xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision 42d1bd28396630ca9cfb81bf7934fb8872df47f0)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2017 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk_internal/cunit.h"
8 
9 #include "common/lib/ut_multithread.c"
10 #include "unit/lib/json_mock.c"
11 
12 #include "spdk/config.h"
13 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
14 #undef SPDK_CONFIG_VTUNE
15 
16 #include "bdev/bdev.c"
17 
18 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
19 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
20 DEFINE_STUB(spdk_memory_domain_get_dma_device_id, const char *, (struct spdk_memory_domain *domain),
21 	    "test_domain");
22 DEFINE_STUB(spdk_memory_domain_get_dma_device_type, enum spdk_dma_device_type,
23 	    (struct spdk_memory_domain *domain), 0);
24 DEFINE_STUB_V(spdk_accel_sequence_finish,
25 	      (struct spdk_accel_sequence *seq, spdk_accel_completion_cb cb_fn, void *cb_arg));
26 DEFINE_STUB_V(spdk_accel_sequence_abort, (struct spdk_accel_sequence *seq));
27 DEFINE_STUB_V(spdk_accel_sequence_reverse, (struct spdk_accel_sequence *seq));
28 DEFINE_STUB(spdk_accel_append_copy, int,
29 	    (struct spdk_accel_sequence **seq, struct spdk_io_channel *ch, struct iovec *dst_iovs,
30 	     uint32_t dst_iovcnt, struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
31 	     struct iovec *src_iovs, uint32_t src_iovcnt, struct spdk_memory_domain *src_domain,
32 	     void *src_domain_ctx, spdk_accel_step_cb cb_fn, void *cb_arg), 0);
33 DEFINE_STUB(spdk_accel_get_memory_domain, struct spdk_memory_domain *, (void), NULL);
34 
35 static bool g_memory_domain_pull_data_called;
36 static bool g_memory_domain_push_data_called;
37 static int g_accel_io_device;
38 
39 DEFINE_RETURN_MOCK(spdk_memory_domain_pull_data, int);
40 int
41 spdk_memory_domain_pull_data(struct spdk_memory_domain *src_domain, void *src_domain_ctx,
42 			     struct iovec *src_iov, uint32_t src_iov_cnt, struct iovec *dst_iov, uint32_t dst_iov_cnt,
43 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
44 {
45 	g_memory_domain_pull_data_called = true;
46 	HANDLE_RETURN_MOCK(spdk_memory_domain_pull_data);
47 	cpl_cb(cpl_cb_arg, 0);
48 	return 0;
49 }
50 
51 DEFINE_RETURN_MOCK(spdk_memory_domain_push_data, int);
52 int
53 spdk_memory_domain_push_data(struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
54 			     struct iovec *dst_iov, uint32_t dst_iovcnt, struct iovec *src_iov, uint32_t src_iovcnt,
55 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
56 {
57 	g_memory_domain_push_data_called = true;
58 	HANDLE_RETURN_MOCK(spdk_memory_domain_push_data);
59 	cpl_cb(cpl_cb_arg, 0);
60 	return 0;
61 }
62 
63 struct spdk_io_channel *
64 spdk_accel_get_io_channel(void)
65 {
66 	return spdk_get_io_channel(&g_accel_io_device);
67 }
68 
69 int g_status;
70 int g_count;
71 enum spdk_bdev_event_type g_event_type1;
72 enum spdk_bdev_event_type g_event_type2;
73 enum spdk_bdev_event_type g_event_type3;
74 enum spdk_bdev_event_type g_event_type4;
75 struct spdk_histogram_data *g_histogram;
76 void *g_unregister_arg;
77 int g_unregister_rc;
78 
79 void
80 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
81 			 int *sc, int *sk, int *asc, int *ascq)
82 {
83 }
84 
85 static int
86 ut_accel_ch_create_cb(void *io_device, void *ctx)
87 {
88 	return 0;
89 }
90 
91 static void
92 ut_accel_ch_destroy_cb(void *io_device, void *ctx)
93 {
94 }
95 
96 static int
97 ut_bdev_setup(void)
98 {
99 	spdk_io_device_register(&g_accel_io_device, ut_accel_ch_create_cb,
100 				ut_accel_ch_destroy_cb, 0, NULL);
101 	return 0;
102 }
103 
104 static int
105 ut_bdev_teardown(void)
106 {
107 	spdk_io_device_unregister(&g_accel_io_device, NULL);
108 
109 	return 0;
110 }
111 
112 static int
113 stub_destruct(void *ctx)
114 {
115 	return 0;
116 }
117 
118 struct ut_expected_io {
119 	uint8_t				type;
120 	uint64_t			offset;
121 	uint64_t			src_offset;
122 	uint64_t			length;
123 	int				iovcnt;
124 	struct iovec			iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
125 	void				*md_buf;
126 	TAILQ_ENTRY(ut_expected_io)	link;
127 };
128 
129 struct bdev_ut_io {
130 	TAILQ_ENTRY(bdev_ut_io)		link;
131 };
132 
133 struct bdev_ut_channel {
134 	TAILQ_HEAD(, bdev_ut_io)	outstanding_io;
135 	uint32_t			outstanding_io_count;
136 	TAILQ_HEAD(, ut_expected_io)	expected_io;
137 };
138 
139 static bool g_io_done;
140 static struct spdk_bdev_io *g_bdev_io;
141 static enum spdk_bdev_io_status g_io_status;
142 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
143 static uint32_t g_bdev_ut_io_device;
144 static struct bdev_ut_channel *g_bdev_ut_channel;
145 static void *g_compare_read_buf;
146 static uint32_t g_compare_read_buf_len;
147 static void *g_compare_write_buf;
148 static uint32_t g_compare_write_buf_len;
149 static void *g_compare_md_buf;
150 static bool g_abort_done;
151 static enum spdk_bdev_io_status g_abort_status;
152 static void *g_zcopy_read_buf;
153 static uint32_t g_zcopy_read_buf_len;
154 static void *g_zcopy_write_buf;
155 static uint32_t g_zcopy_write_buf_len;
156 static struct spdk_bdev_io *g_zcopy_bdev_io;
157 static uint64_t g_seek_data_offset;
158 static uint64_t g_seek_hole_offset;
159 static uint64_t g_seek_offset;
160 
161 static struct ut_expected_io *
162 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
163 {
164 	struct ut_expected_io *expected_io;
165 
166 	expected_io = calloc(1, sizeof(*expected_io));
167 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
168 
169 	expected_io->type = type;
170 	expected_io->offset = offset;
171 	expected_io->length = length;
172 	expected_io->iovcnt = iovcnt;
173 
174 	return expected_io;
175 }
176 
177 static struct ut_expected_io *
178 ut_alloc_expected_copy_io(uint8_t type, uint64_t offset, uint64_t src_offset, uint64_t length)
179 {
180 	struct ut_expected_io *expected_io;
181 
182 	expected_io = calloc(1, sizeof(*expected_io));
183 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
184 
185 	expected_io->type = type;
186 	expected_io->offset = offset;
187 	expected_io->src_offset = src_offset;
188 	expected_io->length = length;
189 
190 	return expected_io;
191 }
192 
193 static void
194 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
195 {
196 	expected_io->iov[pos].iov_base = base;
197 	expected_io->iov[pos].iov_len = len;
198 }
199 
200 static void
201 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
202 {
203 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
204 	struct ut_expected_io *expected_io;
205 	struct iovec *iov, *expected_iov;
206 	struct spdk_bdev_io *bio_to_abort;
207 	struct bdev_ut_io *bio;
208 	int i;
209 
210 	g_bdev_io = bdev_io;
211 
212 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
213 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
214 
215 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
216 		CU_ASSERT(g_compare_read_buf_len == len);
217 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
218 		if (bdev_io->bdev->md_len && bdev_io->u.bdev.md_buf && g_compare_md_buf) {
219 			memcpy(bdev_io->u.bdev.md_buf, g_compare_md_buf,
220 			       bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks);
221 		}
222 	}
223 
224 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
225 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
226 
227 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
228 		CU_ASSERT(g_compare_write_buf_len == len);
229 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
230 	}
231 
232 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
233 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
234 
235 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
236 		CU_ASSERT(g_compare_read_buf_len == len);
237 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
238 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
239 		}
240 		if (bdev_io->u.bdev.md_buf &&
241 		    memcmp(bdev_io->u.bdev.md_buf, g_compare_md_buf,
242 			   bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks)) {
243 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
244 		}
245 	}
246 
247 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
248 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
249 			TAILQ_FOREACH(bio, &ch->outstanding_io, link) {
250 				bio_to_abort = spdk_bdev_io_from_ctx(bio);
251 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
252 					TAILQ_REMOVE(&ch->outstanding_io, bio, link);
253 					ch->outstanding_io_count--;
254 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
255 					break;
256 				}
257 			}
258 		}
259 	}
260 
261 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) {
262 		if (bdev_io->u.bdev.zcopy.start) {
263 			g_zcopy_bdev_io = bdev_io;
264 			if (bdev_io->u.bdev.zcopy.populate) {
265 				/* Start of a read */
266 				CU_ASSERT(g_zcopy_read_buf != NULL);
267 				CU_ASSERT(g_zcopy_read_buf_len > 0);
268 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_read_buf;
269 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_read_buf_len;
270 				bdev_io->u.bdev.iovcnt = 1;
271 			} else {
272 				/* Start of a write */
273 				CU_ASSERT(g_zcopy_write_buf != NULL);
274 				CU_ASSERT(g_zcopy_write_buf_len > 0);
275 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_write_buf;
276 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_write_buf_len;
277 				bdev_io->u.bdev.iovcnt = 1;
278 			}
279 		} else {
280 			if (bdev_io->u.bdev.zcopy.commit) {
281 				/* End of write */
282 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_write_buf);
283 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_write_buf_len);
284 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
285 				g_zcopy_write_buf = NULL;
286 				g_zcopy_write_buf_len = 0;
287 			} else {
288 				/* End of read */
289 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_read_buf);
290 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_read_buf_len);
291 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
292 				g_zcopy_read_buf = NULL;
293 				g_zcopy_read_buf_len = 0;
294 			}
295 		}
296 	}
297 
298 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_DATA) {
299 		bdev_io->u.bdev.seek.offset = g_seek_data_offset;
300 	}
301 
302 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_HOLE) {
303 		bdev_io->u.bdev.seek.offset = g_seek_hole_offset;
304 	}
305 
306 	TAILQ_INSERT_TAIL(&ch->outstanding_io, (struct bdev_ut_io *)bdev_io->driver_ctx, link);
307 	ch->outstanding_io_count++;
308 
309 	expected_io = TAILQ_FIRST(&ch->expected_io);
310 	if (expected_io == NULL) {
311 		return;
312 	}
313 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
314 
315 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
316 		CU_ASSERT(bdev_io->type == expected_io->type);
317 	}
318 
319 	if (expected_io->md_buf != NULL) {
320 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
321 	}
322 
323 	if (expected_io->length == 0) {
324 		free(expected_io);
325 		return;
326 	}
327 
328 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
329 	CU_ASSERT(expected_io->length == bdev_io->u.bdev.num_blocks);
330 	if (expected_io->type == SPDK_BDEV_IO_TYPE_COPY) {
331 		CU_ASSERT(expected_io->src_offset == bdev_io->u.bdev.copy.src_offset_blocks);
332 	}
333 
334 	if (expected_io->iovcnt == 0) {
335 		free(expected_io);
336 		/* UNMAP, WRITE_ZEROES, FLUSH and COPY don't have iovs, so we can just return now. */
337 		return;
338 	}
339 
340 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
341 	for (i = 0; i < expected_io->iovcnt; i++) {
342 		expected_iov = &expected_io->iov[i];
343 		if (bdev_io->internal.f.has_bounce_buf == false) {
344 			iov = &bdev_io->u.bdev.iovs[i];
345 		} else {
346 			iov = bdev_io->internal.bounce_buf.orig_iovs;
347 		}
348 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
349 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
350 	}
351 
352 	free(expected_io);
353 }
354 
355 static void
356 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
357 			       struct spdk_bdev_io *bdev_io, bool success)
358 {
359 	CU_ASSERT(success == true);
360 
361 	stub_submit_request(_ch, bdev_io);
362 }
363 
364 static void
365 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
366 {
367 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
368 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
369 }
370 
371 static uint32_t
372 stub_complete_io(uint32_t num_to_complete)
373 {
374 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
375 	struct bdev_ut_io *bio;
376 	struct spdk_bdev_io *bdev_io;
377 	static enum spdk_bdev_io_status io_status;
378 	uint32_t num_completed = 0;
379 
380 	while (num_completed < num_to_complete) {
381 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
382 			break;
383 		}
384 		bio = TAILQ_FIRST(&ch->outstanding_io);
385 		TAILQ_REMOVE(&ch->outstanding_io, bio, link);
386 		bdev_io = spdk_bdev_io_from_ctx(bio);
387 		ch->outstanding_io_count--;
388 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
389 			    g_io_exp_status;
390 		spdk_bdev_io_complete(bdev_io, io_status);
391 		num_completed++;
392 	}
393 
394 	return num_completed;
395 }
396 
397 static struct spdk_io_channel *
398 bdev_ut_get_io_channel(void *ctx)
399 {
400 	return spdk_get_io_channel(&g_bdev_ut_io_device);
401 }
402 
403 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
404 	[SPDK_BDEV_IO_TYPE_READ]		= true,
405 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
406 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
407 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
408 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
409 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
410 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
411 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
412 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
413 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
414 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
415 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
416 	[SPDK_BDEV_IO_TYPE_SEEK_HOLE]		= true,
417 	[SPDK_BDEV_IO_TYPE_SEEK_DATA]		= true,
418 	[SPDK_BDEV_IO_TYPE_COPY]		= true,
419 };
420 
421 static void
422 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
423 {
424 	g_io_types_supported[io_type] = enable;
425 }
426 
427 static bool
428 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
429 {
430 	return g_io_types_supported[io_type];
431 }
432 
433 static struct spdk_bdev_fn_table fn_table = {
434 	.destruct = stub_destruct,
435 	.submit_request = stub_submit_request,
436 	.get_io_channel = bdev_ut_get_io_channel,
437 	.io_type_supported = stub_io_type_supported,
438 };
439 
440 static int
441 bdev_ut_create_ch(void *io_device, void *ctx_buf)
442 {
443 	struct bdev_ut_channel *ch = ctx_buf;
444 
445 	CU_ASSERT(g_bdev_ut_channel == NULL);
446 	g_bdev_ut_channel = ch;
447 
448 	TAILQ_INIT(&ch->outstanding_io);
449 	ch->outstanding_io_count = 0;
450 	TAILQ_INIT(&ch->expected_io);
451 	return 0;
452 }
453 
454 static void
455 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
456 {
457 	CU_ASSERT(g_bdev_ut_channel != NULL);
458 	g_bdev_ut_channel = NULL;
459 }
460 
461 struct spdk_bdev_module bdev_ut_if;
462 
463 static int
464 bdev_ut_module_init(void)
465 {
466 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
467 				sizeof(struct bdev_ut_channel), NULL);
468 	spdk_bdev_module_init_done(&bdev_ut_if);
469 	return 0;
470 }
471 
472 static void
473 bdev_ut_module_fini(void)
474 {
475 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
476 }
477 
478 struct spdk_bdev_module bdev_ut_if = {
479 	.name = "bdev_ut",
480 	.module_init = bdev_ut_module_init,
481 	.module_fini = bdev_ut_module_fini,
482 	.async_init = true,
483 };
484 
485 static void vbdev_ut_examine_config(struct spdk_bdev *bdev);
486 static void vbdev_ut_examine_disk(struct spdk_bdev *bdev);
487 
488 static int
489 vbdev_ut_module_init(void)
490 {
491 	return 0;
492 }
493 
494 static void
495 vbdev_ut_module_fini(void)
496 {
497 }
498 
499 static int
500 vbdev_ut_get_ctx_size(void)
501 {
502 	return sizeof(struct bdev_ut_io);
503 }
504 
505 struct spdk_bdev_module vbdev_ut_if = {
506 	.name = "vbdev_ut",
507 	.module_init = vbdev_ut_module_init,
508 	.module_fini = vbdev_ut_module_fini,
509 	.examine_config = vbdev_ut_examine_config,
510 	.examine_disk = vbdev_ut_examine_disk,
511 	.get_ctx_size = vbdev_ut_get_ctx_size,
512 };
513 
514 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
515 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
516 
517 struct ut_examine_ctx {
518 	void (*examine_config)(struct spdk_bdev *bdev);
519 	void (*examine_disk)(struct spdk_bdev *bdev);
520 	uint32_t examine_config_count;
521 	uint32_t examine_disk_count;
522 };
523 
524 static void
525 vbdev_ut_examine_config(struct spdk_bdev *bdev)
526 {
527 	struct ut_examine_ctx *ctx = bdev->ctxt;
528 
529 	if (ctx != NULL) {
530 		ctx->examine_config_count++;
531 		if (ctx->examine_config != NULL) {
532 			ctx->examine_config(bdev);
533 		}
534 	}
535 
536 	spdk_bdev_module_examine_done(&vbdev_ut_if);
537 }
538 
539 static void
540 vbdev_ut_examine_disk(struct spdk_bdev *bdev)
541 {
542 	struct ut_examine_ctx *ctx = bdev->ctxt;
543 
544 	if (ctx != NULL) {
545 		ctx->examine_disk_count++;
546 		if (ctx->examine_disk != NULL) {
547 			ctx->examine_disk(bdev);
548 		}
549 	}
550 
551 	spdk_bdev_module_examine_done(&vbdev_ut_if);
552 }
553 
554 static void
555 bdev_init_cb(void *arg, int rc)
556 {
557 	CU_ASSERT(rc == 0);
558 }
559 
560 static void
561 bdev_fini_cb(void *arg)
562 {
563 }
564 
565 static void
566 ut_init_bdev(struct spdk_bdev_opts *opts)
567 {
568 	int rc;
569 
570 	if (opts != NULL) {
571 		rc = spdk_bdev_set_opts(opts);
572 		CU_ASSERT(rc == 0);
573 	}
574 	rc = spdk_iobuf_initialize();
575 	CU_ASSERT(rc == 0);
576 	spdk_bdev_initialize(bdev_init_cb, NULL);
577 	poll_threads();
578 }
579 
580 static void
581 ut_fini_bdev(void)
582 {
583 	spdk_bdev_finish(bdev_fini_cb, NULL);
584 	spdk_iobuf_finish(bdev_fini_cb, NULL);
585 	poll_threads();
586 }
587 
588 static struct spdk_bdev *
589 allocate_bdev_ctx(char *name, void *ctx)
590 {
591 	struct spdk_bdev *bdev;
592 	int rc;
593 
594 	bdev = calloc(1, sizeof(*bdev));
595 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
596 
597 	bdev->ctxt = ctx;
598 	bdev->name = name;
599 	bdev->fn_table = &fn_table;
600 	bdev->module = &bdev_ut_if;
601 	bdev->blockcnt = 1024;
602 	bdev->blocklen = 512;
603 
604 	spdk_uuid_generate(&bdev->uuid);
605 
606 	rc = spdk_bdev_register(bdev);
607 	poll_threads();
608 	CU_ASSERT(rc == 0);
609 
610 	return bdev;
611 }
612 
613 static struct spdk_bdev *
614 allocate_bdev(char *name)
615 {
616 	return allocate_bdev_ctx(name, NULL);
617 }
618 
619 static struct spdk_bdev *
620 allocate_vbdev(char *name)
621 {
622 	struct spdk_bdev *bdev;
623 	int rc;
624 
625 	bdev = calloc(1, sizeof(*bdev));
626 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
627 
628 	bdev->name = name;
629 	bdev->fn_table = &fn_table;
630 	bdev->module = &vbdev_ut_if;
631 	bdev->blockcnt = 1024;
632 	bdev->blocklen = 512;
633 
634 	rc = spdk_bdev_register(bdev);
635 	poll_threads();
636 	CU_ASSERT(rc == 0);
637 
638 	return bdev;
639 }
640 
641 static void
642 free_bdev(struct spdk_bdev *bdev)
643 {
644 	spdk_bdev_unregister(bdev, NULL, NULL);
645 	poll_threads();
646 	memset(bdev, 0xFF, sizeof(*bdev));
647 	free(bdev);
648 }
649 
650 static void
651 free_vbdev(struct spdk_bdev *bdev)
652 {
653 	spdk_bdev_unregister(bdev, NULL, NULL);
654 	poll_threads();
655 	memset(bdev, 0xFF, sizeof(*bdev));
656 	free(bdev);
657 }
658 
659 static void
660 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
661 {
662 	const char *bdev_name;
663 
664 	CU_ASSERT(bdev != NULL);
665 	CU_ASSERT(rc == 0);
666 	bdev_name = spdk_bdev_get_name(bdev);
667 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
668 
669 	free(stat);
670 
671 	*(bool *)cb_arg = true;
672 }
673 
674 static void
675 bdev_unregister_cb(void *cb_arg, int rc)
676 {
677 	g_unregister_arg = cb_arg;
678 	g_unregister_rc = rc;
679 }
680 
681 static void
682 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
683 {
684 }
685 
686 static void
687 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
688 {
689 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
690 
691 	g_event_type1 = type;
692 	if (SPDK_BDEV_EVENT_REMOVE == type) {
693 		spdk_bdev_close(desc);
694 	}
695 }
696 
697 static void
698 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
699 {
700 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
701 
702 	g_event_type2 = type;
703 	if (SPDK_BDEV_EVENT_REMOVE == type) {
704 		spdk_bdev_close(desc);
705 	}
706 }
707 
708 static void
709 bdev_open_cb3(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
710 {
711 	g_event_type3 = type;
712 }
713 
714 static void
715 bdev_open_cb4(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
716 {
717 	g_event_type4 = type;
718 }
719 
720 static void
721 bdev_seek_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
722 {
723 	g_seek_offset = spdk_bdev_io_get_seek_offset(bdev_io);
724 	spdk_bdev_free_io(bdev_io);
725 }
726 
727 static void
728 get_device_stat_test(void)
729 {
730 	struct spdk_bdev *bdev;
731 	struct spdk_bdev_io_stat *stat;
732 	bool done;
733 
734 	bdev = allocate_bdev("bdev0");
735 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
736 	if (stat == NULL) {
737 		free_bdev(bdev);
738 		return;
739 	}
740 
741 	done = false;
742 	spdk_bdev_get_device_stat(bdev, stat, SPDK_BDEV_RESET_STAT_NONE, get_device_stat_cb, &done);
743 	while (!done) { poll_threads(); }
744 
745 	free_bdev(bdev);
746 }
747 
748 static void
749 open_write_test(void)
750 {
751 	struct spdk_bdev *bdev[9];
752 	struct spdk_bdev_desc *desc[9] = {};
753 	int rc;
754 
755 	ut_init_bdev(NULL);
756 
757 	/*
758 	 * Create a tree of bdevs to test various open w/ write cases.
759 	 *
760 	 * bdev0 through bdev3 are physical block devices, such as NVMe
761 	 * namespaces or Ceph block devices.
762 	 *
763 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
764 	 * caching or RAID use cases.
765 	 *
766 	 * bdev5 through bdev7 are all virtual bdevs with the same base
767 	 * bdev (except bdev7). This models partitioning or logical volume
768 	 * use cases.
769 	 *
770 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
771 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
772 	 * models caching, RAID, partitioning or logical volumes use cases.
773 	 *
774 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
775 	 * base bdevs are themselves virtual bdevs.
776 	 *
777 	 *                bdev8
778 	 *                  |
779 	 *            +----------+
780 	 *            |          |
781 	 *          bdev4      bdev5   bdev6   bdev7
782 	 *            |          |       |       |
783 	 *        +---+---+      +---+   +   +---+---+
784 	 *        |       |           \  |  /         \
785 	 *      bdev0   bdev1          bdev2         bdev3
786 	 */
787 
788 	bdev[0] = allocate_bdev("bdev0");
789 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
790 	CU_ASSERT(rc == 0);
791 
792 	bdev[1] = allocate_bdev("bdev1");
793 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
794 	CU_ASSERT(rc == 0);
795 
796 	bdev[2] = allocate_bdev("bdev2");
797 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
798 	CU_ASSERT(rc == 0);
799 
800 	bdev[3] = allocate_bdev("bdev3");
801 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
802 	CU_ASSERT(rc == 0);
803 
804 	bdev[4] = allocate_vbdev("bdev4");
805 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
806 	CU_ASSERT(rc == 0);
807 
808 	bdev[5] = allocate_vbdev("bdev5");
809 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
810 	CU_ASSERT(rc == 0);
811 
812 	bdev[6] = allocate_vbdev("bdev6");
813 
814 	bdev[7] = allocate_vbdev("bdev7");
815 
816 	bdev[8] = allocate_vbdev("bdev8");
817 
818 	/* Open bdev0 read-only.  This should succeed. */
819 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
820 	CU_ASSERT(rc == 0);
821 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
822 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
823 	spdk_bdev_close(desc[0]);
824 
825 	/*
826 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
827 	 * by a vbdev module.
828 	 */
829 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
830 	CU_ASSERT(rc == -EPERM);
831 
832 	/*
833 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
834 	 * by a vbdev module.
835 	 */
836 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
837 	CU_ASSERT(rc == -EPERM);
838 
839 	/* Open bdev4 read-only.  This should succeed. */
840 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
841 	CU_ASSERT(rc == 0);
842 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
843 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
844 	spdk_bdev_close(desc[4]);
845 
846 	/*
847 	 * Open bdev8 read/write.  This should succeed since it is a leaf
848 	 * bdev.
849 	 */
850 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
851 	CU_ASSERT(rc == 0);
852 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
853 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
854 	spdk_bdev_close(desc[8]);
855 
856 	/*
857 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
858 	 * by a vbdev module.
859 	 */
860 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
861 	CU_ASSERT(rc == -EPERM);
862 
863 	/* Open bdev4 read-only.  This should succeed. */
864 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
865 	CU_ASSERT(rc == 0);
866 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
867 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
868 	spdk_bdev_close(desc[5]);
869 
870 	free_vbdev(bdev[8]);
871 
872 	free_vbdev(bdev[5]);
873 	free_vbdev(bdev[6]);
874 	free_vbdev(bdev[7]);
875 
876 	free_vbdev(bdev[4]);
877 
878 	free_bdev(bdev[0]);
879 	free_bdev(bdev[1]);
880 	free_bdev(bdev[2]);
881 	free_bdev(bdev[3]);
882 
883 	ut_fini_bdev();
884 }
885 
886 static void
887 claim_test(void)
888 {
889 	struct spdk_bdev *bdev;
890 	struct spdk_bdev_desc *desc, *open_desc;
891 	int rc;
892 	uint32_t count;
893 
894 	ut_init_bdev(NULL);
895 
896 	/*
897 	 * A vbdev that uses a read-only bdev may need it to remain read-only.
898 	 * To do so, it opens the bdev read-only, then claims it without
899 	 * passing a spdk_bdev_desc.
900 	 */
901 	bdev = allocate_bdev("bdev0");
902 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
903 	CU_ASSERT(rc == 0);
904 	CU_ASSERT(desc->write == false);
905 
906 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
907 	CU_ASSERT(rc == 0);
908 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
909 	CU_ASSERT(bdev->internal.claim.v1.module == &bdev_ut_if);
910 
911 	/* There should be only one open descriptor and it should still be ro */
912 	count = 0;
913 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
914 		CU_ASSERT(open_desc == desc);
915 		CU_ASSERT(!open_desc->write);
916 		count++;
917 	}
918 	CU_ASSERT(count == 1);
919 
920 	/* A read-only bdev is upgraded to read-write if desc is passed. */
921 	spdk_bdev_module_release_bdev(bdev);
922 	rc = spdk_bdev_module_claim_bdev(bdev, desc, &bdev_ut_if);
923 	CU_ASSERT(rc == 0);
924 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
925 	CU_ASSERT(bdev->internal.claim.v1.module == &bdev_ut_if);
926 
927 	/* There should be only one open descriptor and it should be rw */
928 	count = 0;
929 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
930 		CU_ASSERT(open_desc == desc);
931 		CU_ASSERT(open_desc->write);
932 		count++;
933 	}
934 	CU_ASSERT(count == 1);
935 
936 	spdk_bdev_close(desc);
937 	free_bdev(bdev);
938 	ut_fini_bdev();
939 }
940 
941 static void
942 bytes_to_blocks_test(void)
943 {
944 	struct spdk_bdev bdev;
945 	uint64_t offset_blocks, num_blocks;
946 
947 	memset(&bdev, 0, sizeof(bdev));
948 
949 	bdev.blocklen = 512;
950 
951 	/* All parameters valid */
952 	offset_blocks = 0;
953 	num_blocks = 0;
954 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
955 	CU_ASSERT(offset_blocks == 1);
956 	CU_ASSERT(num_blocks == 2);
957 
958 	/* Offset not a block multiple */
959 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
960 
961 	/* Length not a block multiple */
962 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
963 
964 	/* In case blocklen not the power of two */
965 	bdev.blocklen = 100;
966 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
967 	CU_ASSERT(offset_blocks == 1);
968 	CU_ASSERT(num_blocks == 2);
969 
970 	/* Offset not a block multiple */
971 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
972 
973 	/* Length not a block multiple */
974 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
975 }
976 
977 static void
978 num_blocks_test(void)
979 {
980 	struct spdk_bdev *bdev;
981 	struct spdk_bdev_desc *desc = NULL;
982 	int rc;
983 
984 	ut_init_bdev(NULL);
985 	bdev = allocate_bdev("num_blocks");
986 
987 	spdk_bdev_notify_blockcnt_change(bdev, 50);
988 
989 	/* Growing block number */
990 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 70) == 0);
991 	/* Shrinking block number */
992 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 30) == 0);
993 
994 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc, &desc);
995 	CU_ASSERT(rc == 0);
996 	SPDK_CU_ASSERT_FATAL(desc != NULL);
997 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
998 
999 	/* Growing block number */
1000 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 80) == 0);
1001 	/* Shrinking block number */
1002 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 20) != 0);
1003 
1004 	g_event_type1 = 0xFF;
1005 	/* Growing block number */
1006 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 90) == 0);
1007 
1008 	poll_threads();
1009 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
1010 
1011 	g_event_type1 = 0xFF;
1012 	/* Growing block number and closing */
1013 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 100) == 0);
1014 
1015 	spdk_bdev_close(desc);
1016 	free_bdev(bdev);
1017 	ut_fini_bdev();
1018 
1019 	poll_threads();
1020 
1021 	/* Callback is not called for closed device */
1022 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
1023 }
1024 
1025 static void
1026 io_valid_test(void)
1027 {
1028 	struct spdk_bdev bdev;
1029 
1030 	memset(&bdev, 0, sizeof(bdev));
1031 
1032 	bdev.blocklen = 512;
1033 	spdk_spin_init(&bdev.internal.spinlock);
1034 
1035 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
1036 
1037 	/* All parameters valid */
1038 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
1039 
1040 	/* Last valid block */
1041 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
1042 
1043 	/* Offset past end of bdev */
1044 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
1045 
1046 	/* Offset + length past end of bdev */
1047 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
1048 
1049 	/* Offset near end of uint64_t range (2^64 - 1) */
1050 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
1051 
1052 	spdk_spin_destroy(&bdev.internal.spinlock);
1053 }
1054 
1055 static void
1056 alias_add_del_test(void)
1057 {
1058 	struct spdk_bdev *bdev[3];
1059 	int rc;
1060 
1061 	ut_init_bdev(NULL);
1062 
1063 	/* Creating and registering bdevs */
1064 	bdev[0] = allocate_bdev("bdev0");
1065 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
1066 
1067 	bdev[1] = allocate_bdev("bdev1");
1068 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
1069 
1070 	bdev[2] = allocate_bdev("bdev2");
1071 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
1072 
1073 	poll_threads();
1074 
1075 	/*
1076 	 * Trying adding an alias identical to name.
