xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision 4e6e7eafefea30d301a64549d65c40aa4d975dc6)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (c) Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk_cunit.h"
8 
9 #include "common/lib/ut_multithread.c"
10 #include "unit/lib/json_mock.c"
11 
12 #include "spdk/config.h"
13 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
14 #undef SPDK_CONFIG_VTUNE
15 
16 #include "bdev/bdev.c"
17 
18 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
19 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
20 DEFINE_STUB(spdk_memory_domain_get_dma_device_id, const char *, (struct spdk_memory_domain *domain),
21 	    "test_domain");
22 DEFINE_STUB(spdk_memory_domain_get_dma_device_type, enum spdk_dma_device_type,
23 	    (struct spdk_memory_domain *domain), 0);
24 
25 static bool g_memory_domain_pull_data_called;
26 static bool g_memory_domain_push_data_called;
27 
28 DEFINE_RETURN_MOCK(spdk_memory_domain_pull_data, int);
29 int
30 spdk_memory_domain_pull_data(struct spdk_memory_domain *src_domain, void *src_domain_ctx,
31 			     struct iovec *src_iov, uint32_t src_iov_cnt, struct iovec *dst_iov, uint32_t dst_iov_cnt,
32 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
33 {
34 	g_memory_domain_pull_data_called = true;
35 	HANDLE_RETURN_MOCK(spdk_memory_domain_pull_data);
36 	cpl_cb(cpl_cb_arg, 0);
37 	return 0;
38 }
39 
40 DEFINE_RETURN_MOCK(spdk_memory_domain_push_data, int);
41 int
42 spdk_memory_domain_push_data(struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
43 			     struct iovec *dst_iov, uint32_t dst_iovcnt, struct iovec *src_iov, uint32_t src_iovcnt,
44 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
45 {
46 	g_memory_domain_push_data_called = true;
47 	HANDLE_RETURN_MOCK(spdk_memory_domain_push_data);
48 	cpl_cb(cpl_cb_arg, 0);
49 	return 0;
50 }
51 
52 int g_status;
53 int g_count;
54 enum spdk_bdev_event_type g_event_type1;
55 enum spdk_bdev_event_type g_event_type2;
56 enum spdk_bdev_event_type g_event_type3;
57 enum spdk_bdev_event_type g_event_type4;
58 struct spdk_histogram_data *g_histogram;
59 void *g_unregister_arg;
60 int g_unregister_rc;
61 
62 void
63 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
64 			 int *sc, int *sk, int *asc, int *ascq)
65 {
66 }
67 
68 static int
69 null_init(void)
70 {
71 	return 0;
72 }
73 
74 static int
75 null_clean(void)
76 {
77 	return 0;
78 }
79 
80 static int
81 stub_destruct(void *ctx)
82 {
83 	return 0;
84 }
85 
86 struct ut_expected_io {
87 	uint8_t				type;
88 	uint64_t			offset;
89 	uint64_t			length;
90 	int				iovcnt;
91 	struct iovec			iov[BDEV_IO_NUM_CHILD_IOV];
92 	void				*md_buf;
93 	struct spdk_bdev_ext_io_opts	*ext_io_opts;
94 	TAILQ_ENTRY(ut_expected_io)	link;
95 };
96 
97 struct bdev_ut_channel {
98 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
99 	uint32_t			outstanding_io_count;
100 	TAILQ_HEAD(, ut_expected_io)	expected_io;
101 };
102 
103 static bool g_io_done;
104 static struct spdk_bdev_io *g_bdev_io;
105 static enum spdk_bdev_io_status g_io_status;
106 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
107 static uint32_t g_bdev_ut_io_device;
108 static struct bdev_ut_channel *g_bdev_ut_channel;
109 static void *g_compare_read_buf;
110 static uint32_t g_compare_read_buf_len;
111 static void *g_compare_write_buf;
112 static uint32_t g_compare_write_buf_len;
113 static bool g_abort_done;
114 static enum spdk_bdev_io_status g_abort_status;
115 static void *g_zcopy_read_buf;
116 static uint32_t g_zcopy_read_buf_len;
117 static void *g_zcopy_write_buf;
118 static uint32_t g_zcopy_write_buf_len;
119 static struct spdk_bdev_io *g_zcopy_bdev_io;
120 
121 static struct ut_expected_io *
122 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
123 {
124 	struct ut_expected_io *expected_io;
125 
126 	expected_io = calloc(1, sizeof(*expected_io));
127 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
128 
129 	expected_io->type = type;
130 	expected_io->offset = offset;
131 	expected_io->length = length;
132 	expected_io->iovcnt = iovcnt;
133 
134 	return expected_io;
135 }
136 
137 static void
138 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
139 {
140 	expected_io->iov[pos].iov_base = base;
141 	expected_io->iov[pos].iov_len = len;
142 }
143 
144 static void
145 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
146 {
147 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
148 	struct ut_expected_io *expected_io;
149 	struct iovec *iov, *expected_iov;
150 	struct spdk_bdev_io *bio_to_abort;
151 	int i;
152 
153 	g_bdev_io = bdev_io;
154 
155 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
156 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
157 
158 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
159 		CU_ASSERT(g_compare_read_buf_len == len);
160 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
161 	}
162 
163 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
164 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
165 
166 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
167 		CU_ASSERT(g_compare_write_buf_len == len);
168 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
169 	}
170 
171 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
172 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
173 
174 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
175 		CU_ASSERT(g_compare_read_buf_len == len);
176 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
177 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
178 		}
179 	}
180 
181 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
182 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
183 			TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
184 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
185 					TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
186 					ch->outstanding_io_count--;
187 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
188 					break;
189 				}
190 			}
191 		}
192 	}
193 
194 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) {
195 		if (bdev_io->u.bdev.zcopy.start) {
196 			g_zcopy_bdev_io = bdev_io;
197 			if (bdev_io->u.bdev.zcopy.populate) {
198 				/* Start of a read */
199 				CU_ASSERT(g_zcopy_read_buf != NULL);
200 				CU_ASSERT(g_zcopy_read_buf_len > 0);
201 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_read_buf;
202 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_read_buf_len;
203 				bdev_io->u.bdev.iovcnt = 1;
204 			} else {
205 				/* Start of a write */
206 				CU_ASSERT(g_zcopy_write_buf != NULL);
207 				CU_ASSERT(g_zcopy_write_buf_len > 0);
208 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_write_buf;
209 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_write_buf_len;
210 				bdev_io->u.bdev.iovcnt = 1;
211 			}
212 		} else {
213 			if (bdev_io->u.bdev.zcopy.commit) {
214 				/* End of write */
215 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_write_buf);
216 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_write_buf_len);
217 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
218 				g_zcopy_write_buf = NULL;
219 				g_zcopy_write_buf_len = 0;
220 			} else {
221 				/* End of read */
222 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_read_buf);
223 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_read_buf_len);
224 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
225 				g_zcopy_read_buf = NULL;
226 				g_zcopy_read_buf_len = 0;
227 			}
228 		}
229 	}
230 
231 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
232 	ch->outstanding_io_count++;
233 
234 	expected_io = TAILQ_FIRST(&ch->expected_io);
235 	if (expected_io == NULL) {
236 		return;
237 	}
238 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
239 
240 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
241 		CU_ASSERT(bdev_io->type == expected_io->type);
242 	}
243 
244 	if (expected_io->md_buf != NULL) {
245 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
246 		if (bdev_io->u.bdev.ext_opts) {
247 			CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.ext_opts->metadata);
248 		}
249 	}
250 
251 	if (expected_io->length == 0) {
252 		free(expected_io);
253 		return;
254 	}
255 
256 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
257 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
258 
259 	if (expected_io->iovcnt == 0) {
260 		free(expected_io);
261 		/* UNMAP, WRITE_ZEROES and FLUSH don't have iovs, so we can just return now. */
262 		return;
263 	}
264 
265 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
266 	for (i = 0; i < expected_io->iovcnt; i++) {
267 		expected_iov = &expected_io->iov[i];
268 		if (bdev_io->internal.orig_iovcnt == 0) {
269 			iov = &bdev_io->u.bdev.iovs[i];
270 		} else {
271 			iov = bdev_io->internal.orig_iovs;
272 		}
273 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
274 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
275 	}
276 
277 	if (expected_io->ext_io_opts) {
278 		CU_ASSERT(expected_io->ext_io_opts == bdev_io->internal.ext_opts)
279 	}
280 
281 	free(expected_io);
282 }
283 
284 static void
285 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
286 			       struct spdk_bdev_io *bdev_io, bool success)
287 {
288 	CU_ASSERT(success == true);
289 
290 	stub_submit_request(_ch, bdev_io);
291 }
292 
293 static void
294 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
295 {
296 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
297 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
298 }
299 
300 static uint32_t
301 stub_complete_io(uint32_t num_to_complete)
302 {
303 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
304 	struct spdk_bdev_io *bdev_io;
305 	static enum spdk_bdev_io_status io_status;
306 	uint32_t num_completed = 0;
307 
308 	while (num_completed < num_to_complete) {
309 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
310 			break;
311 		}
312 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
313 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
314 		ch->outstanding_io_count--;
315 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
316 			    g_io_exp_status;
317 		spdk_bdev_io_complete(bdev_io, io_status);
318 		num_completed++;
319 	}
320 
321 	return num_completed;
322 }
323 
324 static struct spdk_io_channel *
325 bdev_ut_get_io_channel(void *ctx)
326 {
327 	return spdk_get_io_channel(&g_bdev_ut_io_device);
328 }
329 
330 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
331 	[SPDK_BDEV_IO_TYPE_READ]		= true,
332 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
333 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
334 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
335 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
336 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
337 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
338 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
339 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
340 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
341 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
342 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
343 };
344 
345 static void
346 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
347 {
348 	g_io_types_supported[io_type] = enable;
349 }
350 
351 static bool
352 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
353 {
354 	return g_io_types_supported[io_type];
355 }
356 
357 static struct spdk_bdev_fn_table fn_table = {
358 	.destruct = stub_destruct,
359 	.submit_request = stub_submit_request,
360 	.get_io_channel = bdev_ut_get_io_channel,
361 	.io_type_supported = stub_io_type_supported,
362 };
363 
364 static int
365 bdev_ut_create_ch(void *io_device, void *ctx_buf)
366 {
367 	struct bdev_ut_channel *ch = ctx_buf;
368 
369 	CU_ASSERT(g_bdev_ut_channel == NULL);
370 	g_bdev_ut_channel = ch;
371 
372 	TAILQ_INIT(&ch->outstanding_io);
373 	ch->outstanding_io_count = 0;
374 	TAILQ_INIT(&ch->expected_io);
375 	return 0;
376 }
377 
378 static void
379 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
380 {
381 	CU_ASSERT(g_bdev_ut_channel != NULL);
382 	g_bdev_ut_channel = NULL;
383 }
384 
385 struct spdk_bdev_module bdev_ut_if;
386 
387 static int
388 bdev_ut_module_init(void)
389 {
390 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
391 				sizeof(struct bdev_ut_channel), NULL);
392 	spdk_bdev_module_init_done(&bdev_ut_if);
393 	return 0;
394 }
395 
396 static void
397 bdev_ut_module_fini(void)
398 {
399 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
400 }
401 
402 struct spdk_bdev_module bdev_ut_if = {
403 	.name = "bdev_ut",
404 	.module_init = bdev_ut_module_init,
405 	.module_fini = bdev_ut_module_fini,
406 	.async_init = true,
407 };
408 
409 static void vbdev_ut_examine(struct spdk_bdev *bdev);
410 
411 static int
412 vbdev_ut_module_init(void)
413 {
414 	return 0;
415 }
416 
417 static void
418 vbdev_ut_module_fini(void)
419 {
420 }
421 
422 struct spdk_bdev_module vbdev_ut_if = {
423 	.name = "vbdev_ut",
424 	.module_init = vbdev_ut_module_init,
425 	.module_fini = vbdev_ut_module_fini,
426 	.examine_config = vbdev_ut_examine,
427 };
428 
429 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
430 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
431 
432 static void
433 vbdev_ut_examine(struct spdk_bdev *bdev)
434 {
435 	spdk_bdev_module_examine_done(&vbdev_ut_if);
436 }
437 
438 static struct spdk_bdev *
439 allocate_bdev(char *name)
440 {
441 	struct spdk_bdev *bdev;
442 	int rc;
443 
444 	bdev = calloc(1, sizeof(*bdev));
445 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
446 
447 	bdev->name = name;
448 	bdev->fn_table = &fn_table;
449 	bdev->module = &bdev_ut_if;
450 	bdev->blockcnt = 1024;
451 	bdev->blocklen = 512;
452 
453 	rc = spdk_bdev_register(bdev);
454 	poll_threads();
455 	CU_ASSERT(rc == 0);
456 
457 	return bdev;
458 }
459 
460 static struct spdk_bdev *
461 allocate_vbdev(char *name)
462 {
463 	struct spdk_bdev *bdev;
464 	int rc;
465 
466 	bdev = calloc(1, sizeof(*bdev));
467 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
468 
469 	bdev->name = name;
470 	bdev->fn_table = &fn_table;
471 	bdev->module = &vbdev_ut_if;
472 
473 	rc = spdk_bdev_register(bdev);
474 	poll_threads();
475 	CU_ASSERT(rc == 0);
476 
477 	return bdev;
478 }
479 
480 static void
481 free_bdev(struct spdk_bdev *bdev)
482 {
483 	spdk_bdev_unregister(bdev, NULL, NULL);
484 	poll_threads();
485 	memset(bdev, 0xFF, sizeof(*bdev));
486 	free(bdev);
487 }
488 
489 static void
490 free_vbdev(struct spdk_bdev *bdev)
491 {
492 	spdk_bdev_unregister(bdev, NULL, NULL);
493 	poll_threads();
494 	memset(bdev, 0xFF, sizeof(*bdev));
495 	free(bdev);
496 }
497 
498 static void
499 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
500 {
501 	const char *bdev_name;
502 
503 	CU_ASSERT(bdev != NULL);
504 	CU_ASSERT(rc == 0);
505 	bdev_name = spdk_bdev_get_name(bdev);
506 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
507 
508 	free(stat);
509 
510 	*(bool *)cb_arg = true;
511 }
512 
513 static void
514 bdev_unregister_cb(void *cb_arg, int rc)
515 {
516 	g_unregister_arg = cb_arg;
517 	g_unregister_rc = rc;
518 }
519 
520 static void
521 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
522 {
523 }
524 
525 static void
526 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
527 {
528 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
529 
530 	g_event_type1 = type;
531 	if (SPDK_BDEV_EVENT_REMOVE == type) {
532 		spdk_bdev_close(desc);
533 	}
534 }
535 
536 static void
537 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
538 {
539 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
540 
541 	g_event_type2 = type;
542 	if (SPDK_BDEV_EVENT_REMOVE == type) {
543 		spdk_bdev_close(desc);
544 	}
545 }
546 
547 static void
548 bdev_open_cb3(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
549 {
550 	g_event_type3 = type;
551 }
552 
553 static void
554 bdev_open_cb4(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
555 {
556 	g_event_type4 = type;
557 }
558 
559 static void
560 get_device_stat_test(void)
561 {
562 	struct spdk_bdev *bdev;
563 	struct spdk_bdev_io_stat *stat;
564 	bool done;
565 
566 	bdev = allocate_bdev("bdev0");
567 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
568 	if (stat == NULL) {
569 		free_bdev(bdev);
570 		return;
571 	}
572 
573 	done = false;
574 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
575 	while (!done) { poll_threads(); }
576 
577 	free_bdev(bdev);
578 }
579 
580 static void
581 open_write_test(void)
582 {
583 	struct spdk_bdev *bdev[9];
584 	struct spdk_bdev_desc *desc[9] = {};
585 	int rc;
586 
587 	/*
588 	 * Create a tree of bdevs to test various open w/ write cases.
589 	 *
590 	 * bdev0 through bdev3 are physical block devices, such as NVMe
591 	 * namespaces or Ceph block devices.
592 	 *
593 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
594 	 * caching or RAID use cases.
595 	 *
596 	 * bdev5 through bdev7 are all virtual bdevs with the same base
597 	 * bdev (except bdev7). This models partitioning or logical volume
598 	 * use cases.
599 	 *
600 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
601 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
602 	 * models caching, RAID, partitioning or logical volumes use cases.
603 	 *
604 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
605 	 * base bdevs are themselves virtual bdevs.
606 	 *
607 	 *                bdev8
608 	 *                  |
609 	 *            +----------+
610 	 *            |          |
611 	 *          bdev4      bdev5   bdev6   bdev7
612 	 *            |          |       |       |
613 	 *        +---+---+      +---+   +   +---+---+
614 	 *        |       |           \  |  /         \
615 	 *      bdev0   bdev1          bdev2         bdev3
616 	 */
617 
618 	bdev[0] = allocate_bdev("bdev0");
619 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
620 	CU_ASSERT(rc == 0);
621 
622 	bdev[1] = allocate_bdev("bdev1");
623 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
624 	CU_ASSERT(rc == 0);
625 
626 	bdev[2] = allocate_bdev("bdev2");
627 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
628 	CU_ASSERT(rc == 0);
629 
630 	bdev[3] = allocate_bdev("bdev3");
631 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
632 	CU_ASSERT(rc == 0);
633 
634 	bdev[4] = allocate_vbdev("bdev4");
635 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
636 	CU_ASSERT(rc == 0);
637 
638 	bdev[5] = allocate_vbdev("bdev5");
639 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
640 	CU_ASSERT(rc == 0);
641 
642 	bdev[6] = allocate_vbdev("bdev6");
643 
644 	bdev[7] = allocate_vbdev("bdev7");
645 
646 	bdev[8] = allocate_vbdev("bdev8");
647 
648 	/* Open bdev0 read-only.  This should succeed. */
649 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
650 	CU_ASSERT(rc == 0);
651 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
652 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
653 	spdk_bdev_close(desc[0]);
654 
655 	/*
656 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
657 	 * by a vbdev module.
658 	 */
659 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
660 	CU_ASSERT(rc == -EPERM);
661 
662 	/*
663 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
664 	 * by a vbdev module.
665 	 */
666 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
667 	CU_ASSERT(rc == -EPERM);
668 
669 	/* Open bdev4 read-only.  This should succeed. */
670 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
671 	CU_ASSERT(rc == 0);
672 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
673 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
674 	spdk_bdev_close(desc[4]);
675 
676 	/*
677 	 * Open bdev8 read/write.  This should succeed since it is a leaf
678 	 * bdev.
679 	 */
680 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
681 	CU_ASSERT(rc == 0);
682 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
683 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
684 	spdk_bdev_close(desc[8]);
685 
686 	/*
687 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
688 	 * by a vbdev module.
689 	 */
690 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
691 	CU_ASSERT(rc == -EPERM);
692 
693 	/* Open bdev4 read-only.  This should succeed. */
694 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
695 	CU_ASSERT(rc == 0);
696 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
697 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
698 	spdk_bdev_close(desc[5]);
699 
700 	free_vbdev(bdev[8]);
701 
702 	free_vbdev(bdev[5]);
703 	free_vbdev(bdev[6]);
704 	free_vbdev(bdev[7]);
705 
706 	free_vbdev(bdev[4]);
707 
708 	free_bdev(bdev[0]);
709 	free_bdev(bdev[1]);
710 	free_bdev(bdev[2]);
711 	free_bdev(bdev[3]);
712 }
713 
714 static void
715 claim_test(void)
716 {
717 	struct spdk_bdev *bdev;
718 	struct spdk_bdev_desc *desc, *open_desc;
719 	int rc;
720 	uint32_t count;
721 
722 	/*
723 	 * A vbdev that uses a read-only bdev may need it to remain read-only.
724 	 * To do so, it opens the bdev read-only, then claims it without
725 	 * passing a spdk_bdev_desc.
