xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision 5237fe34b7f6623916dda1998cc98f66c98690de)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk_cunit.h"
35 
36 #include "common/lib/ut_multithread.c"
37 #include "unit/lib/json_mock.c"
38 
39 #include "spdk/config.h"
40 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
41 #undef SPDK_CONFIG_VTUNE
42 
43 #include "bdev/bdev.c"
44 
45 struct spdk_trace_histories *g_trace_histories;
46 DEFINE_STUB_V(spdk_trace_add_register_fn, (struct spdk_trace_register_fn *reg_fn));
47 DEFINE_STUB_V(spdk_trace_register_owner, (uint8_t type, char id_prefix));
48 DEFINE_STUB_V(spdk_trace_register_object, (uint8_t type, char id_prefix));
49 DEFINE_STUB_V(spdk_trace_register_description, (const char *name,
50 		uint16_t tpoint_id, uint8_t owner_type,
51 		uint8_t object_type, uint8_t new_object,
52 		uint8_t arg1_type, const char *arg1_name));
53 DEFINE_STUB_V(_spdk_trace_record, (uint64_t tsc, uint16_t tpoint_id, uint16_t poller_id,
54 				   uint32_t size, uint64_t object_id, uint64_t arg1));
55 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
56 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
57 
58 
59 int g_status;
60 int g_count;
61 enum spdk_bdev_event_type g_event_type1;
62 enum spdk_bdev_event_type g_event_type2;
63 struct spdk_histogram_data *g_histogram;
64 void *g_unregister_arg;
65 int g_unregister_rc;
66 
67 void
68 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
69 			 int *sc, int *sk, int *asc, int *ascq)
70 {
71 }
72 
73 static int
74 null_init(void)
75 {
76 	return 0;
77 }
78 
79 static int
80 null_clean(void)
81 {
82 	return 0;
83 }
84 
85 static int
86 stub_destruct(void *ctx)
87 {
88 	return 0;
89 }
90 
91 struct ut_expected_io {
92 	uint8_t				type;
93 	uint64_t			offset;
94 	uint64_t			length;
95 	int				iovcnt;
96 	struct iovec			iov[BDEV_IO_NUM_CHILD_IOV];
97 	void				*md_buf;
98 	TAILQ_ENTRY(ut_expected_io)	link;
99 };
100 
101 struct bdev_ut_channel {
102 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
103 	uint32_t			outstanding_io_count;
104 	TAILQ_HEAD(, ut_expected_io)	expected_io;
105 };
106 
107 static bool g_io_done;
108 static struct spdk_bdev_io *g_bdev_io;
109 static enum spdk_bdev_io_status g_io_status;
110 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
111 static uint32_t g_bdev_ut_io_device;
112 static struct bdev_ut_channel *g_bdev_ut_channel;
113 static void *g_compare_read_buf;
114 static uint32_t g_compare_read_buf_len;
115 static void *g_compare_write_buf;
116 static uint32_t g_compare_write_buf_len;
117 static bool g_abort_done;
118 static enum spdk_bdev_io_status g_abort_status;
119 
120 static struct ut_expected_io *
121 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
122 {
123 	struct ut_expected_io *expected_io;
124 
125 	expected_io = calloc(1, sizeof(*expected_io));
126 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
127 
128 	expected_io->type = type;
129 	expected_io->offset = offset;
130 	expected_io->length = length;
131 	expected_io->iovcnt = iovcnt;
132 
133 	return expected_io;
134 }
135 
136 static void
137 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
138 {
139 	expected_io->iov[pos].iov_base = base;
140 	expected_io->iov[pos].iov_len = len;
141 }
142 
143 static void
144 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
145 {
146 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
147 	struct ut_expected_io *expected_io;
148 	struct iovec *iov, *expected_iov;
149 	struct spdk_bdev_io *bio_to_abort;
150 	int i;
151 
152 	g_bdev_io = bdev_io;
153 
154 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
155 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
156 
157 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
158 		CU_ASSERT(g_compare_read_buf_len == len);
159 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
160 	}
161 
162 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
163 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
164 
165 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
166 		CU_ASSERT(g_compare_write_buf_len == len);
167 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
168 	}
169 
170 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
171 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
172 
173 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
174 		CU_ASSERT(g_compare_read_buf_len == len);
175 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
176 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
177 		}
178 	}
179 
180 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
181 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
182 			TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
183 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
184 					TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
185 					ch->outstanding_io_count--;
186 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
187 					break;
188 				}
189 			}
190 		}
191 	}
192 
193 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
194 	ch->outstanding_io_count++;
195 
196 	expected_io = TAILQ_FIRST(&ch->expected_io);
197 	if (expected_io == NULL) {
198 		return;
199 	}
200 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
201 
202 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
203 		CU_ASSERT(bdev_io->type == expected_io->type);
204 	}
205 
206 	if (expected_io->md_buf != NULL) {
207 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
208 	}
209 
210 	if (expected_io->length == 0) {
211 		free(expected_io);
212 		return;
213 	}
214 
215 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
216 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
217 
218 	if (expected_io->iovcnt == 0) {
219 		free(expected_io);
220 		/* UNMAP, WRITE_ZEROES and FLUSH don't have iovs, so we can just return now. */
221 		return;
222 	}
223 
224 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
225 	for (i = 0; i < expected_io->iovcnt; i++) {
226 		iov = &bdev_io->u.bdev.iovs[i];
227 		expected_iov = &expected_io->iov[i];
228 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
229 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
230 	}
231 
232 	free(expected_io);
233 }
234 
235 static void
236 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
237 			       struct spdk_bdev_io *bdev_io, bool success)
238 {
239 	CU_ASSERT(success == true);
240 
241 	stub_submit_request(_ch, bdev_io);
242 }
243 
244 static void
245 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
246 {
247 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
248 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
249 }
250 
251 static uint32_t
252 stub_complete_io(uint32_t num_to_complete)
253 {
254 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
255 	struct spdk_bdev_io *bdev_io;
256 	static enum spdk_bdev_io_status io_status;
257 	uint32_t num_completed = 0;
258 
259 	while (num_completed < num_to_complete) {
260 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
261 			break;
262 		}
263 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
264 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
265 		ch->outstanding_io_count--;
266 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
267 			    g_io_exp_status;
268 		spdk_bdev_io_complete(bdev_io, io_status);
269 		num_completed++;
270 	}
271 
272 	return num_completed;
273 }
274 
275 static struct spdk_io_channel *
276 bdev_ut_get_io_channel(void *ctx)
277 {
278 	return spdk_get_io_channel(&g_bdev_ut_io_device);
279 }
280 
281 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
282 	[SPDK_BDEV_IO_TYPE_READ]		= true,
283 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
284 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
285 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
286 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
287 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
288 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
289 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
290 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
291 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
292 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
293 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
294 };
295 
296 static void
297 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
298 {
299 	g_io_types_supported[io_type] = enable;
300 }
301 
302 static bool
303 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
304 {
305 	return g_io_types_supported[io_type];
306 }
307 
308 static struct spdk_bdev_fn_table fn_table = {
309 	.destruct = stub_destruct,
310 	.submit_request = stub_submit_request,
311 	.get_io_channel = bdev_ut_get_io_channel,
312 	.io_type_supported = stub_io_type_supported,
313 };
314 
315 static int
316 bdev_ut_create_ch(void *io_device, void *ctx_buf)
317 {
318 	struct bdev_ut_channel *ch = ctx_buf;
319 
320 	CU_ASSERT(g_bdev_ut_channel == NULL);
321 	g_bdev_ut_channel = ch;
322 
323 	TAILQ_INIT(&ch->outstanding_io);
324 	ch->outstanding_io_count = 0;
325 	TAILQ_INIT(&ch->expected_io);
326 	return 0;
327 }
328 
329 static void
330 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
331 {
332 	CU_ASSERT(g_bdev_ut_channel != NULL);
333 	g_bdev_ut_channel = NULL;
334 }
335 
336 struct spdk_bdev_module bdev_ut_if;
337 
338 static int
339 bdev_ut_module_init(void)
340 {
341 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
342 				sizeof(struct bdev_ut_channel), NULL);
343 	spdk_bdev_module_init_done(&bdev_ut_if);
344 	return 0;
345 }
346 
347 static void
348 bdev_ut_module_fini(void)
349 {
350 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
351 }
352 
353 struct spdk_bdev_module bdev_ut_if = {
354 	.name = "bdev_ut",
355 	.module_init = bdev_ut_module_init,
356 	.module_fini = bdev_ut_module_fini,
357 	.async_init = true,
358 };
359 
360 static void vbdev_ut_examine(struct spdk_bdev *bdev);
361 
362 static int
363 vbdev_ut_module_init(void)
364 {
365 	return 0;
366 }
367 
368 static void
369 vbdev_ut_module_fini(void)
370 {
371 }
372 
373 struct spdk_bdev_module vbdev_ut_if = {
374 	.name = "vbdev_ut",
375 	.module_init = vbdev_ut_module_init,
376 	.module_fini = vbdev_ut_module_fini,
377 	.examine_config = vbdev_ut_examine,
378 };
379 
380 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
381 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
382 
383 static void
384 vbdev_ut_examine(struct spdk_bdev *bdev)
385 {
386 	spdk_bdev_module_examine_done(&vbdev_ut_if);
387 }
388 
389 static struct spdk_bdev *
390 allocate_bdev(char *name)
391 {
392 	struct spdk_bdev *bdev;
393 	int rc;
394 
395 	bdev = calloc(1, sizeof(*bdev));
396 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
397 
398 	bdev->name = name;
399 	bdev->fn_table = &fn_table;
400 	bdev->module = &bdev_ut_if;
401 	bdev->blockcnt = 1024;
402 	bdev->blocklen = 512;
403 
404 	rc = spdk_bdev_register(bdev);
405 	CU_ASSERT(rc == 0);
406 
407 	return bdev;
408 }
409 
410 static struct spdk_bdev *
411 allocate_vbdev(char *name)
412 {
413 	struct spdk_bdev *bdev;
414 	int rc;
415 
416 	bdev = calloc(1, sizeof(*bdev));
417 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
418 
419 	bdev->name = name;
420 	bdev->fn_table = &fn_table;
421 	bdev->module = &vbdev_ut_if;
422 
423 	rc = spdk_bdev_register(bdev);
424 	CU_ASSERT(rc == 0);
425 
426 	return bdev;
427 }
428 
429 static void
430 free_bdev(struct spdk_bdev *bdev)
431 {
432 	spdk_bdev_unregister(bdev, NULL, NULL);
433 	poll_threads();
434 	memset(bdev, 0xFF, sizeof(*bdev));
435 	free(bdev);
436 }
437 
438 static void
439 free_vbdev(struct spdk_bdev *bdev)
440 {
441 	spdk_bdev_unregister(bdev, NULL, NULL);
442 	poll_threads();
443 	memset(bdev, 0xFF, sizeof(*bdev));
444 	free(bdev);
445 }
446 
447 static void
448 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
449 {
450 	const char *bdev_name;
451 
452 	CU_ASSERT(bdev != NULL);
453 	CU_ASSERT(rc == 0);
454 	bdev_name = spdk_bdev_get_name(bdev);
455 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
456 
457 	free(stat);
458 
459 	*(bool *)cb_arg = true;
460 }
461 
462 static void
463 bdev_unregister_cb(void *cb_arg, int rc)
464 {
465 	g_unregister_arg = cb_arg;
466 	g_unregister_rc = rc;
467 }
468 
469 static void
470 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
471 {
472 }
473 
474 static void
475 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
476 {
477 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
478 
479 	g_event_type1 = type;
480 	if (SPDK_BDEV_EVENT_REMOVE == type) {
481 		spdk_bdev_close(desc);
482 	}
483 }
484 
485 static void
486 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
487 {
488 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
489 
490 	g_event_type2 = type;
491 	if (SPDK_BDEV_EVENT_REMOVE == type) {
492 		spdk_bdev_close(desc);
493 	}
494 }
495 
496 static void
497 get_device_stat_test(void)
498 {
499 	struct spdk_bdev *bdev;
500 	struct spdk_bdev_io_stat *stat;
501 	bool done;
502 
503 	bdev = allocate_bdev("bdev0");
504 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
505 	if (stat == NULL) {
506 		free_bdev(bdev);
507 		return;
508 	}
509 
510 	done = false;
511 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
512 	while (!done) { poll_threads(); }
513 
514 	free_bdev(bdev);
515 }
516 
517 static void
518 open_write_test(void)
519 {
520 	struct spdk_bdev *bdev[9];
521 	struct spdk_bdev_desc *desc[9] = {};
522 	int rc;
523 
524 	/*
525 	 * Create a tree of bdevs to test various open w/ write cases.
526 	 *
527 	 * bdev0 through bdev3 are physical block devices, such as NVMe
528 	 * namespaces or Ceph block devices.
529 	 *
530 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
531 	 * caching or RAID use cases.
532 	 *
533 	 * bdev5 through bdev7 are all virtual bdevs with the same base
534 	 * bdev (except bdev7). This models partitioning or logical volume
535 	 * use cases.
536 	 *
537 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
538 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
539 	 * models caching, RAID, partitioning or logical volumes use cases.
540 	 *
541 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
542 	 * base bdevs are themselves virtual bdevs.
