xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision 3faf457f568666aa19f2cec43904822bea603298)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk_cunit.h"
35 
36 #include "common/lib/ut_multithread.c"
37 #include "unit/lib/json_mock.c"
38 
39 #include "spdk/config.h"
40 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
41 #undef SPDK_CONFIG_VTUNE
42 
43 #include "bdev/bdev.c"
44 
45 struct spdk_trace_histories *g_trace_histories;
46 DEFINE_STUB_V(spdk_trace_add_register_fn, (struct spdk_trace_register_fn *reg_fn));
47 DEFINE_STUB_V(spdk_trace_register_owner, (uint8_t type, char id_prefix));
48 DEFINE_STUB_V(spdk_trace_register_object, (uint8_t type, char id_prefix));
49 DEFINE_STUB_V(spdk_trace_register_description, (const char *name,
50 		uint16_t tpoint_id, uint8_t owner_type,
51 		uint8_t object_type, uint8_t new_object,
52 		uint8_t arg1_type, const char *arg1_name));
53 DEFINE_STUB_V(_spdk_trace_record, (uint64_t tsc, uint16_t tpoint_id, uint16_t poller_id,
54 				   uint32_t size, uint64_t object_id, uint64_t arg1));
55 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
56 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
57 
58 
59 int g_status;
60 int g_count;
61 enum spdk_bdev_event_type g_event_type1;
62 enum spdk_bdev_event_type g_event_type2;
63 struct spdk_histogram_data *g_histogram;
64 void *g_unregister_arg;
65 int g_unregister_rc;
66 
67 void
68 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
69 			 int *sc, int *sk, int *asc, int *ascq)
70 {
71 }
72 
73 static int
74 null_init(void)
75 {
76 	return 0;
77 }
78 
79 static int
80 null_clean(void)
81 {
82 	return 0;
83 }
84 
85 static int
86 stub_destruct(void *ctx)
87 {
88 	return 0;
89 }
90 
91 struct ut_expected_io {
92 	uint8_t				type;
93 	uint64_t			offset;
94 	uint64_t			length;
95 	int				iovcnt;
96 	struct iovec			iov[BDEV_IO_NUM_CHILD_IOV];
97 	void				*md_buf;
98 	TAILQ_ENTRY(ut_expected_io)	link;
99 };
100 
101 struct bdev_ut_channel {
102 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
103 	uint32_t			outstanding_io_count;
104 	TAILQ_HEAD(, ut_expected_io)	expected_io;
105 };
106 
107 static bool g_io_done;
108 static struct spdk_bdev_io *g_bdev_io;
109 static enum spdk_bdev_io_status g_io_status;
110 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
111 static uint32_t g_bdev_ut_io_device;
112 static struct bdev_ut_channel *g_bdev_ut_channel;
113 static void *g_compare_read_buf;
114 static uint32_t g_compare_read_buf_len;
115 static void *g_compare_write_buf;
116 static uint32_t g_compare_write_buf_len;
117 static bool g_abort_done;
118 static enum spdk_bdev_io_status g_abort_status;
119 
120 static struct ut_expected_io *
121 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
122 {
123 	struct ut_expected_io *expected_io;
124 
125 	expected_io = calloc(1, sizeof(*expected_io));
126 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
127 
128 	expected_io->type = type;
129 	expected_io->offset = offset;
130 	expected_io->length = length;
131 	expected_io->iovcnt = iovcnt;
132 
133 	return expected_io;
134 }
135 
136 static void
137 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
138 {
139 	expected_io->iov[pos].iov_base = base;
140 	expected_io->iov[pos].iov_len = len;
141 }
142 
143 static void
144 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
145 {
146 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
147 	struct ut_expected_io *expected_io;
148 	struct iovec *iov, *expected_iov;
149 	struct spdk_bdev_io *bio_to_abort;
150 	int i;
151 
152 	g_bdev_io = bdev_io;
153 
154 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
155 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
156 
157 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
158 		CU_ASSERT(g_compare_read_buf_len == len);
159 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
160 	}
161 
162 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
163 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
164 
165 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
166 		CU_ASSERT(g_compare_write_buf_len == len);
167 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
168 	}
169 
170 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
171 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
172 
173 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
174 		CU_ASSERT(g_compare_read_buf_len == len);
175 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
176 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
177 		}
178 	}
179 
180 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
181 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
182 			TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
183 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
184 					TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
185 					ch->outstanding_io_count--;
186 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
187 					break;
188 				}
189 			}
190 		}
191 	}
192 
193 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
194 	ch->outstanding_io_count++;
195 
196 	expected_io = TAILQ_FIRST(&ch->expected_io);
197 	if (expected_io == NULL) {
198 		return;
199 	}
200 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
201 
202 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
203 		CU_ASSERT(bdev_io->type == expected_io->type);
204 	}
205 
206 	if (expected_io->md_buf != NULL) {
207 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
208 	}
209 
210 	if (expected_io->length == 0) {
211 		free(expected_io);
212 		return;
213 	}
214 
215 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
216 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
217 
218 	if (expected_io->iovcnt == 0) {
219 		free(expected_io);
220 		/* UNMAP, WRITE_ZEROES and FLUSH don't have iovs, so we can just return now. */
221 		return;
222 	}
223 
224 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
225 	for (i = 0; i < expected_io->iovcnt; i++) {
226 		iov = &bdev_io->u.bdev.iovs[i];
227 		expected_iov = &expected_io->iov[i];
228 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
229 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
230 	}
231 
232 	free(expected_io);
233 }
234 
235 static void
236 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
237 			       struct spdk_bdev_io *bdev_io, bool success)
238 {
239 	CU_ASSERT(success == true);
240 
241 	stub_submit_request(_ch, bdev_io);
242 }
243 
244 static void
245 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
246 {
247 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
248 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
249 }
250 
251 static uint32_t
252 stub_complete_io(uint32_t num_to_complete)
253 {
254 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
255 	struct spdk_bdev_io *bdev_io;
256 	static enum spdk_bdev_io_status io_status;
257 	uint32_t num_completed = 0;
258 
259 	while (num_completed < num_to_complete) {
260 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
261 			break;
262 		}
263 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
264 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
265 		ch->outstanding_io_count--;
266 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
267 			    g_io_exp_status;
268 		spdk_bdev_io_complete(bdev_io, io_status);
269 		num_completed++;
270 	}
271 
272 	return num_completed;
273 }
274 
275 static struct spdk_io_channel *
276 bdev_ut_get_io_channel(void *ctx)
277 {
278 	return spdk_get_io_channel(&g_bdev_ut_io_device);
279 }
280 
281 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
282 	[SPDK_BDEV_IO_TYPE_READ]		= true,
283 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
284 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
285 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
286 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
287 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
288 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
289 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
290 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
291 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
292 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
293 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
294 };
295 
296 static void
297 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
298 {
299 	g_io_types_supported[io_type] = enable;
300 }
301 
302 static bool
303 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
304 {
305 	return g_io_types_supported[io_type];
306 }
307 
308 static struct spdk_bdev_fn_table fn_table = {
309 	.destruct = stub_destruct,
310 	.submit_request = stub_submit_request,
311 	.get_io_channel = bdev_ut_get_io_channel,
312 	.io_type_supported = stub_io_type_supported,
313 };
314 
315 static int
316 bdev_ut_create_ch(void *io_device, void *ctx_buf)
317 {
318 	struct bdev_ut_channel *ch = ctx_buf;
319 
320 	CU_ASSERT(g_bdev_ut_channel == NULL);
321 	g_bdev_ut_channel = ch;
322 
323 	TAILQ_INIT(&ch->outstanding_io);
324 	ch->outstanding_io_count = 0;
325 	TAILQ_INIT(&ch->expected_io);
326 	return 0;
327 }
328 
329 static void
330 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
331 {
332 	CU_ASSERT(g_bdev_ut_channel != NULL);
333 	g_bdev_ut_channel = NULL;
334 }
335 
336 struct spdk_bdev_module bdev_ut_if;
337 
338 static int
339 bdev_ut_module_init(void)
340 {
341 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
342 				sizeof(struct bdev_ut_channel), NULL);
343 	spdk_bdev_module_init_done(&bdev_ut_if);
344 	return 0;
345 }
346 
347 static void
348 bdev_ut_module_fini(void)
349 {
350 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
351 }
352 
353 struct spdk_bdev_module bdev_ut_if = {
354 	.name = "bdev_ut",
355 	.module_init = bdev_ut_module_init,
356 	.module_fini = bdev_ut_module_fini,
357 	.async_init = true,
358 };
359 
360 static void vbdev_ut_examine(struct spdk_bdev *bdev);
361 
362 static int
363 vbdev_ut_module_init(void)
364 {
365 	return 0;
366 }
367 
368 static void
369 vbdev_ut_module_fini(void)
370 {
371 }
372 
373 struct spdk_bdev_module vbdev_ut_if = {
374 	.name = "vbdev_ut",
375 	.module_init = vbdev_ut_module_init,
376 	.module_fini = vbdev_ut_module_fini,
377 	.examine_config = vbdev_ut_examine,
378 };
379 
380 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
381 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
382 
383 static void
384 vbdev_ut_examine(struct spdk_bdev *bdev)
385 {
386 	spdk_bdev_module_examine_done(&vbdev_ut_if);
387 }
388 
389 static struct spdk_bdev *
390 allocate_bdev(char *name)
391 {
392 	struct spdk_bdev *bdev;
393 	int rc;
394 
395 	bdev = calloc(1, sizeof(*bdev));
396 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
397 
398 	bdev->name = name;
399 	bdev->fn_table = &fn_table;
400 	bdev->module = &bdev_ut_if;
401 	bdev->blockcnt = 1024;
402 	bdev->blocklen = 512;
403 
404 	rc = spdk_bdev_register(bdev);
405 	CU_ASSERT(rc == 0);
406 
407 	return bdev;
408 }
409 
410 static struct spdk_bdev *
411 allocate_vbdev(char *name)
412 {
413 	struct spdk_bdev *bdev;
414 	int rc;
415 
416 	bdev = calloc(1, sizeof(*bdev));
417 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
418 
419 	bdev->name = name;
420 	bdev->fn_table = &fn_table;
421 	bdev->module = &vbdev_ut_if;
422 
423 	rc = spdk_bdev_register(bdev);
424 	CU_ASSERT(rc == 0);
425 
426 	return bdev;
427 }
428 
429 static void
430 free_bdev(struct spdk_bdev *bdev)
431 {
432 	spdk_bdev_unregister(bdev, NULL, NULL);
433 	poll_threads();
434 	memset(bdev, 0xFF, sizeof(*bdev));
435 	free(bdev);
436 }
437 
438 static void
439 free_vbdev(struct spdk_bdev *bdev)
440 {
441 	spdk_bdev_unregister(bdev, NULL, NULL);
442 	poll_threads();
443 	memset(bdev, 0xFF, sizeof(*bdev));
444 	free(bdev);
445 }
446 
447 static void
448 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
449 {
450 	const char *bdev_name;
451 
452 	CU_ASSERT(bdev != NULL);
453 	CU_ASSERT(rc == 0);
454 	bdev_name = spdk_bdev_get_name(bdev);
455 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
456 
457 	free(stat);
458 
459 	*(bool *)cb_arg = true;
460 }
461 
462 static void
463 bdev_unregister_cb(void *cb_arg, int rc)
464 {
465 	g_unregister_arg = cb_arg;
466 	g_unregister_rc = rc;
467 }
468 
469 static void
470 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
471 {
472 }
473 
474 static void
475 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
476 {
477 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
478 
479 	g_event_type1 = type;
480 	if (SPDK_BDEV_EVENT_REMOVE == type) {
481 		spdk_bdev_close(desc);
482 	}
483 }
484 
485 static void
486 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
487 {
488 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
489 
490 	g_event_type2 = type;
491 	if (SPDK_BDEV_EVENT_REMOVE == type) {
492 		spdk_bdev_close(desc);
493 	}
494 }
495 
496 static void
497 get_device_stat_test(void)
498 {
499 	struct spdk_bdev *bdev;
500 	struct spdk_bdev_io_stat *stat;
501 	bool done;
502 
503 	bdev = allocate_bdev("bdev0");
504 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
505 	if (stat == NULL) {
506 		free_bdev(bdev);
507 		return;
508 	}
509 
510 	done = false;
511 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
512 	while (!done) { poll_threads(); }
513 
514 	free_bdev(bdev);
515 }
516 
517 static void
518 open_write_test(void)
519 {
520 	struct spdk_bdev *bdev[9];
521 	struct spdk_bdev_desc *desc[9] = {};
522 	int rc;
523 
524 	/*
525 	 * Create a tree of bdevs to test various open w/ write cases.
526 	 *
527 	 * bdev0 through bdev3 are physical block devices, such as NVMe
528 	 * namespaces or Ceph block devices.
529 	 *
530 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
531 	 * caching or RAID use cases.
532 	 *
533 	 * bdev5 through bdev7 are all virtual bdevs with the same base
534 	 * bdev (except bdev7). This models partitioning or logical volume
535 	 * use cases.
536 	 *
537 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
538 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
539 	 * models caching, RAID, partitioning or logical volumes use cases.
540 	 *
541 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
542 	 * base bdevs are themselves virtual bdevs.
543 	 *
544 	 *                bdev8
545 	 *                  |
546 	 *            +----------+
547 	 *            |          |
548 	 *          bdev4      bdev5   bdev6   bdev7
549 	 *            |          |       |       |
550 	 *        +---+---+      +---+   +   +---+---+
551 	 *        |       |           \  |  /         \
552 	 *      bdev0   bdev1          bdev2         bdev3
553 	 */
554 
555 	bdev[0] = allocate_bdev("bdev0");
556 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
557 	CU_ASSERT(rc == 0);
558 
559 	bdev[1] = allocate_bdev("bdev1");
560 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
561 	CU_ASSERT(rc == 0);
562 
563 	bdev[2] = allocate_bdev("bdev2");
564 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
565 	CU_ASSERT(rc == 0);
566 
567 	bdev[3] = allocate_bdev("bdev3");
568 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
569 	CU_ASSERT(rc == 0);
570 
571 	bdev[4] = allocate_vbdev("bdev4");
572 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
573 	CU_ASSERT(rc == 0);
574 
575 	bdev[5] = allocate_vbdev("bdev5");
576 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
577 	CU_ASSERT(rc == 0);
578 
579 	bdev[6] = allocate_vbdev("bdev6");
580 
581 	bdev[7] = allocate_vbdev("bdev7");
582 
583 	bdev[8] = allocate_vbdev("bdev8");
584 
585 	/* Open bdev0 read-only.  This should succeed. */
586 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
587 	CU_ASSERT(rc == 0);
588 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
589 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
590 	spdk_bdev_close(desc[0]);
591 
592 	/*
593 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
594 	 * by a vbdev module.
595 	 */
596 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
597 	CU_ASSERT(rc == -EPERM);
598 
599 	/*
600 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
601 	 * by a vbdev module.
602 	 */
603 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
604 	CU_ASSERT(rc == -EPERM);
605 
606 	/* Open bdev4 read-only.  This should succeed. */
607 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
608 	CU_ASSERT(rc == 0);
609 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
610 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
611 	spdk_bdev_close(desc[4]);
612 
613 	/*
614 	 * Open bdev8 read/write.  This should succeed since it is a leaf
615 	 * bdev.
616 	 */
617 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
618 	CU_ASSERT(rc == 0);
619 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
620 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
621 	spdk_bdev_close(desc[8]);
622 
623 	/*
624 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
625 	 * by a vbdev module.