726 	 */
727 	bdev = allocate_bdev("bdev0");
728 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
729 	CU_ASSERT(rc == 0);
730 	CU_ASSERT(desc->write == false);
731 
732 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
733 	CU_ASSERT(rc == 0);
734 	CU_ASSERT(bdev->internal.claim_module == &bdev_ut_if);
735 
736 	/* There should be only one open descriptor and it should still be ro */
737 	count = 0;
738 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
739 		CU_ASSERT(open_desc == desc);
740 		CU_ASSERT(!open_desc->write);
741 		count++;
742 	}
743 	CU_ASSERT(count == 1);
744 
745 	/* A read-only bdev is upgraded to read-write if desc is passed. */
746 	spdk_bdev_module_release_bdev(bdev);
747 	rc = spdk_bdev_module_claim_bdev(bdev, desc, &bdev_ut_if);
748 	CU_ASSERT(rc == 0);
749 	CU_ASSERT(bdev->internal.claim_module == &bdev_ut_if);
750 
751 	/* There should be only one open descriptor and it should be rw */
752 	count = 0;
753 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
754 		CU_ASSERT(open_desc == desc);
755 		CU_ASSERT(open_desc->write);
756 		count++;
757 	}
758 	CU_ASSERT(count == 1);
759 
760 	spdk_bdev_close(desc);
761 	free_bdev(bdev);
762 }
763 
764 static void
765 bytes_to_blocks_test(void)
766 {
767 	struct spdk_bdev bdev;
768 	uint64_t offset_blocks, num_blocks;
769 
770 	memset(&bdev, 0, sizeof(bdev));
771 
772 	bdev.blocklen = 512;
773 
774 	/* All parameters valid */
775 	offset_blocks = 0;
776 	num_blocks = 0;
777 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
778 	CU_ASSERT(offset_blocks == 1);
779 	CU_ASSERT(num_blocks == 2);
780 
781 	/* Offset not a block multiple */
782 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
783 
784 	/* Length not a block multiple */
785 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
786 
787 	/* In case blocklen not the power of two */
788 	bdev.blocklen = 100;
789 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
790 	CU_ASSERT(offset_blocks == 1);
791 	CU_ASSERT(num_blocks == 2);
792 
793 	/* Offset not a block multiple */
794 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
795 
796 	/* Length not a block multiple */
797 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
798 }
799 
800 static void
801 num_blocks_test(void)
802 {
803 	struct spdk_bdev bdev;
804 	struct spdk_bdev_desc *desc = NULL;
805 	int rc;
806 
807 	memset(&bdev, 0, sizeof(bdev));
808 	bdev.name = "num_blocks";
809 	bdev.fn_table = &fn_table;
810 	bdev.module = &bdev_ut_if;
811 	spdk_bdev_register(&bdev);
812 	poll_threads();
813 	spdk_bdev_notify_blockcnt_change(&bdev, 50);
814 
815 	/* Growing block number */
816 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
817 	/* Shrinking block number */
818 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
819 
820 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc, &desc);
821 	CU_ASSERT(rc == 0);
822 	SPDK_CU_ASSERT_FATAL(desc != NULL);
823 	CU_ASSERT(&bdev == spdk_bdev_desc_get_bdev(desc));
824 
825 	/* Growing block number */
826 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
827 	/* Shrinking block number */
828 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
829 
830 	g_event_type1 = 0xFF;
831 	/* Growing block number */
832 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
833 
834 	poll_threads();
835 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
836 
837 	g_event_type1 = 0xFF;
838 	/* Growing block number and closing */
839 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
840 
841 	spdk_bdev_close(desc);
842 	spdk_bdev_unregister(&bdev, NULL, NULL);
843 
844 	poll_threads();
845 
846 	/* Callback is not called for closed device */
847 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
848 }
849 
850 static void
851 io_valid_test(void)
852 {
853 	struct spdk_bdev bdev;
854 
855 	memset(&bdev, 0, sizeof(bdev));
856 
857 	bdev.blocklen = 512;
858 	CU_ASSERT(pthread_mutex_init(&bdev.internal.mutex, NULL) == 0);
859 
860 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
861 
862 	/* All parameters valid */
863 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
864 
865 	/* Last valid block */
866 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
867 
868 	/* Offset past end of bdev */
869 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
870 
871 	/* Offset + length past end of bdev */
872 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
873 
874 	/* Offset near end of uint64_t range (2^64 - 1) */
875 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
876 
877 	CU_ASSERT(pthread_mutex_destroy(&bdev.internal.mutex) == 0);
878 }
879 
880 static void
881 alias_add_del_test(void)
882 {
883 	struct spdk_bdev *bdev[3];
884 	int rc;
885 
886 	/* Creating and registering bdevs */
887 	bdev[0] = allocate_bdev("bdev0");
888 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
889 
890 	bdev[1] = allocate_bdev("bdev1");
891 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
892 
893 	bdev[2] = allocate_bdev("bdev2");
894 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
895 
896 	poll_threads();
897 
898 	/*
899 	 * Trying adding an alias identical to name.
900 	 * Alias is identical to name, so it can not be added to aliases list
901 	 */
902 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
903 	CU_ASSERT(rc == -EEXIST);
904 
905 	/*
906 	 * Trying to add empty alias,
907 	 * this one should fail
908 	 */
909 	rc = spdk_bdev_alias_add(bdev[0], NULL);
910 	CU_ASSERT(rc == -EINVAL);
911 
912 	/* Trying adding same alias to two different registered bdevs */
913 
914 	/* Alias is used first time, so this one should pass */
915 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
916 	CU_ASSERT(rc == 0);
917 
918 	/* Alias was added to another bdev, so this one should fail */
919 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
920 	CU_ASSERT(rc == -EEXIST);
921 
922 	/* Alias is used first time, so this one should pass */
923 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
924 	CU_ASSERT(rc == 0);
925 
926 	/* Trying removing an alias from registered bdevs */
927 
928 	/* Alias is not on a bdev aliases list, so this one should fail */
929 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
930 	CU_ASSERT(rc == -ENOENT);
931 
932 	/* Alias is present on a bdev aliases list, so this one should pass */
933 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
934 	CU_ASSERT(rc == 0);
935 
936 	/* Alias is present on a bdev aliases list, so this one should pass */
937 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
938 	CU_ASSERT(rc == 0);
939 
940 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
941 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
942 	CU_ASSERT(rc != 0);
943 
944 	/* Trying to del all alias from empty alias list */
945 	spdk_bdev_alias_del_all(bdev[2]);
946 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
947 
948 	/* Trying to del all alias from non-empty alias list */
949 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
950 	CU_ASSERT(rc == 0);
951 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
952 	CU_ASSERT(rc == 0);
953 	spdk_bdev_alias_del_all(bdev[2]);
954 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
955 
956 	/* Unregister and free bdevs */
957 	spdk_bdev_unregister(bdev[0], NULL, NULL);
958 	spdk_bdev_unregister(bdev[1], NULL, NULL);
959 	spdk_bdev_unregister(bdev[2], NULL, NULL);
960 
961 	poll_threads();
962 
963 	free(bdev[0]);
964 	free(bdev[1]);
965 	free(bdev[2]);
966 }
967 
968 static void
969 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
970 {
971 	g_io_done = true;
972 	g_io_status = bdev_io->internal.status;
973 	if ((bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) &&
974 	    (bdev_io->u.bdev.zcopy.start)) {
975 		g_zcopy_bdev_io = bdev_io;
976 	} else {
977 		spdk_bdev_free_io(bdev_io);
978 		g_zcopy_bdev_io = NULL;
979 	}
980 }
981 
982 static void
983 bdev_init_cb(void *arg, int rc)
984 {
985 	CU_ASSERT(rc == 0);
986 }
987 
988 static void
989 bdev_fini_cb(void *arg)
990 {
991 }
992 
993 struct bdev_ut_io_wait_entry {
994 	struct spdk_bdev_io_wait_entry	entry;
995 	struct spdk_io_channel		*io_ch;
996 	struct spdk_bdev_desc		*desc;
997 	bool				submitted;
998 };
999 
1000 static void
1001 io_wait_cb(void *arg)
1002 {
1003 	struct bdev_ut_io_wait_entry *entry = arg;
1004 	int rc;
1005 
1006 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
1007 	CU_ASSERT(rc == 0);
1008 	entry->submitted = true;
1009 }
1010 
1011 static void
1012 bdev_io_types_test(void)
1013 {
1014 	struct spdk_bdev *bdev;
1015 	struct spdk_bdev_desc *desc = NULL;
1016 	struct spdk_io_channel *io_ch;
1017 	struct spdk_bdev_opts bdev_opts = {};
1018 	int rc;
1019 
1020 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1021 	bdev_opts.bdev_io_pool_size = 4;
1022 	bdev_opts.bdev_io_cache_size = 2;
1023 
1024 	rc = spdk_bdev_set_opts(&bdev_opts);
1025 	CU_ASSERT(rc == 0);
1026 	spdk_bdev_initialize(bdev_init_cb, NULL);
1027 	poll_threads();
1028 
1029 	bdev = allocate_bdev("bdev0");
1030 
1031 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1032 	CU_ASSERT(rc == 0);
1033 	poll_threads();
1034 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1035 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1036 	io_ch = spdk_bdev_get_io_channel(desc);
1037 	CU_ASSERT(io_ch != NULL);
1038 
1039 	/* WRITE and WRITE ZEROES are not supported */
1040 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
1041 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
1042 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
1043 	CU_ASSERT(rc == -ENOTSUP);
1044 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
1045 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
1046 
1047 	/* NVME_IO, NVME_IO_MD and NVME_ADMIN are not supported */
1048 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, false);
1049 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, false);
1050 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, false);
1051 	rc = spdk_bdev_nvme_io_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1052 	CU_ASSERT(rc == -ENOTSUP);
1053 	rc = spdk_bdev_nvme_io_passthru_md(desc, io_ch, NULL, NULL, 0, NULL, 0, NULL, NULL);
1054 	CU_ASSERT(rc == -ENOTSUP);
1055 	rc = spdk_bdev_nvme_admin_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1056 	CU_ASSERT(rc == -ENOTSUP);
1057 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, true);
1058 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, true);
1059 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, true);
1060 
1061 	spdk_put_io_channel(io_ch);
1062 	spdk_bdev_close(desc);
1063 	free_bdev(bdev);
1064 	spdk_bdev_finish(bdev_fini_cb, NULL);
1065 	poll_threads();
1066 }
1067 
1068 static void
1069 bdev_io_wait_test(void)
1070 {
1071 	struct spdk_bdev *bdev;
1072 	struct spdk_bdev_desc *desc = NULL;
1073 	struct spdk_io_channel *io_ch;
1074 	struct spdk_bdev_opts bdev_opts = {};
1075 	struct bdev_ut_io_wait_entry io_wait_entry;
1076 	struct bdev_ut_io_wait_entry io_wait_entry2;
1077 	int rc;
1078 
1079 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1080 	bdev_opts.bdev_io_pool_size = 4;
1081 	bdev_opts.bdev_io_cache_size = 2;
1082 
1083 	rc = spdk_bdev_set_opts(&bdev_opts);
1084 	CU_ASSERT(rc == 0);
1085 	spdk_bdev_initialize(bdev_init_cb, NULL);
1086 	poll_threads();
1087 
1088 	bdev = allocate_bdev("bdev0");
1089 
1090 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1091 	CU_ASSERT(rc == 0);
1092 	poll_threads();
1093 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1094 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1095 	io_ch = spdk_bdev_get_io_channel(desc);
1096 	CU_ASSERT(io_ch != NULL);
1097 
1098 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1099 	CU_ASSERT(rc == 0);
1100 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1101 	CU_ASSERT(rc == 0);
1102 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1103 	CU_ASSERT(rc == 0);
1104 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1105 	CU_ASSERT(rc == 0);
1106 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1107 
1108 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1109 	CU_ASSERT(rc == -ENOMEM);
1110 
1111 	io_wait_entry.entry.bdev = bdev;
1112 	io_wait_entry.entry.cb_fn = io_wait_cb;
1113 	io_wait_entry.entry.cb_arg = &io_wait_entry;
1114 	io_wait_entry.io_ch = io_ch;
1115 	io_wait_entry.desc = desc;
1116 	io_wait_entry.submitted = false;
1117 	/* Cannot use the same io_wait_entry for two different calls. */
1118 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
1119 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
1120 
1121 	/* Queue two I/O waits. */
1122 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
1123 	CU_ASSERT(rc == 0);
1124 	CU_ASSERT(io_wait_entry.submitted == false);
1125 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
1126 	CU_ASSERT(rc == 0);
1127 	CU_ASSERT(io_wait_entry2.submitted == false);
1128 
1129 	stub_complete_io(1);
1130 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1131 	CU_ASSERT(io_wait_entry.submitted == true);
1132 	CU_ASSERT(io_wait_entry2.submitted == false);
1133 
1134 	stub_complete_io(1);
1135 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1136 	CU_ASSERT(io_wait_entry2.submitted == true);
1137 
1138 	stub_complete_io(4);
1139 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1140 
1141 	spdk_put_io_channel(io_ch);
1142 	spdk_bdev_close(desc);
1143 	free_bdev(bdev);
1144 	spdk_bdev_finish(bdev_fini_cb, NULL);
1145 	poll_threads();
1146 }
1147 
1148 static void
1149 bdev_io_spans_split_test(void)
1150 {
1151 	struct spdk_bdev bdev;
1152 	struct spdk_bdev_io bdev_io;
1153 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV];
1154 
1155 	memset(&bdev, 0, sizeof(bdev));
1156 	bdev_io.u.bdev.iovs = iov;
1157 
1158 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1159 	bdev.optimal_io_boundary = 0;
1160 	bdev.max_segment_size = 0;
1161 	bdev.max_num_segments = 0;
1162 	bdev_io.bdev = &bdev;
1163 
1164 	/* bdev has no optimal_io_boundary and max_size set - so this should return false. */
1165 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1166 
1167 	bdev.split_on_optimal_io_boundary = true;
1168 	bdev.optimal_io_boundary = 32;
1169 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1170 
1171 	/* RESETs are not based on LBAs - so this should return false. */
1172 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1173 
1174 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1175 	bdev_io.u.bdev.offset_blocks = 0;
1176 	bdev_io.u.bdev.num_blocks = 32;
1177 
1178 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1179 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1180 
1181 	bdev_io.u.bdev.num_blocks = 33;
1182 
1183 	/* This I/O spans a boundary. */
1184 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1185 
1186 	bdev_io.u.bdev.num_blocks = 32;
1187 	bdev.max_segment_size = 512 * 32;
1188 	bdev.max_num_segments = 1;
1189 	bdev_io.u.bdev.iovcnt = 1;
1190 	iov[0].iov_len = 512;
1191 
1192 	/* Does not cross and exceed max_size or max_segs */
1193 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1194 
1195 	bdev.split_on_optimal_io_boundary = false;
1196 	bdev.max_segment_size = 512;
1197 	bdev.max_num_segments = 1;
1198 	bdev_io.u.bdev.iovcnt = 2;
1199 
1200 	/* Exceed max_segs */
1201 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1202 
1203 	bdev.max_num_segments = 2;
1204 	iov[0].iov_len = 513;
1205 	iov[1].iov_len = 512;
1206 
1207 	/* Exceed max_sizes */
1208 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1209 }
1210 
1211 static void
1212 bdev_io_boundary_split_test(void)
1213 {
1214 	struct spdk_bdev *bdev;
1215 	struct spdk_bdev_desc *desc = NULL;
1216 	struct spdk_io_channel *io_ch;
1217 	struct spdk_bdev_opts bdev_opts = {};
1218 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1219 	struct ut_expected_io *expected_io;
1220 	void *md_buf = (void *)0xFF000000;
1221 	uint64_t i;
1222 	int rc;
1223 
1224 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1225 	bdev_opts.bdev_io_pool_size = 512;
1226 	bdev_opts.bdev_io_cache_size = 64;
1227 
1228 	rc = spdk_bdev_set_opts(&bdev_opts);
1229 	CU_ASSERT(rc == 0);
1230 	spdk_bdev_initialize(bdev_init_cb, NULL);
1231 
1232 	bdev = allocate_bdev("bdev0");
1233 
1234 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1235 	CU_ASSERT(rc == 0);
1236 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1237 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1238 	io_ch = spdk_bdev_get_io_channel(desc);
1239 	CU_ASSERT(io_ch != NULL);
1240 
1241 	bdev->optimal_io_boundary = 16;
1242 	bdev->split_on_optimal_io_boundary = false;
1243 
1244 	g_io_done = false;
1245 
1246 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1247 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1248 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1249 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1250 
1251 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1252 	CU_ASSERT(rc == 0);
1253 	CU_ASSERT(g_io_done == false);
1254 
1255 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1256 	stub_complete_io(1);
1257 	CU_ASSERT(g_io_done == true);
1258 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1259 
1260 	bdev->split_on_optimal_io_boundary = true;
1261 	bdev->md_interleave = false;
1262 	bdev->md_len = 8;
1263 
1264 	/* Now test that a single-vector command is split correctly.
1265 	 * Offset 14, length 8, payload 0xF000
1266 	 *  Child - Offset 14, length 2, payload 0xF000
1267 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1268 	 *
1269 	 * Set up the expected values before calling spdk_bdev_read_blocks
1270 	 */
1271 	g_io_done = false;
1272 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1273 	expected_io->md_buf = md_buf;
1274 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1275 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1276 
1277 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1278 	expected_io->md_buf = md_buf + 2 * 8;
1279 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1280 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1281 
1282 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1283 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1284 					   14, 8, io_done, NULL);
1285 	CU_ASSERT(rc == 0);
1286 	CU_ASSERT(g_io_done == false);
1287 
1288 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1289 	stub_complete_io(2);
1290 	CU_ASSERT(g_io_done == true);
1291 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1292 
1293 	/* Now set up a more complex, multi-vector command that needs to be split,
1294 	 *  including splitting iovecs.
1295 	 */
1296 	iov[0].iov_base = (void *)0x10000;
1297 	iov[0].iov_len = 512;
1298 	iov[1].iov_base = (void *)0x20000;
1299 	iov[1].iov_len = 20 * 512;
1300 	iov[2].iov_base = (void *)0x30000;
1301 	iov[2].iov_len = 11 * 512;
1302 
1303 	g_io_done = false;
1304 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1305 	expected_io->md_buf = md_buf;
1306 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1307 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1308 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1309 
1310 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1311 	expected_io->md_buf = md_buf + 2 * 8;
1312 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1313 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1314 
1315 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1316 	expected_io->md_buf = md_buf + 18 * 8;
1317 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1318 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1319 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1320 
1321 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1322 					     14, 32, io_done, NULL);
1323 	CU_ASSERT(rc == 0);
1324 	CU_ASSERT(g_io_done == false);
1325 
1326 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1327 	stub_complete_io(3);
1328 	CU_ASSERT(g_io_done == true);
1329 
1330 	/* Test multi vector command that needs to be split by strip and then needs to be
1331 	 * split further due to the capacity of child iovs.
1332 	 */
1333 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1334 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1335 		iov[i].iov_len = 512;
1336 	}
1337 
1338 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1339 	g_io_done = false;
1340 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1341 					   BDEV_IO_NUM_CHILD_IOV);
1342 	expected_io->md_buf = md_buf;
1343 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1344 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1345 	}
1346 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1347 
1348 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1349 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
1350 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1351 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1352 		ut_expected_io_set_iov(expected_io, i,
1353 				       (void *)((i + 1 + BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1354 	}
1355 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1356 
1357 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1358 					    0, BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1359 	CU_ASSERT(rc == 0);
1360 	CU_ASSERT(g_io_done == false);
1361 
1362 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1363 	stub_complete_io(1);
1364 	CU_ASSERT(g_io_done == false);
1365 
1366 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1367 	stub_complete_io(1);
1368 	CU_ASSERT(g_io_done == true);
1369 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1370 
1371 	/* Test multi vector command that needs to be split by strip and then needs to be
1372 	 * split further due to the capacity of child iovs. In this case, the length of
1373 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1374 	 */
1375 
1376 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1377 	 * is BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1378 	 */
1379 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1380 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1381 		iov[i].iov_len = 512;
1382 	}
1383 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1384 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1385 		iov[i].iov_len = 256;
1386 	}
1387 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1388 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1389 
1390 	/* Add an extra iovec to trigger split */
1391 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1392 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1393 
1394 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1395 	g_io_done = false;
1396 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1397 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV);
1398 	expected_io->md_buf = md_buf;
1399 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1400 		ut_expected_io_set_iov(expected_io, i,
1401 				       (void *)((i + 1) * 0x10000), 512);
1402 	}
1403 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1404 		ut_expected_io_set_iov(expected_io, i,
1405 				       (void *)((i + 1) * 0x10000), 256);
1406 	}
1407 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1408 
1409 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1410 					   1, 1);
1411 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1412 	ut_expected_io_set_iov(expected_io, 0,
1413 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1414 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1415 
1416 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1417 					   1, 1);
1418 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1419 	ut_expected_io_set_iov(expected_io, 0,
1420 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1421 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1422 
1423 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1424 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1425 	CU_ASSERT(rc == 0);
1426 	CU_ASSERT(g_io_done == false);
1427 
1428 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1429 	stub_complete_io(1);
1430 	CU_ASSERT(g_io_done == false);
1431 
1432 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1433 	stub_complete_io(2);
1434 	CU_ASSERT(g_io_done == true);
1435 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1436 
1437 	/* Test multi vector command that needs to be split by strip and then needs to be
1438 	 * split further due to the capacity of child iovs, the child request offset should
1439 	 * be rewind to last aligned offset and go success without error.
1440 	 */
1441 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1442 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1443 		iov[i].iov_len = 512;
1444 	}
1445 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1446 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1447 
1448 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1449 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1450 
1451 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1452 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1453 
1454 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1455 	g_io_done = false;
1456 	g_io_status = 0;
1457 	/* The first expected io should be start from offset 0 to BDEV_IO_NUM_CHILD_IOV - 1 */
1458 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1459 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV - 1);
1460 	expected_io->md_buf = md_buf;
1461 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1462 		ut_expected_io_set_iov(expected_io, i,
1463 				       (void *)((i + 1) * 0x10000), 512);
1464 	}
1465 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1466 	/* The second expected io should be start from offset BDEV_IO_NUM_CHILD_IOV - 1 to BDEV_IO_NUM_CHILD_IOV */
1467 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1468 					   1, 2);
1469 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1470 	ut_expected_io_set_iov(expected_io, 0,
1471 			       (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1472 	ut_expected_io_set_iov(expected_io, 1,
1473 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1474 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1475 	/* The third expected io should be start from offset BDEV_IO_NUM_CHILD_IOV to BDEV_IO_NUM_CHILD_IOV + 1 */
1476 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1477 					   1, 1);
1478 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1479 	ut_expected_io_set_iov(expected_io, 0,
1480 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1481 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1482 
1483 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1484 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1485 	CU_ASSERT(rc == 0);
1486 	CU_ASSERT(g_io_done == false);
1487 
1488 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1489 	stub_complete_io(1);
1490 	CU_ASSERT(g_io_done == false);
1491 
1492 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1493 	stub_complete_io(2);
1494 	CU_ASSERT(g_io_done == true);
1495 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1496 
1497 	/* Test multi vector command that needs to be split due to the IO boundary and
1498 	 * the capacity of child iovs. Especially test the case when the command is
1499 	 * split due to the capacity of child iovs, the tail address is not aligned with
1500 	 * block size and is rewinded to the aligned address.
1501 	 *
1502 	 * The iovecs used in read request is complex but is based on the data
1503 	 * collected in the real issue. We change the base addresses but keep the lengths
1504 	 * not to loose the credibility of the test.
