xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision 60982c759db49b4f4579f16e3b24df0725ba4b94)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2017 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk_internal/cunit.h"
8 
9 #include "common/lib/ut_multithread.c"
10 #include "unit/lib/json_mock.c"
11 
12 #include "spdk/config.h"
13 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
14 #undef SPDK_CONFIG_VTUNE
15 
16 #include "bdev/bdev.c"
17 
18 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
19 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
20 DEFINE_STUB(spdk_memory_domain_get_dma_device_id, const char *, (struct spdk_memory_domain *domain),
21 	    "test_domain");
22 DEFINE_STUB(spdk_memory_domain_get_dma_device_type, enum spdk_dma_device_type,
23 	    (struct spdk_memory_domain *domain), 0);
24 DEFINE_STUB_V(spdk_accel_sequence_finish,
25 	      (struct spdk_accel_sequence *seq, spdk_accel_completion_cb cb_fn, void *cb_arg));
26 DEFINE_STUB_V(spdk_accel_sequence_abort, (struct spdk_accel_sequence *seq));
27 DEFINE_STUB_V(spdk_accel_sequence_reverse, (struct spdk_accel_sequence *seq));
28 DEFINE_STUB(spdk_accel_append_copy, int,
29 	    (struct spdk_accel_sequence **seq, struct spdk_io_channel *ch, struct iovec *dst_iovs,
30 	     uint32_t dst_iovcnt, struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
31 	     struct iovec *src_iovs, uint32_t src_iovcnt, struct spdk_memory_domain *src_domain,
32 	     void *src_domain_ctx, int flags, spdk_accel_step_cb cb_fn, void *cb_arg), 0);
33 DEFINE_STUB(spdk_accel_get_memory_domain, struct spdk_memory_domain *, (void), NULL);
34 
35 static bool g_memory_domain_pull_data_called;
36 static bool g_memory_domain_push_data_called;
37 static int g_accel_io_device;
38 
39 DEFINE_RETURN_MOCK(spdk_memory_domain_pull_data, int);
40 int
41 spdk_memory_domain_pull_data(struct spdk_memory_domain *src_domain, void *src_domain_ctx,
42 			     struct iovec *src_iov, uint32_t src_iov_cnt, struct iovec *dst_iov, uint32_t dst_iov_cnt,
43 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
44 {
45 	g_memory_domain_pull_data_called = true;
46 	HANDLE_RETURN_MOCK(spdk_memory_domain_pull_data);
47 	cpl_cb(cpl_cb_arg, 0);
48 	return 0;
49 }
50 
51 DEFINE_RETURN_MOCK(spdk_memory_domain_push_data, int);
52 int
53 spdk_memory_domain_push_data(struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
54 			     struct iovec *dst_iov, uint32_t dst_iovcnt, struct iovec *src_iov, uint32_t src_iovcnt,
55 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
56 {
57 	g_memory_domain_push_data_called = true;
58 	HANDLE_RETURN_MOCK(spdk_memory_domain_push_data);
59 	cpl_cb(cpl_cb_arg, 0);
60 	return 0;
61 }
62 
63 struct spdk_io_channel *
64 spdk_accel_get_io_channel(void)
65 {
66 	return spdk_get_io_channel(&g_accel_io_device);
67 }
68 
69 int g_status;
70 int g_count;
71 enum spdk_bdev_event_type g_event_type1;
72 enum spdk_bdev_event_type g_event_type2;
73 enum spdk_bdev_event_type g_event_type3;
74 enum spdk_bdev_event_type g_event_type4;
75 struct spdk_histogram_data *g_histogram;
76 void *g_unregister_arg;
77 int g_unregister_rc;
78 
79 void
80 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
81 			 int *sc, int *sk, int *asc, int *ascq)
82 {
83 }
84 
85 static int
86 ut_accel_ch_create_cb(void *io_device, void *ctx)
87 {
88 	return 0;
89 }
90 
91 static void
92 ut_accel_ch_destroy_cb(void *io_device, void *ctx)
93 {
94 }
95 
96 static int
97 ut_bdev_setup(void)
98 {
99 	spdk_io_device_register(&g_accel_io_device, ut_accel_ch_create_cb,
100 				ut_accel_ch_destroy_cb, 0, NULL);
101 	return 0;
102 }
103 
104 static int
105 ut_bdev_teardown(void)
106 {
107 	spdk_io_device_unregister(&g_accel_io_device, NULL);
108 
109 	return 0;
110 }
111 
112 static int
113 stub_destruct(void *ctx)
114 {
115 	return 0;
116 }
117 
118 struct ut_expected_io {
119 	uint8_t				type;
120 	uint64_t			offset;
121 	uint64_t			src_offset;
122 	uint64_t			length;
123 	int				iovcnt;
124 	struct iovec			iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
125 	void				*md_buf;
126 	TAILQ_ENTRY(ut_expected_io)	link;
127 };
128 
129 struct bdev_ut_channel {
130 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
131 	uint32_t			outstanding_io_count;
132 	TAILQ_HEAD(, ut_expected_io)	expected_io;
133 };
134 
135 static bool g_io_done;
136 static struct spdk_bdev_io *g_bdev_io;
137 static enum spdk_bdev_io_status g_io_status;
138 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
139 static uint32_t g_bdev_ut_io_device;
140 static struct bdev_ut_channel *g_bdev_ut_channel;
141 static void *g_compare_read_buf;
142 static uint32_t g_compare_read_buf_len;
143 static void *g_compare_write_buf;
144 static uint32_t g_compare_write_buf_len;
145 static void *g_compare_md_buf;
146 static bool g_abort_done;
147 static enum spdk_bdev_io_status g_abort_status;
148 static void *g_zcopy_read_buf;
149 static uint32_t g_zcopy_read_buf_len;
150 static void *g_zcopy_write_buf;
151 static uint32_t g_zcopy_write_buf_len;
152 static struct spdk_bdev_io *g_zcopy_bdev_io;
153 static uint64_t g_seek_data_offset;
154 static uint64_t g_seek_hole_offset;
155 static uint64_t g_seek_offset;
156 
157 static struct ut_expected_io *
158 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
159 {
160 	struct ut_expected_io *expected_io;
161 
162 	expected_io = calloc(1, sizeof(*expected_io));
163 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
164 
165 	expected_io->type = type;
166 	expected_io->offset = offset;
167 	expected_io->length = length;
168 	expected_io->iovcnt = iovcnt;
169 
170 	return expected_io;
171 }
172 
173 static struct ut_expected_io *
174 ut_alloc_expected_copy_io(uint8_t type, uint64_t offset, uint64_t src_offset, uint64_t length)
175 {
176 	struct ut_expected_io *expected_io;
177 
178 	expected_io = calloc(1, sizeof(*expected_io));
179 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
180 
181 	expected_io->type = type;
182 	expected_io->offset = offset;
183 	expected_io->src_offset = src_offset;
184 	expected_io->length = length;
185 
186 	return expected_io;
187 }
188 
189 static void
190 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
191 {
192 	expected_io->iov[pos].iov_base = base;
193 	expected_io->iov[pos].iov_len = len;
194 }
195 
196 static void
197 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
198 {
199 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
200 	struct ut_expected_io *expected_io;
201 	struct iovec *iov, *expected_iov;
202 	struct spdk_bdev_io *bio_to_abort;
203 	int i;
204 
205 	g_bdev_io = bdev_io;
206 
207 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
208 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
209 
210 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
211 		CU_ASSERT(g_compare_read_buf_len == len);
212 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
213 		if (bdev_io->bdev->md_len && bdev_io->u.bdev.md_buf && g_compare_md_buf) {
214 			memcpy(bdev_io->u.bdev.md_buf, g_compare_md_buf,
215 			       bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks);
216 		}
217 	}
218 
219 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
220 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
221 
222 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
223 		CU_ASSERT(g_compare_write_buf_len == len);
224 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
225 	}
226 
227 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
228 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
229 
230 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
231 		CU_ASSERT(g_compare_read_buf_len == len);
232 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
233 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
234 		}
235 		if (bdev_io->u.bdev.md_buf &&
236 		    memcmp(bdev_io->u.bdev.md_buf, g_compare_md_buf,
237 			   bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks)) {
238 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
239 		}
240 	}
241 
242 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
243 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
244 			TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
245 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
246 					TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
247 					ch->outstanding_io_count--;
248 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
249 					break;
250 				}
251 			}
252 		}
253 	}
254 
255 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) {
256 		if (bdev_io->u.bdev.zcopy.start) {
257 			g_zcopy_bdev_io = bdev_io;
258 			if (bdev_io->u.bdev.zcopy.populate) {
259 				/* Start of a read */
260 				CU_ASSERT(g_zcopy_read_buf != NULL);
261 				CU_ASSERT(g_zcopy_read_buf_len > 0);
262 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_read_buf;
263 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_read_buf_len;
264 				bdev_io->u.bdev.iovcnt = 1;
265 			} else {
266 				/* Start of a write */
267 				CU_ASSERT(g_zcopy_write_buf != NULL);
268 				CU_ASSERT(g_zcopy_write_buf_len > 0);
269 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_write_buf;
270 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_write_buf_len;
271 				bdev_io->u.bdev.iovcnt = 1;
272 			}
273 		} else {
274 			if (bdev_io->u.bdev.zcopy.commit) {
275 				/* End of write */
276 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_write_buf);
277 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_write_buf_len);
278 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
279 				g_zcopy_write_buf = NULL;
280 				g_zcopy_write_buf_len = 0;
281 			} else {
282 				/* End of read */
283 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_read_buf);
284 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_read_buf_len);
285 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
286 				g_zcopy_read_buf = NULL;
287 				g_zcopy_read_buf_len = 0;
288 			}
289 		}
290 	}
291 
292 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_DATA) {
293 		bdev_io->u.bdev.seek.offset = g_seek_data_offset;
294 	}
295 
296 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_HOLE) {
297 		bdev_io->u.bdev.seek.offset = g_seek_hole_offset;
298 	}
299 
300 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
301 	ch->outstanding_io_count++;
302 
303 	expected_io = TAILQ_FIRST(&ch->expected_io);
304 	if (expected_io == NULL) {
305 		return;
306 	}
307 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
308 
309 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
310 		CU_ASSERT(bdev_io->type == expected_io->type);
311 	}
312 
313 	if (expected_io->md_buf != NULL) {
314 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
315 	}
316 
317 	if (expected_io->length == 0) {
318 		free(expected_io);
319 		return;
320 	}
321 
322 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
323 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
324 	if (expected_io->type == SPDK_BDEV_IO_TYPE_COPY) {
325 		CU_ASSERT(expected_io->src_offset == bdev_io->u.bdev.copy.src_offset_blocks);
326 	}
327 
328 	if (expected_io->iovcnt == 0) {
329 		free(expected_io);
330 		/* UNMAP, WRITE_ZEROES, FLUSH and COPY don't have iovs, so we can just return now. */
331 		return;
332 	}
333 
334 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
335 	for (i = 0; i < expected_io->iovcnt; i++) {
336 		expected_iov = &expected_io->iov[i];
337 		if (bdev_io->internal.orig_iovcnt == 0) {
338 			iov = &bdev_io->u.bdev.iovs[i];
339 		} else {
340 			iov = bdev_io->internal.orig_iovs;
341 		}
342 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
343 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
344 	}
345 
346 	free(expected_io);
347 }
348 
349 static void
350 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
351 			       struct spdk_bdev_io *bdev_io, bool success)
352 {
353 	CU_ASSERT(success == true);
354 
355 	stub_submit_request(_ch, bdev_io);
356 }
357 
358 static void
359 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
360 {
361 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
362 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
363 }
364 
365 static uint32_t
366 stub_complete_io(uint32_t num_to_complete)
367 {
368 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
369 	struct spdk_bdev_io *bdev_io;
370 	static enum spdk_bdev_io_status io_status;
371 	uint32_t num_completed = 0;
372 
373 	while (num_completed < num_to_complete) {
374 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
375 			break;
376 		}
377 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
378 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
379 		ch->outstanding_io_count--;
380 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
381 			    g_io_exp_status;
382 		spdk_bdev_io_complete(bdev_io, io_status);
383 		num_completed++;
384 	}
385 
386 	return num_completed;
387 }
388 
389 static struct spdk_io_channel *
390 bdev_ut_get_io_channel(void *ctx)
391 {
392 	return spdk_get_io_channel(&g_bdev_ut_io_device);
393 }
394 
395 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
396 	[SPDK_BDEV_IO_TYPE_READ]		= true,
397 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
398 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
399 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
400 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
401 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
402 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
403 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
404 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
405 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
406 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
407 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
408 	[SPDK_BDEV_IO_TYPE_SEEK_HOLE]		= true,
409 	[SPDK_BDEV_IO_TYPE_SEEK_DATA]		= true,
410 	[SPDK_BDEV_IO_TYPE_COPY]		= true,
411 };
412 
413 static void
414 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
415 {
416 	g_io_types_supported[io_type] = enable;
417 }
418 
419 static bool
420 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
421 {
422 	return g_io_types_supported[io_type];
423 }
424 
425 static struct spdk_bdev_fn_table fn_table = {
426 	.destruct = stub_destruct,
427 	.submit_request = stub_submit_request,
428 	.get_io_channel = bdev_ut_get_io_channel,
429 	.io_type_supported = stub_io_type_supported,
430 };
431 
432 static int
433 bdev_ut_create_ch(void *io_device, void *ctx_buf)
434 {
435 	struct bdev_ut_channel *ch = ctx_buf;
436 
437 	CU_ASSERT(g_bdev_ut_channel == NULL);
438 	g_bdev_ut_channel = ch;
439 
440 	TAILQ_INIT(&ch->outstanding_io);
441 	ch->outstanding_io_count = 0;
442 	TAILQ_INIT(&ch->expected_io);
443 	return 0;
444 }
445 
446 static void
447 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
448 {
449 	CU_ASSERT(g_bdev_ut_channel != NULL);
450 	g_bdev_ut_channel = NULL;
451 }
452 
453 struct spdk_bdev_module bdev_ut_if;
454 
455 static int
456 bdev_ut_module_init(void)
457 {
458 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
459 				sizeof(struct bdev_ut_channel), NULL);
460 	spdk_bdev_module_init_done(&bdev_ut_if);
461 	return 0;
462 }
463 
464 static void
465 bdev_ut_module_fini(void)
466 {
467 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
468 }
469 
470 struct spdk_bdev_module bdev_ut_if = {
471 	.name = "bdev_ut",
472 	.module_init = bdev_ut_module_init,
473 	.module_fini = bdev_ut_module_fini,
474 	.async_init = true,
475 };
476 
477 static void vbdev_ut_examine_config(struct spdk_bdev *bdev);
478 static void vbdev_ut_examine_disk(struct spdk_bdev *bdev);
479 
480 static int
481 vbdev_ut_module_init(void)
482 {
483 	return 0;
484 }
485 
486 static void
487 vbdev_ut_module_fini(void)
488 {
489 }
490 
491 struct spdk_bdev_module vbdev_ut_if = {
492 	.name = "vbdev_ut",
493 	.module_init = vbdev_ut_module_init,
494 	.module_fini = vbdev_ut_module_fini,
495 	.examine_config = vbdev_ut_examine_config,
496 	.examine_disk = vbdev_ut_examine_disk,
497 };
498 
499 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
500 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
501 
502 struct ut_examine_ctx {
503 	void (*examine_config)(struct spdk_bdev *bdev);
504 	void (*examine_disk)(struct spdk_bdev *bdev);
505 	uint32_t examine_config_count;
506 	uint32_t examine_disk_count;
507 };
508 
509 static void
510 vbdev_ut_examine_config(struct spdk_bdev *bdev)
511 {
512 	struct ut_examine_ctx *ctx = bdev->ctxt;
513 
514 	if (ctx != NULL) {
515 		ctx->examine_config_count++;
516 		if (ctx->examine_config != NULL) {
517 			ctx->examine_config(bdev);
518 		}
519 	}
520 
521 	spdk_bdev_module_examine_done(&vbdev_ut_if);
522 }
523 
524 static void
525 vbdev_ut_examine_disk(struct spdk_bdev *bdev)
526 {
527 	struct ut_examine_ctx *ctx = bdev->ctxt;
528 
529 	if (ctx != NULL) {
530 		ctx->examine_disk_count++;
531 		if (ctx->examine_disk != NULL) {
532 			ctx->examine_disk(bdev);
533 		}
534 	}
535 
536 	spdk_bdev_module_examine_done(&vbdev_ut_if);
537 }
538 
539 static void
540 bdev_init_cb(void *arg, int rc)
541 {
542 	CU_ASSERT(rc == 0);
543 }
544 
545 static void
546 bdev_fini_cb(void *arg)
547 {
548 }
549 
550 static void
551 ut_init_bdev(struct spdk_bdev_opts *opts)
552 {
553 	int rc;
554 
555 	if (opts != NULL) {
556 		rc = spdk_bdev_set_opts(opts);
557 		CU_ASSERT(rc == 0);
558 	}
559 	rc = spdk_iobuf_initialize();
560 	CU_ASSERT(rc == 0);
561 	spdk_bdev_initialize(bdev_init_cb, NULL);
562 	poll_threads();
563 }
564 
565 static void
566 ut_fini_bdev(void)
567 {
568 	spdk_bdev_finish(bdev_fini_cb, NULL);
569 	spdk_iobuf_finish(bdev_fini_cb, NULL);
570 	poll_threads();
571 }
572 
573 static struct spdk_bdev *
574 allocate_bdev_ctx(char *name, void *ctx)
575 {
576 	struct spdk_bdev *bdev;
577 	int rc;
578 
579 	bdev = calloc(1, sizeof(*bdev));
580 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
581 
582 	bdev->ctxt = ctx;
583 	bdev->name = name;
584 	bdev->fn_table = &fn_table;
585 	bdev->module = &bdev_ut_if;
586 	bdev->blockcnt = 1024;
587 	bdev->blocklen = 512;
588 
589 	spdk_uuid_generate(&bdev->uuid);
590 
591 	rc = spdk_bdev_register(bdev);
592 	poll_threads();
593 	CU_ASSERT(rc == 0);
594 
595 	return bdev;
596 }
597 
598 static struct spdk_bdev *
599 allocate_bdev(char *name)
600 {
601 	return allocate_bdev_ctx(name, NULL);
602 }
603 
604 static struct spdk_bdev *
605 allocate_vbdev(char *name)
606 {
607 	struct spdk_bdev *bdev;
608 	int rc;
609 
610 	bdev = calloc(1, sizeof(*bdev));
611 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
612 
613 	bdev->name = name;
614 	bdev->fn_table = &fn_table;
615 	bdev->module = &vbdev_ut_if;
616 	bdev->blockcnt = 1024;
617 	bdev->blocklen = 512;
618 
619 	rc = spdk_bdev_register(bdev);
620 	poll_threads();
621 	CU_ASSERT(rc == 0);
622 
623 	return bdev;
624 }
625 
626 static void
627 free_bdev(struct spdk_bdev *bdev)
628 {
629 	spdk_bdev_unregister(bdev, NULL, NULL);
630 	poll_threads();
631 	memset(bdev, 0xFF, sizeof(*bdev));
632 	free(bdev);
633 }
634 
635 static void
636 free_vbdev(struct spdk_bdev *bdev)
637 {
638 	spdk_bdev_unregister(bdev, NULL, NULL);
639 	poll_threads();
640 	memset(bdev, 0xFF, sizeof(*bdev));
641 	free(bdev);
642 }
643 
644 static void
645 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
646 {
647 	const char *bdev_name;
648 
649 	CU_ASSERT(bdev != NULL);
650 	CU_ASSERT(rc == 0);
651 	bdev_name = spdk_bdev_get_name(bdev);
652 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
653 
654 	free(stat);
655 
656 	*(bool *)cb_arg = true;
657 }
658 
659 static void
660 bdev_unregister_cb(void *cb_arg, int rc)
661 {
662 	g_unregister_arg = cb_arg;
663 	g_unregister_rc = rc;
664 }
665 
666 static void
667 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
668 {
669 }
670 
671 static void
672 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
673 {
674 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
675 
676 	g_event_type1 = type;
677 	if (SPDK_BDEV_EVENT_REMOVE == type) {
678 		spdk_bdev_close(desc);
679 	}
680 }
681 
682 static void
683 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
684 {
685 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
686 
687 	g_event_type2 = type;
688 	if (SPDK_BDEV_EVENT_REMOVE == type) {
689 		spdk_bdev_close(desc);
690 	}
691 }
692 
693 static void
694 bdev_open_cb3(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
695 {
696 	g_event_type3 = type;
697 }
698 
699 static void
700 bdev_open_cb4(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
701 {
702 	g_event_type4 = type;
703 }
704 
705 static void
706 bdev_seek_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
707 {
708 	g_seek_offset = spdk_bdev_io_get_seek_offset(bdev_io);
709 	spdk_bdev_free_io(bdev_io);
710 }
711 
712 static void
713 get_device_stat_test(void)
714 {
715 	struct spdk_bdev *bdev;
716 	struct spdk_bdev_io_stat *stat;
717 	bool done;
718 
719 	bdev = allocate_bdev("bdev0");
720 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
721 	if (stat == NULL) {
722 		free_bdev(bdev);
723 		return;
724 	}
725 
726 	done = false;
727 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
728 	while (!done) { poll_threads(); }
729 
730 	free_bdev(bdev);
731 }
732 
733 static void
734 open_write_test(void)
735 {
736 	struct spdk_bdev *bdev[9];
737 	struct spdk_bdev_desc *desc[9] = {};
738 	int rc;
739 
740 	ut_init_bdev(NULL);
741 
742 	/*
743 	 * Create a tree of bdevs to test various open w/ write cases.
744 	 *
745 	 * bdev0 through bdev3 are physical block devices, such as NVMe
746 	 * namespaces or Ceph block devices.
747 	 *
748 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
749 	 * caching or RAID use cases.
750 	 *
751 	 * bdev5 through bdev7 are all virtual bdevs with the same base
752 	 * bdev (except bdev7). This models partitioning or logical volume
753 	 * use cases.
754 	 *
755 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
756 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
757 	 * models caching, RAID, partitioning or logical volumes use cases.
758 	 *
759 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
760 	 * base bdevs are themselves virtual bdevs.
761 	 *
762 	 *                bdev8
763 	 *                  |
764 	 *            +----------+
765 	 *            |          |
766 	 *          bdev4      bdev5   bdev6   bdev7
767 	 *            |          |       |       |
768 	 *        +---+---+      +---+   +   +---+---+
769 	 *        |       |           \  |  /         \
770 	 *      bdev0   bdev1          bdev2         bdev3
771 	 */
772 
773 	bdev[0] = allocate_bdev("bdev0");
774 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
775 	CU_ASSERT(rc == 0);
776 
777 	bdev[1] = allocate_bdev("bdev1");
778 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
779 	CU_ASSERT(rc == 0);
780 
781 	bdev[2] = allocate_bdev("bdev2");
782 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
783 	CU_ASSERT(rc == 0);
784 
785 	bdev[3] = allocate_bdev("bdev3");
786 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
787 	CU_ASSERT(rc == 0);
788 
789 	bdev[4] = allocate_vbdev("bdev4");
790 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
791 	CU_ASSERT(rc == 0);
792 
793 	bdev[5] = allocate_vbdev("bdev5");
794 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
795 	CU_ASSERT(rc == 0);
796 
797 	bdev[6] = allocate_vbdev("bdev6");
798 
799 	bdev[7] = allocate_vbdev("bdev7");
800 
801 	bdev[8] = allocate_vbdev("bdev8");
802 
803 	/* Open bdev0 read-only.  This should succeed. */
804 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
805 	CU_ASSERT(rc == 0);
806 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
807 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
808 	spdk_bdev_close(desc[0]);
809 
810 	/*
811 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
812 	 * by a vbdev module.
813 	 */
814 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
815 	CU_ASSERT(rc == -EPERM);
816 
817 	/*
818 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
819 	 * by a vbdev module.
820 	 */
821 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
822 	CU_ASSERT(rc == -EPERM);
823 
824 	/* Open bdev4 read-only.  This should succeed. */
825 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
826 	CU_ASSERT(rc == 0);
827 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
828 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
829 	spdk_bdev_close(desc[4]);
830 
831 	/*
832 	 * Open bdev8 read/write.  This should succeed since it is a leaf
833 	 * bdev.
834 	 */
835 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
836 	CU_ASSERT(rc == 0);
837 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
838 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
839 	spdk_bdev_close(desc[8]);
840 
841 	/*
842 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
843 	 * by a vbdev module.
844 	 */
845 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
846 	CU_ASSERT(rc == -EPERM);
847 
848 	/* Open bdev4 read-only.  This should succeed. */
849 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
850 	CU_ASSERT(rc == 0);
851 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
852 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
853 	spdk_bdev_close(desc[5]);
854 
855 	free_vbdev(bdev[8]);
856 
857 	free_vbdev(bdev[5]);
858 	free_vbdev(bdev[6]);
859 	free_vbdev(bdev[7]);
860 
861 	free_vbdev(bdev[4]);
862 
863 	free_bdev(bdev[0]);
864 	free_bdev(bdev[1]);
865 	free_bdev(bdev[2]);
866 	free_bdev(bdev[3]);
867 
868 	ut_fini_bdev();
869 }
870 
871 static void
872 claim_test(void)
873 {
874 	struct spdk_bdev *bdev;
875 	struct spdk_bdev_desc *desc, *open_desc;
876 	int rc;
877 	uint32_t count;
878 
879 	ut_init_bdev(NULL);
880 
881 	/*
882 	 * A vbdev that uses a read-only bdev may need it to remain read-only.
883 	 * To do so, it opens the bdev read-only, then claims it without
884 	 * passing a spdk_bdev_desc.
885 	 */
886 	bdev = allocate_bdev("bdev0");
887 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
888 	CU_ASSERT(rc == 0);
889 	CU_ASSERT(desc->write == false);
890 
891 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
892 	CU_ASSERT(rc == 0);
893 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
894 	CU_ASSERT(bdev->internal.claim.v1.module == &bdev_ut_if);
895 
896 	/* There should be only one open descriptor and it should still be ro */
897 	count = 0;
898 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
899 		CU_ASSERT(open_desc == desc);
900 		CU_ASSERT(!open_desc->write);
901 		count++;
902 	}
903 	CU_ASSERT(count == 1);
904 
905 	/* A read-only bdev is upgraded to read-write if desc is passed. */
906 	spdk_bdev_module_release_bdev(bdev);
907 	rc = spdk_bdev_module_claim_bdev(bdev, desc, &bdev_ut_if);
908 	CU_ASSERT(rc == 0);
909 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
910 	CU_ASSERT(bdev->internal.claim.v1.module == &bdev_ut_if);
911 
912 	/* There should be only one open descriptor and it should be rw */
913 	count = 0;
914 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
915 		CU_ASSERT(open_desc == desc);
916 		CU_ASSERT(open_desc->write);
917 		count++;
918 	}
919 	CU_ASSERT(count == 1);
920 
921 	spdk_bdev_close(desc);
922 	free_bdev(bdev);
923 	ut_fini_bdev();
924 }
925 
926 static void
927 bytes_to_blocks_test(void)
928 {
929 	struct spdk_bdev bdev;
930 	uint64_t offset_blocks, num_blocks;
931 
932 	memset(&bdev, 0, sizeof(bdev));
933 
934 	bdev.blocklen = 512;
935 
936 	/* All parameters valid */
937 	offset_blocks = 0;
938 	num_blocks = 0;
939 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
940 	CU_ASSERT(offset_blocks == 1);
941 	CU_ASSERT(num_blocks == 2);
942 
943 	/* Offset not a block multiple */
944 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
945 
946 	/* Length not a block multiple */
947 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
948 
949 	/* In case blocklen not the power of two */
950 	bdev.blocklen = 100;
951 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
952 	CU_ASSERT(offset_blocks == 1);
953 	CU_ASSERT(num_blocks == 2);
954 
955 	/* Offset not a block multiple */
956 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
957 
958 	/* Length not a block multiple */
959 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
960 }
961 
962 static void
963 num_blocks_test(void)
964 {
965 	struct spdk_bdev *bdev;
966 	struct spdk_bdev_desc *desc = NULL;
967 	int rc;
968 
969 	ut_init_bdev(NULL);
970 	bdev = allocate_bdev("num_blocks");
971 
972 	spdk_bdev_notify_blockcnt_change(bdev, 50);
973 
974 	/* Growing block number */
975 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 70) == 0);
976 	/* Shrinking block number */
977 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 30) == 0);
978 
979 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc, &desc);
980 	CU_ASSERT(rc == 0);
981 	SPDK_CU_ASSERT_FATAL(desc != NULL);
982 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
983 
984 	/* Growing block number */
985 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 80) == 0);
986 	/* Shrinking block number */
987 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 20) != 0);
988 
989 	g_event_type1 = 0xFF;
990 	/* Growing block number */
991 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 90) == 0);
992 
993 	poll_threads();
994 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
995 
996 	g_event_type1 = 0xFF;
997 	/* Growing block number and closing */
998 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 100) == 0);
999 
1000 	spdk_bdev_close(desc);
1001 	free_bdev(bdev);
1002 	ut_fini_bdev();
1003 
1004 	poll_threads();
1005 
1006 	/* Callback is not called for closed device */
1007 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
1008 }
1009 
1010 static void
1011 io_valid_test(void)
1012 {
1013 	struct spdk_bdev bdev;
1014 
1015 	memset(&bdev, 0, sizeof(bdev));
1016 
1017 	bdev.blocklen = 512;
1018 	spdk_spin_init(&bdev.internal.spinlock);
1019 
1020 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
1021 
1022 	/* All parameters valid */
1023 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
1024 
1025 	/* Last valid block */
1026 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
1027 
1028 	/* Offset past end of bdev */
1029 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
1030 
1031 	/* Offset + length past end of bdev */
1032 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
1033 
1034 	/* Offset near end of uint64_t range (2^64 - 1) */
1035 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
1036 
1037 	spdk_spin_destroy(&bdev.internal.spinlock);
1038 }
1039 
1040 static void
1041 alias_add_del_test(void)
1042 {
1043 	struct spdk_bdev *bdev[3];
1044 	int rc;
1045 
1046 	ut_init_bdev(NULL);
1047 
1048 	/* Creating and registering bdevs */
1049 	bdev[0] = allocate_bdev("bdev0");
1050 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
1051 
1052 	bdev[1] = allocate_bdev("bdev1");
1053 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
1054 
1055 	bdev[2] = allocate_bdev("bdev2");
1056 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
1057 
1058 	poll_threads();
1059 
1060 	/*
1061 	 * Trying adding an alias identical to name.