626 	 */
627 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
628 	CU_ASSERT(rc == -EPERM);
629 
630 	/* Open bdev4 read-only.  This should succeed. */
631 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
632 	CU_ASSERT(rc == 0);
633 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
634 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
635 	spdk_bdev_close(desc[5]);
636 
637 	free_vbdev(bdev[8]);
638 
639 	free_vbdev(bdev[5]);
640 	free_vbdev(bdev[6]);
641 	free_vbdev(bdev[7]);
642 
643 	free_vbdev(bdev[4]);
644 
645 	free_bdev(bdev[0]);
646 	free_bdev(bdev[1]);
647 	free_bdev(bdev[2]);
648 	free_bdev(bdev[3]);
649 }
650 
651 static void
652 bytes_to_blocks_test(void)
653 {
654 	struct spdk_bdev bdev;
655 	uint64_t offset_blocks, num_blocks;
656 
657 	memset(&bdev, 0, sizeof(bdev));
658 
659 	bdev.blocklen = 512;
660 
661 	/* All parameters valid */
662 	offset_blocks = 0;
663 	num_blocks = 0;
664 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
665 	CU_ASSERT(offset_blocks == 1);
666 	CU_ASSERT(num_blocks == 2);
667 
668 	/* Offset not a block multiple */
669 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
670 
671 	/* Length not a block multiple */
672 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
673 
674 	/* In case blocklen not the power of two */
675 	bdev.blocklen = 100;
676 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
677 	CU_ASSERT(offset_blocks == 1);
678 	CU_ASSERT(num_blocks == 2);
679 
680 	/* Offset not a block multiple */
681 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
682 
683 	/* Length not a block multiple */
684 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
685 }
686 
687 static void
688 num_blocks_test(void)
689 {
690 	struct spdk_bdev bdev;
691 	struct spdk_bdev_desc *desc = NULL;
692 	int rc;
693 
694 	memset(&bdev, 0, sizeof(bdev));
695 	bdev.name = "num_blocks";
696 	bdev.fn_table = &fn_table;
697 	bdev.module = &bdev_ut_if;
698 	spdk_bdev_register(&bdev);
699 	spdk_bdev_notify_blockcnt_change(&bdev, 50);
700 
701 	/* Growing block number */
702 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
703 	/* Shrinking block number */
704 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
705 
706 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc, &desc);
707 	CU_ASSERT(rc == 0);
708 	SPDK_CU_ASSERT_FATAL(desc != NULL);
709 	CU_ASSERT(&bdev == spdk_bdev_desc_get_bdev(desc));
710 
711 	/* Growing block number */
712 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
713 	/* Shrinking block number */
714 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
715 
716 	g_event_type1 = 0xFF;
717 	/* Growing block number */
718 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
719 
720 	poll_threads();
721 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
722 
723 	g_event_type1 = 0xFF;
724 	/* Growing block number and closing */
725 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
726 
727 	spdk_bdev_close(desc);
728 	spdk_bdev_unregister(&bdev, NULL, NULL);
729 
730 	poll_threads();
731 
732 	/* Callback is not called for closed device */
733 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
734 }
735 
736 static void
737 io_valid_test(void)
738 {
739 	struct spdk_bdev bdev;
740 
741 	memset(&bdev, 0, sizeof(bdev));
742 
743 	bdev.blocklen = 512;
744 	CU_ASSERT(pthread_mutex_init(&bdev.internal.mutex, NULL) == 0);
745 
746 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
747 
748 	/* All parameters valid */
749 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
750 
751 	/* Last valid block */
752 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
753 
754 	/* Offset past end of bdev */
755 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
756 
757 	/* Offset + length past end of bdev */
758 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
759 
760 	/* Offset near end of uint64_t range (2^64 - 1) */
761 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
762 
763 	CU_ASSERT(pthread_mutex_destroy(&bdev.internal.mutex) == 0);
764 }
765 
766 static void
767 alias_add_del_test(void)
768 {
769 	struct spdk_bdev *bdev[3];
770 	int rc;
771 
772 	/* Creating and registering bdevs */
773 	bdev[0] = allocate_bdev("bdev0");
774 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
775 
776 	bdev[1] = allocate_bdev("bdev1");
777 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
778 
779 	bdev[2] = allocate_bdev("bdev2");
780 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
781 
782 	poll_threads();
783 
784 	/*
785 	 * Trying adding an alias identical to name.
786 	 * Alias is identical to name, so it can not be added to aliases list
787 	 */
788 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
789 	CU_ASSERT(rc == -EEXIST);
790 
791 	/*
792 	 * Trying to add empty alias,
793 	 * this one should fail
794 	 */
795 	rc = spdk_bdev_alias_add(bdev[0], NULL);
796 	CU_ASSERT(rc == -EINVAL);
797 
798 	/* Trying adding same alias to two different registered bdevs */
799 
800 	/* Alias is used first time, so this one should pass */
801 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
802 	CU_ASSERT(rc == 0);
803 
804 	/* Alias was added to another bdev, so this one should fail */
805 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
806 	CU_ASSERT(rc == -EEXIST);
807 
808 	/* Alias is used first time, so this one should pass */
809 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
810 	CU_ASSERT(rc == 0);
811 
812 	/* Trying removing an alias from registered bdevs */
813 
814 	/* Alias is not on a bdev aliases list, so this one should fail */
815 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
816 	CU_ASSERT(rc == -ENOENT);
817 
818 	/* Alias is present on a bdev aliases list, so this one should pass */
819 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
820 	CU_ASSERT(rc == 0);
821 
822 	/* Alias is present on a bdev aliases list, so this one should pass */
823 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
824 	CU_ASSERT(rc == 0);
825 
826 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
827 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
828 	CU_ASSERT(rc != 0);
829 
830 	/* Trying to del all alias from empty alias list */
831 	spdk_bdev_alias_del_all(bdev[2]);
832 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
833 
834 	/* Trying to del all alias from non-empty alias list */
835 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
836 	CU_ASSERT(rc == 0);
837 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
838 	CU_ASSERT(rc == 0);
839 	spdk_bdev_alias_del_all(bdev[2]);
840 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
841 
842 	/* Unregister and free bdevs */
843 	spdk_bdev_unregister(bdev[0], NULL, NULL);
844 	spdk_bdev_unregister(bdev[1], NULL, NULL);
845 	spdk_bdev_unregister(bdev[2], NULL, NULL);
846 
847 	poll_threads();
848 
849 	free(bdev[0]);
850 	free(bdev[1]);
851 	free(bdev[2]);
852 }
853 
854 static void
855 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
856 {
857 	g_io_done = true;
858 	g_io_status = bdev_io->internal.status;
859 	spdk_bdev_free_io(bdev_io);
860 }
861 
862 static void
863 bdev_init_cb(void *arg, int rc)
864 {
865 	CU_ASSERT(rc == 0);
866 }
867 
868 static void
869 bdev_fini_cb(void *arg)
870 {
871 }
872 
873 struct bdev_ut_io_wait_entry {
874 	struct spdk_bdev_io_wait_entry	entry;
875 	struct spdk_io_channel		*io_ch;
876 	struct spdk_bdev_desc		*desc;
877 	bool				submitted;
878 };
879 
880 static void
881 io_wait_cb(void *arg)
882 {
883 	struct bdev_ut_io_wait_entry *entry = arg;
884 	int rc;
885 
886 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
887 	CU_ASSERT(rc == 0);
888 	entry->submitted = true;
889 }
890 
891 static void
892 bdev_io_types_test(void)
893 {
894 	struct spdk_bdev *bdev;
895 	struct spdk_bdev_desc *desc = NULL;
896 	struct spdk_io_channel *io_ch;
897 	struct spdk_bdev_opts bdev_opts = {};
898 	int rc;
899 
900 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
901 	bdev_opts.bdev_io_pool_size = 4;
902 	bdev_opts.bdev_io_cache_size = 2;
903 
904 	rc = spdk_bdev_set_opts(&bdev_opts);
905 	CU_ASSERT(rc == 0);
906 	spdk_bdev_initialize(bdev_init_cb, NULL);
907 	poll_threads();
908 
909 	bdev = allocate_bdev("bdev0");
910 
911 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
912 	CU_ASSERT(rc == 0);
913 	poll_threads();
914 	SPDK_CU_ASSERT_FATAL(desc != NULL);
915 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
916 	io_ch = spdk_bdev_get_io_channel(desc);
917 	CU_ASSERT(io_ch != NULL);
918 
919 	/* WRITE and WRITE ZEROES are not supported */
920 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
921 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
922 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
923 	CU_ASSERT(rc == -ENOTSUP);
924 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
925 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
926 
927 	spdk_put_io_channel(io_ch);
928 	spdk_bdev_close(desc);
929 	free_bdev(bdev);
930 	spdk_bdev_finish(bdev_fini_cb, NULL);
931 	poll_threads();
932 }
933 
934 static void
935 bdev_io_wait_test(void)
936 {
937 	struct spdk_bdev *bdev;
938 	struct spdk_bdev_desc *desc = NULL;
939 	struct spdk_io_channel *io_ch;
940 	struct spdk_bdev_opts bdev_opts = {};
941 	struct bdev_ut_io_wait_entry io_wait_entry;
942 	struct bdev_ut_io_wait_entry io_wait_entry2;
943 	int rc;
944 
945 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
946 	bdev_opts.bdev_io_pool_size = 4;
947 	bdev_opts.bdev_io_cache_size = 2;
948 
949 	rc = spdk_bdev_set_opts(&bdev_opts);
950 	CU_ASSERT(rc == 0);
951 	spdk_bdev_initialize(bdev_init_cb, NULL);
952 	poll_threads();
953 
954 	bdev = allocate_bdev("bdev0");
955 
956 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
957 	CU_ASSERT(rc == 0);
958 	poll_threads();
959 	SPDK_CU_ASSERT_FATAL(desc != NULL);
960 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
961 	io_ch = spdk_bdev_get_io_channel(desc);
962 	CU_ASSERT(io_ch != NULL);
963 
964 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
965 	CU_ASSERT(rc == 0);
966 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
967 	CU_ASSERT(rc == 0);
968 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
969 	CU_ASSERT(rc == 0);
970 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
971 	CU_ASSERT(rc == 0);
972 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
973 
974 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
975 	CU_ASSERT(rc == -ENOMEM);
976 
977 	io_wait_entry.entry.bdev = bdev;
978 	io_wait_entry.entry.cb_fn = io_wait_cb;
979 	io_wait_entry.entry.cb_arg = &io_wait_entry;
980 	io_wait_entry.io_ch = io_ch;
981 	io_wait_entry.desc = desc;
982 	io_wait_entry.submitted = false;
983 	/* Cannot use the same io_wait_entry for two different calls. */
984 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
985 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
986 
987 	/* Queue two I/O waits. */
988 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
989 	CU_ASSERT(rc == 0);
990 	CU_ASSERT(io_wait_entry.submitted == false);
991 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
992 	CU_ASSERT(rc == 0);
993 	CU_ASSERT(io_wait_entry2.submitted == false);
994 
995 	stub_complete_io(1);
996 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
997 	CU_ASSERT(io_wait_entry.submitted == true);
998 	CU_ASSERT(io_wait_entry2.submitted == false);
999 
1000 	stub_complete_io(1);
1001 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1002 	CU_ASSERT(io_wait_entry2.submitted == true);
1003 
1004 	stub_complete_io(4);
1005 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1006 
1007 	spdk_put_io_channel(io_ch);
1008 	spdk_bdev_close(desc);
1009 	free_bdev(bdev);
1010 	spdk_bdev_finish(bdev_fini_cb, NULL);
1011 	poll_threads();
1012 }
1013 
1014 static void
1015 bdev_io_spans_split_test(void)
1016 {
1017 	struct spdk_bdev bdev;
1018 	struct spdk_bdev_io bdev_io;
1019 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV];
1020 
1021 	memset(&bdev, 0, sizeof(bdev));
1022 	bdev_io.u.bdev.iovs = iov;
1023 
1024 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1025 	bdev.optimal_io_boundary = 0;
1026 	bdev.max_segment_size = 0;
1027 	bdev.max_num_segments = 0;
1028 	bdev_io.bdev = &bdev;
1029 
1030 	/* bdev has no optimal_io_boundary and max_size set - so this should return false. */
1031 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1032 
1033 	bdev.split_on_optimal_io_boundary = true;
1034 	bdev.optimal_io_boundary = 32;
1035 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1036 
1037 	/* RESETs are not based on LBAs - so this should return false. */
1038 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1039 
1040 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1041 	bdev_io.u.bdev.offset_blocks = 0;
1042 	bdev_io.u.bdev.num_blocks = 32;
1043 
1044 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1045 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1046 
1047 	bdev_io.u.bdev.num_blocks = 33;
1048 
1049 	/* This I/O spans a boundary. */
1050 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1051 
1052 	bdev_io.u.bdev.num_blocks = 32;
1053 	bdev.max_segment_size = 512 * 32;
1054 	bdev.max_num_segments = 1;
1055 	bdev_io.u.bdev.iovcnt = 1;
1056 	iov[0].iov_len = 512;
1057 
1058 	/* Does not cross and exceed max_size or max_segs */
1059 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1060 
1061 	bdev.split_on_optimal_io_boundary = false;
1062 	bdev.max_segment_size = 512;
1063 	bdev.max_num_segments = 1;
1064 	bdev_io.u.bdev.iovcnt = 2;
1065 
1066 	/* Exceed max_segs */
1067 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1068 
1069 	bdev.max_num_segments = 2;
1070 	iov[0].iov_len = 513;
1071 	iov[1].iov_len = 512;
1072 
1073 	/* Exceed max_sizes */
1074 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1075 }
1076 
1077 static void
1078 bdev_io_boundary_split_test(void)
1079 {
1080 	struct spdk_bdev *bdev;
1081 	struct spdk_bdev_desc *desc = NULL;
1082 	struct spdk_io_channel *io_ch;
1083 	struct spdk_bdev_opts bdev_opts = {};
1084 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1085 	struct ut_expected_io *expected_io;
1086 	void *md_buf = (void *)0xFF000000;
1087 	uint64_t i;
1088 	int rc;
1089 
1090 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1091 	bdev_opts.bdev_io_pool_size = 512;
1092 	bdev_opts.bdev_io_cache_size = 64;
1093 
1094 	rc = spdk_bdev_set_opts(&bdev_opts);
1095 	CU_ASSERT(rc == 0);
1096 	spdk_bdev_initialize(bdev_init_cb, NULL);
1097 
1098 	bdev = allocate_bdev("bdev0");
1099 
1100 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1101 	CU_ASSERT(rc == 0);
1102 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1103 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1104 	io_ch = spdk_bdev_get_io_channel(desc);
1105 	CU_ASSERT(io_ch != NULL);
1106 
1107 	bdev->optimal_io_boundary = 16;
1108 	bdev->split_on_optimal_io_boundary = false;
1109 
1110 	g_io_done = false;
1111 
1112 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1113 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1114 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1115 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1116 
1117 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1118 	CU_ASSERT(rc == 0);
1119 	CU_ASSERT(g_io_done == false);
1120 
1121 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1122 	stub_complete_io(1);
1123 	CU_ASSERT(g_io_done == true);
1124 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1125 
1126 	bdev->split_on_optimal_io_boundary = true;
1127 	bdev->md_interleave = false;
1128 	bdev->md_len = 8;
1129 
1130 	/* Now test that a single-vector command is split correctly.
1131 	 * Offset 14, length 8, payload 0xF000
1132 	 *  Child - Offset 14, length 2, payload 0xF000
1133 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1134 	 *
1135 	 * Set up the expected values before calling spdk_bdev_read_blocks
1136 	 */
1137 	g_io_done = false;
1138 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1139 	expected_io->md_buf = md_buf;
1140 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1141 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1142 
1143 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1144 	expected_io->md_buf = md_buf + 2 * 8;
1145 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1146 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1147 
1148 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1149 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1150 					   14, 8, io_done, NULL);
1151 	CU_ASSERT(rc == 0);
1152 	CU_ASSERT(g_io_done == false);
1153 
1154 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1155 	stub_complete_io(2);
1156 	CU_ASSERT(g_io_done == true);
1157 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1158 
1159 	/* Now set up a more complex, multi-vector command that needs to be split,
1160 	 *  including splitting iovecs.
1161 	 */
1162 	iov[0].iov_base = (void *)0x10000;
1163 	iov[0].iov_len = 512;
1164 	iov[1].iov_base = (void *)0x20000;
1165 	iov[1].iov_len = 20 * 512;
1166 	iov[2].iov_base = (void *)0x30000;
1167 	iov[2].iov_len = 11 * 512;
1168 
1169 	g_io_done = false;
1170 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1171 	expected_io->md_buf = md_buf;
1172 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1173 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1174 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1175 
1176 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1177 	expected_io->md_buf = md_buf + 2 * 8;
1178 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1179 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1180 
1181 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1182 	expected_io->md_buf = md_buf + 18 * 8;
1183 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1184 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1185 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1186 
1187 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1188 					     14, 32, io_done, NULL);
1189 	CU_ASSERT(rc == 0);
1190 	CU_ASSERT(g_io_done == false);
1191 
1192 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1193 	stub_complete_io(3);
1194 	CU_ASSERT(g_io_done == true);
1195 
1196 	/* Test multi vector command that needs to be split by strip and then needs to be
1197 	 * split further due to the capacity of child iovs.