1505 	 */
1506 	bdev->optimal_io_boundary = 128;
1507 	g_io_done = false;
1508 	g_io_status = 0;
1509 
1510 	for (i = 0; i < 31; i++) {
1511 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1512 		iov[i].iov_len = 1024;
1513 	}
1514 	iov[31].iov_base = (void *)0xFEED1F00000;
1515 	iov[31].iov_len = 32768;
1516 	iov[32].iov_base = (void *)0xFEED2000000;
1517 	iov[32].iov_len = 160;
1518 	iov[33].iov_base = (void *)0xFEED2100000;
1519 	iov[33].iov_len = 4096;
1520 	iov[34].iov_base = (void *)0xFEED2200000;
1521 	iov[34].iov_len = 4096;
1522 	iov[35].iov_base = (void *)0xFEED2300000;
1523 	iov[35].iov_len = 4096;
1524 	iov[36].iov_base = (void *)0xFEED2400000;
1525 	iov[36].iov_len = 4096;
1526 	iov[37].iov_base = (void *)0xFEED2500000;
1527 	iov[37].iov_len = 4096;
1528 	iov[38].iov_base = (void *)0xFEED2600000;
1529 	iov[38].iov_len = 4096;
1530 	iov[39].iov_base = (void *)0xFEED2700000;
1531 	iov[39].iov_len = 4096;
1532 	iov[40].iov_base = (void *)0xFEED2800000;
1533 	iov[40].iov_len = 4096;
1534 	iov[41].iov_base = (void *)0xFEED2900000;
1535 	iov[41].iov_len = 4096;
1536 	iov[42].iov_base = (void *)0xFEED2A00000;
1537 	iov[42].iov_len = 4096;
1538 	iov[43].iov_base = (void *)0xFEED2B00000;
1539 	iov[43].iov_len = 12288;
1540 	iov[44].iov_base = (void *)0xFEED2C00000;
1541 	iov[44].iov_len = 8192;
1542 	iov[45].iov_base = (void *)0xFEED2F00000;
1543 	iov[45].iov_len = 4096;
1544 	iov[46].iov_base = (void *)0xFEED3000000;
1545 	iov[46].iov_len = 4096;
1546 	iov[47].iov_base = (void *)0xFEED3100000;
1547 	iov[47].iov_len = 4096;
1548 	iov[48].iov_base = (void *)0xFEED3200000;
1549 	iov[48].iov_len = 24576;
1550 	iov[49].iov_base = (void *)0xFEED3300000;
1551 	iov[49].iov_len = 16384;
1552 	iov[50].iov_base = (void *)0xFEED3400000;
1553 	iov[50].iov_len = 12288;
1554 	iov[51].iov_base = (void *)0xFEED3500000;
1555 	iov[51].iov_len = 4096;
1556 	iov[52].iov_base = (void *)0xFEED3600000;
1557 	iov[52].iov_len = 4096;
1558 	iov[53].iov_base = (void *)0xFEED3700000;
1559 	iov[53].iov_len = 4096;
1560 	iov[54].iov_base = (void *)0xFEED3800000;
1561 	iov[54].iov_len = 28672;
1562 	iov[55].iov_base = (void *)0xFEED3900000;
1563 	iov[55].iov_len = 20480;
1564 	iov[56].iov_base = (void *)0xFEED3A00000;
1565 	iov[56].iov_len = 4096;
1566 	iov[57].iov_base = (void *)0xFEED3B00000;
1567 	iov[57].iov_len = 12288;
1568 	iov[58].iov_base = (void *)0xFEED3C00000;
1569 	iov[58].iov_len = 4096;
1570 	iov[59].iov_base = (void *)0xFEED3D00000;
1571 	iov[59].iov_len = 4096;
1572 	iov[60].iov_base = (void *)0xFEED3E00000;
1573 	iov[60].iov_len = 352;
1574 
1575 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1576 	 * of child iovs,
1577 	 */
1578 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1579 	expected_io->md_buf = md_buf;
1580 	for (i = 0; i < 32; i++) {
1581 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1582 	}
1583 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1584 
1585 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1586 	 * split by the IO boundary requirement.
1587 	 */
1588 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1589 	expected_io->md_buf = md_buf + 126 * 8;
1590 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1591 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1592 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1593 
1594 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1595 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1596 	 */
1597 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1598 	expected_io->md_buf = md_buf + 128 * 8;
1599 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1600 			       iov[33].iov_len - 864);
1601 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1602 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1603 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1604 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1605 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1606 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1607 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1608 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1609 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1610 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1611 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1612 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1613 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1614 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1615 
1616 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1617 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1618 	 */
1619 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1620 	expected_io->md_buf = md_buf + 256 * 8;
1621 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1622 			       iov[46].iov_len - 864);
1623 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1624 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1625 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1626 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1627 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1628 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1629 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1630 
1631 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1632 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1633 	 */
1634 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1635 	expected_io->md_buf = md_buf + 384 * 8;
1636 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1637 			       iov[52].iov_len - 864);
1638 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1639 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1640 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1641 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1642 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1643 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1644 
1645 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1646 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1647 	 */
1648 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1649 	expected_io->md_buf = md_buf + 512 * 8;
1650 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1651 			       iov[57].iov_len - 4960);
1652 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1653 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1654 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1655 
1656 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1657 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1658 	expected_io->md_buf = md_buf + 542 * 8;
1659 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1660 			       iov[59].iov_len - 3936);
1661 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1662 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1663 
1664 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1665 					    0, 543, io_done, NULL);
1666 	CU_ASSERT(rc == 0);
1667 	CU_ASSERT(g_io_done == false);
1668 
1669 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1670 	stub_complete_io(1);
1671 	CU_ASSERT(g_io_done == false);
1672 
1673 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1674 	stub_complete_io(5);
1675 	CU_ASSERT(g_io_done == false);
1676 
1677 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1678 	stub_complete_io(1);
1679 	CU_ASSERT(g_io_done == true);
1680 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1681 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1682 
1683 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1684 	 * split, so test that.
1685 	 */
1686 	bdev->optimal_io_boundary = 15;
1687 	g_io_done = false;
1688 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1689 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1690 
1691 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1692 	CU_ASSERT(rc == 0);
1693 	CU_ASSERT(g_io_done == false);
1694 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1695 	stub_complete_io(1);
1696 	CU_ASSERT(g_io_done == true);
1697 
1698 	/* Test an UNMAP.  This should also not be split. */
1699 	bdev->optimal_io_boundary = 16;
1700 	g_io_done = false;
1701 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1702 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1703 
1704 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1705 	CU_ASSERT(rc == 0);
1706 	CU_ASSERT(g_io_done == false);
1707 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1708 	stub_complete_io(1);
1709 	CU_ASSERT(g_io_done == true);
1710 
1711 	/* Test a FLUSH.  This should also not be split. */
1712 	bdev->optimal_io_boundary = 16;
1713 	g_io_done = false;
1714 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1715 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1716 
1717 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1718 	CU_ASSERT(rc == 0);
1719 	CU_ASSERT(g_io_done == false);
1720 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1721 	stub_complete_io(1);
1722 	CU_ASSERT(g_io_done == true);
1723 
1724 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1725 
1726 	/* Children requests return an error status */
1727 	bdev->optimal_io_boundary = 16;
1728 	iov[0].iov_base = (void *)0x10000;
1729 	iov[0].iov_len = 512 * 64;
1730 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1731 	g_io_done = false;
1732 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1733 
1734 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1735 	CU_ASSERT(rc == 0);
1736 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1737 	stub_complete_io(4);
1738 	CU_ASSERT(g_io_done == false);
1739 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1740 	stub_complete_io(1);
1741 	CU_ASSERT(g_io_done == true);
1742 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1743 
1744 	/* Test if a multi vector command terminated with failure before continuing
1745 	 * splitting process when one of child I/O failed.
1746 	 * The multi vector command is as same as the above that needs to be split by strip
1747 	 * and then needs to be split further due to the capacity of child iovs.
1748 	 */
1749 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1750 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1751 		iov[i].iov_len = 512;
1752 	}
1753 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1754 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1755 
1756 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1757 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1758 
1759 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1760 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1761 
1762 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1763 
1764 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1765 	g_io_done = false;
1766 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1767 
1768 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
1769 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1770 	CU_ASSERT(rc == 0);
1771 	CU_ASSERT(g_io_done == false);
1772 
1773 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1774 	stub_complete_io(1);
1775 	CU_ASSERT(g_io_done == true);
1776 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1777 
1778 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1779 
1780 	/* for this test we will create the following conditions to hit the code path where
1781 	 * we are trying to send and IO following a split that has no iovs because we had to
1782 	 * trim them for alignment reasons.
1783 	 *
1784 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1785 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1786 	 *   position 30 and overshoot by 0x2e.
1787 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1788 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1789 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1790 	 *   and let the completion pick up the last 2 vectors.
1791 	 */
1792 	bdev->optimal_io_boundary = 32;
1793 	bdev->split_on_optimal_io_boundary = true;
1794 	g_io_done = false;
1795 
1796 	/* Init all parent IOVs to 0x212 */
1797 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1798 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1799 		iov[i].iov_len = 0x212;
1800 	}
1801 
1802 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1803 					   BDEV_IO_NUM_CHILD_IOV - 1);
1804 	/* expect 0-29 to be 1:1 with the parent iov */
1805 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1806 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1807 	}
1808 
1809 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1810 	 * where 0x1e is the amount we overshot the 16K boundary
1811 	 */
1812 	ut_expected_io_set_iov(expected_io, BDEV_IO_NUM_CHILD_IOV - 2,
1813 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1814 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1815 
1816 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1817 	 * shortened that take it to the next boundary and then a final one to get us to
1818 	 * 0x4200 bytes for the IO.
1819 	 */
1820 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1821 					   BDEV_IO_NUM_CHILD_IOV, 2);
1822 	/* position 30 picked up the remaining bytes to the next boundary */
1823 	ut_expected_io_set_iov(expected_io, 0,
1824 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
1825 
1826 	/* position 31 picked the the rest of the transfer to get us to 0x4200 */
1827 	ut_expected_io_set_iov(expected_io, 1,
1828 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
1829 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1830 
1831 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 1, 0,
1832 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1833 	CU_ASSERT(rc == 0);
1834 	CU_ASSERT(g_io_done == false);
1835 
1836 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1837 	stub_complete_io(1);
1838 	CU_ASSERT(g_io_done == false);
1839 
1840 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1841 	stub_complete_io(1);
1842 	CU_ASSERT(g_io_done == true);
1843 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1844 
1845 	spdk_put_io_channel(io_ch);
1846 	spdk_bdev_close(desc);
1847 	free_bdev(bdev);
1848 	spdk_bdev_finish(bdev_fini_cb, NULL);
1849 	poll_threads();
1850 }
1851 
1852 static void
1853 bdev_io_max_size_and_segment_split_test(void)
1854 {
1855 	struct spdk_bdev *bdev;
1856 	struct spdk_bdev_desc *desc = NULL;
1857 	struct spdk_io_channel *io_ch;
1858 	struct spdk_bdev_opts bdev_opts = {};
1859 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1860 	struct ut_expected_io *expected_io;
1861 	uint64_t i;
1862 	int rc;
1863 
1864 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1865 	bdev_opts.bdev_io_pool_size = 512;
1866 	bdev_opts.bdev_io_cache_size = 64;
1867 
1868 	bdev_opts.opts_size = sizeof(bdev_opts);
1869 	rc = spdk_bdev_set_opts(&bdev_opts);
1870 	CU_ASSERT(rc == 0);
1871 	spdk_bdev_initialize(bdev_init_cb, NULL);
1872 
1873 	bdev = allocate_bdev("bdev0");
1874 
1875 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
1876 	CU_ASSERT(rc == 0);
1877 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1878 	io_ch = spdk_bdev_get_io_channel(desc);
1879 	CU_ASSERT(io_ch != NULL);
1880 
1881 	bdev->split_on_optimal_io_boundary = false;
1882 	bdev->optimal_io_boundary = 0;
1883 
1884 	/* Case 0 max_num_segments == 0.
1885 	 * but segment size 2 * 512 > 512
1886 	 */
1887 	bdev->max_segment_size = 512;
1888 	bdev->max_num_segments = 0;
1889 	g_io_done = false;
1890 
1891 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
1892 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
1893 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
1894 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1895 
1896 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
1897 	CU_ASSERT(rc == 0);
1898 	CU_ASSERT(g_io_done == false);
1899 
1900 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1901 	stub_complete_io(1);
1902 	CU_ASSERT(g_io_done == true);
1903 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1904 
1905 	/* Case 1 max_segment_size == 0
1906 	 * but iov num 2 > 1.
1907 	 */
1908 	bdev->max_segment_size = 0;
1909 	bdev->max_num_segments = 1;
1910 	g_io_done = false;
1911 
1912 	iov[0].iov_base = (void *)0x10000;
1913 	iov[0].iov_len = 512;
1914 	iov[1].iov_base = (void *)0x20000;
1915 	iov[1].iov_len = 8 * 512;
1916 
1917 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
1918 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len);
1919 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1920 
1921 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1);
1922 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len);
1923 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1924 
1925 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL);
1926 	CU_ASSERT(rc == 0);
1927 	CU_ASSERT(g_io_done == false);
1928 
1929 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1930 	stub_complete_io(2);
1931 	CU_ASSERT(g_io_done == true);
1932 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1933 
1934 	/* Test that a non-vector command is split correctly.
1935 	 * Set up the expected values before calling spdk_bdev_read_blocks
1936 	 */
1937 	bdev->max_segment_size = 512;
1938 	bdev->max_num_segments = 1;
1939 	g_io_done = false;
1940 
1941 	/* Child IO 0 */
1942 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
1943 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
1944 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1945 
1946 	/* Child IO 1 */
1947 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
1948 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512);
1949 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1950 
1951 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1952 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
1953 	CU_ASSERT(rc == 0);
1954 	CU_ASSERT(g_io_done == false);
1955 
1956 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1957 	stub_complete_io(2);
1958 	CU_ASSERT(g_io_done == true);
1959 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1960 
1961 	/* Now set up a more complex, multi-vector command that needs to be split,
1962 	 * including splitting iovecs.
1963 	 */
1964 	bdev->max_segment_size = 2 * 512;
1965 	bdev->max_num_segments = 1;
1966 	g_io_done = false;
1967 
1968 	iov[0].iov_base = (void *)0x10000;
1969 	iov[0].iov_len = 2 * 512;
1970 	iov[1].iov_base = (void *)0x20000;
1971 	iov[1].iov_len = 4 * 512;
1972 	iov[2].iov_base = (void *)0x30000;
1973 	iov[2].iov_len = 6 * 512;
1974 
1975 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
1976 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2);
1977 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1978 
1979 	/* Split iov[1].size to 2 iov entries then split the segments */
1980 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
1981 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2);
1982 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1983 
1984 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1);
1985 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2);
1986 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1987 
1988 	/* Split iov[2].size to 3 iov entries then split the segments */
1989 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1);
1990 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2);
1991 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1992 
1993 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1);
1994 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2);
1995 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1996 
1997 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1);
1998 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2);
1999 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2000 
2001 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL);
2002 	CU_ASSERT(rc == 0);
2003 	CU_ASSERT(g_io_done == false);
2004 
2005 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2006 	stub_complete_io(6);
2007 	CU_ASSERT(g_io_done == true);
2008 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2009 
2010 	/* Test multi vector command that needs to be split by strip and then needs to be
2011 	 * split further due to the capacity of parent IO child iovs.
2012 	 */
2013 	bdev->max_segment_size = 512;
2014 	bdev->max_num_segments = 1;
2015 	g_io_done = false;
2016 
2017 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
2018 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2019 		iov[i].iov_len = 512 * 2;
2020 	}
2021 
2022 	/* Each input iov.size is split into 2 iovs,
2023 	 * half of the input iov can fill all child iov entries of a single IO.
2024 	 */
2025 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV / 2; i++) {
2026 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1);
2027 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2028 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2029 
2030 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1);
2031 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2032 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2033 	}
2034 
2035 	/* The remaining iov is split in the second round */
2036 	for (i = BDEV_IO_NUM_CHILD_IOV / 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
2037 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1);
2038 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2039 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2040 
2041 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1);
2042 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2043 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2044 	}
2045 
2046 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV, 0,
2047 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
2048 	CU_ASSERT(rc == 0);
2049 	CU_ASSERT(g_io_done == false);
2050 
2051 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == BDEV_IO_NUM_CHILD_IOV);
2052 	stub_complete_io(BDEV_IO_NUM_CHILD_IOV);
2053 	CU_ASSERT(g_io_done == false);
2054 
2055 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == BDEV_IO_NUM_CHILD_IOV);
2056 	stub_complete_io(BDEV_IO_NUM_CHILD_IOV);
2057 	CU_ASSERT(g_io_done == true);
2058 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2059 
2060 	/* A wrong case, a child IO that is divided does
2061 	 * not meet the principle of multiples of block size,
2062 	 * and exits with error
2063 	 */
2064 	bdev->max_segment_size = 512;
2065 	bdev->max_num_segments = 1;
2066 	g_io_done = false;
2067 
2068 	iov[0].iov_base = (void *)0x10000;
2069 	iov[0].iov_len = 512 + 256;
2070 	iov[1].iov_base = (void *)0x20000;
2071 	iov[1].iov_len = 256;
2072 
2073 	/* iov[0] is split to 512 and 256.
2074 	 * 256 is less than a block size, and it is found
2075 	 * in the next round of split that it is the first child IO smaller than
2076 	 * the block size, so the error exit
2077 	 */
2078 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1);
2079 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512);
2080 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2081 
2082 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL);
2083 	CU_ASSERT(rc == 0);
2084 	CU_ASSERT(g_io_done == false);
2085 
2086 	/* First child IO is OK */
2087 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2088 	stub_complete_io(1);
2089 	CU_ASSERT(g_io_done == true);
2090 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2091 
2092 	/* error exit */
2093 	stub_complete_io(1);
2094 	CU_ASSERT(g_io_done == true);
2095 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
2096 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2097 
2098 	/* Test multi vector command that needs to be split by strip and then needs to be
2099 	 * split further due to the capacity of child iovs.
2100 	 *
2101 	 * In this case, the last two iovs need to be split, but it will exceed the capacity
2102 	 * of child iovs, so it needs to wait until the first batch completed.
2103 	 */
2104 	bdev->max_segment_size = 512;
2105 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2106 	g_io_done = false;
2107 
2108 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2109 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2110 		iov[i].iov_len = 512;
2111 	}
2112 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
2113 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2114 		iov[i].iov_len = 512 * 2;
2115 	}
2116 
2117 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2118 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
2119 	/* 0 ~ (BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */
2120 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2121 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2122 	}
2123 	/* (BDEV_IO_NUM_CHILD_IOV - 2) is split */
2124 	ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512);
2125 	ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512);
2126 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2127 
2128 	/* Child iov entries exceed the max num of parent IO so split it in next round */
2129 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV, 2, 2);
2130 	ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512);
2131 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512);
2132 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2133 
2134 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV, 0,
2135 				    BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL);
2136 	CU_ASSERT(rc == 0);
2137 	CU_ASSERT(g_io_done == false);
2138 
2139 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2140 	stub_complete_io(1);
2141 	CU_ASSERT(g_io_done == false);
2142 
2143 	/* Next round */
2144 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2145 	stub_complete_io(1);
2146 	CU_ASSERT(g_io_done == true);
2147 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2148 
2149 	/* This case is similar to the previous one, but the io composed of
2150 	 * the last few entries of child iov is not enough for a blocklen, so they
2151 	 * cannot be put into this IO, but wait until the next time.
2152 	 */
2153 	bdev->max_segment_size = 512;
2154 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2155 	g_io_done = false;
2156 
2157 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2158 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2159 		iov[i].iov_len = 512;
2160 	}
2161 
2162 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2163 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2164 		iov[i].iov_len = 128;
2165 	}
2166 
2167 	/* First child iovcnt is't BDEV_IO_NUM_CHILD_IOV but BDEV_IO_NUM_CHILD_IOV - 2.
2168 	 * Because the left 2 iov is not enough for a blocklen.
2169 	 */
2170 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2171 					   BDEV_IO_NUM_CHILD_IOV - 2, BDEV_IO_NUM_CHILD_IOV - 2);
2172 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2173 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2174 	}
2175 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2176 
2177 	/* The second child io waits until the end of the first child io before executing.
2178 	 * Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO.
2179 	 * BDEV_IO_NUM_CHILD_IOV - 2 to BDEV_IO_NUM_CHILD_IOV + 2
2180 	 */
2181 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 2,
2182 					   1, 4);
2183 	ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len);
2184 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len);
2185 	ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len);
2186 	ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len);
2187 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2188 
2189 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
2190 				    BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL);
2191 	CU_ASSERT(rc == 0);
2192 	CU_ASSERT(g_io_done == false);
2193 
2194 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2195 	stub_complete_io(1);
2196 	CU_ASSERT(g_io_done == false);
2197 
2198 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2199 	stub_complete_io(1);
2200 	CU_ASSERT(g_io_done == true);
2201 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2202 
2203 	/* A very complicated case. Each sg entry exceeds max_segment_size and
2204 	 * needs to be split. At the same time, child io must be a multiple of blocklen.
2205 	 * At the same time, child iovcnt exceeds parent iovcnt.
2206 	 */
2207 	bdev->max_segment_size = 512 + 128;
2208 	bdev->max_num_segments = 3;
2209 	g_io_done = false;
2210 
2211 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2212 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2213 		iov[i].iov_len = 512 + 256;
2214 	}
2215 
2216 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2217 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2218 		iov[i].iov_len = 512 + 128;
2219 	}
2220 
2221 	/* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries.
2222 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2223 	 * Generate 9 child IOs.