1062 	 * Alias is identical to name, so it can not be added to aliases list
1063 	 */
1064 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
1065 	CU_ASSERT(rc == -EEXIST);
1066 
1067 	/*
1068 	 * Trying to add empty alias,
1069 	 * this one should fail
1070 	 */
1071 	rc = spdk_bdev_alias_add(bdev[0], NULL);
1072 	CU_ASSERT(rc == -EINVAL);
1073 
1074 	/* Trying adding same alias to two different registered bdevs */
1075 
1076 	/* Alias is used first time, so this one should pass */
1077 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
1078 	CU_ASSERT(rc == 0);
1079 
1080 	/* Alias was added to another bdev, so this one should fail */
1081 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
1082 	CU_ASSERT(rc == -EEXIST);
1083 
1084 	/* Alias is used first time, so this one should pass */
1085 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
1086 	CU_ASSERT(rc == 0);
1087 
1088 	/* Trying removing an alias from registered bdevs */
1089 
1090 	/* Alias is not on a bdev aliases list, so this one should fail */
1091 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
1092 	CU_ASSERT(rc == -ENOENT);
1093 
1094 	/* Alias is present on a bdev aliases list, so this one should pass */
1095 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
1096 	CU_ASSERT(rc == 0);
1097 
1098 	/* Alias is present on a bdev aliases list, so this one should pass */
1099 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
1100 	CU_ASSERT(rc == 0);
1101 
1102 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
1103 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
1104 	CU_ASSERT(rc != 0);
1105 
1106 	/* Trying to del all alias from empty alias list */
1107 	spdk_bdev_alias_del_all(bdev[2]);
1108 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
1109 
1110 	/* Trying to del all alias from non-empty alias list */
1111 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
1112 	CU_ASSERT(rc == 0);
1113 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
1114 	CU_ASSERT(rc == 0);
1115 	spdk_bdev_alias_del_all(bdev[2]);
1116 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
1117 
1118 	/* Unregister and free bdevs */
1119 	spdk_bdev_unregister(bdev[0], NULL, NULL);
1120 	spdk_bdev_unregister(bdev[1], NULL, NULL);
1121 	spdk_bdev_unregister(bdev[2], NULL, NULL);
1122 
1123 	poll_threads();
1124 
1125 	free(bdev[0]);
1126 	free(bdev[1]);
1127 	free(bdev[2]);
1128 
1129 	ut_fini_bdev();
1130 }
1131 
1132 static void
1133 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
1134 {
1135 	g_io_done = true;
1136 	g_io_status = bdev_io->internal.status;
1137 	if ((bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) &&
1138 	    (bdev_io->u.bdev.zcopy.start)) {
1139 		g_zcopy_bdev_io = bdev_io;
1140 	} else {
1141 		spdk_bdev_free_io(bdev_io);
1142 		g_zcopy_bdev_io = NULL;
1143 	}
1144 }
1145 
1146 struct bdev_ut_io_wait_entry {
1147 	struct spdk_bdev_io_wait_entry	entry;
1148 	struct spdk_io_channel		*io_ch;
1149 	struct spdk_bdev_desc		*desc;
1150 	bool				submitted;
1151 };
1152 
1153 static void
1154 io_wait_cb(void *arg)
1155 {
1156 	struct bdev_ut_io_wait_entry *entry = arg;
1157 	int rc;
1158 
1159 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
1160 	CU_ASSERT(rc == 0);
1161 	entry->submitted = true;
1162 }
1163 
1164 static void
1165 bdev_io_types_test(void)
1166 {
1167 	struct spdk_bdev *bdev;
1168 	struct spdk_bdev_desc *desc = NULL;
1169 	struct spdk_io_channel *io_ch;
1170 	struct spdk_bdev_opts bdev_opts = {};
1171 	int rc;
1172 
1173 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1174 	bdev_opts.bdev_io_pool_size = 4;
1175 	bdev_opts.bdev_io_cache_size = 2;
1176 	ut_init_bdev(&bdev_opts);
1177 
1178 	bdev = allocate_bdev("bdev0");
1179 
1180 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1181 	CU_ASSERT(rc == 0);
1182 	poll_threads();
1183 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1184 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1185 	io_ch = spdk_bdev_get_io_channel(desc);
1186 	CU_ASSERT(io_ch != NULL);
1187 
1188 	/* WRITE and WRITE ZEROES are not supported */
1189 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
1190 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
1191 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
1192 	CU_ASSERT(rc == -ENOTSUP);
1193 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
1194 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
1195 
1196 	/* NVME_IO, NVME_IO_MD and NVME_ADMIN are not supported */
1197 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, false);
1198 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, false);
1199 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, false);
1200 	rc = spdk_bdev_nvme_io_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1201 	CU_ASSERT(rc == -ENOTSUP);
1202 	rc = spdk_bdev_nvme_io_passthru_md(desc, io_ch, NULL, NULL, 0, NULL, 0, NULL, NULL);
1203 	CU_ASSERT(rc == -ENOTSUP);
1204 	rc = spdk_bdev_nvme_admin_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1205 	CU_ASSERT(rc == -ENOTSUP);
1206 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, true);
1207 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, true);
1208 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, true);
1209 
1210 	spdk_put_io_channel(io_ch);
1211 	spdk_bdev_close(desc);
1212 	free_bdev(bdev);
1213 	ut_fini_bdev();
1214 }
1215 
1216 static void
1217 bdev_io_wait_test(void)
1218 {
1219 	struct spdk_bdev *bdev;
1220 	struct spdk_bdev_desc *desc = NULL;
1221 	struct spdk_io_channel *io_ch;
1222 	struct spdk_bdev_opts bdev_opts = {};
1223 	struct bdev_ut_io_wait_entry io_wait_entry;
1224 	struct bdev_ut_io_wait_entry io_wait_entry2;
1225 	int rc;
1226 
1227 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1228 	bdev_opts.bdev_io_pool_size = 4;
1229 	bdev_opts.bdev_io_cache_size = 2;
1230 	ut_init_bdev(&bdev_opts);
1231 
1232 	bdev = allocate_bdev("bdev0");
1233 
1234 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1235 	CU_ASSERT(rc == 0);
1236 	poll_threads();
1237 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1238 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1239 	io_ch = spdk_bdev_get_io_channel(desc);
1240 	CU_ASSERT(io_ch != NULL);
1241 
1242 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1243 	CU_ASSERT(rc == 0);
1244 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1245 	CU_ASSERT(rc == 0);
1246 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1247 	CU_ASSERT(rc == 0);
1248 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1249 	CU_ASSERT(rc == 0);
1250 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1251 
1252 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1253 	CU_ASSERT(rc == -ENOMEM);
1254 
1255 	io_wait_entry.entry.bdev = bdev;
1256 	io_wait_entry.entry.cb_fn = io_wait_cb;
1257 	io_wait_entry.entry.cb_arg = &io_wait_entry;
1258 	io_wait_entry.io_ch = io_ch;
1259 	io_wait_entry.desc = desc;
1260 	io_wait_entry.submitted = false;
1261 	/* Cannot use the same io_wait_entry for two different calls. */
1262 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
1263 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
1264 
1265 	/* Queue two I/O waits. */
1266 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
1267 	CU_ASSERT(rc == 0);
1268 	CU_ASSERT(io_wait_entry.submitted == false);
1269 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
1270 	CU_ASSERT(rc == 0);
1271 	CU_ASSERT(io_wait_entry2.submitted == false);
1272 
1273 	stub_complete_io(1);
1274 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1275 	CU_ASSERT(io_wait_entry.submitted == true);
1276 	CU_ASSERT(io_wait_entry2.submitted == false);
1277 
1278 	stub_complete_io(1);
1279 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1280 	CU_ASSERT(io_wait_entry2.submitted == true);
1281 
1282 	stub_complete_io(4);
1283 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1284 
1285 	spdk_put_io_channel(io_ch);
1286 	spdk_bdev_close(desc);
1287 	free_bdev(bdev);
1288 	ut_fini_bdev();
1289 }
1290 
1291 static void
1292 bdev_io_spans_split_test(void)
1293 {
1294 	struct spdk_bdev bdev;
1295 	struct spdk_bdev_io bdev_io;
1296 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
1297 
1298 	memset(&bdev, 0, sizeof(bdev));
1299 	bdev_io.u.bdev.iovs = iov;
1300 
1301 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1302 	bdev.optimal_io_boundary = 0;
1303 	bdev.max_segment_size = 0;
1304 	bdev.max_num_segments = 0;
1305 	bdev_io.bdev = &bdev;
1306 
1307 	/* bdev has no optimal_io_boundary and max_size set - so this should return false. */
1308 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1309 
1310 	bdev.split_on_optimal_io_boundary = true;
1311 	bdev.optimal_io_boundary = 32;
1312 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1313 
1314 	/* RESETs are not based on LBAs - so this should return false. */
1315 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1316 
1317 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1318 	bdev_io.u.bdev.offset_blocks = 0;
1319 	bdev_io.u.bdev.num_blocks = 32;
1320 
1321 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1322 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1323 
1324 	bdev_io.u.bdev.num_blocks = 33;
1325 
1326 	/* This I/O spans a boundary. */
1327 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1328 
1329 	bdev_io.u.bdev.num_blocks = 32;
1330 	bdev.max_segment_size = 512 * 32;
1331 	bdev.max_num_segments = 1;
1332 	bdev_io.u.bdev.iovcnt = 1;
1333 	iov[0].iov_len = 512;
1334 
1335 	/* Does not cross and exceed max_size or max_segs */
1336 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1337 
1338 	bdev.split_on_optimal_io_boundary = false;
1339 	bdev.max_segment_size = 512;
1340 	bdev.max_num_segments = 1;
1341 	bdev_io.u.bdev.iovcnt = 2;
1342 
1343 	/* Exceed max_segs */
1344 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1345 
1346 	bdev.max_num_segments = 2;
1347 	iov[0].iov_len = 513;
1348 	iov[1].iov_len = 512;
1349 
1350 	/* Exceed max_sizes */
1351 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1352 
1353 	bdev.max_segment_size = 0;
1354 	bdev.write_unit_size = 32;
1355 	bdev.split_on_write_unit = true;
1356 	bdev_io.type = SPDK_BDEV_IO_TYPE_WRITE;
1357 
1358 	/* This I/O is one write unit */
1359 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1360 
1361 	bdev_io.u.bdev.num_blocks = 32 * 2;
1362 
1363 	/* This I/O is more than one write unit */
1364 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1365 
1366 	bdev_io.u.bdev.offset_blocks = 1;
1367 	bdev_io.u.bdev.num_blocks = 32;
1368 
1369 	/* This I/O is not aligned to write unit size */
1370 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1371 }
1372 
1373 static void
1374 bdev_io_boundary_split_test(void)
1375 {
1376 	struct spdk_bdev *bdev;
1377 	struct spdk_bdev_desc *desc = NULL;
1378 	struct spdk_io_channel *io_ch;
1379 	struct spdk_bdev_opts bdev_opts = {};
1380 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
1381 	struct ut_expected_io *expected_io;
1382 	void *md_buf = (void *)0xFF000000;
1383 	uint64_t i;
1384 	int rc;
1385 
1386 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1387 	bdev_opts.bdev_io_pool_size = 512;
1388 	bdev_opts.bdev_io_cache_size = 64;
1389 	ut_init_bdev(&bdev_opts);
1390 
1391 	bdev = allocate_bdev("bdev0");
1392 
1393 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1394 	CU_ASSERT(rc == 0);
1395 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1396 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1397 	io_ch = spdk_bdev_get_io_channel(desc);
1398 	CU_ASSERT(io_ch != NULL);
1399 
1400 	bdev->optimal_io_boundary = 16;
1401 	bdev->split_on_optimal_io_boundary = false;
1402 
1403 	g_io_done = false;
1404 
1405 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1406 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1407 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1408 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1409 
1410 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1411 	CU_ASSERT(rc == 0);
1412 	CU_ASSERT(g_io_done == false);
1413 
1414 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1415 	stub_complete_io(1);
1416 	CU_ASSERT(g_io_done == true);
1417 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1418 
1419 	bdev->split_on_optimal_io_boundary = true;
1420 	bdev->md_interleave = false;
1421 	bdev->md_len = 8;
1422 
1423 	/* Now test that a single-vector command is split correctly.
1424 	 * Offset 14, length 8, payload 0xF000
1425 	 *  Child - Offset 14, length 2, payload 0xF000
1426 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1427 	 *
1428 	 * Set up the expected values before calling spdk_bdev_read_blocks
1429 	 */
1430 	g_io_done = false;
1431 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1432 	expected_io->md_buf = md_buf;
1433 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1434 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1435 
1436 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1437 	expected_io->md_buf = md_buf + 2 * 8;
1438 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1439 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1440 
1441 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1442 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1443 					   14, 8, io_done, NULL);
1444 	CU_ASSERT(rc == 0);
1445 	CU_ASSERT(g_io_done == false);
1446 
1447 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1448 	stub_complete_io(2);
1449 	CU_ASSERT(g_io_done == true);
1450 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1451 
1452 	/* Now set up a more complex, multi-vector command that needs to be split,
1453 	 *  including splitting iovecs.
1454 	 */
1455 	iov[0].iov_base = (void *)0x10000;
1456 	iov[0].iov_len = 512;
1457 	iov[1].iov_base = (void *)0x20000;
1458 	iov[1].iov_len = 20 * 512;
1459 	iov[2].iov_base = (void *)0x30000;
1460 	iov[2].iov_len = 11 * 512;
1461 
1462 	g_io_done = false;
1463 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1464 	expected_io->md_buf = md_buf;
1465 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1466 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1467 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1468 
1469 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1470 	expected_io->md_buf = md_buf + 2 * 8;
1471 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1472 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1473 
1474 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1475 	expected_io->md_buf = md_buf + 18 * 8;
1476 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1477 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1478 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1479 
1480 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1481 					     14, 32, io_done, NULL);
1482 	CU_ASSERT(rc == 0);
1483 	CU_ASSERT(g_io_done == false);
1484 
1485 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1486 	stub_complete_io(3);
1487 	CU_ASSERT(g_io_done == true);
1488 
1489 	/* Test multi vector command that needs to be split by strip and then needs to be
1490 	 * split further due to the capacity of child iovs.
1491 	 */
1492 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1493 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1494 		iov[i].iov_len = 512;
1495 	}
1496 
1497 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1498 	g_io_done = false;
1499 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
1500 					   SPDK_BDEV_IO_NUM_CHILD_IOV);
1501 	expected_io->md_buf = md_buf;
1502 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1503 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1504 	}
1505 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1506 
1507 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1508 					   SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
1509 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1510 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1511 		ut_expected_io_set_iov(expected_io, i,
1512 				       (void *)((i + 1 + SPDK_BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1513 	}
1514 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1515 
1516 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1517 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1518 	CU_ASSERT(rc == 0);
1519 	CU_ASSERT(g_io_done == false);
1520 
1521 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1522 	stub_complete_io(1);
1523 	CU_ASSERT(g_io_done == false);
1524 
1525 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1526 	stub_complete_io(1);
1527 	CU_ASSERT(g_io_done == true);
1528 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1529 
1530 	/* Test multi vector command that needs to be split by strip and then needs to be
1531 	 * split further due to the capacity of child iovs. In this case, the length of
1532 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1533 	 */
1534 
1535 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1536 	 * is SPDK_BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1537 	 */
1538 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1539 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1540 		iov[i].iov_len = 512;
1541 	}
1542 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1543 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1544 		iov[i].iov_len = 256;
1545 	}
1546 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1547 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1548 
1549 	/* Add an extra iovec to trigger split */
1550 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1551 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1552 
1553 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1554 	g_io_done = false;
1555 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1556 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV);
1557 	expected_io->md_buf = md_buf;
1558 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1559 		ut_expected_io_set_iov(expected_io, i,
1560 				       (void *)((i + 1) * 0x10000), 512);
1561 	}
1562 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1563 		ut_expected_io_set_iov(expected_io, i,
1564 				       (void *)((i + 1) * 0x10000), 256);
1565 	}
1566 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1567 
1568 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1569 					   1, 1);
1570 	expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1571 	ut_expected_io_set_iov(expected_io, 0,
1572 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1573 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1574 
1575 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1576 					   1, 1);
1577 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1578 	ut_expected_io_set_iov(expected_io, 0,
1579 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1580 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1581 
1582 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1583 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1584 	CU_ASSERT(rc == 0);
1585 	CU_ASSERT(g_io_done == false);
1586 
1587 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1588 	stub_complete_io(1);
1589 	CU_ASSERT(g_io_done == false);
1590 
1591 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1592 	stub_complete_io(2);
1593 	CU_ASSERT(g_io_done == true);
1594 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1595 
1596 	/* Test multi vector command that needs to be split by strip and then needs to be
1597 	 * split further due to the capacity of child iovs, the child request offset should
1598 	 * be rewind to last aligned offset and go success without error.
1599 	 */
1600 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1601 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1602 		iov[i].iov_len = 512;
1603 	}
1604 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
1605 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1606 
1607 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1608 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1609 
1610 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1611 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1612 
1613 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1614 	g_io_done = false;
1615 	g_io_status = 0;
1616 	/* The first expected io should be start from offset 0 to SPDK_BDEV_IO_NUM_CHILD_IOV - 1 */
1617 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1618 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
1619 	expected_io->md_buf = md_buf;
1620 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1621 		ut_expected_io_set_iov(expected_io, i,
1622 				       (void *)((i + 1) * 0x10000), 512);
1623 	}
1624 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1625 	/* The second expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV - 1 to SPDK_BDEV_IO_NUM_CHILD_IOV */
1626 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1627 					   1, 2);
1628 	expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1629 	ut_expected_io_set_iov(expected_io, 0,
1630 			       (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1631 	ut_expected_io_set_iov(expected_io, 1,
1632 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1633 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1634 	/* The third expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV to SPDK_BDEV_IO_NUM_CHILD_IOV + 1 */
1635 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1636 					   1, 1);
1637 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1638 	ut_expected_io_set_iov(expected_io, 0,
1639 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1640 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1641 
1642 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1643 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1644 	CU_ASSERT(rc == 0);
1645 	CU_ASSERT(g_io_done == false);
1646 
1647 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1648 	stub_complete_io(1);
1649 	CU_ASSERT(g_io_done == false);
1650 
1651 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1652 	stub_complete_io(2);
1653 	CU_ASSERT(g_io_done == true);
1654 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1655 
1656 	/* Test multi vector command that needs to be split due to the IO boundary and
1657 	 * the capacity of child iovs. Especially test the case when the command is
1658 	 * split due to the capacity of child iovs, the tail address is not aligned with
1659 	 * block size and is rewinded to the aligned address.
1660 	 *
1661 	 * The iovecs used in read request is complex but is based on the data
1662 	 * collected in the real issue. We change the base addresses but keep the lengths
1663 	 * not to loose the credibility of the test.
1664 	 */
1665 	bdev->optimal_io_boundary = 128;
1666 	g_io_done = false;
1667 	g_io_status = 0;
1668 
1669 	for (i = 0; i < 31; i++) {
1670 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1671 		iov[i].iov_len = 1024;
1672 	}
1673 	iov[31].iov_base = (void *)0xFEED1F00000;
1674 	iov[31].iov_len = 32768;
1675 	iov[32].iov_base = (void *)0xFEED2000000;
1676 	iov[32].iov_len = 160;
1677 	iov[33].iov_base = (void *)0xFEED2100000;
1678 	iov[33].iov_len = 4096;
1679 	iov[34].iov_base = (void *)0xFEED2200000;
1680 	iov[34].iov_len = 4096;
1681 	iov[35].iov_base = (void *)0xFEED2300000;
1682 	iov[35].iov_len = 4096;
1683 	iov[36].iov_base = (void *)0xFEED2400000;
1684 	iov[36].iov_len = 4096;
1685 	iov[37].iov_base = (void *)0xFEED2500000;
1686 	iov[37].iov_len = 4096;
1687 	iov[38].iov_base = (void *)0xFEED2600000;
1688 	iov[38].iov_len = 4096;
1689 	iov[39].iov_base = (void *)0xFEED2700000;
1690 	iov[39].iov_len = 4096;
1691 	iov[40].iov_base = (void *)0xFEED2800000;
1692 	iov[40].iov_len = 4096;
1693 	iov[41].iov_base = (void *)0xFEED2900000;
1694 	iov[41].iov_len = 4096;
1695 	iov[42].iov_base = (void *)0xFEED2A00000;
1696 	iov[42].iov_len = 4096;
1697 	iov[43].iov_base = (void *)0xFEED2B00000;
1698 	iov[43].iov_len = 12288;
1699 	iov[44].iov_base = (void *)0xFEED2C00000;
1700 	iov[44].iov_len = 8192;
1701 	iov[45].iov_base = (void *)0xFEED2F00000;
1702 	iov[45].iov_len = 4096;
1703 	iov[46].iov_base = (void *)0xFEED3000000;
1704 	iov[46].iov_len = 4096;
1705 	iov[47].iov_base = (void *)0xFEED3100000;
1706 	iov[47].iov_len = 4096;
1707 	iov[48].iov_base = (void *)0xFEED3200000;
1708 	iov[48].iov_len = 24576;
1709 	iov[49].iov_base = (void *)0xFEED3300000;
1710 	iov[49].iov_len = 16384;
1711 	iov[50].iov_base = (void *)0xFEED3400000;
1712 	iov[50].iov_len = 12288;
1713 	iov[51].iov_base = (void *)0xFEED3500000;
1714 	iov[51].iov_len = 4096;
1715 	iov[52].iov_base = (void *)0xFEED3600000;
1716 	iov[52].iov_len = 4096;
1717 	iov[53].iov_base = (void *)0xFEED3700000;
1718 	iov[53].iov_len = 4096;
1719 	iov[54].iov_base = (void *)0xFEED3800000;
1720 	iov[54].iov_len = 28672;
1721 	iov[55].iov_base = (void *)0xFEED3900000;
1722 	iov[55].iov_len = 20480;
1723 	iov[56].iov_base = (void *)0xFEED3A00000;
1724 	iov[56].iov_len = 4096;
1725 	iov[57].iov_base = (void *)0xFEED3B00000;
1726 	iov[57].iov_len = 12288;
1727 	iov[58].iov_base = (void *)0xFEED3C00000;
1728 	iov[58].iov_len = 4096;
1729 	iov[59].iov_base = (void *)0xFEED3D00000;
1730 	iov[59].iov_len = 4096;
1731 	iov[60].iov_base = (void *)0xFEED3E00000;
1732 	iov[60].iov_len = 352;
1733 
1734 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1735 	 * of child iovs,
1736 	 */
1737 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1738 	expected_io->md_buf = md_buf;
1739 	for (i = 0; i < 32; i++) {
1740 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1741 	}
1742 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1743 
1744 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1745 	 * split by the IO boundary requirement.
1746 	 */
1747 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1748 	expected_io->md_buf = md_buf + 126 * 8;
1749 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1750 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1751 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1752 
1753 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1754 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1755 	 */
1756 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1757 	expected_io->md_buf = md_buf + 128 * 8;
1758 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1759 			       iov[33].iov_len - 864);
1760 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1761 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1762 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1763 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1764 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1765 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1766 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1767 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1768 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1769 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1770 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1771 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1772 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1773 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1774 
1775 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1776 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1777 	 */
1778 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1779 	expected_io->md_buf = md_buf + 256 * 8;
1780 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1781 			       iov[46].iov_len - 864);
1782 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1783 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1784 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1785 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1786 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1787 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1788 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1789 
1790 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1791 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1792 	 */
1793 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1794 	expected_io->md_buf = md_buf + 384 * 8;
1795 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1796 			       iov[52].iov_len - 864);
1797 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1798 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1799 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1800 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1801 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1802 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1803 
1804 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1805 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1806 	 */
1807 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1808 	expected_io->md_buf = md_buf + 512 * 8;
1809 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1810 			       iov[57].iov_len - 4960);
1811 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1812 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1813 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1814 
1815 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1816 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1817 	expected_io->md_buf = md_buf + 542 * 8;
1818 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1819 			       iov[59].iov_len - 3936);
1820 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1821 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1822 
1823 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1824 					    0, 543, io_done, NULL);
1825 	CU_ASSERT(rc == 0);
1826 	CU_ASSERT(g_io_done == false);
1827 
1828 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1829 	stub_complete_io(1);
1830 	CU_ASSERT(g_io_done == false);
1831 
1832 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1833 	stub_complete_io(5);
1834 	CU_ASSERT(g_io_done == false);
1835 
1836 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1837 	stub_complete_io(1);
1838 	CU_ASSERT(g_io_done == true);
1839 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1840 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1841 
1842 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1843 	 * split, so test that.
1844 	 */
1845 	bdev->optimal_io_boundary = 15;
1846 	g_io_done = false;
1847 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1848 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1849 
1850 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1851 	CU_ASSERT(rc == 0);
1852 	CU_ASSERT(g_io_done == false);
1853 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1854 	stub_complete_io(1);
1855 	CU_ASSERT(g_io_done == true);
1856 
1857 	/* Test an UNMAP.  This should also not be split. */
1858 	bdev->optimal_io_boundary = 16;
1859 	g_io_done = false;
1860 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1861 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1862 
1863 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1864 	CU_ASSERT(rc == 0);
1865 	CU_ASSERT(g_io_done == false);
1866 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1867 	stub_complete_io(1);
1868 	CU_ASSERT(g_io_done == true);
1869 
1870 	/* Test a FLUSH.  This should also not be split. */
1871 	bdev->optimal_io_boundary = 16;
1872 	g_io_done = false;
1873 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1874 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1875 
1876 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1877 	CU_ASSERT(rc == 0);
1878 	CU_ASSERT(g_io_done == false);
1879 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1880 	stub_complete_io(1);
1881 	CU_ASSERT(g_io_done == true);
1882 
1883 	/* Test a COPY.  This should also not be split. */
1884 	bdev->optimal_io_boundary = 15;
1885 	g_io_done = false;
1886 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
1887 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1888 
1889 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
1890 	CU_ASSERT(rc == 0);
1891 	CU_ASSERT(g_io_done == false);
1892 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1893 	stub_complete_io(1);
1894 	CU_ASSERT(g_io_done == true);
1895 
1896 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1897 
1898 	/* Children requests return an error status */
1899 	bdev->optimal_io_boundary = 16;
1900 	iov[0].iov_base = (void *)0x10000;
1901 	iov[0].iov_len = 512 * 64;
1902 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1903 	g_io_done = false;
1904 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1905 
1906 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1907 	CU_ASSERT(rc == 0);
1908 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1909 	stub_complete_io(4);
1910 	CU_ASSERT(g_io_done == false);
1911 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1912 	stub_complete_io(1);
1913 	CU_ASSERT(g_io_done == true);
1914 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1915 
1916 	/* Test if a multi vector command terminated with failure before continuing
1917 	 * splitting process when one of child I/O failed.
1918 	 * The multi vector command is as same as the above that needs to be split by strip
1919 	 * and then needs to be split further due to the capacity of child iovs.
1920 	 */
1921 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1922 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1923 		iov[i].iov_len = 512;
1924 	}
1925 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
1926 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1927 
1928 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1929 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1930 
1931 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1932 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1933 
1934 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1935 
1936 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1937 	g_io_done = false;
1938 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1939 
1940 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
1941 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1942 	CU_ASSERT(rc == 0);
1943 	CU_ASSERT(g_io_done == false);
1944 
1945 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1946 	stub_complete_io(1);
1947 	CU_ASSERT(g_io_done == true);
1948 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1949 
1950 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1951 
1952 	/* for this test we will create the following conditions to hit the code path where
1953 	 * we are trying to send and IO following a split that has no iovs because we had to
1954 	 * trim them for alignment reasons.
1955 	 *
1956 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1957 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1958 	 *   position 30 and overshoot by 0x2e.
1959 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1960 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1961 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1962 	 *   and let the completion pick up the last 2 vectors.
