xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision 57fd99b91e71a4baa5543e19ff83958dc99d4dac)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2017 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk_internal/cunit.h"
8 
9 #include "common/lib/ut_multithread.c"
10 #include "unit/lib/json_mock.c"
11 
12 #include "spdk/config.h"
13 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
14 #undef SPDK_CONFIG_VTUNE
15 
16 #include "bdev/bdev.c"
17 
18 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
19 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
20 DEFINE_STUB(spdk_memory_domain_get_dma_device_id, const char *, (struct spdk_memory_domain *domain),
21 	    "test_domain");
22 DEFINE_STUB(spdk_memory_domain_get_dma_device_type, enum spdk_dma_device_type,
23 	    (struct spdk_memory_domain *domain), 0);
24 DEFINE_STUB_V(spdk_accel_sequence_finish,
25 	      (struct spdk_accel_sequence *seq, spdk_accel_completion_cb cb_fn, void *cb_arg));
26 DEFINE_STUB_V(spdk_accel_sequence_abort, (struct spdk_accel_sequence *seq));
27 DEFINE_STUB_V(spdk_accel_sequence_reverse, (struct spdk_accel_sequence *seq));
28 DEFINE_STUB(spdk_accel_append_copy, int,
29 	    (struct spdk_accel_sequence **seq, struct spdk_io_channel *ch, struct iovec *dst_iovs,
30 	     uint32_t dst_iovcnt, struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
31 	     struct iovec *src_iovs, uint32_t src_iovcnt, struct spdk_memory_domain *src_domain,
32 	     void *src_domain_ctx, spdk_accel_step_cb cb_fn, void *cb_arg), 0);
33 DEFINE_STUB(spdk_accel_get_memory_domain, struct spdk_memory_domain *, (void), NULL);
34 
35 static bool g_memory_domain_pull_data_called;
36 static bool g_memory_domain_push_data_called;
37 static int g_accel_io_device;
38 
39 DEFINE_RETURN_MOCK(spdk_memory_domain_pull_data, int);
40 int
41 spdk_memory_domain_pull_data(struct spdk_memory_domain *src_domain, void *src_domain_ctx,
42 			     struct iovec *src_iov, uint32_t src_iov_cnt, struct iovec *dst_iov, uint32_t dst_iov_cnt,
43 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
44 {
45 	g_memory_domain_pull_data_called = true;
46 	HANDLE_RETURN_MOCK(spdk_memory_domain_pull_data);
47 	cpl_cb(cpl_cb_arg, 0);
48 	return 0;
49 }
50 
51 DEFINE_RETURN_MOCK(spdk_memory_domain_push_data, int);
52 int
53 spdk_memory_domain_push_data(struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
54 			     struct iovec *dst_iov, uint32_t dst_iovcnt, struct iovec *src_iov, uint32_t src_iovcnt,
55 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
56 {
57 	g_memory_domain_push_data_called = true;
58 	HANDLE_RETURN_MOCK(spdk_memory_domain_push_data);
59 	cpl_cb(cpl_cb_arg, 0);
60 	return 0;
61 }
62 
63 struct spdk_io_channel *
64 spdk_accel_get_io_channel(void)
65 {
66 	return spdk_get_io_channel(&g_accel_io_device);
67 }
68 
69 int g_status;
70 int g_count;
71 enum spdk_bdev_event_type g_event_type1;
72 enum spdk_bdev_event_type g_event_type2;
73 enum spdk_bdev_event_type g_event_type3;
74 enum spdk_bdev_event_type g_event_type4;
75 struct spdk_histogram_data *g_histogram;
76 void *g_unregister_arg;
77 int g_unregister_rc;
78 
79 void
80 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
81 			 int *sc, int *sk, int *asc, int *ascq)
82 {
83 }
84 
85 static int
86 ut_accel_ch_create_cb(void *io_device, void *ctx)
87 {
88 	return 0;
89 }
90 
91 static void
92 ut_accel_ch_destroy_cb(void *io_device, void *ctx)
93 {
94 }
95 
96 static int
97 ut_bdev_setup(void)
98 {
99 	spdk_io_device_register(&g_accel_io_device, ut_accel_ch_create_cb,
100 				ut_accel_ch_destroy_cb, 0, NULL);
101 	return 0;
102 }
103 
104 static int
105 ut_bdev_teardown(void)
106 {
107 	spdk_io_device_unregister(&g_accel_io_device, NULL);
108 
109 	return 0;
110 }
111 
112 static int
113 stub_destruct(void *ctx)
114 {
115 	return 0;
116 }
117 
118 struct ut_expected_io {
119 	uint8_t				type;
120 	uint64_t			offset;
121 	uint64_t			src_offset;
122 	uint64_t			length;
123 	int				iovcnt;
124 	struct iovec			iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
125 	void				*md_buf;
126 	TAILQ_ENTRY(ut_expected_io)	link;
127 };
128 
129 struct bdev_ut_io {
130 	TAILQ_ENTRY(bdev_ut_io)		link;
131 };
132 
133 struct bdev_ut_channel {
134 	TAILQ_HEAD(, bdev_ut_io)	outstanding_io;
135 	uint32_t			outstanding_io_count;
136 	TAILQ_HEAD(, ut_expected_io)	expected_io;
137 };
138 
139 static bool g_io_done;
140 static struct spdk_bdev_io *g_bdev_io;
141 static enum spdk_bdev_io_status g_io_status;
142 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
143 static uint32_t g_bdev_ut_io_device;
144 static struct bdev_ut_channel *g_bdev_ut_channel;
145 static void *g_compare_read_buf;
146 static uint32_t g_compare_read_buf_len;
147 static void *g_compare_write_buf;
148 static uint32_t g_compare_write_buf_len;
149 static void *g_compare_md_buf;
150 static bool g_abort_done;
151 static enum spdk_bdev_io_status g_abort_status;
152 static void *g_zcopy_read_buf;
153 static uint32_t g_zcopy_read_buf_len;
154 static void *g_zcopy_write_buf;
155 static uint32_t g_zcopy_write_buf_len;
156 static struct spdk_bdev_io *g_zcopy_bdev_io;
157 static uint64_t g_seek_data_offset;
158 static uint64_t g_seek_hole_offset;
159 static uint64_t g_seek_offset;
160 
161 static struct ut_expected_io *
162 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
163 {
164 	struct ut_expected_io *expected_io;
165 
166 	expected_io = calloc(1, sizeof(*expected_io));
167 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
168 
169 	expected_io->type = type;
170 	expected_io->offset = offset;
171 	expected_io->length = length;
172 	expected_io->iovcnt = iovcnt;
173 
174 	return expected_io;
175 }
176 
177 static struct ut_expected_io *
178 ut_alloc_expected_copy_io(uint8_t type, uint64_t offset, uint64_t src_offset, uint64_t length)
179 {
180 	struct ut_expected_io *expected_io;
181 
182 	expected_io = calloc(1, sizeof(*expected_io));
183 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
184 
185 	expected_io->type = type;
186 	expected_io->offset = offset;
187 	expected_io->src_offset = src_offset;
188 	expected_io->length = length;
189 
190 	return expected_io;
191 }
192 
193 static void
194 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
195 {
196 	expected_io->iov[pos].iov_base = base;
197 	expected_io->iov[pos].iov_len = len;
198 }
199 
200 static void
201 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
202 {
203 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
204 	struct ut_expected_io *expected_io;
205 	struct iovec *iov, *expected_iov;
206 	struct spdk_bdev_io *bio_to_abort;
207 	struct bdev_ut_io *bio;
208 	int i;
209 
210 	g_bdev_io = bdev_io;
211 
212 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
213 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
214 
215 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
216 		CU_ASSERT(g_compare_read_buf_len == len);
217 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
218 		if (bdev_io->bdev->md_len && bdev_io->u.bdev.md_buf && g_compare_md_buf) {
219 			memcpy(bdev_io->u.bdev.md_buf, g_compare_md_buf,
220 			       bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks);
221 		}
222 	}
223 
224 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
225 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
226 
227 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
228 		CU_ASSERT(g_compare_write_buf_len == len);
229 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
230 	}
231 
232 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
233 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
234 
235 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
236 		CU_ASSERT(g_compare_read_buf_len == len);
237 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
238 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
239 		}
240 		if (bdev_io->u.bdev.md_buf &&
241 		    memcmp(bdev_io->u.bdev.md_buf, g_compare_md_buf,
242 			   bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks)) {
243 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
244 		}
245 	}
246 
247 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
248 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
249 			TAILQ_FOREACH(bio, &ch->outstanding_io, link) {
250 				bio_to_abort = spdk_bdev_io_from_ctx(bio);
251 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
252 					TAILQ_REMOVE(&ch->outstanding_io, bio, link);
253 					ch->outstanding_io_count--;
254 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
255 					break;
256 				}
257 			}
258 		}
259 	}
260 
261 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) {
262 		if (bdev_io->u.bdev.zcopy.start) {
263 			g_zcopy_bdev_io = bdev_io;
264 			if (bdev_io->u.bdev.zcopy.populate) {
265 				/* Start of a read */
266 				CU_ASSERT(g_zcopy_read_buf != NULL);
267 				CU_ASSERT(g_zcopy_read_buf_len > 0);
268 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_read_buf;
269 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_read_buf_len;
270 				bdev_io->u.bdev.iovcnt = 1;
271 			} else {
272 				/* Start of a write */
273 				CU_ASSERT(g_zcopy_write_buf != NULL);
274 				CU_ASSERT(g_zcopy_write_buf_len > 0);
275 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_write_buf;
276 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_write_buf_len;
277 				bdev_io->u.bdev.iovcnt = 1;
278 			}
279 		} else {
280 			if (bdev_io->u.bdev.zcopy.commit) {
281 				/* End of write */
282 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_write_buf);
283 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_write_buf_len);
284 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
285 				g_zcopy_write_buf = NULL;
286 				g_zcopy_write_buf_len = 0;
287 			} else {
288 				/* End of read */
289 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_read_buf);
290 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_read_buf_len);
291 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
292 				g_zcopy_read_buf = NULL;
293 				g_zcopy_read_buf_len = 0;
294 			}
295 		}
296 	}
297 
298 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_DATA) {
299 		bdev_io->u.bdev.seek.offset = g_seek_data_offset;
300 	}
301 
302 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_HOLE) {
303 		bdev_io->u.bdev.seek.offset = g_seek_hole_offset;
304 	}
305 
306 	TAILQ_INSERT_TAIL(&ch->outstanding_io, (struct bdev_ut_io *)bdev_io->driver_ctx, link);
307 	ch->outstanding_io_count++;
308 
309 	expected_io = TAILQ_FIRST(&ch->expected_io);
310 	if (expected_io == NULL) {
311 		return;
312 	}
313 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
314 
315 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
316 		CU_ASSERT(bdev_io->type == expected_io->type);
317 	}
318 
319 	if (expected_io->md_buf != NULL) {
320 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
321 	}
322 
323 	if (expected_io->length == 0) {
324 		free(expected_io);
325 		return;
326 	}
327 
328 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
329 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
330 	if (expected_io->type == SPDK_BDEV_IO_TYPE_COPY) {
331 		CU_ASSERT(expected_io->src_offset == bdev_io->u.bdev.copy.src_offset_blocks);
332 	}
333 
334 	if (expected_io->iovcnt == 0) {
335 		free(expected_io);
336 		/* UNMAP, WRITE_ZEROES, FLUSH and COPY don't have iovs, so we can just return now. */
337 		return;
338 	}
339 
340 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
341 	for (i = 0; i < expected_io->iovcnt; i++) {
342 		expected_iov = &expected_io->iov[i];
343 		if (bdev_io->internal.orig_iovcnt == 0) {
344 			iov = &bdev_io->u.bdev.iovs[i];
345 		} else {
346 			iov = bdev_io->internal.orig_iovs;
347 		}
348 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
349 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
350 	}
351 
352 	free(expected_io);
353 }
354 
355 static void
356 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
357 			       struct spdk_bdev_io *bdev_io, bool success)
358 {
359 	CU_ASSERT(success == true);
360 
361 	stub_submit_request(_ch, bdev_io);
362 }
363 
364 static void
365 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
366 {
367 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
368 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
369 }
370 
371 static uint32_t
372 stub_complete_io(uint32_t num_to_complete)
373 {
374 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
375 	struct bdev_ut_io *bio;
376 	struct spdk_bdev_io *bdev_io;
377 	static enum spdk_bdev_io_status io_status;
378 	uint32_t num_completed = 0;
379 
380 	while (num_completed < num_to_complete) {
381 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
382 			break;
383 		}
384 		bio = TAILQ_FIRST(&ch->outstanding_io);
385 		TAILQ_REMOVE(&ch->outstanding_io, bio, link);
386 		bdev_io = spdk_bdev_io_from_ctx(bio);
387 		ch->outstanding_io_count--;
388 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
389 			    g_io_exp_status;
390 		spdk_bdev_io_complete(bdev_io, io_status);
391 		num_completed++;
392 	}
393 
394 	return num_completed;
395 }
396 
397 static struct spdk_io_channel *
398 bdev_ut_get_io_channel(void *ctx)
399 {
400 	return spdk_get_io_channel(&g_bdev_ut_io_device);
401 }
402 
403 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
404 	[SPDK_BDEV_IO_TYPE_READ]		= true,
405 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
406 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
407 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
408 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
409 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
410 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
411 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
412 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
413 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
414 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
415 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
416 	[SPDK_BDEV_IO_TYPE_SEEK_HOLE]		= true,
417 	[SPDK_BDEV_IO_TYPE_SEEK_DATA]		= true,
418 	[SPDK_BDEV_IO_TYPE_COPY]		= true,
419 };
420 
421 static void
422 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
423 {
424 	g_io_types_supported[io_type] = enable;
425 }
426 
427 static bool
428 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
429 {
430 	return g_io_types_supported[io_type];
431 }
432 
433 static struct spdk_bdev_fn_table fn_table = {
434 	.destruct = stub_destruct,
435 	.submit_request = stub_submit_request,
436 	.get_io_channel = bdev_ut_get_io_channel,
437 	.io_type_supported = stub_io_type_supported,
438 };
439 
440 static int
441 bdev_ut_create_ch(void *io_device, void *ctx_buf)
442 {
443 	struct bdev_ut_channel *ch = ctx_buf;
444 
445 	CU_ASSERT(g_bdev_ut_channel == NULL);
446 	g_bdev_ut_channel = ch;
447 
448 	TAILQ_INIT(&ch->outstanding_io);
449 	ch->outstanding_io_count = 0;
450 	TAILQ_INIT(&ch->expected_io);
451 	return 0;
452 }
453 
454 static void
455 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
456 {
457 	CU_ASSERT(g_bdev_ut_channel != NULL);
458 	g_bdev_ut_channel = NULL;
459 }
460 
461 struct spdk_bdev_module bdev_ut_if;
462 
463 static int
464 bdev_ut_module_init(void)
465 {
466 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
467 				sizeof(struct bdev_ut_channel), NULL);
468 	spdk_bdev_module_init_done(&bdev_ut_if);
469 	return 0;
470 }
471 
472 static void
473 bdev_ut_module_fini(void)
474 {
475 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
476 }
477 
478 struct spdk_bdev_module bdev_ut_if = {
479 	.name = "bdev_ut",
480 	.module_init = bdev_ut_module_init,
481 	.module_fini = bdev_ut_module_fini,
482 	.async_init = true,
483 };
484 
485 static void vbdev_ut_examine_config(struct spdk_bdev *bdev);
486 static void vbdev_ut_examine_disk(struct spdk_bdev *bdev);
487 
488 static int
489 vbdev_ut_module_init(void)
490 {
491 	return 0;
492 }
493 
494 static void
495 vbdev_ut_module_fini(void)
496 {
497 }
498 
499 static int
500 vbdev_ut_get_ctx_size(void)
501 {
502 	return sizeof(struct bdev_ut_io);
503 }
504 
505 struct spdk_bdev_module vbdev_ut_if = {
506 	.name = "vbdev_ut",
507 	.module_init = vbdev_ut_module_init,
508 	.module_fini = vbdev_ut_module_fini,
509 	.examine_config = vbdev_ut_examine_config,
510 	.examine_disk = vbdev_ut_examine_disk,
511 	.get_ctx_size = vbdev_ut_get_ctx_size,
512 };
513 
514 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
515 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
516 
517 struct ut_examine_ctx {
518 	void (*examine_config)(struct spdk_bdev *bdev);
519 	void (*examine_disk)(struct spdk_bdev *bdev);
520 	uint32_t examine_config_count;
521 	uint32_t examine_disk_count;
522 };
523 
524 static void
525 vbdev_ut_examine_config(struct spdk_bdev *bdev)
526 {
527 	struct ut_examine_ctx *ctx = bdev->ctxt;
528 
529 	if (ctx != NULL) {
530 		ctx->examine_config_count++;
531 		if (ctx->examine_config != NULL) {
532 			ctx->examine_config(bdev);
533 		}
534 	}
535 
536 	spdk_bdev_module_examine_done(&vbdev_ut_if);
537 }
538 
539 static void
540 vbdev_ut_examine_disk(struct spdk_bdev *bdev)
541 {
542 	struct ut_examine_ctx *ctx = bdev->ctxt;
543 
544 	if (ctx != NULL) {
545 		ctx->examine_disk_count++;
546 		if (ctx->examine_disk != NULL) {
547 			ctx->examine_disk(bdev);
548 		}
549 	}
550 
551 	spdk_bdev_module_examine_done(&vbdev_ut_if);
552 }
553 
554 static void
555 bdev_init_cb(void *arg, int rc)
556 {
557 	CU_ASSERT(rc == 0);
558 }
559 
560 static void
561 bdev_fini_cb(void *arg)
562 {
563 }
564 
565 static void
566 ut_init_bdev(struct spdk_bdev_opts *opts)
567 {
568 	int rc;
569 
570 	if (opts != NULL) {
571 		rc = spdk_bdev_set_opts(opts);
572 		CU_ASSERT(rc == 0);
573 	}
574 	rc = spdk_iobuf_initialize();
575 	CU_ASSERT(rc == 0);
576 	spdk_bdev_initialize(bdev_init_cb, NULL);
577 	poll_threads();
578 }
579 
580 static void
581 ut_fini_bdev(void)
582 {
583 	spdk_bdev_finish(bdev_fini_cb, NULL);
584 	spdk_iobuf_finish(bdev_fini_cb, NULL);
585 	poll_threads();
586 }
587 
588 static struct spdk_bdev *
589 allocate_bdev_ctx(char *name, void *ctx)
590 {
591 	struct spdk_bdev *bdev;
592 	int rc;
593 
594 	bdev = calloc(1, sizeof(*bdev));
595 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
596 
597 	bdev->ctxt = ctx;
598 	bdev->name = name;
599 	bdev->fn_table = &fn_table;
600 	bdev->module = &bdev_ut_if;
601 	bdev->blockcnt = 1024;
602 	bdev->blocklen = 512;
603 
604 	spdk_uuid_generate(&bdev->uuid);
605 
606 	rc = spdk_bdev_register(bdev);
607 	poll_threads();
608 	CU_ASSERT(rc == 0);
609 
610 	return bdev;
611 }
612 
613 static struct spdk_bdev *
614 allocate_bdev(char *name)
615 {
616 	return allocate_bdev_ctx(name, NULL);
617 }
618 
619 static struct spdk_bdev *
620 allocate_vbdev(char *name)
621 {
622 	struct spdk_bdev *bdev;
623 	int rc;
624 
625 	bdev = calloc(1, sizeof(*bdev));
626 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
627 
628 	bdev->name = name;
629 	bdev->fn_table = &fn_table;
630 	bdev->module = &vbdev_ut_if;
631 	bdev->blockcnt = 1024;
632 	bdev->blocklen = 512;
633 
634 	rc = spdk_bdev_register(bdev);
635 	poll_threads();
636 	CU_ASSERT(rc == 0);
637 
638 	return bdev;
639 }
640 
641 static void
642 free_bdev(struct spdk_bdev *bdev)
643 {
644 	spdk_bdev_unregister(bdev, NULL, NULL);
645 	poll_threads();
646 	memset(bdev, 0xFF, sizeof(*bdev));
647 	free(bdev);
648 }
649 
650 static void
651 free_vbdev(struct spdk_bdev *bdev)
652 {
653 	spdk_bdev_unregister(bdev, NULL, NULL);
654 	poll_threads();
655 	memset(bdev, 0xFF, sizeof(*bdev));
656 	free(bdev);
657 }
658 
659 static void
660 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
661 {
662 	const char *bdev_name;
663 
664 	CU_ASSERT(bdev != NULL);
665 	CU_ASSERT(rc == 0);
666 	bdev_name = spdk_bdev_get_name(bdev);
667 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
668 
669 	free(stat);
670 
671 	*(bool *)cb_arg = true;
672 }
673 
674 static void
675 bdev_unregister_cb(void *cb_arg, int rc)
676 {
677 	g_unregister_arg = cb_arg;
678 	g_unregister_rc = rc;
679 }
680 
681 static void
682 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
683 {
684 }
685 
686 static void
687 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
688 {
689 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
690 
691 	g_event_type1 = type;
692 	if (SPDK_BDEV_EVENT_REMOVE == type) {
693 		spdk_bdev_close(desc);
694 	}
695 }
696 
697 static void
698 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
699 {
700 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
701 
702 	g_event_type2 = type;
703 	if (SPDK_BDEV_EVENT_REMOVE == type) {
704 		spdk_bdev_close(desc);
705 	}
706 }
707 
708 static void
709 bdev_open_cb3(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
710 {
711 	g_event_type3 = type;
712 }
713 
714 static void
715 bdev_open_cb4(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
716 {
717 	g_event_type4 = type;
718 }
719 
720 static void
721 bdev_seek_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
722 {
723 	g_seek_offset = spdk_bdev_io_get_seek_offset(bdev_io);
724 	spdk_bdev_free_io(bdev_io);
725 }
726 
727 static void
728 get_device_stat_test(void)
729 {
730 	struct spdk_bdev *bdev;
731 	struct spdk_bdev_io_stat *stat;
732 	bool done;
733 
734 	bdev = allocate_bdev("bdev0");
735 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
736 	if (stat == NULL) {
737 		free_bdev(bdev);
738 		return;
739 	}
740 
741 	done = false;
742 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
743 	while (!done) { poll_threads(); }
744 
745 	free_bdev(bdev);
746 }
747 
748 static void
749 open_write_test(void)
750 {
751 	struct spdk_bdev *bdev[9];
752 	struct spdk_bdev_desc *desc[9] = {};
753 	int rc;
754 
755 	ut_init_bdev(NULL);
756 
757 	/*
758 	 * Create a tree of bdevs to test various open w/ write cases.
759 	 *
760 	 * bdev0 through bdev3 are physical block devices, such as NVMe
761 	 * namespaces or Ceph block devices.
762 	 *
763 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
764 	 * caching or RAID use cases.
765 	 *
766 	 * bdev5 through bdev7 are all virtual bdevs with the same base
767 	 * bdev (except bdev7). This models partitioning or logical volume
768 	 * use cases.
769 	 *
770 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
771 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
772 	 * models caching, RAID, partitioning or logical volumes use cases.
773 	 *
774 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
775 	 * base bdevs are themselves virtual bdevs.
776 	 *
777 	 *                bdev8
778 	 *                  |
779 	 *            +----------+
780 	 *            |          |
781 	 *          bdev4      bdev5   bdev6   bdev7
782 	 *            |          |       |       |
783 	 *        +---+---+      +---+   +   +---+---+
784 	 *        |       |           \  |  /         \
785 	 *      bdev0   bdev1          bdev2         bdev3
786 	 */
787 
788 	bdev[0] = allocate_bdev("bdev0");
789 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
790 	CU_ASSERT(rc == 0);
791 
792 	bdev[1] = allocate_bdev("bdev1");
793 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
794 	CU_ASSERT(rc == 0);
795 
796 	bdev[2] = allocate_bdev("bdev2");
797 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
798 	CU_ASSERT(rc == 0);
799 
800 	bdev[3] = allocate_bdev("bdev3");
801 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
802 	CU_ASSERT(rc == 0);
803 
804 	bdev[4] = allocate_vbdev("bdev4");
805 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
806 	CU_ASSERT(rc == 0);
807 
808 	bdev[5] = allocate_vbdev("bdev5");
809 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
810 	CU_ASSERT(rc == 0);
811 
812 	bdev[6] = allocate_vbdev("bdev6");
813 
814 	bdev[7] = allocate_vbdev("bdev7");
815 
816 	bdev[8] = allocate_vbdev("bdev8");
817 
818 	/* Open bdev0 read-only.  This should succeed. */
819 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
820 	CU_ASSERT(rc == 0);
821 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
822 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
823 	spdk_bdev_close(desc[0]);
824 
825 	/*
826 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
827 	 * by a vbdev module.
828 	 */
829 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
830 	CU_ASSERT(rc == -EPERM);
831 
832 	/*
833 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
834 	 * by a vbdev module.
835 	 */
836 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
837 	CU_ASSERT(rc == -EPERM);
838 
839 	/* Open bdev4 read-only.  This should succeed. */
840 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
841 	CU_ASSERT(rc == 0);
842 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
843 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
844 	spdk_bdev_close(desc[4]);
845 
846 	/*
847 	 * Open bdev8 read/write.  This should succeed since it is a leaf
848 	 * bdev.
849 	 */
850 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
851 	CU_ASSERT(rc == 0);
852 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
853 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
854 	spdk_bdev_close(desc[8]);
855 
856 	/*
857 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
858 	 * by a vbdev module.
859 	 */
860 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
861 	CU_ASSERT(rc == -EPERM);
862 
863 	/* Open bdev4 read-only.  This should succeed. */
864 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
865 	CU_ASSERT(rc == 0);
866 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
867 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
868 	spdk_bdev_close(desc[5]);
869 
870 	free_vbdev(bdev[8]);
871 
872 	free_vbdev(bdev[5]);
873 	free_vbdev(bdev[6]);
874 	free_vbdev(bdev[7]);
875 
876 	free_vbdev(bdev[4]);
877 
878 	free_bdev(bdev[0]);
879 	free_bdev(bdev[1]);
880 	free_bdev(bdev[2]);
881 	free_bdev(bdev[3]);
882 
883 	ut_fini_bdev();
884 }
885 
886 static void
887 claim_test(void)
888 {
889 	struct spdk_bdev *bdev;
890 	struct spdk_bdev_desc *desc, *open_desc;
891 	int rc;
892 	uint32_t count;
893 
894 	ut_init_bdev(NULL);
895 
896 	/*
897 	 * A vbdev that uses a read-only bdev may need it to remain read-only.
898 	 * To do so, it opens the bdev read-only, then claims it without
899 	 * passing a spdk_bdev_desc.
900 	 */
901 	bdev = allocate_bdev("bdev0");
902 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
903 	CU_ASSERT(rc == 0);
904 	CU_ASSERT(desc->write == false);
905 
906 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
907 	CU_ASSERT(rc == 0);
908 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
909 	CU_ASSERT(bdev->internal.claim.v1.module == &bdev_ut_if);
910 
911 	/* There should be only one open descriptor and it should still be ro */
912 	count = 0;
913 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
914 		CU_ASSERT(open_desc == desc);
915 		CU_ASSERT(!open_desc->write);
916 		count++;
917 	}
918 	CU_ASSERT(count == 1);
919 
920 	/* A read-only bdev is upgraded to read-write if desc is passed. */
921 	spdk_bdev_module_release_bdev(bdev);
922 	rc = spdk_bdev_module_claim_bdev(bdev, desc, &bdev_ut_if);
923 	CU_ASSERT(rc == 0);
924 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
925 	CU_ASSERT(bdev->internal.claim.v1.module == &bdev_ut_if);
926 
927 	/* There should be only one open descriptor and it should be rw */
928 	count = 0;
929 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
930 		CU_ASSERT(open_desc == desc);
931 		CU_ASSERT(open_desc->write);
932 		count++;
933 	}
934 	CU_ASSERT(count == 1);
935 
936 	spdk_bdev_close(desc);
937 	free_bdev(bdev);
938 	ut_fini_bdev();
939 }
940 
941 static void
942 bytes_to_blocks_test(void)
943 {
944 	struct spdk_bdev bdev;
945 	uint64_t offset_blocks, num_blocks;
946 
947 	memset(&bdev, 0, sizeof(bdev));
948 
949 	bdev.blocklen = 512;
950 
951 	/* All parameters valid */
952 	offset_blocks = 0;
953 	num_blocks = 0;
954 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
955 	CU_ASSERT(offset_blocks == 1);
956 	CU_ASSERT(num_blocks == 2);
957 
958 	/* Offset not a block multiple */
959 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
960 
961 	/* Length not a block multiple */
962 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
963 
964 	/* In case blocklen not the power of two */
965 	bdev.blocklen = 100;
966 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
967 	CU_ASSERT(offset_blocks == 1);
968 	CU_ASSERT(num_blocks == 2);
969 
970 	/* Offset not a block multiple */
971 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
972 
973 	/* Length not a block multiple */
974 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
975 }
976 
977 static void
978 num_blocks_test(void)
979 {
980 	struct spdk_bdev *bdev;
981 	struct spdk_bdev_desc *desc = NULL;
982 	int rc;
983 
984 	ut_init_bdev(NULL);
985 	bdev = allocate_bdev("num_blocks");
986 
987 	spdk_bdev_notify_blockcnt_change(bdev, 50);
988 
989 	/* Growing block number */
990 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 70) == 0);
991 	/* Shrinking block number */
992 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 30) == 0);
993 
994 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc, &desc);
995 	CU_ASSERT(rc == 0);
996 	SPDK_CU_ASSERT_FATAL(desc != NULL);
997 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
998 
999 	/* Growing block number */
1000 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 80) == 0);
1001 	/* Shrinking block number */
1002 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 20) != 0);
1003 
1004 	g_event_type1 = 0xFF;
1005 	/* Growing block number */
1006 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 90) == 0);
1007 
1008 	poll_threads();
1009 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
1010 
1011 	g_event_type1 = 0xFF;
1012 	/* Growing block number and closing */
1013 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 100) == 0);
1014 
1015 	spdk_bdev_close(desc);
1016 	free_bdev(bdev);
1017 	ut_fini_bdev();
1018 
1019 	poll_threads();
1020 
1021 	/* Callback is not called for closed device */
1022 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
1023 }
1024 
1025 static void
1026 io_valid_test(void)
1027 {
1028 	struct spdk_bdev bdev;
1029 
1030 	memset(&bdev, 0, sizeof(bdev));
1031 
1032 	bdev.blocklen = 512;
1033 	spdk_spin_init(&bdev.internal.spinlock);
1034 
1035 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
1036 
1037 	/* All parameters valid */
1038 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
1039 
1040 	/* Last valid block */
1041 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
1042 
1043 	/* Offset past end of bdev */
1044 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
1045 
1046 	/* Offset + length past end of bdev */
1047 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
1048 
1049 	/* Offset near end of uint64_t range (2^64 - 1) */
1050 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
1051 
1052 	spdk_spin_destroy(&bdev.internal.spinlock);
1053 }
1054 
1055 static void
1056 alias_add_del_test(void)
1057 {
1058 	struct spdk_bdev *bdev[3];
1059 	int rc;
1060 
1061 	ut_init_bdev(NULL);
1062 
1063 	/* Creating and registering bdevs */
1064 	bdev[0] = allocate_bdev("bdev0");
1065 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
1066 
1067 	bdev[1] = allocate_bdev("bdev1");
1068 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
1069 
1070 	bdev[2] = allocate_bdev("bdev2");
1071 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
1072 
1073 	poll_threads();
1074 
1075 	/*
1076 	 * Trying adding an alias identical to name.