2224 	 */
2225 	for (i = 0; i < 3; i++) {
2226 		uint32_t j = i * 4;
2227 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3);
2228 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2229 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2230 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2231 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2232 
2233 		/* Child io must be a multiple of blocklen
2234 		 * iov[j + 2] must be split. If the third entry is also added,
2235 		 * the multiple of blocklen cannot be guaranteed. But it still
2236 		 * occupies one iov entry of the parent child iov.
2237 		 */
2238 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2);
2239 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2240 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2241 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2242 
2243 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3);
2244 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2245 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2246 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2247 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2248 	}
2249 
2250 	/* Child iov position at 27, the 10th child IO
2251 	 * iov entry index is 3 * 4 and offset is 3 * 6
2252 	 */
2253 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3);
2254 	ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640);
2255 	ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128);
2256 	ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256);
2257 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2258 
2259 	/* Child iov position at 30, the 11th child IO */
2260 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2);
2261 	ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512);
2262 	ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512);
2263 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2264 
2265 	/* The 2nd split round and iovpos is 0, the 12th child IO */
2266 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3);
2267 	ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256);
2268 	ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640);
2269 	ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128);
2270 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2271 
2272 	/* Consume 9 child IOs and 27 child iov entries.
2273 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2274 	 * Parent IO iov index start from 16 and block offset start from 24
2275 	 */
2276 	for (i = 0; i < 3; i++) {
2277 		uint32_t j = i * 4 + 16;
2278 		uint32_t offset = i * 6 + 24;
2279 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3);
2280 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2281 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2282 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2283 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2284 
2285 		/* Child io must be a multiple of blocklen
2286 		 * iov[j + 2] must be split. If the third entry is also added,
2287 		 * the multiple of blocklen cannot be guaranteed. But it still
2288 		 * occupies one iov entry of the parent child iov.
2289 		 */
2290 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2);
2291 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2292 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2293 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2294 
2295 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3);
2296 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2297 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2298 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2299 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2300 	}
2301 
2302 	/* The 22th child IO, child iov position at 30 */
2303 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1);
2304 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512);
2305 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2306 
2307 	/* The third round */
2308 	/* Here is the 23nd child IO and child iovpos is 0 */
2309 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3);
2310 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256);
2311 	ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640);
2312 	ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128);
2313 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2314 
2315 	/* The 24th child IO */
2316 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3);
2317 	ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640);
2318 	ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640);
2319 	ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256);
2320 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2321 
2322 	/* The 25th child IO */
2323 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2);
2324 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384);
2325 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640);
2326 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2327 
2328 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
2329 				    50, io_done, NULL);
2330 	CU_ASSERT(rc == 0);
2331 	CU_ASSERT(g_io_done == false);
2332 
2333 	/* Parent IO supports up to 32 child iovs, so it is calculated that
2334 	 * a maximum of 11 IOs can be split at a time, and the
2335 	 * splitting will continue after the first batch is over.
2336 	 */
2337 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2338 	stub_complete_io(11);
2339 	CU_ASSERT(g_io_done == false);
2340 
2341 	/* The 2nd round */
2342 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2343 	stub_complete_io(11);
2344 	CU_ASSERT(g_io_done == false);
2345 
2346 	/* The last round */
2347 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2348 	stub_complete_io(3);
2349 	CU_ASSERT(g_io_done == true);
2350 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2351 
2352 	/* Test an WRITE_ZEROES.  This should also not be split. */
2353 	bdev->max_segment_size = 512;
2354 	bdev->max_num_segments = 1;
2355 	g_io_done = false;
2356 
2357 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
2358 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2359 
2360 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
2361 	CU_ASSERT(rc == 0);
2362 	CU_ASSERT(g_io_done == false);
2363 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2364 	stub_complete_io(1);
2365 	CU_ASSERT(g_io_done == true);
2366 
2367 	/* Test an UNMAP.  This should also not be split. */
2368 	g_io_done = false;
2369 
2370 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0);
2371 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2372 
2373 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL);
2374 	CU_ASSERT(rc == 0);
2375 	CU_ASSERT(g_io_done == false);
2376 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2377 	stub_complete_io(1);
2378 	CU_ASSERT(g_io_done == true);
2379 
2380 	/* Test a FLUSH.  This should also not be split. */
2381 	g_io_done = false;
2382 
2383 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0);
2384 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2385 
2386 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
2387 	CU_ASSERT(rc == 0);
2388 	CU_ASSERT(g_io_done == false);
2389 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2390 	stub_complete_io(1);
2391 	CU_ASSERT(g_io_done == true);
2392 
2393 	spdk_put_io_channel(io_ch);
2394 	spdk_bdev_close(desc);
2395 	free_bdev(bdev);
2396 	spdk_bdev_finish(bdev_fini_cb, NULL);
2397 	poll_threads();
2398 }
2399 
2400 static void
2401 bdev_io_mix_split_test(void)
2402 {
2403 	struct spdk_bdev *bdev;
2404 	struct spdk_bdev_desc *desc = NULL;
2405 	struct spdk_io_channel *io_ch;
2406 	struct spdk_bdev_opts bdev_opts = {};
2407 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
2408 	struct ut_expected_io *expected_io;
2409 	uint64_t i;
2410 	int rc;
2411 
2412 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2413 	bdev_opts.bdev_io_pool_size = 512;
2414 	bdev_opts.bdev_io_cache_size = 64;
2415 
2416 	rc = spdk_bdev_set_opts(&bdev_opts);
2417 	CU_ASSERT(rc == 0);
2418 	spdk_bdev_initialize(bdev_init_cb, NULL);
2419 
2420 	bdev = allocate_bdev("bdev0");
2421 
2422 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2423 	CU_ASSERT(rc == 0);
2424 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2425 	io_ch = spdk_bdev_get_io_channel(desc);
2426 	CU_ASSERT(io_ch != NULL);
2427 
2428 	/* First case optimal_io_boundary == max_segment_size * max_num_segments */
2429 	bdev->split_on_optimal_io_boundary = true;
2430 	bdev->optimal_io_boundary = 16;
2431 
2432 	bdev->max_segment_size = 512;
2433 	bdev->max_num_segments = 16;
2434 	g_io_done = false;
2435 
2436 	/* IO crossing the IO boundary requires split
2437 	 * Total 2 child IOs.
2438 	 */
2439 
2440 	/* The 1st child IO split the segment_size to multiple segment entry */
2441 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2442 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2443 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2444 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2445 
2446 	/* The 2nd child IO split the segment_size to multiple segment entry */
2447 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2);
2448 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512);
2449 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512);
2450 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2451 
2452 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL);
2453 	CU_ASSERT(rc == 0);
2454 	CU_ASSERT(g_io_done == false);
2455 
2456 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2457 	stub_complete_io(2);
2458 	CU_ASSERT(g_io_done == true);
2459 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2460 
2461 	/* Second case optimal_io_boundary > max_segment_size * max_num_segments */
2462 	bdev->max_segment_size = 15 * 512;
2463 	bdev->max_num_segments = 1;
2464 	g_io_done = false;
2465 
2466 	/* IO crossing the IO boundary requires split.
2467 	 * The 1st child IO segment size exceeds the max_segment_size,
2468 	 * So 1st child IO will be splitted to multiple segment entry.
2469 	 * Then it split to 2 child IOs because of the max_num_segments.
2470 	 * Total 3 child IOs.
2471 	 */
2472 
2473 	/* The first 2 IOs are in an IO boundary.
2474 	 * Because the optimal_io_boundary > max_segment_size * max_num_segments
2475 	 * So it split to the first 2 IOs.
2476 	 */
2477 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1);
2478 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15);
2479 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2480 
2481 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2482 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512);
2483 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2484 
2485 	/* The 3rd Child IO is because of the io boundary */
2486 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2487 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2488 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2489 
2490 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2491 	CU_ASSERT(rc == 0);
2492 	CU_ASSERT(g_io_done == false);
2493 
2494 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2495 	stub_complete_io(3);
2496 	CU_ASSERT(g_io_done == true);
2497 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2498 
2499 	/* Third case optimal_io_boundary < max_segment_size * max_num_segments */
2500 	bdev->max_segment_size = 17 * 512;
2501 	bdev->max_num_segments = 1;
2502 	g_io_done = false;
2503 
2504 	/* IO crossing the IO boundary requires split.
2505 	 * Child IO does not split.
2506 	 * Total 2 child IOs.
2507 	 */
2508 
2509 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1);
2510 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16);
2511 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2512 
2513 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2514 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2515 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2516 
2517 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2518 	CU_ASSERT(rc == 0);
2519 	CU_ASSERT(g_io_done == false);
2520 
2521 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2522 	stub_complete_io(2);
2523 	CU_ASSERT(g_io_done == true);
2524 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2525 
2526 	/* Now set up a more complex, multi-vector command that needs to be split,
2527 	 * including splitting iovecs.
2528 	 * optimal_io_boundary < max_segment_size * max_num_segments
2529 	 */
2530 	bdev->max_segment_size = 3 * 512;
2531 	bdev->max_num_segments = 6;
2532 	g_io_done = false;
2533 
2534 	iov[0].iov_base = (void *)0x10000;
2535 	iov[0].iov_len = 4 * 512;
2536 	iov[1].iov_base = (void *)0x20000;
2537 	iov[1].iov_len = 4 * 512;
2538 	iov[2].iov_base = (void *)0x30000;
2539 	iov[2].iov_len = 10 * 512;
2540 
2541 	/* IO crossing the IO boundary requires split.
2542 	 * The 1st child IO segment size exceeds the max_segment_size and after
2543 	 * splitting segment_size, the num_segments exceeds max_num_segments.
2544 	 * So 1st child IO will be splitted to 2 child IOs.
2545 	 * Total 3 child IOs.
2546 	 */
2547 
2548 	/* The first 2 IOs are in an IO boundary.
2549 	 * After splitting segment size the segment num exceeds.
2550 	 * So it splits to 2 child IOs.
2551 	 */
2552 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6);
2553 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3);
2554 	ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512);
2555 	ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3);
2556 	ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512);
2557 	ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3);
2558 	ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3);
2559 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2560 
2561 	/* The 2nd child IO has the left segment entry */
2562 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2563 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2);
2564 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2565 
2566 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2567 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2);
2568 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2569 
2570 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL);
2571 	CU_ASSERT(rc == 0);
2572 	CU_ASSERT(g_io_done == false);
2573 
2574 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2575 	stub_complete_io(3);
2576 	CU_ASSERT(g_io_done == true);
2577 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2578 
2579 	/* A very complicated case. Each sg entry exceeds max_segment_size
2580 	 * and split on io boundary.
2581 	 * optimal_io_boundary < max_segment_size * max_num_segments
2582 	 */
2583 	bdev->max_segment_size = 3 * 512;
2584 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2585 	g_io_done = false;
2586 
2587 	for (i = 0; i < 20; i++) {
2588 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2589 		iov[i].iov_len = 512 * 4;
2590 	}
2591 
2592 	/* IO crossing the IO boundary requires split.
2593 	 * 80 block length can split 5 child IOs base on offset and IO boundary.
2594 	 * Each iov entry needs to be splitted to 2 entries because of max_segment_size
2595 	 * Total 5 child IOs.
2596 	 */
2597 
2598 	/* 4 iov entries are in an IO boundary and each iov entry splits to 2.
2599 	 * So each child IO occupies 8 child iov entries.
2600 	 */
2601 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8);
2602 	for (i = 0; i < 4; i++) {
2603 		int iovcnt = i * 2;
2604 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2605 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2606 	}
2607 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2608 
2609 	/* 2nd child IO and total 16 child iov entries of parent IO */
2610 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8);
2611 	for (i = 4; i < 8; i++) {
2612 		int iovcnt = (i - 4) * 2;
2613 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2614 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2615 	}
2616 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2617 
2618 	/* 3rd child IO and total 24 child iov entries of parent IO */
2619 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8);
2620 	for (i = 8; i < 12; i++) {
2621 		int iovcnt = (i - 8) * 2;
2622 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2623 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2624 	}
2625 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2626 
2627 	/* 4th child IO and total 32 child iov entries of parent IO */
2628 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8);
2629 	for (i = 12; i < 16; i++) {
2630 		int iovcnt = (i - 12) * 2;
2631 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2632 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2633 	}
2634 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2635 
2636 	/* 5th child IO and because of the child iov entry it should be splitted
2637 	 * in next round.
2638 	 */
2639 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8);
2640 	for (i = 16; i < 20; i++) {
2641 		int iovcnt = (i - 16) * 2;
2642 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2643 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2644 	}
2645 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2646 
2647 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL);
2648 	CU_ASSERT(rc == 0);
2649 	CU_ASSERT(g_io_done == false);
2650 
2651 	/* First split round */
2652 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2653 	stub_complete_io(4);
2654 	CU_ASSERT(g_io_done == false);
2655 
2656 	/* Second split round */
2657 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2658 	stub_complete_io(1);
2659 	CU_ASSERT(g_io_done == true);
2660 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2661 
2662 	spdk_put_io_channel(io_ch);
2663 	spdk_bdev_close(desc);
2664 	free_bdev(bdev);
2665 	spdk_bdev_finish(bdev_fini_cb, NULL);
2666 	poll_threads();
2667 }
2668 
2669 static void
2670 bdev_io_split_with_io_wait(void)
2671 {
2672 	struct spdk_bdev *bdev;
2673 	struct spdk_bdev_desc *desc = NULL;
2674 	struct spdk_io_channel *io_ch;
2675 	struct spdk_bdev_channel *channel;
2676 	struct spdk_bdev_mgmt_channel *mgmt_ch;
2677 	struct spdk_bdev_opts bdev_opts = {};
2678 	struct iovec iov[3];
2679 	struct ut_expected_io *expected_io;
2680 	int rc;
2681 
2682 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2683 	bdev_opts.bdev_io_pool_size = 2;
2684 	bdev_opts.bdev_io_cache_size = 1;
2685 
2686 	rc = spdk_bdev_set_opts(&bdev_opts);
2687 	CU_ASSERT(rc == 0);
2688 	spdk_bdev_initialize(bdev_init_cb, NULL);
2689 
2690 	bdev = allocate_bdev("bdev0");
2691 
2692 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2693 	CU_ASSERT(rc == 0);
2694 	CU_ASSERT(desc != NULL);
2695 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2696 	io_ch = spdk_bdev_get_io_channel(desc);
2697 	CU_ASSERT(io_ch != NULL);
2698 	channel = spdk_io_channel_get_ctx(io_ch);
2699 	mgmt_ch = channel->shared_resource->mgmt_ch;
2700 
2701 	bdev->optimal_io_boundary = 16;
2702 	bdev->split_on_optimal_io_boundary = true;
2703 
2704 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
2705 	CU_ASSERT(rc == 0);
2706 
2707 	/* Now test that a single-vector command is split correctly.
2708 	 * Offset 14, length 8, payload 0xF000
2709 	 *  Child - Offset 14, length 2, payload 0xF000
2710 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
2711 	 *
2712 	 * Set up the expected values before calling spdk_bdev_read_blocks
2713 	 */
2714 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
2715 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
2716 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2717 
2718 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
2719 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
2720 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2721 
2722 	/* The following children will be submitted sequentially due to the capacity of
2723 	 * spdk_bdev_io.
2724 	 */
2725 
2726 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
2727 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
2728 	CU_ASSERT(rc == 0);
2729 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2730 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2731 
2732 	/* Completing the first read I/O will submit the first child */
2733 	stub_complete_io(1);
2734 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2735 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2736 
2737 	/* Completing the first child will submit the second child */
2738 	stub_complete_io(1);
2739 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2740 
2741 	/* Complete the second child I/O.  This should result in our callback getting
2742 	 * invoked since the parent I/O is now complete.
2743 	 */
2744 	stub_complete_io(1);
2745 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2746 
2747 	/* Now set up a more complex, multi-vector command that needs to be split,
2748 	 *  including splitting iovecs.
2749 	 */
2750 	iov[0].iov_base = (void *)0x10000;
2751 	iov[0].iov_len = 512;
2752 	iov[1].iov_base = (void *)0x20000;
2753 	iov[1].iov_len = 20 * 512;
2754 	iov[2].iov_base = (void *)0x30000;
2755 	iov[2].iov_len = 11 * 512;
2756 
2757 	g_io_done = false;
2758 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
2759 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
2760 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
2761 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2762 
2763 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
2764 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
2765 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2766 
2767 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
2768 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
2769 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
2770 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2771 
2772 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
2773 	CU_ASSERT(rc == 0);
2774 	CU_ASSERT(g_io_done == false);
2775 
2776 	/* The following children will be submitted sequentially due to the capacity of
2777 	 * spdk_bdev_io.
2778 	 */
2779 
2780 	/* Completing the first child will submit the second child */
2781 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2782 	stub_complete_io(1);
2783 	CU_ASSERT(g_io_done == false);
2784 
2785 	/* Completing the second child will submit the third child */
2786 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2787 	stub_complete_io(1);
2788 	CU_ASSERT(g_io_done == false);
2789 
2790 	/* Completing the third child will result in our callback getting invoked
2791 	 * since the parent I/O is now complete.