1963 	 */
1964 	bdev->optimal_io_boundary = 32;
1965 	bdev->split_on_optimal_io_boundary = true;
1966 	g_io_done = false;
1967 
1968 	/* Init all parent IOVs to 0x212 */
1969 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1970 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1971 		iov[i].iov_len = 0x212;
1972 	}
1973 
1974 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
1975 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
1976 	/* expect 0-29 to be 1:1 with the parent iov */
1977 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1978 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1979 	}
1980 
1981 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1982 	 * where 0x1e is the amount we overshot the 16K boundary
1983 	 */
1984 	ut_expected_io_set_iov(expected_io, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
1985 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1986 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1987 
1988 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1989 	 * shortened that take it to the next boundary and then a final one to get us to
1990 	 * 0x4200 bytes for the IO.
1991 	 */
1992 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1993 					   SPDK_BDEV_IO_NUM_CHILD_IOV, 2);
1994 	/* position 30 picked up the remaining bytes to the next boundary */
1995 	ut_expected_io_set_iov(expected_io, 0,
1996 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
1997 
1998 	/* position 31 picked the the rest of the transfer to get us to 0x4200 */
1999 	ut_expected_io_set_iov(expected_io, 1,
2000 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
2001 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2002 
2003 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, 0,
2004 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
2005 	CU_ASSERT(rc == 0);
2006 	CU_ASSERT(g_io_done == false);
2007 
2008 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2009 	stub_complete_io(1);
2010 	CU_ASSERT(g_io_done == false);
2011 
2012 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2013 	stub_complete_io(1);
2014 	CU_ASSERT(g_io_done == true);
2015 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2016 
2017 	spdk_put_io_channel(io_ch);
2018 	spdk_bdev_close(desc);
2019 	free_bdev(bdev);
2020 	ut_fini_bdev();
2021 }
2022 
2023 static void
2024 bdev_io_max_size_and_segment_split_test(void)
2025 {
2026 	struct spdk_bdev *bdev;
2027 	struct spdk_bdev_desc *desc = NULL;
2028 	struct spdk_io_channel *io_ch;
2029 	struct spdk_bdev_opts bdev_opts = {};
2030 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
2031 	struct ut_expected_io *expected_io;
2032 	uint64_t i;
2033 	int rc;
2034 
2035 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2036 	bdev_opts.bdev_io_pool_size = 512;
2037 	bdev_opts.bdev_io_cache_size = 64;
2038 	bdev_opts.opts_size = sizeof(bdev_opts);
2039 	ut_init_bdev(&bdev_opts);
2040 
2041 	bdev = allocate_bdev("bdev0");
2042 
2043 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2044 	CU_ASSERT(rc == 0);
2045 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2046 	io_ch = spdk_bdev_get_io_channel(desc);
2047 	CU_ASSERT(io_ch != NULL);
2048 
2049 	bdev->split_on_optimal_io_boundary = false;
2050 	bdev->optimal_io_boundary = 0;
2051 
2052 	/* Case 0 max_num_segments == 0.
2053 	 * but segment size 2 * 512 > 512
2054 	 */
2055 	bdev->max_segment_size = 512;
2056 	bdev->max_num_segments = 0;
2057 	g_io_done = false;
2058 
2059 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2060 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2061 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2062 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2063 
2064 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2065 	CU_ASSERT(rc == 0);
2066 	CU_ASSERT(g_io_done == false);
2067 
2068 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2069 	stub_complete_io(1);
2070 	CU_ASSERT(g_io_done == true);
2071 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2072 
2073 	/* Case 1 max_segment_size == 0
2074 	 * but iov num 2 > 1.
2075 	 */
2076 	bdev->max_segment_size = 0;
2077 	bdev->max_num_segments = 1;
2078 	g_io_done = false;
2079 
2080 	iov[0].iov_base = (void *)0x10000;
2081 	iov[0].iov_len = 512;
2082 	iov[1].iov_base = (void *)0x20000;
2083 	iov[1].iov_len = 8 * 512;
2084 
2085 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2086 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len);
2087 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2088 
2089 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1);
2090 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len);
2091 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2092 
2093 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL);
2094 	CU_ASSERT(rc == 0);
2095 	CU_ASSERT(g_io_done == false);
2096 
2097 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2098 	stub_complete_io(2);
2099 	CU_ASSERT(g_io_done == true);
2100 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2101 
2102 	/* Test that a non-vector command is split correctly.
2103 	 * Set up the expected values before calling spdk_bdev_read_blocks
2104 	 */
2105 	bdev->max_segment_size = 512;
2106 	bdev->max_num_segments = 1;
2107 	g_io_done = false;
2108 
2109 	/* Child IO 0 */
2110 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2111 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2112 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2113 
2114 	/* Child IO 1 */
2115 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2116 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512);
2117 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2118 
2119 	/* spdk_bdev_read_blocks will submit the first child immediately. */
2120 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2121 	CU_ASSERT(rc == 0);
2122 	CU_ASSERT(g_io_done == false);
2123 
2124 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2125 	stub_complete_io(2);
2126 	CU_ASSERT(g_io_done == true);
2127 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2128 
2129 	/* Now set up a more complex, multi-vector command that needs to be split,
2130 	 * including splitting iovecs.
2131 	 */
2132 	bdev->max_segment_size = 2 * 512;
2133 	bdev->max_num_segments = 1;
2134 	g_io_done = false;
2135 
2136 	iov[0].iov_base = (void *)0x10000;
2137 	iov[0].iov_len = 2 * 512;
2138 	iov[1].iov_base = (void *)0x20000;
2139 	iov[1].iov_len = 4 * 512;
2140 	iov[2].iov_base = (void *)0x30000;
2141 	iov[2].iov_len = 6 * 512;
2142 
2143 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2144 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2);
2145 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2146 
2147 	/* Split iov[1].size to 2 iov entries then split the segments */
2148 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2149 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2);
2150 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2151 
2152 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1);
2153 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2);
2154 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2155 
2156 	/* Split iov[2].size to 3 iov entries then split the segments */
2157 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1);
2158 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2);
2159 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2160 
2161 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1);
2162 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2);
2163 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2164 
2165 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1);
2166 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2);
2167 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2168 
2169 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL);
2170 	CU_ASSERT(rc == 0);
2171 	CU_ASSERT(g_io_done == false);
2172 
2173 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2174 	stub_complete_io(6);
2175 	CU_ASSERT(g_io_done == true);
2176 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2177 
2178 	/* Test multi vector command that needs to be split by strip and then needs to be
2179 	 * split further due to the capacity of parent IO child iovs.
2180 	 */
2181 	bdev->max_segment_size = 512;
2182 	bdev->max_num_segments = 1;
2183 	g_io_done = false;
2184 
2185 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2186 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2187 		iov[i].iov_len = 512 * 2;
2188 	}
2189 
2190 	/* Each input iov.size is split into 2 iovs,
2191 	 * half of the input iov can fill all child iov entries of a single IO.
2192 	 */
2193 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i++) {
2194 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1);
2195 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2196 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2197 
2198 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1);
2199 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2200 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2201 	}
2202 
2203 	/* The remaining iov is split in the second round */
2204 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2205 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1);
2206 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2207 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2208 
2209 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1);
2210 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2211 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2212 	}
2213 
2214 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
2215 				    SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
2216 	CU_ASSERT(rc == 0);
2217 	CU_ASSERT(g_io_done == false);
2218 
2219 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2220 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2221 	CU_ASSERT(g_io_done == false);
2222 
2223 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2224 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2225 	CU_ASSERT(g_io_done == true);
2226 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2227 
2228 	/* A wrong case, a child IO that is divided does
2229 	 * not meet the principle of multiples of block size,
2230 	 * and exits with error
2231 	 */
2232 	bdev->max_segment_size = 512;
2233 	bdev->max_num_segments = 1;
2234 	g_io_done = false;
2235 
2236 	iov[0].iov_base = (void *)0x10000;
2237 	iov[0].iov_len = 512 + 256;
2238 	iov[1].iov_base = (void *)0x20000;
2239 	iov[1].iov_len = 256;
2240 
2241 	/* iov[0] is split to 512 and 256.
2242 	 * 256 is less than a block size, and it is found
2243 	 * in the next round of split that it is the first child IO smaller than
2244 	 * the block size, so the error exit
2245 	 */
2246 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1);
2247 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512);
2248 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2249 
2250 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL);
2251 	CU_ASSERT(rc == 0);
2252 	CU_ASSERT(g_io_done == false);
2253 
2254 	/* First child IO is OK */
2255 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2256 	stub_complete_io(1);
2257 	CU_ASSERT(g_io_done == true);
2258 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2259 
2260 	/* error exit */
2261 	stub_complete_io(1);
2262 	CU_ASSERT(g_io_done == true);
2263 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
2264 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2265 
2266 	/* Test multi vector command that needs to be split by strip and then needs to be
2267 	 * split further due to the capacity of child iovs.
2268 	 *
2269 	 * In this case, the last two iovs need to be split, but it will exceed the capacity
2270 	 * of child iovs, so it needs to wait until the first batch completed.
2271 	 */
2272 	bdev->max_segment_size = 512;
2273 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2274 	g_io_done = false;
2275 
2276 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2277 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2278 		iov[i].iov_len = 512;
2279 	}
2280 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2281 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2282 		iov[i].iov_len = 512 * 2;
2283 	}
2284 
2285 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2286 					   SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
2287 	/* 0 ~ (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */
2288 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2289 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2290 	}
2291 	/* (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) is split */
2292 	ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512);
2293 	ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512);
2294 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2295 
2296 	/* Child iov entries exceed the max num of parent IO so split it in next round */
2297 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV, 2, 2);
2298 	ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512);
2299 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512);
2300 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2301 
2302 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
2303 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL);
2304 	CU_ASSERT(rc == 0);
2305 	CU_ASSERT(g_io_done == false);
2306 
2307 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2308 	stub_complete_io(1);
2309 	CU_ASSERT(g_io_done == false);
2310 
2311 	/* Next round */
2312 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2313 	stub_complete_io(1);
2314 	CU_ASSERT(g_io_done == true);
2315 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2316 
2317 	/* This case is similar to the previous one, but the io composed of
2318 	 * the last few entries of child iov is not enough for a blocklen, so they
2319 	 * cannot be put into this IO, but wait until the next time.
2320 	 */
2321 	bdev->max_segment_size = 512;
2322 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2323 	g_io_done = false;
2324 
2325 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2326 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2327 		iov[i].iov_len = 512;
2328 	}
2329 
2330 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2331 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2332 		iov[i].iov_len = 128;
2333 	}
2334 
2335 	/* First child iovcnt is't SPDK_BDEV_IO_NUM_CHILD_IOV but SPDK_BDEV_IO_NUM_CHILD_IOV - 2.
2336 	 * Because the left 2 iov is not enough for a blocklen.
2337 	 */
2338 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2339 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 2, SPDK_BDEV_IO_NUM_CHILD_IOV - 2);
2340 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2341 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2342 	}
2343 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2344 
2345 	/* The second child io waits until the end of the first child io before executing.
2346 	 * Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO.
2347 	 * SPDK_BDEV_IO_NUM_CHILD_IOV - 2 to SPDK_BDEV_IO_NUM_CHILD_IOV + 2
2348 	 */
2349 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
2350 					   1, 4);
2351 	ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len);
2352 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len);
2353 	ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len);
2354 	ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len);
2355 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2356 
2357 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
2358 				    SPDK_BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL);
2359 	CU_ASSERT(rc == 0);
2360 	CU_ASSERT(g_io_done == false);
2361 
2362 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2363 	stub_complete_io(1);
2364 	CU_ASSERT(g_io_done == false);
2365 
2366 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2367 	stub_complete_io(1);
2368 	CU_ASSERT(g_io_done == true);
2369 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2370 
2371 	/* A very complicated case. Each sg entry exceeds max_segment_size and
2372 	 * needs to be split. At the same time, child io must be a multiple of blocklen.
2373 	 * At the same time, child iovcnt exceeds parent iovcnt.
2374 	 */
2375 	bdev->max_segment_size = 512 + 128;
2376 	bdev->max_num_segments = 3;
2377 	g_io_done = false;
2378 
2379 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2380 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2381 		iov[i].iov_len = 512 + 256;
2382 	}
2383 
2384 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2385 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2386 		iov[i].iov_len = 512 + 128;
2387 	}
2388 
2389 	/* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries.
2390 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2391 	 * Generate 9 child IOs.
2392 	 */
2393 	for (i = 0; i < 3; i++) {
2394 		uint32_t j = i * 4;
2395 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3);
2396 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2397 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2398 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2399 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2400 
2401 		/* Child io must be a multiple of blocklen
2402 		 * iov[j + 2] must be split. If the third entry is also added,
2403 		 * the multiple of blocklen cannot be guaranteed. But it still
2404 		 * occupies one iov entry of the parent child iov.
2405 		 */
2406 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2);
2407 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2408 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2409 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2410 
2411 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3);
2412 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2413 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2414 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2415 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2416 	}
2417 
2418 	/* Child iov position at 27, the 10th child IO
2419 	 * iov entry index is 3 * 4 and offset is 3 * 6
2420 	 */
2421 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3);
2422 	ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640);
2423 	ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128);
2424 	ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256);
2425 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2426 
2427 	/* Child iov position at 30, the 11th child IO */
2428 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2);
2429 	ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512);
2430 	ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512);
2431 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2432 
2433 	/* The 2nd split round and iovpos is 0, the 12th child IO */
2434 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3);
2435 	ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256);
2436 	ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640);
2437 	ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128);
2438 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2439 
2440 	/* Consume 9 child IOs and 27 child iov entries.
2441 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2442 	 * Parent IO iov index start from 16 and block offset start from 24
2443 	 */
2444 	for (i = 0; i < 3; i++) {
2445 		uint32_t j = i * 4 + 16;
2446 		uint32_t offset = i * 6 + 24;
2447 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3);
2448 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2449 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2450 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2451 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2452 
2453 		/* Child io must be a multiple of blocklen
2454 		 * iov[j + 2] must be split. If the third entry is also added,
2455 		 * the multiple of blocklen cannot be guaranteed. But it still
2456 		 * occupies one iov entry of the parent child iov.
2457 		 */
2458 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2);
2459 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2460 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2461 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2462 
2463 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3);
2464 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2465 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2466 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2467 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2468 	}
2469 
2470 	/* The 22th child IO, child iov position at 30 */
2471 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1);
2472 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512);
2473 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2474 
2475 	/* The third round */
2476 	/* Here is the 23nd child IO and child iovpos is 0 */
2477 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3);
2478 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256);
2479 	ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640);
2480 	ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128);
2481 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2482 
2483 	/* The 24th child IO */
2484 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3);
2485 	ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640);
2486 	ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640);
2487 	ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256);
2488 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2489 
2490 	/* The 25th child IO */
2491 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2);
2492 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384);
2493 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640);
2494 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2495 
2496 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
2497 				    50, io_done, NULL);
2498 	CU_ASSERT(rc == 0);
2499 	CU_ASSERT(g_io_done == false);
2500 
2501 	/* Parent IO supports up to 32 child iovs, so it is calculated that
2502 	 * a maximum of 11 IOs can be split at a time, and the
2503 	 * splitting will continue after the first batch is over.
2504 	 */
2505 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2506 	stub_complete_io(11);
2507 	CU_ASSERT(g_io_done == false);
2508 
2509 	/* The 2nd round */
2510 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2511 	stub_complete_io(11);
2512 	CU_ASSERT(g_io_done == false);
2513 
2514 	/* The last round */
2515 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2516 	stub_complete_io(3);
2517 	CU_ASSERT(g_io_done == true);
2518 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2519 
2520 	/* Test an WRITE_ZEROES.  This should also not be split. */
2521 	bdev->max_segment_size = 512;
2522 	bdev->max_num_segments = 1;
2523 	g_io_done = false;
2524 
2525 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
2526 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2527 
2528 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
2529 	CU_ASSERT(rc == 0);
2530 	CU_ASSERT(g_io_done == false);
2531 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2532 	stub_complete_io(1);
2533 	CU_ASSERT(g_io_done == true);
2534 
2535 	/* Test an UNMAP.  This should also not be split. */
2536 	g_io_done = false;
2537 
2538 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0);
2539 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2540 
2541 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL);
2542 	CU_ASSERT(rc == 0);
2543 	CU_ASSERT(g_io_done == false);
2544 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2545 	stub_complete_io(1);
2546 	CU_ASSERT(g_io_done == true);
2547 
2548 	/* Test a FLUSH.  This should also not be split. */
2549 	g_io_done = false;
2550 
2551 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0);
2552 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2553 
2554 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
2555 	CU_ASSERT(rc == 0);
2556 	CU_ASSERT(g_io_done == false);
2557 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2558 	stub_complete_io(1);
2559 	CU_ASSERT(g_io_done == true);
2560 
2561 	/* Test a COPY.  This should also not be split. */
2562 	g_io_done = false;
2563 
2564 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
2565 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2566 
2567 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
2568 	CU_ASSERT(rc == 0);
2569 	CU_ASSERT(g_io_done == false);
2570 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2571 	stub_complete_io(1);
2572 	CU_ASSERT(g_io_done == true);
2573 
2574 	spdk_put_io_channel(io_ch);
2575 	spdk_bdev_close(desc);
2576 	free_bdev(bdev);
2577 	ut_fini_bdev();
2578 }
2579 
2580 static void
2581 bdev_io_mix_split_test(void)
2582 {
2583 	struct spdk_bdev *bdev;
2584 	struct spdk_bdev_desc *desc = NULL;
2585 	struct spdk_io_channel *io_ch;
2586 	struct spdk_bdev_opts bdev_opts = {};
2587 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
2588 	struct ut_expected_io *expected_io;
2589 	uint64_t i;
2590 	int rc;
2591 
2592 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2593 	bdev_opts.bdev_io_pool_size = 512;
2594 	bdev_opts.bdev_io_cache_size = 64;
2595 	ut_init_bdev(&bdev_opts);
2596 
2597 	bdev = allocate_bdev("bdev0");
2598 
2599 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2600 	CU_ASSERT(rc == 0);
2601 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2602 	io_ch = spdk_bdev_get_io_channel(desc);
2603 	CU_ASSERT(io_ch != NULL);
2604 
2605 	/* First case optimal_io_boundary == max_segment_size * max_num_segments */
2606 	bdev->split_on_optimal_io_boundary = true;
2607 	bdev->optimal_io_boundary = 16;
2608 
2609 	bdev->max_segment_size = 512;
2610 	bdev->max_num_segments = 16;
2611 	g_io_done = false;
2612 
2613 	/* IO crossing the IO boundary requires split
2614 	 * Total 2 child IOs.
2615 	 */
2616 
2617 	/* The 1st child IO split the segment_size to multiple segment entry */
2618 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2619 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2620 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2621 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2622 
2623 	/* The 2nd child IO split the segment_size to multiple segment entry */
2624 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2);
2625 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512);
2626 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512);
2627 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2628 
2629 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL);
2630 	CU_ASSERT(rc == 0);
2631 	CU_ASSERT(g_io_done == false);
2632 
2633 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2634 	stub_complete_io(2);
2635 	CU_ASSERT(g_io_done == true);
2636 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2637 
2638 	/* Second case optimal_io_boundary > max_segment_size * max_num_segments */
2639 	bdev->max_segment_size = 15 * 512;
2640 	bdev->max_num_segments = 1;
2641 	g_io_done = false;
2642 
2643 	/* IO crossing the IO boundary requires split.
2644 	 * The 1st child IO segment size exceeds the max_segment_size,
2645 	 * So 1st child IO will be split to multiple segment entry.
2646 	 * Then it split to 2 child IOs because of the max_num_segments.
2647 	 * Total 3 child IOs.
2648 	 */
2649 
2650 	/* The first 2 IOs are in an IO boundary.
2651 	 * Because the optimal_io_boundary > max_segment_size * max_num_segments
2652 	 * So it split to the first 2 IOs.
2653 	 */
2654 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1);
2655 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15);
2656 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2657 
2658 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2659 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512);
2660 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2661 
2662 	/* The 3rd Child IO is because of the io boundary */
2663 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2664 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2665 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2666 
2667 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2668 	CU_ASSERT(rc == 0);
2669 	CU_ASSERT(g_io_done == false);
2670 
2671 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2672 	stub_complete_io(3);
2673 	CU_ASSERT(g_io_done == true);
2674 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2675 
2676 	/* Third case optimal_io_boundary < max_segment_size * max_num_segments */
2677 	bdev->max_segment_size = 17 * 512;
2678 	bdev->max_num_segments = 1;
2679 	g_io_done = false;
2680 
2681 	/* IO crossing the IO boundary requires split.
2682 	 * Child IO does not split.
2683 	 * Total 2 child IOs.
2684 	 */
2685 
2686 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1);
2687 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16);
2688 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2689 
2690 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2691 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2692 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2693 
2694 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2695 	CU_ASSERT(rc == 0);
2696 	CU_ASSERT(g_io_done == false);
2697 
2698 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2699 	stub_complete_io(2);
2700 	CU_ASSERT(g_io_done == true);
2701 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2702 
2703 	/* Now set up a more complex, multi-vector command that needs to be split,
2704 	 * including splitting iovecs.
2705 	 * optimal_io_boundary < max_segment_size * max_num_segments
2706 	 */
2707 	bdev->max_segment_size = 3 * 512;
2708 	bdev->max_num_segments = 6;
2709 	g_io_done = false;
2710 
2711 	iov[0].iov_base = (void *)0x10000;
2712 	iov[0].iov_len = 4 * 512;
2713 	iov[1].iov_base = (void *)0x20000;
2714 	iov[1].iov_len = 4 * 512;
2715 	iov[2].iov_base = (void *)0x30000;
2716 	iov[2].iov_len = 10 * 512;
2717 
2718 	/* IO crossing the IO boundary requires split.
2719 	 * The 1st child IO segment size exceeds the max_segment_size and after
2720 	 * splitting segment_size, the num_segments exceeds max_num_segments.
2721 	 * So 1st child IO will be split to 2 child IOs.
2722 	 * Total 3 child IOs.
2723 	 */
2724 
2725 	/* The first 2 IOs are in an IO boundary.
2726 	 * After splitting segment size the segment num exceeds.
2727 	 * So it splits to 2 child IOs.
2728 	 */
2729 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6);
2730 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3);
2731 	ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512);
2732 	ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3);
2733 	ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512);
2734 	ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3);
2735 	ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3);
2736 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2737 
2738 	/* The 2nd child IO has the left segment entry */
2739 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2740 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2);
2741 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2742 
2743 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2744 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2);
2745 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2746 
2747 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL);
2748 	CU_ASSERT(rc == 0);
2749 	CU_ASSERT(g_io_done == false);
2750 
2751 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2752 	stub_complete_io(3);
2753 	CU_ASSERT(g_io_done == true);
2754 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2755 
2756 	/* A very complicated case. Each sg entry exceeds max_segment_size
2757 	 * and split on io boundary.
2758 	 * optimal_io_boundary < max_segment_size * max_num_segments
2759 	 */
2760 	bdev->max_segment_size = 3 * 512;
2761 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2762 	g_io_done = false;
2763 
2764 	for (i = 0; i < 20; i++) {
2765 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2766 		iov[i].iov_len = 512 * 4;
2767 	}
2768 
2769 	/* IO crossing the IO boundary requires split.
2770 	 * 80 block length can split 5 child IOs base on offset and IO boundary.
2771 	 * Each iov entry needs to be split to 2 entries because of max_segment_size
2772 	 * Total 5 child IOs.
2773 	 */
2774 
2775 	/* 4 iov entries are in an IO boundary and each iov entry splits to 2.
2776 	 * So each child IO occupies 8 child iov entries.
2777 	 */
2778 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8);
2779 	for (i = 0; i < 4; i++) {
2780 		int iovcnt = i * 2;
2781 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2782 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2783 	}
2784 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2785 
2786 	/* 2nd child IO and total 16 child iov entries of parent IO */
2787 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8);
2788 	for (i = 4; i < 8; i++) {
2789 		int iovcnt = (i - 4) * 2;
2790 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2791 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2792 	}
2793 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2794 
2795 	/* 3rd child IO and total 24 child iov entries of parent IO */
2796 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8);
2797 	for (i = 8; i < 12; i++) {
2798 		int iovcnt = (i - 8) * 2;
2799 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2800 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2801 	}
2802 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2803 
2804 	/* 4th child IO and total 32 child iov entries of parent IO */
2805 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8);
2806 	for (i = 12; i < 16; i++) {
2807 		int iovcnt = (i - 12) * 2;
2808 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2809 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2810 	}
2811 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2812 
2813 	/* 5th child IO and because of the child iov entry it should be split
2814 	 * in next round.
2815 	 */
2816 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8);
2817 	for (i = 16; i < 20; i++) {
2818 		int iovcnt = (i - 16) * 2;
2819 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2820 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2821 	}
2822 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2823 
2824 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL);
2825 	CU_ASSERT(rc == 0);
2826 	CU_ASSERT(g_io_done == false);
2827 
2828 	/* First split round */
2829 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2830 	stub_complete_io(4);
2831 	CU_ASSERT(g_io_done == false);
2832 
2833 	/* Second split round */
2834 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2835 	stub_complete_io(1);
2836 	CU_ASSERT(g_io_done == true);
2837 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2838 
2839 	spdk_put_io_channel(io_ch);
2840 	spdk_bdev_close(desc);
2841 	free_bdev(bdev);
2842 	ut_fini_bdev();
2843 }
2844 
2845 static void
2846 bdev_io_split_with_io_wait(void)
2847 {
2848 	struct spdk_bdev *bdev;
2849 	struct spdk_bdev_desc *desc = NULL;
2850 	struct spdk_io_channel *io_ch;
2851 	struct spdk_bdev_channel *channel;
2852 	struct spdk_bdev_mgmt_channel *mgmt_ch;
2853 	struct spdk_bdev_opts bdev_opts = {};
2854 	struct iovec iov[3];
2855 	struct ut_expected_io *expected_io;
2856 	int rc;
2857 
2858 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2859 	bdev_opts.bdev_io_pool_size = 2;
2860 	bdev_opts.bdev_io_cache_size = 1;
2861 	ut_init_bdev(&bdev_opts);
2862 
2863 	bdev = allocate_bdev("bdev0");
2864 
2865 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2866 	CU_ASSERT(rc == 0);
2867 	CU_ASSERT(desc != NULL);
2868 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2869 	io_ch = spdk_bdev_get_io_channel(desc);
2870 	CU_ASSERT(io_ch != NULL);
2871 	channel = spdk_io_channel_get_ctx(io_ch);
2872 	mgmt_ch = channel->shared_resource->mgmt_ch;
2873 
2874 	bdev->optimal_io_boundary = 16;
2875 	bdev->split_on_optimal_io_boundary = true;
2876 
2877 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
2878 	CU_ASSERT(rc == 0);
2879 
2880 	/* Now test that a single-vector command is split correctly.
2881 	 * Offset 14, length 8, payload 0xF000
2882 	 *  Child - Offset 14, length 2, payload 0xF000
2883 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
2884 	 *
2885 	 * Set up the expected values before calling spdk_bdev_read_blocks
2886 	 */
2887 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
2888 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
2889 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2890 
2891 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
2892 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
2893 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2894 
2895 	/* The following children will be submitted sequentially due to the capacity of
2896 	 * spdk_bdev_io.
2897 	 */
2898 
2899 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
2900 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
2901 	CU_ASSERT(rc == 0);
2902 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2903 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2904 
2905 	/* Completing the first read I/O will submit the first child */
2906 	stub_complete_io(1);
2907 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2908 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2909 
2910 	/* Completing the first child will submit the second child */
2911 	stub_complete_io(1);
2912 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2913 
2914 	/* Complete the second child I/O.  This should result in our callback getting
2915 	 * invoked since the parent I/O is now complete.
2916 	 */
2917 	stub_complete_io(1);
2918 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2919 
2920 	/* Now set up a more complex, multi-vector command that needs to be split,
2921 	 *  including splitting iovecs.
2922 	 */
2923 	iov[0].iov_base = (void *)0x10000;
2924 	iov[0].iov_len = 512;
2925 	iov[1].iov_base = (void *)0x20000;
2926 	iov[1].iov_len = 20 * 512;
2927 	iov[2].iov_base = (void *)0x30000;
2928 	iov[2].iov_len = 11 * 512;
2929 
2930 	g_io_done = false;
2931 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
2932 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
2933 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
2934 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2935 
2936 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
2937 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
2938 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2939 
2940 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
2941 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
2942 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
2943 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2944 
2945 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
2946 	CU_ASSERT(rc == 0);
2947 	CU_ASSERT(g_io_done == false);
2948 
2949 	/* The following children will be submitted sequentially due to the capacity of
2950 	 * spdk_bdev_io.
2951 	 */
2952 
2953 	/* Completing the first child will submit the second child */
2954 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2955 	stub_complete_io(1);
2956 	CU_ASSERT(g_io_done == false);
2957 
2958 	/* Completing the second child will submit the third child */
2959 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2960 	stub_complete_io(1);
2961 	CU_ASSERT(g_io_done == false);
2962 
2963 	/* Completing the third child will result in our callback getting invoked
2964 	 * since the parent I/O is now complete.
