xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision 784b9d48746955f210926648a0131f84f58de76f)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2017 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk_cunit.h"
8 
9 #include "common/lib/ut_multithread.c"
10 #include "unit/lib/json_mock.c"
11 
12 #include "spdk/config.h"
13 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
14 #undef SPDK_CONFIG_VTUNE
15 
16 #include "bdev/bdev.c"
17 
18 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
19 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
20 DEFINE_STUB(spdk_memory_domain_get_dma_device_id, const char *, (struct spdk_memory_domain *domain),
21 	    "test_domain");
22 DEFINE_STUB(spdk_memory_domain_get_dma_device_type, enum spdk_dma_device_type,
23 	    (struct spdk_memory_domain *domain), 0);
24 
25 static bool g_memory_domain_pull_data_called;
26 static bool g_memory_domain_push_data_called;
27 
28 DEFINE_RETURN_MOCK(spdk_memory_domain_pull_data, int);
29 int
30 spdk_memory_domain_pull_data(struct spdk_memory_domain *src_domain, void *src_domain_ctx,
31 			     struct iovec *src_iov, uint32_t src_iov_cnt, struct iovec *dst_iov, uint32_t dst_iov_cnt,
32 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
33 {
34 	g_memory_domain_pull_data_called = true;
35 	HANDLE_RETURN_MOCK(spdk_memory_domain_pull_data);
36 	cpl_cb(cpl_cb_arg, 0);
37 	return 0;
38 }
39 
40 DEFINE_RETURN_MOCK(spdk_memory_domain_push_data, int);
41 int
42 spdk_memory_domain_push_data(struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
43 			     struct iovec *dst_iov, uint32_t dst_iovcnt, struct iovec *src_iov, uint32_t src_iovcnt,
44 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
45 {
46 	g_memory_domain_push_data_called = true;
47 	HANDLE_RETURN_MOCK(spdk_memory_domain_push_data);
48 	cpl_cb(cpl_cb_arg, 0);
49 	return 0;
50 }
51 
52 int g_status;
53 int g_count;
54 enum spdk_bdev_event_type g_event_type1;
55 enum spdk_bdev_event_type g_event_type2;
56 enum spdk_bdev_event_type g_event_type3;
57 enum spdk_bdev_event_type g_event_type4;
58 struct spdk_histogram_data *g_histogram;
59 void *g_unregister_arg;
60 int g_unregister_rc;
61 
62 void
63 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
64 			 int *sc, int *sk, int *asc, int *ascq)
65 {
66 }
67 
68 static int
69 null_init(void)
70 {
71 	return 0;
72 }
73 
74 static int
75 null_clean(void)
76 {
77 	return 0;
78 }
79 
80 static int
81 stub_destruct(void *ctx)
82 {
83 	return 0;
84 }
85 
86 struct ut_expected_io {
87 	uint8_t				type;
88 	uint64_t			offset;
89 	uint64_t			src_offset;
90 	uint64_t			length;
91 	int				iovcnt;
92 	struct iovec			iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
93 	void				*md_buf;
94 	struct spdk_bdev_ext_io_opts	*ext_io_opts;
95 	bool				copy_opts;
96 	TAILQ_ENTRY(ut_expected_io)	link;
97 };
98 
99 struct bdev_ut_channel {
100 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
101 	uint32_t			outstanding_io_count;
102 	TAILQ_HEAD(, ut_expected_io)	expected_io;
103 };
104 
105 static bool g_io_done;
106 static struct spdk_bdev_io *g_bdev_io;
107 static enum spdk_bdev_io_status g_io_status;
108 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
109 static uint32_t g_bdev_ut_io_device;
110 static struct bdev_ut_channel *g_bdev_ut_channel;
111 static void *g_compare_read_buf;
112 static uint32_t g_compare_read_buf_len;
113 static void *g_compare_write_buf;
114 static uint32_t g_compare_write_buf_len;
115 static void *g_compare_md_buf;
116 static bool g_abort_done;
117 static enum spdk_bdev_io_status g_abort_status;
118 static void *g_zcopy_read_buf;
119 static uint32_t g_zcopy_read_buf_len;
120 static void *g_zcopy_write_buf;
121 static uint32_t g_zcopy_write_buf_len;
122 static struct spdk_bdev_io *g_zcopy_bdev_io;
123 static uint64_t g_seek_data_offset;
124 static uint64_t g_seek_hole_offset;
125 static uint64_t g_seek_offset;
126 
127 static struct ut_expected_io *
128 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
129 {
130 	struct ut_expected_io *expected_io;
131 
132 	expected_io = calloc(1, sizeof(*expected_io));
133 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
134 
135 	expected_io->type = type;
136 	expected_io->offset = offset;
137 	expected_io->length = length;
138 	expected_io->iovcnt = iovcnt;
139 
140 	return expected_io;
141 }
142 
143 static struct ut_expected_io *
144 ut_alloc_expected_copy_io(uint8_t type, uint64_t offset, uint64_t src_offset, uint64_t length)
145 {
146 	struct ut_expected_io *expected_io;
147 
148 	expected_io = calloc(1, sizeof(*expected_io));
149 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
150 
151 	expected_io->type = type;
152 	expected_io->offset = offset;
153 	expected_io->src_offset = src_offset;
154 	expected_io->length = length;
155 
156 	return expected_io;
157 }
158 
159 static void
160 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
161 {
162 	expected_io->iov[pos].iov_base = base;
163 	expected_io->iov[pos].iov_len = len;
164 }
165 
166 static void
167 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
168 {
169 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
170 	struct ut_expected_io *expected_io;
171 	struct iovec *iov, *expected_iov;
172 	struct spdk_bdev_io *bio_to_abort;
173 	int i;
174 
175 	g_bdev_io = bdev_io;
176 
177 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
178 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
179 
180 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
181 		CU_ASSERT(g_compare_read_buf_len == len);
182 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
183 		if (bdev_io->bdev->md_len && bdev_io->u.bdev.md_buf && g_compare_md_buf) {
184 			memcpy(bdev_io->u.bdev.md_buf, g_compare_md_buf,
185 			       bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks);
186 		}
187 	}
188 
189 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
190 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
191 
192 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
193 		CU_ASSERT(g_compare_write_buf_len == len);
194 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
195 	}
196 
197 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
198 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
199 
200 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
201 		CU_ASSERT(g_compare_read_buf_len == len);
202 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
203 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
204 		}
205 		if (bdev_io->u.bdev.md_buf &&
206 		    memcmp(bdev_io->u.bdev.md_buf, g_compare_md_buf,
207 			   bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks)) {
208 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
209 		}
210 	}
211 
212 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
213 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
214 			TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
215 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
216 					TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
217 					ch->outstanding_io_count--;
218 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
219 					break;
220 				}
221 			}
222 		}
223 	}
224 
225 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) {
226 		if (bdev_io->u.bdev.zcopy.start) {
227 			g_zcopy_bdev_io = bdev_io;
228 			if (bdev_io->u.bdev.zcopy.populate) {
229 				/* Start of a read */
230 				CU_ASSERT(g_zcopy_read_buf != NULL);
231 				CU_ASSERT(g_zcopy_read_buf_len > 0);
232 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_read_buf;
233 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_read_buf_len;
234 				bdev_io->u.bdev.iovcnt = 1;
235 			} else {
236 				/* Start of a write */
237 				CU_ASSERT(g_zcopy_write_buf != NULL);
238 				CU_ASSERT(g_zcopy_write_buf_len > 0);
239 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_write_buf;
240 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_write_buf_len;
241 				bdev_io->u.bdev.iovcnt = 1;
242 			}
243 		} else {
244 			if (bdev_io->u.bdev.zcopy.commit) {
245 				/* End of write */
246 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_write_buf);
247 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_write_buf_len);
248 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
249 				g_zcopy_write_buf = NULL;
250 				g_zcopy_write_buf_len = 0;
251 			} else {
252 				/* End of read */
253 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_read_buf);
254 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_read_buf_len);
255 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
256 				g_zcopy_read_buf = NULL;
257 				g_zcopy_read_buf_len = 0;
258 			}
259 		}
260 	}
261 
262 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_DATA) {
263 		bdev_io->u.bdev.seek.offset = g_seek_data_offset;
264 	}
265 
266 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_HOLE) {
267 		bdev_io->u.bdev.seek.offset = g_seek_hole_offset;
268 	}
269 
270 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
271 	ch->outstanding_io_count++;
272 
273 	expected_io = TAILQ_FIRST(&ch->expected_io);
274 	if (expected_io == NULL) {
275 		return;
276 	}
277 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
278 
279 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
280 		CU_ASSERT(bdev_io->type == expected_io->type);
281 	}
282 
283 	if (expected_io->md_buf != NULL) {
284 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
285 		if (bdev_io->u.bdev.ext_opts) {
286 			CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.ext_opts->metadata);
287 		}
288 	}
289 
290 	if (expected_io->copy_opts) {
291 		if (expected_io->ext_io_opts) {
292 			/* opts are not NULL so it should have been copied */
293 			CU_ASSERT(expected_io->ext_io_opts != bdev_io->u.bdev.ext_opts);
294 			CU_ASSERT(bdev_io->u.bdev.ext_opts == &bdev_io->internal.ext_opts_copy);
295 			/* internal opts always points to opts passed */
296 			CU_ASSERT(expected_io->ext_io_opts == bdev_io->internal.ext_opts);
297 		} else {
298 			/* passed opts was NULL so we expect bdev_io opts to be NULL */
299 			CU_ASSERT(bdev_io->u.bdev.ext_opts == NULL);
300 		}
301 	} else {
302 		/* opts were not copied so they should be equal */
303 		CU_ASSERT(expected_io->ext_io_opts == bdev_io->u.bdev.ext_opts);
304 	}
305 
306 	if (expected_io->length == 0) {
307 		free(expected_io);
308 		return;
309 	}
310 
311 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
312 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
313 	if (expected_io->type == SPDK_BDEV_IO_TYPE_COPY) {
314 		CU_ASSERT(expected_io->src_offset == bdev_io->u.bdev.copy.src_offset_blocks);
315 	}
316 
317 	if (expected_io->iovcnt == 0) {
318 		free(expected_io);
319 		/* UNMAP, WRITE_ZEROES, FLUSH and COPY don't have iovs, so we can just return now. */
320 		return;
321 	}
322 
323 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
324 	for (i = 0; i < expected_io->iovcnt; i++) {
325 		expected_iov = &expected_io->iov[i];
326 		if (bdev_io->internal.orig_iovcnt == 0) {
327 			iov = &bdev_io->u.bdev.iovs[i];
328 		} else {
329 			iov = bdev_io->internal.orig_iovs;
330 		}
331 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
332 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
333 	}
334 
335 	free(expected_io);
336 }
337 
338 static void
339 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
340 			       struct spdk_bdev_io *bdev_io, bool success)
341 {
342 	CU_ASSERT(success == true);
343 
344 	stub_submit_request(_ch, bdev_io);
345 }
346 
347 static void
348 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
349 {
350 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
351 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
352 }
353 
354 static uint32_t
355 stub_complete_io(uint32_t num_to_complete)
356 {
357 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
358 	struct spdk_bdev_io *bdev_io;
359 	static enum spdk_bdev_io_status io_status;
360 	uint32_t num_completed = 0;
361 
362 	while (num_completed < num_to_complete) {
363 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
364 			break;
365 		}
366 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
367 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
368 		ch->outstanding_io_count--;
369 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
370 			    g_io_exp_status;
371 		spdk_bdev_io_complete(bdev_io, io_status);
372 		num_completed++;
373 	}
374 
375 	return num_completed;
376 }
377 
378 static struct spdk_io_channel *
379 bdev_ut_get_io_channel(void *ctx)
380 {
381 	return spdk_get_io_channel(&g_bdev_ut_io_device);
382 }
383 
384 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
385 	[SPDK_BDEV_IO_TYPE_READ]		= true,
386 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
387 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
388 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
389 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
390 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
391 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
392 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
393 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
394 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
395 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
396 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
397 	[SPDK_BDEV_IO_TYPE_SEEK_HOLE]		= true,
398 	[SPDK_BDEV_IO_TYPE_SEEK_DATA]		= true,
399 	[SPDK_BDEV_IO_TYPE_COPY]		= true,
400 };
401 
402 static void
403 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
404 {
405 	g_io_types_supported[io_type] = enable;
406 }
407 
408 static bool
409 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
410 {
411 	return g_io_types_supported[io_type];
412 }
413 
414 static struct spdk_bdev_fn_table fn_table = {
415 	.destruct = stub_destruct,
416 	.submit_request = stub_submit_request,
417 	.get_io_channel = bdev_ut_get_io_channel,
418 	.io_type_supported = stub_io_type_supported,
419 };
420 
421 static int
422 bdev_ut_create_ch(void *io_device, void *ctx_buf)
423 {
424 	struct bdev_ut_channel *ch = ctx_buf;
425 
426 	CU_ASSERT(g_bdev_ut_channel == NULL);
427 	g_bdev_ut_channel = ch;
428 
429 	TAILQ_INIT(&ch->outstanding_io);
430 	ch->outstanding_io_count = 0;
431 	TAILQ_INIT(&ch->expected_io);
432 	return 0;
433 }
434 
435 static void
436 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
437 {
438 	CU_ASSERT(g_bdev_ut_channel != NULL);
439 	g_bdev_ut_channel = NULL;
440 }
441 
442 struct spdk_bdev_module bdev_ut_if;
443 
444 static int
445 bdev_ut_module_init(void)
446 {
447 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
448 				sizeof(struct bdev_ut_channel), NULL);
449 	spdk_bdev_module_init_done(&bdev_ut_if);
450 	return 0;
451 }
452 
453 static void
454 bdev_ut_module_fini(void)
455 {
456 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
457 }
458 
459 struct spdk_bdev_module bdev_ut_if = {
460 	.name = "bdev_ut",
461 	.module_init = bdev_ut_module_init,
462 	.module_fini = bdev_ut_module_fini,
463 	.async_init = true,
464 };
465 
466 static void vbdev_ut_examine(struct spdk_bdev *bdev);
467 
468 static int
469 vbdev_ut_module_init(void)
470 {
471 	return 0;
472 }
473 
474 static void
475 vbdev_ut_module_fini(void)
476 {
477 }
478 
479 struct spdk_bdev_module vbdev_ut_if = {
480 	.name = "vbdev_ut",
481 	.module_init = vbdev_ut_module_init,
482 	.module_fini = vbdev_ut_module_fini,
483 	.examine_config = vbdev_ut_examine,
484 };
485 
486 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
487 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
488 
489 static void
490 vbdev_ut_examine(struct spdk_bdev *bdev)
491 {
492 	spdk_bdev_module_examine_done(&vbdev_ut_if);
493 }
494 
495 static struct spdk_bdev *
496 allocate_bdev(char *name)
497 {
498 	struct spdk_bdev *bdev;
499 	int rc;
500 
501 	bdev = calloc(1, sizeof(*bdev));
502 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
503 
504 	bdev->name = name;
505 	bdev->fn_table = &fn_table;
506 	bdev->module = &bdev_ut_if;
507 	bdev->blockcnt = 1024;
508 	bdev->blocklen = 512;
509 
510 	spdk_uuid_generate(&bdev->uuid);
511 
512 	rc = spdk_bdev_register(bdev);
513 	poll_threads();
514 	CU_ASSERT(rc == 0);
515 
516 	return bdev;
517 }
518 
519 static struct spdk_bdev *
520 allocate_vbdev(char *name)
521 {
522 	struct spdk_bdev *bdev;
523 	int rc;
524 
525 	bdev = calloc(1, sizeof(*bdev));
526 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
527 
528 	bdev->name = name;
529 	bdev->fn_table = &fn_table;
530 	bdev->module = &vbdev_ut_if;
531 
532 	rc = spdk_bdev_register(bdev);
533 	poll_threads();
534 	CU_ASSERT(rc == 0);
535 
536 	return bdev;
537 }
538 
539 static void
540 free_bdev(struct spdk_bdev *bdev)
541 {
542 	spdk_bdev_unregister(bdev, NULL, NULL);
543 	poll_threads();
544 	memset(bdev, 0xFF, sizeof(*bdev));
545 	free(bdev);
546 }
547 
548 static void
549 free_vbdev(struct spdk_bdev *bdev)
550 {
551 	spdk_bdev_unregister(bdev, NULL, NULL);
552 	poll_threads();
553 	memset(bdev, 0xFF, sizeof(*bdev));
554 	free(bdev);
555 }
556 
557 static void
558 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
559 {
560 	const char *bdev_name;
561 
562 	CU_ASSERT(bdev != NULL);
563 	CU_ASSERT(rc == 0);
564 	bdev_name = spdk_bdev_get_name(bdev);
565 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
566 
567 	free(stat);
568 
569 	*(bool *)cb_arg = true;
570 }
571 
572 static void
573 bdev_unregister_cb(void *cb_arg, int rc)
574 {
575 	g_unregister_arg = cb_arg;
576 	g_unregister_rc = rc;
577 }
578 
579 static void
580 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
581 {
582 }
583 
584 static void
585 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
586 {
587 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
588 
589 	g_event_type1 = type;
590 	if (SPDK_BDEV_EVENT_REMOVE == type) {
591 		spdk_bdev_close(desc);
592 	}
593 }
594 
595 static void
596 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
597 {
598 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
599 
600 	g_event_type2 = type;
601 	if (SPDK_BDEV_EVENT_REMOVE == type) {
602 		spdk_bdev_close(desc);
603 	}
604 }
605 
606 static void
607 bdev_open_cb3(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
608 {
609 	g_event_type3 = type;
610 }
611 
612 static void
613 bdev_open_cb4(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
614 {
615 	g_event_type4 = type;
616 }
617 
618 static void
619 bdev_seek_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
620 {
621 	g_seek_offset = spdk_bdev_io_get_seek_offset(bdev_io);
622 	spdk_bdev_free_io(bdev_io);
623 }
624 
625 static void
626 get_device_stat_test(void)
627 {
628 	struct spdk_bdev *bdev;
629 	struct spdk_bdev_io_stat *stat;
630 	bool done;
631 
632 	bdev = allocate_bdev("bdev0");
633 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
634 	if (stat == NULL) {
635 		free_bdev(bdev);
636 		return;
637 	}
638 
639 	done = false;
640 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
641 	while (!done) { poll_threads(); }
642 
643 	free_bdev(bdev);
644 }
645 
646 static void
647 open_write_test(void)
648 {
649 	struct spdk_bdev *bdev[9];
650 	struct spdk_bdev_desc *desc[9] = {};
651 	int rc;
652 
653 	/*
654 	 * Create a tree of bdevs to test various open w/ write cases.
655 	 *
656 	 * bdev0 through bdev3 are physical block devices, such as NVMe
657 	 * namespaces or Ceph block devices.
658 	 *
659 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
660 	 * caching or RAID use cases.
661 	 *
662 	 * bdev5 through bdev7 are all virtual bdevs with the same base
663 	 * bdev (except bdev7). This models partitioning or logical volume
664 	 * use cases.
665 	 *
666 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
667 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
668 	 * models caching, RAID, partitioning or logical volumes use cases.
669 	 *
670 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
671 	 * base bdevs are themselves virtual bdevs.
672 	 *
673 	 *                bdev8
674 	 *                  |
675 	 *            +----------+
676 	 *            |          |
677 	 *          bdev4      bdev5   bdev6   bdev7
678 	 *            |          |       |       |
679 	 *        +---+---+      +---+   +   +---+---+
680 	 *        |       |           \  |  /         \
681 	 *      bdev0   bdev1          bdev2         bdev3
682 	 */
683 
684 	bdev[0] = allocate_bdev("bdev0");
685 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
686 	CU_ASSERT(rc == 0);
687 
688 	bdev[1] = allocate_bdev("bdev1");
689 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
690 	CU_ASSERT(rc == 0);
691 
692 	bdev[2] = allocate_bdev("bdev2");
693 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
694 	CU_ASSERT(rc == 0);
695 
696 	bdev[3] = allocate_bdev("bdev3");
697 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
698 	CU_ASSERT(rc == 0);
699 
700 	bdev[4] = allocate_vbdev("bdev4");
701 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
702 	CU_ASSERT(rc == 0);
703 
704 	bdev[5] = allocate_vbdev("bdev5");
705 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
706 	CU_ASSERT(rc == 0);
707 
708 	bdev[6] = allocate_vbdev("bdev6");
709 
710 	bdev[7] = allocate_vbdev("bdev7");
711 
712 	bdev[8] = allocate_vbdev("bdev8");
713 
714 	/* Open bdev0 read-only.  This should succeed. */
715 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
716 	CU_ASSERT(rc == 0);
717 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
718 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
719 	spdk_bdev_close(desc[0]);
720 
721 	/*
722 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
723 	 * by a vbdev module.
724 	 */
725 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
726 	CU_ASSERT(rc == -EPERM);
727 
728 	/*
729 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
730 	 * by a vbdev module.
731 	 */
732 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
733 	CU_ASSERT(rc == -EPERM);
734 
735 	/* Open bdev4 read-only.  This should succeed. */
736 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
737 	CU_ASSERT(rc == 0);
738 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
739 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
740 	spdk_bdev_close(desc[4]);
741 
742 	/*
743 	 * Open bdev8 read/write.  This should succeed since it is a leaf
744 	 * bdev.
745 	 */
746 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
747 	CU_ASSERT(rc == 0);
748 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
749 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
750 	spdk_bdev_close(desc[8]);
751 
752 	/*
753 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
754 	 * by a vbdev module.
755 	 */
756 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
757 	CU_ASSERT(rc == -EPERM);
758 
759 	/* Open bdev4 read-only.  This should succeed. */
760 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
761 	CU_ASSERT(rc == 0);
762 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
763 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
764 	spdk_bdev_close(desc[5]);
765 
766 	free_vbdev(bdev[8]);
767 
768 	free_vbdev(bdev[5]);
769 	free_vbdev(bdev[6]);
770 	free_vbdev(bdev[7]);
771 
772 	free_vbdev(bdev[4]);
773 
774 	free_bdev(bdev[0]);
775 	free_bdev(bdev[1]);
776 	free_bdev(bdev[2]);
777 	free_bdev(bdev[3]);
778 }
779 
780 static void
781 claim_test(void)
782 {
783 	struct spdk_bdev *bdev;
784 	struct spdk_bdev_desc *desc, *open_desc;
785 	int rc;
786 	uint32_t count;
787 
788 	/*
789 	 * A vbdev that uses a read-only bdev may need it to remain read-only.
790 	 * To do so, it opens the bdev read-only, then claims it without
791 	 * passing a spdk_bdev_desc.
792 	 */
793 	bdev = allocate_bdev("bdev0");
794 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
795 	CU_ASSERT(rc == 0);
796 	CU_ASSERT(desc->write == false);
797 
798 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
799 	CU_ASSERT(rc == 0);
800 	CU_ASSERT(bdev->internal.claim_module == &bdev_ut_if);
801 
802 	/* There should be only one open descriptor and it should still be ro */
803 	count = 0;
804 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
805 		CU_ASSERT(open_desc == desc);
806 		CU_ASSERT(!open_desc->write);
807 		count++;
808 	}
809 	CU_ASSERT(count == 1);
810 
811 	/* A read-only bdev is upgraded to read-write if desc is passed. */
812 	spdk_bdev_module_release_bdev(bdev);
813 	rc = spdk_bdev_module_claim_bdev(bdev, desc, &bdev_ut_if);
814 	CU_ASSERT(rc == 0);
815 	CU_ASSERT(bdev->internal.claim_module == &bdev_ut_if);
816 
817 	/* There should be only one open descriptor and it should be rw */
818 	count = 0;
819 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
820 		CU_ASSERT(open_desc == desc);
821 		CU_ASSERT(open_desc->write);
822 		count++;
823 	}
824 	CU_ASSERT(count == 1);
825 
826 	spdk_bdev_close(desc);
827 	free_bdev(bdev);
828 }
829 
830 static void
831 bytes_to_blocks_test(void)
832 {
833 	struct spdk_bdev bdev;
834 	uint64_t offset_blocks, num_blocks;
835 
836 	memset(&bdev, 0, sizeof(bdev));
837 
838 	bdev.blocklen = 512;
839 
840 	/* All parameters valid */
841 	offset_blocks = 0;
842 	num_blocks = 0;
843 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
844 	CU_ASSERT(offset_blocks == 1);
845 	CU_ASSERT(num_blocks == 2);
846 
847 	/* Offset not a block multiple */
848 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
849 
850 	/* Length not a block multiple */
851 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
852 
853 	/* In case blocklen not the power of two */
854 	bdev.blocklen = 100;
855 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
856 	CU_ASSERT(offset_blocks == 1);
857 	CU_ASSERT(num_blocks == 2);
858 
859 	/* Offset not a block multiple */
860 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
861 
862 	/* Length not a block multiple */
863 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
864 }
865 
866 static void
867 num_blocks_test(void)
868 {
869 	struct spdk_bdev bdev;
870 	struct spdk_bdev_desc *desc = NULL;
871 	int rc;
872 
873 	memset(&bdev, 0, sizeof(bdev));
874 	bdev.name = "num_blocks";
875 	bdev.fn_table = &fn_table;
876 	bdev.module = &bdev_ut_if;
877 	spdk_bdev_register(&bdev);
878 	poll_threads();
879 	spdk_bdev_notify_blockcnt_change(&bdev, 50);
880 
881 	/* Growing block number */
882 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
883 	/* Shrinking block number */
884 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
885 
886 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc, &desc);
887 	CU_ASSERT(rc == 0);
888 	SPDK_CU_ASSERT_FATAL(desc != NULL);
889 	CU_ASSERT(&bdev == spdk_bdev_desc_get_bdev(desc));
890 
891 	/* Growing block number */
892 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
893 	/* Shrinking block number */
894 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
895 
896 	g_event_type1 = 0xFF;
897 	/* Growing block number */
898 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
899 
900 	poll_threads();
901 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
902 
903 	g_event_type1 = 0xFF;
904 	/* Growing block number and closing */
905 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
906 
907 	spdk_bdev_close(desc);
908 	spdk_bdev_unregister(&bdev, NULL, NULL);
909 
910 	poll_threads();
911 
912 	/* Callback is not called for closed device */
913 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
914 }
915 
916 static void
917 io_valid_test(void)
918 {
919 	struct spdk_bdev bdev;
920 
921 	memset(&bdev, 0, sizeof(bdev));
922 
923 	bdev.blocklen = 512;
924 	spdk_spin_init(&bdev.internal.spinlock);
925 
926 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
927 
928 	/* All parameters valid */
929 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
930 
931 	/* Last valid block */
932 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
933 
934 	/* Offset past end of bdev */
935 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
936 
937 	/* Offset + length past end of bdev */
938 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
939 
940 	/* Offset near end of uint64_t range (2^64 - 1) */
941 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
942 
943 	spdk_spin_destroy(&bdev.internal.spinlock);
944 }
945 
946 static void
947 alias_add_del_test(void)
948 {
949 	struct spdk_bdev *bdev[3];
950 	int rc;
951 
952 	/* Creating and registering bdevs */
953 	bdev[0] = allocate_bdev("bdev0");
954 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
955 
956 	bdev[1] = allocate_bdev("bdev1");
957 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
958 
959 	bdev[2] = allocate_bdev("bdev2");
960 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
961 
962 	poll_threads();
963 
964 	/*
965 	 * Trying adding an alias identical to name.