543 	 *
544 	 *                bdev8
545 	 *                  |
546 	 *            +----------+
547 	 *            |          |
548 	 *          bdev4      bdev5   bdev6   bdev7
549 	 *            |          |       |       |
550 	 *        +---+---+      +---+   +   +---+---+
551 	 *        |       |           \  |  /         \
552 	 *      bdev0   bdev1          bdev2         bdev3
553 	 */
554 
555 	bdev[0] = allocate_bdev("bdev0");
556 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
557 	CU_ASSERT(rc == 0);
558 
559 	bdev[1] = allocate_bdev("bdev1");
560 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
561 	CU_ASSERT(rc == 0);
562 
563 	bdev[2] = allocate_bdev("bdev2");
564 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
565 	CU_ASSERT(rc == 0);
566 
567 	bdev[3] = allocate_bdev("bdev3");
568 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
569 	CU_ASSERT(rc == 0);
570 
571 	bdev[4] = allocate_vbdev("bdev4");
572 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
573 	CU_ASSERT(rc == 0);
574 
575 	bdev[5] = allocate_vbdev("bdev5");
576 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
577 	CU_ASSERT(rc == 0);
578 
579 	bdev[6] = allocate_vbdev("bdev6");
580 
581 	bdev[7] = allocate_vbdev("bdev7");
582 
583 	bdev[8] = allocate_vbdev("bdev8");
584 
585 	/* Open bdev0 read-only.  This should succeed. */
586 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
587 	CU_ASSERT(rc == 0);
588 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
589 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
590 	spdk_bdev_close(desc[0]);
591 
592 	/*
593 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
594 	 * by a vbdev module.
595 	 */
596 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
597 	CU_ASSERT(rc == -EPERM);
598 
599 	/*
600 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
601 	 * by a vbdev module.
602 	 */
603 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
604 	CU_ASSERT(rc == -EPERM);
605 
606 	/* Open bdev4 read-only.  This should succeed. */
607 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
608 	CU_ASSERT(rc == 0);
609 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
610 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
611 	spdk_bdev_close(desc[4]);
612 
613 	/*
614 	 * Open bdev8 read/write.  This should succeed since it is a leaf
615 	 * bdev.
616 	 */
617 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
618 	CU_ASSERT(rc == 0);
619 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
620 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
621 	spdk_bdev_close(desc[8]);
622 
623 	/*
624 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
625 	 * by a vbdev module.
626 	 */
627 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
628 	CU_ASSERT(rc == -EPERM);
629 
630 	/* Open bdev4 read-only.  This should succeed. */
631 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
632 	CU_ASSERT(rc == 0);
633 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
634 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
635 	spdk_bdev_close(desc[5]);
636 
637 	free_vbdev(bdev[8]);
638 
639 	free_vbdev(bdev[5]);
640 	free_vbdev(bdev[6]);
641 	free_vbdev(bdev[7]);
642 
643 	free_vbdev(bdev[4]);
644 
645 	free_bdev(bdev[0]);
646 	free_bdev(bdev[1]);
647 	free_bdev(bdev[2]);
648 	free_bdev(bdev[3]);
649 }
650 
651 static void
652 bytes_to_blocks_test(void)
653 {
654 	struct spdk_bdev bdev;
655 	uint64_t offset_blocks, num_blocks;
656 
657 	memset(&bdev, 0, sizeof(bdev));
658 
659 	bdev.blocklen = 512;
660 
661 	/* All parameters valid */
662 	offset_blocks = 0;
663 	num_blocks = 0;
664 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
665 	CU_ASSERT(offset_blocks == 1);
666 	CU_ASSERT(num_blocks == 2);
667 
668 	/* Offset not a block multiple */
669 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
670 
671 	/* Length not a block multiple */
672 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
673 
674 	/* In case blocklen not the power of two */
675 	bdev.blocklen = 100;
676 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
677 	CU_ASSERT(offset_blocks == 1);
678 	CU_ASSERT(num_blocks == 2);
679 
680 	/* Offset not a block multiple */
681 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
682 
683 	/* Length not a block multiple */
684 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
685 }
686 
687 static void
688 num_blocks_test(void)
689 {
690 	struct spdk_bdev bdev;
691 	struct spdk_bdev_desc *desc = NULL;
692 	struct spdk_bdev_desc *desc_ext = NULL;
693 	int rc;
694 
695 	memset(&bdev, 0, sizeof(bdev));
696 	bdev.name = "num_blocks";
697 	bdev.fn_table = &fn_table;
698 	bdev.module = &bdev_ut_if;
699 	spdk_bdev_register(&bdev);
700 	spdk_bdev_notify_blockcnt_change(&bdev, 50);
701 
702 	/* Growing block number */
703 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
704 	/* Shrinking block number */
705 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
706 
707 	/* In case bdev opened */
708 	rc = spdk_bdev_open(&bdev, false, NULL, NULL, &desc);
709 	CU_ASSERT(rc == 0);
710 	SPDK_CU_ASSERT_FATAL(desc != NULL);
711 
712 	/* Growing block number */
713 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
714 	/* Shrinking block number */
715 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
716 
717 	/* In case bdev opened with ext API */
718 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc_ext, &desc_ext);
719 	CU_ASSERT(rc == 0);
720 	SPDK_CU_ASSERT_FATAL(desc_ext != NULL);
721 	CU_ASSERT(&bdev == spdk_bdev_desc_get_bdev(desc_ext));
722 
723 	g_event_type1 = 0xFF;
724 	/* Growing block number */
725 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
726 
727 	poll_threads();
728 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
729 
730 	g_event_type1 = 0xFF;
731 	/* Growing block number and closing */
732 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
733 
734 	spdk_bdev_close(desc);
735 	spdk_bdev_close(desc_ext);
736 	spdk_bdev_unregister(&bdev, NULL, NULL);
737 
738 	poll_threads();
739 
740 	/* Callback is not called for closed device */
741 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
742 }
743 
744 static void
745 io_valid_test(void)
746 {
747 	struct spdk_bdev bdev;
748 
749 	memset(&bdev, 0, sizeof(bdev));
750 
751 	bdev.blocklen = 512;
752 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
753 
754 	/* All parameters valid */
755 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
756 
757 	/* Last valid block */
758 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
759 
760 	/* Offset past end of bdev */
761 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
762 
763 	/* Offset + length past end of bdev */
764 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
765 
766 	/* Offset near end of uint64_t range (2^64 - 1) */
767 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
768 }
769 
770 static void
771 alias_add_del_test(void)
772 {
773 	struct spdk_bdev *bdev[3];
774 	int rc;
775 
776 	/* Creating and registering bdevs */
777 	bdev[0] = allocate_bdev("bdev0");
778 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
779 
780 	bdev[1] = allocate_bdev("bdev1");
781 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
782 
783 	bdev[2] = allocate_bdev("bdev2");
784 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
785 
786 	poll_threads();
787 
788 	/*
789 	 * Trying adding an alias identical to name.
790 	 * Alias is identical to name, so it can not be added to aliases list
791 	 */
792 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
793 	CU_ASSERT(rc == -EEXIST);
794 
795 	/*
796 	 * Trying to add empty alias,
797 	 * this one should fail
798 	 */
799 	rc = spdk_bdev_alias_add(bdev[0], NULL);
800 	CU_ASSERT(rc == -EINVAL);
801 
802 	/* Trying adding same alias to two different registered bdevs */
803 
804 	/* Alias is used first time, so this one should pass */
805 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
806 	CU_ASSERT(rc == 0);
807 
808 	/* Alias was added to another bdev, so this one should fail */
809 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
810 	CU_ASSERT(rc == -EEXIST);
811 
812 	/* Alias is used first time, so this one should pass */
813 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
814 	CU_ASSERT(rc == 0);
815 
816 	/* Trying removing an alias from registered bdevs */
817 
818 	/* Alias is not on a bdev aliases list, so this one should fail */
819 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
820 	CU_ASSERT(rc == -ENOENT);
821 
822 	/* Alias is present on a bdev aliases list, so this one should pass */
823 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
824 	CU_ASSERT(rc == 0);
825 
826 	/* Alias is present on a bdev aliases list, so this one should pass */
827 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
828 	CU_ASSERT(rc == 0);
829 
830 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
831 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
832 	CU_ASSERT(rc != 0);
833 
834 	/* Trying to del all alias from empty alias list */
835 	spdk_bdev_alias_del_all(bdev[2]);
836 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
837 
838 	/* Trying to del all alias from non-empty alias list */
839 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
840 	CU_ASSERT(rc == 0);
841 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
842 	CU_ASSERT(rc == 0);
843 	spdk_bdev_alias_del_all(bdev[2]);
844 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
845 
846 	/* Unregister and free bdevs */
847 	spdk_bdev_unregister(bdev[0], NULL, NULL);
848 	spdk_bdev_unregister(bdev[1], NULL, NULL);
849 	spdk_bdev_unregister(bdev[2], NULL, NULL);
850 
851 	poll_threads();
852 
853 	free(bdev[0]);
854 	free(bdev[1]);
855 	free(bdev[2]);
856 }
857 
858 static void
859 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
860 {
861 	g_io_done = true;
862 	g_io_status = bdev_io->internal.status;
863 	spdk_bdev_free_io(bdev_io);
864 }
865 
866 static void
867 bdev_init_cb(void *arg, int rc)
868 {
869 	CU_ASSERT(rc == 0);
870 }
871 
872 static void
873 bdev_fini_cb(void *arg)
874 {
875 }
876 
877 struct bdev_ut_io_wait_entry {
878 	struct spdk_bdev_io_wait_entry	entry;
879 	struct spdk_io_channel		*io_ch;
880 	struct spdk_bdev_desc		*desc;
881 	bool				submitted;
882 };
883 
884 static void
885 io_wait_cb(void *arg)
886 {
887 	struct bdev_ut_io_wait_entry *entry = arg;
888 	int rc;
889 
890 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
891 	CU_ASSERT(rc == 0);
892 	entry->submitted = true;
893 }
894 
895 static void
896 bdev_io_types_test(void)
897 {
898 	struct spdk_bdev *bdev;
899 	struct spdk_bdev_desc *desc = NULL;
900 	struct spdk_io_channel *io_ch;
901 	struct spdk_bdev_opts bdev_opts = {
902 		.bdev_io_pool_size = 4,
903 		.bdev_io_cache_size = 2,
904 	};
905 	int rc;
906 
907 	rc = spdk_bdev_set_opts(&bdev_opts);
908 	CU_ASSERT(rc == 0);
909 	spdk_bdev_initialize(bdev_init_cb, NULL);
910 	poll_threads();
911 
912 	bdev = allocate_bdev("bdev0");
913 
914 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
915 	CU_ASSERT(rc == 0);
916 	poll_threads();
917 	SPDK_CU_ASSERT_FATAL(desc != NULL);
918 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
919 	io_ch = spdk_bdev_get_io_channel(desc);
920 	CU_ASSERT(io_ch != NULL);
921 
922 	/* WRITE and WRITE ZEROES are not supported */
923 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
924 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
925 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
926 	CU_ASSERT(rc == -ENOTSUP);
927 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
928 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
929 
930 	spdk_put_io_channel(io_ch);
931 	spdk_bdev_close(desc);
932 	free_bdev(bdev);
933 	spdk_bdev_finish(bdev_fini_cb, NULL);
934 	poll_threads();
935 }
936 
937 static void
938 bdev_io_wait_test(void)
939 {
940 	struct spdk_bdev *bdev;
941 	struct spdk_bdev_desc *desc = NULL;
942 	struct spdk_io_channel *io_ch;
943 	struct spdk_bdev_opts bdev_opts = {
944 		.bdev_io_pool_size = 4,
945 		.bdev_io_cache_size = 2,
946 	};
947 	struct bdev_ut_io_wait_entry io_wait_entry;
948 	struct bdev_ut_io_wait_entry io_wait_entry2;
949 	int rc;
950 
951 	rc = spdk_bdev_set_opts(&bdev_opts);
952 	CU_ASSERT(rc == 0);
953 	spdk_bdev_initialize(bdev_init_cb, NULL);
954 	poll_threads();
955 
956 	bdev = allocate_bdev("bdev0");
957 
958 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
959 	CU_ASSERT(rc == 0);
960 	poll_threads();
961 	SPDK_CU_ASSERT_FATAL(desc != NULL);
962 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
963 	io_ch = spdk_bdev_get_io_channel(desc);
964 	CU_ASSERT(io_ch != NULL);
965 
966 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
967 	CU_ASSERT(rc == 0);
968 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
969 	CU_ASSERT(rc == 0);
970 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
971 	CU_ASSERT(rc == 0);
972 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
973 	CU_ASSERT(rc == 0);
974 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
975 
976 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
977 	CU_ASSERT(rc == -ENOMEM);
978 
979 	io_wait_entry.entry.bdev = bdev;
980 	io_wait_entry.entry.cb_fn = io_wait_cb;
981 	io_wait_entry.entry.cb_arg = &io_wait_entry;
982 	io_wait_entry.io_ch = io_ch;
983 	io_wait_entry.desc = desc;
984 	io_wait_entry.submitted = false;
985 	/* Cannot use the same io_wait_entry for two different calls. */
986 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
987 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
988 
989 	/* Queue two I/O waits. */
990 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
991 	CU_ASSERT(rc == 0);
992 	CU_ASSERT(io_wait_entry.submitted == false);
993 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
994 	CU_ASSERT(rc == 0);
995 	CU_ASSERT(io_wait_entry2.submitted == false);
996 
997 	stub_complete_io(1);
998 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
999 	CU_ASSERT(io_wait_entry.submitted == true);
1000 	CU_ASSERT(io_wait_entry2.submitted == false);
1001 
1002 	stub_complete_io(1);
1003 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1004 	CU_ASSERT(io_wait_entry2.submitted == true);
1005 
1006 	stub_complete_io(4);
1007 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1008 
1009 	spdk_put_io_channel(io_ch);
1010 	spdk_bdev_close(desc);
1011 	free_bdev(bdev);
1012 	spdk_bdev_finish(bdev_fini_cb, NULL);
1013 	poll_threads();
1014 }
1015 
1016 static void
1017 bdev_io_spans_boundary_test(void)
1018 {
1019 	struct spdk_bdev bdev;
1020 	struct spdk_bdev_io bdev_io;
1021 
1022 	memset(&bdev, 0, sizeof(bdev));
1023 
1024 	bdev.optimal_io_boundary = 0;
1025 	bdev_io.bdev = &bdev;
1026 
1027 	/* bdev has no optimal_io_boundary set - so this should return false. */
1028 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1029 
1030 	bdev.optimal_io_boundary = 32;
1031 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1032 
1033 	/* RESETs are not based on LBAs - so this should return false. */
1034 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1035 
1036 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1037 	bdev_io.u.bdev.offset_blocks = 0;
1038 	bdev_io.u.bdev.num_blocks = 32;
1039 
1040 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1041 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1042 
1043 	bdev_io.u.bdev.num_blocks = 33;
1044 
1045 	/* This I/O spans a boundary. */
1046 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1047 }
1048 
1049 static void
1050 bdev_io_split_test(void)
1051 {
1052 	struct spdk_bdev *bdev;
1053 	struct spdk_bdev_desc *desc = NULL;
1054 	struct spdk_io_channel *io_ch;
1055 	struct spdk_bdev_opts bdev_opts = {
1056 		.bdev_io_pool_size = 512,
1057 		.bdev_io_cache_size = 64,
1058 	};
1059 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1060 	struct ut_expected_io *expected_io;
1061 	void *md_buf = (void *)0xFF000000;
1062 	uint64_t i;
1063 	int rc;
1064 
1065 	rc = spdk_bdev_set_opts(&bdev_opts);
1066 	CU_ASSERT(rc == 0);
1067 	spdk_bdev_initialize(bdev_init_cb, NULL);
1068 
1069 	bdev = allocate_bdev("bdev0");
1070 
1071 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1072 	CU_ASSERT(rc == 0);
1073 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1074 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1075 	io_ch = spdk_bdev_get_io_channel(desc);
1076 	CU_ASSERT(io_ch != NULL);
1077 
1078 	bdev->optimal_io_boundary = 16;
1079 	bdev->split_on_optimal_io_boundary = false;
1080 
1081 	g_io_done = false;
1082 
1083 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1084 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1085 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1086 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1087 
1088 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1089 	CU_ASSERT(rc == 0);
1090 	CU_ASSERT(g_io_done == false);
1091 
1092 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1093 	stub_complete_io(1);
1094 	CU_ASSERT(g_io_done == true);
1095 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1096 
1097 	bdev->split_on_optimal_io_boundary = true;
1098 	bdev->md_interleave = false;
1099 	bdev->md_len = 8;
1100 
1101 	/* Now test that a single-vector command is split correctly.