1077 	 * Alias is identical to name, so it can not be added to aliases list
1078 	 */
1079 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
1080 	CU_ASSERT(rc == -EEXIST);
1081 
1082 	/*
1083 	 * Trying to add empty alias,
1084 	 * this one should fail
1085 	 */
1086 	rc = spdk_bdev_alias_add(bdev[0], NULL);
1087 	CU_ASSERT(rc == -EINVAL);
1088 
1089 	/* Trying adding same alias to two different registered bdevs */
1090 
1091 	/* Alias is used first time, so this one should pass */
1092 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
1093 	CU_ASSERT(rc == 0);
1094 
1095 	/* Alias was added to another bdev, so this one should fail */
1096 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
1097 	CU_ASSERT(rc == -EEXIST);
1098 
1099 	/* Alias is used first time, so this one should pass */
1100 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
1101 	CU_ASSERT(rc == 0);
1102 
1103 	/* Trying removing an alias from registered bdevs */
1104 
1105 	/* Alias is not on a bdev aliases list, so this one should fail */
1106 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
1107 	CU_ASSERT(rc == -ENOENT);
1108 
1109 	/* Alias is present on a bdev aliases list, so this one should pass */
1110 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
1111 	CU_ASSERT(rc == 0);
1112 
1113 	/* Alias is present on a bdev aliases list, so this one should pass */
1114 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
1115 	CU_ASSERT(rc == 0);
1116 
1117 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
1118 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
1119 	CU_ASSERT(rc != 0);
1120 
1121 	/* Trying to del all alias from empty alias list */
1122 	spdk_bdev_alias_del_all(bdev[2]);
1123 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
1124 
1125 	/* Trying to del all alias from non-empty alias list */
1126 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
1127 	CU_ASSERT(rc == 0);
1128 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
1129 	CU_ASSERT(rc == 0);
1130 	spdk_bdev_alias_del_all(bdev[2]);
1131 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
1132 
1133 	/* Unregister and free bdevs */
1134 	spdk_bdev_unregister(bdev[0], NULL, NULL);
1135 	spdk_bdev_unregister(bdev[1], NULL, NULL);
1136 	spdk_bdev_unregister(bdev[2], NULL, NULL);
1137 
1138 	poll_threads();
1139 
1140 	free(bdev[0]);
1141 	free(bdev[1]);
1142 	free(bdev[2]);
1143 
1144 	ut_fini_bdev();
1145 }
1146 
1147 static void
1148 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
1149 {
1150 	g_io_done = true;
1151 	g_io_status = bdev_io->internal.status;
1152 	if ((bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) &&
1153 	    (bdev_io->u.bdev.zcopy.start)) {
1154 		g_zcopy_bdev_io = bdev_io;
1155 	} else {
1156 		spdk_bdev_free_io(bdev_io);
1157 		g_zcopy_bdev_io = NULL;
1158 	}
1159 }
1160 
1161 struct bdev_ut_io_wait_entry {
1162 	struct spdk_bdev_io_wait_entry	entry;
1163 	struct spdk_io_channel		*io_ch;
1164 	struct spdk_bdev_desc		*desc;
1165 	bool				submitted;
1166 };
1167 
1168 static void
1169 io_wait_cb(void *arg)
1170 {
1171 	struct bdev_ut_io_wait_entry *entry = arg;
1172 	int rc;
1173 
1174 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
1175 	CU_ASSERT(rc == 0);
1176 	entry->submitted = true;
1177 }
1178 
1179 static void
1180 bdev_io_types_test(void)
1181 {
1182 	struct spdk_bdev *bdev;
1183 	struct spdk_bdev_desc *desc = NULL;
1184 	struct spdk_io_channel *io_ch;
1185 	struct spdk_bdev_opts bdev_opts = {};
1186 	int rc;
1187 
1188 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1189 	bdev_opts.bdev_io_pool_size = 4;
1190 	bdev_opts.bdev_io_cache_size = 2;
1191 	ut_init_bdev(&bdev_opts);
1192 
1193 	bdev = allocate_bdev("bdev0");
1194 
1195 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1196 	CU_ASSERT(rc == 0);
1197 	poll_threads();
1198 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1199 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1200 	io_ch = spdk_bdev_get_io_channel(desc);
1201 	CU_ASSERT(io_ch != NULL);
1202 
1203 	/* WRITE and WRITE ZEROES are not supported */
1204 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
1205 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
1206 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
1207 	CU_ASSERT(rc == -ENOTSUP);
1208 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
1209 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
1210 
1211 	/* NVME_IO, NVME_IO_MD and NVME_ADMIN are not supported */
1212 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, false);
1213 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, false);
1214 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, false);
1215 	rc = spdk_bdev_nvme_io_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1216 	CU_ASSERT(rc == -ENOTSUP);
1217 	rc = spdk_bdev_nvme_io_passthru_md(desc, io_ch, NULL, NULL, 0, NULL, 0, NULL, NULL);
1218 	CU_ASSERT(rc == -ENOTSUP);
1219 	rc = spdk_bdev_nvme_admin_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1220 	CU_ASSERT(rc == -ENOTSUP);
1221 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, true);
1222 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, true);
1223 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, true);
1224 
1225 	spdk_put_io_channel(io_ch);
1226 	spdk_bdev_close(desc);
1227 	free_bdev(bdev);
1228 	ut_fini_bdev();
1229 }
1230 
1231 static void
1232 bdev_io_wait_test(void)
1233 {
1234 	struct spdk_bdev *bdev;
1235 	struct spdk_bdev_desc *desc = NULL;
1236 	struct spdk_io_channel *io_ch;
1237 	struct spdk_bdev_opts bdev_opts = {};
1238 	struct bdev_ut_io_wait_entry io_wait_entry;
1239 	struct bdev_ut_io_wait_entry io_wait_entry2;
1240 	int rc;
1241 
1242 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1243 	bdev_opts.bdev_io_pool_size = 4;
1244 	bdev_opts.bdev_io_cache_size = 2;
1245 	ut_init_bdev(&bdev_opts);
1246 
1247 	bdev = allocate_bdev("bdev0");
1248 
1249 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1250 	CU_ASSERT(rc == 0);
1251 	poll_threads();
1252 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1253 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1254 	io_ch = spdk_bdev_get_io_channel(desc);
1255 	CU_ASSERT(io_ch != NULL);
1256 
1257 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1258 	CU_ASSERT(rc == 0);
1259 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1260 	CU_ASSERT(rc == 0);
1261 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1262 	CU_ASSERT(rc == 0);
1263 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1264 	CU_ASSERT(rc == 0);
1265 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1266 
1267 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1268 	CU_ASSERT(rc == -ENOMEM);
1269 
1270 	io_wait_entry.entry.bdev = bdev;
1271 	io_wait_entry.entry.cb_fn = io_wait_cb;
1272 	io_wait_entry.entry.cb_arg = &io_wait_entry;
1273 	io_wait_entry.io_ch = io_ch;
1274 	io_wait_entry.desc = desc;
1275 	io_wait_entry.submitted = false;
1276 	/* Cannot use the same io_wait_entry for two different calls. */
1277 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
1278 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
1279 
1280 	/* Queue two I/O waits. */
1281 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
1282 	CU_ASSERT(rc == 0);
1283 	CU_ASSERT(io_wait_entry.submitted == false);
1284 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
1285 	CU_ASSERT(rc == 0);
1286 	CU_ASSERT(io_wait_entry2.submitted == false);
1287 
1288 	stub_complete_io(1);
1289 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1290 	CU_ASSERT(io_wait_entry.submitted == true);
1291 	CU_ASSERT(io_wait_entry2.submitted == false);
1292 
1293 	stub_complete_io(1);
1294 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1295 	CU_ASSERT(io_wait_entry2.submitted == true);
1296 
1297 	stub_complete_io(4);
1298 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1299 
1300 	spdk_put_io_channel(io_ch);
1301 	spdk_bdev_close(desc);
1302 	free_bdev(bdev);
1303 	ut_fini_bdev();
1304 }
1305 
1306 static void
1307 bdev_io_spans_split_test(void)
1308 {
1309 	struct spdk_bdev bdev;
1310 	struct spdk_bdev_io bdev_io;
1311 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
1312 
1313 	memset(&bdev, 0, sizeof(bdev));
1314 	bdev_io.u.bdev.iovs = iov;
1315 
1316 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1317 	bdev.optimal_io_boundary = 0;
1318 	bdev.max_segment_size = 0;
1319 	bdev.max_num_segments = 0;
1320 	bdev_io.bdev = &bdev;
1321 
1322 	/* bdev has no optimal_io_boundary and max_size set - so this should return false. */
1323 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1324 
1325 	bdev.split_on_optimal_io_boundary = true;
1326 	bdev.optimal_io_boundary = 32;
1327 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1328 
1329 	/* RESETs are not based on LBAs - so this should return false. */
1330 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1331 
1332 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1333 	bdev_io.u.bdev.offset_blocks = 0;
1334 	bdev_io.u.bdev.num_blocks = 32;
1335 
1336 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1337 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1338 
1339 	bdev_io.u.bdev.num_blocks = 33;
1340 
1341 	/* This I/O spans a boundary. */
1342 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1343 
1344 	bdev_io.u.bdev.num_blocks = 32;
1345 	bdev.max_segment_size = 512 * 32;
1346 	bdev.max_num_segments = 1;
1347 	bdev_io.u.bdev.iovcnt = 1;
1348 	iov[0].iov_len = 512;
1349 
1350 	/* Does not cross and exceed max_size or max_segs */
1351 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1352 
1353 	bdev.split_on_optimal_io_boundary = false;
1354 	bdev.max_segment_size = 512;
1355 	bdev.max_num_segments = 1;
1356 	bdev_io.u.bdev.iovcnt = 2;
1357 
1358 	/* Exceed max_segs */
1359 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1360 
1361 	bdev.max_num_segments = 2;
1362 	iov[0].iov_len = 513;
1363 	iov[1].iov_len = 512;
1364 
1365 	/* Exceed max_sizes */
1366 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1367 
1368 	bdev.max_segment_size = 0;
1369 	bdev.write_unit_size = 32;
1370 	bdev.split_on_write_unit = true;
1371 	bdev_io.type = SPDK_BDEV_IO_TYPE_WRITE;
1372 
1373 	/* This I/O is one write unit */
1374 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1375 
1376 	bdev_io.u.bdev.num_blocks = 32 * 2;
1377 
1378 	/* This I/O is more than one write unit */
1379 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1380 
1381 	bdev_io.u.bdev.offset_blocks = 1;
1382 	bdev_io.u.bdev.num_blocks = 32;
1383 
1384 	/* This I/O is not aligned to write unit size */
1385 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1386 }
1387 
1388 static void
1389 bdev_io_boundary_split_test(void)
1390 {
1391 	struct spdk_bdev *bdev;
1392 	struct spdk_bdev_desc *desc = NULL;
1393 	struct spdk_io_channel *io_ch;
1394 	struct spdk_bdev_opts bdev_opts = {};
1395 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
1396 	struct ut_expected_io *expected_io;
1397 	void *md_buf = (void *)0xFF000000;
1398 	uint64_t i;
1399 	int rc;
1400 
1401 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1402 	bdev_opts.bdev_io_pool_size = 512;
1403 	bdev_opts.bdev_io_cache_size = 64;
1404 	ut_init_bdev(&bdev_opts);
1405 
1406 	bdev = allocate_bdev("bdev0");
1407 
1408 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1409 	CU_ASSERT(rc == 0);
1410 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1411 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1412 	io_ch = spdk_bdev_get_io_channel(desc);
1413 	CU_ASSERT(io_ch != NULL);
1414 
1415 	bdev->optimal_io_boundary = 16;
1416 	bdev->split_on_optimal_io_boundary = false;
1417 
1418 	g_io_done = false;
1419 
1420 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1421 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1422 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1423 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1424 
1425 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1426 	CU_ASSERT(rc == 0);
1427 	CU_ASSERT(g_io_done == false);
1428 
1429 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1430 	stub_complete_io(1);
1431 	CU_ASSERT(g_io_done == true);
1432 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1433 
1434 	bdev->split_on_optimal_io_boundary = true;
1435 	bdev->md_interleave = false;
1436 	bdev->md_len = 8;
1437 
1438 	/* Now test that a single-vector command is split correctly.
1439 	 * Offset 14, length 8, payload 0xF000
1440 	 *  Child - Offset 14, length 2, payload 0xF000
1441 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1442 	 *
1443 	 * Set up the expected values before calling spdk_bdev_read_blocks
1444 	 */
1445 	g_io_done = false;
1446 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1447 	expected_io->md_buf = md_buf;
1448 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1449 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1450 
1451 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1452 	expected_io->md_buf = md_buf + 2 * 8;
1453 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1454 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1455 
1456 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1457 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1458 					   14, 8, io_done, NULL);
1459 	CU_ASSERT(rc == 0);
1460 	CU_ASSERT(g_io_done == false);
1461 
1462 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1463 	stub_complete_io(2);
1464 	CU_ASSERT(g_io_done == true);
1465 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1466 
1467 	/* Now set up a more complex, multi-vector command that needs to be split,
1468 	 *  including splitting iovecs.
1469 	 */
1470 	iov[0].iov_base = (void *)0x10000;
1471 	iov[0].iov_len = 512;
1472 	iov[1].iov_base = (void *)0x20000;
1473 	iov[1].iov_len = 20 * 512;
1474 	iov[2].iov_base = (void *)0x30000;
1475 	iov[2].iov_len = 11 * 512;
1476 
1477 	g_io_done = false;
1478 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1479 	expected_io->md_buf = md_buf;
1480 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1481 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1482 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1483 
1484 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1485 	expected_io->md_buf = md_buf + 2 * 8;
1486 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1487 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1488 
1489 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1490 	expected_io->md_buf = md_buf + 18 * 8;
1491 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1492 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1493 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1494 
1495 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1496 					     14, 32, io_done, NULL);
1497 	CU_ASSERT(rc == 0);
1498 	CU_ASSERT(g_io_done == false);
1499 
1500 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1501 	stub_complete_io(3);
1502 	CU_ASSERT(g_io_done == true);
1503 
1504 	/* Test multi vector command that needs to be split by strip and then needs to be
1505 	 * split further due to the capacity of child iovs.
1506 	 */
1507 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1508 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1509 		iov[i].iov_len = 512;
1510 	}
1511 
1512 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1513 	g_io_done = false;
1514 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
1515 					   SPDK_BDEV_IO_NUM_CHILD_IOV);
1516 	expected_io->md_buf = md_buf;
1517 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1518 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1519 	}
1520 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1521 
1522 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1523 					   SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
1524 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1525 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1526 		ut_expected_io_set_iov(expected_io, i,
1527 				       (void *)((i + 1 + SPDK_BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1528 	}
1529 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1530 
1531 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1532 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1533 	CU_ASSERT(rc == 0);
1534 	CU_ASSERT(g_io_done == false);
1535 
1536 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1537 	stub_complete_io(1);
1538 	CU_ASSERT(g_io_done == false);
1539 
1540 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1541 	stub_complete_io(1);
1542 	CU_ASSERT(g_io_done == true);
1543 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1544 
1545 	/* Test multi vector command that needs to be split by strip and then needs to be
1546 	 * split further due to the capacity of child iovs. In this case, the length of
1547 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1548 	 */
1549 
1550 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1551 	 * is SPDK_BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1552 	 */
1553 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1554 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1555 		iov[i].iov_len = 512;
1556 	}
1557 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1558 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1559 		iov[i].iov_len = 256;
1560 	}
1561 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1562 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1563 
1564 	/* Add an extra iovec to trigger split */
1565 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1566 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1567 
1568 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1569 	g_io_done = false;
1570 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1571 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV);
1572 	expected_io->md_buf = md_buf;
1573 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1574 		ut_expected_io_set_iov(expected_io, i,
1575 				       (void *)((i + 1) * 0x10000), 512);
1576 	}
1577 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1578 		ut_expected_io_set_iov(expected_io, i,
1579 				       (void *)((i + 1) * 0x10000), 256);
1580 	}
1581 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1582 
1583 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1584 					   1, 1);
1585 	expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1586 	ut_expected_io_set_iov(expected_io, 0,
1587 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1588 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1589 
1590 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1591 					   1, 1);
1592 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1593 	ut_expected_io_set_iov(expected_io, 0,
1594 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1595 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1596 
1597 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1598 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1599 	CU_ASSERT(rc == 0);
1600 	CU_ASSERT(g_io_done == false);
1601 
1602 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1603 	stub_complete_io(1);
1604 	CU_ASSERT(g_io_done == false);
1605 
1606 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1607 	stub_complete_io(2);
1608 	CU_ASSERT(g_io_done == true);
1609 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1610 
1611 	/* Test multi vector command that needs to be split by strip and then needs to be
1612 	 * split further due to the capacity of child iovs, the child request offset should
1613 	 * be rewind to last aligned offset and go success without error.
1614 	 */
1615 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1616 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1617 		iov[i].iov_len = 512;
1618 	}
1619 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
1620 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1621 
1622 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1623 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1624 
1625 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1626 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1627 
1628 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1629 	g_io_done = false;
1630 	g_io_status = 0;
1631 	/* The first expected io should be start from offset 0 to SPDK_BDEV_IO_NUM_CHILD_IOV - 1 */
1632 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1633 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
1634 	expected_io->md_buf = md_buf;
1635 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1636 		ut_expected_io_set_iov(expected_io, i,
1637 				       (void *)((i + 1) * 0x10000), 512);
1638 	}
1639 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1640 	/* The second expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV - 1 to SPDK_BDEV_IO_NUM_CHILD_IOV */
1641 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1642 					   1, 2);
1643 	expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1644 	ut_expected_io_set_iov(expected_io, 0,
1645 			       (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1646 	ut_expected_io_set_iov(expected_io, 1,
1647 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1648 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1649 	/* The third expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV to SPDK_BDEV_IO_NUM_CHILD_IOV + 1 */
1650 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1651 					   1, 1);
1652 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1653 	ut_expected_io_set_iov(expected_io, 0,
1654 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1655 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1656 
1657 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1658 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1659 	CU_ASSERT(rc == 0);
1660 	CU_ASSERT(g_io_done == false);
1661 
1662 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1663 	stub_complete_io(1);
1664 	CU_ASSERT(g_io_done == false);
1665 
1666 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1667 	stub_complete_io(2);
1668 	CU_ASSERT(g_io_done == true);
1669 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1670 
1671 	/* Test multi vector command that needs to be split due to the IO boundary and
1672 	 * the capacity of child iovs. Especially test the case when the command is
1673 	 * split due to the capacity of child iovs, the tail address is not aligned with
1674 	 * block size and is rewinded to the aligned address.
1675 	 *
1676 	 * The iovecs used in read request is complex but is based on the data
1677 	 * collected in the real issue. We change the base addresses but keep the lengths
1678 	 * not to loose the credibility of the test.
1679 	 */
1680 	bdev->optimal_io_boundary = 128;
1681 	g_io_done = false;
1682 	g_io_status = 0;
1683 
1684 	for (i = 0; i < 31; i++) {
1685 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1686 		iov[i].iov_len = 1024;
1687 	}
1688 	iov[31].iov_base = (void *)0xFEED1F00000;
1689 	iov[31].iov_len = 32768;
1690 	iov[32].iov_base = (void *)0xFEED2000000;
1691 	iov[32].iov_len = 160;
1692 	iov[33].iov_base = (void *)0xFEED2100000;
1693 	iov[33].iov_len = 4096;
1694 	iov[34].iov_base = (void *)0xFEED2200000;
1695 	iov[34].iov_len = 4096;
1696 	iov[35].iov_base = (void *)0xFEED2300000;
1697 	iov[35].iov_len = 4096;
1698 	iov[36].iov_base = (void *)0xFEED2400000;
1699 	iov[36].iov_len = 4096;
1700 	iov[37].iov_base = (void *)0xFEED2500000;
1701 	iov[37].iov_len = 4096;
1702 	iov[38].iov_base = (void *)0xFEED2600000;
1703 	iov[38].iov_len = 4096;
1704 	iov[39].iov_base = (void *)0xFEED2700000;
1705 	iov[39].iov_len = 4096;
1706 	iov[40].iov_base = (void *)0xFEED2800000;
1707 	iov[40].iov_len = 4096;
1708 	iov[41].iov_base = (void *)0xFEED2900000;
1709 	iov[41].iov_len = 4096;
1710 	iov[42].iov_base = (void *)0xFEED2A00000;
1711 	iov[42].iov_len = 4096;
1712 	iov[43].iov_base = (void *)0xFEED2B00000;
1713 	iov[43].iov_len = 12288;
1714 	iov[44].iov_base = (void *)0xFEED2C00000;
1715 	iov[44].iov_len = 8192;
1716 	iov[45].iov_base = (void *)0xFEED2F00000;
1717 	iov[45].iov_len = 4096;
1718 	iov[46].iov_base = (void *)0xFEED3000000;
1719 	iov[46].iov_len = 4096;
1720 	iov[47].iov_base = (void *)0xFEED3100000;
1721 	iov[47].iov_len = 4096;
1722 	iov[48].iov_base = (void *)0xFEED3200000;
1723 	iov[48].iov_len = 24576;
1724 	iov[49].iov_base = (void *)0xFEED3300000;
1725 	iov[49].iov_len = 16384;
1726 	iov[50].iov_base = (void *)0xFEED3400000;
1727 	iov[50].iov_len = 12288;
1728 	iov[51].iov_base = (void *)0xFEED3500000;
1729 	iov[51].iov_len = 4096;
1730 	iov[52].iov_base = (void *)0xFEED3600000;
1731 	iov[52].iov_len = 4096;
1732 	iov[53].iov_base = (void *)0xFEED3700000;
1733 	iov[53].iov_len = 4096;
1734 	iov[54].iov_base = (void *)0xFEED3800000;
1735 	iov[54].iov_len = 28672;
1736 	iov[55].iov_base = (void *)0xFEED3900000;
1737 	iov[55].iov_len = 20480;
1738 	iov[56].iov_base = (void *)0xFEED3A00000;
1739 	iov[56].iov_len = 4096;
1740 	iov[57].iov_base = (void *)0xFEED3B00000;
1741 	iov[57].iov_len = 12288;
1742 	iov[58].iov_base = (void *)0xFEED3C00000;
1743 	iov[58].iov_len = 4096;
1744 	iov[59].iov_base = (void *)0xFEED3D00000;
1745 	iov[59].iov_len = 4096;
1746 	iov[60].iov_base = (void *)0xFEED3E00000;
1747 	iov[60].iov_len = 352;
1748 
1749 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1750 	 * of child iovs,
1751 	 */
1752 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1753 	expected_io->md_buf = md_buf;
1754 	for (i = 0; i < 32; i++) {
1755 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1756 	}
1757 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1758 
1759 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1760 	 * split by the IO boundary requirement.
1761 	 */
1762 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1763 	expected_io->md_buf = md_buf + 126 * 8;
1764 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1765 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1766 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1767 
1768 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1769 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1770 	 */
1771 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1772 	expected_io->md_buf = md_buf + 128 * 8;
1773 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1774 			       iov[33].iov_len - 864);
1775 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1776 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1777 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1778 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1779 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1780 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1781 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1782 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1783 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1784 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1785 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1786 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1787 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1788 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1789 
1790 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1791 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1792 	 */
1793 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1794 	expected_io->md_buf = md_buf + 256 * 8;
1795 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1796 			       iov[46].iov_len - 864);
1797 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1798 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1799 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1800 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1801 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1802 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1803 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1804 
1805 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1806 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1807 	 */
1808 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1809 	expected_io->md_buf = md_buf + 384 * 8;
1810 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1811 			       iov[52].iov_len - 864);
1812 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1813 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1814 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1815 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1816 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1817 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1818 
1819 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1820 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1821 	 */
1822 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1823 	expected_io->md_buf = md_buf + 512 * 8;
1824 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1825 			       iov[57].iov_len - 4960);
1826 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1827 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1828 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1829 
1830 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1831 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1832 	expected_io->md_buf = md_buf + 542 * 8;
1833 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1834 			       iov[59].iov_len - 3936);
1835 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1836 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1837 
1838 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1839 					    0, 543, io_done, NULL);
1840 	CU_ASSERT(rc == 0);
1841 	CU_ASSERT(g_io_done == false);
1842 
1843 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1844 	stub_complete_io(1);
1845 	CU_ASSERT(g_io_done == false);
1846 
1847 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1848 	stub_complete_io(5);
1849 	CU_ASSERT(g_io_done == false);
1850 
1851 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1852 	stub_complete_io(1);
1853 	CU_ASSERT(g_io_done == true);
1854 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1855 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1856 
1857 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1858 	 * split, so test that.
1859 	 */
1860 	bdev->optimal_io_boundary = 15;
1861 	g_io_done = false;
1862 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1863 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1864 
1865 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1866 	CU_ASSERT(rc == 0);
1867 	CU_ASSERT(g_io_done == false);
1868 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1869 	stub_complete_io(1);
1870 	CU_ASSERT(g_io_done == true);
1871 
1872 	/* Test an UNMAP.  This should also not be split. */
1873 	bdev->optimal_io_boundary = 16;
1874 	g_io_done = false;
1875 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1876 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1877 
1878 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1879 	CU_ASSERT(rc == 0);
1880 	CU_ASSERT(g_io_done == false);
1881 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1882 	stub_complete_io(1);
1883 	CU_ASSERT(g_io_done == true);
1884 
1885 	/* Test a FLUSH.  This should also not be split. */
1886 	bdev->optimal_io_boundary = 16;
1887 	g_io_done = false;
1888 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1889 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1890 
1891 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1892 	CU_ASSERT(rc == 0);
1893 	CU_ASSERT(g_io_done == false);
1894 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1895 	stub_complete_io(1);
1896 	CU_ASSERT(g_io_done == true);
1897 
1898 	/* Test a COPY.  This should also not be split. */
1899 	bdev->optimal_io_boundary = 15;
1900 	g_io_done = false;
1901 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
1902 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1903 
1904 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
1905 	CU_ASSERT(rc == 0);
1906 	CU_ASSERT(g_io_done == false);
1907 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1908 	stub_complete_io(1);
1909 	CU_ASSERT(g_io_done == true);
1910 
1911 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1912 
1913 	/* Children requests return an error status */
1914 	bdev->optimal_io_boundary = 16;
1915 	iov[0].iov_base = (void *)0x10000;
1916 	iov[0].iov_len = 512 * 64;
1917 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1918 	g_io_done = false;
1919 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1920 
1921 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1922 	CU_ASSERT(rc == 0);
1923 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1924 	stub_complete_io(4);
1925 	CU_ASSERT(g_io_done == false);
1926 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1927 	stub_complete_io(1);
1928 	CU_ASSERT(g_io_done == true);
1929 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1930 
1931 	/* Test if a multi vector command terminated with failure before continuing
1932 	 * splitting process when one of child I/O failed.
1933 	 * The multi vector command is as same as the above that needs to be split by strip
1934 	 * and then needs to be split further due to the capacity of child iovs.
1935 	 */
1936 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1937 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1938 		iov[i].iov_len = 512;
1939 	}
1940 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
1941 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1942 
1943 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1944 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1945 
1946 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1947 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1948 
1949 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1950 
1951 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1952 	g_io_done = false;
1953 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1954 
1955 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
1956 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1957 	CU_ASSERT(rc == 0);
1958 	CU_ASSERT(g_io_done == false);
1959 
1960 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1961 	stub_complete_io(1);
1962 	CU_ASSERT(g_io_done == true);
1963 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1964 
1965 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1966 
1967 	/* for this test we will create the following conditions to hit the code path where
1968 	 * we are trying to send and IO following a split that has no iovs because we had to
1969 	 * trim them for alignment reasons.
1970 	 *
1971 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1972 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1973 	 *   position 30 and overshoot by 0x2e.
1974 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1975 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1976 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1977 	 *   and let the completion pick up the last 2 vectors.
1978 	 */
1979 	bdev->optimal_io_boundary = 32;
1980 	bdev->split_on_optimal_io_boundary = true;
1981 	g_io_done = false;
1982 
1983 	/* Init all parent IOVs to 0x212 */
1984 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1985 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1986 		iov[i].iov_len = 0x212;
1987 	}
1988 
1989 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
1990 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
1991 	/* expect 0-29 to be 1:1 with the parent iov */
1992 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1993 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1994 	}
1995 
1996 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1997 	 * where 0x1e is the amount we overshot the 16K boundary
1998 	 */
1999 	ut_expected_io_set_iov(expected_io, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
2000 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
2001 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2002 
2003 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
2004 	 * shortened that take it to the next boundary and then a final one to get us to
2005 	 * 0x4200 bytes for the IO.