1077 	 * Alias is identical to name, so it can not be added to aliases list
1078 	 */
1079 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
1080 	CU_ASSERT(rc == -EEXIST);
1081 
1082 	/*
1083 	 * Trying to add empty alias,
1084 	 * this one should fail
1085 	 */
1086 	rc = spdk_bdev_alias_add(bdev[0], NULL);
1087 	CU_ASSERT(rc == -EINVAL);
1088 
1089 	/* Trying adding same alias to two different registered bdevs */
1090 
1091 	/* Alias is used first time, so this one should pass */
1092 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
1093 	CU_ASSERT(rc == 0);
1094 
1095 	/* Alias was added to another bdev, so this one should fail */
1096 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
1097 	CU_ASSERT(rc == -EEXIST);
1098 
1099 	/* Alias is used first time, so this one should pass */
1100 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
1101 	CU_ASSERT(rc == 0);
1102 
1103 	/* Trying removing an alias from registered bdevs */
1104 
1105 	/* Alias is not on a bdev aliases list, so this one should fail */
1106 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
1107 	CU_ASSERT(rc == -ENOENT);
1108 
1109 	/* Alias is present on a bdev aliases list, so this one should pass */
1110 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
1111 	CU_ASSERT(rc == 0);
1112 
1113 	/* Alias is present on a bdev aliases list, so this one should pass */
1114 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
1115 	CU_ASSERT(rc == 0);
1116 
1117 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
1118 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
1119 	CU_ASSERT(rc != 0);
1120 
1121 	/* Trying to del all alias from empty alias list */
1122 	spdk_bdev_alias_del_all(bdev[2]);
1123 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
1124 
1125 	/* Trying to del all alias from non-empty alias list */
1126 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
1127 	CU_ASSERT(rc == 0);
1128 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
1129 	CU_ASSERT(rc == 0);
1130 	spdk_bdev_alias_del_all(bdev[2]);
1131 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
1132 
1133 	/* Unregister and free bdevs */
1134 	spdk_bdev_unregister(bdev[0], NULL, NULL);
1135 	spdk_bdev_unregister(bdev[1], NULL, NULL);
1136 	spdk_bdev_unregister(bdev[2], NULL, NULL);
1137 
1138 	poll_threads();
1139 
1140 	free(bdev[0]);
1141 	free(bdev[1]);
1142 	free(bdev[2]);
1143 
1144 	ut_fini_bdev();
1145 }
1146 
1147 static void
1148 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
1149 {
1150 	g_io_done = true;
1151 	g_io_status = bdev_io->internal.status;
1152 	if ((bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) &&
1153 	    (bdev_io->u.bdev.zcopy.start)) {
1154 		g_zcopy_bdev_io = bdev_io;
1155 	} else {
1156 		spdk_bdev_free_io(bdev_io);
1157 		g_zcopy_bdev_io = NULL;
1158 	}
1159 }
1160 
1161 struct bdev_ut_io_wait_entry {
1162 	struct spdk_bdev_io_wait_entry	entry;
1163 	struct spdk_io_channel		*io_ch;
1164 	struct spdk_bdev_desc		*desc;
1165 	bool				submitted;
1166 };
1167 
1168 static void
1169 io_wait_cb(void *arg)
1170 {
1171 	struct bdev_ut_io_wait_entry *entry = arg;
1172 	int rc;
1173 
1174 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
1175 	CU_ASSERT(rc == 0);
1176 	entry->submitted = true;
1177 }
1178 
1179 static void
1180 bdev_io_types_test(void)
1181 {
1182 	struct spdk_bdev *bdev;
1183 	struct spdk_bdev_desc *desc = NULL;
1184 	struct spdk_io_channel *io_ch;
1185 	struct spdk_bdev_opts bdev_opts = {};
1186 	int rc;
1187 
1188 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1189 	bdev_opts.bdev_io_pool_size = 4;
1190 	bdev_opts.bdev_io_cache_size = 2;
1191 	ut_init_bdev(&bdev_opts);
1192 
1193 	bdev = allocate_bdev("bdev0");
1194 
1195 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1196 	CU_ASSERT(rc == 0);
1197 	poll_threads();
1198 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1199 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1200 	io_ch = spdk_bdev_get_io_channel(desc);
1201 	CU_ASSERT(io_ch != NULL);
1202 
1203 	/* WRITE and WRITE ZEROES are not supported */
1204 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
1205 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
1206 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
1207 	CU_ASSERT(rc == -ENOTSUP);
1208 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
1209 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
1210 
1211 	/* NVME_IO, NVME_IO_MD and NVME_ADMIN are not supported */
1212 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, false);
1213 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, false);
1214 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, false);
1215 	rc = spdk_bdev_nvme_io_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1216 	CU_ASSERT(rc == -ENOTSUP);
1217 	rc = spdk_bdev_nvme_io_passthru_md(desc, io_ch, NULL, NULL, 0, NULL, 0, NULL, NULL);
1218 	CU_ASSERT(rc == -ENOTSUP);
1219 	rc = spdk_bdev_nvme_admin_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1220 	CU_ASSERT(rc == -ENOTSUP);
1221 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, true);
1222 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, true);
1223 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, true);
1224 
1225 	spdk_put_io_channel(io_ch);
1226 	spdk_bdev_close(desc);
1227 	free_bdev(bdev);
1228 	ut_fini_bdev();
1229 }
1230 
1231 static void
1232 bdev_io_wait_test(void)
1233 {
1234 	struct spdk_bdev *bdev;
1235 	struct spdk_bdev_desc *desc = NULL;
1236 	struct spdk_io_channel *io_ch;
1237 	struct spdk_bdev_opts bdev_opts = {};
1238 	struct bdev_ut_io_wait_entry io_wait_entry;
1239 	struct bdev_ut_io_wait_entry io_wait_entry2;
1240 	int rc;
1241 
1242 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1243 	bdev_opts.bdev_io_pool_size = 4;
1244 	bdev_opts.bdev_io_cache_size = 2;
1245 	ut_init_bdev(&bdev_opts);
1246 
1247 	bdev = allocate_bdev("bdev0");
1248 
1249 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1250 	CU_ASSERT(rc == 0);
1251 	poll_threads();
1252 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1253 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1254 	io_ch = spdk_bdev_get_io_channel(desc);
1255 	CU_ASSERT(io_ch != NULL);
1256 
1257 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1258 	CU_ASSERT(rc == 0);
1259 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1260 	CU_ASSERT(rc == 0);
1261 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1262 	CU_ASSERT(rc == 0);
1263 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1264 	CU_ASSERT(rc == 0);
1265 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1266 
1267 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1268 	CU_ASSERT(rc == -ENOMEM);
1269 
1270 	io_wait_entry.entry.bdev = bdev;
1271 	io_wait_entry.entry.cb_fn = io_wait_cb;
1272 	io_wait_entry.entry.cb_arg = &io_wait_entry;
1273 	io_wait_entry.io_ch = io_ch;
1274 	io_wait_entry.desc = desc;
1275 	io_wait_entry.submitted = false;
1276 	/* Cannot use the same io_wait_entry for two different calls. */
1277 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
1278 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
1279 
1280 	/* Queue two I/O waits. */
1281 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
1282 	CU_ASSERT(rc == 0);
1283 	CU_ASSERT(io_wait_entry.submitted == false);
1284 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
1285 	CU_ASSERT(rc == 0);
1286 	CU_ASSERT(io_wait_entry2.submitted == false);
1287 
1288 	stub_complete_io(1);
1289 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1290 	CU_ASSERT(io_wait_entry.submitted == true);
1291 	CU_ASSERT(io_wait_entry2.submitted == false);
1292 
1293 	stub_complete_io(1);
1294 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1295 	CU_ASSERT(io_wait_entry2.submitted == true);
1296 
1297 	stub_complete_io(4);
1298 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1299 
1300 	spdk_put_io_channel(io_ch);
1301 	spdk_bdev_close(desc);
1302 	free_bdev(bdev);
1303 	ut_fini_bdev();
1304 }
1305 
1306 static void
1307 bdev_io_spans_split_test(void)
1308 {
1309 	struct spdk_bdev bdev;
1310 	struct spdk_bdev_io bdev_io;
1311 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
1312 
1313 	memset(&bdev, 0, sizeof(bdev));
1314 	bdev_io.u.bdev.iovs = iov;
1315 
1316 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1317 	bdev.optimal_io_boundary = 0;
1318 	bdev.max_segment_size = 0;
1319 	bdev.max_num_segments = 0;
1320 	bdev_io.bdev = &bdev;
1321 
1322 	/* bdev has no optimal_io_boundary and max_size set - so this should return false. */
1323 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1324 
1325 	bdev.split_on_optimal_io_boundary = true;
1326 	bdev.optimal_io_boundary = 32;
1327 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1328 
1329 	/* RESETs are not based on LBAs - so this should return false. */
1330 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1331 
1332 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1333 	bdev_io.u.bdev.offset_blocks = 0;
1334 	bdev_io.u.bdev.num_blocks = 32;
1335 
1336 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1337 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1338 
1339 	bdev_io.u.bdev.num_blocks = 33;
1340 
1341 	/* This I/O spans a boundary. */
1342 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1343 
1344 	bdev_io.u.bdev.num_blocks = 32;
1345 	bdev.max_segment_size = 512 * 32;
1346 	bdev.max_num_segments = 1;
1347 	bdev_io.u.bdev.iovcnt = 1;
1348 	iov[0].iov_len = 512;
1349 
1350 	/* Does not cross and exceed max_size or max_segs */
1351 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1352 
1353 	bdev.split_on_optimal_io_boundary = false;
1354 	bdev.max_segment_size = 512;
1355 	bdev.max_num_segments = 1;
1356 	bdev_io.u.bdev.iovcnt = 2;
1357 
1358 	/* Exceed max_segs */
1359 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1360 
1361 	bdev.max_num_segments = 2;
1362 	iov[0].iov_len = 513;
1363 	iov[1].iov_len = 512;
1364 
1365 	/* Exceed max_sizes */
1366 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1367 
1368 	bdev.max_segment_size = 0;
1369 	bdev.write_unit_size = 32;
1370 	bdev.split_on_write_unit = true;
1371 	bdev_io.type = SPDK_BDEV_IO_TYPE_WRITE;
1372 
1373 	/* This I/O is one write unit */
1374 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1375 
1376 	bdev_io.u.bdev.num_blocks = 32 * 2;
1377 
1378 	/* This I/O is more than one write unit */
1379 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1380 
1381 	bdev_io.u.bdev.offset_blocks = 1;
1382 	bdev_io.u.bdev.num_blocks = 32;
1383 
1384 	/* This I/O is not aligned to write unit size */
1385 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1386 }
1387 
1388 static void
1389 bdev_io_boundary_split_test(void)
1390 {
1391 	struct spdk_bdev *bdev;
1392 	struct spdk_bdev_desc *desc = NULL;
1393 	struct spdk_io_channel *io_ch;
1394 	struct spdk_bdev_opts bdev_opts = {};
1395 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
1396 	struct ut_expected_io *expected_io;
1397 	void *md_buf = (void *)0xFF000000;
1398 	uint64_t i;
1399 	int rc;
1400 
1401 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1402 	bdev_opts.bdev_io_pool_size = 512;
1403 	bdev_opts.bdev_io_cache_size = 64;
1404 	ut_init_bdev(&bdev_opts);
1405 
1406 	bdev = allocate_bdev("bdev0");
1407 
1408 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1409 	CU_ASSERT(rc == 0);
1410 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1411 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1412 	io_ch = spdk_bdev_get_io_channel(desc);
1413 	CU_ASSERT(io_ch != NULL);
1414 
1415 	bdev->optimal_io_boundary = 16;
1416 	bdev->split_on_optimal_io_boundary = false;
1417 
1418 	g_io_done = false;
1419 
1420 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1421 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1422 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1423 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1424 
1425 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1426 	CU_ASSERT(rc == 0);
1427 	CU_ASSERT(g_io_done == false);
1428 
1429 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1430 	stub_complete_io(1);
1431 	CU_ASSERT(g_io_done == true);
1432 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1433 
1434 	bdev->split_on_optimal_io_boundary = true;
1435 	bdev->md_interleave = false;
1436 	bdev->md_len = 8;
1437 
1438 	/* Now test that a single-vector command is split correctly.
1439 	 * Offset 14, length 8, payload 0xF000
1440 	 *  Child - Offset 14, length 2, payload 0xF000
1441 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1442 	 *
1443 	 * Set up the expected values before calling spdk_bdev_read_blocks
1444 	 */
1445 	g_io_done = false;
1446 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1447 	expected_io->md_buf = md_buf;
1448 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1449 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1450 
1451 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1452 	expected_io->md_buf = md_buf + 2 * 8;
1453 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1454 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1455 
1456 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1457 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1458 					   14, 8, io_done, NULL);
1459 	CU_ASSERT(rc == 0);
1460 	CU_ASSERT(g_io_done == false);
1461 
1462 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1463 	stub_complete_io(2);
1464 	CU_ASSERT(g_io_done == true);
1465 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1466 
1467 	/* Now set up a more complex, multi-vector command that needs to be split,
1468 	 *  including splitting iovecs.
1469 	 */
1470 	iov[0].iov_base = (void *)0x10000;
1471 	iov[0].iov_len = 512;
1472 	iov[1].iov_base = (void *)0x20000;
1473 	iov[1].iov_len = 20 * 512;
1474 	iov[2].iov_base = (void *)0x30000;
1475 	iov[2].iov_len = 11 * 512;
1476 
1477 	g_io_done = false;
1478 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1479 	expected_io->md_buf = md_buf;
1480 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1481 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1482 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1483 
1484 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1485 	expected_io->md_buf = md_buf + 2 * 8;
1486 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1487 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1488 
1489 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1490 	expected_io->md_buf = md_buf + 18 * 8;
1491 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1492 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1493 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1494 
1495 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1496 					     14, 32, io_done, NULL);
1497 	CU_ASSERT(rc == 0);
1498 	CU_ASSERT(g_io_done == false);
1499 
1500 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1501 	stub_complete_io(3);
1502 	CU_ASSERT(g_io_done == true);
1503 
1504 	/* Test multi vector command that needs to be split by strip and then needs to be
1505 	 * split further due to the capacity of child iovs.
1506 	 */
1507 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1508 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1509 		iov[i].iov_len = 512;
1510 	}
1511 
1512 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1513 	g_io_done = false;
1514 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
1515 					   SPDK_BDEV_IO_NUM_CHILD_IOV);
1516 	expected_io->md_buf = md_buf;
1517 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1518 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1519 	}
1520 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1521 
1522 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1523 					   SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
1524 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1525 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1526 		ut_expected_io_set_iov(expected_io, i,
1527 				       (void *)((i + 1 + SPDK_BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1528 	}
1529 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1530 
1531 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1532 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1533 	CU_ASSERT(rc == 0);
1534 	CU_ASSERT(g_io_done == false);
1535 
1536 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1537 	stub_complete_io(1);
1538 	CU_ASSERT(g_io_done == false);
1539 
1540 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1541 	stub_complete_io(1);
1542 	CU_ASSERT(g_io_done == true);
1543 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1544 
1545 	/* Test multi vector command that needs to be split by strip and then needs to be
1546 	 * split further due to the capacity of child iovs. In this case, the length of
1547 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1548 	 */
1549 
1550 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1551 	 * is SPDK_BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1552 	 */
1553 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1554 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1555 		iov[i].iov_len = 512;
1556 	}
1557 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1558 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1559 		iov[i].iov_len = 256;
1560 	}
1561 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1562 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1563 
1564 	/* Add an extra iovec to trigger split */
1565 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1566 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1567 
1568 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1569 	g_io_done = false;
1570 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1571 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV);
1572 	expected_io->md_buf = md_buf;
1573 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1574 		ut_expected_io_set_iov(expected_io, i,
1575 				       (void *)((i + 1) * 0x10000), 512);
1576 	}
1577 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1578 		ut_expected_io_set_iov(expected_io, i,
1579 				       (void *)((i + 1) * 0x10000), 256);
1580 	}
1581 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1582 
1583 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1584 					   1, 1);
1585 	expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1586 	ut_expected_io_set_iov(expected_io, 0,
1587 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1588 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1589 
1590 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1591 					   1, 1);
1592 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1593 	ut_expected_io_set_iov(expected_io, 0,
1594 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1595 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1596 
1597 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1598 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1599 	CU_ASSERT(rc == 0);
1600 	CU_ASSERT(g_io_done == false);
1601 
1602 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1603 	stub_complete_io(1);
1604 	CU_ASSERT(g_io_done == false);
1605 
1606 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1607 	stub_complete_io(2);
1608 	CU_ASSERT(g_io_done == true);
1609 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1610 
1611 	/* Test multi vector command that needs to be split by strip and then needs to be
1612 	 * split further due to the capacity of child iovs, the child request offset should
1613 	 * be rewind to last aligned offset and go success without error.
1614 	 */
1615 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1616 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1617 		iov[i].iov_len = 512;
1618 	}
1619 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
1620 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1621 
1622 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1623 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1624 
1625 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1626 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1627 
1628 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1629 	g_io_done = false;
1630 	g_io_status = 0;
1631 	/* The first expected io should be start from offset 0 to SPDK_BDEV_IO_NUM_CHILD_IOV - 1 */
1632 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1633 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
1634 	expected_io->md_buf = md_buf;
1635 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1636 		ut_expected_io_set_iov(expected_io, i,
1637 				       (void *)((i + 1) * 0x10000), 512);
1638 	}
1639 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1640 	/* The second expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV - 1 to SPDK_BDEV_IO_NUM_CHILD_IOV */
1641 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1642 					   1, 2);
1643 	expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1644 	ut_expected_io_set_iov(expected_io, 0,
1645 			       (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1646 	ut_expected_io_set_iov(expected_io, 1,
1647 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1648 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1649 	/* The third expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV to SPDK_BDEV_IO_NUM_CHILD_IOV + 1 */
1650 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1651 					   1, 1);
1652 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1653 	ut_expected_io_set_iov(expected_io, 0,
1654 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1655 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1656 
1657 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1658 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1659 	CU_ASSERT(rc == 0);
1660 	CU_ASSERT(g_io_done == false);
1661 
1662 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1663 	stub_complete_io(1);
1664 	CU_ASSERT(g_io_done == false);
1665 
1666 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1667 	stub_complete_io(2);
1668 	CU_ASSERT(g_io_done == true);
1669 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1670 
1671 	/* Test multi vector command that needs to be split due to the IO boundary and
1672 	 * the capacity of child iovs. Especially test the case when the command is
1673 	 * split due to the capacity of child iovs, the tail address is not aligned with
1674 	 * block size and is rewinded to the aligned address.
1675 	 *
1676 	 * The iovecs used in read request is complex but is based on the data
1677 	 * collected in the real issue. We change the base addresses but keep the lengths
1678 	 * not to loose the credibility of the test.
1679 	 */
1680 	bdev->optimal_io_boundary = 128;
1681 	g_io_done = false;
1682 	g_io_status = 0;
1683 
1684 	for (i = 0; i < 31; i++) {
1685 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1686 		iov[i].iov_len = 1024;
1687 	}
1688 	iov[31].iov_base = (void *)0xFEED1F00000;
1689 	iov[31].iov_len = 32768;
1690 	iov[32].iov_base = (void *)0xFEED2000000;
1691 	iov[32].iov_len = 160;
1692 	iov[33].iov_base = (void *)0xFEED2100000;
1693 	iov[33].iov_len = 4096;
1694 	iov[34].iov_base = (void *)0xFEED2200000;
1695 	iov[34].iov_len = 4096;
1696 	iov[35].iov_base = (void *)0xFEED2300000;
1697 	iov[35].iov_len = 4096;
1698 	iov[36].iov_base = (void *)0xFEED2400000;
1699 	iov[36].iov_len = 4096;
1700 	iov[37].iov_base = (void *)0xFEED2500000;
1701 	iov[37].iov_len = 4096;
1702 	iov[38].iov_base = (void *)0xFEED2600000;
1703 	iov[38].iov_len = 4096;
1704 	iov[39].iov_base = (void *)0xFEED2700000;
1705 	iov[39].iov_len = 4096;
1706 	iov[40].iov_base = (void *)0xFEED2800000;
1707 	iov[40].iov_len = 4096;
1708 	iov[41].iov_base = (void *)0xFEED2900000;
1709 	iov[41].iov_len = 4096;
1710 	iov[42].iov_base = (void *)0xFEED2A00000;
1711 	iov[42].iov_len = 4096;
1712 	iov[43].iov_base = (void *)0xFEED2B00000;
1713 	iov[43].iov_len = 12288;
1714 	iov[44].iov_base = (void *)0xFEED2C00000;
1715 	iov[44].iov_len = 8192;
1716 	iov[45].iov_base = (void *)0xFEED2F00000;
1717 	iov[45].iov_len = 4096;
1718 	iov[46].iov_base = (void *)0xFEED3000000;
1719 	iov[46].iov_len = 4096;
1720 	iov[47].iov_base = (void *)0xFEED3100000;
1721 	iov[47].iov_len = 4096;
1722 	iov[48].iov_base = (void *)0xFEED3200000;
1723 	iov[48].iov_len = 24576;
1724 	iov[49].iov_base = (void *)0xFEED3300000;
1725 	iov[49].iov_len = 16384;
1726 	iov[50].iov_base = (void *)0xFEED3400000;
1727 	iov[50].iov_len = 12288;
1728 	iov[51].iov_base = (void *)0xFEED3500000;
1729 	iov[51].iov_len = 4096;
1730 	iov[52].iov_base = (void *)0xFEED3600000;
1731 	iov[52].iov_len = 4096;
1732 	iov[53].iov_base = (void *)0xFEED3700000;
1733 	iov[53].iov_len = 4096;
1734 	iov[54].iov_base = (void *)0xFEED3800000;
1735 	iov[54].iov_len = 28672;
1736 	iov[55].iov_base = (void *)0xFEED3900000;
1737 	iov[55].iov_len = 20480;
1738 	iov[56].iov_base = (void *)0xFEED3A00000;
1739 	iov[56].iov_len = 4096;
1740 	iov[57].iov_base = (void *)0xFEED3B00000;
1741 	iov[57].iov_len = 12288;
1742 	iov[58].iov_base = (void *)0xFEED3C00000;
1743 	iov[58].iov_len = 4096;
1744 	iov[59].iov_base = (void *)0xFEED3D00000;
1745 	iov[59].iov_len = 4096;
1746 	iov[60].iov_base = (void *)0xFEED3E00000;
1747 	iov[60].iov_len = 352;
1748 
1749 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1750 	 * of child iovs,
1751 	 */
1752 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1753 	expected_io->md_buf = md_buf;
1754 	for (i = 0; i < 32; i++) {
1755 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1756 	}
1757 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1758 
1759 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1760 	 * split by the IO boundary requirement.
1761 	 */
1762 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1763 	expected_io->md_buf = md_buf + 126 * 8;
1764 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1765 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1766 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1767 
1768 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1769 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1770 	 */
1771 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1772 	expected_io->md_buf = md_buf + 128 * 8;
1773 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1774 			       iov[33].iov_len - 864);
1775 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1776 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1777 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1778 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1779 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1780 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1781 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1782 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1783 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1784 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1785 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1786 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1787 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1788 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1789 
1790 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1791 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1792 	 */
1793 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1794 	expected_io->md_buf = md_buf + 256 * 8;
1795 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1796 			       iov[46].iov_len - 864);
1797 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1798 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1799 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1800 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1801 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1802 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1803 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1804 
1805 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1806 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1807 	 */
1808 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1809 	expected_io->md_buf = md_buf + 384 * 8;
1810 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1811 			       iov[52].iov_len - 864);
1812 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1813 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1814 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1815 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1816 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1817 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1818 
1819 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1820 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1821 	 */
1822 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1823 	expected_io->md_buf = md_buf + 512 * 8;
1824 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1825 			       iov[57].iov_len - 4960);
1826 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1827 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1828 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1829 
1830 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1831 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1832 	expected_io->md_buf = md_buf + 542 * 8;
1833 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1834 			       iov[59].iov_len - 3936);
1835 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1836 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1837 
1838 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1839 					    0, 543, io_done, NULL);
1840 	CU_ASSERT(rc == 0);
1841 	CU_ASSERT(g_io_done == false);
1842 
1843 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1844 	stub_complete_io(1);
1845 	CU_ASSERT(g_io_done == false);
1846 
1847 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1848 	stub_complete_io(5);
1849 	CU_ASSERT(g_io_done == false);
1850 
1851 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1852 	stub_complete_io(1);
1853 	CU_ASSERT(g_io_done == true);
1854 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1855 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1856 
1857 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1858 	 * split, so test that.
1859 	 */
1860 	bdev->optimal_io_boundary = 15;
1861 	g_io_done = false;
1862 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1863 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1864 
1865 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1866 	CU_ASSERT(rc == 0);
1867 	CU_ASSERT(g_io_done == false);
1868 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1869 	stub_complete_io(1);
1870 	CU_ASSERT(g_io_done == true);
1871 
1872 	/* Test an UNMAP.  This should also not be split. */
1873 	bdev->optimal_io_boundary = 16;
1874 	g_io_done = false;
1875 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1876 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1877 
1878 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1879 	CU_ASSERT(rc == 0);
1880 	CU_ASSERT(g_io_done == false);
1881 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1882 	stub_complete_io(1);
1883 	CU_ASSERT(g_io_done == true);
1884 
1885 	/* Test a FLUSH.  This should also not be split. */
1886 	bdev->optimal_io_boundary = 16;
1887 	g_io_done = false;
1888 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1889 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1890 
1891 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1892 	CU_ASSERT(rc == 0);
1893 	CU_ASSERT(g_io_done == false);
1894 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1895 	stub_complete_io(1);
1896 	CU_ASSERT(g_io_done == true);
1897 
1898 	/* Test a COPY.  This should also not be split. */
1899 	bdev->optimal_io_boundary = 15;
1900 	g_io_done = false;
1901 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
1902 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1903 
1904 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
1905 	CU_ASSERT(rc == 0);
1906 	CU_ASSERT(g_io_done == false);
1907 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1908 	stub_complete_io(1);
1909 	CU_ASSERT(g_io_done == true);
1910 
1911 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1912 
1913 	/* Children requests return an error status */
1914 	bdev->optimal_io_boundary = 16;
1915 	iov[0].iov_base = (void *)0x10000;
1916 	iov[0].iov_len = 512 * 64;
1917 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1918 	g_io_done = false;
1919 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1920 
1921 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1922 	CU_ASSERT(rc == 0);
1923 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1924 	stub_complete_io(4);
1925 	CU_ASSERT(g_io_done == false);
1926 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1927 	stub_complete_io(1);
1928 	CU_ASSERT(g_io_done == true);
1929 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1930 
1931 	/* Test if a multi vector command terminated with failure before continuing
1932 	 * splitting process when one of child I/O failed.
1933 	 * The multi vector command is as same as the above that needs to be split by strip
1934 	 * and then needs to be split further due to the capacity of child iovs.
1935 	 */
1936 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1937 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1938 		iov[i].iov_len = 512;
1939 	}
1940 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
1941 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1942 
1943 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1944 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1945 
1946 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1947 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1948 
1949 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1950 
1951 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1952 	g_io_done = false;
1953 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1954 
1955 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
1956 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1957 	CU_ASSERT(rc == 0);
1958 	CU_ASSERT(g_io_done == false);
1959 
1960 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1961 	stub_complete_io(1);
1962 	CU_ASSERT(g_io_done == true);
1963 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1964 
1965 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1966 
1967 	/* for this test we will create the following conditions to hit the code path where
1968 	 * we are trying to send and IO following a split that has no iovs because we had to
1969 	 * trim them for alignment reasons.
1970 	 *
1971 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1972 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1973 	 *   position 30 and overshoot by 0x2e.
1974 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1975 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1976 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1977 	 *   and let the completion pick up the last 2 vectors.
1978 	 */
1979 	bdev->optimal_io_boundary = 32;
1980 	bdev->split_on_optimal_io_boundary = true;
1981 	g_io_done = false;
1982 
1983 	/* Init all parent IOVs to 0x212 */
1984 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1985 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1986 		iov[i].iov_len = 0x212;
1987 	}
1988 
1989 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
1990 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
1991 	/* expect 0-29 to be 1:1 with the parent iov */
1992 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1993 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1994 	}
1995 
1996 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1997 	 * where 0x1e is the amount we overshot the 16K boundary
1998 	 */
1999 	ut_expected_io_set_iov(expected_io, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
2000 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
2001 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2002 
2003 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
2004 	 * shortened that take it to the next boundary and then a final one to get us to
2005 	 * 0x4200 bytes for the IO.
2006 	 */
2007 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
2008 					   1, 2);
2009 	/* position 30 picked up the remaining bytes to the next boundary */
2010 	ut_expected_io_set_iov(expected_io, 0,
2011 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
2012 
2013 	/* position 31 picked the the rest of the transfer to get us to 0x4200 */
2014 	ut_expected_io_set_iov(expected_io, 1,
2015 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
2016 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2017 
2018 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, 0,
2019 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
2020 	CU_ASSERT(rc == 0);
2021 	CU_ASSERT(g_io_done == false);
2022 
2023 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2024 	stub_complete_io(1);
2025 	CU_ASSERT(g_io_done == false);
2026 
2027 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2028 	stub_complete_io(1);
2029 	CU_ASSERT(g_io_done == true);
2030 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2031 
2032 	spdk_put_io_channel(io_ch);
2033 	spdk_bdev_close(desc);
2034 	free_bdev(bdev);
2035 	ut_fini_bdev();
2036 }
2037 
2038 static void
2039 bdev_io_max_size_and_segment_split_test(void)
2040 {
2041 	struct spdk_bdev *bdev;
2042 	struct spdk_bdev_desc *desc = NULL;
2043 	struct spdk_io_channel *io_ch;
2044 	struct spdk_bdev_opts bdev_opts = {};
2045 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
2046 	struct ut_expected_io *expected_io;
2047 	uint64_t i;
2048 	int rc;
2049 
2050 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2051 	bdev_opts.bdev_io_pool_size = 512;
2052 	bdev_opts.bdev_io_cache_size = 64;
2053 	bdev_opts.opts_size = sizeof(bdev_opts);
2054 	ut_init_bdev(&bdev_opts);
2055 
2056 	bdev = allocate_bdev("bdev0");
2057 
2058 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2059 	CU_ASSERT(rc == 0);
2060 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2061 	io_ch = spdk_bdev_get_io_channel(desc);
2062 	CU_ASSERT(io_ch != NULL);
2063 
2064 	bdev->split_on_optimal_io_boundary = false;
2065 	bdev->optimal_io_boundary = 0;
2066 
2067 	/* Case 0 max_num_segments == 0.
2068 	 * but segment size 2 * 512 > 512
2069 	 */
2070 	bdev->max_segment_size = 512;
2071 	bdev->max_num_segments = 0;
2072 	g_io_done = false;
2073 
2074 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2075 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2076 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2077 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2078 
2079 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2080 	CU_ASSERT(rc == 0);
2081 	CU_ASSERT(g_io_done == false);
2082 
2083 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2084 	stub_complete_io(1);
2085 	CU_ASSERT(g_io_done == true);
2086 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2087 
2088 	/* Case 1 max_segment_size == 0
2089 	 * but iov num 2 > 1.