966 	 * Alias is identical to name, so it can not be added to aliases list
967 	 */
968 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
969 	CU_ASSERT(rc == -EEXIST);
970 
971 	/*
972 	 * Trying to add empty alias,
973 	 * this one should fail
974 	 */
975 	rc = spdk_bdev_alias_add(bdev[0], NULL);
976 	CU_ASSERT(rc == -EINVAL);
977 
978 	/* Trying adding same alias to two different registered bdevs */
979 
980 	/* Alias is used first time, so this one should pass */
981 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
982 	CU_ASSERT(rc == 0);
983 
984 	/* Alias was added to another bdev, so this one should fail */
985 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
986 	CU_ASSERT(rc == -EEXIST);
987 
988 	/* Alias is used first time, so this one should pass */
989 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
990 	CU_ASSERT(rc == 0);
991 
992 	/* Trying removing an alias from registered bdevs */
993 
994 	/* Alias is not on a bdev aliases list, so this one should fail */
995 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
996 	CU_ASSERT(rc == -ENOENT);
997 
998 	/* Alias is present on a bdev aliases list, so this one should pass */
999 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
1000 	CU_ASSERT(rc == 0);
1001 
1002 	/* Alias is present on a bdev aliases list, so this one should pass */
1003 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
1004 	CU_ASSERT(rc == 0);
1005 
1006 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
1007 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
1008 	CU_ASSERT(rc != 0);
1009 
1010 	/* Trying to del all alias from empty alias list */
1011 	spdk_bdev_alias_del_all(bdev[2]);
1012 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
1013 
1014 	/* Trying to del all alias from non-empty alias list */
1015 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
1016 	CU_ASSERT(rc == 0);
1017 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
1018 	CU_ASSERT(rc == 0);
1019 	spdk_bdev_alias_del_all(bdev[2]);
1020 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
1021 
1022 	/* Unregister and free bdevs */
1023 	spdk_bdev_unregister(bdev[0], NULL, NULL);
1024 	spdk_bdev_unregister(bdev[1], NULL, NULL);
1025 	spdk_bdev_unregister(bdev[2], NULL, NULL);
1026 
1027 	poll_threads();
1028 
1029 	free(bdev[0]);
1030 	free(bdev[1]);
1031 	free(bdev[2]);
1032 }
1033 
1034 static void
1035 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
1036 {
1037 	g_io_done = true;
1038 	g_io_status = bdev_io->internal.status;
1039 	if ((bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) &&
1040 	    (bdev_io->u.bdev.zcopy.start)) {
1041 		g_zcopy_bdev_io = bdev_io;
1042 	} else {
1043 		spdk_bdev_free_io(bdev_io);
1044 		g_zcopy_bdev_io = NULL;
1045 	}
1046 }
1047 
1048 static void
1049 bdev_init_cb(void *arg, int rc)
1050 {
1051 	CU_ASSERT(rc == 0);
1052 }
1053 
1054 static void
1055 bdev_fini_cb(void *arg)
1056 {
1057 }
1058 
1059 struct bdev_ut_io_wait_entry {
1060 	struct spdk_bdev_io_wait_entry	entry;
1061 	struct spdk_io_channel		*io_ch;
1062 	struct spdk_bdev_desc		*desc;
1063 	bool				submitted;
1064 };
1065 
1066 static void
1067 io_wait_cb(void *arg)
1068 {
1069 	struct bdev_ut_io_wait_entry *entry = arg;
1070 	int rc;
1071 
1072 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
1073 	CU_ASSERT(rc == 0);
1074 	entry->submitted = true;
1075 }
1076 
1077 static void
1078 bdev_io_types_test(void)
1079 {
1080 	struct spdk_bdev *bdev;
1081 	struct spdk_bdev_desc *desc = NULL;
1082 	struct spdk_io_channel *io_ch;
1083 	struct spdk_bdev_opts bdev_opts = {};
1084 	int rc;
1085 
1086 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1087 	bdev_opts.bdev_io_pool_size = 4;
1088 	bdev_opts.bdev_io_cache_size = 2;
1089 
1090 	rc = spdk_bdev_set_opts(&bdev_opts);
1091 	CU_ASSERT(rc == 0);
1092 	spdk_bdev_initialize(bdev_init_cb, NULL);
1093 	poll_threads();
1094 
1095 	bdev = allocate_bdev("bdev0");
1096 
1097 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1098 	CU_ASSERT(rc == 0);
1099 	poll_threads();
1100 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1101 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1102 	io_ch = spdk_bdev_get_io_channel(desc);
1103 	CU_ASSERT(io_ch != NULL);
1104 
1105 	/* WRITE and WRITE ZEROES are not supported */
1106 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
1107 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
1108 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
1109 	CU_ASSERT(rc == -ENOTSUP);
1110 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
1111 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
1112 
1113 	/* COPY is not supported */
1114 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false);
1115 	rc = spdk_bdev_copy_blocks(desc, io_ch, 128, 0, 128, io_done, NULL);
1116 	CU_ASSERT(rc == -ENOTSUP);
1117 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true);
1118 
1119 	/* NVME_IO, NVME_IO_MD and NVME_ADMIN are not supported */
1120 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, false);
1121 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, false);
1122 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, false);
1123 	rc = spdk_bdev_nvme_io_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1124 	CU_ASSERT(rc == -ENOTSUP);
1125 	rc = spdk_bdev_nvme_io_passthru_md(desc, io_ch, NULL, NULL, 0, NULL, 0, NULL, NULL);
1126 	CU_ASSERT(rc == -ENOTSUP);
1127 	rc = spdk_bdev_nvme_admin_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1128 	CU_ASSERT(rc == -ENOTSUP);
1129 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, true);
1130 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, true);
1131 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, true);
1132 
1133 	spdk_put_io_channel(io_ch);
1134 	spdk_bdev_close(desc);
1135 	free_bdev(bdev);
1136 	spdk_bdev_finish(bdev_fini_cb, NULL);
1137 	poll_threads();
1138 }
1139 
1140 static void
1141 bdev_io_wait_test(void)
1142 {
1143 	struct spdk_bdev *bdev;
1144 	struct spdk_bdev_desc *desc = NULL;
1145 	struct spdk_io_channel *io_ch;
1146 	struct spdk_bdev_opts bdev_opts = {};
1147 	struct bdev_ut_io_wait_entry io_wait_entry;
1148 	struct bdev_ut_io_wait_entry io_wait_entry2;
1149 	int rc;
1150 
1151 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1152 	bdev_opts.bdev_io_pool_size = 4;
1153 	bdev_opts.bdev_io_cache_size = 2;
1154 
1155 	rc = spdk_bdev_set_opts(&bdev_opts);
1156 	CU_ASSERT(rc == 0);
1157 	spdk_bdev_initialize(bdev_init_cb, NULL);
1158 	poll_threads();
1159 
1160 	bdev = allocate_bdev("bdev0");
1161 
1162 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1163 	CU_ASSERT(rc == 0);
1164 	poll_threads();
1165 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1166 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1167 	io_ch = spdk_bdev_get_io_channel(desc);
1168 	CU_ASSERT(io_ch != NULL);
1169 
1170 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1171 	CU_ASSERT(rc == 0);
1172 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1173 	CU_ASSERT(rc == 0);
1174 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1175 	CU_ASSERT(rc == 0);
1176 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1177 	CU_ASSERT(rc == 0);
1178 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1179 
1180 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1181 	CU_ASSERT(rc == -ENOMEM);
1182 
1183 	io_wait_entry.entry.bdev = bdev;
1184 	io_wait_entry.entry.cb_fn = io_wait_cb;
1185 	io_wait_entry.entry.cb_arg = &io_wait_entry;
1186 	io_wait_entry.io_ch = io_ch;
1187 	io_wait_entry.desc = desc;
1188 	io_wait_entry.submitted = false;
1189 	/* Cannot use the same io_wait_entry for two different calls. */
1190 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
1191 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
1192 
1193 	/* Queue two I/O waits. */
1194 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
1195 	CU_ASSERT(rc == 0);
1196 	CU_ASSERT(io_wait_entry.submitted == false);
1197 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
1198 	CU_ASSERT(rc == 0);
1199 	CU_ASSERT(io_wait_entry2.submitted == false);
1200 
1201 	stub_complete_io(1);
1202 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1203 	CU_ASSERT(io_wait_entry.submitted == true);
1204 	CU_ASSERT(io_wait_entry2.submitted == false);
1205 
1206 	stub_complete_io(1);
1207 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1208 	CU_ASSERT(io_wait_entry2.submitted == true);
1209 
1210 	stub_complete_io(4);
1211 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1212 
1213 	spdk_put_io_channel(io_ch);
1214 	spdk_bdev_close(desc);
1215 	free_bdev(bdev);
1216 	spdk_bdev_finish(bdev_fini_cb, NULL);
1217 	poll_threads();
1218 }
1219 
1220 static void
1221 bdev_io_spans_split_test(void)
1222 {
1223 	struct spdk_bdev bdev;
1224 	struct spdk_bdev_io bdev_io;
1225 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
1226 
1227 	memset(&bdev, 0, sizeof(bdev));
1228 	bdev_io.u.bdev.iovs = iov;
1229 
1230 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1231 	bdev.optimal_io_boundary = 0;
1232 	bdev.max_segment_size = 0;
1233 	bdev.max_num_segments = 0;
1234 	bdev_io.bdev = &bdev;
1235 
1236 	/* bdev has no optimal_io_boundary and max_size set - so this should return false. */
1237 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1238 
1239 	bdev.split_on_optimal_io_boundary = true;
1240 	bdev.optimal_io_boundary = 32;
1241 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1242 
1243 	/* RESETs are not based on LBAs - so this should return false. */
1244 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1245 
1246 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1247 	bdev_io.u.bdev.offset_blocks = 0;
1248 	bdev_io.u.bdev.num_blocks = 32;
1249 
1250 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1251 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1252 
1253 	bdev_io.u.bdev.num_blocks = 33;
1254 
1255 	/* This I/O spans a boundary. */
1256 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1257 
1258 	bdev_io.u.bdev.num_blocks = 32;
1259 	bdev.max_segment_size = 512 * 32;
1260 	bdev.max_num_segments = 1;
1261 	bdev_io.u.bdev.iovcnt = 1;
1262 	iov[0].iov_len = 512;
1263 
1264 	/* Does not cross and exceed max_size or max_segs */
1265 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1266 
1267 	bdev.split_on_optimal_io_boundary = false;
1268 	bdev.max_segment_size = 512;
1269 	bdev.max_num_segments = 1;
1270 	bdev_io.u.bdev.iovcnt = 2;
1271 
1272 	/* Exceed max_segs */
1273 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1274 
1275 	bdev.max_num_segments = 2;
1276 	iov[0].iov_len = 513;
1277 	iov[1].iov_len = 512;
1278 
1279 	/* Exceed max_sizes */
1280 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1281 
1282 	bdev.max_segment_size = 0;
1283 	bdev.write_unit_size = 32;
1284 	bdev.split_on_write_unit = true;
1285 	bdev_io.type = SPDK_BDEV_IO_TYPE_WRITE;
1286 
1287 	/* This I/O is one write unit */
1288 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1289 
1290 	bdev_io.u.bdev.num_blocks = 32 * 2;
1291 
1292 	/* This I/O is more than one write unit */
1293 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1294 
1295 	bdev_io.u.bdev.offset_blocks = 1;
1296 	bdev_io.u.bdev.num_blocks = 32;
1297 
1298 	/* This I/O is not aligned to write unit size */
1299 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1300 }
1301 
1302 static void
1303 bdev_io_boundary_split_test(void)
1304 {
1305 	struct spdk_bdev *bdev;
1306 	struct spdk_bdev_desc *desc = NULL;
1307 	struct spdk_io_channel *io_ch;
1308 	struct spdk_bdev_opts bdev_opts = {};
1309 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
1310 	struct ut_expected_io *expected_io;
1311 	void *md_buf = (void *)0xFF000000;
1312 	uint64_t i;
1313 	int rc;
1314 
1315 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1316 	bdev_opts.bdev_io_pool_size = 512;
1317 	bdev_opts.bdev_io_cache_size = 64;
1318 
1319 	rc = spdk_bdev_set_opts(&bdev_opts);
1320 	CU_ASSERT(rc == 0);
1321 	spdk_bdev_initialize(bdev_init_cb, NULL);
1322 
1323 	bdev = allocate_bdev("bdev0");
1324 
1325 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1326 	CU_ASSERT(rc == 0);
1327 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1328 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1329 	io_ch = spdk_bdev_get_io_channel(desc);
1330 	CU_ASSERT(io_ch != NULL);
1331 
1332 	bdev->optimal_io_boundary = 16;
1333 	bdev->split_on_optimal_io_boundary = false;
1334 
1335 	g_io_done = false;
1336 
1337 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1338 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1339 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1340 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1341 
1342 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1343 	CU_ASSERT(rc == 0);
1344 	CU_ASSERT(g_io_done == false);
1345 
1346 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1347 	stub_complete_io(1);
1348 	CU_ASSERT(g_io_done == true);
1349 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1350 
1351 	bdev->split_on_optimal_io_boundary = true;
1352 	bdev->md_interleave = false;
1353 	bdev->md_len = 8;
1354 
1355 	/* Now test that a single-vector command is split correctly.
1356 	 * Offset 14, length 8, payload 0xF000
1357 	 *  Child - Offset 14, length 2, payload 0xF000
1358 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1359 	 *
1360 	 * Set up the expected values before calling spdk_bdev_read_blocks
1361 	 */
1362 	g_io_done = false;
1363 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1364 	expected_io->md_buf = md_buf;
1365 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1366 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1367 
1368 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1369 	expected_io->md_buf = md_buf + 2 * 8;
1370 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1371 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1372 
1373 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1374 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1375 					   14, 8, io_done, NULL);
1376 	CU_ASSERT(rc == 0);
1377 	CU_ASSERT(g_io_done == false);
1378 
1379 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1380 	stub_complete_io(2);
1381 	CU_ASSERT(g_io_done == true);
1382 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1383 
1384 	/* Now set up a more complex, multi-vector command that needs to be split,
1385 	 *  including splitting iovecs.
1386 	 */
1387 	iov[0].iov_base = (void *)0x10000;
1388 	iov[0].iov_len = 512;
1389 	iov[1].iov_base = (void *)0x20000;
1390 	iov[1].iov_len = 20 * 512;
1391 	iov[2].iov_base = (void *)0x30000;
1392 	iov[2].iov_len = 11 * 512;
1393 
1394 	g_io_done = false;
1395 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1396 	expected_io->md_buf = md_buf;
1397 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1398 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1399 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1400 
1401 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1402 	expected_io->md_buf = md_buf + 2 * 8;
1403 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1404 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1405 
1406 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1407 	expected_io->md_buf = md_buf + 18 * 8;
1408 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1409 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1410 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1411 
1412 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1413 					     14, 32, io_done, NULL);
1414 	CU_ASSERT(rc == 0);
1415 	CU_ASSERT(g_io_done == false);
1416 
1417 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1418 	stub_complete_io(3);
1419 	CU_ASSERT(g_io_done == true);
1420 
1421 	/* Test multi vector command that needs to be split by strip and then needs to be
1422 	 * split further due to the capacity of child iovs.
1423 	 */
1424 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1425 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1426 		iov[i].iov_len = 512;
1427 	}
1428 
1429 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1430 	g_io_done = false;
1431 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
1432 					   SPDK_BDEV_IO_NUM_CHILD_IOV);
1433 	expected_io->md_buf = md_buf;
1434 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1435 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1436 	}
1437 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1438 
1439 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1440 					   SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
1441 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1442 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1443 		ut_expected_io_set_iov(expected_io, i,
1444 				       (void *)((i + 1 + SPDK_BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1445 	}
1446 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1447 
1448 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1449 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1450 	CU_ASSERT(rc == 0);
1451 	CU_ASSERT(g_io_done == false);
1452 
1453 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1454 	stub_complete_io(1);
1455 	CU_ASSERT(g_io_done == false);
1456 
1457 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1458 	stub_complete_io(1);
1459 	CU_ASSERT(g_io_done == true);
1460 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1461 
1462 	/* Test multi vector command that needs to be split by strip and then needs to be
1463 	 * split further due to the capacity of child iovs. In this case, the length of
1464 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1465 	 */
1466 
1467 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1468 	 * is SPDK_BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1469 	 */
1470 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1471 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1472 		iov[i].iov_len = 512;
1473 	}
1474 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1475 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1476 		iov[i].iov_len = 256;
1477 	}
1478 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1479 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1480 
1481 	/* Add an extra iovec to trigger split */
1482 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1483 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1484 
1485 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1486 	g_io_done = false;
1487 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1488 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV);
1489 	expected_io->md_buf = md_buf;
1490 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1491 		ut_expected_io_set_iov(expected_io, i,
1492 				       (void *)((i + 1) * 0x10000), 512);
1493 	}
1494 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1495 		ut_expected_io_set_iov(expected_io, i,
1496 				       (void *)((i + 1) * 0x10000), 256);
1497 	}
1498 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1499 
1500 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1501 					   1, 1);
1502 	expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1503 	ut_expected_io_set_iov(expected_io, 0,
1504 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1505 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1506 
1507 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1508 					   1, 1);
1509 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1510 	ut_expected_io_set_iov(expected_io, 0,
1511 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1512 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1513 
1514 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1515 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1516 	CU_ASSERT(rc == 0);
1517 	CU_ASSERT(g_io_done == false);
1518 
1519 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1520 	stub_complete_io(1);
1521 	CU_ASSERT(g_io_done == false);
1522 
1523 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1524 	stub_complete_io(2);
1525 	CU_ASSERT(g_io_done == true);
1526 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1527 
1528 	/* Test multi vector command that needs to be split by strip and then needs to be
1529 	 * split further due to the capacity of child iovs, the child request offset should
1530 	 * be rewind to last aligned offset and go success without error.
1531 	 */
1532 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1533 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1534 		iov[i].iov_len = 512;
1535 	}
1536 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
1537 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1538 
1539 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1540 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1541 
1542 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1543 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1544 
1545 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1546 	g_io_done = false;
1547 	g_io_status = 0;
1548 	/* The first expected io should be start from offset 0 to SPDK_BDEV_IO_NUM_CHILD_IOV - 1 */
1549 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1550 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
1551 	expected_io->md_buf = md_buf;
1552 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1553 		ut_expected_io_set_iov(expected_io, i,
1554 				       (void *)((i + 1) * 0x10000), 512);
1555 	}
1556 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1557 	/* The second expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV - 1 to SPDK_BDEV_IO_NUM_CHILD_IOV */
1558 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1559 					   1, 2);
1560 	expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1561 	ut_expected_io_set_iov(expected_io, 0,
1562 			       (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1563 	ut_expected_io_set_iov(expected_io, 1,
1564 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1565 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1566 	/* The third expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV to SPDK_BDEV_IO_NUM_CHILD_IOV + 1 */
1567 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1568 					   1, 1);
1569 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1570 	ut_expected_io_set_iov(expected_io, 0,
1571 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1572 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1573 
1574 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1575 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1576 	CU_ASSERT(rc == 0);
1577 	CU_ASSERT(g_io_done == false);
1578 
1579 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1580 	stub_complete_io(1);
1581 	CU_ASSERT(g_io_done == false);
1582 
1583 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1584 	stub_complete_io(2);
1585 	CU_ASSERT(g_io_done == true);
1586 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1587 
1588 	/* Test multi vector command that needs to be split due to the IO boundary and
1589 	 * the capacity of child iovs. Especially test the case when the command is
1590 	 * split due to the capacity of child iovs, the tail address is not aligned with
1591 	 * block size and is rewinded to the aligned address.
1592 	 *
1593 	 * The iovecs used in read request is complex but is based on the data
1594 	 * collected in the real issue. We change the base addresses but keep the lengths
1595 	 * not to loose the credibility of the test.
1596 	 */
1597 	bdev->optimal_io_boundary = 128;
1598 	g_io_done = false;
1599 	g_io_status = 0;
1600 
1601 	for (i = 0; i < 31; i++) {
1602 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1603 		iov[i].iov_len = 1024;
1604 	}
1605 	iov[31].iov_base = (void *)0xFEED1F00000;
1606 	iov[31].iov_len = 32768;
1607 	iov[32].iov_base = (void *)0xFEED2000000;
1608 	iov[32].iov_len = 160;
1609 	iov[33].iov_base = (void *)0xFEED2100000;
1610 	iov[33].iov_len = 4096;
1611 	iov[34].iov_base = (void *)0xFEED2200000;
1612 	iov[34].iov_len = 4096;
1613 	iov[35].iov_base = (void *)0xFEED2300000;
1614 	iov[35].iov_len = 4096;
1615 	iov[36].iov_base = (void *)0xFEED2400000;
1616 	iov[36].iov_len = 4096;
1617 	iov[37].iov_base = (void *)0xFEED2500000;
1618 	iov[37].iov_len = 4096;
1619 	iov[38].iov_base = (void *)0xFEED2600000;
1620 	iov[38].iov_len = 4096;
1621 	iov[39].iov_base = (void *)0xFEED2700000;
1622 	iov[39].iov_len = 4096;
1623 	iov[40].iov_base = (void *)0xFEED2800000;
1624 	iov[40].iov_len = 4096;
1625 	iov[41].iov_base = (void *)0xFEED2900000;
1626 	iov[41].iov_len = 4096;
1627 	iov[42].iov_base = (void *)0xFEED2A00000;
1628 	iov[42].iov_len = 4096;
1629 	iov[43].iov_base = (void *)0xFEED2B00000;
1630 	iov[43].iov_len = 12288;
1631 	iov[44].iov_base = (void *)0xFEED2C00000;
1632 	iov[44].iov_len = 8192;
1633 	iov[45].iov_base = (void *)0xFEED2F00000;
1634 	iov[45].iov_len = 4096;
1635 	iov[46].iov_base = (void *)0xFEED3000000;
1636 	iov[46].iov_len = 4096;
1637 	iov[47].iov_base = (void *)0xFEED3100000;
1638 	iov[47].iov_len = 4096;
1639 	iov[48].iov_base = (void *)0xFEED3200000;
1640 	iov[48].iov_len = 24576;
1641 	iov[49].iov_base = (void *)0xFEED3300000;
1642 	iov[49].iov_len = 16384;
1643 	iov[50].iov_base = (void *)0xFEED3400000;
1644 	iov[50].iov_len = 12288;
1645 	iov[51].iov_base = (void *)0xFEED3500000;
1646 	iov[51].iov_len = 4096;
1647 	iov[52].iov_base = (void *)0xFEED3600000;
1648 	iov[52].iov_len = 4096;
1649 	iov[53].iov_base = (void *)0xFEED3700000;
1650 	iov[53].iov_len = 4096;
1651 	iov[54].iov_base = (void *)0xFEED3800000;
1652 	iov[54].iov_len = 28672;
1653 	iov[55].iov_base = (void *)0xFEED3900000;
1654 	iov[55].iov_len = 20480;
1655 	iov[56].iov_base = (void *)0xFEED3A00000;
1656 	iov[56].iov_len = 4096;
1657 	iov[57].iov_base = (void *)0xFEED3B00000;
1658 	iov[57].iov_len = 12288;
1659 	iov[58].iov_base = (void *)0xFEED3C00000;
1660 	iov[58].iov_len = 4096;
1661 	iov[59].iov_base = (void *)0xFEED3D00000;
1662 	iov[59].iov_len = 4096;
1663 	iov[60].iov_base = (void *)0xFEED3E00000;
1664 	iov[60].iov_len = 352;
1665 
1666 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1667 	 * of child iovs,
1668 	 */
1669 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1670 	expected_io->md_buf = md_buf;
1671 	for (i = 0; i < 32; i++) {
1672 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1673 	}
1674 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1675 
1676 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1677 	 * split by the IO boundary requirement.
