xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision 5b1e154a5ce814461851d6e70b66bcf1939c63d8)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk_cunit.h"
35 
36 #include "common/lib/ut_multithread.c"
37 #include "unit/lib/json_mock.c"
38 
39 #include "spdk/config.h"
40 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
41 #undef SPDK_CONFIG_VTUNE
42 
43 #include "bdev/bdev.c"
44 
45 struct spdk_trace_histories *g_trace_histories;
46 DEFINE_STUB_V(spdk_trace_add_register_fn, (struct spdk_trace_register_fn *reg_fn));
47 DEFINE_STUB_V(spdk_trace_register_owner, (uint8_t type, char id_prefix));
48 DEFINE_STUB_V(spdk_trace_register_object, (uint8_t type, char id_prefix));
49 DEFINE_STUB_V(spdk_trace_register_description, (const char *name,
50 		uint16_t tpoint_id, uint8_t owner_type,
51 		uint8_t object_type, uint8_t new_object,
52 		uint8_t arg1_type, const char *arg1_name));
53 DEFINE_STUB_V(_spdk_trace_record, (uint64_t tsc, uint16_t tpoint_id, uint16_t poller_id,
54 				   uint32_t size, uint64_t object_id, uint64_t arg1));
55 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
56 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
57 
58 
59 int g_status;
60 int g_count;
61 enum spdk_bdev_event_type g_event_type1;
62 enum spdk_bdev_event_type g_event_type2;
63 struct spdk_histogram_data *g_histogram;
64 void *g_unregister_arg;
65 int g_unregister_rc;
66 
67 void
68 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
69 			 int *sc, int *sk, int *asc, int *ascq)
70 {
71 }
72 
73 static int
74 null_init(void)
75 {
76 	return 0;
77 }
78 
79 static int
80 null_clean(void)
81 {
82 	return 0;
83 }
84 
85 static int
86 stub_destruct(void *ctx)
87 {
88 	return 0;
89 }
90 
91 struct ut_expected_io {
92 	uint8_t				type;
93 	uint64_t			offset;
94 	uint64_t			length;
95 	int				iovcnt;
96 	struct iovec			iov[BDEV_IO_NUM_CHILD_IOV];
97 	void				*md_buf;
98 	TAILQ_ENTRY(ut_expected_io)	link;
99 };
100 
101 struct bdev_ut_channel {
102 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
103 	uint32_t			outstanding_io_count;
104 	TAILQ_HEAD(, ut_expected_io)	expected_io;
105 };
106 
107 static bool g_io_done;
108 static struct spdk_bdev_io *g_bdev_io;
109 static enum spdk_bdev_io_status g_io_status;
110 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
111 static uint32_t g_bdev_ut_io_device;
112 static struct bdev_ut_channel *g_bdev_ut_channel;
113 static void *g_compare_read_buf;
114 static uint32_t g_compare_read_buf_len;
115 static void *g_compare_write_buf;
116 static uint32_t g_compare_write_buf_len;
117 static bool g_abort_done;
118 static enum spdk_bdev_io_status g_abort_status;
119 
120 static struct ut_expected_io *
121 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
122 {
123 	struct ut_expected_io *expected_io;
124 
125 	expected_io = calloc(1, sizeof(*expected_io));
126 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
127 
128 	expected_io->type = type;
129 	expected_io->offset = offset;
130 	expected_io->length = length;
131 	expected_io->iovcnt = iovcnt;
132 
133 	return expected_io;
134 }
135 
136 static void
137 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
138 {
139 	expected_io->iov[pos].iov_base = base;
140 	expected_io->iov[pos].iov_len = len;
141 }
142 
143 static void
144 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
145 {
146 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
147 	struct ut_expected_io *expected_io;
148 	struct iovec *iov, *expected_iov;
149 	struct spdk_bdev_io *bio_to_abort;
150 	int i;
151 
152 	g_bdev_io = bdev_io;
153 
154 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
155 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
156 
157 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
158 		CU_ASSERT(g_compare_read_buf_len == len);
159 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
160 	}
161 
162 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
163 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
164 
165 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
166 		CU_ASSERT(g_compare_write_buf_len == len);
167 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
168 	}
169 
170 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
171 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
172 
173 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
174 		CU_ASSERT(g_compare_read_buf_len == len);
175 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
176 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
177 		}
178 	}
179 
180 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
181 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
182 			TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
183 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
184 					TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
185 					ch->outstanding_io_count--;
186 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
187 					break;
188 				}
189 			}
190 		}
191 	}
192 
193 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
194 	ch->outstanding_io_count++;
195 
196 	expected_io = TAILQ_FIRST(&ch->expected_io);
197 	if (expected_io == NULL) {
198 		return;
199 	}
200 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
201 
202 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
203 		CU_ASSERT(bdev_io->type == expected_io->type);
204 	}
205 
206 	if (expected_io->md_buf != NULL) {
207 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
208 	}
209 
210 	if (expected_io->length == 0) {
211 		free(expected_io);
212 		return;
213 	}
214 
215 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
216 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
217 
218 	if (expected_io->iovcnt == 0) {
219 		free(expected_io);
220 		/* UNMAP, WRITE_ZEROES and FLUSH don't have iovs, so we can just return now. */
221 		return;
222 	}
223 
224 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
225 	for (i = 0; i < expected_io->iovcnt; i++) {
226 		iov = &bdev_io->u.bdev.iovs[i];
227 		expected_iov = &expected_io->iov[i];
228 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
229 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
230 	}
231 
232 	free(expected_io);
233 }
234 
235 static void
236 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
237 			       struct spdk_bdev_io *bdev_io, bool success)
238 {
239 	CU_ASSERT(success == true);
240 
241 	stub_submit_request(_ch, bdev_io);
242 }
243 
244 static void
245 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
246 {
247 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
248 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
249 }
250 
251 static uint32_t
252 stub_complete_io(uint32_t num_to_complete)
253 {
254 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
255 	struct spdk_bdev_io *bdev_io;
256 	static enum spdk_bdev_io_status io_status;
257 	uint32_t num_completed = 0;
258 
259 	while (num_completed < num_to_complete) {
260 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
261 			break;
262 		}
263 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
264 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
265 		ch->outstanding_io_count--;
266 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
267 			    g_io_exp_status;
268 		spdk_bdev_io_complete(bdev_io, io_status);
269 		num_completed++;
270 	}
271 
272 	return num_completed;
273 }
274 
275 static struct spdk_io_channel *
276 bdev_ut_get_io_channel(void *ctx)
277 {
278 	return spdk_get_io_channel(&g_bdev_ut_io_device);
279 }
280 
281 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
282 	[SPDK_BDEV_IO_TYPE_READ]		= true,
283 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
284 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
285 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
286 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
287 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
288 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
289 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
290 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
291 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
292 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
293 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
294 };
295 
296 static void
297 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
298 {
299 	g_io_types_supported[io_type] = enable;
300 }
301 
302 static bool
303 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
304 {
305 	return g_io_types_supported[io_type];
306 }
307 
308 static struct spdk_bdev_fn_table fn_table = {
309 	.destruct = stub_destruct,
310 	.submit_request = stub_submit_request,
311 	.get_io_channel = bdev_ut_get_io_channel,
312 	.io_type_supported = stub_io_type_supported,
313 };
314 
315 static int
316 bdev_ut_create_ch(void *io_device, void *ctx_buf)
317 {
318 	struct bdev_ut_channel *ch = ctx_buf;
319 
320 	CU_ASSERT(g_bdev_ut_channel == NULL);
321 	g_bdev_ut_channel = ch;
322 
323 	TAILQ_INIT(&ch->outstanding_io);
324 	ch->outstanding_io_count = 0;
325 	TAILQ_INIT(&ch->expected_io);
326 	return 0;
327 }
328 
329 static void
330 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
331 {
332 	CU_ASSERT(g_bdev_ut_channel != NULL);
333 	g_bdev_ut_channel = NULL;
334 }
335 
336 struct spdk_bdev_module bdev_ut_if;
337 
338 static int
339 bdev_ut_module_init(void)
340 {
341 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
342 				sizeof(struct bdev_ut_channel), NULL);
343 	spdk_bdev_module_init_done(&bdev_ut_if);
344 	return 0;
345 }
346 
347 static void
348 bdev_ut_module_fini(void)
349 {
350 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
351 }
352 
353 struct spdk_bdev_module bdev_ut_if = {
354 	.name = "bdev_ut",
355 	.module_init = bdev_ut_module_init,
356 	.module_fini = bdev_ut_module_fini,
357 	.async_init = true,
358 };
359 
360 static void vbdev_ut_examine(struct spdk_bdev *bdev);
361 
362 static int
363 vbdev_ut_module_init(void)
364 {
365 	return 0;
366 }
367 
368 static void
369 vbdev_ut_module_fini(void)
370 {
371 }
372 
373 struct spdk_bdev_module vbdev_ut_if = {
374 	.name = "vbdev_ut",
375 	.module_init = vbdev_ut_module_init,
376 	.module_fini = vbdev_ut_module_fini,
377 	.examine_config = vbdev_ut_examine,
378 };
379 
380 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
381 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
382 
383 static void
384 vbdev_ut_examine(struct spdk_bdev *bdev)
385 {
386 	spdk_bdev_module_examine_done(&vbdev_ut_if);
387 }
388 
389 static struct spdk_bdev *
390 allocate_bdev(char *name)
391 {
392 	struct spdk_bdev *bdev;
393 	int rc;
394 
395 	bdev = calloc(1, sizeof(*bdev));
396 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
397 
398 	bdev->name = name;
399 	bdev->fn_table = &fn_table;
400 	bdev->module = &bdev_ut_if;
401 	bdev->blockcnt = 1024;
402 	bdev->blocklen = 512;
403 
404 	rc = spdk_bdev_register(bdev);
405 	CU_ASSERT(rc == 0);
406 
407 	return bdev;
408 }
409 
410 static struct spdk_bdev *
411 allocate_vbdev(char *name)
412 {
413 	struct spdk_bdev *bdev;
414 	int rc;
415 
416 	bdev = calloc(1, sizeof(*bdev));
417 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
418 
419 	bdev->name = name;
420 	bdev->fn_table = &fn_table;
421 	bdev->module = &vbdev_ut_if;
422 
423 	rc = spdk_bdev_register(bdev);
424 	CU_ASSERT(rc == 0);
425 
426 	return bdev;
427 }
428 
429 static void
430 free_bdev(struct spdk_bdev *bdev)
431 {
432 	spdk_bdev_unregister(bdev, NULL, NULL);
433 	poll_threads();
434 	memset(bdev, 0xFF, sizeof(*bdev));
435 	free(bdev);
436 }
437 
438 static void
439 free_vbdev(struct spdk_bdev *bdev)
440 {
441 	spdk_bdev_unregister(bdev, NULL, NULL);
442 	poll_threads();
443 	memset(bdev, 0xFF, sizeof(*bdev));
444 	free(bdev);
445 }
446 
447 static void
448 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
449 {
450 	const char *bdev_name;
451 
452 	CU_ASSERT(bdev != NULL);
453 	CU_ASSERT(rc == 0);
454 	bdev_name = spdk_bdev_get_name(bdev);
455 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
456 
457 	free(stat);
458 	free_bdev(bdev);
459 
460 	*(bool *)cb_arg = true;
461 }
462 
463 static void
464 bdev_unregister_cb(void *cb_arg, int rc)
465 {
466 	g_unregister_arg = cb_arg;
467 	g_unregister_rc = rc;
468 }
469 
470 static void
471 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
472 {
473 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
474 
475 	g_event_type1 = type;
476 	if (SPDK_BDEV_EVENT_REMOVE == type) {
477 		spdk_bdev_close(desc);
478 	}
479 }
480 
481 static void
482 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
483 {
484 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
485 
486 	g_event_type2 = type;
487 	if (SPDK_BDEV_EVENT_REMOVE == type) {
488 		spdk_bdev_close(desc);
489 	}
490 }
491 
492 static void
493 get_device_stat_test(void)
494 {
495 	struct spdk_bdev *bdev;
496 	struct spdk_bdev_io_stat *stat;
497 	bool done;
498 
499 	bdev = allocate_bdev("bdev0");
500 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
501 	if (stat == NULL) {
502 		free_bdev(bdev);
503 		return;
504 	}
505 
506 	done = false;
507 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
508 	while (!done) { poll_threads(); }
509 
510 
511 }
512 
513 static void
514 open_write_test(void)
515 {
516 	struct spdk_bdev *bdev[9];
517 	struct spdk_bdev_desc *desc[9] = {};
518 	int rc;
519 
520 	/*
521 	 * Create a tree of bdevs to test various open w/ write cases.
522 	 *
523 	 * bdev0 through bdev3 are physical block devices, such as NVMe
524 	 * namespaces or Ceph block devices.
525 	 *
526 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
527 	 * caching or RAID use cases.
528 	 *
529 	 * bdev5 through bdev7 are all virtual bdevs with the same base
530 	 * bdev (except bdev7). This models partitioning or logical volume
531 	 * use cases.
532 	 *
533 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
534 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
535 	 * models caching, RAID, partitioning or logical volumes use cases.