1198 	 */
1199 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1200 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1201 		iov[i].iov_len = 512;
1202 	}
1203 
1204 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1205 	g_io_done = false;
1206 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1207 					   BDEV_IO_NUM_CHILD_IOV);
1208 	expected_io->md_buf = md_buf;
1209 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1210 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1211 	}
1212 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1213 
1214 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1215 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
1216 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1217 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1218 		ut_expected_io_set_iov(expected_io, i,
1219 				       (void *)((i + 1 + BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1220 	}
1221 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1222 
1223 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1224 					    0, BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1225 	CU_ASSERT(rc == 0);
1226 	CU_ASSERT(g_io_done == false);
1227 
1228 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1229 	stub_complete_io(1);
1230 	CU_ASSERT(g_io_done == false);
1231 
1232 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1233 	stub_complete_io(1);
1234 	CU_ASSERT(g_io_done == true);
1235 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1236 
1237 	/* Test multi vector command that needs to be split by strip and then needs to be
1238 	 * split further due to the capacity of child iovs. In this case, the length of
1239 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1240 	 */
1241 
1242 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1243 	 * is BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1244 	 */
1245 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1246 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1247 		iov[i].iov_len = 512;
1248 	}
1249 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1250 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1251 		iov[i].iov_len = 256;
1252 	}
1253 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1254 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1255 
1256 	/* Add an extra iovec to trigger split */
1257 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1258 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1259 
1260 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1261 	g_io_done = false;
1262 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1263 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV);
1264 	expected_io->md_buf = md_buf;
1265 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1266 		ut_expected_io_set_iov(expected_io, i,
1267 				       (void *)((i + 1) * 0x10000), 512);
1268 	}
1269 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1270 		ut_expected_io_set_iov(expected_io, i,
1271 				       (void *)((i + 1) * 0x10000), 256);
1272 	}
1273 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1274 
1275 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1276 					   1, 1);
1277 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1278 	ut_expected_io_set_iov(expected_io, 0,
1279 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1280 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1281 
1282 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1283 					   1, 1);
1284 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1285 	ut_expected_io_set_iov(expected_io, 0,
1286 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1287 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1288 
1289 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1290 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1291 	CU_ASSERT(rc == 0);
1292 	CU_ASSERT(g_io_done == false);
1293 
1294 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1295 	stub_complete_io(1);
1296 	CU_ASSERT(g_io_done == false);
1297 
1298 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1299 	stub_complete_io(2);
1300 	CU_ASSERT(g_io_done == true);
1301 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1302 
1303 	/* Test multi vector command that needs to be split by strip and then needs to be
1304 	 * split further due to the capacity of child iovs, the child request offset should
1305 	 * be rewind to last aligned offset and go success without error.
1306 	 */
1307 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1308 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1309 		iov[i].iov_len = 512;
1310 	}
1311 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1312 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1313 
1314 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1315 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1316 
1317 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1318 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1319 
1320 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1321 	g_io_done = false;
1322 	g_io_status = 0;
1323 	/* The first expected io should be start from offset 0 to BDEV_IO_NUM_CHILD_IOV - 1 */
1324 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1325 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV - 1);
1326 	expected_io->md_buf = md_buf;
1327 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1328 		ut_expected_io_set_iov(expected_io, i,
1329 				       (void *)((i + 1) * 0x10000), 512);
1330 	}
1331 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1332 	/* The second expected io should be start from offset BDEV_IO_NUM_CHILD_IOV - 1 to BDEV_IO_NUM_CHILD_IOV */
1333 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1334 					   1, 2);
1335 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1336 	ut_expected_io_set_iov(expected_io, 0,
1337 			       (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1338 	ut_expected_io_set_iov(expected_io, 1,
1339 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1340 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1341 	/* The third expected io should be start from offset BDEV_IO_NUM_CHILD_IOV to BDEV_IO_NUM_CHILD_IOV + 1 */
1342 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1343 					   1, 1);
1344 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1345 	ut_expected_io_set_iov(expected_io, 0,
1346 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1347 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1348 
1349 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1350 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1351 	CU_ASSERT(rc == 0);
1352 	CU_ASSERT(g_io_done == false);
1353 
1354 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1355 	stub_complete_io(1);
1356 	CU_ASSERT(g_io_done == false);
1357 
1358 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1359 	stub_complete_io(2);
1360 	CU_ASSERT(g_io_done == true);
1361 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1362 
1363 	/* Test multi vector command that needs to be split due to the IO boundary and
1364 	 * the capacity of child iovs. Especially test the case when the command is
1365 	 * split due to the capacity of child iovs, the tail address is not aligned with
1366 	 * block size and is rewinded to the aligned address.
1367 	 *
1368 	 * The iovecs used in read request is complex but is based on the data
1369 	 * collected in the real issue. We change the base addresses but keep the lengths
1370 	 * not to loose the credibility of the test.
1371 	 */
1372 	bdev->optimal_io_boundary = 128;
1373 	g_io_done = false;
1374 	g_io_status = 0;
1375 
1376 	for (i = 0; i < 31; i++) {
1377 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1378 		iov[i].iov_len = 1024;
1379 	}
1380 	iov[31].iov_base = (void *)0xFEED1F00000;
1381 	iov[31].iov_len = 32768;
1382 	iov[32].iov_base = (void *)0xFEED2000000;
1383 	iov[32].iov_len = 160;
1384 	iov[33].iov_base = (void *)0xFEED2100000;
1385 	iov[33].iov_len = 4096;
1386 	iov[34].iov_base = (void *)0xFEED2200000;
1387 	iov[34].iov_len = 4096;
1388 	iov[35].iov_base = (void *)0xFEED2300000;
1389 	iov[35].iov_len = 4096;
1390 	iov[36].iov_base = (void *)0xFEED2400000;
1391 	iov[36].iov_len = 4096;
1392 	iov[37].iov_base = (void *)0xFEED2500000;
1393 	iov[37].iov_len = 4096;
1394 	iov[38].iov_base = (void *)0xFEED2600000;
1395 	iov[38].iov_len = 4096;
1396 	iov[39].iov_base = (void *)0xFEED2700000;
1397 	iov[39].iov_len = 4096;
1398 	iov[40].iov_base = (void *)0xFEED2800000;
1399 	iov[40].iov_len = 4096;
1400 	iov[41].iov_base = (void *)0xFEED2900000;
1401 	iov[41].iov_len = 4096;
1402 	iov[42].iov_base = (void *)0xFEED2A00000;
1403 	iov[42].iov_len = 4096;
1404 	iov[43].iov_base = (void *)0xFEED2B00000;
1405 	iov[43].iov_len = 12288;
1406 	iov[44].iov_base = (void *)0xFEED2C00000;
1407 	iov[44].iov_len = 8192;
1408 	iov[45].iov_base = (void *)0xFEED2F00000;
1409 	iov[45].iov_len = 4096;
1410 	iov[46].iov_base = (void *)0xFEED3000000;
1411 	iov[46].iov_len = 4096;
1412 	iov[47].iov_base = (void *)0xFEED3100000;
1413 	iov[47].iov_len = 4096;
1414 	iov[48].iov_base = (void *)0xFEED3200000;
1415 	iov[48].iov_len = 24576;
1416 	iov[49].iov_base = (void *)0xFEED3300000;
1417 	iov[49].iov_len = 16384;
1418 	iov[50].iov_base = (void *)0xFEED3400000;
1419 	iov[50].iov_len = 12288;
1420 	iov[51].iov_base = (void *)0xFEED3500000;
1421 	iov[51].iov_len = 4096;
1422 	iov[52].iov_base = (void *)0xFEED3600000;
1423 	iov[52].iov_len = 4096;
1424 	iov[53].iov_base = (void *)0xFEED3700000;
1425 	iov[53].iov_len = 4096;
1426 	iov[54].iov_base = (void *)0xFEED3800000;
1427 	iov[54].iov_len = 28672;
1428 	iov[55].iov_base = (void *)0xFEED3900000;
1429 	iov[55].iov_len = 20480;
1430 	iov[56].iov_base = (void *)0xFEED3A00000;
1431 	iov[56].iov_len = 4096;
1432 	iov[57].iov_base = (void *)0xFEED3B00000;
1433 	iov[57].iov_len = 12288;
1434 	iov[58].iov_base = (void *)0xFEED3C00000;
1435 	iov[58].iov_len = 4096;
1436 	iov[59].iov_base = (void *)0xFEED3D00000;
1437 	iov[59].iov_len = 4096;
1438 	iov[60].iov_base = (void *)0xFEED3E00000;
1439 	iov[60].iov_len = 352;
1440 
1441 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1442 	 * of child iovs,
1443 	 */
1444 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1445 	expected_io->md_buf = md_buf;
1446 	for (i = 0; i < 32; i++) {
1447 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1448 	}
1449 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1450 
1451 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1452 	 * split by the IO boundary requirement.
1453 	 */
1454 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1455 	expected_io->md_buf = md_buf + 126 * 8;
1456 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1457 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1458 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1459 
1460 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1461 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1462 	 */
1463 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1464 	expected_io->md_buf = md_buf + 128 * 8;
1465 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1466 			       iov[33].iov_len - 864);
1467 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1468 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1469 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1470 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1471 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1472 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1473 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1474 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1475 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1476 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1477 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1478 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1479 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1480 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1481 
1482 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1483 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1484 	 */
1485 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1486 	expected_io->md_buf = md_buf + 256 * 8;
1487 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1488 			       iov[46].iov_len - 864);
1489 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1490 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1491 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1492 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1493 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1494 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1495 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1496 
1497 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1498 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1499 	 */
1500 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1501 	expected_io->md_buf = md_buf + 384 * 8;
1502 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1503 			       iov[52].iov_len - 864);
1504 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1505 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1506 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1507 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1508 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1509 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1510 
1511 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1512 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1513 	 */
1514 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1515 	expected_io->md_buf = md_buf + 512 * 8;
1516 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1517 			       iov[57].iov_len - 4960);
1518 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1519 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1520 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1521 
1522 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1523 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1524 	expected_io->md_buf = md_buf + 542 * 8;
1525 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1526 			       iov[59].iov_len - 3936);
1527 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1528 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1529 
1530 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1531 					    0, 543, io_done, NULL);
1532 	CU_ASSERT(rc == 0);
1533 	CU_ASSERT(g_io_done == false);
1534 
1535 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1536 	stub_complete_io(1);
1537 	CU_ASSERT(g_io_done == false);
1538 
1539 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1540 	stub_complete_io(5);
1541 	CU_ASSERT(g_io_done == false);
1542 
1543 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1544 	stub_complete_io(1);
1545 	CU_ASSERT(g_io_done == true);
1546 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1547 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1548 
1549 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1550 	 * split, so test that.
1551 	 */
1552 	bdev->optimal_io_boundary = 15;
1553 	g_io_done = false;
1554 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1555 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1556 
1557 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1558 	CU_ASSERT(rc == 0);
1559 	CU_ASSERT(g_io_done == false);
1560 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1561 	stub_complete_io(1);
1562 	CU_ASSERT(g_io_done == true);
1563 
1564 	/* Test an UNMAP.  This should also not be split. */
1565 	bdev->optimal_io_boundary = 16;
1566 	g_io_done = false;
1567 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1568 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1569 
1570 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1571 	CU_ASSERT(rc == 0);
1572 	CU_ASSERT(g_io_done == false);
1573 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1574 	stub_complete_io(1);
1575 	CU_ASSERT(g_io_done == true);
1576 
1577 	/* Test a FLUSH.  This should also not be split. */
1578 	bdev->optimal_io_boundary = 16;
1579 	g_io_done = false;
1580 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1581 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1582 
1583 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1584 	CU_ASSERT(rc == 0);
1585 	CU_ASSERT(g_io_done == false);
1586 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1587 	stub_complete_io(1);
1588 	CU_ASSERT(g_io_done == true);
1589 
1590 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1591 
1592 	/* Children requests return an error status */
1593 	bdev->optimal_io_boundary = 16;
1594 	iov[0].iov_base = (void *)0x10000;
1595 	iov[0].iov_len = 512 * 64;
1596 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1597 	g_io_done = false;
1598 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1599 
1600 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1601 	CU_ASSERT(rc == 0);
1602 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1603 	stub_complete_io(4);
1604 	CU_ASSERT(g_io_done == false);
1605 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1606 	stub_complete_io(1);
1607 	CU_ASSERT(g_io_done == true);
1608 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1609 
1610 	/* Test if a multi vector command terminated with failure before continueing
1611 	 * splitting process when one of child I/O failed.
1612 	 * The multi vector command is as same as the above that needs to be split by strip
1613 	 * and then needs to be split further due to the capacity of child iovs.
1614 	 */
1615 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1616 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1617 		iov[i].iov_len = 512;
1618 	}
1619 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1620 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1621 
1622 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1623 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1624 
1625 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1626 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1627 
1628 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1629 
1630 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1631 	g_io_done = false;
1632 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1633 
1634 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
1635 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1636 	CU_ASSERT(rc == 0);
1637 	CU_ASSERT(g_io_done == false);
1638 
1639 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1640 	stub_complete_io(1);
1641 	CU_ASSERT(g_io_done == true);
1642 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1643 
1644 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1645 
1646 	/* for this test we will create the following conditions to hit the code path where
1647 	 * we are trying to send and IO following a split that has no iovs because we had to
1648 	 * trim them for alignment reasons.
1649 	 *
1650 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1651 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1652 	 *   position 30 and overshoot by 0x2e.
1653 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1654 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1655 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1656 	 *   and let the completion pick up the last 2 vectors.
1657 	 */
1658 	bdev->optimal_io_boundary = 32;
1659 	bdev->split_on_optimal_io_boundary = true;
1660 	g_io_done = false;
1661 
1662 	/* Init all parent IOVs to 0x212 */
1663 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1664 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1665 		iov[i].iov_len = 0x212;
1666 	}
1667 
1668 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1669 					   BDEV_IO_NUM_CHILD_IOV - 1);
1670 	/* expect 0-29 to be 1:1 with the parent iov */
1671 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1672 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1673 	}
1674 
1675 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1676 	 * where 0x1e is the amount we overshot the 16K boundary
1677 	 */
1678 	ut_expected_io_set_iov(expected_io, BDEV_IO_NUM_CHILD_IOV - 2,
1679 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1680 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1681 
1682 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1683 	 * shortened that take it to the next boundary and then a final one to get us to
1684 	 * 0x4200 bytes for the IO.
1685 	 */
1686 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1687 					   BDEV_IO_NUM_CHILD_IOV, 2);
1688 	/* position 30 picked up the remaining bytes to the next boundary */
1689 	ut_expected_io_set_iov(expected_io, 0,
1690 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
1691 
1692 	/* position 31 picked the the rest of the trasnfer to get us to 0x4200 */
1693 	ut_expected_io_set_iov(expected_io, 1,
1694 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
1695 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1696 
1697 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 1, 0,
1698 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1699 	CU_ASSERT(rc == 0);
1700 	CU_ASSERT(g_io_done == false);
1701 
1702 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1703 	stub_complete_io(1);
1704 	CU_ASSERT(g_io_done == false);
1705 
1706 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1707 	stub_complete_io(1);
1708 	CU_ASSERT(g_io_done == true);
1709 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1710 
1711 	spdk_put_io_channel(io_ch);
1712 	spdk_bdev_close(desc);
1713 	free_bdev(bdev);
1714 	spdk_bdev_finish(bdev_fini_cb, NULL);
1715 	poll_threads();
1716 }
1717 
1718 static void
1719 bdev_io_max_size_and_segment_split_test(void)
1720 {
1721 	struct spdk_bdev *bdev;
1722 	struct spdk_bdev_desc *desc = NULL;
1723 	struct spdk_io_channel *io_ch;
1724 	struct spdk_bdev_opts bdev_opts = {};
1725 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1726 	struct ut_expected_io *expected_io;
1727 	uint64_t i;
1728 	int rc;
1729 
1730 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1731 	bdev_opts.bdev_io_pool_size = 512;
1732 	bdev_opts.bdev_io_cache_size = 64;
1733 
1734 	bdev_opts.opts_size = sizeof(bdev_opts);
1735 	rc = spdk_bdev_set_opts(&bdev_opts);
1736 	CU_ASSERT(rc == 0);
1737 	spdk_bdev_initialize(bdev_init_cb, NULL);
1738 
1739 	bdev = allocate_bdev("bdev0");
1740 
1741 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
1742 	CU_ASSERT(rc == 0);
1743 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1744 	io_ch = spdk_bdev_get_io_channel(desc);
1745 	CU_ASSERT(io_ch != NULL);
1746 
1747 	bdev->split_on_optimal_io_boundary = false;
1748 	bdev->optimal_io_boundary = 0;
1749 
1750 	/* Case 0 max_num_segments == 0.
