
5766 	CU_ASSERT(rc == 0);
5767 	CU_ASSERT(g_io_done == false);
5768 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5769 	stub_complete_io(1);
5770 	CU_ASSERT(g_memory_domain_push_data_called == true);
5771 	CU_ASSERT(g_io_done == true);
5772 
5773 	/* write */
5774 	g_io_done = false;
5775 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5776 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5777 	expected_io->ext_io_opts = &ext_io_opts;
5778 	expected_io->copy_opts = true;
5779 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5780 
5781 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5782 
5783 	CU_ASSERT(rc == 0);
5784 	CU_ASSERT(g_memory_domain_pull_data_called == true);
5785 	CU_ASSERT(g_io_done == false);
5786 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5787 	stub_complete_io(1);
5788 	CU_ASSERT(g_io_done == true);
5789 
5790 	spdk_put_io_channel(io_ch);
5791 	spdk_bdev_close(desc);
5792 	free_bdev(bdev);
5793 	ut_fini_bdev();
5794 }
5795 
5796 static void
5797 bdev_register_uuid_alias(void)
5798 {
5799 	struct spdk_bdev *bdev, *second;
5800 	char uuid[SPDK_UUID_STRING_LEN];
5801 	int rc;
5802 
5803 	ut_init_bdev(NULL);
5804 	bdev = allocate_bdev("bdev0");
5805 
5806 	/* Make sure an UUID was generated  */
5807 	CU_ASSERT_FALSE(spdk_mem_all_zero(&bdev->uuid, sizeof(bdev->uuid)));
5808 
5809 	/* Check that an UUID alias was registered */
5810 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5811 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5812 
5813 	/* Unregister the bdev */
5814 	spdk_bdev_unregister(bdev, NULL, NULL);
5815 	poll_threads();
5816 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5817 
5818 	/* Check the same, but this time register the bdev with non-zero UUID */
5819 	rc = spdk_bdev_register(bdev);
5820 	CU_ASSERT_EQUAL(rc, 0);
5821 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5822 
5823 	/* Unregister the bdev */
5824 	spdk_bdev_unregister(bdev, NULL, NULL);
5825 	poll_threads();
5826 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5827 
5828 	/* Regiser the bdev using UUID as the name */
5829 	bdev->name = uuid;
5830 	rc = spdk_bdev_register(bdev);
5831 	CU_ASSERT_EQUAL(rc, 0);
5832 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5833 
5834 	/* Unregister the bdev */
5835 	spdk_bdev_unregister(bdev, NULL, NULL);
5836 	poll_threads();
5837 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5838 
5839 	/* Check that it's not possible to register two bdevs with the same UUIDs */
5840 	bdev->name = "bdev0";
5841 	second = allocate_bdev("bdev1");
5842 	spdk_uuid_copy(&bdev->uuid, &second->uuid);
5843 	rc = spdk_bdev_register(bdev);
5844 	CU_ASSERT_EQUAL(rc, -EEXIST);
5845 
5846 	/* Regenerate the UUID and re-check */
5847 	spdk_uuid_generate(&bdev->uuid);
5848 	rc = spdk_bdev_register(bdev);
5849 	CU_ASSERT_EQUAL(rc, 0);
5850 
5851 	/* And check that both bdevs can be retrieved through their UUIDs */
5852 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5853 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5854 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &second->uuid);
5855 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), second);
5856 
5857 	free_bdev(second);
5858 	free_bdev(bdev);
5859 	ut_fini_bdev();
5860 }
5861 
5862 static void
5863 bdev_unregister_by_name(void)
5864 {
5865 	struct spdk_bdev *bdev;
5866 	int rc;
5867 
5868 	bdev = allocate_bdev("bdev");
5869 
5870 	g_event_type1 = 0xFF;
5871 	g_unregister_arg = NULL;
5872 	g_unregister_rc = -1;
5873 
5874 	rc = spdk_bdev_unregister_by_name("bdev1", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5875 	CU_ASSERT(rc == -ENODEV);
5876 
5877 	rc = spdk_bdev_unregister_by_name("bdev", &vbdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5878 	CU_ASSERT(rc == -ENODEV);
5879 
5880 	rc = spdk_bdev_unregister_by_name("bdev", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5881 	CU_ASSERT(rc == 0);
5882 
5883 	/* Check that unregister callback is delayed */
5884 	CU_ASSERT(g_unregister_arg == NULL);
5885 	CU_ASSERT(g_unregister_rc == -1);
5886 
5887 	poll_threads();
5888 