1678 	 */
1679 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1680 	expected_io->md_buf = md_buf + 126 * 8;
1681 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1682 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1683 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1684 
1685 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1686 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1687 	 */
1688 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1689 	expected_io->md_buf = md_buf + 128 * 8;
1690 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1691 			       iov[33].iov_len - 864);
1692 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1693 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1694 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1695 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1696 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1697 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1698 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1699 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1700 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1701 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1702 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1703 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1704 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1705 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1706 
1707 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1708 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1709 	 */
1710 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1711 	expected_io->md_buf = md_buf + 256 * 8;
1712 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1713 			       iov[46].iov_len - 864);
1714 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1715 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1716 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1717 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1718 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1719 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1720 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1721 
1722 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1723 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1724 	 */
1725 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1726 	expected_io->md_buf = md_buf + 384 * 8;
1727 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1728 			       iov[52].iov_len - 864);
1729 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1730 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1731 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1732 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1733 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1734 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1735 
1736 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1737 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1738 	 */
1739 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1740 	expected_io->md_buf = md_buf + 512 * 8;
1741 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1742 			       iov[57].iov_len - 4960);
1743 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1744 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1745 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1746 
1747 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1748 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1749 	expected_io->md_buf = md_buf + 542 * 8;
1750 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1751 			       iov[59].iov_len - 3936);
1752 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1753 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1754 
1755 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1756 					    0, 543, io_done, NULL);
1757 	CU_ASSERT(rc == 0);
1758 	CU_ASSERT(g_io_done == false);
1759 
1760 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1761 	stub_complete_io(1);
1762 	CU_ASSERT(g_io_done == false);
1763 
1764 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1765 	stub_complete_io(5);
1766 	CU_ASSERT(g_io_done == false);
1767 
1768 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1769 	stub_complete_io(1);
1770 	CU_ASSERT(g_io_done == true);
1771 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1772 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1773 
1774 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1775 	 * split, so test that.
1776 	 */
1777 	bdev->optimal_io_boundary = 15;
1778 	g_io_done = false;
1779 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1780 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1781 
1782 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1783 	CU_ASSERT(rc == 0);
1784 	CU_ASSERT(g_io_done == false);
1785 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1786 	stub_complete_io(1);
1787 	CU_ASSERT(g_io_done == true);
1788 
1789 	/* Test an UNMAP.  This should also not be split. */
1790 	bdev->optimal_io_boundary = 16;
1791 	g_io_done = false;
1792 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1793 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1794 
1795 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1796 	CU_ASSERT(rc == 0);
1797 	CU_ASSERT(g_io_done == false);
1798 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1799 	stub_complete_io(1);
1800 	CU_ASSERT(g_io_done == true);
1801 
1802 	/* Test a FLUSH.  This should also not be split. */
1803 	bdev->optimal_io_boundary = 16;
1804 	g_io_done = false;
1805 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1806 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1807 
1808 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1809 	CU_ASSERT(rc == 0);
1810 	CU_ASSERT(g_io_done == false);
1811 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1812 	stub_complete_io(1);
1813 	CU_ASSERT(g_io_done == true);
1814 
1815 	/* Test a COPY.  This should also not be split. */
1816 	bdev->optimal_io_boundary = 15;
1817 	g_io_done = false;
1818 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
1819 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1820 
1821 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
1822 	CU_ASSERT(rc == 0);
1823 	CU_ASSERT(g_io_done == false);
1824 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1825 	stub_complete_io(1);
1826 	CU_ASSERT(g_io_done == true);
1827 
1828 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1829 
1830 	/* Children requests return an error status */
1831 	bdev->optimal_io_boundary = 16;
1832 	iov[0].iov_base = (void *)0x10000;
1833 	iov[0].iov_len = 512 * 64;
1834 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1835 	g_io_done = false;
1836 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1837 
1838 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1839 	CU_ASSERT(rc == 0);
1840 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1841 	stub_complete_io(4);
1842 	CU_ASSERT(g_io_done == false);
1843 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1844 	stub_complete_io(1);
1845 	CU_ASSERT(g_io_done == true);
1846 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1847 
1848 	/* Test if a multi vector command terminated with failure before continuing
1849 	 * splitting process when one of child I/O failed.
1850 	 * The multi vector command is as same as the above that needs to be split by strip
1851 	 * and then needs to be split further due to the capacity of child iovs.
1852 	 */
1853 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1854 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1855 		iov[i].iov_len = 512;
1856 	}
1857 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
1858 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1859 
1860 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1861 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1862 
1863 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1864 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1865 
1866 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1867 
1868 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1869 	g_io_done = false;
1870 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1871 
1872 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
1873 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1874 	CU_ASSERT(rc == 0);
1875 	CU_ASSERT(g_io_done == false);
1876 
1877 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1878 	stub_complete_io(1);
1879 	CU_ASSERT(g_io_done == true);
1880 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1881 
1882 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1883 
1884 	/* for this test we will create the following conditions to hit the code path where
1885 	 * we are trying to send and IO following a split that has no iovs because we had to
1886 	 * trim them for alignment reasons.
1887 	 *
1888 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1889 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1890 	 *   position 30 and overshoot by 0x2e.
1891 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1892 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1893 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1894 	 *   and let the completion pick up the last 2 vectors.
1895 	 */
1896 	bdev->optimal_io_boundary = 32;
1897 	bdev->split_on_optimal_io_boundary = true;
1898 	g_io_done = false;
1899 
1900 	/* Init all parent IOVs to 0x212 */
1901 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1902 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1903 		iov[i].iov_len = 0x212;
1904 	}
1905 
1906 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
1907 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
1908 	/* expect 0-29 to be 1:1 with the parent iov */
1909 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1910 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1911 	}
1912 
1913 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1914 	 * where 0x1e is the amount we overshot the 16K boundary
1915 	 */
1916 	ut_expected_io_set_iov(expected_io, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
1917 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1918 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1919 
1920 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1921 	 * shortened that take it to the next boundary and then a final one to get us to
1922 	 * 0x4200 bytes for the IO.
1923 	 */
1924 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1925 					   SPDK_BDEV_IO_NUM_CHILD_IOV, 2);
1926 	/* position 30 picked up the remaining bytes to the next boundary */
1927 	ut_expected_io_set_iov(expected_io, 0,
1928 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
1929 
1930 	/* position 31 picked the the rest of the transfer to get us to 0x4200 */
1931 	ut_expected_io_set_iov(expected_io, 1,
1932 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
1933 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1934 
1935 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, 0,
1936 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1937 	CU_ASSERT(rc == 0);
1938 	CU_ASSERT(g_io_done == false);
1939 
1940 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1941 	stub_complete_io(1);
1942 	CU_ASSERT(g_io_done == false);
1943 
1944 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1945 	stub_complete_io(1);
1946 	CU_ASSERT(g_io_done == true);
1947 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1948 
1949 	spdk_put_io_channel(io_ch);
1950 	spdk_bdev_close(desc);
1951 	free_bdev(bdev);
1952 	spdk_bdev_finish(bdev_fini_cb, NULL);
1953 	poll_threads();
1954 }
1955 
1956 static void
1957 bdev_io_max_size_and_segment_split_test(void)
1958 {
1959 	struct spdk_bdev *bdev;
1960 	struct spdk_bdev_desc *desc = NULL;
1961 	struct spdk_io_channel *io_ch;
1962 	struct spdk_bdev_opts bdev_opts = {};
1963 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
1964 	struct ut_expected_io *expected_io;
1965 	uint64_t i;
1966 	int rc;
1967 
1968 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1969 	bdev_opts.bdev_io_pool_size = 512;
1970 	bdev_opts.bdev_io_cache_size = 64;
1971 
1972 	bdev_opts.opts_size = sizeof(bdev_opts);
1973 	rc = spdk_bdev_set_opts(&bdev_opts);
1974 	CU_ASSERT(rc == 0);
1975 	spdk_bdev_initialize(bdev_init_cb, NULL);
1976 
1977 	bdev = allocate_bdev("bdev0");
1978 
1979 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
1980 	CU_ASSERT(rc == 0);
1981 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1982 	io_ch = spdk_bdev_get_io_channel(desc);
1983 	CU_ASSERT(io_ch != NULL);
1984 
1985 	bdev->split_on_optimal_io_boundary = false;
1986 	bdev->optimal_io_boundary = 0;
1987 
1988 	/* Case 0 max_num_segments == 0.
1989 	 * but segment size 2 * 512 > 512
1990 	 */
1991 	bdev->max_segment_size = 512;
1992 	bdev->max_num_segments = 0;
1993 	g_io_done = false;
1994 
1995 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
1996 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
1997 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
1998 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1999 
2000 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2001 	CU_ASSERT(rc == 0);
2002 	CU_ASSERT(g_io_done == false);
2003 
2004 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2005 	stub_complete_io(1);
2006 	CU_ASSERT(g_io_done == true);
2007 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2008 
2009 	/* Case 1 max_segment_size == 0
2010 	 * but iov num 2 > 1.
2011 	 */
2012 	bdev->max_segment_size = 0;
2013 	bdev->max_num_segments = 1;
2014 	g_io_done = false;
2015 
2016 	iov[0].iov_base = (void *)0x10000;
2017 	iov[0].iov_len = 512;
2018 	iov[1].iov_base = (void *)0x20000;
2019 	iov[1].iov_len = 8 * 512;
2020 
2021 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2022 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len);
2023 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2024 
2025 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1);
2026 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len);
2027 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2028 
2029 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL);
2030 	CU_ASSERT(rc == 0);
2031 	CU_ASSERT(g_io_done == false);
2032 
2033 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2034 	stub_complete_io(2);
2035 	CU_ASSERT(g_io_done == true);
2036 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2037 
2038 	/* Test that a non-vector command is split correctly.
2039 	 * Set up the expected values before calling spdk_bdev_read_blocks
2040 	 */
2041 	bdev->max_segment_size = 512;
2042 	bdev->max_num_segments = 1;
2043 	g_io_done = false;
2044 
2045 	/* Child IO 0 */
2046 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2047 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2048 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2049 
2050 	/* Child IO 1 */
2051 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2052 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512);
2053 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2054 
2055 	/* spdk_bdev_read_blocks will submit the first child immediately. */
2056 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2057 	CU_ASSERT(rc == 0);
2058 	CU_ASSERT(g_io_done == false);
2059 
2060 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2061 	stub_complete_io(2);
2062 	CU_ASSERT(g_io_done == true);
2063 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2064 
2065 	/* Now set up a more complex, multi-vector command that needs to be split,
2066 	 * including splitting iovecs.
2067 	 */
2068 	bdev->max_segment_size = 2 * 512;
2069 	bdev->max_num_segments = 1;
2070 	g_io_done = false;
2071 
2072 	iov[0].iov_base = (void *)0x10000;
2073 	iov[0].iov_len = 2 * 512;
2074 	iov[1].iov_base = (void *)0x20000;
2075 	iov[1].iov_len = 4 * 512;
2076 	iov[2].iov_base = (void *)0x30000;
2077 	iov[2].iov_len = 6 * 512;
2078 
2079 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2080 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2);
2081 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2082 
2083 	/* Split iov[1].size to 2 iov entries then split the segments */
2084 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2085 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2);
2086 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2087 
2088 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1);
2089 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2);
2090 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2091 
2092 	/* Split iov[2].size to 3 iov entries then split the segments */
2093 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1);
2094 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2);
2095 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2096 
2097 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1);
2098 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2);
2099 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2100 
2101 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1);
2102 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2);
2103 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2104 
2105 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL);
2106 	CU_ASSERT(rc == 0);
2107 	CU_ASSERT(g_io_done == false);
2108 
2109 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2110 	stub_complete_io(6);
2111 	CU_ASSERT(g_io_done == true);
2112 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2113 
2114 	/* Test multi vector command that needs to be split by strip and then needs to be
2115 	 * split further due to the capacity of parent IO child iovs.
2116 	 */
2117 	bdev->max_segment_size = 512;
2118 	bdev->max_num_segments = 1;
2119 	g_io_done = false;
2120 
2121 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2122 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2123 		iov[i].iov_len = 512 * 2;
2124 	}
2125 
2126 	/* Each input iov.size is split into 2 iovs,
2127 	 * half of the input iov can fill all child iov entries of a single IO.
2128 	 */
2129 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i++) {
2130 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1);
2131 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2132 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2133 
2134 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1);
2135 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2136 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2137 	}
2138 
2139 	/* The remaining iov is split in the second round */
2140 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2141 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1);
2142 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2143 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2144 
2145 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1);
2146 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2147 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2148 	}
2149 
2150 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
2151 				    SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
2152 	CU_ASSERT(rc == 0);
2153 	CU_ASSERT(g_io_done == false);
2154 
2155 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2156 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2157 	CU_ASSERT(g_io_done == false);
2158 
2159 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2160 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2161 	CU_ASSERT(g_io_done == true);
2162 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2163 
2164 	/* A wrong case, a child IO that is divided does
2165 	 * not meet the principle of multiples of block size,
2166 	 * and exits with error
2167 	 */
2168 	bdev->max_segment_size = 512;
2169 	bdev->max_num_segments = 1;
2170 	g_io_done = false;
2171 
2172 	iov[0].iov_base = (void *)0x10000;
2173 	iov[0].iov_len = 512 + 256;
2174 	iov[1].iov_base = (void *)0x20000;
2175 	iov[1].iov_len = 256;
2176 
2177 	/* iov[0] is split to 512 and 256.
2178 	 * 256 is less than a block size, and it is found
2179 	 * in the next round of split that it is the first child IO smaller than
2180 	 * the block size, so the error exit
2181 	 */
2182 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1);
2183 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512);
2184 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2185 
2186 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL);
2187 	CU_ASSERT(rc == 0);
2188 	CU_ASSERT(g_io_done == false);
2189 
2190 	/* First child IO is OK */
2191 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2192 	stub_complete_io(1);
2193 	CU_ASSERT(g_io_done == true);
2194 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2195 
2196 	/* error exit */
2197 	stub_complete_io(1);
2198 	CU_ASSERT(g_io_done == true);
2199 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
2200 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2201 
2202 	/* Test multi vector command that needs to be split by strip and then needs to be
2203 	 * split further due to the capacity of child iovs.
2204 	 *
2205 	 * In this case, the last two iovs need to be split, but it will exceed the capacity
2206 	 * of child iovs, so it needs to wait until the first batch completed.
2207 	 */
2208 	bdev->max_segment_size = 512;
2209 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2210 	g_io_done = false;
2211 
2212 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2213 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2214 		iov[i].iov_len = 512;
2215 	}
2216 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2217 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2218 		iov[i].iov_len = 512 * 2;
2219 	}
2220 
2221 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2222 					   SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
2223 	/* 0 ~ (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */
2224 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2225 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2226 	}
2227 	/* (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) is split */
2228 	ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512);
2229 	ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512);
2230 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2231 
2232 	/* Child iov entries exceed the max num of parent IO so split it in next round */
2233 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV, 2, 2);
2234 	ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512);
2235 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512);
2236 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2237 
2238 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
2239 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL);
2240 	CU_ASSERT(rc == 0);
2241 	CU_ASSERT(g_io_done == false);
2242 
2243 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2244 	stub_complete_io(1);
2245 	CU_ASSERT(g_io_done == false);
2246 
2247 	/* Next round */
2248 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2249 	stub_complete_io(1);
2250 	CU_ASSERT(g_io_done == true);
2251 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2252 
2253 	/* This case is similar to the previous one, but the io composed of
2254 	 * the last few entries of child iov is not enough for a blocklen, so they
2255 	 * cannot be put into this IO, but wait until the next time.
2256 	 */
2257 	bdev->max_segment_size = 512;
2258 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2259 	g_io_done = false;
2260 
2261 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2262 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2263 		iov[i].iov_len = 512;
2264 	}
2265 
2266 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2267 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2268 		iov[i].iov_len = 128;
2269 	}
2270 
2271 	/* First child iovcnt is't SPDK_BDEV_IO_NUM_CHILD_IOV but SPDK_BDEV_IO_NUM_CHILD_IOV - 2.
2272 	 * Because the left 2 iov is not enough for a blocklen.
2273 	 */
2274 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2275 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 2, SPDK_BDEV_IO_NUM_CHILD_IOV - 2);
2276 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2277 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2278 	}
2279 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2280 
2281 	/* The second child io waits until the end of the first child io before executing.
2282 	 * Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO.
2283 	 * SPDK_BDEV_IO_NUM_CHILD_IOV - 2 to SPDK_BDEV_IO_NUM_CHILD_IOV + 2
2284 	 */
2285 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
2286 					   1, 4);
2287 	ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len);
2288 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len);
2289 	ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len);
2290 	ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len);
2291 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2292 
2293 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
2294 				    SPDK_BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL);
2295 	CU_ASSERT(rc == 0);
2296 	CU_ASSERT(g_io_done == false);
2297 
2298 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2299 	stub_complete_io(1);
2300 	CU_ASSERT(g_io_done == false);
2301 
2302 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2303 	stub_complete_io(1);
2304 	CU_ASSERT(g_io_done == true);
2305 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2306 
2307 	/* A very complicated case. Each sg entry exceeds max_segment_size and
2308 	 * needs to be split. At the same time, child io must be a multiple of blocklen.
2309 	 * At the same time, child iovcnt exceeds parent iovcnt.
2310 	 */
2311 	bdev->max_segment_size = 512 + 128;
2312 	bdev->max_num_segments = 3;
2313 	g_io_done = false;
2314 
2315 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2316 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2317 		iov[i].iov_len = 512 + 256;
2318 	}
2319 
2320 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2321 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2322 		iov[i].iov_len = 512 + 128;
2323 	}
2324 
2325 	/* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries.
2326 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2327 	 * Generate 9 child IOs.
2328 	 */
2329 	for (i = 0; i < 3; i++) {
2330 		uint32_t j = i * 4;
2331 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3);
2332 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2333 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2334 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2335 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2336 
2337 		/* Child io must be a multiple of blocklen
2338 		 * iov[j + 2] must be split. If the third entry is also added,
2339 		 * the multiple of blocklen cannot be guaranteed. But it still
2340 		 * occupies one iov entry of the parent child iov.
2341 		 */
2342 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2);
2343 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2344 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2345 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2346 
2347 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3);
2348 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2349 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2350 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2351 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2352 	}
2353 
2354 	/* Child iov position at 27, the 10th child IO
2355 	 * iov entry index is 3 * 4 and offset is 3 * 6
2356 	 */
2357 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3);
2358 	ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640);
2359 	ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128);
2360 	ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256);
2361 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2362 
2363 	/* Child iov position at 30, the 11th child IO */
2364 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2);
2365 	ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512);
2366 	ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512);
2367 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2368 
2369 	/* The 2nd split round and iovpos is 0, the 12th child IO */
2370 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3);
2371 	ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256);
2372 	ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640);
2373 	ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128);
2374 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2375 
2376 	/* Consume 9 child IOs and 27 child iov entries.
2377 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2378 	 * Parent IO iov index start from 16 and block offset start from 24
2379 	 */
2380 	for (i = 0; i < 3; i++) {
2381 		uint32_t j = i * 4 + 16;
2382 		uint32_t offset = i * 6 + 24;
2383 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3);
2384 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2385 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2386 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2387 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2388 
2389 		/* Child io must be a multiple of blocklen
2390 		 * iov[j + 2] must be split. If the third entry is also added,
2391 		 * the multiple of blocklen cannot be guaranteed. But it still
2392 		 * occupies one iov entry of the parent child iov.
2393 		 */
2394 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2);
2395 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2396 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2397 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2398 
2399 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3);
2400 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2401 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2402 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2403 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2404 	}
2405 
2406 	/* The 22th child IO, child iov position at 30 */
2407 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1);
2408 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512);
2409 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2410 
2411 	/* The third round */
2412 	/* Here is the 23nd child IO and child iovpos is 0 */
2413 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3);
2414 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256);
2415 	ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640);
2416 	ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128);
2417 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2418 
2419 	/* The 24th child IO */
2420 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3);
2421 	ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640);
2422 	ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640);
2423 	ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256);
2424 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2425 
2426 	/* The 25th child IO */
2427 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2);
2428 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384);
2429 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640);
2430 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2431 
2432 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
2433 				    50, io_done, NULL);
2434 	CU_ASSERT(rc == 0);
2435 	CU_ASSERT(g_io_done == false);
2436 
2437 	/* Parent IO supports up to 32 child iovs, so it is calculated that
2438 	 * a maximum of 11 IOs can be split at a time, and the
2439 	 * splitting will continue after the first batch is over.
2440 	 */
2441 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2442 	stub_complete_io(11);
2443 	CU_ASSERT(g_io_done == false);
2444 
2445 	/* The 2nd round */
2446 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2447 	stub_complete_io(11);
2448 	CU_ASSERT(g_io_done == false);
2449 
2450 	/* The last round */
2451 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2452 	stub_complete_io(3);
2453 	CU_ASSERT(g_io_done == true);
2454 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2455 
2456 	/* Test an WRITE_ZEROES.  This should also not be split. */
2457 	bdev->max_segment_size = 512;
2458 	bdev->max_num_segments = 1;
2459 	g_io_done = false;
2460 
2461 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
2462 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2463 
2464 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
2465 	CU_ASSERT(rc == 0);
2466 	CU_ASSERT(g_io_done == false);
2467 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2468 	stub_complete_io(1);
2469 	CU_ASSERT(g_io_done == true);
2470 
2471 	/* Test an UNMAP.  This should also not be split. */
2472 	g_io_done = false;
2473 
2474 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0);
2475 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2476 
2477 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL);
2478 	CU_ASSERT(rc == 0);
2479 	CU_ASSERT(g_io_done == false);
2480 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2481 	stub_complete_io(1);
2482 	CU_ASSERT(g_io_done == true);
2483 
2484 	/* Test a FLUSH.  This should also not be split. */
2485 	g_io_done = false;
2486 
2487 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0);
2488 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2489 
2490 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
2491 	CU_ASSERT(rc == 0);
2492 	CU_ASSERT(g_io_done == false);
2493 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2494 	stub_complete_io(1);
2495 	CU_ASSERT(g_io_done == true);
2496 
2497 	/* Test a COPY.  This should also not be split. */
2498 	g_io_done = false;
2499 
2500 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
2501 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2502 
2503 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
2504 	CU_ASSERT(rc == 0);
2505 	CU_ASSERT(g_io_done == false);
2506 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2507 	stub_complete_io(1);
2508 	CU_ASSERT(g_io_done == true);
2509 
2510 	spdk_put_io_channel(io_ch);
2511 	spdk_bdev_close(desc);
2512 	free_bdev(bdev);
2513 	spdk_bdev_finish(bdev_fini_cb, NULL);
2514 	poll_threads();
2515 }
2516 
2517 static void
2518 bdev_io_mix_split_test(void)
2519 {
2520 	struct spdk_bdev *bdev;
2521 	struct spdk_bdev_desc *desc = NULL;
2522 	struct spdk_io_channel *io_ch;
2523 	struct spdk_bdev_opts bdev_opts = {};
2524 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
2525 	struct ut_expected_io *expected_io;
2526 	uint64_t i;
2527 	int rc;
2528 
2529 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2530 	bdev_opts.bdev_io_pool_size = 512;
2531 	bdev_opts.bdev_io_cache_size = 64;
2532 
2533 	rc = spdk_bdev_set_opts(&bdev_opts);
2534 	CU_ASSERT(rc == 0);
2535 	spdk_bdev_initialize(bdev_init_cb, NULL);
2536 
2537 	bdev = allocate_bdev("bdev0");
2538 
2539 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2540 	CU_ASSERT(rc == 0);
2541 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2542 	io_ch = spdk_bdev_get_io_channel(desc);
2543 	CU_ASSERT(io_ch != NULL);
2544 
2545 	/* First case optimal_io_boundary == max_segment_size * max_num_segments */
2546 	bdev->split_on_optimal_io_boundary = true;
2547 	bdev->optimal_io_boundary = 16;
2548 
2549 	bdev->max_segment_size = 512;
2550 	bdev->max_num_segments = 16;
2551 	g_io_done = false;
2552 
2553 	/* IO crossing the IO boundary requires split
2554 	 * Total 2 child IOs.
