xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision 307b8c112ffd90a26d53dd15fad67bd9038ef526)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (c) Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk_cunit.h"
8 
9 #include "common/lib/ut_multithread.c"
10 #include "unit/lib/json_mock.c"
11 
12 #include "spdk/config.h"
13 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
14 #undef SPDK_CONFIG_VTUNE
15 
16 #include "bdev/bdev.c"
17 
18 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
19 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
20 DEFINE_STUB(spdk_memory_domain_get_dma_device_id, const char *, (struct spdk_memory_domain *domain),
21 	    "test_domain");
22 DEFINE_STUB(spdk_memory_domain_get_dma_device_type, enum spdk_dma_device_type,
23 	    (struct spdk_memory_domain *domain), 0);
24 
25 static bool g_memory_domain_pull_data_called;
26 static bool g_memory_domain_push_data_called;
27 
28 DEFINE_RETURN_MOCK(spdk_memory_domain_pull_data, int);
29 int
30 spdk_memory_domain_pull_data(struct spdk_memory_domain *src_domain, void *src_domain_ctx,
31 			     struct iovec *src_iov, uint32_t src_iov_cnt, struct iovec *dst_iov, uint32_t dst_iov_cnt,
32 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
33 {
34 	g_memory_domain_pull_data_called = true;
35 	HANDLE_RETURN_MOCK(spdk_memory_domain_pull_data);
36 	cpl_cb(cpl_cb_arg, 0);
37 	return 0;
38 }
39 
40 DEFINE_RETURN_MOCK(spdk_memory_domain_push_data, int);
41 int
42 spdk_memory_domain_push_data(struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
43 			     struct iovec *dst_iov, uint32_t dst_iovcnt, struct iovec *src_iov, uint32_t src_iovcnt,
44 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
45 {
46 	g_memory_domain_push_data_called = true;
47 	HANDLE_RETURN_MOCK(spdk_memory_domain_push_data);
48 	cpl_cb(cpl_cb_arg, 0);
49 	return 0;
50 }
51 
52 int g_status;
53 int g_count;
54 enum spdk_bdev_event_type g_event_type1;
55 enum spdk_bdev_event_type g_event_type2;
56 enum spdk_bdev_event_type g_event_type3;
57 enum spdk_bdev_event_type g_event_type4;
58 struct spdk_histogram_data *g_histogram;
59 void *g_unregister_arg;
60 int g_unregister_rc;
61 
62 void
63 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
64 			 int *sc, int *sk, int *asc, int *ascq)
65 {
66 }
67 
68 static int
69 null_init(void)
70 {
71 	return 0;
72 }
73 
74 static int
75 null_clean(void)
76 {
77 	return 0;
78 }
79 
80 static int
81 stub_destruct(void *ctx)
82 {
83 	return 0;
84 }
85 
86 struct ut_expected_io {
87 	uint8_t				type;
88 	uint64_t			offset;
89 	uint64_t			length;
90 	int				iovcnt;
91 	struct iovec			iov[BDEV_IO_NUM_CHILD_IOV];
92 	void				*md_buf;
93 	struct spdk_bdev_ext_io_opts	*ext_io_opts;
94 	bool				copy_opts;
95 	TAILQ_ENTRY(ut_expected_io)	link;
96 };
97 
98 struct bdev_ut_channel {
99 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
100 	uint32_t			outstanding_io_count;
101 	TAILQ_HEAD(, ut_expected_io)	expected_io;
102 };
103 
104 static bool g_io_done;
105 static struct spdk_bdev_io *g_bdev_io;
106 static enum spdk_bdev_io_status g_io_status;
107 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
108 static uint32_t g_bdev_ut_io_device;
109 static struct bdev_ut_channel *g_bdev_ut_channel;
110 static void *g_compare_read_buf;
111 static uint32_t g_compare_read_buf_len;
112 static void *g_compare_write_buf;
113 static uint32_t g_compare_write_buf_len;
114 static void *g_compare_md_buf;
115 static bool g_abort_done;
116 static enum spdk_bdev_io_status g_abort_status;
117 static void *g_zcopy_read_buf;
118 static uint32_t g_zcopy_read_buf_len;
119 static void *g_zcopy_write_buf;
120 static uint32_t g_zcopy_write_buf_len;
121 static struct spdk_bdev_io *g_zcopy_bdev_io;
122 static uint64_t g_seek_data_offset;
123 static uint64_t g_seek_hole_offset;
124 static uint64_t g_seek_offset;
125 
126 static struct ut_expected_io *
127 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
128 {
129 	struct ut_expected_io *expected_io;
130 
131 	expected_io = calloc(1, sizeof(*expected_io));
132 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
133 
134 	expected_io->type = type;
135 	expected_io->offset = offset;
136 	expected_io->length = length;
137 	expected_io->iovcnt = iovcnt;
138 
139 	return expected_io;
140 }
141 
142 static void
143 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
144 {
145 	expected_io->iov[pos].iov_base = base;
146 	expected_io->iov[pos].iov_len = len;
147 }
148 
149 static void
150 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
151 {
152 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
153 	struct ut_expected_io *expected_io;
154 	struct iovec *iov, *expected_iov;
155 	struct spdk_bdev_io *bio_to_abort;
156 	int i;
157 
158 	g_bdev_io = bdev_io;
159 
160 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
161 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
162 
163 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
164 		CU_ASSERT(g_compare_read_buf_len == len);
165 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
166 		if (bdev_io->bdev->md_len && bdev_io->u.bdev.md_buf && g_compare_md_buf) {
167 			memcpy(bdev_io->u.bdev.md_buf, g_compare_md_buf,
168 			       bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks);
169 		}
170 	}
171 
172 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
173 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
174 
175 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
176 		CU_ASSERT(g_compare_write_buf_len == len);
177 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
178 	}
179 
180 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
181 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
182 
183 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
184 		CU_ASSERT(g_compare_read_buf_len == len);
185 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
186 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
187 		}
188 		if (bdev_io->u.bdev.md_buf &&
189 		    memcmp(bdev_io->u.bdev.md_buf, g_compare_md_buf,
190 			   bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks)) {
191 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
192 		}
193 	}
194 
195 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
196 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
197 			TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
198 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
199 					TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
200 					ch->outstanding_io_count--;
201 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
202 					break;
203 				}
204 			}
205 		}
206 	}
207 
208 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) {
209 		if (bdev_io->u.bdev.zcopy.start) {
210 			g_zcopy_bdev_io = bdev_io;
211 			if (bdev_io->u.bdev.zcopy.populate) {
212 				/* Start of a read */
213 				CU_ASSERT(g_zcopy_read_buf != NULL);
214 				CU_ASSERT(g_zcopy_read_buf_len > 0);
215 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_read_buf;
216 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_read_buf_len;
217 				bdev_io->u.bdev.iovcnt = 1;
218 			} else {
219 				/* Start of a write */
220 				CU_ASSERT(g_zcopy_write_buf != NULL);
221 				CU_ASSERT(g_zcopy_write_buf_len > 0);
222 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_write_buf;
223 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_write_buf_len;
224 				bdev_io->u.bdev.iovcnt = 1;
225 			}
226 		} else {
227 			if (bdev_io->u.bdev.zcopy.commit) {
228 				/* End of write */
229 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_write_buf);
230 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_write_buf_len);
231 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
232 				g_zcopy_write_buf = NULL;
233 				g_zcopy_write_buf_len = 0;
234 			} else {
235 				/* End of read */
236 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_read_buf);
237 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_read_buf_len);
238 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
239 				g_zcopy_read_buf = NULL;
240 				g_zcopy_read_buf_len = 0;
241 			}
242 		}
243 	}
244 
245 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_DATA) {
246 		bdev_io->u.bdev.seek.offset = g_seek_data_offset;
247 	}
248 
249 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_HOLE) {
250 		bdev_io->u.bdev.seek.offset = g_seek_hole_offset;
251 	}
252 
253 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
254 	ch->outstanding_io_count++;
255 
256 	expected_io = TAILQ_FIRST(&ch->expected_io);
257 	if (expected_io == NULL) {
258 		return;
259 	}
260 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
261 
262 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
263 		CU_ASSERT(bdev_io->type == expected_io->type);
264 	}
265 
266 	if (expected_io->md_buf != NULL) {
267 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
268 		if (bdev_io->u.bdev.ext_opts) {
269 			CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.ext_opts->metadata);
270 		}
271 	}
272 
273 	if (expected_io->copy_opts) {
274 		if (expected_io->ext_io_opts) {
275 			/* opts are not NULL so it should have been copied */
276 			CU_ASSERT(expected_io->ext_io_opts != bdev_io->u.bdev.ext_opts);
277 			CU_ASSERT(bdev_io->u.bdev.ext_opts == &bdev_io->internal.ext_opts_copy);
278 			/* internal opts always points to opts passed */
279 			CU_ASSERT(expected_io->ext_io_opts == bdev_io->internal.ext_opts);
280 		} else {
281 			/* passed opts was NULL so we expect bdev_io opts to be NULL */
282 			CU_ASSERT(bdev_io->u.bdev.ext_opts == NULL);
283 		}
284 	} else {
285 		/* opts were not copied so they should be equal */
286 		CU_ASSERT(expected_io->ext_io_opts == bdev_io->u.bdev.ext_opts);
287 	}
288 
289 	if (expected_io->length == 0) {
290 		free(expected_io);
291 		return;
292 	}
293 
294 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
295 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
296 
297 	if (expected_io->iovcnt == 0) {
298 		free(expected_io);
299 		/* UNMAP, WRITE_ZEROES and FLUSH don't have iovs, so we can just return now. */
300 		return;
301 	}
302 
303 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
304 	for (i = 0; i < expected_io->iovcnt; i++) {
305 		expected_iov = &expected_io->iov[i];
306 		if (bdev_io->internal.orig_iovcnt == 0) {
307 			iov = &bdev_io->u.bdev.iovs[i];
308 		} else {
309 			iov = bdev_io->internal.orig_iovs;
310 		}
311 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
312 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
313 	}
314 
315 	free(expected_io);
316 }
317 
318 static void
319 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
320 			       struct spdk_bdev_io *bdev_io, bool success)
321 {
322 	CU_ASSERT(success == true);
323 
324 	stub_submit_request(_ch, bdev_io);
325 }
326 
327 static void
328 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
329 {
330 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
331 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
332 }
333 
334 static uint32_t
335 stub_complete_io(uint32_t num_to_complete)
336 {
337 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
338 	struct spdk_bdev_io *bdev_io;
339 	static enum spdk_bdev_io_status io_status;
340 	uint32_t num_completed = 0;
341 
342 	while (num_completed < num_to_complete) {
343 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
344 			break;
345 		}
346 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
347 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
348 		ch->outstanding_io_count--;
349 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
350 			    g_io_exp_status;
351 		spdk_bdev_io_complete(bdev_io, io_status);
352 		num_completed++;
353 	}
354 
355 	return num_completed;
356 }
357 
358 static struct spdk_io_channel *
359 bdev_ut_get_io_channel(void *ctx)
360 {
361 	return spdk_get_io_channel(&g_bdev_ut_io_device);
362 }
363 
364 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
365 	[SPDK_BDEV_IO_TYPE_READ]		= true,
366 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
367 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
368 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
369 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
370 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
371 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
372 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
373 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
374 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
375 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
376 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
377 	[SPDK_BDEV_IO_TYPE_SEEK_HOLE]		= true,
378 	[SPDK_BDEV_IO_TYPE_SEEK_DATA]		= true,
379 };
380 
381 static void
382 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
383 {
384 	g_io_types_supported[io_type] = enable;
385 }
386 
387 static bool
388 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
389 {
390 	return g_io_types_supported[io_type];
391 }
392 
393 static struct spdk_bdev_fn_table fn_table = {
394 	.destruct = stub_destruct,
395 	.submit_request = stub_submit_request,
396 	.get_io_channel = bdev_ut_get_io_channel,
397 	.io_type_supported = stub_io_type_supported,
398 };
399 
400 static int
401 bdev_ut_create_ch(void *io_device, void *ctx_buf)
402 {
403 	struct bdev_ut_channel *ch = ctx_buf;
404 
405 	CU_ASSERT(g_bdev_ut_channel == NULL);
406 	g_bdev_ut_channel = ch;
407 
408 	TAILQ_INIT(&ch->outstanding_io);
409 	ch->outstanding_io_count = 0;
410 	TAILQ_INIT(&ch->expected_io);
411 	return 0;
412 }
413 
414 static void
415 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
416 {
417 	CU_ASSERT(g_bdev_ut_channel != NULL);
418 	g_bdev_ut_channel = NULL;
419 }
420 
421 struct spdk_bdev_module bdev_ut_if;
422 
423 static int
424 bdev_ut_module_init(void)
425 {
426 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
427 				sizeof(struct bdev_ut_channel), NULL);
428 	spdk_bdev_module_init_done(&bdev_ut_if);
429 	return 0;
430 }
431 
432 static void
433 bdev_ut_module_fini(void)
434 {
435 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
436 }
437 
438 struct spdk_bdev_module bdev_ut_if = {
439 	.name = "bdev_ut",
440 	.module_init = bdev_ut_module_init,
441 	.module_fini = bdev_ut_module_fini,
442 	.async_init = true,
443 };
444 
445 static void vbdev_ut_examine(struct spdk_bdev *bdev);
446 
447 static int
448 vbdev_ut_module_init(void)
449 {
450 	return 0;
451 }
452 
453 static void
454 vbdev_ut_module_fini(void)
455 {
456 }
457 
458 struct spdk_bdev_module vbdev_ut_if = {
459 	.name = "vbdev_ut",
460 	.module_init = vbdev_ut_module_init,
461 	.module_fini = vbdev_ut_module_fini,
462 	.examine_config = vbdev_ut_examine,
463 };
464 
465 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
466 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
467 
468 static void
469 vbdev_ut_examine(struct spdk_bdev *bdev)
470 {
471 	spdk_bdev_module_examine_done(&vbdev_ut_if);
472 }
473 
474 static struct spdk_bdev *
475 allocate_bdev(char *name)
476 {
477 	struct spdk_bdev *bdev;
478 	int rc;
479 
480 	bdev = calloc(1, sizeof(*bdev));
481 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
482 
483 	bdev->name = name;
484 	bdev->fn_table = &fn_table;
485 	bdev->module = &bdev_ut_if;
486 	bdev->blockcnt = 1024;
487 	bdev->blocklen = 512;
488 
489 	rc = spdk_bdev_register(bdev);
490 	poll_threads();
491 	CU_ASSERT(rc == 0);
492 
493 	return bdev;
494 }
495 
496 static struct spdk_bdev *
497 allocate_vbdev(char *name)
498 {
499 	struct spdk_bdev *bdev;
500 	int rc;
501 
502 	bdev = calloc(1, sizeof(*bdev));
503 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
504 
505 	bdev->name = name;
506 	bdev->fn_table = &fn_table;
507 	bdev->module = &vbdev_ut_if;
508 
509 	rc = spdk_bdev_register(bdev);
510 	poll_threads();
511 	CU_ASSERT(rc == 0);
512 
513 	return bdev;
514 }
515 
516 static void
517 free_bdev(struct spdk_bdev *bdev)
518 {
519 	spdk_bdev_unregister(bdev, NULL, NULL);
520 	poll_threads();
521 	memset(bdev, 0xFF, sizeof(*bdev));
522 	free(bdev);
523 }
524 
525 static void
526 free_vbdev(struct spdk_bdev *bdev)
527 {
528 	spdk_bdev_unregister(bdev, NULL, NULL);
529 	poll_threads();
530 	memset(bdev, 0xFF, sizeof(*bdev));
531 	free(bdev);
532 }
533 
534 static void
535 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
536 {
537 	const char *bdev_name;
538 
539 	CU_ASSERT(bdev != NULL);
540 	CU_ASSERT(rc == 0);
541 	bdev_name = spdk_bdev_get_name(bdev);
542 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
543 
544 	free(stat);
545 
546 	*(bool *)cb_arg = true;
547 }
548 
549 static void
550 bdev_unregister_cb(void *cb_arg, int rc)
551 {
552 	g_unregister_arg = cb_arg;
553 	g_unregister_rc = rc;
554 }
555 
556 static void
557 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
558 {
559 }
560 
561 static void
562 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
563 {
564 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
565 
566 	g_event_type1 = type;
567 	if (SPDK_BDEV_EVENT_REMOVE == type) {
568 		spdk_bdev_close(desc);
569 	}
570 }
571 
572 static void
573 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
574 {
575 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
576 
577 	g_event_type2 = type;
578 	if (SPDK_BDEV_EVENT_REMOVE == type) {
579 		spdk_bdev_close(desc);
580 	}
581 }
582 
583 static void
584 bdev_open_cb3(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
585 {
586 	g_event_type3 = type;
587 }
588 
589 static void
590 bdev_open_cb4(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
591 {
592 	g_event_type4 = type;
593 }
594 
595 static void
596 bdev_seek_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
597 {
598 	g_seek_offset = spdk_bdev_io_get_seek_offset(bdev_io);
599 	spdk_bdev_free_io(bdev_io);
600 }
601 
602 static void
603 get_device_stat_test(void)
604 {
605 	struct spdk_bdev *bdev;
606 	struct spdk_bdev_io_stat *stat;
607 	bool done;
608 
609 	bdev = allocate_bdev("bdev0");
610 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
611 	if (stat == NULL) {
612 		free_bdev(bdev);
613 		return;
614 	}
615 
616 	done = false;
617 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
618 	while (!done) { poll_threads(); }
619 
620 	free_bdev(bdev);
621 }
622 
623 static void
624 open_write_test(void)
625 {
626 	struct spdk_bdev *bdev[9];
627 	struct spdk_bdev_desc *desc[9] = {};
628 	int rc;
629 
630 	/*
631 	 * Create a tree of bdevs to test various open w/ write cases.