2965 	 */
2966 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2967 	stub_complete_io(1);
2968 	CU_ASSERT(g_io_done == true);
2969 
2970 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
2971 
2972 	spdk_put_io_channel(io_ch);
2973 	spdk_bdev_close(desc);
2974 	free_bdev(bdev);
2975 	ut_fini_bdev();
2976 }
2977 
2978 static void
2979 bdev_io_write_unit_split_test(void)
2980 {
2981 	struct spdk_bdev *bdev;
2982 	struct spdk_bdev_desc *desc = NULL;
2983 	struct spdk_io_channel *io_ch;
2984 	struct spdk_bdev_opts bdev_opts = {};
2985 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 4];
2986 	struct ut_expected_io *expected_io;
2987 	uint64_t i;
2988 	int rc;
2989 
2990 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2991 	bdev_opts.bdev_io_pool_size = 512;
2992 	bdev_opts.bdev_io_cache_size = 64;
2993 	ut_init_bdev(&bdev_opts);
2994 
2995 	bdev = allocate_bdev("bdev0");
2996 
2997 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2998 	CU_ASSERT(rc == 0);
2999 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3000 	io_ch = spdk_bdev_get_io_channel(desc);
3001 	CU_ASSERT(io_ch != NULL);
3002 
3003 	/* Write I/O 2x larger than write_unit_size should get split into 2 I/Os */
3004 	bdev->write_unit_size = 32;
3005 	bdev->split_on_write_unit = true;
3006 	g_io_done = false;
3007 
3008 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 32, 1);
3009 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 32 * 512);
3010 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3011 
3012 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 32, 1);
3013 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 32 * 512), 32 * 512);
3014 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3015 
3016 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
3017 	CU_ASSERT(rc == 0);
3018 	CU_ASSERT(g_io_done == false);
3019 
3020 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3021 	stub_complete_io(2);
3022 	CU_ASSERT(g_io_done == true);
3023 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3024 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3025 
3026 	/* Same as above but with optimal_io_boundary < write_unit_size - the I/O should be split
3027 	 * based on write_unit_size, not optimal_io_boundary */
3028 	bdev->split_on_optimal_io_boundary = true;
3029 	bdev->optimal_io_boundary = 16;
3030 	g_io_done = false;
3031 
3032 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
3033 	CU_ASSERT(rc == 0);
3034 	CU_ASSERT(g_io_done == false);
3035 
3036 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3037 	stub_complete_io(2);
3038 	CU_ASSERT(g_io_done == true);
3039 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3040 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3041 
3042 	/* Write I/O should fail if it is smaller than write_unit_size */
3043 	g_io_done = false;
3044 
3045 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 31, io_done, NULL);
3046 	CU_ASSERT(rc == 0);
3047 	CU_ASSERT(g_io_done == false);
3048 
3049 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3050 	poll_threads();
3051 	CU_ASSERT(g_io_done == true);
3052 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3053 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3054 
3055 	/* Same for I/O not aligned to write_unit_size */
3056 	g_io_done = false;
3057 
3058 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 1, 32, io_done, NULL);
3059 	CU_ASSERT(rc == 0);
3060 	CU_ASSERT(g_io_done == false);
3061 
3062 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3063 	poll_threads();
3064 	CU_ASSERT(g_io_done == true);
3065 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3066 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3067 
3068 	/* Write should fail if it needs to be split but there are not enough iovs to submit
3069 	 * an entire write unit */
3070 	bdev->write_unit_size = SPDK_COUNTOF(iov) / 2;
3071 	g_io_done = false;
3072 
3073 	for (i = 0; i < SPDK_COUNTOF(iov); i++) {
3074 		iov[i].iov_base = (void *)(0x1000 + 512 * i);
3075 		iov[i].iov_len = 512;
3076 	}
3077 
3078 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, SPDK_COUNTOF(iov), 0, SPDK_COUNTOF(iov),
3079 				     io_done, NULL);
3080 	CU_ASSERT(rc == 0);
3081 	CU_ASSERT(g_io_done == false);
3082 
3083 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3084 	poll_threads();
3085 	CU_ASSERT(g_io_done == true);
3086 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3087 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3088 
3089 	spdk_put_io_channel(io_ch);
3090 	spdk_bdev_close(desc);
3091 	free_bdev(bdev);
3092 	ut_fini_bdev();
3093 }
3094 
3095 static void
3096 bdev_io_alignment(void)
3097 {
3098 	struct spdk_bdev *bdev;
3099 	struct spdk_bdev_desc *desc = NULL;
3100 	struct spdk_io_channel *io_ch;
3101 	struct spdk_bdev_opts bdev_opts = {};
3102 	int rc;
3103 	void *buf = NULL;
3104 	struct iovec iovs[2];
3105 	int iovcnt;
3106 	uint64_t alignment;
3107 
3108 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3109 	bdev_opts.bdev_io_pool_size = 20;
3110 	bdev_opts.bdev_io_cache_size = 2;
3111 	ut_init_bdev(&bdev_opts);
3112 
3113 	fn_table.submit_request = stub_submit_request_get_buf;
3114 	bdev = allocate_bdev("bdev0");
3115 
3116 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3117 	CU_ASSERT(rc == 0);
3118 	CU_ASSERT(desc != NULL);
3119 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3120 	io_ch = spdk_bdev_get_io_channel(desc);
3121 	CU_ASSERT(io_ch != NULL);
3122 
3123 	/* Create aligned buffer */
3124 	rc = posix_memalign(&buf, 4096, 8192);
3125 	SPDK_CU_ASSERT_FATAL(rc == 0);
3126 
3127 	/* Pass aligned single buffer with no alignment required */
3128 	alignment = 1;
3129 	bdev->required_alignment = spdk_u32log2(alignment);
3130 
3131 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3132 	CU_ASSERT(rc == 0);
3133 	stub_complete_io(1);
3134 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3135 				    alignment));
3136 
3137 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3138 	CU_ASSERT(rc == 0);
3139 	stub_complete_io(1);
3140 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3141 				    alignment));
3142 
3143 	/* Pass unaligned single buffer with no alignment required */
3144 	alignment = 1;
3145 	bdev->required_alignment = spdk_u32log2(alignment);
3146 
3147 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3148 	CU_ASSERT(rc == 0);
3149 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3150 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3151 	stub_complete_io(1);
3152 
3153 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3154 	CU_ASSERT(rc == 0);
3155 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3156 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3157 	stub_complete_io(1);
3158 
3159 	/* Pass unaligned single buffer with 512 alignment required */
3160 	alignment = 512;
3161 	bdev->required_alignment = spdk_u32log2(alignment);
3162 
3163 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3164 	CU_ASSERT(rc == 0);
3165 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3166 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3167 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3168 				    alignment));
3169 	stub_complete_io(1);
3170 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3171 
3172 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3173 	CU_ASSERT(rc == 0);
3174 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3175 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3176 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3177 				    alignment));
3178 	stub_complete_io(1);
3179 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3180 
3181 	/* Pass unaligned single buffer with 4096 alignment required */
3182 	alignment = 4096;
3183 	bdev->required_alignment = spdk_u32log2(alignment);
3184 
3185 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3186 	CU_ASSERT(rc == 0);
3187 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3188 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3189 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3190 				    alignment));
3191 	stub_complete_io(1);
3192 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3193 
3194 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3195 	CU_ASSERT(rc == 0);
3196 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3197 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3198 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3199 				    alignment));
3200 	stub_complete_io(1);
3201 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3202 
3203 	/* Pass aligned iovs with no alignment required */
3204 	alignment = 1;
3205 	bdev->required_alignment = spdk_u32log2(alignment);
3206 
3207 	iovcnt = 1;
3208 	iovs[0].iov_base = buf;
3209 	iovs[0].iov_len = 512;
3210 
3211 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3212 	CU_ASSERT(rc == 0);
3213 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3214 	stub_complete_io(1);
3215 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3216 
3217 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3218 	CU_ASSERT(rc == 0);
3219 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3220 	stub_complete_io(1);
3221 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3222 
3223 	/* Pass unaligned iovs with no alignment required */
3224 	alignment = 1;
3225 	bdev->required_alignment = spdk_u32log2(alignment);
3226 
3227 	iovcnt = 2;
3228 	iovs[0].iov_base = buf + 16;
3229 	iovs[0].iov_len = 256;
3230 	iovs[1].iov_base = buf + 16 + 256 + 32;
3231 	iovs[1].iov_len = 256;
3232 
3233 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3234 	CU_ASSERT(rc == 0);
3235 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3236 	stub_complete_io(1);
3237 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3238 
3239 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3240 	CU_ASSERT(rc == 0);
3241 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3242 	stub_complete_io(1);
3243 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3244 
3245 	/* Pass unaligned iov with 2048 alignment required */
3246 	alignment = 2048;
3247 	bdev->required_alignment = spdk_u32log2(alignment);
3248 
3249 	iovcnt = 2;
3250 	iovs[0].iov_base = buf + 16;
3251 	iovs[0].iov_len = 256;
3252 	iovs[1].iov_base = buf + 16 + 256 + 32;
3253 	iovs[1].iov_len = 256;
3254 
3255 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3256 	CU_ASSERT(rc == 0);
3257 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3258 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3259 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3260 				    alignment));
3261 	stub_complete_io(1);
3262 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3263 
3264 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3265 	CU_ASSERT(rc == 0);
3266 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3267 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3268 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3269 				    alignment));
3270 	stub_complete_io(1);
3271 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3272 
3273 	/* Pass iov without allocated buffer without alignment required */
3274 	alignment = 1;
3275 	bdev->required_alignment = spdk_u32log2(alignment);
3276 
3277 	iovcnt = 1;
3278 	iovs[0].iov_base = NULL;
3279 	iovs[0].iov_len = 0;
3280 
3281 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3282 	CU_ASSERT(rc == 0);
3283 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3284 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3285 				    alignment));
3286 	stub_complete_io(1);
3287 
3288 	/* Pass iov without allocated buffer with 1024 alignment required */
3289 	alignment = 1024;
3290 	bdev->required_alignment = spdk_u32log2(alignment);
3291 
3292 	iovcnt = 1;
3293 	iovs[0].iov_base = NULL;
3294 	iovs[0].iov_len = 0;
3295 
3296 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3297 	CU_ASSERT(rc == 0);
3298 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3299 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3300 				    alignment));
3301 	stub_complete_io(1);
3302 
3303 	spdk_put_io_channel(io_ch);
3304 	spdk_bdev_close(desc);
3305 	free_bdev(bdev);
3306 	fn_table.submit_request = stub_submit_request;
3307 	ut_fini_bdev();
3308 
3309 	free(buf);
3310 }
3311 
3312 static void
3313 bdev_io_alignment_with_boundary(void)
3314 {
3315 	struct spdk_bdev *bdev;
3316 	struct spdk_bdev_desc *desc = NULL;
3317 	struct spdk_io_channel *io_ch;
3318 	struct spdk_bdev_opts bdev_opts = {};
3319 	int rc;
3320 	void *buf = NULL;
3321 	struct iovec iovs[2];
3322 	int iovcnt;
3323 	uint64_t alignment;
3324 
3325 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3326 	bdev_opts.bdev_io_pool_size = 20;
3327 	bdev_opts.bdev_io_cache_size = 2;
3328 	bdev_opts.opts_size = sizeof(bdev_opts);
3329 	ut_init_bdev(&bdev_opts);
3330 
3331 	fn_table.submit_request = stub_submit_request_get_buf;
3332 	bdev = allocate_bdev("bdev0");
3333 
3334 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3335 	CU_ASSERT(rc == 0);
3336 	CU_ASSERT(desc != NULL);
3337 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3338 	io_ch = spdk_bdev_get_io_channel(desc);
3339 	CU_ASSERT(io_ch != NULL);
3340 
3341 	/* Create aligned buffer */
3342 	rc = posix_memalign(&buf, 4096, 131072);
3343 	SPDK_CU_ASSERT_FATAL(rc == 0);
3344 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3345 
3346 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
3347 	alignment = 512;
3348 	bdev->required_alignment = spdk_u32log2(alignment);
3349 	bdev->optimal_io_boundary = 2;
3350 	bdev->split_on_optimal_io_boundary = true;
3351 
3352 	iovcnt = 1;
3353 	iovs[0].iov_base = NULL;
3354 	iovs[0].iov_len = 512 * 3;
3355 
3356 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3357 	CU_ASSERT(rc == 0);
3358 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3359 	stub_complete_io(2);
3360 
3361 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
3362 	alignment = 512;
3363 	bdev->required_alignment = spdk_u32log2(alignment);
3364 	bdev->optimal_io_boundary = 16;
3365 	bdev->split_on_optimal_io_boundary = true;
3366 
3367 	iovcnt = 1;
3368 	iovs[0].iov_base = NULL;
3369 	iovs[0].iov_len = 512 * 16;
3370 
3371 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
3372 	CU_ASSERT(rc == 0);
3373 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3374 	stub_complete_io(2);
3375 
3376 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
3377 	alignment = 512;
3378 	bdev->required_alignment = spdk_u32log2(alignment);
3379 	bdev->optimal_io_boundary = 128;
3380 	bdev->split_on_optimal_io_boundary = true;
3381 
3382 	iovcnt = 1;
3383 	iovs[0].iov_base = buf + 16;
3384 	iovs[0].iov_len = 512 * 160;
3385 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3386 	CU_ASSERT(rc == 0);
3387 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3388 	stub_complete_io(2);
3389 
3390 	/* 512 * 3 with 2 IO boundary */
3391 	alignment = 512;
3392 	bdev->required_alignment = spdk_u32log2(alignment);
3393 	bdev->optimal_io_boundary = 2;
3394 	bdev->split_on_optimal_io_boundary = true;
3395 
3396 	iovcnt = 2;
3397 	iovs[0].iov_base = buf + 16;
3398 	iovs[0].iov_len = 512;
3399 	iovs[1].iov_base = buf + 16 + 512 + 32;
3400 	iovs[1].iov_len = 1024;
3401 
3402 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3403 	CU_ASSERT(rc == 0);
3404 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3405 	stub_complete_io(2);
3406 
3407 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3408 	CU_ASSERT(rc == 0);
3409 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3410 	stub_complete_io(2);
3411 
3412 	/* 512 * 64 with 32 IO boundary */
3413 	bdev->optimal_io_boundary = 32;
3414 	iovcnt = 2;
3415 	iovs[0].iov_base = buf + 16;
3416 	iovs[0].iov_len = 16384;
3417 	iovs[1].iov_base = buf + 16 + 16384 + 32;
3418 	iovs[1].iov_len = 16384;
3419 
3420 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3421 	CU_ASSERT(rc == 0);
3422 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3423 	stub_complete_io(3);
3424 
3425 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3426 	CU_ASSERT(rc == 0);
3427 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3428 	stub_complete_io(3);
3429 
3430 	/* 512 * 160 with 32 IO boundary */
3431 	iovcnt = 1;
3432 	iovs[0].iov_base = buf + 16;
3433 	iovs[0].iov_len = 16384 + 65536;
3434 
3435 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3436 	CU_ASSERT(rc == 0);
3437 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
3438 	stub_complete_io(6);
3439 
3440 	spdk_put_io_channel(io_ch);
3441 	spdk_bdev_close(desc);
3442 	free_bdev(bdev);
3443 	fn_table.submit_request = stub_submit_request;
3444 	ut_fini_bdev();
3445 
3446 	free(buf);
3447 }
3448 
3449 static void
3450 histogram_status_cb(void *cb_arg, int status)
3451 {
3452 	g_status = status;
3453 }
3454 
3455 static void
3456 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3457 {
3458 	g_status = status;
3459 	g_histogram = histogram;
3460 }
3461 
3462 static void
3463 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
3464 		   uint64_t total, uint64_t so_far)
3465 {
3466 	g_count += count;
3467 }
3468 
3469 static void
3470 histogram_channel_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3471 {
3472 	spdk_histogram_data_fn cb_fn = cb_arg;
3473 
3474 	g_status = status;
3475 
3476 	if (status == 0) {
3477 		spdk_histogram_data_iterate(histogram, cb_fn, NULL);
3478 	}
3479 }
3480 
3481 static void
3482 bdev_histograms(void)
3483 {
3484 	struct spdk_bdev *bdev;
3485 	struct spdk_bdev_desc *desc = NULL;
3486 	struct spdk_io_channel *ch;
3487 	struct spdk_histogram_data *histogram;
3488 	uint8_t buf[4096];
3489 	int rc;
3490 
3491 	ut_init_bdev(NULL);
3492 
3493 	bdev = allocate_bdev("bdev");
3494 
3495 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3496 	CU_ASSERT(rc == 0);
3497 	CU_ASSERT(desc != NULL);
3498 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3499 
3500 	ch = spdk_bdev_get_io_channel(desc);
3501 	CU_ASSERT(ch != NULL);
3502 
3503 	/* Enable histogram */
3504 	g_status = -1;
3505 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
3506 	poll_threads();
3507 	CU_ASSERT(g_status == 0);
3508 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3509 
3510 	/* Allocate histogram */
3511 	histogram = spdk_histogram_data_alloc();
3512 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
3513 
3514 	/* Check if histogram is zeroed */
3515 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3516 	poll_threads();
3517 	CU_ASSERT(g_status == 0);
3518 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3519 
3520 	g_count = 0;
3521 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3522 
3523 	CU_ASSERT(g_count == 0);
3524 
3525 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3526 	CU_ASSERT(rc == 0);
3527 
3528 	spdk_delay_us(10);
3529 	stub_complete_io(1);
3530 	poll_threads();
3531 
3532 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3533 	CU_ASSERT(rc == 0);
3534 
3535 	spdk_delay_us(10);
3536 	stub_complete_io(1);
3537 	poll_threads();
3538 
3539 	/* Check if histogram gathered data from all I/O channels */
3540 	g_histogram = NULL;
3541 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3542 	poll_threads();
3543 	CU_ASSERT(g_status == 0);
3544 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3545 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3546 
3547 	g_count = 0;
3548 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3549 	CU_ASSERT(g_count == 2);
3550 
3551 	g_count = 0;
3552 	spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, histogram_io_count);
3553 	CU_ASSERT(g_status == 0);
3554 	CU_ASSERT(g_count == 2);
3555 
3556 	/* Disable histogram */
3557 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
3558 	poll_threads();
3559 	CU_ASSERT(g_status == 0);
3560 	CU_ASSERT(bdev->internal.histogram_enabled == false);
3561 
3562 	/* Try to run histogram commands on disabled bdev */
3563 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3564 	poll_threads();
3565 	CU_ASSERT(g_status == -EFAULT);
3566 
3567 	spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, NULL);
3568 	CU_ASSERT(g_status == -EFAULT);
3569 
3570 	spdk_histogram_data_free(histogram);
3571 	spdk_put_io_channel(ch);
3572 	spdk_bdev_close(desc);
3573 	free_bdev(bdev);
3574 	ut_fini_bdev();
3575 }
3576 
3577 static void
3578 _bdev_compare(bool emulated)
3579 {
3580 	struct spdk_bdev *bdev;
3581 	struct spdk_bdev_desc *desc = NULL;
3582 	struct spdk_io_channel *ioch;
3583 	struct ut_expected_io *expected_io;
3584 	uint64_t offset, num_blocks;
3585 	uint32_t num_completed;
3586 	char aa_buf[512];
3587 	char bb_buf[512];
3588 	struct iovec compare_iov;
3589 	uint8_t expected_io_type;
3590 	int rc;
3591 
3592 	if (emulated) {
3593 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3594 	} else {
3595 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3596 	}
3597 
3598 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3599 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3600 
3601 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3602 
3603 	ut_init_bdev(NULL);
3604 	fn_table.submit_request = stub_submit_request_get_buf;
3605 	bdev = allocate_bdev("bdev");
3606 
3607 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3608 	CU_ASSERT_EQUAL(rc, 0);
3609 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3610 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3611 	ioch = spdk_bdev_get_io_channel(desc);
3612 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3613 
3614 	fn_table.submit_request = stub_submit_request_get_buf;
3615 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3616 
3617 	offset = 50;
3618 	num_blocks = 1;
3619 	compare_iov.iov_base = aa_buf;
3620 	compare_iov.iov_len = sizeof(aa_buf);
3621 
3622 	/* 1. successful comparev */
3623 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3624 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3625 
3626 	g_io_done = false;
3627 	g_compare_read_buf = aa_buf;
3628 	g_compare_read_buf_len = sizeof(aa_buf);
3629 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3630 	CU_ASSERT_EQUAL(rc, 0);
3631 	num_completed = stub_complete_io(1);
3632 	CU_ASSERT_EQUAL(num_completed, 1);
3633 	CU_ASSERT(g_io_done == true);
3634 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3635 
3636 	/* 2. miscompare comparev */
3637 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3638 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3639 
3640 	g_io_done = false;
3641 	g_compare_read_buf = bb_buf;
3642 	g_compare_read_buf_len = sizeof(bb_buf);
3643 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3644 	CU_ASSERT_EQUAL(rc, 0);
3645 	num_completed = stub_complete_io(1);
3646 	CU_ASSERT_EQUAL(num_completed, 1);
3647 	CU_ASSERT(g_io_done == true);
3648 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3649 
3650 	/* 3. successful compare */
3651 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3652 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3653 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3654 
3655 	g_io_done = false;
3656 	g_compare_read_buf = aa_buf;
3657 	g_compare_read_buf_len = sizeof(aa_buf);
3658 	rc = spdk_bdev_compare_blocks(desc, ioch, aa_buf, offset, num_blocks, io_done, NULL);
3659 	CU_ASSERT_EQUAL(rc, 0);
3660 	num_completed = stub_complete_io(1);
3661 	CU_ASSERT_EQUAL(num_completed, 1);
3662 	CU_ASSERT(g_io_done == true);
3663 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3664 
3665 	/* 4. miscompare compare */
3666 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3667 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3668 
3669 	g_io_done = false;
3670 	g_compare_read_buf = bb_buf;
3671 	g_compare_read_buf_len = sizeof(bb_buf);
3672 	rc = spdk_bdev_compare_blocks(desc, ioch, aa_buf, offset, num_blocks, io_done, NULL);
3673 	CU_ASSERT_EQUAL(rc, 0);
3674 	num_completed = stub_complete_io(1);
3675 	CU_ASSERT_EQUAL(num_completed, 1);
3676 	CU_ASSERT(g_io_done == true);
3677 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3678 
3679 	spdk_put_io_channel(ioch);
3680 	spdk_bdev_close(desc);
3681 	free_bdev(bdev);
3682 	fn_table.submit_request = stub_submit_request;
3683 	ut_fini_bdev();
3684 
3685 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3686 
3687 	g_compare_read_buf = NULL;
3688 }
3689 
3690 static void
3691 _bdev_compare_with_md(bool emulated)
3692 {
3693 	struct spdk_bdev *bdev;
3694 	struct spdk_bdev_desc *desc = NULL;
3695 	struct spdk_io_channel *ioch;
3696 	struct ut_expected_io *expected_io;
3697 	uint64_t offset, num_blocks;
3698 	uint32_t num_completed;
3699 	char buf[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3700 	char buf_interleaved_miscompare[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3701 	char buf_miscompare[1024 /* 2 * blocklen */];
3702 	char md_buf[16];
3703 	char md_buf_miscompare[16];
3704 	struct iovec compare_iov;
3705 	uint8_t expected_io_type;
3706 	int rc;
3707 
3708 	if (emulated) {
3709 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3710 	} else {
3711 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3712 	}
3713 
3714 	memset(buf, 0xaa, sizeof(buf));
3715 	memset(buf_interleaved_miscompare, 0xaa, sizeof(buf_interleaved_miscompare));
3716 	/* make last md different */
3717 	memset(buf_interleaved_miscompare + 1024 + 8, 0xbb, 8);
3718 	memset(buf_miscompare, 0xbb, sizeof(buf_miscompare));
3719 	memset(md_buf, 0xaa, 16);
3720 	memset(md_buf_miscompare, 0xbb, 16);
3721 
3722 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3723 
3724 	ut_init_bdev(NULL);
3725 	fn_table.submit_request = stub_submit_request_get_buf;
3726 	bdev = allocate_bdev("bdev");
3727 
3728 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3729 	CU_ASSERT_EQUAL(rc, 0);
3730 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3731 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3732 	ioch = spdk_bdev_get_io_channel(desc);
3733 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3734 
3735 	fn_table.submit_request = stub_submit_request_get_buf;
3736 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3737 
3738 	offset = 50;
3739 	num_blocks = 2;
3740 
3741 	/* interleaved md & data */
3742 	bdev->md_interleave = true;
3743 	bdev->md_len = 8;
3744 	bdev->blocklen = 512 + 8;
3745 	compare_iov.iov_base = buf;
3746 	compare_iov.iov_len = sizeof(buf);
3747 
3748 	/* 1. successful compare with md interleaved */
3749 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3750 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3751 
3752 	g_io_done = false;
3753 	g_compare_read_buf = buf;
3754 	g_compare_read_buf_len = sizeof(buf);
3755 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3756 	CU_ASSERT_EQUAL(rc, 0);
3757 	num_completed = stub_complete_io(1);
3758 	CU_ASSERT_EQUAL(num_completed, 1);
3759 	CU_ASSERT(g_io_done == true);
3760 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3761 
3762 	/* 2. miscompare with md interleaved */
3763 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3764 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3765 
3766 	g_io_done = false;
3767 	g_compare_read_buf = buf_interleaved_miscompare;
3768 	g_compare_read_buf_len = sizeof(buf_interleaved_miscompare);
3769 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3770 	CU_ASSERT_EQUAL(rc, 0);
3771 	num_completed = stub_complete_io(1);
3772 	CU_ASSERT_EQUAL(num_completed, 1);
3773 	CU_ASSERT(g_io_done == true);
3774 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3775 
3776 	/* Separate data & md buffers */
3777 	bdev->md_interleave = false;
3778 	bdev->blocklen = 512;
3779 	compare_iov.iov_base = buf;
3780 	compare_iov.iov_len = 1024;
3781 
3782 	/* 3. successful compare with md separated */
3783 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3784 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3785 
3786 	g_io_done = false;
3787 	g_compare_read_buf = buf;
3788 	g_compare_read_buf_len = 1024;
3789 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3790 	g_compare_md_buf = md_buf;
3791 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3792 					       offset, num_blocks, io_done, NULL);
3793 	CU_ASSERT_EQUAL(rc, 0);
3794 	num_completed = stub_complete_io(1);
3795 	CU_ASSERT_EQUAL(num_completed, 1);
3796 	CU_ASSERT(g_io_done == true);
3797 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3798 
3799 	/* 4. miscompare with md separated where md buf is different */
3800 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3801 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3802 
3803 	g_io_done = false;
3804 	g_compare_read_buf = buf;
3805 	g_compare_read_buf_len = 1024;
3806 	g_compare_md_buf = md_buf_miscompare;
3807 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3808 					       offset, num_blocks, io_done, NULL);
3809 	CU_ASSERT_EQUAL(rc, 0);
3810 	num_completed = stub_complete_io(1);
3811 	CU_ASSERT_EQUAL(num_completed, 1);
3812 	CU_ASSERT(g_io_done == true);
3813 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3814 
3815 	/* 5. miscompare with md separated where buf is different */
3816 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3817 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3818 
3819 	g_io_done = false;
3820 	g_compare_read_buf = buf_miscompare;
3821 	g_compare_read_buf_len = sizeof(buf_miscompare);
3822 	g_compare_md_buf = md_buf;
3823 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3824 					       offset, num_blocks, io_done, NULL);
3825 	CU_ASSERT_EQUAL(rc, 0);
