1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (C) 2017 Intel Corporation. All rights reserved. 3 * Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved. 4 * Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 5 */ 6 7 #include "spdk_cunit.h" 8 9 #include "common/lib/ut_multithread.c" 10 #include "unit/lib/json_mock.c" 11 12 #include "spdk/config.h" 13 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */ 14 #undef SPDK_CONFIG_VTUNE 15 16 #include "bdev/bdev.c" 17 18 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0); 19 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL); 20 DEFINE_STUB(spdk_memory_domain_get_dma_device_id, const char *, (struct spdk_memory_domain *domain), 21 "test_domain"); 22 DEFINE_STUB(spdk_memory_domain_get_dma_device_type, enum spdk_dma_device_type, 23 (struct spdk_memory_domain *domain), 0); 24 DEFINE_STUB_V(spdk_accel_sequence_finish, 25 (struct spdk_accel_sequence *seq, spdk_accel_completion_cb cb_fn, void *cb_arg)); 26 DEFINE_STUB_V(spdk_accel_sequence_abort, (struct spdk_accel_sequence *seq)); 27 DEFINE_STUB_V(spdk_accel_sequence_reverse, (struct spdk_accel_sequence *seq)); 28 DEFINE_STUB(spdk_accel_append_copy, int, 29 (struct spdk_accel_sequence **seq, struct spdk_io_channel *ch, struct iovec *dst_iovs, 30 uint32_t dst_iovcnt, struct spdk_memory_domain *dst_domain, void *dst_domain_ctx, 31 struct iovec *src_iovs, uint32_t src_iovcnt, struct spdk_memory_domain *src_domain, 32 void *src_domain_ctx, int flags, spdk_accel_step_cb cb_fn, void *cb_arg), 0); 33 DEFINE_STUB(spdk_accel_get_memory_domain, struct spdk_memory_domain *, (void), NULL); 34 35 static bool g_memory_domain_pull_data_called; 36 static bool g_memory_domain_push_data_called; 37 static int g_accel_io_device; 38 39 DEFINE_RETURN_MOCK(spdk_memory_domain_pull_data, int); 40 int 41 spdk_memory_domain_pull_data(struct spdk_memory_domain *src_domain, void *src_domain_ctx, 42 struct iovec *src_iov, uint32_t src_iov_cnt, struct iovec *dst_iov, uint32_t dst_iov_cnt, 43 spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg) 44 { 45 g_memory_domain_pull_data_called = true; 46 HANDLE_RETURN_MOCK(spdk_memory_domain_pull_data); 47 cpl_cb(cpl_cb_arg, 0); 48 return 0; 49 } 50 51 DEFINE_RETURN_MOCK(spdk_memory_domain_push_data, int); 52 int 53 spdk_memory_domain_push_data(struct spdk_memory_domain *dst_domain, void *dst_domain_ctx, 54 struct iovec *dst_iov, uint32_t dst_iovcnt, struct iovec *src_iov, uint32_t src_iovcnt, 55 spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg) 56 { 57 g_memory_domain_push_data_called = true; 58 HANDLE_RETURN_MOCK(spdk_memory_domain_push_data); 59 cpl_cb(cpl_cb_arg, 0); 60 return 0; 61 } 62 63 struct spdk_io_channel * 64 spdk_accel_get_io_channel(void) 65 { 66 return spdk_get_io_channel(&g_accel_io_device); 67 } 68 69 int g_status; 70 int g_count; 71 enum spdk_bdev_event_type g_event_type1; 72 enum spdk_bdev_event_type g_event_type2; 73 enum spdk_bdev_event_type g_event_type3; 74 enum spdk_bdev_event_type g_event_type4; 75 struct spdk_histogram_data *g_histogram; 76 void *g_unregister_arg; 77 int g_unregister_rc; 78 79 void 80 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io, 81 int *sc, int *sk, int *asc, int *ascq) 82 { 83 } 84 85 static int 86 ut_accel_ch_create_cb(void *io_device, void *ctx) 87 { 88 return 0; 89 } 90 91 static void 92 ut_accel_ch_destroy_cb(void *io_device, void *ctx) 93 { 94 } 95 96 static int 97 ut_bdev_setup(void) 98 { 99 spdk_io_device_register(&g_accel_io_device, ut_accel_ch_create_cb, 100 ut_accel_ch_destroy_cb, 0, NULL); 101 return 0; 102 } 103 104 static int 105 ut_bdev_teardown(void) 106 { 107 spdk_io_device_unregister(&g_accel_io_device, NULL); 108 109 return 0; 110 } 111 112 static int 113 stub_destruct(void *ctx) 114 { 115 return 0; 116 } 117 118 struct ut_expected_io { 119 uint8_t type; 120 uint64_t offset; 121 uint64_t src_offset; 122 uint64_t length; 123 int iovcnt; 124 struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV]; 125 void *md_buf; 126 TAILQ_ENTRY(ut_expected_io) link; 127 }; 128 129 struct bdev_ut_channel { 130 TAILQ_HEAD(, spdk_bdev_io) outstanding_io; 131 uint32_t outstanding_io_count; 132 TAILQ_HEAD(, ut_expected_io) expected_io; 133 }; 134 135 static bool g_io_done; 136 static struct spdk_bdev_io *g_bdev_io; 137 static enum spdk_bdev_io_status g_io_status; 138 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 139 static uint32_t g_bdev_ut_io_device; 140 static struct bdev_ut_channel *g_bdev_ut_channel; 141 static void *g_compare_read_buf; 142 static uint32_t g_compare_read_buf_len; 143 static void *g_compare_write_buf; 144 static uint32_t g_compare_write_buf_len; 145 static void *g_compare_md_buf; 146 static bool g_abort_done; 147 static enum spdk_bdev_io_status g_abort_status; 148 static void *g_zcopy_read_buf; 149 static uint32_t g_zcopy_read_buf_len; 150 static void *g_zcopy_write_buf; 151 static uint32_t g_zcopy_write_buf_len; 152 static struct spdk_bdev_io *g_zcopy_bdev_io; 153 static uint64_t g_seek_data_offset; 154 static uint64_t g_seek_hole_offset; 155 static uint64_t g_seek_offset; 156 157 static struct ut_expected_io * 158 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt) 159 { 160 struct ut_expected_io *expected_io; 161 162 expected_io = calloc(1, sizeof(*expected_io)); 163 SPDK_CU_ASSERT_FATAL(expected_io != NULL); 164 165 expected_io->type = type; 166 expected_io->offset = offset; 167 expected_io->length = length; 168 expected_io->iovcnt = iovcnt; 169 170 return expected_io; 171 } 172 173 static struct ut_expected_io * 174 ut_alloc_expected_copy_io(uint8_t type, uint64_t offset, uint64_t src_offset, uint64_t length) 175 { 176 struct ut_expected_io *expected_io; 177 178 expected_io = calloc(1, sizeof(*expected_io)); 179 SPDK_CU_ASSERT_FATAL(expected_io != NULL); 180 181 expected_io->type = type; 182 expected_io->offset = offset; 183 expected_io->src_offset = src_offset; 184 expected_io->length = length; 185 186 return expected_io; 187 } 188 189 static void 190 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len) 191 { 192 expected_io->iov[pos].iov_base = base; 193 expected_io->iov[pos].iov_len = len; 194 } 195 196 static void 197 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io) 198 { 199 struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch); 200 struct ut_expected_io *expected_io; 201 struct iovec *iov, *expected_iov; 202 struct spdk_bdev_io *bio_to_abort; 203 int i; 204 205 g_bdev_io = bdev_io; 206 207 if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) { 208 uint32_t len = bdev_io->u.bdev.iovs[0].iov_len; 209 210 CU_ASSERT(bdev_io->u.bdev.iovcnt == 1); 211 CU_ASSERT(g_compare_read_buf_len == len); 212 memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len); 213 if (bdev_io->bdev->md_len && bdev_io->u.bdev.md_buf && g_compare_md_buf) { 214 memcpy(bdev_io->u.bdev.md_buf, g_compare_md_buf, 215 bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks); 216 } 217 } 218 219 if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) { 220 uint32_t len = bdev_io->u.bdev.iovs[0].iov_len; 221 222 CU_ASSERT(bdev_io->u.bdev.iovcnt == 1); 223 CU_ASSERT(g_compare_write_buf_len == len); 224 memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len); 225 } 226 227 if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) { 228 uint32_t len = bdev_io->u.bdev.iovs[0].iov_len; 229 230 CU_ASSERT(bdev_io->u.bdev.iovcnt == 1); 231 CU_ASSERT(g_compare_read_buf_len == len); 232 if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) { 233 g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE; 234 } 235 if (bdev_io->u.bdev.md_buf && 236 memcmp(bdev_io->u.bdev.md_buf, g_compare_md_buf, 237 bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks)) { 238 g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE; 239 } 240 } 241 242 if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) { 243 if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) { 244 TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) { 245 if (bio_to_abort == bdev_io->u.abort.bio_to_abort) { 246 TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link); 247 ch->outstanding_io_count--; 248 spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED); 249 break; 250 } 251 } 252 } 253 } 254 255 if (bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) { 256 if (bdev_io->u.bdev.zcopy.start) { 257 g_zcopy_bdev_io = bdev_io; 258 if (bdev_io->u.bdev.zcopy.populate) { 259 /* Start of a read */ 260 CU_ASSERT(g_zcopy_read_buf != NULL); 261 CU_ASSERT(g_zcopy_read_buf_len > 0); 262 bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_read_buf; 263 bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_read_buf_len; 264 bdev_io->u.bdev.iovcnt = 1; 265 } else { 266 /* Start of a write */ 267 CU_ASSERT(g_zcopy_write_buf != NULL); 268 CU_ASSERT(g_zcopy_write_buf_len > 0); 269 bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_write_buf; 270 bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_write_buf_len; 271 bdev_io->u.bdev.iovcnt = 1; 272 } 273 } else { 274 if (bdev_io->u.bdev.zcopy.commit) { 275 /* End of write */ 276 CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_write_buf); 277 CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_write_buf_len); 278 CU_ASSERT(bdev_io->u.bdev.iovcnt == 1); 279 g_zcopy_write_buf = NULL; 280 g_zcopy_write_buf_len = 0; 281 } else { 282 /* End of read */ 283 CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_read_buf); 284 CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_read_buf_len); 285 CU_ASSERT(bdev_io->u.bdev.iovcnt == 1); 286 g_zcopy_read_buf = NULL; 287 g_zcopy_read_buf_len = 0; 288 } 289 } 290 } 291 292 if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_DATA) { 293 bdev_io->u.bdev.seek.offset = g_seek_data_offset; 294 } 295 296 if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_HOLE) { 297 bdev_io->u.bdev.seek.offset = g_seek_hole_offset; 298 } 299 300 TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link); 301 ch->outstanding_io_count++; 302 303 expected_io = TAILQ_FIRST(&ch->expected_io); 304 if (expected_io == NULL) { 305 return; 306 } 307 TAILQ_REMOVE(&ch->expected_io, expected_io, link); 308 309 if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) { 310 CU_ASSERT(bdev_io->type == expected_io->type); 311 } 312 313 if (expected_io->md_buf != NULL) { 314 CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf); 315 } 316 317 if (expected_io->length == 0) { 318 free(expected_io); 319 return; 320 } 321 322 CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks); 323 CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks); 324 if (expected_io->type == SPDK_BDEV_IO_TYPE_COPY) { 325 CU_ASSERT(expected_io->src_offset == bdev_io->u.bdev.copy.src_offset_blocks); 326 } 327 328 if (expected_io->iovcnt == 0) { 329 free(expected_io); 330 /* UNMAP, WRITE_ZEROES, FLUSH and COPY don't have iovs, so we can just return now. */ 331 return; 332 } 333 334 CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt); 335 for (i = 0; i < expected_io->iovcnt; i++) { 336 expected_iov = &expected_io->iov[i]; 337 if (bdev_io->internal.orig_iovcnt == 0) { 338 iov = &bdev_io->u.bdev.iovs[i]; 339 } else { 340 iov = bdev_io->internal.orig_iovs; 341 } 342 CU_ASSERT(iov->iov_len == expected_iov->iov_len); 343 CU_ASSERT(iov->iov_base == expected_iov->iov_base); 344 } 345 346 free(expected_io); 347 } 348 349 static void 350 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch, 351 struct spdk_bdev_io *bdev_io, bool success) 352 { 353 CU_ASSERT(success == true); 354 355 stub_submit_request(_ch, bdev_io); 356 } 357 358 static void 359 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io) 360 { 361 spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb, 362 bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen); 363 } 364 365 static uint32_t 366 stub_complete_io(uint32_t num_to_complete) 367 { 368 struct bdev_ut_channel *ch = g_bdev_ut_channel; 369 struct spdk_bdev_io *bdev_io; 370 static enum spdk_bdev_io_status io_status; 371 uint32_t num_completed = 0; 372 373 while (num_completed < num_to_complete) { 374 if (TAILQ_EMPTY(&ch->outstanding_io)) { 375 break; 376 } 377 bdev_io = TAILQ_FIRST(&ch->outstanding_io); 378 TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link); 379 ch->outstanding_io_count--; 380 io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS : 381 g_io_exp_status; 382 spdk_bdev_io_complete(bdev_io, io_status); 383 num_completed++; 384 } 385 386 return num_completed; 387 } 388 389 static struct spdk_io_channel * 390 bdev_ut_get_io_channel(void *ctx) 391 { 392 return spdk_get_io_channel(&g_bdev_ut_io_device); 393 } 394 395 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = { 396 [SPDK_BDEV_IO_TYPE_READ] = true, 397 [SPDK_BDEV_IO_TYPE_WRITE] = true, 398 [SPDK_BDEV_IO_TYPE_COMPARE] = true, 399 [SPDK_BDEV_IO_TYPE_UNMAP] = true, 400 [SPDK_BDEV_IO_TYPE_FLUSH] = true, 401 [SPDK_BDEV_IO_TYPE_RESET] = true, 402 [SPDK_BDEV_IO_TYPE_NVME_ADMIN] = true, 403 [SPDK_BDEV_IO_TYPE_NVME_IO] = true, 404 [SPDK_BDEV_IO_TYPE_NVME_IO_MD] = true, 405 [SPDK_BDEV_IO_TYPE_WRITE_ZEROES] = true, 406 [SPDK_BDEV_IO_TYPE_ZCOPY] = true, 407 [SPDK_BDEV_IO_TYPE_ABORT] = true, 408 [SPDK_BDEV_IO_TYPE_SEEK_HOLE] = true, 409 [SPDK_BDEV_IO_TYPE_SEEK_DATA] = true, 410 [SPDK_BDEV_IO_TYPE_COPY] = true, 411 }; 412 413 static void 414 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable) 415 { 416 g_io_types_supported[io_type] = enable; 417 } 418 419 static bool 420 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type) 421 { 422 return g_io_types_supported[io_type]; 423 } 424 425 static struct spdk_bdev_fn_table fn_table = { 426 .destruct = stub_destruct, 427 .submit_request = stub_submit_request, 428 .get_io_channel = bdev_ut_get_io_channel, 429 .io_type_supported = stub_io_type_supported, 430 }; 431 432 static int 433 bdev_ut_create_ch(void *io_device, void *ctx_buf) 434 { 435 struct bdev_ut_channel *ch = ctx_buf; 436 437 CU_ASSERT(g_bdev_ut_channel == NULL); 438 g_bdev_ut_channel = ch; 439 440 TAILQ_INIT(&ch->outstanding_io); 441 ch->outstanding_io_count = 0; 442 TAILQ_INIT(&ch->expected_io); 443 return 0; 444 } 445 446 static void 447 bdev_ut_destroy_ch(void *io_device, void *ctx_buf) 448 { 449 CU_ASSERT(g_bdev_ut_channel != NULL); 450 g_bdev_ut_channel = NULL; 451 } 452 453 struct spdk_bdev_module bdev_ut_if; 454 455 static int 456 bdev_ut_module_init(void) 457 { 458 spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch, 459 sizeof(struct bdev_ut_channel), NULL); 460 spdk_bdev_module_init_done(&bdev_ut_if); 461 return 0; 462 } 463 464 static void 465 bdev_ut_module_fini(void) 466 { 467 spdk_io_device_unregister(&g_bdev_ut_io_device, NULL); 468 } 469 470 struct spdk_bdev_module bdev_ut_if = { 471 .name = "bdev_ut", 472 .module_init = bdev_ut_module_init, 473 .module_fini = bdev_ut_module_fini, 474 .async_init = true, 475 }; 476 477 static void vbdev_ut_examine_config(struct spdk_bdev *bdev); 478 static void vbdev_ut_examine_disk(struct spdk_bdev *bdev); 479 480 static int 481 vbdev_ut_module_init(void) 482 { 483 return 0; 484 } 485 486 static void 487 vbdev_ut_module_fini(void) 488 { 489 } 490 491 struct spdk_bdev_module vbdev_ut_if = { 492 .name = "vbdev_ut", 493 .module_init = vbdev_ut_module_init, 494 .module_fini = vbdev_ut_module_fini, 495 .examine_config = vbdev_ut_examine_config, 496 .examine_disk = vbdev_ut_examine_disk, 497 }; 498 499 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if) 500 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if) 501 502 struct ut_examine_ctx { 503 void (*examine_config)(struct spdk_bdev *bdev); 504 void (*examine_disk)(struct spdk_bdev *bdev); 505 uint32_t examine_config_count; 506 uint32_t examine_disk_count; 507 }; 508 509 static void 510 vbdev_ut_examine_config(struct spdk_bdev *bdev) 511 { 512 struct ut_examine_ctx *ctx = bdev->ctxt; 513 514 if (ctx != NULL) { 515 ctx->examine_config_count++; 516 if (ctx->examine_config != NULL) { 517 ctx->examine_config(bdev); 518 } 519 } 520 521 spdk_bdev_module_examine_done(&vbdev_ut_if); 522 } 523 524 static void 525 vbdev_ut_examine_disk(struct spdk_bdev *bdev) 526 { 527 struct ut_examine_ctx *ctx = bdev->ctxt; 528 529 if (ctx != NULL) { 530 ctx->examine_disk_count++; 531 if (ctx->examine_disk != NULL) { 532 ctx->examine_disk(bdev); 533 } 534 } 535 536 spdk_bdev_module_examine_done(&vbdev_ut_if); 537 } 538 539 static void 540 bdev_init_cb(void *arg, int rc) 541 { 542 CU_ASSERT(rc == 0); 543 } 544 545 static void 546 bdev_fini_cb(void *arg) 547 { 548 } 549 550 static void 551 ut_init_bdev(struct spdk_bdev_opts *opts) 552 { 553 int rc; 554 555 if (opts != NULL) { 556 rc = spdk_bdev_set_opts(opts); 557 CU_ASSERT(rc == 0); 558 } 559 rc = spdk_iobuf_initialize(); 560 CU_ASSERT(rc == 0); 561 spdk_bdev_initialize(bdev_init_cb, NULL); 562 poll_threads(); 563 } 564 565 static void 566 ut_fini_bdev(void) 567 { 568 spdk_bdev_finish(bdev_fini_cb, NULL); 569 spdk_iobuf_finish(bdev_fini_cb, NULL); 570 poll_threads(); 571 } 572 573 static struct spdk_bdev * 574 allocate_bdev_ctx(char *name, void *ctx) 575 { 576 struct spdk_bdev *bdev; 577 int rc; 578 579 bdev = calloc(1, sizeof(*bdev)); 580 SPDK_CU_ASSERT_FATAL(bdev != NULL); 581 582 bdev->ctxt = ctx; 583 bdev->name = name; 584 bdev->fn_table = &fn_table; 585 bdev->module = &bdev_ut_if; 586 bdev->blockcnt = 1024; 587 bdev->blocklen = 512; 588 589 spdk_uuid_generate(&bdev->uuid); 590 591 rc = spdk_bdev_register(bdev); 592 poll_threads(); 593 CU_ASSERT(rc == 0); 594 595 return bdev; 596 } 597 598 static struct spdk_bdev * 599 allocate_bdev(char *name) 600 { 601 return allocate_bdev_ctx(name, NULL); 602 } 603 604 static struct spdk_bdev * 605 allocate_vbdev(char *name) 606 { 607 struct spdk_bdev *bdev; 608 int rc; 609 610 bdev = calloc(1, sizeof(*bdev)); 611 SPDK_CU_ASSERT_FATAL(bdev != NULL); 612 613 bdev->name = name; 614 bdev->fn_table = &fn_table; 615 bdev->module = &vbdev_ut_if; 616 bdev->blockcnt = 1024; 617 bdev->blocklen = 512; 618 619 rc = spdk_bdev_register(bdev); 620 poll_threads(); 621 CU_ASSERT(rc == 0); 622 623 return bdev; 624 } 625 626 static void 627 free_bdev(struct spdk_bdev *bdev) 628 { 629 spdk_bdev_unregister(bdev, NULL, NULL); 630 poll_threads(); 631 memset(bdev, 0xFF, sizeof(*bdev)); 632 free(bdev); 633 } 634 635 static void 636 free_vbdev(struct spdk_bdev *bdev) 637 { 638 spdk_bdev_unregister(bdev, NULL, NULL); 639 poll_threads(); 640 memset(bdev, 0xFF, sizeof(*bdev)); 641 free(bdev); 642 } 643 644 static void 645 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc) 646 { 647 const char *bdev_name; 648 649 CU_ASSERT(bdev != NULL); 650 CU_ASSERT(rc == 0); 651 bdev_name = spdk_bdev_get_name(bdev); 652 CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0"); 653 654 free(stat); 655 656 *(bool *)cb_arg = true; 657 } 658 659 static void 660 bdev_unregister_cb(void *cb_arg, int rc) 661 { 662 g_unregister_arg = cb_arg; 663 g_unregister_rc = rc; 664 } 665 666 static void 667 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx) 668 { 669 } 670 671 static void 672 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx) 673 { 674 struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx; 675 676 g_event_type1 = type; 677 if (SPDK_BDEV_EVENT_REMOVE == type) { 678 spdk_bdev_close(desc); 679 } 680 } 681 682 static void 683 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx) 684 { 685 struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx; 686 687 g_event_type2 = type; 688 if (SPDK_BDEV_EVENT_REMOVE == type) { 689 spdk_bdev_close(desc); 690 } 691 } 692 693 static void 694 bdev_open_cb3(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx) 695 { 696 g_event_type3 = type; 697 } 698 699 static void 700 bdev_open_cb4(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx) 701 { 702 g_event_type4 = type; 703 } 704 705 static void 706 bdev_seek_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 707 { 708 g_seek_offset = spdk_bdev_io_get_seek_offset(bdev_io); 709 spdk_bdev_free_io(bdev_io); 710 } 711 712 static void 713 get_device_stat_test(void) 714 { 715 struct spdk_bdev *bdev; 716 struct spdk_bdev_io_stat *stat; 717 bool done; 718 719 bdev = allocate_bdev("bdev0"); 720 stat = calloc(1, sizeof(struct spdk_bdev_io_stat)); 721 if (stat == NULL) { 722 free_bdev(bdev); 723 return; 724 } 725 726 done = false; 727 spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done); 728 while (!done) { poll_threads(); } 729 730 free_bdev(bdev); 731 } 732 733 static void 734 open_write_test(void) 735 { 736 struct spdk_bdev *bdev[9]; 737 struct spdk_bdev_desc *desc[9] = {}; 738 int rc; 739 740 ut_init_bdev(NULL); 741 742 /* 743 * Create a tree of bdevs to test various open w/ write cases. 744 * 745 * bdev0 through bdev3 are physical block devices, such as NVMe 746 * namespaces or Ceph block devices. 747 * 748 * bdev4 is a virtual bdev with multiple base bdevs. This models 749 * caching or RAID use cases. 750 * 751 * bdev5 through bdev7 are all virtual bdevs with the same base 752 * bdev (except bdev7). This models partitioning or logical volume 753 * use cases. 754 * 755 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs 756 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This 757 * models caching, RAID, partitioning or logical volumes use cases. 758 * 759 * bdev8 is a virtual bdev with multiple base bdevs, but these 760 * base bdevs are themselves virtual bdevs. 761 * 762 * bdev8 763 * | 764 * +----------+ 765 * | | 766 * bdev4 bdev5 bdev6 bdev7 767 * | | | | 768 * +---+---+ +---+ + +---+---+ 769 * | | \ | / \ 770 * bdev0 bdev1 bdev2 bdev3 771 */ 772 773 bdev[0] = allocate_bdev("bdev0"); 774 rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if); 775 CU_ASSERT(rc == 0); 776 777 bdev[1] = allocate_bdev("bdev1"); 778 rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if); 779 CU_ASSERT(rc == 0); 780 781 bdev[2] = allocate_bdev("bdev2"); 782 rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if); 783 CU_ASSERT(rc == 0); 784 785 bdev[3] = allocate_bdev("bdev3"); 786 rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if); 787 CU_ASSERT(rc == 0); 788 789 bdev[4] = allocate_vbdev("bdev4"); 790 rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if); 791 CU_ASSERT(rc == 0); 792 793 bdev[5] = allocate_vbdev("bdev5"); 794 rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if); 795 CU_ASSERT(rc == 0); 796 797 bdev[6] = allocate_vbdev("bdev6"); 798 799 bdev[7] = allocate_vbdev("bdev7"); 800 801 bdev[8] = allocate_vbdev("bdev8"); 802 803 /* Open bdev0 read-only. This should succeed. */ 804 rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]); 805 CU_ASSERT(rc == 0); 806 SPDK_CU_ASSERT_FATAL(desc[0] != NULL); 807 CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0])); 808 spdk_bdev_close(desc[0]); 809 810 /* 811 * Open bdev1 read/write. This should fail since bdev1 has been claimed 812 * by a vbdev module. 813 */ 814 rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]); 815 CU_ASSERT(rc == -EPERM); 816 817 /* 818 * Open bdev4 read/write. This should fail since bdev3 has been claimed 819 * by a vbdev module. 820 */ 821 rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]); 822 CU_ASSERT(rc == -EPERM); 823 824 /* Open bdev4 read-only. This should succeed. */ 825 rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]); 826 CU_ASSERT(rc == 0); 827 SPDK_CU_ASSERT_FATAL(desc[4] != NULL); 828 CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4])); 829 spdk_bdev_close(desc[4]); 830 831 /* 832 * Open bdev8 read/write. This should succeed since it is a leaf 833 * bdev. 834 */ 835 rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]); 836 CU_ASSERT(rc == 0); 837 SPDK_CU_ASSERT_FATAL(desc[8] != NULL); 838 CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8])); 839 spdk_bdev_close(desc[8]); 840 841 /* 842 * Open bdev5 read/write. This should fail since bdev4 has been claimed 843 * by a vbdev module. 844 */ 845 rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]); 846 CU_ASSERT(rc == -EPERM); 847 848 /* Open bdev4 read-only. This should succeed. */ 849 rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]); 850 CU_ASSERT(rc == 0); 851 SPDK_CU_ASSERT_FATAL(desc[5] != NULL); 852 CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5])); 853 spdk_bdev_close(desc[5]); 854 855 free_vbdev(bdev[8]); 856 857 free_vbdev(bdev[5]); 858 free_vbdev(bdev[6]); 859 free_vbdev(bdev[7]); 860 861 free_vbdev(bdev[4]); 862 863 free_bdev(bdev[0]); 864 free_bdev(bdev[1]); 865 free_bdev(bdev[2]); 866 free_bdev(bdev[3]); 867 868 ut_fini_bdev(); 869 } 870 871 static void 872 claim_test(void) 873 { 874 struct spdk_bdev *bdev; 875 struct spdk_bdev_desc *desc, *open_desc; 876 int rc; 877 uint32_t count; 878 879 ut_init_bdev(NULL); 880 881 /* 882 * A vbdev that uses a read-only bdev may need it to remain read-only. 883 * To do so, it opens the bdev read-only, then claims it without 884 * passing a spdk_bdev_desc. 885 */ 886 bdev = allocate_bdev("bdev0"); 887 rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc); 888 CU_ASSERT(rc == 0); 889 CU_ASSERT(desc->write == false); 890 891 rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if); 892 CU_ASSERT(rc == 0); 893 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE); 894 CU_ASSERT(bdev->internal.claim.v1.module == &bdev_ut_if); 895 896 /* There should be only one open descriptor and it should still be ro */ 897 count = 0; 898 TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) { 899 CU_ASSERT(open_desc == desc); 900 CU_ASSERT(!open_desc->write); 901 count++; 902 } 903 CU_ASSERT(count == 1); 904 905 /* A read-only bdev is upgraded to read-write if desc is passed. */ 906 spdk_bdev_module_release_bdev(bdev); 907 rc = spdk_bdev_module_claim_bdev(bdev, desc, &bdev_ut_if); 908 CU_ASSERT(rc == 0); 909 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE); 910 CU_ASSERT(bdev->internal.claim.v1.module == &bdev_ut_if); 911 912 /* There should be only one open descriptor and it should be rw */ 913 count = 0; 914 TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) { 915 CU_ASSERT(open_desc == desc); 916 CU_ASSERT(open_desc->write); 917 count++; 918 } 919 CU_ASSERT(count == 1); 920 921 spdk_bdev_close(desc); 922 free_bdev(bdev); 923 ut_fini_bdev(); 924 } 925 926 static void 927 bytes_to_blocks_test(void) 928 { 929 struct spdk_bdev bdev; 930 uint64_t offset_blocks, num_blocks; 931 932 memset(&bdev, 0, sizeof(bdev)); 933 934 bdev.blocklen = 512; 935 936 /* All parameters valid */ 937 offset_blocks = 0; 938 num_blocks = 0; 939 CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0); 940 CU_ASSERT(offset_blocks == 1); 941 CU_ASSERT(num_blocks == 2); 942 943 /* Offset not a block multiple */ 944 CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0); 945 946 /* Length not a block multiple */ 947 CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0); 948 949 /* In case blocklen not the power of two */ 950 bdev.blocklen = 100; 951 CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0); 952 CU_ASSERT(offset_blocks == 1); 953 CU_ASSERT(num_blocks == 2); 954 955 /* Offset not a block multiple */ 956 CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0); 957 958 /* Length not a block multiple */ 959 CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0); 960 } 961 962 static void 963 num_blocks_test(void) 964 { 965 struct spdk_bdev *bdev; 966 struct spdk_bdev_desc *desc = NULL; 967 int rc; 968 969 ut_init_bdev(NULL); 970 bdev = allocate_bdev("num_blocks"); 971 972 spdk_bdev_notify_blockcnt_change(bdev, 50); 973 974 /* Growing block number */ 975 CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 70) == 0); 976 /* Shrinking block number */ 977 CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 30) == 0); 978 979 rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc, &desc); 980 CU_ASSERT(rc == 0); 981 SPDK_CU_ASSERT_FATAL(desc != NULL); 982 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 983 984 /* Growing block number */ 985 CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 80) == 0); 986 /* Shrinking block number */ 987 CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 20) != 0); 988 989 g_event_type1 = 0xFF; 990 /* Growing block number */ 991 CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 90) == 0); 992 993 poll_threads(); 994 CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE); 995 996 g_event_type1 = 0xFF; 997 /* Growing block number and closing */ 998 CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 100) == 0); 999 1000 spdk_bdev_close(desc); 1001 free_bdev(bdev); 1002 ut_fini_bdev(); 1003 1004 poll_threads(); 1005 1006 /* Callback is not called for closed device */ 1007 CU_ASSERT_EQUAL(g_event_type1, 0xFF); 1008 } 1009 1010 static void 1011 io_valid_test(void) 1012 { 1013 struct spdk_bdev bdev; 1014 1015 memset(&bdev, 0, sizeof(bdev)); 1016 1017 bdev.blocklen = 512; 1018 spdk_spin_init(&bdev.internal.spinlock); 1019 1020 spdk_bdev_notify_blockcnt_change(&bdev, 100); 1021 1022 /* All parameters valid */ 1023 CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true); 1024 1025 /* Last valid block */ 1026 CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true); 1027 1028 /* Offset past end of bdev */ 1029 CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false); 1030 1031 /* Offset + length past end of bdev */ 1032 CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false); 1033 1034 /* Offset near end of uint64_t range (2^64 - 1) */ 1035 CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false); 1036 1037 spdk_spin_destroy(&bdev.internal.spinlock); 1038 } 1039 1040 static void 1041 alias_add_del_test(void) 1042 { 1043 struct spdk_bdev *bdev[3]; 1044 int rc; 1045 1046 ut_init_bdev(NULL); 1047 1048 /* Creating and registering bdevs */ 1049 bdev[0] = allocate_bdev("bdev0"); 1050 SPDK_CU_ASSERT_FATAL(bdev[0] != 0); 1051 1052 bdev[1] = allocate_bdev("bdev1"); 1053 SPDK_CU_ASSERT_FATAL(bdev[1] != 0); 1054 1055 bdev[2] = allocate_bdev("bdev2"); 1056 SPDK_CU_ASSERT_FATAL(bdev[2] != 0); 1057 1058 poll_threads(); 1059 1060 /* 1061 * Trying adding an alias identical to name. 1062 * Alias is identical to name, so it can not be added to aliases list 1063 */ 1064 rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name); 1065 CU_ASSERT(rc == -EEXIST); 1066 1067 /* 1068 * Trying to add empty alias, 1069 * this one should fail 1070 */ 1071 rc = spdk_bdev_alias_add(bdev[0], NULL); 1072 CU_ASSERT(rc == -EINVAL); 1073 1074 /* Trying adding same alias to two different registered bdevs */ 1075 1076 /* Alias is used first time, so this one should pass */ 1077 rc = spdk_bdev_alias_add(bdev[0], "proper alias 0"); 1078 CU_ASSERT(rc == 0); 1079 1080 /* Alias was added to another bdev, so this one should fail */ 1081 rc = spdk_bdev_alias_add(bdev[1], "proper alias 0"); 1082 CU_ASSERT(rc == -EEXIST); 1083 1084 /* Alias is used first time, so this one should pass */ 1085 rc = spdk_bdev_alias_add(bdev[1], "proper alias 1"); 1086 CU_ASSERT(rc == 0); 1087 1088 /* Trying removing an alias from registered bdevs */ 1089 1090 /* Alias is not on a bdev aliases list, so this one should fail */ 1091 rc = spdk_bdev_alias_del(bdev[0], "not existing"); 1092 CU_ASSERT(rc == -ENOENT); 1093 1094 /* Alias is present on a bdev aliases list, so this one should pass */ 1095 rc = spdk_bdev_alias_del(bdev[0], "proper alias 0"); 1096 CU_ASSERT(rc == 0); 1097 1098 /* Alias is present on a bdev aliases list, so this one should pass */ 1099 rc = spdk_bdev_alias_del(bdev[1], "proper alias 