536 	 *
537 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
538 	 * base bdevs are themselves virtual bdevs.
539 	 *
540 	 *                bdev8
541 	 *                  |
542 	 *            +----------+
543 	 *            |          |
544 	 *          bdev4      bdev5   bdev6   bdev7
545 	 *            |          |       |       |
546 	 *        +---+---+      +---+   +   +---+---+
547 	 *        |       |           \  |  /         \
548 	 *      bdev0   bdev1          bdev2         bdev3
549 	 */
550 
551 	bdev[0] = allocate_bdev("bdev0");
552 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
553 	CU_ASSERT(rc == 0);
554 
555 	bdev[1] = allocate_bdev("bdev1");
556 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
557 	CU_ASSERT(rc == 0);
558 
559 	bdev[2] = allocate_bdev("bdev2");
560 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
561 	CU_ASSERT(rc == 0);
562 
563 	bdev[3] = allocate_bdev("bdev3");
564 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
565 	CU_ASSERT(rc == 0);
566 
567 	bdev[4] = allocate_vbdev("bdev4");
568 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
569 	CU_ASSERT(rc == 0);
570 
571 	bdev[5] = allocate_vbdev("bdev5");
572 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
573 	CU_ASSERT(rc == 0);
574 
575 	bdev[6] = allocate_vbdev("bdev6");
576 
577 	bdev[7] = allocate_vbdev("bdev7");
578 
579 	bdev[8] = allocate_vbdev("bdev8");
580 
581 	/* Open bdev0 read-only.  This should succeed. */
582 	rc = spdk_bdev_open(bdev[0], false, NULL, NULL, &desc[0]);
583 	CU_ASSERT(rc == 0);
584 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
585 	spdk_bdev_close(desc[0]);
586 
587 	/*
588 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
589 	 * by a vbdev module.
590 	 */
591 	rc = spdk_bdev_open(bdev[1], true, NULL, NULL, &desc[1]);
592 	CU_ASSERT(rc == -EPERM);
593 
594 	/*
595 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
596 	 * by a vbdev module.
597 	 */
598 	rc = spdk_bdev_open(bdev[4], true, NULL, NULL, &desc[4]);
599 	CU_ASSERT(rc == -EPERM);
600 
601 	/* Open bdev4 read-only.  This should succeed. */
602 	rc = spdk_bdev_open(bdev[4], false, NULL, NULL, &desc[4]);
603 	CU_ASSERT(rc == 0);
604 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
605 	spdk_bdev_close(desc[4]);
606 
607 	/*
608 	 * Open bdev8 read/write.  This should succeed since it is a leaf
609 	 * bdev.
610 	 */
611 	rc = spdk_bdev_open(bdev[8], true, NULL, NULL, &desc[8]);
612 	CU_ASSERT(rc == 0);
613 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
614 	spdk_bdev_close(desc[8]);
615 
616 	/*
617 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
618 	 * by a vbdev module.
619 	 */
620 	rc = spdk_bdev_open(bdev[5], true, NULL, NULL, &desc[5]);
621 	CU_ASSERT(rc == -EPERM);
622 
623 	/* Open bdev4 read-only.  This should succeed. */
624 	rc = spdk_bdev_open(bdev[5], false, NULL, NULL, &desc[5]);
625 	CU_ASSERT(rc == 0);
626 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
627 	spdk_bdev_close(desc[5]);
628 
629 	free_vbdev(bdev[8]);
630 
631 	free_vbdev(bdev[5]);
632 	free_vbdev(bdev[6]);
633 	free_vbdev(bdev[7]);
634 
635 	free_vbdev(bdev[4]);
636 
637 	free_bdev(bdev[0]);
638 	free_bdev(bdev[1]);
639 	free_bdev(bdev[2]);
640 	free_bdev(bdev[3]);
641 }
642 
643 static void
644 bytes_to_blocks_test(void)
645 {
646 	struct spdk_bdev bdev;
647 	uint64_t offset_blocks, num_blocks;
648 
649 	memset(&bdev, 0, sizeof(bdev));
650 
651 	bdev.blocklen = 512;
652 
653 	/* All parameters valid */
654 	offset_blocks = 0;
655 	num_blocks = 0;
656 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
657 	CU_ASSERT(offset_blocks == 1);
658 	CU_ASSERT(num_blocks == 2);
659 
660 	/* Offset not a block multiple */
661 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
662 
663 	/* Length not a block multiple */
664 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
665 
666 	/* In case blocklen not the power of two */
667 	bdev.blocklen = 100;
668 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
669 	CU_ASSERT(offset_blocks == 1);
670 	CU_ASSERT(num_blocks == 2);
671 
672 	/* Offset not a block multiple */
673 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
674 
675 	/* Length not a block multiple */
676 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
677 }
678 
679 static void
680 num_blocks_test(void)
681 {
682 	struct spdk_bdev bdev;
683 	struct spdk_bdev_desc *desc = NULL;
684 	struct spdk_bdev_desc *desc_ext = NULL;
685 	int rc;
686 
687 	memset(&bdev, 0, sizeof(bdev));
688 	bdev.name = "num_blocks";
689 	bdev.fn_table = &fn_table;
690 	bdev.module = &bdev_ut_if;
691 	spdk_bdev_register(&bdev);
692 	spdk_bdev_notify_blockcnt_change(&bdev, 50);
693 
694 	/* Growing block number */
695 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
696 	/* Shrinking block number */
697 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
698 
699 	/* In case bdev opened */
700 	rc = spdk_bdev_open(&bdev, false, NULL, NULL, &desc);
701 	CU_ASSERT(rc == 0);
702 	SPDK_CU_ASSERT_FATAL(desc != NULL);
703 
704 	/* Growing block number */
705 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
706 	/* Shrinking block number */
707 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
708 
709 	/* In case bdev opened with ext API */
710 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc_ext, &desc_ext);
711 	CU_ASSERT(rc == 0);
712 	SPDK_CU_ASSERT_FATAL(desc_ext != NULL);
713 
714 	g_event_type1 = 0xFF;
715 	/* Growing block number */
716 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
717 
718 	poll_threads();
719 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
720 
721 	g_event_type1 = 0xFF;
722 	/* Growing block number and closing */
723 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
724 
725 	spdk_bdev_close(desc);
726 	spdk_bdev_close(desc_ext);
727 	spdk_bdev_unregister(&bdev, NULL, NULL);
728 
729 	poll_threads();
730 
731 	/* Callback is not called for closed device */
732 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
733 }
734 
735 static void
736 io_valid_test(void)
737 {
738 	struct spdk_bdev bdev;
739 
740 	memset(&bdev, 0, sizeof(bdev));
741 
742 	bdev.blocklen = 512;
743 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
744 
745 	/* All parameters valid */
746 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
747 
748 	/* Last valid block */
749 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
750 
751 	/* Offset past end of bdev */
752 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
753 
754 	/* Offset + length past end of bdev */
755 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
756 
757 	/* Offset near end of uint64_t range (2^64 - 1) */
758 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
759 }
760 
761 static void
762 alias_add_del_test(void)
763 {
764 	struct spdk_bdev *bdev[3];
765 	int rc;
766 
767 	/* Creating and registering bdevs */
768 	bdev[0] = allocate_bdev("bdev0");
769 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
770 
771 	bdev[1] = allocate_bdev("bdev1");
772 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
773 
774 	bdev[2] = allocate_bdev("bdev2");
775 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
776 
777 	poll_threads();
778 
779 	/*
780 	 * Trying adding an alias identical to name.
781 	 * Alias is identical to name, so it can not be added to aliases list
782 	 */
783 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
784 	CU_ASSERT(rc == -EEXIST);
785 
786 	/*
787 	 * Trying to add empty alias,
788 	 * this one should fail
789 	 */
790 	rc = spdk_bdev_alias_add(bdev[0], NULL);
791 	CU_ASSERT(rc == -EINVAL);
792 
793 	/* Trying adding same alias to two different registered bdevs */
794 
795 	/* Alias is used first time, so this one should pass */
796 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
797 	CU_ASSERT(rc == 0);
798 
799 	/* Alias was added to another bdev, so this one should fail */
800 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
801 	CU_ASSERT(rc == -EEXIST);
802 
803 	/* Alias is used first time, so this one should pass */
804 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
805 	CU_ASSERT(rc == 0);
806 
807 	/* Trying removing an alias from registered bdevs */
808 
809 	/* Alias is not on a bdev aliases list, so this one should fail */
810 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
811 	CU_ASSERT(rc == -ENOENT);
812 
813 	/* Alias is present on a bdev aliases list, so this one should pass */
814 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
815 	CU_ASSERT(rc == 0);
816 
817 	/* Alias is present on a bdev aliases list, so this one should pass */
818 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
819 	CU_ASSERT(rc == 0);
820 
821 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
822 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
823 	CU_ASSERT(rc != 0);
824 
825 	/* Trying to del all alias from empty alias list */
826 	spdk_bdev_alias_del_all(bdev[2]);
827 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
828 
829 	/* Trying to del all alias from non-empty alias list */
830 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
831 	CU_ASSERT(rc == 0);
832 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
833 	CU_ASSERT(rc == 0);
834 	spdk_bdev_alias_del_all(bdev[2]);
835 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
836 
837 	/* Unregister and free bdevs */
838 	spdk_bdev_unregister(bdev[0], NULL, NULL);
839 	spdk_bdev_unregister(bdev[1], NULL, NULL);
840 	spdk_bdev_unregister(bdev[2], NULL, NULL);
841 
842 	poll_threads();
843 
844 	free(bdev[0]);
845 	free(bdev[1]);
846 	free(bdev[2]);
847 }
848 
849 static void
850 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
851 {
852 	g_io_done = true;
853 	g_io_status = bdev_io->internal.status;
854 	spdk_bdev_free_io(bdev_io);
855 }
856 
857 static void
858 bdev_init_cb(void *arg, int rc)
859 {
860 	CU_ASSERT(rc == 0);
861 }
862 
863 static void
864 bdev_fini_cb(void *arg)
865 {
866 }
867 
868 struct bdev_ut_io_wait_entry {
869 	struct spdk_bdev_io_wait_entry	entry;
870 	struct spdk_io_channel		*io_ch;
871 	struct spdk_bdev_desc		*desc;
872 	bool				submitted;
873 };
874 
875 static void
876 io_wait_cb(void *arg)
877 {
878 	struct bdev_ut_io_wait_entry *entry = arg;
879 	int rc;
880 
881 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
882 	CU_ASSERT(rc == 0);
883 	entry->submitted = true;
884 }
885 
886 static void
887 bdev_io_types_test(void)
888 {
889 	struct spdk_bdev *bdev;
890 	struct spdk_bdev_desc *desc = NULL;
891 	struct spdk_io_channel *io_ch;
892 	struct spdk_bdev_opts bdev_opts = {
893 		.bdev_io_pool_size = 4,
894 		.bdev_io_cache_size = 2,
895 	};
896 	int rc;
897 
898 	rc = spdk_bdev_set_opts(&bdev_opts);
899 	CU_ASSERT(rc == 0);
900 	spdk_bdev_initialize(bdev_init_cb, NULL);
901 	poll_threads();
902 
903 	bdev = allocate_bdev("bdev0");
904 
905 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
906 	CU_ASSERT(rc == 0);
907 	poll_threads();
908 	SPDK_CU_ASSERT_FATAL(desc != NULL);
909 	io_ch = spdk_bdev_get_io_channel(desc);
910 	CU_ASSERT(io_ch != NULL);
911 
912 	/* WRITE and WRITE ZEROES are not supported */
913 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
914 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
915 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
916 	CU_ASSERT(rc == -ENOTSUP);
917 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
918 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
919 
920 	spdk_put_io_channel(io_ch);
921 	spdk_bdev_close(desc);
922 	free_bdev(bdev);
923 	spdk_bdev_finish(bdev_fini_cb, NULL);
924 	poll_threads();
925 }
926 
927 static void
928 bdev_io_wait_test(void)
929 {
930 	struct spdk_bdev *bdev;
931 	struct spdk_bdev_desc *desc = NULL;
932 	struct spdk_io_channel *io_ch;
933 	struct spdk_bdev_opts bdev_opts = {
934 		.bdev_io_pool_size = 4,
935 		.bdev_io_cache_size = 2,
936 	};
937 	struct bdev_ut_io_wait_entry io_wait_entry;
938 	struct bdev_ut_io_wait_entry io_wait_entry2;
939 	int rc;
940 
941 	rc = spdk_bdev_set_opts(&bdev_opts);
942 	CU_ASSERT(rc == 0);
943 	spdk_bdev_initialize(bdev_init_cb, NULL);
944 	poll_threads();
945 
946 	bdev = allocate_bdev("bdev0");
947 
948 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
949 	CU_ASSERT(rc == 0);
950 	poll_threads();
951 	SPDK_CU_ASSERT_FATAL(desc != NULL);
952 	io_ch = spdk_bdev_get_io_channel(desc);
953 	CU_ASSERT(io_ch != NULL);
954 
955 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
956 	CU_ASSERT(rc == 0);
957 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
958 	CU_ASSERT(rc == 0);
959 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
960 	CU_ASSERT(rc == 0);
961 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
962 	CU_ASSERT(rc == 0);
963 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
964 
965 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
966 	CU_ASSERT(rc == -ENOMEM);
967 
968 	io_wait_entry.entry.bdev = bdev;
969 	io_wait_entry.entry.cb_fn = io_wait_cb;
970 	io_wait_entry.entry.cb_arg = &io_wait_entry;
971 	io_wait_entry.io_ch = io_ch;
972 	io_wait_entry.desc = desc;
973 	io_wait_entry.submitted = false;
974 	/* Cannot use the same io_wait_entry for two different calls. */
975 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
976 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
977 
978 	/* Queue two I/O waits. */
979 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
980 	CU_ASSERT(rc == 0);
981 	CU_ASSERT(io_wait_entry.submitted == false);
982 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
983 	CU_ASSERT(rc == 0);
984 	CU_ASSERT(io_wait_entry2.submitted == false);
985 
986 	stub_complete_io(1);
987 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
988 	CU_ASSERT(io_wait_entry.submitted == true);
989 	CU_ASSERT(io_wait_entry2.submitted == false);
990 
991 	stub_complete_io(1);
992 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
993 	CU_ASSERT(io_wait_entry2.submitted == true);
994 
995 	stub_complete_io(4);
996 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
997 
998 	spdk_put_io_channel(io_ch);
999 	spdk_bdev_close(desc);
1000 	free_bdev(bdev);
1001 	spdk_bdev_finish(bdev_fini_cb, NULL);
1002 	poll_threads();
1003 }
1004 
1005 static void
1006 bdev_io_spans_boundary_test(void)
1007 {
1008 	struct spdk_bdev bdev;
1009 	struct spdk_bdev_io bdev_io;
1010 
1011 	memset(&bdev, 0, sizeof(bdev));
1012 
1013 	bdev.optimal_io_boundary = 0;
1014 	bdev_io.bdev = &bdev;
1015 
1016 	/* bdev has no optimal_io_boundary set - so this should return false. */
1017 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1018 
1019 	bdev.optimal_io_boundary = 32;
1020 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1021 
