xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision 510f4c134a21b45ff3a5add9ebc6c6cf7e49aeab)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (c) Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk_cunit.h"
8 
9 #include "common/lib/ut_multithread.c"
10 #include "unit/lib/json_mock.c"
11 
12 #include "spdk/config.h"
13 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
14 #undef SPDK_CONFIG_VTUNE
15 
16 #include "bdev/bdev.c"
17 
18 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
19 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
20 DEFINE_STUB(spdk_memory_domain_get_dma_device_id, const char *, (struct spdk_memory_domain *domain),
21 	    "test_domain");
22 DEFINE_STUB(spdk_memory_domain_get_dma_device_type, enum spdk_dma_device_type,
23 	    (struct spdk_memory_domain *domain), 0);
24 
25 static bool g_memory_domain_pull_data_called;
26 static bool g_memory_domain_push_data_called;
27 
28 DEFINE_RETURN_MOCK(spdk_memory_domain_pull_data, int);
29 int
30 spdk_memory_domain_pull_data(struct spdk_memory_domain *src_domain, void *src_domain_ctx,
31 			     struct iovec *src_iov, uint32_t src_iov_cnt, struct iovec *dst_iov, uint32_t dst_iov_cnt,
32 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
33 {
34 	g_memory_domain_pull_data_called = true;
35 	HANDLE_RETURN_MOCK(spdk_memory_domain_pull_data);
36 	cpl_cb(cpl_cb_arg, 0);
37 	return 0;
38 }
39 
40 DEFINE_RETURN_MOCK(spdk_memory_domain_push_data, int);
41 int
42 spdk_memory_domain_push_data(struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
43 			     struct iovec *dst_iov, uint32_t dst_iovcnt, struct iovec *src_iov, uint32_t src_iovcnt,
44 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
45 {
46 	g_memory_domain_push_data_called = true;
47 	HANDLE_RETURN_MOCK(spdk_memory_domain_push_data);
48 	cpl_cb(cpl_cb_arg, 0);
49 	return 0;
50 }
51 
52 int g_status;
53 int g_count;
54 enum spdk_bdev_event_type g_event_type1;
55 enum spdk_bdev_event_type g_event_type2;
56 enum spdk_bdev_event_type g_event_type3;
57 enum spdk_bdev_event_type g_event_type4;
58 struct spdk_histogram_data *g_histogram;
59 void *g_unregister_arg;
60 int g_unregister_rc;
61 
62 void
63 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
64 			 int *sc, int *sk, int *asc, int *ascq)
65 {
66 }
67 
68 static int
69 null_init(void)
70 {
71 	return 0;
72 }
73 
74 static int
75 null_clean(void)
76 {
77 	return 0;
78 }
79 
80 static int
81 stub_destruct(void *ctx)
82 {
83 	return 0;
84 }
85 
86 struct ut_expected_io {
87 	uint8_t				type;
88 	uint64_t			offset;
89 	uint64_t			length;
90 	int				iovcnt;
91 	struct iovec			iov[BDEV_IO_NUM_CHILD_IOV];
92 	void				*md_buf;
93 	struct spdk_bdev_ext_io_opts	*ext_io_opts;
94 	bool				copy_opts;
95 	TAILQ_ENTRY(ut_expected_io)	link;
96 };
97 
98 struct bdev_ut_channel {
99 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
100 	uint32_t			outstanding_io_count;
101 	TAILQ_HEAD(, ut_expected_io)	expected_io;
102 };
103 
104 static bool g_io_done;
105 static struct spdk_bdev_io *g_bdev_io;
106 static enum spdk_bdev_io_status g_io_status;
107 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
108 static uint32_t g_bdev_ut_io_device;
109 static struct bdev_ut_channel *g_bdev_ut_channel;
110 static void *g_compare_read_buf;
111 static uint32_t g_compare_read_buf_len;
112 static void *g_compare_write_buf;
113 static uint32_t g_compare_write_buf_len;
114 static void *g_compare_md_buf;
115 static bool g_abort_done;
116 static enum spdk_bdev_io_status g_abort_status;
117 static void *g_zcopy_read_buf;
118 static uint32_t g_zcopy_read_buf_len;
119 static void *g_zcopy_write_buf;
120 static uint32_t g_zcopy_write_buf_len;
121 static struct spdk_bdev_io *g_zcopy_bdev_io;
122 
123 static struct ut_expected_io *
124 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
125 {
126 	struct ut_expected_io *expected_io;
127 
128 	expected_io = calloc(1, sizeof(*expected_io));
129 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
130 
131 	expected_io->type = type;
132 	expected_io->offset = offset;
133 	expected_io->length = length;
134 	expected_io->iovcnt = iovcnt;
135 
136 	return expected_io;
137 }
138 
139 static void
140 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
141 {
142 	expected_io->iov[pos].iov_base = base;
143 	expected_io->iov[pos].iov_len = len;
144 }
145 
146 static void
147 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
148 {
149 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
150 	struct ut_expected_io *expected_io;
151 	struct iovec *iov, *expected_iov;
152 	struct spdk_bdev_io *bio_to_abort;
153 	int i;
154 
155 	g_bdev_io = bdev_io;
156 
157 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
158 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
159 
160 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
161 		CU_ASSERT(g_compare_read_buf_len == len);
162 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
163 		if (bdev_io->bdev->md_len && bdev_io->u.bdev.md_buf && g_compare_md_buf) {
164 			memcpy(bdev_io->u.bdev.md_buf, g_compare_md_buf,
165 			       bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks);
166 		}
167 	}
168 
169 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
170 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
171 
172 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
173 		CU_ASSERT(g_compare_write_buf_len == len);
174 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
175 	}
176 
177 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
178 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
179 
180 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
181 		CU_ASSERT(g_compare_read_buf_len == len);
182 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
183 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
184 		}
185 		if (bdev_io->u.bdev.md_buf &&
186 		    memcmp(bdev_io->u.bdev.md_buf, g_compare_md_buf,
187 			   bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks)) {
188 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
189 		}
190 	}
191 
192 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
193 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
194 			TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
195 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
196 					TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
197 					ch->outstanding_io_count--;
198 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
199 					break;
200 				}
201 			}
202 		}
203 	}
204 
205 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) {
206 		if (bdev_io->u.bdev.zcopy.start) {
207 			g_zcopy_bdev_io = bdev_io;
208 			if (bdev_io->u.bdev.zcopy.populate) {
209 				/* Start of a read */
210 				CU_ASSERT(g_zcopy_read_buf != NULL);
211 				CU_ASSERT(g_zcopy_read_buf_len > 0);
212 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_read_buf;
213 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_read_buf_len;
214 				bdev_io->u.bdev.iovcnt = 1;
215 			} else {
216 				/* Start of a write */
217 				CU_ASSERT(g_zcopy_write_buf != NULL);
218 				CU_ASSERT(g_zcopy_write_buf_len > 0);
219 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_write_buf;
220 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_write_buf_len;
221 				bdev_io->u.bdev.iovcnt = 1;
222 			}
223 		} else {
224 			if (bdev_io->u.bdev.zcopy.commit) {
225 				/* End of write */
226 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_write_buf);
227 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_write_buf_len);
228 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
229 				g_zcopy_write_buf = NULL;
230 				g_zcopy_write_buf_len = 0;
231 			} else {
232 				/* End of read */
233 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_read_buf);
234 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_read_buf_len);
235 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
236 				g_zcopy_read_buf = NULL;
237 				g_zcopy_read_buf_len = 0;
238 			}
239 		}
240 	}
241 
242 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
243 	ch->outstanding_io_count++;
244 
245 	expected_io = TAILQ_FIRST(&ch->expected_io);
246 	if (expected_io == NULL) {
247 		return;
248 	}
249 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
250 
251 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
252 		CU_ASSERT(bdev_io->type == expected_io->type);
253 	}
254 
255 	if (expected_io->md_buf != NULL) {
256 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
257 		if (bdev_io->u.bdev.ext_opts) {
258 			CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.ext_opts->metadata);
259 		}
260 	}
261 
262 	if (expected_io->copy_opts) {
263 		if (expected_io->ext_io_opts) {
264 			/* opts are not NULL so it should have been copied */
265 			CU_ASSERT(expected_io->ext_io_opts != bdev_io->u.bdev.ext_opts);
266 			CU_ASSERT(bdev_io->u.bdev.ext_opts == &bdev_io->internal.ext_opts_copy);
267 			/* internal opts always points to opts passed */
268 			CU_ASSERT(expected_io->ext_io_opts == bdev_io->internal.ext_opts);
269 		} else {
270 			/* passed opts was NULL so we expect bdev_io opts to be NULL */
271 			CU_ASSERT(bdev_io->u.bdev.ext_opts == NULL);
272 		}
273 	} else {
274 		/* opts were not copied so they should be equal */
275 		CU_ASSERT(expected_io->ext_io_opts == bdev_io->u.bdev.ext_opts);
276 	}
277 
278 	if (expected_io->length == 0) {
279 		free(expected_io);
280 		return;
281 	}
282 
283 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
284 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
285 
286 	if (expected_io->iovcnt == 0) {
287 		free(expected_io);
288 		/* UNMAP, WRITE_ZEROES and FLUSH don't have iovs, so we can just return now. */
289 		return;
290 	}
291 
292 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
293 	for (i = 0; i < expected_io->iovcnt; i++) {
294 		expected_iov = &expected_io->iov[i];
295 		if (bdev_io->internal.orig_iovcnt == 0) {
296 			iov = &bdev_io->u.bdev.iovs[i];
297 		} else {
298 			iov = bdev_io->internal.orig_iovs;
299 		}
300 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
301 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
302 	}
303 
304 	free(expected_io);
305 }
306 
307 static void
308 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
309 			       struct spdk_bdev_io *bdev_io, bool success)
310 {
311 	CU_ASSERT(success == true);
312 
313 	stub_submit_request(_ch, bdev_io);
314 }
315 
316 static void
317 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
318 {
319 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
320 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
321 }
322 
323 static uint32_t
324 stub_complete_io(uint32_t num_to_complete)
325 {
326 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
327 	struct spdk_bdev_io *bdev_io;
328 	static enum spdk_bdev_io_status io_status;
329 	uint32_t num_completed = 0;
330 
331 	while (num_completed < num_to_complete) {
332 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
333 			break;
334 		}
335 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
336 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
337 		ch->outstanding_io_count--;
338 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
339 			    g_io_exp_status;
340 		spdk_bdev_io_complete(bdev_io, io_status);
341 		num_completed++;
342 	}
343 
344 	return num_completed;
345 }
346 
347 static struct spdk_io_channel *
348 bdev_ut_get_io_channel(void *ctx)
349 {
350 	return spdk_get_io_channel(&g_bdev_ut_io_device);
351 }
352 
353 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
354 	[SPDK_BDEV_IO_TYPE_READ]		= true,
355 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
356 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
357 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
358 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
359 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
360 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
361 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
362 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
363 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
364 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
365 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
366 };
367 
368 static void
369 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
370 {
371 	g_io_types_supported[io_type] = enable;
372 }
373 
374 static bool
375 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
376 {
377 	return g_io_types_supported[io_type];
378 }
379 
380 static struct spdk_bdev_fn_table fn_table = {
381 	.destruct = stub_destruct,
382 	.submit_request = stub_submit_request,
383 	.get_io_channel = bdev_ut_get_io_channel,
384 	.io_type_supported = stub_io_type_supported,
385 };
386 
387 static int
388 bdev_ut_create_ch(void *io_device, void *ctx_buf)
389 {
390 	struct bdev_ut_channel *ch = ctx_buf;
391 
392 	CU_ASSERT(g_bdev_ut_channel == NULL);
393 	g_bdev_ut_channel = ch;
394 
395 	TAILQ_INIT(&ch->outstanding_io);
396 	ch->outstanding_io_count = 0;
397 	TAILQ_INIT(&ch->expected_io);
398 	return 0;
399 }
400 
401 static void
402 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
403 {
404 	CU_ASSERT(g_bdev_ut_channel != NULL);
405 	g_bdev_ut_channel = NULL;
406 }
407 
408 struct spdk_bdev_module bdev_ut_if;
409 
410 static int
411 bdev_ut_module_init(void)
412 {
413 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
414 				sizeof(struct bdev_ut_channel), NULL);
415 	spdk_bdev_module_init_done(&bdev_ut_if);
416 	return 0;
417 }
418 
419 static void
420 bdev_ut_module_fini(void)
421 {
422 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
423 }
424 
425 struct spdk_bdev_module bdev_ut_if = {
426 	.name = "bdev_ut",
427 	.module_init = bdev_ut_module_init,
428 	.module_fini = bdev_ut_module_fini,
429 	.async_init = true,
430 };
431 
432 static void vbdev_ut_examine(struct spdk_bdev *bdev);
433 
434 static int
435 vbdev_ut_module_init(void)
436 {
437 	return 0;
438 }
439 
440 static void
441 vbdev_ut_module_fini(void)
442 {
443 }
444 
445 struct spdk_bdev_module vbdev_ut_if = {
446 	.name = "vbdev_ut",
447 	.module_init = vbdev_ut_module_init,
448 	.module_fini = vbdev_ut_module_fini,
449 	.examine_config = vbdev_ut_examine,
450 };
451 
452 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
453 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
454 
455 static void
456 vbdev_ut_examine(struct spdk_bdev *bdev)
457 {
458 	spdk_bdev_module_examine_done(&vbdev_ut_if);
459 }
460 
461 static struct spdk_bdev *
462 allocate_bdev(char *name)
463 {
464 	struct spdk_bdev *bdev;
465 	int rc;
466 
467 	bdev = calloc(1, sizeof(*bdev));
468 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
469 
470 	bdev->name = name;
471 	bdev->fn_table = &fn_table;
472 	bdev->module = &bdev_ut_if;
473 	bdev->blockcnt = 1024;
474 	bdev->blocklen = 512;
475 
476 	rc = spdk_bdev_register(bdev);
477 	poll_threads();
478 	CU_ASSERT(rc == 0);
479 
480 	return bdev;
481 }
482 
483 static struct spdk_bdev *
484 allocate_vbdev(char *name)
485 {
486 	struct spdk_bdev *bdev;
487 	int rc;
488 
489 	bdev = calloc(1, sizeof(*bdev));
490 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
491 
492 	bdev->name = name;
493 	bdev->fn_table = &fn_table;
494 	bdev->module = &vbdev_ut_if;
495 
496 	rc = spdk_bdev_register(bdev);
497 	poll_threads();
498 	CU_ASSERT(rc == 0);
499 
500 	return bdev;
501 }
502 
503 static void
504 free_bdev(struct spdk_bdev *bdev)
505 {
506 	spdk_bdev_unregister(bdev, NULL, NULL);
507 	poll_threads();
508 	memset(bdev, 0xFF, sizeof(*bdev));
509 	free(bdev);
510 }
511 
512 static void
513 free_vbdev(struct spdk_bdev *bdev)
514 {
515 	spdk_bdev_unregister(bdev, NULL, NULL);
516 	poll_threads();
517 	memset(bdev, 0xFF, sizeof(*bdev));
518 	free(bdev);
519 }
520 
521 static void
522 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
523 {
524 	const char *bdev_name;
525 
526 	CU_ASSERT(bdev != NULL);
527 	CU_ASSERT(rc == 0);
528 	bdev_name = spdk_bdev_get_name(bdev);
529 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
530 
531 	free(stat);
532 
533 	*(bool *)cb_arg = true;
534 }
535 
536 static void
537 bdev_unregister_cb(void *cb_arg, int rc)
538 {
539 	g_unregister_arg = cb_arg;
540 	g_unregister_rc = rc;
541 }
542 
543 static void
544 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
545 {
546 }
547 
548 static void
549 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
550 {
551 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
552 
553 	g_event_type1 = type;
554 	if (SPDK_BDEV_EVENT_REMOVE == type) {
555 		spdk_bdev_close(desc);
556 	}
557 }
558 
559 static void
560 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
561 {
562 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
563 
564 	g_event_type2 = type;
565 	if (SPDK_BDEV_EVENT_REMOVE == type) {
566 		spdk_bdev_close(desc);
567 	}
568 }
569 
570 static void
571 bdev_open_cb3(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
572 {
573 	g_event_type3 = type;
574 }
575 
576 static void
577 bdev_open_cb4(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
578 {
579 	g_event_type4 = type;
580 }
581 
582 static void
583 get_device_stat_test(void)
584 {
585 	struct spdk_bdev *bdev;
586 	struct spdk_bdev_io_stat *stat;
587 	bool done;
588 
589 	bdev = allocate_bdev("bdev0");
590 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
591 	if (stat == NULL) {
592 		free_bdev(bdev);
593 		return;
594 	}
595 
596 	done = false;
597 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
598 	while (!done) { poll_threads(); }
599 
600 	free_bdev(bdev);
601 }
602 
603 static void
604 open_write_test(void)
605 {
606 	struct spdk_bdev *bdev[9];
607 	struct spdk_bdev_desc *desc[9] = {};
608 	int rc;
609 
610 	/*
611 	 * Create a tree of bdevs to test various open w/ write cases.
612 	 *
613 	 * bdev0 through bdev3 are physical block devices, such as NVMe
614 	 * namespaces or Ceph block devices.
615 	 *
616 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
617 	 * caching or RAID use cases.
618 	 *
619 	 * bdev5 through bdev7 are all virtual bdevs with the same base
620 	 * bdev (except bdev7). This models partitioning or logical volume
621 	 * use cases.
622 	 *
623 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
624 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
625 	 * models caching, RAID, partitioning or logical volumes use cases.
626 	 *
627 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
628 	 * base bdevs are themselves virtual bdevs.
629 	 *
630 	 *                bdev8
631 	 *                  |
632 	 *            +----------+
633 	 *            |          |
634 	 *          bdev4      bdev5   bdev6   bdev7
635 	 *            |          |       |       |
636 	 *        +---+---+      +---+   +   +---+---+
637 	 *        |       |           \  |  /         \
638 	 *      bdev0   bdev1          bdev2         bdev3
639 	 */
640 
641 	bdev[0] = allocate_bdev("bdev0");
642 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
643 	CU_ASSERT(rc == 0);
644 
645 	bdev[1] = allocate_bdev("bdev1");
646 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
647 	CU_ASSERT(rc == 0);
648 
649 	bdev[2] = allocate_bdev("bdev2");
650 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
651 	CU_ASSERT(rc == 0);
652 
653 	bdev[3] = allocate_bdev("bdev3");
654 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
655 	CU_ASSERT(rc == 0);
656 
657 	bdev[4] = allocate_vbdev("bdev4");
658 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
659 	CU_ASSERT(rc == 0);
660 
661 	bdev[5] = allocate_vbdev("bdev5");
662 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
663 	CU_ASSERT(rc == 0);
664 
665 	bdev[6] = allocate_vbdev("bdev6");
666 
667 	bdev[7] = allocate_vbdev("bdev7");
668 
669 	bdev[8] = allocate_vbdev("bdev8");
670 
671 	/* Open bdev0 read-only.  This should succeed. */
672 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
673 	CU_ASSERT(rc == 0);
674 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
675 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
676 	spdk_bdev_close(desc[0]);
677 
678 	/*
679 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
680 	 * by a vbdev module.
681 	 */
682 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
683 	CU_ASSERT(rc == -EPERM);
684 
685 	/*
686 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
687 	 * by a vbdev module.
688 	 */
689 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
690 	CU_ASSERT(rc == -EPERM);
691 
692 	/* Open bdev4 read-only.  This should succeed. */
693 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
694 	CU_ASSERT(rc == 0);
695 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
696 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
697 	spdk_bdev_close(desc[4]);
698 
699 	/*
700 	 * Open bdev8 read/write.  This should succeed since it is a leaf
701 	 * bdev.
702 	 */
703 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
704 	CU_ASSERT(rc == 0);
705 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
706 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
707 	spdk_bdev_close(desc[8]);
708 
709 	/*
710 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
711 	 * by a vbdev module.
712 	 */
713 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
714 	CU_ASSERT(rc == -EPERM);
715 
716 	/* Open bdev4 read-only.  This should succeed. */
717 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
718 	CU_ASSERT(rc == 0);
719 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
720 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
721 	spdk_bdev_close(desc[5]);
722 
723 	free_vbdev(bdev[8]);
724 
725 	free_vbdev(bdev[5]);
726 	free_vbdev(bdev[6]);
727 	free_vbdev(bdev[7]);
728 
729 	free_vbdev(bdev[4]);
730 
731 	free_bdev(bdev[0]);
732 	free_bdev(bdev[1]);
733 	free_bdev(bdev[2]);
734 	free_bdev(bdev[3]);
735 }
736 
737 static void
738 claim_test(void)
739 {
740 	struct spdk_bdev *bdev;
741 	struct spdk_bdev_desc *desc, *open_desc;
742 	int rc;
743 	uint32_t count;
744 
745 	/*
746 	 * A vbdev that uses a read-only bdev may need it to remain read-only.
747 	 * To do so, it opens the bdev read-only, then claims it without
748 	 * passing a spdk_bdev_desc.