1102 	 * Offset 14, length 8, payload 0xF000
1103 	 *  Child - Offset 14, length 2, payload 0xF000
1104 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1105 	 *
1106 	 * Set up the expected values before calling spdk_bdev_read_blocks
1107 	 */
1108 	g_io_done = false;
1109 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1110 	expected_io->md_buf = md_buf;
1111 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1112 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1113 
1114 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1115 	expected_io->md_buf = md_buf + 2 * 8;
1116 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1117 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1118 
1119 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1120 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1121 					   14, 8, io_done, NULL);
1122 	CU_ASSERT(rc == 0);
1123 	CU_ASSERT(g_io_done == false);
1124 
1125 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1126 	stub_complete_io(2);
1127 	CU_ASSERT(g_io_done == true);
1128 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1129 
1130 	/* Now set up a more complex, multi-vector command that needs to be split,
1131 	 *  including splitting iovecs.
1132 	 */
1133 	iov[0].iov_base = (void *)0x10000;
1134 	iov[0].iov_len = 512;
1135 	iov[1].iov_base = (void *)0x20000;
1136 	iov[1].iov_len = 20 * 512;
1137 	iov[2].iov_base = (void *)0x30000;
1138 	iov[2].iov_len = 11 * 512;
1139 
1140 	g_io_done = false;
1141 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1142 	expected_io->md_buf = md_buf;
1143 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1144 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1145 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1146 
1147 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1148 	expected_io->md_buf = md_buf + 2 * 8;
1149 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1150 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1151 
1152 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1153 	expected_io->md_buf = md_buf + 18 * 8;
1154 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1155 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1156 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1157 
1158 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1159 					     14, 32, io_done, NULL);
1160 	CU_ASSERT(rc == 0);
1161 	CU_ASSERT(g_io_done == false);
1162 
1163 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1164 	stub_complete_io(3);
1165 	CU_ASSERT(g_io_done == true);
1166 
1167 	/* Test multi vector command that needs to be split by strip and then needs to be
1168 	 * split further due to the capacity of child iovs.
1169 	 */
1170 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1171 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1172 		iov[i].iov_len = 512;
1173 	}
1174 
1175 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1176 	g_io_done = false;
1177 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1178 					   BDEV_IO_NUM_CHILD_IOV);
1179 	expected_io->md_buf = md_buf;
1180 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1181 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1182 	}
1183 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1184 
1185 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1186 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
1187 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1188 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1189 		ut_expected_io_set_iov(expected_io, i,
1190 				       (void *)((i + 1 + BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1191 	}
1192 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1193 
1194 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1195 					    0, BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1196 	CU_ASSERT(rc == 0);
1197 	CU_ASSERT(g_io_done == false);
1198 
1199 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1200 	stub_complete_io(1);
1201 	CU_ASSERT(g_io_done == false);
1202 
1203 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1204 	stub_complete_io(1);
1205 	CU_ASSERT(g_io_done == true);
1206 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1207 
1208 	/* Test multi vector command that needs to be split by strip and then needs to be
1209 	 * split further due to the capacity of child iovs. In this case, the length of
1210 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1211 	 */
1212 
1213 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1214 	 * is BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1215 	 */
1216 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1217 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1218 		iov[i].iov_len = 512;
1219 	}
1220 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1221 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1222 		iov[i].iov_len = 256;
1223 	}
1224 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1225 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1226 
1227 	/* Add an extra iovec to trigger split */
1228 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1229 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1230 
1231 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1232 	g_io_done = false;
1233 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1234 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV);
1235 	expected_io->md_buf = md_buf;
1236 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1237 		ut_expected_io_set_iov(expected_io, i,
1238 				       (void *)((i + 1) * 0x10000), 512);
1239 	}
1240 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1241 		ut_expected_io_set_iov(expected_io, i,
1242 				       (void *)((i + 1) * 0x10000), 256);
1243 	}
1244 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1245 
1246 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1247 					   1, 1);
1248 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1249 	ut_expected_io_set_iov(expected_io, 0,
1250 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1251 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1252 
1253 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1254 					   1, 1);
1255 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1256 	ut_expected_io_set_iov(expected_io, 0,
1257 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1258 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1259 
1260 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1261 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1262 	CU_ASSERT(rc == 0);
1263 	CU_ASSERT(g_io_done == false);
1264 
1265 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1266 	stub_complete_io(1);
1267 	CU_ASSERT(g_io_done == false);
1268 
1269 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1270 	stub_complete_io(2);
1271 	CU_ASSERT(g_io_done == true);
1272 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1273 
1274 	/* Test multi vector command that needs to be split by strip and then needs to be
1275 	 * split further due to the capacity of child iovs, the child request offset should
1276 	 * be rewind to last aligned offset and go success without error.
1277 	 */
1278 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1279 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1280 		iov[i].iov_len = 512;
1281 	}
1282 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1283 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1284 
1285 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1286 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1287 
1288 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1289 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1290 
1291 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1292 	g_io_done = false;
1293 	g_io_status = 0;
1294 	/* The first expected io should be start from offset 0 to BDEV_IO_NUM_CHILD_IOV - 1 */
1295 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1296 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV - 1);
1297 	expected_io->md_buf = md_buf;
1298 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1299 		ut_expected_io_set_iov(expected_io, i,
1300 				       (void *)((i + 1) * 0x10000), 512);
1301 	}
1302 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1303 	/* The second expected io should be start from offset BDEV_IO_NUM_CHILD_IOV - 1 to BDEV_IO_NUM_CHILD_IOV */
1304 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1305 					   1, 2);
1306 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1307 	ut_expected_io_set_iov(expected_io, 0,
1308 			       (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1309 	ut_expected_io_set_iov(expected_io, 1,
1310 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1311 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1312 	/* The third expected io should be start from offset BDEV_IO_NUM_CHILD_IOV to BDEV_IO_NUM_CHILD_IOV + 1 */
1313 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1314 					   1, 1);
1315 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1316 	ut_expected_io_set_iov(expected_io, 0,
1317 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1318 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1319 
1320 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1321 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1322 	CU_ASSERT(rc == 0);
1323 	CU_ASSERT(g_io_done == false);
1324 
1325 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1326 	stub_complete_io(1);
1327 	CU_ASSERT(g_io_done == false);
1328 
1329 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1330 	stub_complete_io(2);
1331 	CU_ASSERT(g_io_done == true);
1332 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1333 
1334 	/* Test multi vector command that needs to be split due to the IO boundary and
1335 	 * the capacity of child iovs. Especially test the case when the command is
1336 	 * split due to the capacity of child iovs, the tail address is not aligned with
1337 	 * block size and is rewinded to the aligned address.
1338 	 *
1339 	 * The iovecs used in read request is complex but is based on the data
1340 	 * collected in the real issue. We change the base addresses but keep the lengths
1341 	 * not to loose the credibility of the test.
1342 	 */
1343 	bdev->optimal_io_boundary = 128;
1344 	g_io_done = false;
1345 	g_io_status = 0;
1346 
1347 	for (i = 0; i < 31; i++) {
1348 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1349 		iov[i].iov_len = 1024;
1350 	}
1351 	iov[31].iov_base = (void *)0xFEED1F00000;
1352 	iov[31].iov_len = 32768;
1353 	iov[32].iov_base = (void *)0xFEED2000000;
1354 	iov[32].iov_len = 160;
1355 	iov[33].iov_base = (void *)0xFEED2100000;
1356 	iov[33].iov_len = 4096;
1357 	iov[34].iov_base = (void *)0xFEED2200000;
1358 	iov[34].iov_len = 4096;
1359 	iov[35].iov_base = (void *)0xFEED2300000;
1360 	iov[35].iov_len = 4096;
1361 	iov[36].iov_base = (void *)0xFEED2400000;
1362 	iov[36].iov_len = 4096;
1363 	iov[37].iov_base = (void *)0xFEED2500000;
1364 	iov[37].iov_len = 4096;
1365 	iov[38].iov_base = (void *)0xFEED2600000;
1366 	iov[38].iov_len = 4096;
1367 	iov[39].iov_base = (void *)0xFEED2700000;
1368 	iov[39].iov_len = 4096;
1369 	iov[40].iov_base = (void *)0xFEED2800000;
1370 	iov[40].iov_len = 4096;
1371 	iov[41].iov_base = (void *)0xFEED2900000;
1372 	iov[41].iov_len = 4096;
1373 	iov[42].iov_base = (void *)0xFEED2A00000;
1374 	iov[42].iov_len = 4096;
1375 	iov[43].iov_base = (void *)0xFEED2B00000;
1376 	iov[43].iov_len = 12288;
1377 	iov[44].iov_base = (void *)0xFEED2C00000;
1378 	iov[44].iov_len = 8192;
1379 	iov[45].iov_base = (void *)0xFEED2F00000;
1380 	iov[45].iov_len = 4096;
1381 	iov[46].iov_base = (void *)0xFEED3000000;
1382 	iov[46].iov_len = 4096;
1383 	iov[47].iov_base = (void *)0xFEED3100000;
1384 	iov[47].iov_len = 4096;
1385 	iov[48].iov_base = (void *)0xFEED3200000;
1386 	iov[48].iov_len = 24576;
1387 	iov[49].iov_base = (void *)0xFEED3300000;
1388 	iov[49].iov_len = 16384;
1389 	iov[50].iov_base = (void *)0xFEED3400000;
1390 	iov[50].iov_len = 12288;
1391 	iov[51].iov_base = (void *)0xFEED3500000;
1392 	iov[51].iov_len = 4096;
1393 	iov[52].iov_base = (void *)0xFEED3600000;
1394 	iov[52].iov_len = 4096;
1395 	iov[53].iov_base = (void *)0xFEED3700000;
1396 	iov[53].iov_len = 4096;
1397 	iov[54].iov_base = (void *)0xFEED3800000;
1398 	iov[54].iov_len = 28672;
1399 	iov[55].iov_base = (void *)0xFEED3900000;
1400 	iov[55].iov_len = 20480;
1401 	iov[56].iov_base = (void *)0xFEED3A00000;
1402 	iov[56].iov_len = 4096;
1403 	iov[57].iov_base = (void *)0xFEED3B00000;
1404 	iov[57].iov_len = 12288;
1405 	iov[58].iov_base = (void *)0xFEED3C00000;
1406 	iov[58].iov_len = 4096;
1407 	iov[59].iov_base = (void *)0xFEED3D00000;
1408 	iov[59].iov_len = 4096;
1409 	iov[60].iov_base = (void *)0xFEED3E00000;
1410 	iov[60].iov_len = 352;
1411 
1412 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1413 	 * of child iovs,
1414 	 */
1415 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1416 	expected_io->md_buf = md_buf;
1417 	for (i = 0; i < 32; i++) {
1418 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1419 	}
1420 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1421 
1422 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1423 	 * split by the IO boundary requirement.