1022 	/* RESETs are not based on LBAs - so this should return false. */
1023 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1024 
1025 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1026 	bdev_io.u.bdev.offset_blocks = 0;
1027 	bdev_io.u.bdev.num_blocks = 32;
1028 
1029 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1030 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1031 
1032 	bdev_io.u.bdev.num_blocks = 33;
1033 
1034 	/* This I/O spans a boundary. */
1035 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1036 }
1037 
1038 static void
1039 bdev_io_split_test(void)
1040 {
1041 	struct spdk_bdev *bdev;
1042 	struct spdk_bdev_desc *desc = NULL;
1043 	struct spdk_io_channel *io_ch;
1044 	struct spdk_bdev_opts bdev_opts = {
1045 		.bdev_io_pool_size = 512,
1046 		.bdev_io_cache_size = 64,
1047 	};
1048 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1049 	struct ut_expected_io *expected_io;
1050 	uint64_t i;
1051 	int rc;
1052 
1053 	rc = spdk_bdev_set_opts(&bdev_opts);
1054 	CU_ASSERT(rc == 0);
1055 	spdk_bdev_initialize(bdev_init_cb, NULL);
1056 
1057 	bdev = allocate_bdev("bdev0");
1058 
1059 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
1060 	CU_ASSERT(rc == 0);
1061 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1062 	io_ch = spdk_bdev_get_io_channel(desc);
1063 	CU_ASSERT(io_ch != NULL);
1064 
1065 	bdev->optimal_io_boundary = 16;
1066 	bdev->split_on_optimal_io_boundary = false;
1067 
1068 	g_io_done = false;
1069 
1070 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1071 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1072 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1073 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1074 
1075 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1076 	CU_ASSERT(rc == 0);
1077 	CU_ASSERT(g_io_done == false);
1078 
1079 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1080 	stub_complete_io(1);
1081 	CU_ASSERT(g_io_done == true);
1082 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1083 
1084 	bdev->split_on_optimal_io_boundary = true;
1085 
1086 	/* Now test that a single-vector command is split correctly.
1087 	 * Offset 14, length 8, payload 0xF000
1088 	 *  Child - Offset 14, length 2, payload 0xF000
1089 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1090 	 *
1091 	 * Set up the expected values before calling spdk_bdev_read_blocks
1092 	 */
1093 	g_io_done = false;
1094 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1095 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1096 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1097 
1098 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1099 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1100 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1101 
1102 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1103 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1104 	CU_ASSERT(rc == 0);
1105 	CU_ASSERT(g_io_done == false);
1106 
1107 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1108 	stub_complete_io(2);
1109 	CU_ASSERT(g_io_done == true);
1110 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1111 
1112 	/* Now set up a more complex, multi-vector command that needs to be split,
1113 	 *  including splitting iovecs.
1114 	 */
1115 	iov[0].iov_base = (void *)0x10000;
1116 	iov[0].iov_len = 512;
1117 	iov[1].iov_base = (void *)0x20000;
1118 	iov[1].iov_len = 20 * 512;
1119 	iov[2].iov_base = (void *)0x30000;
1120 	iov[2].iov_len = 11 * 512;
1121 
1122 	g_io_done = false;
1123 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1124 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1125 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1126 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1127 
1128 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1129 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1130 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1131 
1132 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1133 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1134 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1135 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1136 
1137 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
1138 	CU_ASSERT(rc == 0);
1139 	CU_ASSERT(g_io_done == false);
1140 
1141 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1142 	stub_complete_io(3);
1143 	CU_ASSERT(g_io_done == true);
1144 
1145 	/* Test multi vector command that needs to be split by strip and then needs to be
1146 	 * split further due to the capacity of child iovs.
1147 	 */
1148 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1149 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1150 		iov[i].iov_len = 512;
1151 	}
1152 
1153 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1154 	g_io_done = false;
1155 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1156 					   BDEV_IO_NUM_CHILD_IOV);
1157 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1158 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1159 	}
1160 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1161 
1162 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1163 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
1164 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1165 		ut_expected_io_set_iov(expected_io, i,
1166 				       (void *)((i + 1 + BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1167 	}
1168 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1169 
1170 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
1171 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1172 	CU_ASSERT(rc == 0);
1173 	CU_ASSERT(g_io_done == false);
1174 
1175 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1176 	stub_complete_io(1);
1177 	CU_ASSERT(g_io_done == false);
1178 
1179 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1180 	stub_complete_io(1);
1181 	CU_ASSERT(g_io_done == true);
1182 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1183 
1184 	/* Test multi vector command that needs to be split by strip and then needs to be
1185 	 * split further due to the capacity of child iovs. In this case, the length of
1186 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1187 	 */
1188 
1189 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1190 	 * is BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1191 	 */
1192 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1193 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1194 		iov[i].iov_len = 512;
1195 	}
1196 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1197 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1198 		iov[i].iov_len = 256;
1199 	}
1200 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1201 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1202 
1203 	/* Add an extra iovec to trigger split */
1204 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1205 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1206 
1207 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1208 	g_io_done = false;
1209 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1210 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV);
1211 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1212 		ut_expected_io_set_iov(expected_io, i,
1213 				       (void *)((i + 1) * 0x10000), 512);
1214 	}
1215 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1216 		ut_expected_io_set_iov(expected_io, i,
1217 				       (void *)((i + 1) * 0x10000), 256);
1218 	}
1219 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1220 
1221 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1222 					   1, 1);
1223 	ut_expected_io_set_iov(expected_io, 0,
1224 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1225 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1226 
1227 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1228 					   1, 1);
1229 	ut_expected_io_set_iov(expected_io, 0,
1230 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1231 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1232 
1233 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
1234 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1235 	CU_ASSERT(rc == 0);
1236 	CU_ASSERT(g_io_done == false);
1237 
1238 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1239 	stub_complete_io(1);
1240 	CU_ASSERT(g_io_done == false);
1241 
1242 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1243 	stub_complete_io(2);
1244 	CU_ASSERT(g_io_done == true);
1245 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1246 
1247 	/* Test multi vector command that needs to be split by strip and then needs to be
1248 	 * split further due to the capacity of child iovs, the child request offset should
1249 	 * be rewind to last aligned offset and go success without error.
1250 	 */
1251 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1252 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1253 		iov[i].iov_len = 512;
1254 	}
1255 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1256 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1257 
1258 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1259 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1260 
1261 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1262 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1263 
1264 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1265 	g_io_done = false;
1266 	g_io_status = 0;
1267 	/* The first expected io should be start from offset 0 to BDEV_IO_NUM_CHILD_IOV - 1 */
1268 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1269 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV - 1);
1270 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1271 		ut_expected_io_set_iov(expected_io, i,
1272 				       (void *)((i + 1) * 0x10000), 512);
1273 	}
1274 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1275 	/* The second expected io should be start from offset BDEV_IO_NUM_CHILD_IOV - 1 to BDEV_IO_NUM_CHILD_IOV */
1276 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1277 					   1, 2);
1278 	ut_expected_io_set_iov(expected_io, 0,
1279 			       (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1280 	ut_expected_io_set_iov(expected_io, 1,
1281 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1282 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1283 	/* The third expected io should be start from offset BDEV_IO_NUM_CHILD_IOV to BDEV_IO_NUM_CHILD_IOV + 1 */
1284 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1285 					   1, 1);
1286 	ut_expected_io_set_iov(expected_io, 0,
1287 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1288 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1289 
1290 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
1291 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1292 	CU_ASSERT(rc == 0);
1293 	CU_ASSERT(g_io_done == false);
1294 
1295 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1296 	stub_complete_io(1);
1297 	CU_ASSERT(g_io_done == false);
1298 
1299 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1300 	stub_complete_io(2);
1301 	CU_ASSERT(g_io_done == true);
1302 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1303 
1304 	/* Test multi vector command that needs to be split due to the IO boundary and
1305 	 * the capacity of child iovs. Especially test the case when the command is
1306 	 * split due to the capacity of child iovs, the tail address is not aligned with
1307 	 * block size and is rewinded to the aligned address.
1308 	 *
1309 	 * The iovecs used in read request is complex but is based on the data
1310 	 * collected in the real issue. We change the base addresses but keep the lengths
1311 	 * not to loose the credibility of the test.
1312 	 */
1313 	bdev->optimal_io_boundary = 128;
1314 	g_io_done = false;
1315 	g_io_status = 0;
1316 
1317 	for (i = 0; i < 31; i++) {
1318 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1319 		iov[i].iov_len = 1024;
1320 	}
1321 	iov[31].iov_base = (void *)0xFEED1F00000;
1322 	iov[31].iov_len = 32768;
1323 	iov[32].iov_base = (void *)0xFEED2000000;
1324 	iov[32].iov_len = 160;
1325 	iov[33].iov_base = (void *)0xFEED2100000;
1326 	iov[33].iov_len = 4096;
1327 	iov[34].iov_base = (void *)0xFEED2200000;
1328 	iov[34].iov_len = 4096;
1329 	iov[35].iov_base = (void *)0xFEED2300000;
1330 	iov[35].iov_len = 4096;
1331 	iov[36].iov_base = (void *)0xFEED2400000;
1332 	iov[36].iov_len = 4096;
1333 	iov[37].iov_base = (void *)0xFEED2500000;
1334 	iov[37].iov_len = 4096;
1335 	iov[38].iov_base = (void *)0xFEED2600000;
1336 	iov[38].iov_len = 4096;
1337 	iov[39].iov_base = (void *)0xFEED2700000;
1338 	iov[39].iov_len = 4096;
1339 	iov[40].iov_base = (void *)0xFEED2800000;
1340 	iov[40].iov_len = 4096;
1341 	iov[41].iov_base = (void *)0xFEED2900000;
1342 	iov[41].iov_len = 4096;
1343 	iov[42].iov_base = (void *)0xFEED2A00000;
1344 	iov[42].iov_len = 4096;
1345 	iov[43].iov_base = (void *)0xFEED2B00000;
1346 	iov[43].iov_len = 12288;
1347 	iov[44].iov_base = (void *)0xFEED2C00000;
1348 	iov[44].iov_len = 8192;
1349 	iov[45].iov_base = (void *)0xFEED2F00000;
1350 	iov[45].iov_len = 4096;
1351 	iov[46].iov_base = (void *)0xFEED3000000;
1352 	iov[46].iov_len = 4096;
1353 	iov[47].iov_base = (void *)0xFEED3100000;
1354 	iov[47].iov_len = 4096;
1355 	iov[48].iov_base = (void *)0xFEED3200000;
1356 	iov[48].iov_len = 24576;
1357 	iov[49].iov_base = (void *)0xFEED3300000;
1358 	iov[49].iov_len = 16384;
1359 	iov[50].iov_base = (void *)0xFEED3400000;
1360 	iov[50].iov_len = 12288;
1361 	iov[51].iov_base = (void *)0xFEED3500000;
1362 	iov[51].iov_len = 4096;
1363 	iov[52].iov_base = (void *)0xFEED3600000;
1364 	iov[52].iov_len = 4096;
1365 	iov[53].iov_base = (void *)0xFEED3700000;
1366 	iov[53].iov_len = 4096;
1367 	iov[54].iov_base = (void *)0xFEED3800000;
1368 	iov[54].iov_len = 28672;
1369 	iov[55].iov_base = (void *)0xFEED3900000;
1370 	iov[55].iov_len = 20480;
1371 	iov[56].iov_base = (void *)0xFEED3A00000;
1372 	iov[56].iov_len = 4096;
1373 	iov[57].iov_base = (void *)0xFEED3B00000;
1374 	iov[57].iov_len = 12288;
1375 	iov[58].iov_base = (void *)0xFEED3C00000;
1376 	iov[58].iov_len = 4096;
1377 	iov[59].iov_base = (void *)0xFEED3D00000;
1378 	iov[59].iov_len = 4096;
1379 	iov[60].iov_base = (void *)0xFEED3E00000;
1380 	iov[60].iov_len = 352;
1381 
1382 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1383 	 * of child iovs,
1384 	 */
1385 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1386 	for (i = 0; i < 32; i++) {
1387 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1388 	}
1389 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1390 
1391 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1392 	 * split by the IO boundary requirement.