749 	 */
750 	bdev = allocate_bdev("bdev0");
751 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
752 	CU_ASSERT(rc == 0);
753 	CU_ASSERT(desc->write == false);
754 
755 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
756 	CU_ASSERT(rc == 0);
757 	CU_ASSERT(bdev->internal.claim_module == &bdev_ut_if);
758 
759 	/* There should be only one open descriptor and it should still be ro */
760 	count = 0;
761 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
762 		CU_ASSERT(open_desc == desc);
763 		CU_ASSERT(!open_desc->write);
764 		count++;
765 	}
766 	CU_ASSERT(count == 1);
767 
768 	/* A read-only bdev is upgraded to read-write if desc is passed. */
769 	spdk_bdev_module_release_bdev(bdev);
770 	rc = spdk_bdev_module_claim_bdev(bdev, desc, &bdev_ut_if);
771 	CU_ASSERT(rc == 0);
772 	CU_ASSERT(bdev->internal.claim_module == &bdev_ut_if);
773 
774 	/* There should be only one open descriptor and it should be rw */
775 	count = 0;
776 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
777 		CU_ASSERT(open_desc == desc);
778 		CU_ASSERT(open_desc->write);
779 		count++;
780 	}
781 	CU_ASSERT(count == 1);
782 
783 	spdk_bdev_close(desc);
784 	free_bdev(bdev);
785 }
786 
787 static void
788 bytes_to_blocks_test(void)
789 {
790 	struct spdk_bdev bdev;
791 	uint64_t offset_blocks, num_blocks;
792 
793 	memset(&bdev, 0, sizeof(bdev));
794 
795 	bdev.blocklen = 512;
796 
797 	/* All parameters valid */
798 	offset_blocks = 0;
799 	num_blocks = 0;
800 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
801 	CU_ASSERT(offset_blocks == 1);
802 	CU_ASSERT(num_blocks == 2);
803 
804 	/* Offset not a block multiple */
805 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
806 
807 	/* Length not a block multiple */
808 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
809 
810 	/* In case blocklen not the power of two */
811 	bdev.blocklen = 100;
812 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
813 	CU_ASSERT(offset_blocks == 1);
814 	CU_ASSERT(num_blocks == 2);
815 
816 	/* Offset not a block multiple */
817 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
818 
819 	/* Length not a block multiple */
820 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
821 }
822 
823 static void
824 num_blocks_test(void)
825 {
826 	struct spdk_bdev bdev;
827 	struct spdk_bdev_desc *desc = NULL;
828 	int rc;
829 
830 	memset(&bdev, 0, sizeof(bdev));
831 	bdev.name = "num_blocks";
832 	bdev.fn_table = &fn_table;
833 	bdev.module = &bdev_ut_if;
834 	spdk_bdev_register(&bdev);
835 	poll_threads();
836 	spdk_bdev_notify_blockcnt_change(&bdev, 50);
837 
838 	/* Growing block number */
839 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
840 	/* Shrinking block number */
841 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
842 
843 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc, &desc);
844 	CU_ASSERT(rc == 0);
845 	SPDK_CU_ASSERT_FATAL(desc != NULL);
846 	CU_ASSERT(&bdev == spdk_bdev_desc_get_bdev(desc));
847 
848 	/* Growing block number */
849 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
850 	/* Shrinking block number */
851 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
852 
853 	g_event_type1 = 0xFF;
854 	/* Growing block number */
855 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
856 
857 	poll_threads();
858 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
859 
860 	g_event_type1 = 0xFF;
861 	/* Growing block number and closing */
862 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
863 
864 	spdk_bdev_close(desc);
865 	spdk_bdev_unregister(&bdev, NULL, NULL);
866 
867 	poll_threads();
868 
869 	/* Callback is not called for closed device */
870 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
871 }
872 
873 static void
874 io_valid_test(void)
875 {
876 	struct spdk_bdev bdev;
877 
878 	memset(&bdev, 0, sizeof(bdev));
879 
880 	bdev.blocklen = 512;
881 	CU_ASSERT(pthread_mutex_init(&bdev.internal.mutex, NULL) == 0);
882 
883 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
884 
885 	/* All parameters valid */
886 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
887 
888 	/* Last valid block */
889 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
890 
891 	/* Offset past end of bdev */
892 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
893 
894 	/* Offset + length past end of bdev */
895 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
896 
897 	/* Offset near end of uint64_t range (2^64 - 1) */
898 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
899 
900 	CU_ASSERT(pthread_mutex_destroy(&bdev.internal.mutex) == 0);
901 }
902 
903 static void
904 alias_add_del_test(void)
905 {
906 	struct spdk_bdev *bdev[3];
907 	int rc;
908 
909 	/* Creating and registering bdevs */
910 	bdev[0] = allocate_bdev("bdev0");
911 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
912 
913 	bdev[1] = allocate_bdev("bdev1");
914 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
915 
916 	bdev[2] = allocate_bdev("bdev2");
917 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
918 
919 	poll_threads();
920 
921 	/*
922 	 * Trying adding an alias identical to name.
923 	 * Alias is identical to name, so it can not be added to aliases list
924 	 */
925 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
926 	CU_ASSERT(rc == -EEXIST);
927 
928 	/*
929 	 * Trying to add empty alias,
930 	 * this one should fail
931 	 */
932 	rc = spdk_bdev_alias_add(bdev[0], NULL);
933 	CU_ASSERT(rc == -EINVAL);
934 
935 	/* Trying adding same alias to two different registered bdevs */
936 
937 	/* Alias is used first time, so this one should pass */
938 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
939 	CU_ASSERT(rc == 0);
940 
941 	/* Alias was added to another bdev, so this one should fail */
942 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
943 	CU_ASSERT(rc == -EEXIST);
944 
945 	/* Alias is used first time, so this one should pass */
946 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
947 	CU_ASSERT(rc == 0);
948 
949 	/* Trying removing an alias from registered bdevs */
950 
951 	/* Alias is not on a bdev aliases list, so this one should fail */
952 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
953 	CU_ASSERT(rc == -ENOENT);
954 
955 	/* Alias is present on a bdev aliases list, so this one should pass */
956 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
957 	CU_ASSERT(rc == 0);
958 
959 	/* Alias is present on a bdev aliases list, so this one should pass */
960 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
961 	CU_ASSERT(rc == 0);
962 
963 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
964 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
965 	CU_ASSERT(rc != 0);
966 
967 	/* Trying to del all alias from empty alias list */
968 	spdk_bdev_alias_del_all(bdev[2]);
969 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
970 
971 	/* Trying to del all alias from non-empty alias list */
972 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
973 	CU_ASSERT(rc == 0);
974 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
975 	CU_ASSERT(rc == 0);
976 	spdk_bdev_alias_del_all(bdev[2]);
977 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
978 
979 	/* Unregister and free bdevs */
980 	spdk_bdev_unregister(bdev[0], NULL, NULL);
981 	spdk_bdev_unregister(bdev[1], NULL, NULL);
982 	spdk_bdev_unregister(bdev[2], NULL, NULL);
983 
984 	poll_threads();
985 
986 	free(bdev[0]);
987 	free(bdev[1]);
988 	free(bdev[2]);
989 }
990 
991 static void
992 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
993 {
994 	g_io_done = true;
995 	g_io_status = bdev_io->internal.status;
996 	if ((bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) &&
997 	    (bdev_io->u.bdev.zcopy.start)) {
998 		g_zcopy_bdev_io = bdev_io;
999 	} else {
1000 		spdk_bdev_free_io(bdev_io);
1001 		g_zcopy_bdev_io = NULL;
1002 	}
1003 }
1004 
1005 static void
1006 bdev_init_cb(void *arg, int rc)
1007 {
1008 	CU_ASSERT(rc == 0);
1009 }
1010 
1011 static void
1012 bdev_fini_cb(void *arg)
1013 {
1014 }
1015 
1016 struct bdev_ut_io_wait_entry {
1017 	struct spdk_bdev_io_wait_entry	entry;
1018 	struct spdk_io_channel		*io_ch;
1019 	struct spdk_bdev_desc		*desc;
1020 	bool				submitted;
1021 };
1022 
1023 static void
1024 io_wait_cb(void *arg)
1025 {
1026 	struct bdev_ut_io_wait_entry *entry = arg;
1027 	int rc;
1028 
1029 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
1030 	CU_ASSERT(rc == 0);
1031 	entry->submitted = true;
1032 }
1033 
1034 static void
1035 bdev_io_types_test(void)
1036 {
1037 	struct spdk_bdev *bdev;
1038 	struct spdk_bdev_desc *desc = NULL;
1039 	struct spdk_io_channel *io_ch;
1040 	struct spdk_bdev_opts bdev_opts = {};
1041 	int rc;
1042 
1043 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1044 	bdev_opts.bdev_io_pool_size = 4;
1045 	bdev_opts.bdev_io_cache_size = 2;
1046 
1047 	rc = spdk_bdev_set_opts(&bdev_opts);
1048 	CU_ASSERT(rc == 0);
1049 	spdk_bdev_initialize(bdev_init_cb, NULL);
1050 	poll_threads();
1051 
1052 	bdev = allocate_bdev("bdev0");
1053 
1054 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1055 	CU_ASSERT(rc == 0);
1056 	poll_threads();
1057 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1058 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1059 	io_ch = spdk_bdev_get_io_channel(desc);
1060 	CU_ASSERT(io_ch != NULL);
1061 
1062 	/* WRITE and WRITE ZEROES are not supported */
1063 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
1064 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
1065 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
1066 	CU_ASSERT(rc == -ENOTSUP);
1067 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
1068 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
1069 
1070 	/* NVME_IO, NVME_IO_MD and NVME_ADMIN are not supported */
1071 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, false);
1072 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, false);
1073 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, false);
1074 	rc = spdk_bdev_nvme_io_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1075 	CU_ASSERT(rc == -ENOTSUP);
1076 	rc = spdk_bdev_nvme_io_passthru_md(desc, io_ch, NULL, NULL, 0, NULL, 0, NULL, NULL);
1077 	CU_ASSERT(rc == -ENOTSUP);
1078 	rc = spdk_bdev_nvme_admin_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1079 	CU_ASSERT(rc == -ENOTSUP);
1080 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, true);
1081 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, true);
1082 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, true);
1083 
1084 	spdk_put_io_channel(io_ch);
1085 	spdk_bdev_close(desc);
1086 	free_bdev(bdev);
1087 	spdk_bdev_finish(bdev_fini_cb, NULL);
1088 	poll_threads();
1089 }
1090 
1091 static void
1092 bdev_io_wait_test(void)
1093 {
1094 	struct spdk_bdev *bdev;
1095 	struct spdk_bdev_desc *desc = NULL;
1096 	struct spdk_io_channel *io_ch;
1097 	struct spdk_bdev_opts bdev_opts = {};
1098 	struct bdev_ut_io_wait_entry io_wait_entry;
1099 	struct bdev_ut_io_wait_entry io_wait_entry2;
1100 	int rc;
1101 
1102 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1103 	bdev_opts.bdev_io_pool_size = 4;
1104 	bdev_opts.bdev_io_cache_size = 2;
1105 
1106 	rc = spdk_bdev_set_opts(&bdev_opts);
1107 	CU_ASSERT(rc == 0);
1108 	spdk_bdev_initialize(bdev_init_cb, NULL);
1109 	poll_threads();
1110 
1111 	bdev = allocate_bdev("bdev0");
1112 
1113 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1114 	CU_ASSERT(rc == 0);
1115 	poll_threads();
1116 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1117 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1118 	io_ch = spdk_bdev_get_io_channel(desc);
1119 	CU_ASSERT(io_ch != NULL);
1120 
1121 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1122 	CU_ASSERT(rc == 0);
1123 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1124 	CU_ASSERT(rc == 0);
1125 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1126 	CU_ASSERT(rc == 0);
1127 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1128 	CU_ASSERT(rc == 0);
1129 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1130 
1131 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1132 	CU_ASSERT(rc == -ENOMEM);
1133 
1134 	io_wait_entry.entry.bdev = bdev;
1135 	io_wait_entry.entry.cb_fn = io_wait_cb;
1136 	io_wait_entry.entry.cb_arg = &io_wait_entry;
1137 	io_wait_entry.io_ch = io_ch;
1138 	io_wait_entry.desc = desc;
1139 	io_wait_entry.submitted = false;
1140 	/* Cannot use the same io_wait_entry for two different calls. */
1141 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
1142 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
1143 
1144 	/* Queue two I/O waits. */
1145 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
1146 	CU_ASSERT(rc == 0);
1147 	CU_ASSERT(io_wait_entry.submitted == false);
1148 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
1149 	CU_ASSERT(rc == 0);
1150 	CU_ASSERT(io_wait_entry2.submitted == false);
1151 
1152 	stub_complete_io(1);
1153 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1154 	CU_ASSERT(io_wait_entry.submitted == true);
1155 	CU_ASSERT(io_wait_entry2.submitted == false);
1156 
1157 	stub_complete_io(1);
1158 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1159 	CU_ASSERT(io_wait_entry2.submitted == true);
1160 
1161 	stub_complete_io(4);
1162 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1163 
1164 	spdk_put_io_channel(io_ch);
1165 	spdk_bdev_close(desc);
1166 	free_bdev(bdev);
1167 	spdk_bdev_finish(bdev_fini_cb, NULL);
1168 	poll_threads();
1169 }
1170 
1171 static void
1172 bdev_io_spans_split_test(void)
1173 {
1174 	struct spdk_bdev bdev;
1175 	struct spdk_bdev_io bdev_io;
1176 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV];
1177 
1178 	memset(&bdev, 0, sizeof(bdev));
1179 	bdev_io.u.bdev.iovs = iov;
1180 
1181 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1182 	bdev.optimal_io_boundary = 0;
1183 	bdev.max_segment_size = 0;
1184 	bdev.max_num_segments = 0;
1185 	bdev_io.bdev = &bdev;
1186 
1187 	/* bdev has no optimal_io_boundary and max_size set - so this should return false. */
1188 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1189 
1190 	bdev.split_on_optimal_io_boundary = true;
1191 	bdev.optimal_io_boundary = 32;
1192 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1193 
1194 	/* RESETs are not based on LBAs - so this should return false. */
1195 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1196 
1197 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1198 	bdev_io.u.bdev.offset_blocks = 0;
1199 	bdev_io.u.bdev.num_blocks = 32;
1200 
1201 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1202 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1203 
1204 	bdev_io.u.bdev.num_blocks = 33;
1205 
1206 	/* This I/O spans a boundary. */
1207 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1208 
1209 	bdev_io.u.bdev.num_blocks = 32;
1210 	bdev.max_segment_size = 512 * 32;
1211 	bdev.max_num_segments = 1;
1212 	bdev_io.u.bdev.iovcnt = 1;
1213 	iov[0].iov_len = 512;
1214 
1215 	/* Does not cross and exceed max_size or max_segs */
1216 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1217 
1218 	bdev.split_on_optimal_io_boundary = false;
1219 	bdev.max_segment_size = 512;
1220 	bdev.max_num_segments = 1;
1221 	bdev_io.u.bdev.iovcnt = 2;
1222 
1223 	/* Exceed max_segs */
1224 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1225 
1226 	bdev.max_num_segments = 2;
1227 	iov[0].iov_len = 513;
1228 	iov[1].iov_len = 512;
1229 
1230 	/* Exceed max_sizes */
1231 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1232 }
1233 
1234 static void
1235 bdev_io_boundary_split_test(void)
1236 {
1237 	struct spdk_bdev *bdev;
1238 	struct spdk_bdev_desc *desc = NULL;
1239 	struct spdk_io_channel *io_ch;
1240 	struct spdk_bdev_opts bdev_opts = {};
1241 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1242 	struct ut_expected_io *expected_io;
1243 	void *md_buf = (void *)0xFF000000;
1244 	uint64_t i;
1245 	int rc;
1246 
1247 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1248 	bdev_opts.bdev_io_pool_size = 512;
1249 	bdev_opts.bdev_io_cache_size = 64;
1250 
1251 	rc = spdk_bdev_set_opts(&bdev_opts);
1252 	CU_ASSERT(rc == 0);
1253 	spdk_bdev_initialize(bdev_init_cb, NULL);
1254 
1255 	bdev = allocate_bdev("bdev0");
1256 
1257 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1258 	CU_ASSERT(rc == 0);
1259 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1260 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1261 	io_ch = spdk_bdev_get_io_channel(desc);
1262 	CU_ASSERT(io_ch != NULL);
1263 
1264 	bdev->optimal_io_boundary = 16;
1265 	bdev->split_on_optimal_io_boundary = false;
1266 
1267 	g_io_done = false;
1268 
1269 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1270 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1271 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1272 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1273 
1274 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1275 	CU_ASSERT(rc == 0);
1276 	CU_ASSERT(g_io_done == false);
1277 
1278 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1279 	stub_complete_io(1);
1280 	CU_ASSERT(g_io_done == true);
1281 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1282 
1283 	bdev->split_on_optimal_io_boundary = true;
1284 	bdev->md_interleave = false;
1285 	bdev->md_len = 8;
1286 
1287 	/* Now test that a single-vector command is split correctly.
1288 	 * Offset 14, length 8, payload 0xF000
1289 	 *  Child - Offset 14, length 2, payload 0xF000
1290 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1291 	 *
1292 	 * Set up the expected values before calling spdk_bdev_read_blocks
1293 	 */
1294 	g_io_done = false;
1295 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1296 	expected_io->md_buf = md_buf;
1297 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1298 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1299 
1300 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1301 	expected_io->md_buf = md_buf + 2 * 8;
1302 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1303 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1304 
1305 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1306 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1307 					   14, 8, io_done, NULL);
1308 	CU_ASSERT(rc == 0);
1309 	CU_ASSERT(g_io_done == false);
1310 
1311 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1312 	stub_complete_io(2);
1313 	CU_ASSERT(g_io_done == true);
1314 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1315 
1316 	/* Now set up a more complex, multi-vector command that needs to be split,
1317 	 *  including splitting iovecs.
1318 	 */
1319 	iov[0].iov_base = (void *)0x10000;
1320 	iov[0].iov_len = 512;
1321 	iov[1].iov_base = (void *)0x20000;
1322 	iov[1].iov_len = 20 * 512;
1323 	iov[2].iov_base = (void *)0x30000;
1324 	iov[2].iov_len = 11 * 512;
1325 
1326 	g_io_done = false;
1327 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1328 	expected_io->md_buf = md_buf;
1329 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1330 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1331 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1332 
1333 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1334 	expected_io->md_buf = md_buf + 2 * 8;
1335 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1336 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1337 
1338 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1339 	expected_io->md_buf = md_buf + 18 * 8;
1340 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1341 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1342 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1343 
1344 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1345 					     14, 32, io_done, NULL);
1346 	CU_ASSERT(rc == 0);
1347 	CU_ASSERT(g_io_done == false);
1348 
1349 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1350 	stub_complete_io(3);
1351 	CU_ASSERT(g_io_done == true);
1352 
1353 	/* Test multi vector command that needs to be split by strip and then needs to be
1354 	 * split further due to the capacity of child iovs.
1355 	 */
1356 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1357 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1358 		iov[i].iov_len = 512;
1359 	}
1360 
1361 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1362 	g_io_done = false;
1363 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1364 					   BDEV_IO_NUM_CHILD_IOV);
1365 	expected_io->md_buf = md_buf;
1366 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1367 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1368 	}
1369 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1370 
1371 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1372 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
1373 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1374 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1375 		ut_expected_io_set_iov(expected_io, i,
1376 				       (void *)((i + 1 + BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1377 	}
1378 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1379 
1380 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1381 					    0, BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1382 	CU_ASSERT(rc == 0);
1383 	CU_ASSERT(g_io_done == false);
1384 
1385 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1386 	stub_complete_io(1);
1387 	CU_ASSERT(g_io_done == false);
1388 
1389 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1390 	stub_complete_io(1);
1391 	CU_ASSERT(g_io_done == true);
1392 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1393 
1394 	/* Test multi vector command that needs to be split by strip and then needs to be
1395 	 * split further due to the capacity of child iovs. In this case, the length of
1396 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1397 	 */
1398 
1399 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1400 	 * is BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1401 	 */
1402 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1403 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1404 		iov[i].iov_len = 512;
1405 	}
1406 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1407 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1408 		iov[i].iov_len = 256;
1409 	}
1410 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1411 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1412 
1413 	/* Add an extra iovec to trigger split */
1414 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1415 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1416 
1417 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1418 	g_io_done = false;
1419 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1420 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV);
1421 	expected_io->md_buf = md_buf;
1422 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1423 		ut_expected_io_set_iov(expected_io, i,
1424 				       (void *)((i + 1) * 0x10000), 512);
1425 	}
1426 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1427 		ut_expected_io_set_iov(expected_io, i,
1428 				       (void *)((i + 1) * 0x10000), 256);
1429 	}
1430 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1431 
1432 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1433 					   1, 1);
1434 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1435 	ut_expected_io_set_iov(expected_io, 0,
1436 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1437 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1438 
1439 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1440 					   1, 1);
1441 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1442 	ut_expected_io_set_iov(expected_io, 0,
1443 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1444 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1445 
1446 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1447 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1448 	CU_ASSERT(rc == 0);
1449 	CU_ASSERT(g_io_done == false);
1450 
1451 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1452 	stub_complete_io(1);
1453 	CU_ASSERT(g_io_done == false);
1454 
1455 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1456 	stub_complete_io(2);
1457 	CU_ASSERT(g_io_done == true);
1458 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1459 
1460 	/* Test multi vector command that needs to be split by strip and then needs to be
1461 	 * split further due to the capacity of child iovs, the child request offset should
1462 	 * be rewind to last aligned offset and go success without error.
1463 	 */
1464 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1465 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1466 		iov[i].iov_len = 512;
1467 	}
1468 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1469 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1470 
1471 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1472 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1473 
1474 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1475 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1476 
1477 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1478 	g_io_done = false;
1479 	g_io_status = 0;
1480 	/* The first expected io should be start from offset 0 to BDEV_IO_NUM_CHILD_IOV - 1 */
1481 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1482 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV - 1);
1483 	expected_io->md_buf = md_buf;
1484 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1485 		ut_expected_io_set_iov(expected_io, i,
1486 				       (void *)((i + 1) * 0x10000), 512);
1487 	}
1488 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1489 	/* The second expected io should be start from offset BDEV_IO_NUM_CHILD_IOV - 1 to BDEV_IO_NUM_CHILD_IOV */
1490 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1491 					   1, 2);
1492 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1493 	ut_expected_io_set_iov(expected_io, 0,
1494 			       (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1495 	ut_expected_io_set_iov(expected_io, 1,
1496 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1497 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1498 	/* The third expected io should be start from offset BDEV_IO_NUM_CHILD_IOV to BDEV_IO_NUM_CHILD_IOV + 1 */
1499 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1500 					   1, 1);
1501 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1502 	ut_expected_io_set_iov(expected_io, 0,
1503 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1504 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1505 
1506 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1507 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1508 	CU_ASSERT(rc == 0);
1509 	CU_ASSERT(g_io_done == false);
1510 
1511 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1512 	stub_complete_io(1);
1513 	CU_ASSERT(g_io_done == false);
1514 
1515 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1516 	stub_complete_io(2);
1517 	CU_ASSERT(g_io_done == true);
1518 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1519 
1520 	/* Test multi vector command that needs to be split due to the IO boundary and
1521 	 * the capacity of child iovs. Especially test the case when the command is
1522 	 * split due to the capacity of child iovs, the tail address is not aligned with
1523 	 * block size and is rewinded to the aligned address.
1524 	 *
1525 	 * The iovecs used in read request is complex but is based on the data
1526 	 * collected in the real issue. We change the base addresses but keep the lengths
1527 	 * not to loose the credibility of the test.