1751 	 * but segment size 2 * 512 > 512
1752 	 */
1753 	bdev->max_segment_size = 512;
1754 	bdev->max_num_segments = 0;
1755 	g_io_done = false;
1756 
1757 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
1758 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
1759 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
1760 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1761 
1762 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
1763 	CU_ASSERT(rc == 0);
1764 	CU_ASSERT(g_io_done == false);
1765 
1766 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1767 	stub_complete_io(1);
1768 	CU_ASSERT(g_io_done == true);
1769 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1770 
1771 	/* Case 1 max_segment_size == 0
1772 	 * but iov num 2 > 1.
1773 	 */
1774 	bdev->max_segment_size = 0;
1775 	bdev->max_num_segments = 1;
1776 	g_io_done = false;
1777 
1778 	iov[0].iov_base = (void *)0x10000;
1779 	iov[0].iov_len = 512;
1780 	iov[1].iov_base = (void *)0x20000;
1781 	iov[1].iov_len = 8 * 512;
1782 
1783 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
1784 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len);
1785 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1786 
1787 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1);
1788 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len);
1789 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1790 
1791 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL);
1792 	CU_ASSERT(rc == 0);
1793 	CU_ASSERT(g_io_done == false);
1794 
1795 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1796 	stub_complete_io(2);
1797 	CU_ASSERT(g_io_done == true);
1798 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1799 
1800 	/* Test that a non-vector command is split correctly.
1801 	 * Set up the expected values before calling spdk_bdev_read_blocks
1802 	 */
1803 	bdev->max_segment_size = 512;
1804 	bdev->max_num_segments = 1;
1805 	g_io_done = false;
1806 
1807 	/* Child IO 0 */
1808 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
1809 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
1810 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1811 
1812 	/* Child IO 1 */
1813 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
1814 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512);
1815 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1816 
1817 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1818 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
1819 	CU_ASSERT(rc == 0);
1820 	CU_ASSERT(g_io_done == false);
1821 
1822 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1823 	stub_complete_io(2);
1824 	CU_ASSERT(g_io_done == true);
1825 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1826 
1827 	/* Now set up a more complex, multi-vector command that needs to be split,
1828 	 * including splitting iovecs.
1829 	 */
1830 	bdev->max_segment_size = 2 * 512;
1831 	bdev->max_num_segments = 1;
1832 	g_io_done = false;
1833 
1834 	iov[0].iov_base = (void *)0x10000;
1835 	iov[0].iov_len = 2 * 512;
1836 	iov[1].iov_base = (void *)0x20000;
1837 	iov[1].iov_len = 4 * 512;
1838 	iov[2].iov_base = (void *)0x30000;
1839 	iov[2].iov_len = 6 * 512;
1840 
1841 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
1842 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2);
1843 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1844 
1845 	/* Split iov[1].size to 2 iov entries then split the segments */
1846 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
1847 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2);
1848 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1849 
1850 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1);
1851 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2);
1852 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1853 
1854 	/* Split iov[2].size to 3 iov entries then split the segments */
1855 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1);
1856 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2);
1857 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1858 
1859 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1);
1860 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2);
1861 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1862 
1863 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1);
1864 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2);
1865 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1866 
1867 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL);
1868 	CU_ASSERT(rc == 0);
1869 	CU_ASSERT(g_io_done == false);
1870 
1871 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
1872 	stub_complete_io(6);
1873 	CU_ASSERT(g_io_done == true);
1874 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1875 
1876 	/* Test multi vector command that needs to be split by strip and then needs to be
1877 	 * split further due to the capacity of parent IO child iovs.
1878 	 */
1879 	bdev->max_segment_size = 512;
1880 	bdev->max_num_segments = 1;
1881 	g_io_done = false;
1882 
1883 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1884 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1885 		iov[i].iov_len = 512 * 2;
1886 	}
1887 
1888 	/* Each input iov.size is split into 2 iovs,
1889 	 * half of the input iov can fill all child iov entries of a single IO.
1890 	 */
1891 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV / 2; i++) {
1892 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1);
1893 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
1894 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1895 
1896 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1);
1897 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
1898 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1899 	}
1900 
1901 	/* The remaining iov is split in the second round */
1902 	for (i = BDEV_IO_NUM_CHILD_IOV / 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1903 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1);
1904 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
1905 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1906 
1907 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1);
1908 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
1909 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1910 	}
1911 
1912 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV, 0,
1913 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1914 	CU_ASSERT(rc == 0);
1915 	CU_ASSERT(g_io_done == false);
1916 
1917 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == BDEV_IO_NUM_CHILD_IOV);
1918 	stub_complete_io(BDEV_IO_NUM_CHILD_IOV);
1919 	CU_ASSERT(g_io_done == false);
1920 
1921 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == BDEV_IO_NUM_CHILD_IOV);
1922 	stub_complete_io(BDEV_IO_NUM_CHILD_IOV);
1923 	CU_ASSERT(g_io_done == true);
1924 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1925 
1926 	/* A wrong case, a child IO that is divided does
1927 	 * not meet the principle of multiples of block size,
1928 	 * and exits with error
1929 	 */
1930 	bdev->max_segment_size = 512;
1931 	bdev->max_num_segments = 1;
1932 	g_io_done = false;
1933 
1934 	iov[0].iov_base = (void *)0x10000;
1935 	iov[0].iov_len = 512 + 256;
1936 	iov[1].iov_base = (void *)0x20000;
1937 	iov[1].iov_len = 256;
1938 
1939 	/* iov[0] is split to 512 and 256.
1940 	 * 256 is less than a block size, and it is found
1941 	 * in the next round of split that it is the first child IO smaller than
1942 	 * the block size, so the error exit
1943 	 */
1944 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1);
1945 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512);
1946 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1947 
1948 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL);
1949 	CU_ASSERT(rc == 0);
1950 	CU_ASSERT(g_io_done == false);
1951 
1952 	/* First child IO is OK */
1953 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1954 	stub_complete_io(1);
1955 	CU_ASSERT(g_io_done == true);
1956 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1957 
1958 	/* error exit */
1959 	stub_complete_io(1);
1960 	CU_ASSERT(g_io_done == true);
1961 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1962 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1963 
1964 	/* Test multi vector command that needs to be split by strip and then needs to be
1965 	 * split further due to the capacity of child iovs.
1966 	 *
1967 	 * In this case, the last two iovs need to be split, but it will exceed the capacity
1968 	 * of child iovs, so it needs to wait until the first batch completed.
1969 	 */
1970 	bdev->max_segment_size = 512;
1971 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
1972 	g_io_done = false;
1973 
1974 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1975 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1976 		iov[i].iov_len = 512;
1977 	}
1978 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1979 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1980 		iov[i].iov_len = 512 * 2;
1981 	}
1982 
1983 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1984 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
1985 	/* 0 ~ (BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */
1986 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1987 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1988 	}
1989 	/* (BDEV_IO_NUM_CHILD_IOV - 2) is split */
1990 	ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512);
1991 	ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512);
1992 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1993 
1994 	/* Child iov entries exceed the max num of parent IO so split it in next round */
1995 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV, 2, 2);
1996 	ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512);
1997 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512);
1998 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1999 
2000 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV, 0,
2001 				    BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL);
2002 	CU_ASSERT(rc == 0);
2003 	CU_ASSERT(g_io_done == false);
2004 
2005 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2006 	stub_complete_io(1);
2007 	CU_ASSERT(g_io_done == false);
2008 
2009 	/* Next round */
2010 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2011 	stub_complete_io(1);
2012 	CU_ASSERT(g_io_done == true);
2013 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2014 
2015 	/* This case is similar to the previous one, but the io composed of
2016 	 * the last few entries of child iov is not enough for a blocklen, so they
2017 	 * cannot be put into this IO, but wait until the next time.
2018 	 */
2019 	bdev->max_segment_size = 512;
2020 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2021 	g_io_done = false;
2022 
2023 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2024 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2025 		iov[i].iov_len = 512;
2026 	}
2027 
2028 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2029 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2030 		iov[i].iov_len = 128;
2031 	}
2032 
2033 	/* First child iovcnt is't BDEV_IO_NUM_CHILD_IOV but BDEV_IO_NUM_CHILD_IOV - 2.
2034 	 * Because the left 2 iov is not enough for a blocklen.
2035 	 */
2036 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2037 					   BDEV_IO_NUM_CHILD_IOV - 2, BDEV_IO_NUM_CHILD_IOV - 2);
2038 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2039 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2040 	}
2041 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2042 
2043 	/* The second child io waits until the end of the first child io before executing.
2044 	 * Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO.
2045 	 * BDEV_IO_NUM_CHILD_IOV - 2 to BDEV_IO_NUM_CHILD_IOV + 2
2046 	 */
2047 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 2,
2048 					   1, 4);
2049 	ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len);
2050 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len);
2051 	ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len);
2052 	ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len);
2053 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2054 
2055 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
2056 				    BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL);
2057 	CU_ASSERT(rc == 0);
2058 	CU_ASSERT(g_io_done == false);
2059 
2060 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2061 	stub_complete_io(1);
2062 	CU_ASSERT(g_io_done == false);
2063 
2064 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2065 	stub_complete_io(1);
2066 	CU_ASSERT(g_io_done == true);
2067 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2068 
2069 	/* A very complicated case. Each sg entry exceeds max_segment_size and
2070 	 * needs to be split. At the same time, child io must be a multiple of blocklen.
2071 	 * At the same time, child iovcnt exceeds parent iovcnt.
2072 	 */
2073 	bdev->max_segment_size = 512 + 128;
2074 	bdev->max_num_segments = 3;
2075 	g_io_done = false;
2076 
2077 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2078 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2079 		iov[i].iov_len = 512 + 256;
2080 	}
2081 
2082 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2083 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2084 		iov[i].iov_len = 512 + 128;
2085 	}
2086 
2087 	/* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries.
2088 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2089 	 * Generate 9 child IOs.
2090 	 */
2091 	for (i = 0; i < 3; i++) {
2092 		uint32_t j = i * 4;
2093 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3);
2094 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2095 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2096 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2097 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2098 
2099 		/* Child io must be a multiple of blocklen
2100 		 * iov[j + 2] must be split. If the third entry is also added,
2101 		 * the multiple of blocklen cannot be guaranteed. But it still
2102 		 * occupies one iov entry of the parent child iov.
2103 		 */
2104 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2);
2105 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2106 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2107 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2108 
2109 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3);
2110 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2111 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2112 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2113 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2114 	}
2115 
2116 	/* Child iov position at 27, the 10th child IO
2117 	 * iov entry index is 3 * 4 and offset is 3 * 6
2118 	 */
2119 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3);
2120 	ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640);
2121 	ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128);
2122 	ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256);
2123 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2124 
2125 	/* Child iov position at 30, the 11th child IO */
2126 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2);
2127 	ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512);
2128 	ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512);
2129 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2130 
2131 	/* The 2nd split round and iovpos is 0, the 12th child IO */
2132 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3);
2133 	ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256);
2134 	ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640);
2135 	ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128);
2136 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2137 
2138 	/* Consume 9 child IOs and 27 child iov entries.
2139 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2140 	 * Parent IO iov index start from 16 and block offset start from 24
2141 	 */
2142 	for (i = 0; i < 3; i++) {
2143 		uint32_t j = i * 4 + 16;
2144 		uint32_t offset = i * 6 + 24;
2145 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3);
2146 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2147 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2148 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2149 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2150 
2151 		/* Child io must be a multiple of blocklen
2152 		 * iov[j + 2] must be split. If the third entry is also added,
2153 		 * the multiple of blocklen cannot be guaranteed. But it still
2154 		 * occupies one iov entry of the parent child iov.
2155 		 */
2156 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2);
2157 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2158 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2159 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2160 
2161 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3);
2162 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2163 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2164 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2165 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2166 	}
2167 
2168 	/* The 22th child IO, child iov position at 30 */
2169 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1);
2170 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512);
2171 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2172 
2173 	/* The third round */
2174 	/* Here is the 23nd child IO and child iovpos is 0 */
2175 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3);
2176 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256);
2177 	ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640);
2178 	ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128);
2179 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2180 
2181 	/* The 24th child IO */
2182 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3);
2183 	ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640);
2184 	ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640);
2185 	ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256);
2186 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2187 
2188 	/* The 25th child IO */
2189 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2);
2190 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384);
2191 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640);
2192 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2193 
2194 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
2195 				    50, io_done, NULL);
2196 	CU_ASSERT(rc == 0);
2197 	CU_ASSERT(g_io_done == false);
2198 
2199 	/* Parent IO supports up to 32 child iovs, so it is calculated that
2200 	 * a maximum of 11 IOs can be split at a time, and the
2201 	 * splitting will continue after the first batch is over.
2202 	 */
2203 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2204 	stub_complete_io(11);
2205 	CU_ASSERT(g_io_done == false);
2206 
2207 	/* The 2nd round */
2208 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2209 	stub_complete_io(11);
2210 	CU_ASSERT(g_io_done == false);
2211 
2212 	/* The last round */
2213 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2214 	stub_complete_io(3);
2215 	CU_ASSERT(g_io_done == true);
2216 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2217 
2218 	/* Test an WRITE_ZEROES.  This should also not be split. */
2219 	bdev->max_segment_size = 512;
2220 	bdev->max_num_segments = 1;
2221 	g_io_done = false;
2222 
2223 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
2224 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2225 
2226 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
2227 	CU_ASSERT(rc == 0);
2228 	CU_ASSERT(g_io_done == false);
2229 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2230 	stub_complete_io(1);
2231 	CU_ASSERT(g_io_done == true);
2232 
2233 	/* Test an UNMAP.  This should also not be split. */
2234 	g_io_done = false;
2235 
2236 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0);
2237 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2238 
2239 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL);
2240 	CU_ASSERT(rc == 0);
2241 	CU_ASSERT(g_io_done == false);
2242 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2243 	stub_complete_io(1);
2244 	CU_ASSERT(g_io_done == true);
2245 
2246 	/* Test a FLUSH.  This should also not be split. */
2247 	g_io_done = false;
2248 
2249 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0);
2250 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2251 
2252 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
2253 	CU_ASSERT(rc == 0);
2254 	CU_ASSERT(g_io_done == false);
2255 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2256 	stub_complete_io(1);
2257 	CU_ASSERT(g_io_done == true);
2258 
2259 	spdk_put_io_channel(io_ch);
2260 	spdk_bdev_close(desc);
2261 	free_bdev(bdev);
2262 	spdk_bdev_finish(bdev_fini_cb, NULL);
2263 	poll_threads();
2264 }
2265 
2266 static void
2267 bdev_io_mix_split_test(void)
2268 {
2269 	struct spdk_bdev *bdev;
2270 	struct spdk_bdev_desc *desc = NULL;
2271 	struct spdk_io_channel *io_ch;
2272 	struct spdk_bdev_opts bdev_opts = {};
2273 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
2274 	struct ut_expected_io *expected_io;
2275 	uint64_t i;
2276 	int rc;
2277 
2278 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2279 	bdev_opts.bdev_io_pool_size = 512;
2280 	bdev_opts.bdev_io_cache_size = 64;
2281 
2282 	rc = spdk_bdev_set_opts(&bdev_opts);
2283 	CU_ASSERT(rc == 0);
2284 	spdk_bdev_initialize(bdev_init_cb, NULL);
2285 
2286 	bdev = allocate_bdev("bdev0");
2287 
2288 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2289 	CU_ASSERT(rc == 0);
2290 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2291 	io_ch = spdk_bdev_get_io_channel(desc);
2292 	CU_ASSERT(io_ch != NULL);
2293 
2294 	/* First case optimal_io_boundary == max_segment_size * max_num_segments */
2295 	bdev->split_on_optimal_io_boundary = true;
2296 	bdev->optimal_io_boundary = 16;
2297 
2298 	bdev->max_segment_size = 512;
2299 	bdev->max_num_segments = 16;
2300 	g_io_done = false;
2301 
2302 	/* IO crossing the IO boundary requires split
2303 	 * Total 2 child IOs.