2006 	 */
2007 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
2008 					   SPDK_BDEV_IO_NUM_CHILD_IOV, 2);
2009 	/* position 30 picked up the remaining bytes to the next boundary */
2010 	ut_expected_io_set_iov(expected_io, 0,
2011 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
2012 
2013 	/* position 31 picked the the rest of the transfer to get us to 0x4200 */
2014 	ut_expected_io_set_iov(expected_io, 1,
2015 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
2016 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2017 
2018 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, 0,
2019 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
2020 	CU_ASSERT(rc == 0);
2021 	CU_ASSERT(g_io_done == false);
2022 
2023 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2024 	stub_complete_io(1);
2025 	CU_ASSERT(g_io_done == false);
2026 
2027 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2028 	stub_complete_io(1);
2029 	CU_ASSERT(g_io_done == true);
2030 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2031 
2032 	spdk_put_io_channel(io_ch);
2033 	spdk_bdev_close(desc);
2034 	free_bdev(bdev);
2035 	ut_fini_bdev();
2036 }
2037 
2038 static void
2039 bdev_io_max_size_and_segment_split_test(void)
2040 {
2041 	struct spdk_bdev *bdev;
2042 	struct spdk_bdev_desc *desc = NULL;
2043 	struct spdk_io_channel *io_ch;
2044 	struct spdk_bdev_opts bdev_opts = {};
2045 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
2046 	struct ut_expected_io *expected_io;
2047 	uint64_t i;
2048 	int rc;
2049 
2050 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2051 	bdev_opts.bdev_io_pool_size = 512;
2052 	bdev_opts.bdev_io_cache_size = 64;
2053 	bdev_opts.opts_size = sizeof(bdev_opts);
2054 	ut_init_bdev(&bdev_opts);
2055 
2056 	bdev = allocate_bdev("bdev0");
2057 
2058 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2059 	CU_ASSERT(rc == 0);
2060 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2061 	io_ch = spdk_bdev_get_io_channel(desc);
2062 	CU_ASSERT(io_ch != NULL);
2063 
2064 	bdev->split_on_optimal_io_boundary = false;
2065 	bdev->optimal_io_boundary = 0;
2066 
2067 	/* Case 0 max_num_segments == 0.
2068 	 * but segment size 2 * 512 > 512
2069 	 */
2070 	bdev->max_segment_size = 512;
2071 	bdev->max_num_segments = 0;
2072 	g_io_done = false;
2073 
2074 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2075 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2076 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2077 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2078 
2079 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2080 	CU_ASSERT(rc == 0);
2081 	CU_ASSERT(g_io_done == false);
2082 
2083 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2084 	stub_complete_io(1);
2085 	CU_ASSERT(g_io_done == true);
2086 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2087 
2088 	/* Case 1 max_segment_size == 0
2089 	 * but iov num 2 > 1.
2090 	 */
2091 	bdev->max_segment_size = 0;
2092 	bdev->max_num_segments = 1;
2093 	g_io_done = false;
2094 
2095 	iov[0].iov_base = (void *)0x10000;
2096 	iov[0].iov_len = 512;
2097 	iov[1].iov_base = (void *)0x20000;
2098 	iov[1].iov_len = 8 * 512;
2099 
2100 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2101 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len);
2102 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2103 
2104 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1);
2105 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len);
2106 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2107 
2108 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL);
2109 	CU_ASSERT(rc == 0);
2110 	CU_ASSERT(g_io_done == false);
2111 
2112 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2113 	stub_complete_io(2);
2114 	CU_ASSERT(g_io_done == true);
2115 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2116 
2117 	/* Test that a non-vector command is split correctly.
2118 	 * Set up the expected values before calling spdk_bdev_read_blocks
2119 	 */
2120 	bdev->max_segment_size = 512;
2121 	bdev->max_num_segments = 1;
2122 	g_io_done = false;
2123 
2124 	/* Child IO 0 */
2125 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2126 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2127 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2128 
2129 	/* Child IO 1 */
2130 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2131 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512);
2132 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2133 
2134 	/* spdk_bdev_read_blocks will submit the first child immediately. */
2135 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2136 	CU_ASSERT(rc == 0);
2137 	CU_ASSERT(g_io_done == false);
2138 
2139 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2140 	stub_complete_io(2);
2141 	CU_ASSERT(g_io_done == true);
2142 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2143 
2144 	/* Now set up a more complex, multi-vector command that needs to be split,
2145 	 * including splitting iovecs.
2146 	 */
2147 	bdev->max_segment_size = 2 * 512;
2148 	bdev->max_num_segments = 1;
2149 	g_io_done = false;
2150 
2151 	iov[0].iov_base = (void *)0x10000;
2152 	iov[0].iov_len = 2 * 512;
2153 	iov[1].iov_base = (void *)0x20000;
2154 	iov[1].iov_len = 4 * 512;
2155 	iov[2].iov_base = (void *)0x30000;
2156 	iov[2].iov_len = 6 * 512;
2157 
2158 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2159 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2);
2160 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2161 
2162 	/* Split iov[1].size to 2 iov entries then split the segments */
2163 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2164 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2);
2165 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2166 
2167 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1);
2168 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2);
2169 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2170 
2171 	/* Split iov[2].size to 3 iov entries then split the segments */
2172 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1);
2173 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2);
2174 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2175 
2176 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1);
2177 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2);
2178 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2179 
2180 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1);
2181 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2);
2182 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2183 
2184 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL);
2185 	CU_ASSERT(rc == 0);
2186 	CU_ASSERT(g_io_done == false);
2187 
2188 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2189 	stub_complete_io(6);
2190 	CU_ASSERT(g_io_done == true);
2191 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2192 
2193 	/* Test multi vector command that needs to be split by strip and then needs to be
2194 	 * split further due to the capacity of parent IO child iovs.
2195 	 */
2196 	bdev->max_segment_size = 512;
2197 	bdev->max_num_segments = 1;
2198 	g_io_done = false;
2199 
2200 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2201 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2202 		iov[i].iov_len = 512 * 2;
2203 	}
2204 
2205 	/* Each input iov.size is split into 2 iovs,
2206 	 * half of the input iov can fill all child iov entries of a single IO.
2207 	 */
2208 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i++) {
2209 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1);
2210 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2211 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2212 
2213 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1);
2214 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2215 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2216 	}
2217 
2218 	/* The remaining iov is split in the second round */
2219 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2220 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1);
2221 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2222 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2223 
2224 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1);
2225 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2226 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2227 	}
2228 
2229 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
2230 				    SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
2231 	CU_ASSERT(rc == 0);
2232 	CU_ASSERT(g_io_done == false);
2233 
2234 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2235 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2236 	CU_ASSERT(g_io_done == false);
2237 
2238 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2239 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2240 	CU_ASSERT(g_io_done == true);
2241 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2242 
2243 	/* A wrong case, a child IO that is divided does
2244 	 * not meet the principle of multiples of block size,
2245 	 * and exits with error
2246 	 */
2247 	bdev->max_segment_size = 512;
2248 	bdev->max_num_segments = 1;
2249 	g_io_done = false;
2250 
2251 	iov[0].iov_base = (void *)0x10000;
2252 	iov[0].iov_len = 512 + 256;
2253 	iov[1].iov_base = (void *)0x20000;
2254 	iov[1].iov_len = 256;
2255 
2256 	/* iov[0] is split to 512 and 256.
2257 	 * 256 is less than a block size, and it is found
2258 	 * in the next round of split that it is the first child IO smaller than
2259 	 * the block size, so the error exit
2260 	 */
2261 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1);
2262 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512);
2263 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2264 
2265 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL);
2266 	CU_ASSERT(rc == 0);
2267 	CU_ASSERT(g_io_done == false);
2268 
2269 	/* First child IO is OK */
2270 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2271 	stub_complete_io(1);
2272 	CU_ASSERT(g_io_done == true);
2273 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2274 
2275 	/* error exit */
2276 	stub_complete_io(1);
2277 	CU_ASSERT(g_io_done == true);
2278 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
2279 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2280 
2281 	/* Test multi vector command that needs to be split by strip and then needs to be
2282 	 * split further due to the capacity of child iovs.
2283 	 *
2284 	 * In this case, the last two iovs need to be split, but it will exceed the capacity
2285 	 * of child iovs, so it needs to wait until the first batch completed.
2286 	 */
2287 	bdev->max_segment_size = 512;
2288 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2289 	g_io_done = false;
2290 
2291 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2292 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2293 		iov[i].iov_len = 512;
2294 	}
2295 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2296 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2297 		iov[i].iov_len = 512 * 2;
2298 	}
2299 
2300 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2301 					   SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
2302 	/* 0 ~ (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */
2303 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2304 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2305 	}
2306 	/* (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) is split */
2307 	ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512);
2308 	ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512);
2309 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2310 
2311 	/* Child iov entries exceed the max num of parent IO so split it in next round */
2312 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV, 2, 2);
2313 	ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512);
2314 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512);
2315 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2316 
2317 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
2318 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL);
2319 	CU_ASSERT(rc == 0);
2320 	CU_ASSERT(g_io_done == false);
2321 
2322 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2323 	stub_complete_io(1);
2324 	CU_ASSERT(g_io_done == false);
2325 
2326 	/* Next round */
2327 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2328 	stub_complete_io(1);
2329 	CU_ASSERT(g_io_done == true);
2330 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2331 
2332 	/* This case is similar to the previous one, but the io composed of
2333 	 * the last few entries of child iov is not enough for a blocklen, so they
2334 	 * cannot be put into this IO, but wait until the next time.
2335 	 */
2336 	bdev->max_segment_size = 512;
2337 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2338 	g_io_done = false;
2339 
2340 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2341 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2342 		iov[i].iov_len = 512;
2343 	}
2344 
2345 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2346 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2347 		iov[i].iov_len = 128;
2348 	}
2349 
2350 	/* First child iovcnt is't SPDK_BDEV_IO_NUM_CHILD_IOV but SPDK_BDEV_IO_NUM_CHILD_IOV - 2.
2351 	 * Because the left 2 iov is not enough for a blocklen.
2352 	 */
2353 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2354 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 2, SPDK_BDEV_IO_NUM_CHILD_IOV - 2);
2355 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2356 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2357 	}
2358 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2359 
2360 	/* The second child io waits until the end of the first child io before executing.
2361 	 * Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO.
2362 	 * SPDK_BDEV_IO_NUM_CHILD_IOV - 2 to SPDK_BDEV_IO_NUM_CHILD_IOV + 2
2363 	 */
2364 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
2365 					   1, 4);
2366 	ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len);
2367 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len);
2368 	ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len);
2369 	ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len);
2370 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2371 
2372 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
2373 				    SPDK_BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL);
2374 	CU_ASSERT(rc == 0);
2375 	CU_ASSERT(g_io_done == false);
2376 
2377 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2378 	stub_complete_io(1);
2379 	CU_ASSERT(g_io_done == false);
2380 
2381 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2382 	stub_complete_io(1);
2383 	CU_ASSERT(g_io_done == true);
2384 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2385 
2386 	/* A very complicated case. Each sg entry exceeds max_segment_size and
2387 	 * needs to be split. At the same time, child io must be a multiple of blocklen.
2388 	 * At the same time, child iovcnt exceeds parent iovcnt.
2389 	 */
2390 	bdev->max_segment_size = 512 + 128;
2391 	bdev->max_num_segments = 3;
2392 	g_io_done = false;
2393 
2394 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2395 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2396 		iov[i].iov_len = 512 + 256;
2397 	}
2398 
2399 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2400 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2401 		iov[i].iov_len = 512 + 128;
2402 	}
2403 
2404 	/* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries.
2405 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2406 	 * Generate 9 child IOs.
2407 	 */
2408 	for (i = 0; i < 3; i++) {
2409 		uint32_t j = i * 4;
2410 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3);
2411 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2412 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2413 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2414 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2415 
2416 		/* Child io must be a multiple of blocklen
2417 		 * iov[j + 2] must be split. If the third entry is also added,
2418 		 * the multiple of blocklen cannot be guaranteed. But it still
2419 		 * occupies one iov entry of the parent child iov.
2420 		 */
2421 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2);
2422 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2423 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2424 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2425 
2426 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3);
2427 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2428 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2429 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2430 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2431 	}
2432 
2433 	/* Child iov position at 27, the 10th child IO
2434 	 * iov entry index is 3 * 4 and offset is 3 * 6
2435 	 */
2436 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3);
2437 	ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640);
2438 	ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128);
2439 	ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256);
2440 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2441 
2442 	/* Child iov position at 30, the 11th child IO */
2443 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2);
2444 	ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512);
2445 	ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512);
2446 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2447 
2448 	/* The 2nd split round and iovpos is 0, the 12th child IO */
2449 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3);
2450 	ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256);
2451 	ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640);
2452 	ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128);
2453 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2454 
2455 	/* Consume 9 child IOs and 27 child iov entries.
2456 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2457 	 * Parent IO iov index start from 16 and block offset start from 24
2458 	 */
2459 	for (i = 0; i < 3; i++) {
2460 		uint32_t j = i * 4 + 16;
2461 		uint32_t offset = i * 6 + 24;
2462 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3);
2463 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2464 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2465 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2466 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2467 
2468 		/* Child io must be a multiple of blocklen
2469 		 * iov[j + 2] must be split. If the third entry is also added,
2470 		 * the multiple of blocklen cannot be guaranteed. But it still
2471 		 * occupies one iov entry of the parent child iov.
2472 		 */
2473 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2);
2474 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2475 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2476 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2477 
2478 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3);
2479 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2480 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2481 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2482 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2483 	}
2484 
2485 	/* The 22th child IO, child iov position at 30 */
2486 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1);
2487 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512);
2488 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2489 
2490 	/* The third round */
2491 	/* Here is the 23nd child IO and child iovpos is 0 */
2492 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3);
2493 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256);
2494 	ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640);
2495 	ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128);
2496 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2497 
2498 	/* The 24th child IO */
2499 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3);
2500 	ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640);
2501 	ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640);
2502 	ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256);
2503 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2504 
2505 	/* The 25th child IO */
2506 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2);
2507 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384);
2508 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640);
2509 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2510 
2511 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
2512 				    50, io_done, NULL);
2513 	CU_ASSERT(rc == 0);
2514 	CU_ASSERT(g_io_done == false);
2515 
2516 	/* Parent IO supports up to 32 child iovs, so it is calculated that
2517 	 * a maximum of 11 IOs can be split at a time, and the
2518 	 * splitting will continue after the first batch is over.
2519 	 */
2520 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2521 	stub_complete_io(11);
2522 	CU_ASSERT(g_io_done == false);
2523 
2524 	/* The 2nd round */
2525 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2526 	stub_complete_io(11);
2527 	CU_ASSERT(g_io_done == false);
2528 
2529 	/* The last round */
2530 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2531 	stub_complete_io(3);
2532 	CU_ASSERT(g_io_done == true);
2533 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2534 
2535 	/* Test an WRITE_ZEROES.  This should also not be split. */
2536 	bdev->max_segment_size = 512;
2537 	bdev->max_num_segments = 1;
2538 	g_io_done = false;
2539 
2540 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
2541 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2542 
2543 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
2544 	CU_ASSERT(rc == 0);
2545 	CU_ASSERT(g_io_done == false);
2546 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2547 	stub_complete_io(1);
2548 	CU_ASSERT(g_io_done == true);
2549 
2550 	/* Test an UNMAP.  This should also not be split. */
2551 	g_io_done = false;
2552 
2553 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0);
2554 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2555 
2556 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL);
2557 	CU_ASSERT(rc == 0);
2558 	CU_ASSERT(g_io_done == false);
2559 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2560 	stub_complete_io(1);
2561 	CU_ASSERT(g_io_done == true);
2562 
2563 	/* Test a FLUSH.  This should also not be split. */
2564 	g_io_done = false;
2565 
2566 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0);
2567 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2568 
2569 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
2570 	CU_ASSERT(rc == 0);
2571 	CU_ASSERT(g_io_done == false);
2572 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2573 	stub_complete_io(1);
2574 	CU_ASSERT(g_io_done == true);
2575 
2576 	/* Test a COPY.  This should also not be split. */
2577 	g_io_done = false;
2578 
2579 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
2580 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2581 
2582 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
2583 	CU_ASSERT(rc == 0);
2584 	CU_ASSERT(g_io_done == false);
2585 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2586 	stub_complete_io(1);
2587 	CU_ASSERT(g_io_done == true);
2588 
2589 	/* Test that IOs are split on max_rw_size */
2590 	bdev->max_rw_size = 2;
2591 	bdev->max_segment_size = 0;
2592 	bdev->max_num_segments = 0;
2593 	g_io_done = false;
2594 
2595 	/* 5 blocks in a contiguous buffer */
2596 	iov[0].iov_base = (void *)0x10000;
2597 	iov[0].iov_len = 5 * 512;
2598 
2599 	/* First: offset=0, num_blocks=2 */
2600 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 2, 1);
2601 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 2 * 512);
2602 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2603 	/* Second: offset=2, num_blocks=2 */
2604 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2, 2, 1);
2605 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + 2 * 512, 2 * 512);
2606 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2607 	/* Third: offset=4, num_blocks=1 */
2608 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 4, 1, 1);
2609 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + 4 * 512, 512);
2610 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2611 
2612 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 0, 5, io_done, NULL);
2613 	CU_ASSERT(rc == 0);
2614 	CU_ASSERT(g_io_done == false);
2615 
2616 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2617 	stub_complete_io(3);
2618 	CU_ASSERT(g_io_done == true);
2619 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2620 
2621 	/* Check splitting on both max_rw_size + max_num_segments */
2622 	bdev->max_rw_size = 2;
2623 	bdev->max_num_segments = 2;
2624 	bdev->max_segment_size = 0;
2625 	g_io_done = false;
2626 
2627 	/* 5 blocks split across 4 iovs */
2628 	iov[0].iov_base = (void *)0x10000;
2629 	iov[0].iov_len = 3 * 512;
2630 	iov[1].iov_base = (void *)0x20000;
2631 	iov[1].iov_len = 256;
2632 	iov[2].iov_base = (void *)0x30000;
2633 	iov[2].iov_len = 256;
2634 	iov[3].iov_base = (void *)0x40000;
2635 	iov[3].iov_len = 512;
2636 
2637 	/* First: offset=0, num_blocks=2, iovcnt=1 */
2638 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 2, 1);
2639 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 2 * 512);
2640 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2641 	/* Second: offset=2, num_blocks=1, iovcnt=1 (max_segment_size prevents from submitting
2642 	 * the rest of iov[0], and iov[1]+iov[2])
2643 	 */
2644 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2, 1, 1);
2645 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + 2 * 512, 512);
2646 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2647 	/* Third: offset=3, num_blocks=1, iovcnt=2 (iov[1]+iov[2]) */
2648 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 3, 1, 2);
2649 	ut_expected_io_set_iov(expected_io, 0, (void *)0x20000, 256);
2650 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 256);
2651 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2652 	/* Fourth: offset=4, num_blocks=1, iovcnt=1 (iov[3]) */
2653 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 4, 1, 1);
2654 	ut_expected_io_set_iov(expected_io, 0, (void *)0x40000, 512);
2655 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2656 
2657 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 4, 0, 5, io_done, NULL);
2658 	CU_ASSERT(rc == 0);
2659 	CU_ASSERT(g_io_done == false);
2660 
2661 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2662 	stub_complete_io(4);
2663 	CU_ASSERT(g_io_done == true);
2664 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2665 
2666 	/* Check splitting on both max_rw_size + max_segment_size */
2667 	bdev->max_rw_size = 2;
2668 	bdev->max_segment_size = 512;
2669 	bdev->max_num_segments = 0;
2670 	g_io_done = false;
2671 
2672 	/* 6 blocks in a contiguous buffer */
2673 	iov[0].iov_base = (void *)0x10000;
2674 	iov[0].iov_len = 6 * 512;
2675 
2676 	/* We expect 3 IOs each with 2 blocks and 2 iovs */
2677 	for (i = 0; i < 3; ++i) {
2678 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 2, 2);
2679 		ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + i * 2 * 512, 512);
2680 		ut_expected_io_set_iov(expected_io, 1, (void *)0x10000 + i * 2 * 512 + 512, 512);
2681 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2682 	}
2683 
2684 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 0, 6, io_done, NULL);
2685 	CU_ASSERT(rc == 0);
2686 	CU_ASSERT(g_io_done == false);
2687 
2688 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2689 	stub_complete_io(3);
2690 	CU_ASSERT(g_io_done == true);
2691 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2692 
2693 	/* Check splitting on max_rw_size limited by SPDK_BDEV_IO_NUM_CHILD_IOV */
2694 	bdev->max_rw_size = 1;
2695 	bdev->max_segment_size = 0;
2696 	bdev->max_num_segments = 0;
2697 	g_io_done = false;
2698 
2699 	/* SPDK_BDEV_IO_NUM_CHILD_IOV + 1 blocks */
2700 	iov[0].iov_base = (void *)0x10000;
2701 	iov[0].iov_len = (SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 512;
2702 
2703 	/* We expect SPDK_BDEV_IO_NUM_CHILD_IOV + 1 IOs each with a single iov */
2704 	for (i = 0; i < 3; ++i) {
2705 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i, 1, 1);
2706 		ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + i * 512, 512);
2707 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2708 	}
2709 
2710 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
2711 	CU_ASSERT(rc == 0);
2712 	CU_ASSERT(g_io_done == false);
2713 
2714 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2715 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2716 	CU_ASSERT(g_io_done == false);
2717 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2718 	stub_complete_io(1);
2719 	CU_ASSERT(g_io_done == true);
2720 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2721 
2722 	spdk_put_io_channel(io_ch);
2723 	spdk_bdev_close(desc);
2724 	free_bdev(bdev);
2725 	ut_fini_bdev();
2726 }
2727 
2728 static void
2729 bdev_io_mix_split_test(void)
2730 {
2731 	struct spdk_bdev *bdev;
2732 	struct spdk_bdev_desc *desc = NULL;
2733 	struct spdk_io_channel *io_ch;
2734 	struct spdk_bdev_opts bdev_opts = {};
2735 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
2736 	struct ut_expected_io *expected_io;
2737 	uint64_t i;
2738 	int rc;
2739 
2740 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2741 	bdev_opts.bdev_io_pool_size = 512;
2742 	bdev_opts.bdev_io_cache_size = 64;
2743 	ut_init_bdev(&bdev_opts);
2744 
2745 	bdev = allocate_bdev("bdev0");
2746 
2747 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2748 	CU_ASSERT(rc == 0);
2749 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2750 	io_ch = spdk_bdev_get_io_channel(desc);
2751 	CU_ASSERT(io_ch != NULL);
2752 
2753 	/* First case optimal_io_boundary == max_segment_size * max_num_segments */
2754 	bdev->split_on_optimal_io_boundary = true;
2755 	bdev->optimal_io_boundary = 16;
2756 
2757 	bdev->max_segment_size = 512;
2758 	bdev->max_num_segments = 16;
2759 	g_io_done = false;
2760 
2761 	/* IO crossing the IO boundary requires split
2762 	 * Total 2 child IOs.
2763 	 */
2764 
2765 	/* The 1st child IO split the segment_size to multiple segment entry */
2766 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2767 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2768 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2769 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2770 
2771 	/* The 2nd child IO split the segment_size to multiple segment entry */
2772 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2);
2773 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512);
2774 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512);
2775 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2776 
2777 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL);
2778 	CU_ASSERT(rc == 0);
2779 	CU_ASSERT(g_io_done == false);
2780 
2781 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2782 	stub_complete_io(2);
2783 	CU_ASSERT(g_io_done == true);
2784 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2785 
2786 	/* Second case optimal_io_boundary > max_segment_size * max_num_segments */
2787 	bdev->max_segment_size = 15 * 512;
2788 	bdev->max_num_segments = 1;
2789 	g_io_done = false;
2790 
2791 	/* IO crossing the IO boundary requires split.
2792 	 * The 1st child IO segment size exceeds the max_segment_size,
2793 	 * So 1st child IO will be split to multiple segment entry.
2794 	 * Then it split to 2 child IOs because of the max_num_segments.
2795 	 * Total 3 child IOs.
2796 	 */
2797 
2798 	/* The first 2 IOs are in an IO boundary.
2799 	 * Because the optimal_io_boundary > max_segment_size * max_num_segments
2800 	 * So it split to the first 2 IOs.
2801 	 */
2802 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1);
2803 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15);
2804 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2805 
2806 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2807 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512);
2808 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2809 
2810 	/* The 3rd Child IO is because of the io boundary */
2811 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2812 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2813 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2814 
2815 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2816 	CU_ASSERT(rc == 0);
2817 	CU_ASSERT(g_io_done == false);
2818 
2819 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2820 	stub_complete_io(3);
2821 	CU_ASSERT(g_io_done == true);
2822 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2823 
2824 	/* Third case optimal_io_boundary < max_segment_size * max_num_segments */
2825 	bdev->max_segment_size = 17 * 512;
2826 	bdev->max_num_segments = 1;
2827 	g_io_done = false;
2828 
2829 	/* IO crossing the IO boundary requires split.
2830 	 * Child IO does not split.
2831 	 * Total 2 child IOs.
2832 	 */
2833 
2834 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1);
2835 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16);
2836 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2837 
2838 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2839 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2840 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2841 
2842 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2843 	CU_ASSERT(rc == 0);
2844 	CU_ASSERT(g_io_done == false);
2845 
2846 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2847 	stub_complete_io(2);
2848 	CU_ASSERT(g_io_done == true);
2849 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2850 
2851 	/* Now set up a more complex, multi-vector command that needs to be split,
2852 	 * including splitting iovecs.
2853 	 * optimal_io_boundary < max_segment_size * max_num_segments
2854 	 */
2855 	bdev->max_segment_size = 3 * 512;
2856 	bdev->max_num_segments = 6;
2857 	g_io_done = false;
2858 
2859 	iov[0].iov_base = (void *)0x10000;
2860 	iov[0].iov_len = 4 * 512;
2861 	iov[1].iov_base = (void *)0x20000;
2862 	iov[1].iov_len = 4 * 512;
2863 	iov[2].iov_base = (void *)0x30000;
2864 	iov[2].iov_len = 10 * 512;
2865 
2866 	/* IO crossing the IO boundary requires split.
2867 	 * The 1st child IO segment size exceeds the max_segment_size and after
2868 	 * splitting segment_size, the num_segments exceeds max_num_segments.
2869 	 * So 1st child IO will be split to 2 child IOs.
2870 	 * Total 3 child IOs.
2871 	 */
2872 
2873 	/* The first 2 IOs are in an IO boundary.
2874 	 * After splitting segment size the segment num exceeds.
2875 	 * So it splits to 2 child IOs.
2876 	 */
2877 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6);
2878 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3);
2879 	ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512);
2880 	ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3);
2881 	ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512);
2882 	ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3);
2883 	ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3);
2884 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2885 
2886 	/* The 2nd child IO has the left segment entry */
2887 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2888 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2);
2889 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2890 
2891 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2892 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2);
2893 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2894 
2895 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL);
2896 	CU_ASSERT(rc == 0);
2897 	CU_ASSERT(g_io_done == false);
2898 
2899 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2900 	stub_complete_io(3);
2901 	CU_ASSERT(g_io_done == true);
2902 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2903 
2904 	/* A very complicated case. Each sg entry exceeds max_segment_size
2905 	 * and split on io boundary.
2906 	 * optimal_io_boundary < max_segment_size * max_num_segments
2907 	 */
2908 	bdev->max_segment_size = 3 * 512;
2909 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2910 	g_io_done = false;
2911 
2912 	for (i = 0; i < 20; i++) {
2913 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2914 		iov[i].iov_len = 512 * 4;
2915 	}
2916 
2917 	/* IO crossing the IO boundary requires split.
2918 	 * 80 block length can split 5 child IOs base on offset and IO boundary.
2919 	 * Each iov entry needs to be split to 2 entries because of max_segment_size
2920 	 * Total 5 child IOs.
2921 	 */
2922 
2923 	/* 4 iov entries are in an IO boundary and each iov entry splits to 2.
2924 	 * So each child IO occupies 8 child iov entries.
2925 	 */
2926 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8);
2927 	for (i = 0; i < 4; i++) {
2928 		int iovcnt = i * 2;
2929 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2930 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2931 	}
2932 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2933 
2934 	/* 2nd child IO and total 16 child iov entries of parent IO */
2935 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8);
2936 	for (i = 4; i < 8; i++) {
2937 		int iovcnt = (i - 4) * 2;
2938 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2939 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2940 	}
2941 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2942 
2943 	/* 3rd child IO and total 24 child iov entries of parent IO */
2944 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8);
2945 	for (i = 8; i < 12; i++) {
2946 		int iovcnt = (i - 8) * 2;
2947 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2948 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2949 	}
2950 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2951 
2952 	/* 4th child IO and total 32 child iov entries of parent IO */
2953 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8);
2954 	for (i = 12; i < 16; i++) {
2955 		int iovcnt = (i - 12) * 2;
2956 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2957 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2958 	}
2959 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2960 
2961 	/* 5th child IO and because of the child iov entry it should be split
2962 	 * in next round.
2963 	 */
2964 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8);
2965 	for (i = 16; i < 20; i++) {
2966 		int iovcnt = (i - 16) * 2;
2967 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2968 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2969 	}
2970 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2971 
2972 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL);
2973 	CU_ASSERT(rc == 0);
2974 	CU_ASSERT(g_io_done == false);
2975 
2976 	/* First split round */
2977 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2978 	stub_complete_io(4);
2979 	CU_ASSERT(g_io_done == false);
2980 
2981 	/* Second split round */
2982 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2983 	stub_complete_io(1);
2984 	CU_ASSERT(g_io_done == true);
2985 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2986 
2987 	spdk_put_io_channel(io_ch);
2988 	spdk_bdev_close(desc);
2989 	free_bdev(bdev);
2990 	ut_fini_bdev();
2991 }
2992 
2993 static void
2994 bdev_io_split_with_io_wait(void)
2995 {
2996 	struct spdk_bdev *bdev;
2997 	struct spdk_bdev_desc *desc = NULL;
2998 	struct spdk_io_channel *io_ch;
2999 	struct spdk_bdev_channel *channel;
3000 	struct spdk_bdev_mgmt_channel *mgmt_ch;
3001 	struct spdk_bdev_opts bdev_opts = {};
3002 	struct iovec iov[3];
3003 	struct ut_expected_io *expected_io;
3004 	int rc;
3005 
3006 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3007 	bdev_opts.bdev_io_pool_size = 2;
3008 	bdev_opts.bdev_io_cache_size = 1;
3009 	ut_init_bdev(&bdev_opts);
3010 
3011 	bdev = allocate_bdev("bdev0");
3012 
3013 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3014 	CU_ASSERT(rc == 0);
3015 	CU_ASSERT(desc != NULL);
3016 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3017 	io_ch = spdk_bdev_get_io_channel(desc);
3018 	CU_ASSERT(io_ch != NULL);
3019 	channel = spdk_io_channel_get_ctx(io_ch);
3020 	mgmt_ch = channel->shared_resource->mgmt_ch;
3021 
3022 	bdev->optimal_io_boundary = 16;
3023 	bdev->split_on_optimal_io_boundary = true;
3024 
3025 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
3026 	CU_ASSERT(rc == 0);
3027 
3028 	/* Now test that a single-vector command is split correctly.
3029 	 * Offset 14, length 8, payload 0xF000
3030 	 *  Child - Offset 14, length 2, payload 0xF000
3031 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
3032 	 *
3033 	 * Set up the expected values before calling spdk_bdev_read_blocks
3034 	 */
3035 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
3036 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
3037 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3038 
3039 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
3040 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
3041 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3042 
3043 	/* The following children will be submitted sequentially due to the capacity of
3044 	 * spdk_bdev_io.