1424 	 */
1425 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1426 	expected_io->md_buf = md_buf + 126 * 8;
1427 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1428 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1429 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1430 
1431 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1432 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1433 	 */
1434 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1435 	expected_io->md_buf = md_buf + 128 * 8;
1436 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1437 			       iov[33].iov_len - 864);
1438 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1439 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1440 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1441 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1442 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1443 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1444 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1445 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1446 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1447 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1448 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1449 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1450 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1451 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1452 
1453 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1454 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1455 	 */
1456 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1457 	expected_io->md_buf = md_buf + 256 * 8;
1458 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1459 			       iov[46].iov_len - 864);
1460 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1461 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1462 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1463 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1464 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1465 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1466 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1467 
1468 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1469 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1470 	 */
1471 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1472 	expected_io->md_buf = md_buf + 384 * 8;
1473 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1474 			       iov[52].iov_len - 864);
1475 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1476 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1477 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1478 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1479 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1480 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1481 
1482 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1483 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1484 	 */
1485 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1486 	expected_io->md_buf = md_buf + 512 * 8;
1487 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1488 			       iov[57].iov_len - 4960);
1489 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1490 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1491 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1492 
1493 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1494 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1495 	expected_io->md_buf = md_buf + 542 * 8;
1496 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1497 			       iov[59].iov_len - 3936);
1498 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1499 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1500 
1501 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1502 					    0, 543, io_done, NULL);
1503 	CU_ASSERT(rc == 0);
1504 	CU_ASSERT(g_io_done == false);
1505 
1506 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1507 	stub_complete_io(1);
1508 	CU_ASSERT(g_io_done == false);
1509 
1510 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1511 	stub_complete_io(5);
1512 	CU_ASSERT(g_io_done == false);
1513 
1514 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1515 	stub_complete_io(1);
1516 	CU_ASSERT(g_io_done == true);
1517 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1518 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1519 
1520 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1521 	 * split, so test that.
1522 	 */
1523 	bdev->optimal_io_boundary = 15;
1524 	g_io_done = false;
1525 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1526 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1527 
1528 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1529 	CU_ASSERT(rc == 0);
1530 	CU_ASSERT(g_io_done == false);
1531 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1532 	stub_complete_io(1);
1533 	CU_ASSERT(g_io_done == true);
1534 
1535 	/* Test an UNMAP.  This should also not be split. */
1536 	bdev->optimal_io_boundary = 16;
1537 	g_io_done = false;
1538 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1539 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1540 
1541 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1542 	CU_ASSERT(rc == 0);
1543 	CU_ASSERT(g_io_done == false);
1544 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1545 	stub_complete_io(1);
1546 	CU_ASSERT(g_io_done == true);
1547 
1548 	/* Test a FLUSH.  This should also not be split. */
1549 	bdev->optimal_io_boundary = 16;
1550 	g_io_done = false;
1551 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1552 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1553 
1554 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1555 	CU_ASSERT(rc == 0);
1556 	CU_ASSERT(g_io_done == false);
1557 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1558 	stub_complete_io(1);
1559 	CU_ASSERT(g_io_done == true);
1560 
1561 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1562 
1563 	/* Children requests return an error status */
1564 	bdev->optimal_io_boundary = 16;
1565 	iov[0].iov_base = (void *)0x10000;
1566 	iov[0].iov_len = 512 * 64;
1567 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1568 	g_io_done = false;
1569 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1570 
1571 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1572 	CU_ASSERT(rc == 0);
1573 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1574 	stub_complete_io(4);
1575 	CU_ASSERT(g_io_done == false);
1576 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1577 	stub_complete_io(1);
1578 	CU_ASSERT(g_io_done == true);
1579 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1580 
1581 	/* Test if a multi vector command terminated with failure before continueing
1582 	 * splitting process when one of child I/O failed.
1583 	 * The multi vector command is as same as the above that needs to be split by strip
1584 	 * and then needs to be split further due to the capacity of child iovs.
1585 	 */
1586 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1587 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1588 		iov[i].iov_len = 512;
1589 	}
1590 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1591 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1592 
1593 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1594 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1595 
1596 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1597 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1598 
1599 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1600 
1601 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1602 	g_io_done = false;
1603 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1604 
1605 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
1606 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1607 	CU_ASSERT(rc == 0);
1608 	CU_ASSERT(g_io_done == false);
1609 
1610 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1611 	stub_complete_io(1);
1612 	CU_ASSERT(g_io_done == true);
1613 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1614 
1615 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1616 
1617 	/* for this test we will create the following conditions to hit the code path where
1618 	 * we are trying to send and IO following a split that has no iovs because we had to
1619 	 * trim them for alignment reasons.
1620 	 *
1621 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1622 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1623 	 *   position 30 and overshoot by 0x2e.
1624 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1625 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1626 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1627 	 *   and let the completion pick up the last 2 vectors.
1628 	 */
1629 	bdev->optimal_io_boundary = 32;
1630 	bdev->split_on_optimal_io_boundary = true;
1631 	g_io_done = false;
1632 
1633 	/* Init all parent IOVs to 0x212 */
1634 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1635 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1636 		iov[i].iov_len = 0x212;
1637 	}
1638 
1639 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1640 					   BDEV_IO_NUM_CHILD_IOV - 1);
1641 	/* expect 0-29 to be 1:1 with the parent iov */
1642 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1643 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1644 	}
1645 
1646 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1647 	 * where 0x1e is the amount we overshot the 16K boundary
1648 	 */
1649 	ut_expected_io_set_iov(expected_io, BDEV_IO_NUM_CHILD_IOV - 2,
1650 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1651 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1652 
1653 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1654 	 * shortened that take it to the next boundary and then a final one to get us to
1655 	 * 0x4200 bytes for the IO.
1656 	 */
1657 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1658 					   BDEV_IO_NUM_CHILD_IOV, 2);
1659 	/* position 30 picked up the remaining bytes to the next boundary */
1660 	ut_expected_io_set_iov(expected_io, 0,
1661 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
1662 
1663 	/* position 31 picked the the rest of the trasnfer to get us to 0x4200 */
1664 	ut_expected_io_set_iov(expected_io, 1,
1665 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
1666 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1667 
1668 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 1, 0,
1669 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1670 	CU_ASSERT(rc == 0);
1671 	CU_ASSERT(g_io_done == false);
1672 
1673 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1674 	stub_complete_io(1);
1675 	CU_ASSERT(g_io_done == false);
1676 
1677 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1678 	stub_complete_io(1);
1679 	CU_ASSERT(g_io_done == true);
1680 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1681 
1682 	spdk_put_io_channel(io_ch);
1683 	spdk_bdev_close(desc);
1684 	free_bdev(bdev);
1685 	spdk_bdev_finish(bdev_fini_cb, NULL);
1686 	poll_threads();
1687 }
1688 
1689 static void
1690 bdev_io_split_with_io_wait(void)
1691 {
1692 	struct spdk_bdev *bdev;
1693 	struct spdk_bdev_desc *desc = NULL;
1694 	struct spdk_io_channel *io_ch;
1695 	struct spdk_bdev_channel *channel;
1696 	struct spdk_bdev_mgmt_channel *mgmt_ch;
1697 	struct spdk_bdev_opts bdev_opts = {
1698 		.bdev_io_pool_size = 2,
1699 		.bdev_io_cache_size = 1,
1700 	};
1701 	struct iovec iov[3];
1702 	struct ut_expected_io *expected_io;
1703 	int rc;
1704 
1705 	rc = spdk_bdev_set_opts(&bdev_opts);
1706 	CU_ASSERT(rc == 0);
1707 	spdk_bdev_initialize(bdev_init_cb, NULL);
1708 
1709 	bdev = allocate_bdev("bdev0");
1710 
1711 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1712 	CU_ASSERT(rc == 0);
1713 	CU_ASSERT(desc != NULL);
1714 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1715 	io_ch = spdk_bdev_get_io_channel(desc);
1716 	CU_ASSERT(io_ch != NULL);
1717 	channel = spdk_io_channel_get_ctx(io_ch);
1718 	mgmt_ch = channel->shared_resource->mgmt_ch;
1719 
1720 	bdev->optimal_io_boundary = 16;
1721 	bdev->split_on_optimal_io_boundary = true;
1722 
1723 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1724 	CU_ASSERT(rc == 0);
1725 
1726 	/* Now test that a single-vector command is split correctly.
1727 	 * Offset 14, length 8, payload 0xF000
1728 	 *  Child - Offset 14, length 2, payload 0xF000
1729 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1730 	 *
1731 	 * Set up the expected values before calling spdk_bdev_read_blocks
1732 	 */
1733 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1734 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1735 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1736 
1737 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1738 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1739 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1740 
1741 	/* The following children will be submitted sequentially due to the capacity of
1742 	 * spdk_bdev_io.
1743 	 */
1744 
1745 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
1746 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1747 	CU_ASSERT(rc == 0);
1748 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
1749 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1750 
1751 	/* Completing the first read I/O will submit the first child */
1752 	stub_complete_io(1);
1753 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
1754 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1755 
1756 	/* Completing the first child will submit the second child */
1757 	stub_complete_io(1);
1758 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1759 
1760 	/* Complete the second child I/O.  This should result in our callback getting
1761 	 * invoked since the parent I/O is now complete.
1762 	 */
1763 	stub_complete_io(1);
1764 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1765 
1766 	/* Now set up a more complex, multi-vector command that needs to be split,
1767 	 *  including splitting iovecs.
1768 	 */
1769 	iov[0].iov_base = (void *)0x10000;
1770 	iov[0].iov_len = 512;
1771 	iov[1].iov_base = (void *)0x20000;
1772 	iov[1].iov_len = 20 * 512;
1773 	iov[2].iov_base = (void *)0x30000;
1774 	iov[2].iov_len = 11 * 512;
1775 
1776 	g_io_done = false;
1777 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1778 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1779 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1780 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1781 
1782 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1783 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1784 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1785 
1786 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1787 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1788 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1789 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1790 
1791 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
1792 	CU_ASSERT(rc == 0);
1793 	CU_ASSERT(g_io_done == false);
1794 
1795 	/* The following children will be submitted sequentially due to the capacity of
1796 	 * spdk_bdev_io.
1797 	 */
1798 
1799 	/* Completing the first child will submit the second child */
1800 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1801 	stub_complete_io(1);
1802 	CU_ASSERT(g_io_done == false);
1803 
1804 	/* Completing the second child will submit the third child */
1805 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1806 	stub_complete_io(1);
1807 	CU_ASSERT(g_io_done == false);
1808 
1809 	/* Completing the third child will result in our callback getting invoked
1810 	 * since the parent I/O is now complete.