2555 	 */
2556 
2557 	/* The 1st child IO split the segment_size to multiple segment entry */
2558 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2559 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2560 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2561 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2562 
2563 	/* The 2nd child IO split the segment_size to multiple segment entry */
2564 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2);
2565 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512);
2566 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512);
2567 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2568 
2569 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL);
2570 	CU_ASSERT(rc == 0);
2571 	CU_ASSERT(g_io_done == false);
2572 
2573 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2574 	stub_complete_io(2);
2575 	CU_ASSERT(g_io_done == true);
2576 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2577 
2578 	/* Second case optimal_io_boundary > max_segment_size * max_num_segments */
2579 	bdev->max_segment_size = 15 * 512;
2580 	bdev->max_num_segments = 1;
2581 	g_io_done = false;
2582 
2583 	/* IO crossing the IO boundary requires split.
2584 	 * The 1st child IO segment size exceeds the max_segment_size,
2585 	 * So 1st child IO will be split to multiple segment entry.
2586 	 * Then it split to 2 child IOs because of the max_num_segments.
2587 	 * Total 3 child IOs.
2588 	 */
2589 
2590 	/* The first 2 IOs are in an IO boundary.
2591 	 * Because the optimal_io_boundary > max_segment_size * max_num_segments
2592 	 * So it split to the first 2 IOs.
2593 	 */
2594 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1);
2595 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15);
2596 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2597 
2598 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2599 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512);
2600 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2601 
2602 	/* The 3rd Child IO is because of the io boundary */
2603 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2604 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2605 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2606 
2607 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2608 	CU_ASSERT(rc == 0);
2609 	CU_ASSERT(g_io_done == false);
2610 
2611 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2612 	stub_complete_io(3);
2613 	CU_ASSERT(g_io_done == true);
2614 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2615 
2616 	/* Third case optimal_io_boundary < max_segment_size * max_num_segments */
2617 	bdev->max_segment_size = 17 * 512;
2618 	bdev->max_num_segments = 1;
2619 	g_io_done = false;
2620 
2621 	/* IO crossing the IO boundary requires split.
2622 	 * Child IO does not split.
2623 	 * Total 2 child IOs.
2624 	 */
2625 
2626 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1);
2627 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16);
2628 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2629 
2630 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2631 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2632 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2633 
2634 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2635 	CU_ASSERT(rc == 0);
2636 	CU_ASSERT(g_io_done == false);
2637 
2638 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2639 	stub_complete_io(2);
2640 	CU_ASSERT(g_io_done == true);
2641 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2642 
2643 	/* Now set up a more complex, multi-vector command that needs to be split,
2644 	 * including splitting iovecs.
2645 	 * optimal_io_boundary < max_segment_size * max_num_segments
2646 	 */
2647 	bdev->max_segment_size = 3 * 512;
2648 	bdev->max_num_segments = 6;
2649 	g_io_done = false;
2650 
2651 	iov[0].iov_base = (void *)0x10000;
2652 	iov[0].iov_len = 4 * 512;
2653 	iov[1].iov_base = (void *)0x20000;
2654 	iov[1].iov_len = 4 * 512;
2655 	iov[2].iov_base = (void *)0x30000;
2656 	iov[2].iov_len = 10 * 512;
2657 
2658 	/* IO crossing the IO boundary requires split.
2659 	 * The 1st child IO segment size exceeds the max_segment_size and after
2660 	 * splitting segment_size, the num_segments exceeds max_num_segments.
2661 	 * So 1st child IO will be split to 2 child IOs.
2662 	 * Total 3 child IOs.
2663 	 */
2664 
2665 	/* The first 2 IOs are in an IO boundary.
2666 	 * After splitting segment size the segment num exceeds.
2667 	 * So it splits to 2 child IOs.
2668 	 */
2669 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6);
2670 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3);
2671 	ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512);
2672 	ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3);
2673 	ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512);
2674 	ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3);
2675 	ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3);
2676 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2677 
2678 	/* The 2nd child IO has the left segment entry */
2679 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2680 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2);
2681 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2682 
2683 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2684 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2);
2685 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2686 
2687 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL);
2688 	CU_ASSERT(rc == 0);
2689 	CU_ASSERT(g_io_done == false);
2690 
2691 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2692 	stub_complete_io(3);
2693 	CU_ASSERT(g_io_done == true);
2694 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2695 
2696 	/* A very complicated case. Each sg entry exceeds max_segment_size
2697 	 * and split on io boundary.
2698 	 * optimal_io_boundary < max_segment_size * max_num_segments
2699 	 */
2700 	bdev->max_segment_size = 3 * 512;
2701 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2702 	g_io_done = false;
2703 
2704 	for (i = 0; i < 20; i++) {
2705 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2706 		iov[i].iov_len = 512 * 4;
2707 	}
2708 
2709 	/* IO crossing the IO boundary requires split.
2710 	 * 80 block length can split 5 child IOs base on offset and IO boundary.
2711 	 * Each iov entry needs to be split to 2 entries because of max_segment_size
2712 	 * Total 5 child IOs.
2713 	 */
2714 
2715 	/* 4 iov entries are in an IO boundary and each iov entry splits to 2.
2716 	 * So each child IO occupies 8 child iov entries.
2717 	 */
2718 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8);
2719 	for (i = 0; i < 4; i++) {
2720 		int iovcnt = i * 2;
2721 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2722 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2723 	}
2724 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2725 
2726 	/* 2nd child IO and total 16 child iov entries of parent IO */
2727 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8);
2728 	for (i = 4; i < 8; i++) {
2729 		int iovcnt = (i - 4) * 2;
2730 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2731 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2732 	}
2733 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2734 
2735 	/* 3rd child IO and total 24 child iov entries of parent IO */
2736 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8);
2737 	for (i = 8; i < 12; i++) {
2738 		int iovcnt = (i - 8) * 2;
2739 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2740 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2741 	}
2742 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2743 
2744 	/* 4th child IO and total 32 child iov entries of parent IO */
2745 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8);
2746 	for (i = 12; i < 16; i++) {
2747 		int iovcnt = (i - 12) * 2;
2748 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2749 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2750 	}
2751 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2752 
2753 	/* 5th child IO and because of the child iov entry it should be split
2754 	 * in next round.
2755 	 */
2756 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8);
2757 	for (i = 16; i < 20; i++) {
2758 		int iovcnt = (i - 16) * 2;
2759 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2760 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2761 	}
2762 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2763 
2764 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL);
2765 	CU_ASSERT(rc == 0);
2766 	CU_ASSERT(g_io_done == false);
2767 
2768 	/* First split round */
2769 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2770 	stub_complete_io(4);
2771 	CU_ASSERT(g_io_done == false);
2772 
2773 	/* Second split round */
2774 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2775 	stub_complete_io(1);
2776 	CU_ASSERT(g_io_done == true);
2777 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2778 
2779 	spdk_put_io_channel(io_ch);
2780 	spdk_bdev_close(desc);
2781 	free_bdev(bdev);
2782 	spdk_bdev_finish(bdev_fini_cb, NULL);
2783 	poll_threads();
2784 }
2785 
2786 static void
2787 bdev_io_split_with_io_wait(void)
2788 {
2789 	struct spdk_bdev *bdev;
2790 	struct spdk_bdev_desc *desc = NULL;
2791 	struct spdk_io_channel *io_ch;
2792 	struct spdk_bdev_channel *channel;
2793 	struct spdk_bdev_mgmt_channel *mgmt_ch;
2794 	struct spdk_bdev_opts bdev_opts = {};
2795 	struct iovec iov[3];
2796 	struct ut_expected_io *expected_io;
2797 	int rc;
2798 
2799 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2800 	bdev_opts.bdev_io_pool_size = 2;
2801 	bdev_opts.bdev_io_cache_size = 1;
2802 
2803 	rc = spdk_bdev_set_opts(&bdev_opts);
2804 	CU_ASSERT(rc == 0);
2805 	spdk_bdev_initialize(bdev_init_cb, NULL);
2806 
2807 	bdev = allocate_bdev("bdev0");
2808 
2809 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2810 	CU_ASSERT(rc == 0);
2811 	CU_ASSERT(desc != NULL);
2812 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2813 	io_ch = spdk_bdev_get_io_channel(desc);
2814 	CU_ASSERT(io_ch != NULL);
2815 	channel = spdk_io_channel_get_ctx(io_ch);
2816 	mgmt_ch = channel->shared_resource->mgmt_ch;
2817 
2818 	bdev->optimal_io_boundary = 16;
2819 	bdev->split_on_optimal_io_boundary = true;
2820 
2821 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
2822 	CU_ASSERT(rc == 0);
2823 
2824 	/* Now test that a single-vector command is split correctly.
2825 	 * Offset 14, length 8, payload 0xF000
2826 	 *  Child - Offset 14, length 2, payload 0xF000
2827 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
2828 	 *
2829 	 * Set up the expected values before calling spdk_bdev_read_blocks
2830 	 */
2831 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
2832 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
2833 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2834 
2835 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
2836 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
2837 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2838 
2839 	/* The following children will be submitted sequentially due to the capacity of
2840 	 * spdk_bdev_io.
2841 	 */
2842 
2843 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
2844 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
2845 	CU_ASSERT(rc == 0);
2846 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2847 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2848 
2849 	/* Completing the first read I/O will submit the first child */
2850 	stub_complete_io(1);
2851 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2852 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2853 
2854 	/* Completing the first child will submit the second child */
2855 	stub_complete_io(1);
2856 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2857 
2858 	/* Complete the second child I/O.  This should result in our callback getting
2859 	 * invoked since the parent I/O is now complete.
2860 	 */
2861 	stub_complete_io(1);
2862 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2863 
2864 	/* Now set up a more complex, multi-vector command that needs to be split,
2865 	 *  including splitting iovecs.
2866 	 */
2867 	iov[0].iov_base = (void *)0x10000;
2868 	iov[0].iov_len = 512;
2869 	iov[1].iov_base = (void *)0x20000;
2870 	iov[1].iov_len = 20 * 512;
2871 	iov[2].iov_base = (void *)0x30000;
2872 	iov[2].iov_len = 11 * 512;
2873 
2874 	g_io_done = false;
2875 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
2876 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
2877 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
2878 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2879 
2880 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
2881 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
2882 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2883 
2884 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
2885 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
2886 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
2887 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2888 
2889 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
2890 	CU_ASSERT(rc == 0);
2891 	CU_ASSERT(g_io_done == false);
2892 
2893 	/* The following children will be submitted sequentially due to the capacity of
2894 	 * spdk_bdev_io.
2895 	 */
2896 
2897 	/* Completing the first child will submit the second child */
2898 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2899 	stub_complete_io(1);
2900 	CU_ASSERT(g_io_done == false);
2901 
2902 	/* Completing the second child will submit the third child */
2903 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2904 	stub_complete_io(1);
2905 	CU_ASSERT(g_io_done == false);
2906 
2907 	/* Completing the third child will result in our callback getting invoked
2908 	 * since the parent I/O is now complete.
2909 	 */
2910 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2911 	stub_complete_io(1);
2912 	CU_ASSERT(g_io_done == true);
2913 
2914 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
2915 
2916 	spdk_put_io_channel(io_ch);
2917 	spdk_bdev_close(desc);
2918 	free_bdev(bdev);
2919 	spdk_bdev_finish(bdev_fini_cb, NULL);
2920 	poll_threads();
2921 }
2922 
2923 static void
2924 bdev_io_write_unit_split_test(void)
2925 {
2926 	struct spdk_bdev *bdev;
2927 	struct spdk_bdev_desc *desc = NULL;
2928 	struct spdk_io_channel *io_ch;
2929 	struct spdk_bdev_opts bdev_opts = {};
2930 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 4];
2931 	struct ut_expected_io *expected_io;
2932 	uint64_t i;
2933 	int rc;
2934 
2935 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2936 	bdev_opts.bdev_io_pool_size = 512;
2937 	bdev_opts.bdev_io_cache_size = 64;
2938 
2939 	rc = spdk_bdev_set_opts(&bdev_opts);
2940 	CU_ASSERT(rc == 0);
2941 	spdk_bdev_initialize(bdev_init_cb, NULL);
2942 
2943 	bdev = allocate_bdev("bdev0");
2944 
2945 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2946 	CU_ASSERT(rc == 0);
2947 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2948 	io_ch = spdk_bdev_get_io_channel(desc);
2949 	CU_ASSERT(io_ch != NULL);
2950 
2951 	/* Write I/O 2x larger than write_unit_size should get split into 2 I/Os */
2952 	bdev->write_unit_size = 32;
2953 	bdev->split_on_write_unit = true;
2954 	g_io_done = false;
2955 
2956 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 32, 1);
2957 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 32 * 512);
2958 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2959 
2960 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 32, 1);
2961 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 32 * 512), 32 * 512);
2962 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2963 
2964 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
2965 	CU_ASSERT(rc == 0);
2966 	CU_ASSERT(g_io_done == false);
2967 
2968 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2969 	stub_complete_io(2);
2970 	CU_ASSERT(g_io_done == true);
2971 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2972 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
2973 
2974 	/* Same as above but with optimal_io_boundary < write_unit_size - the I/O should be split
2975 	 * based on write_unit_size, not optimal_io_boundary */
2976 	bdev->split_on_optimal_io_boundary = true;
2977 	bdev->optimal_io_boundary = 16;
2978 	g_io_done = false;
2979 
2980 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
2981 	CU_ASSERT(rc == 0);
2982 	CU_ASSERT(g_io_done == false);
2983 
2984 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2985 	stub_complete_io(2);
2986 	CU_ASSERT(g_io_done == true);
2987 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2988 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
2989 
2990 	/* Write I/O should fail if it is smaller than write_unit_size */
2991 	g_io_done = false;
2992 
2993 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 31, io_done, NULL);
2994 	CU_ASSERT(rc == 0);
2995 	CU_ASSERT(g_io_done == false);
2996 
2997 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2998 	poll_threads();
2999 	CU_ASSERT(g_io_done == true);
3000 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3001 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3002 
3003 	/* Same for I/O not aligned to write_unit_size */
3004 	g_io_done = false;
3005 
3006 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 1, 32, io_done, NULL);
3007 	CU_ASSERT(rc == 0);
3008 	CU_ASSERT(g_io_done == false);
3009 
3010 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3011 	poll_threads();
3012 	CU_ASSERT(g_io_done == true);
3013 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3014 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3015 
3016 	/* Write should fail if it needs to be split but there are not enough iovs to submit
3017 	 * an entire write unit */
3018 	bdev->write_unit_size = SPDK_COUNTOF(iov) / 2;
3019 	g_io_done = false;
3020 
3021 	for (i = 0; i < SPDK_COUNTOF(iov); i++) {
3022 		iov[i].iov_base = (void *)(0x1000 + 512 * i);
3023 		iov[i].iov_len = 512;
3024 	}
3025 
3026 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, SPDK_COUNTOF(iov), 0, SPDK_COUNTOF(iov),
3027 				     io_done, NULL);
3028 	CU_ASSERT(rc == 0);
3029 	CU_ASSERT(g_io_done == false);
3030 
3031 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3032 	poll_threads();
3033 	CU_ASSERT(g_io_done == true);
3034 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3035 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3036 
3037 	spdk_put_io_channel(io_ch);
3038 	spdk_bdev_close(desc);
3039 	free_bdev(bdev);
3040 	spdk_bdev_finish(bdev_fini_cb, NULL);
3041 	poll_threads();
3042 }
3043 
3044 static void
3045 bdev_io_alignment(void)
3046 {
3047 	struct spdk_bdev *bdev;
3048 	struct spdk_bdev_desc *desc = NULL;
3049 	struct spdk_io_channel *io_ch;
3050 	struct spdk_bdev_opts bdev_opts = {};
3051 	int rc;
3052 	void *buf = NULL;
3053 	struct iovec iovs[2];
3054 	int iovcnt;
3055 	uint64_t alignment;
3056 
3057 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3058 	bdev_opts.bdev_io_pool_size = 20;
3059 	bdev_opts.bdev_io_cache_size = 2;
3060 
3061 	rc = spdk_bdev_set_opts(&bdev_opts);
3062 	CU_ASSERT(rc == 0);
3063 	spdk_bdev_initialize(bdev_init_cb, NULL);
3064 
3065 	fn_table.submit_request = stub_submit_request_get_buf;
3066 	bdev = allocate_bdev("bdev0");
3067 
3068 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3069 	CU_ASSERT(rc == 0);
3070 	CU_ASSERT(desc != NULL);
3071 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3072 	io_ch = spdk_bdev_get_io_channel(desc);
3073 	CU_ASSERT(io_ch != NULL);
3074 
3075 	/* Create aligned buffer */
3076 	rc = posix_memalign(&buf, 4096, 8192);
3077 	SPDK_CU_ASSERT_FATAL(rc == 0);
3078 
3079 	/* Pass aligned single buffer with no alignment required */
3080 	alignment = 1;
3081 	bdev->required_alignment = spdk_u32log2(alignment);
3082 
3083 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3084 	CU_ASSERT(rc == 0);
3085 	stub_complete_io(1);
3086 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3087 				    alignment));
3088 
3089 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3090 	CU_ASSERT(rc == 0);
3091 	stub_complete_io(1);
3092 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3093 				    alignment));
3094 
3095 	/* Pass unaligned single buffer with no alignment required */
3096 	alignment = 1;
3097 	bdev->required_alignment = spdk_u32log2(alignment);
3098 
3099 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3100 	CU_ASSERT(rc == 0);
3101 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3102 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3103 	stub_complete_io(1);
3104 
3105 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3106 	CU_ASSERT(rc == 0);
3107 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3108 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3109 	stub_complete_io(1);
3110 
3111 	/* Pass unaligned single buffer with 512 alignment required */
3112 	alignment = 512;
3113 	bdev->required_alignment = spdk_u32log2(alignment);
3114 
3115 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3116 	CU_ASSERT(rc == 0);
3117 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3118 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3119 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3120 				    alignment));
3121 	stub_complete_io(1);
3122 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3123 
3124 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3125 	CU_ASSERT(rc == 0);
3126 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3127 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3128 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3129 				    alignment));
3130 	stub_complete_io(1);
3131 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3132 
3133 	/* Pass unaligned single buffer with 4096 alignment required */
3134 	alignment = 4096;
3135 	bdev->required_alignment = spdk_u32log2(alignment);
3136 
3137 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3138 	CU_ASSERT(rc == 0);
3139 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3140 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3141 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3142 				    alignment));
3143 	stub_complete_io(1);
3144 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3145 
3146 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3147 	CU_ASSERT(rc == 0);
3148 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3149 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3150 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3151 				    alignment));
3152 	stub_complete_io(1);
3153 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3154 
3155 	/* Pass aligned iovs with no alignment required */
3156 	alignment = 1;
3157 	bdev->required_alignment = spdk_u32log2(alignment);
3158 
3159 	iovcnt = 1;
3160 	iovs[0].iov_base = buf;
3161 	iovs[0].iov_len = 512;
3162 
3163 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3164 	CU_ASSERT(rc == 0);
3165 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3166 	stub_complete_io(1);
3167 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3168 
3169 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3170 	CU_ASSERT(rc == 0);
3171 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3172 	stub_complete_io(1);
3173 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3174 
3175 	/* Pass unaligned iovs with no alignment required */
3176 	alignment = 1;
3177 	bdev->required_alignment = spdk_u32log2(alignment);
3178 
3179 	iovcnt = 2;
3180 	iovs[0].iov_base = buf + 16;
3181 	iovs[0].iov_len = 256;
3182 	iovs[1].iov_base = buf + 16 + 256 + 32;
3183 	iovs[1].iov_len = 256;
3184 
3185 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3186 	CU_ASSERT(rc == 0);
3187 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3188 	stub_complete_io(1);
3189 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3190 
3191 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3192 	CU_ASSERT(rc == 0);
3193 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3194 	stub_complete_io(1);
3195 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3196 
3197 	/* Pass unaligned iov with 2048 alignment required */
3198 	alignment = 2048;
3199 	bdev->required_alignment = spdk_u32log2(alignment);
3200 
3201 	iovcnt = 2;
3202 	iovs[0].iov_base = buf + 16;
3203 	iovs[0].iov_len = 256;
3204 	iovs[1].iov_base = buf + 16 + 256 + 32;
3205 	iovs[1].iov_len = 256;
3206 
3207 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3208 	CU_ASSERT(rc == 0);
3209 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3210 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3211 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3212 				    alignment));
3213 	stub_complete_io(1);
3214 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3215 
3216 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3217 	CU_ASSERT(rc == 0);
3218 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3219 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3220 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3221 				    alignment));
3222 	stub_complete_io(1);
3223 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3224 
3225 	/* Pass iov without allocated buffer without alignment required */
3226 	alignment = 1;
3227 	bdev->required_alignment = spdk_u32log2(alignment);
3228 
3229 	iovcnt = 1;
3230 	iovs[0].iov_base = NULL;
3231 	iovs[0].iov_len = 0;
3232 
3233 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3234 	CU_ASSERT(rc == 0);
3235 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3236 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3237 				    alignment));
3238 	stub_complete_io(1);
3239 
3240 	/* Pass iov without allocated buffer with 1024 alignment required */
3241 	alignment = 1024;
3242 	bdev->required_alignment = spdk_u32log2(alignment);
3243 
3244 	iovcnt = 1;
3245 	iovs[0].iov_base = NULL;
3246 	iovs[0].iov_len = 0;
3247 
3248 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3249 	CU_ASSERT(rc == 0);
3250 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3251 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3252 				    alignment));
3253 	stub_complete_io(1);
3254 
3255 	spdk_put_io_channel(io_ch);
3256 	spdk_bdev_close(desc);
3257 	free_bdev(bdev);
3258 	fn_table.submit_request = stub_submit_request;
3259 	spdk_bdev_finish(bdev_fini_cb, NULL);
3260 	poll_threads();
3261 
3262 	free(buf);
3263 }
3264 
3265 static void
3266 bdev_io_alignment_with_boundary(void)
3267 {
3268 	struct spdk_bdev *bdev;
3269 	struct spdk_bdev_desc *desc = NULL;
3270 	struct spdk_io_channel *io_ch;
3271 	struct spdk_bdev_opts bdev_opts = {};
3272 	int rc;
3273 	void *buf = NULL;
3274 	struct iovec iovs[2];
3275 	int iovcnt;
3276 	uint64_t alignment;
3277 
3278 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3279 	bdev_opts.bdev_io_pool_size = 20;
3280 	bdev_opts.bdev_io_cache_size = 2;
3281 
3282 	bdev_opts.opts_size = sizeof(bdev_opts);
3283 	rc = spdk_bdev_set_opts(&bdev_opts);