2792 	 */
2793 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2794 	stub_complete_io(1);
2795 	CU_ASSERT(g_io_done == true);
2796 
2797 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
2798 
2799 	spdk_put_io_channel(io_ch);
2800 	spdk_bdev_close(desc);
2801 	free_bdev(bdev);
2802 	spdk_bdev_finish(bdev_fini_cb, NULL);
2803 	poll_threads();
2804 }
2805 
2806 static void
2807 bdev_io_alignment(void)
2808 {
2809 	struct spdk_bdev *bdev;
2810 	struct spdk_bdev_desc *desc = NULL;
2811 	struct spdk_io_channel *io_ch;
2812 	struct spdk_bdev_opts bdev_opts = {};
2813 	int rc;
2814 	void *buf = NULL;
2815 	struct iovec iovs[2];
2816 	int iovcnt;
2817 	uint64_t alignment;
2818 
2819 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2820 	bdev_opts.bdev_io_pool_size = 20;
2821 	bdev_opts.bdev_io_cache_size = 2;
2822 
2823 	rc = spdk_bdev_set_opts(&bdev_opts);
2824 	CU_ASSERT(rc == 0);
2825 	spdk_bdev_initialize(bdev_init_cb, NULL);
2826 
2827 	fn_table.submit_request = stub_submit_request_get_buf;
2828 	bdev = allocate_bdev("bdev0");
2829 
2830 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2831 	CU_ASSERT(rc == 0);
2832 	CU_ASSERT(desc != NULL);
2833 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2834 	io_ch = spdk_bdev_get_io_channel(desc);
2835 	CU_ASSERT(io_ch != NULL);
2836 
2837 	/* Create aligned buffer */
2838 	rc = posix_memalign(&buf, 4096, 8192);
2839 	SPDK_CU_ASSERT_FATAL(rc == 0);
2840 
2841 	/* Pass aligned single buffer with no alignment required */
2842 	alignment = 1;
2843 	bdev->required_alignment = spdk_u32log2(alignment);
2844 
2845 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
2846 	CU_ASSERT(rc == 0);
2847 	stub_complete_io(1);
2848 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2849 				    alignment));
2850 
2851 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
2852 	CU_ASSERT(rc == 0);
2853 	stub_complete_io(1);
2854 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2855 				    alignment));
2856 
2857 	/* Pass unaligned single buffer with no alignment required */
2858 	alignment = 1;
2859 	bdev->required_alignment = spdk_u32log2(alignment);
2860 
2861 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2862 	CU_ASSERT(rc == 0);
2863 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2864 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
2865 	stub_complete_io(1);
2866 
2867 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2868 	CU_ASSERT(rc == 0);
2869 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2870 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
2871 	stub_complete_io(1);
2872 
2873 	/* Pass unaligned single buffer with 512 alignment required */
2874 	alignment = 512;
2875 	bdev->required_alignment = spdk_u32log2(alignment);
2876 
2877 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2878 	CU_ASSERT(rc == 0);
2879 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2880 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2881 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2882 				    alignment));
2883 	stub_complete_io(1);
2884 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2885 
2886 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2887 	CU_ASSERT(rc == 0);
2888 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2889 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2890 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2891 				    alignment));
2892 	stub_complete_io(1);
2893 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2894 
2895 	/* Pass unaligned single buffer with 4096 alignment required */
2896 	alignment = 4096;
2897 	bdev->required_alignment = spdk_u32log2(alignment);
2898 
2899 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
2900 	CU_ASSERT(rc == 0);
2901 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2902 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2903 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2904 				    alignment));
2905 	stub_complete_io(1);
2906 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2907 
2908 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
2909 	CU_ASSERT(rc == 0);
2910 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2911 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2912 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2913 				    alignment));
2914 	stub_complete_io(1);
2915 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2916 
2917 	/* Pass aligned iovs with no alignment required */
2918 	alignment = 1;
2919 	bdev->required_alignment = spdk_u32log2(alignment);
2920 
2921 	iovcnt = 1;
2922 	iovs[0].iov_base = buf;
2923 	iovs[0].iov_len = 512;
2924 
2925 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2926 	CU_ASSERT(rc == 0);
2927 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2928 	stub_complete_io(1);
2929 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2930 
2931 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2932 	CU_ASSERT(rc == 0);
2933 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2934 	stub_complete_io(1);
2935 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2936 
2937 	/* Pass unaligned iovs with no alignment required */
2938 	alignment = 1;
2939 	bdev->required_alignment = spdk_u32log2(alignment);
2940 
2941 	iovcnt = 2;
2942 	iovs[0].iov_base = buf + 16;
2943 	iovs[0].iov_len = 256;
2944 	iovs[1].iov_base = buf + 16 + 256 + 32;
2945 	iovs[1].iov_len = 256;
2946 
2947 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2948 	CU_ASSERT(rc == 0);
2949 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2950 	stub_complete_io(1);
2951 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2952 
2953 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2954 	CU_ASSERT(rc == 0);
2955 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2956 	stub_complete_io(1);
2957 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2958 
2959 	/* Pass unaligned iov with 2048 alignment required */
2960 	alignment = 2048;
2961 	bdev->required_alignment = spdk_u32log2(alignment);
2962 
2963 	iovcnt = 2;
2964 	iovs[0].iov_base = buf + 16;
2965 	iovs[0].iov_len = 256;
2966 	iovs[1].iov_base = buf + 16 + 256 + 32;
2967 	iovs[1].iov_len = 256;
2968 
2969 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2970 	CU_ASSERT(rc == 0);
2971 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
2972 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2973 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2974 				    alignment));
2975 	stub_complete_io(1);
2976 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2977 
2978 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2979 	CU_ASSERT(rc == 0);
2980 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
2981 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2982 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2983 				    alignment));
2984 	stub_complete_io(1);
2985 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2986 
2987 	/* Pass iov without allocated buffer without alignment required */
2988 	alignment = 1;
2989 	bdev->required_alignment = spdk_u32log2(alignment);
2990 
2991 	iovcnt = 1;
2992 	iovs[0].iov_base = NULL;
2993 	iovs[0].iov_len = 0;
2994 
2995 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2996 	CU_ASSERT(rc == 0);
2997 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2998 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2999 				    alignment));
3000 	stub_complete_io(1);
3001 
3002 	/* Pass iov without allocated buffer with 1024 alignment required */
3003 	alignment = 1024;
3004 	bdev->required_alignment = spdk_u32log2(alignment);
3005 
3006 	iovcnt = 1;
3007 	iovs[0].iov_base = NULL;
3008 	iovs[0].iov_len = 0;
3009 
3010 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3011 	CU_ASSERT(rc == 0);
3012 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3013 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3014 				    alignment));
3015 	stub_complete_io(1);
3016 
3017 	spdk_put_io_channel(io_ch);
3018 	spdk_bdev_close(desc);
3019 	free_bdev(bdev);
3020 	fn_table.submit_request = stub_submit_request;
3021 	spdk_bdev_finish(bdev_fini_cb, NULL);
3022 	poll_threads();
3023 
3024 	free(buf);
3025 }
3026 
3027 static void
3028 bdev_io_alignment_with_boundary(void)
3029 {
3030 	struct spdk_bdev *bdev;
3031 	struct spdk_bdev_desc *desc = NULL;
3032 	struct spdk_io_channel *io_ch;
3033 	struct spdk_bdev_opts bdev_opts = {};
3034 	int rc;
3035 	void *buf = NULL;
3036 	struct iovec iovs[2];
3037 	int iovcnt;
3038 	uint64_t alignment;
3039 
3040 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3041 	bdev_opts.bdev_io_pool_size = 20;
3042 	bdev_opts.bdev_io_cache_size = 2;
3043 
3044 	bdev_opts.opts_size = sizeof(bdev_opts);
3045 	rc = spdk_bdev_set_opts(&bdev_opts);
3046 	CU_ASSERT(rc == 0);
3047 	spdk_bdev_initialize(bdev_init_cb, NULL);
3048 
3049 	fn_table.submit_request = stub_submit_request_get_buf;
3050 	bdev = allocate_bdev("bdev0");
3051 
3052 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3053 	CU_ASSERT(rc == 0);
3054 	CU_ASSERT(desc != NULL);
3055 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3056 	io_ch = spdk_bdev_get_io_channel(desc);
3057 	CU_ASSERT(io_ch != NULL);
3058 
3059 	/* Create aligned buffer */
3060 	rc = posix_memalign(&buf, 4096, 131072);
3061 	SPDK_CU_ASSERT_FATAL(rc == 0);
3062 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3063 
3064 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
3065 	alignment = 512;
3066 	bdev->required_alignment = spdk_u32log2(alignment);
3067 	bdev->optimal_io_boundary = 2;
3068 	bdev->split_on_optimal_io_boundary = true;
3069 
3070 	iovcnt = 1;
3071 	iovs[0].iov_base = NULL;
3072 	iovs[0].iov_len = 512 * 3;
3073 
3074 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3075 	CU_ASSERT(rc == 0);
3076 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3077 	stub_complete_io(2);
3078 
3079 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
3080 	alignment = 512;
3081 	bdev->required_alignment = spdk_u32log2(alignment);
3082 	bdev->optimal_io_boundary = 16;
3083 	bdev->split_on_optimal_io_boundary = true;
3084 
3085 	iovcnt = 1;
3086 	iovs[0].iov_base = NULL;
3087 	iovs[0].iov_len = 512 * 16;
3088 
3089 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
3090 	CU_ASSERT(rc == 0);
3091 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3092 	stub_complete_io(2);
3093 
3094 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
3095 	alignment = 512;
3096 	bdev->required_alignment = spdk_u32log2(alignment);
3097 	bdev->optimal_io_boundary = 128;
3098 	bdev->split_on_optimal_io_boundary = true;
3099 
3100 	iovcnt = 1;
3101 	iovs[0].iov_base = buf + 16;
3102 	iovs[0].iov_len = 512 * 160;
3103 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3104 	CU_ASSERT(rc == 0);
3105 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3106 	stub_complete_io(2);
3107 
3108 	/* 512 * 3 with 2 IO boundary */
3109 	alignment = 512;
3110 	bdev->required_alignment = spdk_u32log2(alignment);
3111 	bdev->optimal_io_boundary = 2;
3112 	bdev->split_on_optimal_io_boundary = true;
3113 
3114 	iovcnt = 2;
3115 	iovs[0].iov_base = buf + 16;
3116 	iovs[0].iov_len = 512;
3117 	iovs[1].iov_base = buf + 16 + 512 + 32;
3118 	iovs[1].iov_len = 1024;
3119 
3120 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3121 	CU_ASSERT(rc == 0);
3122 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3123 	stub_complete_io(2);
3124 
3125 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3126 	CU_ASSERT(rc == 0);
3127 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3128 	stub_complete_io(2);
3129 
3130 	/* 512 * 64 with 32 IO boundary */
3131 	bdev->optimal_io_boundary = 32;
3132 	iovcnt = 2;
3133 	iovs[0].iov_base = buf + 16;
3134 	iovs[0].iov_len = 16384;
3135 	iovs[1].iov_base = buf + 16 + 16384 + 32;
3136 	iovs[1].iov_len = 16384;
3137 
3138 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3139 	CU_ASSERT(rc == 0);
3140 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3141 	stub_complete_io(3);
3142 
3143 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3144 	CU_ASSERT(rc == 0);
3145 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3146 	stub_complete_io(3);
3147 
3148 	/* 512 * 160 with 32 IO boundary */
3149 	iovcnt = 1;
3150 	iovs[0].iov_base = buf + 16;
3151 	iovs[0].iov_len = 16384 + 65536;
3152 
3153 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3154 	CU_ASSERT(rc == 0);
3155 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
3156 	stub_complete_io(6);
3157 
3158 	spdk_put_io_channel(io_ch);
3159 	spdk_bdev_close(desc);
3160 	free_bdev(bdev);
3161 	fn_table.submit_request = stub_submit_request;
3162 	spdk_bdev_finish(bdev_fini_cb, NULL);
3163 	poll_threads();
3164 
3165 	free(buf);
3166 }
3167 
3168 static void
3169 histogram_status_cb(void *cb_arg, int status)
3170 {
3171 	g_status = status;
3172 }
3173 
3174 static void
3175 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3176 {
3177 	g_status = status;
3178 	g_histogram = histogram;
3179 }
3180 
3181 static void
3182 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
3183 		   uint64_t total, uint64_t so_far)
3184 {
3185 	g_count += count;
3186 }
3187 
3188 static void
3189 bdev_histograms(void)
3190 {
3191 	struct spdk_bdev *bdev;
3192 	struct spdk_bdev_desc *desc = NULL;
3193 	struct spdk_io_channel *ch;
3194 	struct spdk_histogram_data *histogram;
3195 	uint8_t buf[4096];
3196 	int rc;
3197 
3198 	spdk_bdev_initialize(bdev_init_cb, NULL);
3199 
3200 	bdev = allocate_bdev("bdev");
3201 
3202 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3203 	CU_ASSERT(rc == 0);
3204 	CU_ASSERT(desc != NULL);
3205 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3206 
3207 	ch = spdk_bdev_get_io_channel(desc);
3208 	CU_ASSERT(ch != NULL);
3209 
3210 	/* Enable histogram */
3211 	g_status = -1;
3212 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
3213 	poll_threads();
3214 	CU_ASSERT(g_status == 0);
3215 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3216 
3217 	/* Allocate histogram */
3218 	histogram = spdk_histogram_data_alloc();
3219 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
3220 
3221 	/* Check if histogram is zeroed */
3222 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3223 	poll_threads();
3224 	CU_ASSERT(g_status == 0);
3225 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3226 
3227 	g_count = 0;
3228 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3229 
3230 	CU_ASSERT(g_count == 0);
3231 
3232 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3233 	CU_ASSERT(rc == 0);
3234 
3235 	spdk_delay_us(10);
3236 	stub_complete_io(1);
3237 	poll_threads();
3238 
3239 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3240 	CU_ASSERT(rc == 0);
3241 
3242 	spdk_delay_us(10);
3243 	stub_complete_io(1);
3244 	poll_threads();
3245 
3246 	/* Check if histogram gathered data from all I/O channels */
3247 	g_histogram = NULL;
3248 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3249 	poll_threads();
3250 	CU_ASSERT(g_status == 0);
3251 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3252 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3253 
3254 	g_count = 0;
3255 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3256 	CU_ASSERT(g_count == 2);
3257 
3258 	/* Disable histogram */
3259 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
3260 	poll_threads();
3261 	CU_ASSERT(g_status == 0);
3262 	CU_ASSERT(bdev->internal.histogram_enabled == false);
3263 
3264 	/* Try to run histogram commands on disabled bdev */
3265 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3266 	poll_threads();
3267 	CU_ASSERT(g_status == -EFAULT);
3268 
3269 	spdk_histogram_data_free(histogram);
3270 	spdk_put_io_channel(ch);
3271 	spdk_bdev_close(desc);
3272 	free_bdev(bdev);
3273 	spdk_bdev_finish(bdev_fini_cb, NULL);
3274 	poll_threads();
3275 }
3276 
3277 static void
3278 _bdev_compare(bool emulated)
3279 {
3280 	struct spdk_bdev *bdev;
3281 	struct spdk_bdev_desc *desc = NULL;
3282 	struct spdk_io_channel *ioch;
3283 	struct ut_expected_io *expected_io;
3284 	uint64_t offset, num_blocks;
3285 	uint32_t num_completed;
3286 	char aa_buf[512];
3287 	char bb_buf[512];
3288 	struct iovec compare_iov;
3289 	uint8_t io_type;
3290 	int rc;
3291 
3292 	if (emulated) {
3293 		io_type = SPDK_BDEV_IO_TYPE_READ;
3294 	} else {
3295 		io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3296 	}
3297 
3298 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3299 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3300 
3301 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3302 
3303 	spdk_bdev_initialize(bdev_init_cb, NULL);
3304 	fn_table.submit_request = stub_submit_request_get_buf;
3305 	bdev = allocate_bdev("bdev");
3306 
3307 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3308 	CU_ASSERT_EQUAL(rc, 0);
3309 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3310 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3311 	ioch = spdk_bdev_get_io_channel(desc);
3312 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3313 
3314 	fn_table.submit_request = stub_submit_request_get_buf;
3315 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3316 
3317 	offset = 50;
3318 	num_blocks = 1;
3319 	compare_iov.iov_base = aa_buf;
3320 	compare_iov.iov_len = sizeof(aa_buf);
3321 
3322 	expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
3323 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3324 
3325 	g_io_done = false;
3326 	g_compare_read_buf = aa_buf;
3327 	g_compare_read_buf_len = sizeof(aa_buf);
3328 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3329 	CU_ASSERT_EQUAL(rc, 0);
3330 	num_completed = stub_complete_io(1);
3331 	CU_ASSERT_EQUAL(num_completed, 1);
3332 	CU_ASSERT(g_io_done == true);
3333 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3334 
3335 	expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
3336 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3337 
3338 	g_io_done = false;
3339 	g_compare_read_buf = bb_buf;
3340 	g_compare_read_buf_len = sizeof(bb_buf);
3341 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3342 	CU_ASSERT_EQUAL(rc, 0);
3343 	num_completed = stub_complete_io(1);
3344 	CU_ASSERT_EQUAL(num_completed, 1);
3345 	CU_ASSERT(g_io_done == true);
3346 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3347 
3348 	spdk_put_io_channel(ioch);
3349 	spdk_bdev_close(desc);
3350 	free_bdev(bdev);
3351 	fn_table.submit_request = stub_submit_request;
3352 	spdk_bdev_finish(bdev_fini_cb, NULL);
3353 	poll_threads();
3354 
3355 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3356 
3357 	g_compare_read_buf = NULL;
3358 }
3359 
3360 static void
3361 bdev_compare(void)
3362 {
3363 	_bdev_compare(true);
3364 	_bdev_compare(false);
3365 }
3366 
3367 static void
3368 bdev_compare_and_write(void)
3369 {
3370 	struct spdk_bdev *bdev;
3371 	struct spdk_bdev_desc *desc = NULL;
3372 	struct spdk_io_channel *ioch;
3373 	struct ut_expected_io *expected_io;
3374 	uint64_t offset, num_blocks;
3375 	uint32_t num_completed;
3376 	char aa_buf[512];
3377 	char bb_buf[512];
3378 	char cc_buf[512];
3379 	char write_buf[512];
3380 	struct iovec compare_iov;
3381 	struct iovec write_iov;
3382 	int rc;
3383 
3384 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3385 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3386 	memset(cc_buf, 0xcc, sizeof(cc_buf));
3387 
3388 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
3389 
3390 	spdk_bdev_initialize(bdev_init_cb, NULL);
3391 	fn_table.submit_request = stub_submit_request_get_buf;
3392 	bdev = allocate_bdev("bdev");
3393 
3394 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3395 	CU_ASSERT_EQUAL(rc, 0);
3396 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3397 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3398 	ioch = spdk_bdev_get_io_channel(desc);
3399 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3400 
3401 	fn_table.submit_request = stub_submit_request_get_buf;
3402 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3403 
3404 	offset = 50;
3405 	num_blocks = 1;
3406 	compare_iov.iov_base = aa_buf;
3407 	compare_iov.iov_len = sizeof(aa_buf);
3408 	write_iov.iov_base = bb_buf;
3409 	write_iov.iov_len = sizeof(bb_buf);
3410 
3411 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3412 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3413 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
3414 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3415 
3416 	g_io_done = false;
3417 	g_compare_read_buf = aa_buf;
3418 	g_compare_read_buf_len = sizeof(aa_buf);
3419 	memset(write_buf, 0, sizeof(write_buf));
3420 	g_compare_write_buf = write_buf;
3421 	g_compare_write_buf_len = sizeof(write_buf);
3422 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3423 			offset, num_blocks, io_done, NULL);
3424 	/* Trigger range locking */
3425 	poll_threads();
3426 	CU_ASSERT_EQUAL(rc, 0);
3427 	num_completed = stub_complete_io(1);
3428 	CU_ASSERT_EQUAL(num_completed, 1);
3429 	CU_ASSERT(g_io_done == false);
3430 	num_completed = stub_complete_io(1);
3431 	/* Trigger range unlocking */
3432 	poll_threads();
3433 	CU_ASSERT_EQUAL(num_completed, 1);
3434 	CU_ASSERT(g_io_done == true);
3435 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3436 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
3437 
3438 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3439 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3440 
3441 	g_io_done = false;
3442 	g_compare_read_buf = cc_buf;
3443 	g_compare_read_buf_len = sizeof(cc_buf);
3444 	memset(write_buf, 0, sizeof(write_buf));
3445 	g_compare_write_buf = write_buf;
3446 	g_compare_write_buf_len = sizeof(write_buf);
3447 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3448 			offset, num_blocks, io_done, NULL);
3449 	/* Trigger range locking */
3450 	poll_threads();
3451 	CU_ASSERT_EQUAL(rc, 0);
3452 	num_completed = stub_complete_io(1);
3453 	/* Trigger range unlocking earlier because we expect error here */
3454 	poll_threads();
3455 	CU_ASSERT_EQUAL(num_completed, 1);
3456 	CU_ASSERT(g_io_done == true);
3457 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3458 	num_completed = stub_complete_io(1);
3459 	CU_ASSERT_EQUAL(num_completed, 0);
3460 
3461 	spdk_put_io_channel(ioch);
3462 	spdk_bdev_close(desc);
3463 	free_bdev(bdev);
3464 	fn_table.submit_request = stub_submit_request;
3465 	spdk_bdev_finish(bdev_fini_cb, NULL);
3466 	poll_threads();
3467 
3468 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3469 
3470 	g_compare_read_buf = NULL;
3471 	g_compare_write_buf = NULL;
3472 }
3473 
3474 static void
3475 bdev_write_zeroes(void)
3476 {
3477 	struct spdk_bdev *bdev;
3478 	struct spdk_bdev_desc *desc = NULL;
3479 	struct spdk_io_channel *ioch;
3480 	struct ut_expected_io *expected_io;
3481 	uint64_t offset, num_io_blocks, num_blocks;
3482 	uint32_t num_completed, num_requests;
3483 	int rc;
3484 
3485 	spdk_bdev_initialize(bdev_init_cb, NULL);
3486 	bdev = allocate_bdev("bdev");
3487 
3488 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3489 	CU_ASSERT_EQUAL(rc, 0);
3490 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3491 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3492 	ioch = spdk_bdev_get_io_channel(desc);
3493 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3494 
3495 	fn_table.submit_request = stub_submit_request;
3496 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3497 
3498 	/* First test that if the bdev supports write_zeroes, the request won't be split */
3499 	bdev->md_len = 0;
3500 	bdev->blocklen = 4096;
3501 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3502 
3503 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
3504 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3505 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3506 	CU_ASSERT_EQUAL(rc, 0);
3507 	num_completed = stub_complete_io(1);
3508 	CU_ASSERT_EQUAL(num_completed, 1);
3509 
3510 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
3511 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
3512 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
3513 	num_requests = 2;
3514 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
3515 
3516 	for (offset = 0; offset < num_requests; ++offset) {
3517 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3518 						   offset * num_io_blocks, num_io_blocks, 0);
3519 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3520 	}
3521 
3522 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3523 	CU_ASSERT_EQUAL(rc, 0);
3524 	num_completed = stub_complete_io(num_requests);
3525 	CU_ASSERT_EQUAL(num_completed, num_requests);
3526 
3527 	/* Check that the splitting is correct if bdev has interleaved metadata */
3528 	bdev->md_interleave = true;
3529 	bdev->md_len = 64;
3530 	bdev->blocklen = 4096 + 64;
3531 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3532 
3533 	num_requests = offset = 0;
3534 	while (offset < num_blocks) {
3535 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
3536 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3537 						   offset, num_io_blocks, 0);
3538 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3539 		offset += num_io_blocks;
3540 		num_requests++;
3541 	}
3542 
3543 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3544 	CU_ASSERT_EQUAL(rc, 0);
3545 	num_completed = stub_complete_io(num_requests);
3546 	CU_ASSERT_EQUAL(num_completed, num_requests);
3547 	num_completed = stub_complete_io(num_requests);
3548 	assert(num_completed == 0);
3549 
3550 	/* Check the the same for separate metadata buffer */
3551 	bdev->md_interleave = false;
3552 	bdev->md_len = 64;
3553 	bdev->blocklen = 4096;
3554 
3555 	num_requests = offset = 0;
3556 	while (offset < num_blocks) {
3557 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
3558 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3559 						   offset, num_io_blocks, 0);
3560 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
3561 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3562 		offset += num_io_blocks;
3563 		num_requests++;
3564 	}
3565 
3566 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3567 	CU_ASSERT_EQUAL(rc, 0);
3568 	num_completed = stub_complete_io(num_requests);
3569 	CU_ASSERT_EQUAL(num_completed, num_requests);
3570 
3571 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
3572 	spdk_put_io_channel(ioch);
3573 	spdk_bdev_close(desc);
3574 	free_bdev(bdev);
3575 	spdk_bdev_finish(bdev_fini_cb, NULL);
3576 	poll_threads();
3577 }
3578 
3579 static void
3580 bdev_zcopy_write(void)
3581 {
3582 	struct spdk_bdev *bdev;
3583 	struct spdk_bdev_desc *desc = NULL;
3584 	struct spdk_io_channel *ioch;
3585 	struct ut_expected_io *expected_io;
3586 	uint64_t offset, num_blocks;
3587 	uint32_t num_completed;
3588 	char aa_buf[512];
3589 	struct iovec iov;
3590 	int rc;
3591 	const bool populate = false;
3592 	const bool commit = true;
3593 
3594 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3595 
3596 	spdk_bdev_initialize(bdev_init_cb, NULL);
3597 	bdev = allocate_bdev("bdev");
3598 
3599 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3600 	CU_ASSERT_EQUAL(rc, 0);
3601 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3602 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3603 	ioch = spdk_bdev_get_io_channel(desc);
3604 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3605 
3606 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3607 
3608 	offset = 50;
3609 	num_blocks = 1;
3610 	iov.iov_base = NULL;
3611 	iov.iov_len = 0;
3612 
3613 	g_zcopy_read_buf = (void *) 0x1122334455667788UL;
3614 	g_zcopy_read_buf_len = (uint32_t) -1;
3615 	/* Do a zcopy start for a write (populate=false) */
3616 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3617 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3618 	g_io_done = false;
3619 	g_zcopy_write_buf = aa_buf;
3620 	g_zcopy_write_buf_len = sizeof(aa_buf);
3621 	g_zcopy_bdev_io = NULL;
3622 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
3623 	CU_ASSERT_EQUAL(rc, 0);
3624 	num_completed = stub_complete_io(1);
3625 	CU_ASSERT_EQUAL(num_completed, 1);
3626 	CU_ASSERT(g_io_done == true);
3627 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3628 	/* Check that the iov has been set up */
3629 	CU_ASSERT(iov.iov_base == g_zcopy_write_buf);
3630 	CU_ASSERT(iov.iov_len == g_zcopy_write_buf_len);
3631 	/* Check that the bdev_io has been saved */
3632 	CU_ASSERT(g_zcopy_bdev_io != NULL);
3633 	/* Now do the zcopy end for a write (commit=true) */
3634 	g_io_done = false;
3635 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3636 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3637 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
3638 	CU_ASSERT_EQUAL(rc, 0);
3639 	num_completed = stub_complete_io(1);
3640 	CU_ASSERT_EQUAL(num_completed, 1);
3641 	CU_ASSERT(g_io_done == true);
3642 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3643 	/* Check the g_zcopy are reset by io_done */
3644 	CU_ASSERT(g_zcopy_write_buf == NULL);
3645 	CU_ASSERT(g_zcopy_write_buf_len == 0);
3646 	/* Check that io_done has freed the g_zcopy_bdev_io */
3647 	CU_ASSERT(g_zcopy_bdev_io == NULL);
3648 
3649 	/* Check the zcopy read buffer has not been touched which
3650 	 * ensures that the correct buffers were used.