1528 	 */
1529 	bdev->optimal_io_boundary = 128;
1530 	g_io_done = false;
1531 	g_io_status = 0;
1532 
1533 	for (i = 0; i < 31; i++) {
1534 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1535 		iov[i].iov_len = 1024;
1536 	}
1537 	iov[31].iov_base = (void *)0xFEED1F00000;
1538 	iov[31].iov_len = 32768;
1539 	iov[32].iov_base = (void *)0xFEED2000000;
1540 	iov[32].iov_len = 160;
1541 	iov[33].iov_base = (void *)0xFEED2100000;
1542 	iov[33].iov_len = 4096;
1543 	iov[34].iov_base = (void *)0xFEED2200000;
1544 	iov[34].iov_len = 4096;
1545 	iov[35].iov_base = (void *)0xFEED2300000;
1546 	iov[35].iov_len = 4096;
1547 	iov[36].iov_base = (void *)0xFEED2400000;
1548 	iov[36].iov_len = 4096;
1549 	iov[37].iov_base = (void *)0xFEED2500000;
1550 	iov[37].iov_len = 4096;
1551 	iov[38].iov_base = (void *)0xFEED2600000;
1552 	iov[38].iov_len = 4096;
1553 	iov[39].iov_base = (void *)0xFEED2700000;
1554 	iov[39].iov_len = 4096;
1555 	iov[40].iov_base = (void *)0xFEED2800000;
1556 	iov[40].iov_len = 4096;
1557 	iov[41].iov_base = (void *)0xFEED2900000;
1558 	iov[41].iov_len = 4096;
1559 	iov[42].iov_base = (void *)0xFEED2A00000;
1560 	iov[42].iov_len = 4096;
1561 	iov[43].iov_base = (void *)0xFEED2B00000;
1562 	iov[43].iov_len = 12288;
1563 	iov[44].iov_base = (void *)0xFEED2C00000;
1564 	iov[44].iov_len = 8192;
1565 	iov[45].iov_base = (void *)0xFEED2F00000;
1566 	iov[45].iov_len = 4096;
1567 	iov[46].iov_base = (void *)0xFEED3000000;
1568 	iov[46].iov_len = 4096;
1569 	iov[47].iov_base = (void *)0xFEED3100000;
1570 	iov[47].iov_len = 4096;
1571 	iov[48].iov_base = (void *)0xFEED3200000;
1572 	iov[48].iov_len = 24576;
1573 	iov[49].iov_base = (void *)0xFEED3300000;
1574 	iov[49].iov_len = 16384;
1575 	iov[50].iov_base = (void *)0xFEED3400000;
1576 	iov[50].iov_len = 12288;
1577 	iov[51].iov_base = (void *)0xFEED3500000;
1578 	iov[51].iov_len = 4096;
1579 	iov[52].iov_base = (void *)0xFEED3600000;
1580 	iov[52].iov_len = 4096;
1581 	iov[53].iov_base = (void *)0xFEED3700000;
1582 	iov[53].iov_len = 4096;
1583 	iov[54].iov_base = (void *)0xFEED3800000;
1584 	iov[54].iov_len = 28672;
1585 	iov[55].iov_base = (void *)0xFEED3900000;
1586 	iov[55].iov_len = 20480;
1587 	iov[56].iov_base = (void *)0xFEED3A00000;
1588 	iov[56].iov_len = 4096;
1589 	iov[57].iov_base = (void *)0xFEED3B00000;
1590 	iov[57].iov_len = 12288;
1591 	iov[58].iov_base = (void *)0xFEED3C00000;
1592 	iov[58].iov_len = 4096;
1593 	iov[59].iov_base = (void *)0xFEED3D00000;
1594 	iov[59].iov_len = 4096;
1595 	iov[60].iov_base = (void *)0xFEED3E00000;
1596 	iov[60].iov_len = 352;
1597 
1598 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1599 	 * of child iovs,
1600 	 */
1601 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1602 	expected_io->md_buf = md_buf;
1603 	for (i = 0; i < 32; i++) {
1604 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1605 	}
1606 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1607 
1608 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1609 	 * split by the IO boundary requirement.
1610 	 */
1611 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1612 	expected_io->md_buf = md_buf + 126 * 8;
1613 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1614 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1615 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1616 
1617 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1618 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1619 	 */
1620 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1621 	expected_io->md_buf = md_buf + 128 * 8;
1622 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1623 			       iov[33].iov_len - 864);
1624 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1625 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1626 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1627 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1628 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1629 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1630 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1631 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1632 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1633 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1634 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1635 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1636 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1637 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1638 
1639 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1640 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1641 	 */
1642 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1643 	expected_io->md_buf = md_buf + 256 * 8;
1644 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1645 			       iov[46].iov_len - 864);
1646 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1647 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1648 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1649 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1650 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1651 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1652 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1653 
1654 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1655 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1656 	 */
1657 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1658 	expected_io->md_buf = md_buf + 384 * 8;
1659 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1660 			       iov[52].iov_len - 864);
1661 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1662 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1663 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1664 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1665 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1666 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1667 
1668 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1669 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1670 	 */
1671 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1672 	expected_io->md_buf = md_buf + 512 * 8;
1673 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1674 			       iov[57].iov_len - 4960);
1675 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1676 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1677 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1678 
1679 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1680 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1681 	expected_io->md_buf = md_buf + 542 * 8;
1682 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1683 			       iov[59].iov_len - 3936);
1684 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1685 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1686 
1687 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1688 					    0, 543, io_done, NULL);
1689 	CU_ASSERT(rc == 0);
1690 	CU_ASSERT(g_io_done == false);
1691 
1692 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1693 	stub_complete_io(1);
1694 	CU_ASSERT(g_io_done == false);
1695 
1696 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1697 	stub_complete_io(5);
1698 	CU_ASSERT(g_io_done == false);
1699 
1700 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1701 	stub_complete_io(1);
1702 	CU_ASSERT(g_io_done == true);
1703 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1704 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1705 
1706 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1707 	 * split, so test that.
1708 	 */
1709 	bdev->optimal_io_boundary = 15;
1710 	g_io_done = false;
1711 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1712 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1713 
1714 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1715 	CU_ASSERT(rc == 0);
1716 	CU_ASSERT(g_io_done == false);
1717 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1718 	stub_complete_io(1);
1719 	CU_ASSERT(g_io_done == true);
1720 
1721 	/* Test an UNMAP.  This should also not be split. */
1722 	bdev->optimal_io_boundary = 16;
1723 	g_io_done = false;
1724 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1725 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1726 
1727 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1728 	CU_ASSERT(rc == 0);
1729 	CU_ASSERT(g_io_done == false);
1730 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1731 	stub_complete_io(1);
1732 	CU_ASSERT(g_io_done == true);
1733 
1734 	/* Test a FLUSH.  This should also not be split. */
1735 	bdev->optimal_io_boundary = 16;
1736 	g_io_done = false;
1737 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1738 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1739 
1740 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1741 	CU_ASSERT(rc == 0);
1742 	CU_ASSERT(g_io_done == false);
1743 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1744 	stub_complete_io(1);
1745 	CU_ASSERT(g_io_done == true);
1746 
1747 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1748 
1749 	/* Children requests return an error status */
1750 	bdev->optimal_io_boundary = 16;
1751 	iov[0].iov_base = (void *)0x10000;
1752 	iov[0].iov_len = 512 * 64;
1753 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1754 	g_io_done = false;
1755 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1756 
1757 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1758 	CU_ASSERT(rc == 0);
1759 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1760 	stub_complete_io(4);
1761 	CU_ASSERT(g_io_done == false);
1762 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1763 	stub_complete_io(1);
1764 	CU_ASSERT(g_io_done == true);
1765 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1766 
1767 	/* Test if a multi vector command terminated with failure before continuing
1768 	 * splitting process when one of child I/O failed.
1769 	 * The multi vector command is as same as the above that needs to be split by strip
1770 	 * and then needs to be split further due to the capacity of child iovs.
1771 	 */
1772 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1773 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1774 		iov[i].iov_len = 512;
1775 	}
1776 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1777 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1778 
1779 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1780 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1781 
1782 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1783 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1784 
1785 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1786 
1787 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1788 	g_io_done = false;
1789 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1790 
1791 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
1792 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1793 	CU_ASSERT(rc == 0);
1794 	CU_ASSERT(g_io_done == false);
1795 
1796 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1797 	stub_complete_io(1);
1798 	CU_ASSERT(g_io_done == true);
1799 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1800 
1801 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1802 
1803 	/* for this test we will create the following conditions to hit the code path where
1804 	 * we are trying to send and IO following a split that has no iovs because we had to
1805 	 * trim them for alignment reasons.
1806 	 *
1807 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1808 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1809 	 *   position 30 and overshoot by 0x2e.
1810 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1811 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1812 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1813 	 *   and let the completion pick up the last 2 vectors.
1814 	 */
1815 	bdev->optimal_io_boundary = 32;
1816 	bdev->split_on_optimal_io_boundary = true;
1817 	g_io_done = false;
1818 
1819 	/* Init all parent IOVs to 0x212 */
1820 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1821 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1822 		iov[i].iov_len = 0x212;
1823 	}
1824 
1825 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1826 					   BDEV_IO_NUM_CHILD_IOV - 1);
1827 	/* expect 0-29 to be 1:1 with the parent iov */
1828 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1829 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1830 	}
1831 
1832 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1833 	 * where 0x1e is the amount we overshot the 16K boundary
1834 	 */
1835 	ut_expected_io_set_iov(expected_io, BDEV_IO_NUM_CHILD_IOV - 2,
1836 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1837 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1838 
1839 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1840 	 * shortened that take it to the next boundary and then a final one to get us to
1841 	 * 0x4200 bytes for the IO.
1842 	 */
1843 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1844 					   BDEV_IO_NUM_CHILD_IOV, 2);
1845 	/* position 30 picked up the remaining bytes to the next boundary */
1846 	ut_expected_io_set_iov(expected_io, 0,
1847 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
1848 
1849 	/* position 31 picked the the rest of the transfer to get us to 0x4200 */
1850 	ut_expected_io_set_iov(expected_io, 1,
1851 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
1852 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1853 
1854 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 1, 0,
1855 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1856 	CU_ASSERT(rc == 0);
1857 	CU_ASSERT(g_io_done == false);
1858 
1859 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1860 	stub_complete_io(1);
1861 	CU_ASSERT(g_io_done == false);
1862 
1863 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1864 	stub_complete_io(1);
1865 	CU_ASSERT(g_io_done == true);
1866 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1867 
1868 	spdk_put_io_channel(io_ch);
1869 	spdk_bdev_close(desc);
1870 	free_bdev(bdev);
1871 	spdk_bdev_finish(bdev_fini_cb, NULL);
1872 	poll_threads();
1873 }
1874 
1875 static void
1876 bdev_io_max_size_and_segment_split_test(void)
1877 {
1878 	struct spdk_bdev *bdev;
1879 	struct spdk_bdev_desc *desc = NULL;
1880 	struct spdk_io_channel *io_ch;
1881 	struct spdk_bdev_opts bdev_opts = {};
1882 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1883 	struct ut_expected_io *expected_io;
1884 	uint64_t i;
1885 	int rc;
1886 
1887 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1888 	bdev_opts.bdev_io_pool_size = 512;
1889 	bdev_opts.bdev_io_cache_size = 64;
1890 
1891 	bdev_opts.opts_size = sizeof(bdev_opts);
1892 	rc = spdk_bdev_set_opts(&bdev_opts);
1893 	CU_ASSERT(rc == 0);
1894 	spdk_bdev_initialize(bdev_init_cb, NULL);
1895 
1896 	bdev = allocate_bdev("bdev0");
1897 
1898 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
1899 	CU_ASSERT(rc == 0);
1900 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1901 	io_ch = spdk_bdev_get_io_channel(desc);
1902 	CU_ASSERT(io_ch != NULL);
1903 
1904 	bdev->split_on_optimal_io_boundary = false;
1905 	bdev->optimal_io_boundary = 0;
1906 
1907 	/* Case 0 max_num_segments == 0.
1908 	 * but segment size 2 * 512 > 512
1909 	 */
1910 	bdev->max_segment_size = 512;
1911 	bdev->max_num_segments = 0;
1912 	g_io_done = false;
1913 
1914 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
1915 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
1916 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
1917 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1918 
1919 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
1920 	CU_ASSERT(rc == 0);
1921 	CU_ASSERT(g_io_done == false);
1922 
1923 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1924 	stub_complete_io(1);
1925 	CU_ASSERT(g_io_done == true);
1926 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1927 
1928 	/* Case 1 max_segment_size == 0
1929 	 * but iov num 2 > 1.
1930 	 */
1931 	bdev->max_segment_size = 0;
1932 	bdev->max_num_segments = 1;
1933 	g_io_done = false;
1934 
1935 	iov[0].iov_base = (void *)0x10000;
1936 	iov[0].iov_len = 512;
1937 	iov[1].iov_base = (void *)0x20000;
1938 	iov[1].iov_len = 8 * 512;
1939 
1940 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
1941 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len);
1942 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1943 
1944 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1);
1945 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len);
1946 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1947 
1948 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL);
1949 	CU_ASSERT(rc == 0);
1950 	CU_ASSERT(g_io_done == false);
1951 
1952 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1953 	stub_complete_io(2);
1954 	CU_ASSERT(g_io_done == true);
1955 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1956 
1957 	/* Test that a non-vector command is split correctly.
1958 	 * Set up the expected values before calling spdk_bdev_read_blocks
1959 	 */
1960 	bdev->max_segment_size = 512;
1961 	bdev->max_num_segments = 1;
1962 	g_io_done = false;
1963 
1964 	/* Child IO 0 */
1965 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
1966 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
1967 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1968 
1969 	/* Child IO 1 */
1970 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
1971 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512);
1972 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1973 
1974 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1975 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
1976 	CU_ASSERT(rc == 0);
1977 	CU_ASSERT(g_io_done == false);
1978 
1979 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1980 	stub_complete_io(2);
1981 	CU_ASSERT(g_io_done == true);
1982 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1983 
1984 	/* Now set up a more complex, multi-vector command that needs to be split,
1985 	 * including splitting iovecs.
1986 	 */
1987 	bdev->max_segment_size = 2 * 512;
1988 	bdev->max_num_segments = 1;
1989 	g_io_done = false;
1990 
1991 	iov[0].iov_base = (void *)0x10000;
1992 	iov[0].iov_len = 2 * 512;
1993 	iov[1].iov_base = (void *)0x20000;
1994 	iov[1].iov_len = 4 * 512;
1995 	iov[2].iov_base = (void *)0x30000;
1996 	iov[2].iov_len = 6 * 512;
1997 
1998 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
1999 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2);
2000 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2001 
2002 	/* Split iov[1].size to 2 iov entries then split the segments */
2003 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2004 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2);
2005 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2006 
2007 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1);
2008 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2);
2009 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2010 
2011 	/* Split iov[2].size to 3 iov entries then split the segments */
2012 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1);
2013 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2);
2014 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2015 
2016 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1);
2017 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2);
2018 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2019 
2020 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1);
2021 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2);
2022 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2023 
2024 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL);
2025 	CU_ASSERT(rc == 0);
2026 	CU_ASSERT(g_io_done == false);
2027 
2028 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2029 	stub_complete_io(6);
2030 	CU_ASSERT(g_io_done == true);
2031 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2032 
2033 	/* Test multi vector command that needs to be split by strip and then needs to be
2034 	 * split further due to the capacity of parent IO child iovs.
2035 	 */
2036 	bdev->max_segment_size = 512;
2037 	bdev->max_num_segments = 1;
2038 	g_io_done = false;
2039 
2040 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
2041 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2042 		iov[i].iov_len = 512 * 2;
2043 	}
2044 
2045 	/* Each input iov.size is split into 2 iovs,
2046 	 * half of the input iov can fill all child iov entries of a single IO.
2047 	 */
2048 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV / 2; i++) {
2049 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1);
2050 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2051 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2052 
2053 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1);
2054 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2055 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2056 	}
2057 
2058 	/* The remaining iov is split in the second round */
2059 	for (i = BDEV_IO_NUM_CHILD_IOV / 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
2060 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1);
2061 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2062 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2063 
2064 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1);
2065 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2066 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2067 	}
2068 
2069 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV, 0,
2070 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
2071 	CU_ASSERT(rc == 0);
2072 	CU_ASSERT(g_io_done == false);
2073 
2074 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == BDEV_IO_NUM_CHILD_IOV);
2075 	stub_complete_io(BDEV_IO_NUM_CHILD_IOV);
2076 	CU_ASSERT(g_io_done == false);
2077 
2078 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == BDEV_IO_NUM_CHILD_IOV);
2079 	stub_complete_io(BDEV_IO_NUM_CHILD_IOV);
2080 	CU_ASSERT(g_io_done == true);
2081 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2082 
2083 	/* A wrong case, a child IO that is divided does
2084 	 * not meet the principle of multiples of block size,
2085 	 * and exits with error
2086 	 */
2087 	bdev->max_segment_size = 512;
2088 	bdev->max_num_segments = 1;
2089 	g_io_done = false;
2090 
2091 	iov[0].iov_base = (void *)0x10000;
2092 	iov[0].iov_len = 512 + 256;
2093 	iov[1].iov_base = (void *)0x20000;
2094 	iov[1].iov_len = 256;
2095 
2096 	/* iov[0] is split to 512 and 256.
2097 	 * 256 is less than a block size, and it is found
2098 	 * in the next round of split that it is the first child IO smaller than
2099 	 * the block size, so the error exit
2100 	 */
2101 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1);
2102 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512);
2103 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2104 
2105 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL);
2106 	CU_ASSERT(rc == 0);
2107 	CU_ASSERT(g_io_done == false);
2108 
2109 	/* First child IO is OK */
2110 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2111 	stub_complete_io(1);
2112 	CU_ASSERT(g_io_done == true);
2113 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2114 
2115 	/* error exit */
2116 	stub_complete_io(1);
2117 	CU_ASSERT(g_io_done == true);
2118 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
2119 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2120 
2121 	/* Test multi vector command that needs to be split by strip and then needs to be
2122 	 * split further due to the capacity of child iovs.
2123 	 *
2124 	 * In this case, the last two iovs need to be split, but it will exceed the capacity
2125 	 * of child iovs, so it needs to wait until the first batch completed.
2126 	 */
2127 	bdev->max_segment_size = 512;
2128 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2129 	g_io_done = false;
2130 
2131 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2132 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2133 		iov[i].iov_len = 512;
2134 	}
2135 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
2136 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2137 		iov[i].iov_len = 512 * 2;
2138 	}
2139 
2140 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2141 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
2142 	/* 0 ~ (BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */
2143 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2144 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2145 	}
2146 	/* (BDEV_IO_NUM_CHILD_IOV - 2) is split */
2147 	ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512);
2148 	ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512);
2149 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2150 
2151 	/* Child iov entries exceed the max num of parent IO so split it in next round */
2152 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV, 2, 2);
2153 	ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512);
2154 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512);
2155 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2156 
2157 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV, 0,
2158 				    BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL);
2159 	CU_ASSERT(rc == 0);
2160 	CU_ASSERT(g_io_done == false);
2161 
2162 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2163 	stub_complete_io(1);
2164 	CU_ASSERT(g_io_done == false);
2165 
2166 	/* Next round */
2167 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2168 	stub_complete_io(1);
2169 	CU_ASSERT(g_io_done == true);
2170 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2171 
2172 	/* This case is similar to the previous one, but the io composed of
2173 	 * the last few entries of child iov is not enough for a blocklen, so they
2174 	 * cannot be put into this IO, but wait until the next time.
2175 	 */
2176 	bdev->max_segment_size = 512;
2177 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2178 	g_io_done = false;
2179 
2180 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2181 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2182 		iov[i].iov_len = 512;
2183 	}
2184 
2185 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2186 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2187 		iov[i].iov_len = 128;
2188 	}
2189 
2190 	/* First child iovcnt is't BDEV_IO_NUM_CHILD_IOV but BDEV_IO_NUM_CHILD_IOV - 2.
2191 	 * Because the left 2 iov is not enough for a blocklen.
2192 	 */
2193 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2194 					   BDEV_IO_NUM_CHILD_IOV - 2, BDEV_IO_NUM_CHILD_IOV - 2);
2195 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2196 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2197 	}
2198 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2199 
2200 	/* The second child io waits until the end of the first child io before executing.
2201 	 * Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO.
2202 	 * BDEV_IO_NUM_CHILD_IOV - 2 to BDEV_IO_NUM_CHILD_IOV + 2
2203 	 */
2204 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 2,
2205 					   1, 4);
2206 	ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len);
2207 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len);
2208 	ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len);
2209 	ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len);
2210 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2211 
2212 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
2213 				    BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL);
2214 	CU_ASSERT(rc == 0);
2215 	CU_ASSERT(g_io_done == false);
2216 
2217 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2218 	stub_complete_io(1);
2219 	CU_ASSERT(g_io_done == false);
2220 
2221 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2222 	stub_complete_io(1);
2223 	CU_ASSERT(g_io_done == true);
2224 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2225 
2226 	/* A very complicated case. Each sg entry exceeds max_segment_size and
2227 	 * needs to be split. At the same time, child io must be a multiple of blocklen.
2228 	 * At the same time, child iovcnt exceeds parent iovcnt.
2229 	 */
2230 	bdev->max_segment_size = 512 + 128;
2231 	bdev->max_num_segments = 3;
2232 	g_io_done = false;
2233 
2234 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2235 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2236 		iov[i].iov_len = 512 + 256;
2237 	}
2238 
2239 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2240 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2241 		iov[i].iov_len = 512 + 128;
2242 	}
2243 
2244 	/* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries.
2245 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2246 	 * Generate 9 child IOs.
2247 	 */
2248 	for (i = 0; i < 3; i++) {
2249 		uint32_t j = i * 4;
2250 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3);
2251 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2252 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2253 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2254 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2255 
2256 		/* Child io must be a multiple of blocklen
2257 		 * iov[j + 2] must be split. If the third entry is also added,
2258 		 * the multiple of blocklen cannot be guaranteed. But it still
2259 		 * occupies one iov entry of the parent child iov.
2260 		 */
2261 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2);
2262 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2263 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2264 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2265 
2266 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3);
2267 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2268 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2269 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2270 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2271 	}
2272 
2273 	/* Child iov position at 27, the 10th child IO
2274 	 * iov entry index is 3 * 4 and offset is 3 * 6
2275 	 */
2276 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3);
2277 	ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640);
2278 	ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128);
2279 	ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256);
2280 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2281 
2282 	/* Child iov position at 30, the 11th child IO */
2283 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2);
2284 	ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512);
2285 	ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512);
2286 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2287 
2288 	/* The 2nd split round and iovpos is 0, the 12th child IO */
2289 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3);
2290 	ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256);
2291 	ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640);
2292 	ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128);
2293 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2294 
2295 	/* Consume 9 child IOs and 27 child iov entries.
2296 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2297 	 * Parent IO iov index start from 16 and block offset start from 24
2298 	 */
2299 	for (i = 0; i < 3; i++) {
2300 		uint32_t j = i * 4 + 16;
2301 		uint32_t offset = i * 6 + 24;
2302 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3);
2303 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2304 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2305 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2306 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2307 
2308 		/* Child io must be a multiple of blocklen
2309 		 * iov[j + 2] must be split. If the third entry is also added,
2310 		 * the multiple of blocklen cannot be guaranteed. But it still
2311 		 * occupies one iov entry of the parent child iov.
2312 		 */
2313 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2);
2314 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2315 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2316 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2317 
2318 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3);
2319 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2320 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2321 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2322 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2323 	}
2324 
2325 	/* The 22th child IO, child iov position at 30 */
2326 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1);
2327 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512);
2328 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2329 
2330 	/* The third round */
2331 	/* Here is the 23nd child IO and child iovpos is 0 */
2332 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3);
2333 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256);
2334 	ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640);
2335 	ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128);
2336 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2337 
2338 	/* The 24th child IO */
2339 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3);
2340 	ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640);
2341 	ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640);
2342 	ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256);
2343 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2344 
2345 	/* The 25th child IO */
2346 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2);
2347 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384);
2348 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640);
2349 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2350 
2351 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
2352 				    50, io_done, NULL);
2353 	CU_ASSERT(rc == 0);
2354 	CU_ASSERT(g_io_done == false);
2355 
2356 	/* Parent IO supports up to 32 child iovs, so it is calculated that
2357 	 * a maximum of 11 IOs can be split at a time, and the
2358 	 * splitting will continue after the first batch is over.