1"); 1100 CU_ASSERT(rc == 0); 1101 1102 /* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */ 1103 rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name); 1104 CU_ASSERT(rc != 0); 1105 1106 /* Trying to del all alias from empty alias list */ 1107 spdk_bdev_alias_del_all(bdev[2]); 1108 SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases)); 1109 1110 /* Trying to del all alias from non-empty alias list */ 1111 rc = spdk_bdev_alias_add(bdev[2], "alias0"); 1112 CU_ASSERT(rc == 0); 1113 rc = spdk_bdev_alias_add(bdev[2], "alias1"); 1114 CU_ASSERT(rc == 0); 1115 spdk_bdev_alias_del_all(bdev[2]); 1116 CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases)); 1117 1118 /* Unregister and free bdevs */ 1119 spdk_bdev_unregister(bdev[0], NULL, NULL); 1120 spdk_bdev_unregister(bdev[1], NULL, NULL); 1121 spdk_bdev_unregister(bdev[2], NULL, NULL); 1122 1123 poll_threads(); 1124 1125 free(bdev[0]); 1126 free(bdev[1]); 1127 free(bdev[2]); 1128 1129 ut_fini_bdev(); 1130 } 1131 1132 static void 1133 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 1134 { 1135 g_io_done = true; 1136 g_io_status = bdev_io->internal.status; 1137 if ((bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) && 1138 (bdev_io->u.bdev.zcopy.start)) { 1139 g_zcopy_bdev_io = bdev_io; 1140 } else { 1141 spdk_bdev_free_io(bdev_io); 1142 g_zcopy_bdev_io = NULL; 1143 } 1144 } 1145 1146 struct bdev_ut_io_wait_entry { 1147 struct spdk_bdev_io_wait_entry entry; 1148 struct spdk_io_channel *io_ch; 1149 struct spdk_bdev_desc *desc; 1150 bool submitted; 1151 }; 1152 1153 static void 1154 io_wait_cb(void *arg) 1155 { 1156 struct bdev_ut_io_wait_entry *entry = arg; 1157 int rc; 1158 1159 rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL); 1160 CU_ASSERT(rc == 0); 1161 entry->submitted = true; 1162 } 1163 1164 static void 1165 bdev_io_types_test(void) 1166 { 1167 struct spdk_bdev *bdev; 1168 struct spdk_bdev_desc *desc = NULL; 1169 struct spdk_io_channel *io_ch; 1170 struct spdk_bdev_opts bdev_opts = {}; 1171 int rc; 1172 1173 spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts)); 1174 bdev_opts.bdev_io_pool_size = 4; 1175 bdev_opts.bdev_io_cache_size = 2; 1176 ut_init_bdev(&bdev_opts); 1177 1178 bdev = allocate_bdev("bdev0"); 1179 1180 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc); 1181 CU_ASSERT(rc == 0); 1182 poll_threads(); 1183 SPDK_CU_ASSERT_FATAL(desc != NULL); 1184 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 1185 io_ch = spdk_bdev_get_io_channel(desc); 1186 CU_ASSERT(io_ch != NULL); 1187 1188 /* WRITE and WRITE ZEROES are not supported */ 1189 ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false); 1190 ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false); 1191 rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL); 1192 CU_ASSERT(rc == -ENOTSUP); 1193 ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true); 1194 ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true); 1195 1196 /* NVME_IO, NVME_IO_MD and NVME_ADMIN are not supported */ 1197 ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, false); 1198 ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, false); 1199 ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, false); 1200 rc = spdk_bdev_nvme_io_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL); 1201 CU_ASSERT(rc == -ENOTSUP); 1202 rc = spdk_bdev_nvme_io_passthru_md(desc, io_ch, NULL, NULL, 0, NULL, 0, NULL, NULL); 1203 CU_ASSERT(rc == -ENOTSUP); 1204 rc = spdk_bdev_nvme_admin_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL); 1205 CU_ASSERT(rc == -ENOTSUP); 1206 ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, true); 1207 ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, true); 1208 ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, true); 1209 1210 spdk_put_io_channel(io_ch); 1211 spdk_bdev_close(desc); 1212 free_bdev(bdev); 1213 ut_fini_bdev(); 1214 } 1215 1216 static void 1217 bdev_io_wait_test(void) 1218 { 1219 struct spdk_bdev *bdev; 1220 struct spdk_bdev_desc *desc = NULL; 1221 struct spdk_io_channel *io_ch; 1222 struct spdk_bdev_opts bdev_opts = {}; 1223 struct bdev_ut_io_wait_entry io_wait_entry; 1224 struct bdev_ut_io_wait_entry io_wait_entry2; 1225 int rc; 1226 1227 spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts)); 1228 bdev_opts.bdev_io_pool_size = 4; 1229 bdev_opts.bdev_io_cache_size = 2; 1230 ut_init_bdev(&bdev_opts); 1231 1232 bdev = allocate_bdev("bdev0"); 1233 1234 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc); 1235 CU_ASSERT(rc == 0); 1236 poll_threads(); 1237 SPDK_CU_ASSERT_FATAL(desc != NULL); 1238 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 1239 io_ch = spdk_bdev_get_io_channel(desc); 1240 CU_ASSERT(io_ch != NULL); 1241 1242 rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL); 1243 CU_ASSERT(rc == 0); 1244 rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL); 1245 CU_ASSERT(rc == 0); 1246 rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL); 1247 CU_ASSERT(rc == 0); 1248 rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL); 1249 CU_ASSERT(rc == 0); 1250 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4); 1251 1252 rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL); 1253 CU_ASSERT(rc == -ENOMEM); 1254 1255 io_wait_entry.entry.bdev = bdev; 1256 io_wait_entry.entry.cb_fn = io_wait_cb; 1257 io_wait_entry.entry.cb_arg = &io_wait_entry; 1258 io_wait_entry.io_ch = io_ch; 1259 io_wait_entry.desc = desc; 1260 io_wait_entry.submitted = false; 1261 /* Cannot use the same io_wait_entry for two different calls. */ 1262 memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry)); 1263 io_wait_entry2.entry.cb_arg = &io_wait_entry2; 1264 1265 /* Queue two I/O waits. */ 1266 rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry); 1267 CU_ASSERT(rc == 0); 1268 CU_ASSERT(io_wait_entry.submitted == false); 1269 rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry); 1270 CU_ASSERT(rc == 0); 1271 CU_ASSERT(io_wait_entry2.submitted == false); 1272 1273 stub_complete_io(1); 1274 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4); 1275 CU_ASSERT(io_wait_entry.submitted == true); 1276 CU_ASSERT(io_wait_entry2.submitted == false); 1277 1278 stub_complete_io(1); 1279 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4); 1280 CU_ASSERT(io_wait_entry2.submitted == true); 1281 1282 stub_complete_io(4); 1283 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 1284 1285 spdk_put_io_channel(io_ch); 1286 spdk_bdev_close(desc); 1287 free_bdev(bdev); 1288 ut_fini_bdev(); 1289 } 1290 1291 static void 1292 bdev_io_spans_split_test(void) 1293 { 1294 struct spdk_bdev bdev; 1295 struct spdk_bdev_io bdev_io; 1296 struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV]; 1297 1298 memset(&bdev, 0, sizeof(bdev)); 1299 bdev_io.u.bdev.iovs = iov; 1300 1301 bdev_io.type = SPDK_BDEV_IO_TYPE_READ; 1302 bdev.optimal_io_boundary = 0; 1303 bdev.max_segment_size = 0; 1304 bdev.max_num_segments = 0; 1305 bdev_io.bdev = &bdev; 1306 1307 /* bdev has no optimal_io_boundary and max_size set - so this should return false. */ 1308 CU_ASSERT(bdev_io_should_split(&bdev_io) == false); 1309 1310 bdev.split_on_optimal_io_boundary = true; 1311 bdev.optimal_io_boundary = 32; 1312 bdev_io.type = SPDK_BDEV_IO_TYPE_RESET; 1313 1314 /* RESETs are not based on LBAs - so this should return false. */ 1315 CU_ASSERT(bdev_io_should_split(&bdev_io) == false); 1316 1317 bdev_io.type = SPDK_BDEV_IO_TYPE_READ; 1318 bdev_io.u.bdev.offset_blocks = 0; 1319 bdev_io.u.bdev.num_blocks = 32; 1320 1321 /* This I/O run right up to, but does not cross, the boundary - so this should return false. */ 1322 CU_ASSERT(bdev_io_should_split(&bdev_io) == false); 1323 1324 bdev_io.u.bdev.num_blocks = 33; 1325 1326 /* This I/O spans a boundary. */ 1327 CU_ASSERT(bdev_io_should_split(&bdev_io) == true); 1328 1329 bdev_io.u.bdev.num_blocks = 32; 1330 bdev.max_segment_size = 512 * 32; 1331 bdev.max_num_segments = 1; 1332 bdev_io.u.bdev.iovcnt = 1; 1333 iov[0].iov_len = 512; 1334 1335 /* Does not cross and exceed max_size or max_segs */ 1336 CU_ASSERT(bdev_io_should_split(&bdev_io) == false); 1337 1338 bdev.split_on_optimal_io_boundary = false; 1339 bdev.max_segment_size = 512; 1340 bdev.max_num_segments = 1; 1341 bdev_io.u.bdev.iovcnt = 2; 1342 1343 /* Exceed max_segs */ 1344 CU_ASSERT(bdev_io_should_split(&bdev_io) == true); 1345 1346 bdev.max_num_segments = 2; 1347 iov[0].iov_len = 513; 1348 iov[1].iov_len = 512; 1349 1350 /* Exceed max_sizes */ 1351 CU_ASSERT(bdev_io_should_split(&bdev_io) == true); 1352 1353 bdev.max_segment_size = 0; 1354 bdev.write_unit_size = 32; 1355 bdev.split_on_write_unit = true; 1356 bdev_io.type = SPDK_BDEV_IO_TYPE_WRITE; 1357 1358 /* This I/O is one write unit */ 1359 CU_ASSERT(bdev_io_should_split(&bdev_io) == false); 1360 1361 bdev_io.u.bdev.num_blocks = 32 * 2; 1362 1363 /* This I/O is more than one write unit */ 1364 CU_ASSERT(bdev_io_should_split(&bdev_io) == true); 1365 1366 bdev_io.u.bdev.offset_blocks = 1; 1367 bdev_io.u.bdev.num_blocks = 32; 1368 1369 /* This I/O is not aligned to write unit size */ 1370 CU_ASSERT(bdev_io_should_split(&bdev_io) == true); 1371 } 1372 1373 static void 1374 bdev_io_boundary_split_test(void) 1375 { 1376 struct spdk_bdev *bdev; 1377 struct spdk_bdev_desc *desc = NULL; 1378 struct spdk_io_channel *io_ch; 1379 struct spdk_bdev_opts bdev_opts = {}; 1380 struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2]; 1381 struct ut_expected_io *expected_io; 1382 void *md_buf = (void *)0xFF000000; 1383 uint64_t i; 1384 int rc; 1385 1386 spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts)); 1387 bdev_opts.bdev_io_pool_size = 512; 1388 bdev_opts.bdev_io_cache_size = 64; 1389 ut_init_bdev(&bdev_opts); 1390 1391 bdev = allocate_bdev("bdev0"); 1392 1393 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc); 1394 CU_ASSERT(rc == 0); 1395 SPDK_CU_ASSERT_FATAL(desc != NULL); 1396 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 1397 io_ch = spdk_bdev_get_io_channel(desc); 1398 CU_ASSERT(io_ch != NULL); 1399 1400 bdev->optimal_io_boundary = 16; 1401 bdev->split_on_optimal_io_boundary = false; 1402 1403 g_io_done = false; 1404 1405 /* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */ 1406 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1); 1407 ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512); 1408 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1409 1410 rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL); 1411 CU_ASSERT(rc == 0); 1412 CU_ASSERT(g_io_done == false); 1413 1414 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 1415 stub_complete_io(1); 1416 CU_ASSERT(g_io_done == true); 1417 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 1418 1419 bdev->split_on_optimal_io_boundary = true; 1420 bdev->md_interleave = false; 1421 bdev->md_len = 8; 1422 1423 /* Now test that a single-vector command is split correctly. 1424 * Offset 14, length 8, payload 0xF000 1425 * Child - Offset 14, length 2, payload 0xF000 1426 * Child - Offset 16, length 6, payload 0xF000 + 2 * 512 1427 * 1428 * Set up the expected values before calling spdk_bdev_read_blocks 1429 */ 1430 g_io_done = false; 1431 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1); 1432 expected_io->md_buf = md_buf; 1433 ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512); 1434 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1435 1436 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1); 1437 expected_io->md_buf = md_buf + 2 * 8; 1438 ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512); 1439 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1440 1441 /* spdk_bdev_read_blocks will submit the first child immediately. */ 1442 rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf, 1443 14, 8, io_done, NULL); 1444 CU_ASSERT(rc == 0); 1445 CU_ASSERT(g_io_done == false); 1446 1447 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 1448 stub_complete_io(2); 1449 CU_ASSERT(g_io_done == true); 1450 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 1451 1452 /* Now set up a more complex, multi-vector command that needs to be split, 1453 * including splitting iovecs. 1454 */ 1455 iov[0].iov_base = (void *)0x10000; 1456 iov[0].iov_len = 512; 1457 iov[1].iov_base = (void *)0x20000; 1458 iov[1].iov_len = 20 * 512; 1459 iov[2].iov_base = (void *)0x30000; 1460 iov[2].iov_len = 11 * 512; 1461 1462 g_io_done = false; 1463 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2); 1464 expected_io->md_buf = md_buf; 1465 ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512); 1466 ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512); 1467 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1468 1469 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1); 1470 expected_io->md_buf = md_buf + 2 * 8; 1471 ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512); 1472 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1473 1474 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2); 1475 expected_io->md_buf = md_buf + 18 * 8; 1476 ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512); 1477 ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512); 1478 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1479 1480 rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf, 1481 14, 32, io_done, NULL); 1482 CU_ASSERT(rc == 0); 1483 CU_ASSERT(g_io_done == false); 1484 1485 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3); 1486 stub_complete_io(3); 1487 CU_ASSERT(g_io_done == true); 1488 1489 /* Test multi vector command that needs to be split by strip and then needs to be 1490 * split further due to the capacity of child iovs. 1491 */ 1492 for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) { 1493 iov[i].iov_base = (void *)((i + 1) * 0x10000); 1494 iov[i].iov_len = 512; 1495 } 1496 1497 bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV; 1498 g_io_done = false; 1499 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV, 1500 SPDK_BDEV_IO_NUM_CHILD_IOV); 1501 expected_io->md_buf = md_buf; 1502 for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) { 1503 ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512); 1504 } 1505 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1506 1507 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV, 1508 SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV); 1509 expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8; 1510 for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) { 1511 ut_expected_io_set_iov(expected_io, i, 1512 (void *)((i + 1 + SPDK_BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512); 1513 } 1514 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1515 1516 rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf, 1517 0, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL); 1518 CU_ASSERT(rc == 0); 1519 CU_ASSERT(g_io_done == false); 1520 1521 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 1522 stub_complete_io(1); 1523 CU_ASSERT(g_io_done == false); 1524 1525 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 1526 stub_complete_io(1); 1527 CU_ASSERT(g_io_done == true); 1528 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 1529 1530 /* Test multi vector command that needs to be split by strip and then needs to be 1531 * split further due to the capacity of child iovs. In this case, the length of 1532 * the rest of iovec array with an I/O boundary is the multiple of block size. 1533 */ 1534 1535 /* Fill iovec array for exactly one boundary. The iovec cnt for this boundary 1536 * is SPDK_BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs. 1537 */ 1538 for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) { 1539 iov[i].iov_base = (void *)((i + 1) * 0x10000); 1540 iov[i].iov_len = 512; 1541 } 1542 for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) { 1543 iov[i].iov_base = (void *)((i + 1) * 0x10000); 1544 iov[i].iov_len = 256; 1545 } 1546 iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000); 1547 iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 512; 1548 1549 /* Add an extra iovec to trigger split */ 1550 iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000); 1551 iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512; 1552 1553 bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV; 1554 g_io_done = false; 1555 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1556 SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV); 1557 expected_io->md_buf = md_buf; 1558 for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) { 1559 ut_expected_io_set_iov(expected_io, i, 1560 (void *)((i + 1) * 0x10000), 512); 1561 } 1562 for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) { 1563 ut_expected_io_set_iov(expected_io, i, 1564 (void *)((i + 1) * 0x10000), 256); 1565 } 1566 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1567 1568 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1, 1569 1, 1); 1570 expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8; 1571 ut_expected_io_set_iov(expected_io, 0, 1572 (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512); 1573 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1574 1575 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV, 1576 1, 1); 1577 expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8; 1578 ut_expected_io_set_iov(expected_io, 0, 1579 (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512); 1580 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1581 1582 rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, md_buf, 1583 0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL); 1584 CU_ASSERT(rc == 0); 1585 CU_ASSERT(g_io_done == false); 1586 1587 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 1588 stub_complete_io(1); 1589 CU_ASSERT(g_io_done == false); 1590 1591 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 1592 stub_complete_io(2); 1593 CU_ASSERT(g_io_done == true); 1594 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 1595 1596 /* Test multi vector command that needs to be split by strip and then needs to be 1597 * split further due to the capacity of child iovs, the child request offset should 1598 * be rewind to last aligned offset and go success without error. 1599 */ 1600 for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) { 1601 iov[i].iov_base = (void *)((i + 1) * 0x10000); 1602 iov[i].iov_len = 512; 1603 } 1604 iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000); 1605 iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256; 1606 1607 iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000); 1608 iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256; 1609 1610 iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000); 1611 iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512; 1612 1613 bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV; 1614 g_io_done = false; 1615 g_io_status = 0; 1616 /* The first expected io should be start from offset 0 to SPDK_BDEV_IO_NUM_CHILD_IOV - 1 */ 1617 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1618 SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV - 1); 1619 expected_io->md_buf = md_buf; 1620 for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) { 1621 ut_expected_io_set_iov(expected_io, i, 1622 (void *)((i + 1) * 0x10000), 512); 1623 } 1624 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1625 /* The second expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV - 1 to SPDK_BDEV_IO_NUM_CHILD_IOV */ 1626 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1, 1627 1, 2); 1628 expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8; 1629 ut_expected_io_set_iov(expected_io, 0, 1630 (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000), 256); 1631 ut_expected_io_set_iov(expected_io, 1, 1632 (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256); 1633 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1634 /* The third expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV to SPDK_BDEV_IO_NUM_CHILD_IOV + 1 */ 1635 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV, 1636 1, 1); 1637 expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8; 1638 ut_expected_io_set_iov(expected_io, 0, 1639 (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512); 1640 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1641 1642 rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf, 1643 0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL); 1644 CU_ASSERT(rc == 0); 1645 CU_ASSERT(g_io_done == false); 1646 1647 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 1648 stub_complete_io(1); 1649 CU_ASSERT(g_io_done == false); 1650 1651 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 1652 stub_complete_io(2); 1653 CU_ASSERT(g_io_done == true); 1654 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 1655 1656 /* Test multi vector command that needs to be split due to the IO boundary and 1657 * the capacity of child iovs. Especially test the case when the command is 1658 * split due to the capacity of child iovs, the tail address is not aligned with 1659 * block size and is rewinded to the aligned address. 1660 * 1661 * The iovecs used in read request is complex but is based on the data 1662 * collected in the real issue. We change the base addresses but keep the lengths 1663 * not to loose the credibility of the test. 1664 */ 1665 bdev->optimal_io_boundary = 128; 1666 g_io_done = false; 1667 g_io_status = 0; 1668 1669 for (i = 0; i < 31; i++) { 1670 iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20)); 1671 iov[i].iov_len = 1024; 1672 } 1673 iov[31].iov_base = (void *)0xFEED1F00000; 1674 iov[31].iov_len = 32768; 1675 iov[32].iov_base = (void *)0xFEED2000000; 1676 iov[32].iov_len = 160; 1677 iov[33].iov_base = (void *)0xFEED2100000; 1678 iov[33].iov_len = 4096; 1679 iov[34].iov_base = (void *)0xFEED2200000; 1680 iov[34].iov_len = 4096; 1681 iov[35].iov_base = (void *)0xFEED2300000; 1682 iov[35].iov_len = 4096; 1683 iov[36].iov_base = (void *)0xFEED2400000; 1684 iov[36].iov_len = 4096; 1685 iov[37].iov_base = (void *)0xFEED2500000; 1686 iov[37].iov_len = 4096; 1687 iov[38].iov_base = (void *)0xFEED2600000; 1688 iov[38].iov_len = 4096; 1689 iov[39].iov_base = (void *)0xFEED2700000; 1690 iov[39].iov_len = 4096; 1691 iov[40].iov_base = (void *)0xFEED2800000; 1692 iov[40].iov_len = 4096; 1693 iov[41].iov_base = (void *)0xFEED2900000; 1694 iov[41].iov_len = 4096; 1695 iov[42].iov_base = (void *)0xFEED2A00000; 1696 iov[42].iov_len = 4096; 1697 iov[43].iov_base = (void *)0xFEED2B00000; 1698 iov[43].iov_len = 12288; 1699 iov[44].iov_base = (void *)0xFEED2C00000; 1700 iov[44].iov_len = 8192; 1701 iov[45].iov_base = (void *)0xFEED2F00000; 1702 iov[45].iov_len = 4096; 1703 iov[46].iov_base = (void *)0xFEED3000000; 1704 iov[46].iov_len = 4096; 1705 iov[47].iov_base = (void *)0xFEED3100000; 1706 iov[47].iov_len = 4096; 1707 iov[48].iov_base = (void *)0xFEED3200000; 1708 iov[48].iov_len = 24576; 1709 iov[49].iov_base = (void *)0xFEED3300000; 1710 iov[49].iov_len = 16384; 1711 iov[50].iov_base = (void *)0xFEED3400000; 1712 iov[50].iov_len = 12288; 1713 iov[51].iov_base = (void *)0xFEED3500000; 1714 iov[51].iov_len = 4096; 1715 iov[52].iov_base = (void *)0xFEED3600000; 1716 iov[52].iov_len = 4096; 1717 iov[53].iov_base = (void *)0xFEED3700000; 1718 iov[53].iov_len = 4096; 1719 iov[54].iov_base = (void *)0xFEED3800000; 1720 iov[54].iov_len = 28672; 1721 iov[55].iov_base = (void *)0xFEED3900000; 1722 iov[55].iov_len = 20480; 1723 iov[56].iov_base = (void *)0xFEED3A00000; 1724 iov[56].iov_len = 4096; 1725 iov[57].iov_base = (void *)0xFEED3B00000; 1726 iov[57].iov_len = 12288; 1727 iov[58].iov_base = (void *)0xFEED3C00000; 1728 iov[58].iov_len = 4096; 1729 iov[59].iov_base = (void *)0xFEED3D00000; 1730 iov[59].iov_len = 4096; 1731 iov[60].iov_base = (void *)0xFEED3E00000; 1732 iov[60].iov_len = 352; 1733 1734 /* The 1st child IO must be from iov[0] to iov[31] split by the capacity 1735 * of child iovs, 1736 */ 1737 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32); 1738 expected_io->md_buf = md_buf; 1739 for (i = 0; i < 32; i++) { 1740 ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len); 1741 } 1742 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1743 1744 /* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33] 1745 * split by the IO boundary requirement. 1746 */ 1747 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2); 1748 expected_io->md_buf = md_buf + 126 * 8; 1749 ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len); 1750 ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864); 1751 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1752 1753 /* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to 1754 * the first 864 bytes of iov[46] split by the IO boundary requirement. 1755 */ 1756 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14); 1757 expected_io->md_buf = md_buf + 128 * 8; 1758 ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864), 1759 iov[33].iov_len - 864); 1760 ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len); 1761 ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len); 1762 ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len); 1763 ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len); 1764 ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len); 1765 ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len); 1766 ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len); 1767 ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len); 1768 ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len); 1769 ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len); 1770 ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len); 1771 ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len); 1772 ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864); 1773 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1774 1775 /* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the 1776 * first 864 bytes of iov[52] split by the IO boundary requirement. 1777 */ 1778 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7); 1779 expected_io->md_buf = md_buf + 256 * 8; 1780 ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864), 1781 iov[46].iov_len - 864); 1782 ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len); 1783 ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len); 1784 ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len); 1785 ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len); 1786 ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len); 1787 ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864); 1788 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1789 1790 /* The 5th child IO must be from the remaining 3232 bytes of iov[52] to 1791 * the first 4096 bytes of iov[57] split by the IO boundary requirement. 1792 */ 1793 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6); 1794 expected_io->md_buf = md_buf + 384 * 8; 1795 ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864), 1796 iov[52].iov_len - 864); 1797 ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len); 1798 ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len); 1799 ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len); 1800 ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len); 1801 ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960); 1802 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1803 1804 /* The 6th child IO must be from the remaining 7328 bytes of iov[57] 1805 * to the first 3936 bytes of iov[58] split by the capacity of child iovs. 1806 */ 1807 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3); 1808 expected_io->md_buf = md_buf + 512 * 8; 1809 ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960), 1810 iov[57].iov_len - 4960); 1811 ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len); 1812 ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936); 1813 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1814 1815 /* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */ 1816 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2); 1817 expected_io->md_buf = md_buf + 542 * 8; 1818 ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936), 1819 iov[59].iov_len - 3936); 1820 ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len); 1821 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1822 1823 rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf, 1824 0, 543, io_done, NULL); 1825 CU_ASSERT(rc == 0); 1826 CU_ASSERT(g_io_done == false); 1827 1828 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 1829 stub_complete_io(1); 1830 CU_ASSERT(g_io_done == false); 1831 1832 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5); 1833 stub_complete_io(5); 1834 CU_ASSERT(g_io_done == false); 1835 1836 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 1837 stub_complete_io(1); 1838 CU_ASSERT(g_io_done == true); 1839 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 1840 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS); 1841 1842 /* Test a WRITE_ZEROES that would span an I/O boundary. WRITE_ZEROES should not be 1843 * split, so test that. 1844 */ 1845 bdev->optimal_io_boundary = 15; 1846 g_io_done = false; 1847 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0); 1848 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1849 1850 rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL); 1851 CU_ASSERT(rc == 0); 1852 CU_ASSERT(g_io_done == false); 1853 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 1854 stub_complete_io(1); 1855 CU_ASSERT(g_io_done == true); 1856 1857 /* Test an UNMAP. This should also not be split. */ 1858 bdev->optimal_io_boundary = 16; 1859 g_io_done = false; 1860 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0); 1861 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1862 1863 rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL); 1864 CU_ASSERT(rc == 0); 1865 CU_ASSERT(g_io_done == false); 1866 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 1867 stub_complete_io(1); 1868 CU_ASSERT(g_io_done == true); 1869 1870 /* Test a FLUSH. This should also not be split. */ 1871 bdev->optimal_io_boundary = 16; 1872 g_io_done = false; 1873 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0); 1874 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1875 1876 rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL); 1877 CU_ASSERT(rc == 0); 1878 CU_ASSERT(g_io_done == false); 1879 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 1880 stub_complete_io(1); 1881 CU_ASSERT(g_io_done == true); 1882 1883 /* Test a COPY. This should also not be split. */ 1884 bdev->optimal_io_boundary = 15; 1885 g_io_done = false; 1886 expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36); 1887 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1888 1889 rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL); 1890 CU_ASSERT(rc == 0); 1891 CU_ASSERT(g_io_done == false); 1892 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 1893 stub_complete_io(1); 1894 CU_ASSERT(g_io_done == true); 1895 1896 CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io)); 1897 1898 /* Children requests return an error status */ 1899 bdev->optimal_io_boundary = 16; 1900 iov[0].iov_base = (void *)0x10000; 1901 iov[0].iov_len = 512 * 64; 1902 g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED; 1903 g_io_done = false; 1904 g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS; 1905 1906 rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL); 1907 CU_ASSERT(rc == 0); 1908 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5); 1909 stub_complete_io(4); 1910 CU_ASSERT(g_io_done == false); 1911 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS); 1912 stub_complete_io(1); 1913 CU_ASSERT(g_io_done == true); 1914 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED); 1915 1916 /* Test if a multi vector command terminated with failure before continuing 1917 * splitting process when one of child I/O failed. 