5889 	/* Event callback shall not be issued because device was closed */
5890 	CU_ASSERT(g_event_type1 == 0xFF);
5891 	/* Unregister callback is issued */
5892 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
5893 	CU_ASSERT(g_unregister_rc == 0);
5894 
5895 	free_bdev(bdev);
5896 }
5897 
5898 static int
5899 count_bdevs(void *ctx, struct spdk_bdev *bdev)
5900 {
5901 	int *count = ctx;
5902 
5903 	(*count)++;
5904 
5905 	return 0;
5906 }
5907 
5908 static void
5909 for_each_bdev_test(void)
5910 {
5911 	struct spdk_bdev *bdev[8];
5912 	int rc, count;
5913 
5914 	bdev[0] = allocate_bdev("bdev0");
5915 	bdev[0]->internal.status = SPDK_BDEV_STATUS_REMOVING;
5916 
5917 	bdev[1] = allocate_bdev("bdev1");
5918 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
5919 	CU_ASSERT(rc == 0);
5920 
5921 	bdev[2] = allocate_bdev("bdev2");
5922 
5923 	bdev[3] = allocate_bdev("bdev3");
5924 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
5925 	CU_ASSERT(rc == 0);
5926 
5927 	bdev[4] = allocate_bdev("bdev4");
5928 
5929 	bdev[5] = allocate_bdev("bdev5");
5930 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
5931 	CU_ASSERT(rc == 0);
5932 
5933 	bdev[6] = allocate_bdev("bdev6");
5934 
5935 	bdev[7] = allocate_bdev("bdev7");
5936 
5937 	count = 0;
5938 	rc = spdk_for_each_bdev(&count, count_bdevs);
5939 	CU_ASSERT(rc == 0);
5940 	CU_ASSERT(count == 7);
5941 
5942 	count = 0;
5943 	rc = spdk_for_each_bdev_leaf(&count, count_bdevs);
5944 	CU_ASSERT(rc == 0);
5945 	CU_ASSERT(count == 4);
5946 
5947 	bdev[0]->internal.status = SPDK_BDEV_STATUS_READY;
5948 	free_bdev(bdev[0]);
5949 	free_bdev(bdev[1]);
5950 	free_bdev(bdev[2]);
5951 	free_bdev(bdev[3]);
5952 	free_bdev(bdev[4]);
5953 	free_bdev(bdev[5]);
5954 	free_bdev(bdev[6]);
5955 	free_bdev(bdev[7]);
5956 }
5957 
5958 static void
5959 bdev_seek_test(void)
5960 {
5961 	struct spdk_bdev *bdev;
5962 	struct spdk_bdev_desc *desc = NULL;
5963 	struct spdk_io_channel *io_ch;
5964 	int rc;
5965 
5966 	ut_init_bdev(NULL);
5967 	poll_threads();
5968 
5969 	bdev = allocate_bdev("bdev0");
5970 
5971 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5972 	CU_ASSERT(rc == 0);
5973 	poll_threads();
5974 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5975 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5976 	io_ch = spdk_bdev_get_io_channel(desc);
5977 	CU_ASSERT(io_ch != NULL);
5978 
5979 	/* Seek data not supported */
5980 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, false);
5981 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
5982 	CU_ASSERT(rc == 0);
5983 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5984 	poll_threads();
5985 	CU_ASSERT(g_seek_offset == 0);
5986 
5987 	/* Seek hole not supported */
5988 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, false);
5989 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
5990 	CU_ASSERT(rc == 0);
5991 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5992 	poll_threads();
5993 	CU_ASSERT(g_seek_offset == UINT64_MAX);
5994 
5995 	/* Seek data supported */
5996 	g_seek_data_offset = 12345;
5997 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, true);
5998 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
5999 	CU_ASSERT(rc == 0);
6000 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6001 	stub_complete_io(1);
6002 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6003 	CU_ASSERT(g_seek_offset == 12345);
6004 
6005 	/* Seek hole supported */
6006 	g_seek_hole_offset = 67890;
6007 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, true);
6008 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
6009 	CU_ASSERT(rc == 0);
6010 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6011 	stub_complete_io(1);
6012 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6013 	CU_ASSERT(g_seek_offset == 67890);
6014 
6015 	spdk_put_io_channel(io_ch);
6016 	spdk_bdev_close(desc);
6017 	free_bdev(bdev);
6018 	ut_fini_bdev();
6019 }
6020 
6021 static void
6022 bdev_copy(void)
6023 {
6024 	struct spdk_bdev *bdev;
6025 	struct spdk_bdev_desc *desc = NULL;
6026 	struct spdk_io_channel *ioch;
6027 	struct ut_expected_io *expected_io;
6028 	uint64_t src_offset, num_blocks;