3045 	 */
3046 
3047 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
3048 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
3049 	CU_ASSERT(rc == 0);
3050 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
3051 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3052 
3053 	/* Completing the first read I/O will submit the first child */
3054 	stub_complete_io(1);
3055 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
3056 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3057 
3058 	/* Completing the first child will submit the second child */
3059 	stub_complete_io(1);
3060 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3061 
3062 	/* Complete the second child I/O.  This should result in our callback getting
3063 	 * invoked since the parent I/O is now complete.
3064 	 */
3065 	stub_complete_io(1);
3066 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3067 
3068 	/* Now set up a more complex, multi-vector command that needs to be split,
3069 	 *  including splitting iovecs.
3070 	 */
3071 	iov[0].iov_base = (void *)0x10000;
3072 	iov[0].iov_len = 512;
3073 	iov[1].iov_base = (void *)0x20000;
3074 	iov[1].iov_len = 20 * 512;
3075 	iov[2].iov_base = (void *)0x30000;
3076 	iov[2].iov_len = 11 * 512;
3077 
3078 	g_io_done = false;
3079 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
3080 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
3081 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
3082 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3083 
3084 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
3085 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
3086 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3087 
3088 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
3089 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
3090 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
3091 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3092 
3093 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
3094 	CU_ASSERT(rc == 0);
3095 	CU_ASSERT(g_io_done == false);
3096 
3097 	/* The following children will be submitted sequentially due to the capacity of
3098 	 * spdk_bdev_io.
3099 	 */
3100 
3101 	/* Completing the first child will submit the second child */
3102 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3103 	stub_complete_io(1);
3104 	CU_ASSERT(g_io_done == false);
3105 
3106 	/* Completing the second child will submit the third child */
3107 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3108 	stub_complete_io(1);
3109 	CU_ASSERT(g_io_done == false);
3110 
3111 	/* Completing the third child will result in our callback getting invoked
3112 	 * since the parent I/O is now complete.
3113 	 */
3114 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3115 	stub_complete_io(1);
3116 	CU_ASSERT(g_io_done == true);
3117 
3118 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
3119 
3120 	spdk_put_io_channel(io_ch);
3121 	spdk_bdev_close(desc);
3122 	free_bdev(bdev);
3123 	ut_fini_bdev();
3124 }
3125 
3126 static void
3127 bdev_io_write_unit_split_test(void)
3128 {
3129 	struct spdk_bdev *bdev;
3130 	struct spdk_bdev_desc *desc = NULL;
3131 	struct spdk_io_channel *io_ch;
3132 	struct spdk_bdev_opts bdev_opts = {};
3133 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 4];
3134 	struct ut_expected_io *expected_io;
3135 	uint64_t i;
3136 	int rc;
3137 
3138 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3139 	bdev_opts.bdev_io_pool_size = 512;
3140 	bdev_opts.bdev_io_cache_size = 64;
3141 	ut_init_bdev(&bdev_opts);
3142 
3143 	bdev = allocate_bdev("bdev0");
3144 
3145 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
3146 	CU_ASSERT(rc == 0);
3147 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3148 	io_ch = spdk_bdev_get_io_channel(desc);
3149 	CU_ASSERT(io_ch != NULL);
3150 
3151 	/* Write I/O 2x larger than write_unit_size should get split into 2 I/Os */
3152 	bdev->write_unit_size = 32;
3153 	bdev->split_on_write_unit = true;
3154 	g_io_done = false;
3155 
3156 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 32, 1);
3157 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 32 * 512);
3158 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3159 
3160 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 32, 1);
3161 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 32 * 512), 32 * 512);
3162 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3163 
3164 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
3165 	CU_ASSERT(rc == 0);
3166 	CU_ASSERT(g_io_done == false);
3167 
3168 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3169 	stub_complete_io(2);
3170 	CU_ASSERT(g_io_done == true);
3171 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3172 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3173 
3174 	/* Same as above but with optimal_io_boundary < write_unit_size - the I/O should be split
3175 	 * based on write_unit_size, not optimal_io_boundary */
3176 	bdev->split_on_optimal_io_boundary = true;
3177 	bdev->optimal_io_boundary = 16;
3178 	g_io_done = false;
3179 
3180 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
3181 	CU_ASSERT(rc == 0);
3182 	CU_ASSERT(g_io_done == false);
3183 
3184 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3185 	stub_complete_io(2);
3186 	CU_ASSERT(g_io_done == true);
3187 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3188 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3189 
3190 	/* Write I/O should fail if it is smaller than write_unit_size */
3191 	g_io_done = false;
3192 
3193 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 31, io_done, NULL);
3194 	CU_ASSERT(rc == 0);
3195 	CU_ASSERT(g_io_done == false);
3196 
3197 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3198 	poll_threads();
3199 	CU_ASSERT(g_io_done == true);
3200 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3201 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3202 
3203 	/* Same for I/O not aligned to write_unit_size */
3204 	g_io_done = false;
3205 
3206 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 1, 32, io_done, NULL);
3207 	CU_ASSERT(rc == 0);
3208 	CU_ASSERT(g_io_done == false);
3209 
3210 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3211 	poll_threads();
3212 	CU_ASSERT(g_io_done == true);
3213 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3214 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3215 
3216 	/* Write should fail if it needs to be split but there are not enough iovs to submit
3217 	 * an entire write unit */
3218 	bdev->write_unit_size = SPDK_COUNTOF(iov) / 2;
3219 	g_io_done = false;
3220 
3221 	for (i = 0; i < SPDK_COUNTOF(iov); i++) {
3222 		iov[i].iov_base = (void *)(0x1000 + 512 * i);
3223 		iov[i].iov_len = 512;
3224 	}
3225 
3226 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, SPDK_COUNTOF(iov), 0, SPDK_COUNTOF(iov),
3227 				     io_done, NULL);
3228 	CU_ASSERT(rc == 0);
3229 	CU_ASSERT(g_io_done == false);
3230 
3231 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3232 	poll_threads();
3233 	CU_ASSERT(g_io_done == true);
3234 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3235 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3236 
3237 	spdk_put_io_channel(io_ch);
3238 	spdk_bdev_close(desc);
3239 	free_bdev(bdev);
3240 	ut_fini_bdev();
3241 }
3242 
3243 static void
3244 bdev_io_alignment(void)
3245 {
3246 	struct spdk_bdev *bdev;
3247 	struct spdk_bdev_desc *desc = NULL;
3248 	struct spdk_io_channel *io_ch;
3249 	struct spdk_bdev_opts bdev_opts = {};
3250 	int rc;
3251 	void *buf = NULL;
3252 	struct iovec iovs[2];
3253 	int iovcnt;
3254 	uint64_t alignment;
3255 
3256 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3257 	bdev_opts.bdev_io_pool_size = 20;
3258 	bdev_opts.bdev_io_cache_size = 2;
3259 	ut_init_bdev(&bdev_opts);
3260 
3261 	fn_table.submit_request = stub_submit_request_get_buf;
3262 	bdev = allocate_bdev("bdev0");
3263 
3264 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3265 	CU_ASSERT(rc == 0);
3266 	CU_ASSERT(desc != NULL);
3267 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3268 	io_ch = spdk_bdev_get_io_channel(desc);
3269 	CU_ASSERT(io_ch != NULL);
3270 
3271 	/* Create aligned buffer */
3272 	rc = posix_memalign(&buf, 4096, 8192);
3273 	SPDK_CU_ASSERT_FATAL(rc == 0);
3274 
3275 	/* Pass aligned single buffer with no alignment required */
3276 	alignment = 1;
3277 	bdev->required_alignment = spdk_u32log2(alignment);
3278 
3279 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3280 	CU_ASSERT(rc == 0);
3281 	stub_complete_io(1);
3282 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3283 				    alignment));
3284 
3285 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3286 	CU_ASSERT(rc == 0);
3287 	stub_complete_io(1);
3288 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3289 				    alignment));
3290 
3291 	/* Pass unaligned single buffer with no alignment required */
3292 	alignment = 1;
3293 	bdev->required_alignment = spdk_u32log2(alignment);
3294 
3295 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3296 	CU_ASSERT(rc == 0);
3297 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3298 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3299 	stub_complete_io(1);
3300 
3301 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3302 	CU_ASSERT(rc == 0);
3303 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3304 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3305 	stub_complete_io(1);
3306 
3307 	/* Pass unaligned single buffer with 512 alignment required */
3308 	alignment = 512;
3309 	bdev->required_alignment = spdk_u32log2(alignment);
3310 
3311 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3312 	CU_ASSERT(rc == 0);
3313 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3314 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3315 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3316 				    alignment));
3317 	stub_complete_io(1);
3318 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3319 
3320 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3321 	CU_ASSERT(rc == 0);
3322 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3323 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3324 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3325 				    alignment));
3326 	stub_complete_io(1);
3327 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3328 
3329 	/* Pass unaligned single buffer with 4096 alignment required */
3330 	alignment = 4096;
3331 	bdev->required_alignment = spdk_u32log2(alignment);
3332 
3333 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3334 	CU_ASSERT(rc == 0);
3335 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3336 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3337 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3338 				    alignment));
3339 	stub_complete_io(1);
3340 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3341 
3342 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3343 	CU_ASSERT(rc == 0);
3344 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3345 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3346 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3347 				    alignment));
3348 	stub_complete_io(1);
3349 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3350 
3351 	/* Pass aligned iovs with no alignment required */
3352 	alignment = 1;
3353 	bdev->required_alignment = spdk_u32log2(alignment);
3354 
3355 	iovcnt = 1;
3356 	iovs[0].iov_base = buf;
3357 	iovs[0].iov_len = 512;
3358 
3359 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3360 	CU_ASSERT(rc == 0);
3361 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3362 	stub_complete_io(1);
3363 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3364 
3365 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3366 	CU_ASSERT(rc == 0);
3367 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3368 	stub_complete_io(1);
3369 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3370 
3371 	/* Pass unaligned iovs with no alignment required */
3372 	alignment = 1;
3373 	bdev->required_alignment = spdk_u32log2(alignment);
3374 
3375 	iovcnt = 2;
3376 	iovs[0].iov_base = buf + 16;
3377 	iovs[0].iov_len = 256;
3378 	iovs[1].iov_base = buf + 16 + 256 + 32;
3379 	iovs[1].iov_len = 256;
3380 
3381 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3382 	CU_ASSERT(rc == 0);
3383 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3384 	stub_complete_io(1);
3385 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3386 
3387 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3388 	CU_ASSERT(rc == 0);
3389 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3390 	stub_complete_io(1);
3391 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3392 
3393 	/* Pass unaligned iov with 2048 alignment required */
3394 	alignment = 2048;
3395 	bdev->required_alignment = spdk_u32log2(alignment);
3396 
3397 	iovcnt = 2;
3398 	iovs[0].iov_base = buf + 16;
3399 	iovs[0].iov_len = 256;
3400 	iovs[1].iov_base = buf + 16 + 256 + 32;
3401 	iovs[1].iov_len = 256;
3402 
3403 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3404 	CU_ASSERT(rc == 0);
3405 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3406 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3407 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3408 				    alignment));
3409 	stub_complete_io(1);
3410 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3411 
3412 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3413 	CU_ASSERT(rc == 0);
3414 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3415 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3416 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3417 				    alignment));
3418 	stub_complete_io(1);
3419 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3420 
3421 	/* Pass iov without allocated buffer without alignment required */
3422 	alignment = 1;
3423 	bdev->required_alignment = spdk_u32log2(alignment);
3424 
3425 	iovcnt = 1;
3426 	iovs[0].iov_base = NULL;
3427 	iovs[0].iov_len = 0;
3428 
3429 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3430 	CU_ASSERT(rc == 0);
3431 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3432 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3433 				    alignment));
3434 	stub_complete_io(1);
3435 
3436 	/* Pass iov without allocated buffer with 1024 alignment required */
3437 	alignment = 1024;
3438 	bdev->required_alignment = spdk_u32log2(alignment);
3439 
3440 	iovcnt = 1;
3441 	iovs[0].iov_base = NULL;
3442 	iovs[0].iov_len = 0;
3443 
3444 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3445 	CU_ASSERT(rc == 0);
3446 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3447 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3448 				    alignment));
3449 	stub_complete_io(1);
3450 
3451 	spdk_put_io_channel(io_ch);
3452 	spdk_bdev_close(desc);
3453 	free_bdev(bdev);
3454 	fn_table.submit_request = stub_submit_request;
3455 	ut_fini_bdev();
3456 
3457 	free(buf);
3458 }
3459 
3460 static void
3461 bdev_io_alignment_with_boundary(void)
3462 {
3463 	struct spdk_bdev *bdev;
3464 	struct spdk_bdev_desc *desc = NULL;
3465 	struct spdk_io_channel *io_ch;
3466 	struct spdk_bdev_opts bdev_opts = {};
3467 	int rc;
3468 	void *buf = NULL;
3469 	struct iovec iovs[2];
3470 	int iovcnt;
3471 	uint64_t alignment;
3472 
3473 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3474 	bdev_opts.bdev_io_pool_size = 20;
3475 	bdev_opts.bdev_io_cache_size = 2;
3476 	bdev_opts.opts_size = sizeof(bdev_opts);
3477 	ut_init_bdev(&bdev_opts);
3478 
3479 	fn_table.submit_request = stub_submit_request_get_buf;
3480 	bdev = allocate_bdev("bdev0");
3481 
3482 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3483 	CU_ASSERT(rc == 0);
3484 	CU_ASSERT(desc != NULL);
3485 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3486 	io_ch = spdk_bdev_get_io_channel(desc);
3487 	CU_ASSERT(io_ch != NULL);
3488 
3489 	/* Create aligned buffer */
3490 	rc = posix_memalign(&buf, 4096, 131072);
3491 	SPDK_CU_ASSERT_FATAL(rc == 0);
3492 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3493 
3494 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
3495 	alignment = 512;
3496 	bdev->required_alignment = spdk_u32log2(alignment);
3497 	bdev->optimal_io_boundary = 2;
3498 	bdev->split_on_optimal_io_boundary = true;
3499 
3500 	iovcnt = 1;
3501 	iovs[0].iov_base = NULL;
3502 	iovs[0].iov_len = 512 * 3;
3503 
3504 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3505 	CU_ASSERT(rc == 0);
3506 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3507 	stub_complete_io(2);
3508 
3509 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
3510 	alignment = 512;
3511 	bdev->required_alignment = spdk_u32log2(alignment);
3512 	bdev->optimal_io_boundary = 16;
3513 	bdev->split_on_optimal_io_boundary = true;
3514 
3515 	iovcnt = 1;
3516 	iovs[0].iov_base = NULL;
3517 	iovs[0].iov_len = 512 * 16;
3518 
3519 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
3520 	CU_ASSERT(rc == 0);
3521 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3522 	stub_complete_io(2);
3523 
3524 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
3525 	alignment = 512;
3526 	bdev->required_alignment = spdk_u32log2(alignment);
3527 	bdev->optimal_io_boundary = 128;
3528 	bdev->split_on_optimal_io_boundary = true;
3529 
3530 	iovcnt = 1;
3531 	iovs[0].iov_base = buf + 16;
3532 	iovs[0].iov_len = 512 * 160;
3533 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3534 	CU_ASSERT(rc == 0);
3535 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3536 	stub_complete_io(2);
3537 
3538 	/* 512 * 3 with 2 IO boundary */
3539 	alignment = 512;
3540 	bdev->required_alignment = spdk_u32log2(alignment);
3541 	bdev->optimal_io_boundary = 2;
3542 	bdev->split_on_optimal_io_boundary = true;
3543 
3544 	iovcnt = 2;
3545 	iovs[0].iov_base = buf + 16;
3546 	iovs[0].iov_len = 512;
3547 	iovs[1].iov_base = buf + 16 + 512 + 32;
3548 	iovs[1].iov_len = 1024;
3549 
3550 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3551 	CU_ASSERT(rc == 0);
3552 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3553 	stub_complete_io(2);
3554 
3555 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3556 	CU_ASSERT(rc == 0);
3557 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3558 	stub_complete_io(2);
3559 
3560 	/* 512 * 64 with 32 IO boundary */
3561 	bdev->optimal_io_boundary = 32;
3562 	iovcnt = 2;
3563 	iovs[0].iov_base = buf + 16;
3564 	iovs[0].iov_len = 16384;
3565 	iovs[1].iov_base = buf + 16 + 16384 + 32;
3566 	iovs[1].iov_len = 16384;
3567 
3568 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3569 	CU_ASSERT(rc == 0);
3570 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3571 	stub_complete_io(3);
3572 
3573 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3574 	CU_ASSERT(rc == 0);
3575 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3576 	stub_complete_io(3);
3577 
3578 	/* 512 * 160 with 32 IO boundary */
3579 	iovcnt = 1;
3580 	iovs[0].iov_base = buf + 16;
3581 	iovs[0].iov_len = 16384 + 65536;
3582 
3583 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3584 	CU_ASSERT(rc == 0);
3585 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
3586 	stub_complete_io(6);
3587 
3588 	spdk_put_io_channel(io_ch);
3589 	spdk_bdev_close(desc);
3590 	free_bdev(bdev);
3591 	fn_table.submit_request = stub_submit_request;
3592 	ut_fini_bdev();
3593 
3594 	free(buf);
3595 }
3596 
3597 static void
3598 histogram_status_cb(void *cb_arg, int status)
3599 {
3600 	g_status = status;
3601 }
3602 
3603 static void
3604 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3605 {
3606 	g_status = status;
3607 	g_histogram = histogram;
3608 }
3609 
3610 static void
3611 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
3612 		   uint64_t total, uint64_t so_far)
3613 {
3614 	g_count += count;
3615 }
3616 
3617 static void
3618 histogram_channel_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3619 {
3620 	spdk_histogram_data_fn cb_fn = cb_arg;
3621 
3622 	g_status = status;
3623 
3624 	if (status == 0) {
3625 		spdk_histogram_data_iterate(histogram, cb_fn, NULL);
3626 	}
3627 }
3628 
3629 static void
3630 bdev_histograms(void)
3631 {
3632 	struct spdk_bdev *bdev;
3633 	struct spdk_bdev_desc *desc = NULL;
3634 	struct spdk_io_channel *ch;
3635 	struct spdk_histogram_data *histogram;
3636 	uint8_t buf[4096];
3637 	int rc;
3638 
3639 	ut_init_bdev(NULL);
3640 
3641 	bdev = allocate_bdev("bdev");
3642 
3643 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3644 	CU_ASSERT(rc == 0);
3645 	CU_ASSERT(desc != NULL);
3646 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3647 
3648 	ch = spdk_bdev_get_io_channel(desc);
3649 	CU_ASSERT(ch != NULL);
3650 
3651 	/* Enable histogram */
3652 	g_status = -1;
3653 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
3654 	poll_threads();
3655 	CU_ASSERT(g_status == 0);
3656 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3657 
3658 	/* Allocate histogram */
3659 	histogram = spdk_histogram_data_alloc();
3660 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
3661 
3662 	/* Check if histogram is zeroed */
3663 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3664 	poll_threads();
3665 	CU_ASSERT(g_status == 0);
3666 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3667 
3668 	g_count = 0;
3669 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3670 
3671 	CU_ASSERT(g_count == 0);
3672 
3673 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3674 	CU_ASSERT(rc == 0);
3675 
3676 	spdk_delay_us(10);
3677 	stub_complete_io(1);
3678 	poll_threads();
3679 
3680 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3681 	CU_ASSERT(rc == 0);
3682 
3683 	spdk_delay_us(10);
3684 	stub_complete_io(1);
3685 	poll_threads();
3686 
3687 	/* Check if histogram gathered data from all I/O channels */
3688 	g_histogram = NULL;
3689 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3690 	poll_threads();
3691 	CU_ASSERT(g_status == 0);
3692 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3693 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3694 
3695 	g_count = 0;
3696 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3697 	CU_ASSERT(g_count == 2);
3698 
3699 	g_count = 0;
3700 	spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, histogram_io_count);
3701 	CU_ASSERT(g_status == 0);
3702 	CU_ASSERT(g_count == 2);
3703 
3704 	/* Disable histogram */
3705 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
3706 	poll_threads();
3707 	CU_ASSERT(g_status == 0);
3708 	CU_ASSERT(bdev->internal.histogram_enabled == false);
3709 
3710 	/* Try to run histogram commands on disabled bdev */
3711 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3712 	poll_threads();
3713 	CU_ASSERT(g_status == -EFAULT);
3714 
3715 	spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, NULL);
3716 	CU_ASSERT(g_status == -EFAULT);
3717 
3718 	spdk_histogram_data_free(histogram);
3719 	spdk_put_io_channel(ch);
3720 	spdk_bdev_close(desc);
3721 	free_bdev(bdev);
3722 	ut_fini_bdev();
3723 }
3724 
3725 static void
3726 _bdev_compare(bool emulated)
3727 {
3728 	struct spdk_bdev *bdev;
3729 	struct spdk_bdev_desc *desc = NULL;
3730 	struct spdk_io_channel *ioch;
3731 	struct ut_expected_io *expected_io;
3732 	uint64_t offset, num_blocks;
3733 	uint32_t num_completed;
3734 	char aa_buf[512];
3735 	char bb_buf[512];
3736 	struct iovec compare_iov;
3737 	uint8_t expected_io_type;
3738 	int rc;
3739 
3740 	if (emulated) {
3741 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3742 	} else {
3743 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3744 	}
3745 
3746 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3747 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3748 
3749 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3750 
3751 	ut_init_bdev(NULL);
3752 	fn_table.submit_request = stub_submit_request_get_buf;
3753 	bdev = allocate_bdev("bdev");
3754 
3755 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3756 	CU_ASSERT_EQUAL(rc, 0);
3757 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3758 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3759 	ioch = spdk_bdev_get_io_channel(desc);
3760 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3761 
3762 	fn_table.submit_request = stub_submit_request_get_buf;
3763 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3764 
3765 	offset = 50;
3766 	num_blocks = 1;
3767 	compare_iov.iov_base = aa_buf;
3768 	compare_iov.iov_len = sizeof(aa_buf);
3769 
3770 	/* 1. successful comparev */
3771 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3772 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3773 
3774 	g_io_done = false;
3775 	g_compare_read_buf = aa_buf;
3776 	g_compare_read_buf_len = sizeof(aa_buf);
3777 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3778 	CU_ASSERT_EQUAL(rc, 0);
3779 	num_completed = stub_complete_io(1);
3780 	CU_ASSERT_EQUAL(num_completed, 1);
3781 	CU_ASSERT(g_io_done == true);
3782 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3783 
3784 	/* 2. miscompare comparev */
3785 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3786 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3787 
3788 	g_io_done = false;
3789 	g_compare_read_buf = bb_buf;
3790 	g_compare_read_buf_len = sizeof(bb_buf);
3791 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3792 	CU_ASSERT_EQUAL(rc, 0);
3793 	num_completed = stub_complete_io(1);
3794 	CU_ASSERT_EQUAL(num_completed, 1);
3795 	CU_ASSERT(g_io_done == true);
3796 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3797 
3798 	/* 3. successful compare */
3799 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3800 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3801 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3802 
3803 	g_io_done = false;
3804 	g_compare_read_buf = aa_buf;
3805 	g_compare_read_buf_len = sizeof(aa_buf);
3806 	rc = spdk_bdev_compare_blocks(desc, ioch, aa_buf, offset, num_blocks, io_done, NULL);
3807 	CU_ASSERT_EQUAL(rc, 0);
3808 	num_completed = stub_complete_io(1);
3809 	CU_ASSERT_EQUAL(num_completed, 1);
3810 	CU_ASSERT(g_io_done == true);
3811 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3812 
3813 	/* 4. miscompare compare */
3814 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3815 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3816 
3817 	g_io_done = false;
3818 	g_compare_read_buf = bb_buf;
3819 	g_compare_read_buf_len = sizeof(bb_buf);
3820 	rc = spdk_bdev_compare_blocks(desc, ioch, aa_buf, offset, num_blocks, io_done, NULL);
3821 	CU_ASSERT_EQUAL(rc, 0);
3822 	num_completed = stub_complete_io(1);
3823 	CU_ASSERT_EQUAL(num_completed, 1);
3824 	CU_ASSERT(g_io_done == true);
3825 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3826 
3827 	spdk_put_io_channel(ioch);
3828 	spdk_bdev_close(desc);
3829 	free_bdev(bdev);
3830 	fn_table.submit_request = stub_submit_request;
3831 	ut_fini_bdev();
3832 
3833 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3834 
3835 	g_compare_read_buf = NULL;
3836 }
3837 
3838 static void
3839 _bdev_compare_with_md(bool emulated)
3840 {
3841 	struct spdk_bdev *bdev;
3842 	struct spdk_bdev_desc *desc = NULL;
3843 	struct spdk_io_channel *ioch;
3844 	struct ut_expected_io *expected_io;
3845 	uint64_t offset, num_blocks;
3846 	uint32_t num_completed;
3847 	char buf[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3848 	char buf_interleaved_miscompare[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3849 	char buf_miscompare[1024 /* 2 * blocklen */];
3850 	char md_buf[16];
3851 	char md_buf_miscompare[16];
3852 	struct iovec compare_iov;
3853 	uint8_t expected_io_type;
3854 	int rc;
3855 
3856 	if (emulated) {
3857 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3858 	} else {
3859 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3860 	}
3861 
3862 	memset(buf, 0xaa, sizeof(buf));
3863 	memset(buf_interleaved_miscompare, 0xaa, sizeof(buf_interleaved_miscompare));
3864 	/* make last md different */
3865 	memset(buf_interleaved_miscompare + 1024 + 8, 0xbb, 8);
3866 	memset(buf_miscompare, 0xbb, sizeof(buf_miscompare));
3867 	memset(md_buf, 0xaa, 16);
3868 	memset(md_buf_miscompare, 0xbb, 16);
3869 
3870 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3871 
3872 	ut_init_bdev(NULL);
3873 	fn_table.submit_request = stub_submit_request_get_buf;
3874 	bdev = allocate_bdev("bdev");
3875 
3876 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3877 	CU_ASSERT_EQUAL(rc, 0);
3878 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3879 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3880 	ioch = spdk_bdev_get_io_channel(desc);
3881 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3882 
3883 	fn_table.submit_request = stub_submit_request_get_buf;
3884 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3885 
3886 	offset = 50;
3887 	num_blocks = 2;
3888 
3889 	/* interleaved md & data */
3890 	bdev->md_interleave = true;
3891 	bdev->md_len = 8;
3892 	bdev->blocklen = 512 + 8;
3893 	compare_iov.iov_base = buf;
3894 	compare_iov.iov_len = sizeof(buf);
3895 
3896 	/* 1. successful compare with md interleaved */
3897 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3898 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3899 
3900 	g_io_done = false;
3901 	g_compare_read_buf = buf;
3902 	g_compare_read_buf_len = sizeof(buf);
3903 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3904 	CU_ASSERT_EQUAL(rc, 0);
3905 	num_completed = stub_complete_io(1);
3906 	CU_ASSERT_EQUAL(num_completed, 1);
3907 	CU_ASSERT(g_io_done == true);
3908 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3909 
3910 	/* 2. miscompare with md interleaved */
3911 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3912 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3913 
3914 	g_io_done = false;
3915 	g_compare_read_buf = buf_interleaved_miscompare;
3916 	g_compare_read_buf_len = sizeof(buf_interleaved_miscompare);
3917 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3918 	CU_ASSERT_EQUAL(rc, 0);
3919 	num_completed = stub_complete_io(1);
3920 	CU_ASSERT_EQUAL(num_completed, 1);
3921 	CU_ASSERT(g_io_done == true);
3922 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3923 
3924 	/* Separate data & md buffers */
3925 	bdev->md_interleave = false;
3926 	bdev->blocklen = 512;
3927 	compare_iov.iov_base = buf;
3928 	compare_iov.iov_len = 1024;
3929 
3930 	/* 3. successful compare with md separated */
3931 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3932 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3933 
3934 	g_io_done = false;
3935 	g_compare_read_buf = buf;
3936 	g_compare_read_buf_len = 1024;
3937 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3938 	g_compare_md_buf = md_buf;
3939 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3940 					       offset, num_blocks, io_done, NULL);
3941 	CU_ASSERT_EQUAL(rc, 0);
3942 	num_completed = stub_complete_io(1);
3943 	CU_ASSERT_EQUAL(num_completed, 1);
3944 	CU_ASSERT(g_io_done == true);
3945 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3946 
3947 	/* 4. miscompare with md separated where md buf is different */
3948 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3949 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3950 
3951 	g_io_done = false;
3952 	g_compare_read_buf = buf;
3953 	g_compare_read_buf_len = 1024;
3954 	g_compare_md_buf = md_buf_miscompare;
3955 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3956 					       offset, num_blocks, io_done, NULL);
3957 	CU_ASSERT_EQUAL(rc, 0);
3958 	num_completed = stub_complete_io(1);
3959 	CU_ASSERT_EQUAL(num_completed, 1);
3960 	CU_ASSERT(g_io_done == true);
3961 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3962 
3963 	/* 5. miscompare with md separated where buf is different */
3964 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3965 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3966 
3967 	g_io_done = false;
3968 	g_compare_read_buf = buf_miscompare;
3969 	g_compare_read_buf_len = sizeof(buf_miscompare);
3970 	g_compare_md_buf = md_buf;
3971 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3972 					       offset, num_blocks, io_done, NULL);
3973 	CU_ASSERT_EQUAL(rc, 0);
3974 	num_completed = stub_complete_io(1);
3975 	CU_ASSERT_EQUAL(num_completed, 1);
3976 	CU_ASSERT(g_io_done == true);
3977 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3978 
3979 	bdev->md_len = 0;
3980 	g_compare_md_buf = NULL;
3981 
3982 	spdk_put_io_channel(ioch);
3983 	spdk_bdev_close(desc);
3984 	free_bdev(bdev);
3985 	fn_table.submit_request = stub_submit_request;
3986 	ut_fini_bdev();
3987 
3988 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3989 
3990 	g_compare_read_buf = NULL;
3991 }
3992 
3993 static void
3994 bdev_compare(void)
3995 {
3996 	_bdev_compare(false);
3997 	_bdev_compare_with_md(false);
3998 }
3999 
4000 static void
4001 bdev_compare_emulated(void)
4002 {
4003 	_bdev_compare(true);
4004 	_bdev_compare_with_md(true);
4005 }
4006 
4007 static void
4008 bdev_compare_and_write(void)
4009 {
4010 	struct spdk_bdev *bdev;
4011 	struct spdk_bdev_desc *desc = NULL;
4012 	struct spdk_io_channel *ioch;
4013 	struct ut_expected_io *expected_io;
4014 	uint64_t offset, num_blocks;
4015 	uint32_t num_completed;
4016 	char aa_buf[512];
4017 	char bb_buf[512];