632 	 *
633 	 * bdev0 through bdev3 are physical block devices, such as NVMe
634 	 * namespaces or Ceph block devices.
635 	 *
636 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
637 	 * caching or RAID use cases.
638 	 *
639 	 * bdev5 through bdev7 are all virtual bdevs with the same base
640 	 * bdev (except bdev7). This models partitioning or logical volume
641 	 * use cases.
642 	 *
643 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
644 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
645 	 * models caching, RAID, partitioning or logical volumes use cases.
646 	 *
647 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
648 	 * base bdevs are themselves virtual bdevs.
649 	 *
650 	 *                bdev8
651 	 *                  |
652 	 *            +----------+
653 	 *            |          |
654 	 *          bdev4      bdev5   bdev6   bdev7
655 	 *            |          |       |       |
656 	 *        +---+---+      +---+   +   +---+---+
657 	 *        |       |           \  |  /         \
658 	 *      bdev0   bdev1          bdev2         bdev3
659 	 */
660 
661 	bdev[0] = allocate_bdev("bdev0");
662 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
663 	CU_ASSERT(rc == 0);
664 
665 	bdev[1] = allocate_bdev("bdev1");
666 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
667 	CU_ASSERT(rc == 0);
668 
669 	bdev[2] = allocate_bdev("bdev2");
670 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
671 	CU_ASSERT(rc == 0);
672 
673 	bdev[3] = allocate_bdev("bdev3");
674 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
675 	CU_ASSERT(rc == 0);
676 
677 	bdev[4] = allocate_vbdev("bdev4");
678 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
679 	CU_ASSERT(rc == 0);
680 
681 	bdev[5] = allocate_vbdev("bdev5");
682 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
683 	CU_ASSERT(rc == 0);
684 
685 	bdev[6] = allocate_vbdev("bdev6");
686 
687 	bdev[7] = allocate_vbdev("bdev7");
688 
689 	bdev[8] = allocate_vbdev("bdev8");
690 
691 	/* Open bdev0 read-only.  This should succeed. */
692 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
693 	CU_ASSERT(rc == 0);
694 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
695 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
696 	spdk_bdev_close(desc[0]);
697 
698 	/*
699 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
700 	 * by a vbdev module.
701 	 */
702 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
703 	CU_ASSERT(rc == -EPERM);
704 
705 	/*
706 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
707 	 * by a vbdev module.
708 	 */
709 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
710 	CU_ASSERT(rc == -EPERM);
711 
712 	/* Open bdev4 read-only.  This should succeed. */
713 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
714 	CU_ASSERT(rc == 0);
715 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
716 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
717 	spdk_bdev_close(desc[4]);
718 
719 	/*
720 	 * Open bdev8 read/write.  This should succeed since it is a leaf
721 	 * bdev.
722 	 */
723 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
724 	CU_ASSERT(rc == 0);
725 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
726 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
727 	spdk_bdev_close(desc[8]);
728 
729 	/*
730 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
731 	 * by a vbdev module.
732 	 */
733 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
734 	CU_ASSERT(rc == -EPERM);
735 
736 	/* Open bdev4 read-only.  This should succeed. */
737 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
738 	CU_ASSERT(rc == 0);
739 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
740 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
741 	spdk_bdev_close(desc[5]);
742 
743 	free_vbdev(bdev[8]);
744 
745 	free_vbdev(bdev[5]);
746 	free_vbdev(bdev[6]);
747 	free_vbdev(bdev[7]);
748 
749 	free_vbdev(bdev[4]);
750 
751 	free_bdev(bdev[0]);
752 	free_bdev(bdev[1]);
753 	free_bdev(bdev[2]);
754 	free_bdev(bdev[3]);
755 }
756 
757 static void
758 claim_test(void)
759 {
760 	struct spdk_bdev *bdev;
761 	struct spdk_bdev_desc *desc, *open_desc;
762 	int rc;
763 	uint32_t count;
764 
765 	/*
766 	 * A vbdev that uses a read-only bdev may need it to remain read-only.
767 	 * To do so, it opens the bdev read-only, then claims it without
768 	 * passing a spdk_bdev_desc.
769 	 */
770 	bdev = allocate_bdev("bdev0");
771 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
772 	CU_ASSERT(rc == 0);
773 	CU_ASSERT(desc->write == false);
774 
775 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
776 	CU_ASSERT(rc == 0);
777 	CU_ASSERT(bdev->internal.claim_module == &bdev_ut_if);
778 
779 	/* There should be only one open descriptor and it should still be ro */
780 	count = 0;
781 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
782 		CU_ASSERT(open_desc == desc);
783 		CU_ASSERT(!open_desc->write);
784 		count++;
785 	}
786 	CU_ASSERT(count == 1);
787 
788 	/* A read-only bdev is upgraded to read-write if desc is passed. */
789 	spdk_bdev_module_release_bdev(bdev);
790 	rc = spdk_bdev_module_claim_bdev(bdev, desc, &bdev_ut_if);
791 	CU_ASSERT(rc == 0);
792 	CU_ASSERT(bdev->internal.claim_module == &bdev_ut_if);
793 
794 	/* There should be only one open descriptor and it should be rw */
795 	count = 0;
796 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
797 		CU_ASSERT(open_desc == desc);
798 		CU_ASSERT(open_desc->write);
799 		count++;
800 	}
801 	CU_ASSERT(count == 1);
802 
803 	spdk_bdev_close(desc);
804 	free_bdev(bdev);
805 }
806 
807 static void
808 bytes_to_blocks_test(void)
809 {
810 	struct spdk_bdev bdev;
811 	uint64_t offset_blocks, num_blocks;
812 
813 	memset(&bdev, 0, sizeof(bdev));
814 
815 	bdev.blocklen = 512;
816 
817 	/* All parameters valid */
818 	offset_blocks = 0;
819 	num_blocks = 0;
820 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
821 	CU_ASSERT(offset_blocks == 1);
822 	CU_ASSERT(num_blocks == 2);
823 
824 	/* Offset not a block multiple */
825 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
826 
827 	/* Length not a block multiple */
828 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
829 
830 	/* In case blocklen not the power of two */
831 	bdev.blocklen = 100;
832 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
833 	CU_ASSERT(offset_blocks == 1);
834 	CU_ASSERT(num_blocks == 2);
835 
836 	/* Offset not a block multiple */
837 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
838 
839 	/* Length not a block multiple */
840 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
841 }
842 
843 static void
844 num_blocks_test(void)
845 {
846 	struct spdk_bdev bdev;
847 	struct spdk_bdev_desc *desc = NULL;
848 	int rc;
849 
850 	memset(&bdev, 0, sizeof(bdev));
851 	bdev.name = "num_blocks";
852 	bdev.fn_table = &fn_table;
853 	bdev.module = &bdev_ut_if;
854 	spdk_bdev_register(&bdev);
855 	poll_threads();
856 	spdk_bdev_notify_blockcnt_change(&bdev, 50);
857 
858 	/* Growing block number */
859 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
860 	/* Shrinking block number */
861 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
862 
863 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc, &desc);
864 	CU_ASSERT(rc == 0);
865 	SPDK_CU_ASSERT_FATAL(desc != NULL);
866 	CU_ASSERT(&bdev == spdk_bdev_desc_get_bdev(desc));
867 
868 	/* Growing block number */
869 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
870 	/* Shrinking block number */
871 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
872 
873 	g_event_type1 = 0xFF;
874 	/* Growing block number */
875 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
876 
877 	poll_threads();
878 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
879 
880 	g_event_type1 = 0xFF;
881 	/* Growing block number and closing */
882 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
883 
884 	spdk_bdev_close(desc);
885 	spdk_bdev_unregister(&bdev, NULL, NULL);
886 
887 	poll_threads();
888 
889 	/* Callback is not called for closed device */
890 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
891 }
892 
893 static void
894 io_valid_test(void)
895 {
896 	struct spdk_bdev bdev;
897 
898 	memset(&bdev, 0, sizeof(bdev));
899 
900 	bdev.blocklen = 512;
901 	CU_ASSERT(pthread_mutex_init(&bdev.internal.mutex, NULL) == 0);
902 
903 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
904 
905 	/* All parameters valid */
906 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
907 
908 	/* Last valid block */
909 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
910 
911 	/* Offset past end of bdev */
912 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
913 
914 	/* Offset + length past end of bdev */
915 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
916 
917 	/* Offset near end of uint64_t range (2^64 - 1) */
918 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
919 
920 	CU_ASSERT(pthread_mutex_destroy(&bdev.internal.mutex) == 0);
921 }
922 
923 static void
924 alias_add_del_test(void)
925 {
926 	struct spdk_bdev *bdev[3];
927 	int rc;
928 
929 	/* Creating and registering bdevs */
930 	bdev[0] = allocate_bdev("bdev0");
931 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
932 
933 	bdev[1] = allocate_bdev("bdev1");
934 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
935 
936 	bdev[2] = allocate_bdev("bdev2");
937 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
938 
939 	poll_threads();
940 
941 	/*
942 	 * Trying adding an alias identical to name.
943 	 * Alias is identical to name, so it can not be added to aliases list
944 	 */
945 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
946 	CU_ASSERT(rc == -EEXIST);
947 
948 	/*
949 	 * Trying to add empty alias,
950 	 * this one should fail
951 	 */
952 	rc = spdk_bdev_alias_add(bdev[0], NULL);
953 	CU_ASSERT(rc == -EINVAL);
954 
955 	/* Trying adding same alias to two different registered bdevs */
956 
957 	/* Alias is used first time, so this one should pass */
958 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
959 	CU_ASSERT(rc == 0);
960 
961 	/* Alias was added to another bdev, so this one should fail */
962 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
963 	CU_ASSERT(rc == -EEXIST);
964 
965 	/* Alias is used first time, so this one should pass */
966 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
967 	CU_ASSERT(rc == 0);
968 
969 	/* Trying removing an alias from registered bdevs */
970 
971 	/* Alias is not on a bdev aliases list, so this one should fail */
972 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
973 	CU_ASSERT(rc == -ENOENT);
974 
975 	/* Alias is present on a bdev aliases list, so this one should pass */
976 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
977 	CU_ASSERT(rc == 0);
978 
979 	/* Alias is present on a bdev aliases list, so this one should pass */
980 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
981 	CU_ASSERT(rc == 0);
982 
983 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
984 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
985 	CU_ASSERT(rc != 0);
986 
987 	/* Trying to del all alias from empty alias list */
988 	spdk_bdev_alias_del_all(bdev[2]);
989 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
990 
991 	/* Trying to del all alias from non-empty alias list */
992 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
993 	CU_ASSERT(rc == 0);
994 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
995 	CU_ASSERT(rc == 0);
996 	spdk_bdev_alias_del_all(bdev[2]);
997 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
998 
999 	/* Unregister and free bdevs */
1000 	spdk_bdev_unregister(bdev[0], NULL, NULL);
1001 	spdk_bdev_unregister(bdev[1], NULL, NULL);
1002 	spdk_bdev_unregister(bdev[2], NULL, NULL);
1003 
1004 	poll_threads();
1005 
1006 	free(bdev[0]);
1007 	free(bdev[1]);
1008 	free(bdev[2]);
1009 }
1010 
1011 static void
1012 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
1013 {
1014 	g_io_done = true;
1015 	g_io_status = bdev_io->internal.status;
1016 	if ((bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) &&
1017 	    (bdev_io->u.bdev.zcopy.start)) {
1018 		g_zcopy_bdev_io = bdev_io;
1019 	} else {
1020 		spdk_bdev_free_io(bdev_io);
1021 		g_zcopy_bdev_io = NULL;
1022 	}
1023 }
1024 
1025 static void
1026 bdev_init_cb(void *arg, int rc)
1027 {
1028 	CU_ASSERT(rc == 0);
1029 }
1030 
1031 static void
1032 bdev_fini_cb(void *arg)
1033 {
1034 }
1035 
1036 struct bdev_ut_io_wait_entry {
1037 	struct spdk_bdev_io_wait_entry	entry;
1038 	struct spdk_io_channel		*io_ch;
1039 	struct spdk_bdev_desc		*desc;
1040 	bool				submitted;
1041 };
1042 
1043 static void
1044 io_wait_cb(void *arg)
1045 {
1046 	struct bdev_ut_io_wait_entry *entry = arg;
1047 	int rc;
1048 
1049 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
1050 	CU_ASSERT(rc == 0);
1051 	entry->submitted = true;
1052 }
1053 
1054 static void
1055 bdev_io_types_test(void)
1056 {
1057 	struct spdk_bdev *bdev;
1058 	struct spdk_bdev_desc *desc = NULL;
1059 	struct spdk_io_channel *io_ch;
1060 	struct spdk_bdev_opts bdev_opts = {};
1061 	int rc;
1062 
1063 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1064 	bdev_opts.bdev_io_pool_size = 4;
1065 	bdev_opts.bdev_io_cache_size = 2;
1066 
1067 	rc = spdk_bdev_set_opts(&bdev_opts);
1068 	CU_ASSERT(rc == 0);
1069 	spdk_bdev_initialize(bdev_init_cb, NULL);
1070 	poll_threads();
1071 
1072 	bdev = allocate_bdev("bdev0");
1073 
1074 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1075 	CU_ASSERT(rc == 0);
1076 	poll_threads();
1077 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1078 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1079 	io_ch = spdk_bdev_get_io_channel(desc);
1080 	CU_ASSERT(io_ch != NULL);
1081 
1082 	/* WRITE and WRITE ZEROES are not supported */
1083 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
1084 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
1085 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
1086 	CU_ASSERT(rc == -ENOTSUP);
1087 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
1088 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
1089 
1090 	/* NVME_IO, NVME_IO_MD and NVME_ADMIN are not supported */
1091 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, false);
1092 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, false);
1093 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, false);
1094 	rc = spdk_bdev_nvme_io_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1095 	CU_ASSERT(rc == -ENOTSUP);
1096 	rc = spdk_bdev_nvme_io_passthru_md(desc, io_ch, NULL, NULL, 0, NULL, 0, NULL, NULL);
1097 	CU_ASSERT(rc == -ENOTSUP);
1098 	rc = spdk_bdev_nvme_admin_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1099 	CU_ASSERT(rc == -ENOTSUP);
1100 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, true);
1101 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, true);
1102 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, true);
1103 
1104 	spdk_put_io_channel(io_ch);
1105 	spdk_bdev_close(desc);
1106 	free_bdev(bdev);
1107 	spdk_bdev_finish(bdev_fini_cb, NULL);
1108 	poll_threads();
1109 }
1110 
1111 static void
1112 bdev_io_wait_test(void)
1113 {
1114 	struct spdk_bdev *bdev;
1115 	struct spdk_bdev_desc *desc = NULL;
1116 	struct spdk_io_channel *io_ch;
1117 	struct spdk_bdev_opts bdev_opts = {};
1118 	struct bdev_ut_io_wait_entry io_wait_entry;
1119 	struct bdev_ut_io_wait_entry io_wait_entry2;
1120 	int rc;
1121 
1122 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1123 	bdev_opts.bdev_io_pool_size = 4;
1124 	bdev_opts.bdev_io_cache_size = 2;
1125 
1126 	rc = spdk_bdev_set_opts(&bdev_opts);
1127 	CU_ASSERT(rc == 0);
1128 	spdk_bdev_initialize(bdev_init_cb, NULL);
1129 	poll_threads();
1130 
1131 	bdev = allocate_bdev("bdev0");
1132 
1133 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1134 	CU_ASSERT(rc == 0);
1135 	poll_threads();
1136 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1137 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1138 	io_ch = spdk_bdev_get_io_channel(desc);
1139 	CU_ASSERT(io_ch != NULL);
1140 
1141 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1142 	CU_ASSERT(rc == 0);
1143 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1144 	CU_ASSERT(rc == 0);
1145 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1146 	CU_ASSERT(rc == 0);
1147 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1148 	CU_ASSERT(rc == 0);
1149 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1150 
1151 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1152 	CU_ASSERT(rc == -ENOMEM);
1153 
1154 	io_wait_entry.entry.bdev = bdev;
1155 	io_wait_entry.entry.cb_fn = io_wait_cb;
1156 	io_wait_entry.entry.cb_arg = &io_wait_entry;
1157 	io_wait_entry.io_ch = io_ch;
1158 	io_wait_entry.desc = desc;
1159 	io_wait_entry.submitted = false;
1160 	/* Cannot use the same io_wait_entry for two different calls. */
1161 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
1162 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
1163 
1164 	/* Queue two I/O waits. */
1165 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
1166 	CU_ASSERT(rc == 0);
1167 	CU_ASSERT(io_wait_entry.submitted == false);
1168 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
1169 	CU_ASSERT(rc == 0);
1170 	CU_ASSERT(io_wait_entry2.submitted == false);
1171 
1172 	stub_complete_io(1);
1173 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1174 	CU_ASSERT(io_wait_entry.submitted == true);
1175 	CU_ASSERT(io_wait_entry2.submitted == false);
1176 
1177 	stub_complete_io(1);
1178 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1179 	CU_ASSERT(io_wait_entry2.submitted == true);
1180 
1181 	stub_complete_io(4);
1182 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1183 
1184 	spdk_put_io_channel(io_ch);
1185 	spdk_bdev_close(desc);
1186 	free_bdev(bdev);
1187 	spdk_bdev_finish(bdev_fini_cb, NULL);
1188 	poll_threads();
1189 }
1190 
1191 static void
1192 bdev_io_spans_split_test(void)
1193 {
1194 	struct spdk_bdev bdev;
1195 	struct spdk_bdev_io bdev_io;
1196 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV];
1197 
1198 	memset(&bdev, 0, sizeof(bdev));
1199 	bdev_io.u.bdev.iovs = iov;
1200 
1201 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1202 	bdev.optimal_io_boundary = 0;
1203 	bdev.max_segment_size = 0;
1204 	bdev.max_num_segments = 0;
1205 	bdev_io.bdev = &bdev;
1206 
1207 	/* bdev has no optimal_io_boundary and max_size set - so this should return false. */
1208 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1209 
1210 	bdev.split_on_optimal_io_boundary = true;
1211 	bdev.optimal_io_boundary = 32;
1212 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1213 
1214 	/* RESETs are not based on LBAs - so this should return false. */
1215 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1216 
1217 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1218 	bdev_io.u.bdev.offset_blocks = 0;
1219 	bdev_io.u.bdev.num_blocks = 32;
1220 
1221 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1222 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1223 
1224 	bdev_io.u.bdev.num_blocks = 33;
1225 
1226 	/* This I/O spans a boundary. */
1227 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1228 
1229 	bdev_io.u.bdev.num_blocks = 32;
1230 	bdev.max_segment_size = 512 * 32;
1231 	bdev.max_num_segments = 1;
1232 	bdev_io.u.bdev.iovcnt = 1;
1233 	iov[0].iov_len = 512;
1234 
1235 	/* Does not cross and exceed max_size or max_segs */
1236 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1237 
1238 	bdev.split_on_optimal_io_boundary = false;
1239 	bdev.max_segment_size = 512;
1240 	bdev.max_num_segments = 1;
1241 	bdev_io.u.bdev.iovcnt = 2;
1242 
1243 	/* Exceed max_segs */
1244 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1245 
1246 	bdev.max_num_segments = 2;
1247 	iov[0].iov_len = 513;
1248 	iov[1].iov_len = 512;
1249 
1250 	/* Exceed max_sizes */
1251 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1252 
1253 	bdev.max_segment_size = 0;
1254 	bdev.write_unit_size = 32;
1255 	bdev.split_on_write_unit = true;
1256 	bdev_io.type = SPDK_BDEV_IO_TYPE_WRITE;
1257 
1258 	/* This I/O is one write unit */
1259 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1260 
1261 	bdev_io.u.bdev.num_blocks = 32 * 2;
1262 
1263 	/* This I/O is more than one write unit */
1264 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1265 
1266 	bdev_io.u.bdev.offset_blocks = 1;
1267 	bdev_io.u.bdev.num_blocks = 32;
1268 
1269 	/* This I/O is not aligned to write unit size */
1270 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1271 }
1272 
1273 static void
1274 bdev_io_boundary_split_test(void)
1275 {
1276 	struct spdk_bdev *bdev;
1277 	struct spdk_bdev_desc *desc = NULL;
1278 	struct spdk_io_channel *io_ch;
1279 	struct spdk_bdev_opts bdev_opts = {};
1280 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1281 	struct ut_expected_io *expected_io;
1282 	void *md_buf = (void *)0xFF000000;
1283 	uint64_t i;
1284 	int rc;
1285 
1286 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1287 	bdev_opts.bdev_io_pool_size = 512;
1288 	bdev_opts.bdev_io_cache_size = 64;
1289 
1290 	rc = spdk_bdev_set_opts(&bdev_opts);
1291 	CU_ASSERT(rc == 0);
1292 	spdk_bdev_initialize(bdev_init_cb, NULL);
1293 
1294 	bdev = allocate_bdev("bdev0");
1295 
1296 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1297 	CU_ASSERT(rc == 0);
1298 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1299 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1300 	io_ch = spdk_bdev_get_io_channel(desc);
1301 	CU_ASSERT(io_ch != NULL);
1302 
1303 	bdev->optimal_io_boundary = 16;
1304 	bdev->split_on_optimal_io_boundary = false;
1305 
1306 	g_io_done = false;
1307 
1308 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1309 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1310 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1311 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1312 
1313 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1314 	CU_ASSERT(rc == 0);
1315 	CU_ASSERT(g_io_done == false);
1316 
1317 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1318 	stub_complete_io(1);
1319 	CU_ASSERT(g_io_done == true);
1320 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1321 
1322 	bdev->split_on_optimal_io_boundary = true;
1323 	bdev->md_interleave = false;
1324 	bdev->md_len = 8;
1325 
1326 	/* Now test that a single-vector command is split correctly.