1393 	 */
1394 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1395 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1396 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1397 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1398 
1399 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1400 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1401 	 */
1402 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1403 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1404 			       iov[33].iov_len - 864);
1405 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1406 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1407 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1408 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1409 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1410 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1411 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1412 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1413 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1414 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1415 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1416 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1417 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1418 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1419 
1420 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1421 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1422 	 */
1423 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1424 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1425 			       iov[46].iov_len - 864);
1426 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1427 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1428 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1429 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1430 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1431 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1432 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1433 
1434 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1435 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1436 	 */
1437 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1438 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1439 			       iov[52].iov_len - 864);
1440 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1441 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1442 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1443 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1444 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1445 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1446 
1447 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1448 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1449 	 */
1450 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1451 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1452 			       iov[57].iov_len - 4960);
1453 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1454 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1455 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1456 
1457 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1458 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1459 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1460 			       iov[59].iov_len - 3936);
1461 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1462 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1463 
1464 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 61, 0, 543, io_done, NULL);
1465 	CU_ASSERT(rc == 0);
1466 	CU_ASSERT(g_io_done == false);
1467 
1468 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1469 	stub_complete_io(1);
1470 	CU_ASSERT(g_io_done == false);
1471 
1472 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1473 	stub_complete_io(5);
1474 	CU_ASSERT(g_io_done == false);
1475 
1476 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1477 	stub_complete_io(1);
1478 	CU_ASSERT(g_io_done == true);
1479 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1480 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1481 
1482 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1483 	 * split, so test that.
1484 	 */
1485 	bdev->optimal_io_boundary = 15;
1486 	g_io_done = false;
1487 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1488 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1489 
1490 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1491 	CU_ASSERT(rc == 0);
1492 	CU_ASSERT(g_io_done == false);
1493 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1494 	stub_complete_io(1);
1495 	CU_ASSERT(g_io_done == true);
1496 
1497 	/* Test an UNMAP.  This should also not be split. */
1498 	bdev->optimal_io_boundary = 16;
1499 	g_io_done = false;
1500 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1501 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1502 
1503 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1504 	CU_ASSERT(rc == 0);
1505 	CU_ASSERT(g_io_done == false);
1506 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1507 	stub_complete_io(1);
1508 	CU_ASSERT(g_io_done == true);
1509 
1510 	/* Test a FLUSH.  This should also not be split. */
1511 	bdev->optimal_io_boundary = 16;
1512 	g_io_done = false;
1513 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1514 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1515 
1516 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1517 	CU_ASSERT(rc == 0);
1518 	CU_ASSERT(g_io_done == false);
1519 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1520 	stub_complete_io(1);
1521 	CU_ASSERT(g_io_done == true);
1522 
1523 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1524 
1525 	/* Children requests return an error status */
1526 	bdev->optimal_io_boundary = 16;
1527 	iov[0].iov_base = (void *)0x10000;
1528 	iov[0].iov_len = 512 * 64;
1529 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1530 	g_io_done = false;
1531 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1532 
1533 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1534 	CU_ASSERT(rc == 0);
1535 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1536 	stub_complete_io(4);
1537 	CU_ASSERT(g_io_done == false);
1538 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1539 	stub_complete_io(1);
1540 	CU_ASSERT(g_io_done == true);
1541 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1542 
1543 	/* Test if a multi vector command terminated with failure before continueing
1544 	 * splitting process when one of child I/O failed.
1545 	 * The multi vector command is as same as the above that needs to be split by strip
1546 	 * and then needs to be split further due to the capacity of child iovs.
1547 	 */
1548 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1549 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1550 		iov[i].iov_len = 512;
1551 	}
1552 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1553 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1554 
1555 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1556 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1557 
1558 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1559 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1560 
1561 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1562 
1563 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1564 	g_io_done = false;
1565 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1566 
1567 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
1568 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1569 	CU_ASSERT(rc == 0);
1570 	CU_ASSERT(g_io_done == false);
1571 
1572 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1573 	stub_complete_io(1);
1574 	CU_ASSERT(g_io_done == true);
1575 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1576 
1577 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1578 
1579 	/* for this test we will create the following conditions to hit the code path where
1580 	 * we are trying to send and IO following a split that has no iovs because we had to
1581 	 * trim them for alignment reasons.
1582 	 *
1583 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1584 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1585 	 *   position 30 and overshoot by 0x2e.
1586 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1587 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1588 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1589 	 *   and let the completion pick up the last 2 vectors.
1590 	 */
1591 	bdev->optimal_io_boundary = 32;
1592 	bdev->split_on_optimal_io_boundary = true;
1593 	g_io_done = false;
1594 
1595 	/* Init all parent IOVs to 0x212 */
1596 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1597 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1598 		iov[i].iov_len = 0x212;
1599 	}
1600 
1601 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1602 					   BDEV_IO_NUM_CHILD_IOV - 1);
1603 	/* expect 0-29 to be 1:1 with the parent iov */
1604 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1605 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1606 	}
1607 
1608 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1609 	 * where 0x1e is the amount we overshot the 16K boundary
1610 	 */
1611 	ut_expected_io_set_iov(expected_io, BDEV_IO_NUM_CHILD_IOV - 2,
1612 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1613 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1614 
1615 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1616 	 * shortened that take it to the next boundary and then a final one to get us to
1617 	 * 0x4200 bytes for the IO.
1618 	 */
1619 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1620 					   BDEV_IO_NUM_CHILD_IOV, 2);
1621 	/* position 30 picked up the remaining bytes to the next boundary */
1622 	ut_expected_io_set_iov(expected_io, 0,
1623 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
1624 
1625 	/* position 31 picked the the rest of the trasnfer to get us to 0x4200 */
1626 	ut_expected_io_set_iov(expected_io, 1,
1627 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
1628 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1629 
1630 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 1, 0,
1631 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1632 	CU_ASSERT(rc == 0);
1633 	CU_ASSERT(g_io_done == false);
1634 
1635 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1636 	stub_complete_io(1);
1637 	CU_ASSERT(g_io_done == false);
1638 
1639 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1640 	stub_complete_io(1);
1641 	CU_ASSERT(g_io_done == true);
1642 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1643 
1644 	spdk_put_io_channel(io_ch);
1645 	spdk_bdev_close(desc);
1646 	free_bdev(bdev);
1647 	spdk_bdev_finish(bdev_fini_cb, NULL);
1648 	poll_threads();
1649 }
1650 
1651 static void
1652 bdev_io_split_with_io_wait(void)
1653 {
1654 	struct spdk_bdev *bdev;
1655 	struct spdk_bdev_desc *desc = NULL;
1656 	struct spdk_io_channel *io_ch;
1657 	struct spdk_bdev_channel *channel;
1658 	struct spdk_bdev_mgmt_channel *mgmt_ch;
1659 	struct spdk_bdev_opts bdev_opts = {
1660 		.bdev_io_pool_size = 2,
1661 		.bdev_io_cache_size = 1,
1662 	};
1663 	struct iovec iov[3];
1664 	struct ut_expected_io *expected_io;
1665 	int rc;
1666 
1667 	rc = spdk_bdev_set_opts(&bdev_opts);
1668 	CU_ASSERT(rc == 0);
1669 	spdk_bdev_initialize(bdev_init_cb, NULL);
1670 
1671 	bdev = allocate_bdev("bdev0");
1672 
1673 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
1674 	CU_ASSERT(rc == 0);
1675 	CU_ASSERT(desc != NULL);
1676 	io_ch = spdk_bdev_get_io_channel(desc);
1677 	CU_ASSERT(io_ch != NULL);
1678 	channel = spdk_io_channel_get_ctx(io_ch);
1679 	mgmt_ch = channel->shared_resource->mgmt_ch;
1680 
1681 	bdev->optimal_io_boundary = 16;
1682 	bdev->split_on_optimal_io_boundary = true;
1683 
1684 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1685 	CU_ASSERT(rc == 0);
1686 
1687 	/* Now test that a single-vector command is split correctly.
1688 	 * Offset 14, length 8, payload 0xF000
1689 	 *  Child - Offset 14, length 2, payload 0xF000
1690 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1691 	 *
1692 	 * Set up the expected values before calling spdk_bdev_read_blocks
1693 	 */
1694 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1695 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1696 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1697 
1698 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1699 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1700 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1701 
1702 	/* The following children will be submitted sequentially due to the capacity of
1703 	 * spdk_bdev_io.
1704 	 */
1705 
1706 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
1707 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1708 	CU_ASSERT(rc == 0);
1709 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
1710 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1711 
1712 	/* Completing the first read I/O will submit the first child */
1713 	stub_complete_io(1);
1714 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
1715 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1716 
1717 	/* Completing the first child will submit the second child */
1718 	stub_complete_io(1);
1719 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1720 
1721 	/* Complete the second child I/O.  This should result in our callback getting
1722 	 * invoked since the parent I/O is now complete.
1723 	 */
1724 	stub_complete_io(1);
1725 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1726 
1727 	/* Now set up a more complex, multi-vector command that needs to be split,
1728 	 *  including splitting iovecs.
1729 	 */
1730 	iov[0].iov_base = (void *)0x10000;
1731 	iov[0].iov_len = 512;
1732 	iov[1].iov_base = (void *)0x20000;
1733 	iov[1].iov_len = 20 * 512;
1734 	iov[2].iov_base = (void *)0x30000;
1735 	iov[2].iov_len = 11 * 512;
1736 
1737 	g_io_done = false;
1738 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1739 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1740 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1741 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1742 
1743 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1744 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1745 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1746 
1747 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1748 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1749 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1750 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1751 
1752 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
1753 	CU_ASSERT(rc == 0);
1754 	CU_ASSERT(g_io_done == false);
1755 
1756 	/* The following children will be submitted sequentially due to the capacity of
1757 	 * spdk_bdev_io.
1758 	 */
1759 
1760 	/* Completing the first child will submit the second child */
1761 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1762 	stub_complete_io(1);
1763 	CU_ASSERT(g_io_done == false);
1764 
1765 	/* Completing the second child will submit the third child */
1766 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1767 	stub_complete_io(1);
1768 	CU_ASSERT(g_io_done == false);
1769 
1770 	/* Completing the third child will result in our callback getting invoked
1771 	 * since the parent I/O is now complete.