2090 	 */
2091 	bdev->max_segment_size = 0;
2092 	bdev->max_num_segments = 1;
2093 	g_io_done = false;
2094 
2095 	iov[0].iov_base = (void *)0x10000;
2096 	iov[0].iov_len = 512;
2097 	iov[1].iov_base = (void *)0x20000;
2098 	iov[1].iov_len = 8 * 512;
2099 
2100 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2101 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len);
2102 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2103 
2104 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1);
2105 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len);
2106 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2107 
2108 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL);
2109 	CU_ASSERT(rc == 0);
2110 	CU_ASSERT(g_io_done == false);
2111 
2112 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2113 	stub_complete_io(2);
2114 	CU_ASSERT(g_io_done == true);
2115 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2116 
2117 	/* Test that a non-vector command is split correctly.
2118 	 * Set up the expected values before calling spdk_bdev_read_blocks
2119 	 */
2120 	bdev->max_segment_size = 512;
2121 	bdev->max_num_segments = 1;
2122 	g_io_done = false;
2123 
2124 	/* Child IO 0 */
2125 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2126 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2127 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2128 
2129 	/* Child IO 1 */
2130 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2131 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512);
2132 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2133 
2134 	/* spdk_bdev_read_blocks will submit the first child immediately. */
2135 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2136 	CU_ASSERT(rc == 0);
2137 	CU_ASSERT(g_io_done == false);
2138 
2139 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2140 	stub_complete_io(2);
2141 	CU_ASSERT(g_io_done == true);
2142 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2143 
2144 	/* Now set up a more complex, multi-vector command that needs to be split,
2145 	 * including splitting iovecs.
2146 	 */
2147 	bdev->max_segment_size = 2 * 512;
2148 	bdev->max_num_segments = 1;
2149 	g_io_done = false;
2150 
2151 	iov[0].iov_base = (void *)0x10000;
2152 	iov[0].iov_len = 2 * 512;
2153 	iov[1].iov_base = (void *)0x20000;
2154 	iov[1].iov_len = 4 * 512;
2155 	iov[2].iov_base = (void *)0x30000;
2156 	iov[2].iov_len = 6 * 512;
2157 
2158 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2159 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2);
2160 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2161 
2162 	/* Split iov[1].size to 2 iov entries then split the segments */
2163 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2164 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2);
2165 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2166 
2167 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1);
2168 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2);
2169 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2170 
2171 	/* Split iov[2].size to 3 iov entries then split the segments */
2172 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1);
2173 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2);
2174 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2175 
2176 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1);
2177 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2);
2178 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2179 
2180 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1);
2181 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2);
2182 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2183 
2184 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL);
2185 	CU_ASSERT(rc == 0);
2186 	CU_ASSERT(g_io_done == false);
2187 
2188 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2189 	stub_complete_io(6);
2190 	CU_ASSERT(g_io_done == true);
2191 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2192 
2193 	/* Test multi vector command that needs to be split by strip and then needs to be
2194 	 * split further due to the capacity of parent IO child iovs.
2195 	 */
2196 	bdev->max_segment_size = 512;
2197 	bdev->max_num_segments = 1;
2198 	g_io_done = false;
2199 
2200 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2201 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2202 		iov[i].iov_len = 512 * 2;
2203 	}
2204 
2205 	/* Each input iov.size is split into 2 iovs,
2206 	 * half of the input iov can fill all child iov entries of a single IO.
2207 	 */
2208 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i++) {
2209 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1);
2210 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2211 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2212 
2213 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1);
2214 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2215 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2216 	}
2217 
2218 	/* The remaining iov is split in the second round */
2219 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2220 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1);
2221 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2222 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2223 
2224 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1);
2225 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2226 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2227 	}
2228 
2229 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
2230 				    SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
2231 	CU_ASSERT(rc == 0);
2232 	CU_ASSERT(g_io_done == false);
2233 
2234 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2235 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2236 	CU_ASSERT(g_io_done == false);
2237 
2238 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2239 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2240 	CU_ASSERT(g_io_done == true);
2241 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2242 
2243 	/* A wrong case, a child IO that is divided does
2244 	 * not meet the principle of multiples of block size,
2245 	 * and exits with error
2246 	 */
2247 	bdev->max_segment_size = 512;
2248 	bdev->max_num_segments = 1;
2249 	g_io_done = false;
2250 
2251 	iov[0].iov_base = (void *)0x10000;
2252 	iov[0].iov_len = 512 + 256;
2253 	iov[1].iov_base = (void *)0x20000;
2254 	iov[1].iov_len = 256;
2255 
2256 	/* iov[0] is split to 512 and 256.
2257 	 * 256 is less than a block size, and it is found
2258 	 * in the next round of split that it is the first child IO smaller than
2259 	 * the block size, so the error exit
2260 	 */
2261 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1);
2262 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512);
2263 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2264 
2265 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL);
2266 	CU_ASSERT(rc == 0);
2267 	CU_ASSERT(g_io_done == false);
2268 
2269 	/* First child IO is OK */
2270 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2271 	stub_complete_io(1);
2272 	CU_ASSERT(g_io_done == true);
2273 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2274 
2275 	/* error exit */
2276 	stub_complete_io(1);
2277 	CU_ASSERT(g_io_done == true);
2278 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
2279 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2280 
2281 	/* Test multi vector command that needs to be split by strip and then needs to be
2282 	 * split further due to the capacity of child iovs.
2283 	 *
2284 	 * In this case, the last two iovs need to be split, but it will exceed the capacity
2285 	 * of child iovs, so it needs to wait until the first batch completed.
2286 	 */
2287 	bdev->max_segment_size = 512;
2288 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2289 	g_io_done = false;
2290 
2291 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2292 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2293 		iov[i].iov_len = 512;
2294 	}
2295 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2296 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2297 		iov[i].iov_len = 512 * 2;
2298 	}
2299 
2300 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2301 					   SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
2302 	/* 0 ~ (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */
2303 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2304 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2305 	}
2306 	/* (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) is split */
2307 	ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512);
2308 	ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512);
2309 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2310 
2311 	/* Child iov entries exceed the max num of parent IO so split it in next round */
2312 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV, 2, 2);
2313 	ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512);
2314 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512);
2315 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2316 
2317 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
2318 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL);
2319 	CU_ASSERT(rc == 0);
2320 	CU_ASSERT(g_io_done == false);
2321 
2322 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2323 	stub_complete_io(1);
2324 	CU_ASSERT(g_io_done == false);
2325 
2326 	/* Next round */
2327 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2328 	stub_complete_io(1);
2329 	CU_ASSERT(g_io_done == true);
2330 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2331 
2332 	/* This case is similar to the previous one, but the io composed of
2333 	 * the last few entries of child iov is not enough for a blocklen, so they
2334 	 * cannot be put into this IO, but wait until the next time.
2335 	 */
2336 	bdev->max_segment_size = 512;
2337 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2338 	g_io_done = false;
2339 
2340 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2341 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2342 		iov[i].iov_len = 512;
2343 	}
2344 
2345 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2346 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2347 		iov[i].iov_len = 128;
2348 	}
2349 
2350 	/* First child iovcnt is't SPDK_BDEV_IO_NUM_CHILD_IOV but SPDK_BDEV_IO_NUM_CHILD_IOV - 2.
2351 	 * Because the left 2 iov is not enough for a blocklen.
2352 	 */
2353 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2354 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 2, SPDK_BDEV_IO_NUM_CHILD_IOV - 2);
2355 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2356 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2357 	}
2358 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2359 
2360 	/* The second child io waits until the end of the first child io before executing.
2361 	 * Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO.
2362 	 * SPDK_BDEV_IO_NUM_CHILD_IOV - 2 to SPDK_BDEV_IO_NUM_CHILD_IOV + 2
2363 	 */
2364 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
2365 					   1, 4);
2366 	ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len);
2367 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len);
2368 	ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len);
2369 	ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len);
2370 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2371 
2372 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
2373 				    SPDK_BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL);
2374 	CU_ASSERT(rc == 0);
2375 	CU_ASSERT(g_io_done == false);
2376 
2377 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2378 	stub_complete_io(1);
2379 	CU_ASSERT(g_io_done == false);
2380 
2381 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2382 	stub_complete_io(1);
2383 	CU_ASSERT(g_io_done == true);
2384 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2385 
2386 	/* A very complicated case. Each sg entry exceeds max_segment_size and
2387 	 * needs to be split. At the same time, child io must be a multiple of blocklen.
2388 	 * At the same time, child iovcnt exceeds parent iovcnt.
2389 	 */
2390 	bdev->max_segment_size = 512 + 128;
2391 	bdev->max_num_segments = 3;
2392 	g_io_done = false;
2393 
2394 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2395 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2396 		iov[i].iov_len = 512 + 256;
2397 	}
2398 
2399 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2400 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2401 		iov[i].iov_len = 512 + 128;
2402 	}
2403 
2404 	/* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries.
2405 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2406 	 * Generate 9 child IOs.
2407 	 */
2408 	for (i = 0; i < 3; i++) {
2409 		uint32_t j = i * 4;
2410 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3);
2411 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2412 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2413 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2414 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2415 
2416 		/* Child io must be a multiple of blocklen
2417 		 * iov[j + 2] must be split. If the third entry is also added,
2418 		 * the multiple of blocklen cannot be guaranteed. But it still
2419 		 * occupies one iov entry of the parent child iov.
2420 		 */
2421 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2);
2422 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2423 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2424 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2425 
2426 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3);
2427 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2428 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2429 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2430 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2431 	}
2432 
2433 	/* Child iov position at 27, the 10th child IO
2434 	 * iov entry index is 3 * 4 and offset is 3 * 6
2435 	 */
2436 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3);
2437 	ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640);
2438 	ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128);
2439 	ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256);
2440 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2441 
2442 	/* Child iov position at 30, the 11th child IO */
2443 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2);
2444 	ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512);
2445 	ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512);
2446 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2447 
2448 	/* The 2nd split round and iovpos is 0, the 12th child IO */
2449 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3);
2450 	ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256);
2451 	ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640);
2452 	ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128);
2453 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2454 
2455 	/* Consume 9 child IOs and 27 child iov entries.
2456 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2457 	 * Parent IO iov index start from 16 and block offset start from 24
2458 	 */
2459 	for (i = 0; i < 3; i++) {
2460 		uint32_t j = i * 4 + 16;
2461 		uint32_t offset = i * 6 + 24;
2462 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3);
2463 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2464 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2465 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2466 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2467 
2468 		/* Child io must be a multiple of blocklen
2469 		 * iov[j + 2] must be split. If the third entry is also added,
2470 		 * the multiple of blocklen cannot be guaranteed. But it still
2471 		 * occupies one iov entry of the parent child iov.
2472 		 */
2473 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2);
2474 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2475 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2476 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2477 
2478 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3);
2479 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2480 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2481 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2482 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2483 	}
2484 
2485 	/* The 22th child IO, child iov position at 30 */
2486 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1);
2487 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512);
2488 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2489 
2490 	/* The third round */
2491 	/* Here is the 23nd child IO and child iovpos is 0 */
2492 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3);
2493 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256);
2494 	ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640);
2495 	ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128);
2496 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2497 
2498 	/* The 24th child IO */
2499 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3);
2500 	ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640);
2501 	ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640);
2502 	ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256);
2503 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2504 
2505 	/* The 25th child IO */
2506 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2);
2507 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384);
2508 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640);
2509 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2510 
2511 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
2512 				    50, io_done, NULL);
2513 	CU_ASSERT(rc == 0);
2514 	CU_ASSERT(g_io_done == false);
2515 
2516 	/* Parent IO supports up to 32 child iovs, so it is calculated that
2517 	 * a maximum of 11 IOs can be split at a time, and the
2518 	 * splitting will continue after the first batch is over.
2519 	 */
2520 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2521 	stub_complete_io(11);
2522 	CU_ASSERT(g_io_done == false);
2523 
2524 	/* The 2nd round */
2525 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2526 	stub_complete_io(11);
2527 	CU_ASSERT(g_io_done == false);
2528 
2529 	/* The last round */
2530 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2531 	stub_complete_io(3);
2532 	CU_ASSERT(g_io_done == true);
2533 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2534 
2535 	/* Test an WRITE_ZEROES.  This should also not be split. */
2536 	bdev->max_segment_size = 512;
2537 	bdev->max_num_segments = 1;
2538 	g_io_done = false;
2539 
2540 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
2541 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2542 
2543 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
2544 	CU_ASSERT(rc == 0);
2545 	CU_ASSERT(g_io_done == false);
2546 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2547 	stub_complete_io(1);
2548 	CU_ASSERT(g_io_done == true);
2549 
2550 	/* Test an UNMAP.  This should also not be split. */
2551 	g_io_done = false;
2552 
2553 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0);
2554 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2555 
2556 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL);
2557 	CU_ASSERT(rc == 0);
2558 	CU_ASSERT(g_io_done == false);
2559 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2560 	stub_complete_io(1);
2561 	CU_ASSERT(g_io_done == true);
2562 
2563 	/* Test a FLUSH.  This should also not be split. */
2564 	g_io_done = false;
2565 
2566 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0);
2567 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2568 
2569 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 4, io_done, NULL);
2570 	CU_ASSERT(rc == 0);
2571 	CU_ASSERT(g_io_done == false);
2572 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2573 	stub_complete_io(1);
2574 	CU_ASSERT(g_io_done == true);
2575 
2576 	/* Test a COPY.  This should also not be split. */
2577 	g_io_done = false;
2578 
2579 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
2580 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2581 
2582 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
2583 	CU_ASSERT(rc == 0);
2584 	CU_ASSERT(g_io_done == false);
2585 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2586 	stub_complete_io(1);
2587 	CU_ASSERT(g_io_done == true);
2588 
2589 	/* Test that IOs are split on max_rw_size */
2590 	bdev->max_rw_size = 2;
2591 	bdev->max_segment_size = 0;
2592 	bdev->max_num_segments = 0;
2593 	g_io_done = false;
2594 
2595 	/* 5 blocks in a contiguous buffer */
2596 	iov[0].iov_base = (void *)0x10000;
2597 	iov[0].iov_len = 5 * 512;
2598 
2599 	/* First: offset=0, num_blocks=2 */
2600 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 2, 1);
2601 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 2 * 512);
2602 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2603 	/* Second: offset=2, num_blocks=2 */
2604 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2, 2, 1);
2605 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + 2 * 512, 2 * 512);
2606 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2607 	/* Third: offset=4, num_blocks=1 */
2608 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 4, 1, 1);
2609 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + 4 * 512, 512);
2610 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2611 
2612 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 0, 5, io_done, NULL);
2613 	CU_ASSERT(rc == 0);
2614 	CU_ASSERT(g_io_done == false);
2615 
2616 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2617 	stub_complete_io(3);
2618 	CU_ASSERT(g_io_done == true);
2619 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2620 
2621 	/* Check splitting on both max_rw_size + max_num_segments */
2622 	bdev->max_rw_size = 2;
2623 	bdev->max_num_segments = 2;
2624 	bdev->max_segment_size = 0;
2625 	g_io_done = false;
2626 
2627 	/* 5 blocks split across 4 iovs */
2628 	iov[0].iov_base = (void *)0x10000;
2629 	iov[0].iov_len = 3 * 512;
2630 	iov[1].iov_base = (void *)0x20000;
2631 	iov[1].iov_len = 256;
2632 	iov[2].iov_base = (void *)0x30000;
2633 	iov[2].iov_len = 256;
2634 	iov[3].iov_base = (void *)0x40000;
2635 	iov[3].iov_len = 512;
2636 
2637 	/* First: offset=0, num_blocks=2, iovcnt=1 */
2638 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 2, 1);
2639 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 2 * 512);
2640 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2641 	/* Second: offset=2, num_blocks=1, iovcnt=1 (max_segment_size prevents from submitting
2642 	 * the rest of iov[0], and iov[1]+iov[2])
2643 	 */
2644 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2, 1, 1);
2645 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + 2 * 512, 512);
2646 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2647 	/* Third: offset=3, num_blocks=1, iovcnt=2 (iov[1]+iov[2]) */
2648 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 3, 1, 2);
2649 	ut_expected_io_set_iov(expected_io, 0, (void *)0x20000, 256);
2650 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 256);
2651 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2652 	/* Fourth: offset=4, num_blocks=1, iovcnt=1 (iov[3]) */
2653 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 4, 1, 1);
2654 	ut_expected_io_set_iov(expected_io, 0, (void *)0x40000, 512);
2655 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2656 
2657 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 4, 0, 5, io_done, NULL);
2658 	CU_ASSERT(rc == 0);
2659 	CU_ASSERT(g_io_done == false);
2660 
2661 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2662 	stub_complete_io(4);
2663 	CU_ASSERT(g_io_done == true);
2664 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2665 
2666 	/* Check splitting on both max_rw_size + max_segment_size */
2667 	bdev->max_rw_size = 2;
2668 	bdev->max_segment_size = 512;
2669 	bdev->max_num_segments = 0;
2670 	g_io_done = false;
2671 
2672 	/* 6 blocks in a contiguous buffer */
2673 	iov[0].iov_base = (void *)0x10000;
2674 	iov[0].iov_len = 6 * 512;
2675 
2676 	/* We expect 3 IOs each with 2 blocks and 2 iovs */
2677 	for (i = 0; i < 3; ++i) {
2678 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 2, 2);
2679 		ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + i * 2 * 512, 512);
2680 		ut_expected_io_set_iov(expected_io, 1, (void *)0x10000 + i * 2 * 512 + 512, 512);
2681 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2682 	}
2683 
2684 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 0, 6, io_done, NULL);
2685 	CU_ASSERT(rc == 0);
2686 	CU_ASSERT(g_io_done == false);
2687 
2688 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2689 	stub_complete_io(3);
2690 	CU_ASSERT(g_io_done == true);
2691 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2692 
2693 	/* Check splitting on max_rw_size limited by SPDK_BDEV_IO_NUM_CHILD_IOV */
2694 	bdev->max_rw_size = 1;
2695 	bdev->max_segment_size = 0;
2696 	bdev->max_num_segments = 0;
2697 	g_io_done = false;
2698 
2699 	/* SPDK_BDEV_IO_NUM_CHILD_IOV + 1 blocks */
2700 	iov[0].iov_base = (void *)0x10000;
2701 	iov[0].iov_len = (SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 512;
2702 
2703 	/* We expect SPDK_BDEV_IO_NUM_CHILD_IOV + 1 IOs each with a single iov */
2704 	for (i = 0; i < 3; ++i) {
2705 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i, 1, 1);
2706 		ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + i * 512, 512);
2707 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2708 	}
2709 
2710 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
2711 	CU_ASSERT(rc == 0);
2712 	CU_ASSERT(g_io_done == false);
2713 
2714 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2715 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2716 	CU_ASSERT(g_io_done == false);
2717 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2718 	stub_complete_io(1);
2719 	CU_ASSERT(g_io_done == true);
2720 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2721 
2722 	spdk_put_io_channel(io_ch);
2723 	spdk_bdev_close(desc);
2724 	free_bdev(bdev);
2725 	ut_fini_bdev();
2726 }
2727 
2728 static void
2729 bdev_io_mix_split_test(void)
2730 {
2731 	struct spdk_bdev *bdev;
2732 	struct spdk_bdev_desc *desc = NULL;
2733 	struct spdk_io_channel *io_ch;
2734 	struct spdk_bdev_opts bdev_opts = {};
2735 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
2736 	struct ut_expected_io *expected_io;
2737 	uint64_t i;
2738 	int rc;
2739 
2740 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2741 	bdev_opts.bdev_io_pool_size = 512;
2742 	bdev_opts.bdev_io_cache_size = 64;
2743 	ut_init_bdev(&bdev_opts);
2744 
2745 	bdev = allocate_bdev("bdev0");
2746 
2747 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2748 	CU_ASSERT(rc == 0);
2749 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2750 	io_ch = spdk_bdev_get_io_channel(desc);
2751 	CU_ASSERT(io_ch != NULL);
2752 
2753 	/* First case optimal_io_boundary == max_segment_size * max_num_segments */
2754 	bdev->split_on_optimal_io_boundary = true;
2755 	bdev->optimal_io_boundary = 16;
2756 
2757 	bdev->max_segment_size = 512;
2758 	bdev->max_num_segments = 16;
2759 	g_io_done = false;
2760 
2761 	/* IO crossing the IO boundary requires split
2762 	 * Total 2 child IOs.
2763 	 */
2764 
2765 	/* The 1st child IO split the segment_size to multiple segment entry */
2766 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2767 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2768 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2769 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2770 
2771 	/* The 2nd child IO split the segment_size to multiple segment entry */
2772 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2);
2773 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512);
2774 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512);
2775 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2776 
2777 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL);
2778 	CU_ASSERT(rc == 0);
2779 	CU_ASSERT(g_io_done == false);
2780 
2781 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2782 	stub_complete_io(2);
2783 	CU_ASSERT(g_io_done == true);
2784 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2785 
2786 	/* Second case optimal_io_boundary > max_segment_size * max_num_segments */
2787 	bdev->max_segment_size = 15 * 512;
2788 	bdev->max_num_segments = 1;
2789 	g_io_done = false;
2790 
2791 	/* IO crossing the IO boundary requires split.
2792 	 * The 1st child IO segment size exceeds the max_segment_size,
2793 	 * So 1st child IO will be split to multiple segment entry.
2794 	 * Then it split to 2 child IOs because of the max_num_segments.
2795 	 * Total 3 child IOs.
2796 	 */
2797 
2798 	/* The first 2 IOs are in an IO boundary.
2799 	 * Because the optimal_io_boundary > max_segment_size * max_num_segments
2800 	 * So it split to the first 2 IOs.
2801 	 */
2802 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1);
2803 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15);
2804 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2805 
2806 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2807 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512);
2808 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2809 
2810 	/* The 3rd Child IO is because of the io boundary */
2811 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2812 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2813 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2814 
2815 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2816 	CU_ASSERT(rc == 0);
2817 	CU_ASSERT(g_io_done == false);
2818 
2819 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2820 	stub_complete_io(3);
2821 	CU_ASSERT(g_io_done == true);
2822 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2823 
2824 	/* Third case optimal_io_boundary < max_segment_size * max_num_segments */
2825 	bdev->max_segment_size = 17 * 512;
2826 	bdev->max_num_segments = 1;
2827 	g_io_done = false;
2828 
2829 	/* IO crossing the IO boundary requires split.
2830 	 * Child IO does not split.
2831 	 * Total 2 child IOs.
2832 	 */
2833 
2834 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1);
2835 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16);
2836 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2837 
2838 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2839 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2840 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2841 
2842 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2843 	CU_ASSERT(rc == 0);
2844 	CU_ASSERT(g_io_done == false);
2845 
2846 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2847 	stub_complete_io(2);
2848 	CU_ASSERT(g_io_done == true);
2849 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2850 
2851 	/* Now set up a more complex, multi-vector command that needs to be split,
2852 	 * including splitting iovecs.
2853 	 * optimal_io_boundary < max_segment_size * max_num_segments
2854 	 */
2855 	bdev->max_segment_size = 3 * 512;
2856 	bdev->max_num_segments = 6;
2857 	g_io_done = false;
2858 
2859 	iov[0].iov_base = (void *)0x10000;
2860 	iov[0].iov_len = 4 * 512;
2861 	iov[1].iov_base = (void *)0x20000;
2862 	iov[1].iov_len = 4 * 512;
2863 	iov[2].iov_base = (void *)0x30000;
2864 	iov[2].iov_len = 10 * 512;
2865 
2866 	/* IO crossing the IO boundary requires split.
2867 	 * The 1st child IO segment size exceeds the max_segment_size and after
2868 	 * splitting segment_size, the num_segments exceeds max_num_segments.
2869 	 * So 1st child IO will be split to 2 child IOs.
2870 	 * Total 3 child IOs.
2871 	 */
2872 
2873 	/* The first 2 IOs are in an IO boundary.
2874 	 * After splitting segment size the segment num exceeds.
2875 	 * So it splits to 2 child IOs.
2876 	 */
2877 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6);
2878 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3);
2879 	ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512);
2880 	ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3);
2881 	ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512);
2882 	ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3);
2883 	ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3);
2884 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2885 
2886 	/* The 2nd child IO has the left segment entry */
2887 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2888 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2);
2889 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2890 
2891 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2892 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2);
2893 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2894 
2895 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL);
2896 	CU_ASSERT(rc == 0);
2897 	CU_ASSERT(g_io_done == false);
2898 
2899 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2900 	stub_complete_io(3);
2901 	CU_ASSERT(g_io_done == true);
2902 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2903 
2904 	/* A very complicated case. Each sg entry exceeds max_segment_size
2905 	 * and split on io boundary.
2906 	 * optimal_io_boundary < max_segment_size * max_num_segments
2907 	 */
2908 	bdev->max_segment_size = 3 * 512;
2909 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2910 	g_io_done = false;
2911 
2912 	for (i = 0; i < 20; i++) {
2913 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2914 		iov[i].iov_len = 512 * 4;
2915 	}
2916 
2917 	/* IO crossing the IO boundary requires split.
2918 	 * 80 block length can split 5 child IOs base on offset and IO boundary.
2919 	 * Each iov entry needs to be split to 2 entries because of max_segment_size
2920 	 * Total 5 child IOs.
2921 	 */
2922 
2923 	/* 4 iov entries are in an IO boundary and each iov entry splits to 2.
2924 	 * So each child IO occupies 8 child iov entries.
2925 	 */
2926 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8);
2927 	for (i = 0; i < 4; i++) {
2928 		int iovcnt = i * 2;
2929 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2930 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2931 	}
2932 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2933 
2934 	/* 2nd child IO and total 16 child iov entries of parent IO */
2935 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8);
2936 	for (i = 4; i < 8; i++) {
2937 		int iovcnt = (i - 4) * 2;
2938 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2939 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2940 	}
2941 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2942 
2943 	/* 3rd child IO and total 24 child iov entries of parent IO */
2944 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8);
2945 	for (i = 8; i < 12; i++) {
2946 		int iovcnt = (i - 8) * 2;
2947 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2948 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2949 	}
2950 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2951 
2952 	/* 4th child IO and total 32 child iov entries of parent IO */
2953 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8);
2954 	for (i = 12; i < 16; i++) {
2955 		int iovcnt = (i - 12) * 2;
2956 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2957 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2958 	}
2959 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2960 
2961 	/* 5th child IO and because of the child iov entry it should be split
2962 	 * in next round.
2963 	 */
2964 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8);
2965 	for (i = 16; i < 20; i++) {
2966 		int iovcnt = (i - 16) * 2;
2967 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2968 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2969 	}
2970 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2971 
2972 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL);
2973 	CU_ASSERT(rc == 0);
2974 	CU_ASSERT(g_io_done == false);
2975 
2976 	/* First split round */
2977 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2978 	stub_complete_io(4);
2979 	CU_ASSERT(g_io_done == false);
2980 
2981 	/* Second split round */
2982 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2983 	stub_complete_io(1);
2984 	CU_ASSERT(g_io_done == true);
2985 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2986 
2987 	spdk_put_io_channel(io_ch);
2988 	spdk_bdev_close(desc);
2989 	free_bdev(bdev);
2990 	ut_fini_bdev();
2991 }
2992 
2993 static void
2994 bdev_io_split_with_io_wait(void)
2995 {
2996 	struct spdk_bdev *bdev;
2997 	struct spdk_bdev_desc *desc = NULL;
2998 	struct spdk_io_channel *io_ch;
2999 	struct spdk_bdev_channel *channel;
3000 	struct spdk_bdev_mgmt_channel *mgmt_ch;
3001 	struct spdk_bdev_opts bdev_opts = {};
3002 	struct iovec iov[3];
3003 	struct ut_expected_io *expected_io;
3004 	int rc;
3005 
3006 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3007 	bdev_opts.bdev_io_pool_size = 2;
3008 	bdev_opts.bdev_io_cache_size = 1;
3009 	ut_init_bdev(&bdev_opts);
3010 
3011 	bdev = allocate_bdev("bdev0");
3012 
3013 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3014 	CU_ASSERT(rc == 0);
3015 	CU_ASSERT(desc != NULL);
3016 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3017 	io_ch = spdk_bdev_get_io_channel(desc);
3018 	CU_ASSERT(io_ch != NULL);
3019 	channel = spdk_io_channel_get_ctx(io_ch);
3020 	mgmt_ch = channel->shared_resource->mgmt_ch;
3021 
3022 	bdev->optimal_io_boundary = 16;
3023 	bdev->split_on_optimal_io_boundary = true;
3024 
3025 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
3026 	CU_ASSERT(rc == 0);
3027 
3028 	/* Now test that a single-vector command is split correctly.
3029 	 * Offset 14, length 8, payload 0xF000
3030 	 *  Child - Offset 14, length 2, payload 0xF000
3031 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
3032 	 *
3033 	 * Set up the expected values before calling spdk_bdev_read_blocks
3034 	 */
3035 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
3036 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
3037 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3038 
3039 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
3040 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
3041 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3042 
3043 	/* The following children will be submitted sequentially due to the capacity of
3044 	 * spdk_bdev_io.
3045 	 */
3046 
3047 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
3048 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
3049 	CU_ASSERT(rc == 0);
3050 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
3051 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3052 
3053 	/* Completing the first read I/O will submit the first child */
3054 	stub_complete_io(1);
3055 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
3056 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3057 
3058 	/* Completing the first child will submit the second child */
3059 	stub_complete_io(1);
3060 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3061 
3062 	/* Complete the second child I/O.  This should result in our callback getting
3063 	 * invoked since the parent I/O is now complete.
3064 	 */
3065 	stub_complete_io(1);
3066 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3067 
3068 	/* Now set up a more complex, multi-vector command that needs to be split,
3069 	 *  including splitting iovecs.
3070 	 */
3071 	iov[0].iov_base = (void *)0x10000;
3072 	iov[0].iov_len = 512;
3073 	iov[1].iov_base = (void *)0x20000;
3074 	iov[1].iov_len = 20 * 512;
3075 	iov[2].iov_base = (void *)0x30000;
3076 	iov[2].iov_len = 11 * 512;
3077 
3078 	g_io_done = false;
3079 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
3080 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
3081 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
3082 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3083 
3084 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
3085 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
3086 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3087 
3088 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
3089 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
3090 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
3091 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3092 
3093 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
3094 	CU_ASSERT(rc == 0);
3095 	CU_ASSERT(g_io_done == false);
3096 
3097 	/* The following children will be submitted sequentially due to the capacity of
3098 	 * spdk_bdev_io.
3099 	 */
3100 
3101 	/* Completing the first child will submit the second child */
3102 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3103 	stub_complete_io(1);
3104 	CU_ASSERT(g_io_done == false);
3105 
3106 	/* Completing the second child will submit the third child */
3107 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3108 	stub_complete_io(1);
3109 	CU_ASSERT(g_io_done == false);
3110 
3111 	/* Completing the third child will result in our callback getting invoked
3112 	 * since the parent I/O is now complete.