3651 	 */
3652 	CU_ASSERT(g_zcopy_read_buf == (void *) 0x1122334455667788UL);
3653 	CU_ASSERT(g_zcopy_read_buf_len == (uint32_t) -1);
3654 
3655 	spdk_put_io_channel(ioch);
3656 	spdk_bdev_close(desc);
3657 	free_bdev(bdev);
3658 	spdk_bdev_finish(bdev_fini_cb, NULL);
3659 	poll_threads();
3660 }
3661 
3662 static void
3663 bdev_zcopy_read(void)
3664 {
3665 	struct spdk_bdev *bdev;
3666 	struct spdk_bdev_desc *desc = NULL;
3667 	struct spdk_io_channel *ioch;
3668 	struct ut_expected_io *expected_io;
3669 	uint64_t offset, num_blocks;
3670 	uint32_t num_completed;
3671 	char aa_buf[512];
3672 	struct iovec iov;
3673 	int rc;
3674 	const bool populate = true;
3675 	const bool commit = false;
3676 
3677 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3678 
3679 	spdk_bdev_initialize(bdev_init_cb, NULL);
3680 	bdev = allocate_bdev("bdev");
3681 
3682 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3683 	CU_ASSERT_EQUAL(rc, 0);
3684 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3685 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3686 	ioch = spdk_bdev_get_io_channel(desc);
3687 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3688 
3689 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3690 
3691 	offset = 50;
3692 	num_blocks = 1;
3693 	iov.iov_base = NULL;
3694 	iov.iov_len = 0;
3695 
3696 	g_zcopy_write_buf = (void *) 0x1122334455667788UL;
3697 	g_zcopy_write_buf_len = (uint32_t) -1;
3698 
3699 	/* Do a zcopy start for a read (populate=true) */
3700 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3701 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3702 	g_io_done = false;
3703 	g_zcopy_read_buf = aa_buf;
3704 	g_zcopy_read_buf_len = sizeof(aa_buf);
3705 	g_zcopy_bdev_io = NULL;
3706 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
3707 	CU_ASSERT_EQUAL(rc, 0);
3708 	num_completed = stub_complete_io(1);
3709 	CU_ASSERT_EQUAL(num_completed, 1);
3710 	CU_ASSERT(g_io_done == true);
3711 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3712 	/* Check that the iov has been set up */
3713 	CU_ASSERT(iov.iov_base == g_zcopy_read_buf);
3714 	CU_ASSERT(iov.iov_len == g_zcopy_read_buf_len);
3715 	/* Check that the bdev_io has been saved */
3716 	CU_ASSERT(g_zcopy_bdev_io != NULL);
3717 
3718 	/* Now do the zcopy end for a read (commit=false) */
3719 	g_io_done = false;
3720 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3721 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3722 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
3723 	CU_ASSERT_EQUAL(rc, 0);
3724 	num_completed = stub_complete_io(1);
3725 	CU_ASSERT_EQUAL(num_completed, 1);
3726 	CU_ASSERT(g_io_done == true);
3727 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3728 	/* Check the g_zcopy are reset by io_done */
3729 	CU_ASSERT(g_zcopy_read_buf == NULL);
3730 	CU_ASSERT(g_zcopy_read_buf_len == 0);
3731 	/* Check that io_done has freed the g_zcopy_bdev_io */
3732 	CU_ASSERT(g_zcopy_bdev_io == NULL);
3733 
3734 	/* Check the zcopy write buffer has not been touched which
3735 	 * ensures that the correct buffers were used.
3736 	 */
3737 	CU_ASSERT(g_zcopy_write_buf == (void *) 0x1122334455667788UL);
3738 	CU_ASSERT(g_zcopy_write_buf_len == (uint32_t) -1);
3739 
3740 	spdk_put_io_channel(ioch);
3741 	spdk_bdev_close(desc);
3742 	free_bdev(bdev);
3743 	spdk_bdev_finish(bdev_fini_cb, NULL);
3744 	poll_threads();
3745 }
3746 
3747 static void
3748 bdev_open_while_hotremove(void)
3749 {
3750 	struct spdk_bdev *bdev;
3751 	struct spdk_bdev_desc *desc[2] = {};
3752 	int rc;
3753 
3754 	bdev = allocate_bdev("bdev");
3755 
3756 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
3757 	CU_ASSERT(rc == 0);
3758 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
3759 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
3760 
3761 	spdk_bdev_unregister(bdev, NULL, NULL);
3762 	/* Bdev unregister is handled asynchronously. Poll thread to complete. */
3763 	poll_threads();
3764 
3765 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
3766 	CU_ASSERT(rc == -ENODEV);
3767 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
3768 
3769 	spdk_bdev_close(desc[0]);
3770 	free_bdev(bdev);
3771 }
3772 
3773 static void
3774 bdev_close_while_hotremove(void)
3775 {
3776 	struct spdk_bdev *bdev;
3777 	struct spdk_bdev_desc *desc = NULL;
3778 	int rc = 0;
3779 
3780 	bdev = allocate_bdev("bdev");
3781 
3782 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
3783 	CU_ASSERT_EQUAL(rc, 0);
3784 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3785 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3786 
3787 	/* Simulate hot-unplug by unregistering bdev */
3788 	g_event_type1 = 0xFF;
3789 	g_unregister_arg = NULL;
3790 	g_unregister_rc = -1;
3791 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
3792 	/* Close device while remove event is in flight */
3793 	spdk_bdev_close(desc);
3794 
3795 	/* Ensure that unregister callback is delayed */
3796 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
3797 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
3798 
3799 	poll_threads();
3800 
3801 	/* Event callback shall not be issued because device was closed */
3802 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
3803 	/* Unregister callback is issued */
3804 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
3805 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
3806 
3807 	free_bdev(bdev);
3808 }
3809 
3810 static void
3811 bdev_open_ext(void)
3812 {
3813 	struct spdk_bdev *bdev;
3814 	struct spdk_bdev_desc *desc1 = NULL;
3815 	struct spdk_bdev_desc *desc2 = NULL;
3816 	int rc = 0;
3817 
3818 	bdev = allocate_bdev("bdev");
3819 
3820 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
3821 	CU_ASSERT_EQUAL(rc, -EINVAL);
3822 
3823 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
3824 	CU_ASSERT_EQUAL(rc, 0);
3825 
3826 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
3827 	CU_ASSERT_EQUAL(rc, 0);
3828 
3829 	g_event_type1 = 0xFF;
3830 	g_event_type2 = 0xFF;
3831 
3832 	/* Simulate hot-unplug by unregistering bdev */
3833 	spdk_bdev_unregister(bdev, NULL, NULL);
3834 	poll_threads();
3835 
3836 	/* Check if correct events have been triggered in event callback fn */
3837 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
3838 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
3839 
3840 	free_bdev(bdev);
3841 	poll_threads();
3842 }
3843 
3844 static void
3845 bdev_open_ext_unregister(void)
3846 {
3847 	struct spdk_bdev *bdev;
3848 	struct spdk_bdev_desc *desc1 = NULL;
3849 	struct spdk_bdev_desc *desc2 = NULL;
3850 	struct spdk_bdev_desc *desc3 = NULL;
3851 	struct spdk_bdev_desc *desc4 = NULL;
3852 	int rc = 0;
3853 
3854 	bdev = allocate_bdev("bdev");
3855 
3856 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
3857 	CU_ASSERT_EQUAL(rc, -EINVAL);
3858 
3859 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
3860 	CU_ASSERT_EQUAL(rc, 0);
3861 
3862 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
3863 	CU_ASSERT_EQUAL(rc, 0);
3864 
3865 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb3, &desc3, &desc3);
3866 	CU_ASSERT_EQUAL(rc, 0);
3867 
3868 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb4, &desc4, &desc4);
3869 	CU_ASSERT_EQUAL(rc, 0);
3870 
3871 	g_event_type1 = 0xFF;
3872 	g_event_type2 = 0xFF;
3873 	g_event_type3 = 0xFF;
3874 	g_event_type4 = 0xFF;
3875 
3876 	g_unregister_arg = NULL;
3877 	g_unregister_rc = -1;
3878 
3879 	/* Simulate hot-unplug by unregistering bdev */
3880 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
3881 
3882 	/*
3883 	 * Unregister is handled asynchronously and event callback
3884 	 * (i.e., above bdev_open_cbN) will be called.
3885 	 * For bdev_open_cb3 and bdev_open_cb4, it is intended to not
3886 	 * close the desc3 and desc4 so that the bdev is not closed.
3887 	 */
3888 	poll_threads();
3889 
3890 	/* Check if correct events have been triggered in event callback fn */
3891 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
3892 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
3893 	CU_ASSERT_EQUAL(g_event_type3, SPDK_BDEV_EVENT_REMOVE);
3894 	CU_ASSERT_EQUAL(g_event_type4, SPDK_BDEV_EVENT_REMOVE);
3895 
3896 	/* Check that unregister callback is delayed */
3897 	CU_ASSERT(g_unregister_arg == NULL);
3898 	CU_ASSERT(g_unregister_rc == -1);
3899 
3900 	/*
3901 	 * Explicitly close desc3. As desc4 is still opened there, the
3902 	 * unergister callback is still delayed to execute.
3903 	 */
3904 	spdk_bdev_close(desc3);
3905 	CU_ASSERT(g_unregister_arg == NULL);
3906 	CU_ASSERT(g_unregister_rc == -1);
3907 
3908 	/*
3909 	 * Explicitly close desc4 to trigger the ongoing bdev unregister
3910 	 * operation after last desc is closed.
3911 	 */
3912 	spdk_bdev_close(desc4);
3913 
3914 	/* Poll the thread for the async unregister operation */
3915 	poll_threads();
3916 
3917 	/* Check that unregister callback is executed */
3918 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
3919 	CU_ASSERT(g_unregister_rc == 0);
3920 
3921 	free_bdev(bdev);
3922 	poll_threads();
3923 }
3924 
3925 struct timeout_io_cb_arg {
3926 	struct iovec iov;
3927 	uint8_t type;
3928 };
3929 
3930 static int
3931 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
3932 {
3933 	struct spdk_bdev_io *bdev_io;
3934 	int n = 0;
3935 
3936 	if (!ch) {
3937 		return -1;
3938 	}
3939 
3940 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
3941 		n++;
3942 	}
3943 
3944 	return n;
3945 }
3946 
3947 static void
3948 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
3949 {
3950 	struct timeout_io_cb_arg *ctx = cb_arg;
3951 
3952 	ctx->type = bdev_io->type;
3953 	ctx->iov.iov_base = bdev_io->iov.iov_base;
3954 	ctx->iov.iov_len = bdev_io->iov.iov_len;
3955 }
3956 
3957 static void
3958 bdev_set_io_timeout(void)
3959 {
3960 	struct spdk_bdev *bdev;
3961 	struct spdk_bdev_desc *desc = NULL;
3962 	struct spdk_io_channel *io_ch = NULL;
3963 	struct spdk_bdev_channel *bdev_ch = NULL;
3964 	struct timeout_io_cb_arg cb_arg;
3965 
3966 	spdk_bdev_initialize(bdev_init_cb, NULL);
3967 
3968 	bdev = allocate_bdev("bdev");
3969 
3970 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
3971 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3972 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3973 
3974 	io_ch = spdk_bdev_get_io_channel(desc);
3975 	CU_ASSERT(io_ch != NULL);
3976 
3977 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
3978 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
3979 
3980 	/* This is the part1.
3981 	 * We will check the bdev_ch->io_submitted list
3982 	 * TO make sure that it can link IOs and only the user submitted IOs
3983 	 */
3984 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
3985 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
3986 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
3987 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
3988 	stub_complete_io(1);
3989 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
3990 	stub_complete_io(1);
3991 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
3992 
3993 	/* Split IO */
3994 	bdev->optimal_io_boundary = 16;
3995 	bdev->split_on_optimal_io_boundary = true;
3996 
3997 	/* Now test that a single-vector command is split correctly.
3998 	 * Offset 14, length 8, payload 0xF000
3999 	 *  Child - Offset 14, length 2, payload 0xF000
4000 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4001 	 *
4002 	 * Set up the expected values before calling spdk_bdev_read_blocks
4003 	 */
4004 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4005 	/* We count all submitted IOs including IO that are generated by splitting. */
4006 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
4007 	stub_complete_io(1);
4008 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4009 	stub_complete_io(1);
4010 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4011 
4012 	/* Also include the reset IO */
4013 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4014 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4015 	poll_threads();
4016 	stub_complete_io(1);
4017 	poll_threads();
4018 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4019 
4020 	/* This is part2
4021 	 * Test the desc timeout poller register
4022 	 */
4023 
4024 	/* Successfully set the timeout */
4025 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4026 	CU_ASSERT(desc->io_timeout_poller != NULL);
4027 	CU_ASSERT(desc->timeout_in_sec == 30);
4028 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4029 	CU_ASSERT(desc->cb_arg == &cb_arg);
4030 
4031 	/* Change the timeout limit */
4032 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4033 	CU_ASSERT(desc->io_timeout_poller != NULL);
4034 	CU_ASSERT(desc->timeout_in_sec == 20);
4035 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4036 	CU_ASSERT(desc->cb_arg == &cb_arg);
4037 
4038 	/* Disable the timeout */
4039 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
4040 	CU_ASSERT(desc->io_timeout_poller == NULL);
4041 
4042 	/* This the part3
4043 	 * We will test to catch timeout IO and check whether the IO is
4044 	 * the submitted one.
4045 	 */
4046 	memset(&cb_arg, 0, sizeof(cb_arg));
4047 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4048 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
4049 
4050 	/* Don't reach the limit */
4051 	spdk_delay_us(15 * spdk_get_ticks_hz());
4052 	poll_threads();
4053 	CU_ASSERT(cb_arg.type == 0);
4054 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4055 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4056 
4057 	/* 15 + 15 = 30 reach the limit */
4058 	spdk_delay_us(15 * spdk_get_ticks_hz());
4059 	poll_threads();
4060 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4061 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
4062 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
4063 	stub_complete_io(1);
4064 
4065 	/* Use the same split IO above and check the IO */
4066 	memset(&cb_arg, 0, sizeof(cb_arg));
4067 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4068 
4069 	/* The first child complete in time */
4070 	spdk_delay_us(15 * spdk_get_ticks_hz());
4071 	poll_threads();
4072 	stub_complete_io(1);
4073 	CU_ASSERT(cb_arg.type == 0);
4074 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4075 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4076 
4077 	/* The second child reach the limit */
4078 	spdk_delay_us(15 * spdk_get_ticks_hz());
4079 	poll_threads();
4080 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4081 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
4082 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
4083 	stub_complete_io(1);
4084 
4085 	/* Also include the reset IO */
4086 	memset(&cb_arg, 0, sizeof(cb_arg));
4087 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4088 	spdk_delay_us(30 * spdk_get_ticks_hz());
4089 	poll_threads();
4090 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
4091 	stub_complete_io(1);
4092 	poll_threads();
4093 
4094 	spdk_put_io_channel(io_ch);
4095 	spdk_bdev_close(desc);
4096 	free_bdev(bdev);
4097 	spdk_bdev_finish(bdev_fini_cb, NULL);
4098 	poll_threads();
4099 }
4100 
4101 static void
4102 bdev_set_qd_sampling(void)
4103 {
4104 	struct spdk_bdev *bdev;
4105 	struct spdk_bdev_desc *desc = NULL;
4106 	struct spdk_io_channel *io_ch = NULL;
4107 	struct spdk_bdev_channel *bdev_ch = NULL;
4108 	struct timeout_io_cb_arg cb_arg;
4109 
4110 	spdk_bdev_initialize(bdev_init_cb, NULL);
4111 
4112 	bdev = allocate_bdev("bdev");
4113 
4114 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4115 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4116 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4117 
4118 	io_ch = spdk_bdev_get_io_channel(desc);
4119 	CU_ASSERT(io_ch != NULL);
4120 
4121 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4122 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4123 
4124 	/* This is the part1.
4125 	 * We will check the bdev_ch->io_submitted list
4126 	 * TO make sure that it can link IOs and only the user submitted IOs
4127 	 */
4128 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4129 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4130 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4131 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4132 	stub_complete_io(1);
4133 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4134 	stub_complete_io(1);
4135 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4136 
4137 	/* This is the part2.
4138 	 * Test the bdev's qd poller register
4139 	 */
4140 	/* 1st Successfully set the qd sampling period */
4141 	spdk_bdev_set_qd_sampling_period(bdev, 10);
4142 	CU_ASSERT(bdev->internal.new_period == 10);
4143 	CU_ASSERT(bdev->internal.period == 10);
4144 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4145 	poll_threads();
4146 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4147 
4148 	/* 2nd Change the qd sampling period */
4149 	spdk_bdev_set_qd_sampling_period(bdev, 20);
4150 	CU_ASSERT(bdev->internal.new_period == 20);
4151 	CU_ASSERT(bdev->internal.period == 10);
4152 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4153 	poll_threads();
4154 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4155 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4156 
4157 	/* 3rd Change the qd sampling period and verify qd_poll_in_progress */
4158 	spdk_delay_us(20);
4159 	poll_thread_times(0, 1);
4160 	CU_ASSERT(bdev->internal.qd_poll_in_progress == true);
4161 	spdk_bdev_set_qd_sampling_period(bdev, 30);
4162 	CU_ASSERT(bdev->internal.new_period == 30);
4163 	CU_ASSERT(bdev->internal.period == 20);
4164 	poll_threads();
4165 	CU_ASSERT(bdev->internal.qd_poll_in_progress == false);
4166 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4167 
4168 	/* 4th Disable the qd sampling period */
4169 	spdk_bdev_set_qd_sampling_period(bdev, 0);
4170 	CU_ASSERT(bdev->internal.new_period == 0);
4171 	CU_ASSERT(bdev->internal.period == 30);
4172 	poll_threads();
4173 	CU_ASSERT(bdev->internal.qd_poller == NULL);
4174 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4175 	CU_ASSERT(bdev->internal.qd_desc == NULL);
4176 
4177 	/* This is the part3.
4178 	 * We will test the submitted IO and reset works
4179 	 * properly with the qd sampling.