1772 	 */
1773 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1774 	stub_complete_io(1);
1775 	CU_ASSERT(g_io_done == true);
1776 
1777 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1778 
1779 	spdk_put_io_channel(io_ch);
1780 	spdk_bdev_close(desc);
1781 	free_bdev(bdev);
1782 	spdk_bdev_finish(bdev_fini_cb, NULL);
1783 	poll_threads();
1784 }
1785 
1786 static void
1787 bdev_io_alignment(void)
1788 {
1789 	struct spdk_bdev *bdev;
1790 	struct spdk_bdev_desc *desc = NULL;
1791 	struct spdk_io_channel *io_ch;
1792 	struct spdk_bdev_opts bdev_opts = {
1793 		.bdev_io_pool_size = 20,
1794 		.bdev_io_cache_size = 2,
1795 	};
1796 	int rc;
1797 	void *buf = NULL;
1798 	struct iovec iovs[2];
1799 	int iovcnt;
1800 	uint64_t alignment;
1801 
1802 	rc = spdk_bdev_set_opts(&bdev_opts);
1803 	CU_ASSERT(rc == 0);
1804 	spdk_bdev_initialize(bdev_init_cb, NULL);
1805 
1806 	fn_table.submit_request = stub_submit_request_get_buf;
1807 	bdev = allocate_bdev("bdev0");
1808 
1809 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
1810 	CU_ASSERT(rc == 0);
1811 	CU_ASSERT(desc != NULL);
1812 	io_ch = spdk_bdev_get_io_channel(desc);
1813 	CU_ASSERT(io_ch != NULL);
1814 
1815 	/* Create aligned buffer */
1816 	rc = posix_memalign(&buf, 4096, 8192);
1817 	SPDK_CU_ASSERT_FATAL(rc == 0);
1818 
1819 	/* Pass aligned single buffer with no alignment required */
1820 	alignment = 1;
1821 	bdev->required_alignment = spdk_u32log2(alignment);
1822 
1823 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
1824 	CU_ASSERT(rc == 0);
1825 	stub_complete_io(1);
1826 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1827 				    alignment));
1828 
1829 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
1830 	CU_ASSERT(rc == 0);
1831 	stub_complete_io(1);
1832 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1833 				    alignment));
1834 
1835 	/* Pass unaligned single buffer with no alignment required */
1836 	alignment = 1;
1837 	bdev->required_alignment = spdk_u32log2(alignment);
1838 
1839 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
1840 	CU_ASSERT(rc == 0);
1841 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1842 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
1843 	stub_complete_io(1);
1844 
1845 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
1846 	CU_ASSERT(rc == 0);
1847 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1848 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
1849 	stub_complete_io(1);
1850 
1851 	/* Pass unaligned single buffer with 512 alignment required */
1852 	alignment = 512;
1853 	bdev->required_alignment = spdk_u32log2(alignment);
1854 
1855 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
1856 	CU_ASSERT(rc == 0);
1857 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
1858 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1859 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1860 				    alignment));
1861 	stub_complete_io(1);
1862 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1863 
1864 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
1865 	CU_ASSERT(rc == 0);
1866 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
1867 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1868 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1869 				    alignment));
1870 	stub_complete_io(1);
1871 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1872 
1873 	/* Pass unaligned single buffer with 4096 alignment required */
1874 	alignment = 4096;
1875 	bdev->required_alignment = spdk_u32log2(alignment);
1876 
1877 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
1878 	CU_ASSERT(rc == 0);
1879 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
1880 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1881 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1882 				    alignment));
1883 	stub_complete_io(1);
1884 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1885 
1886 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
1887 	CU_ASSERT(rc == 0);
1888 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
1889 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1890 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1891 				    alignment));
1892 	stub_complete_io(1);
1893 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1894 
1895 	/* Pass aligned iovs with no alignment required */
1896 	alignment = 1;
1897 	bdev->required_alignment = spdk_u32log2(alignment);
1898 
1899 	iovcnt = 1;
1900 	iovs[0].iov_base = buf;
1901 	iovs[0].iov_len = 512;
1902 
1903 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1904 	CU_ASSERT(rc == 0);
1905 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1906 	stub_complete_io(1);
1907 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
1908 
1909 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1910 	CU_ASSERT(rc == 0);
1911 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1912 	stub_complete_io(1);
1913 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
1914 
1915 	/* Pass unaligned iovs with no alignment required */
1916 	alignment = 1;
1917 	bdev->required_alignment = spdk_u32log2(alignment);
1918 
1919 	iovcnt = 2;
1920 	iovs[0].iov_base = buf + 16;
1921 	iovs[0].iov_len = 256;
1922 	iovs[1].iov_base = buf + 16 + 256 + 32;
1923 	iovs[1].iov_len = 256;
1924 
1925 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1926 	CU_ASSERT(rc == 0);
1927 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1928 	stub_complete_io(1);
1929 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
1930 
1931 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1932 	CU_ASSERT(rc == 0);
1933 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1934 	stub_complete_io(1);
1935 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
1936 
1937 	/* Pass unaligned iov with 2048 alignment required */
1938 	alignment = 2048;
1939 	bdev->required_alignment = spdk_u32log2(alignment);
1940 
1941 	iovcnt = 2;
1942 	iovs[0].iov_base = buf + 16;
1943 	iovs[0].iov_len = 256;
1944 	iovs[1].iov_base = buf + 16 + 256 + 32;
1945 	iovs[1].iov_len = 256;
1946 
1947 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1948 	CU_ASSERT(rc == 0);
1949 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
1950 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1951 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1952 				    alignment));
1953 	stub_complete_io(1);
1954 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1955 
1956 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1957 	CU_ASSERT(rc == 0);
1958 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
1959 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1960 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1961 				    alignment));
1962 	stub_complete_io(1);
1963 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1964 
1965 	/* Pass iov without allocated buffer without alignment required */
1966 	alignment = 1;
1967 	bdev->required_alignment = spdk_u32log2(alignment);
1968 
1969 	iovcnt = 1;
1970 	iovs[0].iov_base = NULL;
1971 	iovs[0].iov_len = 0;
1972 
1973 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1974 	CU_ASSERT(rc == 0);
1975 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1976 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1977 				    alignment));
1978 	stub_complete_io(1);
1979 
1980 	/* Pass iov without allocated buffer with 1024 alignment required */
1981 	alignment = 1024;
1982 	bdev->required_alignment = spdk_u32log2(alignment);
1983 
1984 	iovcnt = 1;
1985 	iovs[0].iov_base = NULL;
1986 	iovs[0].iov_len = 0;
1987 
1988 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1989 	CU_ASSERT(rc == 0);
1990 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1991 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1992 				    alignment));
1993 	stub_complete_io(1);
1994 
1995 	spdk_put_io_channel(io_ch);
1996 	spdk_bdev_close(desc);
1997 	free_bdev(bdev);
1998 	fn_table.submit_request = stub_submit_request;
1999 	spdk_bdev_finish(bdev_fini_cb, NULL);
2000 	poll_threads();
2001 
2002 	free(buf);
2003 }
2004 
2005 static void
2006 bdev_io_alignment_with_boundary(void)
2007 {
2008 	struct spdk_bdev *bdev;
2009 	struct spdk_bdev_desc *desc = NULL;
2010 	struct spdk_io_channel *io_ch;
2011 	struct spdk_bdev_opts bdev_opts = {
2012 		.bdev_io_pool_size = 20,
2013 		.bdev_io_cache_size = 2,
2014 	};
2015 	int rc;
2016 	void *buf = NULL;
2017 	struct iovec iovs[2];
2018 	int iovcnt;
2019 	uint64_t alignment;
2020 
2021 	rc = spdk_bdev_set_opts(&bdev_opts);
2022 	CU_ASSERT(rc == 0);
2023 	spdk_bdev_initialize(bdev_init_cb, NULL);
2024 
2025 	fn_table.submit_request = stub_submit_request_get_buf;
2026 	bdev = allocate_bdev("bdev0");
2027 
2028 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
2029 	CU_ASSERT(rc == 0);
2030 	CU_ASSERT(desc != NULL);
2031 	io_ch = spdk_bdev_get_io_channel(desc);
2032 	CU_ASSERT(io_ch != NULL);
2033 
2034 	/* Create aligned buffer */
2035 	rc = posix_memalign(&buf, 4096, 131072);
2036 	SPDK_CU_ASSERT_FATAL(rc == 0);
2037 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2038 
2039 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
2040 	alignment = 512;
2041 	bdev->required_alignment = spdk_u32log2(alignment);
2042 	bdev->optimal_io_boundary = 2;
2043 	bdev->split_on_optimal_io_boundary = true;
2044 
2045 	iovcnt = 1;
2046 	iovs[0].iov_base = NULL;
2047 	iovs[0].iov_len = 512 * 3;
2048 
2049 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
2050 	CU_ASSERT(rc == 0);
2051 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2052 	stub_complete_io(2);
2053 
2054 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
2055 	alignment = 512;
2056 	bdev->required_alignment = spdk_u32log2(alignment);
2057 	bdev->optimal_io_boundary = 16;
2058 	bdev->split_on_optimal_io_boundary = true;
2059 
2060 	iovcnt = 1;
2061 	iovs[0].iov_base = NULL;
2062 	iovs[0].iov_len = 512 * 16;
2063 
2064 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
2065 	CU_ASSERT(rc == 0);
2066 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2067 	stub_complete_io(2);
2068 
2069 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
2070 	alignment = 512;
2071 	bdev->required_alignment = spdk_u32log2(alignment);
2072 	bdev->optimal_io_boundary = 128;
2073 	bdev->split_on_optimal_io_boundary = true;
2074 
2075 	iovcnt = 1;
2076 	iovs[0].iov_base = buf + 16;
2077 	iovs[0].iov_len = 512 * 160;
2078 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
2079 	CU_ASSERT(rc == 0);
2080 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2081 	stub_complete_io(2);
2082 
2083 	/* 512 * 3 with 2 IO boundary */
2084 	alignment = 512;
2085 	bdev->required_alignment = spdk_u32log2(alignment);
2086 	bdev->optimal_io_boundary = 2;
2087 	bdev->split_on_optimal_io_boundary = true;
2088 
2089 	iovcnt = 2;
2090 	iovs[0].iov_base = buf + 16;
2091 	iovs[0].iov_len = 512;
2092 	iovs[1].iov_base = buf + 16 + 512 + 32;
2093 	iovs[1].iov_len = 1024;
2094 
2095 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
2096 	CU_ASSERT(rc == 0);
2097 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2098 	stub_complete_io(2);
2099 
2100 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
2101 	CU_ASSERT(rc == 0);
2102 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2103 	stub_complete_io(2);
2104 
2105 	/* 512 * 64 with 32 IO boundary */
2106 	bdev->optimal_io_boundary = 32;
2107 	iovcnt = 2;
2108 	iovs[0].iov_base = buf + 16;
2109 	iovs[0].iov_len = 16384;
2110 	iovs[1].iov_base = buf + 16 + 16384 + 32;
2111 	iovs[1].iov_len = 16384;
2112 
2113 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
2114 	CU_ASSERT(rc == 0);
2115 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2116 	stub_complete_io(3);
2117 
2118 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
2119 	CU_ASSERT(rc == 0);
2120 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2121 	stub_complete_io(3);
2122 
2123 	/* 512 * 160 with 32 IO boundary */
2124 	iovcnt = 1;
2125 	iovs[0].iov_base = buf + 16;
2126 	iovs[0].iov_len = 16384 + 65536;
2127 
2128 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
2129 	CU_ASSERT(rc == 0);
2130 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2131 	stub_complete_io(6);
2132 
2133 	spdk_put_io_channel(io_ch);
2134 	spdk_bdev_close(desc);
2135 	free_bdev(bdev);
2136 	fn_table.submit_request = stub_submit_request;
2137 	spdk_bdev_finish(bdev_fini_cb, NULL);
2138 	poll_threads();
2139 
2140 	free(buf);
2141 }
2142 
2143 static void
2144 histogram_status_cb(void *cb_arg, int status)
2145 {
2146 	g_status = status;
2147 }
2148 
2149 static void
2150 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
2151 {
2152 	g_status = status;
2153 	g_histogram = histogram;
2154 }
2155 
2156 static void
2157 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
2158 		   uint64_t total, uint64_t so_far)
2159 {
2160 	g_count += count;
2161 }
2162 
2163 static void
2164 bdev_histograms(void)
2165 {
2166 	struct spdk_bdev *bdev;
2167 	struct spdk_bdev_desc *desc = NULL;
2168 	struct spdk_io_channel *ch;
2169 	struct spdk_histogram_data *histogram;
2170 	uint8_t buf[4096];
2171 	int rc;
2172 
2173 	spdk_bdev_initialize(bdev_init_cb, NULL);
2174 
2175 	bdev = allocate_bdev("bdev");
2176 
2177 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
2178 	CU_ASSERT(rc == 0);
2179 	CU_ASSERT(desc != NULL);
2180 
2181 	ch = spdk_bdev_get_io_channel(desc);
2182 	CU_ASSERT(ch != NULL);
2183 
2184 	/* Enable histogram */
2185 	g_status = -1;
2186 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
2187 	poll_threads();
2188 	CU_ASSERT(g_status == 0);
2189 	CU_ASSERT(bdev->internal.histogram_enabled == true);
2190 
2191 	/* Allocate histogram */
2192 	histogram = spdk_histogram_data_alloc();
2193 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
2194 
2195 	/* Check if histogram is zeroed */
2196 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
2197 	poll_threads();
2198 	CU_ASSERT(g_status == 0);
2199 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
2200 
2201 	g_count = 0;
2202 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
2203 
2204 	CU_ASSERT(g_count == 0);
2205 
2206 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
2207 	CU_ASSERT(rc == 0);
2208 
2209 	spdk_delay_us(10);
2210 	stub_complete_io(1);
2211 	poll_threads();
2212 
2213 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
2214 	CU_ASSERT(rc == 0);
2215 
2216 	spdk_delay_us(10);
2217 	stub_complete_io(1);
2218 	poll_threads();
2219 
2220 	/* Check if histogram gathered data from all I/O channels */
2221 	g_histogram = NULL;
2222 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
2223 	poll_threads();
2224 	CU_ASSERT(g_status == 0);
2225 	CU_ASSERT(bdev->internal.histogram_enabled == true);
2226 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
2227 
2228 	g_count = 0;
2229 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
2230 	CU_ASSERT(g_count == 2);
2231 
2232 	/* Disable histogram */
2233 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
2234 	poll_threads();