3284 	CU_ASSERT(rc == 0);
3285 	spdk_bdev_initialize(bdev_init_cb, NULL);
3286 
3287 	fn_table.submit_request = stub_submit_request_get_buf;
3288 	bdev = allocate_bdev("bdev0");
3289 
3290 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3291 	CU_ASSERT(rc == 0);
3292 	CU_ASSERT(desc != NULL);
3293 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3294 	io_ch = spdk_bdev_get_io_channel(desc);
3295 	CU_ASSERT(io_ch != NULL);
3296 
3297 	/* Create aligned buffer */
3298 	rc = posix_memalign(&buf, 4096, 131072);
3299 	SPDK_CU_ASSERT_FATAL(rc == 0);
3300 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3301 
3302 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
3303 	alignment = 512;
3304 	bdev->required_alignment = spdk_u32log2(alignment);
3305 	bdev->optimal_io_boundary = 2;
3306 	bdev->split_on_optimal_io_boundary = true;
3307 
3308 	iovcnt = 1;
3309 	iovs[0].iov_base = NULL;
3310 	iovs[0].iov_len = 512 * 3;
3311 
3312 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3313 	CU_ASSERT(rc == 0);
3314 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3315 	stub_complete_io(2);
3316 
3317 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
3318 	alignment = 512;
3319 	bdev->required_alignment = spdk_u32log2(alignment);
3320 	bdev->optimal_io_boundary = 16;
3321 	bdev->split_on_optimal_io_boundary = true;
3322 
3323 	iovcnt = 1;
3324 	iovs[0].iov_base = NULL;
3325 	iovs[0].iov_len = 512 * 16;
3326 
3327 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
3328 	CU_ASSERT(rc == 0);
3329 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3330 	stub_complete_io(2);
3331 
3332 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
3333 	alignment = 512;
3334 	bdev->required_alignment = spdk_u32log2(alignment);
3335 	bdev->optimal_io_boundary = 128;
3336 	bdev->split_on_optimal_io_boundary = true;
3337 
3338 	iovcnt = 1;
3339 	iovs[0].iov_base = buf + 16;
3340 	iovs[0].iov_len = 512 * 160;
3341 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3342 	CU_ASSERT(rc == 0);
3343 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3344 	stub_complete_io(2);
3345 
3346 	/* 512 * 3 with 2 IO boundary */
3347 	alignment = 512;
3348 	bdev->required_alignment = spdk_u32log2(alignment);
3349 	bdev->optimal_io_boundary = 2;
3350 	bdev->split_on_optimal_io_boundary = true;
3351 
3352 	iovcnt = 2;
3353 	iovs[0].iov_base = buf + 16;
3354 	iovs[0].iov_len = 512;
3355 	iovs[1].iov_base = buf + 16 + 512 + 32;
3356 	iovs[1].iov_len = 1024;
3357 
3358 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3359 	CU_ASSERT(rc == 0);
3360 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3361 	stub_complete_io(2);
3362 
3363 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3364 	CU_ASSERT(rc == 0);
3365 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3366 	stub_complete_io(2);
3367 
3368 	/* 512 * 64 with 32 IO boundary */
3369 	bdev->optimal_io_boundary = 32;
3370 	iovcnt = 2;
3371 	iovs[0].iov_base = buf + 16;
3372 	iovs[0].iov_len = 16384;
3373 	iovs[1].iov_base = buf + 16 + 16384 + 32;
3374 	iovs[1].iov_len = 16384;
3375 
3376 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3377 	CU_ASSERT(rc == 0);
3378 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3379 	stub_complete_io(3);
3380 
3381 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3382 	CU_ASSERT(rc == 0);
3383 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3384 	stub_complete_io(3);
3385 
3386 	/* 512 * 160 with 32 IO boundary */
3387 	iovcnt = 1;
3388 	iovs[0].iov_base = buf + 16;
3389 	iovs[0].iov_len = 16384 + 65536;
3390 
3391 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3392 	CU_ASSERT(rc == 0);
3393 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
3394 	stub_complete_io(6);
3395 
3396 	spdk_put_io_channel(io_ch);
3397 	spdk_bdev_close(desc);
3398 	free_bdev(bdev);
3399 	fn_table.submit_request = stub_submit_request;
3400 	spdk_bdev_finish(bdev_fini_cb, NULL);
3401 	poll_threads();
3402 
3403 	free(buf);
3404 }
3405 
3406 static void
3407 histogram_status_cb(void *cb_arg, int status)
3408 {
3409 	g_status = status;
3410 }
3411 
3412 static void
3413 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3414 {
3415 	g_status = status;
3416 	g_histogram = histogram;
3417 }
3418 
3419 static void
3420 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
3421 		   uint64_t total, uint64_t so_far)
3422 {
3423 	g_count += count;
3424 }
3425 
3426 static void
3427 histogram_channel_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3428 {
3429 	spdk_histogram_data_fn cb_fn = cb_arg;
3430 
3431 	g_status = status;
3432 
3433 	if (status == 0) {
3434 		spdk_histogram_data_iterate(histogram, cb_fn, NULL);
3435 	}
3436 }
3437 
3438 static void
3439 bdev_histograms(void)
3440 {
3441 	struct spdk_bdev *bdev;
3442 	struct spdk_bdev_desc *desc = NULL;
3443 	struct spdk_io_channel *ch;
3444 	struct spdk_histogram_data *histogram;
3445 	uint8_t buf[4096];
3446 	int rc;
3447 
3448 	spdk_bdev_initialize(bdev_init_cb, NULL);
3449 
3450 	bdev = allocate_bdev("bdev");
3451 
3452 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3453 	CU_ASSERT(rc == 0);
3454 	CU_ASSERT(desc != NULL);
3455 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3456 
3457 	ch = spdk_bdev_get_io_channel(desc);
3458 	CU_ASSERT(ch != NULL);
3459 
3460 	/* Enable histogram */
3461 	g_status = -1;
3462 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
3463 	poll_threads();
3464 	CU_ASSERT(g_status == 0);
3465 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3466 
3467 	/* Allocate histogram */
3468 	histogram = spdk_histogram_data_alloc();
3469 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
3470 
3471 	/* Check if histogram is zeroed */
3472 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3473 	poll_threads();
3474 	CU_ASSERT(g_status == 0);
3475 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3476 
3477 	g_count = 0;
3478 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3479 
3480 	CU_ASSERT(g_count == 0);
3481 
3482 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3483 	CU_ASSERT(rc == 0);
3484 
3485 	spdk_delay_us(10);
3486 	stub_complete_io(1);
3487 	poll_threads();
3488 
3489 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3490 	CU_ASSERT(rc == 0);
3491 
3492 	spdk_delay_us(10);
3493 	stub_complete_io(1);
3494 	poll_threads();
3495 
3496 	/* Check if histogram gathered data from all I/O channels */
3497 	g_histogram = NULL;
3498 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3499 	poll_threads();
3500 	CU_ASSERT(g_status == 0);
3501 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3502 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3503 
3504 	g_count = 0;
3505 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3506 	CU_ASSERT(g_count == 2);
3507 
3508 	g_count = 0;
3509 	spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, histogram_io_count);
3510 	CU_ASSERT(g_status == 0);
3511 	CU_ASSERT(g_count == 2);
3512 
3513 	/* Disable histogram */
3514 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
3515 	poll_threads();
3516 	CU_ASSERT(g_status == 0);
3517 	CU_ASSERT(bdev->internal.histogram_enabled == false);
3518 
3519 	/* Try to run histogram commands on disabled bdev */
3520 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3521 	poll_threads();
3522 	CU_ASSERT(g_status == -EFAULT);
3523 
3524 	spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, NULL);
3525 	CU_ASSERT(g_status == -EFAULT);
3526 
3527 	spdk_histogram_data_free(histogram);
3528 	spdk_put_io_channel(ch);
3529 	spdk_bdev_close(desc);
3530 	free_bdev(bdev);
3531 	spdk_bdev_finish(bdev_fini_cb, NULL);
3532 	poll_threads();
3533 }
3534 
3535 static void
3536 _bdev_compare(bool emulated)
3537 {
3538 	struct spdk_bdev *bdev;
3539 	struct spdk_bdev_desc *desc = NULL;
3540 	struct spdk_io_channel *ioch;
3541 	struct ut_expected_io *expected_io;
3542 	uint64_t offset, num_blocks;
3543 	uint32_t num_completed;
3544 	char aa_buf[512];
3545 	char bb_buf[512];
3546 	struct iovec compare_iov;
3547 	uint8_t expected_io_type;
3548 	int rc;
3549 
3550 	if (emulated) {
3551 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3552 	} else {
3553 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3554 	}
3555 
3556 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3557 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3558 
3559 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3560 
3561 	spdk_bdev_initialize(bdev_init_cb, NULL);
3562 	fn_table.submit_request = stub_submit_request_get_buf;
3563 	bdev = allocate_bdev("bdev");
3564 
3565 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3566 	CU_ASSERT_EQUAL(rc, 0);
3567 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3568 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3569 	ioch = spdk_bdev_get_io_channel(desc);
3570 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3571 
3572 	fn_table.submit_request = stub_submit_request_get_buf;
3573 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3574 
3575 	offset = 50;
3576 	num_blocks = 1;
3577 	compare_iov.iov_base = aa_buf;
3578 	compare_iov.iov_len = sizeof(aa_buf);
3579 
3580 	/* 1. successful compare */
3581 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3582 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3583 
3584 	g_io_done = false;
3585 	g_compare_read_buf = aa_buf;
3586 	g_compare_read_buf_len = sizeof(aa_buf);
3587 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3588 	CU_ASSERT_EQUAL(rc, 0);
3589 	num_completed = stub_complete_io(1);
3590 	CU_ASSERT_EQUAL(num_completed, 1);
3591 	CU_ASSERT(g_io_done == true);
3592 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3593 
3594 	/* 2. miscompare */
3595 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3596 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3597 
3598 	g_io_done = false;
3599 	g_compare_read_buf = bb_buf;
3600 	g_compare_read_buf_len = sizeof(bb_buf);
3601 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3602 	CU_ASSERT_EQUAL(rc, 0);
3603 	num_completed = stub_complete_io(1);
3604 	CU_ASSERT_EQUAL(num_completed, 1);
3605 	CU_ASSERT(g_io_done == true);
3606 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3607 
3608 	spdk_put_io_channel(ioch);
3609 	spdk_bdev_close(desc);
3610 	free_bdev(bdev);
3611 	fn_table.submit_request = stub_submit_request;
3612 	spdk_bdev_finish(bdev_fini_cb, NULL);
3613 	poll_threads();
3614 
3615 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3616 
3617 	g_compare_read_buf = NULL;
3618 }
3619 
3620 static void
3621 _bdev_compare_with_md(bool emulated)
3622 {
3623 	struct spdk_bdev *bdev;
3624 	struct spdk_bdev_desc *desc = NULL;
3625 	struct spdk_io_channel *ioch;
3626 	struct ut_expected_io *expected_io;
3627 	uint64_t offset, num_blocks;
3628 	uint32_t num_completed;
3629 	char buf[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3630 	char buf_interleaved_miscompare[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3631 	char buf_miscompare[1024 /* 2 * blocklen */];
3632 	char md_buf[16];
3633 	char md_buf_miscompare[16];
3634 	struct iovec compare_iov;
3635 	uint8_t expected_io_type;
3636 	int rc;
3637 
3638 	if (emulated) {
3639 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3640 	} else {
3641 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3642 	}
3643 
3644 	memset(buf, 0xaa, sizeof(buf));
3645 	memset(buf_interleaved_miscompare, 0xaa, sizeof(buf_interleaved_miscompare));
3646 	/* make last md different */
3647 	memset(buf_interleaved_miscompare + 1024 + 8, 0xbb, 8);
3648 	memset(buf_miscompare, 0xbb, sizeof(buf_miscompare));
3649 	memset(md_buf, 0xaa, 16);
3650 	memset(md_buf_miscompare, 0xbb, 16);
3651 
3652 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3653 
3654 	spdk_bdev_initialize(bdev_init_cb, NULL);
3655 	fn_table.submit_request = stub_submit_request_get_buf;
3656 	bdev = allocate_bdev("bdev");
3657 
3658 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3659 	CU_ASSERT_EQUAL(rc, 0);
3660 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3661 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3662 	ioch = spdk_bdev_get_io_channel(desc);
3663 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3664 
3665 	fn_table.submit_request = stub_submit_request_get_buf;
3666 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3667 
3668 	offset = 50;
3669 	num_blocks = 2;
3670 
3671 	/* interleaved md & data */
3672 	bdev->md_interleave = true;
3673 	bdev->md_len = 8;
3674 	bdev->blocklen = 512 + 8;
3675 	compare_iov.iov_base = buf;
3676 	compare_iov.iov_len = sizeof(buf);
3677 
3678 	/* 1. successful compare with md interleaved */
3679 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3680 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3681 
3682 	g_io_done = false;
3683 	g_compare_read_buf = buf;
3684 	g_compare_read_buf_len = sizeof(buf);
3685 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3686 	CU_ASSERT_EQUAL(rc, 0);
3687 	num_completed = stub_complete_io(1);
3688 	CU_ASSERT_EQUAL(num_completed, 1);
3689 	CU_ASSERT(g_io_done == true);
3690 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3691 
3692 	/* 2. miscompare with md interleaved */
3693 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3694 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3695 
3696 	g_io_done = false;
3697 	g_compare_read_buf = buf_interleaved_miscompare;
3698 	g_compare_read_buf_len = sizeof(buf_interleaved_miscompare);
3699 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3700 	CU_ASSERT_EQUAL(rc, 0);
3701 	num_completed = stub_complete_io(1);
3702 	CU_ASSERT_EQUAL(num_completed, 1);
3703 	CU_ASSERT(g_io_done == true);
3704 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3705 
3706 	/* Separate data & md buffers */
3707 	bdev->md_interleave = false;
3708 	bdev->blocklen = 512;
3709 	compare_iov.iov_base = buf;
3710 	compare_iov.iov_len = 1024;
3711 
3712 	/* 3. successful compare with md separated */
3713 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3714 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3715 
3716 	g_io_done = false;
3717 	g_compare_read_buf = buf;
3718 	g_compare_read_buf_len = 1024;
3719 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3720 	g_compare_md_buf = md_buf;
3721 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3722 					       offset, num_blocks, io_done, NULL);
3723 	CU_ASSERT_EQUAL(rc, 0);
3724 	num_completed = stub_complete_io(1);
3725 	CU_ASSERT_EQUAL(num_completed, 1);
3726 	CU_ASSERT(g_io_done == true);
3727 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3728 
3729 	/* 4. miscompare with md separated where md buf is different */
3730 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3731 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3732 
3733 	g_io_done = false;
3734 	g_compare_read_buf = buf;
3735 	g_compare_read_buf_len = 1024;
3736 	g_compare_md_buf = md_buf_miscompare;
3737 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3738 					       offset, num_blocks, io_done, NULL);
3739 	CU_ASSERT_EQUAL(rc, 0);
3740 	num_completed = stub_complete_io(1);
3741 	CU_ASSERT_EQUAL(num_completed, 1);
3742 	CU_ASSERT(g_io_done == true);
3743 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3744 
3745 	/* 5. miscompare with md separated where buf is different */
3746 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3747 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3748 
3749 	g_io_done = false;
3750 	g_compare_read_buf = buf_miscompare;
3751 	g_compare_read_buf_len = sizeof(buf_miscompare);
3752 	g_compare_md_buf = md_buf;
3753 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3754 					       offset, num_blocks, io_done, NULL);
3755 	CU_ASSERT_EQUAL(rc, 0);
3756 	num_completed = stub_complete_io(1);
3757 	CU_ASSERT_EQUAL(num_completed, 1);
3758 	CU_ASSERT(g_io_done == true);
3759 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3760 
3761 	bdev->md_len = 0;
3762 	g_compare_md_buf = NULL;
3763 
3764 	spdk_put_io_channel(ioch);
3765 	spdk_bdev_close(desc);
3766 	free_bdev(bdev);
3767 	fn_table.submit_request = stub_submit_request;
3768 	spdk_bdev_finish(bdev_fini_cb, NULL);
3769 	poll_threads();
3770 
3771 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3772 
3773 	g_compare_read_buf = NULL;
3774 }
3775 
3776 static void
3777 bdev_compare(void)
3778 {
3779 	_bdev_compare(false);
3780 	_bdev_compare_with_md(false);
3781 }
3782 
3783 static void
3784 bdev_compare_emulated(void)
3785 {
3786 	_bdev_compare(true);
3787 	_bdev_compare_with_md(true);
3788 }
3789 
3790 static void
3791 bdev_compare_and_write(void)
3792 {
3793 	struct spdk_bdev *bdev;
3794 	struct spdk_bdev_desc *desc = NULL;
3795 	struct spdk_io_channel *ioch;
3796 	struct ut_expected_io *expected_io;
3797 	uint64_t offset, num_blocks;
3798 	uint32_t num_completed;
3799 	char aa_buf[512];
3800 	char bb_buf[512];
3801 	char cc_buf[512];
3802 	char write_buf[512];
3803 	struct iovec compare_iov;
3804 	struct iovec write_iov;
3805 	int rc;
3806 
3807 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3808 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3809 	memset(cc_buf, 0xcc, sizeof(cc_buf));
3810 
3811 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
3812 
3813 	spdk_bdev_initialize(bdev_init_cb, NULL);
3814 	fn_table.submit_request = stub_submit_request_get_buf;
3815 	bdev = allocate_bdev("bdev");
3816 
3817 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3818 	CU_ASSERT_EQUAL(rc, 0);
3819 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3820 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3821 	ioch = spdk_bdev_get_io_channel(desc);
3822 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3823 
3824 	fn_table.submit_request = stub_submit_request_get_buf;
3825 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3826 
3827 	offset = 50;
3828 	num_blocks = 1;
3829 	compare_iov.iov_base = aa_buf;
3830 	compare_iov.iov_len = sizeof(aa_buf);
3831 	write_iov.iov_base = bb_buf;
3832 	write_iov.iov_len = sizeof(bb_buf);
3833 
3834 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3835 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3836 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
3837 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3838 
3839 	g_io_done = false;
3840 	g_compare_read_buf = aa_buf;
3841 	g_compare_read_buf_len = sizeof(aa_buf);
3842 	memset(write_buf, 0, sizeof(write_buf));
3843 	g_compare_write_buf = write_buf;
3844 	g_compare_write_buf_len = sizeof(write_buf);
3845 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3846 			offset, num_blocks, io_done, NULL);
3847 	/* Trigger range locking */
3848 	poll_threads();
3849 	CU_ASSERT_EQUAL(rc, 0);
3850 	num_completed = stub_complete_io(1);
3851 	CU_ASSERT_EQUAL(num_completed, 1);
3852 	CU_ASSERT(g_io_done == false);
3853 	num_completed = stub_complete_io(1);
3854 	/* Trigger range unlocking */
3855 	poll_threads();
3856 	CU_ASSERT_EQUAL(num_completed, 1);
3857 	CU_ASSERT(g_io_done == true);
3858 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3859 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
3860 
3861 	/* Test miscompare */
3862 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3863 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3864 
3865 	g_io_done = false;
3866 	g_compare_read_buf = cc_buf;
3867 	g_compare_read_buf_len = sizeof(cc_buf);
3868 	memset(write_buf, 0, sizeof(write_buf));
3869 	g_compare_write_buf = write_buf;
3870 	g_compare_write_buf_len = sizeof(write_buf);
3871 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3872 			offset, num_blocks, io_done, NULL);
3873 	/* Trigger range locking */
3874 	poll_threads();
3875 	CU_ASSERT_EQUAL(rc, 0);
3876 	num_completed = stub_complete_io(1);
3877 	/* Trigger range unlocking earlier because we expect error here */
3878 	poll_threads();
3879 	CU_ASSERT_EQUAL(num_completed, 1);
3880 	CU_ASSERT(g_io_done == true);
3881 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3882 	num_completed = stub_complete_io(1);
3883 	CU_ASSERT_EQUAL(num_completed, 0);
3884 
3885 	spdk_put_io_channel(ioch);
3886 	spdk_bdev_close(desc);
3887 	free_bdev(bdev);
3888 	fn_table.submit_request = stub_submit_request;
3889 	spdk_bdev_finish(bdev_fini_cb, NULL);
3890 	poll_threads();
3891 
3892 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3893 
3894 	g_compare_read_buf = NULL;
3895 	g_compare_write_buf = NULL;
3896 }
3897 
3898 static void
3899 bdev_write_zeroes(void)
3900 {
3901 	struct spdk_bdev *bdev;
3902 	struct spdk_bdev_desc *desc = NULL;
3903 	struct spdk_io_channel *ioch;
3904 	struct ut_expected_io *expected_io;
3905 	uint64_t offset, num_io_blocks, num_blocks;
3906 	uint32_t num_completed, num_requests;
3907 	int rc;
3908 
3909 	spdk_bdev_initialize(bdev_init_cb, NULL);
3910 	bdev = allocate_bdev("bdev");
3911 
3912 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3913 	CU_ASSERT_EQUAL(rc, 0);
3914 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3915 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3916 	ioch = spdk_bdev_get_io_channel(desc);
3917 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3918 
3919 	fn_table.submit_request = stub_submit_request;
3920 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3921 
3922 	/* First test that if the bdev supports write_zeroes, the request won't be split */
3923 	bdev->md_len = 0;
3924 	bdev->blocklen = 4096;
3925 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3926 
3927 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
3928 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3929 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3930 	CU_ASSERT_EQUAL(rc, 0);
3931 	num_completed = stub_complete_io(1);
3932 	CU_ASSERT_EQUAL(num_completed, 1);
3933 
3934 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
3935 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
3936 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
3937 	num_requests = 2;
3938 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
3939 
3940 	for (offset = 0; offset < num_requests; ++offset) {
3941 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3942 						   offset * num_io_blocks, num_io_blocks, 0);
3943 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3944 	}
3945 
3946 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3947 	CU_ASSERT_EQUAL(rc, 0);
3948 	num_completed = stub_complete_io(num_requests);
3949 	CU_ASSERT_EQUAL(num_completed, num_requests);
3950 
3951 	/* Check that the splitting is correct if bdev has interleaved metadata */
3952 	bdev->md_interleave = true;
3953 	bdev->md_len = 64;
3954 	bdev->blocklen = 4096 + 64;
3955 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3956 
3957 	num_requests = offset = 0;
3958 	while (offset < num_blocks) {
3959 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
3960 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3961 						   offset, num_io_blocks, 0);
3962 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3963 		offset += num_io_blocks;
3964 		num_requests++;
3965 	}
3966 
3967 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3968 	CU_ASSERT_EQUAL(rc, 0);
3969 	num_completed = stub_complete_io(num_requests);
3970 	CU_ASSERT_EQUAL(num_completed, num_requests);
3971 	num_completed = stub_complete_io(num_requests);
3972 	assert(num_completed == 0);
3973 
3974 	/* Check the the same for separate metadata buffer */
3975 	bdev->md_interleave = false;
3976 	bdev->md_len = 64;
3977 	bdev->blocklen = 4096;
3978 
3979 	num_requests = offset = 0;
3980 	while (offset < num_blocks) {
3981 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
3982 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3983 						   offset, num_io_blocks, 0);
3984 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
3985 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3986 		offset += num_io_blocks;
3987 		num_requests++;
3988 	}
3989 
3990 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3991 	CU_ASSERT_EQUAL(rc, 0);
3992 	num_completed = stub_complete_io(num_requests);
3993 	CU_ASSERT_EQUAL(num_completed, num_requests);
3994 
3995 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
3996 	spdk_put_io_channel(ioch);
3997 	spdk_bdev_close(desc);
3998 	free_bdev(bdev);
3999 	spdk_bdev_finish(bdev_fini_cb, NULL);
4000 	poll_threads();
4001 }
4002 
4003 static void
4004 bdev_zcopy_write(void)
4005 {
4006 	struct spdk_bdev *bdev;
4007 	struct spdk_bdev_desc *desc = NULL;
4008 	struct spdk_io_channel *ioch;
4009 	struct ut_expected_io *expected_io;
4010 	uint64_t offset, num_blocks;
4011 	uint32_t num_completed;
4012 	char aa_buf[512];
4013 	struct iovec iov;
4014 	int rc;
4015 	const bool populate = false;
4016 	const bool commit = true;
4017 
4018 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4019 
4020 	spdk_bdev_initialize(bdev_init_cb, NULL);
4021 	bdev = allocate_bdev("bdev");
4022 
4023 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4024 	CU_ASSERT_EQUAL(rc, 0);
4025 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4026 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4027 	ioch = spdk_bdev_get_io_channel(desc);
4028 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4029 
4030 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4031 
4032 	offset = 50;
4033 	num_blocks = 1;
4034 	iov.iov_base = NULL;
4035 	iov.iov_len = 0;
4036 
4037 	g_zcopy_read_buf = (void *) 0x1122334455667788UL;
4038 	g_zcopy_read_buf_len = (uint32_t) -1;
4039 	/* Do a zcopy start for a write (populate=false) */
4040 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4041 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4042 	g_io_done = false;
4043 	g_zcopy_write_buf = aa_buf;
4044 	g_zcopy_write_buf_len = sizeof(aa_buf);
4045 	g_zcopy_bdev_io = NULL;
4046 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4047 	CU_ASSERT_EQUAL(rc, 0);
4048 	num_completed = stub_complete_io(1);
4049 	CU_ASSERT_EQUAL(num_completed, 1);
4050 	CU_ASSERT(g_io_done == true);
4051 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4052 	/* Check that the iov has been set up */
4053 	CU_ASSERT(iov.iov_base == g_zcopy_write_buf);
4054 	CU_ASSERT(iov.iov_len == g_zcopy_write_buf_len);
4055 	/* Check that the bdev_io has been saved */
4056 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4057 	/* Now do the zcopy end for a write (commit=true) */
4058 	g_io_done = false;
4059 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4060 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4061 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4062 	CU_ASSERT_EQUAL(rc, 0);
4063 	num_completed = stub_complete_io(1);
4064 	CU_ASSERT_EQUAL(num_completed, 1);
4065 	CU_ASSERT(g_io_done == true);
4066 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4067 	/* Check the g_zcopy are reset by io_done */
4068 	CU_ASSERT(g_zcopy_write_buf == NULL);
4069 	CU_ASSERT(g_zcopy_write_buf_len == 0);
4070 	/* Check that io_done has freed the g_zcopy_bdev_io */
4071 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4072 
4073 	/* Check the zcopy read buffer has not been touched which
4074 	 * ensures that the correct buffers were used.