2359 	 */
2360 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2361 	stub_complete_io(11);
2362 	CU_ASSERT(g_io_done == false);
2363 
2364 	/* The 2nd round */
2365 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2366 	stub_complete_io(11);
2367 	CU_ASSERT(g_io_done == false);
2368 
2369 	/* The last round */
2370 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2371 	stub_complete_io(3);
2372 	CU_ASSERT(g_io_done == true);
2373 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2374 
2375 	/* Test an WRITE_ZEROES.  This should also not be split. */
2376 	bdev->max_segment_size = 512;
2377 	bdev->max_num_segments = 1;
2378 	g_io_done = false;
2379 
2380 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
2381 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2382 
2383 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
2384 	CU_ASSERT(rc == 0);
2385 	CU_ASSERT(g_io_done == false);
2386 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2387 	stub_complete_io(1);
2388 	CU_ASSERT(g_io_done == true);
2389 
2390 	/* Test an UNMAP.  This should also not be split. */
2391 	g_io_done = false;
2392 
2393 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0);
2394 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2395 
2396 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL);
2397 	CU_ASSERT(rc == 0);
2398 	CU_ASSERT(g_io_done == false);
2399 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2400 	stub_complete_io(1);
2401 	CU_ASSERT(g_io_done == true);
2402 
2403 	/* Test a FLUSH.  This should also not be split. */
2404 	g_io_done = false;
2405 
2406 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0);
2407 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2408 
2409 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
2410 	CU_ASSERT(rc == 0);
2411 	CU_ASSERT(g_io_done == false);
2412 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2413 	stub_complete_io(1);
2414 	CU_ASSERT(g_io_done == true);
2415 
2416 	spdk_put_io_channel(io_ch);
2417 	spdk_bdev_close(desc);
2418 	free_bdev(bdev);
2419 	spdk_bdev_finish(bdev_fini_cb, NULL);
2420 	poll_threads();
2421 }
2422 
2423 static void
2424 bdev_io_mix_split_test(void)
2425 {
2426 	struct spdk_bdev *bdev;
2427 	struct spdk_bdev_desc *desc = NULL;
2428 	struct spdk_io_channel *io_ch;
2429 	struct spdk_bdev_opts bdev_opts = {};
2430 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
2431 	struct ut_expected_io *expected_io;
2432 	uint64_t i;
2433 	int rc;
2434 
2435 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2436 	bdev_opts.bdev_io_pool_size = 512;
2437 	bdev_opts.bdev_io_cache_size = 64;
2438 
2439 	rc = spdk_bdev_set_opts(&bdev_opts);
2440 	CU_ASSERT(rc == 0);
2441 	spdk_bdev_initialize(bdev_init_cb, NULL);
2442 
2443 	bdev = allocate_bdev("bdev0");
2444 
2445 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2446 	CU_ASSERT(rc == 0);
2447 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2448 	io_ch = spdk_bdev_get_io_channel(desc);
2449 	CU_ASSERT(io_ch != NULL);
2450 
2451 	/* First case optimal_io_boundary == max_segment_size * max_num_segments */
2452 	bdev->split_on_optimal_io_boundary = true;
2453 	bdev->optimal_io_boundary = 16;
2454 
2455 	bdev->max_segment_size = 512;
2456 	bdev->max_num_segments = 16;
2457 	g_io_done = false;
2458 
2459 	/* IO crossing the IO boundary requires split
2460 	 * Total 2 child IOs.
2461 	 */
2462 
2463 	/* The 1st child IO split the segment_size to multiple segment entry */
2464 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2465 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2466 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2467 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2468 
2469 	/* The 2nd child IO split the segment_size to multiple segment entry */
2470 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2);
2471 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512);
2472 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512);
2473 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2474 
2475 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL);
2476 	CU_ASSERT(rc == 0);
2477 	CU_ASSERT(g_io_done == false);
2478 
2479 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2480 	stub_complete_io(2);
2481 	CU_ASSERT(g_io_done == true);
2482 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2483 
2484 	/* Second case optimal_io_boundary > max_segment_size * max_num_segments */
2485 	bdev->max_segment_size = 15 * 512;
2486 	bdev->max_num_segments = 1;
2487 	g_io_done = false;
2488 
2489 	/* IO crossing the IO boundary requires split.
2490 	 * The 1st child IO segment size exceeds the max_segment_size,
2491 	 * So 1st child IO will be splitted to multiple segment entry.
2492 	 * Then it split to 2 child IOs because of the max_num_segments.
2493 	 * Total 3 child IOs.
2494 	 */
2495 
2496 	/* The first 2 IOs are in an IO boundary.
2497 	 * Because the optimal_io_boundary > max_segment_size * max_num_segments
2498 	 * So it split to the first 2 IOs.
2499 	 */
2500 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1);
2501 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15);
2502 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2503 
2504 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2505 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512);
2506 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2507 
2508 	/* The 3rd Child IO is because of the io boundary */
2509 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2510 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2511 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2512 
2513 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2514 	CU_ASSERT(rc == 0);
2515 	CU_ASSERT(g_io_done == false);
2516 
2517 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2518 	stub_complete_io(3);
2519 	CU_ASSERT(g_io_done == true);
2520 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2521 
2522 	/* Third case optimal_io_boundary < max_segment_size * max_num_segments */
2523 	bdev->max_segment_size = 17 * 512;
2524 	bdev->max_num_segments = 1;
2525 	g_io_done = false;
2526 
2527 	/* IO crossing the IO boundary requires split.
2528 	 * Child IO does not split.
2529 	 * Total 2 child IOs.
2530 	 */
2531 
2532 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1);
2533 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16);
2534 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2535 
2536 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2537 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2538 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2539 
2540 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2541 	CU_ASSERT(rc == 0);
2542 	CU_ASSERT(g_io_done == false);
2543 
2544 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2545 	stub_complete_io(2);
2546 	CU_ASSERT(g_io_done == true);
2547 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2548 
2549 	/* Now set up a more complex, multi-vector command that needs to be split,
2550 	 * including splitting iovecs.
2551 	 * optimal_io_boundary < max_segment_size * max_num_segments
2552 	 */
2553 	bdev->max_segment_size = 3 * 512;
2554 	bdev->max_num_segments = 6;
2555 	g_io_done = false;
2556 
2557 	iov[0].iov_base = (void *)0x10000;
2558 	iov[0].iov_len = 4 * 512;
2559 	iov[1].iov_base = (void *)0x20000;
2560 	iov[1].iov_len = 4 * 512;
2561 	iov[2].iov_base = (void *)0x30000;
2562 	iov[2].iov_len = 10 * 512;
2563 
2564 	/* IO crossing the IO boundary requires split.
2565 	 * The 1st child IO segment size exceeds the max_segment_size and after
2566 	 * splitting segment_size, the num_segments exceeds max_num_segments.
2567 	 * So 1st child IO will be splitted to 2 child IOs.
2568 	 * Total 3 child IOs.
2569 	 */
2570 
2571 	/* The first 2 IOs are in an IO boundary.
2572 	 * After splitting segment size the segment num exceeds.
2573 	 * So it splits to 2 child IOs.
2574 	 */
2575 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6);
2576 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3);
2577 	ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512);
2578 	ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3);
2579 	ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512);
2580 	ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3);
2581 	ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3);
2582 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2583 
2584 	/* The 2nd child IO has the left segment entry */
2585 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2586 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2);
2587 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2588 
2589 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2590 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2);
2591 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2592 
2593 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL);
2594 	CU_ASSERT(rc == 0);
2595 	CU_ASSERT(g_io_done == false);
2596 
2597 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2598 	stub_complete_io(3);
2599 	CU_ASSERT(g_io_done == true);
2600 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2601 
2602 	/* A very complicated case. Each sg entry exceeds max_segment_size
2603 	 * and split on io boundary.
2604 	 * optimal_io_boundary < max_segment_size * max_num_segments
2605 	 */
2606 	bdev->max_segment_size = 3 * 512;
2607 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2608 	g_io_done = false;
2609 
2610 	for (i = 0; i < 20; i++) {
2611 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2612 		iov[i].iov_len = 512 * 4;
2613 	}
2614 
2615 	/* IO crossing the IO boundary requires split.
2616 	 * 80 block length can split 5 child IOs base on offset and IO boundary.
2617 	 * Each iov entry needs to be splitted to 2 entries because of max_segment_size
2618 	 * Total 5 child IOs.
2619 	 */
2620 
2621 	/* 4 iov entries are in an IO boundary and each iov entry splits to 2.
2622 	 * So each child IO occupies 8 child iov entries.
2623 	 */
2624 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8);
2625 	for (i = 0; i < 4; i++) {
2626 		int iovcnt = i * 2;
2627 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2628 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2629 	}
2630 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2631 
2632 	/* 2nd child IO and total 16 child iov entries of parent IO */
2633 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8);
2634 	for (i = 4; i < 8; i++) {
2635 		int iovcnt = (i - 4) * 2;
2636 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2637 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2638 	}
2639 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2640 
2641 	/* 3rd child IO and total 24 child iov entries of parent IO */
2642 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8);
2643 	for (i = 8; i < 12; i++) {
2644 		int iovcnt = (i - 8) * 2;
2645 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2646 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2647 	}
2648 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2649 
2650 	/* 4th child IO and total 32 child iov entries of parent IO */
2651 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8);
2652 	for (i = 12; i < 16; i++) {
2653 		int iovcnt = (i - 12) * 2;
2654 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2655 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2656 	}
2657 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2658 
2659 	/* 5th child IO and because of the child iov entry it should be splitted
2660 	 * in next round.
2661 	 */
2662 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8);
2663 	for (i = 16; i < 20; i++) {
2664 		int iovcnt = (i - 16) * 2;
2665 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2666 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2667 	}
2668 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2669 
2670 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL);
2671 	CU_ASSERT(rc == 0);
2672 	CU_ASSERT(g_io_done == false);
2673 
2674 	/* First split round */
2675 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2676 	stub_complete_io(4);
2677 	CU_ASSERT(g_io_done == false);
2678 
2679 	/* Second split round */
2680 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2681 	stub_complete_io(1);
2682 	CU_ASSERT(g_io_done == true);
2683 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2684 
2685 	spdk_put_io_channel(io_ch);
2686 	spdk_bdev_close(desc);
2687 	free_bdev(bdev);
2688 	spdk_bdev_finish(bdev_fini_cb, NULL);
2689 	poll_threads();
2690 }
2691 
2692 static void
2693 bdev_io_split_with_io_wait(void)
2694 {
2695 	struct spdk_bdev *bdev;
2696 	struct spdk_bdev_desc *desc = NULL;
2697 	struct spdk_io_channel *io_ch;
2698 	struct spdk_bdev_channel *channel;
2699 	struct spdk_bdev_mgmt_channel *mgmt_ch;
2700 	struct spdk_bdev_opts bdev_opts = {};
2701 	struct iovec iov[3];
2702 	struct ut_expected_io *expected_io;
2703 	int rc;
2704 
2705 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2706 	bdev_opts.bdev_io_pool_size = 2;
2707 	bdev_opts.bdev_io_cache_size = 1;
2708 
2709 	rc = spdk_bdev_set_opts(&bdev_opts);
2710 	CU_ASSERT(rc == 0);
2711 	spdk_bdev_initialize(bdev_init_cb, NULL);
2712 
2713 	bdev = allocate_bdev("bdev0");
2714 
2715 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2716 	CU_ASSERT(rc == 0);
2717 	CU_ASSERT(desc != NULL);
2718 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2719 	io_ch = spdk_bdev_get_io_channel(desc);
2720 	CU_ASSERT(io_ch != NULL);
2721 	channel = spdk_io_channel_get_ctx(io_ch);
2722 	mgmt_ch = channel->shared_resource->mgmt_ch;
2723 
2724 	bdev->optimal_io_boundary = 16;
2725 	bdev->split_on_optimal_io_boundary = true;
2726 
2727 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
2728 	CU_ASSERT(rc == 0);
2729 
2730 	/* Now test that a single-vector command is split correctly.
2731 	 * Offset 14, length 8, payload 0xF000
2732 	 *  Child - Offset 14, length 2, payload 0xF000
2733 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
2734 	 *
2735 	 * Set up the expected values before calling spdk_bdev_read_blocks
2736 	 */
2737 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
2738 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
2739 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2740 
2741 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
2742 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
2743 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2744 
2745 	/* The following children will be submitted sequentially due to the capacity of
2746 	 * spdk_bdev_io.
2747 	 */
2748 
2749 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
2750 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
2751 	CU_ASSERT(rc == 0);
2752 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2753 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2754 
2755 	/* Completing the first read I/O will submit the first child */
2756 	stub_complete_io(1);
2757 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2758 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2759 
2760 	/* Completing the first child will submit the second child */
2761 	stub_complete_io(1);
2762 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2763 
2764 	/* Complete the second child I/O.  This should result in our callback getting
2765 	 * invoked since the parent I/O is now complete.
2766 	 */
2767 	stub_complete_io(1);
2768 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2769 
2770 	/* Now set up a more complex, multi-vector command that needs to be split,
2771 	 *  including splitting iovecs.
2772 	 */
2773 	iov[0].iov_base = (void *)0x10000;
2774 	iov[0].iov_len = 512;
2775 	iov[1].iov_base = (void *)0x20000;
2776 	iov[1].iov_len = 20 * 512;
2777 	iov[2].iov_base = (void *)0x30000;
2778 	iov[2].iov_len = 11 * 512;
2779 
2780 	g_io_done = false;
2781 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
2782 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
2783 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
2784 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2785 
2786 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
2787 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
2788 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2789 
2790 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
2791 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
2792 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
2793 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2794 
2795 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
2796 	CU_ASSERT(rc == 0);
2797 	CU_ASSERT(g_io_done == false);
2798 
2799 	/* The following children will be submitted sequentially due to the capacity of
2800 	 * spdk_bdev_io.
2801 	 */
2802 
2803 	/* Completing the first child will submit the second child */
2804 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2805 	stub_complete_io(1);
2806 	CU_ASSERT(g_io_done == false);
2807 
2808 	/* Completing the second child will submit the third child */
2809 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2810 	stub_complete_io(1);
2811 	CU_ASSERT(g_io_done == false);
2812 
2813 	/* Completing the third child will result in our callback getting invoked
2814 	 * since the parent I/O is now complete.
2815 	 */
2816 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2817 	stub_complete_io(1);
2818 	CU_ASSERT(g_io_done == true);
2819 
2820 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
2821 
2822 	spdk_put_io_channel(io_ch);
2823 	spdk_bdev_close(desc);
2824 	free_bdev(bdev);
2825 	spdk_bdev_finish(bdev_fini_cb, NULL);
2826 	poll_threads();
2827 }
2828 
2829 static void
2830 bdev_io_alignment(void)
2831 {
2832 	struct spdk_bdev *bdev;
2833 	struct spdk_bdev_desc *desc = NULL;
2834 	struct spdk_io_channel *io_ch;
2835 	struct spdk_bdev_opts bdev_opts = {};
2836 	int rc;
2837 	void *buf = NULL;
2838 	struct iovec iovs[2];
2839 	int iovcnt;
2840 	uint64_t alignment;
2841 
2842 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2843 	bdev_opts.bdev_io_pool_size = 20;
2844 	bdev_opts.bdev_io_cache_size = 2;
2845 
2846 	rc = spdk_bdev_set_opts(&bdev_opts);
2847 	CU_ASSERT(rc == 0);
2848 	spdk_bdev_initialize(bdev_init_cb, NULL);
2849 
2850 	fn_table.submit_request = stub_submit_request_get_buf;
2851 	bdev = allocate_bdev("bdev0");
2852 
2853 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2854 	CU_ASSERT(rc == 0);
2855 	CU_ASSERT(desc != NULL);
2856 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2857 	io_ch = spdk_bdev_get_io_channel(desc);
2858 	CU_ASSERT(io_ch != NULL);
2859 
2860 	/* Create aligned buffer */
2861 	rc = posix_memalign(&buf, 4096, 8192);
2862 	SPDK_CU_ASSERT_FATAL(rc == 0);
2863 
2864 	/* Pass aligned single buffer with no alignment required */
2865 	alignment = 1;
2866 	bdev->required_alignment = spdk_u32log2(alignment);
2867 
2868 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
2869 	CU_ASSERT(rc == 0);
2870 	stub_complete_io(1);
2871 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2872 				    alignment));
2873 
2874 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
2875 	CU_ASSERT(rc == 0);
2876 	stub_complete_io(1);
2877 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2878 				    alignment));
2879 
2880 	/* Pass unaligned single buffer with no alignment required */
2881 	alignment = 1;
2882 	bdev->required_alignment = spdk_u32log2(alignment);
2883 
2884 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2885 	CU_ASSERT(rc == 0);
2886 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2887 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
2888 	stub_complete_io(1);
2889 
2890 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2891 	CU_ASSERT(rc == 0);
2892 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2893 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
2894 	stub_complete_io(1);
2895 
2896 	/* Pass unaligned single buffer with 512 alignment required */
2897 	alignment = 512;
2898 	bdev->required_alignment = spdk_u32log2(alignment);
2899 
2900 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2901 	CU_ASSERT(rc == 0);
2902 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2903 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2904 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2905 				    alignment));
2906 	stub_complete_io(1);
2907 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2908 
2909 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2910 	CU_ASSERT(rc == 0);
2911 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2912 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2913 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2914 				    alignment));
2915 	stub_complete_io(1);
2916 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2917 
2918 	/* Pass unaligned single buffer with 4096 alignment required */
2919 	alignment = 4096;
2920 	bdev->required_alignment = spdk_u32log2(alignment);
2921 
2922 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
2923 	CU_ASSERT(rc == 0);
2924 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2925 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2926 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2927 				    alignment));
2928 	stub_complete_io(1);
2929 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2930 
2931 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
2932 	CU_ASSERT(rc == 0);
2933 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2934 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2935 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2936 				    alignment));
2937 	stub_complete_io(1);
2938 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2939 
2940 	/* Pass aligned iovs with no alignment required */
2941 	alignment = 1;
2942 	bdev->required_alignment = spdk_u32log2(alignment);
2943 
2944 	iovcnt = 1;
2945 	iovs[0].iov_base = buf;
2946 	iovs[0].iov_len = 512;
2947 
2948 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2949 	CU_ASSERT(rc == 0);
2950 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2951 	stub_complete_io(1);
2952 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2953 
2954 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2955 	CU_ASSERT(rc == 0);
2956 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2957 	stub_complete_io(1);
2958 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2959 
2960 	/* Pass unaligned iovs with no alignment required */
2961 	alignment = 1;
2962 	bdev->required_alignment = spdk_u32log2(alignment);
2963 
2964 	iovcnt = 2;
2965 	iovs[0].iov_base = buf + 16;
2966 	iovs[0].iov_len = 256;
2967 	iovs[1].iov_base = buf + 16 + 256 + 32;
2968 	iovs[1].iov_len = 256;
2969 
2970 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2971 	CU_ASSERT(rc == 0);
2972 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2973 	stub_complete_io(1);
2974 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2975 
2976 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2977 	CU_ASSERT(rc == 0);
2978 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2979 	stub_complete_io(1);
2980 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2981 
2982 	/* Pass unaligned iov with 2048 alignment required */
2983 	alignment = 2048;
2984 	bdev->required_alignment = spdk_u32log2(alignment);
2985 
2986 	iovcnt = 2;
2987 	iovs[0].iov_base = buf + 16;
2988 	iovs[0].iov_len = 256;
2989 	iovs[1].iov_base = buf + 16 + 256 + 32;
2990 	iovs[1].iov_len = 256;
2991 
2992 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2993 	CU_ASSERT(rc == 0);
2994 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
2995 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2996 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2997 				    alignment));
2998 	stub_complete_io(1);
2999 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3000 
3001 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3002 	CU_ASSERT(rc == 0);
3003 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3004 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3005 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3006 				    alignment));
3007 	stub_complete_io(1);
3008 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3009 
3010 	/* Pass iov without allocated buffer without alignment required */
3011 	alignment = 1;
3012 	bdev->required_alignment = spdk_u32log2(alignment);
3013 
3014 	iovcnt = 1;
3015 	iovs[0].iov_base = NULL;
3016 	iovs[0].iov_len = 0;
3017 
3018 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3019 	CU_ASSERT(rc == 0);
3020 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3021 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3022 				    alignment));
3023 	stub_complete_io(1);
3024 
3025 	/* Pass iov without allocated buffer with 1024 alignment required */
3026 	alignment = 1024;
3027 	bdev->required_alignment = spdk_u32log2(alignment);
3028 
3029 	iovcnt = 1;
3030 	iovs[0].iov_base = NULL;
3031 	iovs[0].iov_len = 0;
3032 
3033 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3034 	CU_ASSERT(rc == 0);
3035 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3036 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3037 				    alignment));
3038 	stub_complete_io(1);
3039 
3040 	spdk_put_io_channel(io_ch);
3041 	spdk_bdev_close(desc);
3042 	free_bdev(bdev);
3043 	fn_table.submit_request = stub_submit_request;
3044 	spdk_bdev_finish(bdev_fini_cb, NULL);
3045 	poll_threads();
3046 
3047 	free(buf);
3048 }
3049 
3050 static void
3051 bdev_io_alignment_with_boundary(void)
3052 {
3053 	struct spdk_bdev *bdev;
3054 	struct spdk_bdev_desc *desc = NULL;
3055 	struct spdk_io_channel *io_ch;
3056 	struct spdk_bdev_opts bdev_opts = {};
3057 	int rc;
3058 	void *buf = NULL;
3059 	struct iovec iovs[2];
3060 	int iovcnt;
3061 	uint64_t alignment;
3062 
3063 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3064 	bdev_opts.bdev_io_pool_size = 20;
3065 	bdev_opts.bdev_io_cache_size = 2;
3066 
3067 	bdev_opts.opts_size = sizeof(bdev_opts);
3068 	rc = spdk_bdev_set_opts(&bdev_opts);
3069 	CU_ASSERT(rc == 0);
3070 	spdk_bdev_initialize(bdev_init_cb, NULL);
3071 
3072 	fn_table.submit_request = stub_submit_request_get_buf;
3073 	bdev = allocate_bdev("bdev0");
3074 