4180 	 */
4181 	memset(&cb_arg, 0, sizeof(cb_arg));
4182 	spdk_bdev_set_qd_sampling_period(bdev, 1);
4183 	poll_threads();
4184 
4185 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4186 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4187 
4188 	/* Also include the reset IO */
4189 	memset(&cb_arg, 0, sizeof(cb_arg));
4190 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4191 	poll_threads();
4192 
4193 	/* Close the desc */
4194 	spdk_put_io_channel(io_ch);
4195 	spdk_bdev_close(desc);
4196 
4197 	/* Complete the submitted IO and reset */
4198 	stub_complete_io(2);
4199 	poll_threads();
4200 
4201 	free_bdev(bdev);
4202 	spdk_bdev_finish(bdev_fini_cb, NULL);
4203 	poll_threads();
4204 }
4205 
4206 static void
4207 lba_range_overlap(void)
4208 {
4209 	struct lba_range r1, r2;
4210 
4211 	r1.offset = 100;
4212 	r1.length = 50;
4213 
4214 	r2.offset = 0;
4215 	r2.length = 1;
4216 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4217 
4218 	r2.offset = 0;
4219 	r2.length = 100;
4220 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4221 
4222 	r2.offset = 0;
4223 	r2.length = 110;
4224 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4225 
4226 	r2.offset = 100;
4227 	r2.length = 10;
4228 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4229 
4230 	r2.offset = 110;
4231 	r2.length = 20;
4232 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4233 
4234 	r2.offset = 140;
4235 	r2.length = 150;
4236 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4237 
4238 	r2.offset = 130;
4239 	r2.length = 200;
4240 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4241 
4242 	r2.offset = 150;
4243 	r2.length = 100;
4244 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4245 
4246 	r2.offset = 110;
4247 	r2.length = 0;
4248 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4249 }
4250 
4251 static bool g_lock_lba_range_done;
4252 static bool g_unlock_lba_range_done;
4253 
4254 static void
4255 lock_lba_range_done(void *ctx, int status)
4256 {
4257 	g_lock_lba_range_done = true;
4258 }
4259 
4260 static void
4261 unlock_lba_range_done(void *ctx, int status)
4262 {
4263 	g_unlock_lba_range_done = true;
4264 }
4265 
4266 static void
4267 lock_lba_range_check_ranges(void)
4268 {
4269 	struct spdk_bdev *bdev;
4270 	struct spdk_bdev_desc *desc = NULL;
4271 	struct spdk_io_channel *io_ch;
4272 	struct spdk_bdev_channel *channel;
4273 	struct lba_range *range;
4274 	int ctx1;
4275 	int rc;
4276 
4277 	spdk_bdev_initialize(bdev_init_cb, NULL);
4278 
4279 	bdev = allocate_bdev("bdev0");
4280 
4281 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4282 	CU_ASSERT(rc == 0);
4283 	CU_ASSERT(desc != NULL);
4284 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4285 	io_ch = spdk_bdev_get_io_channel(desc);
4286 	CU_ASSERT(io_ch != NULL);
4287 	channel = spdk_io_channel_get_ctx(io_ch);
4288 
4289 	g_lock_lba_range_done = false;
4290 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4291 	CU_ASSERT(rc == 0);
4292 	poll_threads();
4293 
4294 	CU_ASSERT(g_lock_lba_range_done == true);
4295 	range = TAILQ_FIRST(&channel->locked_ranges);
4296 	SPDK_CU_ASSERT_FATAL(range != NULL);
4297 	CU_ASSERT(range->offset == 20);
4298 	CU_ASSERT(range->length == 10);
4299 	CU_ASSERT(range->owner_ch == channel);
4300 
4301 	/* Unlocks must exactly match a lock. */
4302 	g_unlock_lba_range_done = false;
4303 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
4304 	CU_ASSERT(rc == -EINVAL);
4305 	CU_ASSERT(g_unlock_lba_range_done == false);
4306 
4307 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4308 	CU_ASSERT(rc == 0);
4309 	spdk_delay_us(100);
4310 	poll_threads();
4311 
4312 	CU_ASSERT(g_unlock_lba_range_done == true);
4313 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4314 
4315 	spdk_put_io_channel(io_ch);
4316 	spdk_bdev_close(desc);
4317 	free_bdev(bdev);
4318 	spdk_bdev_finish(bdev_fini_cb, NULL);
4319 	poll_threads();
4320 }
4321 
4322 static void
4323 lock_lba_range_with_io_outstanding(void)
4324 {
4325 	struct spdk_bdev *bdev;
4326 	struct spdk_bdev_desc *desc = NULL;
4327 	struct spdk_io_channel *io_ch;
4328 	struct spdk_bdev_channel *channel;
4329 	struct lba_range *range;
4330 	char buf[4096];
4331 	int ctx1;
4332 	int rc;
4333 
4334 	spdk_bdev_initialize(bdev_init_cb, NULL);
4335 
4336 	bdev = allocate_bdev("bdev0");
4337 
4338 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4339 	CU_ASSERT(rc == 0);
4340 	CU_ASSERT(desc != NULL);
4341 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4342 	io_ch = spdk_bdev_get_io_channel(desc);
4343 	CU_ASSERT(io_ch != NULL);
4344 	channel = spdk_io_channel_get_ctx(io_ch);
4345 
4346 	g_io_done = false;
4347 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4348 	CU_ASSERT(rc == 0);
4349 
4350 	g_lock_lba_range_done = false;
4351 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4352 	CU_ASSERT(rc == 0);
4353 	poll_threads();
4354 
4355 	/* The lock should immediately become valid, since there are no outstanding
4356 	 * write I/O.
4357 	 */
4358 	CU_ASSERT(g_io_done == false);
4359 	CU_ASSERT(g_lock_lba_range_done == true);
4360 	range = TAILQ_FIRST(&channel->locked_ranges);
4361 	SPDK_CU_ASSERT_FATAL(range != NULL);
4362 	CU_ASSERT(range->offset == 20);
4363 	CU_ASSERT(range->length == 10);
4364 	CU_ASSERT(range->owner_ch == channel);
4365 	CU_ASSERT(range->locked_ctx == &ctx1);
4366 
4367 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4368 	CU_ASSERT(rc == 0);
4369 	stub_complete_io(1);
4370 	spdk_delay_us(100);
4371 	poll_threads();
4372 
4373 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4374 
4375 	/* Now try again, but with a write I/O. */
4376 	g_io_done = false;
4377 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4378 	CU_ASSERT(rc == 0);
4379 
4380 	g_lock_lba_range_done = false;
4381 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4382 	CU_ASSERT(rc == 0);
4383 	poll_threads();
4384 
4385 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
4386 	 * But note that the range should be on the channel's locked_list, to make sure no
4387 	 * new write I/O are started.
4388 	 */
4389 	CU_ASSERT(g_io_done == false);
4390 	CU_ASSERT(g_lock_lba_range_done == false);
4391 	range = TAILQ_FIRST(&channel->locked_ranges);
4392 	SPDK_CU_ASSERT_FATAL(range != NULL);
4393 	CU_ASSERT(range->offset == 20);
4394 	CU_ASSERT(range->length == 10);
4395 
4396 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
4397 	 * our callback was invoked).
4398 	 */
4399 	stub_complete_io(1);
4400 	spdk_delay_us(100);
4401 	poll_threads();
4402 	CU_ASSERT(g_io_done == true);
4403 	CU_ASSERT(g_lock_lba_range_done == true);
4404 
4405 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4406 	CU_ASSERT(rc == 0);
4407 	poll_threads();
4408 
4409 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4410 
4411 	spdk_put_io_channel(io_ch);
4412 	spdk_bdev_close(desc);
4413 	free_bdev(bdev);
4414 	spdk_bdev_finish(bdev_fini_cb, NULL);
4415 	poll_threads();
4416 }
4417 
4418 static void
4419 lock_lba_range_overlapped(void)
4420 {
4421 	struct spdk_bdev *bdev;
4422 	struct spdk_bdev_desc *desc = NULL;
4423 	struct spdk_io_channel *io_ch;
4424 	struct spdk_bdev_channel *channel;
4425 	struct lba_range *range;
4426 	int ctx1;
4427 	int rc;
4428 
4429 	spdk_bdev_initialize(bdev_init_cb, NULL);
4430 
4431 	bdev = allocate_bdev("bdev0");
4432 
4433 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4434 	CU_ASSERT(rc == 0);
4435 	CU_ASSERT(desc != NULL);
4436 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4437 	io_ch = spdk_bdev_get_io_channel(desc);
4438 	CU_ASSERT(io_ch != NULL);
4439 	channel = spdk_io_channel_get_ctx(io_ch);
4440 
4441 	/* Lock range 20-29. */
4442 	g_lock_lba_range_done = false;
4443 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4444 	CU_ASSERT(rc == 0);
4445 	poll_threads();
4446 
4447 	CU_ASSERT(g_lock_lba_range_done == true);
4448 	range = TAILQ_FIRST(&channel->locked_ranges);
4449 	SPDK_CU_ASSERT_FATAL(range != NULL);
4450 	CU_ASSERT(range->offset == 20);
4451 	CU_ASSERT(range->length == 10);
4452 
4453 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
4454 	 * 20-29.
4455 	 */
4456 	g_lock_lba_range_done = false;
4457 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
4458 	CU_ASSERT(rc == 0);
4459 	poll_threads();
4460 
4461 	CU_ASSERT(g_lock_lba_range_done == false);
4462 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4463 	SPDK_CU_ASSERT_FATAL(range != NULL);
4464 	CU_ASSERT(range->offset == 25);
4465 	CU_ASSERT(range->length == 15);
4466 
4467 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
4468 	 * no longer overlaps with an active lock.
4469 	 */
4470 	g_unlock_lba_range_done = false;
4471 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4472 	CU_ASSERT(rc == 0);
4473 	poll_threads();
4474 
4475 	CU_ASSERT(g_unlock_lba_range_done == true);
4476 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4477 	range = TAILQ_FIRST(&channel->locked_ranges);
4478 	SPDK_CU_ASSERT_FATAL(range != NULL);
4479 	CU_ASSERT(range->offset == 25);
4480 	CU_ASSERT(range->length == 15);
4481 
4482 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
4483 	 * currently active 25-39 lock.
4484 	 */
4485 	g_lock_lba_range_done = false;
4486 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
4487 	CU_ASSERT(rc == 0);
4488 	poll_threads();
4489 
4490 	CU_ASSERT(g_lock_lba_range_done == true);
4491 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4492 	SPDK_CU_ASSERT_FATAL(range != NULL);
4493 	range = TAILQ_NEXT(range, tailq);
4494 	SPDK_CU_ASSERT_FATAL(range != NULL);
4495 	CU_ASSERT(range->offset == 40);
4496 	CU_ASSERT(range->length == 20);
4497 
4498 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
4499 	g_lock_lba_range_done = false;
4500 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
4501 	CU_ASSERT(rc == 0);
4502 	poll_threads();
4503 
4504 	CU_ASSERT(g_lock_lba_range_done == false);
4505 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4506 	SPDK_CU_ASSERT_FATAL(range != NULL);
4507 	CU_ASSERT(range->offset == 35);
4508 	CU_ASSERT(range->length == 10);
4509 
4510 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
4511 	 * the 40-59 lock is still active.
4512 	 */
4513 	g_unlock_lba_range_done = false;
4514 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
4515 	CU_ASSERT(rc == 0);
4516 	poll_threads();
4517 
4518 	CU_ASSERT(g_unlock_lba_range_done == true);
4519 	CU_ASSERT(g_lock_lba_range_done == false);
4520 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4521 	SPDK_CU_ASSERT_FATAL(range != NULL);
4522 	CU_ASSERT(range->offset == 35);
4523 	CU_ASSERT(range->length == 10);
4524 
4525 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
4526 	 * no longer any active overlapping locks.
4527 	 */
4528 	g_unlock_lba_range_done = false;
4529 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
4530 	CU_ASSERT(rc == 0);
4531 	poll_threads();
4532 
4533 	CU_ASSERT(g_unlock_lba_range_done == true);
4534 	CU_ASSERT(g_lock_lba_range_done == true);
4535 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4536 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4537 	SPDK_CU_ASSERT_FATAL(range != NULL);
4538 	CU_ASSERT(range->offset == 35);
4539 	CU_ASSERT(range->length == 10);
4540 
4541 	/* Finally, unlock 35-44. */
4542 	g_unlock_lba_range_done = false;
4543 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
4544 	CU_ASSERT(rc == 0);
4545 	poll_threads();
4546 
4547 	CU_ASSERT(g_unlock_lba_range_done == true);
4548 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
4549 
4550 	spdk_put_io_channel(io_ch);
4551 	spdk_bdev_close(desc);
4552 	free_bdev(bdev);
4553 	spdk_bdev_finish(bdev_fini_cb, NULL);
4554 	poll_threads();
4555 }
4556 
4557 static void
4558 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
4559 {
4560 	g_abort_done = true;
4561 	g_abort_status = bdev_io->internal.status;
4562 	spdk_bdev_free_io(bdev_io);
4563 }
4564 
4565 static void
4566 bdev_io_abort(void)
4567 {
4568 	struct spdk_bdev *bdev;
4569 	struct spdk_bdev_desc *desc = NULL;
4570 	struct spdk_io_channel *io_ch;
4571 	struct spdk_bdev_channel *channel;
4572 	struct spdk_bdev_mgmt_channel *mgmt_ch;
4573 	struct spdk_bdev_opts bdev_opts = {};
4574 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
4575 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
4576 	int rc;
4577 
4578 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4579 	bdev_opts.bdev_io_pool_size = 7;
4580 	bdev_opts.bdev_io_cache_size = 2;
4581 
4582 	rc = spdk_bdev_set_opts(&bdev_opts);
4583 	CU_ASSERT(rc == 0);
4584 	spdk_bdev_initialize(bdev_init_cb, NULL);
4585 
4586 	bdev = allocate_bdev("bdev0");
4587 
4588 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4589 	CU_ASSERT(rc == 0);
4590 	CU_ASSERT(desc != NULL);
4591 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4592 	io_ch = spdk_bdev_get_io_channel(desc);
4593 	CU_ASSERT(io_ch != NULL);
4594 	channel = spdk_io_channel_get_ctx(io_ch);
4595 	mgmt_ch = channel->shared_resource->mgmt_ch;
4596 
4597 	g_abort_done = false;
4598 
4599 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
4600 
4601 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4602 	CU_ASSERT(rc == -ENOTSUP);
4603 
4604 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
4605 
4606 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
4607 	CU_ASSERT(rc == 0);
4608 	CU_ASSERT(g_abort_done == true);
4609 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
4610 
4611 	/* Test the case that the target I/O was successfully aborted. */
4612 	g_io_done = false;
4613 
4614 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
4615 	CU_ASSERT(rc == 0);
4616 	CU_ASSERT(g_io_done == false);
4617 
4618 	g_abort_done = false;
4619 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4620 
4621 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4622 	CU_ASSERT(rc == 0);
4623 	CU_ASSERT(g_io_done == true);
4624 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4625 	stub_complete_io(1);
4626 	CU_ASSERT(g_abort_done == true);
4627 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4628 
4629 	/* Test the case that the target I/O was not aborted because it completed
4630 	 * in the middle of execution of the abort.
4631 	 */
4632 	g_io_done = false;
4633 
4634 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
4635 	CU_ASSERT(rc == 0);
4636 	CU_ASSERT(g_io_done == false);
4637 
4638 	g_abort_done = false;
4639 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
4640 
4641 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4642 	CU_ASSERT(rc == 0);
4643 	CU_ASSERT(g_io_done == false);
4644 
4645 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4646 	stub_complete_io(1);
4647 	CU_ASSERT(g_io_done == true);
4648 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4649 
4650 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
4651 	stub_complete_io(1);
4652 	CU_ASSERT(g_abort_done == true);
4653 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4654 
4655 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4656 
4657 	bdev->optimal_io_boundary = 16;
4658 	bdev->split_on_optimal_io_boundary = true;
4659 
4660 	/* Test that a single-vector command which is split is aborted correctly.
4661 	 * Offset 14, length 8, payload 0xF000
4662 	 *  Child - Offset 14, length 2, payload 0xF000
4663 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4664 	 */
4665 	g_io_done = false;
4666 
4667 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
4668 	CU_ASSERT(rc == 0);
4669 	CU_ASSERT(g_io_done == false);
4670 
4671 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
4672 
4673 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4674 
4675 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4676 	CU_ASSERT(rc == 0);
4677 	CU_ASSERT(g_io_done == true);
4678 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4679 	stub_complete_io(2);
4680 	CU_ASSERT(g_abort_done == true);
4681 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4682 
4683 	/* Test that a multi-vector command that needs to be split by strip and then
4684 	 * needs to be split is aborted correctly. Abort is requested before the second
4685 	 * child I/O was submitted. The parent I/O should complete with failure without
4686 	 * submitting the second child I/O.
4687 	 */
4688 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
4689 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
4690 		iov[i].iov_len = 512;
4691 	}
4692 
4693 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
4694 	g_io_done = false;
4695 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
4696 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
4697 	CU_ASSERT(rc == 0);
4698 	CU_ASSERT(g_io_done == false);
4699 
4700 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
4701 
4702 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4703 
4704 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4705 	CU_ASSERT(rc == 0);
4706 	CU_ASSERT(g_io_done == true);
4707 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4708 	stub_complete_io(1);
4709 	CU_ASSERT(g_abort_done == true);
4710 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4711 
4712 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4713 
4714 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4715 
4716 	bdev->optimal_io_boundary = 16;
4717 	g_io_done = false;
4718 
4719 	/* Test that a ingle-vector command which is split is aborted correctly.
4720 	 * Differently from the above, the child abort request will be submitted
4721 	 * sequentially due to the capacity of spdk_bdev_io.