1811 	 */
1812 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1813 	stub_complete_io(1);
1814 	CU_ASSERT(g_io_done == true);
1815 
1816 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1817 
1818 	spdk_put_io_channel(io_ch);
1819 	spdk_bdev_close(desc);
1820 	free_bdev(bdev);
1821 	spdk_bdev_finish(bdev_fini_cb, NULL);
1822 	poll_threads();
1823 }
1824 
1825 static void
1826 bdev_io_alignment(void)
1827 {
1828 	struct spdk_bdev *bdev;
1829 	struct spdk_bdev_desc *desc = NULL;
1830 	struct spdk_io_channel *io_ch;
1831 	struct spdk_bdev_opts bdev_opts = {
1832 		.bdev_io_pool_size = 20,
1833 		.bdev_io_cache_size = 2,
1834 	};
1835 	int rc;
1836 	void *buf = NULL;
1837 	struct iovec iovs[2];
1838 	int iovcnt;
1839 	uint64_t alignment;
1840 
1841 	rc = spdk_bdev_set_opts(&bdev_opts);
1842 	CU_ASSERT(rc == 0);
1843 	spdk_bdev_initialize(bdev_init_cb, NULL);
1844 
1845 	fn_table.submit_request = stub_submit_request_get_buf;
1846 	bdev = allocate_bdev("bdev0");
1847 
1848 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1849 	CU_ASSERT(rc == 0);
1850 	CU_ASSERT(desc != NULL);
1851 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1852 	io_ch = spdk_bdev_get_io_channel(desc);
1853 	CU_ASSERT(io_ch != NULL);
1854 
1855 	/* Create aligned buffer */
1856 	rc = posix_memalign(&buf, 4096, 8192);
1857 	SPDK_CU_ASSERT_FATAL(rc == 0);
1858 
1859 	/* Pass aligned single buffer with no alignment required */
1860 	alignment = 1;
1861 	bdev->required_alignment = spdk_u32log2(alignment);
1862 
1863 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
1864 	CU_ASSERT(rc == 0);
1865 	stub_complete_io(1);
1866 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1867 				    alignment));
1868 
1869 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
1870 	CU_ASSERT(rc == 0);
1871 	stub_complete_io(1);
1872 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1873 				    alignment));
1874 
1875 	/* Pass unaligned single buffer with no alignment required */
1876 	alignment = 1;
1877 	bdev->required_alignment = spdk_u32log2(alignment);
1878 
1879 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
1880 	CU_ASSERT(rc == 0);
1881 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1882 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
1883 	stub_complete_io(1);
1884 
1885 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
1886 	CU_ASSERT(rc == 0);
1887 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1888 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
1889 	stub_complete_io(1);
1890 
1891 	/* Pass unaligned single buffer with 512 alignment required */
1892 	alignment = 512;
1893 	bdev->required_alignment = spdk_u32log2(alignment);
1894 
1895 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
1896 	CU_ASSERT(rc == 0);
1897 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
1898 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1899 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1900 				    alignment));
1901 	stub_complete_io(1);
1902 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1903 
1904 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
1905 	CU_ASSERT(rc == 0);
1906 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
1907 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1908 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1909 				    alignment));
1910 	stub_complete_io(1);
1911 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1912 
1913 	/* Pass unaligned single buffer with 4096 alignment required */
1914 	alignment = 4096;
1915 	bdev->required_alignment = spdk_u32log2(alignment);
1916 
1917 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
1918 	CU_ASSERT(rc == 0);
1919 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
1920 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1921 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1922 				    alignment));
1923 	stub_complete_io(1);
1924 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1925 
1926 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
1927 	CU_ASSERT(rc == 0);
1928 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
1929 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1930 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1931 				    alignment));
1932 	stub_complete_io(1);
1933 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1934 
1935 	/* Pass aligned iovs with no alignment required */
1936 	alignment = 1;
1937 	bdev->required_alignment = spdk_u32log2(alignment);
1938 
1939 	iovcnt = 1;
1940 	iovs[0].iov_base = buf;
1941 	iovs[0].iov_len = 512;
1942 
1943 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1944 	CU_ASSERT(rc == 0);
1945 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1946 	stub_complete_io(1);
1947 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
1948 
1949 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1950 	CU_ASSERT(rc == 0);
1951 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1952 	stub_complete_io(1);
1953 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
1954 
1955 	/* Pass unaligned iovs with no alignment required */
1956 	alignment = 1;
1957 	bdev->required_alignment = spdk_u32log2(alignment);
1958 
1959 	iovcnt = 2;
1960 	iovs[0].iov_base = buf + 16;
1961 	iovs[0].iov_len = 256;
1962 	iovs[1].iov_base = buf + 16 + 256 + 32;
1963 	iovs[1].iov_len = 256;
1964 
1965 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1966 	CU_ASSERT(rc == 0);
1967 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1968 	stub_complete_io(1);
1969 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
1970 
1971 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1972 	CU_ASSERT(rc == 0);
1973 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1974 	stub_complete_io(1);
1975 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
1976 
1977 	/* Pass unaligned iov with 2048 alignment required */
1978 	alignment = 2048;
1979 	bdev->required_alignment = spdk_u32log2(alignment);
1980 
1981 	iovcnt = 2;
1982 	iovs[0].iov_base = buf + 16;
1983 	iovs[0].iov_len = 256;
1984 	iovs[1].iov_base = buf + 16 + 256 + 32;
1985 	iovs[1].iov_len = 256;
1986 
1987 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1988 	CU_ASSERT(rc == 0);
1989 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
1990 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1991 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1992 				    alignment));
1993 	stub_complete_io(1);
1994 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1995 
1996 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1997 	CU_ASSERT(rc == 0);
1998 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
1999 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2000 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2001 				    alignment));
2002 	stub_complete_io(1);
2003 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2004 
2005 	/* Pass iov without allocated buffer without alignment required */
2006 	alignment = 1;
2007 	bdev->required_alignment = spdk_u32log2(alignment);
2008 
2009 	iovcnt = 1;
2010 	iovs[0].iov_base = NULL;
2011 	iovs[0].iov_len = 0;
2012 
2013 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2014 	CU_ASSERT(rc == 0);
2015 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2016 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2017 				    alignment));
2018 	stub_complete_io(1);
2019 
2020 	/* Pass iov without allocated buffer with 1024 alignment required */
2021 	alignment = 1024;
2022 	bdev->required_alignment = spdk_u32log2(alignment);
2023 
2024 	iovcnt = 1;
2025 	iovs[0].iov_base = NULL;
2026 	iovs[0].iov_len = 0;
2027 
2028 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2029 	CU_ASSERT(rc == 0);
2030 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2031 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2032 				    alignment));
2033 	stub_complete_io(1);
2034 
2035 	spdk_put_io_channel(io_ch);
2036 	spdk_bdev_close(desc);
2037 	free_bdev(bdev);
2038 	fn_table.submit_request = stub_submit_request;
2039 	spdk_bdev_finish(bdev_fini_cb, NULL);
2040 	poll_threads();
2041 
2042 	free(buf);
2043 }
2044 
2045 static void
2046 bdev_io_alignment_with_boundary(void)
2047 {
2048 	struct spdk_bdev *bdev;
2049 	struct spdk_bdev_desc *desc = NULL;
2050 	struct spdk_io_channel *io_ch;
2051 	struct spdk_bdev_opts bdev_opts = {
2052 		.bdev_io_pool_size = 20,
2053 		.bdev_io_cache_size = 2,
2054 	};
2055 	int rc;
2056 	void *buf = NULL;
2057 	struct iovec iovs[2];
2058 	int iovcnt;
2059 	uint64_t alignment;
2060 
2061 	rc = spdk_bdev_set_opts(&bdev_opts);
2062 	CU_ASSERT(rc == 0);
2063 	spdk_bdev_initialize(bdev_init_cb, NULL);
2064 
2065 	fn_table.submit_request = stub_submit_request_get_buf;
2066 	bdev = allocate_bdev("bdev0");
2067 
2068 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2069 	CU_ASSERT(rc == 0);
2070 	CU_ASSERT(desc != NULL);
2071 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2072 	io_ch = spdk_bdev_get_io_channel(desc);
2073 	CU_ASSERT(io_ch != NULL);
2074 
2075 	/* Create aligned buffer */
2076 	rc = posix_memalign(&buf, 4096, 131072);
2077 	SPDK_CU_ASSERT_FATAL(rc == 0);
2078 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2079 
2080 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
2081 	alignment = 512;
2082 	bdev->required_alignment = spdk_u32log2(alignment);
2083 	bdev->optimal_io_boundary = 2;
2084 	bdev->split_on_optimal_io_boundary = true;
2085 
2086 	iovcnt = 1;
2087 	iovs[0].iov_base = NULL;
2088 	iovs[0].iov_len = 512 * 3;
2089 
2090 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
2091 	CU_ASSERT(rc == 0);
2092 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2093 	stub_complete_io(2);
2094 
2095 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
2096 	alignment = 512;
2097 	bdev->required_alignment = spdk_u32log2(alignment);
2098 	bdev->optimal_io_boundary = 16;
2099 	bdev->split_on_optimal_io_boundary = true;
2100 
2101 	iovcnt = 1;
2102 	iovs[0].iov_base = NULL;
2103 	iovs[0].iov_len = 512 * 16;
2104 
2105 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
2106 	CU_ASSERT(rc == 0);
2107 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2108 	stub_complete_io(2);
2109 
2110 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
2111 	alignment = 512;
2112 	bdev->required_alignment = spdk_u32log2(alignment);
2113 	bdev->optimal_io_boundary = 128;
2114 	bdev->split_on_optimal_io_boundary = true;
2115 
2116 	iovcnt = 1;
2117 	iovs[0].iov_base = buf + 16;
2118 	iovs[0].iov_len = 512 * 160;
2119 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
2120 	CU_ASSERT(rc == 0);
2121 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2122 	stub_complete_io(2);
2123 
2124 	/* 512 * 3 with 2 IO boundary */
2125 	alignment = 512;
2126 	bdev->required_alignment = spdk_u32log2(alignment);
2127 	bdev->optimal_io_boundary = 2;
2128 	bdev->split_on_optimal_io_boundary = true;
2129 
2130 	iovcnt = 2;
2131 	iovs[0].iov_base = buf + 16;
2132 	iovs[0].iov_len = 512;
2133 	iovs[1].iov_base = buf + 16 + 512 + 32;
2134 	iovs[1].iov_len = 1024;
2135 
2136 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
2137 	CU_ASSERT(rc == 0);
2138 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2139 	stub_complete_io(2);
2140 
2141 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
2142 	CU_ASSERT(rc == 0);
2143 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2144 	stub_complete_io(2);
2145 
2146 	/* 512 * 64 with 32 IO boundary */
2147 	bdev->optimal_io_boundary = 32;
2148 	iovcnt = 2;
2149 	iovs[0].iov_base = buf + 16;
2150 	iovs[0].iov_len = 16384;
2151 	iovs[1].iov_base = buf + 16 + 16384 + 32;
2152 	iovs[1].iov_len = 16384;
2153 
2154 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
2155 	CU_ASSERT(rc == 0);
2156 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2157 	stub_complete_io(3);
2158 
2159 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
2160 	CU_ASSERT(rc == 0);
2161 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2162 	stub_complete_io(3);
2163 
2164 	/* 512 * 160 with 32 IO boundary */
2165 	iovcnt = 1;
2166 	iovs[0].iov_base = buf + 16;
2167 	iovs[0].iov_len = 16384 + 65536;
2168 
2169 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
2170 	CU_ASSERT(rc == 0);
2171 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2172 	stub_complete_io(6);
2173 
2174 	spdk_put_io_channel(io_ch);
2175 	spdk_bdev_close(desc);
2176 	free_bdev(bdev);
2177 	fn_table.submit_request = stub_submit_request;
2178 	spdk_bdev_finish(bdev_fini_cb, NULL);
2179 	poll_threads();
2180 
2181 	free(buf);
2182 }
2183 
2184 static void
2185 histogram_status_cb(void *cb_arg, int status)
2186 {
2187 	g_status = status;
2188 }
2189 
2190 static void
2191 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
2192 {
2193 	g_status = status;
2194 	g_histogram = histogram;
2195 }
2196 
2197 static void
2198 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
2199 		   uint64_t total, uint64_t so_far)
2200 {
2201 	g_count += count;
2202 }
2203 
2204 static void
2205 bdev_histograms(void)
2206 {
2207 	struct spdk_bdev *bdev;
2208 	struct spdk_bdev_desc *desc = NULL;
2209 	struct spdk_io_channel *ch;
2210 	struct spdk_histogram_data *histogram;
2211 	uint8_t buf[4096];
2212 	int rc;
2213 
2214 	spdk_bdev_initialize(bdev_init_cb, NULL);
2215 
2216 	bdev = allocate_bdev("bdev");
2217 
2218 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
2219 	CU_ASSERT(rc == 0);
2220 	CU_ASSERT(desc != NULL);
2221 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2222 
2223 	ch = spdk_bdev_get_io_channel(desc);
2224 	CU_ASSERT(ch != NULL);
2225 
2226 	/* Enable histogram */
2227 	g_status = -1;
2228 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
2229 	poll_threads();
2230 	CU_ASSERT(g_status == 0);
2231 	CU_ASSERT(bdev->internal.histogram_enabled == true);
2232 
2233 	/* Allocate histogram */
2234 	histogram = spdk_histogram_data_alloc();
2235 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
2236 
2237 	/* Check if histogram is zeroed */
2238 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
2239 	poll_threads();
2240 	CU_ASSERT(g_status == 0);
2241 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
2242 
2243 	g_count = 0;
2244 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
2245 
2246 	CU_ASSERT(g_count == 0);
2247 
2248 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
2249 	CU_ASSERT(rc == 0);
2250 
2251 	spdk_delay_us(10);
2252 	stub_complete_io(1);
2253 	poll_threads();
2254 
2255 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
2256 	CU_ASSERT(rc == 0);
2257 
2258 	spdk_delay_us(10);
2259 	stub_complete_io(1);
2260 	poll_threads();
2261 
2262 	/* Check if histogram gathered data from all I/O channels */
2263 	g_histogram = NULL;
2264 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
2265 	poll_threads();
2266 	CU_ASSERT(g_status == 0);
2267 	CU_ASSERT(bdev->internal.histogram_enabled == true);
2268 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
2269 
2270 	g_count = 0;
2271 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
2272 	CU_ASSERT(g_count == 2);
2273 
2274 	/* Disable histogram */
2275 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
2276 	poll_threads();
2277 	CU_ASSERT(g_status == 0);
2278 	CU_ASSERT(bdev->internal.histogram_enabled == false);
2279 