4018 	char cc_buf[512];
4019 	char write_buf[512];
4020 	struct iovec compare_iov;
4021 	struct iovec write_iov;
4022 	int rc;
4023 
4024 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4025 	memset(bb_buf, 0xbb, sizeof(bb_buf));
4026 	memset(cc_buf, 0xcc, sizeof(cc_buf));
4027 
4028 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
4029 
4030 	ut_init_bdev(NULL);
4031 	fn_table.submit_request = stub_submit_request_get_buf;
4032 	bdev = allocate_bdev("bdev");
4033 
4034 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4035 	CU_ASSERT_EQUAL(rc, 0);
4036 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4037 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4038 	ioch = spdk_bdev_get_io_channel(desc);
4039 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4040 
4041 	fn_table.submit_request = stub_submit_request_get_buf;
4042 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4043 
4044 	offset = 50;
4045 	num_blocks = 1;
4046 	compare_iov.iov_base = aa_buf;
4047 	compare_iov.iov_len = sizeof(aa_buf);
4048 	write_iov.iov_base = bb_buf;
4049 	write_iov.iov_len = sizeof(bb_buf);
4050 
4051 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
4052 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4053 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
4054 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4055 
4056 	g_io_done = false;
4057 	g_compare_read_buf = aa_buf;
4058 	g_compare_read_buf_len = sizeof(aa_buf);
4059 	memset(write_buf, 0, sizeof(write_buf));
4060 	g_compare_write_buf = write_buf;
4061 	g_compare_write_buf_len = sizeof(write_buf);
4062 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
4063 			offset, num_blocks, io_done, NULL);
4064 	/* Trigger range locking */
4065 	poll_threads();
4066 	CU_ASSERT_EQUAL(rc, 0);
4067 	num_completed = stub_complete_io(1);
4068 	CU_ASSERT_EQUAL(num_completed, 1);
4069 	CU_ASSERT(g_io_done == false);
4070 	num_completed = stub_complete_io(1);
4071 	/* Trigger range unlocking */
4072 	poll_threads();
4073 	CU_ASSERT_EQUAL(num_completed, 1);
4074 	CU_ASSERT(g_io_done == true);
4075 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4076 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
4077 
4078 	/* Test miscompare */
4079 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
4080 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4081 
4082 	g_io_done = false;
4083 	g_compare_read_buf = cc_buf;
4084 	g_compare_read_buf_len = sizeof(cc_buf);
4085 	memset(write_buf, 0, sizeof(write_buf));
4086 	g_compare_write_buf = write_buf;
4087 	g_compare_write_buf_len = sizeof(write_buf);
4088 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
4089 			offset, num_blocks, io_done, NULL);
4090 	/* Trigger range locking */
4091 	poll_threads();
4092 	CU_ASSERT_EQUAL(rc, 0);
4093 	num_completed = stub_complete_io(1);
4094 	/* Trigger range unlocking earlier because we expect error here */
4095 	poll_threads();
4096 	CU_ASSERT_EQUAL(num_completed, 1);
4097 	CU_ASSERT(g_io_done == true);
4098 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
4099 	num_completed = stub_complete_io(1);
4100 	CU_ASSERT_EQUAL(num_completed, 0);
4101 
4102 	spdk_put_io_channel(ioch);
4103 	spdk_bdev_close(desc);
4104 	free_bdev(bdev);
4105 	fn_table.submit_request = stub_submit_request;
4106 	ut_fini_bdev();
4107 
4108 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
4109 
4110 	g_compare_read_buf = NULL;
4111 	g_compare_write_buf = NULL;
4112 }
4113 
4114 static void
4115 bdev_write_zeroes(void)
4116 {
4117 	struct spdk_bdev *bdev;
4118 	struct spdk_bdev_desc *desc = NULL;
4119 	struct spdk_io_channel *ioch;
4120 	struct ut_expected_io *expected_io;
4121 	uint64_t offset, num_io_blocks, num_blocks;
4122 	uint32_t num_completed, num_requests;
4123 	int rc;
4124 
4125 	ut_init_bdev(NULL);
4126 	bdev = allocate_bdev("bdev");
4127 
4128 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4129 	CU_ASSERT_EQUAL(rc, 0);
4130 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4131 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4132 	ioch = spdk_bdev_get_io_channel(desc);
4133 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4134 
4135 	fn_table.submit_request = stub_submit_request;
4136 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4137 
4138 	/* First test that if the bdev supports write_zeroes, the request won't be split */
4139 	bdev->md_len = 0;
4140 	bdev->blocklen = 4096;
4141 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
4142 
4143 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
4144 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4145 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4146 	CU_ASSERT_EQUAL(rc, 0);
4147 	num_completed = stub_complete_io(1);
4148 	CU_ASSERT_EQUAL(num_completed, 1);
4149 
4150 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
4151 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
4152 	bdev->max_write_zeroes = bdev_get_max_write(bdev, ZERO_BUFFER_SIZE);
4153 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
4154 	num_requests = 2;
4155 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
4156 
4157 	for (offset = 0; offset < num_requests; ++offset) {
4158 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
4159 						   offset * num_io_blocks, num_io_blocks, 0);
4160 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4161 	}
4162 
4163 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4164 	CU_ASSERT_EQUAL(rc, 0);
4165 	num_completed = stub_complete_io(num_requests);
4166 	CU_ASSERT_EQUAL(num_completed, num_requests);
4167 
4168 	/* Check that the splitting is correct if bdev has interleaved metadata */
4169 	bdev->md_interleave = true;
4170 	bdev->md_len = 64;
4171 	bdev->blocklen = 4096 + 64;
4172 	bdev->max_write_zeroes = bdev_get_max_write(bdev, ZERO_BUFFER_SIZE);
4173 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
4174 
4175 	num_requests = offset = 0;
4176 	while (offset < num_blocks) {
4177 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
4178 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
4179 						   offset, num_io_blocks, 0);
4180 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4181 		offset += num_io_blocks;
4182 		num_requests++;
4183 	}
4184 
4185 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4186 	CU_ASSERT_EQUAL(rc, 0);
4187 	num_completed = stub_complete_io(num_requests);
4188 	CU_ASSERT_EQUAL(num_completed, num_requests);
4189 	num_completed = stub_complete_io(num_requests);
4190 	assert(num_completed == 0);
4191 
4192 	/* Check the the same for separate metadata buffer */
4193 	bdev->md_interleave = false;
4194 	bdev->md_len = 64;
4195 	bdev->blocklen = 4096;
4196 	bdev->max_write_zeroes = bdev_get_max_write(bdev, ZERO_BUFFER_SIZE);
4197 
4198 	num_requests = offset = 0;
4199 	while (offset < num_blocks) {
4200 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
4201 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
4202 						   offset, num_io_blocks, 0);
4203 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
4204 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4205 		offset += num_io_blocks;
4206 		num_requests++;
4207 	}
4208 
4209 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4210 	CU_ASSERT_EQUAL(rc, 0);
4211 	num_completed = stub_complete_io(num_requests);
4212 	CU_ASSERT_EQUAL(num_completed, num_requests);
4213 
4214 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
4215 	spdk_put_io_channel(ioch);
4216 	spdk_bdev_close(desc);
4217 	free_bdev(bdev);
4218 	ut_fini_bdev();
4219 }
4220 
4221 static void
4222 bdev_zcopy_write(void)
4223 {
4224 	struct spdk_bdev *bdev;
4225 	struct spdk_bdev_desc *desc = NULL;
4226 	struct spdk_io_channel *ioch;
4227 	struct ut_expected_io *expected_io;
4228 	uint64_t offset, num_blocks;
4229 	uint32_t num_completed;
4230 	char aa_buf[512];
4231 	struct iovec iov;
4232 	int rc;
4233 	const bool populate = false;
4234 	const bool commit = true;
4235 
4236 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4237 
4238 	ut_init_bdev(NULL);
4239 	bdev = allocate_bdev("bdev");
4240 
4241 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4242 	CU_ASSERT_EQUAL(rc, 0);
4243 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4244 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4245 	ioch = spdk_bdev_get_io_channel(desc);
4246 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4247 
4248 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4249 
4250 	offset = 50;
4251 	num_blocks = 1;
4252 	iov.iov_base = NULL;
4253 	iov.iov_len = 0;
4254 
4255 	g_zcopy_read_buf = (void *) 0x1122334455667788UL;
4256 	g_zcopy_read_buf_len = (uint32_t) -1;
4257 	/* Do a zcopy start for a write (populate=false) */
4258 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4259 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4260 	g_io_done = false;
4261 	g_zcopy_write_buf = aa_buf;
4262 	g_zcopy_write_buf_len = sizeof(aa_buf);
4263 	g_zcopy_bdev_io = NULL;
4264 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4265 	CU_ASSERT_EQUAL(rc, 0);
4266 	num_completed = stub_complete_io(1);
4267 	CU_ASSERT_EQUAL(num_completed, 1);
4268 	CU_ASSERT(g_io_done == true);
4269 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4270 	/* Check that the iov has been set up */
4271 	CU_ASSERT(iov.iov_base == g_zcopy_write_buf);
4272 	CU_ASSERT(iov.iov_len == g_zcopy_write_buf_len);
4273 	/* Check that the bdev_io has been saved */
4274 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4275 	/* Now do the zcopy end for a write (commit=true) */
4276 	g_io_done = false;
4277 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4278 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4279 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4280 	CU_ASSERT_EQUAL(rc, 0);
4281 	num_completed = stub_complete_io(1);
4282 	CU_ASSERT_EQUAL(num_completed, 1);
4283 	CU_ASSERT(g_io_done == true);
4284 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4285 	/* Check the g_zcopy are reset by io_done */
4286 	CU_ASSERT(g_zcopy_write_buf == NULL);
4287 	CU_ASSERT(g_zcopy_write_buf_len == 0);
4288 	/* Check that io_done has freed the g_zcopy_bdev_io */
4289 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4290 
4291 	/* Check the zcopy read buffer has not been touched which
4292 	 * ensures that the correct buffers were used.
4293 	 */
4294 	CU_ASSERT(g_zcopy_read_buf == (void *) 0x1122334455667788UL);
4295 	CU_ASSERT(g_zcopy_read_buf_len == (uint32_t) -1);
4296 
4297 	spdk_put_io_channel(ioch);
4298 	spdk_bdev_close(desc);
4299 	free_bdev(bdev);
4300 	ut_fini_bdev();
4301 }
4302 
4303 static void
4304 bdev_zcopy_read(void)
4305 {
4306 	struct spdk_bdev *bdev;
4307 	struct spdk_bdev_desc *desc = NULL;
4308 	struct spdk_io_channel *ioch;
4309 	struct ut_expected_io *expected_io;
4310 	uint64_t offset, num_blocks;
4311 	uint32_t num_completed;
4312 	char aa_buf[512];
4313 	struct iovec iov;
4314 	int rc;
4315 	const bool populate = true;
4316 	const bool commit = false;
4317 
4318 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4319 
4320 	ut_init_bdev(NULL);
4321 	bdev = allocate_bdev("bdev");
4322 
4323 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4324 	CU_ASSERT_EQUAL(rc, 0);
4325 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4326 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4327 	ioch = spdk_bdev_get_io_channel(desc);
4328 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4329 
4330 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4331 
4332 	offset = 50;
4333 	num_blocks = 1;
4334 	iov.iov_base = NULL;
4335 	iov.iov_len = 0;
4336 
4337 	g_zcopy_write_buf = (void *) 0x1122334455667788UL;
4338 	g_zcopy_write_buf_len = (uint32_t) -1;
4339 
4340 	/* Do a zcopy start for a read (populate=true) */
4341 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4342 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4343 	g_io_done = false;
4344 	g_zcopy_read_buf = aa_buf;
4345 	g_zcopy_read_buf_len = sizeof(aa_buf);
4346 	g_zcopy_bdev_io = NULL;
4347 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4348 	CU_ASSERT_EQUAL(rc, 0);
4349 	num_completed = stub_complete_io(1);
4350 	CU_ASSERT_EQUAL(num_completed, 1);
4351 	CU_ASSERT(g_io_done == true);
4352 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4353 	/* Check that the iov has been set up */
4354 	CU_ASSERT(iov.iov_base == g_zcopy_read_buf);
4355 	CU_ASSERT(iov.iov_len == g_zcopy_read_buf_len);
4356 	/* Check that the bdev_io has been saved */
4357 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4358 
4359 	/* Now do the zcopy end for a read (commit=false) */
4360 	g_io_done = false;
4361 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4362 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4363 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4364 	CU_ASSERT_EQUAL(rc, 0);
4365 	num_completed = stub_complete_io(1);
4366 	CU_ASSERT_EQUAL(num_completed, 1);
4367 	CU_ASSERT(g_io_done == true);
4368 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4369 	/* Check the g_zcopy are reset by io_done */
4370 	CU_ASSERT(g_zcopy_read_buf == NULL);
4371 	CU_ASSERT(g_zcopy_read_buf_len == 0);
4372 	/* Check that io_done has freed the g_zcopy_bdev_io */
4373 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4374 
4375 	/* Check the zcopy write buffer has not been touched which
4376 	 * ensures that the correct buffers were used.
4377 	 */
4378 	CU_ASSERT(g_zcopy_write_buf == (void *) 0x1122334455667788UL);
4379 	CU_ASSERT(g_zcopy_write_buf_len == (uint32_t) -1);
4380 
4381 	spdk_put_io_channel(ioch);
4382 	spdk_bdev_close(desc);
4383 	free_bdev(bdev);
4384 	ut_fini_bdev();
4385 }
4386 
4387 static void
4388 bdev_open_while_hotremove(void)
4389 {
4390 	struct spdk_bdev *bdev;
4391 	struct spdk_bdev_desc *desc[2] = {};
4392 	int rc;
4393 
4394 	bdev = allocate_bdev("bdev");
4395 
4396 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
4397 	CU_ASSERT(rc == 0);
4398 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
4399 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
4400 
4401 	spdk_bdev_unregister(bdev, NULL, NULL);
4402 	/* Bdev unregister is handled asynchronously. Poll thread to complete. */
4403 	poll_threads();
4404 
4405 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
4406 	CU_ASSERT(rc == -ENODEV);
4407 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
4408 
4409 	spdk_bdev_close(desc[0]);
4410 	free_bdev(bdev);
4411 }
4412 
4413 static void
4414 bdev_close_while_hotremove(void)
4415 {
4416 	struct spdk_bdev *bdev;
4417 	struct spdk_bdev_desc *desc = NULL;
4418 	int rc = 0;
4419 
4420 	bdev = allocate_bdev("bdev");
4421 
4422 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
4423 	CU_ASSERT_EQUAL(rc, 0);
4424 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4425 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4426 
4427 	/* Simulate hot-unplug by unregistering bdev */
4428 	g_event_type1 = 0xFF;
4429 	g_unregister_arg = NULL;
4430 	g_unregister_rc = -1;
4431 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4432 	/* Close device while remove event is in flight */
4433 	spdk_bdev_close(desc);
4434 
4435 	/* Ensure that unregister callback is delayed */
4436 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
4437 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
4438 
4439 	poll_threads();
4440 
4441 	/* Event callback shall not be issued because device was closed */
4442 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
4443 	/* Unregister callback is issued */
4444 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
4445 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
4446 
4447 	free_bdev(bdev);
4448 }
4449 
4450 static void
4451 bdev_open_ext_test(void)
4452 {
4453 	struct spdk_bdev *bdev;
4454 	struct spdk_bdev_desc *desc1 = NULL;
4455 	struct spdk_bdev_desc *desc2 = NULL;
4456 	int rc = 0;
4457 
4458 	bdev = allocate_bdev("bdev");
4459 
4460 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4461 	CU_ASSERT_EQUAL(rc, -EINVAL);
4462 
4463 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4464 	CU_ASSERT_EQUAL(rc, 0);
4465 
4466 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4467 	CU_ASSERT_EQUAL(rc, 0);
4468 
4469 	g_event_type1 = 0xFF;
4470 	g_event_type2 = 0xFF;
4471 
4472 	/* Simulate hot-unplug by unregistering bdev */
4473 	spdk_bdev_unregister(bdev, NULL, NULL);
4474 	poll_threads();
4475 
4476 	/* Check if correct events have been triggered in event callback fn */
4477 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4478 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4479 
4480 	free_bdev(bdev);
4481 	poll_threads();
4482 }
4483 
4484 static void
4485 bdev_open_ext_unregister(void)
4486 {
4487 	struct spdk_bdev *bdev;
4488 	struct spdk_bdev_desc *desc1 = NULL;
4489 	struct spdk_bdev_desc *desc2 = NULL;
4490 	struct spdk_bdev_desc *desc3 = NULL;
4491 	struct spdk_bdev_desc *desc4 = NULL;
4492 	int rc = 0;
4493 
4494 	bdev = allocate_bdev("bdev");
4495 
4496 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4497 	CU_ASSERT_EQUAL(rc, -EINVAL);
4498 
4499 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4500 	CU_ASSERT_EQUAL(rc, 0);
4501 
4502 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4503 	CU_ASSERT_EQUAL(rc, 0);
4504 
4505 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb3, &desc3, &desc3);
4506 	CU_ASSERT_EQUAL(rc, 0);
4507 
4508 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb4, &desc4, &desc4);
4509 	CU_ASSERT_EQUAL(rc, 0);
4510 
4511 	g_event_type1 = 0xFF;
4512 	g_event_type2 = 0xFF;
4513 	g_event_type3 = 0xFF;
4514 	g_event_type4 = 0xFF;
4515 
4516 	g_unregister_arg = NULL;
4517 	g_unregister_rc = -1;
4518 
4519 	/* Simulate hot-unplug by unregistering bdev */
4520 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4521 
4522 	/*
4523 	 * Unregister is handled asynchronously and event callback
4524 	 * (i.e., above bdev_open_cbN) will be called.
4525 	 * For bdev_open_cb3 and bdev_open_cb4, it is intended to not
4526 	 * close the desc3 and desc4 so that the bdev is not closed.
4527 	 */
4528 	poll_threads();
4529 
4530 	/* Check if correct events have been triggered in event callback fn */
4531 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4532 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4533 	CU_ASSERT_EQUAL(g_event_type3, SPDK_BDEV_EVENT_REMOVE);
4534 	CU_ASSERT_EQUAL(g_event_type4, SPDK_BDEV_EVENT_REMOVE);
4535 
4536 	/* Check that unregister callback is delayed */
4537 	CU_ASSERT(g_unregister_arg == NULL);
4538 	CU_ASSERT(g_unregister_rc == -1);
4539 
4540 	/*
4541 	 * Explicitly close desc3. As desc4 is still opened there, the
4542 	 * unergister callback is still delayed to execute.
4543 	 */
4544 	spdk_bdev_close(desc3);
4545 	CU_ASSERT(g_unregister_arg == NULL);
4546 	CU_ASSERT(g_unregister_rc == -1);
4547 
4548 	/*
4549 	 * Explicitly close desc4 to trigger the ongoing bdev unregister
4550 	 * operation after last desc is closed.
4551 	 */
4552 	spdk_bdev_close(desc4);
4553 
4554 	/* Poll the thread for the async unregister operation */
4555 	poll_threads();
4556 
4557 	/* Check that unregister callback is executed */
4558 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
4559 	CU_ASSERT(g_unregister_rc == 0);
4560 
4561 	free_bdev(bdev);
4562 	poll_threads();
4563 }
4564 
4565 struct timeout_io_cb_arg {
4566 	struct iovec iov;
4567 	uint8_t type;
4568 };
4569 
4570 static int
4571 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
4572 {
4573 	struct spdk_bdev_io *bdev_io;
4574 	int n = 0;
4575 
4576 	if (!ch) {
4577 		return -1;
4578 	}
4579 
4580 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
4581 		n++;
4582 	}
4583 
4584 	return n;
4585 }
4586 
4587 static void
4588 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
4589 {
4590 	struct timeout_io_cb_arg *ctx = cb_arg;
4591 
4592 	ctx->type = bdev_io->type;
4593 	ctx->iov.iov_base = bdev_io->iov.iov_base;
4594 	ctx->iov.iov_len = bdev_io->iov.iov_len;
4595 }
4596 
4597 static void
4598 bdev_set_io_timeout(void)
4599 {
4600 	struct spdk_bdev *bdev;
4601 	struct spdk_bdev_desc *desc = NULL;
4602 	struct spdk_io_channel *io_ch = NULL;
4603 	struct spdk_bdev_channel *bdev_ch = NULL;
4604 	struct timeout_io_cb_arg cb_arg;
4605 
4606 	ut_init_bdev(NULL);
4607 	bdev = allocate_bdev("bdev");
4608 
4609 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4610 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4611 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4612 
4613 	io_ch = spdk_bdev_get_io_channel(desc);
4614 	CU_ASSERT(io_ch != NULL);
4615 
4616 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4617 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4618 
4619 	/* This is the part1.
4620 	 * We will check the bdev_ch->io_submitted list
4621 	 * TO make sure that it can link IOs and only the user submitted IOs
4622 	 */
4623 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4624 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4625 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4626 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4627 	stub_complete_io(1);
4628 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4629 	stub_complete_io(1);
4630 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4631 
4632 	/* Split IO */
4633 	bdev->optimal_io_boundary = 16;
4634 	bdev->split_on_optimal_io_boundary = true;
4635 
4636 	/* Now test that a single-vector command is split correctly.
4637 	 * Offset 14, length 8, payload 0xF000
4638 	 *  Child - Offset 14, length 2, payload 0xF000
4639 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4640 	 *
4641 	 * Set up the expected values before calling spdk_bdev_read_blocks
4642 	 */
4643 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4644 	/* We count all submitted IOs including IO that are generated by splitting. */
4645 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
4646 	stub_complete_io(1);
4647 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4648 	stub_complete_io(1);
4649 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4650 
4651 	/* Also include the reset IO */
4652 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4653 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4654 	poll_threads();
4655 	stub_complete_io(1);
4656 	poll_threads();
4657 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4658 
4659 	/* This is part2
4660 	 * Test the desc timeout poller register
4661 	 */
4662 
4663 	/* Successfully set the timeout */
4664 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4665 	CU_ASSERT(desc->io_timeout_poller != NULL);
4666 	CU_ASSERT(desc->timeout_in_sec == 30);
4667 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4668 	CU_ASSERT(desc->cb_arg == &cb_arg);
4669 
4670 	/* Change the timeout limit */
4671 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4672 	CU_ASSERT(desc->io_timeout_poller != NULL);
4673 	CU_ASSERT(desc->timeout_in_sec == 20);
4674 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4675 	CU_ASSERT(desc->cb_arg == &cb_arg);
4676 
4677 	/* Disable the timeout */
4678 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
4679 	CU_ASSERT(desc->io_timeout_poller == NULL);
4680 
4681 	/* This the part3
4682 	 * We will test to catch timeout IO and check whether the IO is
4683 	 * the submitted one.
4684 	 */
4685 	memset(&cb_arg, 0, sizeof(cb_arg));
4686 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4687 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
4688 
4689 	/* Don't reach the limit */
4690 	spdk_delay_us(15 * spdk_get_ticks_hz());
4691 	poll_threads();
4692 	CU_ASSERT(cb_arg.type == 0);
4693 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4694 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4695 
4696 	/* 15 + 15 = 30 reach the limit */
4697 	spdk_delay_us(15 * spdk_get_ticks_hz());
4698 	poll_threads();
4699 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4700 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
4701 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
4702 	stub_complete_io(1);
4703 
4704 	/* Use the same split IO above and check the IO */
4705 	memset(&cb_arg, 0, sizeof(cb_arg));
4706 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4707 
4708 	/* The first child complete in time */
4709 	spdk_delay_us(15 * spdk_get_ticks_hz());
4710 	poll_threads();
4711 	stub_complete_io(1);
4712 	CU_ASSERT(cb_arg.type == 0);
4713 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4714 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4715 
4716 	/* The second child reach the limit */
4717 	spdk_delay_us(15 * spdk_get_ticks_hz());
4718 	poll_threads();
4719 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4720 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
4721 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
4722 	stub_complete_io(1);
4723 
4724 	/* Also include the reset IO */
4725 	memset(&cb_arg, 0, sizeof(cb_arg));
4726 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4727 	spdk_delay_us(30 * spdk_get_ticks_hz());
4728 	poll_threads();
4729 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
4730 	stub_complete_io(1);
4731 	poll_threads();
4732 
4733 	spdk_put_io_channel(io_ch);
4734 	spdk_bdev_close(desc);
4735 	free_bdev(bdev);
4736 	ut_fini_bdev();
4737 }
4738 
4739 static void
4740 bdev_set_qd_sampling(void)
4741 {
4742 	struct spdk_bdev *bdev;
4743 	struct spdk_bdev_desc *desc = NULL;
4744 	struct spdk_io_channel *io_ch = NULL;
4745 	struct spdk_bdev_channel *bdev_ch = NULL;
4746 	struct timeout_io_cb_arg cb_arg;
4747 
4748 	ut_init_bdev(NULL);
4749 	bdev = allocate_bdev("bdev");
4750 
4751 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4752 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4753 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4754 
4755 	io_ch = spdk_bdev_get_io_channel(desc);
4756 	CU_ASSERT(io_ch != NULL);
4757 
4758 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4759 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4760 
4761 	/* This is the part1.
4762 	 * We will check the bdev_ch->io_submitted list
4763 	 * TO make sure that it can link IOs and only the user submitted IOs
4764 	 */
4765 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4766 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4767 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4768 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4769 	stub_complete_io(1);
4770 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4771 	stub_complete_io(1);
4772 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4773 
4774 	/* This is the part2.
4775 	 * Test the bdev's qd poller register
4776 	 */
4777 	/* 1st Successfully set the qd sampling period */
4778 	spdk_bdev_set_qd_sampling_period(bdev, 10);
4779 	CU_ASSERT(bdev->internal.new_period == 10);
4780 	CU_ASSERT(bdev->internal.period == 10);
4781 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4782 	poll_threads();
4783 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4784 
4785 	/* 2nd Change the qd sampling period */
4786 	spdk_bdev_set_qd_sampling_period(bdev, 20);
4787 	CU_ASSERT(bdev->internal.new_period == 20);
4788 	CU_ASSERT(bdev->internal.period == 10);
4789 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4790 	poll_threads();
4791 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4792 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4793 
4794 	/* 3rd Change the qd sampling period and verify qd_poll_in_progress */
4795 	spdk_delay_us(20);
4796 	poll_thread_times(0, 1);
4797 	CU_ASSERT(bdev->internal.qd_poll_in_progress == true);
4798 	spdk_bdev_set_qd_sampling_period(bdev, 30);
4799 	CU_ASSERT(bdev->internal.new_period == 30);
4800 	CU_ASSERT(bdev->internal.period == 20);
4801 	poll_threads();
4802 	CU_ASSERT(bdev->internal.qd_poll_in_progress == false);
4803 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4804 
4805 	/* 4th Disable the qd sampling period */
4806 	spdk_bdev_set_qd_sampling_period(bdev, 0);
4807 	CU_ASSERT(bdev->internal.new_period == 0);
4808 	CU_ASSERT(bdev->internal.period == 30);
4809 	poll_threads();
4810 	CU_ASSERT(bdev->internal.qd_poller == NULL);
4811 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4812 	CU_ASSERT(bdev->internal.qd_desc == NULL);
4813 
4814 	/* This is the part3.
4815 	 * We will test the submitted IO and reset works
4816 	 * properly with the qd sampling.
4817 	 */
4818 	memset(&cb_arg, 0, sizeof(cb_arg));
4819 	spdk_bdev_set_qd_sampling_period(bdev, 1);
4820 	poll_threads();
4821 
4822 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4823 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4824 
4825 	/* Also include the reset IO */
4826 	memset(&cb_arg, 0, sizeof(cb_arg));
4827 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4828 	poll_threads();
4829 
4830 	/* Close the desc */
4831 	spdk_put_io_channel(io_ch);
4832 	spdk_bdev_close(desc);
4833 
4834 	/* Complete the submitted IO and reset */
4835 	stub_complete_io(2);
4836 	poll_threads();
4837 
4838 	free_bdev(bdev);
4839 	ut_fini_bdev();
4840 }
4841 
4842 static void
4843 lba_range_overlap(void)
4844 {
4845 	struct lba_range r1, r2;
4846 
4847 	r1.offset = 100;
4848 	r1.length = 50;
4849 
4850 	r2.offset = 0;
4851 	r2.length = 1;
4852 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4853 
4854 	r2.offset = 0;
4855 	r2.length = 100;
4856 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4857 
4858 	r2.offset = 0;
4859 	r2.length = 110;
4860 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4861 
4862 	r2.offset = 100;
4863 	r2.length = 10;
4864 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4865 
4866 	r2.offset = 110;
4867 	r2.length = 20;
4868 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4869 
4870 	r2.offset = 140;
4871 	r2.length = 150;
4872 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4873 
4874 	r2.offset = 130;
4875 	r2.length = 200;
4876 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4877 
4878 	r2.offset = 150;
4879 	r2.length = 100;
4880 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4881 
4882 	r2.offset = 110;
4883 	r2.length = 0;
4884 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4885 }
4886 
4887 static bool g_lock_lba_range_done;
4888 static bool g_unlock_lba_range_done;
4889 
4890 static void
4891 lock_lba_range_done(struct lba_range *range, void *ctx, int status)
4892 {
4893 	g_lock_lba_range_done = true;
4894 }
4895 
4896 static void
4897 unlock_lba_range_done(struct lba_range *range, void *ctx, int status)
4898 {
4899 	g_unlock_lba_range_done = true;
4900 }
4901 
4902 static void
4903 lock_lba_range_check_ranges(void)
4904 {
4905 	struct spdk_bdev *bdev;
4906 	struct spdk_bdev_desc *desc = NULL;
4907 	struct spdk_io_channel *io_ch;
4908 	struct spdk_bdev_channel *channel;
4909 	struct lba_range *range;
4910 	int ctx1;
4911 	int rc;
4912 
4913 	ut_init_bdev(NULL);
4914 	bdev = allocate_bdev("bdev0");
4915 
4916 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4917 	CU_ASSERT(rc == 0);
4918 	CU_ASSERT(desc != NULL);
4919 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4920 	io_ch = spdk_bdev_get_io_channel(desc);
4921 	CU_ASSERT(io_ch != NULL);
4922 	channel = spdk_io_channel_get_ctx(io_ch);
4923 
4924 	g_lock_lba_range_done = false;
4925 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4926 	CU_ASSERT(rc == 0);
4927 	poll_threads();
4928 
4929 	CU_ASSERT(g_lock_lba_range_done == true);
4930 	range = TAILQ_FIRST(&channel->locked_ranges);
4931 	SPDK_CU_ASSERT_FATAL(range != NULL);
4932 	CU_ASSERT(range->offset == 20);
4933 	CU_ASSERT(range->length == 10);
4934 	CU_ASSERT(range->owner_ch == channel);
4935 
4936 	/* Unlocks must exactly match a lock. */
4937 	g_unlock_lba_range_done = false;
4938 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
4939 	CU_ASSERT(rc == -EINVAL);
4940 	CU_ASSERT(g_unlock_lba_range_done == false);
4941 
4942 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4943 	CU_ASSERT(rc == 0);
4944 	spdk_delay_us(100);
4945 	poll_threads();
4946 
4947 	CU_ASSERT(g_unlock_lba_range_done == true);
4948 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4949 
4950 	spdk_put_io_channel(io_ch);
4951 	spdk_bdev_close(desc);
4952 	free_bdev(bdev);
4953 	ut_fini_bdev();
4954 }
4955 
4956 static void
4957 lock_lba_range_with_io_outstanding(void)
4958 {
4959 	struct spdk_bdev *bdev;
4960 	struct spdk_bdev_desc *desc = NULL;
4961 	struct spdk_io_channel *io_ch;
4962 	struct spdk_bdev_channel *channel;
4963 	struct lba_range *range;
4964 	char buf[4096];
4965 	int ctx1;
4966 	int rc;
4967 
4968 	ut_init_bdev(NULL);
4969 	bdev = allocate_bdev("bdev0");
4970 
4971 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4972 	CU_ASSERT(rc == 0);
4973 	CU_ASSERT(desc != NULL);
4974 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4975 	io_ch = spdk_bdev_get_io_channel(desc);
4976 	CU_ASSERT(io_ch != NULL);
4977 	channel = spdk_io_channel_get_ctx(io_ch);
4978 
4979 	g_io_done = false;
4980 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4981 	CU_ASSERT(rc == 0);
4982 
4983 	g_lock_lba_range_done = false;
4984 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4985 	CU_ASSERT(rc == 0);
4986 	poll_threads();
4987 
4988 	/* The lock should immediately become valid, since there are no outstanding
4989 	 * write I/O.