6029 	uint32_t num_completed;
6030 	int rc;
6031 
6032 	ut_init_bdev(NULL);
6033 	bdev = allocate_bdev("bdev");
6034 
6035 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6036 	CU_ASSERT_EQUAL(rc, 0);
6037 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6038 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6039 	ioch = spdk_bdev_get_io_channel(desc);
6040 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6041 
6042 	fn_table.submit_request = stub_submit_request;
6043 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6044 
6045 	/* First test that if the bdev supports copy, the request won't be split */
6046 	bdev->md_len = 0;
6047 	bdev->blocklen = 4096;
6048 	num_blocks = 512;
6049 	src_offset = bdev->blockcnt - num_blocks;
6050 
6051 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6052 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6053 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6054 	CU_ASSERT_EQUAL(rc, 0);
6055 	num_completed = stub_complete_io(1);
6056 	CU_ASSERT_EQUAL(num_completed, 1);
6057 
6058 	/* Check that if copy is not supported it'll fail */
6059 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false);
6060 
6061 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6062 	CU_ASSERT_EQUAL(rc, -ENOTSUP);
6063 
6064 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true);
6065 	spdk_put_io_channel(ioch);
6066 	spdk_bdev_close(desc);
6067 	free_bdev(bdev);
6068 	ut_fini_bdev();
6069 }
6070 
6071 static void
6072 bdev_copy_split_test(void)
6073 {
6074 	struct spdk_bdev *bdev;
6075 	struct spdk_bdev_desc *desc = NULL;
6076 	struct spdk_io_channel *ioch;
6077 	struct spdk_bdev_channel *bdev_ch;
6078 	struct ut_expected_io *expected_io;
6079 	struct spdk_bdev_opts bdev_opts = {};
6080 	uint32_t i, num_outstanding;
6081 	uint64_t offset, src_offset, num_blocks, max_copy_blocks, num_children;
6082 	int rc;
6083 
6084 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
6085 	bdev_opts.bdev_io_pool_size = 512;
6086 	bdev_opts.bdev_io_cache_size = 64;
6087 	rc = spdk_bdev_set_opts(&bdev_opts);
6088 	CU_ASSERT(rc == 0);
6089 
6090 	ut_init_bdev(NULL);
6091 	bdev = allocate_bdev("bdev");
6092 
6093 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6094 	CU_ASSERT_EQUAL(rc, 0);
6095 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6096 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6097 	ioch = spdk_bdev_get_io_channel(desc);
6098 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6099 	bdev_ch = spdk_io_channel_get_ctx(ioch);
6100 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
6101 
6102 	fn_table.submit_request = stub_submit_request;
6103 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6104 
6105 	/* Case 1: First test the request won't be split */
6106 	num_blocks = 32;
6107 	src_offset = bdev->blockcnt - num_blocks;
6108 
6109 	g_io_done = false;
6110 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6111 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6112 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6113 	CU_ASSERT_EQUAL(rc, 0);
6114 	CU_ASSERT(g_io_done == false);
6115 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6116 	stub_complete_io(1);
6117 	CU_ASSERT(g_io_done == true);
6118 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6119 
6120 	/* Case 2: Test the split with 2 children requests */
6121 	max_copy_blocks = 8;
6122 	bdev->max_copy = max_copy_blocks;
6123 	num_children = 2;
6124 	num_blocks = max_copy_blocks * num_children;
6125 	offset = 0;
6126 	src_offset = bdev->blockcnt - num_blocks;
6127 
6128 	g_io_done = false;
6129 	for (i = 0; i < num_children; i++) {
6130 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6131 							src_offset + offset, max_copy_blocks);
6132 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6133 		offset += max_copy_blocks;
6134 	}
6135 
6136 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6137 	CU_ASSERT_EQUAL(rc, 0);
6138 	CU_ASSERT(g_io_done == false);
6139 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_children);
6140 	stub_complete_io(num_children);
6141 	CU_ASSERT(g_io_done == true);