2280 	/* Try to run histogram commands on disabled bdev */
2281 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
2282 	poll_threads();
2283 	CU_ASSERT(g_status == -EFAULT);
2284 
2285 	spdk_histogram_data_free(histogram);
2286 	spdk_put_io_channel(ch);
2287 	spdk_bdev_close(desc);
2288 	free_bdev(bdev);
2289 	spdk_bdev_finish(bdev_fini_cb, NULL);
2290 	poll_threads();
2291 }
2292 
2293 static void
2294 _bdev_compare(bool emulated)
2295 {
2296 	struct spdk_bdev *bdev;
2297 	struct spdk_bdev_desc *desc = NULL;
2298 	struct spdk_io_channel *ioch;
2299 	struct ut_expected_io *expected_io;
2300 	uint64_t offset, num_blocks;
2301 	uint32_t num_completed;
2302 	char aa_buf[512];
2303 	char bb_buf[512];
2304 	struct iovec compare_iov;
2305 	uint8_t io_type;
2306 	int rc;
2307 
2308 	if (emulated) {
2309 		io_type = SPDK_BDEV_IO_TYPE_READ;
2310 	} else {
2311 		io_type = SPDK_BDEV_IO_TYPE_COMPARE;
2312 	}
2313 
2314 	memset(aa_buf, 0xaa, sizeof(aa_buf));
2315 	memset(bb_buf, 0xbb, sizeof(bb_buf));
2316 
2317 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
2318 
2319 	spdk_bdev_initialize(bdev_init_cb, NULL);
2320 	fn_table.submit_request = stub_submit_request_get_buf;
2321 	bdev = allocate_bdev("bdev");
2322 
2323 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
2324 	CU_ASSERT_EQUAL(rc, 0);
2325 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2326 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2327 	ioch = spdk_bdev_get_io_channel(desc);
2328 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
2329 
2330 	fn_table.submit_request = stub_submit_request_get_buf;
2331 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2332 
2333 	offset = 50;
2334 	num_blocks = 1;
2335 	compare_iov.iov_base = aa_buf;
2336 	compare_iov.iov_len = sizeof(aa_buf);
2337 
2338 	expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
2339 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2340 
2341 	g_io_done = false;
2342 	g_compare_read_buf = aa_buf;
2343 	g_compare_read_buf_len = sizeof(aa_buf);
2344 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
2345 	CU_ASSERT_EQUAL(rc, 0);
2346 	num_completed = stub_complete_io(1);
2347 	CU_ASSERT_EQUAL(num_completed, 1);
2348 	CU_ASSERT(g_io_done == true);
2349 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
2350 
2351 	expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
2352 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2353 
2354 	g_io_done = false;
2355 	g_compare_read_buf = bb_buf;
2356 	g_compare_read_buf_len = sizeof(bb_buf);
2357 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
2358 	CU_ASSERT_EQUAL(rc, 0);
2359 	num_completed = stub_complete_io(1);
2360 	CU_ASSERT_EQUAL(num_completed, 1);
2361 	CU_ASSERT(g_io_done == true);
2362 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
2363 
2364 	spdk_put_io_channel(ioch);
2365 	spdk_bdev_close(desc);
2366 	free_bdev(bdev);
2367 	fn_table.submit_request = stub_submit_request;
2368 	spdk_bdev_finish(bdev_fini_cb, NULL);
2369 	poll_threads();
2370 
2371 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
2372 
2373 	g_compare_read_buf = NULL;
2374 }
2375 
2376 static void
2377 bdev_compare(void)
2378 {
2379 	_bdev_compare(true);
2380 	_bdev_compare(false);
2381 }
2382 
2383 static void
2384 bdev_compare_and_write(void)
2385 {
2386 	struct spdk_bdev *bdev;
2387 	struct spdk_bdev_desc *desc = NULL;
2388 	struct spdk_io_channel *ioch;
2389 	struct ut_expected_io *expected_io;
2390 	uint64_t offset, num_blocks;
2391 	uint32_t num_completed;
2392 	char aa_buf[512];
2393 	char bb_buf[512];
2394 	char cc_buf[512];
2395 	char write_buf[512];
2396 	struct iovec compare_iov;
2397 	struct iovec write_iov;
2398 	int rc;
2399 
2400 	memset(aa_buf, 0xaa, sizeof(aa_buf));
2401 	memset(bb_buf, 0xbb, sizeof(bb_buf));
2402 	memset(cc_buf, 0xcc, sizeof(cc_buf));
2403 
2404 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
2405 
2406 	spdk_bdev_initialize(bdev_init_cb, NULL);
2407 	fn_table.submit_request = stub_submit_request_get_buf;
2408 	bdev = allocate_bdev("bdev");
2409 
2410 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
2411 	CU_ASSERT_EQUAL(rc, 0);
2412 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2413 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2414 	ioch = spdk_bdev_get_io_channel(desc);
2415 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
2416 
2417 	fn_table.submit_request = stub_submit_request_get_buf;
2418 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2419 
2420 	offset = 50;
2421 	num_blocks = 1;
2422 	compare_iov.iov_base = aa_buf;
2423 	compare_iov.iov_len = sizeof(aa_buf);
2424 	write_iov.iov_base = bb_buf;
2425 	write_iov.iov_len = sizeof(bb_buf);
2426 
2427 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
2428 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2429 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
2430 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2431 
2432 	g_io_done = false;
2433 	g_compare_read_buf = aa_buf;
2434 	g_compare_read_buf_len = sizeof(aa_buf);
2435 	memset(write_buf, 0, sizeof(write_buf));
2436 	g_compare_write_buf = write_buf;
2437 	g_compare_write_buf_len = sizeof(write_buf);
2438 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
2439 			offset, num_blocks, io_done, NULL);
2440 	/* Trigger range locking */
2441 	poll_threads();
2442 	CU_ASSERT_EQUAL(rc, 0);
2443 	num_completed = stub_complete_io(1);
2444 	CU_ASSERT_EQUAL(num_completed, 1);
2445 	CU_ASSERT(g_io_done == false);
2446 	num_completed = stub_complete_io(1);
2447 	/* Trigger range unlocking */
2448 	poll_threads();
2449 	CU_ASSERT_EQUAL(num_completed, 1);
2450 	CU_ASSERT(g_io_done == true);
2451 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
2452 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
2453 
2454 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
2455 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2456 
2457 	g_io_done = false;
2458 	g_compare_read_buf = cc_buf;
2459 	g_compare_read_buf_len = sizeof(cc_buf);
2460 	memset(write_buf, 0, sizeof(write_buf));
2461 	g_compare_write_buf = write_buf;
2462 	g_compare_write_buf_len = sizeof(write_buf);
2463 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
2464 			offset, num_blocks, io_done, NULL);
2465 	/* Trigger range locking */
2466 	poll_threads();
2467 	CU_ASSERT_EQUAL(rc, 0);
2468 	num_completed = stub_complete_io(1);
2469 	/* Trigger range unlocking earlier because we expect error here */
2470 	poll_threads();
2471 	CU_ASSERT_EQUAL(num_completed, 1);
2472 	CU_ASSERT(g_io_done == true);
2473 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
2474 	num_completed = stub_complete_io(1);
2475 	CU_ASSERT_EQUAL(num_completed, 0);
2476 
2477 	spdk_put_io_channel(ioch);
2478 	spdk_bdev_close(desc);
2479 	free_bdev(bdev);
2480 	fn_table.submit_request = stub_submit_request;
2481 	spdk_bdev_finish(bdev_fini_cb, NULL);
2482 	poll_threads();
2483 
2484 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
2485 
2486 	g_compare_read_buf = NULL;
2487 	g_compare_write_buf = NULL;
2488 }
2489 
2490 static void
2491 bdev_write_zeroes(void)
2492 {
2493 	struct spdk_bdev *bdev;
2494 	struct spdk_bdev_desc *desc = NULL;
2495 	struct spdk_io_channel *ioch;
2496 	struct ut_expected_io *expected_io;
2497 	uint64_t offset, num_io_blocks, num_blocks;
2498 	uint32_t num_completed, num_requests;
2499 	int rc;
2500 
2501 	spdk_bdev_initialize(bdev_init_cb, NULL);
2502 	bdev = allocate_bdev("bdev");
2503 
2504 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
2505 	CU_ASSERT_EQUAL(rc, 0);
2506 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2507 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2508 	ioch = spdk_bdev_get_io_channel(desc);
2509 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
2510 
2511 	fn_table.submit_request = stub_submit_request;
2512 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2513 
2514 	/* First test that if the bdev supports write_zeroes, the request won't be split */
2515 	bdev->md_len = 0;
2516 	bdev->blocklen = 4096;
2517 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
2518 
2519 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
2520 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2521 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
2522 	CU_ASSERT_EQUAL(rc, 0);
2523 	num_completed = stub_complete_io(1);
2524 	CU_ASSERT_EQUAL(num_completed, 1);
2525 
2526 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
2527 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
2528 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
2529 	num_requests = 2;
2530 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
2531 
2532 	for (offset = 0; offset < num_requests; ++offset) {
2533 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
2534 						   offset * num_io_blocks, num_io_blocks, 0);
2535 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2536 	}
2537 
2538 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
2539 	CU_ASSERT_EQUAL(rc, 0);
2540 	num_completed = stub_complete_io(num_requests);
2541 	CU_ASSERT_EQUAL(num_completed, num_requests);
2542 
2543 	/* Check that the splitting is correct if bdev has interleaved metadata */
2544 	bdev->md_interleave = true;
2545 	bdev->md_len = 64;
2546 	bdev->blocklen = 4096 + 64;
2547 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
2548 
2549 	num_requests = offset = 0;
2550 	while (offset < num_blocks) {
2551 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
2552 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
2553 						   offset, num_io_blocks, 0);
2554 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2555 		offset += num_io_blocks;
2556 		num_requests++;
2557 	}
2558 
2559 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
2560 	CU_ASSERT_EQUAL(rc, 0);
2561 	num_completed = stub_complete_io(num_requests);
2562 	CU_ASSERT_EQUAL(num_completed, num_requests);
2563 	num_completed = stub_complete_io(num_requests);
2564 	assert(num_completed == 0);
2565 
2566 	/* Check the the same for separate metadata buffer */
2567 	bdev->md_interleave = false;
2568 	bdev->md_len = 64;
2569 	bdev->blocklen = 4096;
2570 
2571 	num_requests = offset = 0;
2572 	while (offset < num_blocks) {
2573 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
2574 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
2575 						   offset, num_io_blocks, 0);
2576 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
2577 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2578 		offset += num_io_blocks;
2579 		num_requests++;
2580 	}
2581 
2582 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
2583 	CU_ASSERT_EQUAL(rc, 0);
2584 	num_completed = stub_complete_io(num_requests);
2585 	CU_ASSERT_EQUAL(num_completed, num_requests);
2586 
2587 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
2588 	spdk_put_io_channel(ioch);
2589 	spdk_bdev_close(desc);
2590 	free_bdev(bdev);
2591 	spdk_bdev_finish(bdev_fini_cb, NULL);
2592 	poll_threads();
2593 }
2594 
2595 static void
2596 bdev_open_while_hotremove(void)
2597 {
2598 	struct spdk_bdev *bdev;
2599 	struct spdk_bdev_desc *desc[2] = {};
2600 	int rc;
2601 
2602 	bdev = allocate_bdev("bdev");
2603 
2604 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
2605 	CU_ASSERT(rc == 0);
2606 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
2607 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
2608 
2609 	spdk_bdev_unregister(bdev, NULL, NULL);
2610 
2611 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
2612 	CU_ASSERT(rc == -ENODEV);
2613 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
2614 
2615 	spdk_bdev_close(desc[0]);
2616 	free_bdev(bdev);
2617 }
2618 
2619 static void
2620 bdev_close_while_hotremove(void)
2621 {
2622 	struct spdk_bdev *bdev;
2623 	struct spdk_bdev_desc *desc = NULL;
2624 	int rc = 0;
2625 
2626 	bdev = allocate_bdev("bdev");
2627 
2628 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
2629 	CU_ASSERT_EQUAL(rc, 0);
2630 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2631 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2632 
2633 	/* Simulate hot-unplug by unregistering bdev */
2634 	g_event_type1 = 0xFF;
2635 	g_unregister_arg = NULL;
2636 	g_unregister_rc = -1;
2637 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
2638 	/* Close device while remove event is in flight */
2639 	spdk_bdev_close(desc);
2640 
2641 	/* Ensure that unregister callback is delayed */
2642 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
2643 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
2644 
2645 	poll_threads();
2646 
2647 	/* Event callback shall not be issued because device was closed */
2648 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
2649 	/* Unregister callback is issued */
2650 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
2651 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
2652 
2653 	free_bdev(bdev);
2654 }
2655 
2656 static void
2657 bdev_open_ext(void)
2658 {
2659 	struct spdk_bdev *bdev;
2660 	struct spdk_bdev_desc *desc1 = NULL;
2661 	struct spdk_bdev_desc *desc2 = NULL;
2662 	int rc = 0;
2663 
2664 	bdev = allocate_bdev("bdev");
2665 
2666 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
2667 	CU_ASSERT_EQUAL(rc, -EINVAL);
2668 
2669 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
2670 	CU_ASSERT_EQUAL(rc, 0);
2671 
2672 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
2673 	CU_ASSERT_EQUAL(rc, 0);
2674 
2675 	g_event_type1 = 0xFF;
2676 	g_event_type2 = 0xFF;
2677 
2678 	/* Simulate hot-unplug by unregistering bdev */
2679 	spdk_bdev_unregister(bdev, NULL, NULL);
2680 	poll_threads();
2681 
2682 	/* Check if correct events have been triggered in event callback fn */
2683 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
2684 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
2685 
2686 	free_bdev(bdev);
2687 	poll_threads();
2688 }
2689 
2690 struct timeout_io_cb_arg {
2691 	struct iovec iov;
2692 	uint8_t type;
2693 };
2694 
2695 static int
2696 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
2697 {
2698 	struct spdk_bdev_io *bdev_io;
2699 	int n = 0;
2700 
2701 	if (!ch) {
2702 		return -1;
2703 	}
2704 
2705 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
2706 		n++;
2707 	}
2708 
2709 	return n;
2710 }
2711 
2712 static void
2713 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
2714 {
2715 	struct timeout_io_cb_arg *ctx = cb_arg;
2716 
2717 	ctx->type = bdev_io->type;
2718 	ctx->iov.iov_base = bdev_io->iov.iov_base;
2719 	ctx->iov.iov_len = bdev_io->iov.iov_len;
2720 }
2721 
2722 static void
2723 bdev_set_io_timeout(void)
2724 {
2725 	struct spdk_bdev *bdev;
2726 	struct spdk_bdev_desc *desc = NULL;
2727 	struct spdk_io_channel *io_ch = NULL;
2728 	struct spdk_bdev_channel *bdev_ch = NULL;
2729 	struct timeout_io_cb_arg cb_arg;
2730 
2731 	spdk_bdev_initialize(bdev_init_cb, NULL);
2732 
2733 	bdev = allocate_bdev("bdev");
2734 
2735 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
2736 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2737 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2738 
2739 	io_ch = spdk_bdev_get_io_channel(desc);
2740 	CU_ASSERT(io_ch != NULL);
2741 
2742 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
2743 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
2744 
2745 	/* This is the part1.