1918 * The multi vector command is as same as the above that needs to be split by strip 1919 * and then needs to be split further due to the capacity of child iovs. 1920 */ 1921 for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) { 1922 iov[i].iov_base = (void *)((i + 1) * 0x10000); 1923 iov[i].iov_len = 512; 1924 } 1925 iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000); 1926 iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256; 1927 1928 iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000); 1929 iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256; 1930 1931 iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000); 1932 iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512; 1933 1934 bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV; 1935 1936 g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED; 1937 g_io_done = false; 1938 g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS; 1939 1940 rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0, 1941 SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL); 1942 CU_ASSERT(rc == 0); 1943 CU_ASSERT(g_io_done == false); 1944 1945 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 1946 stub_complete_io(1); 1947 CU_ASSERT(g_io_done == true); 1948 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED); 1949 1950 g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 1951 1952 /* for this test we will create the following conditions to hit the code path where 1953 * we are trying to send and IO following a split that has no iovs because we had to 1954 * trim them for alignment reasons. 1955 * 1956 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200 1957 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV 1958 * position 30 and overshoot by 0x2e. 1959 * - That means we'll send the IO and loop back to pick up the remaining bytes at 1960 * child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e 1961 * which eliniates that vector so we just send the first split IO with 30 vectors 1962 * and let the completion pick up the last 2 vectors. 1963 */ 1964 bdev->optimal_io_boundary = 32; 1965 bdev->split_on_optimal_io_boundary = true; 1966 g_io_done = false; 1967 1968 /* Init all parent IOVs to 0x212 */ 1969 for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) { 1970 iov[i].iov_base = (void *)((i + 1) * 0x10000); 1971 iov[i].iov_len = 0x212; 1972 } 1973 1974 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV, 1975 SPDK_BDEV_IO_NUM_CHILD_IOV - 1); 1976 /* expect 0-29 to be 1:1 with the parent iov */ 1977 for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) { 1978 ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len); 1979 } 1980 1981 /* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment 1982 * where 0x1e is the amount we overshot the 16K boundary 1983 */ 1984 ut_expected_io_set_iov(expected_io, SPDK_BDEV_IO_NUM_CHILD_IOV - 2, 1985 (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4); 1986 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1987 1988 /* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was 1989 * shortened that take it to the next boundary and then a final one to get us to 1990 * 0x4200 bytes for the IO. 1991 */ 1992 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV, 1993 SPDK_BDEV_IO_NUM_CHILD_IOV, 2); 1994 /* position 30 picked up the remaining bytes to the next boundary */ 1995 ut_expected_io_set_iov(expected_io, 0, 1996 (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e); 1997 1998 /* position 31 picked the the rest of the transfer to get us to 0x4200 */ 1999 ut_expected_io_set_iov(expected_io, 1, 2000 (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2); 2001 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2002 2003 rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, 0, 2004 SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL); 2005 CU_ASSERT(rc == 0); 2006 CU_ASSERT(g_io_done == false); 2007 2008 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 2009 stub_complete_io(1); 2010 CU_ASSERT(g_io_done == false); 2011 2012 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 2013 stub_complete_io(1); 2014 CU_ASSERT(g_io_done == true); 2015 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 2016 2017 spdk_put_io_channel(io_ch); 2018 spdk_bdev_close(desc); 2019 free_bdev(bdev); 2020 ut_fini_bdev(); 2021 } 2022 2023 static void 2024 bdev_io_max_size_and_segment_split_test(void) 2025 { 2026 struct spdk_bdev *bdev; 2027 struct spdk_bdev_desc *desc = NULL; 2028 struct spdk_io_channel *io_ch; 2029 struct spdk_bdev_opts bdev_opts = {}; 2030 struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2]; 2031 struct ut_expected_io *expected_io; 2032 uint64_t i; 2033 int rc; 2034 2035 spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts)); 2036 bdev_opts.bdev_io_pool_size = 512; 2037 bdev_opts.bdev_io_cache_size = 64; 2038 bdev_opts.opts_size = sizeof(bdev_opts); 2039 ut_init_bdev(&bdev_opts); 2040 2041 bdev = allocate_bdev("bdev0"); 2042 2043 rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc); 2044 CU_ASSERT(rc == 0); 2045 SPDK_CU_ASSERT_FATAL(desc != NULL); 2046 io_ch = spdk_bdev_get_io_channel(desc); 2047 CU_ASSERT(io_ch != NULL); 2048 2049 bdev->split_on_optimal_io_boundary = false; 2050 bdev->optimal_io_boundary = 0; 2051 2052 /* Case 0 max_num_segments == 0. 2053 * but segment size 2 * 512 > 512 2054 */ 2055 bdev->max_segment_size = 512; 2056 bdev->max_num_segments = 0; 2057 g_io_done = false; 2058 2059 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2); 2060 ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512); 2061 ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512); 2062 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2063 2064 rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL); 2065 CU_ASSERT(rc == 0); 2066 CU_ASSERT(g_io_done == false); 2067 2068 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 2069 stub_complete_io(1); 2070 CU_ASSERT(g_io_done == true); 2071 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 2072 2073 /* Case 1 max_segment_size == 0 2074 * but iov num 2 > 1. 2075 */ 2076 bdev->max_segment_size = 0; 2077 bdev->max_num_segments = 1; 2078 g_io_done = false; 2079 2080 iov[0].iov_base = (void *)0x10000; 2081 iov[0].iov_len = 512; 2082 iov[1].iov_base = (void *)0x20000; 2083 iov[1].iov_len = 8 * 512; 2084 2085 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1); 2086 ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len); 2087 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2088 2089 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1); 2090 ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len); 2091 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2092 2093 rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL); 2094 CU_ASSERT(rc == 0); 2095 CU_ASSERT(g_io_done == false); 2096 2097 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 2098 stub_complete_io(2); 2099 CU_ASSERT(g_io_done == true); 2100 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 2101 2102 /* Test that a non-vector command is split correctly. 2103 * Set up the expected values before calling spdk_bdev_read_blocks 2104 */ 2105 bdev->max_segment_size = 512; 2106 bdev->max_num_segments = 1; 2107 g_io_done = false; 2108 2109 /* Child IO 0 */ 2110 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1); 2111 ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512); 2112 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2113 2114 /* Child IO 1 */ 2115 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1); 2116 ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512); 2117 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2118 2119 /* spdk_bdev_read_blocks will submit the first child immediately. */ 2120 rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL); 2121 CU_ASSERT(rc == 0); 2122 CU_ASSERT(g_io_done == false); 2123 2124 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 2125 stub_complete_io(2); 2126 CU_ASSERT(g_io_done == true); 2127 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 2128 2129 /* Now set up a more complex, multi-vector command that needs to be split, 2130 * including splitting iovecs. 2131 */ 2132 bdev->max_segment_size = 2 * 512; 2133 bdev->max_num_segments = 1; 2134 g_io_done = false; 2135 2136 iov[0].iov_base = (void *)0x10000; 2137 iov[0].iov_len = 2 * 512; 2138 iov[1].iov_base = (void *)0x20000; 2139 iov[1].iov_len = 4 * 512; 2140 iov[2].iov_base = (void *)0x30000; 2141 iov[2].iov_len = 6 * 512; 2142 2143 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1); 2144 ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2); 2145 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2146 2147 /* Split iov[1].size to 2 iov entries then split the segments */ 2148 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1); 2149 ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2); 2150 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2151 2152 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1); 2153 ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2); 2154 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2155 2156 /* Split iov[2].size to 3 iov entries then split the segments */ 2157 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1); 2158 ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2); 2159 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2160 2161 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1); 2162 ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2); 2163 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2164 2165 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1); 2166 ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2); 2167 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2168 2169 rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL); 2170 CU_ASSERT(rc == 0); 2171 CU_ASSERT(g_io_done == false); 2172 2173 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6); 2174 stub_complete_io(6); 2175 CU_ASSERT(g_io_done == true); 2176 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 2177 2178 /* Test multi vector command that needs to be split by strip and then needs to be 2179 * split further due to the capacity of parent IO child iovs. 2180 */ 2181 bdev->max_segment_size = 512; 2182 bdev->max_num_segments = 1; 2183 g_io_done = false; 2184 2185 for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) { 2186 iov[i].iov_base = (void *)((i + 1) * 0x10000); 2187 iov[i].iov_len = 512 * 2; 2188 } 2189 2190 /* Each input iov.size is split into 2 iovs, 2191 * half of the input iov can fill all child iov entries of a single IO. 2192 */ 2193 for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i++) { 2194 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1); 2195 ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512); 2196 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2197 2198 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1); 2199 ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512); 2200 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2201 } 2202 2203 /* The remaining iov is split in the second round */ 2204 for (i = SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) { 2205 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1); 2206 ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512); 2207 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2208 2209 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1); 2210 ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512); 2211 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2212 } 2213 2214 rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0, 2215 SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL); 2216 CU_ASSERT(rc == 0); 2217 CU_ASSERT(g_io_done == false); 2218 2219 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV); 2220 stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV); 2221 CU_ASSERT(g_io_done == false); 2222 2223 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV); 2224 stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV); 2225 CU_ASSERT(g_io_done == true); 2226 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 2227 2228 /* A wrong case, a child IO that is divided does 2229 * not meet the principle of multiples of block size, 2230 * and exits with error 2231 */ 2232 bdev->max_segment_size = 512; 2233 bdev->max_num_segments = 1; 2234 g_io_done = false; 2235 2236 iov[0].iov_base = (void *)0x10000; 2237 iov[0].iov_len = 512 + 256; 2238 iov[1].iov_base = (void *)0x20000; 2239 iov[1].iov_len = 256; 2240 2241 /* iov[0] is split to 512 and 256. 2242 * 256 is less than a block size, and it is found 2243 * in the next round of split that it is the first child IO smaller than 2244 * the block size, so the error exit 2245 */ 2246 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1); 2247 ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512); 2248 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2249 2250 rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL); 2251 CU_ASSERT(rc == 0); 2252 CU_ASSERT(g_io_done == false); 2253 2254 /* First child IO is OK */ 2255 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 2256 stub_complete_io(1); 2257 CU_ASSERT(g_io_done == true); 2258 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 2259 2260 /* error exit */ 2261 stub_complete_io(1); 2262 CU_ASSERT(g_io_done == true); 2263 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED); 2264 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 2265 2266 /* Test multi vector command that needs to be split by strip and then needs to be 2267 * split further due to the capacity of child iovs. 2268 * 2269 * In this case, the last two iovs need to be split, but it will exceed the capacity 2270 * of child iovs, so it needs to wait until the first batch completed. 2271 */ 2272 bdev->max_segment_size = 512; 2273 bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV; 2274 g_io_done = false; 2275 2276 for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) { 2277 iov[i].iov_base = (void *)((i + 1) * 0x10000); 2278 iov[i].iov_len = 512; 2279 } 2280 for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) { 2281 iov[i].iov_base = (void *)((i + 1) * 0x10000); 2282 iov[i].iov_len = 512 * 2; 2283 } 2284 2285 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 2286 SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV); 2287 /* 0 ~ (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */ 2288 for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) { 2289 ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len); 2290 } 2291 /* (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) is split */ 2292 ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512); 2293 ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512); 2294 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2295 2296 /* Child iov entries exceed the max num of parent IO so split it in next round */ 2297 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV, 2, 2); 2298 ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512); 2299 ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512); 2300 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2301 2302 rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0, 2303 SPDK_BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL); 2304 CU_ASSERT(rc == 0); 2305 CU_ASSERT(g_io_done == false); 2306 2307 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 2308 stub_complete_io(1); 2309 CU_ASSERT(g_io_done == false); 2310 2311 /* Next round */ 2312 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 2313 stub_complete_io(1); 2314 CU_ASSERT(g_io_done == true); 2315 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 2316 2317 /* This case is similar to the previous one, but the io composed of 2318 * the last few entries of child iov is not enough for a blocklen, so they 2319 * cannot be put into this IO, but wait until the next time. 2320 */ 2321 bdev->max_segment_size = 512; 2322 bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV; 2323 g_io_done = false; 2324 2325 for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) { 2326 iov[i].iov_base = (void *)((i + 1) * 0x10000); 2327 iov[i].iov_len = 512; 2328 } 2329 2330 for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) { 2331 iov[i].iov_base = (void *)((i + 1) * 0x10000); 2332 iov[i].iov_len = 128; 2333 } 2334 2335 /* First child iovcnt is't SPDK_BDEV_IO_NUM_CHILD_IOV but SPDK_BDEV_IO_NUM_CHILD_IOV - 2. 2336 * Because the left 2 iov is not enough for a blocklen. 2337 */ 2338 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 2339 SPDK_BDEV_IO_NUM_CHILD_IOV - 2, SPDK_BDEV_IO_NUM_CHILD_IOV - 2); 2340 for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) { 2341 ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len); 2342 } 2343 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2344 2345 /* The second child io waits until the end of the first child io before executing. 2346 * Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO. 2347 * SPDK_BDEV_IO_NUM_CHILD_IOV - 2 to SPDK_BDEV_IO_NUM_CHILD_IOV + 2 2348 */ 2349 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 2, 2350 1, 4); 2351 ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len); 2352 ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len); 2353 ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len); 2354 ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len); 2355 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2356 2357 rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0, 2358 SPDK_BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL); 2359 CU_ASSERT(rc == 0); 2360 CU_ASSERT(g_io_done == false); 2361 2362 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 2363 stub_complete_io(1); 2364 CU_ASSERT(g_io_done == false); 2365 2366 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 2367 stub_complete_io(1); 2368 CU_ASSERT(g_io_done == true); 2369 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 2370 2371 /* A very complicated case. Each sg entry exceeds max_segment_size and 2372 * needs to be split. At the same time, child io must be a multiple of blocklen. 2373 * At the same time, child iovcnt exceeds parent iovcnt. 2374 */ 2375 bdev->max_segment_size = 512 + 128; 2376 bdev->max_num_segments = 3; 2377 g_io_done = false; 2378 2379 for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) { 2380 iov[i].iov_base = (void *)((i + 1) * 0x10000); 2381 iov[i].iov_len = 512 + 256; 2382 } 2383 2384 for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) { 2385 iov[i].iov_base = (void *)((i + 1) * 0x10000); 2386 iov[i].iov_len = 512 + 128; 2387 } 2388 2389 /* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries. 2390 * Consume 4 parent IO iov entries per for() round and 6 block size. 2391 * Generate 9 child IOs. 2392 */ 2393 for (i = 0; i < 3; i++) { 2394 uint32_t j = i * 4; 2395 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3); 2396 ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640); 2397 ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128); 2398 ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256); 2399 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2400 2401 /* Child io must be a multiple of blocklen 2402 * iov[j + 2] must be split. If the third entry is also added, 2403 * the multiple of blocklen cannot be guaranteed. But it still 2404 * occupies one iov entry of the parent child iov. 2405 */ 2406 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2); 2407 ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512); 2408 ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512); 2409 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2410 2411 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3); 2412 ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256); 2413 ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640); 2414 ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128); 2415 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2416 } 2417 2418 /* Child iov position at 27, the 10th child IO 2419 * iov entry index is 3 * 4 and offset is 3 * 6 2420 */ 2421 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3); 2422 ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640); 2423 ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128); 2424 ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256); 2425 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2426 2427 /* Child iov position at 30, the 11th child IO */ 2428 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2); 2429 ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512); 2430 ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512); 2431 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2432 2433 /* The 2nd split round and iovpos is 0, the 12th child IO */ 2434 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3); 2435 ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256); 2436 ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640); 2437 ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128); 2438 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2439 2440 /* Consume 9 child IOs and 27 child iov entries. 2441 * Consume 4 parent IO iov entries per for() round and 6 block size. 2442 * Parent IO iov index start from 16 and block offset start from 24 2443 */ 2444 for (i = 0; i < 3; i++) { 2445 uint32_t j = i * 4 + 16; 2446 uint32_t offset = i * 6 + 24; 2447 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3); 2448 ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640); 2449 ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128); 2450 ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256); 2451 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2452 2453 /* Child io must be a multiple of blocklen 2454 * iov[j + 2] must be split. If the third entry is also added, 2455 * the multiple of blocklen cannot be guaranteed. But it still 2456 * occupies one iov entry of the parent child iov. 2457 */ 2458 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2); 2459 ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512); 2460 ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512); 2461 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2462 2463 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3); 2464 ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256); 2465 ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640); 2466 ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128); 2467 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2468 } 2469 2470 /* The 22th child IO, child iov position at 30 */ 2471 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1); 2472 ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512); 2473 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2474 2475 /* The third round */ 2476 /* Here is the 23nd child IO and child iovpos is 0 */ 2477 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3); 2478 ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256); 2479 ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640); 2480 ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128); 2481 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2482 2483 /* The 24th child IO */ 2484 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3); 2485 ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640); 2486 ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640); 2487 ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256); 2488 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2489 2490 /* The 25th child IO */ 2491 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2); 2492 ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384); 2493 ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640); 2494 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2495 2496 rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0, 2497 50, io_done, NULL); 2498 CU_ASSERT(rc == 0); 2499 CU_ASSERT(g_io_done == false); 2500 2501 /* Parent IO supports up to 32 child iovs, so it is calculated that 2502 * a maximum of 11 IOs can be split at a time, and the 2503 * splitting will continue after the first batch is over. 2504 */ 2505 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11); 2506 stub_complete_io(11); 2507 CU_ASSERT(g_io_done == false); 2508 2509 /* The 2nd round */ 2510 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11); 2511 stub_complete_io(11); 2512 CU_ASSERT(g_io_done == false); 2513 2514 /* The last round */ 2515 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3); 2516 stub_complete_io(3); 2517 CU_ASSERT(g_io_done == true); 2518 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 2519 2520 /* Test an WRITE_ZEROES. This should also not be split. */ 2521 bdev->max_segment_size = 512; 2522 bdev->max_num_segments = 1; 2523 g_io_done = false; 2524 2525 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0); 2526 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2527 2528 rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL); 2529 CU_ASSERT(rc == 0); 2530 CU_ASSERT(g_io_done == false); 2531 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 2532 stub_complete_io(1); 2533 CU_ASSERT(g_io_done == true); 2534 2535 /* Test an UNMAP. This should also not be split. */ 2536 g_io_done = false; 2537 2538 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0); 2539 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2540 2541 rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL); 2542 CU_ASSERT(rc == 0); 2543 CU_ASSERT(g_io_done == false); 2544 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 2545 stub_complete_io(1); 2546 CU_ASSERT(g_io_done == true); 2547 2548 /* Test a FLUSH. This should also not be split. */ 2549 g_io_done = false; 2550 2551 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0); 2552 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2553 2554 rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL); 2555 CU_ASSERT(rc == 0); 2556 CU_ASSERT(g_io_done == false); 2557 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 2558 stub_complete_io(1); 2559 CU_ASSERT(g_io_done == true); 2560 2561 /* Test a COPY. This should also not be split. */ 2562 g_io_done = false; 2563 2564 expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36); 2565 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2566 2567 rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL); 2568 CU_ASSERT(rc == 0); 2569 CU_ASSERT(g_io_done == false); 2570 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 2571 stub_complete_io(1); 2572 CU_ASSERT(g_io_done == true); 2573 2574 spdk_put_io_channel(io_ch); 2575 spdk_bdev_close(desc); 2576 free_bdev(bdev); 2577 ut_fini_bdev(); 2578 } 2579 2580 static void 2581 bdev_io_mix_split_test(void) 2582 { 2583 struct spdk_bdev *bdev; 2584 struct spdk_bdev_desc *desc = NULL; 2585 struct spdk_io_channel *io_ch; 2586 struct spdk_bdev_opts bdev_opts = {}; 2587 struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2]; 2588 struct ut_expected_io *expected_io; 2589 uint64_t i; 2590 int rc; 2591 2592 spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts)); 2593 bdev_opts.bdev_io_pool_size = 512; 2594 bdev_opts.bdev_io_cache_size = 64; 2595 ut_init_bdev(&bdev_opts); 2596 2597 bdev = allocate_bdev("bdev0"); 2598 2599 rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc); 2600 CU_ASSERT(rc == 0); 2601 SPDK_CU_ASSERT_FATAL(desc != NULL); 2602 io_ch = spdk_bdev_get_io_channel(desc); 2603 CU_ASSERT(io_ch != NULL); 2604 2605 /* First case optimal_io_boundary == max_segment_size * max_num_segments */ 2606 bdev->split_on_optimal_io_boundary = true; 2607 bdev->optimal_io_boundary = 16; 2608 2609 bdev->max_segment_size = 512; 2610 bdev->max_num_segments = 16; 2611 g_io_done = false; 2612 2613 /* IO crossing the IO boundary requires split 2614 * Total 2 child IOs. 2615 */ 2616 2617 /* The 1st child IO split the segment_size to multiple segment entry */ 2618 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2); 2619 ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512); 2620 ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512); 2621 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2622 2623 /* The 2nd child IO split the segment_size to multiple segment entry */ 2624 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2); 2625 ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512); 2626 ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512); 2627 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2628 2629 rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL); 2630 CU_ASSERT(rc == 0); 2631 CU_ASSERT(g_io_done == false); 2632 2633 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 2634 stub_complete_io(2); 2635 CU_ASSERT(g_io_done == true); 2636 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 2637 2638 /* Second case optimal_io_boundary > max_segment_size * max_num_segments */ 2639 bdev->max_segment_size = 15 * 512; 2640 bdev->max_num_segments = 1; 2641 g_io_done = false; 2642 2643 /* IO crossing the IO boundary requires split. 2644 * The 1st child IO segment size exceeds the max_segment_size, 2645 * So 1st child IO will be split to multiple segment entry. 2646 * Then it split to 2 child IOs because of the max_num_segments. 2647 * Total 3 child IOs. 2648 */ 2649 2650 /* The first 2 IOs are in an IO boundary. 2651 * Because the optimal_io_boundary > max_segment_size * max_num_segments 2652 * So it split to the first 2 IOs. 2653 */ 2654 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1); 2655 ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15); 2656 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2657 2658 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1); 2659 ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512); 2660 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2661 2662 /* The 3rd Child IO is because of the io boundary */ 2663 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1); 2664 ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2); 2665 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2666 2667 rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL); 2668 CU_ASSERT(rc == 0); 2669 CU_ASSERT(g_io_done == false); 2670 2671 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3); 2672 stub_complete_io(3); 2673 CU_ASSERT(g_io_done == true); 2674 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 2675 2676 /* Third case optimal_io_boundary < max_segment_size * max_num_segments */ 2677 bdev->max_segment_size = 17 * 512; 2678 bdev->max_num_segments = 1; 2679 g_io_done = false; 2680 2681 /* IO crossing the IO boundary requires split. 2682 * Child IO does not split. 