4075 	 */
4076 	CU_ASSERT(g_zcopy_read_buf == (void *) 0x1122334455667788UL);
4077 	CU_ASSERT(g_zcopy_read_buf_len == (uint32_t) -1);
4078 
4079 	spdk_put_io_channel(ioch);
4080 	spdk_bdev_close(desc);
4081 	free_bdev(bdev);
4082 	spdk_bdev_finish(bdev_fini_cb, NULL);
4083 	poll_threads();
4084 }
4085 
4086 static void
4087 bdev_zcopy_read(void)
4088 {
4089 	struct spdk_bdev *bdev;
4090 	struct spdk_bdev_desc *desc = NULL;
4091 	struct spdk_io_channel *ioch;
4092 	struct ut_expected_io *expected_io;
4093 	uint64_t offset, num_blocks;
4094 	uint32_t num_completed;
4095 	char aa_buf[512];
4096 	struct iovec iov;
4097 	int rc;
4098 	const bool populate = true;
4099 	const bool commit = false;
4100 
4101 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4102 
4103 	spdk_bdev_initialize(bdev_init_cb, NULL);
4104 	bdev = allocate_bdev("bdev");
4105 
4106 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4107 	CU_ASSERT_EQUAL(rc, 0);
4108 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4109 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4110 	ioch = spdk_bdev_get_io_channel(desc);
4111 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4112 
4113 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4114 
4115 	offset = 50;
4116 	num_blocks = 1;
4117 	iov.iov_base = NULL;
4118 	iov.iov_len = 0;
4119 
4120 	g_zcopy_write_buf = (void *) 0x1122334455667788UL;
4121 	g_zcopy_write_buf_len = (uint32_t) -1;
4122 
4123 	/* Do a zcopy start for a read (populate=true) */
4124 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4125 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4126 	g_io_done = false;
4127 	g_zcopy_read_buf = aa_buf;
4128 	g_zcopy_read_buf_len = sizeof(aa_buf);
4129 	g_zcopy_bdev_io = NULL;
4130 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4131 	CU_ASSERT_EQUAL(rc, 0);
4132 	num_completed = stub_complete_io(1);
4133 	CU_ASSERT_EQUAL(num_completed, 1);
4134 	CU_ASSERT(g_io_done == true);
4135 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4136 	/* Check that the iov has been set up */
4137 	CU_ASSERT(iov.iov_base == g_zcopy_read_buf);
4138 	CU_ASSERT(iov.iov_len == g_zcopy_read_buf_len);
4139 	/* Check that the bdev_io has been saved */
4140 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4141 
4142 	/* Now do the zcopy end for a read (commit=false) */
4143 	g_io_done = false;
4144 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4145 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4146 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4147 	CU_ASSERT_EQUAL(rc, 0);
4148 	num_completed = stub_complete_io(1);
4149 	CU_ASSERT_EQUAL(num_completed, 1);
4150 	CU_ASSERT(g_io_done == true);
4151 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4152 	/* Check the g_zcopy are reset by io_done */
4153 	CU_ASSERT(g_zcopy_read_buf == NULL);
4154 	CU_ASSERT(g_zcopy_read_buf_len == 0);
4155 	/* Check that io_done has freed the g_zcopy_bdev_io */
4156 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4157 
4158 	/* Check the zcopy write buffer has not been touched which
4159 	 * ensures that the correct buffers were used.
4160 	 */
4161 	CU_ASSERT(g_zcopy_write_buf == (void *) 0x1122334455667788UL);
4162 	CU_ASSERT(g_zcopy_write_buf_len == (uint32_t) -1);
4163 
4164 	spdk_put_io_channel(ioch);
4165 	spdk_bdev_close(desc);
4166 	free_bdev(bdev);
4167 	spdk_bdev_finish(bdev_fini_cb, NULL);
4168 	poll_threads();
4169 }
4170 
4171 static void
4172 bdev_open_while_hotremove(void)
4173 {
4174 	struct spdk_bdev *bdev;
4175 	struct spdk_bdev_desc *desc[2] = {};
4176 	int rc;
4177 
4178 	bdev = allocate_bdev("bdev");
4179 
4180 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
4181 	CU_ASSERT(rc == 0);
4182 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
4183 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
4184 
4185 	spdk_bdev_unregister(bdev, NULL, NULL);
4186 	/* Bdev unregister is handled asynchronously. Poll thread to complete. */
4187 	poll_threads();
4188 
4189 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
4190 	CU_ASSERT(rc == -ENODEV);
4191 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
4192 
4193 	spdk_bdev_close(desc[0]);
4194 	free_bdev(bdev);
4195 }
4196 
4197 static void
4198 bdev_close_while_hotremove(void)
4199 {
4200 	struct spdk_bdev *bdev;
4201 	struct spdk_bdev_desc *desc = NULL;
4202 	int rc = 0;
4203 
4204 	bdev = allocate_bdev("bdev");
4205 
4206 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
4207 	CU_ASSERT_EQUAL(rc, 0);
4208 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4209 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4210 
4211 	/* Simulate hot-unplug by unregistering bdev */
4212 	g_event_type1 = 0xFF;
4213 	g_unregister_arg = NULL;
4214 	g_unregister_rc = -1;
4215 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4216 	/* Close device while remove event is in flight */
4217 	spdk_bdev_close(desc);
4218 
4219 	/* Ensure that unregister callback is delayed */
4220 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
4221 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
4222 
4223 	poll_threads();
4224 
4225 	/* Event callback shall not be issued because device was closed */
4226 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
4227 	/* Unregister callback is issued */
4228 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
4229 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
4230 
4231 	free_bdev(bdev);
4232 }
4233 
4234 static void
4235 bdev_open_ext(void)
4236 {
4237 	struct spdk_bdev *bdev;
4238 	struct spdk_bdev_desc *desc1 = NULL;
4239 	struct spdk_bdev_desc *desc2 = NULL;
4240 	int rc = 0;
4241 
4242 	bdev = allocate_bdev("bdev");
4243 
4244 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4245 	CU_ASSERT_EQUAL(rc, -EINVAL);
4246 
4247 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4248 	CU_ASSERT_EQUAL(rc, 0);
4249 
4250 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4251 	CU_ASSERT_EQUAL(rc, 0);
4252 
4253 	g_event_type1 = 0xFF;
4254 	g_event_type2 = 0xFF;
4255 
4256 	/* Simulate hot-unplug by unregistering bdev */
4257 	spdk_bdev_unregister(bdev, NULL, NULL);
4258 	poll_threads();
4259 
4260 	/* Check if correct events have been triggered in event callback fn */
4261 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4262 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4263 
4264 	free_bdev(bdev);
4265 	poll_threads();
4266 }
4267 
4268 static void
4269 bdev_open_ext_unregister(void)
4270 {
4271 	struct spdk_bdev *bdev;
4272 	struct spdk_bdev_desc *desc1 = NULL;
4273 	struct spdk_bdev_desc *desc2 = NULL;
4274 	struct spdk_bdev_desc *desc3 = NULL;
4275 	struct spdk_bdev_desc *desc4 = NULL;
4276 	int rc = 0;
4277 
4278 	bdev = allocate_bdev("bdev");
4279 
4280 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4281 	CU_ASSERT_EQUAL(rc, -EINVAL);
4282 
4283 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4284 	CU_ASSERT_EQUAL(rc, 0);
4285 
4286 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4287 	CU_ASSERT_EQUAL(rc, 0);
4288 
4289 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb3, &desc3, &desc3);
4290 	CU_ASSERT_EQUAL(rc, 0);
4291 
4292 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb4, &desc4, &desc4);
4293 	CU_ASSERT_EQUAL(rc, 0);
4294 
4295 	g_event_type1 = 0xFF;
4296 	g_event_type2 = 0xFF;
4297 	g_event_type3 = 0xFF;
4298 	g_event_type4 = 0xFF;
4299 
4300 	g_unregister_arg = NULL;
4301 	g_unregister_rc = -1;
4302 
4303 	/* Simulate hot-unplug by unregistering bdev */
4304 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4305 
4306 	/*
4307 	 * Unregister is handled asynchronously and event callback
4308 	 * (i.e., above bdev_open_cbN) will be called.
4309 	 * For bdev_open_cb3 and bdev_open_cb4, it is intended to not
4310 	 * close the desc3 and desc4 so that the bdev is not closed.
4311 	 */
4312 	poll_threads();
4313 
4314 	/* Check if correct events have been triggered in event callback fn */
4315 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4316 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4317 	CU_ASSERT_EQUAL(g_event_type3, SPDK_BDEV_EVENT_REMOVE);
4318 	CU_ASSERT_EQUAL(g_event_type4, SPDK_BDEV_EVENT_REMOVE);
4319 
4320 	/* Check that unregister callback is delayed */
4321 	CU_ASSERT(g_unregister_arg == NULL);
4322 	CU_ASSERT(g_unregister_rc == -1);
4323 
4324 	/*
4325 	 * Explicitly close desc3. As desc4 is still opened there, the
4326 	 * unergister callback is still delayed to execute.
4327 	 */
4328 	spdk_bdev_close(desc3);
4329 	CU_ASSERT(g_unregister_arg == NULL);
4330 	CU_ASSERT(g_unregister_rc == -1);
4331 
4332 	/*
4333 	 * Explicitly close desc4 to trigger the ongoing bdev unregister
4334 	 * operation after last desc is closed.
4335 	 */
4336 	spdk_bdev_close(desc4);
4337 
4338 	/* Poll the thread for the async unregister operation */
4339 	poll_threads();
4340 
4341 	/* Check that unregister callback is executed */
4342 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
4343 	CU_ASSERT(g_unregister_rc == 0);
4344 
4345 	free_bdev(bdev);
4346 	poll_threads();
4347 }
4348 
4349 struct timeout_io_cb_arg {
4350 	struct iovec iov;
4351 	uint8_t type;
4352 };
4353 
4354 static int
4355 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
4356 {
4357 	struct spdk_bdev_io *bdev_io;
4358 	int n = 0;
4359 
4360 	if (!ch) {
4361 		return -1;
4362 	}
4363 
4364 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
4365 		n++;
4366 	}
4367 
4368 	return n;
4369 }
4370 
4371 static void
4372 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
4373 {
4374 	struct timeout_io_cb_arg *ctx = cb_arg;
4375 
4376 	ctx->type = bdev_io->type;
4377 	ctx->iov.iov_base = bdev_io->iov.iov_base;
4378 	ctx->iov.iov_len = bdev_io->iov.iov_len;
4379 }
4380 
4381 static void
4382 bdev_set_io_timeout(void)
4383 {
4384 	struct spdk_bdev *bdev;
4385 	struct spdk_bdev_desc *desc = NULL;
4386 	struct spdk_io_channel *io_ch = NULL;
4387 	struct spdk_bdev_channel *bdev_ch = NULL;
4388 	struct timeout_io_cb_arg cb_arg;
4389 
4390 	spdk_bdev_initialize(bdev_init_cb, NULL);
4391 
4392 	bdev = allocate_bdev("bdev");
4393 
4394 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4395 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4396 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4397 
4398 	io_ch = spdk_bdev_get_io_channel(desc);
4399 	CU_ASSERT(io_ch != NULL);
4400 
4401 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4402 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4403 
4404 	/* This is the part1.
4405 	 * We will check the bdev_ch->io_submitted list
4406 	 * TO make sure that it can link IOs and only the user submitted IOs
4407 	 */
4408 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4409 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4410 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4411 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4412 	stub_complete_io(1);
4413 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4414 	stub_complete_io(1);
4415 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4416 
4417 	/* Split IO */
4418 	bdev->optimal_io_boundary = 16;
4419 	bdev->split_on_optimal_io_boundary = true;
4420 
4421 	/* Now test that a single-vector command is split correctly.
4422 	 * Offset 14, length 8, payload 0xF000
4423 	 *  Child - Offset 14, length 2, payload 0xF000
4424 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4425 	 *
4426 	 * Set up the expected values before calling spdk_bdev_read_blocks
4427 	 */
4428 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4429 	/* We count all submitted IOs including IO that are generated by splitting. */
4430 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
4431 	stub_complete_io(1);
4432 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4433 	stub_complete_io(1);
4434 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4435 
4436 	/* Also include the reset IO */
4437 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4438 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4439 	poll_threads();
4440 	stub_complete_io(1);
4441 	poll_threads();
4442 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4443 
4444 	/* This is part2
4445 	 * Test the desc timeout poller register
4446 	 */
4447 
4448 	/* Successfully set the timeout */
4449 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4450 	CU_ASSERT(desc->io_timeout_poller != NULL);
4451 	CU_ASSERT(desc->timeout_in_sec == 30);
4452 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4453 	CU_ASSERT(desc->cb_arg == &cb_arg);
4454 
4455 	/* Change the timeout limit */
4456 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4457 	CU_ASSERT(desc->io_timeout_poller != NULL);
4458 	CU_ASSERT(desc->timeout_in_sec == 20);
4459 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4460 	CU_ASSERT(desc->cb_arg == &cb_arg);
4461 
4462 	/* Disable the timeout */
4463 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
4464 	CU_ASSERT(desc->io_timeout_poller == NULL);
4465 
4466 	/* This the part3
4467 	 * We will test to catch timeout IO and check whether the IO is
4468 	 * the submitted one.
4469 	 */
4470 	memset(&cb_arg, 0, sizeof(cb_arg));
4471 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4472 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
4473 
4474 	/* Don't reach the limit */
4475 	spdk_delay_us(15 * spdk_get_ticks_hz());
4476 	poll_threads();
4477 	CU_ASSERT(cb_arg.type == 0);
4478 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4479 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4480 
4481 	/* 15 + 15 = 30 reach the limit */
4482 	spdk_delay_us(15 * spdk_get_ticks_hz());
4483 	poll_threads();
4484 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4485 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
4486 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
4487 	stub_complete_io(1);
4488 
4489 	/* Use the same split IO above and check the IO */
4490 	memset(&cb_arg, 0, sizeof(cb_arg));
4491 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4492 
4493 	/* The first child complete in time */
4494 	spdk_delay_us(15 * spdk_get_ticks_hz());
4495 	poll_threads();
4496 	stub_complete_io(1);
4497 	CU_ASSERT(cb_arg.type == 0);
4498 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4499 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4500 
4501 	/* The second child reach the limit */
4502 	spdk_delay_us(15 * spdk_get_ticks_hz());
4503 	poll_threads();
4504 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4505 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
4506 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
4507 	stub_complete_io(1);
4508 
4509 	/* Also include the reset IO */
4510 	memset(&cb_arg, 0, sizeof(cb_arg));
4511 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4512 	spdk_delay_us(30 * spdk_get_ticks_hz());
4513 	poll_threads();
4514 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
4515 	stub_complete_io(1);
4516 	poll_threads();
4517 
4518 	spdk_put_io_channel(io_ch);
4519 	spdk_bdev_close(desc);
4520 	free_bdev(bdev);
4521 	spdk_bdev_finish(bdev_fini_cb, NULL);
4522 	poll_threads();
4523 }
4524 
4525 static void
4526 bdev_set_qd_sampling(void)
4527 {
4528 	struct spdk_bdev *bdev;
4529 	struct spdk_bdev_desc *desc = NULL;
4530 	struct spdk_io_channel *io_ch = NULL;
4531 	struct spdk_bdev_channel *bdev_ch = NULL;
4532 	struct timeout_io_cb_arg cb_arg;
4533 
4534 	spdk_bdev_initialize(bdev_init_cb, NULL);
4535 
4536 	bdev = allocate_bdev("bdev");
4537 
4538 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4539 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4540 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4541 
4542 	io_ch = spdk_bdev_get_io_channel(desc);
4543 	CU_ASSERT(io_ch != NULL);
4544 
4545 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4546 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4547 
4548 	/* This is the part1.
4549 	 * We will check the bdev_ch->io_submitted list
4550 	 * TO make sure that it can link IOs and only the user submitted IOs
4551 	 */
4552 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4553 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4554 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4555 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4556 	stub_complete_io(1);
4557 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4558 	stub_complete_io(1);
4559 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4560 
4561 	/* This is the part2.
4562 	 * Test the bdev's qd poller register
4563 	 */
4564 	/* 1st Successfully set the qd sampling period */
4565 	spdk_bdev_set_qd_sampling_period(bdev, 10);
4566 	CU_ASSERT(bdev->internal.new_period == 10);
4567 	CU_ASSERT(bdev->internal.period == 10);
4568 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4569 	poll_threads();
4570 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4571 
4572 	/* 2nd Change the qd sampling period */
4573 	spdk_bdev_set_qd_sampling_period(bdev, 20);
4574 	CU_ASSERT(bdev->internal.new_period == 20);
4575 	CU_ASSERT(bdev->internal.period == 10);
4576 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4577 	poll_threads();
4578 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4579 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4580 
4581 	/* 3rd Change the qd sampling period and verify qd_poll_in_progress */
4582 	spdk_delay_us(20);
4583 	poll_thread_times(0, 1);
4584 	CU_ASSERT(bdev->internal.qd_poll_in_progress == true);
4585 	spdk_bdev_set_qd_sampling_period(bdev, 30);
4586 	CU_ASSERT(bdev->internal.new_period == 30);
4587 	CU_ASSERT(bdev->internal.period == 20);
4588 	poll_threads();
4589 	CU_ASSERT(bdev->internal.qd_poll_in_progress == false);
4590 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4591 
4592 	/* 4th Disable the qd sampling period */
4593 	spdk_bdev_set_qd_sampling_period(bdev, 0);
4594 	CU_ASSERT(bdev->internal.new_period == 0);
4595 	CU_ASSERT(bdev->internal.period == 30);
4596 	poll_threads();
4597 	CU_ASSERT(bdev->internal.qd_poller == NULL);
4598 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4599 	CU_ASSERT(bdev->internal.qd_desc == NULL);
4600 
4601 	/* This is the part3.
4602 	 * We will test the submitted IO and reset works
4603 	 * properly with the qd sampling.
4604 	 */
4605 	memset(&cb_arg, 0, sizeof(cb_arg));
4606 	spdk_bdev_set_qd_sampling_period(bdev, 1);
4607 	poll_threads();
4608 
4609 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4610 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4611 
4612 	/* Also include the reset IO */
4613 	memset(&cb_arg, 0, sizeof(cb_arg));
4614 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4615 	poll_threads();
4616 
4617 	/* Close the desc */
4618 	spdk_put_io_channel(io_ch);
4619 	spdk_bdev_close(desc);
4620 
4621 	/* Complete the submitted IO and reset */
4622 	stub_complete_io(2);
4623 	poll_threads();
4624 
4625 	free_bdev(bdev);
4626 	spdk_bdev_finish(bdev_fini_cb, NULL);
4627 	poll_threads();
4628 }
4629 
4630 static void
4631 lba_range_overlap(void)
4632 {
4633 	struct lba_range r1, r2;
4634 
4635 	r1.offset = 100;
4636 	r1.length = 50;
4637 
4638 	r2.offset = 0;
4639 	r2.length = 1;
4640 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4641 
4642 	r2.offset = 0;
4643 	r2.length = 100;
4644 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4645 
4646 	r2.offset = 0;
4647 	r2.length = 110;
4648 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4649 
4650 	r2.offset = 100;
4651 	r2.length = 10;
4652 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4653 
4654 	r2.offset = 110;
4655 	r2.length = 20;
4656 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4657 
4658 	r2.offset = 140;
4659 	r2.length = 150;
4660 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4661 
4662 	r2.offset = 130;
4663 	r2.length = 200;
4664 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4665 
4666 	r2.offset = 150;
4667 	r2.length = 100;
4668 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4669 
4670 	r2.offset = 110;
4671 	r2.length = 0;
4672 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4673 }
4674 
4675 static bool g_lock_lba_range_done;
4676 static bool g_unlock_lba_range_done;
4677 
4678 static void
4679 lock_lba_range_done(void *ctx, int status)
4680 {
4681 	g_lock_lba_range_done = true;
4682 }
4683 
4684 static void
4685 unlock_lba_range_done(void *ctx, int status)
4686 {
4687 	g_unlock_lba_range_done = true;
4688 }
4689 
4690 static void
4691 lock_lba_range_check_ranges(void)
4692 {
4693 	struct spdk_bdev *bdev;
4694 	struct spdk_bdev_desc *desc = NULL;
4695 	struct spdk_io_channel *io_ch;
4696 	struct spdk_bdev_channel *channel;
4697 	struct lba_range *range;
4698 	int ctx1;
4699 	int rc;
4700 
4701 	spdk_bdev_initialize(bdev_init_cb, NULL);
4702 
4703 	bdev = allocate_bdev("bdev0");
4704 
4705 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4706 	CU_ASSERT(rc == 0);
4707 	CU_ASSERT(desc != NULL);
4708 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4709 	io_ch = spdk_bdev_get_io_channel(desc);
4710 	CU_ASSERT(io_ch != NULL);
4711 	channel = spdk_io_channel_get_ctx(io_ch);
4712 
4713 	g_lock_lba_range_done = false;
4714 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4715 	CU_ASSERT(rc == 0);
4716 	poll_threads();
4717 
4718 	CU_ASSERT(g_lock_lba_range_done == true);
4719 	range = TAILQ_FIRST(&channel->locked_ranges);
4720 	SPDK_CU_ASSERT_FATAL(range != NULL);
4721 	CU_ASSERT(range->offset == 20);
4722 	CU_ASSERT(range->length == 10);
4723 	CU_ASSERT(range->owner_ch == channel);
4724 
4725 	/* Unlocks must exactly match a lock. */
4726 	g_unlock_lba_range_done = false;
4727 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
4728 	CU_ASSERT(rc == -EINVAL);
4729 	CU_ASSERT(g_unlock_lba_range_done == false);
4730 
4731 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4732 	CU_ASSERT(rc == 0);
4733 	spdk_delay_us(100);
4734 	poll_threads();
4735 
4736 	CU_ASSERT(g_unlock_lba_range_done == true);
4737 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4738 
4739 	spdk_put_io_channel(io_ch);
4740 	spdk_bdev_close(desc);
4741 	free_bdev(bdev);
4742 	spdk_bdev_finish(bdev_fini_cb, NULL);
4743 	poll_threads();
4744 }
4745 
4746 static void
4747 lock_lba_range_with_io_outstanding(void)
4748 {
4749 	struct spdk_bdev *bdev;
4750 	struct spdk_bdev_desc *desc = NULL;
4751 	struct spdk_io_channel *io_ch;
4752 	struct spdk_bdev_channel *channel;
4753 	struct lba_range *range;
4754 	char buf[4096];
4755 	int ctx1;
4756 	int rc;
4757 
4758 	spdk_bdev_initialize(bdev_init_cb, NULL);
4759 
4760 	bdev = allocate_bdev("bdev0");
4761 
4762 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4763 	CU_ASSERT(rc == 0);
4764 	CU_ASSERT(desc != NULL);
4765 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4766 	io_ch = spdk_bdev_get_io_channel(desc);
4767 	CU_ASSERT(io_ch != NULL);
4768 	channel = spdk_io_channel_get_ctx(io_ch);
4769 
4770 	g_io_done = false;
4771 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4772 	CU_ASSERT(rc == 0);
4773 
4774 	g_lock_lba_range_done = false;
4775 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4776 	CU_ASSERT(rc == 0);
4777 	poll_threads();
4778 
4779 	/* The lock should immediately become valid, since there are no outstanding
4780 	 * write I/O.
4781 	 */
4782 	CU_ASSERT(g_io_done == false);
4783 	CU_ASSERT(g_lock_lba_range_done == true);
4784 	range = TAILQ_FIRST(&channel->locked_ranges);
4785 	SPDK_CU_ASSERT_FATAL(range != NULL);
4786 	CU_ASSERT(range->offset == 20);
4787 	CU_ASSERT(range->length == 10);
4788 	CU_ASSERT(range->owner_ch == channel);
4789 	CU_ASSERT(range->locked_ctx == &ctx1);
4790 
4791 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4792 	CU_ASSERT(rc == 0);
4793 	stub_complete_io(1);
4794 	spdk_delay_us(100);
4795 	poll_threads();
4796 
4797 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4798 
4799 	/* Now try again, but with a write I/O. */
4800 	g_io_done = false;
4801 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4802 	CU_ASSERT(rc == 0);
4803 
4804 	g_lock_lba_range_done = false;
4805 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4806 	CU_ASSERT(rc == 0);
4807 	poll_threads();
4808 
4809 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
4810 	 * But note that the range should be on the channel's locked_list, to make sure no
4811 	 * new write I/O are started.
4812 	 */
4813 	CU_ASSERT(g_io_done == false);
4814 	CU_ASSERT(g_lock_lba_range_done == false);
4815 	range = TAILQ_FIRST(&channel->locked_ranges);
4816 	SPDK_CU_ASSERT_FATAL(range != NULL);
4817 	CU_ASSERT(range->offset == 20);
4818 	CU_ASSERT(range->length == 10);
4819 
4820 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
4821 	 * our callback was invoked).
4822 	 */
4823 	stub_complete_io(1);
4824 	spdk_delay_us(100);
4825 	poll_threads();
4826 	CU_ASSERT(g_io_done == true);
4827 	CU_ASSERT(g_lock_lba_range_done == true);
4828 
4829 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4830 	CU_ASSERT(rc == 0);
4831 	poll_threads();
4832 
4833 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4834 
4835 	spdk_put_io_channel(io_ch);
4836 	spdk_bdev_close(desc);
4837 	free_bdev(bdev);
4838 	spdk_bdev_finish(bdev_fini_cb, NULL);
4839 	poll_threads();
4840 }
4841 
4842 static void
4843 lock_lba_range_overlapped(void)
4844 {
4845 	struct spdk_bdev *bdev;
4846 	struct spdk_bdev_desc *desc = NULL;
4847 	struct spdk_io_channel *io_ch;
4848 	struct spdk_bdev_channel *channel;
4849 	struct lba_range *range;
4850 	int ctx1;
4851 	int rc;
4852 
4853 	spdk_bdev_initialize(bdev_init_cb, NULL);
4854 
4855 	bdev = allocate_bdev("bdev0");
4856 
4857 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4858 	CU_ASSERT(rc == 0);
4859 	CU_ASSERT(desc != NULL);
4860 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4861 	io_ch = spdk_bdev_get_io_channel(desc);
4862 	CU_ASSERT(io_ch != NULL);
4863 	channel = spdk_io_channel_get_ctx(io_ch);
4864 
4865 	/* Lock range 20-29. */
4866 	g_lock_lba_range_done = false;
4867 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4868 	CU_ASSERT(rc == 0);
4869 	poll_threads();
4870 
4871 	CU_ASSERT(g_lock_lba_range_done == true);
4872 	range = TAILQ_FIRST(&channel->locked_ranges);
4873 	SPDK_CU_ASSERT_FATAL(range != NULL);
4874 	CU_ASSERT(range->offset == 20);
4875 	CU_ASSERT(range->length == 10);
4876 
4877 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
4878 	 * 20-29.