3075 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3076 	CU_ASSERT(rc == 0);
3077 	CU_ASSERT(desc != NULL);
3078 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3079 	io_ch = spdk_bdev_get_io_channel(desc);
3080 	CU_ASSERT(io_ch != NULL);
3081 
3082 	/* Create aligned buffer */
3083 	rc = posix_memalign(&buf, 4096, 131072);
3084 	SPDK_CU_ASSERT_FATAL(rc == 0);
3085 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3086 
3087 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
3088 	alignment = 512;
3089 	bdev->required_alignment = spdk_u32log2(alignment);
3090 	bdev->optimal_io_boundary = 2;
3091 	bdev->split_on_optimal_io_boundary = true;
3092 
3093 	iovcnt = 1;
3094 	iovs[0].iov_base = NULL;
3095 	iovs[0].iov_len = 512 * 3;
3096 
3097 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3098 	CU_ASSERT(rc == 0);
3099 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3100 	stub_complete_io(2);
3101 
3102 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
3103 	alignment = 512;
3104 	bdev->required_alignment = spdk_u32log2(alignment);
3105 	bdev->optimal_io_boundary = 16;
3106 	bdev->split_on_optimal_io_boundary = true;
3107 
3108 	iovcnt = 1;
3109 	iovs[0].iov_base = NULL;
3110 	iovs[0].iov_len = 512 * 16;
3111 
3112 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
3113 	CU_ASSERT(rc == 0);
3114 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3115 	stub_complete_io(2);
3116 
3117 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
3118 	alignment = 512;
3119 	bdev->required_alignment = spdk_u32log2(alignment);
3120 	bdev->optimal_io_boundary = 128;
3121 	bdev->split_on_optimal_io_boundary = true;
3122 
3123 	iovcnt = 1;
3124 	iovs[0].iov_base = buf + 16;
3125 	iovs[0].iov_len = 512 * 160;
3126 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3127 	CU_ASSERT(rc == 0);
3128 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3129 	stub_complete_io(2);
3130 
3131 	/* 512 * 3 with 2 IO boundary */
3132 	alignment = 512;
3133 	bdev->required_alignment = spdk_u32log2(alignment);
3134 	bdev->optimal_io_boundary = 2;
3135 	bdev->split_on_optimal_io_boundary = true;
3136 
3137 	iovcnt = 2;
3138 	iovs[0].iov_base = buf + 16;
3139 	iovs[0].iov_len = 512;
3140 	iovs[1].iov_base = buf + 16 + 512 + 32;
3141 	iovs[1].iov_len = 1024;
3142 
3143 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3144 	CU_ASSERT(rc == 0);
3145 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3146 	stub_complete_io(2);
3147 
3148 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3149 	CU_ASSERT(rc == 0);
3150 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3151 	stub_complete_io(2);
3152 
3153 	/* 512 * 64 with 32 IO boundary */
3154 	bdev->optimal_io_boundary = 32;
3155 	iovcnt = 2;
3156 	iovs[0].iov_base = buf + 16;
3157 	iovs[0].iov_len = 16384;
3158 	iovs[1].iov_base = buf + 16 + 16384 + 32;
3159 	iovs[1].iov_len = 16384;
3160 
3161 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3162 	CU_ASSERT(rc == 0);
3163 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3164 	stub_complete_io(3);
3165 
3166 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3167 	CU_ASSERT(rc == 0);
3168 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3169 	stub_complete_io(3);
3170 
3171 	/* 512 * 160 with 32 IO boundary */
3172 	iovcnt = 1;
3173 	iovs[0].iov_base = buf + 16;
3174 	iovs[0].iov_len = 16384 + 65536;
3175 
3176 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3177 	CU_ASSERT(rc == 0);
3178 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
3179 	stub_complete_io(6);
3180 
3181 	spdk_put_io_channel(io_ch);
3182 	spdk_bdev_close(desc);
3183 	free_bdev(bdev);
3184 	fn_table.submit_request = stub_submit_request;
3185 	spdk_bdev_finish(bdev_fini_cb, NULL);
3186 	poll_threads();
3187 
3188 	free(buf);
3189 }
3190 
3191 static void
3192 histogram_status_cb(void *cb_arg, int status)
3193 {
3194 	g_status = status;
3195 }
3196 
3197 static void
3198 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3199 {
3200 	g_status = status;
3201 	g_histogram = histogram;
3202 }
3203 
3204 static void
3205 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
3206 		   uint64_t total, uint64_t so_far)
3207 {
3208 	g_count += count;
3209 }
3210 
3211 static void
3212 bdev_histograms(void)
3213 {
3214 	struct spdk_bdev *bdev;
3215 	struct spdk_bdev_desc *desc = NULL;
3216 	struct spdk_io_channel *ch;
3217 	struct spdk_histogram_data *histogram;
3218 	uint8_t buf[4096];
3219 	int rc;
3220 
3221 	spdk_bdev_initialize(bdev_init_cb, NULL);
3222 
3223 	bdev = allocate_bdev("bdev");
3224 
3225 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3226 	CU_ASSERT(rc == 0);
3227 	CU_ASSERT(desc != NULL);
3228 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3229 
3230 	ch = spdk_bdev_get_io_channel(desc);
3231 	CU_ASSERT(ch != NULL);
3232 
3233 	/* Enable histogram */
3234 	g_status = -1;
3235 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
3236 	poll_threads();
3237 	CU_ASSERT(g_status == 0);
3238 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3239 
3240 	/* Allocate histogram */
3241 	histogram = spdk_histogram_data_alloc();
3242 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
3243 
3244 	/* Check if histogram is zeroed */
3245 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3246 	poll_threads();
3247 	CU_ASSERT(g_status == 0);
3248 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3249 
3250 	g_count = 0;
3251 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3252 
3253 	CU_ASSERT(g_count == 0);
3254 
3255 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3256 	CU_ASSERT(rc == 0);
3257 
3258 	spdk_delay_us(10);
3259 	stub_complete_io(1);
3260 	poll_threads();
3261 
3262 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3263 	CU_ASSERT(rc == 0);
3264 
3265 	spdk_delay_us(10);
3266 	stub_complete_io(1);
3267 	poll_threads();
3268 
3269 	/* Check if histogram gathered data from all I/O channels */
3270 	g_histogram = NULL;
3271 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3272 	poll_threads();
3273 	CU_ASSERT(g_status == 0);
3274 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3275 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3276 
3277 	g_count = 0;
3278 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3279 	CU_ASSERT(g_count == 2);
3280 
3281 	/* Disable histogram */
3282 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
3283 	poll_threads();
3284 	CU_ASSERT(g_status == 0);
3285 	CU_ASSERT(bdev->internal.histogram_enabled == false);
3286 
3287 	/* Try to run histogram commands on disabled bdev */
3288 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3289 	poll_threads();
3290 	CU_ASSERT(g_status == -EFAULT);
3291 
3292 	spdk_histogram_data_free(histogram);
3293 	spdk_put_io_channel(ch);
3294 	spdk_bdev_close(desc);
3295 	free_bdev(bdev);
3296 	spdk_bdev_finish(bdev_fini_cb, NULL);
3297 	poll_threads();
3298 }
3299 
3300 static void
3301 _bdev_compare(bool emulated)
3302 {
3303 	struct spdk_bdev *bdev;
3304 	struct spdk_bdev_desc *desc = NULL;
3305 	struct spdk_io_channel *ioch;
3306 	struct ut_expected_io *expected_io;
3307 	uint64_t offset, num_blocks;
3308 	uint32_t num_completed;
3309 	char aa_buf[512];
3310 	char bb_buf[512];
3311 	struct iovec compare_iov;
3312 	uint8_t expected_io_type;
3313 	int rc;
3314 
3315 	if (emulated) {
3316 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3317 	} else {
3318 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3319 	}
3320 
3321 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3322 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3323 
3324 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3325 
3326 	spdk_bdev_initialize(bdev_init_cb, NULL);
3327 	fn_table.submit_request = stub_submit_request_get_buf;
3328 	bdev = allocate_bdev("bdev");
3329 
3330 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3331 	CU_ASSERT_EQUAL(rc, 0);
3332 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3333 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3334 	ioch = spdk_bdev_get_io_channel(desc);
3335 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3336 
3337 	fn_table.submit_request = stub_submit_request_get_buf;
3338 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3339 
3340 	offset = 50;
3341 	num_blocks = 1;
3342 	compare_iov.iov_base = aa_buf;
3343 	compare_iov.iov_len = sizeof(aa_buf);
3344 
3345 	/* 1. successful compare */
3346 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3347 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3348 
3349 	g_io_done = false;
3350 	g_compare_read_buf = aa_buf;
3351 	g_compare_read_buf_len = sizeof(aa_buf);
3352 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3353 	CU_ASSERT_EQUAL(rc, 0);
3354 	num_completed = stub_complete_io(1);
3355 	CU_ASSERT_EQUAL(num_completed, 1);
3356 	CU_ASSERT(g_io_done == true);
3357 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3358 
3359 	/* 2. miscompare */
3360 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3361 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3362 
3363 	g_io_done = false;
3364 	g_compare_read_buf = bb_buf;
3365 	g_compare_read_buf_len = sizeof(bb_buf);
3366 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3367 	CU_ASSERT_EQUAL(rc, 0);
3368 	num_completed = stub_complete_io(1);
3369 	CU_ASSERT_EQUAL(num_completed, 1);
3370 	CU_ASSERT(g_io_done == true);
3371 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3372 
3373 	spdk_put_io_channel(ioch);
3374 	spdk_bdev_close(desc);
3375 	free_bdev(bdev);
3376 	fn_table.submit_request = stub_submit_request;
3377 	spdk_bdev_finish(bdev_fini_cb, NULL);
3378 	poll_threads();
3379 
3380 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3381 
3382 	g_compare_read_buf = NULL;
3383 }
3384 
3385 static void
3386 _bdev_compare_with_md(bool emulated)
3387 {
3388 	struct spdk_bdev *bdev;
3389 	struct spdk_bdev_desc *desc = NULL;
3390 	struct spdk_io_channel *ioch;
3391 	struct ut_expected_io *expected_io;
3392 	uint64_t offset, num_blocks;
3393 	uint32_t num_completed;
3394 	char buf[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3395 	char buf_interleaved_miscompare[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3396 	char buf_miscompare[1024 /* 2 * blocklen */];
3397 	char md_buf[16];
3398 	char md_buf_miscompare[16];
3399 	struct iovec compare_iov;
3400 	uint8_t expected_io_type;
3401 	int rc;
3402 
3403 	if (emulated) {
3404 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3405 	} else {
3406 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3407 	}
3408 
3409 	memset(buf, 0xaa, sizeof(buf));
3410 	memset(buf_interleaved_miscompare, 0xaa, sizeof(buf_interleaved_miscompare));
3411 	/* make last md different */
3412 	memset(buf_interleaved_miscompare + 1024 + 8, 0xbb, 8);
3413 	memset(buf_miscompare, 0xbb, sizeof(buf_miscompare));
3414 	memset(md_buf, 0xaa, 16);
3415 	memset(md_buf_miscompare, 0xbb, 16);
3416 
3417 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3418 
3419 	spdk_bdev_initialize(bdev_init_cb, NULL);
3420 	fn_table.submit_request = stub_submit_request_get_buf;
3421 	bdev = allocate_bdev("bdev");
3422 
3423 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3424 	CU_ASSERT_EQUAL(rc, 0);
3425 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3426 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3427 	ioch = spdk_bdev_get_io_channel(desc);
3428 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3429 
3430 	fn_table.submit_request = stub_submit_request_get_buf;
3431 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3432 
3433 	offset = 50;
3434 	num_blocks = 2;
3435 
3436 	/* interleaved md & data */
3437 	bdev->md_interleave = true;
3438 	bdev->md_len = 8;
3439 	bdev->blocklen = 512 + 8;
3440 	compare_iov.iov_base = buf;
3441 	compare_iov.iov_len = sizeof(buf);
3442 
3443 	/* 1. successful compare with md interleaved */
3444 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3445 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3446 
3447 	g_io_done = false;
3448 	g_compare_read_buf = buf;
3449 	g_compare_read_buf_len = sizeof(buf);
3450 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3451 	CU_ASSERT_EQUAL(rc, 0);
3452 	num_completed = stub_complete_io(1);
3453 	CU_ASSERT_EQUAL(num_completed, 1);
3454 	CU_ASSERT(g_io_done == true);
3455 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3456 
3457 	/* 2. miscompare with md interleaved */
3458 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3459 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3460 
3461 	g_io_done = false;
3462 	g_compare_read_buf = buf_interleaved_miscompare;
3463 	g_compare_read_buf_len = sizeof(buf_interleaved_miscompare);
3464 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3465 	CU_ASSERT_EQUAL(rc, 0);
3466 	num_completed = stub_complete_io(1);
3467 	CU_ASSERT_EQUAL(num_completed, 1);
3468 	CU_ASSERT(g_io_done == true);
3469 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3470 
3471 	/* Separate data & md buffers */
3472 	bdev->md_interleave = false;
3473 	bdev->blocklen = 512;
3474 	compare_iov.iov_base = buf;
3475 	compare_iov.iov_len = 1024;
3476 
3477 	/* 3. successful compare with md separated */
3478 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3479 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3480 
3481 	g_io_done = false;
3482 	g_compare_read_buf = buf;
3483 	g_compare_read_buf_len = 1024;
3484 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3485 	g_compare_md_buf = md_buf;
3486 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3487 					       offset, num_blocks, io_done, NULL);
3488 	CU_ASSERT_EQUAL(rc, 0);
3489 	num_completed = stub_complete_io(1);
3490 	CU_ASSERT_EQUAL(num_completed, 1);
3491 	CU_ASSERT(g_io_done == true);
3492 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3493 
3494 	/* 4. miscompare with md separated where md buf is different */
3495 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3496 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3497 
3498 	g_io_done = false;
3499 	g_compare_read_buf = buf;
3500 	g_compare_read_buf_len = 1024;
3501 	g_compare_md_buf = md_buf_miscompare;
3502 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3503 					       offset, num_blocks, io_done, NULL);
3504 	CU_ASSERT_EQUAL(rc, 0);
3505 	num_completed = stub_complete_io(1);
3506 	CU_ASSERT_EQUAL(num_completed, 1);
3507 	CU_ASSERT(g_io_done == true);
3508 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3509 
3510 	/* 5. miscompare with md separated where buf is different */
3511 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3512 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3513 
3514 	g_io_done = false;
3515 	g_compare_read_buf = buf_miscompare;
3516 	g_compare_read_buf_len = sizeof(buf_miscompare);
3517 	g_compare_md_buf = md_buf;
3518 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3519 					       offset, num_blocks, io_done, NULL);
3520 	CU_ASSERT_EQUAL(rc, 0);
3521 	num_completed = stub_complete_io(1);
3522 	CU_ASSERT_EQUAL(num_completed, 1);
3523 	CU_ASSERT(g_io_done == true);
3524 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3525 
3526 	bdev->md_len = 0;
3527 	g_compare_md_buf = NULL;
3528 
3529 	spdk_put_io_channel(ioch);
3530 	spdk_bdev_close(desc);
3531 	free_bdev(bdev);
3532 	fn_table.submit_request = stub_submit_request;
3533 	spdk_bdev_finish(bdev_fini_cb, NULL);
3534 	poll_threads();
3535 
3536 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3537 
3538 	g_compare_read_buf = NULL;
3539 }
3540 
3541 static void
3542 bdev_compare(void)
3543 {
3544 	_bdev_compare(false);
3545 	_bdev_compare_with_md(false);
3546 }
3547 
3548 static void
3549 bdev_compare_emulated(void)
3550 {
3551 	_bdev_compare(true);
3552 	_bdev_compare_with_md(true);
3553 }
3554 
3555 static void
3556 bdev_compare_and_write(void)
3557 {
3558 	struct spdk_bdev *bdev;
3559 	struct spdk_bdev_desc *desc = NULL;
3560 	struct spdk_io_channel *ioch;
3561 	struct ut_expected_io *expected_io;
3562 	uint64_t offset, num_blocks;
3563 	uint32_t num_completed;
3564 	char aa_buf[512];
3565 	char bb_buf[512];
3566 	char cc_buf[512];
3567 	char write_buf[512];
3568 	struct iovec compare_iov;
3569 	struct iovec write_iov;
3570 	int rc;
3571 
3572 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3573 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3574 	memset(cc_buf, 0xcc, sizeof(cc_buf));
3575 
3576 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
3577 
3578 	spdk_bdev_initialize(bdev_init_cb, NULL);
3579 	fn_table.submit_request = stub_submit_request_get_buf;
3580 	bdev = allocate_bdev("bdev");
3581 
3582 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3583 	CU_ASSERT_EQUAL(rc, 0);
3584 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3585 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3586 	ioch = spdk_bdev_get_io_channel(desc);
3587 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3588 
3589 	fn_table.submit_request = stub_submit_request_get_buf;
3590 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3591 
3592 	offset = 50;
3593 	num_blocks = 1;
3594 	compare_iov.iov_base = aa_buf;
3595 	compare_iov.iov_len = sizeof(aa_buf);
3596 	write_iov.iov_base = bb_buf;
3597 	write_iov.iov_len = sizeof(bb_buf);
3598 
3599 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3600 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3601 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
3602 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3603 
3604 	g_io_done = false;
3605 	g_compare_read_buf = aa_buf;
3606 	g_compare_read_buf_len = sizeof(aa_buf);
3607 	memset(write_buf, 0, sizeof(write_buf));
3608 	g_compare_write_buf = write_buf;
3609 	g_compare_write_buf_len = sizeof(write_buf);
3610 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3611 			offset, num_blocks, io_done, NULL);
3612 	/* Trigger range locking */
3613 	poll_threads();
3614 	CU_ASSERT_EQUAL(rc, 0);
3615 	num_completed = stub_complete_io(1);
3616 	CU_ASSERT_EQUAL(num_completed, 1);
3617 	CU_ASSERT(g_io_done == false);
3618 	num_completed = stub_complete_io(1);
3619 	/* Trigger range unlocking */
3620 	poll_threads();
3621 	CU_ASSERT_EQUAL(num_completed, 1);
3622 	CU_ASSERT(g_io_done == true);
3623 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3624 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
3625 
3626 	/* Test miscompare */
3627 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3628 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3629 
3630 	g_io_done = false;
3631 	g_compare_read_buf = cc_buf;
3632 	g_compare_read_buf_len = sizeof(cc_buf);
3633 	memset(write_buf, 0, sizeof(write_buf));
3634 	g_compare_write_buf = write_buf;
3635 	g_compare_write_buf_len = sizeof(write_buf);
3636 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3637 			offset, num_blocks, io_done, NULL);
3638 	/* Trigger range locking */
3639 	poll_threads();
3640 	CU_ASSERT_EQUAL(rc, 0);
3641 	num_completed = stub_complete_io(1);
3642 	/* Trigger range unlocking earlier because we expect error here */
3643 	poll_threads();
3644 	CU_ASSERT_EQUAL(num_completed, 1);
3645 	CU_ASSERT(g_io_done == true);
3646 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3647 	num_completed = stub_complete_io(1);
3648 	CU_ASSERT_EQUAL(num_completed, 0);
3649 
3650 	spdk_put_io_channel(ioch);
3651 	spdk_bdev_close(desc);
3652 	free_bdev(bdev);
3653 	fn_table.submit_request = stub_submit_request;
3654 	spdk_bdev_finish(bdev_fini_cb, NULL);
3655 	poll_threads();
3656 
3657 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3658 
3659 	g_compare_read_buf = NULL;
3660 	g_compare_write_buf = NULL;
3661 }
3662 
3663 static void
3664 bdev_write_zeroes(void)
3665 {
3666 	struct spdk_bdev *bdev;
3667 	struct spdk_bdev_desc *desc = NULL;
3668 	struct spdk_io_channel *ioch;
3669 	struct ut_expected_io *expected_io;
3670 	uint64_t offset, num_io_blocks, num_blocks;
3671 	uint32_t num_completed, num_requests;
3672 	int rc;
3673 
3674 	spdk_bdev_initialize(bdev_init_cb, NULL);
3675 	bdev = allocate_bdev("bdev");
3676 
3677 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3678 	CU_ASSERT_EQUAL(rc, 0);
3679 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3680 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3681 	ioch = spdk_bdev_get_io_channel(desc);
3682 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3683 
3684 	fn_table.submit_request = stub_submit_request;
3685 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3686 
3687 	/* First test that if the bdev supports write_zeroes, the request won't be split */
3688 	bdev->md_len = 0;
3689 	bdev->blocklen = 4096;
3690 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3691 
3692 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
3693 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3694 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3695 	CU_ASSERT_EQUAL(rc, 0);
3696 	num_completed = stub_complete_io(1);
3697 	CU_ASSERT_EQUAL(num_completed, 1);
3698 
3699 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
3700 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
3701 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
3702 	num_requests = 2;
3703 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
3704 
3705 	for (offset = 0; offset < num_requests; ++offset) {
3706 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3707 						   offset * num_io_blocks, num_io_blocks, 0);
3708 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3709 	}
3710 
3711 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3712 	CU_ASSERT_EQUAL(rc, 0);
3713 	num_completed = stub_complete_io(num_requests);
3714 	CU_ASSERT_EQUAL(num_completed, num_requests);
3715 
3716 	/* Check that the splitting is correct if bdev has interleaved metadata */
3717 	bdev->md_interleave = true;
3718 	bdev->md_len = 64;
3719 	bdev->blocklen = 4096 + 64;
3720 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3721 
3722 	num_requests = offset = 0;
3723 	while (offset < num_blocks) {
3724 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
3725 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3726 						   offset, num_io_blocks, 0);
3727 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3728 		offset += num_io_blocks;
3729 		num_requests++;
3730 	}
3731 
3732 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3733 	CU_ASSERT_EQUAL(rc, 0);
3734 	num_completed = stub_complete_io(num_requests);
3735 	CU_ASSERT_EQUAL(num_completed, num_requests);
3736 	num_completed = stub_complete_io(num_requests);
3737 	assert(num_completed == 0);
3738 
3739 	/* Check the the same for separate metadata buffer */
3740 	bdev->md_interleave = false;
3741 	bdev->md_len = 64;
3742 	bdev->blocklen = 4096;
3743 
3744 	num_requests = offset = 0;
3745 	while (offset < num_blocks) {
3746 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
3747 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3748 						   offset, num_io_blocks, 0);
3749 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
3750 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3751 		offset += num_io_blocks;
3752 		num_requests++;
3753 	}
3754 
3755 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3756 	CU_ASSERT_EQUAL(rc, 0);
3757 	num_completed = stub_complete_io(num_requests);
3758 	CU_ASSERT_EQUAL(num_completed, num_requests);
3759 
3760 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
3761 	spdk_put_io_channel(ioch);
3762 	spdk_bdev_close(desc);
3763 	free_bdev(bdev);
3764 	spdk_bdev_finish(bdev_fini_cb, NULL);
3765 	poll_threads();
3766 }
3767 
3768 static void
3769 bdev_zcopy_write(void)
3770 {
3771 	struct spdk_bdev *bdev;
3772 	struct spdk_bdev_desc *desc = NULL;
3773 	struct spdk_io_channel *ioch;
3774 	struct ut_expected_io *expected_io;
3775 	uint64_t offset, num_blocks;
3776 	uint32_t num_completed;
3777 	char aa_buf[512];
3778 	struct iovec iov;
3779 	int rc;
3780 	const bool populate = false;
3781 	const bool commit = true;
3782 
3783 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3784 
3785 	spdk_bdev_initialize(bdev_init_cb, NULL);
3786 	bdev = allocate_bdev("bdev");
3787 
3788 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3789 	CU_ASSERT_EQUAL(rc, 0);
3790 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3791 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3792 	ioch = spdk_bdev_get_io_channel(desc);
3793 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3794 
3795 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3796 
3797 	offset = 50;
3798 	num_blocks = 1;
3799 	iov.iov_base = NULL;
3800 	iov.iov_len = 0;
3801 
3802 	g_zcopy_read_buf = (void *) 0x1122334455667788UL;
3803 	g_zcopy_read_buf_len = (uint32_t) -1;
3804 	/* Do a zcopy start for a write (populate=false) */
3805 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3806 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3807 	g_io_done = false;
3808 	g_zcopy_write_buf = aa_buf;
3809 	g_zcopy_write_buf_len = sizeof(aa_buf);
3810 	g_zcopy_bdev_io = NULL;
3811 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
3812 	CU_ASSERT_EQUAL(rc, 0);
3813 	num_completed = stub_complete_io(1);
3814 	CU_ASSERT_EQUAL(num_completed, 1);
3815 	CU_ASSERT(g_io_done == true);
3816 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3817 	/* Check that the iov has been set up */
3818 	CU_ASSERT(iov.iov_base == g_zcopy_write_buf);
3819 	CU_ASSERT(iov.iov_len == g_zcopy_write_buf_len);
3820 	/* Check that the bdev_io has been saved */
3821 	CU_ASSERT(g_zcopy_bdev_io != NULL);
3822 	/* Now do the zcopy end for a write (commit=true) */
3823 	g_io_done = false;
3824 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3825 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3826 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
3827 	CU_ASSERT_EQUAL(rc, 0);
3828 	num_completed = stub_complete_io(1);
3829 	CU_ASSERT_EQUAL(num_completed, 1);
3830 	CU_ASSERT(g_io_done == true);
3831 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3832 	/* Check the g_zcopy are reset by io_done */
3833 	CU_ASSERT(g_zcopy_write_buf == NULL);
3834 	CU_ASSERT(g_zcopy_write_buf_len == 0);
3835 	/* Check that io_done has freed the g_zcopy_bdev_io */
3836 	CU_ASSERT(g_zcopy_bdev_io == NULL);
3837 
3838 	/* Check the zcopy read buffer has not been touched which
3839 	 * ensures that the correct buffers were used.