2683 * Total 2 child IOs. 2684 */ 2685 2686 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1); 2687 ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16); 2688 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2689 2690 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1); 2691 ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2); 2692 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2693 2694 rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL); 2695 CU_ASSERT(rc == 0); 2696 CU_ASSERT(g_io_done == false); 2697 2698 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 2699 stub_complete_io(2); 2700 CU_ASSERT(g_io_done == true); 2701 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 2702 2703 /* Now set up a more complex, multi-vector command that needs to be split, 2704 * including splitting iovecs. 2705 * optimal_io_boundary < max_segment_size * max_num_segments 2706 */ 2707 bdev->max_segment_size = 3 * 512; 2708 bdev->max_num_segments = 6; 2709 g_io_done = false; 2710 2711 iov[0].iov_base = (void *)0x10000; 2712 iov[0].iov_len = 4 * 512; 2713 iov[1].iov_base = (void *)0x20000; 2714 iov[1].iov_len = 4 * 512; 2715 iov[2].iov_base = (void *)0x30000; 2716 iov[2].iov_len = 10 * 512; 2717 2718 /* IO crossing the IO boundary requires split. 2719 * The 1st child IO segment size exceeds the max_segment_size and after 2720 * splitting segment_size, the num_segments exceeds max_num_segments. 2721 * So 1st child IO will be split to 2 child IOs. 2722 * Total 3 child IOs. 2723 */ 2724 2725 /* The first 2 IOs are in an IO boundary. 2726 * After splitting segment size the segment num exceeds. 2727 * So it splits to 2 child IOs. 2728 */ 2729 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6); 2730 ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3); 2731 ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512); 2732 ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3); 2733 ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512); 2734 ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3); 2735 ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3); 2736 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2737 2738 /* The 2nd child IO has the left segment entry */ 2739 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1); 2740 ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2); 2741 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2742 2743 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1); 2744 ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2); 2745 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2746 2747 rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL); 2748 CU_ASSERT(rc == 0); 2749 CU_ASSERT(g_io_done == false); 2750 2751 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3); 2752 stub_complete_io(3); 2753 CU_ASSERT(g_io_done == true); 2754 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 2755 2756 /* A very complicated case. Each sg entry exceeds max_segment_size 2757 * and split on io boundary. 2758 * optimal_io_boundary < max_segment_size * max_num_segments 2759 */ 2760 bdev->max_segment_size = 3 * 512; 2761 bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV; 2762 g_io_done = false; 2763 2764 for (i = 0; i < 20; i++) { 2765 iov[i].iov_base = (void *)((i + 1) * 0x10000); 2766 iov[i].iov_len = 512 * 4; 2767 } 2768 2769 /* IO crossing the IO boundary requires split. 2770 * 80 block length can split 5 child IOs base on offset and IO boundary. 2771 * Each iov entry needs to be split to 2 entries because of max_segment_size 2772 * Total 5 child IOs. 2773 */ 2774 2775 /* 4 iov entries are in an IO boundary and each iov entry splits to 2. 2776 * So each child IO occupies 8 child iov entries. 2777 */ 2778 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8); 2779 for (i = 0; i < 4; i++) { 2780 int iovcnt = i * 2; 2781 ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3); 2782 ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512); 2783 } 2784 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2785 2786 /* 2nd child IO and total 16 child iov entries of parent IO */ 2787 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8); 2788 for (i = 4; i < 8; i++) { 2789 int iovcnt = (i - 4) * 2; 2790 ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3); 2791 ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512); 2792 } 2793 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2794 2795 /* 3rd child IO and total 24 child iov entries of parent IO */ 2796 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8); 2797 for (i = 8; i < 12; i++) { 2798 int iovcnt = (i - 8) * 2; 2799 ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3); 2800 ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512); 2801 } 2802 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2803 2804 /* 4th child IO and total 32 child iov entries of parent IO */ 2805 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8); 2806 for (i = 12; i < 16; i++) { 2807 int iovcnt = (i - 12) * 2; 2808 ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3); 2809 ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512); 2810 } 2811 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2812 2813 /* 5th child IO and because of the child iov entry it should be split 2814 * in next round. 2815 */ 2816 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8); 2817 for (i = 16; i < 20; i++) { 2818 int iovcnt = (i - 16) * 2; 2819 ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3); 2820 ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512); 2821 } 2822 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2823 2824 rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL); 2825 CU_ASSERT(rc == 0); 2826 CU_ASSERT(g_io_done == false); 2827 2828 /* First split round */ 2829 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4); 2830 stub_complete_io(4); 2831 CU_ASSERT(g_io_done == false); 2832 2833 /* Second split round */ 2834 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 2835 stub_complete_io(1); 2836 CU_ASSERT(g_io_done == true); 2837 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 2838 2839 spdk_put_io_channel(io_ch); 2840 spdk_bdev_close(desc); 2841 free_bdev(bdev); 2842 ut_fini_bdev(); 2843 } 2844 2845 static void 2846 bdev_io_split_with_io_wait(void) 2847 { 2848 struct spdk_bdev *bdev; 2849 struct spdk_bdev_desc *desc = NULL; 2850 struct spdk_io_channel *io_ch; 2851 struct spdk_bdev_channel *channel; 2852 struct spdk_bdev_mgmt_channel *mgmt_ch; 2853 struct spdk_bdev_opts bdev_opts = {}; 2854 struct iovec iov[3]; 2855 struct ut_expected_io *expected_io; 2856 int rc; 2857 2858 spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts)); 2859 bdev_opts.bdev_io_pool_size = 2; 2860 bdev_opts.bdev_io_cache_size = 1; 2861 ut_init_bdev(&bdev_opts); 2862 2863 bdev = allocate_bdev("bdev0"); 2864 2865 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc); 2866 CU_ASSERT(rc == 0); 2867 CU_ASSERT(desc != NULL); 2868 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 2869 io_ch = spdk_bdev_get_io_channel(desc); 2870 CU_ASSERT(io_ch != NULL); 2871 channel = spdk_io_channel_get_ctx(io_ch); 2872 mgmt_ch = channel->shared_resource->mgmt_ch; 2873 2874 bdev->optimal_io_boundary = 16; 2875 bdev->split_on_optimal_io_boundary = true; 2876 2877 rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL); 2878 CU_ASSERT(rc == 0); 2879 2880 /* Now test that a single-vector command is split correctly. 2881 * Offset 14, length 8, payload 0xF000 2882 * Child - Offset 14, length 2, payload 0xF000 2883 * Child - Offset 16, length 6, payload 0xF000 + 2 * 512 2884 * 2885 * Set up the expected values before calling spdk_bdev_read_blocks 2886 */ 2887 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1); 2888 ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512); 2889 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2890 2891 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1); 2892 ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512); 2893 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2894 2895 /* The following children will be submitted sequentially due to the capacity of 2896 * spdk_bdev_io. 2897 */ 2898 2899 /* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */ 2900 rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL); 2901 CU_ASSERT(rc == 0); 2902 CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue)); 2903 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 2904 2905 /* Completing the first read I/O will submit the first child */ 2906 stub_complete_io(1); 2907 CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue)); 2908 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 2909 2910 /* Completing the first child will submit the second child */ 2911 stub_complete_io(1); 2912 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 2913 2914 /* Complete the second child I/O. This should result in our callback getting 2915 * invoked since the parent I/O is now complete. 2916 */ 2917 stub_complete_io(1); 2918 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 2919 2920 /* Now set up a more complex, multi-vector command that needs to be split, 2921 * including splitting iovecs. 2922 */ 2923 iov[0].iov_base = (void *)0x10000; 2924 iov[0].iov_len = 512; 2925 iov[1].iov_base = (void *)0x20000; 2926 iov[1].iov_len = 20 * 512; 2927 iov[2].iov_base = (void *)0x30000; 2928 iov[2].iov_len = 11 * 512; 2929 2930 g_io_done = false; 2931 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2); 2932 ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512); 2933 ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512); 2934 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2935 2936 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1); 2937 ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512); 2938 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2939 2940 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2); 2941 ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512); 2942 ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512); 2943 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 2944 2945 rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL); 2946 CU_ASSERT(rc == 0); 2947 CU_ASSERT(g_io_done == false); 2948 2949 /* The following children will be submitted sequentially due to the capacity of 2950 * spdk_bdev_io. 2951 */ 2952 2953 /* Completing the first child will submit the second child */ 2954 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 2955 stub_complete_io(1); 2956 CU_ASSERT(g_io_done == false); 2957 2958 /* Completing the second child will submit the third child */ 2959 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 2960 stub_complete_io(1); 2961 CU_ASSERT(g_io_done == false); 2962 2963 /* Completing the third child will result in our callback getting invoked 2964 * since the parent I/O is now complete. 2965 */ 2966 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 2967 stub_complete_io(1); 2968 CU_ASSERT(g_io_done == true); 2969 2970 CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io)); 2971 2972 spdk_put_io_channel(io_ch); 2973 spdk_bdev_close(desc); 2974 free_bdev(bdev); 2975 ut_fini_bdev(); 2976 } 2977 2978 static void 2979 bdev_io_write_unit_split_test(void) 2980 { 2981 struct spdk_bdev *bdev; 2982 struct spdk_bdev_desc *desc = NULL; 2983 struct spdk_io_channel *io_ch; 2984 struct spdk_bdev_opts bdev_opts = {}; 2985 struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 4]; 2986 struct ut_expected_io *expected_io; 2987 uint64_t i; 2988 int rc; 2989 2990 spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts)); 2991 bdev_opts.bdev_io_pool_size = 512; 2992 bdev_opts.bdev_io_cache_size = 64; 2993 ut_init_bdev(&bdev_opts); 2994 2995 bdev = allocate_bdev("bdev0"); 2996 2997 rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc); 2998 CU_ASSERT(rc == 0); 2999 SPDK_CU_ASSERT_FATAL(desc != NULL); 3000 io_ch = spdk_bdev_get_io_channel(desc); 3001 CU_ASSERT(io_ch != NULL); 3002 3003 /* Write I/O 2x larger than write_unit_size should get split into 2 I/Os */ 3004 bdev->write_unit_size = 32; 3005 bdev->split_on_write_unit = true; 3006 g_io_done = false; 3007 3008 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 32, 1); 3009 ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 32 * 512); 3010 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 3011 3012 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 32, 1); 3013 ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 32 * 512), 32 * 512); 3014 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 3015 3016 rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL); 3017 CU_ASSERT(rc == 0); 3018 CU_ASSERT(g_io_done == false); 3019 3020 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 3021 stub_complete_io(2); 3022 CU_ASSERT(g_io_done == true); 3023 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 3024 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS); 3025 3026 /* Same as above but with optimal_io_boundary < write_unit_size - the I/O should be split 3027 * based on write_unit_size, not optimal_io_boundary */ 3028 bdev->split_on_optimal_io_boundary = true; 3029 bdev->optimal_io_boundary = 16; 3030 g_io_done = false; 3031 3032 rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL); 3033 CU_ASSERT(rc == 0); 3034 CU_ASSERT(g_io_done == false); 3035 3036 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 3037 stub_complete_io(2); 3038 CU_ASSERT(g_io_done == true); 3039 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 3040 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS); 3041 3042 /* Write I/O should fail if it is smaller than write_unit_size */ 3043 g_io_done = false; 3044 3045 rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 31, io_done, NULL); 3046 CU_ASSERT(rc == 0); 3047 CU_ASSERT(g_io_done == false); 3048 3049 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 3050 poll_threads(); 3051 CU_ASSERT(g_io_done == true); 3052 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 3053 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED); 3054 3055 /* Same for I/O not aligned to write_unit_size */ 3056 g_io_done = false; 3057 3058 rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 1, 32, io_done, NULL); 3059 CU_ASSERT(rc == 0); 3060 CU_ASSERT(g_io_done == false); 3061 3062 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 3063 poll_threads(); 3064 CU_ASSERT(g_io_done == true); 3065 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 3066 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED); 3067 3068 /* Write should fail if it needs to be split but there are not enough iovs to submit 3069 * an entire write unit */ 3070 bdev->write_unit_size = SPDK_COUNTOF(iov) / 2; 3071 g_io_done = false; 3072 3073 for (i = 0; i < SPDK_COUNTOF(iov); i++) { 3074 iov[i].iov_base = (void *)(0x1000 + 512 * i); 3075 iov[i].iov_len = 512; 3076 } 3077 3078 rc = spdk_bdev_writev_blocks(desc, io_ch, iov, SPDK_COUNTOF(iov), 0, SPDK_COUNTOF(iov), 3079 io_done, NULL); 3080 CU_ASSERT(rc == 0); 3081 CU_ASSERT(g_io_done == false); 3082 3083 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 3084 poll_threads(); 3085 CU_ASSERT(g_io_done == true); 3086 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 3087 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED); 3088 3089 spdk_put_io_channel(io_ch); 3090 spdk_bdev_close(desc); 3091 free_bdev(bdev); 3092 ut_fini_bdev(); 3093 } 3094 3095 static void 3096 bdev_io_alignment(void) 3097 { 3098 struct spdk_bdev *bdev; 3099 struct spdk_bdev_desc *desc = NULL; 3100 struct spdk_io_channel *io_ch; 3101 struct spdk_bdev_opts bdev_opts = {}; 3102 int rc; 3103 void *buf = NULL; 3104 struct iovec iovs[2]; 3105 int iovcnt; 3106 uint64_t alignment; 3107 3108 spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts)); 3109 bdev_opts.bdev_io_pool_size = 20; 3110 bdev_opts.bdev_io_cache_size = 2; 3111 ut_init_bdev(&bdev_opts); 3112 3113 fn_table.submit_request = stub_submit_request_get_buf; 3114 bdev = allocate_bdev("bdev0"); 3115 3116 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc); 3117 CU_ASSERT(rc == 0); 3118 CU_ASSERT(desc != NULL); 3119 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 3120 io_ch = spdk_bdev_get_io_channel(desc); 3121 CU_ASSERT(io_ch != NULL); 3122 3123 /* Create aligned buffer */ 3124 rc = posix_memalign(&buf, 4096, 8192); 3125 SPDK_CU_ASSERT_FATAL(rc == 0); 3126 3127 /* Pass aligned single buffer with no alignment required */ 3128 alignment = 1; 3129 bdev->required_alignment = spdk_u32log2(alignment); 3130 3131 rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL); 3132 CU_ASSERT(rc == 0); 3133 stub_complete_io(1); 3134 CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt, 3135 alignment)); 3136 3137 rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL); 3138 CU_ASSERT(rc == 0); 3139 stub_complete_io(1); 3140 CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt, 3141 alignment)); 3142 3143 /* Pass unaligned single buffer with no alignment required */ 3144 alignment = 1; 3145 bdev->required_alignment = spdk_u32log2(alignment); 3146 3147 rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL); 3148 CU_ASSERT(rc == 0); 3149 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 3150 CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4); 3151 stub_complete_io(1); 3152 3153 rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL); 3154 CU_ASSERT(rc == 0); 3155 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 3156 CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4); 3157 stub_complete_io(1); 3158 3159 /* Pass unaligned single buffer with 512 alignment required */ 3160 alignment = 512; 3161 bdev->required_alignment = spdk_u32log2(alignment); 3162 3163 rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL); 3164 CU_ASSERT(rc == 0); 3165 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1); 3166 CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov); 3167 CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt, 3168 alignment)); 3169 stub_complete_io(1); 3170 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 3171 3172 rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL); 3173 CU_ASSERT(rc == 0); 3174 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1); 3175 CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov); 3176 CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt, 3177 alignment)); 3178 stub_complete_io(1); 3179 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 3180 3181 /* Pass unaligned single buffer with 4096 alignment required */ 3182 alignment = 4096; 3183 bdev->required_alignment = spdk_u32log2(alignment); 3184 3185 rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL); 3186 CU_ASSERT(rc == 0); 3187 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1); 3188 CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov); 3189 CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt, 3190 alignment)); 3191 stub_complete_io(1); 3192 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 3193 3194 rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL); 3195 CU_ASSERT(rc == 0); 3196 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1); 3197 CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov); 3198 CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt, 3199 alignment)); 3200 stub_complete_io(1); 3201 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 3202 3203 /* Pass aligned iovs with no alignment required */ 3204 alignment = 1; 3205 bdev->required_alignment = spdk_u32log2(alignment); 3206 3207 iovcnt = 1; 3208 iovs[0].iov_base = buf; 3209 iovs[0].iov_len = 512; 3210 3211 rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL); 3212 CU_ASSERT(rc == 0); 3213 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 3214 stub_complete_io(1); 3215 CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base); 3216 3217 rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL); 3218 CU_ASSERT(rc == 0); 3219 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 3220 stub_complete_io(1); 3221 CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base); 3222 3223 /* Pass unaligned iovs with no alignment required */ 3224 alignment = 1; 3225 bdev->required_alignment = spdk_u32log2(alignment); 3226 3227 iovcnt = 2; 3228 iovs[0].iov_base = buf + 16; 3229 iovs[0].iov_len = 256; 3230 iovs[1].iov_base = buf + 16 + 256 + 32; 3231 iovs[1].iov_len = 256; 3232 3233 rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL); 3234 CU_ASSERT(rc == 0); 3235 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 3236 stub_complete_io(1); 3237 CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base); 3238 3239 rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL); 3240 CU_ASSERT(rc == 0); 3241 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 3242 stub_complete_io(1); 3243 CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base); 3244 3245 /* Pass unaligned iov with 2048 alignment required */ 3246 alignment = 2048; 3247 bdev->required_alignment = spdk_u32log2(alignment); 3248 3249 iovcnt = 2; 3250 iovs[0].iov_base = buf + 16; 3251 iovs[0].iov_len = 256; 3252 iovs[1].iov_base = buf + 16 + 256 + 32; 3253 iovs[1].iov_len = 256; 3254 3255 rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL); 3256 CU_ASSERT(rc == 0); 3257 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt); 3258 CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov); 3259 CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt, 3260 alignment)); 3261 stub_complete_io(1); 3262 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 3263 3264 rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL); 3265 CU_ASSERT(rc == 0); 3266 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt); 3267 CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov); 3268 CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt, 3269 alignment)); 3270 stub_complete_io(1); 3271 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 3272 3273 /* Pass iov without allocated buffer without alignment required */ 3274 alignment = 1; 3275 bdev->required_alignment = spdk_u32log2(alignment); 3276 3277 iovcnt = 1; 3278 iovs[0].iov_base = NULL; 3279 iovs[0].iov_len = 0; 3280 3281 rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL); 3282 CU_ASSERT(rc == 0); 3283 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 3284 CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt, 3285 alignment)); 3286 stub_complete_io(1); 3287 3288 /* Pass iov without allocated buffer with 1024 alignment required */ 3289 alignment = 1024; 3290 bdev->required_alignment = spdk_u32log2(alignment); 3291 3292 iovcnt = 1; 3293 iovs[0].iov_base = NULL; 3294 iovs[0].iov_len = 0; 3295 3296 rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL); 3297 CU_ASSERT(rc == 0); 3298 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 3299 CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt, 3300 alignment)); 3301 stub_complete_io(1); 3302 3303 spdk_put_io_channel(io_ch); 3304 spdk_bdev_close(desc); 3305 free_bdev(bdev); 3306 fn_table.submit_request = stub_submit_request; 3307 ut_fini_bdev(); 3308 3309 free(buf); 3310 } 3311 3312 static void 3313 bdev_io_alignment_with_boundary(void) 3314 { 3315 struct spdk_bdev *bdev; 3316 struct spdk_bdev_desc *desc = NULL; 3317 struct spdk_io_channel *io_ch; 3318 struct spdk_bdev_opts bdev_opts = {}; 3319 int rc; 3320 void *buf = NULL; 3321 struct iovec iovs[2]; 3322 int iovcnt; 3323 uint64_t alignment; 3324 3325 spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts)); 3326 bdev_opts.bdev_io_pool_size = 20; 3327 bdev_opts.bdev_io_cache_size = 2; 3328 bdev_opts.opts_size = sizeof(bdev_opts); 3329 ut_init_bdev(&bdev_opts); 3330 3331 fn_table.submit_request = stub_submit_request_get_buf; 3332 bdev = allocate_bdev("bdev0"); 3333 3334 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc); 3335 CU_ASSERT(rc == 0); 3336 CU_ASSERT(desc != NULL); 3337 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 3338 io_ch = spdk_bdev_get_io_channel(desc); 3339 CU_ASSERT(io_ch != NULL); 3340 3341 /* Create aligned buffer */ 3342 rc = posix_memalign(&buf, 4096, 131072); 3343 SPDK_CU_ASSERT_FATAL(rc == 0); 3344 g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 3345 3346 /* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */ 3347 alignment = 512; 3348 bdev->required_alignment = spdk_u32log2(alignment); 3349 bdev->optimal_io_boundary = 2; 3350 bdev->split_on_optimal_io_boundary = true; 3351 3352 iovcnt = 1; 3353 iovs[0].iov_base = NULL; 3354 iovs[0].iov_len = 512 * 3; 3355 3356 rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL); 3357 CU_ASSERT(rc == 0); 3358 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 3359 stub_complete_io(2); 3360 3361 /* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */ 3362 alignment = 512; 3363 bdev->required_alignment = spdk_u32log2(alignment); 3364 bdev->optimal_io_boundary = 16; 3365 bdev->split_on_optimal_io_boundary = true; 3366 3367 iovcnt = 1; 3368 iovs[0].iov_base = NULL; 3369 iovs[0].iov_len = 512 * 16; 3370 3371 rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL); 3372 CU_ASSERT(rc == 0); 3373 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 3374 stub_complete_io(2); 3375 3376 /* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */ 3377 alignment = 512; 3378 bdev->required_alignment = spdk_u32log2(alignment); 3379 bdev->optimal_io_boundary = 128; 3380 bdev->split_on_optimal_io_boundary = true; 3381 3382 iovcnt = 1; 3383 iovs[0].iov_base = buf + 16; 3384 iovs[0].iov_len = 512 * 160; 3385 rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL); 3386 CU_ASSERT(rc == 0); 3387 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 3388 stub_complete_io(2); 3389 3390 /* 512 * 3 with 2 IO boundary */ 3391 alignment = 512; 3392 bdev->required_alignment = spdk_u32log2(alignment); 3393 bdev->optimal_io_boundary = 2; 3394 bdev->split_on_optimal_io_boundary = true; 3395 3396 iovcnt = 2; 3397 iovs[0].iov_base = buf + 16; 3398 iovs[0].iov_len = 512; 3399 iovs[1].iov_base = buf + 16 + 512 + 32; 3400 iovs[1].iov_len = 1024; 3401 3402 rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL); 3403 CU_ASSERT(rc == 0); 3404 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 3405 stub_complete_io(2); 3406 3407 rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL); 3408 CU_ASSERT(rc == 0); 3409 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 3410 stub_complete_io(2); 3411 3412 /* 512 * 64 with 32 IO boundary */ 3413 bdev->optimal_io_boundary = 32; 3414 iovcnt = 2; 3415 iovs[0].iov_base = buf + 16; 3416 iovs[0].iov_len = 16384; 3417 iovs[1].iov_base = buf + 16 + 16384 + 32; 3418 iovs[1].iov_len = 16384; 3419 3420 rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL); 3421 CU_ASSERT(rc == 0); 3422 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3); 3423 stub_complete_io(3); 3424 3425 rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL); 3426 CU_ASSERT(rc == 0); 3427 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3); 3428 stub_complete_io(3); 3429 3430 /* 512 * 160 with 32 IO boundary */ 3431 iovcnt = 1; 3432 iovs[0].iov_base = buf + 16; 3433 iovs[0].iov_len = 16384 + 65536; 3434 3435 rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL); 3436 CU_ASSERT(rc == 0); 3437 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6); 3438 stub_complete_io(6); 3439 3440 spdk_put_io_channel(io_ch); 3441 spdk_bdev_close(desc); 3442 free_bdev(bdev); 3443 fn_table.submit_request = stub_submit_request; 3444 ut_fini_bdev(); 3445 3446 free(buf); 3447 } 3448 3449 static void 3450 histogram_status_cb(void *cb_arg, int status) 3451 { 3452 g_status = status; 3453 } 3454 3455 static void 3456 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram) 3457 { 3458 g_status = status; 3459 g_histogram = histogram; 3460 } 3461 3462 static void 3463 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count, 3464 uint64_t total, uint64_t so_far) 3465 { 3466 g_count += count; 3467 } 3468 3469 static void 3470 histogram_channel_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram) 3471 { 3472 spdk_histogram_data_fn cb_fn = cb_arg; 3473 3474 g_status = status; 3475 3476 if (status == 0) { 3477 spdk_histogram_data_iterate(histogram, cb_fn, NULL); 3478 } 3479 } 3480 3481 static void 3482 bdev_histograms(void) 3483 { 3484 struct spdk_bdev *bdev; 3485 struct spdk_bdev_desc *desc = NULL; 3486 struct spdk_io_channel *ch; 3487 struct spdk_histogram_data *histogram; 3488 uint8_t buf[4096]; 3489 int rc; 3490 3491 ut_init_bdev(NULL); 3492 3493 bdev = allocate_bdev("bdev"); 3494 3495 rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc); 3496 CU_ASSERT(rc == 0); 3497 CU_ASSERT(desc != NULL); 3498 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 3499 3500 ch = spdk_bdev_get_io_channel(desc); 3501 CU_ASSERT(ch != NULL); 3502 3503 /* Enable histogram */ 3504 g_status = -1; 3505 spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true); 3506 poll_threads(); 3507 CU_ASSERT(g_status == 0); 3508 CU_ASSERT(bdev->internal.histogram_enabled == true); 3509 3510 /* Allocate histogram */ 3511 histogram = spdk_histogram_data_alloc(); 3512 SPDK_CU_ASSERT_FATAL(histogram != NULL); 3513 3514 /* Check if histogram is zeroed */ 3515 spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL); 3516 poll_threads(); 3517 CU_ASSERT(g_status == 0); 3518 SPDK_CU_ASSERT_FATAL(g_histogram != NULL); 3519 3520 g_count = 0; 3521 spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL); 3522 3523 CU_ASSERT(g_count == 0); 3524 3525 rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL); 3526 CU_ASSERT(rc == 0); 3527 3528 spdk_delay_us(10); 3529 stub_complete_io(1); 3530 poll_threads(); 3531 3532 rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL); 3533 CU_ASSERT(rc == 0); 3534 3535 spdk_delay_us(10); 3536 stub_complete_io(1); 3537 poll_threads(); 3538 3539 /* Check if histogram gathered data from all I/O channels */ 3540 g_histogram = NULL; 3541 spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL); 3542 poll_threads(); 3543 CU_ASSERT(g_status == 0); 3544 CU_ASSERT(bdev->internal.histogram_enabled == true); 3545 SPDK_CU_ASSERT_FATAL(g_histogram != NULL); 3546 3547 g_count = 0; 3548 spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL); 3549 CU_ASSERT(g_count == 2); 3550 3551 g_count = 0; 3552 spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, histogram_io_count); 3553 CU_ASSERT(g_status == 0); 3554 CU_ASSERT(g_count == 2); 3555 3556 /* Disable histogram */ 3557 spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false); 3558 poll_threads(); 3559 CU_ASSERT(g_status == 0); 3560 CU_ASSERT(bdev->internal.histogram_enabled == false); 3561 3562 /* Try to run histogram commands on disabled bdev */ 3563 spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL); 3564 poll_threads(); 3565 CU_ASSERT(g_status == -EFAULT); 3566 3567 spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, NULL); 3568 CU_ASSERT(g_status == -EFAULT); 3569 3570 spdk_histogram_data_free(histogram); 3571 spdk_put_io_channel(ch); 3572 spdk_bdev_close(desc); 3573 free_bdev(bdev); 3574 ut_fini_bdev(); 3575 } 3576 3577 static void 3578 _bdev_compare(bool emulated) 3579 { 3580 struct spdk_bdev *bdev; 3581 struct spdk_bdev_desc *desc = NULL; 3582 struct spdk_io_channel *ioch; 3583 struct ut_expected_io *expected_io; 3584 uint64_t offset, num_blocks; 3585 uint32_t num_completed; 3586 char aa_buf[512]; 3587 char bb_buf[512]; 3588 struct iovec compare_iov; 3589 uint8_t expected_io_type; 3590 int rc; 3591 3592 if (emulated) { 3593 