3826 	num_completed = stub_complete_io(1);
3827 	CU_ASSERT_EQUAL(num_completed, 1);
3828 	CU_ASSERT(g_io_done == true);
3829 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3830 
3831 	bdev->md_len = 0;
3832 	g_compare_md_buf = NULL;
3833 
3834 	spdk_put_io_channel(ioch);
3835 	spdk_bdev_close(desc);
3836 	free_bdev(bdev);
3837 	fn_table.submit_request = stub_submit_request;
3838 	ut_fini_bdev();
3839 
3840 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3841 
3842 	g_compare_read_buf = NULL;
3843 }
3844 
3845 static void
3846 bdev_compare(void)
3847 {
3848 	_bdev_compare(false);
3849 	_bdev_compare_with_md(false);
3850 }
3851 
3852 static void
3853 bdev_compare_emulated(void)
3854 {
3855 	_bdev_compare(true);
3856 	_bdev_compare_with_md(true);
3857 }
3858 
3859 static void
3860 bdev_compare_and_write(void)
3861 {
3862 	struct spdk_bdev *bdev;
3863 	struct spdk_bdev_desc *desc = NULL;
3864 	struct spdk_io_channel *ioch;
3865 	struct ut_expected_io *expected_io;
3866 	uint64_t offset, num_blocks;
3867 	uint32_t num_completed;
3868 	char aa_buf[512];
3869 	char bb_buf[512];
3870 	char cc_buf[512];
3871 	char write_buf[512];
3872 	struct iovec compare_iov;
3873 	struct iovec write_iov;
3874 	int rc;
3875 
3876 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3877 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3878 	memset(cc_buf, 0xcc, sizeof(cc_buf));
3879 
3880 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
3881 
3882 	ut_init_bdev(NULL);
3883 	fn_table.submit_request = stub_submit_request_get_buf;
3884 	bdev = allocate_bdev("bdev");
3885 
3886 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3887 	CU_ASSERT_EQUAL(rc, 0);
3888 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3889 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3890 	ioch = spdk_bdev_get_io_channel(desc);
3891 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3892 
3893 	fn_table.submit_request = stub_submit_request_get_buf;
3894 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3895 
3896 	offset = 50;
3897 	num_blocks = 1;
3898 	compare_iov.iov_base = aa_buf;
3899 	compare_iov.iov_len = sizeof(aa_buf);
3900 	write_iov.iov_base = bb_buf;
3901 	write_iov.iov_len = sizeof(bb_buf);
3902 
3903 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3904 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3905 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
3906 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3907 
3908 	g_io_done = false;
3909 	g_compare_read_buf = aa_buf;
3910 	g_compare_read_buf_len = sizeof(aa_buf);
3911 	memset(write_buf, 0, sizeof(write_buf));
3912 	g_compare_write_buf = write_buf;
3913 	g_compare_write_buf_len = sizeof(write_buf);
3914 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3915 			offset, num_blocks, io_done, NULL);
3916 	/* Trigger range locking */
3917 	poll_threads();
3918 	CU_ASSERT_EQUAL(rc, 0);
3919 	num_completed = stub_complete_io(1);
3920 	CU_ASSERT_EQUAL(num_completed, 1);
3921 	CU_ASSERT(g_io_done == false);
3922 	num_completed = stub_complete_io(1);
3923 	/* Trigger range unlocking */
3924 	poll_threads();
3925 	CU_ASSERT_EQUAL(num_completed, 1);
3926 	CU_ASSERT(g_io_done == true);
3927 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3928 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
3929 
3930 	/* Test miscompare */
3931 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3932 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3933 
3934 	g_io_done = false;
3935 	g_compare_read_buf = cc_buf;
3936 	g_compare_read_buf_len = sizeof(cc_buf);
3937 	memset(write_buf, 0, sizeof(write_buf));
3938 	g_compare_write_buf = write_buf;
3939 	g_compare_write_buf_len = sizeof(write_buf);
3940 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3941 			offset, num_blocks, io_done, NULL);
3942 	/* Trigger range locking */
3943 	poll_threads();
3944 	CU_ASSERT_EQUAL(rc, 0);
3945 	num_completed = stub_complete_io(1);
3946 	/* Trigger range unlocking earlier because we expect error here */
3947 	poll_threads();
3948 	CU_ASSERT_EQUAL(num_completed, 1);
3949 	CU_ASSERT(g_io_done == true);
3950 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3951 	num_completed = stub_complete_io(1);
3952 	CU_ASSERT_EQUAL(num_completed, 0);
3953 
3954 	spdk_put_io_channel(ioch);
3955 	spdk_bdev_close(desc);
3956 	free_bdev(bdev);
3957 	fn_table.submit_request = stub_submit_request;
3958 	ut_fini_bdev();
3959 
3960 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3961 
3962 	g_compare_read_buf = NULL;
3963 	g_compare_write_buf = NULL;
3964 }
3965 
3966 static void
3967 bdev_write_zeroes(void)
3968 {
3969 	struct spdk_bdev *bdev;
3970 	struct spdk_bdev_desc *desc = NULL;
3971 	struct spdk_io_channel *ioch;
3972 	struct ut_expected_io *expected_io;
3973 	uint64_t offset, num_io_blocks, num_blocks;
3974 	uint32_t num_completed, num_requests;
3975 	int rc;
3976 
3977 	ut_init_bdev(NULL);
3978 	bdev = allocate_bdev("bdev");
3979 
3980 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3981 	CU_ASSERT_EQUAL(rc, 0);
3982 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3983 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3984 	ioch = spdk_bdev_get_io_channel(desc);
3985 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3986 
3987 	fn_table.submit_request = stub_submit_request;
3988 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3989 
3990 	/* First test that if the bdev supports write_zeroes, the request won't be split */
3991 	bdev->md_len = 0;
3992 	bdev->blocklen = 4096;
3993 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3994 
3995 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
3996 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3997 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3998 	CU_ASSERT_EQUAL(rc, 0);
3999 	num_completed = stub_complete_io(1);
4000 	CU_ASSERT_EQUAL(num_completed, 1);
4001 
4002 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
4003 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
4004 	bdev->max_write_zeroes = bdev_get_max_write(bdev, ZERO_BUFFER_SIZE);
4005 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
4006 	num_requests = 2;
4007 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
4008 
4009 	for (offset = 0; offset < num_requests; ++offset) {
4010 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
4011 						   offset * num_io_blocks, num_io_blocks, 0);
4012 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4013 	}
4014 
4015 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4016 	CU_ASSERT_EQUAL(rc, 0);
4017 	num_completed = stub_complete_io(num_requests);
4018 	CU_ASSERT_EQUAL(num_completed, num_requests);
4019 
4020 	/* Check that the splitting is correct if bdev has interleaved metadata */
4021 	bdev->md_interleave = true;
4022 	bdev->md_len = 64;
4023 	bdev->blocklen = 4096 + 64;
4024 	bdev->max_write_zeroes = bdev_get_max_write(bdev, ZERO_BUFFER_SIZE);
4025 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
4026 
4027 	num_requests = offset = 0;
4028 	while (offset < num_blocks) {
4029 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
4030 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
4031 						   offset, num_io_blocks, 0);
4032 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4033 		offset += num_io_blocks;
4034 		num_requests++;
4035 	}
4036 
4037 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4038 	CU_ASSERT_EQUAL(rc, 0);
4039 	num_completed = stub_complete_io(num_requests);
4040 	CU_ASSERT_EQUAL(num_completed, num_requests);
4041 	num_completed = stub_complete_io(num_requests);
4042 	assert(num_completed == 0);
4043 
4044 	/* Check the the same for separate metadata buffer */
4045 	bdev->md_interleave = false;
4046 	bdev->md_len = 64;
4047 	bdev->blocklen = 4096;
4048 	bdev->max_write_zeroes = bdev_get_max_write(bdev, ZERO_BUFFER_SIZE);
4049 
4050 	num_requests = offset = 0;
4051 	while (offset < num_blocks) {
4052 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
4053 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
4054 						   offset, num_io_blocks, 0);
4055 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
4056 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4057 		offset += num_io_blocks;
4058 		num_requests++;
4059 	}
4060 
4061 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4062 	CU_ASSERT_EQUAL(rc, 0);
4063 	num_completed = stub_complete_io(num_requests);
4064 	CU_ASSERT_EQUAL(num_completed, num_requests);
4065 
4066 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
4067 	spdk_put_io_channel(ioch);
4068 	spdk_bdev_close(desc);
4069 	free_bdev(bdev);
4070 	ut_fini_bdev();
4071 }
4072 
4073 static void
4074 bdev_zcopy_write(void)
4075 {
4076 	struct spdk_bdev *bdev;
4077 	struct spdk_bdev_desc *desc = NULL;
4078 	struct spdk_io_channel *ioch;
4079 	struct ut_expected_io *expected_io;
4080 	uint64_t offset, num_blocks;
4081 	uint32_t num_completed;
4082 	char aa_buf[512];
4083 	struct iovec iov;
4084 	int rc;
4085 	const bool populate = false;
4086 	const bool commit = true;
4087 
4088 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4089 
4090 	ut_init_bdev(NULL);
4091 	bdev = allocate_bdev("bdev");
4092 
4093 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4094 	CU_ASSERT_EQUAL(rc, 0);
4095 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4096 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4097 	ioch = spdk_bdev_get_io_channel(desc);
4098 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4099 
4100 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4101 
4102 	offset = 50;
4103 	num_blocks = 1;
4104 	iov.iov_base = NULL;
4105 	iov.iov_len = 0;
4106 
4107 	g_zcopy_read_buf = (void *) 0x1122334455667788UL;
4108 	g_zcopy_read_buf_len = (uint32_t) -1;
4109 	/* Do a zcopy start for a write (populate=false) */
4110 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4111 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4112 	g_io_done = false;
4113 	g_zcopy_write_buf = aa_buf;
4114 	g_zcopy_write_buf_len = sizeof(aa_buf);
4115 	g_zcopy_bdev_io = NULL;
4116 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4117 	CU_ASSERT_EQUAL(rc, 0);
4118 	num_completed = stub_complete_io(1);
4119 	CU_ASSERT_EQUAL(num_completed, 1);
4120 	CU_ASSERT(g_io_done == true);
4121 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4122 	/* Check that the iov has been set up */
4123 	CU_ASSERT(iov.iov_base == g_zcopy_write_buf);
4124 	CU_ASSERT(iov.iov_len == g_zcopy_write_buf_len);
4125 	/* Check that the bdev_io has been saved */
4126 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4127 	/* Now do the zcopy end for a write (commit=true) */
4128 	g_io_done = false;
4129 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4130 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4131 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4132 	CU_ASSERT_EQUAL(rc, 0);
4133 	num_completed = stub_complete_io(1);
4134 	CU_ASSERT_EQUAL(num_completed, 1);
4135 	CU_ASSERT(g_io_done == true);
4136 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4137 	/* Check the g_zcopy are reset by io_done */
4138 	CU_ASSERT(g_zcopy_write_buf == NULL);
4139 	CU_ASSERT(g_zcopy_write_buf_len == 0);
4140 	/* Check that io_done has freed the g_zcopy_bdev_io */
4141 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4142 
4143 	/* Check the zcopy read buffer has not been touched which
4144 	 * ensures that the correct buffers were used.
4145 	 */
4146 	CU_ASSERT(g_zcopy_read_buf == (void *) 0x1122334455667788UL);
4147 	CU_ASSERT(g_zcopy_read_buf_len == (uint32_t) -1);
4148 
4149 	spdk_put_io_channel(ioch);
4150 	spdk_bdev_close(desc);
4151 	free_bdev(bdev);
4152 	ut_fini_bdev();
4153 }
4154 
4155 static void
4156 bdev_zcopy_read(void)
4157 {
4158 	struct spdk_bdev *bdev;
4159 	struct spdk_bdev_desc *desc = NULL;
4160 	struct spdk_io_channel *ioch;
4161 	struct ut_expected_io *expected_io;
4162 	uint64_t offset, num_blocks;
4163 	uint32_t num_completed;
4164 	char aa_buf[512];
4165 	struct iovec iov;
4166 	int rc;
4167 	const bool populate = true;
4168 	const bool commit = false;
4169 
4170 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4171 
4172 	ut_init_bdev(NULL);
4173 	bdev = allocate_bdev("bdev");
4174 
4175 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4176 	CU_ASSERT_EQUAL(rc, 0);
4177 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4178 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4179 	ioch = spdk_bdev_get_io_channel(desc);
4180 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4181 
4182 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4183 
4184 	offset = 50;
4185 	num_blocks = 1;
4186 	iov.iov_base = NULL;
4187 	iov.iov_len = 0;
4188 
4189 	g_zcopy_write_buf = (void *) 0x1122334455667788UL;
4190 	g_zcopy_write_buf_len = (uint32_t) -1;
4191 
4192 	/* Do a zcopy start for a read (populate=true) */
4193 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4194 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4195 	g_io_done = false;
4196 	g_zcopy_read_buf = aa_buf;
4197 	g_zcopy_read_buf_len = sizeof(aa_buf);
4198 	g_zcopy_bdev_io = NULL;
4199 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4200 	CU_ASSERT_EQUAL(rc, 0);
4201 	num_completed = stub_complete_io(1);
4202 	CU_ASSERT_EQUAL(num_completed, 1);
4203 	CU_ASSERT(g_io_done == true);
4204 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4205 	/* Check that the iov has been set up */
4206 	CU_ASSERT(iov.iov_base == g_zcopy_read_buf);
4207 	CU_ASSERT(iov.iov_len == g_zcopy_read_buf_len);
4208 	/* Check that the bdev_io has been saved */
4209 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4210 
4211 	/* Now do the zcopy end for a read (commit=false) */
4212 	g_io_done = false;
4213 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4214 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4215 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4216 	CU_ASSERT_EQUAL(rc, 0);
4217 	num_completed = stub_complete_io(1);
4218 	CU_ASSERT_EQUAL(num_completed, 1);
4219 	CU_ASSERT(g_io_done == true);
4220 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4221 	/* Check the g_zcopy are reset by io_done */
4222 	CU_ASSERT(g_zcopy_read_buf == NULL);
4223 	CU_ASSERT(g_zcopy_read_buf_len == 0);
4224 	/* Check that io_done has freed the g_zcopy_bdev_io */
4225 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4226 
4227 	/* Check the zcopy write buffer has not been touched which
4228 	 * ensures that the correct buffers were used.
4229 	 */
4230 	CU_ASSERT(g_zcopy_write_buf == (void *) 0x1122334455667788UL);
4231 	CU_ASSERT(g_zcopy_write_buf_len == (uint32_t) -1);
4232 
4233 	spdk_put_io_channel(ioch);
4234 	spdk_bdev_close(desc);
4235 	free_bdev(bdev);
4236 	ut_fini_bdev();
4237 }
4238 
4239 static void
4240 bdev_open_while_hotremove(void)
4241 {
4242 	struct spdk_bdev *bdev;
4243 	struct spdk_bdev_desc *desc[2] = {};
4244 	int rc;
4245 
4246 	bdev = allocate_bdev("bdev");
4247 
4248 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
4249 	CU_ASSERT(rc == 0);
4250 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
4251 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
4252 
4253 	spdk_bdev_unregister(bdev, NULL, NULL);
4254 	/* Bdev unregister is handled asynchronously. Poll thread to complete. */
4255 	poll_threads();
4256 
4257 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
4258 	CU_ASSERT(rc == -ENODEV);
4259 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
4260 
4261 	spdk_bdev_close(desc[0]);
4262 	free_bdev(bdev);
4263 }
4264 
4265 static void
4266 bdev_close_while_hotremove(void)
4267 {
4268 	struct spdk_bdev *bdev;
4269 	struct spdk_bdev_desc *desc = NULL;
4270 	int rc = 0;
4271 
4272 	bdev = allocate_bdev("bdev");
4273 
4274 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
4275 	CU_ASSERT_EQUAL(rc, 0);
4276 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4277 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4278 
4279 	/* Simulate hot-unplug by unregistering bdev */
4280 	g_event_type1 = 0xFF;
4281 	g_unregister_arg = NULL;
4282 	g_unregister_rc = -1;
4283 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4284 	/* Close device while remove event is in flight */
4285 	spdk_bdev_close(desc);
4286 
4287 	/* Ensure that unregister callback is delayed */
4288 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
4289 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
4290 
4291 	poll_threads();
4292 
4293 	/* Event callback shall not be issued because device was closed */
4294 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
4295 	/* Unregister callback is issued */
4296 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
4297 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
4298 
4299 	free_bdev(bdev);
4300 }
4301 
4302 static void
4303 bdev_open_ext(void)
4304 {
4305 	struct spdk_bdev *bdev;
4306 	struct spdk_bdev_desc *desc1 = NULL;
4307 	struct spdk_bdev_desc *desc2 = NULL;
4308 	int rc = 0;
4309 
4310 	bdev = allocate_bdev("bdev");
4311 
4312 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4313 	CU_ASSERT_EQUAL(rc, -EINVAL);
4314 
4315 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4316 	CU_ASSERT_EQUAL(rc, 0);
4317 
4318 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4319 	CU_ASSERT_EQUAL(rc, 0);
4320 
4321 	g_event_type1 = 0xFF;
4322 	g_event_type2 = 0xFF;
4323 
4324 	/* Simulate hot-unplug by unregistering bdev */
4325 	spdk_bdev_unregister(bdev, NULL, NULL);
4326 	poll_threads();
4327 
4328 	/* Check if correct events have been triggered in event callback fn */
4329 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4330 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4331 
4332 	free_bdev(bdev);
4333 	poll_threads();
4334 }
4335 
4336 static void
4337 bdev_open_ext_unregister(void)
4338 {
4339 	struct spdk_bdev *bdev;
4340 	struct spdk_bdev_desc *desc1 = NULL;
4341 	struct spdk_bdev_desc *desc2 = NULL;
4342 	struct spdk_bdev_desc *desc3 = NULL;
4343 	struct spdk_bdev_desc *desc4 = NULL;
4344 	int rc = 0;
4345 
4346 	bdev = allocate_bdev("bdev");
4347 
4348 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4349 	CU_ASSERT_EQUAL(rc, -EINVAL);
4350 
4351 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4352 	CU_ASSERT_EQUAL(rc, 0);
4353 
4354 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4355 	CU_ASSERT_EQUAL(rc, 0);
4356 
4357 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb3, &desc3, &desc3);
4358 	CU_ASSERT_EQUAL(rc, 0);
4359 
4360 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb4, &desc4, &desc4);
4361 	CU_ASSERT_EQUAL(rc, 0);
4362 
4363 	g_event_type1 = 0xFF;
4364 	g_event_type2 = 0xFF;
4365 	g_event_type3 = 0xFF;
4366 	g_event_type4 = 0xFF;
4367 
4368 	g_unregister_arg = NULL;
4369 	g_unregister_rc = -1;
4370 
4371 	/* Simulate hot-unplug by unregistering bdev */
4372 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4373 
4374 	/*
4375 	 * Unregister is handled asynchronously and event callback
4376 	 * (i.e., above bdev_open_cbN) will be called.
4377 	 * For bdev_open_cb3 and bdev_open_cb4, it is intended to not
4378 	 * close the desc3 and desc4 so that the bdev is not closed.
4379 	 */
4380 	poll_threads();
4381 
4382 	/* Check if correct events have been triggered in event callback fn */
4383 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4384 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4385 	CU_ASSERT_EQUAL(g_event_type3, SPDK_BDEV_EVENT_REMOVE);
4386 	CU_ASSERT_EQUAL(g_event_type4, SPDK_BDEV_EVENT_REMOVE);
4387 
4388 	/* Check that unregister callback is delayed */
4389 	CU_ASSERT(g_unregister_arg == NULL);
4390 	CU_ASSERT(g_unregister_rc == -1);
4391 
4392 	/*
4393 	 * Explicitly close desc3. As desc4 is still opened there, the
4394 	 * unergister callback is still delayed to execute.
4395 	 */
4396 	spdk_bdev_close(desc3);
4397 	CU_ASSERT(g_unregister_arg == NULL);
4398 	CU_ASSERT(g_unregister_rc == -1);
4399 
4400 	/*
4401 	 * Explicitly close desc4 to trigger the ongoing bdev unregister
4402 	 * operation after last desc is closed.
4403 	 */
4404 	spdk_bdev_close(desc4);
4405 
4406 	/* Poll the thread for the async unregister operation */
4407 	poll_threads();
4408 
4409 	/* Check that unregister callback is executed */
4410 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
4411 	CU_ASSERT(g_unregister_rc == 0);
4412 
4413 	free_bdev(bdev);
4414 	poll_threads();
4415 }
4416 
4417 struct timeout_io_cb_arg {
4418 	struct iovec iov;
4419 	uint8_t type;
4420 };
4421 
4422 static int
4423 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
4424 {
4425 	struct spdk_bdev_io *bdev_io;
4426 	int n = 0;
4427 
4428 	if (!ch) {
4429 		return -1;
4430 	}
4431 
4432 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
4433 		n++;
4434 	}
4435 
4436 	return n;
4437 }
4438 
4439 static void
4440 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
4441 {
4442 	struct timeout_io_cb_arg *ctx = cb_arg;
4443 
4444 	ctx->type = bdev_io->type;
4445 	ctx->iov.iov_base = bdev_io->iov.iov_base;
4446 	ctx->iov.iov_len = bdev_io->iov.iov_len;
4447 }
4448 
4449 static void
4450 bdev_set_io_timeout(void)
4451 {
4452 	struct spdk_bdev *bdev;
4453 	struct spdk_bdev_desc *desc = NULL;
4454 	struct spdk_io_channel *io_ch = NULL;
4455 	struct spdk_bdev_channel *bdev_ch = NULL;
4456 	struct timeout_io_cb_arg cb_arg;
4457 
4458 	ut_init_bdev(NULL);
4459 	bdev = allocate_bdev("bdev");
4460 
4461 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4462 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4463 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4464 
4465 	io_ch = spdk_bdev_get_io_channel(desc);
4466 	CU_ASSERT(io_ch != NULL);
4467 
4468 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4469 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4470 
4471 	/* This is the part1.
4472 	 * We will check the bdev_ch->io_submitted list
4473 	 * TO make sure that it can link IOs and only the user submitted IOs
4474 	 */
4475 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4476 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4477 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4478 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4479 	stub_complete_io(1);
4480 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4481 	stub_complete_io(1);
4482 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4483 
4484 	/* Split IO */
4485 	bdev->optimal_io_boundary = 16;
4486 	bdev->split_on_optimal_io_boundary = true;
4487 
4488 	/* Now test that a single-vector command is split correctly.
4489 	 * Offset 14, length 8, payload 0xF000
4490 	 *  Child - Offset 14, length 2, payload 0xF000
4491 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4492 	 *
4493 	 * Set up the expected values before calling spdk_bdev_read_blocks
4494 	 */
4495 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4496 	/* We count all submitted IOs including IO that are generated by splitting. */
4497 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
4498 	stub_complete_io(1);
4499 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4500 	stub_complete_io(1);
4501 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4502 
4503 	/* Also include the reset IO */
4504 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4505 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4506 	poll_threads();
4507 	stub_complete_io(1);
4508 	poll_threads();
4509 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4510 
4511 	/* This is part2
4512 	 * Test the desc timeout poller register
4513 	 */
4514 
4515 	/* Successfully set the timeout */
4516 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4517 	CU_ASSERT(desc->io_timeout_poller != NULL);
4518 	CU_ASSERT(desc->timeout_in_sec == 30);
4519 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4520 	CU_ASSERT(desc->cb_arg == &cb_arg);
4521 
4522 	/* Change the timeout limit */
4523 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4524 	CU_ASSERT(desc->io_timeout_poller != NULL);
4525 	CU_ASSERT(desc->timeout_in_sec == 20);
4526 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4527 	CU_ASSERT(desc->cb_arg == &cb_arg);
4528 
4529 	/* Disable the timeout */
4530 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
4531 	CU_ASSERT(desc->io_timeout_poller == NULL);
4532 
4533 	/* This the part3
4534 	 * We will test to catch timeout IO and check whether the IO is
4535 	 * the submitted one.
4536 	 */
4537 	memset(&cb_arg, 0, sizeof(cb_arg));
4538 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4539 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
4540 
4541 	/* Don't reach the limit */
4542 	spdk_delay_us(15 * spdk_get_ticks_hz());
4543 	poll_threads();
4544 	CU_ASSERT(cb_arg.type == 0);
4545 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4546 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4547 
4548 	/* 15 + 15 = 30 reach the limit */
4549 	spdk_delay_us(15 * spdk_get_ticks_hz());
4550 	poll_threads();
4551 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4552 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
4553 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
4554 	stub_complete_io(1);
4555 
4556 	/* Use the same split IO above and check the IO */
4557 	memset(&cb_arg, 0, sizeof(cb_arg));
4558 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4559 
4560 	/* The first child complete in time */
4561 	spdk_delay_us(15 * spdk_get_ticks_hz());
4562 	poll_threads();
4563 	stub_complete_io(1);
4564 	CU_ASSERT(cb_arg.type == 0);
4565 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4566 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4567 
4568 	/* The second child reach the limit */
4569 	spdk_delay_us(15 * spdk_get_ticks_hz());
4570 	poll_threads();
4571 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4572 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
4573 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
4574 	stub_complete_io(1);
4575 
4576 	/* Also include the reset IO */
4577 	memset(&cb_arg, 0, sizeof(cb_arg));
4578 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4579 	spdk_delay_us(30 * spdk_get_ticks_hz());
4580 	poll_threads();
4581 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
4582 	stub_complete_io(1);
4583 	poll_threads();
4584 
4585 	spdk_put_io_channel(io_ch);
4586 	spdk_bdev_close(desc);
4587 	free_bdev(bdev);
4588 	ut_fini_bdev();
4589 }
4590 
4591 static void
4592 bdev_set_qd_sampling(void)
4593 {
4594 	struct spdk_bdev *bdev;
4595 	struct spdk_bdev_desc *desc = NULL;
4596 	struct spdk_io_channel *io_ch = NULL;
4597 	struct spdk_bdev_channel *bdev_ch = NULL;
4598 	struct timeout_io_cb_arg cb_arg;
4599 
4600 	ut_init_bdev(NULL);
4601 	bdev = allocate_bdev("bdev");
4602 
4603 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4604 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4605 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4606 
4607 	io_ch = spdk_bdev_get_io_channel(desc);
4608 	CU_ASSERT(io_ch != NULL);
4609 
4610 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4611 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4612 
4613 	/* This is the part1.
4614 	 * We will check the bdev_ch->io_submitted list
4615 	 * TO make sure that it can link IOs and only the user submitted IOs
4616 	 */
4617 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4618 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4619 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4620 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4621 	stub_complete_io(1);
4622 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4623 	stub_complete_io(1);
4624 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4625 
4626 	/* This is the part2.
4627 	 * Test the bdev's qd poller register
4628 	 */
4629 	/* 1st Successfully set the qd sampling period */
4630 	spdk_bdev_set_qd_sampling_period(bdev, 10);
4631 	CU_ASSERT(bdev->internal.new_period == 10);
4632 	CU_ASSERT(bdev->internal.period == 10);
4633 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4634 	poll_threads();
4635 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4636 
4637 	/* 2nd Change the qd sampling period */
4638 	spdk_bdev_set_qd_sampling_period(bdev, 20);
4639 	CU_ASSERT(bdev->internal.new_period == 20);
4640 	CU_ASSERT(bdev->internal.period == 10);
4641 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4642 	poll_threads();
4643 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4644 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4645 
4646 	/* 3rd Change the qd sampling period and verify qd_poll_in_progress */
4647 	spdk_delay_us(20);
4648 	poll_thread_times(0, 1);
4649 	CU_ASSERT(bdev->internal.qd_poll_in_progress == true);
4650 	spdk_bdev_set_qd_sampling_period(bdev, 30);
4651 	CU_ASSERT(bdev->internal.new_period == 30);
4652 	CU_ASSERT(bdev->internal.period == 20);
4653 	poll_threads();
4654 	CU_ASSERT(bdev->internal.qd_poll_in_progress == false);
4655 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4656 
4657 	/* 4th Disable the qd sampling period */
4658 	spdk_bdev_set_qd_sampling_period(bdev, 0);
4659 	CU_ASSERT(bdev->internal.new_period == 0);
4660 	CU_ASSERT(bdev->internal.period == 30);
4661 	poll_threads();
4662 	CU_ASSERT(bdev->internal.qd_poller == NULL);
4663 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4664 	CU_ASSERT(bdev->internal.qd_desc == NULL);
4665 
4666 	/* This is the part3.
4667 	 * We will test the submitted IO and reset works
4668 	 * properly with the qd sampling.