2746 	 * We will check the bdev_ch->io_submitted list
2747 	 * TO make sure that it can link IOs and only the user submitted IOs
2748 	 */
2749 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
2750 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
2751 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
2752 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
2753 	stub_complete_io(1);
2754 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
2755 	stub_complete_io(1);
2756 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
2757 
2758 	/* Split IO */
2759 	bdev->optimal_io_boundary = 16;
2760 	bdev->split_on_optimal_io_boundary = true;
2761 
2762 	/* Now test that a single-vector command is split correctly.
2763 	 * Offset 14, length 8, payload 0xF000
2764 	 *  Child - Offset 14, length 2, payload 0xF000
2765 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
2766 	 *
2767 	 * Set up the expected values before calling spdk_bdev_read_blocks
2768 	 */
2769 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
2770 	/* We count all submitted IOs including IO that are generated by splitting. */
2771 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
2772 	stub_complete_io(1);
2773 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
2774 	stub_complete_io(1);
2775 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
2776 
2777 	/* Also include the reset IO */
2778 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
2779 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
2780 	poll_threads();
2781 	stub_complete_io(1);
2782 	poll_threads();
2783 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
2784 
2785 	/* This is part2
2786 	 * Test the desc timeout poller register
2787 	 */
2788 
2789 	/* Successfully set the timeout */
2790 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
2791 	CU_ASSERT(desc->io_timeout_poller != NULL);
2792 	CU_ASSERT(desc->timeout_in_sec == 30);
2793 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
2794 	CU_ASSERT(desc->cb_arg == &cb_arg);
2795 
2796 	/* Change the timeout limit */
2797 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
2798 	CU_ASSERT(desc->io_timeout_poller != NULL);
2799 	CU_ASSERT(desc->timeout_in_sec == 20);
2800 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
2801 	CU_ASSERT(desc->cb_arg == &cb_arg);
2802 
2803 	/* Disable the timeout */
2804 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
2805 	CU_ASSERT(desc->io_timeout_poller == NULL);
2806 
2807 	/* This the part3
2808 	 * We will test to catch timeout IO and check whether the IO is
2809 	 * the submitted one.
2810 	 */
2811 	memset(&cb_arg, 0, sizeof(cb_arg));
2812 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
2813 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
2814 
2815 	/* Don't reach the limit */
2816 	spdk_delay_us(15 * spdk_get_ticks_hz());
2817 	poll_threads();
2818 	CU_ASSERT(cb_arg.type == 0);
2819 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
2820 	CU_ASSERT(cb_arg.iov.iov_len == 0);
2821 
2822 	/* 15 + 15 = 30 reach the limit */
2823 	spdk_delay_us(15 * spdk_get_ticks_hz());
2824 	poll_threads();
2825 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
2826 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
2827 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
2828 	stub_complete_io(1);
2829 
2830 	/* Use the same split IO above and check the IO */
2831 	memset(&cb_arg, 0, sizeof(cb_arg));
2832 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
2833 
2834 	/* The first child complete in time */
2835 	spdk_delay_us(15 * spdk_get_ticks_hz());
2836 	poll_threads();
2837 	stub_complete_io(1);
2838 	CU_ASSERT(cb_arg.type == 0);
2839 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
2840 	CU_ASSERT(cb_arg.iov.iov_len == 0);
2841 
2842 	/* The second child reach the limit */
2843 	spdk_delay_us(15 * spdk_get_ticks_hz());
2844 	poll_threads();
2845 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
2846 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
2847 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
2848 	stub_complete_io(1);
2849 
2850 	/* Also include the reset IO */
2851 	memset(&cb_arg, 0, sizeof(cb_arg));
2852 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
2853 	spdk_delay_us(30 * spdk_get_ticks_hz());
2854 	poll_threads();
2855 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
2856 	stub_complete_io(1);
2857 	poll_threads();
2858 
2859 	spdk_put_io_channel(io_ch);
2860 	spdk_bdev_close(desc);
2861 	free_bdev(bdev);
2862 	spdk_bdev_finish(bdev_fini_cb, NULL);
2863 	poll_threads();
2864 }
2865 
2866 static void
2867 lba_range_overlap(void)
2868 {
2869 	struct lba_range r1, r2;
2870 
2871 	r1.offset = 100;
2872 	r1.length = 50;
2873 
2874 	r2.offset = 0;
2875 	r2.length = 1;
2876 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
2877 
2878 	r2.offset = 0;
2879 	r2.length = 100;
2880 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
2881 
2882 	r2.offset = 0;
2883 	r2.length = 110;
2884 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2885 
2886 	r2.offset = 100;
2887 	r2.length = 10;
2888 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2889 
2890 	r2.offset = 110;
2891 	r2.length = 20;
2892 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2893 
2894 	r2.offset = 140;
2895 	r2.length = 150;
2896 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2897 
2898 	r2.offset = 130;
2899 	r2.length = 200;
2900 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2901 
2902 	r2.offset = 150;
2903 	r2.length = 100;
2904 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
2905 
2906 	r2.offset = 110;
2907 	r2.length = 0;
2908 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
2909 }
2910 
2911 static bool g_lock_lba_range_done;
2912 static bool g_unlock_lba_range_done;
2913 
2914 static void
2915 lock_lba_range_done(void *ctx, int status)
2916 {
2917 	g_lock_lba_range_done = true;
2918 }
2919 
2920 static void
2921 unlock_lba_range_done(void *ctx, int status)
2922 {
2923 	g_unlock_lba_range_done = true;
2924 }
2925 
2926 static void
2927 lock_lba_range_check_ranges(void)
2928 {
2929 	struct spdk_bdev *bdev;
2930 	struct spdk_bdev_desc *desc = NULL;
2931 	struct spdk_io_channel *io_ch;
2932 	struct spdk_bdev_channel *channel;
2933 	struct lba_range *range;
2934 	int ctx1;
2935 	int rc;
2936 
2937 	spdk_bdev_initialize(bdev_init_cb, NULL);
2938 
2939 	bdev = allocate_bdev("bdev0");
2940 
2941 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2942 	CU_ASSERT(rc == 0);
2943 	CU_ASSERT(desc != NULL);
2944 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2945 	io_ch = spdk_bdev_get_io_channel(desc);
2946 	CU_ASSERT(io_ch != NULL);
2947 	channel = spdk_io_channel_get_ctx(io_ch);
2948 
2949 	g_lock_lba_range_done = false;
2950 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
2951 	CU_ASSERT(rc == 0);
2952 	poll_threads();
2953 
2954 	CU_ASSERT(g_lock_lba_range_done == true);
2955 	range = TAILQ_FIRST(&channel->locked_ranges);
2956 	SPDK_CU_ASSERT_FATAL(range != NULL);
2957 	CU_ASSERT(range->offset == 20);
2958 	CU_ASSERT(range->length == 10);
2959 	CU_ASSERT(range->owner_ch == channel);
2960 
2961 	/* Unlocks must exactly match a lock. */
2962 	g_unlock_lba_range_done = false;
2963 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
2964 	CU_ASSERT(rc == -EINVAL);
2965 	CU_ASSERT(g_unlock_lba_range_done == false);
2966 
2967 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
2968 	CU_ASSERT(rc == 0);
2969 	spdk_delay_us(100);
2970 	poll_threads();
2971 
2972 	CU_ASSERT(g_unlock_lba_range_done == true);
2973 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
2974 
2975 	spdk_put_io_channel(io_ch);
2976 	spdk_bdev_close(desc);
2977 	free_bdev(bdev);
2978 	spdk_bdev_finish(bdev_fini_cb, NULL);
2979 	poll_threads();
2980 }
2981 
2982 static void
2983 lock_lba_range_with_io_outstanding(void)
2984 {
2985 	struct spdk_bdev *bdev;
2986 	struct spdk_bdev_desc *desc = NULL;
2987 	struct spdk_io_channel *io_ch;
2988 	struct spdk_bdev_channel *channel;
2989 	struct lba_range *range;
2990 	char buf[4096];
2991 	int ctx1;
2992 	int rc;
2993 
2994 	spdk_bdev_initialize(bdev_init_cb, NULL);
2995 
2996 	bdev = allocate_bdev("bdev0");
2997 
2998 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2999 	CU_ASSERT(rc == 0);
3000 	CU_ASSERT(desc != NULL);
3001 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3002 	io_ch = spdk_bdev_get_io_channel(desc);
3003 	CU_ASSERT(io_ch != NULL);
3004 	channel = spdk_io_channel_get_ctx(io_ch);
3005 
3006 	g_io_done = false;
3007 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
3008 	CU_ASSERT(rc == 0);
3009 
3010 	g_lock_lba_range_done = false;
3011 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3012 	CU_ASSERT(rc == 0);
3013 	poll_threads();
3014 
3015 	/* The lock should immediately become valid, since there are no outstanding
3016 	 * write I/O.
3017 	 */
3018 	CU_ASSERT(g_io_done == false);
3019 	CU_ASSERT(g_lock_lba_range_done == true);
3020 	range = TAILQ_FIRST(&channel->locked_ranges);
3021 	SPDK_CU_ASSERT_FATAL(range != NULL);
3022 	CU_ASSERT(range->offset == 20);
3023 	CU_ASSERT(range->length == 10);
3024 	CU_ASSERT(range->owner_ch == channel);
3025 	CU_ASSERT(range->locked_ctx == &ctx1);
3026 
3027 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3028 	CU_ASSERT(rc == 0);
3029 	stub_complete_io(1);
3030 	spdk_delay_us(100);
3031 	poll_threads();
3032 
3033 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
3034 
3035 	/* Now try again, but with a write I/O. */
3036 	g_io_done = false;
3037 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
3038 	CU_ASSERT(rc == 0);
3039 
3040 	g_lock_lba_range_done = false;
3041 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3042 	CU_ASSERT(rc == 0);
3043 	poll_threads();
3044 
3045 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
3046 	 * But note that the range should be on the channel's locked_list, to make sure no
3047 	 * new write I/O are started.
3048 	 */
3049 	CU_ASSERT(g_io_done == false);
3050 	CU_ASSERT(g_lock_lba_range_done == false);
3051 	range = TAILQ_FIRST(&channel->locked_ranges);
3052 	SPDK_CU_ASSERT_FATAL(range != NULL);
3053 	CU_ASSERT(range->offset == 20);
3054 	CU_ASSERT(range->length == 10);
3055 
3056 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
3057 	 * our callback was invoked).