4879 	 */
4880 	g_lock_lba_range_done = false;
4881 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
4882 	CU_ASSERT(rc == 0);
4883 	poll_threads();
4884 
4885 	CU_ASSERT(g_lock_lba_range_done == false);
4886 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4887 	SPDK_CU_ASSERT_FATAL(range != NULL);
4888 	CU_ASSERT(range->offset == 25);
4889 	CU_ASSERT(range->length == 15);
4890 
4891 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
4892 	 * no longer overlaps with an active lock.
4893 	 */
4894 	g_unlock_lba_range_done = false;
4895 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4896 	CU_ASSERT(rc == 0);
4897 	poll_threads();
4898 
4899 	CU_ASSERT(g_unlock_lba_range_done == true);
4900 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4901 	range = TAILQ_FIRST(&channel->locked_ranges);
4902 	SPDK_CU_ASSERT_FATAL(range != NULL);
4903 	CU_ASSERT(range->offset == 25);
4904 	CU_ASSERT(range->length == 15);
4905 
4906 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
4907 	 * currently active 25-39 lock.
4908 	 */
4909 	g_lock_lba_range_done = false;
4910 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
4911 	CU_ASSERT(rc == 0);
4912 	poll_threads();
4913 
4914 	CU_ASSERT(g_lock_lba_range_done == true);
4915 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4916 	SPDK_CU_ASSERT_FATAL(range != NULL);
4917 	range = TAILQ_NEXT(range, tailq);
4918 	SPDK_CU_ASSERT_FATAL(range != NULL);
4919 	CU_ASSERT(range->offset == 40);
4920 	CU_ASSERT(range->length == 20);
4921 
4922 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
4923 	g_lock_lba_range_done = false;
4924 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
4925 	CU_ASSERT(rc == 0);
4926 	poll_threads();
4927 
4928 	CU_ASSERT(g_lock_lba_range_done == false);
4929 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4930 	SPDK_CU_ASSERT_FATAL(range != NULL);
4931 	CU_ASSERT(range->offset == 35);
4932 	CU_ASSERT(range->length == 10);
4933 
4934 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
4935 	 * the 40-59 lock is still active.
4936 	 */
4937 	g_unlock_lba_range_done = false;
4938 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
4939 	CU_ASSERT(rc == 0);
4940 	poll_threads();
4941 
4942 	CU_ASSERT(g_unlock_lba_range_done == true);
4943 	CU_ASSERT(g_lock_lba_range_done == false);
4944 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4945 	SPDK_CU_ASSERT_FATAL(range != NULL);
4946 	CU_ASSERT(range->offset == 35);
4947 	CU_ASSERT(range->length == 10);
4948 
4949 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
4950 	 * no longer any active overlapping locks.
4951 	 */
4952 	g_unlock_lba_range_done = false;
4953 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
4954 	CU_ASSERT(rc == 0);
4955 	poll_threads();
4956 
4957 	CU_ASSERT(g_unlock_lba_range_done == true);
4958 	CU_ASSERT(g_lock_lba_range_done == true);
4959 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4960 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4961 	SPDK_CU_ASSERT_FATAL(range != NULL);
4962 	CU_ASSERT(range->offset == 35);
4963 	CU_ASSERT(range->length == 10);
4964 
4965 	/* Finally, unlock 35-44. */
4966 	g_unlock_lba_range_done = false;
4967 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
4968 	CU_ASSERT(rc == 0);
4969 	poll_threads();
4970 
4971 	CU_ASSERT(g_unlock_lba_range_done == true);
4972 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
4973 
4974 	spdk_put_io_channel(io_ch);
4975 	spdk_bdev_close(desc);
4976 	free_bdev(bdev);
4977 	spdk_bdev_finish(bdev_fini_cb, NULL);
4978 	poll_threads();
4979 }
4980 
4981 static void
4982 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
4983 {
4984 	g_abort_done = true;
4985 	g_abort_status = bdev_io->internal.status;
4986 	spdk_bdev_free_io(bdev_io);
4987 }
4988 
4989 static void
4990 bdev_io_abort(void)
4991 {
4992 	struct spdk_bdev *bdev;
4993 	struct spdk_bdev_desc *desc = NULL;
4994 	struct spdk_io_channel *io_ch;
4995 	struct spdk_bdev_channel *channel;
4996 	struct spdk_bdev_mgmt_channel *mgmt_ch;
4997 	struct spdk_bdev_opts bdev_opts = {};
4998 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
4999 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
5000 	int rc;
5001 
5002 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5003 	bdev_opts.bdev_io_pool_size = 7;
5004 	bdev_opts.bdev_io_cache_size = 2;
5005 
5006 	rc = spdk_bdev_set_opts(&bdev_opts);
5007 	CU_ASSERT(rc == 0);
5008 	spdk_bdev_initialize(bdev_init_cb, NULL);
5009 
5010 	bdev = allocate_bdev("bdev0");
5011 
5012 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5013 	CU_ASSERT(rc == 0);
5014 	CU_ASSERT(desc != NULL);
5015 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5016 	io_ch = spdk_bdev_get_io_channel(desc);
5017 	CU_ASSERT(io_ch != NULL);
5018 	channel = spdk_io_channel_get_ctx(io_ch);
5019 	mgmt_ch = channel->shared_resource->mgmt_ch;
5020 
5021 	g_abort_done = false;
5022 
5023 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
5024 
5025 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5026 	CU_ASSERT(rc == -ENOTSUP);
5027 
5028 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
5029 
5030 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
5031 	CU_ASSERT(rc == 0);
5032 	CU_ASSERT(g_abort_done == true);
5033 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
5034 
5035 	/* Test the case that the target I/O was successfully aborted. */
5036 	g_io_done = false;
5037 
5038 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5039 	CU_ASSERT(rc == 0);
5040 	CU_ASSERT(g_io_done == false);
5041 
5042 	g_abort_done = false;
5043 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5044 
5045 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5046 	CU_ASSERT(rc == 0);
5047 	CU_ASSERT(g_io_done == true);
5048 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5049 	stub_complete_io(1);
5050 	CU_ASSERT(g_abort_done == true);
5051 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5052 
5053 	/* Test the case that the target I/O was not aborted because it completed
5054 	 * in the middle of execution of the abort.
5055 	 */
5056 	g_io_done = false;
5057 
5058 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5059 	CU_ASSERT(rc == 0);
5060 	CU_ASSERT(g_io_done == false);
5061 
5062 	g_abort_done = false;
5063 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5064 
5065 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5066 	CU_ASSERT(rc == 0);
5067 	CU_ASSERT(g_io_done == false);
5068 
5069 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5070 	stub_complete_io(1);
5071 	CU_ASSERT(g_io_done == true);
5072 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5073 
5074 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5075 	stub_complete_io(1);
5076 	CU_ASSERT(g_abort_done == true);
5077 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5078 
5079 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5080 
5081 	bdev->optimal_io_boundary = 16;
5082 	bdev->split_on_optimal_io_boundary = true;
5083 
5084 	/* Test that a single-vector command which is split is aborted correctly.
5085 	 * Offset 14, length 8, payload 0xF000
5086 	 *  Child - Offset 14, length 2, payload 0xF000
5087 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5088 	 */
5089 	g_io_done = false;
5090 
5091 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
5092 	CU_ASSERT(rc == 0);
5093 	CU_ASSERT(g_io_done == false);
5094 
5095 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5096 
5097 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5098 
5099 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5100 	CU_ASSERT(rc == 0);
5101 	CU_ASSERT(g_io_done == true);
5102 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5103 	stub_complete_io(2);
5104 	CU_ASSERT(g_abort_done == true);
5105 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5106 
5107 	/* Test that a multi-vector command that needs to be split by strip and then
5108 	 * needs to be split is aborted correctly. Abort is requested before the second
5109 	 * child I/O was submitted. The parent I/O should complete with failure without
5110 	 * submitting the second child I/O.
5111 	 */
5112 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
5113 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
5114 		iov[i].iov_len = 512;
5115 	}
5116 
5117 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
5118 	g_io_done = false;
5119 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
5120 				    SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
5121 	CU_ASSERT(rc == 0);
5122 	CU_ASSERT(g_io_done == false);
5123 
5124 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5125 
5126 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5127 
5128 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5129 	CU_ASSERT(rc == 0);
5130 	CU_ASSERT(g_io_done == true);
5131 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5132 	stub_complete_io(1);
5133 	CU_ASSERT(g_abort_done == true);
5134 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5135 
5136 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5137 
5138 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5139 
5140 	bdev->optimal_io_boundary = 16;
5141 	g_io_done = false;
5142 
5143 	/* Test that a ingle-vector command which is split is aborted correctly.
5144 	 * Differently from the above, the child abort request will be submitted
5145 	 * sequentially due to the capacity of spdk_bdev_io.
5146 	 */
5147 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
5148 	CU_ASSERT(rc == 0);
5149 	CU_ASSERT(g_io_done == false);
5150 
5151 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5152 
5153 	g_abort_done = false;
5154 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5155 
5156 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5157 	CU_ASSERT(rc == 0);
5158 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
5159 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5160 
5161 	stub_complete_io(1);
5162 	CU_ASSERT(g_io_done == true);
5163 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5164 	stub_complete_io(3);
5165 	CU_ASSERT(g_abort_done == true);
5166 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5167 
5168 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5169 
5170 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5171 
5172 	spdk_put_io_channel(io_ch);
5173 	spdk_bdev_close(desc);
5174 	free_bdev(bdev);
5175 	spdk_bdev_finish(bdev_fini_cb, NULL);
5176 	poll_threads();
5177 }
5178 
5179 static void
5180 bdev_unmap(void)
5181 {
5182 	struct spdk_bdev *bdev;
5183 	struct spdk_bdev_desc *desc = NULL;
5184 	struct spdk_io_channel *ioch;
5185 	struct spdk_bdev_channel *bdev_ch;
5186 	struct ut_expected_io *expected_io;
5187 	struct spdk_bdev_opts bdev_opts = {};
5188 	uint32_t i, num_outstanding;
5189 	uint64_t offset, num_blocks, max_unmap_blocks, num_children;
5190 	int rc;
5191 
5192 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5193 	bdev_opts.bdev_io_pool_size = 512;
5194 	bdev_opts.bdev_io_cache_size = 64;
5195 	rc = spdk_bdev_set_opts(&bdev_opts);
5196 	CU_ASSERT(rc == 0);
5197 
5198 	spdk_bdev_initialize(bdev_init_cb, NULL);
5199 	bdev = allocate_bdev("bdev");
5200 
5201 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5202 	CU_ASSERT_EQUAL(rc, 0);
5203 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5204 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5205 	ioch = spdk_bdev_get_io_channel(desc);
5206 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5207 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5208 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5209 
5210 	fn_table.submit_request = stub_submit_request;
5211 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5212 
5213 	/* Case 1: First test the request won't be split */
5214 	num_blocks = 32;
5215 
5216 	g_io_done = false;
5217 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 0, num_blocks, 0);
5218 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5219 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5220 	CU_ASSERT_EQUAL(rc, 0);
5221 	CU_ASSERT(g_io_done == false);
5222 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5223 	stub_complete_io(1);
5224 	CU_ASSERT(g_io_done == true);
5225 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5226 
5227 	/* Case 2: Test the split with 2 children requests */
5228 	bdev->max_unmap = 8;
5229 	bdev->max_unmap_segments = 2;
5230 	max_unmap_blocks = bdev->max_unmap * bdev->max_unmap_segments;
5231 	num_blocks = max_unmap_blocks * 2;
5232 	offset = 0;
5233 
5234 	g_io_done = false;
5235 	for (i = 0; i < 2; i++) {
5236 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5237 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5238 		offset += max_unmap_blocks;
5239 	}
5240 
5241 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5242 	CU_ASSERT_EQUAL(rc, 0);
5243 	CU_ASSERT(g_io_done == false);
5244 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5245 	stub_complete_io(2);
5246 	CU_ASSERT(g_io_done == true);
5247 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5248 
5249 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5250 	num_children = 15;
5251 	num_blocks = max_unmap_blocks * num_children;
5252 	g_io_done = false;
5253 	offset = 0;
5254 	for (i = 0; i < num_children; i++) {
5255 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5256 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5257 		offset += max_unmap_blocks;
5258 	}
5259 
5260 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5261 	CU_ASSERT_EQUAL(rc, 0);
5262 	CU_ASSERT(g_io_done == false);
5263 
5264 	while (num_children > 0) {
5265 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5266 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5267 		stub_complete_io(num_outstanding);
5268 		num_children -= num_outstanding;
5269 	}
5270 	CU_ASSERT(g_io_done == true);
5271 
5272 	spdk_put_io_channel(ioch);
5273 	spdk_bdev_close(desc);
5274 	free_bdev(bdev);
5275 	spdk_bdev_finish(bdev_fini_cb, NULL);
5276 	poll_threads();
5277 }
5278 
5279 static void
5280 bdev_write_zeroes_split_test(void)
5281 {
5282 	struct spdk_bdev *bdev;
5283 	struct spdk_bdev_desc *desc = NULL;
5284 	struct spdk_io_channel *ioch;
5285 	struct spdk_bdev_channel *bdev_ch;
5286 	struct ut_expected_io *expected_io;
5287 	struct spdk_bdev_opts bdev_opts = {};
5288 	uint32_t i, num_outstanding;
5289 	uint64_t offset, num_blocks, max_write_zeroes_blocks, num_children;
5290 	int rc;
5291 
5292 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5293 	bdev_opts.bdev_io_pool_size = 512;
5294 	bdev_opts.bdev_io_cache_size = 64;
5295 	rc = spdk_bdev_set_opts(&bdev_opts);
5296 	CU_ASSERT(rc == 0);
5297 
5298 	spdk_bdev_initialize(bdev_init_cb, NULL);
5299 	bdev = allocate_bdev("bdev");
5300 
5301 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5302 	CU_ASSERT_EQUAL(rc, 0);
5303 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5304 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5305 	ioch = spdk_bdev_get_io_channel(desc);
5306 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5307 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5308 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5309 
5310 	fn_table.submit_request = stub_submit_request;
5311 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5312 
5313 	/* Case 1: First test the request won't be split */
5314 	num_blocks = 32;
5315 
5316 	g_io_done = false;
5317 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
5318 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5319 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5320 	CU_ASSERT_EQUAL(rc, 0);
5321 	CU_ASSERT(g_io_done == false);
5322 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5323 	stub_complete_io(1);
5324 	CU_ASSERT(g_io_done == true);
5325 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5326 
5327 	/* Case 2: Test the split with 2 children requests */
5328 	max_write_zeroes_blocks = 8;
5329 	bdev->max_write_zeroes = max_write_zeroes_blocks;
5330 	num_blocks = max_write_zeroes_blocks * 2;
5331 	offset = 0;
5332 
5333 	g_io_done = false;
5334 	for (i = 0; i < 2; i++) {
5335 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5336 						   0);
5337 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5338 		offset += max_write_zeroes_blocks;
5339 	}
5340 
5341 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5342 	CU_ASSERT_EQUAL(rc, 0);
5343 	CU_ASSERT(g_io_done == false);
5344 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5345 	stub_complete_io(2);
5346 	CU_ASSERT(g_io_done == true);
5347 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5348 
5349 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5350 	num_children = 15;
5351 	num_blocks = max_write_zeroes_blocks * num_children;
5352 	g_io_done = false;
5353 	offset = 0;
5354 	for (i = 0; i < num_children; i++) {
5355 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5356 						   0);
5357 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5358 		offset += max_write_zeroes_blocks;
5359 	}
5360 
5361 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5362 	CU_ASSERT_EQUAL(rc, 0);
5363 	CU_ASSERT(g_io_done == false);
5364 
5365 	while (num_children > 0) {
5366 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5367 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5368 		stub_complete_io(num_outstanding);
5369 		num_children -= num_outstanding;
5370 	}
5371 	CU_ASSERT(g_io_done == true);
5372 
5373 	spdk_put_io_channel(ioch);
5374 	spdk_bdev_close(desc);
5375 	free_bdev(bdev);
5376 	spdk_bdev_finish(bdev_fini_cb, NULL);
5377 	poll_threads();
5378 }
5379 
5380 static void
5381 bdev_set_options_test(void)
5382 {
5383 	struct spdk_bdev_opts bdev_opts = {};
5384 	int rc;
5385 
5386 	/* Case1: Do not set opts_size */
5387 	rc = spdk_bdev_set_opts(&bdev_opts);
5388 	CU_ASSERT(rc == -1);
5389 
5390 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5391 	bdev_opts.bdev_io_pool_size = 4;
5392 	bdev_opts.bdev_io_cache_size = 2;
5393 	bdev_opts.small_buf_pool_size = 4;
5394 
5395 	/* Case 2: Do not set valid small_buf_pool_size and large_buf_pool_size */
5396 	rc = spdk_bdev_set_opts(&bdev_opts);
5397 	CU_ASSERT(rc == -1);
5398 
5399 	/* Case 3: Do not set valid large_buf_pool_size */
5400 	bdev_opts.small_buf_pool_size = BUF_SMALL_POOL_SIZE;
5401 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE - 1;
5402 	rc = spdk_bdev_set_opts(&bdev_opts);
5403 	CU_ASSERT(rc == -1);
5404 
5405 	/* Case4: set valid large buf_pool_size */
5406 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE;
5407 	rc = spdk_bdev_set_opts(&bdev_opts);
5408 	CU_ASSERT(rc == 0);
5409 
5410 	/* Case5: Set different valid value for small and large buf pool */
5411 	bdev_opts.large_buf_pool_size = BUF_SMALL_POOL_SIZE + 3;
5412 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE + 3;
5413 	rc = spdk_bdev_set_opts(&bdev_opts);
5414 	CU_ASSERT(rc == 0);
5415 }
5416 
5417 static uint64_t
5418 get_ns_time(void)
5419 {
5420 	int rc;
5421 	struct timespec ts;
5422 
5423 	rc = clock_gettime(CLOCK_MONOTONIC, &ts);
5424 	CU_ASSERT(rc == 0);
5425 	return ts.tv_sec * 1000 * 1000 * 1000 + ts.tv_nsec;
5426 }
5427 
5428 static int
5429 rb_tree_get_height(struct spdk_bdev_name *bdev_name)
5430 {
5431 	int h1, h2;
5432 
5433 	if (bdev_name == NULL) {
5434 		return -1;
5435 	} else {
5436 		h1 = rb_tree_get_height(RB_LEFT(bdev_name, node));
5437 		h2 = rb_tree_get_height(RB_RIGHT(bdev_name, node));
5438 
5439 		return spdk_max(h1, h2) + 1;
5440 	}
5441 }
5442 
5443 static void
5444 bdev_multi_allocation(void)
5445 {
5446 	const int max_bdev_num = 1024 * 16;
5447 	char name[max_bdev_num][16];
5448 	char noexist_name[] = "invalid_bdev";
5449 	struct spdk_bdev *bdev[max_bdev_num];
5450 	int i, j;
5451 	uint64_t last_time;
5452 	int bdev_num;
5453 	int height;
5454 
5455 	for (j = 0; j < max_bdev_num; j++) {
5456 		snprintf(name[j], sizeof(name[j]), "bdev%d", j);
5457 	}
5458 
5459 	for (i = 0; i < 16; i++) {
5460 		last_time = get_ns_time();
5461 		bdev_num = 1024 * (i + 1);
5462 		for (j = 0; j < bdev_num; j++) {
5463 			bdev[j] = allocate_bdev(name[j]);
5464 			height = rb_tree_get_height(&bdev[j]->internal.bdev_name);
5465 			CU_ASSERT(height <= (int)(spdk_u32log2(2 * j + 2)));
5466 		}
5467 		SPDK_NOTICELOG("alloc bdev num %d takes %" PRIu64 " ms\n", bdev_num,
5468 			       (get_ns_time() - last_time) / 1000 / 1000);
5469 		for (j = 0; j < bdev_num; j++) {
5470 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) != NULL);
5471 		}
5472 		CU_ASSERT(spdk_bdev_get_by_name(noexist_name) == NULL);
5473 
5474 		for (j = 0; j < bdev_num; j++) {
5475 			free_bdev(bdev[j]);
5476 		}
5477 		for (j = 0; j < bdev_num; j++) {
5478 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) == NULL);
5479 		}
5480 	}
5481 }
5482 
5483 static struct spdk_memory_domain *g_bdev_memory_domain = (struct spdk_memory_domain *) 0xf00df00d;
5484 
5485 static int
5486 test_bdev_get_supported_dma_device_types_op(void *ctx, struct spdk_memory_domain **domains,
5487 		int array_size)
5488 {
5489 	if (array_size > 0 && domains) {
5490 		domains[0] = g_bdev_memory_domain;
5491 	}
5492 
5493 	return 1;
5494 }
5495 
5496 static void
5497 bdev_get_memory_domains(void)
5498 {
5499 	struct spdk_bdev_fn_table fn_table = {
5500 		.get_memory_domains = test_bdev_get_supported_dma_device_types_op
5501 	};
5502 	struct spdk_bdev bdev = { .fn_table = &fn_table };
5503 	struct spdk_memory_domain *domains[2] = {};
5504 	int rc;
5505 
5506 	/* bdev is NULL */
5507 	rc = spdk_bdev_get_memory_domains(NULL, domains, 2);
5508 	CU_ASSERT(rc == -EINVAL);
5509 
5510 	/* domains is NULL */
5511 	rc = spdk_bdev_get_memory_domains(&bdev, NULL, 2);
5512 	CU_ASSERT(rc == 1);
5513 
5514 	/* array size is 0 */
5515 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 0);
5516 	CU_ASSERT(rc == 1);
5517 
5518 	/* get_supported_dma_device_types op is set */
5519 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5520 	CU_ASSERT(rc == 1);
5521 	CU_ASSERT(domains[0] == g_bdev_memory_domain);
5522 
5523 	/* get_supported_dma_device_types op is not set */
5524 	fn_table.get_memory_domains = NULL;
5525 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5526 	CU_ASSERT(rc == 0);
5527 }
5528 
5529 static void
5530 _bdev_io_ext(struct spdk_bdev_ext_io_opts *ext_io_opts)
5531 {
5532 	struct spdk_bdev *bdev;
5533 	struct spdk_bdev_desc *desc = NULL;
5534 	struct spdk_io_channel *io_ch;
5535 	char io_buf[512];
5536 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5537 	struct ut_expected_io *expected_io;
5538 	int rc;
5539 
5540 	spdk_bdev_initialize(bdev_init_cb, NULL);
5541 
5542 	bdev = allocate_bdev("bdev0");
5543 	bdev->md_interleave = false;
5544 	bdev->md_len = 8;
5545 
5546 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5547 	CU_ASSERT(rc == 0);
5548 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5549 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5550 	io_ch = spdk_bdev_get_io_channel(desc);
5551 	CU_ASSERT(io_ch != NULL);
5552 
5553 	/* read */
5554 	g_io_done = false;
5555 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5556 	if (ext_io_opts) {
5557 		expected_io->md_buf = ext_io_opts->metadata;
5558 		expected_io->ext_io_opts = ext_io_opts;
5559 	}
5560 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5561 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5562 
5563 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5564 
5565 	CU_ASSERT(rc == 0);
5566 	CU_ASSERT(g_io_done == false);
5567 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5568 	stub_complete_io(1);
5569 	CU_ASSERT(g_io_done == true);
5570 
5571 	/* write */
5572 	g_io_done = false;
5573 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5574 	if (ext_io_opts) {
5575 		expected_io->md_buf = ext_io_opts->metadata;
5576 		expected_io->ext_io_opts = ext_io_opts;
5577 	}
5578 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5579 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5580 
5581 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5582 
5583 	CU_ASSERT(rc == 0);
5584 	CU_ASSERT(g_io_done == false);
5585 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5586 	stub_complete_io(1);
5587 	CU_ASSERT(g_io_done == true);
5588 
5589 	spdk_put_io_channel(io_ch);