2235 	CU_ASSERT(g_status == 0);
2236 	CU_ASSERT(bdev->internal.histogram_enabled == false);
2237 
2238 	/* Try to run histogram commands on disabled bdev */
2239 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
2240 	poll_threads();
2241 	CU_ASSERT(g_status == -EFAULT);
2242 
2243 	spdk_histogram_data_free(histogram);
2244 	spdk_put_io_channel(ch);
2245 	spdk_bdev_close(desc);
2246 	free_bdev(bdev);
2247 	spdk_bdev_finish(bdev_fini_cb, NULL);
2248 	poll_threads();
2249 }
2250 
2251 static void
2252 _bdev_compare(bool emulated)
2253 {
2254 	struct spdk_bdev *bdev;
2255 	struct spdk_bdev_desc *desc = NULL;
2256 	struct spdk_io_channel *ioch;
2257 	struct ut_expected_io *expected_io;
2258 	uint64_t offset, num_blocks;
2259 	uint32_t num_completed;
2260 	char aa_buf[512];
2261 	char bb_buf[512];
2262 	struct iovec compare_iov;
2263 	uint8_t io_type;
2264 	int rc;
2265 
2266 	if (emulated) {
2267 		io_type = SPDK_BDEV_IO_TYPE_READ;
2268 	} else {
2269 		io_type = SPDK_BDEV_IO_TYPE_COMPARE;
2270 	}
2271 
2272 	memset(aa_buf, 0xaa, sizeof(aa_buf));
2273 	memset(bb_buf, 0xbb, sizeof(bb_buf));
2274 
2275 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
2276 
2277 	spdk_bdev_initialize(bdev_init_cb, NULL);
2278 	fn_table.submit_request = stub_submit_request_get_buf;
2279 	bdev = allocate_bdev("bdev");
2280 
2281 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
2282 	CU_ASSERT_EQUAL(rc, 0);
2283 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2284 	ioch = spdk_bdev_get_io_channel(desc);
2285 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
2286 
2287 	fn_table.submit_request = stub_submit_request_get_buf;
2288 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2289 
2290 	offset = 50;
2291 	num_blocks = 1;
2292 	compare_iov.iov_base = aa_buf;
2293 	compare_iov.iov_len = sizeof(aa_buf);
2294 
2295 	expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
2296 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2297 
2298 	g_io_done = false;
2299 	g_compare_read_buf = aa_buf;
2300 	g_compare_read_buf_len = sizeof(aa_buf);
2301 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
2302 	CU_ASSERT_EQUAL(rc, 0);
2303 	num_completed = stub_complete_io(1);
2304 	CU_ASSERT_EQUAL(num_completed, 1);
2305 	CU_ASSERT(g_io_done == true);
2306 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
2307 
2308 	expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
2309 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2310 
2311 	g_io_done = false;
2312 	g_compare_read_buf = bb_buf;
2313 	g_compare_read_buf_len = sizeof(bb_buf);
2314 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
2315 	CU_ASSERT_EQUAL(rc, 0);
2316 	num_completed = stub_complete_io(1);
2317 	CU_ASSERT_EQUAL(num_completed, 1);
2318 	CU_ASSERT(g_io_done == true);
2319 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
2320 
2321 	spdk_put_io_channel(ioch);
2322 	spdk_bdev_close(desc);
2323 	free_bdev(bdev);
2324 	fn_table.submit_request = stub_submit_request;
2325 	spdk_bdev_finish(bdev_fini_cb, NULL);
2326 	poll_threads();
2327 
2328 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
2329 
2330 	g_compare_read_buf = NULL;
2331 }
2332 
2333 static void
2334 bdev_compare(void)
2335 {
2336 	_bdev_compare(true);
2337 	_bdev_compare(false);
2338 }
2339 
2340 static void
2341 bdev_compare_and_write(void)
2342 {
2343 	struct spdk_bdev *bdev;
2344 	struct spdk_bdev_desc *desc = NULL;
2345 	struct spdk_io_channel *ioch;
2346 	struct ut_expected_io *expected_io;
2347 	uint64_t offset, num_blocks;
2348 	uint32_t num_completed;
2349 	char aa_buf[512];
2350 	char bb_buf[512];
2351 	char cc_buf[512];
2352 	char write_buf[512];
2353 	struct iovec compare_iov;
2354 	struct iovec write_iov;
2355 	int rc;
2356 
2357 	memset(aa_buf, 0xaa, sizeof(aa_buf));
2358 	memset(bb_buf, 0xbb, sizeof(bb_buf));
2359 	memset(cc_buf, 0xcc, sizeof(cc_buf));
2360 
2361 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
2362 
2363 	spdk_bdev_initialize(bdev_init_cb, NULL);
2364 	fn_table.submit_request = stub_submit_request_get_buf;
2365 	bdev = allocate_bdev("bdev");
2366 
2367 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
2368 	CU_ASSERT_EQUAL(rc, 0);
2369 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2370 	ioch = spdk_bdev_get_io_channel(desc);
2371 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
2372 
2373 	fn_table.submit_request = stub_submit_request_get_buf;
2374 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2375 
2376 	offset = 50;
2377 	num_blocks = 1;
2378 	compare_iov.iov_base = aa_buf;
2379 	compare_iov.iov_len = sizeof(aa_buf);
2380 	write_iov.iov_base = bb_buf;
2381 	write_iov.iov_len = sizeof(bb_buf);
2382 
2383 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
2384 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2385 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
2386 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2387 
2388 	g_io_done = false;
2389 	g_compare_read_buf = aa_buf;
2390 	g_compare_read_buf_len = sizeof(aa_buf);
2391 	memset(write_buf, 0, sizeof(write_buf));
2392 	g_compare_write_buf = write_buf;
2393 	g_compare_write_buf_len = sizeof(write_buf);
2394 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
2395 			offset, num_blocks, io_done, NULL);
2396 	/* Trigger range locking */
2397 	poll_threads();
2398 	CU_ASSERT_EQUAL(rc, 0);
2399 	num_completed = stub_complete_io(1);
2400 	CU_ASSERT_EQUAL(num_completed, 1);
2401 	CU_ASSERT(g_io_done == false);
2402 	num_completed = stub_complete_io(1);
2403 	/* Trigger range unlocking */
2404 	poll_threads();
2405 	CU_ASSERT_EQUAL(num_completed, 1);
2406 	CU_ASSERT(g_io_done == true);
2407 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
2408 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
2409 
2410 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
2411 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2412 
2413 	g_io_done = false;
2414 	g_compare_read_buf = cc_buf;
2415 	g_compare_read_buf_len = sizeof(cc_buf);
2416 	memset(write_buf, 0, sizeof(write_buf));
2417 	g_compare_write_buf = write_buf;
2418 	g_compare_write_buf_len = sizeof(write_buf);
2419 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
2420 			offset, num_blocks, io_done, NULL);
2421 	/* Trigger range locking */
2422 	poll_threads();
2423 	CU_ASSERT_EQUAL(rc, 0);
2424 	num_completed = stub_complete_io(1);
2425 	/* Trigger range unlocking earlier because we expect error here */
2426 	poll_threads();
2427 	CU_ASSERT_EQUAL(num_completed, 1);
2428 	CU_ASSERT(g_io_done == true);
2429 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
2430 	num_completed = stub_complete_io(1);
2431 	CU_ASSERT_EQUAL(num_completed, 0);
2432 
2433 	spdk_put_io_channel(ioch);
2434 	spdk_bdev_close(desc);
2435 	free_bdev(bdev);
2436 	fn_table.submit_request = stub_submit_request;
2437 	spdk_bdev_finish(bdev_fini_cb, NULL);
2438 	poll_threads();
2439 
2440 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
2441 
2442 	g_compare_read_buf = NULL;
2443 	g_compare_write_buf = NULL;
2444 }
2445 
2446 static void
2447 bdev_write_zeroes(void)
2448 {
2449 	struct spdk_bdev *bdev;
2450 	struct spdk_bdev_desc *desc = NULL;
2451 	struct spdk_io_channel *ioch;
2452 	struct ut_expected_io *expected_io;
2453 	uint64_t offset, num_io_blocks, num_blocks;
2454 	uint32_t num_completed, num_requests;
2455 	int rc;
2456 
2457 	spdk_bdev_initialize(bdev_init_cb, NULL);
2458 	bdev = allocate_bdev("bdev");
2459 
2460 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
2461 	CU_ASSERT_EQUAL(rc, 0);
2462 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2463 	ioch = spdk_bdev_get_io_channel(desc);
2464 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
2465 
2466 	fn_table.submit_request = stub_submit_request;
2467 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2468 
2469 	/* First test that if the bdev supports write_zeroes, the request won't be split */
2470 	bdev->md_len = 0;
2471 	bdev->blocklen = 4096;
2472 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
2473 
2474 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
2475 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2476 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
2477 	CU_ASSERT_EQUAL(rc, 0);
2478 	num_completed = stub_complete_io(1);
2479 	CU_ASSERT_EQUAL(num_completed, 1);
2480 
2481 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
2482 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
2483 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
2484 	num_requests = 2;
2485 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
2486 
2487 	for (offset = 0; offset < num_requests; ++offset) {
2488 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
2489 						   offset * num_io_blocks, num_io_blocks, 0);
2490 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2491 	}
2492 
2493 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
2494 	CU_ASSERT_EQUAL(rc, 0);
2495 	num_completed = stub_complete_io(num_requests);
2496 	CU_ASSERT_EQUAL(num_completed, num_requests);
2497 
2498 	/* Check that the splitting is correct if bdev has interleaved metadata */
2499 	bdev->md_interleave = true;
2500 	bdev->md_len = 64;
2501 	bdev->blocklen = 4096 + 64;
2502 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
2503 
2504 	num_requests = offset = 0;
2505 	while (offset < num_blocks) {
2506 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
2507 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
2508 						   offset, num_io_blocks, 0);
2509 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2510 		offset += num_io_blocks;
2511 		num_requests++;
2512 	}
2513 
2514 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
2515 	CU_ASSERT_EQUAL(rc, 0);
2516 	num_completed = stub_complete_io(num_requests);
2517 	CU_ASSERT_EQUAL(num_completed, num_requests);
2518 	num_completed = stub_complete_io(num_requests);
2519 	assert(num_completed == 0);
2520 
2521 	/* Check the the same for separate metadata buffer */
2522 	bdev->md_interleave = false;
2523 	bdev->md_len = 64;
2524 	bdev->blocklen = 4096;
2525 
2526 	num_requests = offset = 0;
2527 	while (offset < num_blocks) {
2528 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
2529 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
2530 						   offset, num_io_blocks, 0);
2531 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
2532 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2533 		offset += num_io_blocks;
2534 		num_requests++;
2535 	}
2536 
2537 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
2538 	CU_ASSERT_EQUAL(rc, 0);
2539 	num_completed = stub_complete_io(num_requests);
2540 	CU_ASSERT_EQUAL(num_completed, num_requests);
2541 
2542 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
2543 	spdk_put_io_channel(ioch);
2544 	spdk_bdev_close(desc);
2545 	free_bdev(bdev);
2546 	spdk_bdev_finish(bdev_fini_cb, NULL);
2547 	poll_threads();
2548 }
2549 
2550 static void
2551 bdev_open_while_hotremove(void)
2552 {
2553 	struct spdk_bdev *bdev;
2554 	struct spdk_bdev_desc *desc[2] = {};
2555 	int rc;
2556 
2557 	bdev = allocate_bdev("bdev");
2558 
2559 	rc = spdk_bdev_open(bdev, false, NULL, NULL, &desc[0]);
2560 	CU_ASSERT(rc == 0);
2561 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
2562 
2563 	spdk_bdev_unregister(bdev, NULL, NULL);
2564 
2565 	rc = spdk_bdev_open(bdev, false, NULL, NULL, &desc[1]);
2566 	CU_ASSERT(rc == -ENODEV);
2567 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
2568 
2569 	spdk_bdev_close(desc[0]);
2570 	free_bdev(bdev);
2571 }
2572 
2573 static void
2574 bdev_close_while_hotremove(void)
2575 {
2576 	struct spdk_bdev *bdev;
2577 	struct spdk_bdev_desc *desc = NULL;
2578 	int rc = 0;
2579 
2580 	bdev = allocate_bdev("bdev");
2581 
2582 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
2583 	CU_ASSERT_EQUAL(rc, 0);
2584 
2585 	/* Simulate hot-unplug by unregistering bdev */
2586 	g_event_type1 = 0xFF;
2587 	g_unregister_arg = NULL;
2588 	g_unregister_rc = -1;
2589 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
2590 	/* Close device while remove event is in flight */
2591 	spdk_bdev_close(desc);
2592 
2593 	/* Ensure that unregister callback is delayed */
2594 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
2595 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
2596 
2597 	poll_threads();
2598 
2599 	/* Event callback shall not be issued because device was closed */
2600 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
2601 	/* Unregister callback is issued */
2602 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
2603 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
2604 
2605 	free_bdev(bdev);
2606 }
2607 
2608 static void
2609 bdev_open_ext(void)
2610 {
2611 	struct spdk_bdev *bdev;
2612 	struct spdk_bdev_desc *desc1 = NULL;
2613 	struct spdk_bdev_desc *desc2 = NULL;
2614 	int rc = 0;
2615 
2616 	bdev = allocate_bdev("bdev");
2617 
2618 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
2619 	CU_ASSERT_EQUAL(rc, -EINVAL);
2620 
2621 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
2622 	CU_ASSERT_EQUAL(rc, 0);
2623 
2624 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
2625 	CU_ASSERT_EQUAL(rc, 0);
2626 
2627 	g_event_type1 = 0xFF;
2628 	g_event_type2 = 0xFF;
2629 
2630 	/* Simulate hot-unplug by unregistering bdev */
2631 	spdk_bdev_unregister(bdev, NULL, NULL);
2632 	poll_threads();
2633 
2634 	/* Check if correct events have been triggered in event callback fn */
2635 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
2636 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
2637 
2638 	free_bdev(bdev);
2639 	poll_threads();
2640 }
2641 
2642 struct timeout_io_cb_arg {
2643 	struct iovec iov;
2644 	uint8_t type;
2645 };
2646 
2647 static int
2648 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
2649 {
2650 	struct spdk_bdev_io *bdev_io;
2651 	int n = 0;
2652 
2653 	if (!ch) {
2654 		return -1;
2655 	}
2656 
2657 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
2658 		n++;
2659 	}
2660 
2661 	return n;
2662 }
2663 
2664 static void
2665 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
2666 {
2667 	struct timeout_io_cb_arg *ctx = cb_arg;
2668 
2669 	ctx->type = bdev_io->type;
2670 	ctx->iov.iov_base = bdev_io->iov.iov_base;
2671 	ctx->iov.iov_len = bdev_io->iov.iov_len;
2672 }
2673 
2674 static void
2675 bdev_set_io_timeout(void)
2676 {
2677 	struct spdk_bdev *bdev;
2678 	struct spdk_bdev_desc *desc = NULL;
2679 	struct spdk_io_channel *io_ch = NULL;
2680 	struct spdk_bdev_channel *bdev_ch = NULL;
2681 	struct timeout_io_cb_arg cb_arg;
2682 
2683 	spdk_bdev_initialize(bdev_init_cb, NULL);
2684 
2685 	bdev = allocate_bdev("bdev");
2686 
2687 	CU_ASSERT(spdk_bdev_open(bdev, true, NULL, NULL, &desc) == 0);
2688 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2689 	io_ch = spdk_bdev_get_io_channel(desc);
2690 	CU_ASSERT(io_ch != NULL);
2691 
2692 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
2693 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
2694 
2695 	/* This is the part1.