3058 	 */
3059 	stub_complete_io(1);
3060 	spdk_delay_us(100);
3061 	poll_threads();
3062 	CU_ASSERT(g_io_done == true);
3063 	CU_ASSERT(g_lock_lba_range_done == true);
3064 
3065 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
3066 	CU_ASSERT(rc == 0);
3067 	poll_threads();
3068 
3069 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
3070 
3071 	spdk_put_io_channel(io_ch);
3072 	spdk_bdev_close(desc);
3073 	free_bdev(bdev);
3074 	spdk_bdev_finish(bdev_fini_cb, NULL);
3075 	poll_threads();
3076 }
3077 
3078 static void
3079 lock_lba_range_overlapped(void)
3080 {
3081 	struct spdk_bdev *bdev;
3082 	struct spdk_bdev_desc *desc = NULL;
3083 	struct spdk_io_channel *io_ch;
3084 	struct spdk_bdev_channel *channel;
3085 	struct lba_range *range;
3086 	int ctx1;
3087 	int rc;
3088 
3089 	spdk_bdev_initialize(bdev_init_cb, NULL);
3090 
3091 	bdev = allocate_bdev("bdev0");
3092 
3093 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3094 	CU_ASSERT(rc == 0);
3095 	CU_ASSERT(desc != NULL);
3096 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3097 	io_ch = spdk_bdev_get_io_channel(desc);
3098 	CU_ASSERT(io_ch != NULL);
3099 	channel = spdk_io_channel_get_ctx(io_ch);
3100 
3101 	/* Lock range 20-29. */
3102 	g_lock_lba_range_done = false;
3103 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3104 	CU_ASSERT(rc == 0);
3105 	poll_threads();
3106 
3107 	CU_ASSERT(g_lock_lba_range_done == true);
3108 	range = TAILQ_FIRST(&channel->locked_ranges);
3109 	SPDK_CU_ASSERT_FATAL(range != NULL);
3110 	CU_ASSERT(range->offset == 20);
3111 	CU_ASSERT(range->length == 10);
3112 
3113 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
3114 	 * 20-29.
3115 	 */
3116 	g_lock_lba_range_done = false;
3117 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
3118 	CU_ASSERT(rc == 0);
3119 	poll_threads();
3120 
3121 	CU_ASSERT(g_lock_lba_range_done == false);
3122 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
3123 	SPDK_CU_ASSERT_FATAL(range != NULL);
3124 	CU_ASSERT(range->offset == 25);
3125 	CU_ASSERT(range->length == 15);
3126 
3127 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
3128 	 * no longer overlaps with an active lock.
3129 	 */
3130 	g_unlock_lba_range_done = false;
3131 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
3132 	CU_ASSERT(rc == 0);
3133 	poll_threads();
3134 
3135 	CU_ASSERT(g_unlock_lba_range_done == true);
3136 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
3137 	range = TAILQ_FIRST(&channel->locked_ranges);
3138 	SPDK_CU_ASSERT_FATAL(range != NULL);
3139 	CU_ASSERT(range->offset == 25);
3140 	CU_ASSERT(range->length == 15);
3141 
3142 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
3143 	 * currently active 25-39 lock.
3144 	 */
3145 	g_lock_lba_range_done = false;
3146 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
3147 	CU_ASSERT(rc == 0);
3148 	poll_threads();
3149 
3150 	CU_ASSERT(g_lock_lba_range_done == true);
3151 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
3152 	SPDK_CU_ASSERT_FATAL(range != NULL);
3153 	range = TAILQ_NEXT(range, tailq);
3154 	SPDK_CU_ASSERT_FATAL(range != NULL);
3155 	CU_ASSERT(range->offset == 40);
3156 	CU_ASSERT(range->length == 20);
3157 
3158 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
3159 	g_lock_lba_range_done = false;
3160 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
3161 	CU_ASSERT(rc == 0);
3162 	poll_threads();
3163 
3164 	CU_ASSERT(g_lock_lba_range_done == false);
3165 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
3166 	SPDK_CU_ASSERT_FATAL(range != NULL);
3167 	CU_ASSERT(range->offset == 35);
3168 	CU_ASSERT(range->length == 10);
3169 
3170 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
3171 	 * the 40-59 lock is still active.
3172 	 */
3173 	g_unlock_lba_range_done = false;
3174 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
3175 	CU_ASSERT(rc == 0);
3176 	poll_threads();
3177 
3178 	CU_ASSERT(g_unlock_lba_range_done == true);
3179 	CU_ASSERT(g_lock_lba_range_done == false);
3180 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
3181 	SPDK_CU_ASSERT_FATAL(range != NULL);
3182 	CU_ASSERT(range->offset == 35);
3183 	CU_ASSERT(range->length == 10);
3184 
3185 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
3186 	 * no longer any active overlapping locks.
3187 	 */
3188 	g_unlock_lba_range_done = false;
3189 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
3190 	CU_ASSERT(rc == 0);
3191 	poll_threads();
3192 
3193 	CU_ASSERT(g_unlock_lba_range_done == true);
3194 	CU_ASSERT(g_lock_lba_range_done == true);
3195 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
3196 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
3197 	SPDK_CU_ASSERT_FATAL(range != NULL);
3198 	CU_ASSERT(range->offset == 35);
3199 	CU_ASSERT(range->length == 10);
3200 
3201 	/* Finally, unlock 35-44. */
3202 	g_unlock_lba_range_done = false;
3203 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
3204 	CU_ASSERT(rc == 0);
3205 	poll_threads();
3206 
3207 	CU_ASSERT(g_unlock_lba_range_done == true);
3208 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
3209 
3210 	spdk_put_io_channel(io_ch);
3211 	spdk_bdev_close(desc);
3212 	free_bdev(bdev);
3213 	spdk_bdev_finish(bdev_fini_cb, NULL);
3214 	poll_threads();
3215 }
3216 
3217 static void
3218 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
3219 {
3220 	g_abort_done = true;
3221 	g_abort_status = bdev_io->internal.status;
3222 	spdk_bdev_free_io(bdev_io);
3223 }
3224 
3225 static void
3226 bdev_io_abort(void)
3227 {
3228 	struct spdk_bdev *bdev;
3229 	struct spdk_bdev_desc *desc = NULL;
3230 	struct spdk_io_channel *io_ch;
3231 	struct spdk_bdev_channel *channel;
3232 	struct spdk_bdev_mgmt_channel *mgmt_ch;
3233 	struct spdk_bdev_opts bdev_opts = {
3234 		.bdev_io_pool_size = 7,
3235 		.bdev_io_cache_size = 2,
3236 	};
3237 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
3238 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
3239 	int rc;
3240 
3241 	rc = spdk_bdev_set_opts(&bdev_opts);
3242 	CU_ASSERT(rc == 0);
3243 	spdk_bdev_initialize(bdev_init_cb, NULL);
3244 
3245 	bdev = allocate_bdev("bdev0");
3246 
3247 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3248 	CU_ASSERT(rc == 0);
3249 	CU_ASSERT(desc != NULL);
3250 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3251 	io_ch = spdk_bdev_get_io_channel(desc);
3252 	CU_ASSERT(io_ch != NULL);
3253 	channel = spdk_io_channel_get_ctx(io_ch);
3254 	mgmt_ch = channel->shared_resource->mgmt_ch;
3255 
3256 	g_abort_done = false;
3257 
3258 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
3259 
3260 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3261 	CU_ASSERT(rc == -ENOTSUP);
3262 
3263 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
3264 
3265 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
3266 	CU_ASSERT(rc == 0);
3267 	CU_ASSERT(g_abort_done == true);
3268 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
3269 
3270 	/* Test the case that the target I/O was successfully aborted. */
3271 	g_io_done = false;
3272 
3273 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
3274 	CU_ASSERT(rc == 0);
3275 	CU_ASSERT(g_io_done == false);
3276 
3277 	g_abort_done = false;
3278 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3279 
3280 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3281 	CU_ASSERT(rc == 0);
3282 	CU_ASSERT(g_io_done == true);
3283 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3284 	stub_complete_io(1);
3285 	CU_ASSERT(g_abort_done == true);
3286 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3287 
3288 	/* Test the case that the target I/O was not aborted because it completed
3289 	 * in the middle of execution of the abort.
3290 	 */
3291 	g_io_done = false;
3292 
3293 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
3294 	CU_ASSERT(rc == 0);
3295 	CU_ASSERT(g_io_done == false);
3296 
3297 	g_abort_done = false;
3298 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
3299 
3300 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3301 	CU_ASSERT(rc == 0);
3302 	CU_ASSERT(g_io_done == false);
3303 
3304 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3305 	stub_complete_io(1);
3306 	CU_ASSERT(g_io_done == true);
3307 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3308 
3309 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
3310 	stub_complete_io(1);
3311 	CU_ASSERT(g_abort_done == true);
3312 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3313 
3314 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3315 
3316 	bdev->optimal_io_boundary = 16;
3317 	bdev->split_on_optimal_io_boundary = true;
3318 
3319 	/* Test that a single-vector command which is split is aborted correctly.
3320 	 * Offset 14, length 8, payload 0xF000
3321 	 *  Child - Offset 14, length 2, payload 0xF000
3322 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
3323 	 */
3324 	g_io_done = false;
3325 
3326 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
3327 	CU_ASSERT(rc == 0);
3328 	CU_ASSERT(g_io_done == false);
3329 
3330 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3331 
3332 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3333 
3334 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3335 	CU_ASSERT(rc == 0);
3336 	CU_ASSERT(g_io_done == true);
3337 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3338 	stub_complete_io(2);
3339 	CU_ASSERT(g_abort_done == true);
3340 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3341 
3342 	/* Test that a multi-vector command that needs to be split by strip and then
3343 	 * needs to be split is aborted correctly. Abort is requested before the second
3344 	 * child I/O was submitted. The parent I/O should complete with failure without
3345 	 * submitting the second child I/O.
3346 	 */
3347 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
3348 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
3349 		iov[i].iov_len = 512;
3350 	}
3351 
3352 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
3353 	g_io_done = false;
3354 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
3355 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
3356 	CU_ASSERT(rc == 0);
3357 	CU_ASSERT(g_io_done == false);
3358 
3359 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3360 
3361 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3362 
3363 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3364 	CU_ASSERT(rc == 0);
3365 	CU_ASSERT(g_io_done == true);
3366 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3367 	stub_complete_io(1);
3368 	CU_ASSERT(g_abort_done == true);
3369 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3370 
3371 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3372 
3373 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3374 
3375 	bdev->optimal_io_boundary = 16;
3376 	g_io_done = false;
3377 
3378 	/* Test that a ingle-vector command which is split is aborted correctly.
3379 	 * Differently from the above, the child abort request will be submitted
3380 	 * sequentially due to the capacity of spdk_bdev_io.
3381 	 */
3382 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
3383 	CU_ASSERT(rc == 0);
3384 	CU_ASSERT(g_io_done == false);
3385 
3386 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
3387 
3388 	g_abort_done = false;
3389 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3390 
3391 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3392 	CU_ASSERT(rc == 0);
3393 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
3394 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
3395 
3396 	stub_complete_io(1);
3397 	CU_ASSERT(g_io_done == true);
3398 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3399 	stub_complete_io(3);
3400 	CU_ASSERT(g_abort_done == true);
3401 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3402 
3403 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3404 
3405 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3406 
3407 	spdk_put_io_channel(io_ch);
3408 	spdk_bdev_close(desc);
3409 	free_bdev(bdev);
3410 	spdk_bdev_finish(bdev_fini_cb, NULL);
3411 	poll_threads();
3412 }
3413 
3414 int
3415 main(int argc, char **argv)
3416 {
3417 	CU_pSuite		suite = NULL;
3418 	unsigned int		num_failures;
3419 
3420 	CU_set_error_action(CUEA_ABORT);
3421 	CU_initialize_registry();
3422 
3423 	suite = CU_add_suite("bdev", null_init, null_clean);
3424 
3425 	CU_ADD_TEST(suite, bytes_to_blocks_test);
3426 	CU_ADD_TEST(suite, num_blocks_test);
3427 	CU_ADD_TEST(suite, io_valid_test);
3428 	CU_ADD_TEST(suite, open_write_test);
3429 	CU_ADD_TEST(suite, alias_add_del_test);
3430 	CU_ADD_TEST(suite, get_device_stat_test);
3431 	CU_ADD_TEST(suite, bdev_io_types_test);
3432 	CU_ADD_TEST(suite, bdev_io_wait_test);
3433 	CU_ADD_TEST(suite, bdev_io_spans_boundary_test);
3434 	CU_ADD_TEST(suite, bdev_io_split_test);
3435 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
3436 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
3437 	CU_ADD_TEST(suite, bdev_io_alignment);
3438 	CU_ADD_TEST(suite, bdev_histograms);
3439 	CU_ADD_TEST(suite, bdev_write_zeroes);
3440 	CU_ADD_TEST(suite, bdev_compare_and_write);
3441 	CU_ADD_TEST(suite, bdev_compare);
3442 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
3443 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
3444 	CU_ADD_TEST(suite, bdev_open_ext);
3445 	CU_ADD_TEST(suite, bdev_set_io_timeout);
3446 	CU_ADD_TEST(suite, lba_range_overlap);
3447 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
3448 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
3449 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
3450 	CU_ADD_TEST(suite, bdev_io_abort);
3451 
3452 	allocate_cores(1);
3453 	allocate_threads(1);
3454 	set_thread(0);
3455 
3456 	CU_basic_set_mode(CU_BRM_VERBOSE);
3457 	CU_basic_run_tests();
3458 	num_failures = CU_get_number_of_failures();
3459 	CU_cleanup_registry();
3460 
3461 	free_threads();
3462 	free_cores();
3463 
3464 	return num_failures;
3465 }
3466