4990 	 */
4991 	CU_ASSERT(g_io_done == false);
4992 	CU_ASSERT(g_lock_lba_range_done == true);
4993 	range = TAILQ_FIRST(&channel->locked_ranges);
4994 	SPDK_CU_ASSERT_FATAL(range != NULL);
4995 	CU_ASSERT(range->offset == 20);
4996 	CU_ASSERT(range->length == 10);
4997 	CU_ASSERT(range->owner_ch == channel);
4998 	CU_ASSERT(range->locked_ctx == &ctx1);
4999 
5000 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
5001 	CU_ASSERT(rc == 0);
5002 	stub_complete_io(1);
5003 	spdk_delay_us(100);
5004 	poll_threads();
5005 
5006 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5007 
5008 	/* Now try again, but with a write I/O. */
5009 	g_io_done = false;
5010 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
5011 	CU_ASSERT(rc == 0);
5012 
5013 	g_lock_lba_range_done = false;
5014 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
5015 	CU_ASSERT(rc == 0);
5016 	poll_threads();
5017 
5018 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
5019 	 * But note that the range should be on the channel's locked_list, to make sure no
5020 	 * new write I/O are started.
5021 	 */
5022 	CU_ASSERT(g_io_done == false);
5023 	CU_ASSERT(g_lock_lba_range_done == false);
5024 	range = TAILQ_FIRST(&channel->locked_ranges);
5025 	SPDK_CU_ASSERT_FATAL(range != NULL);
5026 	CU_ASSERT(range->offset == 20);
5027 	CU_ASSERT(range->length == 10);
5028 
5029 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
5030 	 * our callback was invoked).
5031 	 */
5032 	stub_complete_io(1);
5033 	spdk_delay_us(100);
5034 	poll_threads();
5035 	CU_ASSERT(g_io_done == true);
5036 	CU_ASSERT(g_lock_lba_range_done == true);
5037 
5038 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
5039 	CU_ASSERT(rc == 0);
5040 	poll_threads();
5041 
5042 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5043 
5044 	spdk_put_io_channel(io_ch);
5045 	spdk_bdev_close(desc);
5046 	free_bdev(bdev);
5047 	ut_fini_bdev();
5048 }
5049 
5050 static void
5051 lock_lba_range_overlapped(void)
5052 {
5053 	struct spdk_bdev *bdev;
5054 	struct spdk_bdev_desc *desc = NULL;
5055 	struct spdk_io_channel *io_ch;
5056 	struct spdk_bdev_channel *channel;
5057 	struct lba_range *range;
5058 	int ctx1;
5059 	int rc;
5060 
5061 	ut_init_bdev(NULL);
5062 	bdev = allocate_bdev("bdev0");
5063 
5064 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5065 	CU_ASSERT(rc == 0);
5066 	CU_ASSERT(desc != NULL);
5067 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5068 	io_ch = spdk_bdev_get_io_channel(desc);
5069 	CU_ASSERT(io_ch != NULL);
5070 	channel = spdk_io_channel_get_ctx(io_ch);
5071 
5072 	/* Lock range 20-29. */
5073 	g_lock_lba_range_done = false;
5074 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
5075 	CU_ASSERT(rc == 0);
5076 	poll_threads();
5077 
5078 	CU_ASSERT(g_lock_lba_range_done == true);
5079 	range = TAILQ_FIRST(&channel->locked_ranges);
5080 	SPDK_CU_ASSERT_FATAL(range != NULL);
5081 	CU_ASSERT(range->offset == 20);
5082 	CU_ASSERT(range->length == 10);
5083 
5084 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
5085 	 * 20-29.
5086 	 */
5087 	g_lock_lba_range_done = false;
5088 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
5089 	CU_ASSERT(rc == 0);
5090 	poll_threads();
5091 
5092 	CU_ASSERT(g_lock_lba_range_done == false);
5093 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
5094 	SPDK_CU_ASSERT_FATAL(range != NULL);
5095 	CU_ASSERT(range->offset == 25);
5096 	CU_ASSERT(range->length == 15);
5097 
5098 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
5099 	 * no longer overlaps with an active lock.
5100 	 */
5101 	g_unlock_lba_range_done = false;
5102 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
5103 	CU_ASSERT(rc == 0);
5104 	poll_threads();
5105 
5106 	CU_ASSERT(g_unlock_lba_range_done == true);
5107 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
5108 	range = TAILQ_FIRST(&channel->locked_ranges);
5109 	SPDK_CU_ASSERT_FATAL(range != NULL);
5110 	CU_ASSERT(range->offset == 25);
5111 	CU_ASSERT(range->length == 15);
5112 
5113 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
5114 	 * currently active 25-39 lock.
5115 	 */
5116 	g_lock_lba_range_done = false;
5117 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
5118 	CU_ASSERT(rc == 0);
5119 	poll_threads();
5120 
5121 	CU_ASSERT(g_lock_lba_range_done == true);
5122 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
5123 	SPDK_CU_ASSERT_FATAL(range != NULL);
5124 	range = TAILQ_NEXT(range, tailq);
5125 	SPDK_CU_ASSERT_FATAL(range != NULL);
5126 	CU_ASSERT(range->offset == 40);
5127 	CU_ASSERT(range->length == 20);
5128 
5129 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
5130 	g_lock_lba_range_done = false;
5131 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
5132 	CU_ASSERT(rc == 0);
5133 	poll_threads();
5134 
5135 	CU_ASSERT(g_lock_lba_range_done == false);
5136 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
5137 	SPDK_CU_ASSERT_FATAL(range != NULL);
5138 	CU_ASSERT(range->offset == 35);
5139 	CU_ASSERT(range->length == 10);
5140 
5141 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
5142 	 * the 40-59 lock is still active.
5143 	 */
5144 	g_unlock_lba_range_done = false;
5145 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
5146 	CU_ASSERT(rc == 0);
5147 	poll_threads();
5148 
5149 	CU_ASSERT(g_unlock_lba_range_done == true);
5150 	CU_ASSERT(g_lock_lba_range_done == false);
5151 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
5152 	SPDK_CU_ASSERT_FATAL(range != NULL);
5153 	CU_ASSERT(range->offset == 35);
5154 	CU_ASSERT(range->length == 10);
5155 
5156 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
5157 	 * no longer any active overlapping locks.
5158 	 */
5159 	g_unlock_lba_range_done = false;
5160 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
5161 	CU_ASSERT(rc == 0);
5162 	poll_threads();
5163 
5164 	CU_ASSERT(g_unlock_lba_range_done == true);
5165 	CU_ASSERT(g_lock_lba_range_done == true);
5166 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
5167 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
5168 	SPDK_CU_ASSERT_FATAL(range != NULL);
5169 	CU_ASSERT(range->offset == 35);
5170 	CU_ASSERT(range->length == 10);
5171 
5172 	/* Finally, unlock 35-44. */
5173 	g_unlock_lba_range_done = false;
5174 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
5175 	CU_ASSERT(rc == 0);
5176 	poll_threads();
5177 
5178 	CU_ASSERT(g_unlock_lba_range_done == true);
5179 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
5180 
5181 	spdk_put_io_channel(io_ch);
5182 	spdk_bdev_close(desc);
5183 	free_bdev(bdev);
5184 	ut_fini_bdev();
5185 }
5186 
5187 static void
5188 bdev_quiesce_done(void *ctx, int status)
5189 {
5190 	g_lock_lba_range_done = true;
5191 }
5192 
5193 static void
5194 bdev_unquiesce_done(void *ctx, int status)
5195 {
5196 	g_unlock_lba_range_done = true;
5197 }
5198 
5199 static void
5200 bdev_quiesce_done_unquiesce(void *ctx, int status)
5201 {
5202 	struct spdk_bdev *bdev = ctx;
5203 	int rc;
5204 
5205 	g_lock_lba_range_done = true;
5206 
5207 	rc = spdk_bdev_unquiesce(bdev, &bdev_ut_if, bdev_unquiesce_done, NULL);
5208 	CU_ASSERT(rc == 0);
5209 }
5210 
5211 static void
5212 bdev_quiesce(void)
5213 {
5214 	struct spdk_bdev *bdev;
5215 	struct spdk_bdev_desc *desc = NULL;
5216 	struct spdk_io_channel *io_ch;
5217 	struct spdk_bdev_channel *channel;
5218 	struct lba_range *range;
5219 	struct spdk_bdev_io *bdev_io;
5220 	int ctx1;
5221 	int rc;
5222 
5223 	ut_init_bdev(NULL);
5224 	bdev = allocate_bdev("bdev0");
5225 
5226 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5227 	CU_ASSERT(rc == 0);
5228 	CU_ASSERT(desc != NULL);
5229 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5230 	io_ch = spdk_bdev_get_io_channel(desc);
5231 	CU_ASSERT(io_ch != NULL);
5232 	channel = spdk_io_channel_get_ctx(io_ch);
5233 
5234 	g_lock_lba_range_done = false;
5235 	rc = spdk_bdev_quiesce(bdev, &bdev_ut_if, bdev_quiesce_done, &ctx1);
5236 	CU_ASSERT(rc == 0);
5237 	poll_threads();
5238 
5239 	CU_ASSERT(g_lock_lba_range_done == true);
5240 	range = TAILQ_FIRST(&channel->locked_ranges);
5241 	SPDK_CU_ASSERT_FATAL(range != NULL);
5242 	CU_ASSERT(range->offset == 0);
5243 	CU_ASSERT(range->length == bdev->blockcnt);
5244 	CU_ASSERT(range->owner_ch == NULL);
5245 	range = TAILQ_FIRST(&bdev_ut_if.internal.quiesced_ranges);
5246 	SPDK_CU_ASSERT_FATAL(range != NULL);
5247 	CU_ASSERT(range->offset == 0);
5248 	CU_ASSERT(range->length == bdev->blockcnt);
5249 	CU_ASSERT(range->owner_ch == NULL);
5250 
5251 	g_unlock_lba_range_done = false;
5252 	rc = spdk_bdev_unquiesce(bdev, &bdev_ut_if, bdev_unquiesce_done, &ctx1);
5253 	CU_ASSERT(rc == 0);
5254 	spdk_delay_us(100);
5255 	poll_threads();
5256 
5257 	CU_ASSERT(g_unlock_lba_range_done == true);
5258 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5259 	CU_ASSERT(TAILQ_EMPTY(&bdev_ut_if.internal.quiesced_ranges));
5260 
5261 	g_lock_lba_range_done = false;
5262 	rc = spdk_bdev_quiesce_range(bdev, &bdev_ut_if, 20, 10, bdev_quiesce_done, &ctx1);
5263 	CU_ASSERT(rc == 0);
5264 	poll_threads();
5265 
5266 	CU_ASSERT(g_lock_lba_range_done == true);
5267 	range = TAILQ_FIRST(&channel->locked_ranges);
5268 	SPDK_CU_ASSERT_FATAL(range != NULL);
5269 	CU_ASSERT(range->offset == 20);
5270 	CU_ASSERT(range->length == 10);
5271 	CU_ASSERT(range->owner_ch == NULL);
5272 	range = TAILQ_FIRST(&bdev_ut_if.internal.quiesced_ranges);
5273 	SPDK_CU_ASSERT_FATAL(range != NULL);
5274 	CU_ASSERT(range->offset == 20);
5275 	CU_ASSERT(range->length == 10);
5276 	CU_ASSERT(range->owner_ch == NULL);
5277 
5278 	/* Unlocks must exactly match a lock. */
5279 	g_unlock_lba_range_done = false;
5280 	rc = spdk_bdev_unquiesce_range(bdev, &bdev_ut_if, 20, 1, bdev_unquiesce_done, &ctx1);
5281 	CU_ASSERT(rc == -EINVAL);
5282 	CU_ASSERT(g_unlock_lba_range_done == false);
5283 
5284 	rc = spdk_bdev_unquiesce_range(bdev, &bdev_ut_if, 20, 10, bdev_unquiesce_done, &ctx1);
5285 	CU_ASSERT(rc == 0);
5286 	spdk_delay_us(100);
5287 	poll_threads();
5288 
5289 	CU_ASSERT(g_unlock_lba_range_done == true);
5290 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5291 	CU_ASSERT(TAILQ_EMPTY(&bdev_ut_if.internal.quiesced_ranges));
5292 
5293 	/* Test unquiesce from quiesce cb */
5294 	g_lock_lba_range_done = false;
5295 	g_unlock_lba_range_done = false;
5296 	rc = spdk_bdev_quiesce(bdev, &bdev_ut_if, bdev_quiesce_done_unquiesce, bdev);
5297 	CU_ASSERT(rc == 0);
5298 	poll_threads();
5299 
5300 	CU_ASSERT(g_lock_lba_range_done == true);
5301 	CU_ASSERT(g_unlock_lba_range_done == true);
5302 
5303 	/* Test quiesce with read I/O */
5304 	g_lock_lba_range_done = false;
5305 	g_unlock_lba_range_done = false;
5306 	g_io_done = false;
5307 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 20, 1, io_done, &ctx1);
5308 	CU_ASSERT(rc == 0);
5309 
5310 	rc = spdk_bdev_quiesce(bdev, &bdev_ut_if, bdev_quiesce_done, &ctx1);
5311 	CU_ASSERT(rc == 0);
5312 	poll_threads();
5313 
5314 	CU_ASSERT(g_io_done == false);
5315 	CU_ASSERT(g_lock_lba_range_done == false);
5316 	range = TAILQ_FIRST(&channel->locked_ranges);
5317 	SPDK_CU_ASSERT_FATAL(range != NULL);
5318 
5319 	stub_complete_io(1);
5320 	spdk_delay_us(100);
5321 	poll_threads();
5322 	CU_ASSERT(g_io_done == true);
5323 	CU_ASSERT(g_lock_lba_range_done == true);
5324 	CU_ASSERT(TAILQ_EMPTY(&channel->io_locked));
5325 
5326 	g_io_done = false;
5327 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 20, 1, io_done, &ctx1);
5328 	CU_ASSERT(rc == 0);
5329 
5330 	bdev_io = TAILQ_FIRST(&channel->io_locked);
5331 	SPDK_CU_ASSERT_FATAL(bdev_io != NULL);
5332 	CU_ASSERT(bdev_io->u.bdev.offset_blocks == 20);
5333 	CU_ASSERT(bdev_io->u.bdev.num_blocks == 1);
5334 
5335 	rc = spdk_bdev_unquiesce(bdev, &bdev_ut_if, bdev_unquiesce_done, &ctx1);
5336 	CU_ASSERT(rc == 0);
5337 	spdk_delay_us(100);
5338 	poll_threads();
5339 
5340 	CU_ASSERT(g_unlock_lba_range_done == true);
5341 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5342 	CU_ASSERT(TAILQ_EMPTY(&bdev_ut_if.internal.quiesced_ranges));
5343 
5344 	CU_ASSERT(TAILQ_EMPTY(&channel->io_locked));
5345 	spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
5346 	poll_threads();
5347 	CU_ASSERT(g_io_done == true);
5348 
5349 	spdk_put_io_channel(io_ch);
5350 	spdk_bdev_close(desc);
5351 	free_bdev(bdev);
5352 	ut_fini_bdev();
5353 }
5354 
5355 static void
5356 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
5357 {
5358 	g_abort_done = true;
5359 	g_abort_status = bdev_io->internal.status;
5360 	spdk_bdev_free_io(bdev_io);
5361 }
5362 
5363 static void
5364 bdev_io_abort(void)
5365 {
5366 	struct spdk_bdev *bdev;
5367 	struct spdk_bdev_desc *desc = NULL;
5368 	struct spdk_io_channel *io_ch;
5369 	struct spdk_bdev_channel *channel;
5370 	struct spdk_bdev_mgmt_channel *mgmt_ch;
5371 	struct spdk_bdev_opts bdev_opts = {};
5372 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
5373 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
5374 	int rc;
5375 
5376 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5377 	bdev_opts.bdev_io_pool_size = 7;
5378 	bdev_opts.bdev_io_cache_size = 2;
5379 	ut_init_bdev(&bdev_opts);
5380 
5381 	bdev = allocate_bdev("bdev0");
5382 
5383 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5384 	CU_ASSERT(rc == 0);
5385 	CU_ASSERT(desc != NULL);
5386 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5387 	io_ch = spdk_bdev_get_io_channel(desc);
5388 	CU_ASSERT(io_ch != NULL);
5389 	channel = spdk_io_channel_get_ctx(io_ch);
5390 	mgmt_ch = channel->shared_resource->mgmt_ch;
5391 
5392 	g_abort_done = false;
5393 
5394 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
5395 
5396 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5397 	CU_ASSERT(rc == -ENOTSUP);
5398 
5399 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
5400 
5401 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
5402 	CU_ASSERT(rc == 0);
5403 	CU_ASSERT(g_abort_done == true);
5404 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
5405 
5406 	/* Test the case that the target I/O was successfully aborted. */
5407 	g_io_done = false;
5408 
5409 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5410 	CU_ASSERT(rc == 0);
5411 	CU_ASSERT(g_io_done == false);
5412 
5413 	g_abort_done = false;
5414 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5415 
5416 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5417 	CU_ASSERT(rc == 0);
5418 	CU_ASSERT(g_io_done == true);
5419 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5420 	stub_complete_io(1);
5421 	CU_ASSERT(g_abort_done == true);
5422 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5423 
5424 	/* Test the case that the target I/O was not aborted because it completed
5425 	 * in the middle of execution of the abort.
5426 	 */
5427 	g_io_done = false;
5428 
5429 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5430 	CU_ASSERT(rc == 0);
5431 	CU_ASSERT(g_io_done == false);
5432 
5433 	g_abort_done = false;
5434 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5435 
5436 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5437 	CU_ASSERT(rc == 0);
5438 	CU_ASSERT(g_io_done == false);
5439 
5440 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5441 	stub_complete_io(1);
5442 	CU_ASSERT(g_io_done == true);
5443 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5444 
5445 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5446 	stub_complete_io(1);
5447 	CU_ASSERT(g_abort_done == true);
5448 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5449 
5450 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5451 
5452 	bdev->optimal_io_boundary = 16;
5453 	bdev->split_on_optimal_io_boundary = true;
5454 
5455 	/* Test that a single-vector command which is split is aborted correctly.
5456 	 * Offset 14, length 8, payload 0xF000
5457 	 *  Child - Offset 14, length 2, payload 0xF000
5458 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5459 	 */
5460 	g_io_done = false;
5461 
5462 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
5463 	CU_ASSERT(rc == 0);
5464 	CU_ASSERT(g_io_done == false);
5465 
5466 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5467 
5468 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5469 
5470 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5471 	CU_ASSERT(rc == 0);
5472 	CU_ASSERT(g_io_done == true);
5473 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5474 	stub_complete_io(2);
5475 	CU_ASSERT(g_abort_done == true);
5476 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5477 
5478 	/* Test that a multi-vector command that needs to be split by strip and then
5479 	 * needs to be split is aborted correctly. Abort is requested before the second
5480 	 * child I/O was submitted. The parent I/O should complete with failure without
5481 	 * submitting the second child I/O.
5482 	 */
5483 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
5484 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
5485 		iov[i].iov_len = 512;
5486 	}
5487 
5488 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
5489 	g_io_done = false;
5490 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
5491 				    SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
5492 	CU_ASSERT(rc == 0);
5493 	CU_ASSERT(g_io_done == false);
5494 
5495 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5496 
5497 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5498 
5499 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5500 	CU_ASSERT(rc == 0);
5501 	CU_ASSERT(g_io_done == true);
5502 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5503 	stub_complete_io(1);
5504 	CU_ASSERT(g_abort_done == true);
5505 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5506 
5507 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5508 
5509 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5510 
5511 	bdev->optimal_io_boundary = 16;
5512 	g_io_done = false;
5513 
5514 	/* Test that a ingle-vector command which is split is aborted correctly.
5515 	 * Differently from the above, the child abort request will be submitted
5516 	 * sequentially due to the capacity of spdk_bdev_io.