4669 	 */
4670 	memset(&cb_arg, 0, sizeof(cb_arg));
4671 	spdk_bdev_set_qd_sampling_period(bdev, 1);
4672 	poll_threads();
4673 
4674 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4675 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4676 
4677 	/* Also include the reset IO */
4678 	memset(&cb_arg, 0, sizeof(cb_arg));
4679 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4680 	poll_threads();
4681 
4682 	/* Close the desc */
4683 	spdk_put_io_channel(io_ch);
4684 	spdk_bdev_close(desc);
4685 
4686 	/* Complete the submitted IO and reset */
4687 	stub_complete_io(2);
4688 	poll_threads();
4689 
4690 	free_bdev(bdev);
4691 	ut_fini_bdev();
4692 }
4693 
4694 static void
4695 lba_range_overlap(void)
4696 {
4697 	struct lba_range r1, r2;
4698 
4699 	r1.offset = 100;
4700 	r1.length = 50;
4701 
4702 	r2.offset = 0;
4703 	r2.length = 1;
4704 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4705 
4706 	r2.offset = 0;
4707 	r2.length = 100;
4708 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4709 
4710 	r2.offset = 0;
4711 	r2.length = 110;
4712 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4713 
4714 	r2.offset = 100;
4715 	r2.length = 10;
4716 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4717 
4718 	r2.offset = 110;
4719 	r2.length = 20;
4720 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4721 
4722 	r2.offset = 140;
4723 	r2.length = 150;
4724 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4725 
4726 	r2.offset = 130;
4727 	r2.length = 200;
4728 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4729 
4730 	r2.offset = 150;
4731 	r2.length = 100;
4732 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4733 
4734 	r2.offset = 110;
4735 	r2.length = 0;
4736 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4737 }
4738 
4739 static bool g_lock_lba_range_done;
4740 static bool g_unlock_lba_range_done;
4741 
4742 static void
4743 lock_lba_range_done(struct lba_range *range, void *ctx, int status)
4744 {
4745 	g_lock_lba_range_done = true;
4746 }
4747 
4748 static void
4749 unlock_lba_range_done(struct lba_range *range, void *ctx, int status)
4750 {
4751 	g_unlock_lba_range_done = true;
4752 }
4753 
4754 static void
4755 lock_lba_range_check_ranges(void)
4756 {
4757 	struct spdk_bdev *bdev;
4758 	struct spdk_bdev_desc *desc = NULL;
4759 	struct spdk_io_channel *io_ch;
4760 	struct spdk_bdev_channel *channel;
4761 	struct lba_range *range;
4762 	int ctx1;
4763 	int rc;
4764 
4765 	ut_init_bdev(NULL);
4766 	bdev = allocate_bdev("bdev0");
4767 
4768 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4769 	CU_ASSERT(rc == 0);
4770 	CU_ASSERT(desc != NULL);
4771 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4772 	io_ch = spdk_bdev_get_io_channel(desc);
4773 	CU_ASSERT(io_ch != NULL);
4774 	channel = spdk_io_channel_get_ctx(io_ch);
4775 
4776 	g_lock_lba_range_done = false;
4777 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4778 	CU_ASSERT(rc == 0);
4779 	poll_threads();
4780 
4781 	CU_ASSERT(g_lock_lba_range_done == true);
4782 	range = TAILQ_FIRST(&channel->locked_ranges);
4783 	SPDK_CU_ASSERT_FATAL(range != NULL);
4784 	CU_ASSERT(range->offset == 20);
4785 	CU_ASSERT(range->length == 10);
4786 	CU_ASSERT(range->owner_ch == channel);
4787 
4788 	/* Unlocks must exactly match a lock. */
4789 	g_unlock_lba_range_done = false;
4790 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
4791 	CU_ASSERT(rc == -EINVAL);
4792 	CU_ASSERT(g_unlock_lba_range_done == false);
4793 
4794 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4795 	CU_ASSERT(rc == 0);
4796 	spdk_delay_us(100);
4797 	poll_threads();
4798 
4799 	CU_ASSERT(g_unlock_lba_range_done == true);
4800 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4801 
4802 	spdk_put_io_channel(io_ch);
4803 	spdk_bdev_close(desc);
4804 	free_bdev(bdev);
4805 	ut_fini_bdev();
4806 }
4807 
4808 static void
4809 lock_lba_range_with_io_outstanding(void)
4810 {
4811 	struct spdk_bdev *bdev;
4812 	struct spdk_bdev_desc *desc = NULL;
4813 	struct spdk_io_channel *io_ch;
4814 	struct spdk_bdev_channel *channel;
4815 	struct lba_range *range;
4816 	char buf[4096];
4817 	int ctx1;
4818 	int rc;
4819 
4820 	ut_init_bdev(NULL);
4821 	bdev = allocate_bdev("bdev0");
4822 
4823 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4824 	CU_ASSERT(rc == 0);
4825 	CU_ASSERT(desc != NULL);
4826 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4827 	io_ch = spdk_bdev_get_io_channel(desc);
4828 	CU_ASSERT(io_ch != NULL);
4829 	channel = spdk_io_channel_get_ctx(io_ch);
4830 
4831 	g_io_done = false;
4832 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4833 	CU_ASSERT(rc == 0);
4834 
4835 	g_lock_lba_range_done = false;
4836 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4837 	CU_ASSERT(rc == 0);
4838 	poll_threads();
4839 
4840 	/* The lock should immediately become valid, since there are no outstanding
4841 	 * write I/O.
4842 	 */
4843 	CU_ASSERT(g_io_done == false);
4844 	CU_ASSERT(g_lock_lba_range_done == true);
4845 	range = TAILQ_FIRST(&channel->locked_ranges);
4846 	SPDK_CU_ASSERT_FATAL(range != NULL);
4847 	CU_ASSERT(range->offset == 20);
4848 	CU_ASSERT(range->length == 10);
4849 	CU_ASSERT(range->owner_ch == channel);
4850 	CU_ASSERT(range->locked_ctx == &ctx1);
4851 
4852 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4853 	CU_ASSERT(rc == 0);
4854 	stub_complete_io(1);
4855 	spdk_delay_us(100);
4856 	poll_threads();
4857 
4858 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4859 
4860 	/* Now try again, but with a write I/O. */
4861 	g_io_done = false;
4862 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4863 	CU_ASSERT(rc == 0);
4864 
4865 	g_lock_lba_range_done = false;
4866 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4867 	CU_ASSERT(rc == 0);
4868 	poll_threads();
4869 
4870 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
4871 	 * But note that the range should be on the channel's locked_list, to make sure no
4872 	 * new write I/O are started.
4873 	 */
4874 	CU_ASSERT(g_io_done == false);
4875 	CU_ASSERT(g_lock_lba_range_done == false);
4876 	range = TAILQ_FIRST(&channel->locked_ranges);
4877 	SPDK_CU_ASSERT_FATAL(range != NULL);
4878 	CU_ASSERT(range->offset == 20);
4879 	CU_ASSERT(range->length == 10);
4880 
4881 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
4882 	 * our callback was invoked).
4883 	 */
4884 	stub_complete_io(1);
4885 	spdk_delay_us(100);
4886 	poll_threads();
4887 	CU_ASSERT(g_io_done == true);
4888 	CU_ASSERT(g_lock_lba_range_done == true);
4889 
4890 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4891 	CU_ASSERT(rc == 0);
4892 	poll_threads();
4893 
4894 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4895 
4896 	spdk_put_io_channel(io_ch);
4897 	spdk_bdev_close(desc);
4898 	free_bdev(bdev);
4899 	ut_fini_bdev();
4900 }
4901 
4902 static void
4903 lock_lba_range_overlapped(void)
4904 {
4905 	struct spdk_bdev *bdev;
4906 	struct spdk_bdev_desc *desc = NULL;
4907 	struct spdk_io_channel *io_ch;
4908 	struct spdk_bdev_channel *channel;
4909 	struct lba_range *range;
4910 	int ctx1;
4911 	int rc;
4912 
4913 	ut_init_bdev(NULL);
4914 	bdev = allocate_bdev("bdev0");
4915 
4916 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4917 	CU_ASSERT(rc == 0);
4918 	CU_ASSERT(desc != NULL);
4919 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4920 	io_ch = spdk_bdev_get_io_channel(desc);
4921 	CU_ASSERT(io_ch != NULL);
4922 	channel = spdk_io_channel_get_ctx(io_ch);
4923 
4924 	/* Lock range 20-29. */
4925 	g_lock_lba_range_done = false;
4926 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4927 	CU_ASSERT(rc == 0);
4928 	poll_threads();
4929 
4930 	CU_ASSERT(g_lock_lba_range_done == true);
4931 	range = TAILQ_FIRST(&channel->locked_ranges);
4932 	SPDK_CU_ASSERT_FATAL(range != NULL);
4933 	CU_ASSERT(range->offset == 20);
4934 	CU_ASSERT(range->length == 10);
4935 
4936 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
4937 	 * 20-29.
4938 	 */
4939 	g_lock_lba_range_done = false;
4940 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
4941 	CU_ASSERT(rc == 0);
4942 	poll_threads();
4943 
4944 	CU_ASSERT(g_lock_lba_range_done == false);
4945 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4946 	SPDK_CU_ASSERT_FATAL(range != NULL);
4947 	CU_ASSERT(range->offset == 25);
4948 	CU_ASSERT(range->length == 15);
4949 
4950 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
4951 	 * no longer overlaps with an active lock.
4952 	 */
4953 	g_unlock_lba_range_done = false;
4954 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4955 	CU_ASSERT(rc == 0);
4956 	poll_threads();
4957 
4958 	CU_ASSERT(g_unlock_lba_range_done == true);
4959 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4960 	range = TAILQ_FIRST(&channel->locked_ranges);
4961 	SPDK_CU_ASSERT_FATAL(range != NULL);
4962 	CU_ASSERT(range->offset == 25);
4963 	CU_ASSERT(range->length == 15);
4964 
4965 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
4966 	 * currently active 25-39 lock.
4967 	 */
4968 	g_lock_lba_range_done = false;
4969 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
4970 	CU_ASSERT(rc == 0);
4971 	poll_threads();
4972 
4973 	CU_ASSERT(g_lock_lba_range_done == true);
4974 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4975 	SPDK_CU_ASSERT_FATAL(range != NULL);
4976 	range = TAILQ_NEXT(range, tailq);
4977 	SPDK_CU_ASSERT_FATAL(range != NULL);
4978 	CU_ASSERT(range->offset == 40);
4979 	CU_ASSERT(range->length == 20);
4980 
4981 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
4982 	g_lock_lba_range_done = false;
4983 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
4984 	CU_ASSERT(rc == 0);
4985 	poll_threads();
4986 
4987 	CU_ASSERT(g_lock_lba_range_done == false);
4988 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4989 	SPDK_CU_ASSERT_FATAL(range != NULL);
4990 	CU_ASSERT(range->offset == 35);
4991 	CU_ASSERT(range->length == 10);
4992 
4993 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
4994 	 * the 40-59 lock is still active.
4995 	 */
4996 	g_unlock_lba_range_done = false;
4997 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
4998 	CU_ASSERT(rc == 0);
4999 	poll_threads();
5000 
5001 	CU_ASSERT(g_unlock_lba_range_done == true);
5002 	CU_ASSERT(g_lock_lba_range_done == false);
5003 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
5004 	SPDK_CU_ASSERT_FATAL(range != NULL);
5005 	CU_ASSERT(range->offset == 35);
5006 	CU_ASSERT(range->length == 10);
5007 
5008 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
5009 	 * no longer any active overlapping locks.
5010 	 */
5011 	g_unlock_lba_range_done = false;
5012 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
5013 	CU_ASSERT(rc == 0);
5014 	poll_threads();
5015 
5016 	CU_ASSERT(g_unlock_lba_range_done == true);
5017 	CU_ASSERT(g_lock_lba_range_done == true);
5018 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
5019 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
5020 	SPDK_CU_ASSERT_FATAL(range != NULL);
5021 	CU_ASSERT(range->offset == 35);
5022 	CU_ASSERT(range->length == 10);
5023 
5024 	/* Finally, unlock 35-44. */
5025 	g_unlock_lba_range_done = false;
5026 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
5027 	CU_ASSERT(rc == 0);
5028 	poll_threads();
5029 
5030 	CU_ASSERT(g_unlock_lba_range_done == true);
5031 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
5032 
5033 	spdk_put_io_channel(io_ch);
5034 	spdk_bdev_close(desc);
5035 	free_bdev(bdev);
5036 	ut_fini_bdev();
5037 }
5038 
5039 static void
5040 bdev_quiesce_done(void *ctx, int status)
5041 {
5042 	g_lock_lba_range_done = true;
5043 }
5044 
5045 static void
5046 bdev_unquiesce_done(void *ctx, int status)
5047 {
5048 	g_unlock_lba_range_done = true;
5049 }
5050 
5051 static void
5052 bdev_quiesce(void)
5053 {
5054 	struct spdk_bdev *bdev;
5055 	struct spdk_bdev_desc *desc = NULL;
5056 	struct spdk_io_channel *io_ch;
5057 	struct spdk_bdev_channel *channel;
5058 	struct lba_range *range;
5059 	int ctx1;
5060 	int rc;
5061 
5062 	ut_init_bdev(NULL);
5063 	bdev = allocate_bdev("bdev0");
5064 
5065 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5066 	CU_ASSERT(rc == 0);
5067 	CU_ASSERT(desc != NULL);
5068 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5069 	io_ch = spdk_bdev_get_io_channel(desc);
5070 	CU_ASSERT(io_ch != NULL);
5071 	channel = spdk_io_channel_get_ctx(io_ch);
5072 
5073 	g_lock_lba_range_done = false;
5074 	rc = spdk_bdev_quiesce(bdev, &bdev_ut_if, bdev_quiesce_done, &ctx1);
5075 	CU_ASSERT(rc == 0);
5076 	poll_threads();
5077 
5078 	CU_ASSERT(g_lock_lba_range_done == true);
5079 	range = TAILQ_FIRST(&channel->locked_ranges);
5080 	SPDK_CU_ASSERT_FATAL(range != NULL);
5081 	CU_ASSERT(range->offset == 0);
5082 	CU_ASSERT(range->length == bdev->blockcnt);
5083 	CU_ASSERT(range->owner_ch == NULL);
5084 	range = TAILQ_FIRST(&bdev_ut_if.internal.quiesced_ranges);
5085 	SPDK_CU_ASSERT_FATAL(range != NULL);
5086 	CU_ASSERT(range->offset == 0);
5087 	CU_ASSERT(range->length == bdev->blockcnt);
5088 	CU_ASSERT(range->owner_ch == NULL);
5089 
5090 	g_unlock_lba_range_done = false;
5091 	rc = spdk_bdev_unquiesce(bdev, &bdev_ut_if, bdev_unquiesce_done, &ctx1);
5092 	CU_ASSERT(rc == 0);
5093 	spdk_delay_us(100);
5094 	poll_threads();
5095 
5096 	CU_ASSERT(g_unlock_lba_range_done == true);
5097 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5098 	CU_ASSERT(TAILQ_EMPTY(&bdev_ut_if.internal.quiesced_ranges));
5099 
5100 	g_lock_lba_range_done = false;
5101 	rc = spdk_bdev_quiesce_range(bdev, &bdev_ut_if, 20, 10, bdev_quiesce_done, &ctx1);
5102 	CU_ASSERT(rc == 0);
5103 	poll_threads();
5104 
5105 	CU_ASSERT(g_lock_lba_range_done == true);
5106 	range = TAILQ_FIRST(&channel->locked_ranges);
5107 	SPDK_CU_ASSERT_FATAL(range != NULL);
5108 	CU_ASSERT(range->offset == 20);
5109 	CU_ASSERT(range->length == 10);
5110 	CU_ASSERT(range->owner_ch == NULL);
5111 	range = TAILQ_FIRST(&bdev_ut_if.internal.quiesced_ranges);
5112 	SPDK_CU_ASSERT_FATAL(range != NULL);
5113 	CU_ASSERT(range->offset == 20);
5114 	CU_ASSERT(range->length == 10);
5115 	CU_ASSERT(range->owner_ch == NULL);
5116 
5117 	/* Unlocks must exactly match a lock. */
5118 	g_unlock_lba_range_done = false;
5119 	rc = spdk_bdev_unquiesce_range(bdev, &bdev_ut_if, 20, 1, bdev_unquiesce_done, &ctx1);
5120 	CU_ASSERT(rc == -EINVAL);
5121 	CU_ASSERT(g_unlock_lba_range_done == false);
5122 
5123 	rc = spdk_bdev_unquiesce_range(bdev, &bdev_ut_if, 20, 10, bdev_unquiesce_done, &ctx1);
5124 	CU_ASSERT(rc == 0);
5125 	spdk_delay_us(100);
5126 	poll_threads();
5127 
5128 	CU_ASSERT(g_unlock_lba_range_done == true);
5129 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5130 	CU_ASSERT(TAILQ_EMPTY(&bdev_ut_if.internal.quiesced_ranges));
5131 
5132 	spdk_put_io_channel(io_ch);
5133 	spdk_bdev_close(desc);
5134 	free_bdev(bdev);
5135 	ut_fini_bdev();
5136 }
5137 
5138 static void
5139 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
5140 {
5141 	g_abort_done = true;
5142 	g_abort_status = bdev_io->internal.status;
5143 	spdk_bdev_free_io(bdev_io);
5144 }
5145 
5146 static void
5147 bdev_io_abort(void)
5148 {
5149 	struct spdk_bdev *bdev;
5150 	struct spdk_bdev_desc *desc = NULL;
5151 	struct spdk_io_channel *io_ch;
5152 	struct spdk_bdev_channel *channel;
5153 	struct spdk_bdev_mgmt_channel *mgmt_ch;
5154 	struct spdk_bdev_opts bdev_opts = {};
5155 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
5156 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
5157 	int rc;
5158 
5159 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5160 	bdev_opts.bdev_io_pool_size = 7;
5161 	bdev_opts.bdev_io_cache_size = 2;
5162 	ut_init_bdev(&bdev_opts);
5163 
5164 	bdev = allocate_bdev("bdev0");
5165 
5166 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5167 	CU_ASSERT(rc == 0);
5168 	CU_ASSERT(desc != NULL);
5169 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5170 	io_ch = spdk_bdev_get_io_channel(desc);
5171 	CU_ASSERT(io_ch != NULL);
5172 	channel = spdk_io_channel_get_ctx(io_ch);
5173 	mgmt_ch = channel->shared_resource->mgmt_ch;
5174 
5175 	g_abort_done = false;
5176 
5177 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
5178 
5179 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5180 	CU_ASSERT(rc == -ENOTSUP);
5181 
5182 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
5183 
5184 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
5185 	CU_ASSERT(rc == 0);
5186 	CU_ASSERT(g_abort_done == true);
5187 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
5188 
5189 	/* Test the case that the target I/O was successfully aborted. */
5190 	g_io_done = false;
5191 
5192 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5193 	CU_ASSERT(rc == 0);
5194 	CU_ASSERT(g_io_done == false);
5195 
5196 	g_abort_done = false;
5197 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5198 
5199 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5200 	CU_ASSERT(rc == 0);
5201 	CU_ASSERT(g_io_done == true);
5202 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5203 	stub_complete_io(1);
5204 	CU_ASSERT(g_abort_done == true);
5205 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5206 
5207 	/* Test the case that the target I/O was not aborted because it completed
5208 	 * in the middle of execution of the abort.
5209 	 */
5210 	g_io_done = false;
5211 
5212 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5213 	CU_ASSERT(rc == 0);
5214 	CU_ASSERT(g_io_done == false);
5215 
5216 	g_abort_done = false;
5217 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5218 
5219 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5220 	CU_ASSERT(rc == 0);
5221 	CU_ASSERT(g_io_done == false);
5222 
5223 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5224 	stub_complete_io(1);
5225 	CU_ASSERT(g_io_done == true);
5226 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5227 
5228 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5229 	stub_complete_io(1);
5230 	CU_ASSERT(g_abort_done == true);
5231 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5232 
5233 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5234 
5235 	bdev->optimal_io_boundary = 16;
5236 	bdev->split_on_optimal_io_boundary = true;
5237 
5238 	/* Test that a single-vector command which is split is aborted correctly.
5239 	 * Offset 14, length 8, payload 0xF000
5240 	 *  Child - Offset 14, length 2, payload 0xF000
5241 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5242 	 */
5243 	g_io_done = false;
5244 
5245 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
5246 	CU_ASSERT(rc == 0);
5247 	CU_ASSERT(g_io_done == false);
5248 
5249 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5250 
5251 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5252 
5253 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5254 	CU_ASSERT(rc == 0);
5255 	CU_ASSERT(g_io_done == true);
5256 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5257 	stub_complete_io(2);
5258 	CU_ASSERT(g_abort_done == true);
5259 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5260 
5261 	/* Test that a multi-vector command that needs to be split by strip and then
5262 	 * needs to be split is aborted correctly. Abort is requested before the second
5263 	 * child I/O was submitted. The parent I/O should complete with failure without
5264 	 * submitting the second child I/O.
5265 	 */
5266 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
5267 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
5268 		iov[i].iov_len = 512;
5269 	}
5270 
5271 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
5272 	g_io_done = false;
5273 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
5274 				    SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
5275 	CU_ASSERT(rc == 0);
5276 	CU_ASSERT(g_io_done == false);
5277 
5278 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5279 
5280 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5281 
5282 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5283 	CU_ASSERT(rc == 0);
5284 	CU_ASSERT(g_io_done == true);
5285 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5286 	stub_complete_io(1);
5287 	CU_ASSERT(g_abort_done == true);
5288 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5289 
5290 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5291 
5292 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5293 
5294 	bdev->optimal_io_boundary = 16;
5295 	g_io_done = false;
5296 
5297 	/* Test that a ingle-vector command which is split is aborted correctly.
5298 	 * Differently from the above, the child abort request will be submitted
5299 	 * sequentially due to the capacity of spdk_bdev_io.
5300 	 */
5301 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
5302 	CU_ASSERT(rc == 0);
5303 	CU_ASSERT(g_io_done == false);
5304 
5305 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5306 
5307 	g_abort_done = false;
5308 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5309 
5310 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5311 	CU_ASSERT(rc == 0);
5312 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
5313 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5314 
5315 	stub_complete_io(1);
5316 	CU_ASSERT(g_io_done == true);
5317 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5318 	stub_complete_io(3);
5319 	CU_ASSERT(g_abort_done == true);
5320 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5321 
5322 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5323 
5324 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5325 
5326 	spdk_put_io_channel(io_ch);
5327 	spdk_bdev_close(desc);
5328 	free_bdev(bdev);
5329 	ut_fini_bdev();
5330 }
5331 
5332 static void
5333 bdev_unmap(void)
5334 {
5335 	struct spdk_bdev *bdev;
5336 	struct spdk_bdev_desc *desc = NULL;
5337 	struct spdk_io_channel *ioch;
5338 	struct spdk_bdev_channel *bdev_ch;
5339 	struct ut_expected_io *expected_io;
5340 	struct spdk_bdev_opts bdev_opts = {};
5341 	uint32_t i, num_outstanding;
5342 	uint64_t offset, num_blocks, max_unmap_blocks, num_children;
5343 	int rc;
5344 
5345 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5346 	bdev_opts.bdev_io_pool_size = 512;
5347 	bdev_opts.bdev_io_cache_size = 64;
5348 	ut_init_bdev(&bdev_opts);
5349 
5350 	bdev = allocate_bdev("bdev");
5351 
5352 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5353 	CU_ASSERT_EQUAL(rc, 0);
5354 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5355 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5356 	ioch = spdk_bdev_get_io_channel(desc);
5357 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5358 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5359 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5360 
5361 	fn_table.submit_request = stub_submit_request;
5362 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5363 
5364 	/* Case 1: First test the request won't be split */
5365 	num_blocks = 32;
5366 
5367 	g_io_done = false;
5368 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 0, num_blocks, 0);
5369 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5370 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5371 	CU_ASSERT_EQUAL(rc, 0);
5372 	CU_ASSERT(g_io_done == false);
5373 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5374 	stub_complete_io(1);
5375 	CU_ASSERT(g_io_done == true);
5376 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5377 
5378 	/* Case 2: Test the split with 2 children requests */
5379 	bdev->max_unmap = 8;
5380 	bdev->max_unmap_segments = 2;
5381 	max_unmap_blocks = bdev->max_unmap * bdev->max_unmap_segments;
5382 	num_blocks = max_unmap_blocks * 2;
5383 	offset = 0;
5384 
5385 	g_io_done = false;
5386 	for (i = 0; i < 2; i++) {
5387 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5388 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5389 		offset += max_unmap_blocks;
5390 	}
5391 
5392 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5393 	CU_ASSERT_EQUAL(rc, 0);
5394 	CU_ASSERT(g_io_done == false);
5395 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5396 	stub_complete_io(2);
5397 	CU_ASSERT(g_io_done == true);
5398 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5399 
5400 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5401 	num_children = 15;
5402 	num_blocks = max_unmap_blocks * num_children;
5403 	g_io_done = false;
5404 	offset = 0;
5405 	for (i = 0; i < num_children; i++) {
5406 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5407 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5408 		offset += max_unmap_blocks;
5409 	}
5410 
5411 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5412 	CU_ASSERT_EQUAL(rc, 0);
5413 	CU_ASSERT(g_io_done == false);
5414 
5415 	while (num_children > 0) {
5416 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5417 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5418 		stub_complete_io(num_outstanding);
5419 		num_children -= num_outstanding;
5420 	}
5421 	CU_ASSERT(g_io_done == true);
5422 
5423 	spdk_put_io_channel(ioch);
5424 	spdk_bdev_close(desc);
5425 	free_bdev(bdev);
5426 	ut_fini_bdev();
5427 }
5428 
5429 static void
5430 bdev_write_zeroes_split_test(void)
5431 {
5432 	struct spdk_bdev *bdev;
5433 	struct spdk_bdev_desc *desc = NULL;
5434 	struct spdk_io_channel *ioch;
5435 	struct spdk_bdev_channel *bdev_ch;
5436 	struct ut_expected_io *expected_io;
5437 	struct spdk_bdev_opts bdev_opts = {};
5438 	uint32_t i, num_outstanding;
5439 	uint64_t offset, num_blocks, max_write_zeroes_blocks, num_children;
5440 	int rc;
5441 
5442 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5443 	bdev_opts.bdev_io_pool_size = 512;
5444 	bdev_opts.bdev_io_cache_size = 64;
5445 	ut_init_bdev(&bdev_opts);
5446 
5447 	bdev = allocate_bdev("bdev");
5448 
5449 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5450 	CU_ASSERT_EQUAL(rc, 0);
5451 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5452 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5453 	ioch = spdk_bdev_get_io_channel(desc);
5454 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5455 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5456 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5457 
5458 	fn_table.submit_request = stub_submit_request;
5459 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5460 
5461 	/* Case 1: First test the request won't be split */
5462 	num_blocks = 32;
5463 
5464 	g_io_done = false;
5465 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
5466 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5467 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5468 	CU_ASSERT_EQUAL(rc, 0);
5469 	CU_ASSERT(g_io_done == false);
5470 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5471 	stub_complete_io(1);
5472 	CU_ASSERT(g_io_done == true);
5473 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5474 
5475 	/* Case 2: Test the split with 2 children requests */
5476 	max_write_zeroes_blocks = 8;
5477 	bdev->max_write_zeroes = max_write_zeroes_blocks;
5478 	num_blocks = max_write_zeroes_blocks * 2;
5479 	offset = 0;
5480 
5481 	g_io_done = false;
5482 	for (i = 0; i < 2; i++) {
5483 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5484 						   0);
5485 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5486 		offset += max_write_zeroes_blocks;
5487 	}
5488 
5489 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5490 	CU_ASSERT_EQUAL(rc, 0);
5491 	CU_ASSERT(g_io_done == false);
5492 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5493 	stub_complete_io(2);
5494 	CU_ASSERT(g_io_done == true);
5495 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5496 
5497 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5498 	num_children = 15;
5499 	num_blocks = max_write_zeroes_blocks * num_children;
5500 	g_io_done = false;
5501 	offset = 0;
5502 	for (i = 0; i < num_children; i++) {