2304 	 */
2305 
2306 	/* The 1st child IO split the segment_size to multiple segment entry */
2307 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2308 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2309 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2310 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2311 
2312 	/* The 2nd child IO split the segment_size to multiple segment entry */
2313 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2);
2314 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512);
2315 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512);
2316 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2317 
2318 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL);
2319 	CU_ASSERT(rc == 0);
2320 	CU_ASSERT(g_io_done == false);
2321 
2322 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2323 	stub_complete_io(2);
2324 	CU_ASSERT(g_io_done == true);
2325 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2326 
2327 	/* Second case optimal_io_boundary > max_segment_size * max_num_segments */
2328 	bdev->max_segment_size = 15 * 512;
2329 	bdev->max_num_segments = 1;
2330 	g_io_done = false;
2331 
2332 	/* IO crossing the IO boundary requires split.
2333 	 * The 1st child IO segment size exceeds the max_segment_size,
2334 	 * So 1st child IO will be splitted to multiple segment entry.
2335 	 * Then it split to 2 child IOs because of the max_num_segments.
2336 	 * Total 3 child IOs.
2337 	 */
2338 
2339 	/* The first 2 IOs are in an IO boundary.
2340 	 * Because the optimal_io_boundary > max_segment_size * max_num_segments
2341 	 * So it split to the first 2 IOs.
2342 	 */
2343 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1);
2344 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15);
2345 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2346 
2347 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2348 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512);
2349 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2350 
2351 	/* The 3rd Child IO is because of the io boundary */
2352 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2353 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2354 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2355 
2356 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2357 	CU_ASSERT(rc == 0);
2358 	CU_ASSERT(g_io_done == false);
2359 
2360 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2361 	stub_complete_io(3);
2362 	CU_ASSERT(g_io_done == true);
2363 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2364 
2365 	/* Third case optimal_io_boundary < max_segment_size * max_num_segments */
2366 	bdev->max_segment_size = 17 * 512;
2367 	bdev->max_num_segments = 1;
2368 	g_io_done = false;
2369 
2370 	/* IO crossing the IO boundary requires split.
2371 	 * Child IO does not split.
2372 	 * Total 2 child IOs.
2373 	 */
2374 
2375 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1);
2376 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16);
2377 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2378 
2379 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2380 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2381 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2382 
2383 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2384 	CU_ASSERT(rc == 0);
2385 	CU_ASSERT(g_io_done == false);
2386 
2387 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2388 	stub_complete_io(2);
2389 	CU_ASSERT(g_io_done == true);
2390 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2391 
2392 	/* Now set up a more complex, multi-vector command that needs to be split,
2393 	 * including splitting iovecs.
2394 	 * optimal_io_boundary < max_segment_size * max_num_segments
2395 	 */
2396 	bdev->max_segment_size = 3 * 512;
2397 	bdev->max_num_segments = 6;
2398 	g_io_done = false;
2399 
2400 	iov[0].iov_base = (void *)0x10000;
2401 	iov[0].iov_len = 4 * 512;
2402 	iov[1].iov_base = (void *)0x20000;
2403 	iov[1].iov_len = 4 * 512;
2404 	iov[2].iov_base = (void *)0x30000;
2405 	iov[2].iov_len = 10 * 512;
2406 
2407 	/* IO crossing the IO boundary requires split.
2408 	 * The 1st child IO segment size exceeds the max_segment_size and after
2409 	 * splitting segment_size, the num_segments exceeds max_num_segments.
2410 	 * So 1st child IO will be splitted to 2 child IOs.
2411 	 * Total 3 child IOs.
2412 	 */
2413 
2414 	/* The first 2 IOs are in an IO boundary.
2415 	 * After splitting segmemt size the segment num exceeds.
2416 	 * So it splits to 2 child IOs.
2417 	 */
2418 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6);
2419 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3);
2420 	ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512);
2421 	ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3);
2422 	ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512);
2423 	ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3);
2424 	ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3);
2425 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2426 
2427 	/* The 2nd child IO has the left segment entry */
2428 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2429 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2);
2430 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2431 
2432 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2433 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2);
2434 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2435 
2436 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL);
2437 	CU_ASSERT(rc == 0);
2438 	CU_ASSERT(g_io_done == false);
2439 
2440 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2441 	stub_complete_io(3);
2442 	CU_ASSERT(g_io_done == true);
2443 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2444 
2445 	/* A very complicated case. Each sg entry exceeds max_segment_size
2446 	 * and split on io boundary.
2447 	 * optimal_io_boundary < max_segment_size * max_num_segments
2448 	 */
2449 	bdev->max_segment_size = 3 * 512;
2450 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2451 	g_io_done = false;
2452 
2453 	for (i = 0; i < 20; i++) {
2454 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2455 		iov[i].iov_len = 512 * 4;
2456 	}
2457 
2458 	/* IO crossing the IO boundary requires split.
2459 	 * 80 block length can split 5 child IOs base on offset and IO boundary.
2460 	 * Each iov entry needs to be splitted to 2 entries because of max_segment_size
2461 	 * Total 5 child IOs.
2462 	 */
2463 
2464 	/* 4 iov entries are in an IO boundary and each iov entry splits to 2.
2465 	 * So each child IO occupies 8 child iov entries.
2466 	 */
2467 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8);
2468 	for (i = 0; i < 4; i++) {
2469 		int iovcnt = i * 2;
2470 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2471 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2472 	}
2473 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2474 
2475 	/* 2nd child IO and total 16 child iov entries of parent IO */
2476 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8);
2477 	for (i = 4; i < 8; i++) {
2478 		int iovcnt = (i - 4) * 2;
2479 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2480 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2481 	}
2482 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2483 
2484 	/* 3rd child IO and total 24 child iov entries of parent IO */
2485 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8);
2486 	for (i = 8; i < 12; i++) {
2487 		int iovcnt = (i - 8) * 2;
2488 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2489 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2490 	}
2491 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2492 
2493 	/* 4th child IO and total 32 child iov entries of parent IO */
2494 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8);
2495 	for (i = 12; i < 16; i++) {
2496 		int iovcnt = (i - 12) * 2;
2497 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2498 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2499 	}
2500 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2501 
2502 	/* 5th child IO and because of the child iov entry it should be splitted
2503 	 * in next round.
2504 	 */
2505 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8);
2506 	for (i = 16; i < 20; i++) {
2507 		int iovcnt = (i - 16) * 2;
2508 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2509 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2510 	}
2511 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2512 
2513 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL);
2514 	CU_ASSERT(rc == 0);
2515 	CU_ASSERT(g_io_done == false);
2516 
2517 	/* First split round */
2518 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2519 	stub_complete_io(4);
2520 	CU_ASSERT(g_io_done == false);
2521 
2522 	/* Second split round */
2523 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2524 	stub_complete_io(1);
2525 	CU_ASSERT(g_io_done == true);
2526 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2527 
2528 	spdk_put_io_channel(io_ch);
2529 	spdk_bdev_close(desc);
2530 	free_bdev(bdev);
2531 	spdk_bdev_finish(bdev_fini_cb, NULL);
2532 	poll_threads();
2533 }
2534 
2535 static void
2536 bdev_io_split_with_io_wait(void)
2537 {
2538 	struct spdk_bdev *bdev;
2539 	struct spdk_bdev_desc *desc = NULL;
2540 	struct spdk_io_channel *io_ch;
2541 	struct spdk_bdev_channel *channel;
2542 	struct spdk_bdev_mgmt_channel *mgmt_ch;
2543 	struct spdk_bdev_opts bdev_opts = {};
2544 	struct iovec iov[3];
2545 	struct ut_expected_io *expected_io;
2546 	int rc;
2547 
2548 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2549 	bdev_opts.bdev_io_pool_size = 2;
2550 	bdev_opts.bdev_io_cache_size = 1;
2551 
2552 	rc = spdk_bdev_set_opts(&bdev_opts);
2553 	CU_ASSERT(rc == 0);
2554 	spdk_bdev_initialize(bdev_init_cb, NULL);
2555 
2556 	bdev = allocate_bdev("bdev0");
2557 
2558 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2559 	CU_ASSERT(rc == 0);
2560 	CU_ASSERT(desc != NULL);
2561 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2562 	io_ch = spdk_bdev_get_io_channel(desc);
2563 	CU_ASSERT(io_ch != NULL);
2564 	channel = spdk_io_channel_get_ctx(io_ch);
2565 	mgmt_ch = channel->shared_resource->mgmt_ch;
2566 
2567 	bdev->optimal_io_boundary = 16;
2568 	bdev->split_on_optimal_io_boundary = true;
2569 
2570 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
2571 	CU_ASSERT(rc == 0);
2572 
2573 	/* Now test that a single-vector command is split correctly.
2574 	 * Offset 14, length 8, payload 0xF000
2575 	 *  Child - Offset 14, length 2, payload 0xF000
2576 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
2577 	 *
2578 	 * Set up the expected values before calling spdk_bdev_read_blocks
2579 	 */
2580 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
2581 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
2582 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2583 
2584 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
2585 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
2586 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2587 
2588 	/* The following children will be submitted sequentially due to the capacity of
2589 	 * spdk_bdev_io.
2590 	 */
2591 
2592 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
2593 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
2594 	CU_ASSERT(rc == 0);
2595 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2596 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2597 
2598 	/* Completing the first read I/O will submit the first child */
2599 	stub_complete_io(1);
2600 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2601 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2602 
2603 	/* Completing the first child will submit the second child */
2604 	stub_complete_io(1);
2605 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2606 
2607 	/* Complete the second child I/O.  This should result in our callback getting
2608 	 * invoked since the parent I/O is now complete.
2609 	 */
2610 	stub_complete_io(1);
2611 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2612 
2613 	/* Now set up a more complex, multi-vector command that needs to be split,
2614 	 *  including splitting iovecs.
2615 	 */
2616 	iov[0].iov_base = (void *)0x10000;
2617 	iov[0].iov_len = 512;
2618 	iov[1].iov_base = (void *)0x20000;
2619 	iov[1].iov_len = 20 * 512;
2620 	iov[2].iov_base = (void *)0x30000;
2621 	iov[2].iov_len = 11 * 512;
2622 
2623 	g_io_done = false;
2624 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
2625 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
2626 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
2627 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2628 
2629 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
2630 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
2631 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2632 
2633 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
2634 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
2635 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
2636 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2637 
2638 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
2639 	CU_ASSERT(rc == 0);
2640 	CU_ASSERT(g_io_done == false);
2641 
2642 	/* The following children will be submitted sequentially due to the capacity of
2643 	 * spdk_bdev_io.
2644 	 */
2645 
2646 	/* Completing the first child will submit the second child */
2647 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2648 	stub_complete_io(1);
2649 	CU_ASSERT(g_io_done == false);
2650 
2651 	/* Completing the second child will submit the third child */
2652 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2653 	stub_complete_io(1);
2654 	CU_ASSERT(g_io_done == false);
2655 
2656 	/* Completing the third child will result in our callback getting invoked
2657 	 * since the parent I/O is now complete.
2658 	 */
2659 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2660 	stub_complete_io(1);
2661 	CU_ASSERT(g_io_done == true);
2662 
2663 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
2664 
2665 	spdk_put_io_channel(io_ch);
2666 	spdk_bdev_close(desc);
2667 	free_bdev(bdev);
2668 	spdk_bdev_finish(bdev_fini_cb, NULL);
2669 	poll_threads();
2670 }
2671 
2672 static void
2673 bdev_io_alignment(void)
2674 {
2675 	struct spdk_bdev *bdev;
2676 	struct spdk_bdev_desc *desc = NULL;
2677 	struct spdk_io_channel *io_ch;
2678 	struct spdk_bdev_opts bdev_opts = {};
2679 	int rc;
2680 	void *buf = NULL;
2681 	struct iovec iovs[2];
2682 	int iovcnt;
2683 	uint64_t alignment;
2684 
2685 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2686 	bdev_opts.bdev_io_pool_size = 20;
2687 	bdev_opts.bdev_io_cache_size = 2;
2688 
2689 	rc = spdk_bdev_set_opts(&bdev_opts);
2690 	CU_ASSERT(rc == 0);
2691 	spdk_bdev_initialize(bdev_init_cb, NULL);
2692 
2693 	fn_table.submit_request = stub_submit_request_get_buf;
2694 	bdev = allocate_bdev("bdev0");
2695 
2696 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2697 	CU_ASSERT(rc == 0);
2698 	CU_ASSERT(desc != NULL);
2699 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2700 	io_ch = spdk_bdev_get_io_channel(desc);
2701 	CU_ASSERT(io_ch != NULL);
2702 
2703 	/* Create aligned buffer */
2704 	rc = posix_memalign(&buf, 4096, 8192);
2705 	SPDK_CU_ASSERT_FATAL(rc == 0);
2706 
2707 	/* Pass aligned single buffer with no alignment required */
2708 	alignment = 1;
2709 	bdev->required_alignment = spdk_u32log2(alignment);
2710 
2711 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
2712 	CU_ASSERT(rc == 0);
2713 	stub_complete_io(1);
2714 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2715 				    alignment));
2716 
2717 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
2718 	CU_ASSERT(rc == 0);
2719 	stub_complete_io(1);
2720 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2721 				    alignment));
2722 
2723 	/* Pass unaligned single buffer with no alignment required */
2724 	alignment = 1;
2725 	bdev->required_alignment = spdk_u32log2(alignment);
2726 
2727 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2728 	CU_ASSERT(rc == 0);
2729 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2730 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
2731 	stub_complete_io(1);
2732 
2733 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2734 	CU_ASSERT(rc == 0);
2735 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2736 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
2737 	stub_complete_io(1);
2738 
2739 	/* Pass unaligned single buffer with 512 alignment required */
2740 	alignment = 512;
2741 	bdev->required_alignment = spdk_u32log2(alignment);
2742 
2743 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2744 	CU_ASSERT(rc == 0);
2745 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2746 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2747 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2748 				    alignment));
2749 	stub_complete_io(1);
2750 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2751 
2752 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2753 	CU_ASSERT(rc == 0);
2754 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2755 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2756 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2757 				    alignment));
2758 	stub_complete_io(1);
2759 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2760 
2761 	/* Pass unaligned single buffer with 4096 alignment required */
2762 	alignment = 4096;
2763 	bdev->required_alignment = spdk_u32log2(alignment);
2764 
2765 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
2766 	CU_ASSERT(rc == 0);
2767 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2768 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2769 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2770 				    alignment));
2771 	stub_complete_io(1);
2772 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2773 
2774 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
2775 	CU_ASSERT(rc == 0);
2776 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2777 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2778 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2779 				    alignment));