3113 	 */
3114 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3115 	stub_complete_io(1);
3116 	CU_ASSERT(g_io_done == true);
3117 
3118 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
3119 
3120 	spdk_put_io_channel(io_ch);
3121 	spdk_bdev_close(desc);
3122 	free_bdev(bdev);
3123 	ut_fini_bdev();
3124 }
3125 
3126 static void
3127 bdev_io_write_unit_split_test(void)
3128 {
3129 	struct spdk_bdev *bdev;
3130 	struct spdk_bdev_desc *desc = NULL;
3131 	struct spdk_io_channel *io_ch;
3132 	struct spdk_bdev_opts bdev_opts = {};
3133 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 4];
3134 	struct ut_expected_io *expected_io;
3135 	uint64_t i;
3136 	int rc;
3137 
3138 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3139 	bdev_opts.bdev_io_pool_size = 512;
3140 	bdev_opts.bdev_io_cache_size = 64;
3141 	ut_init_bdev(&bdev_opts);
3142 
3143 	bdev = allocate_bdev("bdev0");
3144 
3145 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
3146 	CU_ASSERT(rc == 0);
3147 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3148 	io_ch = spdk_bdev_get_io_channel(desc);
3149 	CU_ASSERT(io_ch != NULL);
3150 
3151 	/* Write I/O 2x larger than write_unit_size should get split into 2 I/Os */
3152 	bdev->write_unit_size = 32;
3153 	bdev->split_on_write_unit = true;
3154 	g_io_done = false;
3155 
3156 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 32, 1);
3157 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 32 * 512);
3158 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3159 
3160 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 32, 1);
3161 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 32 * 512), 32 * 512);
3162 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3163 
3164 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
3165 	CU_ASSERT(rc == 0);
3166 	CU_ASSERT(g_io_done == false);
3167 
3168 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3169 	stub_complete_io(2);
3170 	CU_ASSERT(g_io_done == true);
3171 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3172 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3173 
3174 	/* Same as above but with optimal_io_boundary < write_unit_size - the I/O should be split
3175 	 * based on write_unit_size, not optimal_io_boundary */
3176 	bdev->split_on_optimal_io_boundary = true;
3177 	bdev->optimal_io_boundary = 16;
3178 	g_io_done = false;
3179 
3180 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
3181 	CU_ASSERT(rc == 0);
3182 	CU_ASSERT(g_io_done == false);
3183 
3184 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3185 	stub_complete_io(2);
3186 	CU_ASSERT(g_io_done == true);
3187 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3188 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3189 
3190 	/* Write I/O should fail if it is smaller than write_unit_size */
3191 	g_io_done = false;
3192 
3193 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 31, io_done, NULL);
3194 	CU_ASSERT(rc == 0);
3195 	CU_ASSERT(g_io_done == false);
3196 
3197 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3198 	poll_threads();
3199 	CU_ASSERT(g_io_done == true);
3200 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3201 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3202 
3203 	/* Same for I/O not aligned to write_unit_size */
3204 	g_io_done = false;
3205 
3206 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 1, 32, io_done, NULL);
3207 	CU_ASSERT(rc == 0);
3208 	CU_ASSERT(g_io_done == false);
3209 
3210 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3211 	poll_threads();
3212 	CU_ASSERT(g_io_done == true);
3213 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3214 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3215 
3216 	/* Write should fail if it needs to be split but there are not enough iovs to submit
3217 	 * an entire write unit */
3218 	bdev->write_unit_size = SPDK_COUNTOF(iov) / 2;
3219 	g_io_done = false;
3220 
3221 	for (i = 0; i < SPDK_COUNTOF(iov); i++) {
3222 		iov[i].iov_base = (void *)(0x1000 + 512 * i);
3223 		iov[i].iov_len = 512;
3224 	}
3225 
3226 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, SPDK_COUNTOF(iov), 0, SPDK_COUNTOF(iov),
3227 				     io_done, NULL);
3228 	CU_ASSERT(rc == 0);
3229 	CU_ASSERT(g_io_done == false);
3230 
3231 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3232 	poll_threads();
3233 	CU_ASSERT(g_io_done == true);
3234 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3235 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3236 
3237 	spdk_put_io_channel(io_ch);
3238 	spdk_bdev_close(desc);
3239 	free_bdev(bdev);
3240 	ut_fini_bdev();
3241 }
3242 
3243 static void
3244 bdev_io_alignment(void)
3245 {
3246 	struct spdk_bdev *bdev;
3247 	struct spdk_bdev_desc *desc = NULL;
3248 	struct spdk_io_channel *io_ch;
3249 	struct spdk_bdev_opts bdev_opts = {};
3250 	int rc;
3251 	void *buf = NULL;
3252 	struct iovec iovs[2];
3253 	int iovcnt;
3254 	uint64_t alignment;
3255 
3256 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3257 	bdev_opts.bdev_io_pool_size = 20;
3258 	bdev_opts.bdev_io_cache_size = 2;
3259 	ut_init_bdev(&bdev_opts);
3260 
3261 	fn_table.submit_request = stub_submit_request_get_buf;
3262 	bdev = allocate_bdev("bdev0");
3263 
3264 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3265 	CU_ASSERT(rc == 0);
3266 	CU_ASSERT(desc != NULL);
3267 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3268 	io_ch = spdk_bdev_get_io_channel(desc);
3269 	CU_ASSERT(io_ch != NULL);
3270 
3271 	/* Create aligned buffer */
3272 	rc = posix_memalign(&buf, 4096, 8192);
3273 	SPDK_CU_ASSERT_FATAL(rc == 0);
3274 
3275 	/* Pass aligned single buffer with no alignment required */
3276 	alignment = 1;
3277 	bdev->required_alignment = spdk_u32log2(alignment);
3278 
3279 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3280 	CU_ASSERT(rc == 0);
3281 	stub_complete_io(1);
3282 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3283 				    alignment));
3284 
3285 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3286 	CU_ASSERT(rc == 0);
3287 	stub_complete_io(1);
3288 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3289 				    alignment));
3290 
3291 	/* Pass unaligned single buffer with no alignment required */
3292 	alignment = 1;
3293 	bdev->required_alignment = spdk_u32log2(alignment);
3294 
3295 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3296 	CU_ASSERT(rc == 0);
3297 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3298 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3299 	stub_complete_io(1);
3300 
3301 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3302 	CU_ASSERT(rc == 0);
3303 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3304 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3305 	stub_complete_io(1);
3306 
3307 	/* Pass unaligned single buffer with 512 alignment required */
3308 	alignment = 512;
3309 	bdev->required_alignment = spdk_u32log2(alignment);
3310 
3311 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3312 	CU_ASSERT(rc == 0);
3313 	CU_ASSERT(g_bdev_io->internal.bounce_buf.orig_iovcnt == 1);
3314 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_buf.iov);
3315 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3316 				    alignment));
3317 	stub_complete_io(1);
3318 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3319 
3320 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3321 	CU_ASSERT(rc == 0);
3322 	CU_ASSERT(g_bdev_io->internal.bounce_buf.orig_iovcnt == 1);
3323 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_buf.iov);
3324 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3325 				    alignment));
3326 	stub_complete_io(1);
3327 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3328 
3329 	/* Pass unaligned single buffer with 4096 alignment required */
3330 	alignment = 4096;
3331 	bdev->required_alignment = spdk_u32log2(alignment);
3332 
3333 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3334 	CU_ASSERT(rc == 0);
3335 	CU_ASSERT(g_bdev_io->internal.bounce_buf.orig_iovcnt == 1);
3336 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_buf.iov);
3337 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3338 				    alignment));
3339 	stub_complete_io(1);
3340 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3341 
3342 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3343 	CU_ASSERT(rc == 0);
3344 	CU_ASSERT(g_bdev_io->internal.bounce_buf.orig_iovcnt == 1);
3345 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_buf.iov);
3346 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3347 				    alignment));
3348 	stub_complete_io(1);
3349 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3350 
3351 	/* Pass aligned iovs with no alignment required */
3352 	alignment = 1;
3353 	bdev->required_alignment = spdk_u32log2(alignment);
3354 
3355 	iovcnt = 1;
3356 	iovs[0].iov_base = buf;
3357 	iovs[0].iov_len = 512;
3358 
3359 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3360 	CU_ASSERT(rc == 0);
3361 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3362 	stub_complete_io(1);
3363 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3364 
3365 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3366 	CU_ASSERT(rc == 0);
3367 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3368 	stub_complete_io(1);
3369 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3370 
3371 	/* Pass unaligned iovs with no alignment required */
3372 	alignment = 1;
3373 	bdev->required_alignment = spdk_u32log2(alignment);
3374 
3375 	iovcnt = 2;
3376 	iovs[0].iov_base = buf + 16;
3377 	iovs[0].iov_len = 256;
3378 	iovs[1].iov_base = buf + 16 + 256 + 32;
3379 	iovs[1].iov_len = 256;
3380 
3381 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3382 	CU_ASSERT(rc == 0);
3383 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3384 	stub_complete_io(1);
3385 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3386 
3387 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3388 	CU_ASSERT(rc == 0);
3389 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3390 	stub_complete_io(1);
3391 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3392 
3393 	/* Pass unaligned iov with 2048 alignment required */
3394 	alignment = 2048;
3395 	bdev->required_alignment = spdk_u32log2(alignment);
3396 
3397 	iovcnt = 2;
3398 	iovs[0].iov_base = buf + 16;
3399 	iovs[0].iov_len = 256;
3400 	iovs[1].iov_base = buf + 16 + 256 + 32;
3401 	iovs[1].iov_len = 256;
3402 
3403 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3404 	CU_ASSERT(rc == 0);
3405 	CU_ASSERT(g_bdev_io->internal.bounce_buf.orig_iovcnt == iovcnt);
3406 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_buf.iov);
3407 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3408 				    alignment));
3409 	stub_complete_io(1);
3410 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3411 
3412 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3413 	CU_ASSERT(rc == 0);
3414 	CU_ASSERT(g_bdev_io->internal.bounce_buf.orig_iovcnt == iovcnt);
3415 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_buf.iov);
3416 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3417 				    alignment));
3418 	stub_complete_io(1);
3419 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3420 
3421 	/* Pass iov without allocated buffer without alignment required */
3422 	alignment = 1;
3423 	bdev->required_alignment = spdk_u32log2(alignment);
3424 
3425 	iovcnt = 1;
3426 	iovs[0].iov_base = NULL;
3427 	iovs[0].iov_len = 0;
3428 
3429 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3430 	CU_ASSERT(rc == 0);
3431 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3432 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3433 				    alignment));
3434 	stub_complete_io(1);
3435 
3436 	/* Pass iov without allocated buffer with 1024 alignment required */
3437 	alignment = 1024;
3438 	bdev->required_alignment = spdk_u32log2(alignment);
3439 
3440 	iovcnt = 1;
3441 	iovs[0].iov_base = NULL;
3442 	iovs[0].iov_len = 0;
3443 
3444 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3445 	CU_ASSERT(rc == 0);
3446 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3447 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3448 				    alignment));
3449 	stub_complete_io(1);
3450 
3451 	spdk_put_io_channel(io_ch);
3452 	spdk_bdev_close(desc);
3453 	free_bdev(bdev);
3454 	fn_table.submit_request = stub_submit_request;
3455 	ut_fini_bdev();
3456 
3457 	free(buf);
3458 }
3459 
3460 static void
3461 bdev_io_alignment_with_boundary(void)
3462 {
3463 	struct spdk_bdev *bdev;
3464 	struct spdk_bdev_desc *desc = NULL;
3465 	struct spdk_io_channel *io_ch;
3466 	struct spdk_bdev_opts bdev_opts = {};
3467 	int rc;
3468 	void *buf = NULL;
3469 	struct iovec iovs[2];
3470 	int iovcnt;
3471 	uint64_t alignment;
3472 
3473 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3474 	bdev_opts.bdev_io_pool_size = 20;
3475 	bdev_opts.bdev_io_cache_size = 2;
3476 	bdev_opts.opts_size = sizeof(bdev_opts);
3477 	ut_init_bdev(&bdev_opts);
3478 
3479 	fn_table.submit_request = stub_submit_request_get_buf;
3480 	bdev = allocate_bdev("bdev0");
3481 
3482 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3483 	CU_ASSERT(rc == 0);
3484 	CU_ASSERT(desc != NULL);
3485 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3486 	io_ch = spdk_bdev_get_io_channel(desc);
3487 	CU_ASSERT(io_ch != NULL);
3488 
3489 	/* Create aligned buffer */
3490 	rc = posix_memalign(&buf, 4096, 131072);
3491 	SPDK_CU_ASSERT_FATAL(rc == 0);
3492 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3493 
3494 #ifdef NOTDEF
3495 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
3496 	alignment = 512;
3497 	bdev->required_alignment = spdk_u32log2(alignment);
3498 	bdev->optimal_io_boundary = 2;
3499 	bdev->split_on_optimal_io_boundary = true;
3500 
3501 	iovcnt = 1;
3502 	iovs[0].iov_base = NULL;
3503 	iovs[0].iov_len = 512 * 3;
3504 
3505 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3506 	CU_ASSERT(rc == 0);
3507 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3508 	stub_complete_io(2);
3509 
3510 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
3511 	alignment = 512;
3512 	bdev->required_alignment = spdk_u32log2(alignment);
3513 	bdev->optimal_io_boundary = 16;
3514 	bdev->split_on_optimal_io_boundary = true;
3515 
3516 	iovcnt = 1;
3517 	iovs[0].iov_base = NULL;
3518 	iovs[0].iov_len = 512 * 16;
3519 
3520 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
3521 	CU_ASSERT(rc == 0);
3522 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3523 	stub_complete_io(2);
3524 
3525 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
3526 	alignment = 512;
3527 	bdev->required_alignment = spdk_u32log2(alignment);
3528 	bdev->optimal_io_boundary = 128;
3529 	bdev->split_on_optimal_io_boundary = true;
3530 
3531 	iovcnt = 1;
3532 	iovs[0].iov_base = buf + 16;
3533 	iovs[0].iov_len = 512 * 160;
3534 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3535 	CU_ASSERT(rc == 0);
3536 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3537 	stub_complete_io(2);
3538 
3539 #endif
3540 
3541 	/* 512 * 3 with 2 IO boundary */
3542 	alignment = 512;
3543 	bdev->required_alignment = spdk_u32log2(alignment);
3544 	bdev->optimal_io_boundary = 2;
3545 	bdev->split_on_optimal_io_boundary = true;
3546 
3547 	iovcnt = 2;
3548 	iovs[0].iov_base = buf + 16;
3549 	iovs[0].iov_len = 512;
3550 	iovs[1].iov_base = buf + 16 + 512 + 32;
3551 	iovs[1].iov_len = 1024;
3552 
3553 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3554 	CU_ASSERT(rc == 0);
3555 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3556 	stub_complete_io(2);
3557 
3558 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3559 	CU_ASSERT(rc == 0);
3560 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3561 	stub_complete_io(2);
3562 
3563 	/* 512 * 64 with 32 IO boundary */
3564 	bdev->optimal_io_boundary = 32;
3565 	iovcnt = 2;
3566 	iovs[0].iov_base = buf + 16;
3567 	iovs[0].iov_len = 16384;
3568 	iovs[1].iov_base = buf + 16 + 16384 + 32;
3569 	iovs[1].iov_len = 16384;
3570 
3571 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3572 	CU_ASSERT(rc == 0);
3573 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3574 	stub_complete_io(3);
3575 
3576 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3577 	CU_ASSERT(rc == 0);
3578 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3579 	stub_complete_io(3);
3580 
3581 	/* 512 * 160 with 32 IO boundary */
3582 	iovcnt = 1;
3583 	iovs[0].iov_base = buf + 16;
3584 	iovs[0].iov_len = 16384 + 65536;
3585 
3586 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3587 	CU_ASSERT(rc == 0);
3588 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
3589 	stub_complete_io(6);
3590 
3591 	spdk_put_io_channel(io_ch);
3592 	spdk_bdev_close(desc);
3593 	free_bdev(bdev);
3594 	fn_table.submit_request = stub_submit_request;
3595 	ut_fini_bdev();
3596 
3597 	free(buf);
3598 }
3599 
3600 static void
3601 histogram_status_cb(void *cb_arg, int status)
3602 {
3603 	g_status = status;
3604 }
3605 
3606 static void
3607 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3608 {
3609 	g_status = status;
3610 	g_histogram = histogram;
3611 }
3612 
3613 static void
3614 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
3615 		   uint64_t total, uint64_t so_far)
3616 {
3617 	g_count += count;
3618 }
3619 
3620 static void
3621 histogram_channel_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3622 {
3623 	spdk_histogram_data_fn cb_fn = cb_arg;
3624 
3625 	g_status = status;
3626 
3627 	if (status == 0) {
3628 		spdk_histogram_data_iterate(histogram, cb_fn, NULL);
3629 	}
3630 }
3631 
3632 static void
3633 bdev_histograms(void)
3634 {
3635 	struct spdk_bdev *bdev;
3636 	struct spdk_bdev_desc *desc = NULL;
3637 	struct spdk_io_channel *ch;
3638 	struct spdk_histogram_data *histogram;
3639 	uint8_t buf[4096];
3640 	int rc;
3641 
3642 	ut_init_bdev(NULL);
3643 
3644 	bdev = allocate_bdev("bdev");
3645 
3646 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3647 	CU_ASSERT(rc == 0);
3648 	CU_ASSERT(desc != NULL);
3649 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3650 
3651 	ch = spdk_bdev_get_io_channel(desc);
3652 	CU_ASSERT(ch != NULL);
3653 
3654 	/* Enable histogram */
3655 	g_status = -1;
3656 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
3657 	poll_threads();
3658 	CU_ASSERT(g_status == 0);
3659 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3660 
3661 	/* Allocate histogram */
3662 	histogram = spdk_histogram_data_alloc();
3663 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
3664 
3665 	/* Check if histogram is zeroed */
3666 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3667 	poll_threads();
3668 	CU_ASSERT(g_status == 0);
3669 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3670 
3671 	g_count = 0;
3672 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3673 
3674 	CU_ASSERT(g_count == 0);
3675 
3676 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3677 	CU_ASSERT(rc == 0);
3678 
3679 	spdk_delay_us(10);
3680 	stub_complete_io(1);
3681 	poll_threads();
3682 
3683 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3684 	CU_ASSERT(rc == 0);
3685 
3686 	spdk_delay_us(10);
3687 	stub_complete_io(1);
3688 	poll_threads();
3689 
3690 	/* Check if histogram gathered data from all I/O channels */
3691 	g_histogram = NULL;
3692 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3693 	poll_threads();
3694 	CU_ASSERT(g_status == 0);
3695 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3696 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3697 
3698 	g_count = 0;
3699 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3700 	CU_ASSERT(g_count == 2);
3701 
3702 	g_count = 0;
3703 	spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, histogram_io_count);
3704 	CU_ASSERT(g_status == 0);
3705 	CU_ASSERT(g_count == 2);
3706 
3707 	/* Disable histogram */
3708 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
3709 	poll_threads();
3710 	CU_ASSERT(g_status == 0);
3711 	CU_ASSERT(bdev->internal.histogram_enabled == false);
3712 
3713 	/* Try to run histogram commands on disabled bdev */
3714 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3715 	poll_threads();
3716 	CU_ASSERT(g_status == -EFAULT);
3717 
3718 	spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, NULL);
3719 	CU_ASSERT(g_status == -EFAULT);
3720 
3721 	spdk_histogram_data_free(histogram);
3722 	spdk_put_io_channel(ch);
3723 	spdk_bdev_close(desc);
3724 	free_bdev(bdev);
3725 	ut_fini_bdev();
3726 }
3727 
3728 static void
3729 _bdev_compare(bool emulated)
3730 {
3731 	struct spdk_bdev *bdev;
3732 	struct spdk_bdev_desc *desc = NULL;
3733 	struct spdk_io_channel *ioch;
3734 	struct ut_expected_io *expected_io;
3735 	uint64_t offset, num_blocks;
3736 	uint32_t num_completed;
3737 	char aa_buf[512];
3738 	char bb_buf[512];
3739 	struct iovec compare_iov;
3740 	uint8_t expected_io_type;
3741 	int rc;
3742 
3743 	if (emulated) {
3744 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3745 	} else {
3746 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3747 	}
3748 
3749 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3750 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3751 
3752 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3753 
3754 	ut_init_bdev(NULL);
3755 	fn_table.submit_request = stub_submit_request_get_buf;
3756 	bdev = allocate_bdev("bdev");
3757 
3758 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3759 	CU_ASSERT_EQUAL(rc, 0);
3760 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3761 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3762 	ioch = spdk_bdev_get_io_channel(desc);
3763 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3764 
3765 	fn_table.submit_request = stub_submit_request_get_buf;
3766 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3767 
3768 	offset = 50;
3769 	num_blocks = 1;
3770 	compare_iov.iov_base = aa_buf;
3771 	compare_iov.iov_len = sizeof(aa_buf);
3772 
3773 	/* 1. successful comparev */
3774 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3775 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3776 
3777 	g_io_done = false;
3778 	g_compare_read_buf = aa_buf;
3779 	g_compare_read_buf_len = sizeof(aa_buf);
3780 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3781 	CU_ASSERT_EQUAL(rc, 0);
3782 	num_completed = stub_complete_io(1);
3783 	CU_ASSERT_EQUAL(num_completed, 1);
3784 	CU_ASSERT(g_io_done == true);
3785 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3786 
3787 	/* 2. miscompare comparev */
3788 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3789 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3790 
3791 	g_io_done = false;
3792 	g_compare_read_buf = bb_buf;
3793 	g_compare_read_buf_len = sizeof(bb_buf);
3794 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3795 	CU_ASSERT_EQUAL(rc, 0);
3796 	num_completed = stub_complete_io(1);
3797 	CU_ASSERT_EQUAL(num_completed, 1);
3798 	CU_ASSERT(g_io_done == true);
3799 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3800 
3801 	/* 3. successful compare */
3802 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3803 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3804 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3805 
3806 	g_io_done = false;
3807 	g_compare_read_buf = aa_buf;
3808 	g_compare_read_buf_len = sizeof(aa_buf);
3809 	rc = spdk_bdev_compare_blocks(desc, ioch, aa_buf, offset, num_blocks, io_done, NULL);
3810 	CU_ASSERT_EQUAL(rc, 0);
3811 	num_completed = stub_complete_io(1);
3812 	CU_ASSERT_EQUAL(num_completed, 1);
3813 	CU_ASSERT(g_io_done == true);
3814 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3815 
3816 	/* 4. miscompare compare */
3817 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3818 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3819 
3820 	g_io_done = false;
3821 	g_compare_read_buf = bb_buf;
3822 	g_compare_read_buf_len = sizeof(bb_buf);
3823 	rc = spdk_bdev_compare_blocks(desc, ioch, aa_buf, offset, num_blocks, io_done, NULL);
3824 	CU_ASSERT_EQUAL(rc, 0);
3825 	num_completed = stub_complete_io(1);
3826 	CU_ASSERT_EQUAL(num_completed, 1);
3827 	CU_ASSERT(g_io_done == true);
3828 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3829 
3830 	spdk_put_io_channel(ioch);
3831 	spdk_bdev_close(desc);
3832 	free_bdev(bdev);
3833 	fn_table.submit_request = stub_submit_request;
3834 	ut_fini_bdev();
3835 
3836 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3837 
3838 	g_compare_read_buf = NULL;
3839 }
3840 
3841 static void
3842 _bdev_compare_with_md(bool emulated)
3843 {
3844 	struct spdk_bdev *bdev;
3845 	struct spdk_bdev_desc *desc = NULL;
3846 	struct spdk_io_channel *ioch;
3847 	struct ut_expected_io *expected_io;
3848 	uint64_t offset, num_blocks;
3849 	uint32_t num_completed;
3850 	char buf[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3851 	char buf_interleaved_miscompare[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3852 	char buf_miscompare[1024 /* 2 * blocklen */];
3853 	char md_buf[16];
3854 	char md_buf_miscompare[16];
3855 	struct iovec compare_iov;
3856 	uint8_t expected_io_type;
3857 	int rc;
3858 
3859 	if (emulated) {
3860 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3861 	} else {
3862 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3863 	}
3864 
3865 	memset(buf, 0xaa, sizeof(buf));
3866 	memset(buf_interleaved_miscompare, 0xaa, sizeof(buf_interleaved_miscompare));
3867 	/* make last md different */
3868 	memset(buf_interleaved_miscompare + 1024 + 8, 0xbb, 8);
3869 	memset(buf_miscompare, 0xbb, sizeof(buf_miscompare));
3870 	memset(md_buf, 0xaa, 16);
3871 	memset(md_buf_miscompare, 0xbb, 16);
3872 
3873 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3874 
3875 	ut_init_bdev(NULL);
3876 	fn_table.submit_request = stub_submit_request_get_buf;
3877 	bdev = allocate_bdev("bdev");
3878 
3879 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3880 	CU_ASSERT_EQUAL(rc, 0);
3881 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3882 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3883 	ioch = spdk_bdev_get_io_channel(desc);
3884 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3885 
3886 	fn_table.submit_request = stub_submit_request_get_buf;
3887 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3888 
3889 	offset = 50;
3890 	num_blocks = 2;
3891 
3892 	/* interleaved md & data */
3893 	bdev->md_interleave = true;
3894 	bdev->md_len = 8;
3895 	bdev->blocklen = 512 + 8;
3896 	compare_iov.iov_base = buf;
3897 	compare_iov.iov_len = sizeof(buf);
3898 
3899 	/* 1. successful compare with md interleaved */
3900 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3901 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3902 
3903 	g_io_done = false;
3904 	g_compare_read_buf = buf;
3905 	g_compare_read_buf_len = sizeof(buf);
3906 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3907 	CU_ASSERT_EQUAL(rc, 0);
3908 	num_completed = stub_complete_io(1);
3909 	CU_ASSERT_EQUAL(num_completed, 1);
3910 	CU_ASSERT(g_io_done == true);
3911 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3912 
3913 	/* 2. miscompare with md interleaved */
3914 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3915 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3916 
3917 	g_io_done = false;
3918 	g_compare_read_buf = buf_interleaved_miscompare;
3919 	g_compare_read_buf_len = sizeof(buf_interleaved_miscompare);
3920 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3921 	CU_ASSERT_EQUAL(rc, 0);
3922 	num_completed = stub_complete_io(1);
3923 	CU_ASSERT_EQUAL(num_completed, 1);
3924 	CU_ASSERT(g_io_done == true);
3925 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3926 
3927 	/* Separate data & md buffers */
3928 	bdev->md_interleave = false;
3929 	bdev->blocklen = 512;
3930 	compare_iov.iov_base = buf;
3931 	compare_iov.iov_len = 1024;
3932 
3933 	/* 3. successful compare with md separated */
3934 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3935 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3936 
3937 	g_io_done = false;
3938 	g_compare_read_buf = buf;
3939 	g_compare_read_buf_len = 1024;
3940 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3941 	g_compare_md_buf = md_buf;
3942 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3943 					       offset, num_blocks, io_done, NULL);
3944 	CU_ASSERT_EQUAL(rc, 0);
3945 	num_completed = stub_complete_io(1);
3946 	CU_ASSERT_EQUAL(num_completed, 1);
3947 	CU_ASSERT(g_io_done == true);
3948 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3949 
3950 	/* 4. miscompare with md separated where md buf is different */
3951 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3952 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3953 
3954 	g_io_done = false;
3955 	g_compare_read_buf = buf;
3956 	g_compare_read_buf_len = 1024;
3957 	g_compare_md_buf = md_buf_miscompare;
3958 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3959 					       offset, num_blocks, io_done, NULL);
3960 	CU_ASSERT_EQUAL(rc, 0);
3961 	num_completed = stub_complete_io(1);
3962 	CU_ASSERT_EQUAL(num_completed, 1);
3963 	CU_ASSERT(g_io_done == true);
3964 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3965 
3966 	/* 5. miscompare with md separated where buf is different */
3967 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3968 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3969 
3970 	g_io_done = false;
3971 	g_compare_read_buf = buf_miscompare;
3972 	g_compare_read_buf_len = sizeof(buf_miscompare);
3973 	g_compare_md_buf = md_buf;
3974 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3975 					       offset, num_blocks, io_done, NULL);
3976 	CU_ASSERT_EQUAL(rc, 0);
3977 	num_completed = stub_complete_io(1);
3978 	CU_ASSERT_EQUAL(num_completed, 1);
3979 	CU_ASSERT(g_io_done == true);
3980 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3981 
3982 	bdev->md_len = 0;
3983 	g_compare_md_buf = NULL;
3984 
3985 	spdk_put_io_channel(ioch);
3986 	spdk_bdev_close(desc);
3987 	free_bdev(bdev);
3988 	fn_table.submit_request = stub_submit_request;
3989 	ut_fini_bdev();
3990 
3991 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3992 
3993 	g_compare_read_buf = NULL;
3994 }
3995 
3996 static void
3997 bdev_compare(void)
3998 {
3999 	_bdev_compare(false);
4000 	_bdev_compare_with_md(false);
4001 }
4002 
4003 static void
4004 bdev_compare_emulated(void)
4005 {
4006 	_bdev_compare(true);
4007 	_bdev_compare_with_md(true);
4008 }
4009 
4010 static void
4011 bdev_compare_and_write(void)
4012 {
4013 	struct spdk_bdev *bdev;
4014 	struct spdk_bdev_desc *desc = NULL;
4015 	struct spdk_io_channel *ioch;
4016 	struct ut_expected_io *expected_io;
4017 	uint64_t offset, num_blocks;
4018 	uint32_t num_completed;
4019 	char aa_buf[512];
4020 	char bb_buf[512];
4021 	char cc_buf[512];
4022 	char write_buf[512];
4023 	struct iovec compare_iov;
4024 	struct iovec write_iov;
4025 	int rc;
4026 
4027 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4028 	memset(bb_buf, 0xbb, sizeof(bb_buf));
4029 	memset(cc_buf, 0xcc, sizeof(cc_buf));
4030 
4031 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
4032 
4033 	ut_init_bdev(NULL);
4034 	fn_table.submit_request = stub_submit_request_get_buf;
4035 	bdev = allocate_bdev("bdev");
4036 
4037 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4038 	CU_ASSERT_EQUAL(rc, 0);
4039 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4040 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4041 	ioch = spdk_bdev_get_io_channel(desc);
4042 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4043 
4044 	fn_table.submit_request = stub_submit_request_get_buf;
4045 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4046 
4047 	offset = 50;
4048 	num_blocks = 1;
4049 	compare_iov.iov_base = aa_buf;
4050 	compare_iov.iov_len = sizeof(aa_buf);
4051 	write_iov.iov_base = bb_buf;
4052 	write_iov.iov_len = sizeof(bb_buf);
4053 
4054 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
4055 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4056 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
4057 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4058 
4059 	g_io_done = false;
4060 	g_compare_read_buf = aa_buf;
4061 	g_compare_read_buf_len = sizeof(aa_buf);
4062 	memset(write_buf, 0, sizeof(write_buf));
4063 	g_compare_write_buf = write_buf;
4064 	g_compare_write_buf_len = sizeof(write_buf);
4065 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
4066 			offset, num_blocks, io_done, NULL);
4067 	/* Trigger range locking */
4068 	poll_threads();
4069 	CU_ASSERT_EQUAL(rc, 0);
4070 	num_completed = stub_complete_io(1);
4071 	CU_ASSERT_EQUAL(num_completed, 1);
4072 	CU_ASSERT(g_io_done == false);
4073 	num_completed = stub_complete_io(1);
4074 	/* Trigger range unlocking */
4075 	poll_threads();
4076 	CU_ASSERT_EQUAL(num_completed, 1);
4077 	CU_ASSERT(g_io_done == true);
4078 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4079 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
4080 
4081 	/* Test miscompare */
4082 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
4083 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4084 
4085 	g_io_done = false;
4086 	g_compare_read_buf = cc_buf;
4087 	g_compare_read_buf_len = sizeof(cc_buf);
4088 	memset(write_buf, 0, sizeof(write_buf));
4089 	g_compare_write_buf = write_buf;
4090 	g_compare_write_buf_len = sizeof(write_buf);
4091 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
4092 			offset, num_blocks, io_done, NULL);
4093 	/* Trigger range locking */
4094 	poll_threads();
4095 	CU_ASSERT_EQUAL(rc, 0);
4096 	num_completed = stub_complete_io(1);
4097 	/* Trigger range unlocking earlier because we expect error here */
4098 	poll_threads();
4099 	CU_ASSERT_EQUAL(num_completed, 1);
4100 	CU_ASSERT(g_io_done == true);
4101 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
4102 	num_completed = stub_complete_io(1);
4103 	CU_ASSERT_EQUAL(num_completed, 0);
4104 
4105 	spdk_put_io_channel(ioch);
4106 	spdk_bdev_close(desc);
4107 	free_bdev(bdev);
4108 	fn_table.submit_request = stub_submit_request;
4109 	ut_fini_bdev();
4110 
4111 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
4112 
4113 	g_compare_read_buf = NULL;
4114 	g_compare_write_buf = NULL;
4115 }
4116 
4117 static void
4118 bdev_write_zeroes(void)
4119 {
4120 	struct spdk_bdev *bdev;
4121 	struct spdk_bdev_desc *desc = NULL;
4122 	struct spdk_io_channel *ioch;
4123 	struct ut_expected_io *expected_io;
4124 	uint64_t offset, num_io_blocks, num_blocks;
4125 	uint32_t num_completed, num_requests;
4126 	int rc;
4127 
4128 	ut_init_bdev(NULL);
4129 	bdev = allocate_bdev("bdev");
4130 
4131 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4132 	CU_ASSERT_EQUAL(rc, 0);
4133 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4134 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4135 	ioch = spdk_bdev_get_io_channel(desc);
4136 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4137 
4138 	fn_table.submit_request = stub_submit_request;
4139 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4140 
4141 	/* First test that if the bdev supports write_zeroes, the request won't be split */
4142 	bdev->md_len = 0;
4143 	bdev->blocklen = 4096;
4144 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
4145 
4146 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
4147 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4148 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4149 	CU_ASSERT_EQUAL(rc, 0);
4150 	num_completed = stub_complete_io(1);
4151 	CU_ASSERT_EQUAL(num_completed, 1);
4152 
4153 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
4154 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
4155 	bdev->max_write_zeroes = bdev_get_max_write(bdev, ZERO_BUFFER_SIZE);
4156 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
4157 	num_requests = 2;
4158 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
4159 
4160 	for (offset = 0; offset < num_requests; ++offset) {
4161 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
4162 						   offset * num_io_blocks, num_io_blocks, 0);
4163 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4164 	}
4165 
4166 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4167 	CU_ASSERT_EQUAL(rc, 0);
4168 	num_completed = stub_complete_io(num_requests);
4169 	CU_ASSERT_EQUAL(num_completed, num_requests);
4170 
4171 	/* Check that the splitting is correct if bdev has interleaved metadata */
4172 	bdev->md_interleave = true;
4173 	bdev->md_len = 64;
4174 	bdev->blocklen = 4096 + 64;
4175 	bdev->max_write_zeroes = bdev_get_max_write(bdev, ZERO_BUFFER_SIZE);
4176 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
4177 
4178 	num_requests = offset = 0;
4179 	while (offset < num_blocks) {
4180 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
4181 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
4182 						   offset, num_io_blocks, 0);
4183 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4184 		offset += num_io_blocks;
4185 		num_requests++;
4186 	}
4187 
4188 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4189 	CU_ASSERT_EQUAL(rc, 0);
4190 	num_completed = stub_complete_io(num_requests);
4191 	CU_ASSERT_EQUAL(num_completed, num_requests);
4192 	num_completed = stub_complete_io(num_requests);
4193 	assert(num_completed == 0);
4194 
4195 	/* Check the the same for separate metadata buffer */
4196 	bdev->md_interleave = false;
4197 	bdev->md_len = 64;
4198 	bdev->blocklen = 4096;
4199 	bdev->max_write_zeroes = bdev_get_max_write(bdev, ZERO_BUFFER_SIZE);
4200 
4201 	num_requests = offset = 0;
4202 	while (offset < num_blocks) {
4203 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
4204 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
4205 						   offset, num_io_blocks, 0);
4206 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
4207 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4208 		offset += num_io_blocks;
4209 		num_requests++;
4210 	}
4211 
4212 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4213 	CU_ASSERT_EQUAL(rc, 0);
4214 	num_completed = stub_complete_io(num_requests);
4215 	CU_ASSERT_EQUAL(num_completed, num_requests);
4216 
4217 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
4218 	spdk_put_io_channel(ioch);
4219 	spdk_bdev_close(desc);
4220 	free_bdev(bdev);
4221 	ut_fini_bdev();
4222 }
4223 
4224 static void
4225 bdev_zcopy_write(void)
4226 {
4227 	struct spdk_bdev *bdev;
4228 	struct spdk_bdev_desc *desc = NULL;
4229 	struct spdk_io_channel *ioch;
4230 	struct ut_expected_io *expected_io;
4231 	uint64_t offset, num_blocks;
4232 	uint32_t num_completed;
4233 	char aa_buf[512];
4234 	struct iovec iov;
4235 	int rc;
4236 	const bool populate = false;
4237 	const bool commit = true;
4238 
4239 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4240 
4241 	ut_init_bdev(NULL);
4242 	bdev = allocate_bdev("bdev");
4243 
4244 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4245 	CU_ASSERT_EQUAL(rc, 0);
4246 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4247 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4248 	ioch = spdk_bdev_get_io_channel(desc);
4249 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4250 
4251 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4252 
4253 	offset = 50;
4254 	num_blocks = 1;
4255 	iov.iov_base = NULL;
4256 	iov.iov_len = 0;
4257 
4258 	g_zcopy_read_buf = (void *) 0x1122334455667788UL;
4259 	g_zcopy_read_buf_len = (uint32_t) -1;
4260 	/* Do a zcopy start for a write (populate=false) */
4261 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4262 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4263 	g_io_done = false;
4264 	g_zcopy_write_buf = aa_buf;
4265 	g_zcopy_write_buf_len = sizeof(aa_buf);
4266 	g_zcopy_bdev_io = NULL;
4267 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4268 	CU_ASSERT_EQUAL(rc, 0);
4269 	num_completed = stub_complete_io(1);
4270 	CU_ASSERT_EQUAL(num_completed, 1);
4271 	CU_ASSERT(g_io_done == true);
4272 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4273 	/* Check that the iov has been set up */
4274 	CU_ASSERT(iov.iov_base == g_zcopy_write_buf);
4275 	CU_ASSERT(iov.iov_len == g_zcopy_write_buf_len);
4276 	/* Check that the bdev_io has been saved */
4277 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4278 	/* Now do the zcopy end for a write (commit=true) */
4279 	g_io_done = false;
4280 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4281 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4282 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4283 	CU_ASSERT_EQUAL(rc, 0);
4284 	num_completed = stub_complete_io(1);
4285 	CU_ASSERT_EQUAL(num_completed, 1);
4286 	CU_ASSERT(g_io_done == true);
4287 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4288 	/* Check the g_zcopy are reset by io_done */
4289 	CU_ASSERT(g_zcopy_write_buf == NULL);
4290 	CU_ASSERT(g_zcopy_write_buf_len == 0);
4291 	/* Check that io_done has freed the g_zcopy_bdev_io */
4292 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4293 
4294 	/* Check the zcopy read buffer has not been touched which
4295 	 * ensures that the correct buffers were used.