1327 	 * Offset 14, length 8, payload 0xF000
1328 	 *  Child - Offset 14, length 2, payload 0xF000
1329 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1330 	 *
1331 	 * Set up the expected values before calling spdk_bdev_read_blocks
1332 	 */
1333 	g_io_done = false;
1334 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1335 	expected_io->md_buf = md_buf;
1336 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1337 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1338 
1339 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1340 	expected_io->md_buf = md_buf + 2 * 8;
1341 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1342 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1343 
1344 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1345 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1346 					   14, 8, io_done, NULL);
1347 	CU_ASSERT(rc == 0);
1348 	CU_ASSERT(g_io_done == false);
1349 
1350 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1351 	stub_complete_io(2);
1352 	CU_ASSERT(g_io_done == true);
1353 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1354 
1355 	/* Now set up a more complex, multi-vector command that needs to be split,
1356 	 *  including splitting iovecs.
1357 	 */
1358 	iov[0].iov_base = (void *)0x10000;
1359 	iov[0].iov_len = 512;
1360 	iov[1].iov_base = (void *)0x20000;
1361 	iov[1].iov_len = 20 * 512;
1362 	iov[2].iov_base = (void *)0x30000;
1363 	iov[2].iov_len = 11 * 512;
1364 
1365 	g_io_done = false;
1366 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1367 	expected_io->md_buf = md_buf;
1368 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1369 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1370 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1371 
1372 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1373 	expected_io->md_buf = md_buf + 2 * 8;
1374 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1375 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1376 
1377 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1378 	expected_io->md_buf = md_buf + 18 * 8;
1379 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1380 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1381 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1382 
1383 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1384 					     14, 32, io_done, NULL);
1385 	CU_ASSERT(rc == 0);
1386 	CU_ASSERT(g_io_done == false);
1387 
1388 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1389 	stub_complete_io(3);
1390 	CU_ASSERT(g_io_done == true);
1391 
1392 	/* Test multi vector command that needs to be split by strip and then needs to be
1393 	 * split further due to the capacity of child iovs.
1394 	 */
1395 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1396 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1397 		iov[i].iov_len = 512;
1398 	}
1399 
1400 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1401 	g_io_done = false;
1402 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1403 					   BDEV_IO_NUM_CHILD_IOV);
1404 	expected_io->md_buf = md_buf;
1405 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1406 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1407 	}
1408 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1409 
1410 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1411 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
1412 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1413 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1414 		ut_expected_io_set_iov(expected_io, i,
1415 				       (void *)((i + 1 + BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1416 	}
1417 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1418 
1419 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1420 					    0, BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1421 	CU_ASSERT(rc == 0);
1422 	CU_ASSERT(g_io_done == false);
1423 
1424 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1425 	stub_complete_io(1);
1426 	CU_ASSERT(g_io_done == false);
1427 
1428 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1429 	stub_complete_io(1);
1430 	CU_ASSERT(g_io_done == true);
1431 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1432 
1433 	/* Test multi vector command that needs to be split by strip and then needs to be
1434 	 * split further due to the capacity of child iovs. In this case, the length of
1435 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1436 	 */
1437 
1438 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1439 	 * is BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1440 	 */
1441 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1442 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1443 		iov[i].iov_len = 512;
1444 	}
1445 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1446 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1447 		iov[i].iov_len = 256;
1448 	}
1449 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1450 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1451 
1452 	/* Add an extra iovec to trigger split */
1453 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1454 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1455 
1456 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1457 	g_io_done = false;
1458 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1459 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV);
1460 	expected_io->md_buf = md_buf;
1461 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1462 		ut_expected_io_set_iov(expected_io, i,
1463 				       (void *)((i + 1) * 0x10000), 512);
1464 	}
1465 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1466 		ut_expected_io_set_iov(expected_io, i,
1467 				       (void *)((i + 1) * 0x10000), 256);
1468 	}
1469 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1470 
1471 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1472 					   1, 1);
1473 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1474 	ut_expected_io_set_iov(expected_io, 0,
1475 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1476 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1477 
1478 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1479 					   1, 1);
1480 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1481 	ut_expected_io_set_iov(expected_io, 0,
1482 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1483 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1484 
1485 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1486 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1487 	CU_ASSERT(rc == 0);
1488 	CU_ASSERT(g_io_done == false);
1489 
1490 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1491 	stub_complete_io(1);
1492 	CU_ASSERT(g_io_done == false);
1493 
1494 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1495 	stub_complete_io(2);
1496 	CU_ASSERT(g_io_done == true);
1497 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1498 
1499 	/* Test multi vector command that needs to be split by strip and then needs to be
1500 	 * split further due to the capacity of child iovs, the child request offset should
1501 	 * be rewind to last aligned offset and go success without error.
1502 	 */
1503 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1504 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1505 		iov[i].iov_len = 512;
1506 	}
1507 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1508 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1509 
1510 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1511 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1512 
1513 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1514 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1515 
1516 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1517 	g_io_done = false;
1518 	g_io_status = 0;
1519 	/* The first expected io should be start from offset 0 to BDEV_IO_NUM_CHILD_IOV - 1 */
1520 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1521 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV - 1);
1522 	expected_io->md_buf = md_buf;
1523 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1524 		ut_expected_io_set_iov(expected_io, i,
1525 				       (void *)((i + 1) * 0x10000), 512);
1526 	}
1527 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1528 	/* The second expected io should be start from offset BDEV_IO_NUM_CHILD_IOV - 1 to BDEV_IO_NUM_CHILD_IOV */
1529 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1530 					   1, 2);
1531 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1532 	ut_expected_io_set_iov(expected_io, 0,
1533 			       (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1534 	ut_expected_io_set_iov(expected_io, 1,
1535 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1536 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1537 	/* The third expected io should be start from offset BDEV_IO_NUM_CHILD_IOV to BDEV_IO_NUM_CHILD_IOV + 1 */
1538 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1539 					   1, 1);
1540 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1541 	ut_expected_io_set_iov(expected_io, 0,
1542 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1543 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1544 
1545 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1546 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1547 	CU_ASSERT(rc == 0);
1548 	CU_ASSERT(g_io_done == false);
1549 
1550 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1551 	stub_complete_io(1);
1552 	CU_ASSERT(g_io_done == false);
1553 
1554 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1555 	stub_complete_io(2);
1556 	CU_ASSERT(g_io_done == true);
1557 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1558 
1559 	/* Test multi vector command that needs to be split due to the IO boundary and
1560 	 * the capacity of child iovs. Especially test the case when the command is
1561 	 * split due to the capacity of child iovs, the tail address is not aligned with
1562 	 * block size and is rewinded to the aligned address.
1563 	 *
1564 	 * The iovecs used in read request is complex but is based on the data
1565 	 * collected in the real issue. We change the base addresses but keep the lengths
1566 	 * not to loose the credibility of the test.
1567 	 */
1568 	bdev->optimal_io_boundary = 128;
1569 	g_io_done = false;
1570 	g_io_status = 0;
1571 
1572 	for (i = 0; i < 31; i++) {
1573 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1574 		iov[i].iov_len = 1024;
1575 	}
1576 	iov[31].iov_base = (void *)0xFEED1F00000;
1577 	iov[31].iov_len = 32768;
1578 	iov[32].iov_base = (void *)0xFEED2000000;
1579 	iov[32].iov_len = 160;
1580 	iov[33].iov_base = (void *)0xFEED2100000;
1581 	iov[33].iov_len = 4096;
1582 	iov[34].iov_base = (void *)0xFEED2200000;
1583 	iov[34].iov_len = 4096;
1584 	iov[35].iov_base = (void *)0xFEED2300000;
1585 	iov[35].iov_len = 4096;
1586 	iov[36].iov_base = (void *)0xFEED2400000;
1587 	iov[36].iov_len = 4096;
1588 	iov[37].iov_base = (void *)0xFEED2500000;
1589 	iov[37].iov_len = 4096;
1590 	iov[38].iov_base = (void *)0xFEED2600000;
1591 	iov[38].iov_len = 4096;
1592 	iov[39].iov_base = (void *)0xFEED2700000;
1593 	iov[39].iov_len = 4096;
1594 	iov[40].iov_base = (void *)0xFEED2800000;
1595 	iov[40].iov_len = 4096;
1596 	iov[41].iov_base = (void *)0xFEED2900000;
1597 	iov[41].iov_len = 4096;
1598 	iov[42].iov_base = (void *)0xFEED2A00000;
1599 	iov[42].iov_len = 4096;
1600 	iov[43].iov_base = (void *)0xFEED2B00000;
1601 	iov[43].iov_len = 12288;
1602 	iov[44].iov_base = (void *)0xFEED2C00000;
1603 	iov[44].iov_len = 8192;
1604 	iov[45].iov_base = (void *)0xFEED2F00000;
1605 	iov[45].iov_len = 4096;
1606 	iov[46].iov_base = (void *)0xFEED3000000;
1607 	iov[46].iov_len = 4096;
1608 	iov[47].iov_base = (void *)0xFEED3100000;
1609 	iov[47].iov_len = 4096;
1610 	iov[48].iov_base = (void *)0xFEED3200000;
1611 	iov[48].iov_len = 24576;
1612 	iov[49].iov_base = (void *)0xFEED3300000;
1613 	iov[49].iov_len = 16384;
1614 	iov[50].iov_base = (void *)0xFEED3400000;
1615 	iov[50].iov_len = 12288;
1616 	iov[51].iov_base = (void *)0xFEED3500000;
1617 	iov[51].iov_len = 4096;
1618 	iov[52].iov_base = (void *)0xFEED3600000;
1619 	iov[52].iov_len = 4096;
1620 	iov[53].iov_base = (void *)0xFEED3700000;
1621 	iov[53].iov_len = 4096;
1622 	iov[54].iov_base = (void *)0xFEED3800000;
1623 	iov[54].iov_len = 28672;
1624 	iov[55].iov_base = (void *)0xFEED3900000;
1625 	iov[55].iov_len = 20480;
1626 	iov[56].iov_base = (void *)0xFEED3A00000;
1627 	iov[56].iov_len = 4096;
1628 	iov[57].iov_base = (void *)0xFEED3B00000;
1629 	iov[57].iov_len = 12288;
1630 	iov[58].iov_base = (void *)0xFEED3C00000;
1631 	iov[58].iov_len = 4096;
1632 	iov[59].iov_base = (void *)0xFEED3D00000;
1633 	iov[59].iov_len = 4096;
1634 	iov[60].iov_base = (void *)0xFEED3E00000;
1635 	iov[60].iov_len = 352;
1636 
1637 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1638 	 * of child iovs,
1639 	 */
1640 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1641 	expected_io->md_buf = md_buf;
1642 	for (i = 0; i < 32; i++) {
1643 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1644 	}
1645 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1646 
1647 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1648 	 * split by the IO boundary requirement.
1649 	 */
1650 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1651 	expected_io->md_buf = md_buf + 126 * 8;
1652 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1653 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1654 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1655 
1656 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1657 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1658 	 */
1659 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1660 	expected_io->md_buf = md_buf + 128 * 8;
1661 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1662 			       iov[33].iov_len - 864);
1663 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1664 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1665 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1666 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1667 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1668 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1669 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1670 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1671 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1672 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1673 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1674 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1675 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1676 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1677 
1678 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1679 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1680 	 */
1681 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1682 	expected_io->md_buf = md_buf + 256 * 8;
1683 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1684 			       iov[46].iov_len - 864);
1685 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1686 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1687 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1688 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1689 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1690 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1691 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1692 
1693 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1694 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1695 	 */
1696 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1697 	expected_io->md_buf = md_buf + 384 * 8;
1698 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1699 			       iov[52].iov_len - 864);
1700 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1701 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1702 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1703 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1704 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1705 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1706 
1707 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1708 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1709 	 */
1710 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1711 	expected_io->md_buf = md_buf + 512 * 8;
1712 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1713 			       iov[57].iov_len - 4960);
1714 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1715 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1716 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1717 
1718 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1719 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1720 	expected_io->md_buf = md_buf + 542 * 8;
1721 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1722 			       iov[59].iov_len - 3936);
1723 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1724 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1725 
1726 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1727 					    0, 543, io_done, NULL);
1728 	CU_ASSERT(rc == 0);
1729 	CU_ASSERT(g_io_done == false);
1730 
1731 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1732 	stub_complete_io(1);
1733 	CU_ASSERT(g_io_done == false);
1734 
1735 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1736 	stub_complete_io(5);
1737 	CU_ASSERT(g_io_done == false);
1738 
1739 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1740 	stub_complete_io(1);
1741 	CU_ASSERT(g_io_done == true);
1742 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1743 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1744 
1745 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1746 	 * split, so test that.
1747 	 */
1748 	bdev->optimal_io_boundary = 15;
1749 	g_io_done = false;
1750 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1751 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1752 
1753 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1754 	CU_ASSERT(rc == 0);
1755 	CU_ASSERT(g_io_done == false);
1756 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1757 	stub_complete_io(1);
1758 	CU_ASSERT(g_io_done == true);
1759 
1760 	/* Test an UNMAP.  This should also not be split. */
1761 	bdev->optimal_io_boundary = 16;
1762 	g_io_done = false;
1763 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1764 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1765 
1766 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1767 	CU_ASSERT(rc == 0);
1768 	CU_ASSERT(g_io_done == false);
1769 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1770 	stub_complete_io(1);
1771 	CU_ASSERT(g_io_done == true);
1772 
1773 	/* Test a FLUSH.  This should also not be split. */
1774 	bdev->optimal_io_boundary = 16;
1775 	g_io_done = false;
1776 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1777 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1778 
1779 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1780 	CU_ASSERT(rc == 0);
1781 	CU_ASSERT(g_io_done == false);
1782 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1783 	stub_complete_io(1);
1784 	CU_ASSERT(g_io_done == true);
1785 
1786 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1787 
1788 	/* Children requests return an error status */
1789 	bdev->optimal_io_boundary = 16;
1790 	iov[0].iov_base = (void *)0x10000;
1791 	iov[0].iov_len = 512 * 64;
1792 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1793 	g_io_done = false;
1794 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1795 
1796 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1797 	CU_ASSERT(rc == 0);
1798 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1799 	stub_complete_io(4);
1800 	CU_ASSERT(g_io_done == false);
1801 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1802 	stub_complete_io(1);
1803 	CU_ASSERT(g_io_done == true);
1804 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1805 
1806 	/* Test if a multi vector command terminated with failure before continuing
1807 	 * splitting process when one of child I/O failed.