2780 	stub_complete_io(1);
2781 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2782 
2783 	/* Pass aligned iovs with no alignment required */
2784 	alignment = 1;
2785 	bdev->required_alignment = spdk_u32log2(alignment);
2786 
2787 	iovcnt = 1;
2788 	iovs[0].iov_base = buf;
2789 	iovs[0].iov_len = 512;
2790 
2791 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2792 	CU_ASSERT(rc == 0);
2793 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2794 	stub_complete_io(1);
2795 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2796 
2797 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2798 	CU_ASSERT(rc == 0);
2799 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2800 	stub_complete_io(1);
2801 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2802 
2803 	/* Pass unaligned iovs with no alignment required */
2804 	alignment = 1;
2805 	bdev->required_alignment = spdk_u32log2(alignment);
2806 
2807 	iovcnt = 2;
2808 	iovs[0].iov_base = buf + 16;
2809 	iovs[0].iov_len = 256;
2810 	iovs[1].iov_base = buf + 16 + 256 + 32;
2811 	iovs[1].iov_len = 256;
2812 
2813 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2814 	CU_ASSERT(rc == 0);
2815 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2816 	stub_complete_io(1);
2817 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2818 
2819 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2820 	CU_ASSERT(rc == 0);
2821 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2822 	stub_complete_io(1);
2823 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2824 
2825 	/* Pass unaligned iov with 2048 alignment required */
2826 	alignment = 2048;
2827 	bdev->required_alignment = spdk_u32log2(alignment);
2828 
2829 	iovcnt = 2;
2830 	iovs[0].iov_base = buf + 16;
2831 	iovs[0].iov_len = 256;
2832 	iovs[1].iov_base = buf + 16 + 256 + 32;
2833 	iovs[1].iov_len = 256;
2834 
2835 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2836 	CU_ASSERT(rc == 0);
2837 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
2838 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2839 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2840 				    alignment));
2841 	stub_complete_io(1);
2842 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2843 
2844 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2845 	CU_ASSERT(rc == 0);
2846 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
2847 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2848 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2849 				    alignment));
2850 	stub_complete_io(1);
2851 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2852 
2853 	/* Pass iov without allocated buffer without alignment required */
2854 	alignment = 1;
2855 	bdev->required_alignment = spdk_u32log2(alignment);
2856 
2857 	iovcnt = 1;
2858 	iovs[0].iov_base = NULL;
2859 	iovs[0].iov_len = 0;
2860 
2861 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2862 	CU_ASSERT(rc == 0);
2863 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2864 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2865 				    alignment));
2866 	stub_complete_io(1);
2867 
2868 	/* Pass iov without allocated buffer with 1024 alignment required */
2869 	alignment = 1024;
2870 	bdev->required_alignment = spdk_u32log2(alignment);
2871 
2872 	iovcnt = 1;
2873 	iovs[0].iov_base = NULL;
2874 	iovs[0].iov_len = 0;
2875 
2876 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2877 	CU_ASSERT(rc == 0);
2878 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2879 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2880 				    alignment));
2881 	stub_complete_io(1);
2882 
2883 	spdk_put_io_channel(io_ch);
2884 	spdk_bdev_close(desc);
2885 	free_bdev(bdev);
2886 	fn_table.submit_request = stub_submit_request;
2887 	spdk_bdev_finish(bdev_fini_cb, NULL);
2888 	poll_threads();
2889 
2890 	free(buf);
2891 }
2892 
2893 static void
2894 bdev_io_alignment_with_boundary(void)
2895 {
2896 	struct spdk_bdev *bdev;
2897 	struct spdk_bdev_desc *desc = NULL;
2898 	struct spdk_io_channel *io_ch;
2899 	struct spdk_bdev_opts bdev_opts = {};
2900 	int rc;
2901 	void *buf = NULL;
2902 	struct iovec iovs[2];
2903 	int iovcnt;
2904 	uint64_t alignment;
2905 
2906 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2907 	bdev_opts.bdev_io_pool_size = 20;
2908 	bdev_opts.bdev_io_cache_size = 2;
2909 
2910 	bdev_opts.opts_size = sizeof(bdev_opts);
2911 	rc = spdk_bdev_set_opts(&bdev_opts);
2912 	CU_ASSERT(rc == 0);
2913 	spdk_bdev_initialize(bdev_init_cb, NULL);
2914 
2915 	fn_table.submit_request = stub_submit_request_get_buf;
2916 	bdev = allocate_bdev("bdev0");
2917 
2918 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2919 	CU_ASSERT(rc == 0);
2920 	CU_ASSERT(desc != NULL);
2921 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2922 	io_ch = spdk_bdev_get_io_channel(desc);
2923 	CU_ASSERT(io_ch != NULL);
2924 
2925 	/* Create aligned buffer */
2926 	rc = posix_memalign(&buf, 4096, 131072);
2927 	SPDK_CU_ASSERT_FATAL(rc == 0);
2928 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2929 
2930 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
2931 	alignment = 512;
2932 	bdev->required_alignment = spdk_u32log2(alignment);
2933 	bdev->optimal_io_boundary = 2;
2934 	bdev->split_on_optimal_io_boundary = true;
2935 
2936 	iovcnt = 1;
2937 	iovs[0].iov_base = NULL;
2938 	iovs[0].iov_len = 512 * 3;
2939 
2940 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
2941 	CU_ASSERT(rc == 0);
2942 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2943 	stub_complete_io(2);
2944 
2945 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
2946 	alignment = 512;
2947 	bdev->required_alignment = spdk_u32log2(alignment);
2948 	bdev->optimal_io_boundary = 16;
2949 	bdev->split_on_optimal_io_boundary = true;
2950 
2951 	iovcnt = 1;
2952 	iovs[0].iov_base = NULL;
2953 	iovs[0].iov_len = 512 * 16;
2954 
2955 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
2956 	CU_ASSERT(rc == 0);
2957 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2958 	stub_complete_io(2);
2959 
2960 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
2961 	alignment = 512;
2962 	bdev->required_alignment = spdk_u32log2(alignment);
2963 	bdev->optimal_io_boundary = 128;
2964 	bdev->split_on_optimal_io_boundary = true;
2965 
2966 	iovcnt = 1;
2967 	iovs[0].iov_base = buf + 16;
2968 	iovs[0].iov_len = 512 * 160;
2969 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
2970 	CU_ASSERT(rc == 0);
2971 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2972 	stub_complete_io(2);
2973 
2974 	/* 512 * 3 with 2 IO boundary */
2975 	alignment = 512;
2976 	bdev->required_alignment = spdk_u32log2(alignment);
2977 	bdev->optimal_io_boundary = 2;
2978 	bdev->split_on_optimal_io_boundary = true;
2979 
2980 	iovcnt = 2;
2981 	iovs[0].iov_base = buf + 16;
2982 	iovs[0].iov_len = 512;
2983 	iovs[1].iov_base = buf + 16 + 512 + 32;
2984 	iovs[1].iov_len = 1024;
2985 
2986 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
2987 	CU_ASSERT(rc == 0);
2988 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2989 	stub_complete_io(2);
2990 
2991 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
2992 	CU_ASSERT(rc == 0);
2993 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2994 	stub_complete_io(2);
2995 
2996 	/* 512 * 64 with 32 IO boundary */
2997 	bdev->optimal_io_boundary = 32;
2998 	iovcnt = 2;
2999 	iovs[0].iov_base = buf + 16;
3000 	iovs[0].iov_len = 16384;
3001 	iovs[1].iov_base = buf + 16 + 16384 + 32;
3002 	iovs[1].iov_len = 16384;
3003 
3004 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3005 	CU_ASSERT(rc == 0);
3006 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3007 	stub_complete_io(3);
3008 
3009 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3010 	CU_ASSERT(rc == 0);
3011 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3012 	stub_complete_io(3);
3013 
3014 	/* 512 * 160 with 32 IO boundary */
3015 	iovcnt = 1;
3016 	iovs[0].iov_base = buf + 16;
3017 	iovs[0].iov_len = 16384 + 65536;
3018 
3019 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3020 	CU_ASSERT(rc == 0);
3021 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
3022 	stub_complete_io(6);
3023 
3024 	spdk_put_io_channel(io_ch);
3025 	spdk_bdev_close(desc);
3026 	free_bdev(bdev);
3027 	fn_table.submit_request = stub_submit_request;
3028 	spdk_bdev_finish(bdev_fini_cb, NULL);
3029 	poll_threads();
3030 
3031 	free(buf);
3032 }
3033 
3034 static void
3035 histogram_status_cb(void *cb_arg, int status)
3036 {
3037 	g_status = status;
3038 }
3039 
3040 static void
3041 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3042 {
3043 	g_status = status;
3044 	g_histogram = histogram;
3045 }
3046 
3047 static void
3048 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
3049 		   uint64_t total, uint64_t so_far)
3050 {
3051 	g_count += count;
3052 }
3053 
3054 static void
3055 bdev_histograms(void)
3056 {
3057 	struct spdk_bdev *bdev;
3058 	struct spdk_bdev_desc *desc = NULL;
3059 	struct spdk_io_channel *ch;
3060 	struct spdk_histogram_data *histogram;
3061 	uint8_t buf[4096];
3062 	int rc;
3063 
3064 	spdk_bdev_initialize(bdev_init_cb, NULL);
3065 
3066 	bdev = allocate_bdev("bdev");
3067 
3068 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3069 	CU_ASSERT(rc == 0);
3070 	CU_ASSERT(desc != NULL);
3071 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3072 
3073 	ch = spdk_bdev_get_io_channel(desc);
3074 	CU_ASSERT(ch != NULL);
3075 
3076 	/* Enable histogram */
3077 	g_status = -1;
3078 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
3079 	poll_threads();
3080 	CU_ASSERT(g_status == 0);
3081 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3082 
3083 	/* Allocate histogram */
3084 	histogram = spdk_histogram_data_alloc();
3085 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
3086 
3087 	/* Check if histogram is zeroed */
3088 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3089 	poll_threads();
3090 	CU_ASSERT(g_status == 0);
3091 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3092 
3093 	g_count = 0;
3094 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3095 
3096 	CU_ASSERT(g_count == 0);
3097 
3098 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3099 	CU_ASSERT(rc == 0);
3100 
3101 	spdk_delay_us(10);
3102 	stub_complete_io(1);
3103 	poll_threads();
3104 
3105 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3106 	CU_ASSERT(rc == 0);
3107 
3108 	spdk_delay_us(10);
3109 	stub_complete_io(1);
3110 	poll_threads();
3111 
3112 	/* Check if histogram gathered data from all I/O channels */
3113 	g_histogram = NULL;
3114 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3115 	poll_threads();
3116 	CU_ASSERT(g_status == 0);
3117 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3118 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3119 
3120 	g_count = 0;
3121 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3122 	CU_ASSERT(g_count == 2);
3123 
3124 	/* Disable histogram */
3125 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
3126 	poll_threads();
3127 	CU_ASSERT(g_status == 0);
3128 	CU_ASSERT(bdev->internal.histogram_enabled == false);
3129 
3130 	/* Try to run histogram commands on disabled bdev */
3131 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3132 	poll_threads();
3133 	CU_ASSERT(g_status == -EFAULT);
3134 
3135 	spdk_histogram_data_free(histogram);
3136 	spdk_put_io_channel(ch);
3137 	spdk_bdev_close(desc);
3138 	free_bdev(bdev);
3139 	spdk_bdev_finish(bdev_fini_cb, NULL);
3140 	poll_threads();
3141 }
3142 
3143 static void
3144 _bdev_compare(bool emulated)
3145 {
3146 	struct spdk_bdev *bdev;
3147 	struct spdk_bdev_desc *desc = NULL;
3148 	struct spdk_io_channel *ioch;
3149 	struct ut_expected_io *expected_io;
3150 	uint64_t offset, num_blocks;
3151 	uint32_t num_completed;
3152 	char aa_buf[512];
3153 	char bb_buf[512];
3154 	struct iovec compare_iov;
3155 	uint8_t io_type;
3156 	int rc;
3157 
3158 	if (emulated) {
3159 		io_type = SPDK_BDEV_IO_TYPE_READ;
3160 	} else {
3161 		io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3162 	}
3163 
3164 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3165 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3166 
3167 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3168 
3169 	spdk_bdev_initialize(bdev_init_cb, NULL);
3170 	fn_table.submit_request = stub_submit_request_get_buf;
3171 	bdev = allocate_bdev("bdev");
3172 
3173 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3174 	CU_ASSERT_EQUAL(rc, 0);
3175 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3176 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3177 	ioch = spdk_bdev_get_io_channel(desc);
3178 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3179 
3180 	fn_table.submit_request = stub_submit_request_get_buf;
3181 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3182 
3183 	offset = 50;
3184 	num_blocks = 1;
3185 	compare_iov.iov_base = aa_buf;
3186 	compare_iov.iov_len = sizeof(aa_buf);
3187 
3188 	expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
3189 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3190 
3191 	g_io_done = false;
3192 	g_compare_read_buf = aa_buf;
3193 	g_compare_read_buf_len = sizeof(aa_buf);
3194 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3195 	CU_ASSERT_EQUAL(rc, 0);
3196 	num_completed = stub_complete_io(1);
3197 	CU_ASSERT_EQUAL(num_completed, 1);
3198 	CU_ASSERT(g_io_done == true);
3199 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3200 
3201 	expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
3202 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3203 
3204 	g_io_done = false;
3205 	g_compare_read_buf = bb_buf;
3206 	g_compare_read_buf_len = sizeof(bb_buf);
3207 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3208 	CU_ASSERT_EQUAL(rc, 0);
3209 	num_completed = stub_complete_io(1);
3210 	CU_ASSERT_EQUAL(num_completed, 1);
3211 	CU_ASSERT(g_io_done == true);
3212 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3213 
3214 	spdk_put_io_channel(ioch);
3215 	spdk_bdev_close(desc);
3216 	free_bdev(bdev);
3217 	fn_table.submit_request = stub_submit_request;
3218 	spdk_bdev_finish(bdev_fini_cb, NULL);
3219 	poll_threads();
3220 
3221 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3222 
3223 	g_compare_read_buf = NULL;
3224 }
3225 
3226 static void
3227 bdev_compare(void)
3228 {
3229 	_bdev_compare(true);
3230 	_bdev_compare(false);
3231 }
3232 
3233 static void
3234 bdev_compare_and_write(void)
3235 {
3236 	struct spdk_bdev *bdev;
3237 	struct spdk_bdev_desc *desc = NULL;
3238 	struct spdk_io_channel *ioch;
3239 	struct ut_expected_io *expected_io;
3240 	uint64_t offset, num_blocks;
3241 	uint32_t num_completed;
3242 	char aa_buf[512];
3243 	char bb_buf[512];
3244 	char cc_buf[512];
3245 	char write_buf[512];
3246 	struct iovec compare_iov;
3247 	struct iovec write_iov;
3248 	int rc;
3249 
3250 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3251 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3252 	memset(cc_buf, 0xcc, sizeof(cc_buf));
3253 
3254 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
3255 
3256 	spdk_bdev_initialize(bdev_init_cb, NULL);
3257 	fn_table.submit_request = stub_submit_request_get_buf;
3258 	bdev = allocate_bdev("bdev");
3259 
3260 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3261 	CU_ASSERT_EQUAL(rc, 0);
3262 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3263 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3264 	ioch = spdk_bdev_get_io_channel(desc);
3265 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3266 
3267 	fn_table.submit_request = stub_submit_request_get_buf;
3268 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3269 
3270 	offset = 50;
3271 	num_blocks = 1;
3272 	compare_iov.iov_base = aa_buf;
3273 	compare_iov.iov_len = sizeof(aa_buf);
3274 	write_iov.iov_base = bb_buf;
3275 	write_iov.iov_len = sizeof(bb_buf);
3276 
3277 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3278 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3279 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
3280 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3281 
3282 	g_io_done = false;
3283 	g_compare_read_buf = aa_buf;
3284 	g_compare_read_buf_len = sizeof(aa_buf);
3285 	memset(write_buf, 0, sizeof(write_buf));
3286 	g_compare_write_buf = write_buf;
3287 	g_compare_write_buf_len = sizeof(write_buf);
3288 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3289 			offset, num_blocks, io_done, NULL);
3290 	/* Trigger range locking */
3291 	poll_threads();
3292 	CU_ASSERT_EQUAL(rc, 0);
3293 	num_completed = stub_complete_io(1);
3294 	CU_ASSERT_EQUAL(num_completed, 1);
3295 	CU_ASSERT(g_io_done == false);
3296 	num_completed = stub_complete_io(1);
3297 	/* Trigger range unlocking */
3298 	poll_threads();
3299 	CU_ASSERT_EQUAL(num_completed, 1);
3300 	CU_ASSERT(g_io_done == true);
3301 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3302 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
3303 
3304 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3305 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3306 
3307 	g_io_done = false;
3308 	g_compare_read_buf = cc_buf;
3309 	g_compare_read_buf_len = sizeof(cc_buf);
3310 	memset(write_buf, 0, sizeof(write_buf));
3311 	g_compare_write_buf = write_buf;
3312 	g_compare_write_buf_len = sizeof(write_buf);
3313 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3314 			offset, num_blocks, io_done, NULL);
3315 	/* Trigger range locking */
3316 	poll_threads();
3317 	CU_ASSERT_EQUAL(rc, 0);
3318 	num_completed = stub_complete_io(1);
3319 	/* Trigger range unlocking earlier because we expect error here */
3320 	poll_threads();
3321 	CU_ASSERT_EQUAL(num_completed, 1);
3322 	CU_ASSERT(g_io_done == true);
3323 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3324 	num_completed = stub_complete_io(1);
3325 	CU_ASSERT_EQUAL(num_completed, 0);
3326 
3327 	spdk_put_io_channel(ioch);
3328 	spdk_bdev_close(desc);
3329 	free_bdev(bdev);
3330 	fn_table.submit_request = stub_submit_request;
3331 	spdk_bdev_finish(bdev_fini_cb, NULL);
3332 	poll_threads();
3333 
3334 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3335 
3336 	g_compare_read_buf = NULL;
3337 	g_compare_write_buf = NULL;