3840 	 */
3841 	CU_ASSERT(g_zcopy_read_buf == (void *) 0x1122334455667788UL);
3842 	CU_ASSERT(g_zcopy_read_buf_len == (uint32_t) -1);
3843 
3844 	spdk_put_io_channel(ioch);
3845 	spdk_bdev_close(desc);
3846 	free_bdev(bdev);
3847 	spdk_bdev_finish(bdev_fini_cb, NULL);
3848 	poll_threads();
3849 }
3850 
3851 static void
3852 bdev_zcopy_read(void)
3853 {
3854 	struct spdk_bdev *bdev;
3855 	struct spdk_bdev_desc *desc = NULL;
3856 	struct spdk_io_channel *ioch;
3857 	struct ut_expected_io *expected_io;
3858 	uint64_t offset, num_blocks;
3859 	uint32_t num_completed;
3860 	char aa_buf[512];
3861 	struct iovec iov;
3862 	int rc;
3863 	const bool populate = true;
3864 	const bool commit = false;
3865 
3866 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3867 
3868 	spdk_bdev_initialize(bdev_init_cb, NULL);
3869 	bdev = allocate_bdev("bdev");
3870 
3871 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3872 	CU_ASSERT_EQUAL(rc, 0);
3873 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3874 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3875 	ioch = spdk_bdev_get_io_channel(desc);
3876 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3877 
3878 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3879 
3880 	offset = 50;
3881 	num_blocks = 1;
3882 	iov.iov_base = NULL;
3883 	iov.iov_len = 0;
3884 
3885 	g_zcopy_write_buf = (void *) 0x1122334455667788UL;
3886 	g_zcopy_write_buf_len = (uint32_t) -1;
3887 
3888 	/* Do a zcopy start for a read (populate=true) */
3889 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3890 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3891 	g_io_done = false;
3892 	g_zcopy_read_buf = aa_buf;
3893 	g_zcopy_read_buf_len = sizeof(aa_buf);
3894 	g_zcopy_bdev_io = NULL;
3895 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
3896 	CU_ASSERT_EQUAL(rc, 0);
3897 	num_completed = stub_complete_io(1);
3898 	CU_ASSERT_EQUAL(num_completed, 1);
3899 	CU_ASSERT(g_io_done == true);
3900 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3901 	/* Check that the iov has been set up */
3902 	CU_ASSERT(iov.iov_base == g_zcopy_read_buf);
3903 	CU_ASSERT(iov.iov_len == g_zcopy_read_buf_len);
3904 	/* Check that the bdev_io has been saved */
3905 	CU_ASSERT(g_zcopy_bdev_io != NULL);
3906 
3907 	/* Now do the zcopy end for a read (commit=false) */
3908 	g_io_done = false;
3909 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3910 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3911 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
3912 	CU_ASSERT_EQUAL(rc, 0);
3913 	num_completed = stub_complete_io(1);
3914 	CU_ASSERT_EQUAL(num_completed, 1);
3915 	CU_ASSERT(g_io_done == true);
3916 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3917 	/* Check the g_zcopy are reset by io_done */
3918 	CU_ASSERT(g_zcopy_read_buf == NULL);
3919 	CU_ASSERT(g_zcopy_read_buf_len == 0);
3920 	/* Check that io_done has freed the g_zcopy_bdev_io */
3921 	CU_ASSERT(g_zcopy_bdev_io == NULL);
3922 
3923 	/* Check the zcopy write buffer has not been touched which
3924 	 * ensures that the correct buffers were used.
3925 	 */
3926 	CU_ASSERT(g_zcopy_write_buf == (void *) 0x1122334455667788UL);
3927 	CU_ASSERT(g_zcopy_write_buf_len == (uint32_t) -1);
3928 
3929 	spdk_put_io_channel(ioch);
3930 	spdk_bdev_close(desc);
3931 	free_bdev(bdev);
3932 	spdk_bdev_finish(bdev_fini_cb, NULL);
3933 	poll_threads();
3934 }
3935 
3936 static void
3937 bdev_open_while_hotremove(void)
3938 {
3939 	struct spdk_bdev *bdev;
3940 	struct spdk_bdev_desc *desc[2] = {};
3941 	int rc;
3942 
3943 	bdev = allocate_bdev("bdev");
3944 
3945 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
3946 	CU_ASSERT(rc == 0);
3947 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
3948 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
3949 
3950 	spdk_bdev_unregister(bdev, NULL, NULL);
3951 	/* Bdev unregister is handled asynchronously. Poll thread to complete. */
3952 	poll_threads();
3953 
3954 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
3955 	CU_ASSERT(rc == -ENODEV);
3956 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
3957 
3958 	spdk_bdev_close(desc[0]);
3959 	free_bdev(bdev);
3960 }
3961 
3962 static void
3963 bdev_close_while_hotremove(void)
3964 {
3965 	struct spdk_bdev *bdev;
3966 	struct spdk_bdev_desc *desc = NULL;
3967 	int rc = 0;
3968 
3969 	bdev = allocate_bdev("bdev");
3970 
3971 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
3972 	CU_ASSERT_EQUAL(rc, 0);
3973 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3974 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3975 
3976 	/* Simulate hot-unplug by unregistering bdev */
3977 	g_event_type1 = 0xFF;
3978 	g_unregister_arg = NULL;
3979 	g_unregister_rc = -1;
3980 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
3981 	/* Close device while remove event is in flight */
3982 	spdk_bdev_close(desc);
3983 
3984 	/* Ensure that unregister callback is delayed */
3985 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
3986 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
3987 
3988 	poll_threads();
3989 
3990 	/* Event callback shall not be issued because device was closed */
3991 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
3992 	/* Unregister callback is issued */
3993 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
3994 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
3995 
3996 	free_bdev(bdev);
3997 }
3998 
3999 static void
4000 bdev_open_ext(void)
4001 {
4002 	struct spdk_bdev *bdev;
4003 	struct spdk_bdev_desc *desc1 = NULL;
4004 	struct spdk_bdev_desc *desc2 = NULL;
4005 	int rc = 0;
4006 
4007 	bdev = allocate_bdev("bdev");
4008 
4009 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4010 	CU_ASSERT_EQUAL(rc, -EINVAL);
4011 
4012 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4013 	CU_ASSERT_EQUAL(rc, 0);
4014 
4015 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4016 	CU_ASSERT_EQUAL(rc, 0);
4017 
4018 	g_event_type1 = 0xFF;
4019 	g_event_type2 = 0xFF;
4020 
4021 	/* Simulate hot-unplug by unregistering bdev */
4022 	spdk_bdev_unregister(bdev, NULL, NULL);
4023 	poll_threads();
4024 
4025 	/* Check if correct events have been triggered in event callback fn */
4026 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4027 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4028 
4029 	free_bdev(bdev);
4030 	poll_threads();
4031 }
4032 
4033 static void
4034 bdev_open_ext_unregister(void)
4035 {
4036 	struct spdk_bdev *bdev;
4037 	struct spdk_bdev_desc *desc1 = NULL;
4038 	struct spdk_bdev_desc *desc2 = NULL;
4039 	struct spdk_bdev_desc *desc3 = NULL;
4040 	struct spdk_bdev_desc *desc4 = NULL;
4041 	int rc = 0;
4042 
4043 	bdev = allocate_bdev("bdev");
4044 
4045 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4046 	CU_ASSERT_EQUAL(rc, -EINVAL);
4047 
4048 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4049 	CU_ASSERT_EQUAL(rc, 0);
4050 
4051 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4052 	CU_ASSERT_EQUAL(rc, 0);
4053 
4054 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb3, &desc3, &desc3);
4055 	CU_ASSERT_EQUAL(rc, 0);
4056 
4057 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb4, &desc4, &desc4);
4058 	CU_ASSERT_EQUAL(rc, 0);
4059 
4060 	g_event_type1 = 0xFF;
4061 	g_event_type2 = 0xFF;
4062 	g_event_type3 = 0xFF;
4063 	g_event_type4 = 0xFF;
4064 
4065 	g_unregister_arg = NULL;
4066 	g_unregister_rc = -1;
4067 
4068 	/* Simulate hot-unplug by unregistering bdev */
4069 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4070 
4071 	/*
4072 	 * Unregister is handled asynchronously and event callback
4073 	 * (i.e., above bdev_open_cbN) will be called.
4074 	 * For bdev_open_cb3 and bdev_open_cb4, it is intended to not
4075 	 * close the desc3 and desc4 so that the bdev is not closed.
4076 	 */
4077 	poll_threads();
4078 
4079 	/* Check if correct events have been triggered in event callback fn */
4080 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4081 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4082 	CU_ASSERT_EQUAL(g_event_type3, SPDK_BDEV_EVENT_REMOVE);
4083 	CU_ASSERT_EQUAL(g_event_type4, SPDK_BDEV_EVENT_REMOVE);
4084 
4085 	/* Check that unregister callback is delayed */
4086 	CU_ASSERT(g_unregister_arg == NULL);
4087 	CU_ASSERT(g_unregister_rc == -1);
4088 
4089 	/*
4090 	 * Explicitly close desc3. As desc4 is still opened there, the
4091 	 * unergister callback is still delayed to execute.
4092 	 */
4093 	spdk_bdev_close(desc3);
4094 	CU_ASSERT(g_unregister_arg == NULL);
4095 	CU_ASSERT(g_unregister_rc == -1);
4096 
4097 	/*
4098 	 * Explicitly close desc4 to trigger the ongoing bdev unregister
4099 	 * operation after last desc is closed.
4100 	 */
4101 	spdk_bdev_close(desc4);
4102 
4103 	/* Poll the thread for the async unregister operation */
4104 	poll_threads();
4105 
4106 	/* Check that unregister callback is executed */
4107 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
4108 	CU_ASSERT(g_unregister_rc == 0);
4109 
4110 	free_bdev(bdev);
4111 	poll_threads();
4112 }
4113 
4114 struct timeout_io_cb_arg {
4115 	struct iovec iov;
4116 	uint8_t type;
4117 };
4118 
4119 static int
4120 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
4121 {
4122 	struct spdk_bdev_io *bdev_io;
4123 	int n = 0;
4124 
4125 	if (!ch) {
4126 		return -1;
4127 	}
4128 
4129 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
4130 		n++;
4131 	}
4132 
4133 	return n;
4134 }
4135 
4136 static void
4137 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
4138 {
4139 	struct timeout_io_cb_arg *ctx = cb_arg;
4140 
4141 	ctx->type = bdev_io->type;
4142 	ctx->iov.iov_base = bdev_io->iov.iov_base;
4143 	ctx->iov.iov_len = bdev_io->iov.iov_len;
4144 }
4145 
4146 static void
4147 bdev_set_io_timeout(void)
4148 {
4149 	struct spdk_bdev *bdev;
4150 	struct spdk_bdev_desc *desc = NULL;
4151 	struct spdk_io_channel *io_ch = NULL;
4152 	struct spdk_bdev_channel *bdev_ch = NULL;
4153 	struct timeout_io_cb_arg cb_arg;
4154 
4155 	spdk_bdev_initialize(bdev_init_cb, NULL);
4156 
4157 	bdev = allocate_bdev("bdev");
4158 
4159 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4160 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4161 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4162 
4163 	io_ch = spdk_bdev_get_io_channel(desc);
4164 	CU_ASSERT(io_ch != NULL);
4165 
4166 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4167 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4168 
4169 	/* This is the part1.
4170 	 * We will check the bdev_ch->io_submitted list
4171 	 * TO make sure that it can link IOs and only the user submitted IOs
4172 	 */
4173 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4174 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4175 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4176 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4177 	stub_complete_io(1);
4178 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4179 	stub_complete_io(1);
4180 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4181 
4182 	/* Split IO */
4183 	bdev->optimal_io_boundary = 16;
4184 	bdev->split_on_optimal_io_boundary = true;
4185 
4186 	/* Now test that a single-vector command is split correctly.
4187 	 * Offset 14, length 8, payload 0xF000
4188 	 *  Child - Offset 14, length 2, payload 0xF000
4189 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4190 	 *
4191 	 * Set up the expected values before calling spdk_bdev_read_blocks
4192 	 */
4193 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4194 	/* We count all submitted IOs including IO that are generated by splitting. */
4195 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
4196 	stub_complete_io(1);
4197 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4198 	stub_complete_io(1);
4199 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4200 
4201 	/* Also include the reset IO */
4202 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4203 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4204 	poll_threads();
4205 	stub_complete_io(1);
4206 	poll_threads();
4207 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4208 
4209 	/* This is part2
4210 	 * Test the desc timeout poller register
4211 	 */
4212 
4213 	/* Successfully set the timeout */
4214 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4215 	CU_ASSERT(desc->io_timeout_poller != NULL);
4216 	CU_ASSERT(desc->timeout_in_sec == 30);
4217 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4218 	CU_ASSERT(desc->cb_arg == &cb_arg);
4219 
4220 	/* Change the timeout limit */
4221 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4222 	CU_ASSERT(desc->io_timeout_poller != NULL);
4223 	CU_ASSERT(desc->timeout_in_sec == 20);
4224 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4225 	CU_ASSERT(desc->cb_arg == &cb_arg);
4226 
4227 	/* Disable the timeout */
4228 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
4229 	CU_ASSERT(desc->io_timeout_poller == NULL);
4230 
4231 	/* This the part3
4232 	 * We will test to catch timeout IO and check whether the IO is
4233 	 * the submitted one.
4234 	 */
4235 	memset(&cb_arg, 0, sizeof(cb_arg));
4236 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4237 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
4238 
4239 	/* Don't reach the limit */
4240 	spdk_delay_us(15 * spdk_get_ticks_hz());
4241 	poll_threads();
4242 	CU_ASSERT(cb_arg.type == 0);
4243 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4244 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4245 
4246 	/* 15 + 15 = 30 reach the limit */
4247 	spdk_delay_us(15 * spdk_get_ticks_hz());
4248 	poll_threads();
4249 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4250 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
4251 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
4252 	stub_complete_io(1);
4253 
4254 	/* Use the same split IO above and check the IO */
4255 	memset(&cb_arg, 0, sizeof(cb_arg));
4256 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4257 
4258 	/* The first child complete in time */
4259 	spdk_delay_us(15 * spdk_get_ticks_hz());
4260 	poll_threads();
4261 	stub_complete_io(1);
4262 	CU_ASSERT(cb_arg.type == 0);
4263 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4264 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4265 
4266 	/* The second child reach the limit */
4267 	spdk_delay_us(15 * spdk_get_ticks_hz());
4268 	poll_threads();
4269 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4270 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
4271 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
4272 	stub_complete_io(1);
4273 
4274 	/* Also include the reset IO */
4275 	memset(&cb_arg, 0, sizeof(cb_arg));
4276 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4277 	spdk_delay_us(30 * spdk_get_ticks_hz());
4278 	poll_threads();
4279 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
4280 	stub_complete_io(1);
4281 	poll_threads();
4282 
4283 	spdk_put_io_channel(io_ch);
4284 	spdk_bdev_close(desc);
4285 	free_bdev(bdev);
4286 	spdk_bdev_finish(bdev_fini_cb, NULL);
4287 	poll_threads();
4288 }
4289 
4290 static void
4291 bdev_set_qd_sampling(void)
4292 {
4293 	struct spdk_bdev *bdev;
4294 	struct spdk_bdev_desc *desc = NULL;
4295 	struct spdk_io_channel *io_ch = NULL;
4296 	struct spdk_bdev_channel *bdev_ch = NULL;
4297 	struct timeout_io_cb_arg cb_arg;
4298 
4299 	spdk_bdev_initialize(bdev_init_cb, NULL);
4300 
4301 	bdev = allocate_bdev("bdev");
4302 
4303 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4304 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4305 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4306 
4307 	io_ch = spdk_bdev_get_io_channel(desc);
4308 	CU_ASSERT(io_ch != NULL);
4309 
4310 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4311 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4312 
4313 	/* This is the part1.
4314 	 * We will check the bdev_ch->io_submitted list
4315 	 * TO make sure that it can link IOs and only the user submitted IOs
4316 	 */
4317 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4318 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4319 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4320 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4321 	stub_complete_io(1);
4322 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4323 	stub_complete_io(1);
4324 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4325 
4326 	/* This is the part2.
4327 	 * Test the bdev's qd poller register
4328 	 */
4329 	/* 1st Successfully set the qd sampling period */
4330 	spdk_bdev_set_qd_sampling_period(bdev, 10);
4331 	CU_ASSERT(bdev->internal.new_period == 10);
4332 	CU_ASSERT(bdev->internal.period == 10);
4333 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4334 	poll_threads();
4335 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4336 
4337 	/* 2nd Change the qd sampling period */
4338 	spdk_bdev_set_qd_sampling_period(bdev, 20);
4339 	CU_ASSERT(bdev->internal.new_period == 20);
4340 	CU_ASSERT(bdev->internal.period == 10);
4341 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4342 	poll_threads();
4343 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4344 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4345 
4346 	/* 3rd Change the qd sampling period and verify qd_poll_in_progress */
4347 	spdk_delay_us(20);
4348 	poll_thread_times(0, 1);
4349 	CU_ASSERT(bdev->internal.qd_poll_in_progress == true);
4350 	spdk_bdev_set_qd_sampling_period(bdev, 30);
4351 	CU_ASSERT(bdev->internal.new_period == 30);
4352 	CU_ASSERT(bdev->internal.period == 20);
4353 	poll_threads();
4354 	CU_ASSERT(bdev->internal.qd_poll_in_progress == false);
4355 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4356 
4357 	/* 4th Disable the qd sampling period */
4358 	spdk_bdev_set_qd_sampling_period(bdev, 0);
4359 	CU_ASSERT(bdev->internal.new_period == 0);
4360 	CU_ASSERT(bdev->internal.period == 30);
4361 	poll_threads();
4362 	CU_ASSERT(bdev->internal.qd_poller == NULL);
4363 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4364 	CU_ASSERT(bdev->internal.qd_desc == NULL);
4365 
4366 	/* This is the part3.
4367 	 * We will test the submitted IO and reset works
4368 	 * properly with the qd sampling.
4369 	 */
4370 	memset(&cb_arg, 0, sizeof(cb_arg));
4371 	spdk_bdev_set_qd_sampling_period(bdev, 1);
4372 	poll_threads();
4373 
4374 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4375 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4376 
4377 	/* Also include the reset IO */
4378 	memset(&cb_arg, 0, sizeof(cb_arg));
4379 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4380 	poll_threads();
4381 
4382 	/* Close the desc */
4383 	spdk_put_io_channel(io_ch);
4384 	spdk_bdev_close(desc);
4385 
4386 	/* Complete the submitted IO and reset */
4387 	stub_complete_io(2);
4388 	poll_threads();
4389 
4390 	free_bdev(bdev);
4391 	spdk_bdev_finish(bdev_fini_cb, NULL);
4392 	poll_threads();
4393 }
4394 
4395 static void
4396 lba_range_overlap(void)
4397 {
4398 	struct lba_range r1, r2;
4399 
4400 	r1.offset = 100;
4401 	r1.length = 50;
4402 
4403 	r2.offset = 0;
4404 	r2.length = 1;
4405 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4406 
4407 	r2.offset = 0;
4408 	r2.length = 100;
4409 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4410 
4411 	r2.offset = 0;
4412 	r2.length = 110;
4413 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4414 
4415 	r2.offset = 100;
4416 	r2.length = 10;
4417 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4418 
4419 	r2.offset = 110;
4420 	r2.length = 20;
4421 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4422 
4423 	r2.offset = 140;
4424 	r2.length = 150;
4425 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4426 
4427 	r2.offset = 130;
4428 	r2.length = 200;
4429 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4430 
4431 	r2.offset = 150;
4432 	r2.length = 100;
4433 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4434 
4435 	r2.offset = 110;
4436 	r2.length = 0;
4437 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4438 }
4439 
4440 static bool g_lock_lba_range_done;
4441 static bool g_unlock_lba_range_done;
4442 
4443 static void
4444 lock_lba_range_done(void *ctx, int status)
4445 {
4446 	g_lock_lba_range_done = true;
4447 }
4448 
4449 static void
4450 unlock_lba_range_done(void *ctx, int status)
4451 {
4452 	g_unlock_lba_range_done = true;
4453 }
4454 
4455 static void
4456 lock_lba_range_check_ranges(void)
4457 {
4458 	struct spdk_bdev *bdev;
4459 	struct spdk_bdev_desc *desc = NULL;
4460 	struct spdk_io_channel *io_ch;
4461 	struct spdk_bdev_channel *channel;
4462 	struct lba_range *range;
4463 	int ctx1;
4464 	int rc;
4465 
4466 	spdk_bdev_initialize(bdev_init_cb, NULL);
4467 
4468 	bdev = allocate_bdev("bdev0");
4469 
4470 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4471 	CU_ASSERT(rc == 0);
4472 	CU_ASSERT(desc != NULL);
4473 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4474 	io_ch = spdk_bdev_get_io_channel(desc);
4475 	CU_ASSERT(io_ch != NULL);
4476 	channel = spdk_io_channel_get_ctx(io_ch);
4477 
4478 	g_lock_lba_range_done = false;
4479 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4480 	CU_ASSERT(rc == 0);
4481 	poll_threads();
4482 
4483 	CU_ASSERT(g_lock_lba_range_done == true);
4484 	range = TAILQ_FIRST(&channel->locked_ranges);
4485 	SPDK_CU_ASSERT_FATAL(range != NULL);
4486 	CU_ASSERT(range->offset == 20);
4487 	CU_ASSERT(range->length == 10);
4488 	CU_ASSERT(range->owner_ch == channel);
4489 
4490 	/* Unlocks must exactly match a lock. */
4491 	g_unlock_lba_range_done = false;
4492 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
4493 	CU_ASSERT(rc == -EINVAL);
4494 	CU_ASSERT(g_unlock_lba_range_done == false);
4495 
4496 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4497 	CU_ASSERT(rc == 0);
4498 	spdk_delay_us(100);
4499 	poll_threads();
4500 
4501 	CU_ASSERT(g_unlock_lba_range_done == true);
4502 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4503 
4504 	spdk_put_io_channel(io_ch);
4505 	spdk_bdev_close(desc);
4506 	free_bdev(bdev);
4507 	spdk_bdev_finish(bdev_fini_cb, NULL);
4508 	poll_threads();
4509 }
4510 
4511 static void
4512 lock_lba_range_with_io_outstanding(void)
4513 {
4514 	struct spdk_bdev *bdev;
4515 	struct spdk_bdev_desc *desc = NULL;
4516 	struct spdk_io_channel *io_ch;
4517 	struct spdk_bdev_channel *channel;
4518 	struct lba_range *range;
4519 	char buf[4096];
4520 	int ctx1;
4521 	int rc;
4522 
4523 	spdk_bdev_initialize(bdev_init_cb, NULL);
4524 
4525 	bdev = allocate_bdev("bdev0");
4526 
4527 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4528 	CU_ASSERT(rc == 0);
4529 	CU_ASSERT(desc != NULL);
4530 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4531 	io_ch = spdk_bdev_get_io_channel(desc);
4532 	CU_ASSERT(io_ch != NULL);
4533 	channel = spdk_io_channel_get_ctx(io_ch);
4534 
4535 	g_io_done = false;
4536 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4537 	CU_ASSERT(rc == 0);
4538 
4539 	g_lock_lba_range_done = false;
4540 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4541 	CU_ASSERT(rc == 0);
4542 	poll_threads();
4543 
4544 	/* The lock should immediately become valid, since there are no outstanding
4545 	 * write I/O.