6142 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6143 
6144 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
6145 	num_children = 15;
6146 	num_blocks = max_copy_blocks * num_children;
6147 	offset = 0;
6148 	src_offset = bdev->blockcnt - num_blocks;
6149 
6150 	g_io_done = false;
6151 	for (i = 0; i < num_children; i++) {
6152 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6153 							src_offset + offset, max_copy_blocks);
6154 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6155 		offset += max_copy_blocks;
6156 	}
6157 
6158 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6159 	CU_ASSERT_EQUAL(rc, 0);
6160 	CU_ASSERT(g_io_done == false);
6161 
6162 	while (num_children > 0) {
6163 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_COPY_REQS);
6164 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6165 		stub_complete_io(num_outstanding);
6166 		num_children -= num_outstanding;
6167 	}
6168 	CU_ASSERT(g_io_done == true);
6169 
6170 	spdk_put_io_channel(ioch);
6171 	spdk_bdev_close(desc);
6172 	free_bdev(bdev);
6173 	ut_fini_bdev();
6174 }
6175 
6176 int
6177 main(int argc, char **argv)
6178 {
6179 	CU_pSuite		suite = NULL;
6180 	unsigned int		num_failures;
6181 
6182 	CU_set_error_action(CUEA_ABORT);
6183 	CU_initialize_registry();
6184 
6185 	suite = CU_add_suite("bdev", null_init, null_clean);
6186 
6187 	CU_ADD_TEST(suite, bytes_to_blocks_test);
6188 	CU_ADD_TEST(suite, num_blocks_test);
6189 	CU_ADD_TEST(suite, io_valid_test);
6190 	CU_ADD_TEST(suite, open_write_test);
6191 	CU_ADD_TEST(suite, claim_test);
6192 	CU_ADD_TEST(suite, alias_add_del_test);
6193 	CU_ADD_TEST(suite, get_device_stat_test);
6194 	CU_ADD_TEST(suite, bdev_io_types_test);
6195 	CU_ADD_TEST(suite, bdev_io_wait_test);
6196 	CU_ADD_TEST(suite, bdev_io_spans_split_test);
6197 	CU_ADD_TEST(suite, bdev_io_boundary_split_test);
6198 	CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test);
6199 	CU_ADD_TEST(suite, bdev_io_mix_split_test);
6200 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
6201 	CU_ADD_TEST(suite, bdev_io_write_unit_split_test);
6202 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
6203 	CU_ADD_TEST(suite, bdev_io_alignment);
6204 	CU_ADD_TEST(suite, bdev_histograms);
6205 	CU_ADD_TEST(suite, bdev_write_zeroes);
6206 	CU_ADD_TEST(suite, bdev_compare_and_write);
6207 	CU_ADD_TEST(suite, bdev_compare);
6208 	CU_ADD_TEST(suite, bdev_compare_emulated);
6209 	CU_ADD_TEST(suite, bdev_zcopy_write);
6210 	CU_ADD_TEST(suite, bdev_zcopy_read);
6211 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
6212 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
6213 	CU_ADD_TEST(suite, bdev_open_ext);
6214 	CU_ADD_TEST(suite, bdev_open_ext_unregister);
6215 	CU_ADD_TEST(suite, bdev_set_io_timeout);
6216 	CU_ADD_TEST(suite, bdev_set_qd_sampling);
6217 	CU_ADD_TEST(suite, lba_range_overlap);
6218 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
6219 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
6220 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
6221 	CU_ADD_TEST(suite, bdev_io_abort);
6222 	CU_ADD_TEST(suite, bdev_unmap);
6223 	CU_ADD_TEST(suite, bdev_write_zeroes_split_test);
6224 	CU_ADD_TEST(suite, bdev_set_options_test);
6225 	CU_ADD_TEST(suite, bdev_multi_allocation);
6226 	CU_ADD_TEST(suite, bdev_get_memory_domains);
6227 	CU_ADD_TEST(suite, bdev_io_ext);
6228 	CU_ADD_TEST(suite, bdev_io_ext_no_opts);
6229 	CU_ADD_TEST(suite, bdev_io_ext_invalid_opts);
6230 	CU_ADD_TEST(suite, bdev_io_ext_split);
6231 	CU_ADD_TEST(suite, bdev_io_ext_bounce_buffer);
6232 	CU_ADD_TEST(suite, bdev_register_uuid_alias);
6233 	CU_ADD_TEST(suite, bdev_unregister_by_name);
6234 	CU_ADD_TEST(suite, for_each_bdev_test);
6235 	CU_ADD_TEST(suite, bdev_seek_test);
6236 	CU_ADD_TEST(suite, bdev_copy);
6237 	CU_ADD_TEST(suite, bdev_copy_split_test);
6238 
6239 	allocate_cores(1);
6240 	allocate_threads(1);
6241 	set_thread(0);
6242 
6243 	CU_basic_set_mode(CU_BRM_VERBOSE);
6244 	CU_basic_run_tests();
6245 	num_failures = CU_get_number_of_failures();
6246 	CU_cleanup_registry();
6247 
6248 	free_threads();
6249 	free_cores();
6250 
6251 	return num_failures;
6252 }
6253