4722 	 */
4723 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
4724 	CU_ASSERT(rc == 0);
4725 	CU_ASSERT(g_io_done == false);
4726 
4727 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
4728 
4729 	g_abort_done = false;
4730 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4731 
4732 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4733 	CU_ASSERT(rc == 0);
4734 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
4735 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
4736 
4737 	stub_complete_io(1);
4738 	CU_ASSERT(g_io_done == true);
4739 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4740 	stub_complete_io(3);
4741 	CU_ASSERT(g_abort_done == true);
4742 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4743 
4744 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4745 
4746 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4747 
4748 	spdk_put_io_channel(io_ch);
4749 	spdk_bdev_close(desc);
4750 	free_bdev(bdev);
4751 	spdk_bdev_finish(bdev_fini_cb, NULL);
4752 	poll_threads();
4753 }
4754 
4755 static void
4756 bdev_unmap(void)
4757 {
4758 	struct spdk_bdev *bdev;
4759 	struct spdk_bdev_desc *desc = NULL;
4760 	struct spdk_io_channel *ioch;
4761 	struct spdk_bdev_channel *bdev_ch;
4762 	struct ut_expected_io *expected_io;
4763 	struct spdk_bdev_opts bdev_opts = {};
4764 	uint32_t i, num_outstanding;
4765 	uint64_t offset, num_blocks, max_unmap_blocks, num_children;
4766 	int rc;
4767 
4768 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4769 	bdev_opts.bdev_io_pool_size = 512;
4770 	bdev_opts.bdev_io_cache_size = 64;
4771 	rc = spdk_bdev_set_opts(&bdev_opts);
4772 	CU_ASSERT(rc == 0);
4773 
4774 	spdk_bdev_initialize(bdev_init_cb, NULL);
4775 	bdev = allocate_bdev("bdev");
4776 
4777 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4778 	CU_ASSERT_EQUAL(rc, 0);
4779 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4780 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4781 	ioch = spdk_bdev_get_io_channel(desc);
4782 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4783 	bdev_ch = spdk_io_channel_get_ctx(ioch);
4784 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4785 
4786 	fn_table.submit_request = stub_submit_request;
4787 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4788 
4789 	/* Case 1: First test the request won't be split */
4790 	num_blocks = 32;
4791 
4792 	g_io_done = false;
4793 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 0, num_blocks, 0);
4794 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4795 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4796 	CU_ASSERT_EQUAL(rc, 0);
4797 	CU_ASSERT(g_io_done == false);
4798 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
4799 	stub_complete_io(1);
4800 	CU_ASSERT(g_io_done == true);
4801 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4802 
4803 	/* Case 2: Test the split with 2 children requests */
4804 	bdev->max_unmap = 8;
4805 	bdev->max_unmap_segments = 2;
4806 	max_unmap_blocks = bdev->max_unmap * bdev->max_unmap_segments;
4807 	num_blocks = max_unmap_blocks * 2;
4808 	offset = 0;
4809 
4810 	g_io_done = false;
4811 	for (i = 0; i < 2; i++) {
4812 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
4813 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4814 		offset += max_unmap_blocks;
4815 	}
4816 
4817 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4818 	CU_ASSERT_EQUAL(rc, 0);
4819 	CU_ASSERT(g_io_done == false);
4820 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
4821 	stub_complete_io(2);
4822 	CU_ASSERT(g_io_done == true);
4823 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4824 
4825 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
4826 	num_children = 15;
4827 	num_blocks = max_unmap_blocks * num_children;
4828 	g_io_done = false;
4829 	offset = 0;
4830 	for (i = 0; i < num_children; i++) {
4831 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
4832 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4833 		offset += max_unmap_blocks;
4834 	}
4835 
4836 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4837 	CU_ASSERT_EQUAL(rc, 0);
4838 	CU_ASSERT(g_io_done == false);
4839 
4840 	while (num_children > 0) {
4841 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
4842 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
4843 		stub_complete_io(num_outstanding);
4844 		num_children -= num_outstanding;
4845 	}
4846 	CU_ASSERT(g_io_done == true);
4847 
4848 	spdk_put_io_channel(ioch);
4849 	spdk_bdev_close(desc);
4850 	free_bdev(bdev);
4851 	spdk_bdev_finish(bdev_fini_cb, NULL);
4852 	poll_threads();
4853 }
4854 
4855 static void
4856 bdev_write_zeroes_split_test(void)
4857 {
4858 	struct spdk_bdev *bdev;
4859 	struct spdk_bdev_desc *desc = NULL;
4860 	struct spdk_io_channel *ioch;
4861 	struct spdk_bdev_channel *bdev_ch;
4862 	struct ut_expected_io *expected_io;
4863 	struct spdk_bdev_opts bdev_opts = {};
4864 	uint32_t i, num_outstanding;
4865 	uint64_t offset, num_blocks, max_write_zeroes_blocks, num_children;
4866 	int rc;
4867 
4868 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4869 	bdev_opts.bdev_io_pool_size = 512;
4870 	bdev_opts.bdev_io_cache_size = 64;
4871 	rc = spdk_bdev_set_opts(&bdev_opts);
4872 	CU_ASSERT(rc == 0);
4873 
4874 	spdk_bdev_initialize(bdev_init_cb, NULL);
4875 	bdev = allocate_bdev("bdev");
4876 
4877 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4878 	CU_ASSERT_EQUAL(rc, 0);
4879 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4880 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4881 	ioch = spdk_bdev_get_io_channel(desc);
4882 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4883 	bdev_ch = spdk_io_channel_get_ctx(ioch);
4884 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4885 
4886 	fn_table.submit_request = stub_submit_request;
4887 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4888 
4889 	/* Case 1: First test the request won't be split */
4890 	num_blocks = 32;
4891 
4892 	g_io_done = false;
4893 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
4894 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4895 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4896 	CU_ASSERT_EQUAL(rc, 0);
4897 	CU_ASSERT(g_io_done == false);
4898 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
4899 	stub_complete_io(1);
4900 	CU_ASSERT(g_io_done == true);
4901 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4902 
4903 	/* Case 2: Test the split with 2 children requests */
4904 	max_write_zeroes_blocks = 8;
4905 	bdev->max_write_zeroes = max_write_zeroes_blocks;
4906 	num_blocks = max_write_zeroes_blocks * 2;
4907 	offset = 0;
4908 
4909 	g_io_done = false;
4910 	for (i = 0; i < 2; i++) {
4911 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
4912 						   0);
4913 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4914 		offset += max_write_zeroes_blocks;
4915 	}
4916 
4917 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4918 	CU_ASSERT_EQUAL(rc, 0);
4919 	CU_ASSERT(g_io_done == false);
4920 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
4921 	stub_complete_io(2);
4922 	CU_ASSERT(g_io_done == true);
4923 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4924 
4925 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
4926 	num_children = 15;
4927 	num_blocks = max_write_zeroes_blocks * num_children;
4928 	g_io_done = false;
4929 	offset = 0;
4930 	for (i = 0; i < num_children; i++) {
4931 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
4932 						   0);
4933 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4934 		offset += max_write_zeroes_blocks;
4935 	}
4936 
4937 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4938 	CU_ASSERT_EQUAL(rc, 0);
4939 	CU_ASSERT(g_io_done == false);
4940 
4941 	while (num_children > 0) {
4942 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
4943 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
4944 		stub_complete_io(num_outstanding);
4945 		num_children -= num_outstanding;
4946 	}
4947 	CU_ASSERT(g_io_done == true);
4948 
4949 	spdk_put_io_channel(ioch);
4950 	spdk_bdev_close(desc);
4951 	free_bdev(bdev);
4952 	spdk_bdev_finish(bdev_fini_cb, NULL);
4953 	poll_threads();
4954 }
4955 
4956 static void
4957 bdev_set_options_test(void)
4958 {
4959 	struct spdk_bdev_opts bdev_opts = {};
4960 	int rc;
4961 
4962 	/* Case1: Do not set opts_size */
4963 	rc = spdk_bdev_set_opts(&bdev_opts);
4964 	CU_ASSERT(rc == -1);
4965 
4966 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4967 	bdev_opts.bdev_io_pool_size = 4;
4968 	bdev_opts.bdev_io_cache_size = 2;
4969 	bdev_opts.small_buf_pool_size = 4;
4970 
4971 	/* Case 2: Do not set valid small_buf_pool_size and large_buf_pool_size */
4972 	rc = spdk_bdev_set_opts(&bdev_opts);
4973 	CU_ASSERT(rc == -1);
4974 
4975 	/* Case 3: Do not set valid large_buf_pool_size */
4976 	bdev_opts.small_buf_pool_size = BUF_SMALL_POOL_SIZE;
4977 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE - 1;
4978 	rc = spdk_bdev_set_opts(&bdev_opts);
4979 	CU_ASSERT(rc == -1);
4980 
4981 	/* Case4: set valid large buf_pool_size */
4982 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE;
4983 	rc = spdk_bdev_set_opts(&bdev_opts);
4984 	CU_ASSERT(rc == 0);
4985 
4986 	/* Case5: Set different valid value for small and large buf pool */
4987 	bdev_opts.large_buf_pool_size = BUF_SMALL_POOL_SIZE + 3;
4988 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE + 3;
4989 	rc = spdk_bdev_set_opts(&bdev_opts);
4990 	CU_ASSERT(rc == 0);
4991 }
4992 
4993 static uint64_t
4994 get_ns_time(void)
4995 {
4996 	int rc;
4997 	struct timespec ts;
4998 
4999 	rc = clock_gettime(CLOCK_MONOTONIC, &ts);
5000 	CU_ASSERT(rc == 0);
5001 	return ts.tv_sec * 1000 * 1000 * 1000 + ts.tv_nsec;
5002 }
5003 
5004 static int
5005 rb_tree_get_height(struct spdk_bdev_name *bdev_name)
5006 {
5007 	int h1, h2;
5008 
5009 	if (bdev_name == NULL) {
5010 		return -1;
5011 	} else {
5012 		h1 = rb_tree_get_height(RB_LEFT(bdev_name, node));
5013 		h2 = rb_tree_get_height(RB_RIGHT(bdev_name, node));
5014 
5015 		return spdk_max(h1, h2) + 1;
5016 	}
5017 }
5018 
5019 static void
5020 bdev_multi_allocation(void)
5021 {
5022 	const int max_bdev_num = 1024 * 16;
5023 	char name[max_bdev_num][16];
5024 	char noexist_name[] = "invalid_bdev";
5025 	struct spdk_bdev *bdev[max_bdev_num];
5026 	int i, j;
5027 	uint64_t last_time;
5028 	int bdev_num;
5029 	int height;
5030 
5031 	for (j = 0; j < max_bdev_num; j++) {
5032 		snprintf(name[j], sizeof(name[j]), "bdev%d", j);
5033 	}
5034 
5035 	for (i = 0; i < 16; i++) {
5036 		last_time = get_ns_time();
5037 		bdev_num = 1024 * (i + 1);
5038 		for (j = 0; j < bdev_num; j++) {
5039 			bdev[j] = allocate_bdev(name[j]);
5040 			height = rb_tree_get_height(&bdev[j]->internal.bdev_name);
5041 			CU_ASSERT(height <= (int)(spdk_u32log2(2 * j + 2)));
5042 		}
5043 		SPDK_NOTICELOG("alloc bdev num %d takes %" PRIu64 " ms\n", bdev_num,
5044 			       (get_ns_time() - last_time) / 1000 / 1000);
5045 		for (j = 0; j < bdev_num; j++) {
5046 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) != NULL);
5047 		}
5048 		CU_ASSERT(spdk_bdev_get_by_name(noexist_name) == NULL);
5049 
5050 		for (j = 0; j < bdev_num; j++) {
5051 			free_bdev(bdev[j]);
5052 		}
5053 		for (j = 0; j < bdev_num; j++) {
5054 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) == NULL);
5055 		}
5056 	}
5057 }
5058 
5059 static struct spdk_memory_domain *g_bdev_memory_domain = (struct spdk_memory_domain *) 0xf00df00d;
5060 
5061 static int
5062 test_bdev_get_supported_dma_device_types_op(void *ctx, struct spdk_memory_domain **domains,
5063 		int array_size)
5064 {
5065 	if (array_size > 0 && domains) {
5066 		domains[0] = g_bdev_memory_domain;
5067 	}
5068 
5069 	return 1;
5070 }
5071 
5072 static void
5073 bdev_get_memory_domains(void)
5074 {
5075 	struct spdk_bdev_fn_table fn_table = {
5076 		.get_memory_domains = test_bdev_get_supported_dma_device_types_op
5077 	};
5078 	struct spdk_bdev bdev = { .fn_table = &fn_table };
5079 	struct spdk_memory_domain *domains[2] = {};
5080 	int rc;
5081 
5082 	/* bdev is NULL */
5083 	rc = spdk_bdev_get_memory_domains(NULL, domains, 2);
5084 	CU_ASSERT(rc == -EINVAL);
5085 
5086 	/* domains is NULL */
5087 	rc = spdk_bdev_get_memory_domains(&bdev, NULL, 2);
5088 	CU_ASSERT(rc == 1);
5089 
5090 	/* array size is 0 */
5091 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 0);
5092 	CU_ASSERT(rc == 1);
5093 
5094 	/* get_supported_dma_device_types op is set */
5095 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5096 	CU_ASSERT(rc == 1);
5097 	CU_ASSERT(domains[0] == g_bdev_memory_domain);
5098 
5099 	/* get_supported_dma_device_types op is not set */
5100 	fn_table.get_memory_domains = NULL;
5101 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5102 	CU_ASSERT(rc == 0);
5103 }
5104 
5105 static void
5106 bdev_writev_readv_ext(void)
5107 {
5108 	struct spdk_bdev *bdev;
5109 	struct spdk_bdev_desc *desc = NULL;
5110 	struct spdk_io_channel *io_ch;
5111 	char io_buf[512];
5112 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5113 	struct ut_expected_io *expected_io;
5114 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5115 		.metadata = (void *)0xFF000000,
5116 		.size = sizeof(ext_io_opts)
5117 	};
5118 	int rc;
5119 
5120 	spdk_bdev_initialize(bdev_init_cb, NULL);
5121 
5122 	bdev = allocate_bdev("bdev0");
5123 	bdev->md_interleave = false;
5124 	bdev->md_len = 8;
5125 
5126 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5127 	CU_ASSERT(rc == 0);
5128 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5129 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5130 	io_ch = spdk_bdev_get_io_channel(desc);
5131 	CU_ASSERT(io_ch != NULL);
5132 
5133 	/* Test 1, Simple test */
5134 	g_io_done = false;
5135 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5136 	expected_io->md_buf = ext_io_opts.metadata;
5137 	expected_io->ext_io_opts = &ext_io_opts;
5138 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5139 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5140 
5141 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5142 
5143 	CU_ASSERT(rc == 0);
5144 	CU_ASSERT(g_io_done == false);
5145 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5146 	stub_complete_io(1);
5147 	CU_ASSERT(g_io_done == true);
5148 
5149 	g_io_done = false;
5150 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5151 	expected_io->md_buf = ext_io_opts.metadata;
5152 	expected_io->ext_io_opts = &ext_io_opts;
5153 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5154 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5155 
5156 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5157 
5158 	CU_ASSERT(rc == 0);
5159 	CU_ASSERT(g_io_done == false);
5160 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5161 	stub_complete_io(1);
5162 	CU_ASSERT(g_io_done == true);
5163 
5164 	/* Test 2, invalid ext_opts size */
5165 	ext_io_opts.size = 0;
5166 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5167 	CU_ASSERT(rc != 0);
5168 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5169 	CU_ASSERT(rc != 0);
5170 
5171 	ext_io_opts.size = sizeof(ext_io_opts) * 2;
5172 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5173 	CU_ASSERT(rc != 0);
5174 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5175 	CU_ASSERT(rc != 0);
5176 
5177 	ext_io_opts.size = offsetof(struct spdk_bdev_ext_io_opts, metadata) +
5178 			   sizeof(ext_io_opts.metadata) - 1;
5179 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5180 	CU_ASSERT(rc != 0);
5181 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5182 	CU_ASSERT(rc != 0);
5183 
5184 	/* Test 3, Check that IO request with ext_opts and metadata is split correctly
5185 	 * Offset 14, length 8, payload 0xF000
5186 	 *  Child - Offset 14, length 2, payload 0xF000
5187 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5188 	 */
5189 	bdev->optimal_io_boundary = 16;
5190 	bdev->split_on_optimal_io_boundary = true;
5191 	bdev->md_interleave = false;
5192 	bdev->md_len = 8;
5193 
5194 	iov.iov_base = (void *)0xF000;
5195 	iov.iov_len = 4096;
5196 	memset(&ext_io_opts, 0, sizeof(ext_io_opts));
5197 	ext_io_opts.metadata = (void *)0xFF000000;
5198 	ext_io_opts.size = sizeof(ext_io_opts);
5199 	g_io_done = false;
5200 
5201 	/* read */
5202 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
5203 	expected_io->md_buf = ext_io_opts.metadata;
5204 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5205 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5206 
5207 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
5208 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5209 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5210 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5211 
5212 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5213 	CU_ASSERT(rc == 0);
5214 	CU_ASSERT(g_io_done == false);
5215 
5216 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5217 	stub_complete_io(2);
5218 	CU_ASSERT(g_io_done == true);
5219 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5220 
5221 	/* write */
5222 	g_io_done = false;
5223 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
5224 	expected_io->md_buf = ext_io_opts.metadata;
5225 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5226 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5227 
5228 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 6, 1);
5229 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5230 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5231 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5232 
5233 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5234 	CU_ASSERT(rc == 0);
5235 	CU_ASSERT(g_io_done == false);
5236 
5237 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5238 	stub_complete_io(2);
5239 	CU_ASSERT(g_io_done == true);
5240 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5241 
5242 	/* Test 4, Verify data pull/push
5243 	 * bdev doens't support memory domains, so buffers from bdev memory pool will be used */
5244 	ext_io_opts.memory_domain = (struct spdk_memory_domain *)0xdeadbeef;
5245 
5246 	g_io_done = false;
5247 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5248 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5249 	expected_io->ext_io_opts = &ext_io_opts;
5250 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5251 
5252 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5253 
5254 	CU_ASSERT(rc == 0);
5255 	CU_ASSERT(g_io_done == false);
5256 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5257 	stub_complete_io(1);
5258 	CU_ASSERT(g_memory_domain_push_data_called == true);
5259 	CU_ASSERT(g_io_done == true);
5260 
5261 	g_io_done = false;
5262 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5263 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5264 	expected_io->ext_io_opts = &ext_io_opts;
5265 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5266 
5267 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5268 
5269 	CU_ASSERT(rc == 0);
5270 	CU_ASSERT(g_memory_domain_pull_data_called == true);
5271 	CU_ASSERT(g_io_done == false);
5272 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5273 	stub_complete_io(1);
5274 	CU_ASSERT(g_io_done == true);
5275 
5276 	spdk_put_io_channel(io_ch);
5277 	spdk_bdev_close(desc);
5278 	free_bdev(bdev);
5279 	spdk_bdev_finish(bdev_fini_cb, NULL);
5280 	poll_threads();
5281 }
5282 
5283 static void
5284 bdev_register_uuid_alias(void)
5285 {
5286 	struct spdk_bdev *bdev, *second;
5287 	char uuid[SPDK_UUID_STRING_LEN];
5288 	int rc;
5289 
5290 	spdk_bdev_initialize(bdev_init_cb, NULL);
5291 	bdev = allocate_bdev("bdev0");
5292 
5293 	/* Make sure an UUID was generated  */
5294 	CU_ASSERT_FALSE(spdk_mem_all_zero(&bdev->uuid, sizeof(bdev->uuid)));
5295 
5296 	/* Check that an UUID alias was registered */
5297 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5298 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5299 
5300 	/* Unregister the bdev */
5301 	spdk_bdev_unregister(bdev, NULL, NULL);
5302 	poll_threads();
5303 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5304 
5305 	/* Check the same, but this time register the bdev with non-zero UUID */
5306 	rc = spdk_bdev_register(bdev);
5307 	CU_ASSERT_EQUAL(rc, 0);
5308 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5309 
5310 	/* Unregister the bdev */
5311 	spdk_bdev_unregister(bdev, NULL, NULL);
5312 	poll_threads();
5313 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5314 
5315 	/* Regiser the bdev using UUID as the name */
5316 	bdev->name = uuid;
5317 	rc = spdk_bdev_register(bdev);
5318 	CU_ASSERT_EQUAL(rc, 0);
5319 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5320 
5321 	/* Unregister the bdev */
5322 	spdk_bdev_unregister(bdev, NULL, NULL);
5323 	poll_threads();
5324 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5325 
5326 	/* Check that it's not possible to register two bdevs with the same UUIDs */
5327 	bdev->name = "bdev0";
5328 	second = allocate_bdev("bdev1");
5329 	spdk_uuid_copy(&bdev->uuid, &second->uuid);
5330 	rc = spdk_bdev_register(bdev);
5331 	CU_ASSERT_EQUAL(rc, -EEXIST);
5332 
5333 	/* Regenerate the UUID and re-check */
5334 	spdk_uuid_generate(&bdev->uuid);
5335 	rc = spdk_bdev_register(bdev);
5336 	CU_ASSERT_EQUAL(rc, 0);
5337 
5338 	/* And check that both bdevs can be retrieved through their UUIDs */
5339 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5340 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5341 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &second->uuid);
5342 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), second);
5343 
5344 	free_bdev(second);
5345 	free_bdev(bdev);
5346 	spdk_bdev_finish(bdev_fini_cb, NULL);
5347 	poll_threads();
5348 }
5349 
5350 static void
5351 bdev_unregister_by_name(void)
5352 {
5353 	struct spdk_bdev *bdev;
5354 	int rc;
5355 
5356 	bdev = allocate_bdev("bdev");
5357 
5358 	g_event_type1 = 0xFF;
5359 	g_unregister_arg = NULL;
5360 	g_unregister_rc = -1;
5361 
5362 	rc = spdk_bdev_unregister_by_name("bdev1", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5363 	CU_ASSERT(rc == -ENODEV);
5364 
5365 	rc = spdk_bdev_unregister_by_name("bdev", &vbdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5366 	CU_ASSERT(rc == -ENODEV);
5367 
5368 	rc = spdk_bdev_unregister_by_name("bdev", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5369 	CU_ASSERT(rc == 0);
5370 
5371 	/* Check that unregister callback is delayed */
5372 	CU_ASSERT(g_unregister_arg == NULL);
5373 	CU_ASSERT(g_unregister_rc == -1);
5374 
5375 	poll_threads();
5376 
5377 	/* Event callback shall not be issued because device was closed */
5378 	CU_ASSERT(g_event_type1 == 0xFF);
5379 	/* Unregister callback is issued */
5380 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
5381 	CU_ASSERT(g_unregister_rc == 0);
5382 
5383 	free_bdev(bdev);
5384 }
5385 
5386 static int
5387 count_bdevs(void *ctx, struct spdk_bdev *bdev)
5388 {
5389 	int *count = ctx;
5390 
5391 	(*count)++;
5392 
5393 	return 0;
5394 }
5395 
5396 static void
5397 for_each_bdev_test(void)
5398 {
5399 	struct spdk_bdev *bdev[8];
5400 	int rc, count;
5401 
5402 	bdev[0] = allocate_bdev("bdev0");
5403 
5404 	bdev[1] = allocate_bdev("bdev1");
5405 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
5406 	CU_ASSERT(rc == 0);
5407 
5408 	bdev[2] = allocate_bdev("bdev2");
5409 
5410 	bdev[3] = allocate_bdev("bdev3");
5411 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
5412 	CU_ASSERT(rc == 0);
5413 
5414 	bdev[4] = allocate_bdev("bdev4");
5415 
5416 	bdev[5] = allocate_bdev("bdev5");
5417 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
5418 	CU_ASSERT(rc == 0);
5419 
5420 	bdev[6] = allocate_bdev("bdev6");
5421 
5422 	bdev[7] = allocate_bdev("bdev7");
5423 
5424 	count = 0;
5425 	rc = spdk_for_each_bdev(&count, count_bdevs);
5426 	CU_ASSERT(rc == 0);
5427 	CU_ASSERT(count == 8);
5428 
5429 	count = 0;
5430 	rc = spdk_for_each_bdev_leaf(&count, count_bdevs);
5431 	CU_ASSERT(rc == 0);
5432 	CU_ASSERT(count == 5);
5433 
5434 	free_bdev(bdev[0]);
5435 	free_bdev(bdev[1]);
5436 	free_bdev(bdev[2]);
5437 	free_bdev(bdev[3]);
5438 	free_bdev(bdev[4]);
5439 	free_bdev(bdev[5]);
5440 	free_bdev(bdev[6]);
5441 	free_bdev(bdev[7]);
5442 }
5443 
5444 int
5445 main(int argc, char **argv)
5446 {
5447 	CU_pSuite		suite = NULL;
5448 	unsigned int		num_failures;
5449 
5450 	CU_set_error_action(CUEA_ABORT);
5451 	CU_initialize_registry();
5452 
5453 	suite = CU_add_suite("bdev", null_init, null_clean);
5454 
5455 	CU_ADD_TEST(suite, bytes_to_blocks_test);
5456 	CU_ADD_TEST(suite, num_blocks_test);
5457 	CU_ADD_TEST(suite, io_valid_test);
5458 	CU_ADD_TEST(suite, open_write_test);
5459 	CU_ADD_TEST(suite, claim_test);
5460 	CU_ADD_TEST(suite, alias_add_del_test);
5461 	CU_ADD_TEST(suite, get_device_stat_test);
5462 	CU_ADD_TEST(suite, bdev_io_types_test);
5463 	CU_ADD_TEST(suite, bdev_io_wait_test);
5464 	CU_ADD_TEST(suite, bdev_io_spans_split_test);
5465 	CU_ADD_TEST(suite, bdev_io_boundary_split_test);
5466 	CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test);
5467 	CU_ADD_TEST(suite, bdev_io_mix_split_test);
5468 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
5469 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
5470 	CU_ADD_TEST(suite, bdev_io_alignment);
5471 	CU_ADD_TEST(suite, bdev_histograms);
5472 	CU_ADD_TEST(suite, bdev_write_zeroes);
5473 	CU_ADD_TEST(suite, bdev_compare_and_write);
5474 	CU_ADD_TEST(suite, bdev_compare);
5475 	CU_ADD_TEST(suite, bdev_zcopy_write);
5476 	CU_ADD_TEST(suite, bdev_zcopy_read);
5477 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
5478 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
5479 	CU_ADD_TEST(suite, bdev_open_ext);
5480 	CU_ADD_TEST(suite, bdev_open_ext_unregister);
5481 	CU_ADD_TEST(suite, bdev_set_io_timeout);
5482 	CU_ADD_TEST(suite, bdev_set_qd_sampling);
5483 	CU_ADD_TEST(suite, lba_range_overlap);
5484 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
5485 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
5486 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
5487 	CU_ADD_TEST(suite, bdev_io_abort);
5488 	CU_ADD_TEST(suite, bdev_unmap);
5489 	CU_ADD_TEST(suite, bdev_write_zeroes_split_test);
5490 	CU_ADD_TEST(suite, bdev_set_options_test);
5491 	CU_ADD_TEST(suite, bdev_multi_allocation);
5492 	CU_ADD_TEST(suite, bdev_get_memory_domains);
5493 	CU_ADD_TEST(suite, bdev_writev_readv_ext);
5494 	CU_ADD_TEST(suite, bdev_register_uuid_alias);
5495 	CU_ADD_TEST(suite, bdev_unregister_by_name);
5496 	CU_ADD_TEST(suite, for_each_bdev_test);
5497 
5498 	allocate_cores(1);
5499 	allocate_threads(1);
5500 	set_thread(0);
5501 
5502 	CU_basic_set_mode(CU_BRM_VERBOSE);
5503 	CU_basic_run_tests();
5504 	num_failures = CU_get_number_of_failures();
5505 	CU_cleanup_registry();
5506 
5507 	free_threads();
5508 	free_cores();
5509 
5510 	return num_failures;
5511 }
5512