5590 	spdk_bdev_close(desc);
5591 	free_bdev(bdev);
5592 	spdk_bdev_finish(bdev_fini_cb, NULL);
5593 	poll_threads();
5594 
5595 }
5596 
5597 static void
5598 bdev_io_ext(void)
5599 {
5600 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5601 		.metadata = (void *)0xFF000000,
5602 		.size = sizeof(ext_io_opts)
5603 	};
5604 
5605 	_bdev_io_ext(&ext_io_opts);
5606 }
5607 
5608 static void
5609 bdev_io_ext_no_opts(void)
5610 {
5611 	_bdev_io_ext(NULL);
5612 }
5613 
5614 static void
5615 bdev_io_ext_invalid_opts(void)
5616 {
5617 	struct spdk_bdev *bdev;
5618 	struct spdk_bdev_desc *desc = NULL;
5619 	struct spdk_io_channel *io_ch;
5620 	char io_buf[512];
5621 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5622 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5623 		.metadata = (void *)0xFF000000,
5624 		.size = sizeof(ext_io_opts)
5625 	};
5626 	int rc;
5627 
5628 	spdk_bdev_initialize(bdev_init_cb, NULL);
5629 
5630 	bdev = allocate_bdev("bdev0");
5631 	bdev->md_interleave = false;
5632 	bdev->md_len = 8;
5633 
5634 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5635 	CU_ASSERT(rc == 0);
5636 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5637 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5638 	io_ch = spdk_bdev_get_io_channel(desc);
5639 	CU_ASSERT(io_ch != NULL);
5640 
5641 	/* Test invalid ext_opts size */
5642 	ext_io_opts.size = 0;
5643 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5644 	CU_ASSERT(rc == -EINVAL);
5645 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5646 	CU_ASSERT(rc == -EINVAL);
5647 
5648 	ext_io_opts.size = sizeof(ext_io_opts) * 2;
5649 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5650 	CU_ASSERT(rc == -EINVAL);
5651 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5652 	CU_ASSERT(rc == -EINVAL);
5653 
5654 	ext_io_opts.size = offsetof(struct spdk_bdev_ext_io_opts, metadata) +
5655 			   sizeof(ext_io_opts.metadata) - 1;
5656 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5657 	CU_ASSERT(rc == -EINVAL);
5658 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5659 	CU_ASSERT(rc == -EINVAL);
5660 
5661 	spdk_put_io_channel(io_ch);
5662 	spdk_bdev_close(desc);
5663 	free_bdev(bdev);
5664 	spdk_bdev_finish(bdev_fini_cb, NULL);
5665 	poll_threads();
5666 }
5667 
5668 static void
5669 bdev_io_ext_split(void)
5670 {
5671 	struct spdk_bdev *bdev;
5672 	struct spdk_bdev_desc *desc = NULL;
5673 	struct spdk_io_channel *io_ch;
5674 	char io_buf[512];
5675 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5676 	struct ut_expected_io *expected_io;
5677 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5678 		.metadata = (void *)0xFF000000,
5679 		.size = sizeof(ext_io_opts)
5680 	};
5681 	int rc;
5682 
5683 	spdk_bdev_initialize(bdev_init_cb, NULL);
5684 
5685 	bdev = allocate_bdev("bdev0");
5686 	bdev->md_interleave = false;
5687 	bdev->md_len = 8;
5688 
5689 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5690 	CU_ASSERT(rc == 0);
5691 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5692 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5693 	io_ch = spdk_bdev_get_io_channel(desc);
5694 	CU_ASSERT(io_ch != NULL);
5695 
5696 	/* Check that IO request with ext_opts and metadata is split correctly
5697 	 * Offset 14, length 8, payload 0xF000
5698 	 *  Child - Offset 14, length 2, payload 0xF000
5699 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5700 	 */
5701 	bdev->optimal_io_boundary = 16;
5702 	bdev->split_on_optimal_io_boundary = true;
5703 	bdev->md_interleave = false;
5704 	bdev->md_len = 8;
5705 
5706 	iov.iov_base = (void *)0xF000;
5707 	iov.iov_len = 4096;
5708 	memset(&ext_io_opts, 0, sizeof(ext_io_opts));
5709 	ext_io_opts.metadata = (void *)0xFF000000;
5710 	ext_io_opts.size = sizeof(ext_io_opts);
5711 	g_io_done = false;
5712 
5713 	/* read */
5714 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
5715 	expected_io->md_buf = ext_io_opts.metadata;
5716 	expected_io->ext_io_opts = &ext_io_opts;
5717 	expected_io->copy_opts = true;
5718 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5719 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5720 
5721 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
5722 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5723 	expected_io->ext_io_opts = &ext_io_opts;
5724 	expected_io->copy_opts = true;
5725 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5726 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5727 
5728 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5729 	CU_ASSERT(rc == 0);
5730 	CU_ASSERT(g_io_done == false);
5731 
5732 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5733 	stub_complete_io(2);
5734 	CU_ASSERT(g_io_done == true);
5735 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5736 
5737 	/* write */
5738 	g_io_done = false;
5739 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
5740 	expected_io->md_buf = ext_io_opts.metadata;
5741 	expected_io->ext_io_opts = &ext_io_opts;
5742 	expected_io->copy_opts = true;
5743 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5744 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5745 
5746 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 6, 1);
5747 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5748 	expected_io->ext_io_opts = &ext_io_opts;
5749 	expected_io->copy_opts = true;
5750 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5751 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5752 
5753 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5754 	CU_ASSERT(rc == 0);
5755 	CU_ASSERT(g_io_done == false);
5756 
5757 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5758 	stub_complete_io(2);
5759 	CU_ASSERT(g_io_done == true);
5760 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5761 
5762 	spdk_put_io_channel(io_ch);
5763 	spdk_bdev_close(desc);
5764 	free_bdev(bdev);
5765 	spdk_bdev_finish(bdev_fini_cb, NULL);
5766 	poll_threads();
5767 }
5768 
5769 static void
5770 bdev_io_ext_bounce_buffer(void)
5771 {
5772 	struct spdk_bdev *bdev;
5773 	struct spdk_bdev_desc *desc = NULL;
5774 	struct spdk_io_channel *io_ch;
5775 	char io_buf[512];
5776 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5777 	struct ut_expected_io *expected_io;
5778 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5779 		.metadata = (void *)0xFF000000,
5780 		.size = sizeof(ext_io_opts)
5781 	};
5782 	int rc;
5783 
5784 	spdk_bdev_initialize(bdev_init_cb, NULL);
5785 
5786 	bdev = allocate_bdev("bdev0");
5787 	bdev->md_interleave = false;
5788 	bdev->md_len = 8;
5789 
5790 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5791 	CU_ASSERT(rc == 0);
5792 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5793 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5794 	io_ch = spdk_bdev_get_io_channel(desc);
5795 	CU_ASSERT(io_ch != NULL);
5796 
5797 	/* Verify data pull/push
5798 	 * bdev doesn't support memory domains, so buffers from bdev memory pool will be used */
5799 	ext_io_opts.memory_domain = (struct spdk_memory_domain *)0xdeadbeef;
5800 
5801 	/* read */
5802 	g_io_done = false;
5803 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5804 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5805 	expected_io->ext_io_opts = &ext_io_opts;
5806 	expected_io->copy_opts = true;
5807 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5808 
5809 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5810 
5811 	CU_ASSERT(rc == 0);
5812 	CU_ASSERT(g_io_done == false);
5813 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5814 	stub_complete_io(1);
5815 	CU_ASSERT(g_memory_domain_push_data_called == true);
5816 	CU_ASSERT(g_io_done == true);
5817 
5818 	/* write */
5819 	g_io_done = false;
5820 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5821 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5822 	expected_io->ext_io_opts = &ext_io_opts;
5823 	expected_io->copy_opts = true;
5824 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5825 
5826 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5827 
5828 	CU_ASSERT(rc == 0);
5829 	CU_ASSERT(g_memory_domain_pull_data_called == true);
5830 	CU_ASSERT(g_io_done == false);
5831 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5832 	stub_complete_io(1);
5833 	CU_ASSERT(g_io_done == true);
5834 
5835 	spdk_put_io_channel(io_ch);
5836 	spdk_bdev_close(desc);
5837 	free_bdev(bdev);
5838 	spdk_bdev_finish(bdev_fini_cb, NULL);
5839 	poll_threads();
5840 }
5841 
5842 static void
5843 bdev_register_uuid_alias(void)
5844 {
5845 	struct spdk_bdev *bdev, *second;
5846 	char uuid[SPDK_UUID_STRING_LEN];
5847 	int rc;
5848 
5849 	spdk_bdev_initialize(bdev_init_cb, NULL);
5850 	bdev = allocate_bdev("bdev0");
5851 
5852 	/* Make sure an UUID was generated  */
5853 	CU_ASSERT_FALSE(spdk_mem_all_zero(&bdev->uuid, sizeof(bdev->uuid)));
5854 
5855 	/* Check that an UUID alias was registered */
5856 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5857 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5858 
5859 	/* Unregister the bdev */
5860 	spdk_bdev_unregister(bdev, NULL, NULL);
5861 	poll_threads();
5862 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5863 
5864 	/* Check the same, but this time register the bdev with non-zero UUID */
5865 	rc = spdk_bdev_register(bdev);
5866 	CU_ASSERT_EQUAL(rc, 0);
5867 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5868 
5869 	/* Unregister the bdev */
5870 	spdk_bdev_unregister(bdev, NULL, NULL);
5871 	poll_threads();
5872 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5873 
5874 	/* Regiser the bdev using UUID as the name */
5875 	bdev->name = uuid;
5876 	rc = spdk_bdev_register(bdev);
5877 	CU_ASSERT_EQUAL(rc, 0);
5878 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5879 
5880 	/* Unregister the bdev */
5881 	spdk_bdev_unregister(bdev, NULL, NULL);
5882 	poll_threads();
5883 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5884 
5885 	/* Check that it's not possible to register two bdevs with the same UUIDs */
5886 	bdev->name = "bdev0";
5887 	second = allocate_bdev("bdev1");
5888 	spdk_uuid_copy(&bdev->uuid, &second->uuid);
5889 	rc = spdk_bdev_register(bdev);
5890 	CU_ASSERT_EQUAL(rc, -EEXIST);
5891 
5892 	/* Regenerate the UUID and re-check */
5893 	spdk_uuid_generate(&bdev->uuid);
5894 	rc = spdk_bdev_register(bdev);
5895 	CU_ASSERT_EQUAL(rc, 0);
5896 
5897 	/* And check that both bdevs can be retrieved through their UUIDs */
5898 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5899 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5900 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &second->uuid);
5901 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), second);
5902 
5903 	free_bdev(second);
5904 	free_bdev(bdev);
5905 	spdk_bdev_finish(bdev_fini_cb, NULL);
5906 	poll_threads();
5907 }
5908 
5909 static void
5910 bdev_unregister_by_name(void)
5911 {
5912 	struct spdk_bdev *bdev;
5913 	int rc;
5914 
5915 	bdev = allocate_bdev("bdev");
5916 
5917 	g_event_type1 = 0xFF;
5918 	g_unregister_arg = NULL;
5919 	g_unregister_rc = -1;
5920 
5921 	rc = spdk_bdev_unregister_by_name("bdev1", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5922 	CU_ASSERT(rc == -ENODEV);
5923 
5924 	rc = spdk_bdev_unregister_by_name("bdev", &vbdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5925 	CU_ASSERT(rc == -ENODEV);
5926 
5927 	rc = spdk_bdev_unregister_by_name("bdev", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5928 	CU_ASSERT(rc == 0);
5929 
5930 	/* Check that unregister callback is delayed */
5931 	CU_ASSERT(g_unregister_arg == NULL);
5932 	CU_ASSERT(g_unregister_rc == -1);
5933 
5934 	poll_threads();
5935 
5936 	/* Event callback shall not be issued because device was closed */
5937 	CU_ASSERT(g_event_type1 == 0xFF);
5938 	/* Unregister callback is issued */
5939 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
5940 	CU_ASSERT(g_unregister_rc == 0);
5941 
5942 	free_bdev(bdev);
5943 }
5944 
5945 static int
5946 count_bdevs(void *ctx, struct spdk_bdev *bdev)
5947 {
5948 	int *count = ctx;
5949 
5950 	(*count)++;
5951 
5952 	return 0;
5953 }
5954 
5955 static void
5956 for_each_bdev_test(void)
5957 {
5958 	struct spdk_bdev *bdev[8];
5959 	int rc, count;
5960 
5961 	bdev[0] = allocate_bdev("bdev0");
5962 	bdev[0]->internal.status = SPDK_BDEV_STATUS_REMOVING;
5963 
5964 	bdev[1] = allocate_bdev("bdev1");
5965 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
5966 	CU_ASSERT(rc == 0);
5967 
5968 	bdev[2] = allocate_bdev("bdev2");
5969 
5970 	bdev[3] = allocate_bdev("bdev3");
5971 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
5972 	CU_ASSERT(rc == 0);
5973 
5974 	bdev[4] = allocate_bdev("bdev4");
5975 
5976 	bdev[5] = allocate_bdev("bdev5");
5977 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
5978 	CU_ASSERT(rc == 0);
5979 
5980 	bdev[6] = allocate_bdev("bdev6");
5981 
5982 	bdev[7] = allocate_bdev("bdev7");
5983 
5984 	count = 0;
5985 	rc = spdk_for_each_bdev(&count, count_bdevs);
5986 	CU_ASSERT(rc == 0);
5987 	CU_ASSERT(count == 7);
5988 
5989 	count = 0;
5990 	rc = spdk_for_each_bdev_leaf(&count, count_bdevs);
5991 	CU_ASSERT(rc == 0);
5992 	CU_ASSERT(count == 4);
5993 
5994 	bdev[0]->internal.status = SPDK_BDEV_STATUS_READY;
5995 	free_bdev(bdev[0]);
5996 	free_bdev(bdev[1]);
5997 	free_bdev(bdev[2]);
5998 	free_bdev(bdev[3]);
5999 	free_bdev(bdev[4]);
6000 	free_bdev(bdev[5]);
6001 	free_bdev(bdev[6]);
6002 	free_bdev(bdev[7]);
6003 }
6004 
6005 static void
6006 bdev_seek_test(void)
6007 {
6008 	struct spdk_bdev *bdev;
6009 	struct spdk_bdev_desc *desc = NULL;
6010 	struct spdk_io_channel *io_ch;
6011 	int rc;
6012 
6013 	spdk_bdev_initialize(bdev_init_cb, NULL);
6014 	poll_threads();
6015 
6016 	bdev = allocate_bdev("bdev0");
6017 
6018 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6019 	CU_ASSERT(rc == 0);
6020 	poll_threads();
6021 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6022 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6023 	io_ch = spdk_bdev_get_io_channel(desc);
6024 	CU_ASSERT(io_ch != NULL);
6025 
6026 	/* Seek data not supported */
6027 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, false);
6028 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
6029 	CU_ASSERT(rc == 0);
6030 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6031 	poll_threads();
6032 	CU_ASSERT(g_seek_offset == 0);
6033 
6034 	/* Seek hole not supported */
6035 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, false);
6036 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
6037 	CU_ASSERT(rc == 0);
6038 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6039 	poll_threads();
6040 	CU_ASSERT(g_seek_offset == UINT64_MAX);
6041 
6042 	/* Seek data supported */
6043 	g_seek_data_offset = 12345;
6044 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, true);
6045 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
6046 	CU_ASSERT(rc == 0);
6047 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6048 	stub_complete_io(1);
6049 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6050 	CU_ASSERT(g_seek_offset == 12345);
6051 
6052 	/* Seek hole supported */
6053 	g_seek_hole_offset = 67890;
6054 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, true);
6055 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
6056 	CU_ASSERT(rc == 0);
6057 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6058 	stub_complete_io(1);
6059 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6060 	CU_ASSERT(g_seek_offset == 67890);
6061 
6062 	spdk_put_io_channel(io_ch);
6063 	spdk_bdev_close(desc);
6064 	free_bdev(bdev);
6065 	spdk_bdev_finish(bdev_fini_cb, NULL);
6066 	poll_threads();
6067 }
6068 
6069 static void
6070 bdev_copy(void)
6071 {
6072 	struct spdk_bdev *bdev;
6073 	struct spdk_bdev_desc *desc = NULL;
6074 	struct spdk_io_channel *ioch;
6075 	struct ut_expected_io *expected_io;
6076 	uint64_t src_offset, num_blocks;
6077 	uint32_t num_completed;
6078 	int rc;
6079 
6080 	spdk_bdev_initialize(bdev_init_cb, NULL);
6081 	bdev = allocate_bdev("bdev");
6082 
6083 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6084 	CU_ASSERT_EQUAL(rc, 0);
6085 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6086 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6087 	ioch = spdk_bdev_get_io_channel(desc);
6088 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6089 
6090 	fn_table.submit_request = stub_submit_request;
6091 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6092 
6093 	/* First test that if the bdev supports copy, the request won't be split */
6094 	bdev->md_len = 0;
6095 	bdev->blocklen = 4096;
6096 	num_blocks = 512;
6097 	src_offset = bdev->blockcnt - num_blocks;
6098 
6099 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6100 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6101 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6102 	CU_ASSERT_EQUAL(rc, 0);
6103 	num_completed = stub_complete_io(1);
6104 	CU_ASSERT_EQUAL(num_completed, 1);
6105 
6106 	/* Check that if copy is not supported it'll fail */
6107 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false);
6108 
6109 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6110 	CU_ASSERT_EQUAL(rc, -ENOTSUP);
6111 
6112 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true);
6113 	spdk_put_io_channel(ioch);
6114 	spdk_bdev_close(desc);
6115 	free_bdev(bdev);
6116 	spdk_bdev_finish(bdev_fini_cb, NULL);
6117 	poll_threads();
6118 }
6119 
6120 static void
6121 bdev_copy_split_test(void)
6122 {
6123 	struct spdk_bdev *bdev;
6124 	struct spdk_bdev_desc *desc = NULL;
6125 	struct spdk_io_channel *ioch;
6126 	struct spdk_bdev_channel *bdev_ch;
6127 	struct ut_expected_io *expected_io;
6128 	struct spdk_bdev_opts bdev_opts = {};
6129 	uint32_t i, num_outstanding;
6130 	uint64_t offset, src_offset, num_blocks, max_copy_blocks, num_children;
6131 	int rc;
6132 
6133 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
6134 	bdev_opts.bdev_io_pool_size = 512;
6135 	bdev_opts.bdev_io_cache_size = 64;
6136 	rc = spdk_bdev_set_opts(&bdev_opts);
6137 	CU_ASSERT(rc == 0);
6138 
6139 	spdk_bdev_initialize(bdev_init_cb, NULL);
6140 	bdev = allocate_bdev("bdev");
6141 
6142 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6143 	CU_ASSERT_EQUAL(rc, 0);
6144 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6145 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6146 	ioch = spdk_bdev_get_io_channel(desc);
6147 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6148 	bdev_ch = spdk_io_channel_get_ctx(ioch);
6149 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
6150 
6151 	fn_table.submit_request = stub_submit_request;
6152 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6153 
6154 	/* Case 1: First test the request won't be split */
6155 	num_blocks = 32;
6156 	src_offset = bdev->blockcnt - num_blocks;
6157 
6158 	g_io_done = false;
6159 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6160 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6161 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6162 	CU_ASSERT_EQUAL(rc, 0);
6163 	CU_ASSERT(g_io_done == false);
6164 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6165 	stub_complete_io(1);
6166 	CU_ASSERT(g_io_done == true);
6167 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6168 
6169 	/* Case 2: Test the split with 2 children requests */
6170 	max_copy_blocks = 8;
6171 	bdev->max_copy = max_copy_blocks;
6172 	num_children = 2;
6173 	num_blocks = max_copy_blocks * num_children;
6174 	offset = 0;
6175 	src_offset = bdev->blockcnt - num_blocks;
6176 
6177 	g_io_done = false;
6178 	for (i = 0; i < num_children; i++) {
6179 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6180 							src_offset + offset, max_copy_blocks);
6181 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6182 		offset += max_copy_blocks;
6183 	}
6184 
6185 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6186 	CU_ASSERT_EQUAL(rc, 0);
6187 	CU_ASSERT(g_io_done == false);
6188 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_children);
6189 	stub_complete_io(num_children);
6190 	CU_ASSERT(g_io_done == true);
6191 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6192 
6193 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
6194 	num_children = 15;
6195 	num_blocks = max_copy_blocks * num_children;
6196 	offset = 0;
6197 	src_offset = bdev->blockcnt - num_blocks;
6198 
6199 	g_io_done = false;
6200 	for (i = 0; i < num_children; i++) {
6201 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6202 							src_offset + offset, max_copy_blocks);
6203 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6204 		offset += max_copy_blocks;
6205 	}
6206 
6207 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6208 	CU_ASSERT_EQUAL(rc, 0);
6209 	CU_ASSERT(g_io_done == false);
6210 
6211 	while (num_children > 0) {
6212 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_COPY_REQS);
6213 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6214 		stub_complete_io(num_outstanding);
6215 		num_children -= num_outstanding;
6216 	}
6217 	CU_ASSERT(g_io_done == true);
6218 
6219 	spdk_put_io_channel(ioch);
6220 	spdk_bdev_close(desc);
6221 	free_bdev(bdev);
6222 	spdk_bdev_finish(bdev_fini_cb, NULL);
6223 	poll_threads();
6224 }
6225 
6226 int
6227 main(int argc, char **argv)
6228 {
6229 	CU_pSuite		suite = NULL;
6230 	unsigned int		num_failures;
6231 
6232 	CU_set_error_action(CUEA_ABORT);
6233 	CU_initialize_registry();
6234 
6235 	suite = CU_add_suite("bdev", null_init, null_clean);
6236 
6237 	CU_ADD_TEST(suite, bytes_to_blocks_test);
6238 	CU_ADD_TEST(suite, num_blocks_test);
6239 	CU_ADD_TEST(suite, io_valid_test);
6240 	CU_ADD_TEST(suite, open_write_test);
6241 	CU_ADD_TEST(suite, claim_test);
6242 	CU_ADD_TEST(suite, alias_add_del_test);
6243 	CU_ADD_TEST(suite, get_device_stat_test);
6244 	CU_ADD_TEST(suite, bdev_io_types_test);
6245 	CU_ADD_TEST(suite, bdev_io_wait_test);
6246 	CU_ADD_TEST(suite, bdev_io_spans_split_test);
6247 	CU_ADD_TEST(suite, bdev_io_boundary_split_test);
6248 	CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test);
6249 	CU_ADD_TEST(suite, bdev_io_mix_split_test);
6250 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
6251 	CU_ADD_TEST(suite, bdev_io_write_unit_split_test);
6252 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
6253 	CU_ADD_TEST(suite, bdev_io_alignment);
6254 	CU_ADD_TEST(suite, bdev_histograms);
6255 	CU_ADD_TEST(suite, bdev_write_zeroes);
6256 	CU_ADD_TEST(suite, bdev_compare_and_write);
6257 	CU_ADD_TEST(suite, bdev_compare);
6258 	CU_ADD_TEST(suite, bdev_compare_emulated);
6259 	CU_ADD_TEST(suite, bdev_zcopy_write);
6260 	CU_ADD_TEST(suite, bdev_zcopy_read);
6261 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
6262 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
6263 	CU_ADD_TEST(suite, bdev_open_ext);
6264 	CU_ADD_TEST(suite, bdev_open_ext_unregister);
6265 	CU_ADD_TEST(suite, bdev_set_io_timeout);
6266 	CU_ADD_TEST(suite, bdev_set_qd_sampling);
6267 	CU_ADD_TEST(suite, lba_range_overlap);
6268 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
6269 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
6270 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
6271 	CU_ADD_TEST(suite, bdev_io_abort);
6272 	CU_ADD_TEST(suite, bdev_unmap);
6273 	CU_ADD_TEST(suite, bdev_write_zeroes_split_test);
6274 	CU_ADD_TEST(suite, bdev_set_options_test);
6275 	CU_ADD_TEST(suite, bdev_multi_allocation);
6276 	CU_ADD_TEST(suite, bdev_get_memory_domains);
6277 	CU_ADD_TEST(suite, bdev_io_ext);
6278 	CU_ADD_TEST(suite, bdev_io_ext_no_opts);
6279 	CU_ADD_TEST(suite, bdev_io_ext_invalid_opts);
6280 	CU_ADD_TEST(suite, bdev_io_ext_split);
6281 	CU_ADD_TEST(suite, bdev_io_ext_bounce_buffer);
6282 	CU_ADD_TEST(suite, bdev_register_uuid_alias);
6283 	CU_ADD_TEST(suite, bdev_unregister_by_name);
6284 	CU_ADD_TEST(suite, for_each_bdev_test);
6285 	CU_ADD_TEST(suite, bdev_seek_test);
6286 	CU_ADD_TEST(suite, bdev_copy);
6287 	CU_ADD_TEST(suite, bdev_copy_split_test);
6288 
6289 	allocate_cores(1);
6290 	allocate_threads(1);
6291 	set_thread(0);
6292 
6293 	CU_basic_set_mode(CU_BRM_VERBOSE);
6294 	CU_basic_run_tests();
6295 	num_failures = CU_get_number_of_failures();
6296 	CU_cleanup_registry();
6297 
6298 	free_threads();
6299 	free_cores();
6300 
6301 	return num_failures;
6302 }
6303