4546 	 */
4547 	CU_ASSERT(g_io_done == false);
4548 	CU_ASSERT(g_lock_lba_range_done == true);
4549 	range = TAILQ_FIRST(&channel->locked_ranges);
4550 	SPDK_CU_ASSERT_FATAL(range != NULL);
4551 	CU_ASSERT(range->offset == 20);
4552 	CU_ASSERT(range->length == 10);
4553 	CU_ASSERT(range->owner_ch == channel);
4554 	CU_ASSERT(range->locked_ctx == &ctx1);
4555 
4556 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4557 	CU_ASSERT(rc == 0);
4558 	stub_complete_io(1);
4559 	spdk_delay_us(100);
4560 	poll_threads();
4561 
4562 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4563 
4564 	/* Now try again, but with a write I/O. */
4565 	g_io_done = false;
4566 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4567 	CU_ASSERT(rc == 0);
4568 
4569 	g_lock_lba_range_done = false;
4570 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4571 	CU_ASSERT(rc == 0);
4572 	poll_threads();
4573 
4574 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
4575 	 * But note that the range should be on the channel's locked_list, to make sure no
4576 	 * new write I/O are started.
4577 	 */
4578 	CU_ASSERT(g_io_done == false);
4579 	CU_ASSERT(g_lock_lba_range_done == false);
4580 	range = TAILQ_FIRST(&channel->locked_ranges);
4581 	SPDK_CU_ASSERT_FATAL(range != NULL);
4582 	CU_ASSERT(range->offset == 20);
4583 	CU_ASSERT(range->length == 10);
4584 
4585 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
4586 	 * our callback was invoked).
4587 	 */
4588 	stub_complete_io(1);
4589 	spdk_delay_us(100);
4590 	poll_threads();
4591 	CU_ASSERT(g_io_done == true);
4592 	CU_ASSERT(g_lock_lba_range_done == true);
4593 
4594 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4595 	CU_ASSERT(rc == 0);
4596 	poll_threads();
4597 
4598 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4599 
4600 	spdk_put_io_channel(io_ch);
4601 	spdk_bdev_close(desc);
4602 	free_bdev(bdev);
4603 	spdk_bdev_finish(bdev_fini_cb, NULL);
4604 	poll_threads();
4605 }
4606 
4607 static void
4608 lock_lba_range_overlapped(void)
4609 {
4610 	struct spdk_bdev *bdev;
4611 	struct spdk_bdev_desc *desc = NULL;
4612 	struct spdk_io_channel *io_ch;
4613 	struct spdk_bdev_channel *channel;
4614 	struct lba_range *range;
4615 	int ctx1;
4616 	int rc;
4617 
4618 	spdk_bdev_initialize(bdev_init_cb, NULL);
4619 
4620 	bdev = allocate_bdev("bdev0");
4621 
4622 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4623 	CU_ASSERT(rc == 0);
4624 	CU_ASSERT(desc != NULL);
4625 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4626 	io_ch = spdk_bdev_get_io_channel(desc);
4627 	CU_ASSERT(io_ch != NULL);
4628 	channel = spdk_io_channel_get_ctx(io_ch);
4629 
4630 	/* Lock range 20-29. */
4631 	g_lock_lba_range_done = false;
4632 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4633 	CU_ASSERT(rc == 0);
4634 	poll_threads();
4635 
4636 	CU_ASSERT(g_lock_lba_range_done == true);
4637 	range = TAILQ_FIRST(&channel->locked_ranges);
4638 	SPDK_CU_ASSERT_FATAL(range != NULL);
4639 	CU_ASSERT(range->offset == 20);
4640 	CU_ASSERT(range->length == 10);
4641 
4642 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
4643 	 * 20-29.
4644 	 */
4645 	g_lock_lba_range_done = false;
4646 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
4647 	CU_ASSERT(rc == 0);
4648 	poll_threads();
4649 
4650 	CU_ASSERT(g_lock_lba_range_done == false);
4651 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4652 	SPDK_CU_ASSERT_FATAL(range != NULL);
4653 	CU_ASSERT(range->offset == 25);
4654 	CU_ASSERT(range->length == 15);
4655 
4656 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
4657 	 * no longer overlaps with an active lock.
4658 	 */
4659 	g_unlock_lba_range_done = false;
4660 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4661 	CU_ASSERT(rc == 0);
4662 	poll_threads();
4663 
4664 	CU_ASSERT(g_unlock_lba_range_done == true);
4665 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4666 	range = TAILQ_FIRST(&channel->locked_ranges);
4667 	SPDK_CU_ASSERT_FATAL(range != NULL);
4668 	CU_ASSERT(range->offset == 25);
4669 	CU_ASSERT(range->length == 15);
4670 
4671 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
4672 	 * currently active 25-39 lock.
4673 	 */
4674 	g_lock_lba_range_done = false;
4675 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
4676 	CU_ASSERT(rc == 0);
4677 	poll_threads();
4678 
4679 	CU_ASSERT(g_lock_lba_range_done == true);
4680 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4681 	SPDK_CU_ASSERT_FATAL(range != NULL);
4682 	range = TAILQ_NEXT(range, tailq);
4683 	SPDK_CU_ASSERT_FATAL(range != NULL);
4684 	CU_ASSERT(range->offset == 40);
4685 	CU_ASSERT(range->length == 20);
4686 
4687 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
4688 	g_lock_lba_range_done = false;
4689 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
4690 	CU_ASSERT(rc == 0);
4691 	poll_threads();
4692 
4693 	CU_ASSERT(g_lock_lba_range_done == false);
4694 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4695 	SPDK_CU_ASSERT_FATAL(range != NULL);
4696 	CU_ASSERT(range->offset == 35);
4697 	CU_ASSERT(range->length == 10);
4698 
4699 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
4700 	 * the 40-59 lock is still active.
4701 	 */
4702 	g_unlock_lba_range_done = false;
4703 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
4704 	CU_ASSERT(rc == 0);
4705 	poll_threads();
4706 
4707 	CU_ASSERT(g_unlock_lba_range_done == true);
4708 	CU_ASSERT(g_lock_lba_range_done == false);
4709 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4710 	SPDK_CU_ASSERT_FATAL(range != NULL);
4711 	CU_ASSERT(range->offset == 35);
4712 	CU_ASSERT(range->length == 10);
4713 
4714 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
4715 	 * no longer any active overlapping locks.
4716 	 */
4717 	g_unlock_lba_range_done = false;
4718 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
4719 	CU_ASSERT(rc == 0);
4720 	poll_threads();
4721 
4722 	CU_ASSERT(g_unlock_lba_range_done == true);
4723 	CU_ASSERT(g_lock_lba_range_done == true);
4724 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4725 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4726 	SPDK_CU_ASSERT_FATAL(range != NULL);
4727 	CU_ASSERT(range->offset == 35);
4728 	CU_ASSERT(range->length == 10);
4729 
4730 	/* Finally, unlock 35-44. */
4731 	g_unlock_lba_range_done = false;
4732 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
4733 	CU_ASSERT(rc == 0);
4734 	poll_threads();
4735 
4736 	CU_ASSERT(g_unlock_lba_range_done == true);
4737 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
4738 
4739 	spdk_put_io_channel(io_ch);
4740 	spdk_bdev_close(desc);
4741 	free_bdev(bdev);
4742 	spdk_bdev_finish(bdev_fini_cb, NULL);
4743 	poll_threads();
4744 }
4745 
4746 static void
4747 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
4748 {
4749 	g_abort_done = true;
4750 	g_abort_status = bdev_io->internal.status;
4751 	spdk_bdev_free_io(bdev_io);
4752 }
4753 
4754 static void
4755 bdev_io_abort(void)
4756 {
4757 	struct spdk_bdev *bdev;
4758 	struct spdk_bdev_desc *desc = NULL;
4759 	struct spdk_io_channel *io_ch;
4760 	struct spdk_bdev_channel *channel;
4761 	struct spdk_bdev_mgmt_channel *mgmt_ch;
4762 	struct spdk_bdev_opts bdev_opts = {};
4763 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
4764 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
4765 	int rc;
4766 
4767 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4768 	bdev_opts.bdev_io_pool_size = 7;
4769 	bdev_opts.bdev_io_cache_size = 2;
4770 
4771 	rc = spdk_bdev_set_opts(&bdev_opts);
4772 	CU_ASSERT(rc == 0);
4773 	spdk_bdev_initialize(bdev_init_cb, NULL);
4774 
4775 	bdev = allocate_bdev("bdev0");
4776 
4777 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4778 	CU_ASSERT(rc == 0);
4779 	CU_ASSERT(desc != NULL);
4780 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4781 	io_ch = spdk_bdev_get_io_channel(desc);
4782 	CU_ASSERT(io_ch != NULL);
4783 	channel = spdk_io_channel_get_ctx(io_ch);
4784 	mgmt_ch = channel->shared_resource->mgmt_ch;
4785 
4786 	g_abort_done = false;
4787 
4788 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
4789 
4790 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4791 	CU_ASSERT(rc == -ENOTSUP);
4792 
4793 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
4794 
4795 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
4796 	CU_ASSERT(rc == 0);
4797 	CU_ASSERT(g_abort_done == true);
4798 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
4799 
4800 	/* Test the case that the target I/O was successfully aborted. */
4801 	g_io_done = false;
4802 
4803 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
4804 	CU_ASSERT(rc == 0);
4805 	CU_ASSERT(g_io_done == false);
4806 
4807 	g_abort_done = false;
4808 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4809 
4810 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4811 	CU_ASSERT(rc == 0);
4812 	CU_ASSERT(g_io_done == true);
4813 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4814 	stub_complete_io(1);
4815 	CU_ASSERT(g_abort_done == true);
4816 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4817 
4818 	/* Test the case that the target I/O was not aborted because it completed
4819 	 * in the middle of execution of the abort.
4820 	 */
4821 	g_io_done = false;
4822 
4823 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
4824 	CU_ASSERT(rc == 0);
4825 	CU_ASSERT(g_io_done == false);
4826 
4827 	g_abort_done = false;
4828 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
4829 
4830 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4831 	CU_ASSERT(rc == 0);
4832 	CU_ASSERT(g_io_done == false);
4833 
4834 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4835 	stub_complete_io(1);
4836 	CU_ASSERT(g_io_done == true);
4837 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4838 
4839 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
4840 	stub_complete_io(1);
4841 	CU_ASSERT(g_abort_done == true);
4842 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4843 
4844 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4845 
4846 	bdev->optimal_io_boundary = 16;
4847 	bdev->split_on_optimal_io_boundary = true;
4848 
4849 	/* Test that a single-vector command which is split is aborted correctly.
4850 	 * Offset 14, length 8, payload 0xF000
4851 	 *  Child - Offset 14, length 2, payload 0xF000
4852 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4853 	 */
4854 	g_io_done = false;
4855 
4856 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
4857 	CU_ASSERT(rc == 0);
4858 	CU_ASSERT(g_io_done == false);
4859 
4860 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
4861 
4862 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4863 
4864 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4865 	CU_ASSERT(rc == 0);
4866 	CU_ASSERT(g_io_done == true);
4867 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4868 	stub_complete_io(2);
4869 	CU_ASSERT(g_abort_done == true);
4870 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4871 
4872 	/* Test that a multi-vector command that needs to be split by strip and then
4873 	 * needs to be split is aborted correctly. Abort is requested before the second
4874 	 * child I/O was submitted. The parent I/O should complete with failure without
4875 	 * submitting the second child I/O.
4876 	 */
4877 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
4878 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
4879 		iov[i].iov_len = 512;
4880 	}
4881 
4882 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
4883 	g_io_done = false;
4884 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
4885 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
4886 	CU_ASSERT(rc == 0);
4887 	CU_ASSERT(g_io_done == false);
4888 
4889 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
4890 
4891 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4892 
4893 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4894 	CU_ASSERT(rc == 0);
4895 	CU_ASSERT(g_io_done == true);
4896 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4897 	stub_complete_io(1);
4898 	CU_ASSERT(g_abort_done == true);
4899 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4900 
4901 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4902 
4903 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4904 
4905 	bdev->optimal_io_boundary = 16;
4906 	g_io_done = false;
4907 
4908 	/* Test that a ingle-vector command which is split is aborted correctly.
4909 	 * Differently from the above, the child abort request will be submitted
4910 	 * sequentially due to the capacity of spdk_bdev_io.
4911 	 */
4912 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
4913 	CU_ASSERT(rc == 0);
4914 	CU_ASSERT(g_io_done == false);
4915 
4916 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
4917 
4918 	g_abort_done = false;
4919 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4920 
4921 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4922 	CU_ASSERT(rc == 0);
4923 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
4924 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
4925 
4926 	stub_complete_io(1);
4927 	CU_ASSERT(g_io_done == true);
4928 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4929 	stub_complete_io(3);
4930 	CU_ASSERT(g_abort_done == true);
4931 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4932 
4933 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4934 
4935 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4936 
4937 	spdk_put_io_channel(io_ch);
4938 	spdk_bdev_close(desc);
4939 	free_bdev(bdev);
4940 	spdk_bdev_finish(bdev_fini_cb, NULL);
4941 	poll_threads();
4942 }
4943 
4944 static void
4945 bdev_unmap(void)
4946 {
4947 	struct spdk_bdev *bdev;
4948 	struct spdk_bdev_desc *desc = NULL;
4949 	struct spdk_io_channel *ioch;
4950 	struct spdk_bdev_channel *bdev_ch;
4951 	struct ut_expected_io *expected_io;
4952 	struct spdk_bdev_opts bdev_opts = {};
4953 	uint32_t i, num_outstanding;
4954 	uint64_t offset, num_blocks, max_unmap_blocks, num_children;
4955 	int rc;
4956 
4957 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4958 	bdev_opts.bdev_io_pool_size = 512;
4959 	bdev_opts.bdev_io_cache_size = 64;
4960 	rc = spdk_bdev_set_opts(&bdev_opts);
4961 	CU_ASSERT(rc == 0);
4962 
4963 	spdk_bdev_initialize(bdev_init_cb, NULL);
4964 	bdev = allocate_bdev("bdev");
4965 
4966 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4967 	CU_ASSERT_EQUAL(rc, 0);
4968 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4969 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4970 	ioch = spdk_bdev_get_io_channel(desc);
4971 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4972 	bdev_ch = spdk_io_channel_get_ctx(ioch);
4973 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4974 
4975 	fn_table.submit_request = stub_submit_request;
4976 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4977 
4978 	/* Case 1: First test the request won't be split */
4979 	num_blocks = 32;
4980 
4981 	g_io_done = false;
4982 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 0, num_blocks, 0);
4983 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4984 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4985 	CU_ASSERT_EQUAL(rc, 0);
4986 	CU_ASSERT(g_io_done == false);
4987 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
4988 	stub_complete_io(1);
4989 	CU_ASSERT(g_io_done == true);
4990 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4991 
4992 	/* Case 2: Test the split with 2 children requests */
4993 	bdev->max_unmap = 8;
4994 	bdev->max_unmap_segments = 2;
4995 	max_unmap_blocks = bdev->max_unmap * bdev->max_unmap_segments;
4996 	num_blocks = max_unmap_blocks * 2;
4997 	offset = 0;
4998 
4999 	g_io_done = false;
5000 	for (i = 0; i < 2; i++) {
5001 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5002 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5003 		offset += max_unmap_blocks;
5004 	}
5005 
5006 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5007 	CU_ASSERT_EQUAL(rc, 0);
5008 	CU_ASSERT(g_io_done == false);
5009 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5010 	stub_complete_io(2);
5011 	CU_ASSERT(g_io_done == true);
5012 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5013 
5014 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5015 	num_children = 15;
5016 	num_blocks = max_unmap_blocks * num_children;
5017 	g_io_done = false;
5018 	offset = 0;
5019 	for (i = 0; i < num_children; i++) {
5020 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5021 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5022 		offset += max_unmap_blocks;
5023 	}
5024 
5025 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5026 	CU_ASSERT_EQUAL(rc, 0);
5027 	CU_ASSERT(g_io_done == false);
5028 
5029 	while (num_children > 0) {
5030 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5031 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5032 		stub_complete_io(num_outstanding);
5033 		num_children -= num_outstanding;
5034 	}
5035 	CU_ASSERT(g_io_done == true);
5036 
5037 	spdk_put_io_channel(ioch);
5038 	spdk_bdev_close(desc);
5039 	free_bdev(bdev);
5040 	spdk_bdev_finish(bdev_fini_cb, NULL);
5041 	poll_threads();
5042 }
5043 
5044 static void
5045 bdev_write_zeroes_split_test(void)
5046 {
5047 	struct spdk_bdev *bdev;
5048 	struct spdk_bdev_desc *desc = NULL;
5049 	struct spdk_io_channel *ioch;
5050 	struct spdk_bdev_channel *bdev_ch;
5051 	struct ut_expected_io *expected_io;
5052 	struct spdk_bdev_opts bdev_opts = {};
5053 	uint32_t i, num_outstanding;
5054 	uint64_t offset, num_blocks, max_write_zeroes_blocks, num_children;
5055 	int rc;
5056 
5057 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5058 	bdev_opts.bdev_io_pool_size = 512;
5059 	bdev_opts.bdev_io_cache_size = 64;
5060 	rc = spdk_bdev_set_opts(&bdev_opts);
5061 	CU_ASSERT(rc == 0);
5062 
5063 	spdk_bdev_initialize(bdev_init_cb, NULL);
5064 	bdev = allocate_bdev("bdev");
5065 
5066 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5067 	CU_ASSERT_EQUAL(rc, 0);
5068 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5069 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5070 	ioch = spdk_bdev_get_io_channel(desc);
5071 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5072 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5073 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5074 
5075 	fn_table.submit_request = stub_submit_request;
5076 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5077 
5078 	/* Case 1: First test the request won't be split */
5079 	num_blocks = 32;
5080 
5081 	g_io_done = false;
5082 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
5083 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5084 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5085 	CU_ASSERT_EQUAL(rc, 0);
5086 	CU_ASSERT(g_io_done == false);
5087 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5088 	stub_complete_io(1);
5089 	CU_ASSERT(g_io_done == true);
5090 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5091 
5092 	/* Case 2: Test the split with 2 children requests */
5093 	max_write_zeroes_blocks = 8;
5094 	bdev->max_write_zeroes = max_write_zeroes_blocks;
5095 	num_blocks = max_write_zeroes_blocks * 2;
5096 	offset = 0;
5097 
5098 	g_io_done = false;
5099 	for (i = 0; i < 2; i++) {
5100 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5101 						   0);
5102 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5103 		offset += max_write_zeroes_blocks;
5104 	}
5105 
5106 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5107 	CU_ASSERT_EQUAL(rc, 0);
5108 	CU_ASSERT(g_io_done == false);
5109 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5110 	stub_complete_io(2);
5111 	CU_ASSERT(g_io_done == true);
5112 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5113 
5114 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5115 	num_children = 15;
5116 	num_blocks = max_write_zeroes_blocks * num_children;
5117 	g_io_done = false;
5118 	offset = 0;
5119 	for (i = 0; i < num_children; i++) {
5120 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5121 						   0);
5122 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5123 		offset += max_write_zeroes_blocks;
5124 	}
5125 
5126 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5127 	CU_ASSERT_EQUAL(rc, 0);
5128 	CU_ASSERT(g_io_done == false);
5129 
5130 	while (num_children > 0) {
5131 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5132 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5133 		stub_complete_io(num_outstanding);
5134 		num_children -= num_outstanding;
5135 	}
5136 	CU_ASSERT(g_io_done == true);
5137 
5138 	spdk_put_io_channel(ioch);
5139 	spdk_bdev_close(desc);
5140 	free_bdev(bdev);
5141 	spdk_bdev_finish(bdev_fini_cb, NULL);
5142 	poll_threads();
5143 }
5144 
5145 static void
5146 bdev_set_options_test(void)
5147 {
5148 	struct spdk_bdev_opts bdev_opts = {};
5149 	int rc;
5150 
5151 	/* Case1: Do not set opts_size */
5152 	rc = spdk_bdev_set_opts(&bdev_opts);
5153 	CU_ASSERT(rc == -1);
5154 
5155 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5156 	bdev_opts.bdev_io_pool_size = 4;
5157 	bdev_opts.bdev_io_cache_size = 2;
5158 	bdev_opts.small_buf_pool_size = 4;
5159 
5160 	/* Case 2: Do not set valid small_buf_pool_size and large_buf_pool_size */
5161 	rc = spdk_bdev_set_opts(&bdev_opts);
5162 	CU_ASSERT(rc == -1);
5163 
5164 	/* Case 3: Do not set valid large_buf_pool_size */
5165 	bdev_opts.small_buf_pool_size = BUF_SMALL_POOL_SIZE;
5166 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE - 1;
5167 	rc = spdk_bdev_set_opts(&bdev_opts);
5168 	CU_ASSERT(rc == -1);
5169 
5170 	/* Case4: set valid large buf_pool_size */
5171 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE;
5172 	rc = spdk_bdev_set_opts(&bdev_opts);
5173 	CU_ASSERT(rc == 0);
5174 