5517 	 */
5518 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
5519 	CU_ASSERT(rc == 0);
5520 	CU_ASSERT(g_io_done == false);
5521 
5522 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5523 
5524 	g_abort_done = false;
5525 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5526 
5527 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5528 	CU_ASSERT(rc == 0);
5529 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
5530 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5531 
5532 	stub_complete_io(1);
5533 	CU_ASSERT(g_io_done == true);
5534 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5535 	stub_complete_io(3);
5536 	CU_ASSERT(g_abort_done == true);
5537 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5538 
5539 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5540 
5541 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5542 
5543 	spdk_put_io_channel(io_ch);
5544 	spdk_bdev_close(desc);
5545 	free_bdev(bdev);
5546 	ut_fini_bdev();
5547 }
5548 
5549 static void
5550 bdev_unmap(void)
5551 {
5552 	struct spdk_bdev *bdev;
5553 	struct spdk_bdev_desc *desc = NULL;
5554 	struct spdk_io_channel *ioch;
5555 	struct spdk_bdev_channel *bdev_ch;
5556 	struct ut_expected_io *expected_io;
5557 	struct spdk_bdev_opts bdev_opts = {};
5558 	uint32_t i, num_outstanding;
5559 	uint64_t offset, num_blocks, max_unmap_blocks, num_children;
5560 	int rc;
5561 
5562 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5563 	bdev_opts.bdev_io_pool_size = 512;
5564 	bdev_opts.bdev_io_cache_size = 64;
5565 	ut_init_bdev(&bdev_opts);
5566 
5567 	bdev = allocate_bdev("bdev");
5568 
5569 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5570 	CU_ASSERT_EQUAL(rc, 0);
5571 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5572 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5573 	ioch = spdk_bdev_get_io_channel(desc);
5574 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5575 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5576 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5577 
5578 	fn_table.submit_request = stub_submit_request;
5579 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5580 
5581 	/* Case 1: First test the request won't be split */
5582 	num_blocks = 32;
5583 
5584 	g_io_done = false;
5585 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 0, num_blocks, 0);
5586 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5587 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5588 	CU_ASSERT_EQUAL(rc, 0);
5589 	CU_ASSERT(g_io_done == false);
5590 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5591 	stub_complete_io(1);
5592 	CU_ASSERT(g_io_done == true);
5593 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5594 
5595 	/* Case 2: Test the split with 2 children requests */
5596 	bdev->max_unmap = 8;
5597 	bdev->max_unmap_segments = 2;
5598 	max_unmap_blocks = bdev->max_unmap * bdev->max_unmap_segments;
5599 	num_blocks = max_unmap_blocks * 2;
5600 	offset = 0;
5601 
5602 	g_io_done = false;
5603 	for (i = 0; i < 2; i++) {
5604 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5605 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5606 		offset += max_unmap_blocks;
5607 	}
5608 
5609 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5610 	CU_ASSERT_EQUAL(rc, 0);
5611 	CU_ASSERT(g_io_done == false);
5612 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5613 	stub_complete_io(2);
5614 	CU_ASSERT(g_io_done == true);
5615 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5616 
5617 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5618 	num_children = 15;
5619 	num_blocks = max_unmap_blocks * num_children;
5620 	g_io_done = false;
5621 	offset = 0;
5622 	for (i = 0; i < num_children; i++) {
5623 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5624 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5625 		offset += max_unmap_blocks;
5626 	}
5627 
5628 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5629 	CU_ASSERT_EQUAL(rc, 0);
5630 	CU_ASSERT(g_io_done == false);
5631 
5632 	while (num_children > 0) {
5633 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5634 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5635 		stub_complete_io(num_outstanding);
5636 		num_children -= num_outstanding;
5637 	}
5638 	CU_ASSERT(g_io_done == true);
5639 
5640 	spdk_put_io_channel(ioch);
5641 	spdk_bdev_close(desc);
5642 	free_bdev(bdev);
5643 	ut_fini_bdev();
5644 }
5645 
5646 static void
5647 bdev_write_zeroes_split_test(void)
5648 {
5649 	struct spdk_bdev *bdev;
5650 	struct spdk_bdev_desc *desc = NULL;
5651 	struct spdk_io_channel *ioch;
5652 	struct spdk_bdev_channel *bdev_ch;
5653 	struct ut_expected_io *expected_io;
5654 	struct spdk_bdev_opts bdev_opts = {};
5655 	uint32_t i, num_outstanding;
5656 	uint64_t offset, num_blocks, max_write_zeroes_blocks, num_children;
5657 	int rc;
5658 
5659 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5660 	bdev_opts.bdev_io_pool_size = 512;
5661 	bdev_opts.bdev_io_cache_size = 64;
5662 	ut_init_bdev(&bdev_opts);
5663 
5664 	bdev = allocate_bdev("bdev");
5665 
5666 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5667 	CU_ASSERT_EQUAL(rc, 0);
5668 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5669 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5670 	ioch = spdk_bdev_get_io_channel(desc);
5671 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5672 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5673 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5674 
5675 	fn_table.submit_request = stub_submit_request;
5676 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5677 
5678 	/* Case 1: First test the request won't be split */
5679 	num_blocks = 32;
5680 
5681 	g_io_done = false;
5682 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
5683 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5684 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5685 	CU_ASSERT_EQUAL(rc, 0);
5686 	CU_ASSERT(g_io_done == false);
5687 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5688 	stub_complete_io(1);
5689 	CU_ASSERT(g_io_done == true);
5690 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5691 
5692 	/* Case 2: Test the split with 2 children requests */
5693 	max_write_zeroes_blocks = 8;
5694 	bdev->max_write_zeroes = max_write_zeroes_blocks;
5695 	num_blocks = max_write_zeroes_blocks * 2;
5696 	offset = 0;
5697 
5698 	g_io_done = false;
5699 	for (i = 0; i < 2; i++) {
5700 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5701 						   0);
5702 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5703 		offset += max_write_zeroes_blocks;
5704 	}
5705 
5706 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5707 	CU_ASSERT_EQUAL(rc, 0);
5708 	CU_ASSERT(g_io_done == false);
5709 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5710 	stub_complete_io(2);
5711 	CU_ASSERT(g_io_done == true);
5712 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5713 
5714 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5715 	num_children = 15;
5716 	num_blocks = max_write_zeroes_blocks * num_children;
5717 	g_io_done = false;
5718 	offset = 0;
5719 	for (i = 0; i < num_children; i++) {
5720 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5721 						   0);
5722 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5723 		offset += max_write_zeroes_blocks;
5724 	}
5725 
5726 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5727 	CU_ASSERT_EQUAL(rc, 0);
5728 	CU_ASSERT(g_io_done == false);
5729 
5730 	while (num_children > 0) {
5731 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5732 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5733 		stub_complete_io(num_outstanding);
5734 		num_children -= num_outstanding;
5735 	}
5736 	CU_ASSERT(g_io_done == true);
5737 
5738 	spdk_put_io_channel(ioch);
5739 	spdk_bdev_close(desc);
5740 	free_bdev(bdev);
5741 	ut_fini_bdev();
5742 }
5743 
5744 static void
5745 bdev_set_options_test(void)
5746 {
5747 	struct spdk_bdev_opts bdev_opts = {};
5748 	int rc;
5749 
5750 	/* Case1: Do not set opts_size */
5751 	rc = spdk_bdev_set_opts(&bdev_opts);
5752 	CU_ASSERT(rc == -1);
5753 }
5754 
5755 static struct spdk_memory_domain *g_bdev_memory_domain = (struct spdk_memory_domain *) 0xf00df00d;
5756 
5757 static int
5758 test_bdev_get_supported_dma_device_types_op(void *ctx, struct spdk_memory_domain **domains,
5759 		int array_size)
5760 {
5761 	if (array_size > 0 && domains) {
5762 		domains[0] = g_bdev_memory_domain;
5763 	}
5764 
5765 	return 1;
5766 }
5767 
5768 static void
5769 bdev_get_memory_domains(void)
5770 {
5771 	struct spdk_bdev_fn_table fn_table = {
5772 		.get_memory_domains = test_bdev_get_supported_dma_device_types_op
5773 	};
5774 	struct spdk_bdev bdev = { .fn_table = &fn_table };
5775 	struct spdk_memory_domain *domains[2] = {};
5776 	int rc;
5777 
5778 	/* bdev is NULL */
5779 	rc = spdk_bdev_get_memory_domains(NULL, domains, 2);
5780 	CU_ASSERT(rc == -EINVAL);
5781 
5782 	/* domains is NULL */
5783 	rc = spdk_bdev_get_memory_domains(&bdev, NULL, 2);
5784 	CU_ASSERT(rc == 1);
5785 
5786 	/* array size is 0 */
5787 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 0);
5788 	CU_ASSERT(rc == 1);
5789 
5790 	/* get_supported_dma_device_types op is set */
5791 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5792 	CU_ASSERT(rc == 1);
5793 	CU_ASSERT(domains[0] == g_bdev_memory_domain);
5794 
5795 	/* get_supported_dma_device_types op is not set */
5796 	fn_table.get_memory_domains = NULL;
5797 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5798 	CU_ASSERT(rc == 0);
5799 }
5800 
5801 static void
5802 _bdev_io_ext(struct spdk_bdev_ext_io_opts *ext_io_opts)
5803 {
5804 	struct spdk_bdev *bdev;
5805 	struct spdk_bdev_desc *desc = NULL;
5806 	struct spdk_io_channel *io_ch;
5807 	char io_buf[512];
5808 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5809 	struct ut_expected_io *expected_io;
5810 	int rc;
5811 
5812 	ut_init_bdev(NULL);
5813 
5814 	bdev = allocate_bdev("bdev0");
5815 	bdev->md_interleave = false;
5816 	bdev->md_len = 8;
5817 
5818 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5819 	CU_ASSERT(rc == 0);
5820 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5821 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5822 	io_ch = spdk_bdev_get_io_channel(desc);
5823 	CU_ASSERT(io_ch != NULL);
5824 
5825 	/* read */
5826 	g_io_done = false;
5827 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5828 	if (ext_io_opts) {
5829 		expected_io->md_buf = ext_io_opts->metadata;
5830 	}
5831 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5832 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5833 
5834 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5835 
5836 	CU_ASSERT(rc == 0);
5837 	CU_ASSERT(g_io_done == false);
5838 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5839 	stub_complete_io(1);
5840 	CU_ASSERT(g_io_done == true);
5841 
5842 	/* write */
5843 	g_io_done = false;
5844 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5845 	if (ext_io_opts) {
5846 		expected_io->md_buf = ext_io_opts->metadata;
5847 	}
5848 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5849 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5850 
5851 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5852 
5853 	CU_ASSERT(rc == 0);
5854 	CU_ASSERT(g_io_done == false);
5855 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5856 	stub_complete_io(1);
5857 	CU_ASSERT(g_io_done == true);
5858 
5859 	spdk_put_io_channel(io_ch);
5860 	spdk_bdev_close(desc);
5861 	free_bdev(bdev);
5862 	ut_fini_bdev();
5863 
5864 }
5865 
5866 static void
5867 bdev_io_ext(void)
5868 {
5869 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5870 		.metadata = (void *)0xFF000000,
5871 		.size = sizeof(ext_io_opts),
5872 		.dif_check_flags_exclude_mask = 0
5873 	};
5874 
5875 	_bdev_io_ext(&ext_io_opts);
5876 }
5877 
5878 static void
5879 bdev_io_ext_no_opts(void)
5880 {
5881 	_bdev_io_ext(NULL);
5882 }
5883 
5884 static void
5885 bdev_io_ext_invalid_opts(void)
5886 {
5887 	struct spdk_bdev *bdev;
5888 	struct spdk_bdev_desc *desc = NULL;
5889 	struct spdk_io_channel *io_ch;
5890 	char io_buf[512];
5891 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5892 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5893 		.metadata = (void *)0xFF000000,
5894 		.size = sizeof(ext_io_opts),
5895 		.dif_check_flags_exclude_mask = 0
5896 	};
5897 	int rc;
5898 
5899 	ut_init_bdev(NULL);
5900 
5901 	bdev = allocate_bdev("bdev0");
5902 	bdev->md_interleave = false;
5903 	bdev->md_len = 8;
5904 
5905 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5906 	CU_ASSERT(rc == 0);
5907 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5908 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5909 	io_ch = spdk_bdev_get_io_channel(desc);
5910 	CU_ASSERT(io_ch != NULL);
5911 
5912 	/* Test invalid ext_opts size */
5913 	ext_io_opts.size = 0;
5914 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5915 	CU_ASSERT(rc == -EINVAL);
5916 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5917 	CU_ASSERT(rc == -EINVAL);
5918 
5919 	ext_io_opts.size = sizeof(ext_io_opts) * 2;
5920 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5921 	CU_ASSERT(rc == -EINVAL);
5922 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5923 	CU_ASSERT(rc == -EINVAL);
5924 
5925 	ext_io_opts.size = offsetof(struct spdk_bdev_ext_io_opts, metadata) +
5926 			   sizeof(ext_io_opts.metadata) - 1;
5927 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5928 	CU_ASSERT(rc == -EINVAL);
5929 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5930 	CU_ASSERT(rc == -EINVAL);
5931 
5932 	spdk_put_io_channel(io_ch);
5933 	spdk_bdev_close(desc);
5934 	free_bdev(bdev);
5935 	ut_fini_bdev();
5936 }
5937 
5938 static void
5939 bdev_io_ext_split(void)
5940 {
5941 	struct spdk_bdev *bdev;
5942 	struct spdk_bdev_desc *desc = NULL;
5943 	struct spdk_io_channel *io_ch;
5944 	char io_buf[512];
5945 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5946 	struct ut_expected_io *expected_io;
5947 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5948 		.metadata = (void *)0xFF000000,
5949 		.size = sizeof(ext_io_opts),
5950 		.dif_check_flags_exclude_mask = 0
5951 	};
5952 	int rc;
5953 
5954 	ut_init_bdev(NULL);
5955 
5956 	bdev = allocate_bdev("bdev0");
5957 	bdev->md_interleave = false;
5958 	bdev->md_len = 8;
5959 
5960 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5961 	CU_ASSERT(rc == 0);
5962 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5963 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5964 	io_ch = spdk_bdev_get_io_channel(desc);
5965 	CU_ASSERT(io_ch != NULL);
5966 
5967 	/* Check that IO request with ext_opts and metadata is split correctly
5968 	 * Offset 14, length 8, payload 0xF000
5969 	 *  Child - Offset 14, length 2, payload 0xF000
5970 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5971 	 */
5972 	bdev->optimal_io_boundary = 16;
5973 	bdev->split_on_optimal_io_boundary = true;
5974 	bdev->md_interleave = false;
5975 	bdev->md_len = 8;
5976 
5977 	iov.iov_base = (void *)0xF000;
5978 	iov.iov_len = 4096;
5979 	memset(&ext_io_opts, 0, sizeof(ext_io_opts));
5980 	ext_io_opts.metadata = (void *)0xFF000000;
5981 	ext_io_opts.size = sizeof(ext_io_opts);
5982 	g_io_done = false;
5983 
5984 	/* read */
5985 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
5986 	expected_io->md_buf = ext_io_opts.metadata;
5987 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5988 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5989 
5990 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
5991 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5992 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5993 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5994 
5995 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5996 	CU_ASSERT(rc == 0);
5997 	CU_ASSERT(g_io_done == false);
5998 
5999 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
6000 	stub_complete_io(2);
6001 	CU_ASSERT(g_io_done == true);
6002 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6003 
6004 	/* write */
6005 	g_io_done = false;
6006 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
6007 	expected_io->md_buf = ext_io_opts.metadata;
6008 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
6009 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6010 
6011 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 6, 1);
6012 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
6013 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
6014 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6015 
6016 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
6017 	CU_ASSERT(rc == 0);
6018 	CU_ASSERT(g_io_done == false);
6019 
6020 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
6021 	stub_complete_io(2);
6022 	CU_ASSERT(g_io_done == true);
6023 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6024 
6025 	spdk_put_io_channel(io_ch);
6026 	spdk_bdev_close(desc);
6027 	free_bdev(bdev);
6028 	ut_fini_bdev();
6029 }
6030 
6031 static void
6032 bdev_io_ext_bounce_buffer(void)
6033 {
6034 	struct spdk_bdev *bdev;
6035 	struct spdk_bdev_desc *desc = NULL;
6036 	struct spdk_io_channel *io_ch;
6037 	char io_buf[512];
6038 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
6039 	struct ut_expected_io *expected_io, *aux_io;
6040 	struct spdk_bdev_ext_io_opts ext_io_opts = {
6041 		.metadata = (void *)0xFF000000,
6042 		.size = sizeof(ext_io_opts),
6043 		.dif_check_flags_exclude_mask = 0
6044 	};
6045 	int rc;
6046 
6047 	ut_init_bdev(NULL);
6048 
6049 	bdev = allocate_bdev("bdev0");
6050 	bdev->md_interleave = false;
6051 	bdev->md_len = 8;
6052 
6053 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6054 	CU_ASSERT(rc == 0);
6055 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6056 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6057 	io_ch = spdk_bdev_get_io_channel(desc);
6058 	CU_ASSERT(io_ch != NULL);
6059 
6060 	/* Verify data pull/push
6061 	 * bdev doesn't support memory domains, so buffers from bdev memory pool will be used */
6062 	ext_io_opts.memory_domain = (struct spdk_memory_domain *)0xdeadbeef;
6063 
6064 	/* read */
6065 	g_io_done = false;
6066 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
6067 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
6068 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6069 
6070 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6071 
6072 	CU_ASSERT(rc == 0);
6073 	CU_ASSERT(g_io_done == false);
6074 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6075 	stub_complete_io(1);
6076 	CU_ASSERT(g_memory_domain_push_data_called == true);
6077 	CU_ASSERT(g_io_done == true);
6078 
6079 	/* write */
6080 	g_io_done = false;
6081 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
6082 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
6083 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6084 
6085 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6086 
6087 	CU_ASSERT(rc == 0);
6088 	CU_ASSERT(g_memory_domain_pull_data_called == true);
6089 	CU_ASSERT(g_io_done == false);
6090 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6091 	stub_complete_io(1);
6092 	CU_ASSERT(g_io_done == true);
6093 
6094 	/* Verify the request is queued after receiving ENOMEM from pull */
6095 	g_io_done = false;
6096 	aux_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
6097 	ut_expected_io_set_iov(aux_io, 0, iov.iov_base, iov.iov_len);
6098 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, aux_io, link);
6099 	rc = spdk_bdev_writev_blocks(desc, io_ch, &iov, 1, 32, 14, io_done, NULL);
6100 	CU_ASSERT(rc == 0);
6101 	CU_ASSERT(g_io_done == false);
6102 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6103 
6104 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
6105 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
6106 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6107 
6108 	MOCK_SET(spdk_memory_domain_pull_data, -ENOMEM);
6109 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6110 	CU_ASSERT(rc == 0);
6111 	CU_ASSERT(g_io_done == false);
6112 	/* The second IO has been queued */
6113 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6114 
6115 	MOCK_CLEAR(spdk_memory_domain_pull_data);
6116 	g_memory_domain_pull_data_called = false;
6117 	stub_complete_io(1);
6118 	CU_ASSERT(g_io_done == true);
6119 	CU_ASSERT(g_memory_domain_pull_data_called == true);
6120 	/* The second IO should be submitted now */
6121 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6122 	g_io_done = false;
6123 	stub_complete_io(1);
6124 	CU_ASSERT(g_io_done == true);
6125 
6126 	/* Verify the request is queued after receiving ENOMEM from push */
6127 	g_io_done = false;
6128 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
6129 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
6130 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6131 
6132 	MOCK_SET(spdk_memory_domain_push_data, -ENOMEM);
6133 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6134 	CU_ASSERT(rc == 0);
6135 	CU_ASSERT(g_io_done == false);
6136 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6137 
6138 	aux_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
6139 	ut_expected_io_set_iov(aux_io, 0, iov.iov_base, iov.iov_len);
6140 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, aux_io, link);
6141 	rc = spdk_bdev_writev_blocks(desc, io_ch, &iov, 1, 32, 14, io_done, NULL);
6142 	CU_ASSERT(rc == 0);
6143 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
6144 
6145 	stub_complete_io(1);
6146 	/* The IO isn't done yet, it's still waiting on push */
6147 	CU_ASSERT(g_io_done == false);
6148 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6149 	MOCK_CLEAR(spdk_memory_domain_push_data);
6150 	g_memory_domain_push_data_called = false;
6151 	/* Completing the second IO should also trigger push on the first one */
6152 	stub_complete_io(1);
6153 	CU_ASSERT(g_io_done == true);
6154 	CU_ASSERT(g_memory_domain_push_data_called == true);
6155 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6156 
6157 	spdk_put_io_channel(io_ch);
6158 	spdk_bdev_close(desc);
6159 	free_bdev(bdev);
6160 	ut_fini_bdev();
6161 }
6162 
6163 static void
6164 bdev_register_uuid_alias(void)
6165 {
6166 	struct spdk_bdev *bdev, *second;
6167 	char uuid[SPDK_UUID_STRING_LEN];
6168 	int rc;
6169 
6170 	ut_init_bdev(NULL);
6171 	bdev = allocate_bdev("bdev0");
6172 
6173 	/* Make sure an UUID was generated  */
6174 	CU_ASSERT_FALSE(spdk_uuid_is_null(&bdev->uuid));
6175 
6176 	/* Check that an UUID alias was registered */
6177 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
6178 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
6179 
6180 	/* Unregister the bdev */
6181 	spdk_bdev_unregister(bdev, NULL, NULL);
6182 	poll_threads();
6183 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
6184 
6185 	/* Check the same, but this time register the bdev with non-zero UUID */
6186 	rc = spdk_bdev_register(bdev);
6187 	CU_ASSERT_EQUAL(rc, 0);
6188 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
6189 
6190 	/* Unregister the bdev */
6191 	spdk_bdev_unregister(bdev, NULL, NULL);
6192 	poll_threads();
6193 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
6194 
6195 	/* Register the bdev using UUID as the name */
6196 	bdev->name = uuid;
6197 	rc = spdk_bdev_register(bdev);
6198 	CU_ASSERT_EQUAL(rc, 0);
6199 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
6200 
6201 	/* Unregister the bdev */
6202 	spdk_bdev_unregister(bdev, NULL, NULL);
6203 	poll_threads();
6204 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
6205 
6206 	/* Check that it's not possible to register two bdevs with the same UUIDs */
6207 	bdev->name = "bdev0";
6208 	second = allocate_bdev("bdev1");
6209 	spdk_uuid_copy(&bdev->uuid, &second->uuid);
6210 	rc = spdk_bdev_register(bdev);
6211 	CU_ASSERT_EQUAL(rc, -EEXIST);
6212 
6213 	/* Regenerate the UUID and re-check */
6214 	spdk_uuid_generate(&bdev->uuid);
6215 	rc = spdk_bdev_register(bdev);
6216 	CU_ASSERT_EQUAL(rc, 0);
6217 
6218 	/* And check that both bdevs can be retrieved through their UUIDs */
6219 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
6220 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
6221 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &second->uuid);
6222 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), second);
6223 
6224 	free_bdev(second);
6225 	free_bdev(bdev);
6226 	ut_fini_bdev();
6227 }
6228 
6229 static void
6230 bdev_unregister_by_name(void)
6231 {
6232 	struct spdk_bdev *bdev;
6233 	int rc;
6234 
6235 	bdev = allocate_bdev("bdev");
6236 
6237 	g_event_type1 = 0xFF;
6238 	g_unregister_arg = NULL;
6239 	g_unregister_rc = -1;
6240 
6241 	rc = spdk_bdev_unregister_by_name("bdev1", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
6242 	CU_ASSERT(rc == -ENODEV);
6243 
6244 	rc = spdk_bdev_unregister_by_name("bdev", &vbdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
6245 	CU_ASSERT(rc == -ENODEV);
6246 
6247 	rc = spdk_bdev_unregister_by_name("bdev", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
6248 	CU_ASSERT(rc == 0);
6249 
6250 	/* Check that unregister callback is delayed */
6251 	CU_ASSERT(g_unregister_arg == NULL);
6252 	CU_ASSERT(g_unregister_rc == -1);
6253 
6254 	poll_threads();
6255 
6256 	/* Event callback shall not be issued because device was closed */
6257 	CU_ASSERT(g_event_type1 == 0xFF);
6258 	/* Unregister callback is issued */
6259 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
6260 	CU_ASSERT(g_unregister_rc == 0);
6261 
6262 	free_bdev(bdev);
6263 }
6264 
6265 static int
6266 count_bdevs(void *ctx, struct spdk_bdev *bdev)
6267 {
6268 	int *count = ctx;
6269 
6270 	(*count)++;
6271 
6272 	return 0;
6273 }
6274 
6275 static void
6276 for_each_bdev_test(void)
6277 {
6278 	struct spdk_bdev *bdev[8];
6279 	int rc, count;
6280 
6281 	bdev[0] = allocate_bdev("bdev0");
6282 	bdev[0]->internal.status = SPDK_BDEV_STATUS_REMOVING;
6283 
6284 	bdev[1] = allocate_bdev("bdev1");
6285 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
6286 	CU_ASSERT(rc == 0);
6287 
6288 	bdev[2] = allocate_bdev("bdev2");
6289 
6290 	bdev[3] = allocate_bdev("bdev3");
6291 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
6292 	CU_ASSERT(rc == 0);
6293 
6294 	bdev[4] = allocate_bdev("bdev4");
6295 
6296 	bdev[5] = allocate_bdev("bdev5");
6297 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
6298 	CU_ASSERT(rc == 0);
6299 
6300 	bdev[6] = allocate_bdev("bdev6");
6301 
6302 	bdev[7] = allocate_bdev("bdev7");
6303 
6304 	count = 0;
6305 	rc = spdk_for_each_bdev(&count, count_bdevs);
6306 	CU_ASSERT(rc == 0);
6307 	CU_ASSERT(count == 7);
6308 
6309 	count = 0;
6310 	rc = spdk_for_each_bdev_leaf(&count, count_bdevs);
6311 	CU_ASSERT(rc == 0);
6312 	CU_ASSERT(count == 4);
6313 
6314 	bdev[0]->internal.status = SPDK_BDEV_STATUS_READY;
6315 	free_bdev(bdev[0]);
6316 	free_bdev(bdev[1]);
6317 	free_bdev(bdev[2]);
6318 	free_bdev(bdev[3]);
6319 	free_bdev(bdev[4]);
6320 	free_bdev(bdev[5]);
6321 	free_bdev(bdev[6]);
6322 	free_bdev(bdev[7]);
6323 }
6324 
6325 static void
6326 bdev_seek_test(void)
6327 {
6328 	struct spdk_bdev *bdev;
6329 	struct spdk_bdev_desc *desc = NULL;
6330 	struct spdk_io_channel *io_ch;
6331 	int rc;
6332 
6333 	ut_init_bdev(NULL);
6334 	poll_threads();
6335 
6336 	bdev = allocate_bdev("bdev0");
6337 
6338 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6339 	CU_ASSERT(rc == 0);
6340 	poll_threads();
6341 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6342 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6343 	io_ch = spdk_bdev_get_io_channel(desc);
6344 	CU_ASSERT(io_ch != NULL);
6345 
6346 	/* Seek data not supported */
6347 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, false);
6348 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
6349 	CU_ASSERT(rc == 0);
6350 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6351 	poll_threads();
6352 	CU_ASSERT(g_seek_offset == 0);
6353 
6354 	/* Seek hole not supported */
6355 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, false);
6356 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
6357 	CU_ASSERT(rc == 0);
6358 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6359 	poll_threads();
6360 	CU_ASSERT(g_seek_offset == UINT64_MAX);
6361 
6362 	/* Seek data supported */
6363 	g_seek_data_offset = 12345;
6364 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, true);
6365 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
6366 	CU_ASSERT(rc == 0);
6367 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6368 	stub_complete_io(1);
6369 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6370 	CU_ASSERT(g_seek_offset == 12345);
6371 
6372 	/* Seek hole supported */
6373 	g_seek_hole_offset = 67890;
6374 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, true);
6375 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
6376 	CU_ASSERT(rc == 0);
6377 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6378 	stub_complete_io(1);
6379 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6380 	CU_ASSERT(g_seek_offset == 67890);
6381 
6382 	spdk_put_io_channel(io_ch);
6383 	spdk_bdev_close(desc);
6384 	free_bdev(bdev);
6385 	ut_fini_bdev();
6386 }
6387 
6388 static void
6389 bdev_copy(void)
6390 {
6391 	struct spdk_bdev *bdev;
6392 	struct spdk_bdev_desc *desc = NULL;
6393 	struct spdk_io_channel *ioch;
6394 	struct ut_expected_io *expected_io;
6395 	uint64_t src_offset, num_blocks;
6396 	uint32_t num_completed;
6397 	int rc;
6398 
6399 	ut_init_bdev(NULL);
6400 	bdev = allocate_bdev("bdev");
6401 
6402 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6403 	CU_ASSERT_EQUAL(rc, 0);
6404 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6405 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6406 	ioch = spdk_bdev_get_io_channel(desc);
6407 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6408 
6409 	fn_table.submit_request = stub_submit_request;
6410 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6411 
6412 	/* First test that if the bdev supports copy, the request won't be split */
6413 	bdev->md_len = 0;
6414 	bdev->blocklen = 512;
6415 	num_blocks = 128;
6416 	src_offset = bdev->blockcnt - num_blocks;
6417 
6418 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6419 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6420 
6421 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6422 	CU_ASSERT_EQUAL(rc, 0);
6423 	num_completed = stub_complete_io(1);
6424 	CU_ASSERT_EQUAL(num_completed, 1);
6425 
6426 	/* Check that if copy is not supported it'll still work */
6427 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, src_offset, num_blocks, 0);
6428 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6429 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, num_blocks, 0);
6430 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6431 
6432 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false);
6433 
6434 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6435 	CU_ASSERT_EQUAL(rc, 0);
6436 	num_completed = stub_complete_io(1);
6437 	CU_ASSERT_EQUAL(num_completed, 1);
6438 	num_completed = stub_complete_io(1);
6439 	CU_ASSERT_EQUAL(num_completed, 1);
6440 
6441 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true);
6442 	spdk_put_io_channel(ioch);
6443 	spdk_bdev_close(desc);
6444 	free_bdev(bdev);
6445 	ut_fini_bdev();
6446 }
6447 
6448 static void
6449 bdev_copy_split_test(void)
6450 {
6451 	struct spdk_bdev *bdev;
6452 	struct spdk_bdev_desc *desc = NULL;
6453 	struct spdk_io_channel *ioch;
6454 	struct spdk_bdev_channel *bdev_ch;
6455 	struct ut_expected_io *expected_io;
6456 	struct spdk_bdev_opts bdev_opts = {};
6457 	uint32_t i, num_outstanding;
6458 	uint64_t offset, src_offset, num_blocks, max_copy_blocks, num_children;
6459 	int rc;
6460 
6461 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
6462 	bdev_opts.bdev_io_pool_size = 512;
6463 	bdev_opts.bdev_io_cache_size = 64;
6464 	rc = spdk_bdev_set_opts(&bdev_opts);
6465 	CU_ASSERT(rc == 0);
6466 
6467 	ut_init_bdev(NULL);
6468 	bdev = allocate_bdev("bdev");
6469 
6470 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6471 	CU_ASSERT_EQUAL(rc, 0);
6472 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6473 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6474 	ioch = spdk_bdev_get_io_channel(desc);
6475 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6476 	bdev_ch = spdk_io_channel_get_ctx(ioch);
6477 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
6478 
6479 	fn_table.submit_request = stub_submit_request;
6480 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6481 
6482 	/* Case 1: First test the request won't be split */
6483 	num_blocks = 32;
6484 	src_offset = bdev->blockcnt - num_blocks;
6485 
6486 	g_io_done = false;
6487 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6488 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6489 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6490 	CU_ASSERT_EQUAL(rc, 0);
6491 	CU_ASSERT(g_io_done == false);
6492 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6493 	stub_complete_io(1);
6494 	CU_ASSERT(g_io_done == true);
6495 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6496 
6497 	/* Case 2: Test the split with 2 children requests */
6498 	max_copy_blocks = 8;
6499 	bdev->max_copy = max_copy_blocks;
6500 	num_children = 2;
6501 	num_blocks = max_copy_blocks * num_children;
6502 	offset = 0;
6503 	src_offset = bdev->blockcnt - num_blocks;
6504 
6505 	g_io_done = false;
6506 	for (i = 0; i < num_children; i++) {
6507 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6508 							src_offset + offset, max_copy_blocks);
6509 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6510 		offset += max_copy_blocks;
6511 	}
6512 
6513 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6514 	CU_ASSERT_EQUAL(rc, 0);
6515 	CU_ASSERT(g_io_done == false);
6516 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_children);
6517 	stub_complete_io(num_children);
6518 	CU_ASSERT(g_io_done == true);
6519 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6520 
6521 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
6522 	num_children = 15;
6523 	num_blocks = max_copy_blocks * num_children;
6524 	offset = 0;
6525 	src_offset = bdev->blockcnt - num_blocks;
6526 
6527 	g_io_done = false;
6528 	for (i = 0; i < num_children; i++) {
6529 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6530 							src_offset + offset, max_copy_blocks);
6531 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6532 		offset += max_copy_blocks;
6533 	}
6534 
6535 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6536 	CU_ASSERT_EQUAL(rc, 0);
6537 	CU_ASSERT(g_io_done == false);
6538 
6539 	while (num_children > 0) {
6540 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_COPY_REQS);
6541 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6542 		stub_complete_io(num_outstanding);
6543 		num_children -= num_outstanding;
6544 	}
6545 	CU_ASSERT(g_io_done == true);
6546 
6547 	/* Case 4: Same test scenario as the case 2 but the configuration is different.
6548 	 * Copy is not supported.