expected_io_type = SPDK_BDEV_IO_TYPE_READ; 3594 } else { 3595 expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE; 3596 } 3597 3598 memset(aa_buf, 0xaa, sizeof(aa_buf)); 3599 memset(bb_buf, 0xbb, sizeof(bb_buf)); 3600 3601 g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated; 3602 3603 ut_init_bdev(NULL); 3604 fn_table.submit_request = stub_submit_request_get_buf; 3605 bdev = allocate_bdev("bdev"); 3606 3607 rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc); 3608 CU_ASSERT_EQUAL(rc, 0); 3609 SPDK_CU_ASSERT_FATAL(desc != NULL); 3610 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 3611 ioch = spdk_bdev_get_io_channel(desc); 3612 SPDK_CU_ASSERT_FATAL(ioch != NULL); 3613 3614 fn_table.submit_request = stub_submit_request_get_buf; 3615 g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 3616 3617 offset = 50; 3618 num_blocks = 1; 3619 compare_iov.iov_base = aa_buf; 3620 compare_iov.iov_len = sizeof(aa_buf); 3621 3622 /* 1. successful comparev */ 3623 expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0); 3624 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 3625 3626 g_io_done = false; 3627 g_compare_read_buf = aa_buf; 3628 g_compare_read_buf_len = sizeof(aa_buf); 3629 rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL); 3630 CU_ASSERT_EQUAL(rc, 0); 3631 num_completed = stub_complete_io(1); 3632 CU_ASSERT_EQUAL(num_completed, 1); 3633 CU_ASSERT(g_io_done == true); 3634 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS); 3635 3636 /* 2. miscompare comparev */ 3637 expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0); 3638 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 3639 3640 g_io_done = false; 3641 g_compare_read_buf = bb_buf; 3642 g_compare_read_buf_len = sizeof(bb_buf); 3643 rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL); 3644 CU_ASSERT_EQUAL(rc, 0); 3645 num_completed = stub_complete_io(1); 3646 CU_ASSERT_EQUAL(num_completed, 1); 3647 CU_ASSERT(g_io_done == true); 3648 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE); 3649 3650 /* 3. successful compare */ 3651 g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 3652 expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0); 3653 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 3654 3655 g_io_done = false; 3656 g_compare_read_buf = aa_buf; 3657 g_compare_read_buf_len = sizeof(aa_buf); 3658 rc = spdk_bdev_compare_blocks(desc, ioch, aa_buf, offset, num_blocks, io_done, NULL); 3659 CU_ASSERT_EQUAL(rc, 0); 3660 num_completed = stub_complete_io(1); 3661 CU_ASSERT_EQUAL(num_completed, 1); 3662 CU_ASSERT(g_io_done == true); 3663 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS); 3664 3665 /* 4. miscompare compare */ 3666 expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0); 3667 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 3668 3669 g_io_done = false; 3670 g_compare_read_buf = bb_buf; 3671 g_compare_read_buf_len = sizeof(bb_buf); 3672 rc = spdk_bdev_compare_blocks(desc, ioch, aa_buf, offset, num_blocks, io_done, NULL); 3673 CU_ASSERT_EQUAL(rc, 0); 3674 num_completed = stub_complete_io(1); 3675 CU_ASSERT_EQUAL(num_completed, 1); 3676 CU_ASSERT(g_io_done == true); 3677 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE); 3678 3679 spdk_put_io_channel(ioch); 3680 spdk_bdev_close(desc); 3681 free_bdev(bdev); 3682 fn_table.submit_request = stub_submit_request; 3683 ut_fini_bdev(); 3684 3685 g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true; 3686 3687 g_compare_read_buf = NULL; 3688 } 3689 3690 static void 3691 _bdev_compare_with_md(bool emulated) 3692 { 3693 struct spdk_bdev *bdev; 3694 struct spdk_bdev_desc *desc = NULL; 3695 struct spdk_io_channel *ioch; 3696 struct ut_expected_io *expected_io; 3697 uint64_t offset, num_blocks; 3698 uint32_t num_completed; 3699 char buf[1024 + 16 /* 2 * blocklen + 2 * mdlen */]; 3700 char buf_interleaved_miscompare[1024 + 16 /* 2 * blocklen + 2 * mdlen */]; 3701 char buf_miscompare[1024 /* 2 * blocklen */]; 3702 char md_buf[16]; 3703 char md_buf_miscompare[16]; 3704 struct iovec compare_iov; 3705 uint8_t expected_io_type; 3706 int rc; 3707 3708 if (emulated) { 3709 expected_io_type = SPDK_BDEV_IO_TYPE_READ; 3710 } else { 3711 expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE; 3712 } 3713 3714 memset(buf, 0xaa, sizeof(buf)); 3715 memset(buf_interleaved_miscompare, 0xaa, sizeof(buf_interleaved_miscompare)); 3716 /* make last md different */ 3717 memset(buf_interleaved_miscompare + 1024 + 8, 0xbb, 8); 3718 memset(buf_miscompare, 0xbb, sizeof(buf_miscompare)); 3719 memset(md_buf, 0xaa, 16); 3720 memset(md_buf_miscompare, 0xbb, 16); 3721 3722 g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated; 3723 3724 ut_init_bdev(NULL); 3725 fn_table.submit_request = stub_submit_request_get_buf; 3726 bdev = allocate_bdev("bdev"); 3727 3728 rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc); 3729 CU_ASSERT_EQUAL(rc, 0); 3730 SPDK_CU_ASSERT_FATAL(desc != NULL); 3731 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 3732 ioch = spdk_bdev_get_io_channel(desc); 3733 SPDK_CU_ASSERT_FATAL(ioch != NULL); 3734 3735 fn_table.submit_request = stub_submit_request_get_buf; 3736 g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 3737 3738 offset = 50; 3739 num_blocks = 2; 3740 3741 /* interleaved md & data */ 3742 bdev->md_interleave = true; 3743 bdev->md_len = 8; 3744 bdev->blocklen = 512 + 8; 3745 compare_iov.iov_base = buf; 3746 compare_iov.iov_len = sizeof(buf); 3747 3748 /* 1. successful compare with md interleaved */ 3749 expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0); 3750 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 3751 3752 g_io_done = false; 3753 g_compare_read_buf = buf; 3754 g_compare_read_buf_len = sizeof(buf); 3755 rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL); 3756 CU_ASSERT_EQUAL(rc, 0); 3757 num_completed = stub_complete_io(1); 3758 CU_ASSERT_EQUAL(num_completed, 1); 3759 CU_ASSERT(g_io_done == true); 3760 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS); 3761 3762 /* 2. miscompare with md interleaved */ 3763 expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0); 3764 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 3765 3766 g_io_done = false; 3767 g_compare_read_buf = buf_interleaved_miscompare; 3768 g_compare_read_buf_len = sizeof(buf_interleaved_miscompare); 3769 rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL); 3770 CU_ASSERT_EQUAL(rc, 0); 3771 num_completed = stub_complete_io(1); 3772 CU_ASSERT_EQUAL(num_completed, 1); 3773 CU_ASSERT(g_io_done == true); 3774 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE); 3775 3776 /* Separate data & md buffers */ 3777 bdev->md_interleave = false; 3778 bdev->blocklen = 512; 3779 compare_iov.iov_base = buf; 3780 compare_iov.iov_len = 1024; 3781 3782 /* 3. successful compare with md separated */ 3783 expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0); 3784 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 3785 3786 g_io_done = false; 3787 g_compare_read_buf = buf; 3788 g_compare_read_buf_len = 1024; 3789 g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 3790 g_compare_md_buf = md_buf; 3791 rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf, 3792 offset, num_blocks, io_done, NULL); 3793 CU_ASSERT_EQUAL(rc, 0); 3794 num_completed = stub_complete_io(1); 3795 CU_ASSERT_EQUAL(num_completed, 1); 3796 CU_ASSERT(g_io_done == true); 3797 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS); 3798 3799 /* 4. miscompare with md separated where md buf is different */ 3800 expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0); 3801 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 3802 3803 g_io_done = false; 3804 g_compare_read_buf = buf; 3805 g_compare_read_buf_len = 1024; 3806 g_compare_md_buf = md_buf_miscompare; 3807 rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf, 3808 offset, num_blocks, io_done, NULL); 3809 CU_ASSERT_EQUAL(rc, 0); 3810 num_completed = stub_complete_io(1); 3811 CU_ASSERT_EQUAL(num_completed, 1); 3812 CU_ASSERT(g_io_done == true); 3813 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE); 3814 3815 /* 5. miscompare with md separated where buf is different */ 3816 expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0); 3817 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 3818 3819 g_io_done = false; 3820 g_compare_read_buf = buf_miscompare; 3821 g_compare_read_buf_len = sizeof(buf_miscompare); 3822 g_compare_md_buf = md_buf; 3823 rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf, 3824 offset, num_blocks, io_done, NULL); 3825 CU_ASSERT_EQUAL(rc, 0); 3826 num_completed = stub_complete_io(1); 3827 CU_ASSERT_EQUAL(num_completed, 1); 3828 CU_ASSERT(g_io_done == true); 3829 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE); 3830 3831 bdev->md_len = 0; 3832 g_compare_md_buf = NULL; 3833 3834 spdk_put_io_channel(ioch); 3835 spdk_bdev_close(desc); 3836 free_bdev(bdev); 3837 fn_table.submit_request = stub_submit_request; 3838 ut_fini_bdev(); 3839 3840 g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true; 3841 3842 g_compare_read_buf = NULL; 3843 } 3844 3845 static void 3846 bdev_compare(void) 3847 { 3848 _bdev_compare(false); 3849 _bdev_compare_with_md(false); 3850 } 3851 3852 static void 3853 bdev_compare_emulated(void) 3854 { 3855 _bdev_compare(true); 3856 _bdev_compare_with_md(true); 3857 } 3858 3859 static void 3860 bdev_compare_and_write(void) 3861 { 3862 struct spdk_bdev *bdev; 3863 struct spdk_bdev_desc *desc = NULL; 3864 struct spdk_io_channel *ioch; 3865 struct ut_expected_io *expected_io; 3866 uint64_t offset, num_blocks; 3867 uint32_t num_completed; 3868 char aa_buf[512]; 3869 char bb_buf[512]; 3870 char cc_buf[512]; 3871 char write_buf[512]; 3872 struct iovec compare_iov; 3873 struct iovec write_iov; 3874 int rc; 3875 3876 memset(aa_buf, 0xaa, sizeof(aa_buf)); 3877 memset(bb_buf, 0xbb, sizeof(bb_buf)); 3878 memset(cc_buf, 0xcc, sizeof(cc_buf)); 3879 3880 g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false; 3881 3882 ut_init_bdev(NULL); 3883 fn_table.submit_request = stub_submit_request_get_buf; 3884 bdev = allocate_bdev("bdev"); 3885 3886 rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc); 3887 CU_ASSERT_EQUAL(rc, 0); 3888 SPDK_CU_ASSERT_FATAL(desc != NULL); 3889 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 3890 ioch = spdk_bdev_get_io_channel(desc); 3891 SPDK_CU_ASSERT_FATAL(ioch != NULL); 3892 3893 fn_table.submit_request = stub_submit_request_get_buf; 3894 g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 3895 3896 offset = 50; 3897 num_blocks = 1; 3898 compare_iov.iov_base = aa_buf; 3899 compare_iov.iov_len = sizeof(aa_buf); 3900 write_iov.iov_base = bb_buf; 3901 write_iov.iov_len = sizeof(bb_buf); 3902 3903 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0); 3904 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 3905 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0); 3906 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 3907 3908 g_io_done = false; 3909 g_compare_read_buf = aa_buf; 3910 g_compare_read_buf_len = sizeof(aa_buf); 3911 memset(write_buf, 0, sizeof(write_buf)); 3912 g_compare_write_buf = write_buf; 3913 g_compare_write_buf_len = sizeof(write_buf); 3914 rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1, 3915 offset, num_blocks, io_done, NULL); 3916 /* Trigger range locking */ 3917 poll_threads(); 3918 CU_ASSERT_EQUAL(rc, 0); 3919 num_completed = stub_complete_io(1); 3920 CU_ASSERT_EQUAL(num_completed, 1); 3921 CU_ASSERT(g_io_done == false); 3922 num_completed = stub_complete_io(1); 3923 /* Trigger range unlocking */ 3924 poll_threads(); 3925 CU_ASSERT_EQUAL(num_completed, 1); 3926 CU_ASSERT(g_io_done == true); 3927 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS); 3928 CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0); 3929 3930 /* Test miscompare */ 3931 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0); 3932 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 3933 3934 g_io_done = false; 3935 g_compare_read_buf = cc_buf; 3936 g_compare_read_buf_len = sizeof(cc_buf); 3937 memset(write_buf, 0, sizeof(write_buf)); 3938 g_compare_write_buf = write_buf; 3939 g_compare_write_buf_len = sizeof(write_buf); 3940 rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1, 3941 offset, num_blocks, io_done, NULL); 3942 /* Trigger range locking */ 3943 poll_threads(); 3944 CU_ASSERT_EQUAL(rc, 0); 3945 num_completed = stub_complete_io(1); 3946 /* Trigger range unlocking earlier because we expect error here */ 3947 poll_threads(); 3948 CU_ASSERT_EQUAL(num_completed, 1); 3949 CU_ASSERT(g_io_done == true); 3950 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE); 3951 num_completed = stub_complete_io(1); 3952 CU_ASSERT_EQUAL(num_completed, 0); 3953 3954 spdk_put_io_channel(ioch); 3955 spdk_bdev_close(desc); 3956 free_bdev(bdev); 3957 fn_table.submit_request = stub_submit_request; 3958 ut_fini_bdev(); 3959 3960 g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true; 3961 3962 g_compare_read_buf = NULL; 3963 g_compare_write_buf = NULL; 3964 } 3965 3966 static void 3967 bdev_write_zeroes(void) 3968 { 3969 struct spdk_bdev *bdev; 3970 struct spdk_bdev_desc *desc = NULL; 3971 struct spdk_io_channel *ioch; 3972 struct ut_expected_io *expected_io; 3973 uint64_t offset, num_io_blocks, num_blocks; 3974 uint32_t num_completed, num_requests; 3975 int rc; 3976 3977 ut_init_bdev(NULL); 3978 bdev = allocate_bdev("bdev"); 3979 3980 rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc); 3981 CU_ASSERT_EQUAL(rc, 0); 3982 SPDK_CU_ASSERT_FATAL(desc != NULL); 3983 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 3984 ioch = spdk_bdev_get_io_channel(desc); 3985 SPDK_CU_ASSERT_FATAL(ioch != NULL); 3986 3987 fn_table.submit_request = stub_submit_request; 3988 g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 3989 3990 /* First test that if the bdev supports write_zeroes, the request won't be split */ 3991 bdev->md_len = 0; 3992 bdev->blocklen = 4096; 3993 num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2; 3994 3995 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0); 3996 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 3997 rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL); 3998 CU_ASSERT_EQUAL(rc, 0); 3999 num_completed = stub_complete_io(1); 4000 CU_ASSERT_EQUAL(num_completed, 1); 4001 4002 /* Check that if write zeroes is not supported it'll be replaced by regular writes */ 4003 ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false); 4004 bdev->max_write_zeroes = bdev_get_max_write(bdev, ZERO_BUFFER_SIZE); 4005 num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen; 4006 num_requests = 2; 4007 num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests; 4008 4009 for (offset = 0; offset < num_requests; ++offset) { 4010 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 4011 offset * num_io_blocks, num_io_blocks, 0); 4012 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 4013 } 4014 4015 rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL); 4016 CU_ASSERT_EQUAL(rc, 0); 4017 num_completed = stub_complete_io(num_requests); 4018 CU_ASSERT_EQUAL(num_completed, num_requests); 4019 4020 /* Check that the splitting is correct if bdev has interleaved metadata */ 4021 bdev->md_interleave = true; 4022 bdev->md_len = 64; 4023 bdev->blocklen = 4096 + 64; 4024 bdev->max_write_zeroes = bdev_get_max_write(bdev, ZERO_BUFFER_SIZE); 4025 num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2; 4026 4027 num_requests = offset = 0; 4028 while (offset < num_blocks) { 4029 num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset); 4030 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 4031 offset, num_io_blocks, 0); 4032 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 4033 offset += num_io_blocks; 4034 num_requests++; 4035 } 4036 4037 rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL); 4038 CU_ASSERT_EQUAL(rc, 0); 4039 num_completed = stub_complete_io(num_requests); 4040 CU_ASSERT_EQUAL(num_completed, num_requests); 4041 num_completed = stub_complete_io(num_requests); 4042 assert(num_completed == 0); 4043 4044 /* Check the the same for separate metadata buffer */ 4045 bdev->md_interleave = false; 4046 bdev->md_len = 64; 4047 bdev->blocklen = 4096; 4048 bdev->max_write_zeroes = bdev_get_max_write(bdev, ZERO_BUFFER_SIZE); 4049 4050 num_requests = offset = 0; 4051 while (offset < num_blocks) { 4052 num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks); 4053 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 4054 offset, num_io_blocks, 0); 4055 expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen; 4056 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 4057 offset += num_io_blocks; 4058 num_requests++; 4059 } 4060 4061 rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL); 4062 CU_ASSERT_EQUAL(rc, 0); 4063 num_completed = stub_complete_io(num_requests); 4064 CU_ASSERT_EQUAL(num_completed, num_requests); 4065 4066 ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true); 4067 spdk_put_io_channel(ioch); 4068 spdk_bdev_close(desc); 4069 free_bdev(bdev); 4070 ut_fini_bdev(); 4071 } 4072 4073 static void 4074 bdev_zcopy_write(void) 4075 { 4076 struct spdk_bdev *bdev; 4077 struct spdk_bdev_desc *desc = NULL; 4078 struct spdk_io_channel *ioch; 4079 struct ut_expected_io *expected_io; 4080 uint64_t offset, num_blocks; 4081 uint32_t num_completed; 4082 char aa_buf[512]; 4083 struct iovec iov; 4084 int rc; 4085 const bool populate = false; 4086 const bool commit = true; 4087 4088 memset(aa_buf, 0xaa, sizeof(aa_buf)); 4089 4090 ut_init_bdev(NULL); 4091 bdev = allocate_bdev("bdev"); 4092 4093 rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc); 4094 CU_ASSERT_EQUAL(rc, 0); 4095 SPDK_CU_ASSERT_FATAL(desc != NULL); 4096 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 4097 ioch = spdk_bdev_get_io_channel(desc); 4098 SPDK_CU_ASSERT_FATAL(ioch != NULL); 4099 4100 g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 4101 4102 offset = 50; 4103 num_blocks = 1; 4104 iov.iov_base = NULL; 4105 iov.iov_len = 0; 4106 4107 g_zcopy_read_buf = (void *) 0x1122334455667788UL; 4108 g_zcopy_read_buf_len = (uint32_t) -1; 4109 /* Do a zcopy start for a write (populate=false) */ 4110 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0); 4111 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 4112 g_io_done = false; 4113 g_zcopy_write_buf = aa_buf; 4114 g_zcopy_write_buf_len = sizeof(aa_buf); 4115 g_zcopy_bdev_io = NULL; 4116 rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL); 4117 CU_ASSERT_EQUAL(rc, 0); 4118 num_completed = stub_complete_io(1); 4119 CU_ASSERT_EQUAL(num_completed, 1); 4120 CU_ASSERT(g_io_done == true); 4121 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS); 4122 /* Check that the iov has been set up */ 4123 CU_ASSERT(iov.iov_base == g_zcopy_write_buf); 4124 CU_ASSERT(iov.iov_len == g_zcopy_write_buf_len); 4125 /* Check that the bdev_io has been saved */ 4126 CU_ASSERT(g_zcopy_bdev_io != NULL); 4127 /* Now do the zcopy end for a write (commit=true) */ 4128 g_io_done = false; 4129 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0); 4130 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 4131 rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL); 4132 CU_ASSERT_EQUAL(rc, 0); 4133 num_completed = stub_complete_io(1); 4134 CU_ASSERT_EQUAL(num_completed, 1); 4135 CU_ASSERT(g_io_done == true); 4136 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS); 4137 /* Check the g_zcopy are reset by io_done */ 4138 CU_ASSERT(g_zcopy_write_buf == NULL); 4139 CU_ASSERT(g_zcopy_write_buf_len == 0); 4140 /* Check that io_done has freed the g_zcopy_bdev_io */ 4141 CU_ASSERT(g_zcopy_bdev_io == NULL); 4142 4143 /* Check the zcopy read buffer has not been touched which 4144 * ensures that the correct buffers were used. 4145 */ 4146 CU_ASSERT(g_zcopy_read_buf == (void *) 0x1122334455667788UL); 4147 CU_ASSERT(g_zcopy_read_buf_len == (uint32_t) -1); 4148 4149 spdk_put_io_channel(ioch); 4150 spdk_bdev_close(desc); 4151 free_bdev(bdev); 4152 ut_fini_bdev(); 4153 } 4154 4155 static void 4156 bdev_zcopy_read(void) 4157 { 4158 struct spdk_bdev *bdev; 4159 struct spdk_bdev_desc *desc = NULL; 4160 struct spdk_io_channel *ioch; 4161 struct ut_expected_io *expected_io; 4162 uint64_t offset, num_blocks; 4163 uint32_t num_completed; 4164 char aa_buf[512]; 4165 struct iovec iov; 4166 int rc; 4167 const bool populate = true; 4168 const bool commit = false; 4169 4170 memset(aa_buf, 0xaa, sizeof(aa_buf)); 4171 4172 ut_init_bdev(NULL); 4173 bdev = allocate_bdev("bdev"); 4174 4175 rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc); 4176 CU_ASSERT_EQUAL(rc, 0); 4177 SPDK_CU_ASSERT_FATAL(desc != NULL); 4178 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 4179 ioch = spdk_bdev_get_io_channel(desc); 4180 SPDK_CU_ASSERT_FATAL(ioch != NULL); 4181 4182 g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 4183 4184 offset = 50; 4185 num_blocks = 1; 4186 iov.iov_base = NULL; 4187 iov.iov_len = 0; 4188 4189 g_zcopy_write_buf = (void *) 0x1122334455667788UL; 4190 g_zcopy_write_buf_len = (uint32_t) -1; 4191 4192 /* Do a zcopy start for a read (populate=true) */ 4193 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0); 4194 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 4195 g_io_done = false; 4196 g_zcopy_read_buf = aa_buf; 4197 g_zcopy_read_buf_len = sizeof(aa_buf); 4198 g_zcopy_bdev_io = NULL; 4199 rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL); 4200 CU_ASSERT_EQUAL(rc, 0); 4201 num_completed = stub_complete_io(1); 4202 CU_ASSERT_EQUAL(num_completed, 1); 4203 CU_ASSERT(g_io_done == true); 4204 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS); 4205 /* Check that the iov has been set up */ 4206 CU_ASSERT(iov.iov_base == g_zcopy_read_buf); 4207 CU_ASSERT(iov.iov_len == g_zcopy_read_buf_len); 4208 /* Check that the bdev_io has been saved */ 4209 CU_ASSERT(g_zcopy_bdev_io != NULL); 4210 4211 /* Now do the zcopy end for a read (commit=false) */ 4212 g_io_done = false; 4213 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0); 4214 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 4215 rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL); 4216 CU_ASSERT_EQUAL(rc, 0); 4217 num_completed = stub_complete_io(1); 4218 CU_ASSERT_EQUAL(num_completed, 1); 4219 CU_ASSERT(g_io_done == true); 4220 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS); 4221 /* Check the g_zcopy are reset by io_done */ 4222 CU_ASSERT(g_zcopy_read_buf == NULL); 4223 CU_ASSERT(g_zcopy_read_buf_len == 0); 4224 /* Check that io_done has freed the g_zcopy_bdev_io */ 4225 CU_ASSERT(g_zcopy_bdev_io == NULL); 4226 4227 /* Check the zcopy write buffer has not been touched which 4228 * ensures that the correct buffers were used. 4229 */ 4230 CU_ASSERT(g_zcopy_write_buf == (void *) 0x1122334455667788UL); 4231 CU_ASSERT(g_zcopy_write_buf_len == (uint32_t) -1); 4232 4233 spdk_put_io_channel(ioch); 4234 spdk_bdev_close(desc); 4235 free_bdev(bdev); 4236 ut_fini_bdev(); 4237 } 4238 4239 static void 4240 bdev_open_while_hotremove(void) 4241 { 4242 struct spdk_bdev *bdev; 4243 struct spdk_bdev_desc *desc[2] = {}; 4244 int rc; 4245 4246 bdev = allocate_bdev("bdev"); 4247 4248 rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]); 4249 CU_ASSERT(rc == 0); 4250 SPDK_CU_ASSERT_FATAL(desc[0] != NULL); 4251 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0])); 4252 4253 spdk_bdev_unregister(bdev, NULL, NULL); 4254 /* Bdev unregister is handled asynchronously. Poll thread to complete. */ 4255 poll_threads(); 4256 4257 rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]); 4258 CU_ASSERT(rc == -ENODEV); 4259 SPDK_CU_ASSERT_FATAL(desc[1] == NULL); 4260 4261 spdk_bdev_close(desc[0]); 4262 free_bdev(bdev); 4263 } 4264 4265 static void 4266 bdev_close_while_hotremove(void) 4267 { 4268 struct spdk_bdev *bdev; 4269 struct spdk_bdev_desc *desc = NULL; 4270 int rc = 0; 4271 4272 bdev = allocate_bdev("bdev"); 4273 4274 rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc); 4275 CU_ASSERT_EQUAL(rc, 0); 4276 SPDK_CU_ASSERT_FATAL(desc != NULL); 4277 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 4278 4279 /* Simulate hot-unplug by unregistering bdev */ 4280 g_event_type1 = 0xFF; 4281 g_unregister_arg = NULL; 4282 g_unregister_rc = -1; 4283 spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678); 4284 /* Close device while remove event is in flight */ 4285 spdk_bdev_close(desc); 4286 4287 /* Ensure that unregister callback is delayed */ 4288 CU_ASSERT_EQUAL(g_unregister_arg, NULL); 4289 CU_ASSERT_EQUAL(g_unregister_rc, -1); 4290 4291 poll_threads(); 4292 4293 /* Event callback shall not be issued because device was closed */ 4294 CU_ASSERT_EQUAL(g_event_type1, 0xFF); 4295 /* Unregister callback is issued */ 4296 CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678); 4297 CU_ASSERT_EQUAL(g_unregister_rc, 0); 4298 4299 free_bdev(bdev); 4300 } 4301 4302 static void 4303 bdev_open_ext(void) 4304 { 4305 struct spdk_bdev *bdev; 4306 struct spdk_bdev_desc *desc1 = NULL; 4307 struct spdk_bdev_desc *desc2 = NULL; 4308 int rc = 0; 4309 4310 bdev = allocate_bdev("bdev"); 4311 4312 rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1); 4313 CU_ASSERT_EQUAL(rc, -EINVAL); 4314 4315 rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1); 4316 CU_ASSERT_EQUAL(rc, 0); 4317 4318 rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2); 4319 CU_ASSERT_EQUAL(rc, 0); 4320 4321 g_event_type1 = 0xFF; 4322 g_event_type2 = 0xFF; 4323 4324 /* Simulate hot-unplug by unregistering bdev */ 4325 spdk_bdev_unregister(bdev, NULL, NULL); 4326 poll_threads(); 4327 4328 /* Check if correct events have been triggered in event callback fn */ 4329 CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE); 4330 CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE); 4331 4332 free_bdev(bdev); 4333 poll_threads(); 4334 } 4335 4336 static void 4337 bdev_open_ext_unregister(void) 4338 { 4339 struct spdk_bdev *bdev; 4340 struct spdk_bdev_desc *desc1 = NULL; 4341 struct spdk_bdev_desc *desc2 = NULL; 4342 struct spdk_bdev_desc *desc3 = NULL; 4343 struct spdk_bdev_desc *desc4 = NULL; 4344 int rc = 0; 4345 4346 bdev = allocate_bdev("bdev"); 4347 4348 rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1); 4349 CU_ASSERT_EQUAL(rc, -EINVAL); 4350 4351 rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1); 4352 CU_ASSERT_EQUAL(rc, 0); 4353 4354 rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2); 4355 CU_ASSERT_EQUAL(rc, 0); 4356 4357 rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb3, &desc3, &desc3); 4358 CU_ASSERT_EQUAL(rc, 0); 4359 4360 rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb4, &desc4, &desc4); 4361 CU_ASSERT_EQUAL(rc, 0); 4362 4363 g_event_type1 = 0xFF; 4364 g_event_type2 = 0xFF; 4365 g_event_type3 = 0xFF; 4366 g_event_type4 = 0xFF; 4367 4368 g_unregister_arg = NULL; 4369 g_unregister_rc = -1; 4370 4371 /* Simulate hot-unplug by unregistering bdev */ 4372 spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678); 4373 4374 /* 4375 * Unregister is handled asynchronously and event callback 4376 * (i.e., above bdev_open_cbN) will be called. 4377 * For bdev_open_cb3 and bdev_open_cb4, it is intended to not 4378 * close the desc3 and desc4 so that the bdev is not closed. 4379 */ 4380 poll_threads(); 4381 4382 /* Check if correct events have been triggered in event callback fn */ 4383 CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE); 4384 CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE); 4385 CU_ASSERT_EQUAL(g_event_type3, SPDK_BDEV_EVENT_REMOVE); 4386 CU_ASSERT_EQUAL(g_event_type4, SPDK_BDEV_EVENT_REMOVE); 4387 4388 /* Check that unregister callback is delayed */ 4389 CU_ASSERT(g_unregister_arg == NULL); 4390 CU_ASSERT(g_unregister_rc == -1); 4391 4392 /* 4393 * Explicitly close desc3. As desc4 is still opened there, the 4394 * unergister callback is still delayed to execute. 4395 */ 4396 spdk_bdev_close(desc3); 4397 CU_ASSERT(g_unregister_arg == NULL); 4398 CU_ASSERT(g_unregister_rc == -1); 4399 4400 /* 4401 * Explicitly close desc4 to trigger the ongoing bdev unregister 4402 * operation after last desc is closed. 4403 */ 4404 spdk_bdev_close(desc4); 4405 4406 /* Poll the thread for the async unregister operation */ 4407 poll_threads(); 4408 4409 /* Check that unregister callback is executed */ 4410 CU_ASSERT(g_unregister_arg == (void *)0x12345678); 4411 CU_ASSERT(g_unregister_rc == 0); 4412 4413 free_bdev(bdev); 4414 poll_threads(); 4415 } 4416 4417 struct timeout_io_cb_arg { 4418 struct iovec iov; 4419 uint8_t type; 4420 }; 4421 4422 static int 4423 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch) 4424 { 4425 struct spdk_bdev_io *bdev_io; 4426 int n = 0; 4427 4428 if (!ch) { 4429 return -1; 4430 } 4431 4432 TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) { 4433 n++; 4434 } 4435 4436 return n; 4437 } 4438 4439 static void 4440 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io) 4441 { 4442 struct timeout_io_cb_arg *ctx = cb_arg; 4443 4444 ctx->type = bdev_io->type; 4445 ctx->iov.iov_base = bdev_io->iov.iov_base; 4446 ctx->iov.iov_len = bdev_io->iov.iov_len; 4447 } 4448 4449 static void 4450 bdev_set_io_timeout(void) 4451 { 4452 struct spdk_bdev *bdev; 4453 struct spdk_bdev_desc *desc = NULL; 4454 struct spdk_io_channel *io_ch = NULL; 4455 struct spdk_bdev_channel *bdev_ch = NULL; 4456 struct timeout_io_cb_arg cb_arg; 4457 4458 ut_init_bdev(NULL); 4459 bdev = allocate_bdev("bdev"); 4460 4461 CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0); 4462 SPDK_CU_ASSERT_FATAL(desc != NULL); 4463 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 4464 4465 io_ch = spdk_bdev_get_io_channel(desc); 4466 CU_ASSERT(io_ch != NULL); 4467 4468 bdev_ch = spdk_io_channel_get_ctx(io_ch); 4469 CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted)); 4470 4471 /* This is the part1. 4472 * We will check the bdev_ch->io_submitted list 4473 * TO make sure that it can link IOs and only the user submitted IOs 4474 */ 4475 CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0); 4476 CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1); 4477 CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0); 4478 CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2); 4479 stub_complete_io(1); 4480 CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1); 4481 stub_complete_io(1); 4482 CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0); 4483 4484 /* Split IO */ 4485 bdev->optimal_io_boundary = 16; 4486 bdev->split_on_optimal_io_boundary = true; 4487 4488 /* Now test that a single-vector command is split correctly. 