1808 	 * The multi vector command is as same as the above that needs to be split by strip
1809 	 * and then needs to be split further due to the capacity of child iovs.
1810 	 */
1811 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1812 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1813 		iov[i].iov_len = 512;
1814 	}
1815 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1816 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1817 
1818 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1819 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1820 
1821 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1822 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1823 
1824 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1825 
1826 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1827 	g_io_done = false;
1828 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1829 
1830 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
1831 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1832 	CU_ASSERT(rc == 0);
1833 	CU_ASSERT(g_io_done == false);
1834 
1835 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1836 	stub_complete_io(1);
1837 	CU_ASSERT(g_io_done == true);
1838 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1839 
1840 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1841 
1842 	/* for this test we will create the following conditions to hit the code path where
1843 	 * we are trying to send and IO following a split that has no iovs because we had to
1844 	 * trim them for alignment reasons.
1845 	 *
1846 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1847 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1848 	 *   position 30 and overshoot by 0x2e.
1849 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1850 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1851 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1852 	 *   and let the completion pick up the last 2 vectors.
1853 	 */
1854 	bdev->optimal_io_boundary = 32;
1855 	bdev->split_on_optimal_io_boundary = true;
1856 	g_io_done = false;
1857 
1858 	/* Init all parent IOVs to 0x212 */
1859 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1860 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1861 		iov[i].iov_len = 0x212;
1862 	}
1863 
1864 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1865 					   BDEV_IO_NUM_CHILD_IOV - 1);
1866 	/* expect 0-29 to be 1:1 with the parent iov */
1867 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1868 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1869 	}
1870 
1871 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1872 	 * where 0x1e is the amount we overshot the 16K boundary
1873 	 */
1874 	ut_expected_io_set_iov(expected_io, BDEV_IO_NUM_CHILD_IOV - 2,
1875 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1876 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1877 
1878 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1879 	 * shortened that take it to the next boundary and then a final one to get us to
1880 	 * 0x4200 bytes for the IO.
1881 	 */
1882 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1883 					   BDEV_IO_NUM_CHILD_IOV, 2);
1884 	/* position 30 picked up the remaining bytes to the next boundary */
1885 	ut_expected_io_set_iov(expected_io, 0,
1886 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
1887 
1888 	/* position 31 picked the the rest of the transfer to get us to 0x4200 */
1889 	ut_expected_io_set_iov(expected_io, 1,
1890 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
1891 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1892 
1893 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 1, 0,
1894 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1895 	CU_ASSERT(rc == 0);
1896 	CU_ASSERT(g_io_done == false);
1897 
1898 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1899 	stub_complete_io(1);
1900 	CU_ASSERT(g_io_done == false);
1901 
1902 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1903 	stub_complete_io(1);
1904 	CU_ASSERT(g_io_done == true);
1905 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1906 
1907 	spdk_put_io_channel(io_ch);
1908 	spdk_bdev_close(desc);
1909 	free_bdev(bdev);
1910 	spdk_bdev_finish(bdev_fini_cb, NULL);
1911 	poll_threads();
1912 }
1913 
1914 static void
1915 bdev_io_max_size_and_segment_split_test(void)
1916 {
1917 	struct spdk_bdev *bdev;
1918 	struct spdk_bdev_desc *desc = NULL;
1919 	struct spdk_io_channel *io_ch;
1920 	struct spdk_bdev_opts bdev_opts = {};
1921 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1922 	struct ut_expected_io *expected_io;
1923 	uint64_t i;
1924 	int rc;
1925 
1926 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1927 	bdev_opts.bdev_io_pool_size = 512;
1928 	bdev_opts.bdev_io_cache_size = 64;
1929 
1930 	bdev_opts.opts_size = sizeof(bdev_opts);
1931 	rc = spdk_bdev_set_opts(&bdev_opts);
1932 	CU_ASSERT(rc == 0);
1933 	spdk_bdev_initialize(bdev_init_cb, NULL);
1934 
1935 	bdev = allocate_bdev("bdev0");
1936 
1937 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
1938 	CU_ASSERT(rc == 0);
1939 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1940 	io_ch = spdk_bdev_get_io_channel(desc);
1941 	CU_ASSERT(io_ch != NULL);
1942 
1943 	bdev->split_on_optimal_io_boundary = false;
1944 	bdev->optimal_io_boundary = 0;
1945 
1946 	/* Case 0 max_num_segments == 0.
1947 	 * but segment size 2 * 512 > 512
1948 	 */
1949 	bdev->max_segment_size = 512;
1950 	bdev->max_num_segments = 0;
1951 	g_io_done = false;
1952 
1953 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
1954 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
1955 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
1956 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1957 
1958 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
1959 	CU_ASSERT(rc == 0);
1960 	CU_ASSERT(g_io_done == false);
1961 
1962 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1963 	stub_complete_io(1);
1964 	CU_ASSERT(g_io_done == true);
1965 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1966 
1967 	/* Case 1 max_segment_size == 0
1968 	 * but iov num 2 > 1.
1969 	 */
1970 	bdev->max_segment_size = 0;
1971 	bdev->max_num_segments = 1;
1972 	g_io_done = false;
1973 
1974 	iov[0].iov_base = (void *)0x10000;
1975 	iov[0].iov_len = 512;
1976 	iov[1].iov_base = (void *)0x20000;
1977 	iov[1].iov_len = 8 * 512;
1978 
1979 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
1980 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len);
1981 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1982 
1983 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1);
1984 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len);
1985 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1986 
1987 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL);
1988 	CU_ASSERT(rc == 0);
1989 	CU_ASSERT(g_io_done == false);
1990 
1991 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1992 	stub_complete_io(2);
1993 	CU_ASSERT(g_io_done == true);
1994 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1995 
1996 	/* Test that a non-vector command is split correctly.
1997 	 * Set up the expected values before calling spdk_bdev_read_blocks
1998 	 */
1999 	bdev->max_segment_size = 512;
2000 	bdev->max_num_segments = 1;
2001 	g_io_done = false;
2002 
2003 	/* Child IO 0 */
2004 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2005 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2006 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2007 
2008 	/* Child IO 1 */
2009 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2010 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512);
2011 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2012 
2013 	/* spdk_bdev_read_blocks will submit the first child immediately. */
2014 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2015 	CU_ASSERT(rc == 0);
2016 	CU_ASSERT(g_io_done == false);
2017 
2018 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2019 	stub_complete_io(2);
2020 	CU_ASSERT(g_io_done == true);
2021 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2022 
2023 	/* Now set up a more complex, multi-vector command that needs to be split,
2024 	 * including splitting iovecs.
2025 	 */
2026 	bdev->max_segment_size = 2 * 512;
2027 	bdev->max_num_segments = 1;
2028 	g_io_done = false;
2029 
2030 	iov[0].iov_base = (void *)0x10000;
2031 	iov[0].iov_len = 2 * 512;
2032 	iov[1].iov_base = (void *)0x20000;
2033 	iov[1].iov_len = 4 * 512;
2034 	iov[2].iov_base = (void *)0x30000;
2035 	iov[2].iov_len = 6 * 512;
2036 
2037 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2038 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2);
2039 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2040 
2041 	/* Split iov[1].size to 2 iov entries then split the segments */
2042 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2043 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2);
2044 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2045 
2046 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1);
2047 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2);
2048 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2049 
2050 	/* Split iov[2].size to 3 iov entries then split the segments */
2051 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1);
2052 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2);
2053 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2054 
2055 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1);
2056 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2);
2057 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2058 
2059 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1);
2060 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2);
2061 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2062 
2063 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL);
2064 	CU_ASSERT(rc == 0);
2065 	CU_ASSERT(g_io_done == false);
2066 
2067 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2068 	stub_complete_io(6);
2069 	CU_ASSERT(g_io_done == true);
2070 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2071 
2072 	/* Test multi vector command that needs to be split by strip and then needs to be
2073 	 * split further due to the capacity of parent IO child iovs.
2074 	 */
2075 	bdev->max_segment_size = 512;
2076 	bdev->max_num_segments = 1;
2077 	g_io_done = false;
2078 
2079 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
2080 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2081 		iov[i].iov_len = 512 * 2;
2082 	}
2083 
2084 	/* Each input iov.size is split into 2 iovs,
2085 	 * half of the input iov can fill all child iov entries of a single IO.
2086 	 */
2087 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV / 2; i++) {
2088 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1);
2089 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2090 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2091 
2092 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1);
2093 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2094 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2095 	}
2096 
2097 	/* The remaining iov is split in the second round */
2098 	for (i = BDEV_IO_NUM_CHILD_IOV / 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
2099 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1);
2100 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2101 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2102 
2103 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1);
2104 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2105 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2106 	}
2107 
2108 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV, 0,
2109 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
2110 	CU_ASSERT(rc == 0);
2111 	CU_ASSERT(g_io_done == false);
2112 
2113 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == BDEV_IO_NUM_CHILD_IOV);
2114 	stub_complete_io(BDEV_IO_NUM_CHILD_IOV);
2115 	CU_ASSERT(g_io_done == false);
2116 
2117 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == BDEV_IO_NUM_CHILD_IOV);
2118 	stub_complete_io(BDEV_IO_NUM_CHILD_IOV);
2119 	CU_ASSERT(g_io_done == true);
2120 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2121 
2122 	/* A wrong case, a child IO that is divided does
2123 	 * not meet the principle of multiples of block size,
2124 	 * and exits with error
2125 	 */
2126 	bdev->max_segment_size = 512;
2127 	bdev->max_num_segments = 1;
2128 	g_io_done = false;
2129 
2130 	iov[0].iov_base = (void *)0x10000;
2131 	iov[0].iov_len = 512 + 256;
2132 	iov[1].iov_base = (void *)0x20000;
2133 	iov[1].iov_len = 256;
2134 
2135 	/* iov[0] is split to 512 and 256.
2136 	 * 256 is less than a block size, and it is found
2137 	 * in the next round of split that it is the first child IO smaller than
2138 	 * the block size, so the error exit
2139 	 */
2140 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1);
2141 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512);
2142 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2143 
2144 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL);
2145 	CU_ASSERT(rc == 0);
2146 	CU_ASSERT(g_io_done == false);
2147 
2148 	/* First child IO is OK */
2149 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2150 	stub_complete_io(1);
2151 	CU_ASSERT(g_io_done == true);
2152 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2153 
2154 	/* error exit */
2155 	stub_complete_io(1);
2156 	CU_ASSERT(g_io_done == true);
2157 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
2158 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2159 
2160 	/* Test multi vector command that needs to be split by strip and then needs to be
2161 	 * split further due to the capacity of child iovs.
2162 	 *
2163 	 * In this case, the last two iovs need to be split, but it will exceed the capacity
2164 	 * of child iovs, so it needs to wait until the first batch completed.
2165 	 */
2166 	bdev->max_segment_size = 512;
2167 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2168 	g_io_done = false;
2169 
2170 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2171 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2172 		iov[i].iov_len = 512;
2173 	}
2174 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
2175 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2176 		iov[i].iov_len = 512 * 2;
2177 	}
2178 
2179 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2180 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
2181 	/* 0 ~ (BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */
2182 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2183 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2184 	}
2185 	/* (BDEV_IO_NUM_CHILD_IOV - 2) is split */
2186 	ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512);
2187 	ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512);
2188 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2189 
2190 	/* Child iov entries exceed the max num of parent IO so split it in next round */
2191 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV, 2, 2);
2192 	ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512);
2193 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512);
2194 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2195 
2196 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV, 0,
2197 				    BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL);
2198 	CU_ASSERT(rc == 0);
2199 	CU_ASSERT(g_io_done == false);
2200 
2201 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2202 	stub_complete_io(1);
2203 	CU_ASSERT(g_io_done == false);
2204 
2205 	/* Next round */
2206 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2207 	stub_complete_io(1);
2208 	CU_ASSERT(g_io_done == true);
2209 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2210 
2211 	/* This case is similar to the previous one, but the io composed of
2212 	 * the last few entries of child iov is not enough for a blocklen, so they
2213 	 * cannot be put into this IO, but wait until the next time.
2214 	 */
2215 	bdev->max_segment_size = 512;
2216 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2217 	g_io_done = false;
2218 
2219 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2220 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2221 		iov[i].iov_len = 512;
2222 	}
2223 
2224 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2225 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2226 		iov[i].iov_len = 128;
2227 	}
2228 
2229 	/* First child iovcnt is't BDEV_IO_NUM_CHILD_IOV but BDEV_IO_NUM_CHILD_IOV - 2.
2230 	 * Because the left 2 iov is not enough for a blocklen.
2231 	 */
2232 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2233 					   BDEV_IO_NUM_CHILD_IOV - 2, BDEV_IO_NUM_CHILD_IOV - 2);
2234 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2235 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2236 	}
2237 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2238 
2239 	/* The second child io waits until the end of the first child io before executing.
2240 	 * Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO.
2241 	 * BDEV_IO_NUM_CHILD_IOV - 2 to BDEV_IO_NUM_CHILD_IOV + 2
2242 	 */
2243 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 2,
2244 					   1, 4);
2245 	ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len);
2246 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len);
2247 	ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len);
2248 	ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len);
2249 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2250 
2251 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
2252 				    BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL);
2253 	CU_ASSERT(rc == 0);
2254 	CU_ASSERT(g_io_done == false);
2255 
2256 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2257 	stub_complete_io(1);
2258 	CU_ASSERT(g_io_done == false);
2259 
2260 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2261 	stub_complete_io(1);
2262 	CU_ASSERT(g_io_done == true);
2263 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2264 
2265 	/* A very complicated case. Each sg entry exceeds max_segment_size and
2266 	 * needs to be split. At the same time, child io must be a multiple of blocklen.
2267 	 * At the same time, child iovcnt exceeds parent iovcnt.
2268 	 */
2269 	bdev->max_segment_size = 512 + 128;
2270 	bdev->max_num_segments = 3;
2271 	g_io_done = false;
2272 
2273 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2274 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2275 		iov[i].iov_len = 512 + 256;
2276 	}
2277 
2278 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2279 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2280 		iov[i].iov_len = 512 + 128;
2281 	}
2282 
2283 	/* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries.
2284 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2285 	 * Generate 9 child IOs.
2286 	 */
2287 	for (i = 0; i < 3; i++) {
2288 		uint32_t j = i * 4;
2289 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3);
2290 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2291 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2292 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2293 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2294 
2295 		/* Child io must be a multiple of blocklen
2296 		 * iov[j + 2] must be split. If the third entry is also added,
2297 		 * the multiple of blocklen cannot be guaranteed. But it still
2298 		 * occupies one iov entry of the parent child iov.
2299 		 */
2300 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2);
2301 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2302 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2303 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2304 
2305 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3);
2306 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2307 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2308 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2309 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2310 	}
2311 
2312 	/* Child iov position at 27, the 10th child IO
2313 	 * iov entry index is 3 * 4 and offset is 3 * 6
2314 	 */
2315 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3);
2316 	ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640);
2317 	ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128);
2318 	ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256);
2319 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2320 
2321 	/* Child iov position at 30, the 11th child IO */
2322 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2);
2323 	ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512);
2324 	ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512);
2325 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2326 
2327 	/* The 2nd split round and iovpos is 0, the 12th child IO */
2328 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3);
2329 	ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256);
2330 	ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640);
2331 	ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128);
2332 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2333 
2334 	/* Consume 9 child IOs and 27 child iov entries.
2335 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2336 	 * Parent IO iov index start from 16 and block offset start from 24
2337 	 */
2338 	for (i = 0; i < 3; i++) {
2339 		uint32_t j = i * 4 + 16;
2340 		uint32_t offset = i * 6 + 24;
2341 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3);
2342 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2343 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2344 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2345 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2346 
2347 		/* Child io must be a multiple of blocklen
2348 		 * iov[j + 2] must be split. If the third entry is also added,
2349 		 * the multiple of blocklen cannot be guaranteed. But it still
2350 		 * occupies one iov entry of the parent child iov.
2351 		 */
2352 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2);
2353 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2354 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2355 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2356 
2357 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3);
2358 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2359 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2360 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2361 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2362 	}
2363 
2364 	/* The 22th child IO, child iov position at 30 */
2365 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1);
2366 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512);
2367 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2368 
2369 	/* The third round */
2370 	/* Here is the 23nd child IO and child iovpos is 0 */
2371 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3);
2372 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256);
2373 	ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640);
2374 	ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128);
2375 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2376 
2377 	/* The 24th child IO */
2378 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3);
2379 	ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640);
2380 	ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640);
2381 	ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256);
2382 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2383 
2384 	/* The 25th child IO */
2385 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2);
2386 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384);
2387 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640);
2388 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2389 
2390 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
2391 				    50, io_done, NULL);
2392 	CU_ASSERT(rc == 0);
2393 	CU_ASSERT(g_io_done == false);
2394 
2395 	/* Parent IO supports up to 32 child iovs, so it is calculated that
2396 	 * a maximum of 11 IOs can be split at a time, and the
2397 	 * splitting will continue after the first batch is over.