6549 	 */
6550 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false);
6551 
6552 	num_children = 2;
6553 	max_copy_blocks = spdk_bdev_get_max_copy(bdev);
6554 	num_blocks = max_copy_blocks * num_children;
6555 	src_offset = bdev->blockcnt - num_blocks;
6556 	offset = 0;
6557 
6558 	g_io_done = false;
6559 	for (i = 0; i < num_children; i++) {
6560 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, src_offset,
6561 						   max_copy_blocks, 0);
6562 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6563 		src_offset += max_copy_blocks;
6564 	}
6565 	for (i = 0; i < num_children; i++) {
6566 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset,
6567 						   max_copy_blocks, 0);
6568 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6569 		offset += max_copy_blocks;
6570 	}
6571 
6572 	src_offset = bdev->blockcnt - num_blocks;
6573 	offset = 0;
6574 
6575 	rc = spdk_bdev_copy_blocks(desc, ioch, offset, src_offset, num_blocks, io_done, NULL);
6576 	CU_ASSERT_EQUAL(rc, 0);
6577 	CU_ASSERT(g_io_done == false);
6578 
6579 	while (num_children > 0) {
6580 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_COPY_REQS);
6581 
6582 		/* One copy request is split into one read and one write requests. */
6583 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6584 		stub_complete_io(num_outstanding);
6585 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6586 		stub_complete_io(num_outstanding);
6587 
6588 		num_children -= num_outstanding;
6589 	}
6590 	CU_ASSERT(g_io_done == true);
6591 
6592 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true);
6593 
6594 	spdk_put_io_channel(ioch);
6595 	spdk_bdev_close(desc);
6596 	free_bdev(bdev);
6597 	ut_fini_bdev();
6598 }
6599 
6600 static void
6601 examine_claim_v1(struct spdk_bdev *bdev)
6602 {
6603 	int rc;
6604 
6605 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &vbdev_ut_if);
6606 	CU_ASSERT(rc == 0);
6607 }
6608 
6609 static void
6610 examine_no_lock_held(struct spdk_bdev *bdev)
6611 {
6612 	CU_ASSERT(!spdk_spin_held(&g_bdev_mgr.spinlock));
6613 	CU_ASSERT(!spdk_spin_held(&bdev->internal.spinlock));
6614 }
6615 
6616 struct examine_claim_v2_ctx {
6617 	struct ut_examine_ctx examine_ctx;
6618 	enum spdk_bdev_claim_type claim_type;
6619 	struct spdk_bdev_desc *desc;
6620 };
6621 
6622 static void
6623 examine_claim_v2(struct spdk_bdev *bdev)
6624 {
6625 	struct examine_claim_v2_ctx *ctx = bdev->ctxt;
6626 	int rc;
6627 
6628 	rc = spdk_bdev_open_ext(bdev->name, false, bdev_ut_event_cb, NULL, &ctx->desc);
6629 	CU_ASSERT(rc == 0);
6630 
6631 	rc = spdk_bdev_module_claim_bdev_desc(ctx->desc, ctx->claim_type, NULL, &vbdev_ut_if);
6632 	CU_ASSERT(rc == 0);
6633 }
6634 
6635 static void
6636 examine_locks(void)
6637 {
6638 	struct spdk_bdev *bdev;
6639 	struct ut_examine_ctx ctx = { 0 };
6640 	struct examine_claim_v2_ctx v2_ctx;
6641 
6642 	/* Without any claims, one code path is taken */
6643 	ctx.examine_config = examine_no_lock_held;
6644 	ctx.examine_disk = examine_no_lock_held;
6645 	bdev = allocate_bdev_ctx("bdev0", &ctx);
6646 	CU_ASSERT(ctx.examine_config_count == 1);
6647 	CU_ASSERT(ctx.examine_disk_count == 1);
6648 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6649 	CU_ASSERT(bdev->internal.claim.v1.module == NULL);
6650 	free_bdev(bdev);
6651 
6652 	/* Exercise another path that is taken when examine_config() takes a v1 claim. */
6653 	memset(&ctx, 0, sizeof(ctx));
6654 	ctx.examine_config = examine_claim_v1;
6655 	ctx.examine_disk = examine_no_lock_held;
6656 	bdev = allocate_bdev_ctx("bdev0", &ctx);
6657 	CU_ASSERT(ctx.examine_config_count == 1);
6658 	CU_ASSERT(ctx.examine_disk_count == 1);
6659 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
6660 	CU_ASSERT(bdev->internal.claim.v1.module == &vbdev_ut_if);
6661 	spdk_bdev_module_release_bdev(bdev);
6662 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6663 	CU_ASSERT(bdev->internal.claim.v1.module == NULL);
6664 	free_bdev(bdev);
6665 
6666 	/* Exercise the final path that comes with v2 claims. */
6667 	memset(&v2_ctx, 0, sizeof(v2_ctx));
6668 	v2_ctx.examine_ctx.examine_config = examine_claim_v2;
6669 	v2_ctx.examine_ctx.examine_disk = examine_no_lock_held;
6670 	v2_ctx.claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
6671 	bdev = allocate_bdev_ctx("bdev0", &v2_ctx);
6672 	CU_ASSERT(v2_ctx.examine_ctx.examine_config_count == 1);
6673 	CU_ASSERT(v2_ctx.examine_ctx.examine_disk_count == 1);
6674 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6675 	spdk_bdev_close(v2_ctx.desc);
6676 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6677 	free_bdev(bdev);
6678 }
6679 
6680 #define UT_ASSERT_CLAIM_V2_COUNT(bdev, expect) \
6681 	do { \
6682 		uint32_t len = 0; \
6683 		struct spdk_bdev_module_claim *claim; \
6684 		TAILQ_FOREACH(claim, &bdev->internal.claim.v2.claims, link) { \
6685 			len++; \
6686 		} \
6687 		CU_ASSERT(len == expect); \
6688 	} while (0)
6689 
6690 static void
6691 claim_v2_rwo(void)
6692 {
6693 	struct spdk_bdev *bdev;
6694 	struct spdk_bdev_desc *desc;
6695 	struct spdk_bdev_desc *desc2;
6696 	struct spdk_bdev_claim_opts opts;
6697 	int rc;
6698 
6699 	bdev = allocate_bdev("bdev0");
6700 
6701 	/* Claim without options */
6702 	desc = NULL;
6703 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6704 	CU_ASSERT(rc == 0);
6705 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6706 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6707 					      &bdev_ut_if);
6708 	CU_ASSERT(rc == 0);
6709 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6710 	CU_ASSERT(desc->claim != NULL);
6711 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6712 	CU_ASSERT(strcmp(desc->claim->name, "") == 0);
6713 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6714 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6715 
6716 	/* Release the claim by closing the descriptor */
6717 	spdk_bdev_close(desc);
6718 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6719 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6720 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6721 
6722 	/* Claim with options */
6723 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6724 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6725 	desc = NULL;
6726 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6727 	CU_ASSERT(rc == 0);
6728 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6729 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, &opts,
6730 					      &bdev_ut_if);
6731 	CU_ASSERT(rc == 0);
6732 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6733 	CU_ASSERT(desc->claim != NULL);
6734 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6735 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6736 	memset(&opts, 0, sizeof(opts));
6737 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6738 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6739 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6740 
6741 	/* The claim blocks new writers. */
6742 	desc2 = NULL;
6743 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6744 	CU_ASSERT(rc == -EPERM);
6745 	CU_ASSERT(desc2 == NULL);
6746 
6747 	/* New readers are allowed */
6748 	desc2 = NULL;
6749 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6750 	CU_ASSERT(rc == 0);
6751 	CU_ASSERT(desc2 != NULL);
6752 	CU_ASSERT(!desc2->write);
6753 
6754 	/* No new v2 RWO claims are allowed */
6755 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6756 					      &bdev_ut_if);
6757 	CU_ASSERT(rc == -EPERM);
6758 
6759 	/* No new v2 ROM claims are allowed */
6760 	CU_ASSERT(!desc2->write);
6761 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6762 					      &bdev_ut_if);
6763 	CU_ASSERT(rc == -EPERM);
6764 	CU_ASSERT(!desc2->write);
6765 
6766 	/* No new v2 RWM claims are allowed */
6767 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6768 	opts.shared_claim_key = (uint64_t)&opts;
6769 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6770 					      &bdev_ut_if);
6771 	CU_ASSERT(rc == -EPERM);
6772 	CU_ASSERT(!desc2->write);
6773 
6774 	/* No new v1 claims are allowed */
6775 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6776 	CU_ASSERT(rc == -EPERM);
6777 
6778 	/* None of the above changed the existing claim */
6779 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6780 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6781 
6782 	/* Closing the first descriptor now allows a new claim and it is promoted to rw. */
6783 	spdk_bdev_close(desc);
6784 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6785 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6786 	CU_ASSERT(!desc2->write);
6787 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6788 					      &bdev_ut_if);
6789 	CU_ASSERT(rc == 0);
6790 	CU_ASSERT(desc2->claim != NULL);
6791 	CU_ASSERT(desc2->write);
6792 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6793 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
6794 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6795 	spdk_bdev_close(desc2);
6796 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6797 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6798 
6799 	/* Cannot claim with a key */
6800 	desc = NULL;
6801 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6802 	CU_ASSERT(rc == 0);
6803 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6804 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6805 	opts.shared_claim_key = (uint64_t)&opts;
6806 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, &opts,
6807 					      &bdev_ut_if);
6808 	CU_ASSERT(rc == -EINVAL);
6809 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6810 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6811 	spdk_bdev_close(desc);
6812 
6813 	/* Clean up */
6814 	free_bdev(bdev);
6815 }
6816 
6817 static void
6818 claim_v2_rom(void)
6819 {
6820 	struct spdk_bdev *bdev;
6821 	struct spdk_bdev_desc *desc;
6822 	struct spdk_bdev_desc *desc2;
6823 	struct spdk_bdev_claim_opts opts;
6824 	int rc;
6825 
6826 	bdev = allocate_bdev("bdev0");
6827 
6828 	/* Claim without options */
6829 	desc = NULL;
6830 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6831 	CU_ASSERT(rc == 0);
6832 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6833 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6834 					      &bdev_ut_if);
6835 	CU_ASSERT(rc == 0);
6836 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6837 	CU_ASSERT(desc->claim != NULL);
6838 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6839 	CU_ASSERT(strcmp(desc->claim->name, "") == 0);
6840 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6841 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6842 
6843 	/* Release the claim by closing the descriptor */
6844 	spdk_bdev_close(desc);
6845 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6846 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6847 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6848 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6849 
6850 	/* Claim with options */
6851 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6852 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6853 	desc = NULL;
6854 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6855 	CU_ASSERT(rc == 0);
6856 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6857 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, &opts,
6858 					      &bdev_ut_if);
6859 	CU_ASSERT(rc == 0);
6860 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6861 	SPDK_CU_ASSERT_FATAL(desc->claim != NULL);
6862 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6863 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6864 	memset(&opts, 0, sizeof(opts));
6865 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6866 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6867 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6868 
6869 	/* The claim blocks new writers. */
6870 	desc2 = NULL;
6871 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6872 	CU_ASSERT(rc == -EPERM);
6873 	CU_ASSERT(desc2 == NULL);
6874 
6875 	/* New readers are allowed */
6876 	desc2 = NULL;
6877 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6878 	CU_ASSERT(rc == 0);
6879 	CU_ASSERT(desc2 != NULL);
6880 	CU_ASSERT(!desc2->write);
6881 
6882 	/* No new v2 RWO claims are allowed */
6883 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6884 					      &bdev_ut_if);
6885 	CU_ASSERT(rc == -EPERM);
6886 
6887 	/* No new v2 RWM claims are allowed */
6888 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6889 	opts.shared_claim_key = (uint64_t)&opts;
6890 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6891 					      &bdev_ut_if);
6892 	CU_ASSERT(rc == -EPERM);
6893 	CU_ASSERT(!desc2->write);
6894 
6895 	/* No new v1 claims are allowed */
6896 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6897 	CU_ASSERT(rc == -EPERM);
6898 
6899 	/* None of the above messed up the existing claim */
6900 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6901 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6902 
6903 	/* New v2 ROM claims are allowed and the descriptor stays read-only. */
6904 	CU_ASSERT(!desc2->write);
6905 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6906 					      &bdev_ut_if);
6907 	CU_ASSERT(rc == 0);
6908 	CU_ASSERT(!desc2->write);
6909 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6910 	CU_ASSERT(TAILQ_NEXT(desc->claim, link) == desc2->claim);
6911 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 2);
6912 
6913 	/* Claim remains when closing the first descriptor */
6914 	spdk_bdev_close(desc);
6915 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6916 	CU_ASSERT(!TAILQ_EMPTY(&bdev->internal.open_descs));
6917 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
6918 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6919 
6920 	/* Claim removed when closing the other descriptor */
6921 	spdk_bdev_close(desc2);
6922 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6923 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6924 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6925 
6926 	/* Cannot claim with a key */
6927 	desc = NULL;
6928 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6929 	CU_ASSERT(rc == 0);
6930 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6931 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6932 	opts.shared_claim_key = (uint64_t)&opts;
6933 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, &opts,
6934 					      &bdev_ut_if);
6935 	CU_ASSERT(rc == -EINVAL);
6936 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6937 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6938 	spdk_bdev_close(desc);
6939 
6940 	/* Cannot claim with a read-write descriptor */
6941 	desc = NULL;
6942 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6943 	CU_ASSERT(rc == 0);
6944 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6945 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6946 					      &bdev_ut_if);
6947 	CU_ASSERT(rc == -EINVAL);
6948 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6949 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6950 	spdk_bdev_close(desc);
6951 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6952 
6953 	/* Clean up */
6954 	free_bdev(bdev);
6955 }
6956 
6957 static void
6958 claim_v2_rwm(void)
6959 {
6960 	struct spdk_bdev *bdev;
6961 	struct spdk_bdev_desc *desc;
6962 	struct spdk_bdev_desc *desc2;
6963 	struct spdk_bdev_claim_opts opts;
6964 	char good_key, bad_key;
6965 	int rc;
6966 
6967 	bdev = allocate_bdev("bdev0");
6968 
6969 	/* Claim without options should fail */
6970 	desc = NULL;
6971 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6972 	CU_ASSERT(rc == 0);
6973 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6974 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, NULL,
6975 					      &bdev_ut_if);
6976 	CU_ASSERT(rc == -EINVAL);
6977 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6978 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6979 	CU_ASSERT(desc->claim == NULL);
6980 
6981 	/* Claim with options */
6982 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6983 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6984 	opts.shared_claim_key = (uint64_t)&good_key;
6985 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6986 					      &bdev_ut_if);
6987 	CU_ASSERT(rc == 0);
6988 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED);
6989 	SPDK_CU_ASSERT_FATAL(desc->claim != NULL);
6990 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6991 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6992 	memset(&opts, 0, sizeof(opts));
6993 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6994 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6995 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6996 
6997 	/* The claim blocks new writers. */
6998 	desc2 = NULL;
6999 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
7000 	CU_ASSERT(rc == -EPERM);
7001 	CU_ASSERT(desc2 == NULL);
7002 
7003 	/* New readers are allowed */
7004 	desc2 = NULL;
7005 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
7006 	CU_ASSERT(rc == 0);
7007 	CU_ASSERT(desc2 != NULL);
7008 	CU_ASSERT(!desc2->write);
7009 
7010 	/* No new v2 RWO claims are allowed */
7011 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
7012 					      &bdev_ut_if);
7013 	CU_ASSERT(rc == -EPERM);
7014 
7015 	/* No new v2 ROM claims are allowed and the descriptor stays read-only. */
7016 	CU_ASSERT(!desc2->write);
7017 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
7018 					      &bdev_ut_if);
7019 	CU_ASSERT(rc == -EPERM);
7020 	CU_ASSERT(!desc2->write);
7021 
7022 	/* No new v1 claims are allowed */
7023 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
7024 	CU_ASSERT(rc == -EPERM);
7025 
7026 	/* No new v2 RWM claims are allowed if the key does not match */
7027 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7028 	opts.shared_claim_key = (uint64_t)&bad_key;
7029 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
7030 					      &bdev_ut_if);
7031 	CU_ASSERT(rc == -EPERM);
7032 	CU_ASSERT(!desc2->write);
7033 
7034 	/* None of the above messed up the existing claim */
7035 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
7036 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
7037 
7038 	/* New v2 RWM claims are allowed and the descriptor is promoted if the key matches. */
7039 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7040 	opts.shared_claim_key = (uint64_t)&good_key;
7041 	CU_ASSERT(!desc2->write);
7042 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
7043 					      &bdev_ut_if);
7044 	CU_ASSERT(rc == 0);
7045 	CU_ASSERT(desc2->write);
7046 	CU_ASSERT(TAILQ_NEXT(desc->claim, link) == desc2->claim);
7047 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 2);
7048 
7049 	/* Claim remains when closing the first descriptor */
7050 	spdk_bdev_close(desc);
7051 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED);
7052 	CU_ASSERT(!TAILQ_EMPTY(&bdev->internal.open_descs));
7053 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
7054 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
7055 
7056 	/* Claim removed when closing the other descriptor */
7057 	spdk_bdev_close(desc2);
7058 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7059 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
7060 
7061 	/* Cannot claim without a key */
7062 	desc = NULL;
7063 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
7064 	CU_ASSERT(rc == 0);
7065 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7066 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7067 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
7068 					      &bdev_ut_if);
7069 	CU_ASSERT(rc == -EINVAL);
7070 	spdk_bdev_close(desc);
7071 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7072 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
7073 
7074 	/* Clean up */
7075 	free_bdev(bdev);
7076 }
7077 
7078 static void
7079 claim_v2_existing_writer(void)
7080 {
7081 	struct spdk_bdev *bdev;
7082 	struct spdk_bdev_desc *desc;
7083 	struct spdk_bdev_desc *desc2;
7084 	struct spdk_bdev_claim_opts opts;
7085 	enum spdk_bdev_claim_type type;
7086 	enum spdk_bdev_claim_type types[] = {
7087 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
7088 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
7089 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
7090 	};
7091 	size_t i;
7092 	int rc;
7093 
7094 	bdev = allocate_bdev("bdev0");
7095 
7096 	desc = NULL;
7097 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
7098 	CU_ASSERT(rc == 0);
7099 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7100 	desc2 = NULL;
7101 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
7102 	CU_ASSERT(rc == 0);
7103 	SPDK_CU_ASSERT_FATAL(desc2 != NULL);
7104 
7105 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
7106 		type = types[i];
7107 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7108 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
7109 			opts.shared_claim_key = (uint64_t)&opts;
7110 		}
7111 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
7112 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE) {
7113 			CU_ASSERT(rc == -EINVAL);
7114 		} else {
7115 			CU_ASSERT(rc == -EPERM);
7116 		}
7117 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7118 		rc = spdk_bdev_module_claim_bdev_desc(desc2, type, &opts, &bdev_ut_if);
7119 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE) {
7120 			CU_ASSERT(rc == -EINVAL);
7121 		} else {
7122 			CU_ASSERT(rc == -EPERM);
7123 		}
7124 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7125 	}
7126 
7127 	spdk_bdev_close(desc);
7128 	spdk_bdev_close(desc2);
7129 
7130 	/* Clean up */
7131 	free_bdev(bdev);
7132 }
7133 
7134 static void
7135 claim_v2_existing_v1(void)
7136 {
7137 	struct spdk_bdev *bdev;
7138 	struct spdk_bdev_desc *desc;
7139 	struct spdk_bdev_claim_opts opts;
7140 	enum spdk_bdev_claim_type type;
7141 	enum spdk_bdev_claim_type types[] = {
7142 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
7143 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
7144 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
7145 	};
7146 	size_t i;
7147 	int rc;
7148 
7149 	bdev = allocate_bdev("bdev0");
7150 
7151 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
7152 	CU_ASSERT(rc == 0);
7153 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
7154 
7155 	desc = NULL;
7156 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
7157 	CU_ASSERT(rc == 0);
7158 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7159 
7160 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
7161 		type = types[i];
7162 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7163 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
7164 			opts.shared_claim_key = (uint64_t)&opts;
7165 		}
7166 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
7167 		CU_ASSERT(rc == -EPERM);
7168 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
7169 	}
7170 
7171 	spdk_bdev_module_release_bdev(bdev);
7172 	spdk_bdev_close(desc);
7173 
7174 	/* Clean up */
7175 	free_bdev(bdev);
7176 }
7177 
7178 static void
7179 claim_v1_existing_v2(void)
7180 {
7181 	struct spdk_bdev *bdev;
7182 	struct spdk_bdev_desc *desc;
7183 	struct spdk_bdev_claim_opts opts;
7184 	enum spdk_bdev_claim_type type;
7185 	enum spdk_bdev_claim_type types[] = {
7186 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
7187 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
7188 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
7189 	};
7190 	size_t i;
7191 	int rc;
7192 
7193 	bdev = allocate_bdev("bdev0");
7194 
7195 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
7196 		type = types[i];
7197 
7198 		desc = NULL;
7199 		rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
7200 		CU_ASSERT(rc == 0);
7201 		SPDK_CU_ASSERT_FATAL(desc != NULL);
7202 
7203 		/* Get a v2 claim */
7204 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7205 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
7206 			opts.shared_claim_key = (uint64_t)&opts;
7207 		}
7208 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
7209 		CU_ASSERT(rc == 0);
7210 
7211 		/* Fail to get a v1 claim */
7212 		rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
7213 		CU_ASSERT(rc == -EPERM);
7214 
7215 		spdk_bdev_close(desc);
7216 
7217 		/* Now v1 succeeds */
7218 		rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
7219 		CU_ASSERT(rc == 0)
7220 		spdk_bdev_module_release_bdev(bdev);
7221 	}
7222 
7223 	/* Clean up */
7224 	free_bdev(bdev);
7225 }
7226 
7227 static int ut_examine_claimed_init0(void);
7228 static int ut_examine_claimed_init1(void);
7229 static void ut_examine_claimed_config0(struct spdk_bdev *bdev);
7230 static void ut_examine_claimed_disk0(struct spdk_bdev *bdev);
7231 static void ut_examine_claimed_config1(struct spdk_bdev *bdev);
7232 static void ut_examine_claimed_disk1(struct spdk_bdev *bdev);
7233 
7234 #define UT_MAX_EXAMINE_MODS 2
7235 struct spdk_bdev_module examine_claimed_mods[UT_MAX_EXAMINE_MODS] = {
7236 	{
7237 		.name = "vbdev_ut_examine0",
7238 		.module_init = ut_examine_claimed_init0,
7239 		.module_fini = vbdev_ut_module_fini,
7240 		.examine_config = ut_examine_claimed_config0,
7241 		.examine_disk = ut_examine_claimed_disk0,
7242 	},
7243 	{
7244 		.name = "vbdev_ut_examine1",
7245 		.module_init = ut_examine_claimed_init1,
7246 		.module_fini = vbdev_ut_module_fini,
7247 		.examine_config = ut_examine_claimed_config1,
7248 		.examine_disk = ut_examine_claimed_disk1,
7249 	}
7250 };
7251 
7252 SPDK_BDEV_MODULE_REGISTER(bdev_ut_claimed0, &examine_claimed_mods[0])
7253 SPDK_BDEV_MODULE_REGISTER(bdev_ut_claimed1, &examine_claimed_mods[1])
7254 
7255 struct ut_examine_claimed_ctx {
7256 	uint32_t examine_config_count;
7257 	uint32_t examine_disk_count;
7258 
7259 	/* Claim type to take, with these options */
7260 	enum spdk_bdev_claim_type claim_type;
7261 	struct spdk_bdev_claim_opts claim_opts;
7262 
7263 	/* Expected return value from spdk_bdev_module_claim_bdev_desc() */
7264 	int expect_claim_err;
7265 
7266 	/* Descriptor used for a claim */
7267 	struct spdk_bdev_desc *desc;
7268 } examine_claimed_ctx[UT_MAX_EXAMINE_MODS];
7269 
7270 bool ut_testing_examine_claimed;
7271 
7272 /*
7273  * Store the order in which the modules were initialized,
7274  * since we have no guarantee on the order of execution of the constructors.
7275  * Modules are examined in reverse order of their initialization.
7276  */
7277 static int g_ut_examine_claimed_order[UT_MAX_EXAMINE_MODS];
7278 static int
7279 ut_examine_claimed_init(uint32_t modnum)
7280 {
7281 	static int current = UT_MAX_EXAMINE_MODS;
7282 
7283 	/* Only do this for the first initialization of the bdev framework */
7284 	if (current == 0) {
7285 		return 0;
7286 	}
7287 	g_ut_examine_claimed_order[modnum] = --current;
7288 
7289 	return 0;
7290 }
7291 
7292 static int
7293 ut_examine_claimed_init0(void)
7294 {
7295 	return ut_examine_claimed_init(0);
7296 }
7297 
7298 static int
7299 ut_examine_claimed_init1(void)
7300 {
7301 	return ut_examine_claimed_init(1);
7302 }
7303 
7304 static void
7305 reset_examine_claimed_ctx(void)
7306 {
7307 	struct ut_examine_claimed_ctx *ctx;
7308 	uint32_t i;
7309 
7310 	for (i = 0; i < SPDK_COUNTOF(examine_claimed_ctx); i++) {
7311 		ctx = &examine_claimed_ctx[i];
7312 		if (ctx->desc != NULL) {
7313 			spdk_bdev_close(ctx->desc);
7314 		}
7315 		memset(ctx, 0, sizeof(*ctx));
7316 		spdk_bdev_claim_opts_init(&ctx->claim_opts, sizeof(ctx->claim_opts));
7317 	}
7318 }
7319 
7320 static void
7321 examine_claimed_config(struct spdk_bdev *bdev, uint32_t modnum)
7322 {
7323 	SPDK_CU_ASSERT_FATAL(modnum < UT_MAX_EXAMINE_MODS);
7324 	struct spdk_bdev_module *module = &examine_claimed_mods[modnum];
7325 	struct ut_examine_claimed_ctx *ctx = &examine_claimed_ctx[modnum];
7326 	int rc;
7327 
7328 	if (!ut_testing_examine_claimed) {
7329 		spdk_bdev_module_examine_done(module);
7330 		return;
7331 	}
7332 
7333 	ctx->examine_config_count++;
7334 
7335 	if (ctx->claim_type != SPDK_BDEV_CLAIM_NONE) {
7336 		rc = spdk_bdev_open_ext(bdev->name, false, bdev_ut_event_cb, &ctx->claim_opts,
7337 					&ctx->desc);
7338 		CU_ASSERT(rc == 0);
7339 
7340 		rc = spdk_bdev_module_claim_bdev_desc(ctx->desc, ctx->claim_type, NULL, module);
7341 		CU_ASSERT(rc == ctx->expect_claim_err);
7342 	}
7343 	spdk_bdev_module_examine_done(module);
7344 }
7345 
7346 static void
7347 ut_examine_claimed_config0(struct spdk_bdev *bdev)
7348 {
7349 	examine_claimed_config(bdev, g_ut_examine_claimed_order[0]);
7350 }
7351 
7352 static void
7353 ut_examine_claimed_config1(struct spdk_bdev *bdev)
7354 {
7355 	examine_claimed_config(bdev, g_ut_examine_claimed_order[1]);
7356 }
7357 
7358 static void
7359 examine_claimed_disk(struct spdk_bdev *bdev, uint32_t modnum)
7360 {
7361 	SPDK_CU_ASSERT_FATAL(modnum < UT_MAX_EXAMINE_MODS);
7362 	struct spdk_bdev_module *module = &examine_claimed_mods[modnum];
7363 	struct ut_examine_claimed_ctx *ctx = &examine_claimed_ctx[modnum];
7364 
7365 	if (!ut_testing_examine_claimed) {
7366 		spdk_bdev_module_examine_done(module);
7367 		return;
7368 	}
7369 
7370 	ctx->examine_disk_count++;
7371 
7372 	spdk_bdev_module_examine_done(module);
7373 }
7374 
7375 static void
7376 ut_examine_claimed_disk0(struct spdk_bdev *bdev)
7377 {
7378 	examine_claimed_disk(bdev, 0);
7379 }
7380 
7381 static void
7382 ut_examine_claimed_disk1(struct spdk_bdev *bdev)
7383 {
7384 	examine_claimed_disk(bdev, 1);
7385 }
7386 
7387 static void
7388 examine_claimed(void)
7389 {
7390 	struct spdk_bdev *bdev;
7391 	struct spdk_bdev_module *mod = examine_claimed_mods;
7392 	struct ut_examine_claimed_ctx *ctx = examine_claimed_ctx;
7393 
7394 	ut_testing_examine_claimed = true;
7395 	reset_examine_claimed_ctx();
7396 
7397 	/*
7398 	 * With one module claiming, both modules' examine_config should be called, but only the
7399 	 * claiming module's examine_disk should be called.
7400 	 */
7401 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7402 	bdev = allocate_bdev("bdev0");
7403 	CU_ASSERT(ctx[0].examine_config_count == 1);
7404 	CU_ASSERT(ctx[0].examine_disk_count == 1);
7405 	SPDK_CU_ASSERT_FATAL(ctx[0].desc != NULL);
7406 	CU_ASSERT(ctx[0].desc->claim->module == &mod[0]);
7407 	CU_ASSERT(ctx[1].examine_config_count == 1);
7408 	CU_ASSERT(ctx[1].examine_disk_count == 0);
7409 	CU_ASSERT(ctx[1].desc == NULL);
7410 	reset_examine_claimed_ctx();
7411 	free_bdev(bdev);
7412 
7413 	/*
7414 	 * With two modules claiming, both modules' examine_config and examine_disk should be
7415 	 * called.
7416 	 */
7417 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7418 	ctx[1].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7419 	bdev = allocate_bdev("bdev0");
7420 	CU_ASSERT(ctx[0].examine_config_count == 1);
7421 	CU_ASSERT(ctx[0].examine_disk_count == 1);
7422 	SPDK_CU_ASSERT_FATAL(ctx[0].desc != NULL);
7423 	CU_ASSERT(ctx[0].desc->claim->module == &mod[0]);
7424 	CU_ASSERT(ctx[1].examine_config_count == 1);
7425 	CU_ASSERT(ctx[1].examine_disk_count == 1);
7426 	SPDK_CU_ASSERT_FATAL(ctx[1].desc != NULL);
7427 	CU_ASSERT(ctx[1].desc->claim->module == &mod[1]);
7428 	reset_examine_claimed_ctx();
7429 	free_bdev(bdev);
7430 
7431 	/*
7432 	 * If two vbdev modules try to claim with conflicting claim types, the module that was added
7433 	 * last wins. The winner gets the claim and is the only one that has its examine_disk
7434 	 * callback invoked.
7435 	 */
7436 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7437 	ctx[0].expect_claim_err = -EPERM;
7438 	ctx[1].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE;
7439 	bdev = allocate_bdev("bdev0");
7440 	CU_ASSERT(ctx[0].examine_config_count == 1);
7441 	CU_ASSERT(ctx[0].examine_disk_count == 0);
7442 	CU_ASSERT(ctx[1].examine_config_count == 1);
7443 	CU_ASSERT(ctx[1].examine_disk_count == 1);
7444 	SPDK_CU_ASSERT_FATAL(ctx[1].desc != NULL);
7445 	CU_ASSERT(ctx[1].desc->claim->module == &mod[1]);
7446 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
7447 	reset_examine_claimed_ctx();
7448 	free_bdev(bdev);
7449 
7450 	ut_testing_examine_claimed = false;
7451 }
7452 
7453 int
7454 main(int argc, char **argv)
7455 {
7456 	CU_pSuite		suite = NULL;
7457 	unsigned int		num_failures;
7458 
7459 	CU_initialize_registry();
7460 
7461 	suite = CU_add_suite("bdev", ut_bdev_setup, ut_bdev_teardown);
7462 
7463 	CU_ADD_TEST(suite, bytes_to_blocks_test);
7464 	CU_ADD_TEST(suite, num_blocks_test);
7465 	CU_ADD_TEST(suite, io_valid_test);
7466 	CU_ADD_TEST(suite, open_write_test);
7467 	CU_ADD_TEST(suite, claim_test);
7468 	CU_ADD_TEST(suite, alias_add_del_test);
7469 	CU_ADD_TEST(suite, get_device_stat_test);
7470 	CU_ADD_TEST(suite, bdev_io_types_test);
7471 	CU_ADD_TEST(suite, bdev_io_wait_test);
7472 	CU_ADD_TEST(suite, bdev_io_spans_split_test);
7473 	CU_ADD_TEST(suite, bdev_io_boundary_split_test);
7474 	CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test);
7475 	CU_ADD_TEST(suite, bdev_io_mix_split_test);
7476 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
7477 	CU_ADD_TEST(suite, bdev_io_write_unit_split_test);
7478 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
7479 	CU_ADD_TEST(suite, bdev_io_alignment);
7480 	CU_ADD_TEST(suite, bdev_histograms);
7481 	CU_ADD_TEST(suite, bdev_write_zeroes);
7482 	CU_ADD_TEST(suite, bdev_compare_and_write);
7483 	CU_ADD_TEST(suite, bdev_compare);
7484 	CU_ADD_TEST(suite, bdev_compare_emulated);
7485 	CU_ADD_TEST(suite, bdev_zcopy_write);
7486 	CU_ADD_TEST(suite, bdev_zcopy_read);
7487 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
7488 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
7489 	CU_ADD_TEST(suite, bdev_open_ext_test);
7490 	CU_ADD_TEST(suite, bdev_open_ext_unregister);
7491 	CU_ADD_TEST(suite, bdev_set_io_timeout);
7492 	CU_ADD_TEST(suite, bdev_set_qd_sampling);
7493 	CU_ADD_TEST(suite, lba_range_overlap);
7494 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
7495 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
7496 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
7497 	CU_ADD_TEST(suite, bdev_quiesce);
7498 	CU_ADD_TEST(suite, bdev_io_abort);
7499 	CU_ADD_TEST(suite, bdev_unmap);
7500 	CU_ADD_TEST(suite, bdev_write_zeroes_split_test);
7501 	CU_ADD_TEST(suite, bdev_set_options_test);
7502 	CU_ADD_TEST(suite, bdev_get_memory_domains);
7503 	CU_ADD_TEST(suite, bdev_io_ext);
7504 	CU_ADD_TEST(suite, bdev_io_ext_no_opts);
7505 	CU_ADD_TEST(suite, bdev_io_ext_invalid_opts);
7506 	CU_ADD_TEST(suite, bdev_io_ext_split);
7507 	CU_ADD_TEST(suite, bdev_io_ext_bounce_buffer);
7508 	CU_ADD_TEST(suite, bdev_register_uuid_alias);
7509 	CU_ADD_TEST(suite, bdev_unregister_by_name);
7510 	CU_ADD_TEST(suite, for_each_bdev_test);
7511 	CU_ADD_TEST(suite, bdev_seek_test);
7512 	CU_ADD_TEST(suite, bdev_copy);
7513 	CU_ADD_TEST(suite, bdev_copy_split_test);
7514 	CU_ADD_TEST(suite, examine_locks);
7515 	CU_ADD_TEST(suite, claim_v2_rwo);
7516 	CU_ADD_TEST(suite, claim_v2_rom);
7517 	CU_ADD_TEST(suite, claim_v2_rwm);
7518 	CU_ADD_TEST(suite, claim_v2_existing_writer);
7519 	CU_ADD_TEST(suite, claim_v2_existing_v1);
7520 	CU_ADD_TEST(suite, claim_v1_existing_v2);
7521 	CU_ADD_TEST(suite, examine_claimed);
7522 
7523 	allocate_cores(1);
7524 	allocate_threads(1);
7525 	set_thread(0);
7526 
7527 	num_failures = spdk_ut_run_tests(argc, argv, NULL);
7528 	CU_cleanup_registry();
7529 
7530 	free_threads();
7531 	free_cores();
7532 
7533 	return num_failures;
7534 }
7535