4296 	 */
4297 	CU_ASSERT(g_zcopy_read_buf == (void *) 0x1122334455667788UL);
4298 	CU_ASSERT(g_zcopy_read_buf_len == (uint32_t) -1);
4299 
4300 	spdk_put_io_channel(ioch);
4301 	spdk_bdev_close(desc);
4302 	free_bdev(bdev);
4303 	ut_fini_bdev();
4304 }
4305 
4306 static void
4307 bdev_zcopy_read(void)
4308 {
4309 	struct spdk_bdev *bdev;
4310 	struct spdk_bdev_desc *desc = NULL;
4311 	struct spdk_io_channel *ioch;
4312 	struct ut_expected_io *expected_io;
4313 	uint64_t offset, num_blocks;
4314 	uint32_t num_completed;
4315 	char aa_buf[512];
4316 	struct iovec iov;
4317 	int rc;
4318 	const bool populate = true;
4319 	const bool commit = false;
4320 
4321 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4322 
4323 	ut_init_bdev(NULL);
4324 	bdev = allocate_bdev("bdev");
4325 
4326 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4327 	CU_ASSERT_EQUAL(rc, 0);
4328 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4329 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4330 	ioch = spdk_bdev_get_io_channel(desc);
4331 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4332 
4333 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4334 
4335 	offset = 50;
4336 	num_blocks = 1;
4337 	iov.iov_base = NULL;
4338 	iov.iov_len = 0;
4339 
4340 	g_zcopy_write_buf = (void *) 0x1122334455667788UL;
4341 	g_zcopy_write_buf_len = (uint32_t) -1;
4342 
4343 	/* Do a zcopy start for a read (populate=true) */
4344 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4345 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4346 	g_io_done = false;
4347 	g_zcopy_read_buf = aa_buf;
4348 	g_zcopy_read_buf_len = sizeof(aa_buf);
4349 	g_zcopy_bdev_io = NULL;
4350 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4351 	CU_ASSERT_EQUAL(rc, 0);
4352 	num_completed = stub_complete_io(1);
4353 	CU_ASSERT_EQUAL(num_completed, 1);
4354 	CU_ASSERT(g_io_done == true);
4355 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4356 	/* Check that the iov has been set up */
4357 	CU_ASSERT(iov.iov_base == g_zcopy_read_buf);
4358 	CU_ASSERT(iov.iov_len == g_zcopy_read_buf_len);
4359 	/* Check that the bdev_io has been saved */
4360 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4361 
4362 	/* Now do the zcopy end for a read (commit=false) */
4363 	g_io_done = false;
4364 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4365 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4366 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4367 	CU_ASSERT_EQUAL(rc, 0);
4368 	num_completed = stub_complete_io(1);
4369 	CU_ASSERT_EQUAL(num_completed, 1);
4370 	CU_ASSERT(g_io_done == true);
4371 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4372 	/* Check the g_zcopy are reset by io_done */
4373 	CU_ASSERT(g_zcopy_read_buf == NULL);
4374 	CU_ASSERT(g_zcopy_read_buf_len == 0);
4375 	/* Check that io_done has freed the g_zcopy_bdev_io */
4376 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4377 
4378 	/* Check the zcopy write buffer has not been touched which
4379 	 * ensures that the correct buffers were used.
4380 	 */
4381 	CU_ASSERT(g_zcopy_write_buf == (void *) 0x1122334455667788UL);
4382 	CU_ASSERT(g_zcopy_write_buf_len == (uint32_t) -1);
4383 
4384 	spdk_put_io_channel(ioch);
4385 	spdk_bdev_close(desc);
4386 	free_bdev(bdev);
4387 	ut_fini_bdev();
4388 }
4389 
4390 static void
4391 bdev_open_while_hotremove(void)
4392 {
4393 	struct spdk_bdev *bdev;
4394 	struct spdk_bdev_desc *desc[2] = {};
4395 	int rc;
4396 
4397 	bdev = allocate_bdev("bdev");
4398 
4399 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
4400 	CU_ASSERT(rc == 0);
4401 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
4402 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
4403 
4404 	spdk_bdev_unregister(bdev, NULL, NULL);
4405 	/* Bdev unregister is handled asynchronously. Poll thread to complete. */
4406 	poll_threads();
4407 
4408 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
4409 	CU_ASSERT(rc == -ENODEV);
4410 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
4411 
4412 	spdk_bdev_close(desc[0]);
4413 	free_bdev(bdev);
4414 }
4415 
4416 static void
4417 bdev_close_while_hotremove(void)
4418 {
4419 	struct spdk_bdev *bdev;
4420 	struct spdk_bdev_desc *desc = NULL;
4421 	int rc = 0;
4422 
4423 	bdev = allocate_bdev("bdev");
4424 
4425 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
4426 	CU_ASSERT_EQUAL(rc, 0);
4427 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4428 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4429 
4430 	/* Simulate hot-unplug by unregistering bdev */
4431 	g_event_type1 = 0xFF;
4432 	g_unregister_arg = NULL;
4433 	g_unregister_rc = -1;
4434 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4435 	/* Close device while remove event is in flight */
4436 	spdk_bdev_close(desc);
4437 
4438 	/* Ensure that unregister callback is delayed */
4439 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
4440 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
4441 
4442 	poll_threads();
4443 
4444 	/* Event callback shall not be issued because device was closed */
4445 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
4446 	/* Unregister callback is issued */
4447 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
4448 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
4449 
4450 	free_bdev(bdev);
4451 }
4452 
4453 static void
4454 bdev_open_ext_test(void)
4455 {
4456 	struct spdk_bdev *bdev;
4457 	struct spdk_bdev_desc *desc1 = NULL;
4458 	struct spdk_bdev_desc *desc2 = NULL;
4459 	int rc = 0;
4460 
4461 	bdev = allocate_bdev("bdev");
4462 
4463 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4464 	CU_ASSERT_EQUAL(rc, -EINVAL);
4465 
4466 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4467 	CU_ASSERT_EQUAL(rc, 0);
4468 
4469 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4470 	CU_ASSERT_EQUAL(rc, 0);
4471 
4472 	g_event_type1 = 0xFF;
4473 	g_event_type2 = 0xFF;
4474 
4475 	/* Simulate hot-unplug by unregistering bdev */
4476 	spdk_bdev_unregister(bdev, NULL, NULL);
4477 	poll_threads();
4478 
4479 	/* Check if correct events have been triggered in event callback fn */
4480 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4481 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4482 
4483 	free_bdev(bdev);
4484 	poll_threads();
4485 }
4486 
4487 static void
4488 bdev_open_ext_unregister(void)
4489 {
4490 	struct spdk_bdev *bdev;
4491 	struct spdk_bdev_desc *desc1 = NULL;
4492 	struct spdk_bdev_desc *desc2 = NULL;
4493 	struct spdk_bdev_desc *desc3 = NULL;
4494 	struct spdk_bdev_desc *desc4 = NULL;
4495 	int rc = 0;
4496 
4497 	bdev = allocate_bdev("bdev");
4498 
4499 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4500 	CU_ASSERT_EQUAL(rc, -EINVAL);
4501 
4502 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4503 	CU_ASSERT_EQUAL(rc, 0);
4504 
4505 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4506 	CU_ASSERT_EQUAL(rc, 0);
4507 
4508 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb3, &desc3, &desc3);
4509 	CU_ASSERT_EQUAL(rc, 0);
4510 
4511 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb4, &desc4, &desc4);
4512 	CU_ASSERT_EQUAL(rc, 0);
4513 
4514 	g_event_type1 = 0xFF;
4515 	g_event_type2 = 0xFF;
4516 	g_event_type3 = 0xFF;
4517 	g_event_type4 = 0xFF;
4518 
4519 	g_unregister_arg = NULL;
4520 	g_unregister_rc = -1;
4521 
4522 	/* Simulate hot-unplug by unregistering bdev */
4523 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4524 
4525 	/*
4526 	 * Unregister is handled asynchronously and event callback
4527 	 * (i.e., above bdev_open_cbN) will be called.
4528 	 * For bdev_open_cb3 and bdev_open_cb4, it is intended to not
4529 	 * close the desc3 and desc4 so that the bdev is not closed.
4530 	 */
4531 	poll_threads();
4532 
4533 	/* Check if correct events have been triggered in event callback fn */
4534 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4535 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4536 	CU_ASSERT_EQUAL(g_event_type3, SPDK_BDEV_EVENT_REMOVE);
4537 	CU_ASSERT_EQUAL(g_event_type4, SPDK_BDEV_EVENT_REMOVE);
4538 
4539 	/* Check that unregister callback is delayed */
4540 	CU_ASSERT(g_unregister_arg == NULL);
4541 	CU_ASSERT(g_unregister_rc == -1);
4542 
4543 	/*
4544 	 * Explicitly close desc3. As desc4 is still opened there, the
4545 	 * unergister callback is still delayed to execute.
4546 	 */
4547 	spdk_bdev_close(desc3);
4548 	CU_ASSERT(g_unregister_arg == NULL);
4549 	CU_ASSERT(g_unregister_rc == -1);
4550 
4551 	/*
4552 	 * Explicitly close desc4 to trigger the ongoing bdev unregister
4553 	 * operation after last desc is closed.
4554 	 */
4555 	spdk_bdev_close(desc4);
4556 
4557 	/* Poll the thread for the async unregister operation */
4558 	poll_threads();
4559 
4560 	/* Check that unregister callback is executed */
4561 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
4562 	CU_ASSERT(g_unregister_rc == 0);
4563 
4564 	free_bdev(bdev);
4565 	poll_threads();
4566 }
4567 
4568 struct timeout_io_cb_arg {
4569 	struct iovec iov;
4570 	uint8_t type;
4571 };
4572 
4573 static int
4574 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
4575 {
4576 	struct spdk_bdev_io *bdev_io;
4577 	int n = 0;
4578 
4579 	if (!ch) {
4580 		return -1;
4581 	}
4582 
4583 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
4584 		n++;
4585 	}
4586 
4587 	return n;
4588 }
4589 
4590 static void
4591 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
4592 {
4593 	struct timeout_io_cb_arg *ctx = cb_arg;
4594 
4595 	ctx->type = bdev_io->type;
4596 	ctx->iov.iov_base = bdev_io->iov.iov_base;
4597 	ctx->iov.iov_len = bdev_io->iov.iov_len;
4598 }
4599 
4600 static void
4601 bdev_set_io_timeout(void)
4602 {
4603 	struct spdk_bdev *bdev;
4604 	struct spdk_bdev_desc *desc = NULL;
4605 	struct spdk_io_channel *io_ch = NULL;
4606 	struct spdk_bdev_channel *bdev_ch = NULL;
4607 	struct timeout_io_cb_arg cb_arg;
4608 
4609 	ut_init_bdev(NULL);
4610 	bdev = allocate_bdev("bdev");
4611 
4612 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4613 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4614 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4615 
4616 	io_ch = spdk_bdev_get_io_channel(desc);
4617 	CU_ASSERT(io_ch != NULL);
4618 
4619 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4620 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4621 
4622 	/* This is the part1.
4623 	 * We will check the bdev_ch->io_submitted list
4624 	 * TO make sure that it can link IOs and only the user submitted IOs
4625 	 */
4626 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4627 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4628 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4629 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4630 	stub_complete_io(1);
4631 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4632 	stub_complete_io(1);
4633 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4634 
4635 	/* Split IO */
4636 	bdev->optimal_io_boundary = 16;
4637 	bdev->split_on_optimal_io_boundary = true;
4638 
4639 	/* Now test that a single-vector command is split correctly.
4640 	 * Offset 14, length 8, payload 0xF000
4641 	 *  Child - Offset 14, length 2, payload 0xF000
4642 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4643 	 *
4644 	 * Set up the expected values before calling spdk_bdev_read_blocks
4645 	 */
4646 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4647 	/* We count all submitted IOs including IO that are generated by splitting. */
4648 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
4649 	stub_complete_io(1);
4650 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4651 	stub_complete_io(1);
4652 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4653 
4654 	/* Also include the reset IO */
4655 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4656 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4657 	poll_threads();
4658 	stub_complete_io(1);
4659 	poll_threads();
4660 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4661 
4662 	/* This is part2
4663 	 * Test the desc timeout poller register
4664 	 */
4665 
4666 	/* Successfully set the timeout */
4667 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4668 	CU_ASSERT(desc->io_timeout_poller != NULL);
4669 	CU_ASSERT(desc->timeout_in_sec == 30);
4670 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4671 	CU_ASSERT(desc->cb_arg == &cb_arg);
4672 
4673 	/* Change the timeout limit */
4674 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4675 	CU_ASSERT(desc->io_timeout_poller != NULL);
4676 	CU_ASSERT(desc->timeout_in_sec == 20);
4677 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4678 	CU_ASSERT(desc->cb_arg == &cb_arg);
4679 
4680 	/* Disable the timeout */
4681 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
4682 	CU_ASSERT(desc->io_timeout_poller == NULL);
4683 
4684 	/* This the part3
4685 	 * We will test to catch timeout IO and check whether the IO is
4686 	 * the submitted one.
4687 	 */
4688 	memset(&cb_arg, 0, sizeof(cb_arg));
4689 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4690 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
4691 
4692 	/* Don't reach the limit */
4693 	spdk_delay_us(15 * spdk_get_ticks_hz());
4694 	poll_threads();
4695 	CU_ASSERT(cb_arg.type == 0);
4696 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4697 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4698 
4699 	/* 15 + 15 = 30 reach the limit */
4700 	spdk_delay_us(15 * spdk_get_ticks_hz());
4701 	poll_threads();
4702 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4703 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
4704 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
4705 	stub_complete_io(1);
4706 
4707 	/* Use the same split IO above and check the IO */
4708 	memset(&cb_arg, 0, sizeof(cb_arg));
4709 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4710 
4711 	/* The first child complete in time */
4712 	spdk_delay_us(15 * spdk_get_ticks_hz());
4713 	poll_threads();
4714 	stub_complete_io(1);
4715 	CU_ASSERT(cb_arg.type == 0);
4716 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4717 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4718 
4719 	/* The second child reach the limit */
4720 	spdk_delay_us(15 * spdk_get_ticks_hz());
4721 	poll_threads();
4722 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4723 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
4724 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
4725 	stub_complete_io(1);
4726 
4727 	/* Also include the reset IO */
4728 	memset(&cb_arg, 0, sizeof(cb_arg));
4729 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4730 	spdk_delay_us(30 * spdk_get_ticks_hz());
4731 	poll_threads();
4732 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
4733 	stub_complete_io(1);
4734 	poll_threads();
4735 
4736 	spdk_put_io_channel(io_ch);
4737 	spdk_bdev_close(desc);
4738 	free_bdev(bdev);
4739 	ut_fini_bdev();
4740 }
4741 
4742 static void
4743 bdev_set_qd_sampling(void)
4744 {
4745 	struct spdk_bdev *bdev;
4746 	struct spdk_bdev_desc *desc = NULL;
4747 	struct spdk_io_channel *io_ch = NULL;
4748 	struct spdk_bdev_channel *bdev_ch = NULL;
4749 	struct timeout_io_cb_arg cb_arg;
4750 
4751 	ut_init_bdev(NULL);
4752 	bdev = allocate_bdev("bdev");
4753 
4754 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4755 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4756 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4757 
4758 	io_ch = spdk_bdev_get_io_channel(desc);
4759 	CU_ASSERT(io_ch != NULL);
4760 
4761 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4762 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4763 
4764 	/* This is the part1.
4765 	 * We will check the bdev_ch->io_submitted list
4766 	 * TO make sure that it can link IOs and only the user submitted IOs
4767 	 */
4768 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4769 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4770 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4771 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4772 	stub_complete_io(1);
4773 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4774 	stub_complete_io(1);
4775 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4776 
4777 	/* This is the part2.
4778 	 * Test the bdev's qd poller register
4779 	 */
4780 	/* 1st Successfully set the qd sampling period */
4781 	spdk_bdev_set_qd_sampling_period(bdev, 10);
4782 	CU_ASSERT(bdev->internal.new_period == 10);
4783 	CU_ASSERT(bdev->internal.period == 10);
4784 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4785 	poll_threads();
4786 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4787 
4788 	/* 2nd Change the qd sampling period */
4789 	spdk_bdev_set_qd_sampling_period(bdev, 20);
4790 	CU_ASSERT(bdev->internal.new_period == 20);
4791 	CU_ASSERT(bdev->internal.period == 10);
4792 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4793 	poll_threads();
4794 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4795 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4796 
4797 	/* 3rd Change the qd sampling period and verify qd_poll_in_progress */
4798 	spdk_delay_us(20);
4799 	poll_thread_times(0, 1);
4800 	CU_ASSERT(bdev->internal.qd_poll_in_progress == true);
4801 	spdk_bdev_set_qd_sampling_period(bdev, 30);
4802 	CU_ASSERT(bdev->internal.new_period == 30);
4803 	CU_ASSERT(bdev->internal.period == 20);
4804 	poll_threads();
4805 	CU_ASSERT(bdev->internal.qd_poll_in_progress == false);
4806 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4807 
4808 	/* 4th Disable the qd sampling period */
4809 	spdk_bdev_set_qd_sampling_period(bdev, 0);
4810 	CU_ASSERT(bdev->internal.new_period == 0);
4811 	CU_ASSERT(bdev->internal.period == 30);
4812 	poll_threads();
4813 	CU_ASSERT(bdev->internal.qd_poller == NULL);
4814 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4815 	CU_ASSERT(bdev->internal.qd_desc == NULL);
4816 
4817 	/* This is the part3.
4818 	 * We will test the submitted IO and reset works
4819 	 * properly with the qd sampling.
4820 	 */
4821 	memset(&cb_arg, 0, sizeof(cb_arg));
4822 	spdk_bdev_set_qd_sampling_period(bdev, 1);
4823 	poll_threads();
4824 
4825 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4826 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4827 
4828 	/* Also include the reset IO */
4829 	memset(&cb_arg, 0, sizeof(cb_arg));
4830 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4831 	poll_threads();
4832 
4833 	/* Close the desc */
4834 	spdk_put_io_channel(io_ch);
4835 	spdk_bdev_close(desc);
4836 
4837 	/* Complete the submitted IO and reset */
4838 	stub_complete_io(2);
4839 	poll_threads();
4840 
4841 	free_bdev(bdev);
4842 	ut_fini_bdev();
4843 }
4844 
4845 static void
4846 lba_range_overlap(void)
4847 {
4848 	struct lba_range r1, r2;
4849 
4850 	r1.offset = 100;
4851 	r1.length = 50;
4852 
4853 	r2.offset = 0;
4854 	r2.length = 1;
4855 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4856 
4857 	r2.offset = 0;
4858 	r2.length = 100;
4859 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4860 
4861 	r2.offset = 0;
4862 	r2.length = 110;
4863 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4864 
4865 	r2.offset = 100;
4866 	r2.length = 10;
4867 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4868 
4869 	r2.offset = 110;
4870 	r2.length = 20;
4871 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4872 
4873 	r2.offset = 140;
4874 	r2.length = 150;
4875 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4876 
4877 	r2.offset = 130;
4878 	r2.length = 200;
4879 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4880 
4881 	r2.offset = 150;
4882 	r2.length = 100;
4883 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4884 
4885 	r2.offset = 110;
4886 	r2.length = 0;
4887 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4888 }
4889 
4890 static bool g_lock_lba_range_done;
4891 static bool g_unlock_lba_range_done;
4892 
4893 static void
4894 lock_lba_range_done(struct lba_range *range, void *ctx, int status)
4895 {
4896 	g_lock_lba_range_done = true;
4897 }
4898 
4899 static void
4900 unlock_lba_range_done(struct lba_range *range, void *ctx, int status)
4901 {
4902 	g_unlock_lba_range_done = true;
4903 }
4904 
4905 static void
4906 lock_lba_range_check_ranges(void)
4907 {
4908 	struct spdk_bdev *bdev;
4909 	struct spdk_bdev_desc *desc = NULL;
4910 	struct spdk_io_channel *io_ch;
4911 	struct spdk_bdev_channel *channel;
4912 	struct lba_range *range;
4913 	int ctx1;
4914 	int rc;
4915 
4916 	ut_init_bdev(NULL);
4917 	bdev = allocate_bdev("bdev0");
4918 
4919 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4920 	CU_ASSERT(rc == 0);
4921 	CU_ASSERT(desc != NULL);
4922 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4923 	io_ch = spdk_bdev_get_io_channel(desc);
4924 	CU_ASSERT(io_ch != NULL);
4925 	channel = spdk_io_channel_get_ctx(io_ch);
4926 
4927 	g_lock_lba_range_done = false;
4928 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4929 	CU_ASSERT(rc == 0);
4930 	poll_threads();
4931 
4932 	CU_ASSERT(g_lock_lba_range_done == true);
4933 	range = TAILQ_FIRST(&channel->locked_ranges);
4934 	SPDK_CU_ASSERT_FATAL(range != NULL);
4935 	CU_ASSERT(range->offset == 20);
4936 	CU_ASSERT(range->length == 10);
4937 	CU_ASSERT(range->owner_ch == channel);
4938 
4939 	/* Unlocks must exactly match a lock. */
4940 	g_unlock_lba_range_done = false;
4941 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
4942 	CU_ASSERT(rc == -EINVAL);
4943 	CU_ASSERT(g_unlock_lba_range_done == false);
4944 
4945 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4946 	CU_ASSERT(rc == 0);
4947 	spdk_delay_us(100);
4948 	poll_threads();
4949 
4950 	CU_ASSERT(g_unlock_lba_range_done == true);
4951 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4952 
4953 	spdk_put_io_channel(io_ch);
4954 	spdk_bdev_close(desc);
4955 	free_bdev(bdev);
4956 	ut_fini_bdev();
4957 }
4958 
4959 static void
4960 lock_lba_range_with_io_outstanding(void)
4961 {
4962 	struct spdk_bdev *bdev;
4963 	struct spdk_bdev_desc *desc = NULL;
4964 	struct spdk_io_channel *io_ch;
4965 	struct spdk_bdev_channel *channel;
4966 	struct lba_range *range;
4967 	char buf[4096];
4968 	int ctx1;
4969 	int rc;
4970 
4971 	ut_init_bdev(NULL);
4972 	bdev = allocate_bdev("bdev0");
4973 
4974 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4975 	CU_ASSERT(rc == 0);
4976 	CU_ASSERT(desc != NULL);
4977 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4978 	io_ch = spdk_bdev_get_io_channel(desc);
4979 	CU_ASSERT(io_ch != NULL);
4980 	channel = spdk_io_channel_get_ctx(io_ch);
4981 
4982 	g_io_done = false;
4983 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4984 	CU_ASSERT(rc == 0);
4985 
4986 	g_lock_lba_range_done = false;
4987 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4988 	CU_ASSERT(rc == 0);
4989 	poll_threads();
4990 
4991 	/* The lock should immediately become valid, since there are no outstanding
4992 	 * write I/O.
4993 	 */
4994 	CU_ASSERT(g_io_done == false);
4995 	CU_ASSERT(g_lock_lba_range_done == true);
4996 	range = TAILQ_FIRST(&channel->locked_ranges);
4997 	SPDK_CU_ASSERT_FATAL(range != NULL);
4998 	CU_ASSERT(range->offset == 20);
4999 	CU_ASSERT(range->length == 10);
5000 	CU_ASSERT(range->owner_ch == channel);
5001 	CU_ASSERT(range->locked_ctx == &ctx1);
5002 
5003 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
5004 	CU_ASSERT(rc == 0);
5005 	stub_complete_io(1);
5006 	spdk_delay_us(100);
5007 	poll_threads();
5008 
5009 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5010 
5011 	/* Now try again, but with a write I/O. */
5012 	g_io_done = false;
5013 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
5014 	CU_ASSERT(rc == 0);
5015 
5016 	g_lock_lba_range_done = false;
5017 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
5018 	CU_ASSERT(rc == 0);
5019 	poll_threads();
5020 
5021 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
5022 	 * But note that the range should be on the channel's locked_list, to make sure no
5023 	 * new write I/O are started.
5024 	 */
5025 	CU_ASSERT(g_io_done == false);
5026 	CU_ASSERT(g_lock_lba_range_done == false);
5027 	range = TAILQ_FIRST(&channel->locked_ranges);
5028 	SPDK_CU_ASSERT_FATAL(range != NULL);
5029 	CU_ASSERT(range->offset == 20);
5030 	CU_ASSERT(range->length == 10);
5031 
5032 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
5033 	 * our callback was invoked).