2398 	 */
2399 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2400 	stub_complete_io(11);
2401 	CU_ASSERT(g_io_done == false);
2402 
2403 	/* The 2nd round */
2404 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2405 	stub_complete_io(11);
2406 	CU_ASSERT(g_io_done == false);
2407 
2408 	/* The last round */
2409 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2410 	stub_complete_io(3);
2411 	CU_ASSERT(g_io_done == true);
2412 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2413 
2414 	/* Test an WRITE_ZEROES.  This should also not be split. */
2415 	bdev->max_segment_size = 512;
2416 	bdev->max_num_segments = 1;
2417 	g_io_done = false;
2418 
2419 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
2420 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2421 
2422 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
2423 	CU_ASSERT(rc == 0);
2424 	CU_ASSERT(g_io_done == false);
2425 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2426 	stub_complete_io(1);
2427 	CU_ASSERT(g_io_done == true);
2428 
2429 	/* Test an UNMAP.  This should also not be split. */
2430 	g_io_done = false;
2431 
2432 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0);
2433 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2434 
2435 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL);
2436 	CU_ASSERT(rc == 0);
2437 	CU_ASSERT(g_io_done == false);
2438 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2439 	stub_complete_io(1);
2440 	CU_ASSERT(g_io_done == true);
2441 
2442 	/* Test a FLUSH.  This should also not be split. */
2443 	g_io_done = false;
2444 
2445 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0);
2446 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2447 
2448 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
2449 	CU_ASSERT(rc == 0);
2450 	CU_ASSERT(g_io_done == false);
2451 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2452 	stub_complete_io(1);
2453 	CU_ASSERT(g_io_done == true);
2454 
2455 	spdk_put_io_channel(io_ch);
2456 	spdk_bdev_close(desc);
2457 	free_bdev(bdev);
2458 	spdk_bdev_finish(bdev_fini_cb, NULL);
2459 	poll_threads();
2460 }
2461 
2462 static void
2463 bdev_io_mix_split_test(void)
2464 {
2465 	struct spdk_bdev *bdev;
2466 	struct spdk_bdev_desc *desc = NULL;
2467 	struct spdk_io_channel *io_ch;
2468 	struct spdk_bdev_opts bdev_opts = {};
2469 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
2470 	struct ut_expected_io *expected_io;
2471 	uint64_t i;
2472 	int rc;
2473 
2474 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2475 	bdev_opts.bdev_io_pool_size = 512;
2476 	bdev_opts.bdev_io_cache_size = 64;
2477 
2478 	rc = spdk_bdev_set_opts(&bdev_opts);
2479 	CU_ASSERT(rc == 0);
2480 	spdk_bdev_initialize(bdev_init_cb, NULL);
2481 
2482 	bdev = allocate_bdev("bdev0");
2483 
2484 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2485 	CU_ASSERT(rc == 0);
2486 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2487 	io_ch = spdk_bdev_get_io_channel(desc);
2488 	CU_ASSERT(io_ch != NULL);
2489 
2490 	/* First case optimal_io_boundary == max_segment_size * max_num_segments */
2491 	bdev->split_on_optimal_io_boundary = true;
2492 	bdev->optimal_io_boundary = 16;
2493 
2494 	bdev->max_segment_size = 512;
2495 	bdev->max_num_segments = 16;
2496 	g_io_done = false;
2497 
2498 	/* IO crossing the IO boundary requires split
2499 	 * Total 2 child IOs.
2500 	 */
2501 
2502 	/* The 1st child IO split the segment_size to multiple segment entry */
2503 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2504 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2505 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2506 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2507 
2508 	/* The 2nd child IO split the segment_size to multiple segment entry */
2509 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2);
2510 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512);
2511 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512);
2512 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2513 
2514 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL);
2515 	CU_ASSERT(rc == 0);
2516 	CU_ASSERT(g_io_done == false);
2517 
2518 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2519 	stub_complete_io(2);
2520 	CU_ASSERT(g_io_done == true);
2521 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2522 
2523 	/* Second case optimal_io_boundary > max_segment_size * max_num_segments */
2524 	bdev->max_segment_size = 15 * 512;
2525 	bdev->max_num_segments = 1;
2526 	g_io_done = false;
2527 
2528 	/* IO crossing the IO boundary requires split.
2529 	 * The 1st child IO segment size exceeds the max_segment_size,
2530 	 * So 1st child IO will be splitted to multiple segment entry.
2531 	 * Then it split to 2 child IOs because of the max_num_segments.
2532 	 * Total 3 child IOs.
2533 	 */
2534 
2535 	/* The first 2 IOs are in an IO boundary.
2536 	 * Because the optimal_io_boundary > max_segment_size * max_num_segments
2537 	 * So it split to the first 2 IOs.
2538 	 */
2539 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1);
2540 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15);
2541 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2542 
2543 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2544 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512);
2545 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2546 
2547 	/* The 3rd Child IO is because of the io boundary */
2548 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2549 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2550 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2551 
2552 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2553 	CU_ASSERT(rc == 0);
2554 	CU_ASSERT(g_io_done == false);
2555 
2556 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2557 	stub_complete_io(3);
2558 	CU_ASSERT(g_io_done == true);
2559 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2560 
2561 	/* Third case optimal_io_boundary < max_segment_size * max_num_segments */
2562 	bdev->max_segment_size = 17 * 512;
2563 	bdev->max_num_segments = 1;
2564 	g_io_done = false;
2565 
2566 	/* IO crossing the IO boundary requires split.
2567 	 * Child IO does not split.
2568 	 * Total 2 child IOs.
2569 	 */
2570 
2571 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1);
2572 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16);
2573 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2574 
2575 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2576 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2577 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2578 
2579 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2580 	CU_ASSERT(rc == 0);
2581 	CU_ASSERT(g_io_done == false);
2582 
2583 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2584 	stub_complete_io(2);
2585 	CU_ASSERT(g_io_done == true);
2586 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2587 
2588 	/* Now set up a more complex, multi-vector command that needs to be split,
2589 	 * including splitting iovecs.
2590 	 * optimal_io_boundary < max_segment_size * max_num_segments
2591 	 */
2592 	bdev->max_segment_size = 3 * 512;
2593 	bdev->max_num_segments = 6;
2594 	g_io_done = false;
2595 
2596 	iov[0].iov_base = (void *)0x10000;
2597 	iov[0].iov_len = 4 * 512;
2598 	iov[1].iov_base = (void *)0x20000;
2599 	iov[1].iov_len = 4 * 512;
2600 	iov[2].iov_base = (void *)0x30000;
2601 	iov[2].iov_len = 10 * 512;
2602 
2603 	/* IO crossing the IO boundary requires split.
2604 	 * The 1st child IO segment size exceeds the max_segment_size and after
2605 	 * splitting segment_size, the num_segments exceeds max_num_segments.
2606 	 * So 1st child IO will be splitted to 2 child IOs.
2607 	 * Total 3 child IOs.
2608 	 */
2609 
2610 	/* The first 2 IOs are in an IO boundary.
2611 	 * After splitting segment size the segment num exceeds.
2612 	 * So it splits to 2 child IOs.
2613 	 */
2614 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6);
2615 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3);
2616 	ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512);
2617 	ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3);
2618 	ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512);
2619 	ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3);
2620 	ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3);
2621 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2622 
2623 	/* The 2nd child IO has the left segment entry */
2624 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2625 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2);
2626 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2627 
2628 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2629 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2);
2630 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2631 
2632 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL);
2633 	CU_ASSERT(rc == 0);
2634 	CU_ASSERT(g_io_done == false);
2635 
2636 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2637 	stub_complete_io(3);
2638 	CU_ASSERT(g_io_done == true);
2639 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2640 
2641 	/* A very complicated case. Each sg entry exceeds max_segment_size
2642 	 * and split on io boundary.
2643 	 * optimal_io_boundary < max_segment_size * max_num_segments
2644 	 */
2645 	bdev->max_segment_size = 3 * 512;
2646 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2647 	g_io_done = false;
2648 
2649 	for (i = 0; i < 20; i++) {
2650 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2651 		iov[i].iov_len = 512 * 4;
2652 	}
2653 
2654 	/* IO crossing the IO boundary requires split.
2655 	 * 80 block length can split 5 child IOs base on offset and IO boundary.
2656 	 * Each iov entry needs to be splitted to 2 entries because of max_segment_size
2657 	 * Total 5 child IOs.
2658 	 */
2659 
2660 	/* 4 iov entries are in an IO boundary and each iov entry splits to 2.
2661 	 * So each child IO occupies 8 child iov entries.
2662 	 */
2663 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8);
2664 	for (i = 0; i < 4; i++) {
2665 		int iovcnt = i * 2;
2666 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2667 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2668 	}
2669 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2670 
2671 	/* 2nd child IO and total 16 child iov entries of parent IO */
2672 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8);
2673 	for (i = 4; i < 8; i++) {
2674 		int iovcnt = (i - 4) * 2;
2675 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2676 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2677 	}
2678 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2679 
2680 	/* 3rd child IO and total 24 child iov entries of parent IO */
2681 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8);
2682 	for (i = 8; i < 12; i++) {
2683 		int iovcnt = (i - 8) * 2;
2684 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2685 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2686 	}
2687 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2688 
2689 	/* 4th child IO and total 32 child iov entries of parent IO */
2690 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8);
2691 	for (i = 12; i < 16; i++) {
2692 		int iovcnt = (i - 12) * 2;
2693 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2694 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2695 	}
2696 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2697 
2698 	/* 5th child IO and because of the child iov entry it should be splitted
2699 	 * in next round.
2700 	 */
2701 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8);
2702 	for (i = 16; i < 20; i++) {
2703 		int iovcnt = (i - 16) * 2;
2704 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2705 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2706 	}
2707 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2708 
2709 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL);
2710 	CU_ASSERT(rc == 0);
2711 	CU_ASSERT(g_io_done == false);
2712 
2713 	/* First split round */
2714 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2715 	stub_complete_io(4);
2716 	CU_ASSERT(g_io_done == false);
2717 
2718 	/* Second split round */
2719 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2720 	stub_complete_io(1);
2721 	CU_ASSERT(g_io_done == true);
2722 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2723 
2724 	spdk_put_io_channel(io_ch);
2725 	spdk_bdev_close(desc);
2726 	free_bdev(bdev);
2727 	spdk_bdev_finish(bdev_fini_cb, NULL);
2728 	poll_threads();
2729 }
2730 
2731 static void
2732 bdev_io_split_with_io_wait(void)
2733 {
2734 	struct spdk_bdev *bdev;
2735 	struct spdk_bdev_desc *desc = NULL;
2736 	struct spdk_io_channel *io_ch;
2737 	struct spdk_bdev_channel *channel;
2738 	struct spdk_bdev_mgmt_channel *mgmt_ch;
2739 	struct spdk_bdev_opts bdev_opts = {};
2740 	struct iovec iov[3];
2741 	struct ut_expected_io *expected_io;
2742 	int rc;
2743 
2744 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2745 	bdev_opts.bdev_io_pool_size = 2;
2746 	bdev_opts.bdev_io_cache_size = 1;
2747 
2748 	rc = spdk_bdev_set_opts(&bdev_opts);
2749 	CU_ASSERT(rc == 0);
2750 	spdk_bdev_initialize(bdev_init_cb, NULL);
2751 
2752 	bdev = allocate_bdev("bdev0");
2753 
2754 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2755 	CU_ASSERT(rc == 0);
2756 	CU_ASSERT(desc != NULL);
2757 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2758 	io_ch = spdk_bdev_get_io_channel(desc);
2759 	CU_ASSERT(io_ch != NULL);
2760 	channel = spdk_io_channel_get_ctx(io_ch);
2761 	mgmt_ch = channel->shared_resource->mgmt_ch;
2762 
2763 	bdev->optimal_io_boundary = 16;
2764 	bdev->split_on_optimal_io_boundary = true;
2765 
2766 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
2767 	CU_ASSERT(rc == 0);
2768 
2769 	/* Now test that a single-vector command is split correctly.
2770 	 * Offset 14, length 8, payload 0xF000
2771 	 *  Child - Offset 14, length 2, payload 0xF000
2772 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
2773 	 *
2774 	 * Set up the expected values before calling spdk_bdev_read_blocks
2775 	 */
2776 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
2777 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
2778 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2779 
2780 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
2781 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
2782 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2783 
2784 	/* The following children will be submitted sequentially due to the capacity of
2785 	 * spdk_bdev_io.
2786 	 */
2787 
2788 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
2789 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
2790 	CU_ASSERT(rc == 0);
2791 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2792 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2793 
2794 	/* Completing the first read I/O will submit the first child */
2795 	stub_complete_io(1);
2796 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2797 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2798 
2799 	/* Completing the first child will submit the second child */
2800 	stub_complete_io(1);
2801 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2802 
2803 	/* Complete the second child I/O.  This should result in our callback getting
2804 	 * invoked since the parent I/O is now complete.
2805 	 */
2806 	stub_complete_io(1);
2807 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2808 
2809 	/* Now set up a more complex, multi-vector command that needs to be split,
2810 	 *  including splitting iovecs.
2811 	 */
2812 	iov[0].iov_base = (void *)0x10000;
2813 	iov[0].iov_len = 512;
2814 	iov[1].iov_base = (void *)0x20000;
2815 	iov[1].iov_len = 20 * 512;
2816 	iov[2].iov_base = (void *)0x30000;
2817 	iov[2].iov_len = 11 * 512;
2818 
2819 	g_io_done = false;
2820 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
2821 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
2822 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
2823 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2824 
2825 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
2826 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
2827 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2828 
2829 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
2830 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
2831 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
2832 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2833 
2834 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
2835 	CU_ASSERT(rc == 0);
2836 	CU_ASSERT(g_io_done == false);
2837 
2838 	/* The following children will be submitted sequentially due to the capacity of
2839 	 * spdk_bdev_io.
2840 	 */
2841 
2842 	/* Completing the first child will submit the second child */
2843 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2844 	stub_complete_io(1);
2845 	CU_ASSERT(g_io_done == false);
2846 
2847 	/* Completing the second child will submit the third child */
2848 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2849 	stub_complete_io(1);
2850 	CU_ASSERT(g_io_done == false);
2851 
2852 	/* Completing the third child will result in our callback getting invoked
2853 	 * since the parent I/O is now complete.