5175 	/* Case5: Set different valid value for small and large buf pool */
5176 	bdev_opts.large_buf_pool_size = BUF_SMALL_POOL_SIZE + 3;
5177 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE + 3;
5178 	rc = spdk_bdev_set_opts(&bdev_opts);
5179 	CU_ASSERT(rc == 0);
5180 }
5181 
5182 static uint64_t
5183 get_ns_time(void)
5184 {
5185 	int rc;
5186 	struct timespec ts;
5187 
5188 	rc = clock_gettime(CLOCK_MONOTONIC, &ts);
5189 	CU_ASSERT(rc == 0);
5190 	return ts.tv_sec * 1000 * 1000 * 1000 + ts.tv_nsec;
5191 }
5192 
5193 static int
5194 rb_tree_get_height(struct spdk_bdev_name *bdev_name)
5195 {
5196 	int h1, h2;
5197 
5198 	if (bdev_name == NULL) {
5199 		return -1;
5200 	} else {
5201 		h1 = rb_tree_get_height(RB_LEFT(bdev_name, node));
5202 		h2 = rb_tree_get_height(RB_RIGHT(bdev_name, node));
5203 
5204 		return spdk_max(h1, h2) + 1;
5205 	}
5206 }
5207 
5208 static void
5209 bdev_multi_allocation(void)
5210 {
5211 	const int max_bdev_num = 1024 * 16;
5212 	char name[max_bdev_num][16];
5213 	char noexist_name[] = "invalid_bdev";
5214 	struct spdk_bdev *bdev[max_bdev_num];
5215 	int i, j;
5216 	uint64_t last_time;
5217 	int bdev_num;
5218 	int height;
5219 
5220 	for (j = 0; j < max_bdev_num; j++) {
5221 		snprintf(name[j], sizeof(name[j]), "bdev%d", j);
5222 	}
5223 
5224 	for (i = 0; i < 16; i++) {
5225 		last_time = get_ns_time();
5226 		bdev_num = 1024 * (i + 1);
5227 		for (j = 0; j < bdev_num; j++) {
5228 			bdev[j] = allocate_bdev(name[j]);
5229 			height = rb_tree_get_height(&bdev[j]->internal.bdev_name);
5230 			CU_ASSERT(height <= (int)(spdk_u32log2(2 * j + 2)));
5231 		}
5232 		SPDK_NOTICELOG("alloc bdev num %d takes %" PRIu64 " ms\n", bdev_num,
5233 			       (get_ns_time() - last_time) / 1000 / 1000);
5234 		for (j = 0; j < bdev_num; j++) {
5235 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) != NULL);
5236 		}
5237 		CU_ASSERT(spdk_bdev_get_by_name(noexist_name) == NULL);
5238 
5239 		for (j = 0; j < bdev_num; j++) {
5240 			free_bdev(bdev[j]);
5241 		}
5242 		for (j = 0; j < bdev_num; j++) {
5243 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) == NULL);
5244 		}
5245 	}
5246 }
5247 
5248 static struct spdk_memory_domain *g_bdev_memory_domain = (struct spdk_memory_domain *) 0xf00df00d;
5249 
5250 static int
5251 test_bdev_get_supported_dma_device_types_op(void *ctx, struct spdk_memory_domain **domains,
5252 		int array_size)
5253 {
5254 	if (array_size > 0 && domains) {
5255 		domains[0] = g_bdev_memory_domain;
5256 	}
5257 
5258 	return 1;
5259 }
5260 
5261 static void
5262 bdev_get_memory_domains(void)
5263 {
5264 	struct spdk_bdev_fn_table fn_table = {
5265 		.get_memory_domains = test_bdev_get_supported_dma_device_types_op
5266 	};
5267 	struct spdk_bdev bdev = { .fn_table = &fn_table };
5268 	struct spdk_memory_domain *domains[2] = {};
5269 	int rc;
5270 
5271 	/* bdev is NULL */
5272 	rc = spdk_bdev_get_memory_domains(NULL, domains, 2);
5273 	CU_ASSERT(rc == -EINVAL);
5274 
5275 	/* domains is NULL */
5276 	rc = spdk_bdev_get_memory_domains(&bdev, NULL, 2);
5277 	CU_ASSERT(rc == 1);
5278 
5279 	/* array size is 0 */
5280 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 0);
5281 	CU_ASSERT(rc == 1);
5282 
5283 	/* get_supported_dma_device_types op is set */
5284 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5285 	CU_ASSERT(rc == 1);
5286 	CU_ASSERT(domains[0] == g_bdev_memory_domain);
5287 
5288 	/* get_supported_dma_device_types op is not set */
5289 	fn_table.get_memory_domains = NULL;
5290 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5291 	CU_ASSERT(rc == 0);
5292 }
5293 
5294 static void
5295 _bdev_io_ext(struct spdk_bdev_ext_io_opts *ext_io_opts)
5296 {
5297 	struct spdk_bdev *bdev;
5298 	struct spdk_bdev_desc *desc = NULL;
5299 	struct spdk_io_channel *io_ch;
5300 	char io_buf[512];
5301 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5302 	struct ut_expected_io *expected_io;
5303 	int rc;
5304 
5305 	spdk_bdev_initialize(bdev_init_cb, NULL);
5306 
5307 	bdev = allocate_bdev("bdev0");
5308 	bdev->md_interleave = false;
5309 	bdev->md_len = 8;
5310 
5311 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5312 	CU_ASSERT(rc == 0);
5313 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5314 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5315 	io_ch = spdk_bdev_get_io_channel(desc);
5316 	CU_ASSERT(io_ch != NULL);
5317 
5318 	/* read */
5319 	g_io_done = false;
5320 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5321 	if (ext_io_opts) {
5322 		expected_io->md_buf = ext_io_opts->metadata;
5323 		expected_io->ext_io_opts = ext_io_opts;
5324 	}
5325 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5326 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5327 
5328 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5329 
5330 	CU_ASSERT(rc == 0);
5331 	CU_ASSERT(g_io_done == false);
5332 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5333 	stub_complete_io(1);
5334 	CU_ASSERT(g_io_done == true);
5335 
5336 	/* write */
5337 	g_io_done = false;
5338 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5339 	if (ext_io_opts) {
5340 		expected_io->md_buf = ext_io_opts->metadata;
5341 		expected_io->ext_io_opts = ext_io_opts;
5342 	}
5343 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5344 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5345 
5346 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5347 
5348 	CU_ASSERT(rc == 0);
5349 	CU_ASSERT(g_io_done == false);
5350 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5351 	stub_complete_io(1);
5352 	CU_ASSERT(g_io_done == true);
5353 
5354 	spdk_put_io_channel(io_ch);
5355 	spdk_bdev_close(desc);
5356 	free_bdev(bdev);
5357 	spdk_bdev_finish(bdev_fini_cb, NULL);
5358 	poll_threads();
5359 
5360 }
5361 
5362 static void
5363 bdev_io_ext(void)
5364 {
5365 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5366 		.metadata = (void *)0xFF000000,
5367 		.size = sizeof(ext_io_opts)
5368 	};
5369 
5370 	_bdev_io_ext(&ext_io_opts);
5371 }
5372 
5373 static void
5374 bdev_io_ext_no_opts(void)
5375 {
5376 	_bdev_io_ext(NULL);
5377 }
5378 
5379 static void
5380 bdev_io_ext_invalid_opts(void)
5381 {
5382 	struct spdk_bdev *bdev;
5383 	struct spdk_bdev_desc *desc = NULL;
5384 	struct spdk_io_channel *io_ch;
5385 	char io_buf[512];
5386 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5387 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5388 		.metadata = (void *)0xFF000000,
5389 		.size = sizeof(ext_io_opts)
5390 	};
5391 	int rc;
5392 
5393 	spdk_bdev_initialize(bdev_init_cb, NULL);
5394 
5395 	bdev = allocate_bdev("bdev0");
5396 	bdev->md_interleave = false;
5397 	bdev->md_len = 8;
5398 
5399 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5400 	CU_ASSERT(rc == 0);
5401 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5402 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5403 	io_ch = spdk_bdev_get_io_channel(desc);
5404 	CU_ASSERT(io_ch != NULL);
5405 
5406 	/* Test invalid ext_opts size */
5407 	ext_io_opts.size = 0;
5408 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5409 	CU_ASSERT(rc == -EINVAL);
5410 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5411 	CU_ASSERT(rc == -EINVAL);
5412 
5413 	ext_io_opts.size = sizeof(ext_io_opts) * 2;
5414 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5415 	CU_ASSERT(rc == -EINVAL);
5416 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5417 	CU_ASSERT(rc == -EINVAL);
5418 
5419 	ext_io_opts.size = offsetof(struct spdk_bdev_ext_io_opts, metadata) +
5420 			   sizeof(ext_io_opts.metadata) - 1;
5421 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5422 	CU_ASSERT(rc == -EINVAL);
5423 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5424 	CU_ASSERT(rc == -EINVAL);
5425 
5426 	spdk_put_io_channel(io_ch);
5427 	spdk_bdev_close(desc);
5428 	free_bdev(bdev);
5429 	spdk_bdev_finish(bdev_fini_cb, NULL);
5430 	poll_threads();
5431 }
5432 
5433 static void
5434 bdev_io_ext_split(void)
5435 {
5436 	struct spdk_bdev *bdev;
5437 	struct spdk_bdev_desc *desc = NULL;
5438 	struct spdk_io_channel *io_ch;
5439 	char io_buf[512];
5440 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5441 	struct ut_expected_io *expected_io;
5442 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5443 		.metadata = (void *)0xFF000000,
5444 		.size = sizeof(ext_io_opts)
5445 	};
5446 	int rc;
5447 
5448 	spdk_bdev_initialize(bdev_init_cb, NULL);
5449 
5450 	bdev = allocate_bdev("bdev0");
5451 	bdev->md_interleave = false;
5452 	bdev->md_len = 8;
5453 
5454 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5455 	CU_ASSERT(rc == 0);
5456 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5457 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5458 	io_ch = spdk_bdev_get_io_channel(desc);
5459 	CU_ASSERT(io_ch != NULL);
5460 
5461 	/* Check that IO request with ext_opts and metadata is split correctly
5462 	 * Offset 14, length 8, payload 0xF000
5463 	 *  Child - Offset 14, length 2, payload 0xF000
5464 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5465 	 */
5466 	bdev->optimal_io_boundary = 16;
5467 	bdev->split_on_optimal_io_boundary = true;
5468 	bdev->md_interleave = false;
5469 	bdev->md_len = 8;
5470 
5471 	iov.iov_base = (void *)0xF000;
5472 	iov.iov_len = 4096;
5473 	memset(&ext_io_opts, 0, sizeof(ext_io_opts));
5474 	ext_io_opts.metadata = (void *)0xFF000000;
5475 	ext_io_opts.size = sizeof(ext_io_opts);
5476 	g_io_done = false;
5477 
5478 	/* read */
5479 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
5480 	expected_io->md_buf = ext_io_opts.metadata;
5481 	expected_io->ext_io_opts = &ext_io_opts;
5482 	expected_io->copy_opts = true;
5483 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5484 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5485 
5486 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
5487 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5488 	expected_io->ext_io_opts = &ext_io_opts;
5489 	expected_io->copy_opts = true;
5490 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5491 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5492 
5493 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5494 	CU_ASSERT(rc == 0);
5495 	CU_ASSERT(g_io_done == false);
5496 
5497 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5498 	stub_complete_io(2);
5499 	CU_ASSERT(g_io_done == true);
5500 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5501 
5502 	/* write */
5503 	g_io_done = false;
5504 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
5505 	expected_io->md_buf = ext_io_opts.metadata;
5506 	expected_io->ext_io_opts = &ext_io_opts;
5507 	expected_io->copy_opts = true;
5508 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5509 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5510 
5511 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 6, 1);
5512 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5513 	expected_io->ext_io_opts = &ext_io_opts;
5514 	expected_io->copy_opts = true;
5515 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5516 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5517 
5518 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5519 	CU_ASSERT(rc == 0);
5520 	CU_ASSERT(g_io_done == false);
5521 
5522 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5523 	stub_complete_io(2);
5524 	CU_ASSERT(g_io_done == true);
5525 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5526 
5527 	spdk_put_io_channel(io_ch);
5528 	spdk_bdev_close(desc);
5529 	free_bdev(bdev);
5530 	spdk_bdev_finish(bdev_fini_cb, NULL);
5531 	poll_threads();
5532 }
5533 
5534 static void
5535 bdev_io_ext_bounce_buffer(void)
5536 {
5537 	struct spdk_bdev *bdev;
5538 	struct spdk_bdev_desc *desc = NULL;
5539 	struct spdk_io_channel *io_ch;
5540 	char io_buf[512];
5541 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5542 	struct ut_expected_io *expected_io;
5543 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5544 		.metadata = (void *)0xFF000000,
5545 		.size = sizeof(ext_io_opts)
5546 	};
5547 	int rc;
5548 
5549 	spdk_bdev_initialize(bdev_init_cb, NULL);
5550 
5551 	bdev = allocate_bdev("bdev0");
5552 	bdev->md_interleave = false;
5553 	bdev->md_len = 8;
5554 
5555 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5556 	CU_ASSERT(rc == 0);
5557 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5558 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5559 	io_ch = spdk_bdev_get_io_channel(desc);
5560 	CU_ASSERT(io_ch != NULL);
5561 
5562 	/* Verify data pull/push
5563 	 * bdev doesn't support memory domains, so buffers from bdev memory pool will be used */
5564 	ext_io_opts.memory_domain = (struct spdk_memory_domain *)0xdeadbeef;
5565 
5566 	/* read */
5567 	g_io_done = false;
5568 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5569 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5570 	expected_io->ext_io_opts = &ext_io_opts;
5571 	expected_io->copy_opts = true;
5572 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5573 
5574 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5575 
5576 	CU_ASSERT(rc == 0);
5577 	CU_ASSERT(g_io_done == false);
5578 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5579 	stub_complete_io(1);
5580 	CU_ASSERT(g_memory_domain_push_data_called == true);
5581 	CU_ASSERT(g_io_done == true);
5582 
5583 	/* write */
5584 	g_io_done = false;
5585 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5586 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5587 	expected_io->ext_io_opts = &ext_io_opts;
5588 	expected_io->copy_opts = true;
5589 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5590 
5591 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5592 
5593 	CU_ASSERT(rc == 0);
5594 	CU_ASSERT(g_memory_domain_pull_data_called == true);
5595 	CU_ASSERT(g_io_done == false);
5596 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5597 	stub_complete_io(1);
5598 	CU_ASSERT(g_io_done == true);
5599 
5600 	spdk_put_io_channel(io_ch);
5601 	spdk_bdev_close(desc);
5602 	free_bdev(bdev);
5603 	spdk_bdev_finish(bdev_fini_cb, NULL);
5604 	poll_threads();
5605 }
5606 
5607 static void
5608 bdev_register_uuid_alias(void)
5609 {
5610 	struct spdk_bdev *bdev, *second;
5611 	char uuid[SPDK_UUID_STRING_LEN];
5612 	int rc;
5613 
5614 	spdk_bdev_initialize(bdev_init_cb, NULL);
5615 	bdev = allocate_bdev("bdev0");
5616 
5617 	/* Make sure an UUID was generated  */
5618 	CU_ASSERT_FALSE(spdk_mem_all_zero(&bdev->uuid, sizeof(bdev->uuid)));
5619 
5620 	/* Check that an UUID alias was registered */
5621 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5622 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5623 
5624 	/* Unregister the bdev */
5625 	spdk_bdev_unregister(bdev, NULL, NULL);
5626 	poll_threads();
5627 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5628 
5629 	/* Check the same, but this time register the bdev with non-zero UUID */
5630 	rc = spdk_bdev_register(bdev);
5631 	CU_ASSERT_EQUAL(rc, 0);
5632 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5633 
5634 	/* Unregister the bdev */
5635 	spdk_bdev_unregister(bdev, NULL, NULL);
5636 	poll_threads();
5637 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5638 
5639 	/* Regiser the bdev using UUID as the name */
5640 	bdev->name = uuid;
5641 	rc = spdk_bdev_register(bdev);
5642 	CU_ASSERT_EQUAL(rc, 0);
5643 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5644 
5645 	/* Unregister the bdev */
5646 	spdk_bdev_unregister(bdev, NULL, NULL);
5647 	poll_threads();
5648 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5649 
5650 	/* Check that it's not possible to register two bdevs with the same UUIDs */
5651 	bdev->name = "bdev0";
5652 	second = allocate_bdev("bdev1");
5653 	spdk_uuid_copy(&bdev->uuid, &second->uuid);
5654 	rc = spdk_bdev_register(bdev);
5655 	CU_ASSERT_EQUAL(rc, -EEXIST);
5656 
5657 	/* Regenerate the UUID and re-check */
5658 	spdk_uuid_generate(&bdev->uuid);
5659 	rc = spdk_bdev_register(bdev);
5660 	CU_ASSERT_EQUAL(rc, 0);
5661 
5662 	/* And check that both bdevs can be retrieved through their UUIDs */
5663 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5664 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5665 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &second->uuid);
5666 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), second);
5667 
5668 	free_bdev(second);
5669 	free_bdev(bdev);
5670 	spdk_bdev_finish(bdev_fini_cb, NULL);
5671 	poll_threads();
5672 }
5673 
5674 static void
5675 bdev_unregister_by_name(void)
5676 {
5677 	struct spdk_bdev *bdev;
5678 	int rc;
5679 
5680 	bdev = allocate_bdev("bdev");
5681 
5682 	g_event_type1 = 0xFF;
5683 	g_unregister_arg = NULL;
5684 	g_unregister_rc = -1;
5685 
5686 	rc = spdk_bdev_unregister_by_name("bdev1", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5687 	CU_ASSERT(rc == -ENODEV);
5688 
5689 	rc = spdk_bdev_unregister_by_name("bdev", &vbdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5690 	CU_ASSERT(rc == -ENODEV);
5691 
5692 	rc = spdk_bdev_unregister_by_name("bdev", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5693 	CU_ASSERT(rc == 0);
5694 
5695 	/* Check that unregister callback is delayed */
5696 	CU_ASSERT(g_unregister_arg == NULL);
5697 	CU_ASSERT(g_unregister_rc == -1);
5698 
5699 	poll_threads();
5700 
5701 	/* Event callback shall not be issued because device was closed */
5702 	CU_ASSERT(g_event_type1 == 0xFF);
5703 	/* Unregister callback is issued */
5704 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
5705 	CU_ASSERT(g_unregister_rc == 0);
5706 
5707 	free_bdev(bdev);
5708 }
5709 
5710 static int
5711 count_bdevs(void *ctx, struct spdk_bdev *bdev)
5712 {
5713 	int *count = ctx;
5714 
5715 	(*count)++;
5716 
5717 	return 0;
5718 }
5719 
5720 static void
5721 for_each_bdev_test(void)
5722 {
5723 	struct spdk_bdev *bdev[8];
5724 	int rc, count;
5725 
5726 	bdev[0] = allocate_bdev("bdev0");
5727 
5728 	bdev[1] = allocate_bdev("bdev1");
5729 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
5730 	CU_ASSERT(rc == 0);
5731 
5732 	bdev[2] = allocate_bdev("bdev2");
5733 
5734 	bdev[3] = allocate_bdev("bdev3");
5735 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
5736 	CU_ASSERT(rc == 0);
5737 
5738 	bdev[4] = allocate_bdev("bdev4");
5739 
5740 	bdev[5] = allocate_bdev("bdev5");
5741 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
5742 	CU_ASSERT(rc == 0);
5743 
5744 	bdev[6] = allocate_bdev("bdev6");
5745 
5746 	bdev[7] = allocate_bdev("bdev7");
5747 
5748 	count = 0;
5749 	rc = spdk_for_each_bdev(&count, count_bdevs);
5750 	CU_ASSERT(rc == 0);
5751 	CU_ASSERT(count == 8);
5752 
5753 	count = 0;
5754 	rc = spdk_for_each_bdev_leaf(&count, count_bdevs);
5755 	CU_ASSERT(rc == 0);
5756 	CU_ASSERT(count == 5);
5757 
5758 	free_bdev(bdev[0]);
5759 	free_bdev(bdev[1]);
5760 	free_bdev(bdev[2]);
5761 	free_bdev(bdev[3]);
5762 	free_bdev(bdev[4]);
5763 	free_bdev(bdev[5]);
5764 	free_bdev(bdev[6]);
5765 	free_bdev(bdev[7]);
5766 }
5767 
5768 int
5769 main(int argc, char **argv)
5770 {
5771 	CU_pSuite		suite = NULL;
5772 	unsigned int		num_failures;
5773 
5774 	CU_set_error_action(CUEA_ABORT);
5775 	CU_initialize_registry();
5776 
5777 	suite = CU_add_suite("bdev", null_init, null_clean);
5778 
5779 	CU_ADD_TEST(suite, bytes_to_blocks_test);
5780 	CU_ADD_TEST(suite, num_blocks_test);
5781 	CU_ADD_TEST(suite, io_valid_test);
5782 	CU_ADD_TEST(suite, open_write_test);
5783 	CU_ADD_TEST(suite, claim_test);
5784 	CU_ADD_TEST(suite, alias_add_del_test);
5785 	CU_ADD_TEST(suite, get_device_stat_test);
5786 	CU_ADD_TEST(suite, bdev_io_types_test);
5787 	CU_ADD_TEST(suite, bdev_io_wait_test);
5788 	CU_ADD_TEST(suite, bdev_io_spans_split_test);
5789 	CU_ADD_TEST(suite, bdev_io_boundary_split_test);
5790 	CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test);
5791 	CU_ADD_TEST(suite, bdev_io_mix_split_test);
5792 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
5793 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
5794 	CU_ADD_TEST(suite, bdev_io_alignment);
5795 	CU_ADD_TEST(suite, bdev_histograms);
5796 	CU_ADD_TEST(suite, bdev_write_zeroes);
5797 	CU_ADD_TEST(suite, bdev_compare_and_write);
5798 	CU_ADD_TEST(suite, bdev_compare);
5799 	CU_ADD_TEST(suite, bdev_compare_emulated);
5800 	CU_ADD_TEST(suite, bdev_zcopy_write);
5801 	CU_ADD_TEST(suite, bdev_zcopy_read);
5802 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
5803 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
5804 	CU_ADD_TEST(suite, bdev_open_ext);
5805 	CU_ADD_TEST(suite, bdev_open_ext_unregister);
5806 	CU_ADD_TEST(suite, bdev_set_io_timeout);
5807 	CU_ADD_TEST(suite, bdev_set_qd_sampling);
5808 	CU_ADD_TEST(suite, lba_range_overlap);
5809 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
5810 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
5811 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
5812 	CU_ADD_TEST(suite, bdev_io_abort);
5813 	CU_ADD_TEST(suite, bdev_unmap);
5814 	CU_ADD_TEST(suite, bdev_write_zeroes_split_test);
5815 	CU_ADD_TEST(suite, bdev_set_options_test);
5816 	CU_ADD_TEST(suite, bdev_multi_allocation);
5817 	CU_ADD_TEST(suite, bdev_get_memory_domains);
5818 	CU_ADD_TEST(suite, bdev_io_ext);
5819 	CU_ADD_TEST(suite, bdev_io_ext_no_opts);
5820 	CU_ADD_TEST(suite, bdev_io_ext_invalid_opts);
5821 	CU_ADD_TEST(suite, bdev_io_ext_split);
5822 	CU_ADD_TEST(suite, bdev_io_ext_bounce_buffer);
5823 	CU_ADD_TEST(suite, bdev_register_uuid_alias);
5824 	CU_ADD_TEST(suite, bdev_unregister_by_name);
5825 	CU_ADD_TEST(suite, for_each_bdev_test);
5826 
5827 	allocate_cores(1);
5828 	allocate_threads(1);
5829 	set_thread(0);
5830 
5831 	CU_basic_set_mode(CU_BRM_VERBOSE);
5832 	CU_basic_run_tests();
5833 	num_failures = CU_get_number_of_failures();
5834 	CU_cleanup_registry();
5835 
5836 	free_threads();
5837 	free_cores();
5838 
5839 	return num_failures;
5840 }
5841