5503 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5504 						   0);
5505 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5506 		offset += max_write_zeroes_blocks;
5507 	}
5508 
5509 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5510 	CU_ASSERT_EQUAL(rc, 0);
5511 	CU_ASSERT(g_io_done == false);
5512 
5513 	while (num_children > 0) {
5514 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5515 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5516 		stub_complete_io(num_outstanding);
5517 		num_children -= num_outstanding;
5518 	}
5519 	CU_ASSERT(g_io_done == true);
5520 
5521 	spdk_put_io_channel(ioch);
5522 	spdk_bdev_close(desc);
5523 	free_bdev(bdev);
5524 	ut_fini_bdev();
5525 }
5526 
5527 static void
5528 bdev_set_options_test(void)
5529 {
5530 	struct spdk_bdev_opts bdev_opts = {};
5531 	int rc;
5532 
5533 	/* Case1: Do not set opts_size */
5534 	rc = spdk_bdev_set_opts(&bdev_opts);
5535 	CU_ASSERT(rc == -1);
5536 }
5537 
5538 static struct spdk_memory_domain *g_bdev_memory_domain = (struct spdk_memory_domain *) 0xf00df00d;
5539 
5540 static int
5541 test_bdev_get_supported_dma_device_types_op(void *ctx, struct spdk_memory_domain **domains,
5542 		int array_size)
5543 {
5544 	if (array_size > 0 && domains) {
5545 		domains[0] = g_bdev_memory_domain;
5546 	}
5547 
5548 	return 1;
5549 }
5550 
5551 static void
5552 bdev_get_memory_domains(void)
5553 {
5554 	struct spdk_bdev_fn_table fn_table = {
5555 		.get_memory_domains = test_bdev_get_supported_dma_device_types_op
5556 	};
5557 	struct spdk_bdev bdev = { .fn_table = &fn_table };
5558 	struct spdk_memory_domain *domains[2] = {};
5559 	int rc;
5560 
5561 	/* bdev is NULL */
5562 	rc = spdk_bdev_get_memory_domains(NULL, domains, 2);
5563 	CU_ASSERT(rc == -EINVAL);
5564 
5565 	/* domains is NULL */
5566 	rc = spdk_bdev_get_memory_domains(&bdev, NULL, 2);
5567 	CU_ASSERT(rc == 1);
5568 
5569 	/* array size is 0 */
5570 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 0);
5571 	CU_ASSERT(rc == 1);
5572 
5573 	/* get_supported_dma_device_types op is set */
5574 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5575 	CU_ASSERT(rc == 1);
5576 	CU_ASSERT(domains[0] == g_bdev_memory_domain);
5577 
5578 	/* get_supported_dma_device_types op is not set */
5579 	fn_table.get_memory_domains = NULL;
5580 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5581 	CU_ASSERT(rc == 0);
5582 }
5583 
5584 static void
5585 _bdev_io_ext(struct spdk_bdev_ext_io_opts *ext_io_opts)
5586 {
5587 	struct spdk_bdev *bdev;
5588 	struct spdk_bdev_desc *desc = NULL;
5589 	struct spdk_io_channel *io_ch;
5590 	char io_buf[512];
5591 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5592 	struct ut_expected_io *expected_io;
5593 	int rc;
5594 
5595 	ut_init_bdev(NULL);
5596 
5597 	bdev = allocate_bdev("bdev0");
5598 	bdev->md_interleave = false;
5599 	bdev->md_len = 8;
5600 
5601 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5602 	CU_ASSERT(rc == 0);
5603 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5604 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5605 	io_ch = spdk_bdev_get_io_channel(desc);
5606 	CU_ASSERT(io_ch != NULL);
5607 
5608 	/* read */
5609 	g_io_done = false;
5610 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5611 	if (ext_io_opts) {
5612 		expected_io->md_buf = ext_io_opts->metadata;
5613 	}
5614 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5615 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5616 
5617 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5618 
5619 	CU_ASSERT(rc == 0);
5620 	CU_ASSERT(g_io_done == false);
5621 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5622 	stub_complete_io(1);
5623 	CU_ASSERT(g_io_done == true);
5624 
5625 	/* write */
5626 	g_io_done = false;
5627 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5628 	if (ext_io_opts) {
5629 		expected_io->md_buf = ext_io_opts->metadata;
5630 	}
5631 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5632 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5633 
5634 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5635 
5636 	CU_ASSERT(rc == 0);
5637 	CU_ASSERT(g_io_done == false);
5638 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5639 	stub_complete_io(1);
5640 	CU_ASSERT(g_io_done == true);
5641 
5642 	spdk_put_io_channel(io_ch);
5643 	spdk_bdev_close(desc);
5644 	free_bdev(bdev);
5645 	ut_fini_bdev();
5646 
5647 }
5648 
5649 static void
5650 bdev_io_ext(void)
5651 {
5652 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5653 		.metadata = (void *)0xFF000000,
5654 		.size = sizeof(ext_io_opts)
5655 	};
5656 
5657 	_bdev_io_ext(&ext_io_opts);
5658 }
5659 
5660 static void
5661 bdev_io_ext_no_opts(void)
5662 {
5663 	_bdev_io_ext(NULL);
5664 }
5665 
5666 static void
5667 bdev_io_ext_invalid_opts(void)
5668 {
5669 	struct spdk_bdev *bdev;
5670 	struct spdk_bdev_desc *desc = NULL;
5671 	struct spdk_io_channel *io_ch;
5672 	char io_buf[512];
5673 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5674 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5675 		.metadata = (void *)0xFF000000,
5676 		.size = sizeof(ext_io_opts)
5677 	};
5678 	int rc;
5679 
5680 	ut_init_bdev(NULL);
5681 
5682 	bdev = allocate_bdev("bdev0");
5683 	bdev->md_interleave = false;
5684 	bdev->md_len = 8;
5685 
5686 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5687 	CU_ASSERT(rc == 0);
5688 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5689 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5690 	io_ch = spdk_bdev_get_io_channel(desc);
5691 	CU_ASSERT(io_ch != NULL);
5692 
5693 	/* Test invalid ext_opts size */
5694 	ext_io_opts.size = 0;
5695 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5696 	CU_ASSERT(rc == -EINVAL);
5697 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5698 	CU_ASSERT(rc == -EINVAL);
5699 
5700 	ext_io_opts.size = sizeof(ext_io_opts) * 2;
5701 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5702 	CU_ASSERT(rc == -EINVAL);
5703 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5704 	CU_ASSERT(rc == -EINVAL);
5705 
5706 	ext_io_opts.size = offsetof(struct spdk_bdev_ext_io_opts, metadata) +
5707 			   sizeof(ext_io_opts.metadata) - 1;
5708 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5709 	CU_ASSERT(rc == -EINVAL);
5710 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5711 	CU_ASSERT(rc == -EINVAL);
5712 
5713 	spdk_put_io_channel(io_ch);
5714 	spdk_bdev_close(desc);
5715 	free_bdev(bdev);
5716 	ut_fini_bdev();
5717 }
5718 
5719 static void
5720 bdev_io_ext_split(void)
5721 {
5722 	struct spdk_bdev *bdev;
5723 	struct spdk_bdev_desc *desc = NULL;
5724 	struct spdk_io_channel *io_ch;
5725 	char io_buf[512];
5726 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5727 	struct ut_expected_io *expected_io;
5728 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5729 		.metadata = (void *)0xFF000000,
5730 		.size = sizeof(ext_io_opts)
5731 	};
5732 	int rc;
5733 
5734 	ut_init_bdev(NULL);
5735 
5736 	bdev = allocate_bdev("bdev0");
5737 	bdev->md_interleave = false;
5738 	bdev->md_len = 8;
5739 
5740 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5741 	CU_ASSERT(rc == 0);
5742 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5743 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5744 	io_ch = spdk_bdev_get_io_channel(desc);
5745 	CU_ASSERT(io_ch != NULL);
5746 
5747 	/* Check that IO request with ext_opts and metadata is split correctly
5748 	 * Offset 14, length 8, payload 0xF000
5749 	 *  Child - Offset 14, length 2, payload 0xF000
5750 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5751 	 */
5752 	bdev->optimal_io_boundary = 16;
5753 	bdev->split_on_optimal_io_boundary = true;
5754 	bdev->md_interleave = false;
5755 	bdev->md_len = 8;
5756 
5757 	iov.iov_base = (void *)0xF000;
5758 	iov.iov_len = 4096;
5759 	memset(&ext_io_opts, 0, sizeof(ext_io_opts));
5760 	ext_io_opts.metadata = (void *)0xFF000000;
5761 	ext_io_opts.size = sizeof(ext_io_opts);
5762 	g_io_done = false;
5763 
5764 	/* read */
5765 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
5766 	expected_io->md_buf = ext_io_opts.metadata;
5767 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5768 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5769 
5770 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
5771 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5772 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5773 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5774 
5775 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5776 	CU_ASSERT(rc == 0);
5777 	CU_ASSERT(g_io_done == false);
5778 
5779 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5780 	stub_complete_io(2);
5781 	CU_ASSERT(g_io_done == true);
5782 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5783 
5784 	/* write */
5785 	g_io_done = false;
5786 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
5787 	expected_io->md_buf = ext_io_opts.metadata;
5788 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5789 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5790 
5791 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 6, 1);
5792 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5793 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5794 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5795 
5796 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5797 	CU_ASSERT(rc == 0);
5798 	CU_ASSERT(g_io_done == false);
5799 
5800 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5801 	stub_complete_io(2);
5802 	CU_ASSERT(g_io_done == true);
5803 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5804 
5805 	spdk_put_io_channel(io_ch);
5806 	spdk_bdev_close(desc);
5807 	free_bdev(bdev);
5808 	ut_fini_bdev();
5809 }
5810 
5811 static void
5812 bdev_io_ext_bounce_buffer(void)
5813 {
5814 	struct spdk_bdev *bdev;
5815 	struct spdk_bdev_desc *desc = NULL;
5816 	struct spdk_io_channel *io_ch;
5817 	char io_buf[512];
5818 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5819 	struct ut_expected_io *expected_io, *aux_io;
5820 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5821 		.metadata = (void *)0xFF000000,
5822 		.size = sizeof(ext_io_opts)
5823 	};
5824 	int rc;
5825 
5826 	ut_init_bdev(NULL);
5827 
5828 	bdev = allocate_bdev("bdev0");
5829 	bdev->md_interleave = false;
5830 	bdev->md_len = 8;
5831 
5832 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5833 	CU_ASSERT(rc == 0);
5834 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5835 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5836 	io_ch = spdk_bdev_get_io_channel(desc);
5837 	CU_ASSERT(io_ch != NULL);
5838 
5839 	/* Verify data pull/push
5840 	 * bdev doesn't support memory domains, so buffers from bdev memory pool will be used */
5841 	ext_io_opts.memory_domain = (struct spdk_memory_domain *)0xdeadbeef;
5842 
5843 	/* read */
5844 	g_io_done = false;
5845 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5846 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5847 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5848 
5849 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5850 
5851 	CU_ASSERT(rc == 0);
5852 	CU_ASSERT(g_io_done == false);
5853 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5854 	stub_complete_io(1);
5855 	CU_ASSERT(g_memory_domain_push_data_called == true);
5856 	CU_ASSERT(g_io_done == true);
5857 
5858 	/* write */
5859 	g_io_done = false;
5860 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5861 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5862 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5863 
5864 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5865 
5866 	CU_ASSERT(rc == 0);
5867 	CU_ASSERT(g_memory_domain_pull_data_called == true);
5868 	CU_ASSERT(g_io_done == false);
5869 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5870 	stub_complete_io(1);
5871 	CU_ASSERT(g_io_done == true);
5872 
5873 	/* Verify the request is queued after receiving ENOMEM from pull */
5874 	g_io_done = false;
5875 	aux_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5876 	ut_expected_io_set_iov(aux_io, 0, iov.iov_base, iov.iov_len);
5877 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, aux_io, link);
5878 	rc = spdk_bdev_writev_blocks(desc, io_ch, &iov, 1, 32, 14, io_done, NULL);
5879 	CU_ASSERT(rc == 0);
5880 	CU_ASSERT(g_io_done == false);
5881 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5882 
5883 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5884 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5885 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5886 
5887 	MOCK_SET(spdk_memory_domain_pull_data, -ENOMEM);
5888 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5889 	CU_ASSERT(rc == 0);
5890 	CU_ASSERT(g_io_done == false);
5891 	/* The second IO has been queued */
5892 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5893 
5894 	MOCK_CLEAR(spdk_memory_domain_pull_data);
5895 	g_memory_domain_pull_data_called = false;
5896 	stub_complete_io(1);
5897 	CU_ASSERT(g_io_done == true);
5898 	CU_ASSERT(g_memory_domain_pull_data_called == true);
5899 	/* The second IO should be submitted now */
5900 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5901 	g_io_done = false;
5902 	stub_complete_io(1);
5903 	CU_ASSERT(g_io_done == true);
5904 
5905 	/* Verify the request is queued after receiving ENOMEM from push */
5906 	g_io_done = false;
5907 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5908 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5909 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5910 
5911 	MOCK_SET(spdk_memory_domain_push_data, -ENOMEM);
5912 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5913 	CU_ASSERT(rc == 0);
5914 	CU_ASSERT(g_io_done == false);
5915 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5916 
5917 	aux_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5918 	ut_expected_io_set_iov(aux_io, 0, iov.iov_base, iov.iov_len);
5919 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, aux_io, link);
5920 	rc = spdk_bdev_writev_blocks(desc, io_ch, &iov, 1, 32, 14, io_done, NULL);
5921 	CU_ASSERT(rc == 0);
5922 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5923 
5924 	stub_complete_io(1);
5925 	/* The IO isn't done yet, it's still waiting on push */
5926 	CU_ASSERT(g_io_done == false);
5927 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5928 	MOCK_CLEAR(spdk_memory_domain_push_data);
5929 	g_memory_domain_push_data_called = false;
5930 	/* Completing the second IO should also trigger push on the first one */
5931 	stub_complete_io(1);
5932 	CU_ASSERT(g_io_done == true);
5933 	CU_ASSERT(g_memory_domain_push_data_called == true);
5934 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5935 
5936 	spdk_put_io_channel(io_ch);
5937 	spdk_bdev_close(desc);
5938 	free_bdev(bdev);
5939 	ut_fini_bdev();
5940 }
5941 
5942 static void
5943 bdev_register_uuid_alias(void)
5944 {
5945 	struct spdk_bdev *bdev, *second;
5946 	char uuid[SPDK_UUID_STRING_LEN];
5947 	int rc;
5948 
5949 	ut_init_bdev(NULL);
5950 	bdev = allocate_bdev("bdev0");
5951 
5952 	/* Make sure an UUID was generated  */
5953 	CU_ASSERT_FALSE(spdk_uuid_is_null(&bdev->uuid));
5954 
5955 	/* Check that an UUID alias was registered */
5956 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5957 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5958 
5959 	/* Unregister the bdev */
5960 	spdk_bdev_unregister(bdev, NULL, NULL);
5961 	poll_threads();
5962 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5963 
5964 	/* Check the same, but this time register the bdev with non-zero UUID */
5965 	rc = spdk_bdev_register(bdev);
5966 	CU_ASSERT_EQUAL(rc, 0);
5967 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5968 
5969 	/* Unregister the bdev */
5970 	spdk_bdev_unregister(bdev, NULL, NULL);
5971 	poll_threads();
5972 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5973 
5974 	/* Regiser the bdev using UUID as the name */
5975 	bdev->name = uuid;
5976 	rc = spdk_bdev_register(bdev);
5977 	CU_ASSERT_EQUAL(rc, 0);
5978 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5979 
5980 	/* Unregister the bdev */
5981 	spdk_bdev_unregister(bdev, NULL, NULL);
5982 	poll_threads();
5983 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5984 
5985 	/* Check that it's not possible to register two bdevs with the same UUIDs */
5986 	bdev->name = "bdev0";
5987 	second = allocate_bdev("bdev1");
5988 	spdk_uuid_copy(&bdev->uuid, &second->uuid);
5989 	rc = spdk_bdev_register(bdev);
5990 	CU_ASSERT_EQUAL(rc, -EEXIST);
5991 
5992 	/* Regenerate the UUID and re-check */
5993 	spdk_uuid_generate(&bdev->uuid);
5994 	rc = spdk_bdev_register(bdev);
5995 	CU_ASSERT_EQUAL(rc, 0);
5996 
5997 	/* And check that both bdevs can be retrieved through their UUIDs */
5998 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5999 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
6000 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &second->uuid);
6001 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), second);
6002 
6003 	free_bdev(second);
6004 	free_bdev(bdev);
6005 	ut_fini_bdev();
6006 }
6007 
6008 static void
6009 bdev_unregister_by_name(void)
6010 {
6011 	struct spdk_bdev *bdev;
6012 	int rc;
6013 
6014 	bdev = allocate_bdev("bdev");
6015 
6016 	g_event_type1 = 0xFF;
6017 	g_unregister_arg = NULL;
6018 	g_unregister_rc = -1;
6019 
6020 	rc = spdk_bdev_unregister_by_name("bdev1", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
6021 	CU_ASSERT(rc == -ENODEV);
6022 
6023 	rc = spdk_bdev_unregister_by_name("bdev", &vbdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
6024 	CU_ASSERT(rc == -ENODEV);
6025 
6026 	rc = spdk_bdev_unregister_by_name("bdev", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
6027 	CU_ASSERT(rc == 0);
6028 
6029 	/* Check that unregister callback is delayed */
6030 	CU_ASSERT(g_unregister_arg == NULL);
6031 	CU_ASSERT(g_unregister_rc == -1);
6032 
6033 	poll_threads();
6034 
6035 	/* Event callback shall not be issued because device was closed */
6036 	CU_ASSERT(g_event_type1 == 0xFF);
6037 	/* Unregister callback is issued */
6038 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
6039 	CU_ASSERT(g_unregister_rc == 0);
6040 
6041 	free_bdev(bdev);
6042 }
6043 
6044 static int
6045 count_bdevs(void *ctx, struct spdk_bdev *bdev)
6046 {
6047 	int *count = ctx;
6048 
6049 	(*count)++;
6050 
6051 	return 0;
6052 }
6053 
6054 static void
6055 for_each_bdev_test(void)
6056 {
6057 	struct spdk_bdev *bdev[8];
6058 	int rc, count;
6059 
6060 	bdev[0] = allocate_bdev("bdev0");
6061 	bdev[0]->internal.status = SPDK_BDEV_STATUS_REMOVING;
6062 
6063 	bdev[1] = allocate_bdev("bdev1");
6064 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
6065 	CU_ASSERT(rc == 0);
6066 
6067 	bdev[2] = allocate_bdev("bdev2");
6068 
6069 	bdev[3] = allocate_bdev("bdev3");
6070 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
6071 	CU_ASSERT(rc == 0);
6072 
6073 	bdev[4] = allocate_bdev("bdev4");
6074 
6075 	bdev[5] = allocate_bdev("bdev5");
6076 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
6077 	CU_ASSERT(rc == 0);
6078 
6079 	bdev[6] = allocate_bdev("bdev6");
6080 
6081 	bdev[7] = allocate_bdev("bdev7");
6082 
6083 	count = 0;
6084 	rc = spdk_for_each_bdev(&count, count_bdevs);
6085 	CU_ASSERT(rc == 0);
6086 	CU_ASSERT(count == 7);
6087 
6088 	count = 0;
6089 	rc = spdk_for_each_bdev_leaf(&count, count_bdevs);
6090 	CU_ASSERT(rc == 0);
6091 	CU_ASSERT(count == 4);
6092 
6093 	bdev[0]->internal.status = SPDK_BDEV_STATUS_READY;
6094 	free_bdev(bdev[0]);
6095 	free_bdev(bdev[1]);
6096 	free_bdev(bdev[2]);
6097 	free_bdev(bdev[3]);
6098 	free_bdev(bdev[4]);
6099 	free_bdev(bdev[5]);
6100 	free_bdev(bdev[6]);
6101 	free_bdev(bdev[7]);
6102 }
6103 
6104 static void
6105 bdev_seek_test(void)
6106 {
6107 	struct spdk_bdev *bdev;
6108 	struct spdk_bdev_desc *desc = NULL;
6109 	struct spdk_io_channel *io_ch;
6110 	int rc;
6111 
6112 	ut_init_bdev(NULL);
6113 	poll_threads();
6114 
6115 	bdev = allocate_bdev("bdev0");
6116 
6117 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6118 	CU_ASSERT(rc == 0);
6119 	poll_threads();
6120 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6121 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6122 	io_ch = spdk_bdev_get_io_channel(desc);
6123 	CU_ASSERT(io_ch != NULL);
6124 
6125 	/* Seek data not supported */
6126 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, false);
6127 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
6128 	CU_ASSERT(rc == 0);
6129 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6130 	poll_threads();
6131 	CU_ASSERT(g_seek_offset == 0);
6132 
6133 	/* Seek hole not supported */
6134 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, false);
6135 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
6136 	CU_ASSERT(rc == 0);
6137 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6138 	poll_threads();
6139 	CU_ASSERT(g_seek_offset == UINT64_MAX);
6140 
6141 	/* Seek data supported */
6142 	g_seek_data_offset = 12345;
6143 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, true);
6144 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
6145 	CU_ASSERT(rc == 0);
6146 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6147 	stub_complete_io(1);
6148 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6149 	CU_ASSERT(g_seek_offset == 12345);
6150 
6151 	/* Seek hole supported */
6152 	g_seek_hole_offset = 67890;
6153 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, true);
6154 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
6155 	CU_ASSERT(rc == 0);
6156 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6157 	stub_complete_io(1);
6158 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6159 	CU_ASSERT(g_seek_offset == 67890);
6160 
6161 	spdk_put_io_channel(io_ch);
6162 	spdk_bdev_close(desc);
6163 	free_bdev(bdev);
6164 	ut_fini_bdev();
6165 }
6166 
6167 static void
6168 bdev_copy(void)
6169 {
6170 	struct spdk_bdev *bdev;
6171 	struct spdk_bdev_desc *desc = NULL;
6172 	struct spdk_io_channel *ioch;
6173 	struct ut_expected_io *expected_io;
6174 	uint64_t src_offset, num_blocks;
6175 	uint32_t num_completed;
6176 	int rc;
6177 
6178 	ut_init_bdev(NULL);
6179 	bdev = allocate_bdev("bdev");
6180 
6181 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6182 	CU_ASSERT_EQUAL(rc, 0);
6183 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6184 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6185 	ioch = spdk_bdev_get_io_channel(desc);
6186 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6187 
6188 	fn_table.submit_request = stub_submit_request;
6189 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6190 
6191 	/* First test that if the bdev supports copy, the request won't be split */
6192 	bdev->md_len = 0;
6193 	bdev->blocklen = 512;
6194 	num_blocks = 128;
6195 	src_offset = bdev->blockcnt - num_blocks;
6196 
6197 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6198 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6199 
6200 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6201 	CU_ASSERT_EQUAL(rc, 0);
6202 	num_completed = stub_complete_io(1);
6203 	CU_ASSERT_EQUAL(num_completed, 1);
6204 
6205 	/* Check that if copy is not supported it'll still work */
6206 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, src_offset, num_blocks, 0);
6207 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6208 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, num_blocks, 0);
6209 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6210 
6211 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false);
6212 
6213 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6214 	CU_ASSERT_EQUAL(rc, 0);
6215 	num_completed = stub_complete_io(1);
6216 	CU_ASSERT_EQUAL(num_completed, 1);
6217 	num_completed = stub_complete_io(1);
6218 	CU_ASSERT_EQUAL(num_completed, 1);
6219 
6220 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true);
6221 	spdk_put_io_channel(ioch);
6222 	spdk_bdev_close(desc);
6223 	free_bdev(bdev);
6224 	ut_fini_bdev();
6225 }
6226 
6227 static void
6228 bdev_copy_split_test(void)
6229 {
6230 	struct spdk_bdev *bdev;
6231 	struct spdk_bdev_desc *desc = NULL;
6232 	struct spdk_io_channel *ioch;
6233 	struct spdk_bdev_channel *bdev_ch;
6234 	struct ut_expected_io *expected_io;
6235 	struct spdk_bdev_opts bdev_opts = {};
6236 	uint32_t i, num_outstanding;
6237 	uint64_t offset, src_offset, num_blocks, max_copy_blocks, num_children;
6238 	int rc;
6239 
6240 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
6241 	bdev_opts.bdev_io_pool_size = 512;
6242 	bdev_opts.bdev_io_cache_size = 64;
6243 	rc = spdk_bdev_set_opts(&bdev_opts);
6244 	CU_ASSERT(rc == 0);
6245 
6246 	ut_init_bdev(NULL);
6247 	bdev = allocate_bdev("bdev");
6248 
6249 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6250 	CU_ASSERT_EQUAL(rc, 0);
6251 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6252 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6253 	ioch = spdk_bdev_get_io_channel(desc);
6254 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6255 	bdev_ch = spdk_io_channel_get_ctx(ioch);
6256 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
6257 
6258 	fn_table.submit_request = stub_submit_request;
6259 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6260 
6261 	/* Case 1: First test the request won't be split */
6262 	num_blocks = 32;
6263 	src_offset = bdev->blockcnt - num_blocks;
6264 
6265 	g_io_done = false;
6266 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6267 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6268 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6269 	CU_ASSERT_EQUAL(rc, 0);
6270 	CU_ASSERT(g_io_done == false);
6271 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6272 	stub_complete_io(1);
6273 	CU_ASSERT(g_io_done == true);
6274 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6275 
6276 	/* Case 2: Test the split with 2 children requests */
6277 	max_copy_blocks = 8;
6278 	bdev->max_copy = max_copy_blocks;
6279 	num_children = 2;
6280 	num_blocks = max_copy_blocks * num_children;
6281 	offset = 0;
6282 	src_offset = bdev->blockcnt - num_blocks;
6283 
6284 	g_io_done = false;
6285 	for (i = 0; i < num_children; i++) {
6286 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6287 							src_offset + offset, max_copy_blocks);
6288 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6289 		offset += max_copy_blocks;
6290 	}
6291 
6292 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6293 	CU_ASSERT_EQUAL(rc, 0);
6294 	CU_ASSERT(g_io_done == false);
6295 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_children);
6296 	stub_complete_io(num_children);
6297 	CU_ASSERT(g_io_done == true);
6298 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6299 
6300 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
6301 	num_children = 15;
6302 	num_blocks = max_copy_blocks * num_children;
6303 	offset = 0;
6304 	src_offset = bdev->blockcnt - num_blocks;
6305 
6306 	g_io_done = false;
6307 	for (i = 0; i < num_children; i++) {
6308 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6309 							src_offset + offset, max_copy_blocks);
6310 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6311 		offset += max_copy_blocks;
6312 	}
6313 
6314 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6315 	CU_ASSERT_EQUAL(rc, 0);
6316 	CU_ASSERT(g_io_done == false);
6317 
6318 	while (num_children > 0) {
6319 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_COPY_REQS);
6320 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6321 		stub_complete_io(num_outstanding);
6322 		num_children -= num_outstanding;
6323 	}
6324 	CU_ASSERT(g_io_done == true);
6325 
6326 	/* Case 4: Same test scenario as the case 2 but the configuration is different.
6327 	 * Copy is not supported.