2696 	 * We will check the bdev_ch->io_submitted list
2697 	 * TO make sure that it can link IOs and only the user submitted IOs
2698 	 */
2699 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
2700 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
2701 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
2702 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
2703 	stub_complete_io(1);
2704 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
2705 	stub_complete_io(1);
2706 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
2707 
2708 	/* Split IO */
2709 	bdev->optimal_io_boundary = 16;
2710 	bdev->split_on_optimal_io_boundary = true;
2711 
2712 	/* Now test that a single-vector command is split correctly.
2713 	 * Offset 14, length 8, payload 0xF000
2714 	 *  Child - Offset 14, length 2, payload 0xF000
2715 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
2716 	 *
2717 	 * Set up the expected values before calling spdk_bdev_read_blocks
2718 	 */
2719 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
2720 	/* We count all submitted IOs including IO that are generated by splitting. */
2721 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
2722 	stub_complete_io(1);
2723 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
2724 	stub_complete_io(1);
2725 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
2726 
2727 	/* Also include the reset IO */
2728 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
2729 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
2730 	poll_threads();
2731 	stub_complete_io(1);
2732 	poll_threads();
2733 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
2734 
2735 	/* This is part2
2736 	 * Test the desc timeout poller register
2737 	 */
2738 
2739 	/* Successfully set the timeout */
2740 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
2741 	CU_ASSERT(desc->io_timeout_poller != NULL);
2742 	CU_ASSERT(desc->timeout_in_sec == 30);
2743 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
2744 	CU_ASSERT(desc->cb_arg == &cb_arg);
2745 
2746 	/* Change the timeout limit */
2747 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
2748 	CU_ASSERT(desc->io_timeout_poller != NULL);
2749 	CU_ASSERT(desc->timeout_in_sec == 20);
2750 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
2751 	CU_ASSERT(desc->cb_arg == &cb_arg);
2752 
2753 	/* Disable the timeout */
2754 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
2755 	CU_ASSERT(desc->io_timeout_poller == NULL);
2756 
2757 	/* This the part3
2758 	 * We will test to catch timeout IO and check whether the IO is
2759 	 * the submitted one.
2760 	 */
2761 	memset(&cb_arg, 0, sizeof(cb_arg));
2762 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
2763 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
2764 
2765 	/* Don't reach the limit */
2766 	spdk_delay_us(15 * spdk_get_ticks_hz());
2767 	poll_threads();
2768 	CU_ASSERT(cb_arg.type == 0);
2769 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
2770 	CU_ASSERT(cb_arg.iov.iov_len == 0);
2771 
2772 	/* 15 + 15 = 30 reach the limit */
2773 	spdk_delay_us(15 * spdk_get_ticks_hz());
2774 	poll_threads();
2775 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
2776 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
2777 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
2778 	stub_complete_io(1);
2779 
2780 	/* Use the same split IO above and check the IO */
2781 	memset(&cb_arg, 0, sizeof(cb_arg));
2782 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
2783 
2784 	/* The first child complete in time */
2785 	spdk_delay_us(15 * spdk_get_ticks_hz());
2786 	poll_threads();
2787 	stub_complete_io(1);
2788 	CU_ASSERT(cb_arg.type == 0);
2789 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
2790 	CU_ASSERT(cb_arg.iov.iov_len == 0);
2791 
2792 	/* The second child reach the limit */
2793 	spdk_delay_us(15 * spdk_get_ticks_hz());
2794 	poll_threads();
2795 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
2796 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
2797 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
2798 	stub_complete_io(1);
2799 
2800 	/* Also include the reset IO */
2801 	memset(&cb_arg, 0, sizeof(cb_arg));
2802 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
2803 	spdk_delay_us(30 * spdk_get_ticks_hz());
2804 	poll_threads();
2805 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
2806 	stub_complete_io(1);
2807 	poll_threads();
2808 
2809 	spdk_put_io_channel(io_ch);
2810 	spdk_bdev_close(desc);
2811 	free_bdev(bdev);
2812 	spdk_bdev_finish(bdev_fini_cb, NULL);
2813 	poll_threads();
2814 }
2815 
2816 static void
2817 lba_range_overlap(void)
2818 {
2819 	struct lba_range r1, r2;
2820 
2821 	r1.offset = 100;
2822 	r1.length = 50;
2823 
2824 	r2.offset = 0;
2825 	r2.length = 1;
2826 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
2827 
2828 	r2.offset = 0;
2829 	r2.length = 100;
2830 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
2831 
2832 	r2.offset = 0;
2833 	r2.length = 110;
2834 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2835 
2836 	r2.offset = 100;
2837 	r2.length = 10;
2838 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2839 
2840 	r2.offset = 110;
2841 	r2.length = 20;
2842 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2843 
2844 	r2.offset = 140;
2845 	r2.length = 150;
2846 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2847 
2848 	r2.offset = 130;
2849 	r2.length = 200;
2850 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2851 
2852 	r2.offset = 150;
2853 	r2.length = 100;
2854 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
2855 
2856 	r2.offset = 110;
2857 	r2.length = 0;
2858 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
2859 }
2860 
2861 static bool g_lock_lba_range_done;
2862 static bool g_unlock_lba_range_done;
2863 
2864 static void
2865 lock_lba_range_done(void *ctx, int status)
2866 {
2867 	g_lock_lba_range_done = true;
2868 }
2869 
2870 static void
2871 unlock_lba_range_done(void *ctx, int status)
2872 {
2873 	g_unlock_lba_range_done = true;
2874 }
2875 
2876 static void
2877 lock_lba_range_check_ranges(void)
2878 {
2879 	struct spdk_bdev *bdev;
2880 	struct spdk_bdev_desc *desc = NULL;
2881 	struct spdk_io_channel *io_ch;
2882 	struct spdk_bdev_channel *channel;
2883 	struct lba_range *range;
2884 	int ctx1;
2885 	int rc;
2886 
2887 	spdk_bdev_initialize(bdev_init_cb, NULL);
2888 
2889 	bdev = allocate_bdev("bdev0");
2890 
2891 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
2892 	CU_ASSERT(rc == 0);
2893 	CU_ASSERT(desc != NULL);
2894 	io_ch = spdk_bdev_get_io_channel(desc);
2895 	CU_ASSERT(io_ch != NULL);
2896 	channel = spdk_io_channel_get_ctx(io_ch);
2897 
2898 	g_lock_lba_range_done = false;
2899 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
2900 	CU_ASSERT(rc == 0);
2901 	poll_threads();
2902 
2903 	CU_ASSERT(g_lock_lba_range_done == true);
2904 	range = TAILQ_FIRST(&channel->locked_ranges);
2905 	SPDK_CU_ASSERT_FATAL(range != NULL);
2906 	CU_ASSERT(range->offset == 20);
2907 	CU_ASSERT(range->length == 10);
2908 	CU_ASSERT(range->owner_ch == channel);
2909 
2910 	/* Unlocks must exactly match a lock. */
2911 	g_unlock_lba_range_done = false;
2912 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
2913 	CU_ASSERT(rc == -EINVAL);
2914 	CU_ASSERT(g_unlock_lba_range_done == false);
2915 
2916 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
2917 	CU_ASSERT(rc == 0);
2918 	spdk_delay_us(100);
2919 	poll_threads();
2920 
2921 	CU_ASSERT(g_unlock_lba_range_done == true);
2922 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
2923 
2924 	spdk_put_io_channel(io_ch);
2925 	spdk_bdev_close(desc);
2926 	free_bdev(bdev);
2927 	spdk_bdev_finish(bdev_fini_cb, NULL);
2928 	poll_threads();
2929 }
2930 
2931 static void
2932 lock_lba_range_with_io_outstanding(void)
2933 {
2934 	struct spdk_bdev *bdev;
2935 	struct spdk_bdev_desc *desc = NULL;
2936 	struct spdk_io_channel *io_ch;
2937 	struct spdk_bdev_channel *channel;
2938 	struct lba_range *range;
2939 	char buf[4096];
2940 	int ctx1;
2941 	int rc;
2942 
2943 	spdk_bdev_initialize(bdev_init_cb, NULL);
2944 
2945 	bdev = allocate_bdev("bdev0");
2946 
2947 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
2948 	CU_ASSERT(rc == 0);
2949 	CU_ASSERT(desc != NULL);
2950 	io_ch = spdk_bdev_get_io_channel(desc);
2951 	CU_ASSERT(io_ch != NULL);
2952 	channel = spdk_io_channel_get_ctx(io_ch);
2953 
2954 	g_io_done = false;
2955 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
2956 	CU_ASSERT(rc == 0);
2957 
2958 	g_lock_lba_range_done = false;
2959 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
2960 	CU_ASSERT(rc == 0);
2961 	poll_threads();
2962 
2963 	/* The lock should immediately become valid, since there are no outstanding
2964 	 * write I/O.
2965 	 */
2966 	CU_ASSERT(g_io_done == false);
2967 	CU_ASSERT(g_lock_lba_range_done == true);
2968 	range = TAILQ_FIRST(&channel->locked_ranges);
2969 	SPDK_CU_ASSERT_FATAL(range != NULL);
2970 	CU_ASSERT(range->offset == 20);
2971 	CU_ASSERT(range->length == 10);
2972 	CU_ASSERT(range->owner_ch == channel);
2973 	CU_ASSERT(range->locked_ctx == &ctx1);
2974 
2975 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
2976 	CU_ASSERT(rc == 0);
2977 	stub_complete_io(1);
2978 	spdk_delay_us(100);
2979 	poll_threads();
2980 
2981 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
2982 
2983 	/* Now try again, but with a write I/O. */
2984 	g_io_done = false;
2985 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
2986 	CU_ASSERT(rc == 0);
2987 
2988 	g_lock_lba_range_done = false;
2989 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
2990 	CU_ASSERT(rc == 0);
2991 	poll_threads();
2992 
2993 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
2994 	 * But note that the range should be on the channel's locked_list, to make sure no
2995 	 * new write I/O are started.
2996 	 */
2997 	CU_ASSERT(g_io_done == false);
2998 	CU_ASSERT(g_lock_lba_range_done == false);
2999 	range = TAILQ_FIRST(&channel->locked_ranges);
3000 	SPDK_CU_ASSERT_FATAL(range != NULL);
3001 	CU_ASSERT(range->offset == 20);
3002 	CU_ASSERT(range->length == 10);
3003 
3004 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
3005 	 * our callback was invoked).