2854 	 */
2855 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2856 	stub_complete_io(1);
2857 	CU_ASSERT(g_io_done == true);
2858 
2859 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
2860 
2861 	spdk_put_io_channel(io_ch);
2862 	spdk_bdev_close(desc);
2863 	free_bdev(bdev);
2864 	spdk_bdev_finish(bdev_fini_cb, NULL);
2865 	poll_threads();
2866 }
2867 
2868 static void
2869 bdev_io_write_unit_split_test(void)
2870 {
2871 	struct spdk_bdev *bdev;
2872 	struct spdk_bdev_desc *desc = NULL;
2873 	struct spdk_io_channel *io_ch;
2874 	struct spdk_bdev_opts bdev_opts = {};
2875 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 4];
2876 	struct ut_expected_io *expected_io;
2877 	uint64_t i;
2878 	int rc;
2879 
2880 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2881 	bdev_opts.bdev_io_pool_size = 512;
2882 	bdev_opts.bdev_io_cache_size = 64;
2883 
2884 	rc = spdk_bdev_set_opts(&bdev_opts);
2885 	CU_ASSERT(rc == 0);
2886 	spdk_bdev_initialize(bdev_init_cb, NULL);
2887 
2888 	bdev = allocate_bdev("bdev0");
2889 
2890 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2891 	CU_ASSERT(rc == 0);
2892 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2893 	io_ch = spdk_bdev_get_io_channel(desc);
2894 	CU_ASSERT(io_ch != NULL);
2895 
2896 	/* Write I/O 2x larger than write_unit_size should get split into 2 I/Os */
2897 	bdev->write_unit_size = 32;
2898 	bdev->split_on_write_unit = true;
2899 	g_io_done = false;
2900 
2901 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 32, 1);
2902 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 32 * 512);
2903 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2904 
2905 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 32, 1);
2906 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 32 * 512), 32 * 512);
2907 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2908 
2909 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
2910 	CU_ASSERT(rc == 0);
2911 	CU_ASSERT(g_io_done == false);
2912 
2913 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2914 	stub_complete_io(2);
2915 	CU_ASSERT(g_io_done == true);
2916 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2917 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
2918 
2919 	/* Same as above but with optimal_io_boundary < write_unit_size - the I/O should be split
2920 	 * based on write_unit_size, not optimal_io_boundary */
2921 	bdev->split_on_optimal_io_boundary = true;
2922 	bdev->optimal_io_boundary = 16;
2923 	g_io_done = false;
2924 
2925 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
2926 	CU_ASSERT(rc == 0);
2927 	CU_ASSERT(g_io_done == false);
2928 
2929 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2930 	stub_complete_io(2);
2931 	CU_ASSERT(g_io_done == true);
2932 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2933 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
2934 
2935 	/* Write I/O should fail if it is smaller than write_unit_size */
2936 	g_io_done = false;
2937 
2938 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 31, io_done, NULL);
2939 	CU_ASSERT(rc == 0);
2940 	CU_ASSERT(g_io_done == false);
2941 
2942 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2943 	poll_threads();
2944 	CU_ASSERT(g_io_done == true);
2945 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2946 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
2947 
2948 	/* Same for I/O not aligned to write_unit_size */
2949 	g_io_done = false;
2950 
2951 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 1, 32, io_done, NULL);
2952 	CU_ASSERT(rc == 0);
2953 	CU_ASSERT(g_io_done == false);
2954 
2955 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2956 	poll_threads();
2957 	CU_ASSERT(g_io_done == true);
2958 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2959 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
2960 
2961 	/* Write should fail if it needs to be split but there are not enough iovs to submit
2962 	 * an entire write unit */
2963 	bdev->write_unit_size = SPDK_COUNTOF(iov) / 2;
2964 	g_io_done = false;
2965 
2966 	for (i = 0; i < SPDK_COUNTOF(iov); i++) {
2967 		iov[i].iov_base = (void *)(0x1000 + 512 * i);
2968 		iov[i].iov_len = 512;
2969 	}
2970 
2971 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, SPDK_COUNTOF(iov), 0, SPDK_COUNTOF(iov),
2972 				     io_done, NULL);
2973 	CU_ASSERT(rc == 0);
2974 	CU_ASSERT(g_io_done == false);
2975 
2976 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2977 	poll_threads();
2978 	CU_ASSERT(g_io_done == true);
2979 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2980 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
2981 
2982 	spdk_put_io_channel(io_ch);
2983 	spdk_bdev_close(desc);
2984 	free_bdev(bdev);
2985 	spdk_bdev_finish(bdev_fini_cb, NULL);
2986 	poll_threads();
2987 }
2988 
2989 static void
2990 bdev_io_alignment(void)
2991 {
2992 	struct spdk_bdev *bdev;
2993 	struct spdk_bdev_desc *desc = NULL;
2994 	struct spdk_io_channel *io_ch;
2995 	struct spdk_bdev_opts bdev_opts = {};
2996 	int rc;
2997 	void *buf = NULL;
2998 	struct iovec iovs[2];
2999 	int iovcnt;
3000 	uint64_t alignment;
3001 
3002 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3003 	bdev_opts.bdev_io_pool_size = 20;
3004 	bdev_opts.bdev_io_cache_size = 2;
3005 
3006 	rc = spdk_bdev_set_opts(&bdev_opts);
3007 	CU_ASSERT(rc == 0);
3008 	spdk_bdev_initialize(bdev_init_cb, NULL);
3009 
3010 	fn_table.submit_request = stub_submit_request_get_buf;
3011 	bdev = allocate_bdev("bdev0");
3012 
3013 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3014 	CU_ASSERT(rc == 0);
3015 	CU_ASSERT(desc != NULL);
3016 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3017 	io_ch = spdk_bdev_get_io_channel(desc);
3018 	CU_ASSERT(io_ch != NULL);
3019 
3020 	/* Create aligned buffer */
3021 	rc = posix_memalign(&buf, 4096, 8192);
3022 	SPDK_CU_ASSERT_FATAL(rc == 0);
3023 
3024 	/* Pass aligned single buffer with no alignment required */
3025 	alignment = 1;
3026 	bdev->required_alignment = spdk_u32log2(alignment);
3027 
3028 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3029 	CU_ASSERT(rc == 0);
3030 	stub_complete_io(1);
3031 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3032 				    alignment));
3033 
3034 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3035 	CU_ASSERT(rc == 0);
3036 	stub_complete_io(1);
3037 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3038 				    alignment));
3039 
3040 	/* Pass unaligned single buffer with no alignment required */
3041 	alignment = 1;
3042 	bdev->required_alignment = spdk_u32log2(alignment);
3043 
3044 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3045 	CU_ASSERT(rc == 0);
3046 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3047 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3048 	stub_complete_io(1);
3049 
3050 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3051 	CU_ASSERT(rc == 0);
3052 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3053 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3054 	stub_complete_io(1);
3055 
3056 	/* Pass unaligned single buffer with 512 alignment required */
3057 	alignment = 512;
3058 	bdev->required_alignment = spdk_u32log2(alignment);
3059 
3060 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3061 	CU_ASSERT(rc == 0);
3062 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3063 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3064 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3065 				    alignment));
3066 	stub_complete_io(1);
3067 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3068 
3069 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3070 	CU_ASSERT(rc == 0);
3071 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3072 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3073 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3074 				    alignment));
3075 	stub_complete_io(1);
3076 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3077 
3078 	/* Pass unaligned single buffer with 4096 alignment required */
3079 	alignment = 4096;
3080 	bdev->required_alignment = spdk_u32log2(alignment);
3081 
3082 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3083 	CU_ASSERT(rc == 0);
3084 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3085 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3086 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3087 				    alignment));
3088 	stub_complete_io(1);
3089 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3090 
3091 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3092 	CU_ASSERT(rc == 0);
3093 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3094 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3095 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3096 				    alignment));
3097 	stub_complete_io(1);
3098 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3099 
3100 	/* Pass aligned iovs with no alignment required */
3101 	alignment = 1;
3102 	bdev->required_alignment = spdk_u32log2(alignment);
3103 
3104 	iovcnt = 1;
3105 	iovs[0].iov_base = buf;
3106 	iovs[0].iov_len = 512;
3107 
3108 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3109 	CU_ASSERT(rc == 0);
3110 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3111 	stub_complete_io(1);
3112 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3113 
3114 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3115 	CU_ASSERT(rc == 0);
3116 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3117 	stub_complete_io(1);
3118 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3119 
3120 	/* Pass unaligned iovs with no alignment required */
3121 	alignment = 1;
3122 	bdev->required_alignment = spdk_u32log2(alignment);
3123 
3124 	iovcnt = 2;
3125 	iovs[0].iov_base = buf + 16;
3126 	iovs[0].iov_len = 256;
3127 	iovs[1].iov_base = buf + 16 + 256 + 32;
3128 	iovs[1].iov_len = 256;
3129 
3130 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3131 	CU_ASSERT(rc == 0);
3132 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3133 	stub_complete_io(1);
3134 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3135 
3136 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3137 	CU_ASSERT(rc == 0);
3138 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3139 	stub_complete_io(1);
3140 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3141 
3142 	/* Pass unaligned iov with 2048 alignment required */
3143 	alignment = 2048;
3144 	bdev->required_alignment = spdk_u32log2(alignment);
3145 
3146 	iovcnt = 2;
3147 	iovs[0].iov_base = buf + 16;
3148 	iovs[0].iov_len = 256;
3149 	iovs[1].iov_base = buf + 16 + 256 + 32;
3150 	iovs[1].iov_len = 256;
3151 
3152 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3153 	CU_ASSERT(rc == 0);
3154 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3155 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3156 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3157 				    alignment));
3158 	stub_complete_io(1);
3159 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3160 
3161 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3162 	CU_ASSERT(rc == 0);
3163 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3164 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3165 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3166 				    alignment));
3167 	stub_complete_io(1);
3168 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3169 
3170 	/* Pass iov without allocated buffer without alignment required */
3171 	alignment = 1;
3172 	bdev->required_alignment = spdk_u32log2(alignment);
3173 
3174 	iovcnt = 1;
3175 	iovs[0].iov_base = NULL;
3176 	iovs[0].iov_len = 0;
3177 
3178 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3179 	CU_ASSERT(rc == 0);
3180 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3181 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3182 				    alignment));
3183 	stub_complete_io(1);
3184 
3185 	/* Pass iov without allocated buffer with 1024 alignment required */
3186 	alignment = 1024;
3187 	bdev->required_alignment = spdk_u32log2(alignment);
3188 
3189 	iovcnt = 1;
3190 	iovs[0].iov_base = NULL;
3191 	iovs[0].iov_len = 0;
3192 
3193 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3194 	CU_ASSERT(rc == 0);
3195 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3196 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3197 				    alignment));
3198 	stub_complete_io(1);
3199 
3200 	spdk_put_io_channel(io_ch);
3201 	spdk_bdev_close(desc);
3202 	free_bdev(bdev);
3203 	fn_table.submit_request = stub_submit_request;
3204 	spdk_bdev_finish(bdev_fini_cb, NULL);
3205 	poll_threads();
3206 
3207 	free(buf);
3208 }
3209 
3210 static void
3211 bdev_io_alignment_with_boundary(void)
3212 {
3213 	struct spdk_bdev *bdev;
3214 	struct spdk_bdev_desc *desc = NULL;
3215 	struct spdk_io_channel *io_ch;
3216 	struct spdk_bdev_opts bdev_opts = {};
3217 	int rc;
3218 	void *buf = NULL;
3219 	struct iovec iovs[2];
3220 	int iovcnt;
3221 	uint64_t alignment;
3222 
3223 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3224 	bdev_opts.bdev_io_pool_size = 20;
3225 	bdev_opts.bdev_io_cache_size = 2;
3226 
3227 	bdev_opts.opts_size = sizeof(bdev_opts);
3228 	rc = spdk_bdev_set_opts(&bdev_opts);
3229 	CU_ASSERT(rc == 0);
3230 	spdk_bdev_initialize(bdev_init_cb, NULL);
3231 
3232 	fn_table.submit_request = stub_submit_request_get_buf;
3233 	bdev = allocate_bdev("bdev0");
3234 
3235 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3236 	CU_ASSERT(rc == 0);
3237 	CU_ASSERT(desc != NULL);
3238 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3239 	io_ch = spdk_bdev_get_io_channel(desc);
3240 	CU_ASSERT(io_ch != NULL);
3241 
3242 	/* Create aligned buffer */
3243 	rc = posix_memalign(&buf, 4096, 131072);
3244 	SPDK_CU_ASSERT_FATAL(rc == 0);
3245 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3246 
3247 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
3248 	alignment = 512;
3249 	bdev->required_alignment = spdk_u32log2(alignment);
3250 	bdev->optimal_io_boundary = 2;
3251 	bdev->split_on_optimal_io_boundary = true;
3252 
3253 	iovcnt = 1;
3254 	iovs[0].iov_base = NULL;
3255 	iovs[0].iov_len = 512 * 3;
3256 
3257 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3258 	CU_ASSERT(rc == 0);
3259 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3260 	stub_complete_io(2);
3261 
3262 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
3263 	alignment = 512;
3264 	bdev->required_alignment = spdk_u32log2(alignment);
3265 	bdev->optimal_io_boundary = 16;
3266 	bdev->split_on_optimal_io_boundary = true;
3267 
3268 	iovcnt = 1;
3269 	iovs[0].iov_base = NULL;
3270 	iovs[0].iov_len = 512 * 16;
3271 
3272 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
3273 	CU_ASSERT(rc == 0);
3274 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3275 	stub_complete_io(2);
3276 
3277 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
3278 	alignment = 512;
3279 	bdev->required_alignment = spdk_u32log2(alignment);
3280 	bdev->optimal_io_boundary = 128;
3281 	bdev->split_on_optimal_io_boundary = true;
3282 
3283 	iovcnt = 1;
3284 	iovs[0].iov_base = buf + 16;
3285 	iovs[0].iov_len = 512 * 160;
3286 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3287 	CU_ASSERT(rc == 0);
3288 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3289 	stub_complete_io(2);
3290 
3291 	/* 512 * 3 with 2 IO boundary */
3292 	alignment = 512;
3293 	bdev->required_alignment = spdk_u32log2(alignment);
3294 	bdev->optimal_io_boundary = 2;
3295 	bdev->split_on_optimal_io_boundary = true;
3296 
3297 	iovcnt = 2;
3298 	iovs[0].iov_base = buf + 16;
3299 	iovs[0].iov_len = 512;
3300 	iovs[1].iov_base = buf + 16 + 512 + 32;
3301 	iovs[1].iov_len = 1024;
3302 
3303 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3304 	CU_ASSERT(rc == 0);
3305 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3306 	stub_complete_io(2);
3307 
3308 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3309 	CU_ASSERT(rc == 0);
3310 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3311 	stub_complete_io(2);
3312 
3313 	/* 512 * 64 with 32 IO boundary */
3314 	bdev->optimal_io_boundary = 32;
3315 	iovcnt = 2;
3316 	iovs[0].iov_base = buf + 16;
3317 	iovs[0].iov_len = 16384;
3318 	iovs[1].iov_base = buf + 16 + 16384 + 32;
3319 	iovs[1].iov_len = 16384;
3320 
3321 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3322 	CU_ASSERT(rc == 0);
3323 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3324 	stub_complete_io(3);
3325 
3326 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3327 	CU_ASSERT(rc == 0);
3328 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3329 	stub_complete_io(3);
3330 
3331 	/* 512 * 160 with 32 IO boundary */
3332 	iovcnt = 1;
3333 	iovs[0].iov_base = buf + 16;
3334 	iovs[0].iov_len = 16384 + 65536;
3335 
3336 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3337 	CU_ASSERT(rc == 0);
3338 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
3339 	stub_complete_io(6);
3340 
3341 	spdk_put_io_channel(io_ch);
3342 	spdk_bdev_close(desc);
3343 	free_bdev(bdev);
3344 	fn_table.submit_request = stub_submit_request;
3345 	spdk_bdev_finish(bdev_fini_cb, NULL);
3346 	poll_threads();
3347 
3348 	free(buf);
3349 }
3350 
3351 static void
3352 histogram_status_cb(void *cb_arg, int status)
3353 {
3354 	g_status = status;
3355 }
3356 
3357 static void
3358 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3359 {
3360 	g_status = status;
3361 	g_histogram = histogram;
3362 }
3363 
3364 static void
3365 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
3366 		   uint64_t total, uint64_t so_far)
3367 {
3368 	g_count += count;
3369 }
3370 
3371 static void
3372 bdev_histograms(void)
3373 {
3374 	struct spdk_bdev *bdev;
3375 	struct spdk_bdev_desc *desc = NULL;
3376 	struct spdk_io_channel *ch;
3377 	struct spdk_histogram_data *histogram;
3378 	uint8_t buf[4096];
3379 	int rc;
3380 
3381 	spdk_bdev_initialize(bdev_init_cb, NULL);
3382 
3383 	bdev = allocate_bdev("bdev");
3384 
3385 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3386 	CU_ASSERT(rc == 0);
3387 	CU_ASSERT(desc != NULL);
3388 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3389 
3390 	ch = spdk_bdev_get_io_channel(desc);
3391 	CU_ASSERT(ch != NULL);
3392 
3393 	/* Enable histogram */
3394 	g_status = -1;
3395 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
3396 	poll_threads();
3397 	CU_ASSERT(g_status == 0);
3398 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3399 
3400 	/* Allocate histogram */
3401 	histogram = spdk_histogram_data_alloc();
3402 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
3403 
3404 	/* Check if histogram is zeroed */
3405 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3406 	poll_threads();
3407 	CU_ASSERT(g_status == 0);
3408 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3409 
3410 	g_count = 0;
3411 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3412 
3413 	CU_ASSERT(g_count == 0);
3414 
3415 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3416 	CU_ASSERT(rc == 0);
3417 
3418 	spdk_delay_us(10);
3419 	stub_complete_io(1);
3420 	poll_threads();
3421 
3422 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3423 	CU_ASSERT(rc == 0);
3424 
3425 	spdk_delay_us(10);
3426 	stub_complete_io(1);
3427 	poll_threads();
3428 
3429 	/* Check if histogram gathered data from all I/O channels */
3430 	g_histogram = NULL;
3431 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3432 	poll_threads();
3433 	CU_ASSERT(g_status == 0);
3434 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3435 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3436 
3437 	g_count = 0;
3438 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3439 	CU_ASSERT(g_count == 2);
3440 
3441 	/* Disable histogram */
3442 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
3443 	poll_threads();
3444 	CU_ASSERT(g_status == 0);