4489 * Offset 14, length 8, payload 0xF000 4490 * Child - Offset 14, length 2, payload 0xF000 4491 * Child - Offset 16, length 6, payload 0xF000 + 2 * 512 4492 * 4493 * Set up the expected values before calling spdk_bdev_read_blocks 4494 */ 4495 CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0); 4496 /* We count all submitted IOs including IO that are generated by splitting. */ 4497 CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3); 4498 stub_complete_io(1); 4499 CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2); 4500 stub_complete_io(1); 4501 CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0); 4502 4503 /* Also include the reset IO */ 4504 CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0); 4505 CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1); 4506 poll_threads(); 4507 stub_complete_io(1); 4508 poll_threads(); 4509 CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0); 4510 4511 /* This is part2 4512 * Test the desc timeout poller register 4513 */ 4514 4515 /* Successfully set the timeout */ 4516 CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0); 4517 CU_ASSERT(desc->io_timeout_poller != NULL); 4518 CU_ASSERT(desc->timeout_in_sec == 30); 4519 CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb); 4520 CU_ASSERT(desc->cb_arg == &cb_arg); 4521 4522 /* Change the timeout limit */ 4523 CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0); 4524 CU_ASSERT(desc->io_timeout_poller != NULL); 4525 CU_ASSERT(desc->timeout_in_sec == 20); 4526 CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb); 4527 CU_ASSERT(desc->cb_arg == &cb_arg); 4528 4529 /* Disable the timeout */ 4530 CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0); 4531 CU_ASSERT(desc->io_timeout_poller == NULL); 4532 4533 /* This the part3 4534 * We will test to catch timeout IO and check whether the IO is 4535 * the submitted one. 4536 */ 4537 memset(&cb_arg, 0, sizeof(cb_arg)); 4538 CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0); 4539 CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0); 4540 4541 /* Don't reach the limit */ 4542 spdk_delay_us(15 * spdk_get_ticks_hz()); 4543 poll_threads(); 4544 CU_ASSERT(cb_arg.type == 0); 4545 CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0); 4546 CU_ASSERT(cb_arg.iov.iov_len == 0); 4547 4548 /* 15 + 15 = 30 reach the limit */ 4549 spdk_delay_us(15 * spdk_get_ticks_hz()); 4550 poll_threads(); 4551 CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE); 4552 CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000); 4553 CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen); 4554 stub_complete_io(1); 4555 4556 /* Use the same split IO above and check the IO */ 4557 memset(&cb_arg, 0, sizeof(cb_arg)); 4558 CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0); 4559 4560 /* The first child complete in time */ 4561 spdk_delay_us(15 * spdk_get_ticks_hz()); 4562 poll_threads(); 4563 stub_complete_io(1); 4564 CU_ASSERT(cb_arg.type == 0); 4565 CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0); 4566 CU_ASSERT(cb_arg.iov.iov_len == 0); 4567 4568 /* The second child reach the limit */ 4569 spdk_delay_us(15 * spdk_get_ticks_hz()); 4570 poll_threads(); 4571 CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE); 4572 CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000); 4573 CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen); 4574 stub_complete_io(1); 4575 4576 /* Also include the reset IO */ 4577 memset(&cb_arg, 0, sizeof(cb_arg)); 4578 CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0); 4579 spdk_delay_us(30 * spdk_get_ticks_hz()); 4580 poll_threads(); 4581 CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET); 4582 stub_complete_io(1); 4583 poll_threads(); 4584 4585 spdk_put_io_channel(io_ch); 4586 spdk_bdev_close(desc); 4587 free_bdev(bdev); 4588 ut_fini_bdev(); 4589 } 4590 4591 static void 4592 bdev_set_qd_sampling(void) 4593 { 4594 struct spdk_bdev *bdev; 4595 struct spdk_bdev_desc *desc = NULL; 4596 struct spdk_io_channel *io_ch = NULL; 4597 struct spdk_bdev_channel *bdev_ch = NULL; 4598 struct timeout_io_cb_arg cb_arg; 4599 4600 ut_init_bdev(NULL); 4601 bdev = allocate_bdev("bdev"); 4602 4603 CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0); 4604 SPDK_CU_ASSERT_FATAL(desc != NULL); 4605 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 4606 4607 io_ch = spdk_bdev_get_io_channel(desc); 4608 CU_ASSERT(io_ch != NULL); 4609 4610 bdev_ch = spdk_io_channel_get_ctx(io_ch); 4611 CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted)); 4612 4613 /* This is the part1. 4614 * We will check the bdev_ch->io_submitted list 4615 * TO make sure that it can link IOs and only the user submitted IOs 4616 */ 4617 CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0); 4618 CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1); 4619 CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0); 4620 CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2); 4621 stub_complete_io(1); 4622 CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1); 4623 stub_complete_io(1); 4624 CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0); 4625 4626 /* This is the part2. 4627 * Test the bdev's qd poller register 4628 */ 4629 /* 1st Successfully set the qd sampling period */ 4630 spdk_bdev_set_qd_sampling_period(bdev, 10); 4631 CU_ASSERT(bdev->internal.new_period == 10); 4632 CU_ASSERT(bdev->internal.period == 10); 4633 CU_ASSERT(bdev->internal.qd_desc != NULL); 4634 poll_threads(); 4635 CU_ASSERT(bdev->internal.qd_poller != NULL); 4636 4637 /* 2nd Change the qd sampling period */ 4638 spdk_bdev_set_qd_sampling_period(bdev, 20); 4639 CU_ASSERT(bdev->internal.new_period == 20); 4640 CU_ASSERT(bdev->internal.period == 10); 4641 CU_ASSERT(bdev->internal.qd_desc != NULL); 4642 poll_threads(); 4643 CU_ASSERT(bdev->internal.qd_poller != NULL); 4644 CU_ASSERT(bdev->internal.period == bdev->internal.new_period); 4645 4646 /* 3rd Change the qd sampling period and verify qd_poll_in_progress */ 4647 spdk_delay_us(20); 4648 poll_thread_times(0, 1); 4649 CU_ASSERT(bdev->internal.qd_poll_in_progress == true); 4650 spdk_bdev_set_qd_sampling_period(bdev, 30); 4651 CU_ASSERT(bdev->internal.new_period == 30); 4652 CU_ASSERT(bdev->internal.period == 20); 4653 poll_threads(); 4654 CU_ASSERT(bdev->internal.qd_poll_in_progress == false); 4655 CU_ASSERT(bdev->internal.period == bdev->internal.new_period); 4656 4657 /* 4th Disable the qd sampling period */ 4658 spdk_bdev_set_qd_sampling_period(bdev, 0); 4659 CU_ASSERT(bdev->internal.new_period == 0); 4660 CU_ASSERT(bdev->internal.period == 30); 4661 poll_threads(); 4662 CU_ASSERT(bdev->internal.qd_poller == NULL); 4663 CU_ASSERT(bdev->internal.period == bdev->internal.new_period); 4664 CU_ASSERT(bdev->internal.qd_desc == NULL); 4665 4666 /* This is the part3. 4667 * We will test the submitted IO and reset works 4668 * properly with the qd sampling. 4669 */ 4670 memset(&cb_arg, 0, sizeof(cb_arg)); 4671 spdk_bdev_set_qd_sampling_period(bdev, 1); 4672 poll_threads(); 4673 4674 CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0); 4675 CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1); 4676 4677 /* Also include the reset IO */ 4678 memset(&cb_arg, 0, sizeof(cb_arg)); 4679 CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0); 4680 poll_threads(); 4681 4682 /* Close the desc */ 4683 spdk_put_io_channel(io_ch); 4684 spdk_bdev_close(desc); 4685 4686 /* Complete the submitted IO and reset */ 4687 stub_complete_io(2); 4688 poll_threads(); 4689 4690 free_bdev(bdev); 4691 ut_fini_bdev(); 4692 } 4693 4694 static void 4695 lba_range_overlap(void) 4696 { 4697 struct lba_range r1, r2; 4698 4699 r1.offset = 100; 4700 r1.length = 50; 4701 4702 r2.offset = 0; 4703 r2.length = 1; 4704 CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2)); 4705 4706 r2.offset = 0; 4707 r2.length = 100; 4708 CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2)); 4709 4710 r2.offset = 0; 4711 r2.length = 110; 4712 CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2)); 4713 4714 r2.offset = 100; 4715 r2.length = 10; 4716 CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2)); 4717 4718 r2.offset = 110; 4719 r2.length = 20; 4720 CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2)); 4721 4722 r2.offset = 140; 4723 r2.length = 150; 4724 CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2)); 4725 4726 r2.offset = 130; 4727 r2.length = 200; 4728 CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2)); 4729 4730 r2.offset = 150; 4731 r2.length = 100; 4732 CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2)); 4733 4734 r2.offset = 110; 4735 r2.length = 0; 4736 CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2)); 4737 } 4738 4739 static bool g_lock_lba_range_done; 4740 static bool g_unlock_lba_range_done; 4741 4742 static void 4743 lock_lba_range_done(void *ctx, int status) 4744 { 4745 g_lock_lba_range_done = true; 4746 } 4747 4748 static void 4749 unlock_lba_range_done(void *ctx, int status) 4750 { 4751 g_unlock_lba_range_done = true; 4752 } 4753 4754 static void 4755 lock_lba_range_check_ranges(void) 4756 { 4757 struct spdk_bdev *bdev; 4758 struct spdk_bdev_desc *desc = NULL; 4759 struct spdk_io_channel *io_ch; 4760 struct spdk_bdev_channel *channel; 4761 struct lba_range *range; 4762 int ctx1; 4763 int rc; 4764 4765 ut_init_bdev(NULL); 4766 bdev = allocate_bdev("bdev0"); 4767 4768 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc); 4769 CU_ASSERT(rc == 0); 4770 CU_ASSERT(desc != NULL); 4771 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 4772 io_ch = spdk_bdev_get_io_channel(desc); 4773 CU_ASSERT(io_ch != NULL); 4774 channel = spdk_io_channel_get_ctx(io_ch); 4775 4776 g_lock_lba_range_done = false; 4777 rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1); 4778 CU_ASSERT(rc == 0); 4779 poll_threads(); 4780 4781 CU_ASSERT(g_lock_lba_range_done == true); 4782 range = TAILQ_FIRST(&channel->locked_ranges); 4783 SPDK_CU_ASSERT_FATAL(range != NULL); 4784 CU_ASSERT(range->offset == 20); 4785 CU_ASSERT(range->length == 10); 4786 CU_ASSERT(range->owner_ch == channel); 4787 4788 /* Unlocks must exactly match a lock. */ 4789 g_unlock_lba_range_done = false; 4790 rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1); 4791 CU_ASSERT(rc == -EINVAL); 4792 CU_ASSERT(g_unlock_lba_range_done == false); 4793 4794 rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1); 4795 CU_ASSERT(rc == 0); 4796 spdk_delay_us(100); 4797 poll_threads(); 4798 4799 CU_ASSERT(g_unlock_lba_range_done == true); 4800 CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges)); 4801 4802 spdk_put_io_channel(io_ch); 4803 spdk_bdev_close(desc); 4804 free_bdev(bdev); 4805 ut_fini_bdev(); 4806 } 4807 4808 static void 4809 lock_lba_range_with_io_outstanding(void) 4810 { 4811 struct spdk_bdev *bdev; 4812 struct spdk_bdev_desc *desc = NULL; 4813 struct spdk_io_channel *io_ch; 4814 struct spdk_bdev_channel *channel; 4815 struct lba_range *range; 4816 char buf[4096]; 4817 int ctx1; 4818 int rc; 4819 4820 ut_init_bdev(NULL); 4821 bdev = allocate_bdev("bdev0"); 4822 4823 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc); 4824 CU_ASSERT(rc == 0); 4825 CU_ASSERT(desc != NULL); 4826 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 4827 io_ch = spdk_bdev_get_io_channel(desc); 4828 CU_ASSERT(io_ch != NULL); 4829 channel = spdk_io_channel_get_ctx(io_ch); 4830 4831 g_io_done = false; 4832 rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1); 4833 CU_ASSERT(rc == 0); 4834 4835 g_lock_lba_range_done = false; 4836 rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1); 4837 CU_ASSERT(rc == 0); 4838 poll_threads(); 4839 4840 /* The lock should immediately become valid, since there are no outstanding 4841 * write I/O. 4842 */ 4843 CU_ASSERT(g_io_done == false); 4844 CU_ASSERT(g_lock_lba_range_done == true); 4845 range = TAILQ_FIRST(&channel->locked_ranges); 4846 SPDK_CU_ASSERT_FATAL(range != NULL); 4847 CU_ASSERT(range->offset == 20); 4848 CU_ASSERT(range->length == 10); 4849 CU_ASSERT(range->owner_ch == channel); 4850 CU_ASSERT(range->locked_ctx == &ctx1); 4851 4852 rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1); 4853 CU_ASSERT(rc == 0); 4854 stub_complete_io(1); 4855 spdk_delay_us(100); 4856 poll_threads(); 4857 4858 CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges)); 4859 4860 /* Now try again, but with a write I/O. */ 4861 g_io_done = false; 4862 rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1); 4863 CU_ASSERT(rc == 0); 4864 4865 g_lock_lba_range_done = false; 4866 rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1); 4867 CU_ASSERT(rc == 0); 4868 poll_threads(); 4869 4870 /* The lock should not be fully valid yet, since a write I/O is outstanding. 4871 * But note that the range should be on the channel's locked_list, to make sure no 4872 * new write I/O are started. 4873 */ 4874 CU_ASSERT(g_io_done == false); 4875 CU_ASSERT(g_lock_lba_range_done == false); 4876 range = TAILQ_FIRST(&channel->locked_ranges); 4877 SPDK_CU_ASSERT_FATAL(range != NULL); 4878 CU_ASSERT(range->offset == 20); 4879 CU_ASSERT(range->length == 10); 4880 4881 /* Complete the write I/O. This should make the lock valid (checked by confirming 4882 * our callback was invoked). 4883 */ 4884 stub_complete_io(1); 4885 spdk_delay_us(100); 4886 poll_threads(); 4887 CU_ASSERT(g_io_done == true); 4888 CU_ASSERT(g_lock_lba_range_done == true); 4889 4890 rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1); 4891 CU_ASSERT(rc == 0); 4892 poll_threads(); 4893 4894 CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges)); 4895 4896 spdk_put_io_channel(io_ch); 4897 spdk_bdev_close(desc); 4898 free_bdev(bdev); 4899 ut_fini_bdev(); 4900 } 4901 4902 static void 4903 lock_lba_range_overlapped(void) 4904 { 4905 struct spdk_bdev *bdev; 4906 struct spdk_bdev_desc *desc = NULL; 4907 struct spdk_io_channel *io_ch; 4908 struct spdk_bdev_channel *channel; 4909 struct lba_range *range; 4910 int ctx1; 4911 int rc; 4912 4913 ut_init_bdev(NULL); 4914 bdev = allocate_bdev("bdev0"); 4915 4916 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc); 4917 CU_ASSERT(rc == 0); 4918 CU_ASSERT(desc != NULL); 4919 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 4920 io_ch = spdk_bdev_get_io_channel(desc); 4921 CU_ASSERT(io_ch != NULL); 4922 channel = spdk_io_channel_get_ctx(io_ch); 4923 4924 /* Lock range 20-29. */ 4925 g_lock_lba_range_done = false; 4926 rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1); 4927 CU_ASSERT(rc == 0); 4928 poll_threads(); 4929 4930 CU_ASSERT(g_lock_lba_range_done == true); 4931 range = TAILQ_FIRST(&channel->locked_ranges); 4932 SPDK_CU_ASSERT_FATAL(range != NULL); 4933 CU_ASSERT(range->offset == 20); 4934 CU_ASSERT(range->length == 10); 4935 4936 /* Try to lock range 25-39. It should not lock immediately, since it overlaps with 4937 * 20-29. 4938 */ 4939 g_lock_lba_range_done = false; 4940 rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1); 4941 CU_ASSERT(rc == 0); 4942 poll_threads(); 4943 4944 CU_ASSERT(g_lock_lba_range_done == false); 4945 range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges); 4946 SPDK_CU_ASSERT_FATAL(range != NULL); 4947 CU_ASSERT(range->offset == 25); 4948 CU_ASSERT(range->length == 15); 4949 4950 /* Unlock 20-29. This should result in range 25-39 now getting locked since it 4951 * no longer overlaps with an active lock. 4952 */ 4953 g_unlock_lba_range_done = false; 4954 rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1); 4955 CU_ASSERT(rc == 0); 4956 poll_threads(); 4957 4958 CU_ASSERT(g_unlock_lba_range_done == true); 4959 CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges)); 4960 range = TAILQ_FIRST(&channel->locked_ranges); 4961 SPDK_CU_ASSERT_FATAL(range != NULL); 4962 CU_ASSERT(range->offset == 25); 4963 CU_ASSERT(range->length == 15); 4964 4965 /* Lock 40-59. This should immediately lock since it does not overlap with the 4966 * currently active 25-39 lock. 4967 */ 4968 g_lock_lba_range_done = false; 4969 rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1); 4970 CU_ASSERT(rc == 0); 4971 poll_threads(); 4972 4973 CU_ASSERT(g_lock_lba_range_done == true); 4974 range = TAILQ_FIRST(&bdev->internal.locked_ranges); 4975 SPDK_CU_ASSERT_FATAL(range != NULL); 4976 range = TAILQ_NEXT(range, tailq); 4977 SPDK_CU_ASSERT_FATAL(range != NULL); 4978 CU_ASSERT(range->offset == 40); 4979 CU_ASSERT(range->length == 20); 4980 4981 /* Try to lock 35-44. Note that this overlaps with both 25-39 and 40-59. */ 4982 g_lock_lba_range_done = false; 4983 rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1); 4984 CU_ASSERT(rc == 0); 4985 poll_threads(); 4986 4987 CU_ASSERT(g_lock_lba_range_done == false); 4988 range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges); 4989 SPDK_CU_ASSERT_FATAL(range != NULL); 4990 CU_ASSERT(range->offset == 35); 4991 CU_ASSERT(range->length == 10); 4992 4993 /* Unlock 25-39. Make sure that 35-44 is still in the pending list, since 4994 * the 40-59 lock is still active. 4995 */ 4996 g_unlock_lba_range_done = false; 4997 rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1); 4998 CU_ASSERT(rc == 0); 4999 poll_threads(); 5000 5001 CU_ASSERT(g_unlock_lba_range_done == true); 5002 CU_ASSERT(g_lock_lba_range_done == false); 5003 range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges); 5004 SPDK_CU_ASSERT_FATAL(range != NULL); 5005 CU_ASSERT(range->offset == 35); 5006 CU_ASSERT(range->length == 10); 5007 5008 /* Unlock 40-59. This should result in 35-44 now getting locked, since there are 5009 * no longer any active overlapping locks. 5010 */ 5011 g_unlock_lba_range_done = false; 5012 rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1); 5013 CU_ASSERT(rc == 0); 5014 poll_threads(); 5015 5016 CU_ASSERT(g_unlock_lba_range_done == true); 5017 CU_ASSERT(g_lock_lba_range_done == true); 5018 CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges)); 5019 range = TAILQ_FIRST(&bdev->internal.locked_ranges); 5020 SPDK_CU_ASSERT_FATAL(range != NULL); 5021 CU_ASSERT(range->offset == 35); 5022 CU_ASSERT(range->length == 10); 5023 5024 /* Finally, unlock 35-44. */ 5025 g_unlock_lba_range_done = false; 5026 rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1); 5027 CU_ASSERT(rc == 0); 5028 poll_threads(); 5029 5030 CU_ASSERT(g_unlock_lba_range_done == true); 5031 CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges)); 5032 5033 spdk_put_io_channel(io_ch); 5034 spdk_bdev_close(desc); 5035 free_bdev(bdev); 5036 ut_fini_bdev(); 5037 } 5038 5039 static void 5040 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 5041 { 5042 g_abort_done = true; 5043 g_abort_status = bdev_io->internal.status; 5044 spdk_bdev_free_io(bdev_io); 5045 } 5046 5047 static void 5048 bdev_io_abort(void) 5049 { 5050 struct spdk_bdev *bdev; 5051 struct spdk_bdev_desc *desc = NULL; 5052 struct spdk_io_channel *io_ch; 5053 struct spdk_bdev_channel *channel; 5054 struct spdk_bdev_mgmt_channel *mgmt_ch; 5055 struct spdk_bdev_opts bdev_opts = {}; 5056 struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2]; 5057 uint64_t io_ctx1 = 0, io_ctx2 = 0, i; 5058 int rc; 5059 5060 spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts)); 5061 bdev_opts.bdev_io_pool_size = 7; 5062 bdev_opts.bdev_io_cache_size = 2; 5063 ut_init_bdev(&bdev_opts); 5064 5065 bdev = allocate_bdev("bdev0"); 5066 5067 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc); 5068 CU_ASSERT(rc == 0); 5069 CU_ASSERT(desc != NULL); 5070 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 5071 io_ch = spdk_bdev_get_io_channel(desc); 5072 CU_ASSERT(io_ch != NULL); 5073 channel = spdk_io_channel_get_ctx(io_ch); 5074 mgmt_ch = channel->shared_resource->mgmt_ch; 5075 5076 g_abort_done = false; 5077 5078 ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false); 5079 5080 rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL); 5081 CU_ASSERT(rc == -ENOTSUP); 5082 5083 ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true); 5084 5085 rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL); 5086 CU_ASSERT(rc == 0); 5087 CU_ASSERT(g_abort_done == true); 5088 CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED); 5089 5090 /* Test the case that the target I/O was successfully aborted. */ 5091 g_io_done = false; 5092 5093 rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1); 5094 CU_ASSERT(rc == 0); 5095 CU_ASSERT(g_io_done == false); 5096 5097 g_abort_done = false; 5098 g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 5099 5100 rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL); 5101 CU_ASSERT(rc == 0); 5102 CU_ASSERT(g_io_done == true); 5103 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED); 5104 stub_complete_io(1); 5105 CU_ASSERT(g_abort_done == true); 5106 CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS); 5107 5108 /* Test the case that the target I/O was not aborted because it completed 5109 * in the middle of execution of the abort. 5110 */ 5111 g_io_done = false; 5112 5113 rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1); 5114 CU_ASSERT(rc == 0); 5115 CU_ASSERT(g_io_done == false); 5116 5117 g_abort_done = false; 5118 g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED; 5119 5120 rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL); 5121 CU_ASSERT(rc == 0); 5122 CU_ASSERT(g_io_done == false); 5123 5124 g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 5125 stub_complete_io(1); 5126 CU_ASSERT(g_io_done == true); 5127 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS); 5128 5129 g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED; 5130 stub_complete_io(1); 5131 CU_ASSERT(g_abort_done == true); 5132 CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS); 5133 5134 g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 5135 5136 bdev->optimal_io_boundary = 16; 5137 bdev->split_on_optimal_io_boundary = true; 5138 5139 /* Test that a single-vector command which is split is aborted correctly. 5140 * Offset 14, length 8, payload 0xF000 5141 * Child - Offset 14, length 2, payload 0xF000 5142 * Child - Offset 16, length 6, payload 0xF000 + 2 * 512 5143 */ 5144 g_io_done = false; 5145 5146 rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1); 5147 CU_ASSERT(rc == 0); 5148 CU_ASSERT(g_io_done == false); 5149 5150 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 5151 5152 g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 5153 5154 rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL); 5155 CU_ASSERT(rc == 0); 5156 CU_ASSERT(g_io_done == true); 5157 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED); 5158 stub_complete_io(2); 5159 CU_ASSERT(g_abort_done == true); 5160 CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS); 5161 5162 /* Test that a multi-vector command that needs to be split by strip and then 5163 * needs to be split is aborted correctly. Abort is requested before the second 5164 * child I/O was submitted. The parent I/O should complete with failure without 5165 * submitting the second child I/O. 5166 */ 5167 for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) { 5168 iov[i].iov_base = (void *)((i + 1) * 0x10000); 5169 iov[i].iov_len = 512; 5170 } 5171 5172 bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV; 5173 g_io_done = false; 5174 rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0, 5175 SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1); 5176 CU_ASSERT(rc == 0); 5177 CU_ASSERT(g_io_done == false); 5178 5179 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 5180 5181 g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 5182 5183 rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL); 5184 CU_ASSERT(rc == 0); 5185 CU_ASSERT(g_io_done == true); 5186 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED); 5187 stub_complete_io(1); 5188 CU_ASSERT(g_abort_done == true); 5189 CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS); 5190 5191 g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 5192 5193 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 5194 5195 bdev->optimal_io_boundary = 16; 5196 g_io_done = false; 5197 5198 /* Test that a ingle-vector command which is split is aborted correctly. 5199 * Differently from the above, the child abort request will be submitted 5200 * sequentially due to the capacity of spdk_bdev_io. 5201 */ 5202 rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1); 5203 CU_ASSERT(rc == 0); 5204 CU_ASSERT(g_io_done == false); 5205 5206 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4); 5207 5208 g_abort_done = false; 5209 g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 5210 5211 rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL); 5212 CU_ASSERT(rc == 0); 5213 CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue)); 5214 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4); 5215 5216 stub_complete_io(1); 5217 CU_ASSERT(g_io_done == true); 5218 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED); 5219 stub_complete_io(3); 5220 CU_ASSERT(g_abort_done == true); 5221 CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS); 5222 5223 g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 5224 5225 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 5226 5227 spdk_put_io_channel(io_ch); 5228 spdk_bdev_close(desc); 5229 free_bdev(bdev); 5230 ut_fini_bdev(); 5231 } 5232 5233 static void 5234 bdev_unmap(void) 5235 { 5236 struct spdk_bdev *bdev; 5237 struct spdk_bdev_desc *desc = NULL; 5238 struct spdk_io_channel *ioch; 5239 struct spdk_bdev_channel *bdev_ch; 5240 struct ut_expected_io *expected_io; 5241 struct spdk_bdev_opts bdev_opts = {}; 5242 uint32_t i, num_outstanding; 5243 uint64_t offset, num_blocks, max_unmap_blocks, num_children; 5244 int rc; 5245 5246 spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts)); 5247 bdev_opts.bdev_io_pool_size = 512; 5248 bdev_opts.bdev_io_cache_size = 64; 5249 ut_init_bdev(&bdev_opts); 5250 5251 bdev = allocate_bdev("bdev"); 5252 5253 rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc); 5254 CU_ASSERT_EQUAL(rc, 0); 5255 SPDK_CU_ASSERT_FATAL(desc != NULL); 5256 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 5257 ioch = spdk_bdev_get_io_channel(desc); 5258 SPDK_CU_ASSERT_FATAL(ioch != NULL); 5259 bdev_ch = spdk_io_channel_get_ctx(ioch); 5260 CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted)); 5261 5262 fn_table.submit_request = stub_submit_request; 5263 g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 5264 5265 /* Case 1: First test the request won't be split */ 5266 num_blocks = 32; 5267 5268 g_io_done = false; 5269 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 0, num_blocks, 0); 5270 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 5271 rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL); 5272 CU_ASSERT_EQUAL(rc, 0); 5273 CU_ASSERT(g_io_done == false); 5274 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 5275 stub_complete_io(1); 5276 CU_ASSERT(g_io_done == true); 5277 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 5278 5279 /* Case 2: Test the split with 2 children requests */ 5280 bdev->max_unmap = 8; 5281 bdev->max_unmap_segments = 2; 5282 max_unmap_blocks = bdev->max_unmap * bdev->max_unmap_segments; 5283 num_blocks = max_unmap_blocks * 2; 5284 offset = 0; 5285 5286 g_io_done = false; 5287 for (i = 0; i < 2; i++) { 5288 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0); 5289 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 5290 offset += max_unmap_blocks; 5291 } 5292 5293 rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL); 5294 CU_ASSERT_EQUAL(rc, 0); 5295 CU_ASSERT(g_io_done == false); 5296 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 5297 stub_complete_io(2); 5298 CU_ASSERT(g_io_done == true); 5299 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 5300 5301 /* Case 3: Test the split with 15 children requests, will finish 8 requests first */ 5302 num_children = 15; 5303 num_blocks = max_unmap_blocks * num_children; 5304 g_io_done = false; 5305 offset = 0; 5306 for (i = 0; i < num_children; i++) { 5307 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0); 5308 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 5309 offset += max_unmap_blocks; 5310 } 5311 5312 rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL); 5313 CU_ASSERT_EQUAL(rc, 0); 5314 CU_ASSERT(g_io_done == false); 5315 5316 while (num_children > 0) { 5317 num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS); 5318 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding); 5319 stub_complete_io(num_outstanding); 5320 num_children -= num_outstanding; 5321 } 5322 CU_ASSERT(g_io_done == true); 5323 5324 spdk_put_io_channel(ioch); 5325 spdk_bdev_close(desc); 5326 free_bdev(bdev); 5327 ut_fini_bdev(); 5328 } 5329 5330 static void 5331 bdev_write_zeroes_split_test(void) 5332 { 5333 struct spdk_bdev *bdev; 5334 struct spdk_bdev_desc *desc = NULL; 5335 struct spdk_io_channel *ioch; 5336 struct spdk_bdev_channel *bdev_ch; 5337 struct ut_expected_io *expected_io; 5338 struct spdk_bdev_opts bdev_opts = {}; 5339 uint32_t i, num_outstanding; 5340 uint64_t offset, num_blocks, max_write_zeroes_blocks, num_children; 5341 int rc; 5342 5343 spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts)); 5344 bdev_opts.bdev_io_pool_size = 512; 5345 bdev_opts.bdev_io_cache_size = 64; 5346 ut_init_bdev(&bdev_opts); 5347 5348 bdev = allocate_bdev("bdev"); 5349 5350 rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc); 5351 CU_ASSERT_EQUAL(rc, 0); 5352 SPDK_CU_ASSERT_FATAL(desc != NULL); 5353 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 5354 ioch = spdk_bdev_get_io_channel(desc); 5355 SPDK_CU_ASSERT_FATAL(ioch != NULL); 5356 bdev_ch = spdk_io_channel_get_ctx(ioch); 5357 CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted)); 5358 5359 fn_table.submit_request = stub_submit_request; 5360 g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 5361 5362 /* Case 1: First test the request won't be split */ 5363 num_blocks = 32; 5364 5365 g_io_done = false; 5366 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0); 5367 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 5368 rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL); 5369 CU_ASSERT_EQUAL(rc, 0); 5370 CU_ASSERT(g_io_done == false); 5371 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 5372 stub_complete_io(1); 5373 CU_ASSERT(g_io_done == true); 5374 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 5375 5376 /* Case 2: Test the split with 2 children requests */ 5377 max_write_zeroes_blocks = 8; 5378 bdev->max_write_zeroes = max_write_zeroes_blocks; 5379 num_blocks = max_write_zeroes_blocks * 2; 5380 offset = 0; 5381 5382 g_io_done = false; 5383 for (i = 0; i < 2; i++) { 5384 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks, 5385 0); 5386 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 5387 offset += max_write_zeroes_blocks; 5388 } 5389 5390 rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL); 5391 CU_ASSERT_EQUAL(rc, 0); 5392 CU_ASSERT(g_io_done == false); 5393 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 5394 stub_complete_io(2); 5395 CU_ASSERT(g_io_done == true); 5396 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 5397 5398 /* Case 3: Test the split with 15 children requests, will finish 8 requests first */ 5399 num_children = 15; 5400 num_blocks = max_write_zeroes_blocks * num_children; 5401 g_io_done = false; 5402 offset = 0; 5403 for (i = 0; i < num_children; i++) { 5404 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks, 5405 0); 5406 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 5407 offset += max_write_zeroes_blocks; 5408 } 5409 5410 rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL); 5411 CU_ASSERT_EQUAL(rc, 0); 5412 CU_ASSERT(g_io_done == false); 5413 5414 while (num_children > 0) { 5415 num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS); 5416 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding); 5417 stub_complete_io(num_outstanding); 5418 num_children -= num_outstanding; 5419 } 5420 CU_ASSERT(g_io_done == true); 5421 5422 spdk_put_io_channel(ioch); 5423 spdk_bdev_close(desc); 5424 free_bdev(bdev); 5425 ut_fini_bdev(); 5426 } 5427 5428 static void 5429 bdev_set_options_test(void) 5430 { 5431 struct spdk_bdev_opts bdev_opts = {}; 5432 int rc; 5433 5434 /* Case1: Do not set