3338 }
3339 
3340 static void
3341 bdev_write_zeroes(void)
3342 {
3343 	struct spdk_bdev *bdev;
3344 	struct spdk_bdev_desc *desc = NULL;
3345 	struct spdk_io_channel *ioch;
3346 	struct ut_expected_io *expected_io;
3347 	uint64_t offset, num_io_blocks, num_blocks;
3348 	uint32_t num_completed, num_requests;
3349 	int rc;
3350 
3351 	spdk_bdev_initialize(bdev_init_cb, NULL);
3352 	bdev = allocate_bdev("bdev");
3353 
3354 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3355 	CU_ASSERT_EQUAL(rc, 0);
3356 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3357 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3358 	ioch = spdk_bdev_get_io_channel(desc);
3359 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3360 
3361 	fn_table.submit_request = stub_submit_request;
3362 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3363 
3364 	/* First test that if the bdev supports write_zeroes, the request won't be split */
3365 	bdev->md_len = 0;
3366 	bdev->blocklen = 4096;
3367 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3368 
3369 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
3370 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3371 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3372 	CU_ASSERT_EQUAL(rc, 0);
3373 	num_completed = stub_complete_io(1);
3374 	CU_ASSERT_EQUAL(num_completed, 1);
3375 
3376 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
3377 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
3378 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
3379 	num_requests = 2;
3380 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
3381 
3382 	for (offset = 0; offset < num_requests; ++offset) {
3383 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3384 						   offset * num_io_blocks, num_io_blocks, 0);
3385 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3386 	}
3387 
3388 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3389 	CU_ASSERT_EQUAL(rc, 0);
3390 	num_completed = stub_complete_io(num_requests);
3391 	CU_ASSERT_EQUAL(num_completed, num_requests);
3392 
3393 	/* Check that the splitting is correct if bdev has interleaved metadata */
3394 	bdev->md_interleave = true;
3395 	bdev->md_len = 64;
3396 	bdev->blocklen = 4096 + 64;
3397 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3398 
3399 	num_requests = offset = 0;
3400 	while (offset < num_blocks) {
3401 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
3402 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3403 						   offset, num_io_blocks, 0);
3404 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3405 		offset += num_io_blocks;
3406 		num_requests++;
3407 	}
3408 
3409 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3410 	CU_ASSERT_EQUAL(rc, 0);
3411 	num_completed = stub_complete_io(num_requests);
3412 	CU_ASSERT_EQUAL(num_completed, num_requests);
3413 	num_completed = stub_complete_io(num_requests);
3414 	assert(num_completed == 0);
3415 
3416 	/* Check the the same for separate metadata buffer */
3417 	bdev->md_interleave = false;
3418 	bdev->md_len = 64;
3419 	bdev->blocklen = 4096;
3420 
3421 	num_requests = offset = 0;
3422 	while (offset < num_blocks) {
3423 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
3424 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3425 						   offset, num_io_blocks, 0);
3426 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
3427 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3428 		offset += num_io_blocks;
3429 		num_requests++;
3430 	}
3431 
3432 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3433 	CU_ASSERT_EQUAL(rc, 0);
3434 	num_completed = stub_complete_io(num_requests);
3435 	CU_ASSERT_EQUAL(num_completed, num_requests);
3436 
3437 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
3438 	spdk_put_io_channel(ioch);
3439 	spdk_bdev_close(desc);
3440 	free_bdev(bdev);
3441 	spdk_bdev_finish(bdev_fini_cb, NULL);
3442 	poll_threads();
3443 }
3444 
3445 static void
3446 bdev_open_while_hotremove(void)
3447 {
3448 	struct spdk_bdev *bdev;
3449 	struct spdk_bdev_desc *desc[2] = {};
3450 	int rc;
3451 
3452 	bdev = allocate_bdev("bdev");
3453 
3454 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
3455 	CU_ASSERT(rc == 0);
3456 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
3457 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
3458 
3459 	spdk_bdev_unregister(bdev, NULL, NULL);
3460 
3461 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
3462 	CU_ASSERT(rc == -ENODEV);
3463 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
3464 
3465 	spdk_bdev_close(desc[0]);
3466 	free_bdev(bdev);
3467 }
3468 
3469 static void
3470 bdev_close_while_hotremove(void)
3471 {
3472 	struct spdk_bdev *bdev;
3473 	struct spdk_bdev_desc *desc = NULL;
3474 	int rc = 0;
3475 
3476 	bdev = allocate_bdev("bdev");
3477 
3478 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
3479 	CU_ASSERT_EQUAL(rc, 0);
3480 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3481 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3482 
3483 	/* Simulate hot-unplug by unregistering bdev */
3484 	g_event_type1 = 0xFF;
3485 	g_unregister_arg = NULL;
3486 	g_unregister_rc = -1;
3487 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
3488 	/* Close device while remove event is in flight */
3489 	spdk_bdev_close(desc);
3490 
3491 	/* Ensure that unregister callback is delayed */
3492 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
3493 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
3494 
3495 	poll_threads();
3496 
3497 	/* Event callback shall not be issued because device was closed */
3498 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
3499 	/* Unregister callback is issued */
3500 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
3501 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
3502 
3503 	free_bdev(bdev);
3504 }
3505 
3506 static void
3507 bdev_open_ext(void)
3508 {
3509 	struct spdk_bdev *bdev;
3510 	struct spdk_bdev_desc *desc1 = NULL;
3511 	struct spdk_bdev_desc *desc2 = NULL;
3512 	int rc = 0;
3513 
3514 	bdev = allocate_bdev("bdev");
3515 
3516 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
3517 	CU_ASSERT_EQUAL(rc, -EINVAL);
3518 
3519 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
3520 	CU_ASSERT_EQUAL(rc, 0);
3521 
3522 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
3523 	CU_ASSERT_EQUAL(rc, 0);
3524 
3525 	g_event_type1 = 0xFF;
3526 	g_event_type2 = 0xFF;
3527 
3528 	/* Simulate hot-unplug by unregistering bdev */
3529 	spdk_bdev_unregister(bdev, NULL, NULL);
3530 	poll_threads();
3531 
3532 	/* Check if correct events have been triggered in event callback fn */
3533 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
3534 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
3535 
3536 	free_bdev(bdev);
3537 	poll_threads();
3538 }
3539 
3540 struct timeout_io_cb_arg {
3541 	struct iovec iov;
3542 	uint8_t type;
3543 };
3544 
3545 static int
3546 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
3547 {
3548 	struct spdk_bdev_io *bdev_io;
3549 	int n = 0;
3550 
3551 	if (!ch) {
3552 		return -1;
3553 	}
3554 
3555 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
3556 		n++;
3557 	}
3558 
3559 	return n;
3560 }
3561 
3562 static void
3563 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
3564 {
3565 	struct timeout_io_cb_arg *ctx = cb_arg;
3566 
3567 	ctx->type = bdev_io->type;
3568 	ctx->iov.iov_base = bdev_io->iov.iov_base;
3569 	ctx->iov.iov_len = bdev_io->iov.iov_len;
3570 }
3571 
3572 static void
3573 bdev_set_io_timeout(void)
3574 {
3575 	struct spdk_bdev *bdev;
3576 	struct spdk_bdev_desc *desc = NULL;
3577 	struct spdk_io_channel *io_ch = NULL;
3578 	struct spdk_bdev_channel *bdev_ch = NULL;
3579 	struct timeout_io_cb_arg cb_arg;
3580 
3581 	spdk_bdev_initialize(bdev_init_cb, NULL);
3582 
3583 	bdev = allocate_bdev("bdev");
3584 
3585 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
3586 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3587 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3588 
3589 	io_ch = spdk_bdev_get_io_channel(desc);
3590 	CU_ASSERT(io_ch != NULL);
3591 
3592 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
3593 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
3594 
3595 	/* This is the part1.
3596 	 * We will check the bdev_ch->io_submitted list
3597 	 * TO make sure that it can link IOs and only the user submitted IOs
3598 	 */
3599 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
3600 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
3601 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
3602 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
3603 	stub_complete_io(1);
3604 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
3605 	stub_complete_io(1);
3606 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
3607 
3608 	/* Split IO */
3609 	bdev->optimal_io_boundary = 16;
3610 	bdev->split_on_optimal_io_boundary = true;
3611 
3612 	/* Now test that a single-vector command is split correctly.
3613 	 * Offset 14, length 8, payload 0xF000
3614 	 *  Child - Offset 14, length 2, payload 0xF000
3615 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
3616 	 *
3617 	 * Set up the expected values before calling spdk_bdev_read_blocks
3618 	 */
3619 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
3620 	/* We count all submitted IOs including IO that are generated by splitting. */
3621 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
3622 	stub_complete_io(1);
3623 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
3624 	stub_complete_io(1);
3625 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
3626 
3627 	/* Also include the reset IO */
3628 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
3629 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
3630 	poll_threads();
3631 	stub_complete_io(1);
3632 	poll_threads();
3633 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
3634 
3635 	/* This is part2
3636 	 * Test the desc timeout poller register
3637 	 */
3638 
3639 	/* Successfully set the timeout */
3640 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
3641 	CU_ASSERT(desc->io_timeout_poller != NULL);
3642 	CU_ASSERT(desc->timeout_in_sec == 30);
3643 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
3644 	CU_ASSERT(desc->cb_arg == &cb_arg);
3645 
3646 	/* Change the timeout limit */
3647 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
3648 	CU_ASSERT(desc->io_timeout_poller != NULL);
3649 	CU_ASSERT(desc->timeout_in_sec == 20);
3650 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
3651 	CU_ASSERT(desc->cb_arg == &cb_arg);
3652 
3653 	/* Disable the timeout */
3654 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
3655 	CU_ASSERT(desc->io_timeout_poller == NULL);
3656 
3657 	/* This the part3
3658 	 * We will test to catch timeout IO and check whether the IO is
3659 	 * the submitted one.
3660 	 */
3661 	memset(&cb_arg, 0, sizeof(cb_arg));
3662 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
3663 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
3664 
3665 	/* Don't reach the limit */
3666 	spdk_delay_us(15 * spdk_get_ticks_hz());
3667 	poll_threads();
3668 	CU_ASSERT(cb_arg.type == 0);
3669 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
3670 	CU_ASSERT(cb_arg.iov.iov_len == 0);
3671 
3672 	/* 15 + 15 = 30 reach the limit */
3673 	spdk_delay_us(15 * spdk_get_ticks_hz());
3674 	poll_threads();
3675 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
3676 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
3677 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
3678 	stub_complete_io(1);
3679 
3680 	/* Use the same split IO above and check the IO */
3681 	memset(&cb_arg, 0, sizeof(cb_arg));
3682 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
3683 
3684 	/* The first child complete in time */
3685 	spdk_delay_us(15 * spdk_get_ticks_hz());
3686 	poll_threads();
3687 	stub_complete_io(1);
3688 	CU_ASSERT(cb_arg.type == 0);
3689 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
3690 	CU_ASSERT(cb_arg.iov.iov_len == 0);
3691 
3692 	/* The second child reach the limit */
3693 	spdk_delay_us(15 * spdk_get_ticks_hz());
3694 	poll_threads();
3695 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
3696 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
3697 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
3698 	stub_complete_io(1);
3699 
3700 	/* Also include the reset IO */
3701 	memset(&cb_arg, 0, sizeof(cb_arg));
3702 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
3703 	spdk_delay_us(30 * spdk_get_ticks_hz());
3704 	poll_threads();
3705 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
3706 	stub_complete_io(1);
3707 	poll_threads();
3708 
3709 	spdk_put_io_channel(io_ch);
3710 	spdk_bdev_close(desc);
3711 	free_bdev(bdev);
3712 	spdk_bdev_finish(bdev_fini_cb, NULL);
3713 	poll_threads();
3714 }
3715 
3716 static void
3717 lba_range_overlap(void)
3718 {
3719 	struct lba_range r1, r2;
3720 
3721 	r1.offset = 100;
3722 	r1.length = 50;
3723 
3724 	r2.offset = 0;
3725 	r2.length = 1;
3726 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
3727 
3728 	r2.offset = 0;
3729 	r2.length = 100;
3730 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
3731 
3732 	r2.offset = 0;
3733 	r2.length = 110;
3734 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
3735 
3736 	r2.offset = 100;
3737 	r2.length = 10;
3738 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
3739 
3740 	r2.offset = 110;
3741 	r2.length = 20;
3742 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
3743 
3744 	r2.offset = 140;
3745 	r2.length = 150;
3746 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
3747 
3748 	r2.offset = 130;
3749 	r2.length = 200;
3750 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
3751 
3752 	r2.offset = 150;
3753 	r2.length = 100;
3754 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
3755 
3756 	r2.offset = 110;
3757 	r2.length = 0;
3758 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
3759 }
3760 
3761 static bool g_lock_lba_range_done;
3762 static bool g_unlock_lba_range_done;
3763 
3764 static void
3765 lock_lba_range_done(void *ctx, int status)
3766 {
3767 	g_lock_lba_range_done = true;
3768 }
3769 
3770 static void
3771 unlock_lba_range_done(void *ctx, int status)
3772 {
3773 	g_unlock_lba_range_done = true;
3774 }
3775 
3776 static void
3777 lock_lba_range_check_ranges(void)
3778 {
3779 	struct spdk_bdev *bdev;
3780 	struct spdk_bdev_desc *desc = NULL;
3781 	struct spdk_io_channel *io_ch;
3782 	struct spdk_bdev_channel *channel;
3783 	struct lba_range *range;
3784 	int ctx1;
3785 	int rc;
3786 
3787 	spdk_bdev_initialize(bdev_init_cb, NULL);
3788 
3789 	bdev = allocate_bdev("bdev0");
3790 
3791 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3792 	CU_ASSERT(rc == 0);
3793 	CU_ASSERT(desc != NULL);
3794 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3795 	io_ch = spdk_bdev_get_io_channel(desc);
3796 	CU_ASSERT(io_ch != NULL);
3797 	channel = spdk_io_channel_get_ctx(io_ch);
3798 
3799 	g_lock_lba_range_done = false;
3800 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3801 	CU_ASSERT(rc == 0);
3802 	poll_threads();
3803 
3804 	CU_ASSERT(g_lock_lba_range_done == true);
3805 	range = TAILQ_FIRST(&channel->locked_ranges);
3806 	SPDK_CU_ASSERT_FATAL(range != NULL);
3807 	CU_ASSERT(range->offset == 20);
3808 	CU_ASSERT(range->length == 10);
3809 	CU_ASSERT(range->owner_ch == channel);
3810 
3811 	/* Unlocks must exactly match a lock. */
3812 	g_unlock_lba_range_done = false;
3813 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
3814 	CU_ASSERT(rc == -EINVAL);
3815 	CU_ASSERT(g_unlock_lba_range_done == false);
3816 
3817 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
3818 	CU_ASSERT(rc == 0);
3819 	spdk_delay_us(100);
3820 	poll_threads();
3821 
3822 	CU_ASSERT(g_unlock_lba_range_done == true);
3823 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
3824 
3825 	spdk_put_io_channel(io_ch);
3826 	spdk_bdev_close(desc);
3827 	free_bdev(bdev);
3828 	spdk_bdev_finish(bdev_fini_cb, NULL);
3829 	poll_threads();
3830 }
3831 
3832 static void
3833 lock_lba_range_with_io_outstanding(void)
3834 {
3835 	struct spdk_bdev *bdev;
3836 	struct spdk_bdev_desc *desc = NULL;
3837 	struct spdk_io_channel *io_ch;
3838 	struct spdk_bdev_channel *channel;
3839 	struct lba_range *range;
3840 	char buf[4096];
3841 	int ctx1;
3842 	int rc;
3843 
3844 	spdk_bdev_initialize(bdev_init_cb, NULL);
3845 
3846 	bdev = allocate_bdev("bdev0");
3847 
3848 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3849 	CU_ASSERT(rc == 0);
3850 	CU_ASSERT(desc != NULL);
3851 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3852 	io_ch = spdk_bdev_get_io_channel(desc);
3853 	CU_ASSERT(io_ch != NULL);
3854 	channel = spdk_io_channel_get_ctx(io_ch);
3855 
3856 	g_io_done = false;
3857 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
3858 	CU_ASSERT(rc == 0);
3859 
3860 	g_lock_lba_range_done = false;
3861 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3862 	CU_ASSERT(rc == 0);
3863 	poll_threads();
3864 
3865 	/* The lock should immediately become valid, since there are no outstanding
3866 	 * write I/O.
3867 	 */
3868 	CU_ASSERT(g_io_done == false);
3869 	CU_ASSERT(g_lock_lba_range_done == true);
3870 	range = TAILQ_FIRST(&channel->locked_ranges);
3871 	SPDK_CU_ASSERT_FATAL(range != NULL);
3872 	CU_ASSERT(range->offset == 20);
3873 	CU_ASSERT(range->length == 10);
3874 	CU_ASSERT(range->owner_ch == channel);
3875 	CU_ASSERT(range->locked_ctx == &ctx1);
3876 
3877 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3878 	CU_ASSERT(rc == 0);
3879 	stub_complete_io(1);
3880 	spdk_delay_us(100);
3881 	poll_threads();
3882 
3883 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
3884 
3885 	/* Now try again, but with a write I/O. */
3886 	g_io_done = false;
3887 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
3888 	CU_ASSERT(rc == 0);
3889 
3890 	g_lock_lba_range_done = false;
3891 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3892 	CU_ASSERT(rc == 0);
3893 	poll_threads();
3894 
3895 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
3896 	 * But note that the range should be on the channel's locked_list, to make sure no
3897 	 * new write I/O are started.