5034 	 */
5035 	stub_complete_io(1);
5036 	spdk_delay_us(100);
5037 	poll_threads();
5038 	CU_ASSERT(g_io_done == true);
5039 	CU_ASSERT(g_lock_lba_range_done == true);
5040 
5041 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
5042 	CU_ASSERT(rc == 0);
5043 	poll_threads();
5044 
5045 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5046 
5047 	spdk_put_io_channel(io_ch);
5048 	spdk_bdev_close(desc);
5049 	free_bdev(bdev);
5050 	ut_fini_bdev();
5051 }
5052 
5053 static void
5054 lock_lba_range_overlapped(void)
5055 {
5056 	struct spdk_bdev *bdev;
5057 	struct spdk_bdev_desc *desc = NULL;
5058 	struct spdk_io_channel *io_ch;
5059 	struct spdk_bdev_channel *channel;
5060 	struct lba_range *range;
5061 	int ctx1;
5062 	int rc;
5063 
5064 	ut_init_bdev(NULL);
5065 	bdev = allocate_bdev("bdev0");
5066 
5067 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5068 	CU_ASSERT(rc == 0);
5069 	CU_ASSERT(desc != NULL);
5070 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5071 	io_ch = spdk_bdev_get_io_channel(desc);
5072 	CU_ASSERT(io_ch != NULL);
5073 	channel = spdk_io_channel_get_ctx(io_ch);
5074 
5075 	/* Lock range 20-29. */
5076 	g_lock_lba_range_done = false;
5077 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
5078 	CU_ASSERT(rc == 0);
5079 	poll_threads();
5080 
5081 	CU_ASSERT(g_lock_lba_range_done == true);
5082 	range = TAILQ_FIRST(&channel->locked_ranges);
5083 	SPDK_CU_ASSERT_FATAL(range != NULL);
5084 	CU_ASSERT(range->offset == 20);
5085 	CU_ASSERT(range->length == 10);
5086 
5087 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
5088 	 * 20-29.
5089 	 */
5090 	g_lock_lba_range_done = false;
5091 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
5092 	CU_ASSERT(rc == 0);
5093 	poll_threads();
5094 
5095 	CU_ASSERT(g_lock_lba_range_done == false);
5096 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
5097 	SPDK_CU_ASSERT_FATAL(range != NULL);
5098 	CU_ASSERT(range->offset == 25);
5099 	CU_ASSERT(range->length == 15);
5100 
5101 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
5102 	 * no longer overlaps with an active lock.
5103 	 */
5104 	g_unlock_lba_range_done = false;
5105 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
5106 	CU_ASSERT(rc == 0);
5107 	poll_threads();
5108 
5109 	CU_ASSERT(g_unlock_lba_range_done == true);
5110 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
5111 	range = TAILQ_FIRST(&channel->locked_ranges);
5112 	SPDK_CU_ASSERT_FATAL(range != NULL);
5113 	CU_ASSERT(range->offset == 25);
5114 	CU_ASSERT(range->length == 15);
5115 
5116 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
5117 	 * currently active 25-39 lock.
5118 	 */
5119 	g_lock_lba_range_done = false;
5120 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
5121 	CU_ASSERT(rc == 0);
5122 	poll_threads();
5123 
5124 	CU_ASSERT(g_lock_lba_range_done == true);
5125 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
5126 	SPDK_CU_ASSERT_FATAL(range != NULL);
5127 	range = TAILQ_NEXT(range, tailq);
5128 	SPDK_CU_ASSERT_FATAL(range != NULL);
5129 	CU_ASSERT(range->offset == 40);
5130 	CU_ASSERT(range->length == 20);
5131 
5132 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
5133 	g_lock_lba_range_done = false;
5134 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
5135 	CU_ASSERT(rc == 0);
5136 	poll_threads();
5137 
5138 	CU_ASSERT(g_lock_lba_range_done == false);
5139 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
5140 	SPDK_CU_ASSERT_FATAL(range != NULL);
5141 	CU_ASSERT(range->offset == 35);
5142 	CU_ASSERT(range->length == 10);
5143 
5144 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
5145 	 * the 40-59 lock is still active.
5146 	 */
5147 	g_unlock_lba_range_done = false;
5148 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
5149 	CU_ASSERT(rc == 0);
5150 	poll_threads();
5151 
5152 	CU_ASSERT(g_unlock_lba_range_done == true);
5153 	CU_ASSERT(g_lock_lba_range_done == false);
5154 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
5155 	SPDK_CU_ASSERT_FATAL(range != NULL);
5156 	CU_ASSERT(range->offset == 35);
5157 	CU_ASSERT(range->length == 10);
5158 
5159 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
5160 	 * no longer any active overlapping locks.
5161 	 */
5162 	g_unlock_lba_range_done = false;
5163 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
5164 	CU_ASSERT(rc == 0);
5165 	poll_threads();
5166 
5167 	CU_ASSERT(g_unlock_lba_range_done == true);
5168 	CU_ASSERT(g_lock_lba_range_done == true);
5169 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
5170 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
5171 	SPDK_CU_ASSERT_FATAL(range != NULL);
5172 	CU_ASSERT(range->offset == 35);
5173 	CU_ASSERT(range->length == 10);
5174 
5175 	/* Finally, unlock 35-44. */
5176 	g_unlock_lba_range_done = false;
5177 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
5178 	CU_ASSERT(rc == 0);
5179 	poll_threads();
5180 
5181 	CU_ASSERT(g_unlock_lba_range_done == true);
5182 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
5183 
5184 	spdk_put_io_channel(io_ch);
5185 	spdk_bdev_close(desc);
5186 	free_bdev(bdev);
5187 	ut_fini_bdev();
5188 }
5189 
5190 static void
5191 bdev_quiesce_done(void *ctx, int status)
5192 {
5193 	g_lock_lba_range_done = true;
5194 }
5195 
5196 static void
5197 bdev_unquiesce_done(void *ctx, int status)
5198 {
5199 	g_unlock_lba_range_done = true;
5200 }
5201 
5202 static void
5203 bdev_quiesce_done_unquiesce(void *ctx, int status)
5204 {
5205 	struct spdk_bdev *bdev = ctx;
5206 	int rc;
5207 
5208 	g_lock_lba_range_done = true;
5209 
5210 	rc = spdk_bdev_unquiesce(bdev, &bdev_ut_if, bdev_unquiesce_done, NULL);
5211 	CU_ASSERT(rc == 0);
5212 }
5213 
5214 static void
5215 bdev_quiesce(void)
5216 {
5217 	struct spdk_bdev *bdev;
5218 	struct spdk_bdev_desc *desc = NULL;
5219 	struct spdk_io_channel *io_ch;
5220 	struct spdk_bdev_channel *channel;
5221 	struct lba_range *range;
5222 	struct spdk_bdev_io *bdev_io;
5223 	int ctx1;
5224 	int rc;
5225 
5226 	ut_init_bdev(NULL);
5227 	bdev = allocate_bdev("bdev0");
5228 
5229 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5230 	CU_ASSERT(rc == 0);
5231 	CU_ASSERT(desc != NULL);
5232 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5233 	io_ch = spdk_bdev_get_io_channel(desc);
5234 	CU_ASSERT(io_ch != NULL);
5235 	channel = spdk_io_channel_get_ctx(io_ch);
5236 
5237 	g_lock_lba_range_done = false;
5238 	rc = spdk_bdev_quiesce(bdev, &bdev_ut_if, bdev_quiesce_done, &ctx1);
5239 	CU_ASSERT(rc == 0);
5240 	poll_threads();
5241 
5242 	CU_ASSERT(g_lock_lba_range_done == true);
5243 	range = TAILQ_FIRST(&channel->locked_ranges);
5244 	SPDK_CU_ASSERT_FATAL(range != NULL);
5245 	CU_ASSERT(range->offset == 0);
5246 	CU_ASSERT(range->length == bdev->blockcnt);
5247 	CU_ASSERT(range->owner_ch == NULL);
5248 	range = TAILQ_FIRST(&bdev_ut_if.internal.quiesced_ranges);
5249 	SPDK_CU_ASSERT_FATAL(range != NULL);
5250 	CU_ASSERT(range->offset == 0);
5251 	CU_ASSERT(range->length == bdev->blockcnt);
5252 	CU_ASSERT(range->owner_ch == NULL);
5253 
5254 	g_unlock_lba_range_done = false;
5255 	rc = spdk_bdev_unquiesce(bdev, &bdev_ut_if, bdev_unquiesce_done, &ctx1);
5256 	CU_ASSERT(rc == 0);
5257 	spdk_delay_us(100);
5258 	poll_threads();
5259 
5260 	CU_ASSERT(g_unlock_lba_range_done == true);
5261 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5262 	CU_ASSERT(TAILQ_EMPTY(&bdev_ut_if.internal.quiesced_ranges));
5263 
5264 	g_lock_lba_range_done = false;
5265 	rc = spdk_bdev_quiesce_range(bdev, &bdev_ut_if, 20, 10, bdev_quiesce_done, &ctx1);
5266 	CU_ASSERT(rc == 0);
5267 	poll_threads();
5268 
5269 	CU_ASSERT(g_lock_lba_range_done == true);
5270 	range = TAILQ_FIRST(&channel->locked_ranges);
5271 	SPDK_CU_ASSERT_FATAL(range != NULL);
5272 	CU_ASSERT(range->offset == 20);
5273 	CU_ASSERT(range->length == 10);
5274 	CU_ASSERT(range->owner_ch == NULL);
5275 	range = TAILQ_FIRST(&bdev_ut_if.internal.quiesced_ranges);
5276 	SPDK_CU_ASSERT_FATAL(range != NULL);
5277 	CU_ASSERT(range->offset == 20);
5278 	CU_ASSERT(range->length == 10);
5279 	CU_ASSERT(range->owner_ch == NULL);
5280 
5281 	/* Unlocks must exactly match a lock. */
5282 	g_unlock_lba_range_done = false;
5283 	rc = spdk_bdev_unquiesce_range(bdev, &bdev_ut_if, 20, 1, bdev_unquiesce_done, &ctx1);
5284 	CU_ASSERT(rc == -EINVAL);
5285 	CU_ASSERT(g_unlock_lba_range_done == false);
5286 
5287 	rc = spdk_bdev_unquiesce_range(bdev, &bdev_ut_if, 20, 10, bdev_unquiesce_done, &ctx1);
5288 	CU_ASSERT(rc == 0);
5289 	spdk_delay_us(100);
5290 	poll_threads();
5291 
5292 	CU_ASSERT(g_unlock_lba_range_done == true);
5293 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5294 	CU_ASSERT(TAILQ_EMPTY(&bdev_ut_if.internal.quiesced_ranges));
5295 
5296 	/* Test unquiesce from quiesce cb */
5297 	g_lock_lba_range_done = false;
5298 	g_unlock_lba_range_done = false;
5299 	rc = spdk_bdev_quiesce(bdev, &bdev_ut_if, bdev_quiesce_done_unquiesce, bdev);
5300 	CU_ASSERT(rc == 0);
5301 	poll_threads();
5302 
5303 	CU_ASSERT(g_lock_lba_range_done == true);
5304 	CU_ASSERT(g_unlock_lba_range_done == true);
5305 
5306 	/* Test quiesce with read I/O */
5307 	g_lock_lba_range_done = false;
5308 	g_unlock_lba_range_done = false;
5309 	g_io_done = false;
5310 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 20, 1, io_done, &ctx1);
5311 	CU_ASSERT(rc == 0);
5312 
5313 	rc = spdk_bdev_quiesce(bdev, &bdev_ut_if, bdev_quiesce_done, &ctx1);
5314 	CU_ASSERT(rc == 0);
5315 	poll_threads();
5316 
5317 	CU_ASSERT(g_io_done == false);
5318 	CU_ASSERT(g_lock_lba_range_done == false);
5319 	range = TAILQ_FIRST(&channel->locked_ranges);
5320 	SPDK_CU_ASSERT_FATAL(range != NULL);
5321 
5322 	stub_complete_io(1);
5323 	spdk_delay_us(100);
5324 	poll_threads();
5325 	CU_ASSERT(g_io_done == true);
5326 	CU_ASSERT(g_lock_lba_range_done == true);
5327 	CU_ASSERT(TAILQ_EMPTY(&channel->io_locked));
5328 
5329 	g_io_done = false;
5330 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 20, 1, io_done, &ctx1);
5331 	CU_ASSERT(rc == 0);
5332 
5333 	bdev_io = TAILQ_FIRST(&channel->io_locked);
5334 	SPDK_CU_ASSERT_FATAL(bdev_io != NULL);
5335 	CU_ASSERT(bdev_io->u.bdev.offset_blocks == 20);
5336 	CU_ASSERT(bdev_io->u.bdev.num_blocks == 1);
5337 
5338 	rc = spdk_bdev_unquiesce(bdev, &bdev_ut_if, bdev_unquiesce_done, &ctx1);
5339 	CU_ASSERT(rc == 0);
5340 	spdk_delay_us(100);
5341 	poll_threads();
5342 
5343 	CU_ASSERT(g_unlock_lba_range_done == true);
5344 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5345 	CU_ASSERT(TAILQ_EMPTY(&bdev_ut_if.internal.quiesced_ranges));
5346 
5347 	CU_ASSERT(TAILQ_EMPTY(&channel->io_locked));
5348 	spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
5349 	poll_threads();
5350 	CU_ASSERT(g_io_done == true);
5351 
5352 	spdk_put_io_channel(io_ch);
5353 	spdk_bdev_close(desc);
5354 	free_bdev(bdev);
5355 	ut_fini_bdev();
5356 }
5357 
5358 static void
5359 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
5360 {
5361 	g_abort_done = true;
5362 	g_abort_status = bdev_io->internal.status;
5363 	spdk_bdev_free_io(bdev_io);
5364 }
5365 
5366 static void
5367 bdev_io_abort(void)
5368 {
5369 	struct spdk_bdev *bdev;
5370 	struct spdk_bdev_desc *desc = NULL;
5371 	struct spdk_io_channel *io_ch;
5372 	struct spdk_bdev_channel *channel;
5373 	struct spdk_bdev_mgmt_channel *mgmt_ch;
5374 	struct spdk_bdev_opts bdev_opts = {};
5375 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
5376 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
5377 	int rc;
5378 
5379 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5380 	bdev_opts.bdev_io_pool_size = 7;
5381 	bdev_opts.bdev_io_cache_size = 2;
5382 	ut_init_bdev(&bdev_opts);
5383 
5384 	bdev = allocate_bdev("bdev0");
5385 
5386 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5387 	CU_ASSERT(rc == 0);
5388 	CU_ASSERT(desc != NULL);
5389 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5390 	io_ch = spdk_bdev_get_io_channel(desc);
5391 	CU_ASSERT(io_ch != NULL);
5392 	channel = spdk_io_channel_get_ctx(io_ch);
5393 	mgmt_ch = channel->shared_resource->mgmt_ch;
5394 
5395 	g_abort_done = false;
5396 
5397 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
5398 
5399 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5400 	CU_ASSERT(rc == -ENOTSUP);
5401 
5402 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
5403 
5404 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
5405 	CU_ASSERT(rc == 0);
5406 	CU_ASSERT(g_abort_done == true);
5407 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
5408 
5409 	/* Test the case that the target I/O was successfully aborted. */
5410 	g_io_done = false;
5411 
5412 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5413 	CU_ASSERT(rc == 0);
5414 	CU_ASSERT(g_io_done == false);
5415 
5416 	g_abort_done = false;
5417 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5418 
5419 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5420 	CU_ASSERT(rc == 0);
5421 	CU_ASSERT(g_io_done == true);
5422 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5423 	stub_complete_io(1);
5424 	CU_ASSERT(g_abort_done == true);
5425 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5426 
5427 	/* Test the case that the target I/O was not aborted because it completed
5428 	 * in the middle of execution of the abort.
5429 	 */
5430 	g_io_done = false;
5431 
5432 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5433 	CU_ASSERT(rc == 0);
5434 	CU_ASSERT(g_io_done == false);
5435 
5436 	g_abort_done = false;
5437 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5438 
5439 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5440 	CU_ASSERT(rc == 0);
5441 	CU_ASSERT(g_io_done == false);
5442 
5443 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5444 	stub_complete_io(1);
5445 	CU_ASSERT(g_io_done == true);
5446 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5447 
5448 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5449 	stub_complete_io(1);
5450 	CU_ASSERT(g_abort_done == true);
5451 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5452 
5453 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5454 
5455 	bdev->optimal_io_boundary = 16;
5456 	bdev->split_on_optimal_io_boundary = true;
5457 
5458 	/* Test that a single-vector command which is split is aborted correctly.
5459 	 * Offset 14, length 8, payload 0xF000
5460 	 *  Child - Offset 14, length 2, payload 0xF000
5461 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5462 	 */
5463 	g_io_done = false;
5464 
5465 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
5466 	CU_ASSERT(rc == 0);
5467 	CU_ASSERT(g_io_done == false);
5468 
5469 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5470 
5471 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5472 
5473 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5474 	CU_ASSERT(rc == 0);
5475 	CU_ASSERT(g_io_done == true);
5476 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5477 	stub_complete_io(2);
5478 	CU_ASSERT(g_abort_done == true);
5479 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5480 
5481 	/* Test that a multi-vector command that needs to be split by strip and then
5482 	 * needs to be split is aborted correctly. Abort is requested before the second
5483 	 * child I/O was submitted. The parent I/O should complete with failure without
5484 	 * submitting the second child I/O.
5485 	 */
5486 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
5487 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
5488 		iov[i].iov_len = 512;
5489 	}
5490 
5491 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
5492 	g_io_done = false;
5493 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
5494 				    SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
5495 	CU_ASSERT(rc == 0);
5496 	CU_ASSERT(g_io_done == false);
5497 
5498 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5499 
5500 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5501 
5502 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5503 	CU_ASSERT(rc == 0);
5504 	CU_ASSERT(g_io_done == true);
5505 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5506 	stub_complete_io(1);
5507 	CU_ASSERT(g_abort_done == true);
5508 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5509 
5510 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5511 
5512 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5513 
5514 	bdev->optimal_io_boundary = 16;
5515 	g_io_done = false;
5516 
5517 	/* Test that a single-vector command which is split is aborted correctly.
5518 	 * Differently from the above, the child abort request will be submitted
5519 	 * sequentially due to the capacity of spdk_bdev_io.
5520 	 */
5521 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
5522 	CU_ASSERT(rc == 0);
5523 	CU_ASSERT(g_io_done == false);
5524 
5525 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5526 
5527 	g_abort_done = false;
5528 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5529 
5530 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5531 	CU_ASSERT(rc == 0);
5532 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
5533 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5534 
5535 	stub_complete_io(1);
5536 	CU_ASSERT(g_io_done == true);
5537 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5538 	stub_complete_io(3);
5539 	CU_ASSERT(g_abort_done == true);
5540 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5541 
5542 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5543 
5544 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5545 
5546 	bdev->split_on_optimal_io_boundary = false;
5547 	bdev->split_on_write_unit = true;
5548 	bdev->write_unit_size = 16;
5549 
5550 	/* Test that a single-vector command which is split is aborted correctly.
5551 	 * Offset 16, length 32, payload 0xF000
5552 	 *  Child - Offset 16, length 16, payload 0xF000
5553 	 *  Child - Offset 32, length 16, payload 0xF000 + 16 * 512
5554 	 *
5555 	 * Use bdev->split_on_write_unit as a split condition.
5556 	 */
5557 	g_io_done = false;
5558 
5559 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 16, 32, io_done, &io_ctx1);
5560 	CU_ASSERT(rc == 0);
5561 	CU_ASSERT(g_io_done == false);
5562 
5563 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5564 
5565 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5566 
5567 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5568 	CU_ASSERT(rc == 0);
5569 	CU_ASSERT(g_io_done == true);
5570 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5571 	stub_complete_io(2);
5572 	CU_ASSERT(g_abort_done == true);
5573 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5574 
5575 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5576 
5577 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5578 
5579 	bdev->split_on_write_unit = false;
5580 	bdev->max_rw_size = 16;
5581 
5582 	/* Test that a single-vector command which is split is aborted correctly.
5583 	 * Use bdev->max_rw_size as a split condition.
5584 	 */
5585 	g_io_done = false;
5586 
5587 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 32, io_done, &io_ctx1);
5588 	CU_ASSERT(rc == 0);
5589 	CU_ASSERT(g_io_done == false);
5590 
5591 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5592 
5593 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5594 
5595 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5596 	CU_ASSERT(rc == 0);
5597 	CU_ASSERT(g_io_done == true);
5598 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5599 	stub_complete_io(2);
5600 	CU_ASSERT(g_abort_done == true);
5601 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5602 
5603 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5604 
5605 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5606 
5607 	bdev->max_rw_size = 0;
5608 	bdev->max_segment_size = 512 * 16;
5609 	bdev->max_num_segments = 1;
5610 
5611 	/* Test that a single-vector command which is split is aborted correctly.
5612 	 * Use bdev->max_segment_size and bdev->max_num_segments together as split conditions.
5613 	 *
5614 	 * One single-vector command is changed to one two-vectors command, but
5615 	 * bdev->max_num_segments is 1 and it is split into two single-vector commands.
5616 	 */
5617 	g_io_done = false;
5618 
5619 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 32, io_done, &io_ctx1);
5620 	CU_ASSERT(rc == 0);
5621 	CU_ASSERT(g_io_done == false);
5622 
5623 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5624 
5625 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5626 
5627 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5628 	CU_ASSERT(rc == 0);
5629 	CU_ASSERT(g_io_done == true);
5630 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5631 	stub_complete_io(2);
5632 	CU_ASSERT(g_abort_done == true);
5633 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5634 
5635 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5636 
5637 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5638 
5639 	spdk_put_io_channel(io_ch);
5640 	spdk_bdev_close(desc);
5641 	free_bdev(bdev);
5642 	ut_fini_bdev();
5643 }
5644 
5645 static void
5646 bdev_unmap(void)
5647 {
5648 	struct spdk_bdev *bdev;
5649 	struct spdk_bdev_desc *desc = NULL;
5650 	struct spdk_io_channel *ioch;
5651 	struct spdk_bdev_channel *bdev_ch;
5652 	struct ut_expected_io *expected_io;
5653 	struct spdk_bdev_opts bdev_opts = {};
5654 	uint32_t i, num_outstanding;
5655 	uint64_t offset, num_blocks, max_unmap_blocks, num_children;
5656 	int rc;
5657 
5658 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5659 	bdev_opts.bdev_io_pool_size = 512;
5660 	bdev_opts.bdev_io_cache_size = 64;
5661 	ut_init_bdev(&bdev_opts);
5662 
5663 	bdev = allocate_bdev("bdev");
5664 
5665 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5666 	CU_ASSERT_EQUAL(rc, 0);
5667 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5668 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5669 	ioch = spdk_bdev_get_io_channel(desc);
5670 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5671 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5672 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5673 
5674 	fn_table.submit_request = stub_submit_request;
5675 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5676 
5677 	/* Case 1: First test the request won't be split */
5678 	num_blocks = 32;
5679 
5680 	g_io_done = false;
5681 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 0, num_blocks, 0);
5682 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5683 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5684 	CU_ASSERT_EQUAL(rc, 0);
5685 	CU_ASSERT(g_io_done == false);
5686 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5687 	stub_complete_io(1);
5688 	CU_ASSERT(g_io_done == true);
5689 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5690 
5691 	/* Case 2: Test the split with 2 children requests */
5692 	bdev->max_unmap = 8;
5693 	bdev->max_unmap_segments = 2;
5694 	max_unmap_blocks = bdev->max_unmap * bdev->max_unmap_segments;
5695 	num_blocks = max_unmap_blocks * 2;
5696 	offset = 0;
5697 
5698 	g_io_done = false;
5699 	for (i = 0; i < 2; i++) {
5700 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5701 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5702 		offset += max_unmap_blocks;
5703 	}
5704 
5705 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5706 	CU_ASSERT_EQUAL(rc, 0);
5707 	CU_ASSERT(g_io_done == false);
5708 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5709 	stub_complete_io(2);
5710 	CU_ASSERT(g_io_done == true);
5711 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5712 
5713 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5714 	num_children = 15;
5715 	num_blocks = max_unmap_blocks * num_children;
5716 	g_io_done = false;
5717 	offset = 0;
5718 	for (i = 0; i < num_children; i++) {
5719 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5720 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5721 		offset += max_unmap_blocks;
5722 	}
5723 
5724 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5725 	CU_ASSERT_EQUAL(rc, 0);
5726 	CU_ASSERT(g_io_done == false);
5727 
5728 	while (num_children > 0) {
5729 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5730 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5731 		stub_complete_io(num_outstanding);
5732 		num_children -= num_outstanding;
5733 	}
5734 	CU_ASSERT(g_io_done == true);
5735 
5736 	spdk_put_io_channel(ioch);
5737 	spdk_bdev_close(desc);
5738 	free_bdev(bdev);
5739 	ut_fini_bdev();
5740 }
5741 
5742 static void
5743 bdev_write_zeroes_split_test(void)
5744 {
5745 	struct spdk_bdev *bdev;
5746 	struct spdk_bdev_desc *desc = NULL;
5747 	struct spdk_io_channel *ioch;
5748 	struct spdk_bdev_channel *bdev_ch;
5749 	struct ut_expected_io *expected_io;
5750 	struct spdk_bdev_opts bdev_opts = {};
5751 	uint32_t i, num_outstanding;
5752 	uint64_t offset, num_blocks, max_write_zeroes_blocks, num_children;
5753 	int rc;
5754 
5755 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5756 	bdev_opts.bdev_io_pool_size = 512;
5757 	bdev_opts.bdev_io_cache_size = 64;
5758 	ut_init_bdev(&bdev_opts);
5759 
5760 	bdev = allocate_bdev("bdev");
5761 
5762 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5763 	CU_ASSERT_EQUAL(rc, 0);
5764 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5765 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5766 	ioch = spdk_bdev_get_io_channel(desc);
5767 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5768 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5769 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5770 
5771 	fn_table.submit_request = stub_submit_request;
5772 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5773 
5774 	/* Case 1: First test the request won't be split */
5775 	num_blocks = 32;
5776 
5777 	g_io_done = false;
5778 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
5779 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5780 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5781 	CU_ASSERT_EQUAL(rc, 0);
5782 	CU_ASSERT(g_io_done == false);
5783 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5784 	stub_complete_io(1);
5785 	CU_ASSERT(g_io_done == true);
5786 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5787 
5788 	/* Case 2: Test the split with 2 children requests */
5789 	max_write_zeroes_blocks = 8;
5790 	bdev->max_write_zeroes = max_write_zeroes_blocks;
5791 	num_blocks = max_write_zeroes_blocks * 2;
5792 	offset = 0;
5793 
5794 	g_io_done = false;
5795 	for (i = 0; i < 2; i++) {
5796 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5797 						   0);
5798 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5799 		offset += max_write_zeroes_blocks;
5800 	}
5801 
5802 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5803 	CU_ASSERT_EQUAL(rc, 0);
5804 	CU_ASSERT(g_io_done == false);
5805 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5806 	stub_complete_io(2);
5807 	CU_ASSERT(g_io_done == true);
5808 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5809 
5810 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5811 	num_children = 15;
5812 	num_blocks = max_write_zeroes_blocks * num_children;
5813 	g_io_done = false;
5814 	offset = 0;
5815 	for (i = 0; i < num_children; i++) {
5816 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5817 						   0);
5818 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5819 		offset += max_write_zeroes_blocks;
5820 	}
5821 
5822 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5823 	CU_ASSERT_EQUAL(rc, 0);
5824 	CU_ASSERT(g_io_done == false);
5825 
5826 	while (num_children > 0) {