6328 	 */
6329 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false);
6330 
6331 	num_children = 2;
6332 	max_copy_blocks = spdk_bdev_get_max_copy(bdev);
6333 	num_blocks = max_copy_blocks * num_children;
6334 	src_offset = bdev->blockcnt - num_blocks;
6335 	offset = 0;
6336 
6337 	g_io_done = false;
6338 	for (i = 0; i < num_children; i++) {
6339 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, src_offset,
6340 						   max_copy_blocks, 0);
6341 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6342 		src_offset += max_copy_blocks;
6343 	}
6344 	for (i = 0; i < num_children; i++) {
6345 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset,
6346 						   max_copy_blocks, 0);
6347 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6348 		offset += max_copy_blocks;
6349 	}
6350 
6351 	src_offset = bdev->blockcnt - num_blocks;
6352 	offset = 0;
6353 
6354 	rc = spdk_bdev_copy_blocks(desc, ioch, offset, src_offset, num_blocks, io_done, NULL);
6355 	CU_ASSERT_EQUAL(rc, 0);
6356 	CU_ASSERT(g_io_done == false);
6357 
6358 	while (num_children > 0) {
6359 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_COPY_REQS);
6360 
6361 		/* One copy request is split into one read and one write requests. */
6362 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6363 		stub_complete_io(num_outstanding);
6364 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6365 		stub_complete_io(num_outstanding);
6366 
6367 		num_children -= num_outstanding;
6368 	}
6369 	CU_ASSERT(g_io_done == true);
6370 
6371 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true);
6372 
6373 	spdk_put_io_channel(ioch);
6374 	spdk_bdev_close(desc);
6375 	free_bdev(bdev);
6376 	ut_fini_bdev();
6377 }
6378 
6379 static void
6380 examine_claim_v1(struct spdk_bdev *bdev)
6381 {
6382 	int rc;
6383 
6384 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &vbdev_ut_if);
6385 	CU_ASSERT(rc == 0);
6386 }
6387 
6388 static void
6389 examine_no_lock_held(struct spdk_bdev *bdev)
6390 {
6391 	CU_ASSERT(!spdk_spin_held(&g_bdev_mgr.spinlock));
6392 	CU_ASSERT(!spdk_spin_held(&bdev->internal.spinlock));
6393 }
6394 
6395 struct examine_claim_v2_ctx {
6396 	struct ut_examine_ctx examine_ctx;
6397 	enum spdk_bdev_claim_type claim_type;
6398 	struct spdk_bdev_desc *desc;
6399 };
6400 
6401 static void
6402 examine_claim_v2(struct spdk_bdev *bdev)
6403 {
6404 	struct examine_claim_v2_ctx *ctx = bdev->ctxt;
6405 	int rc;
6406 
6407 	rc = spdk_bdev_open_ext(bdev->name, false, bdev_ut_event_cb, NULL, &ctx->desc);
6408 	CU_ASSERT(rc == 0);
6409 
6410 	rc = spdk_bdev_module_claim_bdev_desc(ctx->desc, ctx->claim_type, NULL, &vbdev_ut_if);
6411 	CU_ASSERT(rc == 0);
6412 }
6413 
6414 static void
6415 examine_locks(void)
6416 {
6417 	struct spdk_bdev *bdev;
6418 	struct ut_examine_ctx ctx = { 0 };
6419 	struct examine_claim_v2_ctx v2_ctx;
6420 
6421 	/* Without any claims, one code path is taken */
6422 	ctx.examine_config = examine_no_lock_held;
6423 	ctx.examine_disk = examine_no_lock_held;
6424 	bdev = allocate_bdev_ctx("bdev0", &ctx);
6425 	CU_ASSERT(ctx.examine_config_count == 1);
6426 	CU_ASSERT(ctx.examine_disk_count == 1);
6427 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6428 	CU_ASSERT(bdev->internal.claim.v1.module == NULL);
6429 	free_bdev(bdev);
6430 
6431 	/* Exercise another path that is taken when examine_config() takes a v1 claim. */
6432 	memset(&ctx, 0, sizeof(ctx));
6433 	ctx.examine_config = examine_claim_v1;
6434 	ctx.examine_disk = examine_no_lock_held;
6435 	bdev = allocate_bdev_ctx("bdev0", &ctx);
6436 	CU_ASSERT(ctx.examine_config_count == 1);
6437 	CU_ASSERT(ctx.examine_disk_count == 1);
6438 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
6439 	CU_ASSERT(bdev->internal.claim.v1.module == &vbdev_ut_if);
6440 	spdk_bdev_module_release_bdev(bdev);
6441 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6442 	CU_ASSERT(bdev->internal.claim.v1.module == NULL);
6443 	free_bdev(bdev);
6444 
6445 	/* Exercise the final path that comes with v2 claims. */
6446 	memset(&v2_ctx, 0, sizeof(v2_ctx));
6447 	v2_ctx.examine_ctx.examine_config = examine_claim_v2;
6448 	v2_ctx.examine_ctx.examine_disk = examine_no_lock_held;
6449 	v2_ctx.claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
6450 	bdev = allocate_bdev_ctx("bdev0", &v2_ctx);
6451 	CU_ASSERT(v2_ctx.examine_ctx.examine_config_count == 1);
6452 	CU_ASSERT(v2_ctx.examine_ctx.examine_disk_count == 1);
6453 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6454 	spdk_bdev_close(v2_ctx.desc);
6455 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6456 	free_bdev(bdev);
6457 }
6458 
6459 #define UT_ASSERT_CLAIM_V2_COUNT(bdev, expect) \
6460 	do { \
6461 		uint32_t len = 0; \
6462 		struct spdk_bdev_module_claim *claim; \
6463 		TAILQ_FOREACH(claim, &bdev->internal.claim.v2.claims, link) { \
6464 			len++; \
6465 		} \
6466 		CU_ASSERT(len == expect); \
6467 	} while (0)
6468 
6469 static void
6470 claim_v2_rwo(void)
6471 {
6472 	struct spdk_bdev *bdev;
6473 	struct spdk_bdev_desc *desc;
6474 	struct spdk_bdev_desc *desc2;
6475 	struct spdk_bdev_claim_opts opts;
6476 	int rc;
6477 
6478 	bdev = allocate_bdev("bdev0");
6479 
6480 	/* Claim without options */
6481 	desc = NULL;
6482 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6483 	CU_ASSERT(rc == 0);
6484 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6485 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6486 					      &bdev_ut_if);
6487 	CU_ASSERT(rc == 0);
6488 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6489 	CU_ASSERT(desc->claim != NULL);
6490 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6491 	CU_ASSERT(strcmp(desc->claim->name, "") == 0);
6492 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6493 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6494 
6495 	/* Release the claim by closing the descriptor */
6496 	spdk_bdev_close(desc);
6497 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6498 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6499 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6500 
6501 	/* Claim with options */
6502 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6503 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6504 	desc = NULL;
6505 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6506 	CU_ASSERT(rc == 0);
6507 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6508 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, &opts,
6509 					      &bdev_ut_if);
6510 	CU_ASSERT(rc == 0);
6511 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6512 	CU_ASSERT(desc->claim != NULL);
6513 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6514 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6515 	memset(&opts, 0, sizeof(opts));
6516 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6517 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6518 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6519 
6520 	/* The claim blocks new writers. */
6521 	desc2 = NULL;
6522 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6523 	CU_ASSERT(rc == -EPERM);
6524 	CU_ASSERT(desc2 == NULL);
6525 
6526 	/* New readers are allowed */
6527 	desc2 = NULL;
6528 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6529 	CU_ASSERT(rc == 0);
6530 	CU_ASSERT(desc2 != NULL);
6531 	CU_ASSERT(!desc2->write);
6532 
6533 	/* No new v2 RWO claims are allowed */
6534 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6535 					      &bdev_ut_if);
6536 	CU_ASSERT(rc == -EPERM);
6537 
6538 	/* No new v2 ROM claims are allowed */
6539 	CU_ASSERT(!desc2->write);
6540 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6541 					      &bdev_ut_if);
6542 	CU_ASSERT(rc == -EPERM);
6543 	CU_ASSERT(!desc2->write);
6544 
6545 	/* No new v2 RWM claims are allowed */
6546 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6547 	opts.shared_claim_key = (uint64_t)&opts;
6548 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6549 					      &bdev_ut_if);
6550 	CU_ASSERT(rc == -EPERM);
6551 	CU_ASSERT(!desc2->write);
6552 
6553 	/* No new v1 claims are allowed */
6554 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6555 	CU_ASSERT(rc == -EPERM);
6556 
6557 	/* None of the above changed the existing claim */
6558 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6559 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6560 
6561 	/* Closing the first descriptor now allows a new claim and it is promoted to rw. */
6562 	spdk_bdev_close(desc);
6563 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6564 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6565 	CU_ASSERT(!desc2->write);
6566 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6567 					      &bdev_ut_if);
6568 	CU_ASSERT(rc == 0);
6569 	CU_ASSERT(desc2->claim != NULL);
6570 	CU_ASSERT(desc2->write);
6571 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6572 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
6573 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6574 	spdk_bdev_close(desc2);
6575 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6576 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6577 
6578 	/* Cannot claim with a key */
6579 	desc = NULL;
6580 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6581 	CU_ASSERT(rc == 0);
6582 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6583 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6584 	opts.shared_claim_key = (uint64_t)&opts;
6585 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, &opts,
6586 					      &bdev_ut_if);
6587 	CU_ASSERT(rc == -EINVAL);
6588 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6589 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6590 	spdk_bdev_close(desc);
6591 
6592 	/* Clean up */
6593 	free_bdev(bdev);
6594 }
6595 
6596 static void
6597 claim_v2_rom(void)
6598 {
6599 	struct spdk_bdev *bdev;
6600 	struct spdk_bdev_desc *desc;
6601 	struct spdk_bdev_desc *desc2;
6602 	struct spdk_bdev_claim_opts opts;
6603 	int rc;
6604 
6605 	bdev = allocate_bdev("bdev0");
6606 
6607 	/* Claim without options */
6608 	desc = NULL;
6609 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6610 	CU_ASSERT(rc == 0);
6611 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6612 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6613 					      &bdev_ut_if);
6614 	CU_ASSERT(rc == 0);
6615 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6616 	CU_ASSERT(desc->claim != NULL);
6617 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6618 	CU_ASSERT(strcmp(desc->claim->name, "") == 0);
6619 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6620 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6621 
6622 	/* Release the claim by closing the descriptor */
6623 	spdk_bdev_close(desc);
6624 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6625 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6626 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6627 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6628 
6629 	/* Claim with options */
6630 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6631 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6632 	desc = NULL;
6633 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6634 	CU_ASSERT(rc == 0);
6635 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6636 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, &opts,
6637 					      &bdev_ut_if);
6638 	CU_ASSERT(rc == 0);
6639 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6640 	SPDK_CU_ASSERT_FATAL(desc->claim != NULL);
6641 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6642 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6643 	memset(&opts, 0, sizeof(opts));
6644 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6645 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6646 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6647 
6648 	/* The claim blocks new writers. */
6649 	desc2 = NULL;
6650 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6651 	CU_ASSERT(rc == -EPERM);
6652 	CU_ASSERT(desc2 == NULL);
6653 
6654 	/* New readers are allowed */
6655 	desc2 = NULL;
6656 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6657 	CU_ASSERT(rc == 0);
6658 	CU_ASSERT(desc2 != NULL);
6659 	CU_ASSERT(!desc2->write);
6660 
6661 	/* No new v2 RWO claims are allowed */
6662 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6663 					      &bdev_ut_if);
6664 	CU_ASSERT(rc == -EPERM);
6665 
6666 	/* No new v2 RWM claims are allowed */
6667 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6668 	opts.shared_claim_key = (uint64_t)&opts;
6669 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6670 					      &bdev_ut_if);
6671 	CU_ASSERT(rc == -EPERM);
6672 	CU_ASSERT(!desc2->write);
6673 
6674 	/* No new v1 claims are allowed */
6675 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6676 	CU_ASSERT(rc == -EPERM);
6677 
6678 	/* None of the above messed up the existing claim */
6679 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6680 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6681 
6682 	/* New v2 ROM claims are allowed and the descriptor stays read-only. */
6683 	CU_ASSERT(!desc2->write);
6684 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6685 					      &bdev_ut_if);
6686 	CU_ASSERT(rc == 0);
6687 	CU_ASSERT(!desc2->write);
6688 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6689 	CU_ASSERT(TAILQ_NEXT(desc->claim, link) == desc2->claim);
6690 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 2);
6691 
6692 	/* Claim remains when closing the first descriptor */
6693 	spdk_bdev_close(desc);
6694 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6695 	CU_ASSERT(!TAILQ_EMPTY(&bdev->internal.open_descs));
6696 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
6697 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6698 
6699 	/* Claim removed when closing the other descriptor */
6700 	spdk_bdev_close(desc2);
6701 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6702 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6703 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6704 
6705 	/* Cannot claim with a key */
6706 	desc = NULL;
6707 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6708 	CU_ASSERT(rc == 0);
6709 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6710 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6711 	opts.shared_claim_key = (uint64_t)&opts;
6712 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, &opts,
6713 					      &bdev_ut_if);
6714 	CU_ASSERT(rc == -EINVAL);
6715 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6716 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6717 	spdk_bdev_close(desc);
6718 
6719 	/* Cannot claim with a read-write descriptor */
6720 	desc = NULL;
6721 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6722 	CU_ASSERT(rc == 0);
6723 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6724 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6725 					      &bdev_ut_if);
6726 	CU_ASSERT(rc == -EINVAL);
6727 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6728 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6729 	spdk_bdev_close(desc);
6730 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6731 
6732 	/* Clean up */
6733 	free_bdev(bdev);
6734 }
6735 
6736 static void
6737 claim_v2_rwm(void)
6738 {
6739 	struct spdk_bdev *bdev;
6740 	struct spdk_bdev_desc *desc;
6741 	struct spdk_bdev_desc *desc2;
6742 	struct spdk_bdev_claim_opts opts;
6743 	char good_key, bad_key;
6744 	int rc;
6745 
6746 	bdev = allocate_bdev("bdev0");
6747 
6748 	/* Claim without options should fail */
6749 	desc = NULL;
6750 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6751 	CU_ASSERT(rc == 0);
6752 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6753 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, NULL,
6754 					      &bdev_ut_if);
6755 	CU_ASSERT(rc == -EINVAL);
6756 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6757 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6758 	CU_ASSERT(desc->claim == NULL);
6759 
6760 	/* Claim with options */
6761 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6762 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6763 	opts.shared_claim_key = (uint64_t)&good_key;
6764 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6765 					      &bdev_ut_if);
6766 	CU_ASSERT(rc == 0);
6767 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED);
6768 	SPDK_CU_ASSERT_FATAL(desc->claim != NULL);
6769 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6770 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6771 	memset(&opts, 0, sizeof(opts));
6772 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6773 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6774 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6775 
6776 	/* The claim blocks new writers. */
6777 	desc2 = NULL;
6778 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6779 	CU_ASSERT(rc == -EPERM);
6780 	CU_ASSERT(desc2 == NULL);
6781 
6782 	/* New readers are allowed */
6783 	desc2 = NULL;
6784 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6785 	CU_ASSERT(rc == 0);
6786 	CU_ASSERT(desc2 != NULL);
6787 	CU_ASSERT(!desc2->write);
6788 
6789 	/* No new v2 RWO claims are allowed */
6790 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6791 					      &bdev_ut_if);
6792 	CU_ASSERT(rc == -EPERM);
6793 
6794 	/* No new v2 ROM claims are allowed and the descriptor stays read-only. */
6795 	CU_ASSERT(!desc2->write);
6796 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6797 					      &bdev_ut_if);
6798 	CU_ASSERT(rc == -EPERM);
6799 	CU_ASSERT(!desc2->write);
6800 
6801 	/* No new v1 claims are allowed */
6802 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6803 	CU_ASSERT(rc == -EPERM);
6804 
6805 	/* No new v2 RWM claims are allowed if the key does not match */
6806 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6807 	opts.shared_claim_key = (uint64_t)&bad_key;
6808 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6809 					      &bdev_ut_if);
6810 	CU_ASSERT(rc == -EPERM);
6811 	CU_ASSERT(!desc2->write);
6812 
6813 	/* None of the above messed up the existing claim */
6814 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6815 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6816 
6817 	/* New v2 RWM claims are allowed and the descriptor is promoted if the key matches. */
6818 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6819 	opts.shared_claim_key = (uint64_t)&good_key;
6820 	CU_ASSERT(!desc2->write);
6821 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6822 					      &bdev_ut_if);
6823 	CU_ASSERT(rc == 0);
6824 	CU_ASSERT(desc2->write);
6825 	CU_ASSERT(TAILQ_NEXT(desc->claim, link) == desc2->claim);
6826 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 2);
6827 
6828 	/* Claim remains when closing the first descriptor */
6829 	spdk_bdev_close(desc);
6830 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED);
6831 	CU_ASSERT(!TAILQ_EMPTY(&bdev->internal.open_descs));
6832 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
6833 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6834 
6835 	/* Claim removed when closing the other descriptor */
6836 	spdk_bdev_close(desc2);
6837 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6838 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6839 
6840 	/* Cannot claim without a key */
6841 	desc = NULL;
6842 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6843 	CU_ASSERT(rc == 0);
6844 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6845 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6846 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6847 					      &bdev_ut_if);
6848 	CU_ASSERT(rc == -EINVAL);
6849 	spdk_bdev_close(desc);
6850 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6851 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6852 
6853 	/* Clean up */
6854 	free_bdev(bdev);
6855 }
6856 
6857 static void
6858 claim_v2_existing_writer(void)
6859 {
6860 	struct spdk_bdev *bdev;
6861 	struct spdk_bdev_desc *desc;
6862 	struct spdk_bdev_desc *desc2;
6863 	struct spdk_bdev_claim_opts opts;
6864 	enum spdk_bdev_claim_type type;
6865 	enum spdk_bdev_claim_type types[] = {
6866 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
6867 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
6868 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
6869 	};
6870 	size_t i;
6871 	int rc;
6872 
6873 	bdev = allocate_bdev("bdev0");
6874 
6875 	desc = NULL;
6876 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6877 	CU_ASSERT(rc == 0);
6878 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6879 	desc2 = NULL;
6880 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6881 	CU_ASSERT(rc == 0);
6882 	SPDK_CU_ASSERT_FATAL(desc2 != NULL);
6883 
6884 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
6885 		type = types[i];
6886 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6887 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
6888 			opts.shared_claim_key = (uint64_t)&opts;
6889 		}
6890 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
6891 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE) {
6892 			CU_ASSERT(rc == -EINVAL);
6893 		} else {
6894 			CU_ASSERT(rc == -EPERM);
6895 		}
6896 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6897 		rc = spdk_bdev_module_claim_bdev_desc(desc2, type, &opts, &bdev_ut_if);
6898 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE) {
6899 			CU_ASSERT(rc == -EINVAL);
6900 		} else {
6901 			CU_ASSERT(rc == -EPERM);
6902 		}
6903 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6904 	}
6905 
6906 	spdk_bdev_close(desc);
6907 	spdk_bdev_close(desc2);
6908 
6909 	/* Clean up */
6910 	free_bdev(bdev);
6911 }
6912 
6913 static void
6914 claim_v2_existing_v1(void)
6915 {
6916 	struct spdk_bdev *bdev;
6917 	struct spdk_bdev_desc *desc;
6918 	struct spdk_bdev_claim_opts opts;
6919 	enum spdk_bdev_claim_type type;
6920 	enum spdk_bdev_claim_type types[] = {
6921 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
6922 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
6923 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
6924 	};
6925 	size_t i;
6926 	int rc;
6927 
6928 	bdev = allocate_bdev("bdev0");
6929 
6930 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6931 	CU_ASSERT(rc == 0);
6932 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
6933 
6934 	desc = NULL;
6935 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6936 	CU_ASSERT(rc == 0);
6937 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6938 
6939 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
6940 		type = types[i];
6941 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6942 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
6943 			opts.shared_claim_key = (uint64_t)&opts;
6944 		}
6945 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
6946 		CU_ASSERT(rc == -EPERM);
6947 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
6948 	}
6949 
6950 	spdk_bdev_module_release_bdev(bdev);
6951 	spdk_bdev_close(desc);
6952 
6953 	/* Clean up */
6954 	free_bdev(bdev);
6955 }
6956 
6957 static void
6958 claim_v1_existing_v2(void)
6959 {
6960 	struct spdk_bdev *bdev;
6961 	struct spdk_bdev_desc *desc;
6962 	struct spdk_bdev_claim_opts opts;
6963 	enum spdk_bdev_claim_type type;
6964 	enum spdk_bdev_claim_type types[] = {
6965 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
6966 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
6967 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
6968 	};
6969 	size_t i;
6970 	int rc;
6971 
6972 	bdev = allocate_bdev("bdev0");
6973 
6974 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
6975 		type = types[i];
6976 
6977 		desc = NULL;
6978 		rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6979 		CU_ASSERT(rc == 0);
6980 		SPDK_CU_ASSERT_FATAL(desc != NULL);
6981 
6982 		/* Get a v2 claim */
6983 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6984 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
6985 			opts.shared_claim_key = (uint64_t)&opts;
6986 		}
6987 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
6988 		CU_ASSERT(rc == 0);
6989 
6990 		/* Fail to get a v1 claim */
6991 		rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6992 		CU_ASSERT(rc == -EPERM);
6993 
6994 		spdk_bdev_close(desc);
6995 
6996 		/* Now v1 succeeds */
6997 		rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6998 		CU_ASSERT(rc == 0)
6999 		spdk_bdev_module_release_bdev(bdev);
7000 	}
7001 
7002 	/* Clean up */
7003 	free_bdev(bdev);
7004 }
7005 
7006 static void ut_examine_claimed_config0(struct spdk_bdev *bdev);
7007 static void ut_examine_claimed_disk0(struct spdk_bdev *bdev);
7008 static void ut_examine_claimed_config1(struct spdk_bdev *bdev);
7009 static void ut_examine_claimed_disk1(struct spdk_bdev *bdev);
7010 
7011 #define UT_MAX_EXAMINE_MODS 2
7012 struct spdk_bdev_module examine_claimed_mods[UT_MAX_EXAMINE_MODS] = {
7013 	{
7014 		.name = "vbdev_ut_examine0",
7015 		.module_init = vbdev_ut_module_init,
7016 		.module_fini = vbdev_ut_module_fini,
7017 		.examine_config = ut_examine_claimed_config0,
7018 		.examine_disk = ut_examine_claimed_disk0,
7019 	},
7020 	{
7021 		.name = "vbdev_ut_examine1",
7022 		.module_init = vbdev_ut_module_init,
7023 		.module_fini = vbdev_ut_module_fini,
7024 		.examine_config = ut_examine_claimed_config1,
7025 		.examine_disk = ut_examine_claimed_disk1,
7026 	}
7027 };
7028 
7029 SPDK_BDEV_MODULE_REGISTER(bdev_ut_claimed0, &examine_claimed_mods[0])
7030 SPDK_BDEV_MODULE_REGISTER(bdev_ut_claimed1, &examine_claimed_mods[1])
7031 
7032 struct ut_examine_claimed_ctx {
7033 	uint32_t examine_config_count;
7034 	uint32_t examine_disk_count;
7035 
7036 	/* Claim type to take, with these options */
7037 	enum spdk_bdev_claim_type claim_type;
7038 	struct spdk_bdev_claim_opts claim_opts;
7039 
7040 	/* Expected return value from spdk_bdev_module_claim_bdev_desc() */
7041 	int expect_claim_err;
7042 
7043 	/* Descriptor used for a claim */
7044 	struct spdk_bdev_desc *desc;
7045 } examine_claimed_ctx[UT_MAX_EXAMINE_MODS];
7046 
7047 bool ut_testing_examine_claimed;
7048 
7049 static void
7050 reset_examine_claimed_ctx(void)
7051 {
7052 	struct ut_examine_claimed_ctx *ctx;
7053 	uint32_t i;
7054 
7055 	for (i = 0; i < SPDK_COUNTOF(examine_claimed_ctx); i++) {
7056 		ctx = &examine_claimed_ctx[i];
7057 		if (ctx->desc != NULL) {
7058 			spdk_bdev_close(ctx->desc);
7059 		}
7060 		memset(ctx, 0, sizeof(*ctx));
7061 		spdk_bdev_claim_opts_init(&ctx->claim_opts, sizeof(ctx->claim_opts));
7062 	}
7063 }
7064 
7065 static void
7066 examine_claimed_config(struct spdk_bdev *bdev, uint32_t modnum)
7067 {
7068 	SPDK_CU_ASSERT_FATAL(modnum < UT_MAX_EXAMINE_MODS);
7069 	struct spdk_bdev_module *module = &examine_claimed_mods[modnum];
7070 	struct ut_examine_claimed_ctx *ctx = &examine_claimed_ctx[modnum];
7071 	int rc;
7072 
7073 	if (!ut_testing_examine_claimed) {
7074 		spdk_bdev_module_examine_done(module);
7075 		return;
7076 	}
7077 
7078 	ctx->examine_config_count++;
7079 
7080 	if (ctx->claim_type != SPDK_BDEV_CLAIM_NONE) {
7081 		rc = spdk_bdev_open_ext(bdev->name, false, bdev_ut_event_cb, &ctx->claim_opts,
7082 					&ctx->desc);
7083 		CU_ASSERT(rc == 0);
7084 
7085 		rc = spdk_bdev_module_claim_bdev_desc(ctx->desc, ctx->claim_type, NULL, module);
7086 		CU_ASSERT(rc == ctx->expect_claim_err);
7087 	}
7088 	spdk_bdev_module_examine_done(module);
7089 }
7090 
7091 static void
7092 ut_examine_claimed_config0(struct spdk_bdev *bdev)
7093 {
7094 	examine_claimed_config(bdev, 0);
7095 }
7096 
7097 static void
7098 ut_examine_claimed_config1(struct spdk_bdev *bdev)
7099 {
7100 	examine_claimed_config(bdev, 1);
7101 }
7102 
7103 static void
7104 examine_claimed_disk(struct spdk_bdev *bdev, uint32_t modnum)
7105 {
7106 	SPDK_CU_ASSERT_FATAL(modnum < UT_MAX_EXAMINE_MODS);
7107 	struct spdk_bdev_module *module = &examine_claimed_mods[modnum];
7108 	struct ut_examine_claimed_ctx *ctx = &examine_claimed_ctx[modnum];
7109 
7110 	if (!ut_testing_examine_claimed) {
7111 		spdk_bdev_module_examine_done(module);
7112 		return;
7113 	}
7114 
7115 	ctx->examine_disk_count++;
7116 
7117 	spdk_bdev_module_examine_done(module);
7118 }
7119 
7120 static void
7121 ut_examine_claimed_disk0(struct spdk_bdev *bdev)
7122 {
7123 	examine_claimed_disk(bdev, 0);
7124 }
7125 
7126 static void
7127 ut_examine_claimed_disk1(struct spdk_bdev *bdev)
7128 {
7129 	examine_claimed_disk(bdev, 1);
7130 }
7131 
7132 static void
7133 examine_claimed(void)
7134 {
7135 	struct spdk_bdev *bdev;
7136 	struct spdk_bdev_module *mod = examine_claimed_mods;
7137 	struct ut_examine_claimed_ctx *ctx = examine_claimed_ctx;
7138 
7139 	ut_testing_examine_claimed = true;
7140 	reset_examine_claimed_ctx();
7141 
7142 	/*
7143 	 * With one module claiming, both modules' examine_config should be called, but only the
7144 	 * claiming module's examine_disk should be called.
7145 	 */
7146 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7147 	bdev = allocate_bdev("bdev0");
7148 	CU_ASSERT(ctx[0].examine_config_count == 1);
7149 	CU_ASSERT(ctx[0].examine_disk_count == 1);
7150 	SPDK_CU_ASSERT_FATAL(ctx[0].desc != NULL);
7151 	CU_ASSERT(ctx[0].desc->claim->module == &mod[0]);
7152 	CU_ASSERT(ctx[1].examine_config_count == 1);
7153 	CU_ASSERT(ctx[1].examine_disk_count == 0);
7154 	CU_ASSERT(ctx[1].desc == NULL);
7155 	reset_examine_claimed_ctx();
7156 	free_bdev(bdev);
7157 
7158 	/*
7159 	 * With two modules claiming, both modules' examine_config and examine_disk should be
7160 	 * called.
7161 	 */
7162 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7163 	ctx[1].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7164 	bdev = allocate_bdev("bdev0");
7165 	CU_ASSERT(ctx[0].examine_config_count == 1);
7166 	CU_ASSERT(ctx[0].examine_disk_count == 1);
7167 	SPDK_CU_ASSERT_FATAL(ctx[0].desc != NULL);
7168 	CU_ASSERT(ctx[0].desc->claim->module == &mod[0]);
7169 	CU_ASSERT(ctx[1].examine_config_count == 1);
7170 	CU_ASSERT(ctx[1].examine_disk_count == 1);
7171 	SPDK_CU_ASSERT_FATAL(ctx[1].desc != NULL);
7172 	CU_ASSERT(ctx[1].desc->claim->module == &mod[1]);
7173 	reset_examine_claimed_ctx();
7174 	free_bdev(bdev);
7175 
7176 	/*
7177 	 * If two vbdev modules try to claim with conflicting claim types, the module that was added
7178 	 * last wins. The winner gets the claim and is the only one that has its examine_disk
7179 	 * callback invoked.
7180 	 */
7181 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7182 	ctx[0].expect_claim_err = -EPERM;
7183 	ctx[1].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE;
7184 	bdev = allocate_bdev("bdev0");
7185 	CU_ASSERT(ctx[0].examine_config_count == 1);
7186 	CU_ASSERT(ctx[0].examine_disk_count == 0);
7187 	CU_ASSERT(ctx[1].examine_config_count == 1);
7188 	CU_ASSERT(ctx[1].examine_disk_count == 1);
7189 	SPDK_CU_ASSERT_FATAL(ctx[1].desc != NULL);
7190 	CU_ASSERT(ctx[1].desc->claim->module == &mod[1]);
7191 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
7192 	reset_examine_claimed_ctx();
7193 	free_bdev(bdev);
7194 
7195 	ut_testing_examine_claimed = false;
7196 }
7197 
7198 int
7199 main(int argc, char **argv)
7200 {
7201 	CU_pSuite		suite = NULL;
7202 	unsigned int		num_failures;
7203 
7204 	CU_initialize_registry();
7205 
7206 	suite = CU_add_suite("bdev", ut_bdev_setup, ut_bdev_teardown);
7207 
7208 	CU_ADD_TEST(suite, bytes_to_blocks_test);
7209 	CU_ADD_TEST(suite, num_blocks_test);
7210 	CU_ADD_TEST(suite, io_valid_test);
7211 	CU_ADD_TEST(suite, open_write_test);
7212 	CU_ADD_TEST(suite, claim_test);
7213 	CU_ADD_TEST(suite, alias_add_del_test);
7214 	CU_ADD_TEST(suite, get_device_stat_test);
7215 	CU_ADD_TEST(suite, bdev_io_types_test);
7216 	CU_ADD_TEST(suite, bdev_io_wait_test);
7217 	CU_ADD_TEST(suite, bdev_io_spans_split_test);
7218 	CU_ADD_TEST(suite, bdev_io_boundary_split_test);
7219 	CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test);
7220 	CU_ADD_TEST(suite, bdev_io_mix_split_test);
7221 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
7222 	CU_ADD_TEST(suite, bdev_io_write_unit_split_test);
7223 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
7224 	CU_ADD_TEST(suite, bdev_io_alignment);
7225 	CU_ADD_TEST(suite, bdev_histograms);
7226 	CU_ADD_TEST(suite, bdev_write_zeroes);
7227 	CU_ADD_TEST(suite, bdev_compare_and_write);
7228 	CU_ADD_TEST(suite, bdev_compare);
7229 	CU_ADD_TEST(suite, bdev_compare_emulated);
7230 	CU_ADD_TEST(suite, bdev_zcopy_write);
7231 	CU_ADD_TEST(suite, bdev_zcopy_read);
7232 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
7233 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
7234 	CU_ADD_TEST(suite, bdev_open_ext);
7235 	CU_ADD_TEST(suite, bdev_open_ext_unregister);
7236 	CU_ADD_TEST(suite, bdev_set_io_timeout);
7237 	CU_ADD_TEST(suite, bdev_set_qd_sampling);
7238 	CU_ADD_TEST(suite, lba_range_overlap);
7239 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
7240 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
7241 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
7242 	CU_ADD_TEST(suite, bdev_quiesce);
7243 	CU_ADD_TEST(suite, bdev_io_abort);
7244 	CU_ADD_TEST(suite, bdev_unmap);
7245 	CU_ADD_TEST(suite, bdev_write_zeroes_split_test);
7246 	CU_ADD_TEST(suite, bdev_set_options_test);
7247 	CU_ADD_TEST(suite, bdev_get_memory_domains);
7248 	CU_ADD_TEST(suite, bdev_io_ext);
7249 	CU_ADD_TEST(suite, bdev_io_ext_no_opts);
7250 	CU_ADD_TEST(suite, bdev_io_ext_invalid_opts);
7251 	CU_ADD_TEST(suite, bdev_io_ext_split);
7252 	CU_ADD_TEST(suite, bdev_io_ext_bounce_buffer);
7253 	CU_ADD_TEST(suite, bdev_register_uuid_alias);
7254 	CU_ADD_TEST(suite, bdev_unregister_by_name);
7255 	CU_ADD_TEST(suite, for_each_bdev_test);
7256 	CU_ADD_TEST(suite, bdev_seek_test);
7257 	CU_ADD_TEST(suite, bdev_copy);
7258 	CU_ADD_TEST(suite, bdev_copy_split_test);
7259 	CU_ADD_TEST(suite, examine_locks);
7260 	CU_ADD_TEST(suite, claim_v2_rwo);
7261 	CU_ADD_TEST(suite, claim_v2_rom);
7262 	CU_ADD_TEST(suite, claim_v2_rwm);
7263 	CU_ADD_TEST(suite, claim_v2_existing_writer);
7264 	CU_ADD_TEST(suite, claim_v2_existing_v1);
7265 	CU_ADD_TEST(suite, claim_v1_existing_v2);
7266 	CU_ADD_TEST(suite, examine_claimed);
7267 
7268 	allocate_cores(1);
7269 	allocate_threads(1);
7270 	set_thread(0);
7271 
7272 	num_failures = spdk_ut_run_tests(argc, argv, NULL);
7273 	CU_cleanup_registry();
7274 
7275 	free_threads();
7276 	free_cores();
7277 
7278 	return num_failures;
7279 }
7280