3898 	 */
3899 	CU_ASSERT(g_io_done == false);
3900 	CU_ASSERT(g_lock_lba_range_done == false);
3901 	range = TAILQ_FIRST(&channel->locked_ranges);
3902 	SPDK_CU_ASSERT_FATAL(range != NULL);
3903 	CU_ASSERT(range->offset == 20);
3904 	CU_ASSERT(range->length == 10);
3905 
3906 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
3907 	 * our callback was invoked).
3908 	 */
3909 	stub_complete_io(1);
3910 	spdk_delay_us(100);
3911 	poll_threads();
3912 	CU_ASSERT(g_io_done == true);
3913 	CU_ASSERT(g_lock_lba_range_done == true);
3914 
3915 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
3916 	CU_ASSERT(rc == 0);
3917 	poll_threads();
3918 
3919 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
3920 
3921 	spdk_put_io_channel(io_ch);
3922 	spdk_bdev_close(desc);
3923 	free_bdev(bdev);
3924 	spdk_bdev_finish(bdev_fini_cb, NULL);
3925 	poll_threads();
3926 }
3927 
3928 static void
3929 lock_lba_range_overlapped(void)
3930 {
3931 	struct spdk_bdev *bdev;
3932 	struct spdk_bdev_desc *desc = NULL;
3933 	struct spdk_io_channel *io_ch;
3934 	struct spdk_bdev_channel *channel;
3935 	struct lba_range *range;
3936 	int ctx1;
3937 	int rc;
3938 
3939 	spdk_bdev_initialize(bdev_init_cb, NULL);
3940 
3941 	bdev = allocate_bdev("bdev0");
3942 
3943 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3944 	CU_ASSERT(rc == 0);
3945 	CU_ASSERT(desc != NULL);
3946 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3947 	io_ch = spdk_bdev_get_io_channel(desc);
3948 	CU_ASSERT(io_ch != NULL);
3949 	channel = spdk_io_channel_get_ctx(io_ch);
3950 
3951 	/* Lock range 20-29. */
3952 	g_lock_lba_range_done = false;
3953 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3954 	CU_ASSERT(rc == 0);
3955 	poll_threads();
3956 
3957 	CU_ASSERT(g_lock_lba_range_done == true);
3958 	range = TAILQ_FIRST(&channel->locked_ranges);
3959 	SPDK_CU_ASSERT_FATAL(range != NULL);
3960 	CU_ASSERT(range->offset == 20);
3961 	CU_ASSERT(range->length == 10);
3962 
3963 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
3964 	 * 20-29.
3965 	 */
3966 	g_lock_lba_range_done = false;
3967 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
3968 	CU_ASSERT(rc == 0);
3969 	poll_threads();
3970 
3971 	CU_ASSERT(g_lock_lba_range_done == false);
3972 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
3973 	SPDK_CU_ASSERT_FATAL(range != NULL);
3974 	CU_ASSERT(range->offset == 25);
3975 	CU_ASSERT(range->length == 15);
3976 
3977 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
3978 	 * no longer overlaps with an active lock.
3979 	 */
3980 	g_unlock_lba_range_done = false;
3981 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
3982 	CU_ASSERT(rc == 0);
3983 	poll_threads();
3984 
3985 	CU_ASSERT(g_unlock_lba_range_done == true);
3986 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
3987 	range = TAILQ_FIRST(&channel->locked_ranges);
3988 	SPDK_CU_ASSERT_FATAL(range != NULL);
3989 	CU_ASSERT(range->offset == 25);
3990 	CU_ASSERT(range->length == 15);
3991 
3992 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
3993 	 * currently active 25-39 lock.
3994 	 */
3995 	g_lock_lba_range_done = false;
3996 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
3997 	CU_ASSERT(rc == 0);
3998 	poll_threads();
3999 
4000 	CU_ASSERT(g_lock_lba_range_done == true);
4001 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4002 	SPDK_CU_ASSERT_FATAL(range != NULL);
4003 	range = TAILQ_NEXT(range, tailq);
4004 	SPDK_CU_ASSERT_FATAL(range != NULL);
4005 	CU_ASSERT(range->offset == 40);
4006 	CU_ASSERT(range->length == 20);
4007 
4008 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
4009 	g_lock_lba_range_done = false;
4010 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
4011 	CU_ASSERT(rc == 0);
4012 	poll_threads();
4013 
4014 	CU_ASSERT(g_lock_lba_range_done == false);
4015 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4016 	SPDK_CU_ASSERT_FATAL(range != NULL);
4017 	CU_ASSERT(range->offset == 35);
4018 	CU_ASSERT(range->length == 10);
4019 
4020 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
4021 	 * the 40-59 lock is still active.
4022 	 */
4023 	g_unlock_lba_range_done = false;
4024 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
4025 	CU_ASSERT(rc == 0);
4026 	poll_threads();
4027 
4028 	CU_ASSERT(g_unlock_lba_range_done == true);
4029 	CU_ASSERT(g_lock_lba_range_done == false);
4030 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4031 	SPDK_CU_ASSERT_FATAL(range != NULL);
4032 	CU_ASSERT(range->offset == 35);
4033 	CU_ASSERT(range->length == 10);
4034 
4035 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
4036 	 * no longer any active overlapping locks.
4037 	 */
4038 	g_unlock_lba_range_done = false;
4039 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
4040 	CU_ASSERT(rc == 0);
4041 	poll_threads();
4042 
4043 	CU_ASSERT(g_unlock_lba_range_done == true);
4044 	CU_ASSERT(g_lock_lba_range_done == true);
4045 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4046 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4047 	SPDK_CU_ASSERT_FATAL(range != NULL);
4048 	CU_ASSERT(range->offset == 35);
4049 	CU_ASSERT(range->length == 10);
4050 
4051 	/* Finally, unlock 35-44. */
4052 	g_unlock_lba_range_done = false;
4053 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
4054 	CU_ASSERT(rc == 0);
4055 	poll_threads();
4056 
4057 	CU_ASSERT(g_unlock_lba_range_done == true);
4058 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
4059 
4060 	spdk_put_io_channel(io_ch);
4061 	spdk_bdev_close(desc);
4062 	free_bdev(bdev);
4063 	spdk_bdev_finish(bdev_fini_cb, NULL);
4064 	poll_threads();
4065 }
4066 
4067 static void
4068 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
4069 {
4070 	g_abort_done = true;
4071 	g_abort_status = bdev_io->internal.status;
4072 	spdk_bdev_free_io(bdev_io);
4073 }
4074 
4075 static void
4076 bdev_io_abort(void)
4077 {
4078 	struct spdk_bdev *bdev;
4079 	struct spdk_bdev_desc *desc = NULL;
4080 	struct spdk_io_channel *io_ch;
4081 	struct spdk_bdev_channel *channel;
4082 	struct spdk_bdev_mgmt_channel *mgmt_ch;
4083 	struct spdk_bdev_opts bdev_opts = {};
4084 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
4085 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
4086 	int rc;
4087 
4088 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4089 	bdev_opts.bdev_io_pool_size = 7;
4090 	bdev_opts.bdev_io_cache_size = 2;
4091 
4092 	rc = spdk_bdev_set_opts(&bdev_opts);
4093 	CU_ASSERT(rc == 0);
4094 	spdk_bdev_initialize(bdev_init_cb, NULL);
4095 
4096 	bdev = allocate_bdev("bdev0");
4097 
4098 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4099 	CU_ASSERT(rc == 0);
4100 	CU_ASSERT(desc != NULL);
4101 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4102 	io_ch = spdk_bdev_get_io_channel(desc);
4103 	CU_ASSERT(io_ch != NULL);
4104 	channel = spdk_io_channel_get_ctx(io_ch);
4105 	mgmt_ch = channel->shared_resource->mgmt_ch;
4106 
4107 	g_abort_done = false;
4108 
4109 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
4110 
4111 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4112 	CU_ASSERT(rc == -ENOTSUP);
4113 
4114 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
4115 
4116 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
4117 	CU_ASSERT(rc == 0);
4118 	CU_ASSERT(g_abort_done == true);
4119 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
4120 
4121 	/* Test the case that the target I/O was successfully aborted. */
4122 	g_io_done = false;
4123 
4124 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
4125 	CU_ASSERT(rc == 0);
4126 	CU_ASSERT(g_io_done == false);
4127 
4128 	g_abort_done = false;
4129 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4130 
4131 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4132 	CU_ASSERT(rc == 0);
4133 	CU_ASSERT(g_io_done == true);
4134 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4135 	stub_complete_io(1);
4136 	CU_ASSERT(g_abort_done == true);
4137 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4138 
4139 	/* Test the case that the target I/O was not aborted because it completed
4140 	 * in the middle of execution of the abort.
4141 	 */
4142 	g_io_done = false;
4143 
4144 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
4145 	CU_ASSERT(rc == 0);
4146 	CU_ASSERT(g_io_done == false);
4147 
4148 	g_abort_done = false;
4149 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
4150 
4151 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4152 	CU_ASSERT(rc == 0);
4153 	CU_ASSERT(g_io_done == false);
4154 
4155 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4156 	stub_complete_io(1);
4157 	CU_ASSERT(g_io_done == true);
4158 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4159 
4160 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
4161 	stub_complete_io(1);
4162 	CU_ASSERT(g_abort_done == true);
4163 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4164 
4165 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4166 
4167 	bdev->optimal_io_boundary = 16;
4168 	bdev->split_on_optimal_io_boundary = true;
4169 
4170 	/* Test that a single-vector command which is split is aborted correctly.
4171 	 * Offset 14, length 8, payload 0xF000
4172 	 *  Child - Offset 14, length 2, payload 0xF000
4173 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4174 	 */
4175 	g_io_done = false;
4176 
4177 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
4178 	CU_ASSERT(rc == 0);
4179 	CU_ASSERT(g_io_done == false);
4180 
4181 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
4182 
4183 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4184 
4185 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4186 	CU_ASSERT(rc == 0);
4187 	CU_ASSERT(g_io_done == true);
4188 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4189 	stub_complete_io(2);
4190 	CU_ASSERT(g_abort_done == true);
4191 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4192 
4193 	/* Test that a multi-vector command that needs to be split by strip and then
4194 	 * needs to be split is aborted correctly. Abort is requested before the second
4195 	 * child I/O was submitted. The parent I/O should complete with failure without
4196 	 * submitting the second child I/O.
4197 	 */
4198 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
4199 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
4200 		iov[i].iov_len = 512;
4201 	}
4202 
4203 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
4204 	g_io_done = false;
4205 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
4206 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
4207 	CU_ASSERT(rc == 0);
4208 	CU_ASSERT(g_io_done == false);
4209 
4210 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
4211 
4212 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4213 
4214 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4215 	CU_ASSERT(rc == 0);
4216 	CU_ASSERT(g_io_done == true);
4217 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4218 	stub_complete_io(1);
4219 	CU_ASSERT(g_abort_done == true);
4220 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4221 
4222 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4223 
4224 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4225 
4226 	bdev->optimal_io_boundary = 16;
4227 	g_io_done = false;
4228 
4229 	/* Test that a ingle-vector command which is split is aborted correctly.
4230 	 * Differently from the above, the child abort request will be submitted
4231 	 * sequentially due to the capacity of spdk_bdev_io.
4232 	 */
4233 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
4234 	CU_ASSERT(rc == 0);
4235 	CU_ASSERT(g_io_done == false);
4236 
4237 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
4238 
4239 	g_abort_done = false;
4240 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4241 
4242 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4243 	CU_ASSERT(rc == 0);
4244 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
4245 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
4246 
4247 	stub_complete_io(1);
4248 	CU_ASSERT(g_io_done == true);
4249 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4250 	stub_complete_io(3);
4251 	CU_ASSERT(g_abort_done == true);
4252 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4253 
4254 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4255 
4256 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4257 
4258 	spdk_put_io_channel(io_ch);
4259 	spdk_bdev_close(desc);
4260 	free_bdev(bdev);
4261 	spdk_bdev_finish(bdev_fini_cb, NULL);
4262 	poll_threads();
4263 }
4264 
4265 static void
4266 bdev_set_options_test(void)
4267 {
4268 	struct spdk_bdev_opts bdev_opts = {};
4269 	int rc;
4270 
4271 	/* Case1: Do not set opts_size */
4272 	rc = spdk_bdev_set_opts(&bdev_opts);
4273 	CU_ASSERT(rc == -1);
4274 
4275 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4276 	bdev_opts.bdev_io_pool_size = 4;
4277 	bdev_opts.bdev_io_cache_size = 2;
4278 	bdev_opts.small_buf_pool_size = 4;
4279 
4280 	/* Case 2: Do not set valid small_buf_pool_size and large_buf_pool_size */
4281 	rc = spdk_bdev_set_opts(&bdev_opts);
4282 	CU_ASSERT(rc == -1);
4283 
4284 	/* Case 3: Do not set valid large_buf_pool_size */
4285 	bdev_opts.small_buf_pool_size = BUF_SMALL_POOL_SIZE;
4286 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE - 1;
4287 	rc = spdk_bdev_set_opts(&bdev_opts);
4288 	CU_ASSERT(rc == -1);
4289 
4290 	/* Case4: set valid large buf_pool_size */
4291 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE;
4292 	rc = spdk_bdev_set_opts(&bdev_opts);
4293 	CU_ASSERT(rc == 0);
4294 
4295 	/* Case5: Set different valid value for small and large buf pool */
4296 	bdev_opts.large_buf_pool_size = BUF_SMALL_POOL_SIZE + 3;
4297 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE + 3;
4298 	rc = spdk_bdev_set_opts(&bdev_opts);
4299 	CU_ASSERT(rc == 0);
4300 }
4301 
4302 int
4303 main(int argc, char **argv)
4304 {
4305 	CU_pSuite		suite = NULL;
4306 	unsigned int		num_failures;
4307 
4308 	CU_set_error_action(CUEA_ABORT);
4309 	CU_initialize_registry();
4310 
4311 	suite = CU_add_suite("bdev", null_init, null_clean);
4312 
4313 	CU_ADD_TEST(suite, bytes_to_blocks_test);
4314 	CU_ADD_TEST(suite, num_blocks_test);
4315 	CU_ADD_TEST(suite, io_valid_test);
4316 	CU_ADD_TEST(suite, open_write_test);
4317 	CU_ADD_TEST(suite, alias_add_del_test);
4318 	CU_ADD_TEST(suite, get_device_stat_test);
4319 	CU_ADD_TEST(suite, bdev_io_types_test);
4320 	CU_ADD_TEST(suite, bdev_io_wait_test);
4321 	CU_ADD_TEST(suite, bdev_io_spans_split_test);
4322 	CU_ADD_TEST(suite, bdev_io_boundary_split_test);
4323 	CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test);
4324 	CU_ADD_TEST(suite, bdev_io_mix_split_test);
4325 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
4326 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
4327 	CU_ADD_TEST(suite, bdev_io_alignment);
4328 	CU_ADD_TEST(suite, bdev_histograms);
4329 	CU_ADD_TEST(suite, bdev_write_zeroes);
4330 	CU_ADD_TEST(suite, bdev_compare_and_write);
4331 	CU_ADD_TEST(suite, bdev_compare);
4332 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
4333 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
4334 	CU_ADD_TEST(suite, bdev_open_ext);
4335 	CU_ADD_TEST(suite, bdev_set_io_timeout);
4336 	CU_ADD_TEST(suite, lba_range_overlap);
4337 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
4338 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
4339 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
4340 	CU_ADD_TEST(suite, bdev_io_abort);
4341 	CU_ADD_TEST(suite, bdev_set_options_test);
4342 
4343 	allocate_cores(1);
4344 	allocate_threads(1);
4345 	set_thread(0);
4346 
4347 	CU_basic_set_mode(CU_BRM_VERBOSE);
4348 	CU_basic_run_tests();
4349 	num_failures = CU_get_number_of_failures();
4350 	CU_cleanup_registry();
4351 
4352 	free_threads();
4353 	free_cores();
4354 
4355 	return num_failures;
4356 }
4357