3445 	CU_ASSERT(bdev->internal.histogram_enabled == false);
3446 
3447 	/* Try to run histogram commands on disabled bdev */
3448 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3449 	poll_threads();
3450 	CU_ASSERT(g_status == -EFAULT);
3451 
3452 	spdk_histogram_data_free(histogram);
3453 	spdk_put_io_channel(ch);
3454 	spdk_bdev_close(desc);
3455 	free_bdev(bdev);
3456 	spdk_bdev_finish(bdev_fini_cb, NULL);
3457 	poll_threads();
3458 }
3459 
3460 static void
3461 _bdev_compare(bool emulated)
3462 {
3463 	struct spdk_bdev *bdev;
3464 	struct spdk_bdev_desc *desc = NULL;
3465 	struct spdk_io_channel *ioch;
3466 	struct ut_expected_io *expected_io;
3467 	uint64_t offset, num_blocks;
3468 	uint32_t num_completed;
3469 	char aa_buf[512];
3470 	char bb_buf[512];
3471 	struct iovec compare_iov;
3472 	uint8_t expected_io_type;
3473 	int rc;
3474 
3475 	if (emulated) {
3476 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3477 	} else {
3478 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3479 	}
3480 
3481 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3482 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3483 
3484 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3485 
3486 	spdk_bdev_initialize(bdev_init_cb, NULL);
3487 	fn_table.submit_request = stub_submit_request_get_buf;
3488 	bdev = allocate_bdev("bdev");
3489 
3490 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3491 	CU_ASSERT_EQUAL(rc, 0);
3492 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3493 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3494 	ioch = spdk_bdev_get_io_channel(desc);
3495 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3496 
3497 	fn_table.submit_request = stub_submit_request_get_buf;
3498 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3499 
3500 	offset = 50;
3501 	num_blocks = 1;
3502 	compare_iov.iov_base = aa_buf;
3503 	compare_iov.iov_len = sizeof(aa_buf);
3504 
3505 	/* 1. successful compare */
3506 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3507 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3508 
3509 	g_io_done = false;
3510 	g_compare_read_buf = aa_buf;
3511 	g_compare_read_buf_len = sizeof(aa_buf);
3512 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3513 	CU_ASSERT_EQUAL(rc, 0);
3514 	num_completed = stub_complete_io(1);
3515 	CU_ASSERT_EQUAL(num_completed, 1);
3516 	CU_ASSERT(g_io_done == true);
3517 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3518 
3519 	/* 2. miscompare */
3520 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3521 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3522 
3523 	g_io_done = false;
3524 	g_compare_read_buf = bb_buf;
3525 	g_compare_read_buf_len = sizeof(bb_buf);
3526 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3527 	CU_ASSERT_EQUAL(rc, 0);
3528 	num_completed = stub_complete_io(1);
3529 	CU_ASSERT_EQUAL(num_completed, 1);
3530 	CU_ASSERT(g_io_done == true);
3531 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3532 
3533 	spdk_put_io_channel(ioch);
3534 	spdk_bdev_close(desc);
3535 	free_bdev(bdev);
3536 	fn_table.submit_request = stub_submit_request;
3537 	spdk_bdev_finish(bdev_fini_cb, NULL);
3538 	poll_threads();
3539 
3540 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3541 
3542 	g_compare_read_buf = NULL;
3543 }
3544 
3545 static void
3546 _bdev_compare_with_md(bool emulated)
3547 {
3548 	struct spdk_bdev *bdev;
3549 	struct spdk_bdev_desc *desc = NULL;
3550 	struct spdk_io_channel *ioch;
3551 	struct ut_expected_io *expected_io;
3552 	uint64_t offset, num_blocks;
3553 	uint32_t num_completed;
3554 	char buf[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3555 	char buf_interleaved_miscompare[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3556 	char buf_miscompare[1024 /* 2 * blocklen */];
3557 	char md_buf[16];
3558 	char md_buf_miscompare[16];
3559 	struct iovec compare_iov;
3560 	uint8_t expected_io_type;
3561 	int rc;
3562 
3563 	if (emulated) {
3564 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3565 	} else {
3566 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3567 	}
3568 
3569 	memset(buf, 0xaa, sizeof(buf));
3570 	memset(buf_interleaved_miscompare, 0xaa, sizeof(buf_interleaved_miscompare));
3571 	/* make last md different */
3572 	memset(buf_interleaved_miscompare + 1024 + 8, 0xbb, 8);
3573 	memset(buf_miscompare, 0xbb, sizeof(buf_miscompare));
3574 	memset(md_buf, 0xaa, 16);
3575 	memset(md_buf_miscompare, 0xbb, 16);
3576 
3577 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3578 
3579 	spdk_bdev_initialize(bdev_init_cb, NULL);
3580 	fn_table.submit_request = stub_submit_request_get_buf;
3581 	bdev = allocate_bdev("bdev");
3582 
3583 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3584 	CU_ASSERT_EQUAL(rc, 0);
3585 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3586 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3587 	ioch = spdk_bdev_get_io_channel(desc);
3588 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3589 
3590 	fn_table.submit_request = stub_submit_request_get_buf;
3591 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3592 
3593 	offset = 50;
3594 	num_blocks = 2;
3595 
3596 	/* interleaved md & data */
3597 	bdev->md_interleave = true;
3598 	bdev->md_len = 8;
3599 	bdev->blocklen = 512 + 8;
3600 	compare_iov.iov_base = buf;
3601 	compare_iov.iov_len = sizeof(buf);
3602 
3603 	/* 1. successful compare with md interleaved */
3604 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3605 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3606 
3607 	g_io_done = false;
3608 	g_compare_read_buf = buf;
3609 	g_compare_read_buf_len = sizeof(buf);
3610 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3611 	CU_ASSERT_EQUAL(rc, 0);
3612 	num_completed = stub_complete_io(1);
3613 	CU_ASSERT_EQUAL(num_completed, 1);
3614 	CU_ASSERT(g_io_done == true);
3615 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3616 
3617 	/* 2. miscompare with md interleaved */
3618 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3619 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3620 
3621 	g_io_done = false;
3622 	g_compare_read_buf = buf_interleaved_miscompare;
3623 	g_compare_read_buf_len = sizeof(buf_interleaved_miscompare);
3624 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3625 	CU_ASSERT_EQUAL(rc, 0);
3626 	num_completed = stub_complete_io(1);
3627 	CU_ASSERT_EQUAL(num_completed, 1);
3628 	CU_ASSERT(g_io_done == true);
3629 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3630 
3631 	/* Separate data & md buffers */
3632 	bdev->md_interleave = false;
3633 	bdev->blocklen = 512;
3634 	compare_iov.iov_base = buf;
3635 	compare_iov.iov_len = 1024;
3636 
3637 	/* 3. successful compare with md separated */
3638 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3639 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3640 
3641 	g_io_done = false;
3642 	g_compare_read_buf = buf;
3643 	g_compare_read_buf_len = 1024;
3644 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3645 	g_compare_md_buf = md_buf;
3646 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3647 					       offset, num_blocks, io_done, NULL);
3648 	CU_ASSERT_EQUAL(rc, 0);
3649 	num_completed = stub_complete_io(1);
3650 	CU_ASSERT_EQUAL(num_completed, 1);
3651 	CU_ASSERT(g_io_done == true);
3652 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3653 
3654 	/* 4. miscompare with md separated where md buf is different */
3655 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3656 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3657 
3658 	g_io_done = false;
3659 	g_compare_read_buf = buf;
3660 	g_compare_read_buf_len = 1024;
3661 	g_compare_md_buf = md_buf_miscompare;
3662 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3663 					       offset, num_blocks, io_done, NULL);
3664 	CU_ASSERT_EQUAL(rc, 0);
3665 	num_completed = stub_complete_io(1);
3666 	CU_ASSERT_EQUAL(num_completed, 1);
3667 	CU_ASSERT(g_io_done == true);
3668 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3669 
3670 	/* 5. miscompare with md separated where buf is different */
3671 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3672 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3673 
3674 	g_io_done = false;
3675 	g_compare_read_buf = buf_miscompare;
3676 	g_compare_read_buf_len = sizeof(buf_miscompare);
3677 	g_compare_md_buf = md_buf;
3678 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3679 					       offset, num_blocks, io_done, NULL);
3680 	CU_ASSERT_EQUAL(rc, 0);
3681 	num_completed = stub_complete_io(1);
3682 	CU_ASSERT_EQUAL(num_completed, 1);
3683 	CU_ASSERT(g_io_done == true);
3684 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3685 
3686 	bdev->md_len = 0;
3687 	g_compare_md_buf = NULL;
3688 
3689 	spdk_put_io_channel(ioch);
3690 	spdk_bdev_close(desc);
3691 	free_bdev(bdev);
3692 	fn_table.submit_request = stub_submit_request;
3693 	spdk_bdev_finish(bdev_fini_cb, NULL);
3694 	poll_threads();
3695 
3696 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3697 
3698 	g_compare_read_buf = NULL;
3699 }
3700 
3701 static void
3702 bdev_compare(void)
3703 {
3704 	_bdev_compare(false);
3705 	_bdev_compare_with_md(false);
3706 }
3707 
3708 static void
3709 bdev_compare_emulated(void)
3710 {
3711 	_bdev_compare(true);
3712 	_bdev_compare_with_md(true);
3713 }
3714 
3715 static void
3716 bdev_compare_and_write(void)
3717 {
3718 	struct spdk_bdev *bdev;
3719 	struct spdk_bdev_desc *desc = NULL;
3720 	struct spdk_io_channel *ioch;
3721 	struct ut_expected_io *expected_io;
3722 	uint64_t offset, num_blocks;
3723 	uint32_t num_completed;
3724 	char aa_buf[512];
3725 	char bb_buf[512];
3726 	char cc_buf[512];
3727 	char write_buf[512];
3728 	struct iovec compare_iov;
3729 	struct iovec write_iov;
3730 	int rc;
3731 
3732 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3733 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3734 	memset(cc_buf, 0xcc, sizeof(cc_buf));
3735 
3736 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
3737 
3738 	spdk_bdev_initialize(bdev_init_cb, NULL);
3739 	fn_table.submit_request = stub_submit_request_get_buf;
3740 	bdev = allocate_bdev("bdev");
3741 
3742 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3743 	CU_ASSERT_EQUAL(rc, 0);
3744 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3745 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3746 	ioch = spdk_bdev_get_io_channel(desc);
3747 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3748 
3749 	fn_table.submit_request = stub_submit_request_get_buf;
3750 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3751 
3752 	offset = 50;
3753 	num_blocks = 1;
3754 	compare_iov.iov_base = aa_buf;
3755 	compare_iov.iov_len = sizeof(aa_buf);
3756 	write_iov.iov_base = bb_buf;
3757 	write_iov.iov_len = sizeof(bb_buf);
3758 
3759 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3760 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3761 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
3762 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3763 
3764 	g_io_done = false;
3765 	g_compare_read_buf = aa_buf;
3766 	g_compare_read_buf_len = sizeof(aa_buf);
3767 	memset(write_buf, 0, sizeof(write_buf));
3768 	g_compare_write_buf = write_buf;
3769 	g_compare_write_buf_len = sizeof(write_buf);
3770 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3771 			offset, num_blocks, io_done, NULL);
3772 	/* Trigger range locking */
3773 	poll_threads();
3774 	CU_ASSERT_EQUAL(rc, 0);
3775 	num_completed = stub_complete_io(1);
3776 	CU_ASSERT_EQUAL(num_completed, 1);
3777 	CU_ASSERT(g_io_done == false);
3778 	num_completed = stub_complete_io(1);
3779 	/* Trigger range unlocking */
3780 	poll_threads();
3781 	CU_ASSERT_EQUAL(num_completed, 1);
3782 	CU_ASSERT(g_io_done == true);
3783 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3784 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
3785 
3786 	/* Test miscompare */
3787 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3788 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3789 
3790 	g_io_done = false;
3791 	g_compare_read_buf = cc_buf;
3792 	g_compare_read_buf_len = sizeof(cc_buf);
3793 	memset(write_buf, 0, sizeof(write_buf));
3794 	g_compare_write_buf = write_buf;
3795 	g_compare_write_buf_len = sizeof(write_buf);
3796 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3797 			offset, num_blocks, io_done, NULL);
3798 	/* Trigger range locking */
3799 	poll_threads();
3800 	CU_ASSERT_EQUAL(rc, 0);
3801 	num_completed = stub_complete_io(1);
3802 	/* Trigger range unlocking earlier because we expect error here */
3803 	poll_threads();
3804 	CU_ASSERT_EQUAL(num_completed, 1);
3805 	CU_ASSERT(g_io_done == true);
3806 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3807 	num_completed = stub_complete_io(1);
3808 	CU_ASSERT_EQUAL(num_completed, 0);
3809 
3810 	spdk_put_io_channel(ioch);
3811 	spdk_bdev_close(desc);
3812 	free_bdev(bdev);
3813 	fn_table.submit_request = stub_submit_request;
3814 	spdk_bdev_finish(bdev_fini_cb, NULL);
3815 	poll_threads();
3816 
3817 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3818 
3819 	g_compare_read_buf = NULL;
3820 	g_compare_write_buf = NULL;
3821 }
3822 
3823 static void
3824 bdev_write_zeroes(void)
3825 {
3826 	struct spdk_bdev *bdev;
3827 	struct spdk_bdev_desc *desc = NULL;
3828 	struct spdk_io_channel *ioch;
3829 	struct ut_expected_io *expected_io;
3830 	uint64_t offset, num_io_blocks, num_blocks;
3831 	uint32_t num_completed, num_requests;
3832 	int rc;
3833 
3834 	spdk_bdev_initialize(bdev_init_cb, NULL);
3835 	bdev = allocate_bdev("bdev");
3836 
3837 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3838 	CU_ASSERT_EQUAL(rc, 0);
3839 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3840 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3841 	ioch = spdk_bdev_get_io_channel(desc);
3842 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3843 
3844 	fn_table.submit_request = stub_submit_request;
3845 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3846 
3847 	/* First test that if the bdev supports write_zeroes, the request won't be split */
3848 	bdev->md_len = 0;
3849 	bdev->blocklen = 4096;
3850 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3851 
3852 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
3853 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3854 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3855 	CU_ASSERT_EQUAL(rc, 0);
3856 	num_completed = stub_complete_io(1);
3857 	CU_ASSERT_EQUAL(num_completed, 1);
3858 
3859 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
3860 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
3861 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
3862 	num_requests = 2;
3863 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
3864 
3865 	for (offset = 0; offset < num_requests; ++offset) {
3866 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3867 						   offset * num_io_blocks, num_io_blocks, 0);
3868 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3869 	}
3870 
3871 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3872 	CU_ASSERT_EQUAL(rc, 0);
3873 	num_completed = stub_complete_io(num_requests);
3874 	CU_ASSERT_EQUAL(num_completed, num_requests);
3875 
3876 	/* Check that the splitting is correct if bdev has interleaved metadata */
3877 	bdev->md_interleave = true;
3878 	bdev->md_len = 64;
3879 	bdev->blocklen = 4096 + 64;
3880 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3881 
3882 	num_requests = offset = 0;
3883 	while (offset < num_blocks) {
3884 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
3885 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3886 						   offset, num_io_blocks, 0);
3887 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3888 		offset += num_io_blocks;
3889 		num_requests++;
3890 	}
3891 
3892 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3893 	CU_ASSERT_EQUAL(rc, 0);
3894 	num_completed = stub_complete_io(num_requests);
3895 	CU_ASSERT_EQUAL(num_completed, num_requests);
3896 	num_completed = stub_complete_io(num_requests);
3897 	assert(num_completed == 0);
3898 
3899 	/* Check the the same for separate metadata buffer */
3900 	bdev->md_interleave = false;
3901 	bdev->md_len = 64;
3902 	bdev->blocklen = 4096;
3903 
3904 	num_requests = offset = 0;
3905 	while (offset < num_blocks) {
3906 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
3907 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3908 						   offset, num_io_blocks, 0);
3909 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
3910 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3911 		offset += num_io_blocks;
3912 		num_requests++;
3913 	}
3914 
3915 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3916 	CU_ASSERT_EQUAL(rc, 0);
3917 	num_completed = stub_complete_io(num_requests);
3918 	CU_ASSERT_EQUAL(num_completed, num_requests);
3919 
3920 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
3921 	spdk_put_io_channel(ioch);
3922 	spdk_bdev_close(desc);
3923 	free_bdev(bdev);
3924 	spdk_bdev_finish(bdev_fini_cb, NULL);
3925 	poll_threads();
3926 }
3927 
3928 static void
3929 bdev_zcopy_write(void)
3930 {
3931 	struct spdk_bdev *bdev;
3932 	struct spdk_bdev_desc *desc = NULL;
3933 	struct spdk_io_channel *ioch;
3934 	struct ut_expected_io *expected_io;
3935 	uint64_t offset, num_blocks;
3936 	uint32_t num_completed;
3937 	char aa_buf[512];
3938 	struct iovec iov;
3939 	int rc;
3940 	const bool populate = false;
3941 	const bool commit = true;
3942 
3943 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3944 
3945 	spdk_bdev_initialize(bdev_init_cb, NULL);
3946 	bdev = allocate_bdev("bdev");
3947 
3948 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3949 	CU_ASSERT_EQUAL(rc, 0);
3950 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3951 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3952 	ioch = spdk_bdev_get_io_channel(desc);
3953 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3954 
3955 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3956 
3957 	offset = 50;
3958 	num_blocks = 1;
3959 	iov.iov_base = NULL;
3960 	iov.iov_len = 0;
3961 
3962 	g_zcopy_read_buf = (void *) 0x1122334455667788UL;
3963 	g_zcopy_read_buf_len = (uint32_t) -1;
3964 	/* Do a zcopy start for a write (populate=false) */
3965 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3966 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3967 	g_io_done = false;
3968 	g_zcopy_write_buf = aa_buf;
3969 	g_zcopy_write_buf_len = sizeof(aa_buf);
3970 	g_zcopy_bdev_io = NULL;
3971 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
3972 	CU_ASSERT_EQUAL(rc, 0);
3973 	num_completed = stub_complete_io(1);
3974 	CU_ASSERT_EQUAL(num_completed, 1);
3975 	CU_ASSERT(g_io_done == true);
3976 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3977 	/* Check that the iov has been set up */
3978 	CU_ASSERT(iov.iov_base == g_zcopy_write_buf);
3979 	CU_ASSERT(iov.iov_len == g_zcopy_write_buf_len);
3980 	/* Check that the bdev_io has been saved */
3981 	CU_ASSERT(g_zcopy_bdev_io != NULL);
3982 	/* Now do the zcopy end for a write (commit=true) */
3983 	g_io_done = false;
3984 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3985 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3986 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
3987 	CU_ASSERT_EQUAL(rc, 0);
3988 	num_completed = stub_complete_io(1);
3989 	CU_ASSERT_EQUAL(num_completed, 1);
3990 	CU_ASSERT(g_io_done == true);
3991 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3992 	/* Check the g_zcopy are reset by io_done */
3993 	CU_ASSERT(g_zcopy_write_buf == NULL);
3994 	CU_ASSERT(g_zcopy_write_buf_len == 0);
3995 	/* Check that io_done has freed the g_zcopy_bdev_io */
3996 	CU_ASSERT(g_zcopy_bdev_io == NULL);
3997 
3998 	/* Check the zcopy read buffer has not been touched which
3999 	 * ensures that the correct buffers were used.