5827 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5828 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5829 		stub_complete_io(num_outstanding);
5830 		num_children -= num_outstanding;
5831 	}
5832 	CU_ASSERT(g_io_done == true);
5833 
5834 	spdk_put_io_channel(ioch);
5835 	spdk_bdev_close(desc);
5836 	free_bdev(bdev);
5837 	ut_fini_bdev();
5838 }
5839 
5840 static void
5841 bdev_set_options_test(void)
5842 {
5843 	struct spdk_bdev_opts bdev_opts = {};
5844 	int rc;
5845 
5846 	/* Case1: Do not set opts_size */
5847 	rc = spdk_bdev_set_opts(&bdev_opts);
5848 	CU_ASSERT(rc == -1);
5849 }
5850 
5851 static struct spdk_memory_domain *g_bdev_memory_domain = (struct spdk_memory_domain *) 0xf00df00d;
5852 
5853 static int
5854 test_bdev_get_supported_dma_device_types_op(void *ctx, struct spdk_memory_domain **domains,
5855 		int array_size)
5856 {
5857 	if (array_size > 0 && domains) {
5858 		domains[0] = g_bdev_memory_domain;
5859 	}
5860 
5861 	return 1;
5862 }
5863 
5864 static void
5865 bdev_get_memory_domains(void)
5866 {
5867 	struct spdk_bdev_fn_table fn_table = {
5868 		.get_memory_domains = test_bdev_get_supported_dma_device_types_op
5869 	};
5870 	struct spdk_bdev bdev = { .fn_table = &fn_table };
5871 	struct spdk_memory_domain *domains[2] = {};
5872 	int rc;
5873 
5874 	/* bdev is NULL */
5875 	rc = spdk_bdev_get_memory_domains(NULL, domains, 2);
5876 	CU_ASSERT(rc == -EINVAL);
5877 
5878 	/* domains is NULL */
5879 	rc = spdk_bdev_get_memory_domains(&bdev, NULL, 2);
5880 	CU_ASSERT(rc == 1);
5881 
5882 	/* array size is 0 */
5883 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 0);
5884 	CU_ASSERT(rc == 1);
5885 
5886 	/* get_supported_dma_device_types op is set */
5887 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5888 	CU_ASSERT(rc == 1);
5889 	CU_ASSERT(domains[0] == g_bdev_memory_domain);
5890 
5891 	/* get_supported_dma_device_types op is not set */
5892 	fn_table.get_memory_domains = NULL;
5893 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5894 	CU_ASSERT(rc == 0);
5895 }
5896 
5897 static void
5898 _bdev_io_ext(struct spdk_bdev_ext_io_opts *ext_io_opts)
5899 {
5900 	struct spdk_bdev *bdev;
5901 	struct spdk_bdev_desc *desc = NULL;
5902 	struct spdk_io_channel *io_ch;
5903 	char io_buf[512];
5904 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5905 	struct ut_expected_io *expected_io;
5906 	int rc;
5907 
5908 	ut_init_bdev(NULL);
5909 
5910 	bdev = allocate_bdev("bdev0");
5911 	bdev->md_interleave = false;
5912 	bdev->md_len = 8;
5913 
5914 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5915 	CU_ASSERT(rc == 0);
5916 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5917 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5918 	io_ch = spdk_bdev_get_io_channel(desc);
5919 	CU_ASSERT(io_ch != NULL);
5920 
5921 	/* read */
5922 	g_io_done = false;
5923 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5924 	if (ext_io_opts) {
5925 		expected_io->md_buf = ext_io_opts->metadata;
5926 	}
5927 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5928 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5929 
5930 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5931 
5932 	CU_ASSERT(rc == 0);
5933 	CU_ASSERT(g_io_done == false);
5934 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5935 	stub_complete_io(1);
5936 	CU_ASSERT(g_io_done == true);
5937 
5938 	/* write */
5939 	g_io_done = false;
5940 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5941 	if (ext_io_opts) {
5942 		expected_io->md_buf = ext_io_opts->metadata;
5943 	}
5944 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5945 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5946 
5947 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5948 
5949 	CU_ASSERT(rc == 0);
5950 	CU_ASSERT(g_io_done == false);
5951 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5952 	stub_complete_io(1);
5953 	CU_ASSERT(g_io_done == true);
5954 
5955 	spdk_put_io_channel(io_ch);
5956 	spdk_bdev_close(desc);
5957 	free_bdev(bdev);
5958 	ut_fini_bdev();
5959 
5960 }
5961 
5962 static void
5963 bdev_io_ext(void)
5964 {
5965 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5966 		.metadata = (void *)0xFF000000,
5967 		.size = sizeof(ext_io_opts),
5968 		.dif_check_flags_exclude_mask = 0
5969 	};
5970 
5971 	_bdev_io_ext(&ext_io_opts);
5972 }
5973 
5974 static void
5975 bdev_io_ext_no_opts(void)
5976 {
5977 	_bdev_io_ext(NULL);
5978 }
5979 
5980 static void
5981 bdev_io_ext_invalid_opts(void)
5982 {
5983 	struct spdk_bdev *bdev;
5984 	struct spdk_bdev_desc *desc = NULL;
5985 	struct spdk_io_channel *io_ch;
5986 	char io_buf[512];
5987 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5988 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5989 		.metadata = (void *)0xFF000000,
5990 		.size = sizeof(ext_io_opts),
5991 		.dif_check_flags_exclude_mask = 0
5992 	};
5993 	int rc;
5994 
5995 	ut_init_bdev(NULL);
5996 
5997 	bdev = allocate_bdev("bdev0");
5998 	bdev->md_interleave = false;
5999 	bdev->md_len = 8;
6000 
6001 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6002 	CU_ASSERT(rc == 0);
6003 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6004 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6005 	io_ch = spdk_bdev_get_io_channel(desc);
6006 	CU_ASSERT(io_ch != NULL);
6007 
6008 	/* Test invalid ext_opts size */
6009 	ext_io_opts.size = 0;
6010 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6011 	CU_ASSERT(rc == -EINVAL);
6012 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6013 	CU_ASSERT(rc == -EINVAL);
6014 
6015 	ext_io_opts.size = sizeof(ext_io_opts) * 2;
6016 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6017 	CU_ASSERT(rc == -EINVAL);
6018 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6019 	CU_ASSERT(rc == -EINVAL);
6020 
6021 	ext_io_opts.size = offsetof(struct spdk_bdev_ext_io_opts, metadata) +
6022 			   sizeof(ext_io_opts.metadata) - 1;
6023 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6024 	CU_ASSERT(rc == -EINVAL);
6025 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6026 	CU_ASSERT(rc == -EINVAL);
6027 
6028 	spdk_put_io_channel(io_ch);
6029 	spdk_bdev_close(desc);
6030 	free_bdev(bdev);
6031 	ut_fini_bdev();
6032 }
6033 
6034 static void
6035 bdev_io_ext_split(void)
6036 {
6037 	struct spdk_bdev *bdev;
6038 	struct spdk_bdev_desc *desc = NULL;
6039 	struct spdk_io_channel *io_ch;
6040 	char io_buf[512];
6041 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
6042 	struct ut_expected_io *expected_io;
6043 	struct spdk_bdev_ext_io_opts ext_io_opts = {
6044 		.metadata = (void *)0xFF000000,
6045 		.size = sizeof(ext_io_opts),
6046 		.dif_check_flags_exclude_mask = 0
6047 	};
6048 	int rc;
6049 
6050 	ut_init_bdev(NULL);
6051 
6052 	bdev = allocate_bdev("bdev0");
6053 	bdev->md_interleave = false;
6054 	bdev->md_len = 8;
6055 
6056 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6057 	CU_ASSERT(rc == 0);
6058 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6059 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6060 	io_ch = spdk_bdev_get_io_channel(desc);
6061 	CU_ASSERT(io_ch != NULL);
6062 
6063 	/* Check that IO request with ext_opts and metadata is split correctly
6064 	 * Offset 14, length 8, payload 0xF000
6065 	 *  Child - Offset 14, length 2, payload 0xF000
6066 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
6067 	 */
6068 	bdev->optimal_io_boundary = 16;
6069 	bdev->split_on_optimal_io_boundary = true;
6070 	bdev->md_interleave = false;
6071 	bdev->md_len = 8;
6072 
6073 	iov.iov_base = (void *)0xF000;
6074 	iov.iov_len = 4096;
6075 	memset(&ext_io_opts, 0, sizeof(ext_io_opts));
6076 	ext_io_opts.metadata = (void *)0xFF000000;
6077 	ext_io_opts.size = sizeof(ext_io_opts);
6078 	g_io_done = false;
6079 
6080 	/* read */
6081 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
6082 	expected_io->md_buf = ext_io_opts.metadata;
6083 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
6084 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6085 
6086 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
6087 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
6088 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
6089 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6090 
6091 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
6092 	CU_ASSERT(rc == 0);
6093 	CU_ASSERT(g_io_done == false);
6094 
6095 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
6096 	stub_complete_io(2);
6097 	CU_ASSERT(g_io_done == true);
6098 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6099 
6100 	/* write */
6101 	g_io_done = false;
6102 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
6103 	expected_io->md_buf = ext_io_opts.metadata;
6104 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
6105 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6106 
6107 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 6, 1);
6108 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
6109 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
6110 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6111 
6112 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
6113 	CU_ASSERT(rc == 0);
6114 	CU_ASSERT(g_io_done == false);
6115 
6116 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
6117 	stub_complete_io(2);
6118 	CU_ASSERT(g_io_done == true);
6119 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6120 
6121 	spdk_put_io_channel(io_ch);
6122 	spdk_bdev_close(desc);
6123 	free_bdev(bdev);
6124 	ut_fini_bdev();
6125 }
6126 
6127 static void
6128 bdev_io_ext_bounce_buffer(void)
6129 {
6130 	struct spdk_bdev *bdev;
6131 	struct spdk_bdev_desc *desc = NULL;
6132 	struct spdk_io_channel *io_ch;
6133 	char io_buf[512];
6134 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
6135 	struct ut_expected_io *expected_io, *aux_io;
6136 	struct spdk_bdev_ext_io_opts ext_io_opts = {
6137 		.metadata = (void *)0xFF000000,
6138 		.size = sizeof(ext_io_opts),
6139 		.dif_check_flags_exclude_mask = 0
6140 	};
6141 	int rc;
6142 
6143 	ut_init_bdev(NULL);
6144 
6145 	bdev = allocate_bdev("bdev0");
6146 	bdev->md_interleave = false;
6147 	bdev->md_len = 8;
6148 
6149 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6150 	CU_ASSERT(rc == 0);
6151 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6152 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6153 	io_ch = spdk_bdev_get_io_channel(desc);
6154 	CU_ASSERT(io_ch != NULL);
6155 
6156 	/* Verify data pull/push
6157 	 * bdev doesn't support memory domains, so buffers from bdev memory pool will be used */
6158 	ext_io_opts.memory_domain = (struct spdk_memory_domain *)0xdeadbeef;
6159 
6160 	/* read */
6161 	g_io_done = false;
6162 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
6163 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
6164 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6165 
6166 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6167 
6168 	CU_ASSERT(rc == 0);
6169 	CU_ASSERT(g_io_done == false);
6170 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6171 	stub_complete_io(1);
6172 	CU_ASSERT(g_memory_domain_push_data_called == true);
6173 	CU_ASSERT(g_io_done == true);
6174 
6175 	/* write */
6176 	g_io_done = false;
6177 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
6178 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
6179 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6180 
6181 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6182 
6183 	CU_ASSERT(rc == 0);
6184 	CU_ASSERT(g_memory_domain_pull_data_called == true);
6185 	CU_ASSERT(g_io_done == false);
6186 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6187 	stub_complete_io(1);
6188 	CU_ASSERT(g_io_done == true);
6189 
6190 	/* Verify the request is queued after receiving ENOMEM from pull */
6191 	g_io_done = false;
6192 	aux_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
6193 	ut_expected_io_set_iov(aux_io, 0, iov.iov_base, iov.iov_len);
6194 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, aux_io, link);
6195 	rc = spdk_bdev_writev_blocks(desc, io_ch, &iov, 1, 32, 14, io_done, NULL);
6196 	CU_ASSERT(rc == 0);
6197 	CU_ASSERT(g_io_done == false);
6198 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6199 
6200 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
6201 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
6202 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6203 
6204 	MOCK_SET(spdk_memory_domain_pull_data, -ENOMEM);
6205 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6206 	CU_ASSERT(rc == 0);
6207 	CU_ASSERT(g_io_done == false);
6208 	/* The second IO has been queued */
6209 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6210 
6211 	MOCK_CLEAR(spdk_memory_domain_pull_data);
6212 	g_memory_domain_pull_data_called = false;
6213 	stub_complete_io(1);
6214 	CU_ASSERT(g_io_done == true);
6215 	CU_ASSERT(g_memory_domain_pull_data_called == true);
6216 	/* The second IO should be submitted now */
6217 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6218 	g_io_done = false;
6219 	stub_complete_io(1);
6220 	CU_ASSERT(g_io_done == true);
6221 
6222 	/* Verify the request is queued after receiving ENOMEM from push */
6223 	g_io_done = false;
6224 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
6225 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
6226 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6227 
6228 	MOCK_SET(spdk_memory_domain_push_data, -ENOMEM);
6229 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6230 	CU_ASSERT(rc == 0);
6231 	CU_ASSERT(g_io_done == false);
6232 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6233 
6234 	aux_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
6235 	ut_expected_io_set_iov(aux_io, 0, iov.iov_base, iov.iov_len);
6236 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, aux_io, link);
6237 	rc = spdk_bdev_writev_blocks(desc, io_ch, &iov, 1, 32, 14, io_done, NULL);
6238 	CU_ASSERT(rc == 0);
6239 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
6240 
6241 	stub_complete_io(1);
6242 	/* The IO isn't done yet, it's still waiting on push */
6243 	CU_ASSERT(g_io_done == false);
6244 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6245 	MOCK_CLEAR(spdk_memory_domain_push_data);
6246 	g_memory_domain_push_data_called = false;
6247 	/* Completing the second IO should also trigger push on the first one */
6248 	stub_complete_io(1);
6249 	CU_ASSERT(g_io_done == true);
6250 	CU_ASSERT(g_memory_domain_push_data_called == true);
6251 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6252 
6253 	spdk_put_io_channel(io_ch);
6254 	spdk_bdev_close(desc);
6255 	free_bdev(bdev);
6256 	ut_fini_bdev();
6257 }
6258 
6259 static void
6260 bdev_register_uuid_alias(void)
6261 {
6262 	struct spdk_bdev *bdev, *second;
6263 	char uuid[SPDK_UUID_STRING_LEN];
6264 	int rc;
6265 
6266 	ut_init_bdev(NULL);
6267 	bdev = allocate_bdev("bdev0");
6268 
6269 	/* Make sure an UUID was generated  */
6270 	CU_ASSERT_FALSE(spdk_uuid_is_null(&bdev->uuid));
6271 
6272 	/* Check that an UUID alias was registered */
6273 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
6274 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
6275 
6276 	/* Unregister the bdev */
6277 	spdk_bdev_unregister(bdev, NULL, NULL);
6278 	poll_threads();
6279 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
6280 
6281 	/* Check the same, but this time register the bdev with non-zero UUID */
6282 	rc = spdk_bdev_register(bdev);
6283 	CU_ASSERT_EQUAL(rc, 0);
6284 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
6285 
6286 	/* Unregister the bdev */
6287 	spdk_bdev_unregister(bdev, NULL, NULL);
6288 	poll_threads();
6289 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
6290 
6291 	/* Register the bdev using UUID as the name */
6292 	bdev->name = uuid;
6293 	rc = spdk_bdev_register(bdev);
6294 	CU_ASSERT_EQUAL(rc, 0);
6295 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
6296 
6297 	/* Unregister the bdev */
6298 	spdk_bdev_unregister(bdev, NULL, NULL);
6299 	poll_threads();
6300 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
6301 
6302 	/* Check that it's not possible to register two bdevs with the same UUIDs */
6303 	bdev->name = "bdev0";
6304 	second = allocate_bdev("bdev1");
6305 	spdk_uuid_copy(&bdev->uuid, &second->uuid);
6306 	rc = spdk_bdev_register(bdev);
6307 	CU_ASSERT_EQUAL(rc, -EEXIST);
6308 
6309 	/* Regenerate the UUID and re-check */
6310 	spdk_uuid_generate(&bdev->uuid);
6311 	rc = spdk_bdev_register(bdev);
6312 	CU_ASSERT_EQUAL(rc, 0);
6313 
6314 	/* And check that both bdevs can be retrieved through their UUIDs */
6315 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
6316 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
6317 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &second->uuid);
6318 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), second);
6319 
6320 	free_bdev(second);
6321 	free_bdev(bdev);
6322 	ut_fini_bdev();
6323 }
6324 
6325 static void
6326 bdev_unregister_by_name(void)
6327 {
6328 	struct spdk_bdev *bdev;
6329 	int rc;
6330 
6331 	bdev = allocate_bdev("bdev");
6332 
6333 	g_event_type1 = 0xFF;
6334 	g_unregister_arg = NULL;
6335 	g_unregister_rc = -1;
6336 
6337 	rc = spdk_bdev_unregister_by_name("bdev1", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
6338 	CU_ASSERT(rc == -ENODEV);
6339 
6340 	rc = spdk_bdev_unregister_by_name("bdev", &vbdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
6341 	CU_ASSERT(rc == -ENODEV);
6342 
6343 	rc = spdk_bdev_unregister_by_name("bdev", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
6344 	CU_ASSERT(rc == 0);
6345 
6346 	/* Check that unregister callback is delayed */
6347 	CU_ASSERT(g_unregister_arg == NULL);
6348 	CU_ASSERT(g_unregister_rc == -1);
6349 
6350 	poll_threads();
6351 
6352 	/* Event callback shall not be issued because device was closed */
6353 	CU_ASSERT(g_event_type1 == 0xFF);
6354 	/* Unregister callback is issued */
6355 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
6356 	CU_ASSERT(g_unregister_rc == 0);
6357 
6358 	free_bdev(bdev);
6359 }
6360 
6361 static int
6362 count_bdevs(void *ctx, struct spdk_bdev *bdev)
6363 {
6364 	int *count = ctx;
6365 
6366 	(*count)++;
6367 
6368 	return 0;
6369 }
6370 
6371 static void
6372 for_each_bdev_test(void)
6373 {
6374 	struct spdk_bdev *bdev[8];
6375 	int rc, count;
6376 
6377 	bdev[0] = allocate_bdev("bdev0");
6378 	bdev[0]->internal.status = SPDK_BDEV_STATUS_REMOVING;
6379 
6380 	bdev[1] = allocate_bdev("bdev1");
6381 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
6382 	CU_ASSERT(rc == 0);
6383 
6384 	bdev[2] = allocate_bdev("bdev2");
6385 
6386 	bdev[3] = allocate_bdev("bdev3");
6387 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
6388 	CU_ASSERT(rc == 0);
6389 
6390 	bdev[4] = allocate_bdev("bdev4");
6391 
6392 	bdev[5] = allocate_bdev("bdev5");
6393 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
6394 	CU_ASSERT(rc == 0);
6395 
6396 	bdev[6] = allocate_bdev("bdev6");
6397 
6398 	bdev[7] = allocate_bdev("bdev7");
6399 
6400 	count = 0;
6401 	rc = spdk_for_each_bdev(&count, count_bdevs);
6402 	CU_ASSERT(rc == 0);
6403 	CU_ASSERT(count == 7);
6404 
6405 	count = 0;
6406 	rc = spdk_for_each_bdev_leaf(&count, count_bdevs);
6407 	CU_ASSERT(rc == 0);
6408 	CU_ASSERT(count == 4);
6409 
6410 	bdev[0]->internal.status = SPDK_BDEV_STATUS_READY;
6411 	free_bdev(bdev[0]);
6412 	free_bdev(bdev[1]);
6413 	free_bdev(bdev[2]);
6414 	free_bdev(bdev[3]);
6415 	free_bdev(bdev[4]);
6416 	free_bdev(bdev[5]);
6417 	free_bdev(bdev[6]);
6418 	free_bdev(bdev[7]);
6419 }
6420 
6421 static void
6422 bdev_seek_test(void)
6423 {
6424 	struct spdk_bdev *bdev;
6425 	struct spdk_bdev_desc *desc = NULL;
6426 	struct spdk_io_channel *io_ch;
6427 	int rc;
6428 
6429 	ut_init_bdev(NULL);
6430 	poll_threads();
6431 
6432 	bdev = allocate_bdev("bdev0");
6433 
6434 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6435 	CU_ASSERT(rc == 0);
6436 	poll_threads();
6437 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6438 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6439 	io_ch = spdk_bdev_get_io_channel(desc);
6440 	CU_ASSERT(io_ch != NULL);
6441 
6442 	/* Seek data not supported */
6443 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, false);
6444 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
6445 	CU_ASSERT(rc == 0);
6446 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6447 	poll_threads();
6448 	CU_ASSERT(g_seek_offset == 0);
6449 
6450 	/* Seek hole not supported */
6451 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, false);
6452 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
6453 	CU_ASSERT(rc == 0);
6454 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6455 	poll_threads();
6456 	CU_ASSERT(g_seek_offset == UINT64_MAX);
6457 
6458 	/* Seek data supported */
6459 	g_seek_data_offset = 12345;
6460 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, true);
6461 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
6462 	CU_ASSERT(rc == 0);
6463 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6464 	stub_complete_io(1);
6465 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6466 	CU_ASSERT(g_seek_offset == 12345);
6467 
6468 	/* Seek hole supported */
6469 	g_seek_hole_offset = 67890;
6470 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, true);
6471 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
6472 	CU_ASSERT(rc == 0);
6473 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6474 	stub_complete_io(1);
6475 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6476 	CU_ASSERT(g_seek_offset == 67890);
6477 
6478 	spdk_put_io_channel(io_ch);
6479 	spdk_bdev_close(desc);
6480 	free_bdev(bdev);
6481 	ut_fini_bdev();
6482 }
6483 
6484 static void
6485 bdev_copy(void)
6486 {
6487 	struct spdk_bdev *bdev;
6488 	struct spdk_bdev_desc *desc = NULL;
6489 	struct spdk_io_channel *ioch;
6490 	struct ut_expected_io *expected_io;
6491 	uint64_t src_offset, num_blocks;
6492 	uint32_t num_completed;
6493 	int rc;
6494 
6495 	ut_init_bdev(NULL);
6496 	bdev = allocate_bdev("bdev");
6497 
6498 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6499 	CU_ASSERT_EQUAL(rc, 0);
6500 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6501 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6502 	ioch = spdk_bdev_get_io_channel(desc);
6503 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6504 
6505 	fn_table.submit_request = stub_submit_request;
6506 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6507 
6508 	/* First test that if the bdev supports copy, the request won't be split */
6509 	bdev->md_len = 0;
6510 	bdev->blocklen = 512;
6511 	num_blocks = 128;
6512 	src_offset = bdev->blockcnt - num_blocks;
6513 
6514 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6515 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6516 
6517 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6518 	CU_ASSERT_EQUAL(rc, 0);
6519 	num_completed = stub_complete_io(1);
6520 	CU_ASSERT_EQUAL(num_completed, 1);
6521 
6522 	/* Check that if copy is not supported it'll still work */
6523 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, src_offset, num_blocks, 0);
6524 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6525 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, num_blocks, 0);
6526 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6527 
6528 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false);
6529 
6530 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6531 	CU_ASSERT_EQUAL(rc, 0);
6532 	num_completed = stub_complete_io(1);
6533 	CU_ASSERT_EQUAL(num_completed, 1);
6534 	num_completed = stub_complete_io(1);
6535 	CU_ASSERT_EQUAL(num_completed, 1);
6536 
6537 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true);
6538 	spdk_put_io_channel(ioch);
6539 	spdk_bdev_close(desc);
6540 	free_bdev(bdev);
6541 	ut_fini_bdev();
6542 }
6543 
6544 static void
6545 bdev_copy_split_test(void)
6546 {
6547 	struct spdk_bdev *bdev;
6548 	struct spdk_bdev_desc *desc = NULL;
6549 	struct spdk_io_channel *ioch;
6550 	struct spdk_bdev_channel *bdev_ch;
6551 	struct ut_expected_io *expected_io;
6552 	struct spdk_bdev_opts bdev_opts = {};
6553 	uint32_t i, num_outstanding;
6554 	uint64_t offset, src_offset, num_blocks, max_copy_blocks, num_children;
6555 	int rc;
6556 
6557 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
6558 	bdev_opts.bdev_io_pool_size = 512;
6559 	bdev_opts.bdev_io_cache_size = 64;
6560 	rc = spdk_bdev_set_opts(&bdev_opts);
6561 	CU_ASSERT(rc == 0);
6562 
6563 	ut_init_bdev(NULL);
6564 	bdev = allocate_bdev("bdev");
6565 
6566 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6567 	CU_ASSERT_EQUAL(rc, 0);
6568 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6569 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6570 	ioch = spdk_bdev_get_io_channel(desc);
6571 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6572 	bdev_ch = spdk_io_channel_get_ctx(ioch);
6573 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
6574 
6575 	fn_table.submit_request = stub_submit_request;
6576 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6577 
6578 	/* Case 1: First test the request won't be split */
6579 	num_blocks = 32;
6580 	src_offset = bdev->blockcnt - num_blocks;
6581 
6582 	g_io_done = false;
6583 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6584 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6585 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6586 	CU_ASSERT_EQUAL(rc, 0);
6587 	CU_ASSERT(g_io_done == false);
6588 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6589 	stub_complete_io(1);
6590 	CU_ASSERT(g_io_done == true);
6591 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6592 
6593 	/* Case 2: Test the split with 2 children requests */
6594 	max_copy_blocks = 8;
6595 	bdev->max_copy = max_copy_blocks;
6596 	num_children = 2;
6597 	num_blocks = max_copy_blocks * num_children;
6598 	offset = 0;
6599 	src_offset = bdev->blockcnt - num_blocks;
6600 
6601 	g_io_done = false;
6602 	for (i = 0; i < num_children; i++) {
6603 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6604 							src_offset + offset, max_copy_blocks);
6605 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6606 		offset += max_copy_blocks;
6607 	}
6608 
6609 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6610 	CU_ASSERT_EQUAL(rc, 0);
6611 	CU_ASSERT(g_io_done == false);
6612 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_children);
6613 	stub_complete_io(num_children);
6614 	CU_ASSERT(g_io_done == true);
6615 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6616 
6617 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
6618 	num_children = 15;
6619 	num_blocks = max_copy_blocks * num_children;
6620 	offset = 0;
6621 	src_offset = bdev->blockcnt - num_blocks;
6622 
6623 	g_io_done = false;
6624 	for (i = 0; i < num_children; i++) {
6625 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6626 							src_offset + offset, max_copy_blocks);
6627 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6628 		offset += max_copy_blocks;
6629 	}
6630 
6631 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6632 	CU_ASSERT_EQUAL(rc, 0);
6633 	CU_ASSERT(g_io_done == false);
6634 
6635 	while (num_children > 0) {
6636 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_COPY_REQS);
6637 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6638 		stub_complete_io(num_outstanding);
6639 		num_children -= num_outstanding;
6640 	}
6641 	CU_ASSERT(g_io_done == true);
6642 
6643 	/* Case 4: Same test scenario as the case 2 but the configuration is different.
6644 	 * Copy is not supported.