opts_size */ 5435 rc = spdk_bdev_set_opts(&bdev_opts); 5436 CU_ASSERT(rc == -1); 5437 5438 spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts)); 5439 bdev_opts.bdev_io_pool_size = 4; 5440 bdev_opts.bdev_io_cache_size = 2; 5441 bdev_opts.small_buf_pool_size = 4; 5442 5443 /* Case 2: Do not set valid small_buf_pool_size and large_buf_pool_size */ 5444 rc = spdk_bdev_set_opts(&bdev_opts); 5445 CU_ASSERT(rc == -1); 5446 5447 /* Case 3: Do not set valid large_buf_pool_size */ 5448 bdev_opts.small_buf_pool_size = BUF_SMALL_POOL_SIZE; 5449 bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE - 1; 5450 rc = spdk_bdev_set_opts(&bdev_opts); 5451 CU_ASSERT(rc == -1); 5452 5453 /* Case4: set valid large buf_pool_size */ 5454 bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE; 5455 rc = spdk_bdev_set_opts(&bdev_opts); 5456 CU_ASSERT(rc == 0); 5457 5458 /* Case5: Set different valid value for small and large buf pool */ 5459 bdev_opts.large_buf_pool_size = BUF_SMALL_POOL_SIZE + 3; 5460 bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE + 3; 5461 rc = spdk_bdev_set_opts(&bdev_opts); 5462 CU_ASSERT(rc == 0); 5463 } 5464 5465 static uint64_t 5466 get_ns_time(void) 5467 { 5468 int rc; 5469 struct timespec ts; 5470 5471 rc = clock_gettime(CLOCK_MONOTONIC, &ts); 5472 CU_ASSERT(rc == 0); 5473 return ts.tv_sec * 1000 * 1000 * 1000 + ts.tv_nsec; 5474 } 5475 5476 static int 5477 rb_tree_get_height(struct spdk_bdev_name *bdev_name) 5478 { 5479 int h1, h2; 5480 5481 if (bdev_name == NULL) { 5482 return -1; 5483 } else { 5484 h1 = rb_tree_get_height(RB_LEFT(bdev_name, node)); 5485 h2 = rb_tree_get_height(RB_RIGHT(bdev_name, node)); 5486 5487 return spdk_max(h1, h2) + 1; 5488 } 5489 } 5490 5491 static void 5492 bdev_multi_allocation(void) 5493 { 5494 const int max_bdev_num = 1024 * 16; 5495 char name[max_bdev_num][16]; 5496 char noexist_name[] = "invalid_bdev"; 5497 struct spdk_bdev *bdev[max_bdev_num]; 5498 int i, j; 5499 uint64_t last_time; 5500 int bdev_num; 5501 int height; 5502 5503 for (j = 0; j < max_bdev_num; j++) { 5504 snprintf(name[j], sizeof(name[j]), "bdev%d", j); 5505 } 5506 5507 for (i = 0; i < 16; i++) { 5508 last_time = get_ns_time(); 5509 bdev_num = 1024 * (i + 1); 5510 for (j = 0; j < bdev_num; j++) { 5511 bdev[j] = allocate_bdev(name[j]); 5512 height = rb_tree_get_height(&bdev[j]->internal.bdev_name); 5513 CU_ASSERT(height <= (int)(spdk_u32log2(2 * j + 2))); 5514 } 5515 SPDK_NOTICELOG("alloc bdev num %d takes %" PRIu64 " ms\n", bdev_num, 5516 (get_ns_time() - last_time) / 1000 / 1000); 5517 for (j = 0; j < bdev_num; j++) { 5518 CU_ASSERT(spdk_bdev_get_by_name(name[j]) != NULL); 5519 } 5520 CU_ASSERT(spdk_bdev_get_by_name(noexist_name) == NULL); 5521 5522 for (j = 0; j < bdev_num; j++) { 5523 free_bdev(bdev[j]); 5524 } 5525 for (j = 0; j < bdev_num; j++) { 5526 CU_ASSERT(spdk_bdev_get_by_name(name[j]) == NULL); 5527 } 5528 } 5529 } 5530 5531 static struct spdk_memory_domain *g_bdev_memory_domain = (struct spdk_memory_domain *) 0xf00df00d; 5532 5533 static int 5534 test_bdev_get_supported_dma_device_types_op(void *ctx, struct spdk_memory_domain **domains, 5535 int array_size) 5536 { 5537 if (array_size > 0 && domains) { 5538 domains[0] = g_bdev_memory_domain; 5539 } 5540 5541 return 1; 5542 } 5543 5544 static void 5545 bdev_get_memory_domains(void) 5546 { 5547 struct spdk_bdev_fn_table fn_table = { 5548 .get_memory_domains = test_bdev_get_supported_dma_device_types_op 5549 }; 5550 struct spdk_bdev bdev = { .fn_table = &fn_table }; 5551 struct spdk_memory_domain *domains[2] = {}; 5552 int rc; 5553 5554 /* bdev is NULL */ 5555 rc = spdk_bdev_get_memory_domains(NULL, domains, 2); 5556 CU_ASSERT(rc == -EINVAL); 5557 5558 /* domains is NULL */ 5559 rc = spdk_bdev_get_memory_domains(&bdev, NULL, 2); 5560 CU_ASSERT(rc == 1); 5561 5562 /* array size is 0 */ 5563 rc = spdk_bdev_get_memory_domains(&bdev, domains, 0); 5564 CU_ASSERT(rc == 1); 5565 5566 /* get_supported_dma_device_types op is set */ 5567 rc = spdk_bdev_get_memory_domains(&bdev, domains, 2); 5568 CU_ASSERT(rc == 1); 5569 CU_ASSERT(domains[0] == g_bdev_memory_domain); 5570 5571 /* get_supported_dma_device_types op is not set */ 5572 fn_table.get_memory_domains = NULL; 5573 rc = spdk_bdev_get_memory_domains(&bdev, domains, 2); 5574 CU_ASSERT(rc == 0); 5575 } 5576 5577 static void 5578 _bdev_io_ext(struct spdk_bdev_ext_io_opts *ext_io_opts) 5579 { 5580 struct spdk_bdev *bdev; 5581 struct spdk_bdev_desc *desc = NULL; 5582 struct spdk_io_channel *io_ch; 5583 char io_buf[512]; 5584 struct iovec iov = { .iov_base = io_buf, .iov_len = 512 }; 5585 struct ut_expected_io *expected_io; 5586 int rc; 5587 5588 ut_init_bdev(NULL); 5589 5590 bdev = allocate_bdev("bdev0"); 5591 bdev->md_interleave = false; 5592 bdev->md_len = 8; 5593 5594 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc); 5595 CU_ASSERT(rc == 0); 5596 SPDK_CU_ASSERT_FATAL(desc != NULL); 5597 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 5598 io_ch = spdk_bdev_get_io_channel(desc); 5599 CU_ASSERT(io_ch != NULL); 5600 5601 /* read */ 5602 g_io_done = false; 5603 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1); 5604 if (ext_io_opts) { 5605 expected_io->md_buf = ext_io_opts->metadata; 5606 } 5607 ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len); 5608 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 5609 5610 rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts); 5611 5612 CU_ASSERT(rc == 0); 5613 CU_ASSERT(g_io_done == false); 5614 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 5615 stub_complete_io(1); 5616 CU_ASSERT(g_io_done == true); 5617 5618 /* write */ 5619 g_io_done = false; 5620 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1); 5621 if (ext_io_opts) { 5622 expected_io->md_buf = ext_io_opts->metadata; 5623 } 5624 ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len); 5625 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 5626 5627 rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts); 5628 5629 CU_ASSERT(rc == 0); 5630 CU_ASSERT(g_io_done == false); 5631 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 5632 stub_complete_io(1); 5633 CU_ASSERT(g_io_done == true); 5634 5635 spdk_put_io_channel(io_ch); 5636 spdk_bdev_close(desc); 5637 free_bdev(bdev); 5638 ut_fini_bdev(); 5639 5640 } 5641 5642 static void 5643 bdev_io_ext(void) 5644 { 5645 struct spdk_bdev_ext_io_opts ext_io_opts = { 5646 .metadata = (void *)0xFF000000, 5647 .size = sizeof(ext_io_opts) 5648 }; 5649 5650 _bdev_io_ext(&ext_io_opts); 5651 } 5652 5653 static void 5654 bdev_io_ext_no_opts(void) 5655 { 5656 _bdev_io_ext(NULL); 5657 } 5658 5659 static void 5660 bdev_io_ext_invalid_opts(void) 5661 { 5662 struct spdk_bdev *bdev; 5663 struct spdk_bdev_desc *desc = NULL; 5664 struct spdk_io_channel *io_ch; 5665 char io_buf[512]; 5666 struct iovec iov = { .iov_base = io_buf, .iov_len = 512 }; 5667 struct spdk_bdev_ext_io_opts ext_io_opts = { 5668 .metadata = (void *)0xFF000000, 5669 .size = sizeof(ext_io_opts) 5670 }; 5671 int rc; 5672 5673 ut_init_bdev(NULL); 5674 5675 bdev = allocate_bdev("bdev0"); 5676 bdev->md_interleave = false; 5677 bdev->md_len = 8; 5678 5679 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc); 5680 CU_ASSERT(rc == 0); 5681 SPDK_CU_ASSERT_FATAL(desc != NULL); 5682 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 5683 io_ch = spdk_bdev_get_io_channel(desc); 5684 CU_ASSERT(io_ch != NULL); 5685 5686 /* Test invalid ext_opts size */ 5687 ext_io_opts.size = 0; 5688 rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts); 5689 CU_ASSERT(rc == -EINVAL); 5690 rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts); 5691 CU_ASSERT(rc == -EINVAL); 5692 5693 ext_io_opts.size = sizeof(ext_io_opts) * 2; 5694 rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts); 5695 CU_ASSERT(rc == -EINVAL); 5696 rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts); 5697 CU_ASSERT(rc == -EINVAL); 5698 5699 ext_io_opts.size = offsetof(struct spdk_bdev_ext_io_opts, metadata) + 5700 sizeof(ext_io_opts.metadata) - 1; 5701 rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts); 5702 CU_ASSERT(rc == -EINVAL); 5703 rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts); 5704 CU_ASSERT(rc == -EINVAL); 5705 5706 spdk_put_io_channel(io_ch); 5707 spdk_bdev_close(desc); 5708 free_bdev(bdev); 5709 ut_fini_bdev(); 5710 } 5711 5712 static void 5713 bdev_io_ext_split(void) 5714 { 5715 struct spdk_bdev *bdev; 5716 struct spdk_bdev_desc *desc = NULL; 5717 struct spdk_io_channel *io_ch; 5718 char io_buf[512]; 5719 struct iovec iov = { .iov_base = io_buf, .iov_len = 512 }; 5720 struct ut_expected_io *expected_io; 5721 struct spdk_bdev_ext_io_opts ext_io_opts = { 5722 .metadata = (void *)0xFF000000, 5723 .size = sizeof(ext_io_opts) 5724 }; 5725 int rc; 5726 5727 ut_init_bdev(NULL); 5728 5729 bdev = allocate_bdev("bdev0"); 5730 bdev->md_interleave = false; 5731 bdev->md_len = 8; 5732 5733 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc); 5734 CU_ASSERT(rc == 0); 5735 SPDK_CU_ASSERT_FATAL(desc != NULL); 5736 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 5737 io_ch = spdk_bdev_get_io_channel(desc); 5738 CU_ASSERT(io_ch != NULL); 5739 5740 /* Check that IO request with ext_opts and metadata is split correctly 5741 * Offset 14, length 8, payload 0xF000 5742 * Child - Offset 14, length 2, payload 0xF000 5743 * Child - Offset 16, length 6, payload 0xF000 + 2 * 512 5744 */ 5745 bdev->optimal_io_boundary = 16; 5746 bdev->split_on_optimal_io_boundary = true; 5747 bdev->md_interleave = false; 5748 bdev->md_len = 8; 5749 5750 iov.iov_base = (void *)0xF000; 5751 iov.iov_len = 4096; 5752 memset(&ext_io_opts, 0, sizeof(ext_io_opts)); 5753 ext_io_opts.metadata = (void *)0xFF000000; 5754 ext_io_opts.size = sizeof(ext_io_opts); 5755 g_io_done = false; 5756 5757 /* read */ 5758 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1); 5759 expected_io->md_buf = ext_io_opts.metadata; 5760 ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512); 5761 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 5762 5763 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1); 5764 expected_io->md_buf = ext_io_opts.metadata + 2 * 8; 5765 ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512); 5766 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 5767 5768 rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts); 5769 CU_ASSERT(rc == 0); 5770 CU_ASSERT(g_io_done == false); 5771 5772 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 5773 stub_complete_io(2); 5774 CU_ASSERT(g_io_done == true); 5775 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 5776 5777 /* write */ 5778 g_io_done = false; 5779 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1); 5780 expected_io->md_buf = ext_io_opts.metadata; 5781 ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512); 5782 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 5783 5784 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 6, 1); 5785 expected_io->md_buf = ext_io_opts.metadata + 2 * 8; 5786 ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512); 5787 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 5788 5789 rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts); 5790 CU_ASSERT(rc == 0); 5791 CU_ASSERT(g_io_done == false); 5792 5793 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 5794 stub_complete_io(2); 5795 CU_ASSERT(g_io_done == true); 5796 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 5797 5798 spdk_put_io_channel(io_ch); 5799 spdk_bdev_close(desc); 5800 free_bdev(bdev); 5801 ut_fini_bdev(); 5802 } 5803 5804 static void 5805 bdev_io_ext_bounce_buffer(void) 5806 { 5807 struct spdk_bdev *bdev; 5808 struct spdk_bdev_desc *desc = NULL; 5809 struct spdk_io_channel *io_ch; 5810 char io_buf[512]; 5811 struct iovec iov = { .iov_base = io_buf, .iov_len = 512 }; 5812 struct ut_expected_io *expected_io, *aux_io; 5813 struct spdk_bdev_ext_io_opts ext_io_opts = { 5814 .metadata = (void *)0xFF000000, 5815 .size = sizeof(ext_io_opts) 5816 }; 5817 int rc; 5818 5819 ut_init_bdev(NULL); 5820 5821 bdev = allocate_bdev("bdev0"); 5822 bdev->md_interleave = false; 5823 bdev->md_len = 8; 5824 5825 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc); 5826 CU_ASSERT(rc == 0); 5827 SPDK_CU_ASSERT_FATAL(desc != NULL); 5828 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 5829 io_ch = spdk_bdev_get_io_channel(desc); 5830 CU_ASSERT(io_ch != NULL); 5831 5832 /* Verify data pull/push 5833 * bdev doesn't support memory domains, so buffers from bdev memory pool will be used */ 5834 ext_io_opts.memory_domain = (struct spdk_memory_domain *)0xdeadbeef; 5835 5836 /* read */ 5837 g_io_done = false; 5838 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1); 5839 ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len); 5840 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 5841 5842 rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts); 5843 5844 CU_ASSERT(rc == 0); 5845 CU_ASSERT(g_io_done == false); 5846 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 5847 stub_complete_io(1); 5848 CU_ASSERT(g_memory_domain_push_data_called == true); 5849 CU_ASSERT(g_io_done == true); 5850 5851 /* write */ 5852 g_io_done = false; 5853 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1); 5854 ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len); 5855 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 5856 5857 rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts); 5858 5859 CU_ASSERT(rc == 0); 5860 CU_ASSERT(g_memory_domain_pull_data_called == true); 5861 CU_ASSERT(g_io_done == false); 5862 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 5863 stub_complete_io(1); 5864 CU_ASSERT(g_io_done == true); 5865 5866 /* Verify the request is queued after receiving ENOMEM from pull */ 5867 g_io_done = false; 5868 aux_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1); 5869 ut_expected_io_set_iov(aux_io, 0, iov.iov_base, iov.iov_len); 5870 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, aux_io, link); 5871 rc = spdk_bdev_writev_blocks(desc, io_ch, &iov, 1, 32, 14, io_done, NULL); 5872 CU_ASSERT(rc == 0); 5873 CU_ASSERT(g_io_done == false); 5874 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 5875 5876 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1); 5877 ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len); 5878 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 5879 5880 MOCK_SET(spdk_memory_domain_pull_data, -ENOMEM); 5881 rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts); 5882 CU_ASSERT(rc == 0); 5883 CU_ASSERT(g_io_done == false); 5884 /* The second IO has been queued */ 5885 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 5886 5887 MOCK_CLEAR(spdk_memory_domain_pull_data); 5888 g_memory_domain_pull_data_called = false; 5889 stub_complete_io(1); 5890 CU_ASSERT(g_io_done == true); 5891 CU_ASSERT(g_memory_domain_pull_data_called == true); 5892 /* The second IO should be submitted now */ 5893 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 5894 g_io_done = false; 5895 stub_complete_io(1); 5896 CU_ASSERT(g_io_done == true); 5897 5898 /* Verify the request is queued after receiving ENOMEM from push */ 5899 g_io_done = false; 5900 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1); 5901 ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len); 5902 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 5903 5904 MOCK_SET(spdk_memory_domain_push_data, -ENOMEM); 5905 rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts); 5906 CU_ASSERT(rc == 0); 5907 CU_ASSERT(g_io_done == false); 5908 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 5909 5910 aux_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1); 5911 ut_expected_io_set_iov(aux_io, 0, iov.iov_base, iov.iov_len); 5912 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, aux_io, link); 5913 rc = spdk_bdev_writev_blocks(desc, io_ch, &iov, 1, 32, 14, io_done, NULL); 5914 CU_ASSERT(rc == 0); 5915 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 5916 5917 stub_complete_io(1); 5918 /* The IO isn't done yet, it's still waiting on push */ 5919 CU_ASSERT(g_io_done == false); 5920 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 5921 MOCK_CLEAR(spdk_memory_domain_push_data); 5922 g_memory_domain_push_data_called = false; 5923 /* Completing the second IO should also trigger push on the first one */ 5924 stub_complete_io(1); 5925 CU_ASSERT(g_io_done == true); 5926 CU_ASSERT(g_memory_domain_push_data_called == true); 5927 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 5928 5929 spdk_put_io_channel(io_ch); 5930 spdk_bdev_close(desc); 5931 free_bdev(bdev); 5932 ut_fini_bdev(); 5933 } 5934 5935 static void 5936 bdev_register_uuid_alias(void) 5937 { 5938 struct spdk_bdev *bdev, *second; 5939 char uuid[SPDK_UUID_STRING_LEN]; 5940 int rc; 5941 5942 ut_init_bdev(NULL); 5943 bdev = allocate_bdev("bdev0"); 5944 5945 /* Make sure an UUID was generated */ 5946 CU_ASSERT_FALSE(spdk_mem_all_zero(&bdev->uuid, sizeof(bdev->uuid))); 5947 5948 /* Check that an UUID alias was registered */ 5949 spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid); 5950 CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev); 5951 5952 /* Unregister the bdev */ 5953 spdk_bdev_unregister(bdev, NULL, NULL); 5954 poll_threads(); 5955 CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid)); 5956 5957 /* Check the same, but this time register the bdev with non-zero UUID */ 5958 rc = spdk_bdev_register(bdev); 5959 CU_ASSERT_EQUAL(rc, 0); 5960 CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev); 5961 5962 /* Unregister the bdev */ 5963 spdk_bdev_unregister(bdev, NULL, NULL); 5964 poll_threads(); 5965 CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid)); 5966 5967 /* Regiser the bdev using UUID as the name */ 5968 bdev->name = uuid; 5969 rc = spdk_bdev_register(bdev); 5970 CU_ASSERT_EQUAL(rc, 0); 5971 CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev); 5972 5973 /* Unregister the bdev */ 5974 spdk_bdev_unregister(bdev, NULL, NULL); 5975 poll_threads(); 5976 CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid)); 5977 5978 /* Check that it's not possible to register two bdevs with the same UUIDs */ 5979 bdev->name = "bdev0"; 5980 second = allocate_bdev("bdev1"); 5981 spdk_uuid_copy(&bdev->uuid, &second->uuid); 5982 rc = spdk_bdev_register(bdev); 5983 CU_ASSERT_EQUAL(rc, -EEXIST); 5984 5985 /* Regenerate the UUID and re-check */ 5986 spdk_uuid_generate(&bdev->uuid); 5987 rc = spdk_bdev_register(bdev); 5988 CU_ASSERT_EQUAL(rc, 0); 5989 5990 /* And check that both bdevs can be retrieved through their UUIDs */ 5991 spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid); 5992 CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev); 5993 spdk_uuid_fmt_lower(uuid, sizeof(uuid), &second->uuid); 5994 CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), second); 5995 5996 free_bdev(second); 5997 free_bdev(bdev); 5998 ut_fini_bdev(); 5999 } 6000 6001 static void 6002 bdev_unregister_by_name(void) 6003 { 6004 struct spdk_bdev *bdev; 6005 int rc; 6006 6007 bdev = allocate_bdev("bdev"); 6008 6009 g_event_type1 = 0xFF; 6010 g_unregister_arg = NULL; 6011 g_unregister_rc = -1; 6012 6013 rc = spdk_bdev_unregister_by_name("bdev1", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678); 6014 CU_ASSERT(rc == -ENODEV); 6015 6016 rc = spdk_bdev_unregister_by_name("bdev", &vbdev_ut_if, bdev_unregister_cb, (void *)0x12345678); 6017 CU_ASSERT(rc == -ENODEV); 6018 6019 rc = spdk_bdev_unregister_by_name("bdev", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678); 6020 CU_ASSERT(rc == 0); 6021 6022 /* Check that unregister callback is delayed */ 6023 CU_ASSERT(g_unregister_arg == NULL); 6024 CU_ASSERT(g_unregister_rc == -1); 6025 6026 poll_threads(); 6027 6028 /* Event callback shall not be issued because device was closed */ 6029 CU_ASSERT(g_event_type1 == 0xFF); 6030 /* Unregister callback is issued */ 6031 CU_ASSERT(g_unregister_arg == (void *)0x12345678); 6032 CU_ASSERT(g_unregister_rc == 0); 6033 6034 free_bdev(bdev); 6035 } 6036 6037 static int 6038 count_bdevs(void *ctx, struct spdk_bdev *bdev) 6039 { 6040 int *count = ctx; 6041 6042 (*count)++; 6043 6044 return 0; 6045 } 6046 6047 static void 6048 for_each_bdev_test(void) 6049 { 6050 struct spdk_bdev *bdev[8]; 6051 int rc, count; 6052 6053 bdev[0] = allocate_bdev("bdev0"); 6054 bdev[0]->internal.status = SPDK_BDEV_STATUS_REMOVING; 6055 6056 bdev[1] = allocate_bdev("bdev1"); 6057 rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if); 6058 CU_ASSERT(rc == 0); 6059 6060 bdev[2] = allocate_bdev("bdev2"); 6061 6062 bdev[3] = allocate_bdev("bdev3"); 6063 rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if); 6064 CU_ASSERT(rc == 0); 6065 6066 bdev[4] = allocate_bdev("bdev4"); 6067 6068 bdev[5] = allocate_bdev("bdev5"); 6069 rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if); 6070 CU_ASSERT(rc == 0); 6071 6072 bdev[6] = allocate_bdev("bdev6"); 6073 6074 bdev[7] = allocate_bdev("bdev7"); 6075 6076 count = 0; 6077 rc = spdk_for_each_bdev(&count, count_bdevs); 6078 CU_ASSERT(rc == 0); 6079 CU_ASSERT(count == 7); 6080 6081 count = 0; 6082 rc = spdk_for_each_bdev_leaf(&count, count_bdevs); 6083 CU_ASSERT(rc == 0); 6084 CU_ASSERT(count == 4); 6085 6086 bdev[0]->internal.status = SPDK_BDEV_STATUS_READY; 6087 free_bdev(bdev[0]); 6088 free_bdev(bdev[1]); 6089 free_bdev(bdev[2]); 6090 free_bdev(bdev[3]); 6091 free_bdev(bdev[4]); 6092 free_bdev(bdev[5]); 6093 free_bdev(bdev[6]); 6094 free_bdev(bdev[7]); 6095 } 6096 6097 static void 6098 bdev_seek_test(void) 6099 { 6100 struct spdk_bdev *bdev; 6101 struct spdk_bdev_desc *desc = NULL; 6102 struct spdk_io_channel *io_ch; 6103 int rc; 6104 6105 ut_init_bdev(NULL); 6106 poll_threads(); 6107 6108 bdev = allocate_bdev("bdev0"); 6109 6110 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc); 6111 CU_ASSERT(rc == 0); 6112 poll_threads(); 6113 SPDK_CU_ASSERT_FATAL(desc != NULL); 6114 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 6115 io_ch = spdk_bdev_get_io_channel(desc); 6116 CU_ASSERT(io_ch != NULL); 6117 6118 /* Seek data not supported */ 6119 ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, false); 6120 rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL); 6121 CU_ASSERT(rc == 0); 6122 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 6123 poll_threads(); 6124 CU_ASSERT(g_seek_offset == 0); 6125 6126 /* Seek hole not supported */ 6127 ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, false); 6128 rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL); 6129 CU_ASSERT(rc == 0); 6130 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 6131 poll_threads(); 6132 CU_ASSERT(g_seek_offset == UINT64_MAX); 6133 6134 /* Seek data supported */ 6135 g_seek_data_offset = 12345; 6136 ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, true); 6137 rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL); 6138 CU_ASSERT(rc == 0); 6139 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 6140 stub_complete_io(1); 6141 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 6142 CU_ASSERT(g_seek_offset == 12345); 6143 6144 /* Seek hole supported */ 6145 g_seek_hole_offset = 67890; 6146 ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, true); 6147 rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL); 6148 CU_ASSERT(rc == 0); 6149 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 6150 stub_complete_io(1); 6151 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 6152 CU_ASSERT(g_seek_offset == 67890); 6153 6154 spdk_put_io_channel(io_ch); 6155 spdk_bdev_close(desc); 6156 free_bdev(bdev); 6157 ut_fini_bdev(); 6158 } 6159 6160 static void 6161 bdev_copy(void) 6162 { 6163 struct spdk_bdev *bdev; 6164 struct spdk_bdev_desc *desc = NULL; 6165 struct spdk_io_channel *ioch; 6166 struct ut_expected_io *expected_io; 6167 uint64_t src_offset, num_blocks; 6168 uint32_t num_completed; 6169 int rc; 6170 6171 ut_init_bdev(NULL); 6172 bdev = allocate_bdev("bdev"); 6173 6174 rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc); 6175 CU_ASSERT_EQUAL(rc, 0); 6176 SPDK_CU_ASSERT_FATAL(desc != NULL); 6177 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 6178 ioch = spdk_bdev_get_io_channel(desc); 6179 SPDK_CU_ASSERT_FATAL(ioch != NULL); 6180 6181 fn_table.submit_request = stub_submit_request; 6182 g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 6183 6184 /* First test that if the bdev supports copy, the request won't be split */ 6185 bdev->md_len = 0; 6186 bdev->blocklen = 512; 6187 num_blocks = 128; 6188 src_offset = bdev->blockcnt - num_blocks; 6189 6190 expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks); 6191 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 6192 6193 rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL); 6194 CU_ASSERT_EQUAL(rc, 0); 6195 num_completed = stub_complete_io(1); 6196 CU_ASSERT_EQUAL(num_completed, 1); 6197 6198 /* Check that if copy is not supported it'll still work */ 6199 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, src_offset, num_blocks, 0); 6200 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 6201 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, num_blocks, 0); 6202 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 6203 6204 ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false); 6205 6206 rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL); 6207 CU_ASSERT_EQUAL(rc, 0); 6208 num_completed = stub_complete_io(1); 6209 CU_ASSERT_EQUAL(num_completed, 1); 6210 num_completed = stub_complete_io(1); 6211 CU_ASSERT_EQUAL(num_completed, 1); 6212 6213 ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true); 6214 spdk_put_io_channel(ioch); 6215 spdk_bdev_close(desc); 6216 free_bdev(bdev); 6217 ut_fini_bdev(); 6218 } 6219 6220 static void 6221 bdev_copy_split_test(void) 6222 { 6223 struct spdk_bdev *bdev; 6224 struct spdk_bdev_desc *desc = NULL; 6225 struct spdk_io_channel *ioch; 6226 struct spdk_bdev_channel *bdev_ch; 6227 struct ut_expected_io *expected_io; 6228 struct spdk_bdev_opts bdev_opts = {}; 6229 uint32_t i, num_outstanding; 6230 uint64_t offset, src_offset, num_blocks, max_copy_blocks, num_children; 6231 int rc; 6232 6233 spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts)); 6234 bdev_opts.bdev_io_pool_size = 512; 6235 bdev_opts.bdev_io_cache_size = 64; 6236 rc = spdk_bdev_set_opts(&bdev_opts); 6237 CU_ASSERT(rc == 0); 6238 6239 ut_init_bdev(NULL); 6240 bdev = allocate_bdev("bdev"); 6241 6242 rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc); 6243 CU_ASSERT_EQUAL(rc, 0); 6244 SPDK_CU_ASSERT_FATAL(desc != NULL); 6245 CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc)); 6246 ioch = spdk_bdev_get_io_channel(desc); 6247 SPDK_CU_ASSERT_FATAL(ioch != NULL); 6248 bdev_ch = spdk_io_channel_get_ctx(ioch); 6249 CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted)); 6250 6251 fn_table.submit_request = stub_submit_request; 6252 g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 6253 6254 /* Case 1: First test the request won't be split */ 6255 num_blocks = 32; 6256 src_offset = bdev->blockcnt - num_blocks; 6257 6258 g_io_done = false; 6259 expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks); 6260 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 6261 rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL); 6262 CU_ASSERT_EQUAL(rc, 0); 6263 CU_ASSERT(g_io_done == false); 6264 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 6265 stub_complete_io(1); 6266 CU_ASSERT(g_io_done == true); 6267 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 6268 6269 /* Case 2: Test the split with 2 children requests */ 6270 max_copy_blocks = 8; 6271 bdev->max_copy = max_copy_blocks; 6272 num_children = 2; 6273 num_blocks = max_copy_blocks * num_children; 6274 offset = 0; 6275 src_offset = bdev->blockcnt - num_blocks; 6276 6277 g_io_done = false; 6278 for (i = 0; i < num_children; i++) { 6279 expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset, 6280 src_offset + offset, max_copy_blocks); 6281 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 6282 offset += max_copy_blocks; 6283 } 6284 6285 rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL); 6286 CU_ASSERT_EQUAL(rc, 0); 6287 CU_ASSERT(g_io_done == false); 6288 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_children); 6289 stub_complete_io(num_children); 6290 CU_ASSERT(g_io_done == true); 6291 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 6292 6293 /* Case 3: Test the split with 15 children requests, will finish 8 requests first */ 6294 num_children = 15; 6295 num_blocks = max_copy_blocks * num_children; 6296 offset = 0; 6297 src_offset = bdev->blockcnt - num_blocks; 6298 6299 g_io_done = false; 6300 for (i = 0; i < num_children; i++) { 6301 expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset, 6302 src_offset + offset, max_copy_blocks); 6303 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 6304 offset += max_copy_blocks; 6305 } 6306 6307 rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL); 6308 CU_ASSERT_EQUAL(rc, 0); 6309 CU_ASSERT(g_io_done == false); 6310 6311 while (num_children > 0) { 6312 num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_COPY_REQS); 6313 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding); 6314 stub_complete_io(num_outstanding); 6315 num_children -= num_outstanding; 6316 } 6317 CU_ASSERT(g_io_done == true); 6318 6319 /* Case 4: Same test scenario as the case 2 but the configuration is different. 6320 * Copy is not supported. 