3006 	 */
3007 	stub_complete_io(1);
3008 	spdk_delay_us(100);
3009 	poll_threads();
3010 	CU_ASSERT(g_io_done == true);
3011 	CU_ASSERT(g_lock_lba_range_done == true);
3012 
3013 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
3014 	CU_ASSERT(rc == 0);
3015 	poll_threads();
3016 
3017 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
3018 
3019 	spdk_put_io_channel(io_ch);
3020 	spdk_bdev_close(desc);
3021 	free_bdev(bdev);
3022 	spdk_bdev_finish(bdev_fini_cb, NULL);
3023 	poll_threads();
3024 }
3025 
3026 static void
3027 lock_lba_range_overlapped(void)
3028 {
3029 	struct spdk_bdev *bdev;
3030 	struct spdk_bdev_desc *desc = NULL;
3031 	struct spdk_io_channel *io_ch;
3032 	struct spdk_bdev_channel *channel;
3033 	struct lba_range *range;
3034 	int ctx1;
3035 	int rc;
3036 
3037 	spdk_bdev_initialize(bdev_init_cb, NULL);
3038 
3039 	bdev = allocate_bdev("bdev0");
3040 
3041 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
3042 	CU_ASSERT(rc == 0);
3043 	CU_ASSERT(desc != NULL);
3044 	io_ch = spdk_bdev_get_io_channel(desc);
3045 	CU_ASSERT(io_ch != NULL);
3046 	channel = spdk_io_channel_get_ctx(io_ch);
3047 
3048 	/* Lock range 20-29. */
3049 	g_lock_lba_range_done = false;
3050 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3051 	CU_ASSERT(rc == 0);
3052 	poll_threads();
3053 
3054 	CU_ASSERT(g_lock_lba_range_done == true);
3055 	range = TAILQ_FIRST(&channel->locked_ranges);
3056 	SPDK_CU_ASSERT_FATAL(range != NULL);
3057 	CU_ASSERT(range->offset == 20);
3058 	CU_ASSERT(range->length == 10);
3059 
3060 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
3061 	 * 20-29.
3062 	 */
3063 	g_lock_lba_range_done = false;
3064 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
3065 	CU_ASSERT(rc == 0);
3066 	poll_threads();
3067 
3068 	CU_ASSERT(g_lock_lba_range_done == false);
3069 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
3070 	SPDK_CU_ASSERT_FATAL(range != NULL);
3071 	CU_ASSERT(range->offset == 25);
3072 	CU_ASSERT(range->length == 15);
3073 
3074 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
3075 	 * no longer overlaps with an active lock.
3076 	 */
3077 	g_unlock_lba_range_done = false;
3078 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
3079 	CU_ASSERT(rc == 0);
3080 	poll_threads();
3081 
3082 	CU_ASSERT(g_unlock_lba_range_done == true);
3083 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
3084 	range = TAILQ_FIRST(&channel->locked_ranges);
3085 	SPDK_CU_ASSERT_FATAL(range != NULL);
3086 	CU_ASSERT(range->offset == 25);
3087 	CU_ASSERT(range->length == 15);
3088 
3089 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
3090 	 * currently active 25-39 lock.
3091 	 */
3092 	g_lock_lba_range_done = false;
3093 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
3094 	CU_ASSERT(rc == 0);
3095 	poll_threads();
3096 
3097 	CU_ASSERT(g_lock_lba_range_done == true);
3098 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
3099 	SPDK_CU_ASSERT_FATAL(range != NULL);
3100 	range = TAILQ_NEXT(range, tailq);
3101 	SPDK_CU_ASSERT_FATAL(range != NULL);
3102 	CU_ASSERT(range->offset == 40);
3103 	CU_ASSERT(range->length == 20);
3104 
3105 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
3106 	g_lock_lba_range_done = false;
3107 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
3108 	CU_ASSERT(rc == 0);
3109 	poll_threads();
3110 
3111 	CU_ASSERT(g_lock_lba_range_done == false);
3112 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
3113 	SPDK_CU_ASSERT_FATAL(range != NULL);
3114 	CU_ASSERT(range->offset == 35);
3115 	CU_ASSERT(range->length == 10);
3116 
3117 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
3118 	 * the 40-59 lock is still active.
3119 	 */
3120 	g_unlock_lba_range_done = false;
3121 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
3122 	CU_ASSERT(rc == 0);
3123 	poll_threads();
3124 
3125 	CU_ASSERT(g_unlock_lba_range_done == true);
3126 	CU_ASSERT(g_lock_lba_range_done == false);
3127 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
3128 	SPDK_CU_ASSERT_FATAL(range != NULL);
3129 	CU_ASSERT(range->offset == 35);
3130 	CU_ASSERT(range->length == 10);
3131 
3132 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
3133 	 * no longer any active overlapping locks.
3134 	 */
3135 	g_unlock_lba_range_done = false;
3136 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
3137 	CU_ASSERT(rc == 0);
3138 	poll_threads();
3139 
3140 	CU_ASSERT(g_unlock_lba_range_done == true);
3141 	CU_ASSERT(g_lock_lba_range_done == true);
3142 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
3143 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
3144 	SPDK_CU_ASSERT_FATAL(range != NULL);
3145 	CU_ASSERT(range->offset == 35);
3146 	CU_ASSERT(range->length == 10);
3147 
3148 	/* Finally, unlock 35-44. */
3149 	g_unlock_lba_range_done = false;
3150 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
3151 	CU_ASSERT(rc == 0);
3152 	poll_threads();
3153 
3154 	CU_ASSERT(g_unlock_lba_range_done == true);
3155 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
3156 
3157 	spdk_put_io_channel(io_ch);
3158 	spdk_bdev_close(desc);
3159 	free_bdev(bdev);
3160 	spdk_bdev_finish(bdev_fini_cb, NULL);
3161 	poll_threads();
3162 }
3163 
3164 static void
3165 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
3166 {
3167 	g_abort_done = true;
3168 	g_abort_status = bdev_io->internal.status;
3169 	spdk_bdev_free_io(bdev_io);
3170 }
3171 
3172 static void
3173 bdev_io_abort(void)
3174 {
3175 	struct spdk_bdev *bdev;
3176 	struct spdk_bdev_desc *desc = NULL;
3177 	struct spdk_io_channel *io_ch;
3178 	struct spdk_bdev_channel *channel;
3179 	struct spdk_bdev_mgmt_channel *mgmt_ch;
3180 	struct spdk_bdev_opts bdev_opts = {
3181 		.bdev_io_pool_size = 7,
3182 		.bdev_io_cache_size = 2,
3183 	};
3184 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
3185 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
3186 	int rc;
3187 
3188 	rc = spdk_bdev_set_opts(&bdev_opts);
3189 	CU_ASSERT(rc == 0);
3190 	spdk_bdev_initialize(bdev_init_cb, NULL);
3191 
3192 	bdev = allocate_bdev("bdev0");
3193 
3194 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
3195 	CU_ASSERT(rc == 0);
3196 	CU_ASSERT(desc != NULL);
3197 	io_ch = spdk_bdev_get_io_channel(desc);
3198 	CU_ASSERT(io_ch != NULL);
3199 	channel = spdk_io_channel_get_ctx(io_ch);
3200 	mgmt_ch = channel->shared_resource->mgmt_ch;
3201 
3202 	g_abort_done = false;
3203 
3204 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
3205 
3206 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3207 	CU_ASSERT(rc == -ENOTSUP);
3208 
3209 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
3210 
3211 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
3212 	CU_ASSERT(rc == 0);
3213 	CU_ASSERT(g_abort_done == true);
3214 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
3215 
3216 	/* Test the case that the target I/O was successfully aborted. */
3217 	g_io_done = false;
3218 
3219 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
3220 	CU_ASSERT(rc == 0);
3221 	CU_ASSERT(g_io_done == false);
3222 
3223 	g_abort_done = false;
3224 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3225 
3226 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3227 	CU_ASSERT(rc == 0);
3228 	CU_ASSERT(g_io_done == true);
3229 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3230 	stub_complete_io(1);
3231 	CU_ASSERT(g_abort_done == true);
3232 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3233 
3234 	/* Test the case that the target I/O was not aborted because it completed
3235 	 * in the middle of execution of the abort.
3236 	 */
3237 	g_io_done = false;
3238 
3239 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
3240 	CU_ASSERT(rc == 0);
3241 	CU_ASSERT(g_io_done == false);
3242 
3243 	g_abort_done = false;
3244 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
3245 
3246 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3247 	CU_ASSERT(rc == 0);
3248 	CU_ASSERT(g_io_done == false);
3249 
3250 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3251 	stub_complete_io(1);
3252 	CU_ASSERT(g_io_done == true);
3253 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3254 
3255 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
3256 	stub_complete_io(1);
3257 	CU_ASSERT(g_abort_done == true);
3258 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3259 
3260 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3261 
3262 	bdev->optimal_io_boundary = 16;
3263 	bdev->split_on_optimal_io_boundary = true;
3264 
3265 	/* Test that a single-vector command which is split is aborted correctly.
3266 	 * Offset 14, length 8, payload 0xF000
3267 	 *  Child - Offset 14, length 2, payload 0xF000
3268 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
3269 	 */
3270 	g_io_done = false;
3271 
3272 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
3273 	CU_ASSERT(rc == 0);
3274 	CU_ASSERT(g_io_done == false);
3275 
3276 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3277 
3278 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3279 
3280 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3281 	CU_ASSERT(rc == 0);
3282 	CU_ASSERT(g_io_done == true);
3283 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3284 	stub_complete_io(2);
3285 	CU_ASSERT(g_abort_done == true);
3286 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3287 
3288 	/* Test that a multi-vector command that needs to be split by strip and then
3289 	 * needs to be split is aborted correctly. Abort is requested before the second
3290 	 * child I/O was submitted. The parent I/O should complete with failure without
3291 	 * submitting the second child I/O.
3292 	 */
3293 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
3294 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
3295 		iov[i].iov_len = 512;
3296 	}
3297 
3298 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
3299 	g_io_done = false;
3300 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
3301 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
3302 	CU_ASSERT(rc == 0);
3303 	CU_ASSERT(g_io_done == false);
3304 
3305 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3306 
3307 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3308 
3309 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3310 	CU_ASSERT(rc == 0);
3311 	CU_ASSERT(g_io_done == true);
3312 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3313 	stub_complete_io(1);
3314 	CU_ASSERT(g_abort_done == true);
3315 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3316 
3317 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3318 
3319 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3320 
3321 	bdev->optimal_io_boundary = 16;
3322 	g_io_done = false;
3323 
3324 	/* Test that a ingle-vector command which is split is aborted correctly.
3325 	 * Differently from the above, the child abort request will be submitted
3326 	 * sequentially due to the capacity of spdk_bdev_io.
3327 	 */
3328 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
3329 	CU_ASSERT(rc == 0);
3330 	CU_ASSERT(g_io_done == false);
3331 
3332 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
3333 
3334 	g_abort_done = false;
3335 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3336 
3337 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3338 	CU_ASSERT(rc == 0);
3339 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
3340 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
3341 
3342 	stub_complete_io(1);
3343 	CU_ASSERT(g_io_done == true);
3344 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3345 	stub_complete_io(3);
3346 	CU_ASSERT(g_abort_done == true);
3347 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3348 
3349 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3350 
3351 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3352 
3353 	spdk_put_io_channel(io_ch);
3354 	spdk_bdev_close(desc);
3355 	free_bdev(bdev);
3356 	spdk_bdev_finish(bdev_fini_cb, NULL);
3357 	poll_threads();
3358 }
3359 
3360 int
3361 main(int argc, char **argv)
3362 {
3363 	CU_pSuite		suite = NULL;
3364 	unsigned int		num_failures;
3365 
3366 	CU_set_error_action(CUEA_ABORT);
3367 	CU_initialize_registry();
3368 
3369 	suite = CU_add_suite("bdev", null_init, null_clean);
3370 
3371 	CU_ADD_TEST(suite, bytes_to_blocks_test);
3372 	CU_ADD_TEST(suite, num_blocks_test);
3373 	CU_ADD_TEST(suite, io_valid_test);
3374 	CU_ADD_TEST(suite, open_write_test);
3375 	CU_ADD_TEST(suite, alias_add_del_test);
3376 	CU_ADD_TEST(suite, get_device_stat_test);
3377 	CU_ADD_TEST(suite, bdev_io_types_test);
3378 	CU_ADD_TEST(suite, bdev_io_wait_test);
3379 	CU_ADD_TEST(suite, bdev_io_spans_boundary_test);
3380 	CU_ADD_TEST(suite, bdev_io_split_test);
3381 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
3382 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
3383 	CU_ADD_TEST(suite, bdev_io_alignment);
3384 	CU_ADD_TEST(suite, bdev_histograms);
3385 	CU_ADD_TEST(suite, bdev_write_zeroes);
3386 	CU_ADD_TEST(suite, bdev_compare_and_write);
3387 	CU_ADD_TEST(suite, bdev_compare);
3388 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
3389 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
3390 	CU_ADD_TEST(suite, bdev_open_ext);
3391 	CU_ADD_TEST(suite, bdev_set_io_timeout);
3392 	CU_ADD_TEST(suite, lba_range_overlap);
3393 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
3394 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
3395 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
3396 	CU_ADD_TEST(suite, bdev_io_abort);
3397 
3398 	allocate_cores(1);
3399 	allocate_threads(1);
3400 	set_thread(0);
3401 
3402 	CU_basic_set_mode(CU_BRM_VERBOSE);
3403 	CU_basic_run_tests();
3404 	num_failures = CU_get_number_of_failures();
3405 	CU_cleanup_registry();
3406 
3407 	free_threads();
3408 	free_cores();
3409 
3410 	return num_failures;
3411 }
3412