6645 	 */
6646 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false);
6647 
6648 	num_children = 2;
6649 	max_copy_blocks = spdk_bdev_get_max_copy(bdev);
6650 	num_blocks = max_copy_blocks * num_children;
6651 	src_offset = bdev->blockcnt - num_blocks;
6652 	offset = 0;
6653 
6654 	g_io_done = false;
6655 	for (i = 0; i < num_children; i++) {
6656 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, src_offset,
6657 						   max_copy_blocks, 0);
6658 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6659 		src_offset += max_copy_blocks;
6660 	}
6661 	for (i = 0; i < num_children; i++) {
6662 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset,
6663 						   max_copy_blocks, 0);
6664 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6665 		offset += max_copy_blocks;
6666 	}
6667 
6668 	src_offset = bdev->blockcnt - num_blocks;
6669 	offset = 0;
6670 
6671 	rc = spdk_bdev_copy_blocks(desc, ioch, offset, src_offset, num_blocks, io_done, NULL);
6672 	CU_ASSERT_EQUAL(rc, 0);
6673 	CU_ASSERT(g_io_done == false);
6674 
6675 	while (num_children > 0) {
6676 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_COPY_REQS);
6677 
6678 		/* One copy request is split into one read and one write requests. */
6679 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6680 		stub_complete_io(num_outstanding);
6681 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6682 		stub_complete_io(num_outstanding);
6683 
6684 		num_children -= num_outstanding;
6685 	}
6686 	CU_ASSERT(g_io_done == true);
6687 
6688 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true);
6689 
6690 	spdk_put_io_channel(ioch);
6691 	spdk_bdev_close(desc);
6692 	free_bdev(bdev);
6693 	ut_fini_bdev();
6694 }
6695 
6696 static void
6697 examine_claim_v1(struct spdk_bdev *bdev)
6698 {
6699 	int rc;
6700 
6701 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &vbdev_ut_if);
6702 	CU_ASSERT(rc == 0);
6703 }
6704 
6705 static void
6706 examine_no_lock_held(struct spdk_bdev *bdev)
6707 {
6708 	CU_ASSERT(!spdk_spin_held(&g_bdev_mgr.spinlock));
6709 	CU_ASSERT(!spdk_spin_held(&bdev->internal.spinlock));
6710 }
6711 
6712 struct examine_claim_v2_ctx {
6713 	struct ut_examine_ctx examine_ctx;
6714 	enum spdk_bdev_claim_type claim_type;
6715 	struct spdk_bdev_desc *desc;
6716 };
6717 
6718 static void
6719 examine_claim_v2(struct spdk_bdev *bdev)
6720 {
6721 	struct examine_claim_v2_ctx *ctx = bdev->ctxt;
6722 	int rc;
6723 
6724 	rc = spdk_bdev_open_ext(bdev->name, false, bdev_ut_event_cb, NULL, &ctx->desc);
6725 	CU_ASSERT(rc == 0);
6726 
6727 	rc = spdk_bdev_module_claim_bdev_desc(ctx->desc, ctx->claim_type, NULL, &vbdev_ut_if);
6728 	CU_ASSERT(rc == 0);
6729 }
6730 
6731 static void
6732 examine_locks(void)
6733 {
6734 	struct spdk_bdev *bdev;
6735 	struct ut_examine_ctx ctx = { 0 };
6736 	struct examine_claim_v2_ctx v2_ctx;
6737 
6738 	/* Without any claims, one code path is taken */
6739 	ctx.examine_config = examine_no_lock_held;
6740 	ctx.examine_disk = examine_no_lock_held;
6741 	bdev = allocate_bdev_ctx("bdev0", &ctx);
6742 	CU_ASSERT(ctx.examine_config_count == 1);
6743 	CU_ASSERT(ctx.examine_disk_count == 1);
6744 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6745 	CU_ASSERT(bdev->internal.claim.v1.module == NULL);
6746 	free_bdev(bdev);
6747 
6748 	/* Exercise another path that is taken when examine_config() takes a v1 claim. */
6749 	memset(&ctx, 0, sizeof(ctx));
6750 	ctx.examine_config = examine_claim_v1;
6751 	ctx.examine_disk = examine_no_lock_held;
6752 	bdev = allocate_bdev_ctx("bdev0", &ctx);
6753 	CU_ASSERT(ctx.examine_config_count == 1);
6754 	CU_ASSERT(ctx.examine_disk_count == 1);
6755 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
6756 	CU_ASSERT(bdev->internal.claim.v1.module == &vbdev_ut_if);
6757 	spdk_bdev_module_release_bdev(bdev);
6758 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6759 	CU_ASSERT(bdev->internal.claim.v1.module == NULL);
6760 	free_bdev(bdev);
6761 
6762 	/* Exercise the final path that comes with v2 claims. */
6763 	memset(&v2_ctx, 0, sizeof(v2_ctx));
6764 	v2_ctx.examine_ctx.examine_config = examine_claim_v2;
6765 	v2_ctx.examine_ctx.examine_disk = examine_no_lock_held;
6766 	v2_ctx.claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
6767 	bdev = allocate_bdev_ctx("bdev0", &v2_ctx);
6768 	CU_ASSERT(v2_ctx.examine_ctx.examine_config_count == 1);
6769 	CU_ASSERT(v2_ctx.examine_ctx.examine_disk_count == 1);
6770 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6771 	spdk_bdev_close(v2_ctx.desc);
6772 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6773 	free_bdev(bdev);
6774 }
6775 
6776 #define UT_ASSERT_CLAIM_V2_COUNT(bdev, expect) \
6777 	do { \
6778 		uint32_t len = 0; \
6779 		struct spdk_bdev_module_claim *claim; \
6780 		TAILQ_FOREACH(claim, &bdev->internal.claim.v2.claims, link) { \
6781 			len++; \
6782 		} \
6783 		CU_ASSERT(len == expect); \
6784 	} while (0)
6785 
6786 static void
6787 claim_v2_rwo(void)
6788 {
6789 	struct spdk_bdev *bdev;
6790 	struct spdk_bdev_desc *desc;
6791 	struct spdk_bdev_desc *desc2;
6792 	struct spdk_bdev_claim_opts opts;
6793 	int rc;
6794 
6795 	bdev = allocate_bdev("bdev0");
6796 
6797 	/* Claim without options */
6798 	desc = NULL;
6799 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6800 	CU_ASSERT(rc == 0);
6801 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6802 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6803 					      &bdev_ut_if);
6804 	CU_ASSERT(rc == 0);
6805 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6806 	CU_ASSERT(desc->claim != NULL);
6807 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6808 	CU_ASSERT(strcmp(desc->claim->name, "") == 0);
6809 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6810 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6811 
6812 	/* Release the claim by closing the descriptor */
6813 	spdk_bdev_close(desc);
6814 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6815 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6816 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6817 
6818 	/* Claim with options */
6819 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6820 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6821 	desc = NULL;
6822 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6823 	CU_ASSERT(rc == 0);
6824 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6825 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, &opts,
6826 					      &bdev_ut_if);
6827 	CU_ASSERT(rc == 0);
6828 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6829 	CU_ASSERT(desc->claim != NULL);
6830 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6831 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6832 	memset(&opts, 0, sizeof(opts));
6833 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6834 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6835 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6836 
6837 	/* The claim blocks new writers. */
6838 	desc2 = NULL;
6839 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6840 	CU_ASSERT(rc == -EPERM);
6841 	CU_ASSERT(desc2 == NULL);
6842 
6843 	/* New readers are allowed */
6844 	desc2 = NULL;
6845 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6846 	CU_ASSERT(rc == 0);
6847 	CU_ASSERT(desc2 != NULL);
6848 	CU_ASSERT(!desc2->write);
6849 
6850 	/* No new v2 RWO claims are allowed */
6851 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6852 					      &bdev_ut_if);
6853 	CU_ASSERT(rc == -EPERM);
6854 
6855 	/* No new v2 ROM claims are allowed */
6856 	CU_ASSERT(!desc2->write);
6857 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6858 					      &bdev_ut_if);
6859 	CU_ASSERT(rc == -EPERM);
6860 	CU_ASSERT(!desc2->write);
6861 
6862 	/* No new v2 RWM claims are allowed */
6863 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6864 	opts.shared_claim_key = (uint64_t)&opts;
6865 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6866 					      &bdev_ut_if);
6867 	CU_ASSERT(rc == -EPERM);
6868 	CU_ASSERT(!desc2->write);
6869 
6870 	/* No new v1 claims are allowed */
6871 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6872 	CU_ASSERT(rc == -EPERM);
6873 
6874 	/* None of the above changed the existing claim */
6875 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6876 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6877 
6878 	/* Closing the first descriptor now allows a new claim and it is promoted to rw. */
6879 	spdk_bdev_close(desc);
6880 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6881 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6882 	CU_ASSERT(!desc2->write);
6883 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6884 					      &bdev_ut_if);
6885 	CU_ASSERT(rc == 0);
6886 	CU_ASSERT(desc2->claim != NULL);
6887 	CU_ASSERT(desc2->write);
6888 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6889 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
6890 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6891 	spdk_bdev_close(desc2);
6892 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6893 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6894 
6895 	/* Cannot claim with a key */
6896 	desc = NULL;
6897 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6898 	CU_ASSERT(rc == 0);
6899 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6900 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6901 	opts.shared_claim_key = (uint64_t)&opts;
6902 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, &opts,
6903 					      &bdev_ut_if);
6904 	CU_ASSERT(rc == -EINVAL);
6905 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6906 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6907 	spdk_bdev_close(desc);
6908 
6909 	/* Clean up */
6910 	free_bdev(bdev);
6911 }
6912 
6913 static void
6914 claim_v2_rom(void)
6915 {
6916 	struct spdk_bdev *bdev;
6917 	struct spdk_bdev_desc *desc;
6918 	struct spdk_bdev_desc *desc2;
6919 	struct spdk_bdev_claim_opts opts;
6920 	int rc;
6921 
6922 	bdev = allocate_bdev("bdev0");
6923 
6924 	/* Claim without options */
6925 	desc = NULL;
6926 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6927 	CU_ASSERT(rc == 0);
6928 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6929 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6930 					      &bdev_ut_if);
6931 	CU_ASSERT(rc == 0);
6932 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6933 	CU_ASSERT(desc->claim != NULL);
6934 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6935 	CU_ASSERT(strcmp(desc->claim->name, "") == 0);
6936 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6937 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6938 
6939 	/* Release the claim by closing the descriptor */
6940 	spdk_bdev_close(desc);
6941 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6942 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6943 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6944 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6945 
6946 	/* Claim with options */
6947 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6948 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6949 	desc = NULL;
6950 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6951 	CU_ASSERT(rc == 0);
6952 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6953 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, &opts,
6954 					      &bdev_ut_if);
6955 	CU_ASSERT(rc == 0);
6956 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6957 	SPDK_CU_ASSERT_FATAL(desc->claim != NULL);
6958 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6959 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6960 	memset(&opts, 0, sizeof(opts));
6961 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6962 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6963 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6964 
6965 	/* The claim blocks new writers. */
6966 	desc2 = NULL;
6967 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6968 	CU_ASSERT(rc == -EPERM);
6969 	CU_ASSERT(desc2 == NULL);
6970 
6971 	/* New readers are allowed */
6972 	desc2 = NULL;
6973 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6974 	CU_ASSERT(rc == 0);
6975 	CU_ASSERT(desc2 != NULL);
6976 	CU_ASSERT(!desc2->write);
6977 
6978 	/* No new v2 RWO claims are allowed */
6979 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6980 					      &bdev_ut_if);
6981 	CU_ASSERT(rc == -EPERM);
6982 
6983 	/* No new v2 RWM claims are allowed */
6984 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6985 	opts.shared_claim_key = (uint64_t)&opts;
6986 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6987 					      &bdev_ut_if);
6988 	CU_ASSERT(rc == -EPERM);
6989 	CU_ASSERT(!desc2->write);
6990 
6991 	/* No new v1 claims are allowed */
6992 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6993 	CU_ASSERT(rc == -EPERM);
6994 
6995 	/* None of the above messed up the existing claim */
6996 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6997 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6998 
6999 	/* New v2 ROM claims are allowed and the descriptor stays read-only. */
7000 	CU_ASSERT(!desc2->write);
7001 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
7002 					      &bdev_ut_if);
7003 	CU_ASSERT(rc == 0);
7004 	CU_ASSERT(!desc2->write);
7005 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
7006 	CU_ASSERT(TAILQ_NEXT(desc->claim, link) == desc2->claim);
7007 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 2);
7008 
7009 	/* Claim remains when closing the first descriptor */
7010 	spdk_bdev_close(desc);
7011 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
7012 	CU_ASSERT(!TAILQ_EMPTY(&bdev->internal.open_descs));
7013 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
7014 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
7015 
7016 	/* Claim removed when closing the other descriptor */
7017 	spdk_bdev_close(desc2);
7018 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7019 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
7020 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
7021 
7022 	/* Cannot claim with a key */
7023 	desc = NULL;
7024 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
7025 	CU_ASSERT(rc == 0);
7026 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7027 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7028 	opts.shared_claim_key = (uint64_t)&opts;
7029 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, &opts,
7030 					      &bdev_ut_if);
7031 	CU_ASSERT(rc == -EINVAL);
7032 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7033 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
7034 	spdk_bdev_close(desc);
7035 
7036 	/* Cannot claim with a read-write descriptor */
7037 	desc = NULL;
7038 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
7039 	CU_ASSERT(rc == 0);
7040 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7041 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
7042 					      &bdev_ut_if);
7043 	CU_ASSERT(rc == -EINVAL);
7044 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7045 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
7046 	spdk_bdev_close(desc);
7047 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
7048 
7049 	/* Clean up */
7050 	free_bdev(bdev);
7051 }
7052 
7053 static void
7054 claim_v2_rwm(void)
7055 {
7056 	struct spdk_bdev *bdev;
7057 	struct spdk_bdev_desc *desc;
7058 	struct spdk_bdev_desc *desc2;
7059 	struct spdk_bdev_claim_opts opts;
7060 	char good_key, bad_key;
7061 	int rc;
7062 
7063 	bdev = allocate_bdev("bdev0");
7064 
7065 	/* Claim without options should fail */
7066 	desc = NULL;
7067 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
7068 	CU_ASSERT(rc == 0);
7069 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7070 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, NULL,
7071 					      &bdev_ut_if);
7072 	CU_ASSERT(rc == -EINVAL);
7073 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7074 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
7075 	CU_ASSERT(desc->claim == NULL);
7076 
7077 	/* Claim with options */
7078 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7079 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
7080 	opts.shared_claim_key = (uint64_t)&good_key;
7081 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
7082 					      &bdev_ut_if);
7083 	CU_ASSERT(rc == 0);
7084 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED);
7085 	SPDK_CU_ASSERT_FATAL(desc->claim != NULL);
7086 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
7087 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
7088 	memset(&opts, 0, sizeof(opts));
7089 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
7090 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
7091 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
7092 
7093 	/* The claim blocks new writers. */
7094 	desc2 = NULL;
7095 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
7096 	CU_ASSERT(rc == -EPERM);
7097 	CU_ASSERT(desc2 == NULL);
7098 
7099 	/* New readers are allowed */
7100 	desc2 = NULL;
7101 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
7102 	CU_ASSERT(rc == 0);
7103 	CU_ASSERT(desc2 != NULL);
7104 	CU_ASSERT(!desc2->write);
7105 
7106 	/* No new v2 RWO claims are allowed */
7107 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
7108 					      &bdev_ut_if);
7109 	CU_ASSERT(rc == -EPERM);
7110 
7111 	/* No new v2 ROM claims are allowed and the descriptor stays read-only. */
7112 	CU_ASSERT(!desc2->write);
7113 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
7114 					      &bdev_ut_if);
7115 	CU_ASSERT(rc == -EPERM);
7116 	CU_ASSERT(!desc2->write);
7117 
7118 	/* No new v1 claims are allowed */
7119 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
7120 	CU_ASSERT(rc == -EPERM);
7121 
7122 	/* No new v2 RWM claims are allowed if the key does not match */
7123 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7124 	opts.shared_claim_key = (uint64_t)&bad_key;
7125 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
7126 					      &bdev_ut_if);
7127 	CU_ASSERT(rc == -EPERM);
7128 	CU_ASSERT(!desc2->write);
7129 
7130 	/* None of the above messed up the existing claim */
7131 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
7132 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
7133 
7134 	/* New v2 RWM claims are allowed and the descriptor is promoted if the key matches. */
7135 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7136 	opts.shared_claim_key = (uint64_t)&good_key;
7137 	CU_ASSERT(!desc2->write);
7138 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
7139 					      &bdev_ut_if);
7140 	CU_ASSERT(rc == 0);
7141 	CU_ASSERT(desc2->write);
7142 	CU_ASSERT(TAILQ_NEXT(desc->claim, link) == desc2->claim);
7143 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 2);
7144 
7145 	/* Claim remains when closing the first descriptor */
7146 	spdk_bdev_close(desc);
7147 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED);
7148 	CU_ASSERT(!TAILQ_EMPTY(&bdev->internal.open_descs));
7149 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
7150 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
7151 
7152 	/* Claim removed when closing the other descriptor */
7153 	spdk_bdev_close(desc2);
7154 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7155 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
7156 
7157 	/* Cannot claim without a key */
7158 	desc = NULL;
7159 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
7160 	CU_ASSERT(rc == 0);
7161 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7162 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7163 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
7164 					      &bdev_ut_if);
7165 	CU_ASSERT(rc == -EINVAL);
7166 	spdk_bdev_close(desc);
7167 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7168 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
7169 
7170 	/* Clean up */
7171 	free_bdev(bdev);
7172 }
7173 
7174 static void
7175 claim_v2_existing_writer(void)
7176 {
7177 	struct spdk_bdev *bdev;
7178 	struct spdk_bdev_desc *desc;
7179 	struct spdk_bdev_desc *desc2;
7180 	struct spdk_bdev_claim_opts opts;
7181 	enum spdk_bdev_claim_type type;
7182 	enum spdk_bdev_claim_type types[] = {
7183 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
7184 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
7185 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
7186 	};
7187 	size_t i;
7188 	int rc;
7189 
7190 	bdev = allocate_bdev("bdev0");
7191 
7192 	desc = NULL;
7193 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
7194 	CU_ASSERT(rc == 0);
7195 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7196 	desc2 = NULL;
7197 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
7198 	CU_ASSERT(rc == 0);
7199 	SPDK_CU_ASSERT_FATAL(desc2 != NULL);
7200 
7201 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
7202 		type = types[i];
7203 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7204 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
7205 			opts.shared_claim_key = (uint64_t)&opts;
7206 		}
7207 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
7208 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE) {
7209 			CU_ASSERT(rc == -EINVAL);
7210 		} else {
7211 			CU_ASSERT(rc == -EPERM);
7212 		}
7213 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7214 		rc = spdk_bdev_module_claim_bdev_desc(desc2, type, &opts, &bdev_ut_if);
7215 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE) {
7216 			CU_ASSERT(rc == -EINVAL);
7217 		} else {
7218 			CU_ASSERT(rc == -EPERM);
7219 		}
7220 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7221 	}
7222 
7223 	spdk_bdev_close(desc);
7224 	spdk_bdev_close(desc2);
7225 
7226 	/* Clean up */
7227 	free_bdev(bdev);
7228 }
7229 
7230 static void
7231 claim_v2_existing_v1(void)
7232 {
7233 	struct spdk_bdev *bdev;
7234 	struct spdk_bdev_desc *desc;
7235 	struct spdk_bdev_claim_opts opts;
7236 	enum spdk_bdev_claim_type type;
7237 	enum spdk_bdev_claim_type types[] = {
7238 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
7239 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
7240 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
7241 	};
7242 	size_t i;
7243 	int rc;
7244 
7245 	bdev = allocate_bdev("bdev0");
7246 
7247 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
7248 	CU_ASSERT(rc == 0);
7249 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
7250 
7251 	desc = NULL;
7252 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
7253 	CU_ASSERT(rc == 0);
7254 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7255 
7256 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
7257 		type = types[i];
7258 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7259 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
7260 			opts.shared_claim_key = (uint64_t)&opts;
7261 		}
7262 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
7263 		CU_ASSERT(rc == -EPERM);
7264 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
7265 	}
7266 
7267 	spdk_bdev_module_release_bdev(bdev);
7268 	spdk_bdev_close(desc);
7269 
7270 	/* Clean up */
7271 	free_bdev(bdev);
7272 }
7273 
7274 static void
7275 claim_v1_existing_v2(void)
7276 {
7277 	struct spdk_bdev *bdev;
7278 	struct spdk_bdev_desc *desc;
7279 	struct spdk_bdev_claim_opts opts;
7280 	enum spdk_bdev_claim_type type;
7281 	enum spdk_bdev_claim_type types[] = {
7282 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
7283 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
7284 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
7285 	};
7286 	size_t i;
7287 	int rc;
7288 
7289 	bdev = allocate_bdev("bdev0");
7290 
7291 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
7292 		type = types[i];
7293 
7294 		desc = NULL;
7295 		rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
7296 		CU_ASSERT(rc == 0);
7297 		SPDK_CU_ASSERT_FATAL(desc != NULL);
7298 
7299 		/* Get a v2 claim */
7300 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7301 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
7302 			opts.shared_claim_key = (uint64_t)&opts;
7303 		}
7304 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
7305 		CU_ASSERT(rc == 0);
7306 
7307 		/* Fail to get a v1 claim */
7308 		rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
7309 		CU_ASSERT(rc == -EPERM);
7310 
7311 		spdk_bdev_close(desc);
7312 
7313 		/* Now v1 succeeds */
7314 		rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
7315 		CU_ASSERT(rc == 0)
7316 		spdk_bdev_module_release_bdev(bdev);
7317 	}
7318 
7319 	/* Clean up */
7320 	free_bdev(bdev);
7321 }
7322 
7323 static int ut_examine_claimed_init0(void);
7324 static int ut_examine_claimed_init1(void);
7325 static void ut_examine_claimed_config0(struct spdk_bdev *bdev);
7326 static void ut_examine_claimed_disk0(struct spdk_bdev *bdev);
7327 static void ut_examine_claimed_config1(struct spdk_bdev *bdev);
7328 static void ut_examine_claimed_disk1(struct spdk_bdev *bdev);
7329 
7330 #define UT_MAX_EXAMINE_MODS 2
7331 struct spdk_bdev_module examine_claimed_mods[UT_MAX_EXAMINE_MODS] = {
7332 	{
7333 		.name = "vbdev_ut_examine0",
7334 		.module_init = ut_examine_claimed_init0,
7335 		.module_fini = vbdev_ut_module_fini,
7336 		.examine_config = ut_examine_claimed_config0,
7337 		.examine_disk = ut_examine_claimed_disk0,
7338 	},
7339 	{
7340 		.name = "vbdev_ut_examine1",
7341 		.module_init = ut_examine_claimed_init1,
7342 		.module_fini = vbdev_ut_module_fini,
7343 		.examine_config = ut_examine_claimed_config1,
7344 		.examine_disk = ut_examine_claimed_disk1,
7345 	}
7346 };
7347 
7348 SPDK_BDEV_MODULE_REGISTER(bdev_ut_claimed0, &examine_claimed_mods[0])
7349 SPDK_BDEV_MODULE_REGISTER(bdev_ut_claimed1, &examine_claimed_mods[1])
7350 
7351 struct ut_examine_claimed_ctx {
7352 	uint32_t examine_config_count;
7353 	uint32_t examine_disk_count;
7354 
7355 	/* Claim type to take, with these options */
7356 	enum spdk_bdev_claim_type claim_type;
7357 	struct spdk_bdev_claim_opts claim_opts;
7358 
7359 	/* Expected return value from spdk_bdev_module_claim_bdev_desc() */
7360 	int expect_claim_err;
7361 
7362 	/* Descriptor used for a claim */
7363 	struct spdk_bdev_desc *desc;
7364 } examine_claimed_ctx[UT_MAX_EXAMINE_MODS];
7365 
7366 bool ut_testing_examine_claimed;
7367 
7368 /*
7369  * Store the order in which the modules were initialized,
7370  * since we have no guarantee on the order of execution of the constructors.
7371  * Modules are examined in reverse order of their initialization.
7372  */
7373 static int g_ut_examine_claimed_order[UT_MAX_EXAMINE_MODS];
7374 static int
7375 ut_examine_claimed_init(uint32_t modnum)
7376 {
7377 	static int current = UT_MAX_EXAMINE_MODS;
7378 
7379 	/* Only do this for the first initialization of the bdev framework */
7380 	if (current == 0) {
7381 		return 0;
7382 	}
7383 	g_ut_examine_claimed_order[modnum] = --current;
7384 
7385 	return 0;
7386 }
7387 
7388 static int
7389 ut_examine_claimed_init0(void)
7390 {
7391 	return ut_examine_claimed_init(0);
7392 }
7393 
7394 static int
7395 ut_examine_claimed_init1(void)
7396 {
7397 	return ut_examine_claimed_init(1);
7398 }
7399 
7400 static void
7401 reset_examine_claimed_ctx(void)
7402 {
7403 	struct ut_examine_claimed_ctx *ctx;
7404 	uint32_t i;
7405 
7406 	for (i = 0; i < SPDK_COUNTOF(examine_claimed_ctx); i++) {
7407 		ctx = &examine_claimed_ctx[i];
7408 		if (ctx->desc != NULL) {
7409 			spdk_bdev_close(ctx->desc);
7410 		}
7411 		memset(ctx, 0, sizeof(*ctx));
7412 		spdk_bdev_claim_opts_init(&ctx->claim_opts, sizeof(ctx->claim_opts));
7413 	}
7414 }
7415 
7416 static void
7417 examine_claimed_config(struct spdk_bdev *bdev, uint32_t modnum)
7418 {
7419 	SPDK_CU_ASSERT_FATAL(modnum < UT_MAX_EXAMINE_MODS);
7420 	struct spdk_bdev_module *module = &examine_claimed_mods[modnum];
7421 	struct ut_examine_claimed_ctx *ctx = &examine_claimed_ctx[modnum];
7422 	int rc;
7423 
7424 	if (!ut_testing_examine_claimed) {
7425 		spdk_bdev_module_examine_done(module);
7426 		return;
7427 	}
7428 
7429 	ctx->examine_config_count++;
7430 
7431 	if (ctx->claim_type != SPDK_BDEV_CLAIM_NONE) {
7432 		rc = spdk_bdev_open_ext(bdev->name, false, bdev_ut_event_cb, &ctx->claim_opts,
7433 					&ctx->desc);
7434 		CU_ASSERT(rc == 0);
7435 
7436 		rc = spdk_bdev_module_claim_bdev_desc(ctx->desc, ctx->claim_type, NULL, module);
7437 		CU_ASSERT(rc == ctx->expect_claim_err);
7438 	}
7439 	spdk_bdev_module_examine_done(module);
7440 }
7441 
7442 static void
7443 ut_examine_claimed_config0(struct spdk_bdev *bdev)
7444 {
7445 	examine_claimed_config(bdev, g_ut_examine_claimed_order[0]);
7446 }
7447 
7448 static void
7449 ut_examine_claimed_config1(struct spdk_bdev *bdev)
7450 {
7451 	examine_claimed_config(bdev, g_ut_examine_claimed_order[1]);
7452 }
7453 
7454 static void
7455 examine_claimed_disk(struct spdk_bdev *bdev, uint32_t modnum)
7456 {
7457 	SPDK_CU_ASSERT_FATAL(modnum < UT_MAX_EXAMINE_MODS);
7458 	struct spdk_bdev_module *module = &examine_claimed_mods[modnum];
7459 	struct ut_examine_claimed_ctx *ctx = &examine_claimed_ctx[modnum];
7460 
7461 	if (!ut_testing_examine_claimed) {
7462 		spdk_bdev_module_examine_done(module);
7463 		return;
7464 	}
7465 
7466 	ctx->examine_disk_count++;
7467 
7468 	spdk_bdev_module_examine_done(module);
7469 }
7470 
7471 static void
7472 ut_examine_claimed_disk0(struct spdk_bdev *bdev)
7473 {
7474 	examine_claimed_disk(bdev, 0);
7475 }
7476 
7477 static void
7478 ut_examine_claimed_disk1(struct spdk_bdev *bdev)
7479 {
7480 	examine_claimed_disk(bdev, 1);
7481 }
7482 
7483 static void
7484 examine_claimed(void)
7485 {
7486 	struct spdk_bdev *bdev;
7487 	struct spdk_bdev_module *mod = examine_claimed_mods;
7488 	struct ut_examine_claimed_ctx *ctx = examine_claimed_ctx;
7489 
7490 	ut_testing_examine_claimed = true;
7491 	reset_examine_claimed_ctx();
7492 
7493 	/*
7494 	 * With one module claiming, both modules' examine_config should be called, but only the
7495 	 * claiming module's examine_disk should be called.
7496 	 */
7497 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7498 	bdev = allocate_bdev("bdev0");
7499 	CU_ASSERT(ctx[0].examine_config_count == 1);
7500 	CU_ASSERT(ctx[0].examine_disk_count == 1);
7501 	SPDK_CU_ASSERT_FATAL(ctx[0].desc != NULL);
7502 	CU_ASSERT(ctx[0].desc->claim->module == &mod[0]);
7503 	CU_ASSERT(ctx[1].examine_config_count == 1);
7504 	CU_ASSERT(ctx[1].examine_disk_count == 0);
7505 	CU_ASSERT(ctx[1].desc == NULL);
7506 	reset_examine_claimed_ctx();
7507 	free_bdev(bdev);
7508 
7509 	/*
7510 	 * With two modules claiming, both modules' examine_config and examine_disk should be
7511 	 * called.
7512 	 */
7513 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7514 	ctx[1].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7515 	bdev = allocate_bdev("bdev0");
7516 	CU_ASSERT(ctx[0].examine_config_count == 1);
7517 	CU_ASSERT(ctx[0].examine_disk_count == 1);
7518 	SPDK_CU_ASSERT_FATAL(ctx[0].desc != NULL);
7519 	CU_ASSERT(ctx[0].desc->claim->module == &mod[0]);
7520 	CU_ASSERT(ctx[1].examine_config_count == 1);
7521 	CU_ASSERT(ctx[1].examine_disk_count == 1);
7522 	SPDK_CU_ASSERT_FATAL(ctx[1].desc != NULL);
7523 	CU_ASSERT(ctx[1].desc->claim->module == &mod[1]);
7524 	reset_examine_claimed_ctx();
7525 	free_bdev(bdev);
7526 
7527 	/*
7528 	 * If two vbdev modules try to claim with conflicting claim types, the module that was added
7529 	 * last wins. The winner gets the claim and is the only one that has its examine_disk
7530 	 * callback invoked.
7531 	 */
7532 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7533 	ctx[0].expect_claim_err = -EPERM;
7534 	ctx[1].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE;
7535 	bdev = allocate_bdev("bdev0");
7536 	CU_ASSERT(ctx[0].examine_config_count == 1);
7537 	CU_ASSERT(ctx[0].examine_disk_count == 0);
7538 	CU_ASSERT(ctx[1].examine_config_count == 1);
7539 	CU_ASSERT(ctx[1].examine_disk_count == 1);
7540 	SPDK_CU_ASSERT_FATAL(ctx[1].desc != NULL);
7541 	CU_ASSERT(ctx[1].desc->claim->module == &mod[1]);
7542 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
7543 	reset_examine_claimed_ctx();
7544 	free_bdev(bdev);
7545 
7546 	ut_testing_examine_claimed = false;
7547 }
7548 
7549 static void
7550 get_numa_id(void)
7551 {
7552 	struct spdk_bdev bdev = {};
7553 
7554 	bdev.numa.id = 0;
7555 	bdev.numa.id_valid = 0;
7556 	CU_ASSERT(spdk_bdev_get_numa_id(&bdev) == SPDK_ENV_NUMA_ID_ANY);
7557 
7558 	bdev.numa.id_valid = 1;
7559 	CU_ASSERT(spdk_bdev_get_numa_id(&bdev) == 0);
7560 
7561 	bdev.numa.id = SPDK_ENV_NUMA_ID_ANY;
7562 	CU_ASSERT(spdk_bdev_get_numa_id(&bdev) == SPDK_ENV_NUMA_ID_ANY);
7563 }
7564 
7565 static void
7566 get_device_stat_with_reset_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg,
7567 			      int rc)
7568 {
7569 	*(bool *)cb_arg = true;
7570 }
7571 
7572 static void
7573 get_device_stat_with_given_reset(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat,
7574 				 enum spdk_bdev_reset_stat_mode mode)
7575 {
7576 	bool done = false;
7577 
7578 	spdk_bdev_get_device_stat(bdev, stat, mode, get_device_stat_with_reset_cb, &done);
7579 	while (!done) { poll_threads(); }
7580 }
7581 
7582 static void
7583 get_device_stat_with_reset(void)
7584 {
7585 	struct spdk_bdev *bdev;
7586 	struct spdk_bdev_desc *desc = NULL;
7587 	struct spdk_io_channel *io_ch;
7588 	struct spdk_bdev_opts bdev_opts = {};
7589 	struct spdk_bdev_io_stat *stat;
7590 
7591 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
7592 	bdev_opts.bdev_io_pool_size = 2;
7593 	bdev_opts.bdev_io_cache_size = 1;
7594 	ut_init_bdev(&bdev_opts);
7595 	bdev = allocate_bdev("bdev0");
7596 
7597 	CU_ASSERT(spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc) == 0);
7598 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7599 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
7600 	io_ch = spdk_bdev_get_io_channel(desc);
7601 	CU_ASSERT(io_ch != NULL);
7602 
7603 	g_io_done = false;
7604 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
7605 	spdk_delay_us(10);
7606 	stub_complete_io(1);
7607 	CU_ASSERT(g_io_done == true);
7608 
7609 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
7610 	SPDK_CU_ASSERT_FATAL(stat != NULL);
7611 
7612 	/* Get stat without resetting and check that it is correct  */
7613 	get_device_stat_with_given_reset(bdev, stat, SPDK_BDEV_RESET_STAT_NONE);
7614 	CU_ASSERT(stat->bytes_read == 4096);
7615 	CU_ASSERT(stat->max_read_latency_ticks == 10);
7616 
7617 	/**
7618 	 * Check that stat was not reseted after previous step,
7619 	 * send get request with resetting maxmin stats
7620 	 */
7621 	get_device_stat_with_given_reset(bdev, stat, SPDK_BDEV_RESET_STAT_MAXMIN);
7622 	CU_ASSERT(stat->bytes_read == 4096);
7623 	CU_ASSERT(stat->max_read_latency_ticks == 10);
7624 
7625 	/**
7626 	 * Check that maxmins stats are reseted after previous step,
7627 	 * send get request with resetting all stats
7628 	 */
7629 	get_device_stat_with_given_reset(bdev, stat, SPDK_BDEV_RESET_STAT_ALL);
7630 	CU_ASSERT(stat->bytes_read == 4096);
7631 	CU_ASSERT(stat->max_read_latency_ticks == 0);
7632 
7633 	/* Check that all stats are reseted after previous step */
7634 	get_device_stat_with_given_reset(bdev, stat, SPDK_BDEV_RESET_STAT_NONE);
7635 	CU_ASSERT(stat->bytes_read == 0);
7636 	CU_ASSERT(stat->max_read_latency_ticks == 0);
7637 
7638 	free(stat);
7639 	spdk_put_io_channel(io_ch);
7640 	spdk_bdev_close(desc);
7641 	free_bdev(bdev);
7642 	ut_fini_bdev();
7643 }
7644 
7645 int
7646 main(int argc, char **argv)
7647 {
7648 	CU_pSuite		suite = NULL;
7649 	unsigned int		num_failures;
7650 
7651 	CU_initialize_registry();
7652 
7653 	suite = CU_add_suite("bdev", ut_bdev_setup, ut_bdev_teardown);
7654 
7655 	CU_ADD_TEST(suite, bytes_to_blocks_test);
7656 	CU_ADD_TEST(suite, num_blocks_test);
7657 	CU_ADD_TEST(suite, io_valid_test);
7658 	CU_ADD_TEST(suite, open_write_test);
7659 	CU_ADD_TEST(suite, claim_test);
7660 	CU_ADD_TEST(suite, alias_add_del_test);
7661 	CU_ADD_TEST(suite, get_device_stat_test);
7662 	CU_ADD_TEST(suite, bdev_io_types_test);
7663 	CU_ADD_TEST(suite, bdev_io_wait_test);
7664 	CU_ADD_TEST(suite, bdev_io_spans_split_test);
7665 	CU_ADD_TEST(suite, bdev_io_boundary_split_test);
7666 	CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test);
7667 	CU_ADD_TEST(suite, bdev_io_mix_split_test);
7668 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
7669 	CU_ADD_TEST(suite, bdev_io_write_unit_split_test);
7670 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
7671 	CU_ADD_TEST(suite, bdev_io_alignment);
7672 	CU_ADD_TEST(suite, bdev_histograms);
7673 	CU_ADD_TEST(suite, bdev_write_zeroes);
7674 	CU_ADD_TEST(suite, bdev_compare_and_write);
7675 	CU_ADD_TEST(suite, bdev_compare);
7676 	CU_ADD_TEST(suite, bdev_compare_emulated);
7677 	CU_ADD_TEST(suite, bdev_zcopy_write);
7678 	CU_ADD_TEST(suite, bdev_zcopy_read);
7679 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
7680 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
7681 	CU_ADD_TEST(suite, bdev_open_ext_test);
7682 	CU_ADD_TEST(suite, bdev_open_ext_unregister);
7683 	CU_ADD_TEST(suite, bdev_set_io_timeout);
7684 	CU_ADD_TEST(suite, bdev_set_qd_sampling);
7685 	CU_ADD_TEST(suite, lba_range_overlap);
7686 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
7687 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
7688 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
7689 	CU_ADD_TEST(suite, bdev_quiesce);
7690 	CU_ADD_TEST(suite, bdev_io_abort);
7691 	CU_ADD_TEST(suite, bdev_unmap);
7692 	CU_ADD_TEST(suite, bdev_write_zeroes_split_test);
7693 	CU_ADD_TEST(suite, bdev_set_options_test);
7694 	CU_ADD_TEST(suite, bdev_get_memory_domains);
7695 	CU_ADD_TEST(suite, bdev_io_ext);
7696 	CU_ADD_TEST(suite, bdev_io_ext_no_opts);
7697 	CU_ADD_TEST(suite, bdev_io_ext_invalid_opts);
7698 	CU_ADD_TEST(suite, bdev_io_ext_split);
7699 	CU_ADD_TEST(suite, bdev_io_ext_bounce_buffer);
7700 	CU_ADD_TEST(suite, bdev_register_uuid_alias);
7701 	CU_ADD_TEST(suite, bdev_unregister_by_name);
7702 	CU_ADD_TEST(suite, for_each_bdev_test);
7703 	CU_ADD_TEST(suite, bdev_seek_test);
7704 	CU_ADD_TEST(suite, bdev_copy);
7705 	CU_ADD_TEST(suite, bdev_copy_split_test);
7706 	CU_ADD_TEST(suite, examine_locks);
7707 	CU_ADD_TEST(suite, claim_v2_rwo);
7708 	CU_ADD_TEST(suite, claim_v2_rom);
7709 	CU_ADD_TEST(suite, claim_v2_rwm);
7710 	CU_ADD_TEST(suite, claim_v2_existing_writer);
7711 	CU_ADD_TEST(suite, claim_v2_existing_v1);
7712 	CU_ADD_TEST(suite, claim_v1_existing_v2);
7713 	CU_ADD_TEST(suite, examine_claimed);
7714 	CU_ADD_TEST(suite, get_numa_id);
7715 	CU_ADD_TEST(suite, get_device_stat_with_reset);
7716 
7717 	allocate_cores(1);
7718 	allocate_threads(1);
7719 	set_thread(0);
7720 
7721 	num_failures = spdk_ut_run_tests(argc, argv, NULL);
7722 	CU_cleanup_registry();
7723 
7724 	free_threads();
7725 	free_cores();
7726 
7727 	return num_failures;
7728 }
7729