6321 */ 6322 ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false); 6323 6324 num_children = 2; 6325 max_copy_blocks = spdk_bdev_get_max_copy(bdev); 6326 num_blocks = max_copy_blocks * num_children; 6327 src_offset = bdev->blockcnt - num_blocks; 6328 offset = 0; 6329 6330 g_io_done = false; 6331 for (i = 0; i < num_children; i++) { 6332 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, src_offset, 6333 max_copy_blocks, 0); 6334 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 6335 src_offset += max_copy_blocks; 6336 } 6337 for (i = 0; i < num_children; i++) { 6338 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, 6339 max_copy_blocks, 0); 6340 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 6341 offset += max_copy_blocks; 6342 } 6343 6344 src_offset = bdev->blockcnt - num_blocks; 6345 offset = 0; 6346 6347 rc = spdk_bdev_copy_blocks(desc, ioch, offset, src_offset, num_blocks, io_done, NULL); 6348 CU_ASSERT_EQUAL(rc, 0); 6349 CU_ASSERT(g_io_done == false); 6350 6351 while (num_children > 0) { 6352 num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_COPY_REQS); 6353 6354 /* One copy request is split into one read and one write requests. */ 6355 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding); 6356 stub_complete_io(num_outstanding); 6357 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding); 6358 stub_complete_io(num_outstanding); 6359 6360 num_children -= num_outstanding; 6361 } 6362 CU_ASSERT(g_io_done == true); 6363 6364 ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true); 6365 6366 spdk_put_io_channel(ioch); 6367 spdk_bdev_close(desc); 6368 free_bdev(bdev); 6369 ut_fini_bdev(); 6370 } 6371 6372 static void 6373 examine_claim_v1(struct spdk_bdev *bdev) 6374 { 6375 int rc; 6376 6377 rc = spdk_bdev_module_claim_bdev(bdev, NULL, &vbdev_ut_if); 6378 CU_ASSERT(rc == 0); 6379 } 6380 6381 static void 6382 examine_no_lock_held(struct spdk_bdev *bdev) 6383 { 6384 CU_ASSERT(!spdk_spin_held(&g_bdev_mgr.spinlock)); 6385 CU_ASSERT(!spdk_spin_held(&bdev->internal.spinlock)); 6386 } 6387 6388 struct examine_claim_v2_ctx { 6389 struct ut_examine_ctx examine_ctx; 6390 enum spdk_bdev_claim_type claim_type; 6391 struct spdk_bdev_desc *desc; 6392 }; 6393 6394 static void 6395 examine_claim_v2(struct spdk_bdev *bdev) 6396 { 6397 struct examine_claim_v2_ctx *ctx = bdev->ctxt; 6398 int rc; 6399 6400 rc = spdk_bdev_open_ext(bdev->name, false, bdev_ut_event_cb, NULL, &ctx->desc); 6401 CU_ASSERT(rc == 0); 6402 6403 rc = spdk_bdev_module_claim_bdev_desc(ctx->desc, ctx->claim_type, NULL, &vbdev_ut_if); 6404 CU_ASSERT(rc == 0); 6405 } 6406 6407 static void 6408 examine_locks(void) 6409 { 6410 struct spdk_bdev *bdev; 6411 struct ut_examine_ctx ctx = { 0 }; 6412 struct examine_claim_v2_ctx v2_ctx; 6413 6414 /* Without any claims, one code path is taken */ 6415 ctx.examine_config = examine_no_lock_held; 6416 ctx.examine_disk = examine_no_lock_held; 6417 bdev = allocate_bdev_ctx("bdev0", &ctx); 6418 CU_ASSERT(ctx.examine_config_count == 1); 6419 CU_ASSERT(ctx.examine_disk_count == 1); 6420 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE); 6421 CU_ASSERT(bdev->internal.claim.v1.module == NULL); 6422 free_bdev(bdev); 6423 6424 /* Exercise another path that is taken when examine_config() takes a v1 claim. */ 6425 memset(&ctx, 0, sizeof(ctx)); 6426 ctx.examine_config = examine_claim_v1; 6427 ctx.examine_disk = examine_no_lock_held; 6428 bdev = allocate_bdev_ctx("bdev0", &ctx); 6429 CU_ASSERT(ctx.examine_config_count == 1); 6430 CU_ASSERT(ctx.examine_disk_count == 1); 6431 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE); 6432 CU_ASSERT(bdev->internal.claim.v1.module == &vbdev_ut_if); 6433 spdk_bdev_module_release_bdev(bdev); 6434 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE); 6435 CU_ASSERT(bdev->internal.claim.v1.module == NULL); 6436 free_bdev(bdev); 6437 6438 /* Exercise the final path that comes with v2 claims. */ 6439 memset(&v2_ctx, 0, sizeof(v2_ctx)); 6440 v2_ctx.examine_ctx.examine_config = examine_claim_v2; 6441 v2_ctx.examine_ctx.examine_disk = examine_no_lock_held; 6442 v2_ctx.claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE; 6443 bdev = allocate_bdev_ctx("bdev0", &v2_ctx); 6444 CU_ASSERT(v2_ctx.examine_ctx.examine_config_count == 1); 6445 CU_ASSERT(v2_ctx.examine_ctx.examine_disk_count == 1); 6446 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE); 6447 spdk_bdev_close(v2_ctx.desc); 6448 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE); 6449 free_bdev(bdev); 6450 } 6451 6452 #define UT_ASSERT_CLAIM_V2_COUNT(bdev, expect) \ 6453 do { \ 6454 uint32_t len = 0; \ 6455 struct spdk_bdev_module_claim *claim; \ 6456 TAILQ_FOREACH(claim, &bdev->internal.claim.v2.claims, link) { \ 6457 len++; \ 6458 } \ 6459 CU_ASSERT(len == expect); \ 6460 } while (0) 6461 6462 static void 6463 claim_v2_rwo(void) 6464 { 6465 struct spdk_bdev *bdev; 6466 struct spdk_bdev_desc *desc; 6467 struct spdk_bdev_desc *desc2; 6468 struct spdk_bdev_claim_opts opts; 6469 int rc; 6470 6471 bdev = allocate_bdev("bdev0"); 6472 6473 /* Claim without options */ 6474 desc = NULL; 6475 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc); 6476 CU_ASSERT(rc == 0); 6477 SPDK_CU_ASSERT_FATAL(desc != NULL); 6478 rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL, 6479 &bdev_ut_if); 6480 CU_ASSERT(rc == 0); 6481 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE); 6482 CU_ASSERT(desc->claim != NULL); 6483 CU_ASSERT(desc->claim->module == &bdev_ut_if); 6484 CU_ASSERT(strcmp(desc->claim->name, "") == 0); 6485 CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim); 6486 UT_ASSERT_CLAIM_V2_COUNT(bdev, 1); 6487 6488 /* Release the claim by closing the descriptor */ 6489 spdk_bdev_close(desc); 6490 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE); 6491 CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs)); 6492 UT_ASSERT_CLAIM_V2_COUNT(bdev, 0); 6493 6494 /* Claim with options */ 6495 spdk_bdev_claim_opts_init(&opts, sizeof(opts)); 6496 snprintf(opts.name, sizeof(opts.name), "%s", "claim with options"); 6497 desc = NULL; 6498 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc); 6499 CU_ASSERT(rc == 0); 6500 SPDK_CU_ASSERT_FATAL(desc != NULL); 6501 rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, &opts, 6502 &bdev_ut_if); 6503 CU_ASSERT(rc == 0); 6504 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE); 6505 CU_ASSERT(desc->claim != NULL); 6506 CU_ASSERT(desc->claim->module == &bdev_ut_if); 6507 CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0); 6508 memset(&opts, 0, sizeof(opts)); 6509 CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0); 6510 CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim); 6511 UT_ASSERT_CLAIM_V2_COUNT(bdev, 1); 6512 6513 /* The claim blocks new writers. */ 6514 desc2 = NULL; 6515 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2); 6516 CU_ASSERT(rc == -EPERM); 6517 CU_ASSERT(desc2 == NULL); 6518 6519 /* New readers are allowed */ 6520 desc2 = NULL; 6521 rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2); 6522 CU_ASSERT(rc == 0); 6523 CU_ASSERT(desc2 != NULL); 6524 CU_ASSERT(!desc2->write); 6525 6526 /* No new v2 RWO claims are allowed */ 6527 rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL, 6528 &bdev_ut_if); 6529 CU_ASSERT(rc == -EPERM); 6530 6531 /* No new v2 ROM claims are allowed */ 6532 CU_ASSERT(!desc2->write); 6533 rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL, 6534 &bdev_ut_if); 6535 CU_ASSERT(rc == -EPERM); 6536 CU_ASSERT(!desc2->write); 6537 6538 /* No new v2 RWM claims are allowed */ 6539 spdk_bdev_claim_opts_init(&opts, sizeof(opts)); 6540 opts.shared_claim_key = (uint64_t)&opts; 6541 rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts, 6542 &bdev_ut_if); 6543 CU_ASSERT(rc == -EPERM); 6544 CU_ASSERT(!desc2->write); 6545 6546 /* No new v1 claims are allowed */ 6547 rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if); 6548 CU_ASSERT(rc == -EPERM); 6549 6550 /* None of the above changed the existing claim */ 6551 CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim); 6552 UT_ASSERT_CLAIM_V2_COUNT(bdev, 1); 6553 6554 /* Closing the first descriptor now allows a new claim and it is promoted to rw. */ 6555 spdk_bdev_close(desc); 6556 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE); 6557 UT_ASSERT_CLAIM_V2_COUNT(bdev, 0); 6558 CU_ASSERT(!desc2->write); 6559 rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL, 6560 &bdev_ut_if); 6561 CU_ASSERT(rc == 0); 6562 CU_ASSERT(desc2->claim != NULL); 6563 CU_ASSERT(desc2->write); 6564 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE); 6565 CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim); 6566 UT_ASSERT_CLAIM_V2_COUNT(bdev, 1); 6567 spdk_bdev_close(desc2); 6568 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE); 6569 UT_ASSERT_CLAIM_V2_COUNT(bdev, 0); 6570 6571 /* Cannot claim with a key */ 6572 desc = NULL; 6573 rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc); 6574 CU_ASSERT(rc == 0); 6575 SPDK_CU_ASSERT_FATAL(desc != NULL); 6576 spdk_bdev_claim_opts_init(&opts, sizeof(opts)); 6577 opts.shared_claim_key = (uint64_t)&opts; 6578 rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, &opts, 6579 &bdev_ut_if); 6580 CU_ASSERT(rc == -EINVAL); 6581 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE); 6582 UT_ASSERT_CLAIM_V2_COUNT(bdev, 0); 6583 spdk_bdev_close(desc); 6584 6585 /* Clean up */ 6586 free_bdev(bdev); 6587 } 6588 6589 static void 6590 claim_v2_rom(void) 6591 { 6592 struct spdk_bdev *bdev; 6593 struct spdk_bdev_desc *desc; 6594 struct spdk_bdev_desc *desc2; 6595 struct spdk_bdev_claim_opts opts; 6596 int rc; 6597 6598 bdev = allocate_bdev("bdev0"); 6599 6600 /* Claim without options */ 6601 desc = NULL; 6602 rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc); 6603 CU_ASSERT(rc == 0); 6604 SPDK_CU_ASSERT_FATAL(desc != NULL); 6605 rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL, 6606 &bdev_ut_if); 6607 CU_ASSERT(rc == 0); 6608 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE); 6609 CU_ASSERT(desc->claim != NULL); 6610 CU_ASSERT(desc->claim->module == &bdev_ut_if); 6611 CU_ASSERT(strcmp(desc->claim->name, "") == 0); 6612 CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim); 6613 UT_ASSERT_CLAIM_V2_COUNT(bdev, 1); 6614 6615 /* Release the claim by closing the descriptor */ 6616 spdk_bdev_close(desc); 6617 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE); 6618 CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs)); 6619 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE); 6620 UT_ASSERT_CLAIM_V2_COUNT(bdev, 0); 6621 6622 /* Claim with options */ 6623 spdk_bdev_claim_opts_init(&opts, sizeof(opts)); 6624 snprintf(opts.name, sizeof(opts.name), "%s", "claim with options"); 6625 desc = NULL; 6626 rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc); 6627 CU_ASSERT(rc == 0); 6628 SPDK_CU_ASSERT_FATAL(desc != NULL); 6629 rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, &opts, 6630 &bdev_ut_if); 6631 CU_ASSERT(rc == 0); 6632 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE); 6633 SPDK_CU_ASSERT_FATAL(desc->claim != NULL); 6634 CU_ASSERT(desc->claim->module == &bdev_ut_if); 6635 CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0); 6636 memset(&opts, 0, sizeof(opts)); 6637 CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0); 6638 CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim); 6639 UT_ASSERT_CLAIM_V2_COUNT(bdev, 1); 6640 6641 /* The claim blocks new writers. */ 6642 desc2 = NULL; 6643 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2); 6644 CU_ASSERT(rc == -EPERM); 6645 CU_ASSERT(desc2 == NULL); 6646 6647 /* New readers are allowed */ 6648 desc2 = NULL; 6649 rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2); 6650 CU_ASSERT(rc == 0); 6651 CU_ASSERT(desc2 != NULL); 6652 CU_ASSERT(!desc2->write); 6653 6654 /* No new v2 RWO claims are allowed */ 6655 rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL, 6656 &bdev_ut_if); 6657 CU_ASSERT(rc == -EPERM); 6658 6659 /* No new v2 RWM claims are allowed */ 6660 spdk_bdev_claim_opts_init(&opts, sizeof(opts)); 6661 opts.shared_claim_key = (uint64_t)&opts; 6662 rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts, 6663 &bdev_ut_if); 6664 CU_ASSERT(rc == -EPERM); 6665 CU_ASSERT(!desc2->write); 6666 6667 /* No new v1 claims are allowed */ 6668 rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if); 6669 CU_ASSERT(rc == -EPERM); 6670 6671 /* None of the above messed up the existing claim */ 6672 CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim); 6673 UT_ASSERT_CLAIM_V2_COUNT(bdev, 1); 6674 6675 /* New v2 ROM claims are allowed and the descriptor stays read-only. */ 6676 CU_ASSERT(!desc2->write); 6677 rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL, 6678 &bdev_ut_if); 6679 CU_ASSERT(rc == 0); 6680 CU_ASSERT(!desc2->write); 6681 CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim); 6682 CU_ASSERT(TAILQ_NEXT(desc->claim, link) == desc2->claim); 6683 UT_ASSERT_CLAIM_V2_COUNT(bdev, 2); 6684 6685 /* Claim remains when closing the first descriptor */ 6686 spdk_bdev_close(desc); 6687 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE); 6688 CU_ASSERT(!TAILQ_EMPTY(&bdev->internal.open_descs)); 6689 CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim); 6690 UT_ASSERT_CLAIM_V2_COUNT(bdev, 1); 6691 6692 /* Claim removed when closing the other descriptor */ 6693 spdk_bdev_close(desc2); 6694 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE); 6695 UT_ASSERT_CLAIM_V2_COUNT(bdev, 0); 6696 CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs)); 6697 6698 /* Cannot claim with a key */ 6699 desc = NULL; 6700 rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc); 6701 CU_ASSERT(rc == 0); 6702 SPDK_CU_ASSERT_FATAL(desc != NULL); 6703 spdk_bdev_claim_opts_init(&opts, sizeof(opts)); 6704 opts.shared_claim_key = (uint64_t)&opts; 6705 rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, &opts, 6706 &bdev_ut_if); 6707 CU_ASSERT(rc == -EINVAL); 6708 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE); 6709 UT_ASSERT_CLAIM_V2_COUNT(bdev, 0); 6710 spdk_bdev_close(desc); 6711 6712 /* Cannot claim with a read-write descriptor */ 6713 desc = NULL; 6714 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc); 6715 CU_ASSERT(rc == 0); 6716 SPDK_CU_ASSERT_FATAL(desc != NULL); 6717 rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL, 6718 &bdev_ut_if); 6719 CU_ASSERT(rc == -EINVAL); 6720 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE); 6721 UT_ASSERT_CLAIM_V2_COUNT(bdev, 0); 6722 spdk_bdev_close(desc); 6723 CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs)); 6724 6725 /* Clean up */ 6726 free_bdev(bdev); 6727 } 6728 6729 static void 6730 claim_v2_rwm(void) 6731 { 6732 struct spdk_bdev *bdev; 6733 struct spdk_bdev_desc *desc; 6734 struct spdk_bdev_desc *desc2; 6735 struct spdk_bdev_claim_opts opts; 6736 char good_key, bad_key; 6737 int rc; 6738 6739 bdev = allocate_bdev("bdev0"); 6740 6741 /* Claim without options should fail */ 6742 desc = NULL; 6743 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc); 6744 CU_ASSERT(rc == 0); 6745 SPDK_CU_ASSERT_FATAL(desc != NULL); 6746 rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, NULL, 6747 &bdev_ut_if); 6748 CU_ASSERT(rc == -EINVAL); 6749 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE); 6750 UT_ASSERT_CLAIM_V2_COUNT(bdev, 0); 6751 CU_ASSERT(desc->claim == NULL); 6752 6753 /* Claim with options */ 6754 spdk_bdev_claim_opts_init(&opts, sizeof(opts)); 6755 snprintf(opts.name, sizeof(opts.name), "%s", "claim with options"); 6756 opts.shared_claim_key = (uint64_t)&good_key; 6757 rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts, 6758 &bdev_ut_if); 6759 CU_ASSERT(rc == 0); 6760 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED); 6761 SPDK_CU_ASSERT_FATAL(desc->claim != NULL); 6762 CU_ASSERT(desc->claim->module == &bdev_ut_if); 6763 CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0); 6764 memset(&opts, 0, sizeof(opts)); 6765 CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0); 6766 CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim); 6767 UT_ASSERT_CLAIM_V2_COUNT(bdev, 1); 6768 6769 /* The claim blocks new writers. */ 6770 desc2 = NULL; 6771 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2); 6772 CU_ASSERT(rc == -EPERM); 6773 CU_ASSERT(desc2 == NULL); 6774 6775 /* New readers are allowed */ 6776 desc2 = NULL; 6777 rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2); 6778 CU_ASSERT(rc == 0); 6779 CU_ASSERT(desc2 != NULL); 6780 CU_ASSERT(!desc2->write); 6781 6782 /* No new v2 RWO claims are allowed */ 6783 rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL, 6784 &bdev_ut_if); 6785 CU_ASSERT(rc == -EPERM); 6786 6787 /* No new v2 ROM claims are allowed and the descriptor stays read-only. */ 6788 CU_ASSERT(!desc2->write); 6789 rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL, 6790 &bdev_ut_if); 6791 CU_ASSERT(rc == -EPERM); 6792 CU_ASSERT(!desc2->write); 6793 6794 /* No new v1 claims are allowed */ 6795 rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if); 6796 CU_ASSERT(rc == -EPERM); 6797 6798 /* No new v2 RWM claims are allowed if the key does not match */ 6799 spdk_bdev_claim_opts_init(&opts, sizeof(opts)); 6800 opts.shared_claim_key = (uint64_t)&bad_key; 6801 rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts, 6802 &bdev_ut_if); 6803 CU_ASSERT(rc == -EPERM); 6804 CU_ASSERT(!desc2->write); 6805 6806 /* None of the above messed up the existing claim */ 6807 CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim); 6808 UT_ASSERT_CLAIM_V2_COUNT(bdev, 1); 6809 6810 /* New v2 RWM claims are allowed and the descriptor is promoted if the key matches. */ 6811 spdk_bdev_claim_opts_init(&opts, sizeof(opts)); 6812 opts.shared_claim_key = (uint64_t)&good_key; 6813 CU_ASSERT(!desc2->write); 6814 rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts, 6815 &bdev_ut_if); 6816 CU_ASSERT(rc == 0); 6817 CU_ASSERT(desc2->write); 6818 CU_ASSERT(TAILQ_NEXT(desc->claim, link) == desc2->claim); 6819 UT_ASSERT_CLAIM_V2_COUNT(bdev, 2); 6820 6821 /* Claim remains when closing the first descriptor */ 6822 spdk_bdev_close(desc); 6823 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED); 6824 CU_ASSERT(!TAILQ_EMPTY(&bdev->internal.open_descs)); 6825 CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim); 6826 UT_ASSERT_CLAIM_V2_COUNT(bdev, 1); 6827 6828 /* Claim removed when closing the other descriptor */ 6829 spdk_bdev_close(desc2); 6830 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE); 6831 CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs)); 6832 6833 /* Cannot claim without a key */ 6834 desc = NULL; 6835 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc); 6836 CU_ASSERT(rc == 0); 6837 SPDK_CU_ASSERT_FATAL(desc != NULL); 6838 spdk_bdev_claim_opts_init(&opts, sizeof(opts)); 6839 rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts, 6840 &bdev_ut_if); 6841 CU_ASSERT(rc == -EINVAL); 6842 spdk_bdev_close(desc); 6843 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE); 6844 CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs)); 6845 6846 /* Clean up */ 6847 free_bdev(bdev); 6848 } 6849 6850 static void 6851 claim_v2_existing_writer(void) 6852 { 6853 struct spdk_bdev *bdev; 6854 struct spdk_bdev_desc *desc; 6855 struct spdk_bdev_desc *desc2; 6856 struct spdk_bdev_claim_opts opts; 6857 enum spdk_bdev_claim_type type; 6858 enum spdk_bdev_claim_type types[] = { 6859 SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, 6860 SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, 6861 SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE 6862 }; 6863 size_t i; 6864 int rc; 6865 6866 bdev = allocate_bdev("bdev0"); 6867 6868 desc = NULL; 6869 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc); 6870 CU_ASSERT(rc == 0); 6871 SPDK_CU_ASSERT_FATAL(desc != NULL); 6872 desc2 = NULL; 6873 rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2); 6874 CU_ASSERT(rc == 0); 6875 SPDK_CU_ASSERT_FATAL(desc2 != NULL); 6876 6877 for (i = 0; i < SPDK_COUNTOF(types); i++) { 6878 type = types[i]; 6879 spdk_bdev_claim_opts_init(&opts, sizeof(opts)); 6880 if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) { 6881 opts.shared_claim_key = (uint64_t)&opts; 6882 } 6883 rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if); 6884 if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE) { 6885 CU_ASSERT(rc == -EINVAL); 6886 } else { 6887 CU_ASSERT(rc == -EPERM); 6888 } 6889 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE); 6890 rc = spdk_bdev_module_claim_bdev_desc(desc2, type, &opts, &bdev_ut_if); 6891 if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE) { 6892 CU_ASSERT(rc == -EINVAL); 6893 } else { 6894 CU_ASSERT(rc == -EPERM); 6895 } 6896 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE); 6897 } 6898 6899 spdk_bdev_close(desc); 6900 spdk_bdev_close(desc2); 6901 6902 /* Clean up */ 6903 free_bdev(bdev); 6904 } 6905 6906 static void 6907 claim_v2_existing_v1(void) 6908 { 6909 struct spdk_bdev *bdev; 6910 struct spdk_bdev_desc *desc; 6911 struct spdk_bdev_claim_opts opts; 6912 enum spdk_bdev_claim_type type; 6913 enum spdk_bdev_claim_type types[] = { 6914 SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, 6915 SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, 6916 SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE 6917 }; 6918 size_t i; 6919 int rc; 6920 6921 bdev = allocate_bdev("bdev0"); 6922 6923 rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if); 6924 CU_ASSERT(rc == 0); 6925 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE); 6926 6927 desc = NULL; 6928 rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc); 6929 CU_ASSERT(rc == 0); 6930 SPDK_CU_ASSERT_FATAL(desc != NULL); 6931 6932 for (i = 0; i < SPDK_COUNTOF(types); i++) { 6933 type = types[i]; 6934 spdk_bdev_claim_opts_init(&opts, sizeof(opts)); 6935 if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) { 6936 opts.shared_claim_key = (uint64_t)&opts; 6937 } 6938 rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if); 6939 CU_ASSERT(rc == -EPERM); 6940 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE); 6941 } 6942 6943 spdk_bdev_module_release_bdev(bdev); 6944 spdk_bdev_close(desc); 6945 6946 /* Clean up */ 6947 free_bdev(bdev); 6948 } 6949 6950 static void 6951 claim_v1_existing_v2(void) 6952 { 6953 struct spdk_bdev *bdev; 6954 struct spdk_bdev_desc *desc; 6955 struct spdk_bdev_claim_opts opts; 6956 enum spdk_bdev_claim_type type; 6957 enum spdk_bdev_claim_type types[] = { 6958 SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, 6959 SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, 6960 SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE 6961 }; 6962 size_t i; 6963 int rc; 6964 6965 bdev = allocate_bdev("bdev0"); 6966 6967 for (i = 0; i < SPDK_COUNTOF(types); i++) { 6968 type = types[i]; 6969 6970 desc = NULL; 6971 rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc); 6972 CU_ASSERT(rc == 0); 6973 SPDK_CU_ASSERT_FATAL(desc != NULL); 6974 6975 /* Get a v2 claim */ 6976 spdk_bdev_claim_opts_init(&opts, sizeof(opts)); 6977 if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) { 6978 opts.shared_claim_key = (uint64_t)&opts; 6979 } 6980 rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if); 6981 CU_ASSERT(rc == 0); 6982 6983 /* Fail to get a v1 claim */ 6984 rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if); 6985 CU_ASSERT(rc == -EPERM); 6986 6987 spdk_bdev_close(desc); 6988 6989 /* Now v1 succeeds */ 6990 rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if); 6991 CU_ASSERT(rc == 0) 6992 spdk_bdev_module_release_bdev(bdev); 6993 } 6994 6995 /* Clean up */ 6996 free_bdev(bdev); 6997 } 6998 6999 static void ut_examine_claimed_config0(struct spdk_bdev *bdev); 7000 static void ut_examine_claimed_disk0(struct spdk_bdev *bdev); 7001 static void ut_examine_claimed_config1(struct spdk_bdev *bdev); 7002 static void ut_examine_claimed_disk1(struct spdk_bdev *bdev); 7003 7004 #define UT_MAX_EXAMINE_MODS 2 7005 struct spdk_bdev_module examine_claimed_mods[UT_MAX_EXAMINE_MODS] = { 7006 { 7007 .name = "vbdev_ut_examine0", 7008 .module_init = vbdev_ut_module_init, 7009 .module_fini = vbdev_ut_module_fini, 7010 .examine_config = ut_examine_claimed_config0, 7011 .examine_disk = ut_examine_claimed_disk0, 7012 }, 7013 { 7014 .name = "vbdev_ut_examine1", 7015 .module_init = vbdev_ut_module_init, 7016 .module_fini = vbdev_ut_module_fini, 7017 .examine_config = ut_examine_claimed_config1, 7018 .examine_disk = ut_examine_claimed_disk1, 7019 } 7020 }; 7021 7022 SPDK_BDEV_MODULE_REGISTER(bdev_ut_claimed0, &examine_claimed_mods[0]) 7023 SPDK_BDEV_MODULE_REGISTER(bdev_ut_claimed1, &examine_claimed_mods[1]) 7024 7025 struct ut_examine_claimed_ctx { 7026 uint32_t examine_config_count; 7027 uint32_t examine_disk_count; 7028 7029 /* Claim type to take, with these options */ 7030 enum spdk_bdev_claim_type claim_type; 7031 struct spdk_bdev_claim_opts claim_opts; 7032 7033 /* Expected return value from spdk_bdev_module_claim_bdev_desc() */ 7034 int expect_claim_err; 7035 7036 /* Descriptor used for a claim */ 7037 struct spdk_bdev_desc *desc; 7038 } examine_claimed_ctx[UT_MAX_EXAMINE_MODS]; 7039 7040 bool ut_testing_examine_claimed; 7041 7042 static void 7043 reset_examine_claimed_ctx(void) 7044 { 7045 struct ut_examine_claimed_ctx *ctx; 7046 uint32_t i; 7047 7048 for (i = 0; i < SPDK_COUNTOF(examine_claimed_ctx); i++) { 7049 ctx = &examine_claimed_ctx[i]; 7050 if (ctx->desc != NULL) { 7051 spdk_bdev_close(ctx->desc); 7052 } 7053 memset(ctx, 0, sizeof(*ctx)); 7054 spdk_bdev_claim_opts_init(&ctx->claim_opts, sizeof(ctx->claim_opts)); 7055 } 7056 } 7057 7058 static void 7059 examine_claimed_config(struct spdk_bdev *bdev, uint32_t modnum) 7060 { 7061 SPDK_CU_ASSERT_FATAL(modnum < UT_MAX_EXAMINE_MODS); 7062 struct spdk_bdev_module *module = &examine_claimed_mods[modnum]; 7063 struct ut_examine_claimed_ctx *ctx = &examine_claimed_ctx[modnum]; 7064 int rc; 7065 7066 if (!ut_testing_examine_claimed) { 7067 spdk_bdev_module_examine_done(module); 7068 return; 7069 } 7070 7071 ctx->examine_config_count++; 7072 7073 if (ctx->claim_type != SPDK_BDEV_CLAIM_NONE) { 7074 rc = spdk_bdev_open_ext(bdev->name, false, bdev_ut_event_cb, &ctx->claim_opts, 7075 &ctx->desc); 7076 CU_ASSERT(rc == 0); 7077 7078 rc = spdk_bdev_module_claim_bdev_desc(ctx->desc, ctx->claim_type, NULL, module); 7079 CU_ASSERT(rc == ctx->expect_claim_err); 7080 } 7081 spdk_bdev_module_examine_done(module); 7082 } 7083 7084 static void 7085 ut_examine_claimed_config0(struct spdk_bdev *bdev) 7086 { 7087 examine_claimed_config(bdev, 0); 7088 } 7089 7090 static void 7091 ut_examine_claimed_config1(struct spdk_bdev *bdev) 7092 { 7093 examine_claimed_config(bdev, 1); 7094 } 7095 7096 static void 7097 examine_claimed_disk(struct spdk_bdev *bdev, uint32_t modnum) 7098 { 7099 SPDK_CU_ASSERT_FATAL(modnum < UT_MAX_EXAMINE_MODS); 7100 struct spdk_bdev_module *module = &examine_claimed_mods[modnum]; 7101 struct ut_examine_claimed_ctx *ctx = &examine_claimed_ctx[modnum]; 7102 7103 if (!ut_testing_examine_claimed) { 7104 spdk_bdev_module_examine_done(module); 7105 return; 7106 } 7107 7108 ctx->examine_disk_count++; 7109 7110 spdk_bdev_module_examine_done(module); 7111 } 7112 7113 static void 7114 ut_examine_claimed_disk0(struct spdk_bdev *bdev) 7115 { 7116 examine_claimed_disk(bdev, 0); 7117 } 7118 7119 static void 7120 ut_examine_claimed_disk1(struct spdk_bdev *bdev) 7121 { 7122 examine_claimed_disk(bdev, 1); 7123 } 7124 7125 static void 7126 examine_claimed(void) 7127 { 7128 struct spdk_bdev *bdev; 7129 struct spdk_bdev_module *mod = examine_claimed_mods; 7130 struct ut_examine_claimed_ctx *ctx = examine_claimed_ctx; 7131 7132 ut_testing_examine_claimed = true; 7133 reset_examine_claimed_ctx(); 7134 7135 /* 7136 * With one module claiming, both modules' examine_config should be called, but only the 7137 * claiming module's examine_disk should be called. 7138 */ 7139 ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE; 7140 bdev = allocate_bdev("bdev0"); 7141 CU_ASSERT(ctx[0].examine_config_count == 1); 7142 CU_ASSERT(ctx[0].examine_disk_count == 1); 7143 SPDK_CU_ASSERT_FATAL(ctx[0].desc != NULL); 7144 CU_ASSERT(ctx[0].desc->claim->module == &mod[0]); 7145 CU_ASSERT(ctx[1].examine_config_count == 1); 7146 CU_ASSERT(ctx[1].examine_disk_count == 0); 7147 CU_ASSERT(ctx[1].desc == NULL); 7148 reset_examine_claimed_ctx(); 7149 free_bdev(bdev); 7150 7151 /* 7152 * With two modules claiming, both modules' examine_config and examine_disk should be 7153 * called. 7154 */ 7155 ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE; 7156 ctx[1].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE; 7157 bdev = allocate_bdev("bdev0"); 7158 CU_ASSERT(ctx[0].examine_config_count == 1); 7159 CU_ASSERT(ctx[0].examine_disk_count == 1); 7160 SPDK_CU_ASSERT_FATAL(ctx[0].desc != NULL); 7161 CU_ASSERT(ctx[0].desc->claim->module == &mod[0]); 7162 CU_ASSERT(ctx[1].examine_config_count == 1); 7163 CU_ASSERT(ctx[1].examine_disk_count == 1); 7164 SPDK_CU_ASSERT_FATAL(ctx[1].desc != NULL); 7165 CU_ASSERT(ctx[1].desc->claim->module == &mod[1]); 7166 reset_examine_claimed_ctx(); 7167 free_bdev(bdev); 7168 7169 /* 7170 * If two vbdev modules try to claim with conflicting claim types, the module that was added 7171 * last wins. The winner gets the claim and is the only one that has its examine_disk 7172 * callback invoked. 7173 */ 7174 ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE; 7175 ctx[0].expect_claim_err = -EPERM; 7176 ctx[1].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE; 7177 bdev = allocate_bdev("bdev0"); 7178 CU_ASSERT(ctx[0].examine_config_count == 1); 7179 CU_ASSERT(ctx[0].examine_disk_count == 0); 7180 CU_ASSERT(ctx[1].examine_config_count == 1); 7181 CU_ASSERT(ctx[1].examine_disk_count == 1); 7182 SPDK_CU_ASSERT_FATAL(ctx[1].desc != NULL); 7183 CU_ASSERT(ctx[1].desc->claim->module == &mod[1]); 7184 CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE); 7185 reset_examine_claimed_ctx(); 7186 free_bdev(bdev); 7187 7188 ut_testing_examine_claimed = false; 7189 } 7190 7191 int 7192 main(int argc, char **argv) 7193 { 7194 CU_pSuite suite = NULL; 7195 unsigned int num_failures; 7196 7197 CU_set_error_action(CUEA_ABORT); 7198 CU_initialize_registry(); 7199 7200 suite = CU_add_suite("bdev", ut_bdev_setup, ut_bdev_teardown); 7201 7202 CU_ADD_TEST(suite, bytes_to_blocks_test); 7203 CU_ADD_TEST(suite, num_blocks_test); 7204 CU_ADD_TEST(suite, io_valid_test); 7205 CU_ADD_TEST(suite, open_write_test); 7206 CU_ADD_TEST(suite, claim_test); 7207 CU_ADD_TEST(suite, alias_add_del_test); 7208 CU_ADD_TEST(suite, get_device_stat_test); 7209 CU_ADD_TEST(suite, bdev_io_types_test); 7210 CU_ADD_TEST(suite, bdev_io_wait_test); 7211 CU_ADD_TEST(suite, bdev_io_spans_split_test); 7212 CU_ADD_TEST(suite, bdev_io_boundary_split_test); 7213 CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test); 7214 CU_ADD_TEST(suite, bdev_io_mix_split_test); 7215 CU_ADD_TEST(suite, bdev_io_split_with_io_wait); 7216 CU_ADD_TEST(suite, bdev_io_write_unit_split_test); 7217 CU_ADD_TEST(suite, bdev_io_alignment_with_boundary); 7218 CU_ADD_TEST(suite, bdev_io_alignment); 7219 CU_ADD_TEST(suite, bdev_histograms); 7220 CU_ADD_TEST(suite, bdev_write_zeroes); 7221 CU_ADD_TEST(suite, bdev_compare_and_write); 7222 CU_ADD_TEST(suite, bdev_compare); 7223 CU_ADD_TEST(suite, bdev_compare_emulated); 7224 CU_ADD_TEST(suite, bdev_zcopy_write); 7225 CU_ADD_TEST(suite, bdev_zcopy_read); 7226 CU_ADD_TEST(suite, bdev_open_while_hotremove); 7227 CU_ADD_TEST(suite, bdev_close_while_hotremove); 7228 CU_ADD_TEST(suite, bdev_open_ext); 7229 CU_ADD_TEST(suite, bdev_open_ext_unregister); 7230 CU_ADD_TEST(suite, bdev_set_io_timeout); 7231 CU_ADD_TEST(suite, bdev_set_qd_sampling); 7232 CU_ADD_TEST(suite, lba_range_overlap); 7233 CU_ADD_TEST(suite, lock_lba_range_check_ranges); 7234 CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding); 7235 CU_ADD_TEST(suite, lock_lba_range_overlapped); 7236 CU_ADD_TEST(suite, bdev_io_abort); 7237 CU_ADD_TEST(suite, bdev_unmap); 7238 CU_ADD_TEST(suite, bdev_write_zeroes_split_test); 7239 CU_ADD_TEST(suite, bdev_set_options_test); 7240 CU_ADD_TEST(suite, bdev_multi_allocation); 7241 CU_ADD_TEST(suite, bdev_get_memory_domains); 7242 CU_ADD_TEST(suite, bdev_io_ext); 7243 CU_ADD_TEST(suite, bdev_io_ext_no_opts); 7244 CU_ADD_TEST(suite, bdev_io_ext_invalid_opts); 7245 CU_ADD_TEST(suite, bdev_io_ext_split); 7246 CU_ADD_TEST(suite, bdev_io_ext_bounce_buffer); 7247 CU_ADD_TEST(suite, bdev_register_uuid_alias); 7248 CU_ADD_TEST(suite, bdev_unregister_by_name); 7249 CU_ADD_TEST(suite, for_each_bdev_test); 7250 CU_ADD_TEST(suite, bdev_seek_test); 7251 CU_ADD_TEST(suite, bdev_copy); 7252 CU_ADD_TEST(suite, bdev_copy_split_test); 7253 CU_ADD_TEST(suite, examine_locks); 7254 CU_ADD_TEST(suite, claim_v2_rwo); 7255 CU_ADD_TEST(suite, claim_v2_rom); 7256 CU_ADD_TEST(suite, claim_v2_rwm); 7257 CU_ADD_TEST(suite, claim_v2_existing_writer); 7258 CU_ADD_TEST(suite, claim_v2_existing_v1); 7259 CU_ADD_TEST(suite, claim_v1_existing_v2); 7260 CU_ADD_TEST(suite, examine_claimed); 7261 7262 allocate_cores(1); 7263 allocate_threads(1); 7264 set_thread(0); 7265 7266 CU_basic_set_mode(CU_BRM_VERBOSE); 7267 CU_basic_run_tests(); 7268 num_failures = CU_get_number_of_failures(); 7269 CU_cleanup_registry(); 7270 7271 free_threads(); 7272 free_cores(); 7273 7274 return num_failures; 7275 } 7276