4000 	 */
4001 	CU_ASSERT(g_zcopy_read_buf == (void *) 0x1122334455667788UL);
4002 	CU_ASSERT(g_zcopy_read_buf_len == (uint32_t) -1);
4003 
4004 	spdk_put_io_channel(ioch);
4005 	spdk_bdev_close(desc);
4006 	free_bdev(bdev);
4007 	spdk_bdev_finish(bdev_fini_cb, NULL);
4008 	poll_threads();
4009 }
4010 
4011 static void
4012 bdev_zcopy_read(void)
4013 {
4014 	struct spdk_bdev *bdev;
4015 	struct spdk_bdev_desc *desc = NULL;
4016 	struct spdk_io_channel *ioch;
4017 	struct ut_expected_io *expected_io;
4018 	uint64_t offset, num_blocks;
4019 	uint32_t num_completed;
4020 	char aa_buf[512];
4021 	struct iovec iov;
4022 	int rc;
4023 	const bool populate = true;
4024 	const bool commit = false;
4025 
4026 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4027 
4028 	spdk_bdev_initialize(bdev_init_cb, NULL);
4029 	bdev = allocate_bdev("bdev");
4030 
4031 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4032 	CU_ASSERT_EQUAL(rc, 0);
4033 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4034 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4035 	ioch = spdk_bdev_get_io_channel(desc);
4036 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4037 
4038 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4039 
4040 	offset = 50;
4041 	num_blocks = 1;
4042 	iov.iov_base = NULL;
4043 	iov.iov_len = 0;
4044 
4045 	g_zcopy_write_buf = (void *) 0x1122334455667788UL;
4046 	g_zcopy_write_buf_len = (uint32_t) -1;
4047 
4048 	/* Do a zcopy start for a read (populate=true) */
4049 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4050 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4051 	g_io_done = false;
4052 	g_zcopy_read_buf = aa_buf;
4053 	g_zcopy_read_buf_len = sizeof(aa_buf);
4054 	g_zcopy_bdev_io = NULL;
4055 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4056 	CU_ASSERT_EQUAL(rc, 0);
4057 	num_completed = stub_complete_io(1);
4058 	CU_ASSERT_EQUAL(num_completed, 1);
4059 	CU_ASSERT(g_io_done == true);
4060 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4061 	/* Check that the iov has been set up */
4062 	CU_ASSERT(iov.iov_base == g_zcopy_read_buf);
4063 	CU_ASSERT(iov.iov_len == g_zcopy_read_buf_len);
4064 	/* Check that the bdev_io has been saved */
4065 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4066 
4067 	/* Now do the zcopy end for a read (commit=false) */
4068 	g_io_done = false;
4069 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4070 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4071 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4072 	CU_ASSERT_EQUAL(rc, 0);
4073 	num_completed = stub_complete_io(1);
4074 	CU_ASSERT_EQUAL(num_completed, 1);
4075 	CU_ASSERT(g_io_done == true);
4076 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4077 	/* Check the g_zcopy are reset by io_done */
4078 	CU_ASSERT(g_zcopy_read_buf == NULL);
4079 	CU_ASSERT(g_zcopy_read_buf_len == 0);
4080 	/* Check that io_done has freed the g_zcopy_bdev_io */
4081 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4082 
4083 	/* Check the zcopy write buffer has not been touched which
4084 	 * ensures that the correct buffers were used.
4085 	 */
4086 	CU_ASSERT(g_zcopy_write_buf == (void *) 0x1122334455667788UL);
4087 	CU_ASSERT(g_zcopy_write_buf_len == (uint32_t) -1);
4088 
4089 	spdk_put_io_channel(ioch);
4090 	spdk_bdev_close(desc);
4091 	free_bdev(bdev);
4092 	spdk_bdev_finish(bdev_fini_cb, NULL);
4093 	poll_threads();
4094 }
4095 
4096 static void
4097 bdev_open_while_hotremove(void)
4098 {
4099 	struct spdk_bdev *bdev;
4100 	struct spdk_bdev_desc *desc[2] = {};
4101 	int rc;
4102 
4103 	bdev = allocate_bdev("bdev");
4104 
4105 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
4106 	CU_ASSERT(rc == 0);
4107 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
4108 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
4109 
4110 	spdk_bdev_unregister(bdev, NULL, NULL);
4111 	/* Bdev unregister is handled asynchronously. Poll thread to complete. */
4112 	poll_threads();
4113 
4114 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
4115 	CU_ASSERT(rc == -ENODEV);
4116 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
4117 
4118 	spdk_bdev_close(desc[0]);
4119 	free_bdev(bdev);
4120 }
4121 
4122 static void
4123 bdev_close_while_hotremove(void)
4124 {
4125 	struct spdk_bdev *bdev;
4126 	struct spdk_bdev_desc *desc = NULL;
4127 	int rc = 0;
4128 
4129 	bdev = allocate_bdev("bdev");
4130 
4131 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
4132 	CU_ASSERT_EQUAL(rc, 0);
4133 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4134 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4135 
4136 	/* Simulate hot-unplug by unregistering bdev */
4137 	g_event_type1 = 0xFF;
4138 	g_unregister_arg = NULL;
4139 	g_unregister_rc = -1;
4140 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4141 	/* Close device while remove event is in flight */
4142 	spdk_bdev_close(desc);
4143 
4144 	/* Ensure that unregister callback is delayed */
4145 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
4146 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
4147 
4148 	poll_threads();
4149 
4150 	/* Event callback shall not be issued because device was closed */
4151 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
4152 	/* Unregister callback is issued */
4153 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
4154 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
4155 
4156 	free_bdev(bdev);
4157 }
4158 
4159 static void
4160 bdev_open_ext(void)
4161 {
4162 	struct spdk_bdev *bdev;
4163 	struct spdk_bdev_desc *desc1 = NULL;
4164 	struct spdk_bdev_desc *desc2 = NULL;
4165 	int rc = 0;
4166 
4167 	bdev = allocate_bdev("bdev");
4168 
4169 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4170 	CU_ASSERT_EQUAL(rc, -EINVAL);
4171 
4172 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4173 	CU_ASSERT_EQUAL(rc, 0);
4174 
4175 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4176 	CU_ASSERT_EQUAL(rc, 0);
4177 
4178 	g_event_type1 = 0xFF;
4179 	g_event_type2 = 0xFF;
4180 
4181 	/* Simulate hot-unplug by unregistering bdev */
4182 	spdk_bdev_unregister(bdev, NULL, NULL);
4183 	poll_threads();
4184 
4185 	/* Check if correct events have been triggered in event callback fn */
4186 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4187 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4188 
4189 	free_bdev(bdev);
4190 	poll_threads();
4191 }
4192 
4193 static void
4194 bdev_open_ext_unregister(void)
4195 {
4196 	struct spdk_bdev *bdev;
4197 	struct spdk_bdev_desc *desc1 = NULL;
4198 	struct spdk_bdev_desc *desc2 = NULL;
4199 	struct spdk_bdev_desc *desc3 = NULL;
4200 	struct spdk_bdev_desc *desc4 = NULL;
4201 	int rc = 0;
4202 
4203 	bdev = allocate_bdev("bdev");
4204 
4205 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4206 	CU_ASSERT_EQUAL(rc, -EINVAL);
4207 
4208 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4209 	CU_ASSERT_EQUAL(rc, 0);
4210 
4211 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4212 	CU_ASSERT_EQUAL(rc, 0);
4213 
4214 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb3, &desc3, &desc3);
4215 	CU_ASSERT_EQUAL(rc, 0);
4216 
4217 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb4, &desc4, &desc4);
4218 	CU_ASSERT_EQUAL(rc, 0);
4219 
4220 	g_event_type1 = 0xFF;
4221 	g_event_type2 = 0xFF;
4222 	g_event_type3 = 0xFF;
4223 	g_event_type4 = 0xFF;
4224 
4225 	g_unregister_arg = NULL;
4226 	g_unregister_rc = -1;
4227 
4228 	/* Simulate hot-unplug by unregistering bdev */
4229 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4230 
4231 	/*
4232 	 * Unregister is handled asynchronously and event callback
4233 	 * (i.e., above bdev_open_cbN) will be called.
4234 	 * For bdev_open_cb3 and bdev_open_cb4, it is intended to not
4235 	 * close the desc3 and desc4 so that the bdev is not closed.
4236 	 */
4237 	poll_threads();
4238 
4239 	/* Check if correct events have been triggered in event callback fn */
4240 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4241 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4242 	CU_ASSERT_EQUAL(g_event_type3, SPDK_BDEV_EVENT_REMOVE);
4243 	CU_ASSERT_EQUAL(g_event_type4, SPDK_BDEV_EVENT_REMOVE);
4244 
4245 	/* Check that unregister callback is delayed */
4246 	CU_ASSERT(g_unregister_arg == NULL);
4247 	CU_ASSERT(g_unregister_rc == -1);
4248 
4249 	/*
4250 	 * Explicitly close desc3. As desc4 is still opened there, the
4251 	 * unergister callback is still delayed to execute.
4252 	 */
4253 	spdk_bdev_close(desc3);
4254 	CU_ASSERT(g_unregister_arg == NULL);
4255 	CU_ASSERT(g_unregister_rc == -1);
4256 
4257 	/*
4258 	 * Explicitly close desc4 to trigger the ongoing bdev unregister
4259 	 * operation after last desc is closed.
4260 	 */
4261 	spdk_bdev_close(desc4);
4262 
4263 	/* Poll the thread for the async unregister operation */
4264 	poll_threads();
4265 
4266 	/* Check that unregister callback is executed */
4267 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
4268 	CU_ASSERT(g_unregister_rc == 0);
4269 
4270 	free_bdev(bdev);
4271 	poll_threads();
4272 }
4273 
4274 struct timeout_io_cb_arg {
4275 	struct iovec iov;
4276 	uint8_t type;
4277 };
4278 
4279 static int
4280 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
4281 {
4282 	struct spdk_bdev_io *bdev_io;
4283 	int n = 0;
4284 
4285 	if (!ch) {
4286 		return -1;
4287 	}
4288 
4289 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
4290 		n++;
4291 	}
4292 
4293 	return n;
4294 }
4295 
4296 static void
4297 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
4298 {
4299 	struct timeout_io_cb_arg *ctx = cb_arg;
4300 
4301 	ctx->type = bdev_io->type;
4302 	ctx->iov.iov_base = bdev_io->iov.iov_base;
4303 	ctx->iov.iov_len = bdev_io->iov.iov_len;
4304 }
4305 
4306 static void
4307 bdev_set_io_timeout(void)
4308 {
4309 	struct spdk_bdev *bdev;
4310 	struct spdk_bdev_desc *desc = NULL;
4311 	struct spdk_io_channel *io_ch = NULL;
4312 	struct spdk_bdev_channel *bdev_ch = NULL;
4313 	struct timeout_io_cb_arg cb_arg;
4314 
4315 	spdk_bdev_initialize(bdev_init_cb, NULL);
4316 
4317 	bdev = allocate_bdev("bdev");
4318 
4319 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4320 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4321 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4322 
4323 	io_ch = spdk_bdev_get_io_channel(desc);
4324 	CU_ASSERT(io_ch != NULL);
4325 
4326 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4327 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4328 
4329 	/* This is the part1.
4330 	 * We will check the bdev_ch->io_submitted list
4331 	 * TO make sure that it can link IOs and only the user submitted IOs
4332 	 */
4333 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4334 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4335 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4336 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4337 	stub_complete_io(1);
4338 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4339 	stub_complete_io(1);
4340 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4341 
4342 	/* Split IO */
4343 	bdev->optimal_io_boundary = 16;
4344 	bdev->split_on_optimal_io_boundary = true;
4345 
4346 	/* Now test that a single-vector command is split correctly.
4347 	 * Offset 14, length 8, payload 0xF000
4348 	 *  Child - Offset 14, length 2, payload 0xF000
4349 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4350 	 *
4351 	 * Set up the expected values before calling spdk_bdev_read_blocks
4352 	 */
4353 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4354 	/* We count all submitted IOs including IO that are generated by splitting. */
4355 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
4356 	stub_complete_io(1);
4357 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4358 	stub_complete_io(1);
4359 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4360 
4361 	/* Also include the reset IO */
4362 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4363 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4364 	poll_threads();
4365 	stub_complete_io(1);
4366 	poll_threads();
4367 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4368 
4369 	/* This is part2
4370 	 * Test the desc timeout poller register
4371 	 */
4372 
4373 	/* Successfully set the timeout */
4374 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4375 	CU_ASSERT(desc->io_timeout_poller != NULL);
4376 	CU_ASSERT(desc->timeout_in_sec == 30);
4377 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4378 	CU_ASSERT(desc->cb_arg == &cb_arg);
4379 
4380 	/* Change the timeout limit */
4381 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4382 	CU_ASSERT(desc->io_timeout_poller != NULL);
4383 	CU_ASSERT(desc->timeout_in_sec == 20);
4384 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4385 	CU_ASSERT(desc->cb_arg == &cb_arg);
4386 
4387 	/* Disable the timeout */
4388 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
4389 	CU_ASSERT(desc->io_timeout_poller == NULL);
4390 
4391 	/* This the part3
4392 	 * We will test to catch timeout IO and check whether the IO is
4393 	 * the submitted one.
4394 	 */
4395 	memset(&cb_arg, 0, sizeof(cb_arg));
4396 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4397 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
4398 
4399 	/* Don't reach the limit */
4400 	spdk_delay_us(15 * spdk_get_ticks_hz());
4401 	poll_threads();
4402 	CU_ASSERT(cb_arg.type == 0);
4403 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4404 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4405 
4406 	/* 15 + 15 = 30 reach the limit */
4407 	spdk_delay_us(15 * spdk_get_ticks_hz());
4408 	poll_threads();
4409 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4410 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
4411 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
4412 	stub_complete_io(1);
4413 
4414 	/* Use the same split IO above and check the IO */
4415 	memset(&cb_arg, 0, sizeof(cb_arg));
4416 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4417 
4418 	/* The first child complete in time */
4419 	spdk_delay_us(15 * spdk_get_ticks_hz());
4420 	poll_threads();
4421 	stub_complete_io(1);
4422 	CU_ASSERT(cb_arg.type == 0);
4423 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4424 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4425 
4426 	/* The second child reach the limit */
4427 	spdk_delay_us(15 * spdk_get_ticks_hz());
4428 	poll_threads();
4429 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4430 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
4431 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
4432 	stub_complete_io(1);
4433 
4434 	/* Also include the reset IO */
4435 	memset(&cb_arg, 0, sizeof(cb_arg));
4436 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4437 	spdk_delay_us(30 * spdk_get_ticks_hz());
4438 	poll_threads();
4439 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
4440 	stub_complete_io(1);
4441 	poll_threads();
4442 
4443 	spdk_put_io_channel(io_ch);
4444 	spdk_bdev_close(desc);
4445 	free_bdev(bdev);
4446 	spdk_bdev_finish(bdev_fini_cb, NULL);
4447 	poll_threads();
4448 }
4449 
4450 static void
4451 bdev_set_qd_sampling(void)
4452 {
4453 	struct spdk_bdev *bdev;
4454 	struct spdk_bdev_desc *desc = NULL;
4455 	struct spdk_io_channel *io_ch = NULL;
4456 	struct spdk_bdev_channel *bdev_ch = NULL;
4457 	struct timeout_io_cb_arg cb_arg;
4458 
4459 	spdk_bdev_initialize(bdev_init_cb, NULL);
4460 
4461 	bdev = allocate_bdev("bdev");
4462 
4463 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4464 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4465 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4466 
4467 	io_ch = spdk_bdev_get_io_channel(desc);
4468 	CU_ASSERT(io_ch != NULL);
4469 
4470 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4471 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4472 
4473 	/* This is the part1.
4474 	 * We will check the bdev_ch->io_submitted list
4475 	 * TO make sure that it can link IOs and only the user submitted IOs
4476 	 */
4477 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4478 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4479 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4480 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4481 	stub_complete_io(1);
4482 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4483 	stub_complete_io(1);
4484 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4485 
4486 	/* This is the part2.
4487 	 * Test the bdev's qd poller register
4488 	 */
4489 	/* 1st Successfully set the qd sampling period */
4490 	spdk_bdev_set_qd_sampling_period(bdev, 10);
4491 	CU_ASSERT(bdev->internal.new_period == 10);
4492 	CU_ASSERT(bdev->internal.period == 10);
4493 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4494 	poll_threads();
4495 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4496 
4497 	/* 2nd Change the qd sampling period */
4498 	spdk_bdev_set_qd_sampling_period(bdev, 20);
4499 	CU_ASSERT(bdev->internal.new_period == 20);
4500 	CU_ASSERT(bdev->internal.period == 10);
4501 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4502 	poll_threads();
4503 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4504 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4505 
4506 	/* 3rd Change the qd sampling period and verify qd_poll_in_progress */
4507 	spdk_delay_us(20);
4508 	poll_thread_times(0, 1);
4509 	CU_ASSERT(bdev->internal.qd_poll_in_progress == true);
4510 	spdk_bdev_set_qd_sampling_period(bdev, 30);
4511 	CU_ASSERT(bdev->internal.new_period == 30);
4512 	CU_ASSERT(bdev->internal.period == 20);
4513 	poll_threads();
4514 	CU_ASSERT(bdev->internal.qd_poll_in_progress == false);
4515 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4516 
4517 	/* 4th Disable the qd sampling period */
4518 	spdk_bdev_set_qd_sampling_period(bdev, 0);
4519 	CU_ASSERT(bdev->internal.new_period == 0);
4520 	CU_ASSERT(bdev->internal.period == 30);
4521 	poll_threads();
4522 	CU_ASSERT(bdev->internal.qd_poller == NULL);
4523 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4524 	CU_ASSERT(bdev->internal.qd_desc == NULL);
4525 
4526 	/* This is the part3.
4527 	 * We will test the submitted IO and reset works
4528 	 * properly with the qd sampling.
4529 	 */
4530 	memset(&cb_arg, 0, sizeof(cb_arg));
4531 	spdk_bdev_set_qd_sampling_period(bdev, 1);
4532 	poll_threads();
4533 
4534 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4535 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4536 
4537 	/* Also include the reset IO */
4538 	memset(&cb_arg, 0, sizeof(cb_arg));
4539 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4540 	poll_threads();
4541 
4542 	/* Close the desc */
4543 	spdk_put_io_channel(io_ch);
4544 	spdk_bdev_close(desc);
4545 
4546 	/* Complete the submitted IO and reset */
4547 	stub_complete_io(2);
4548 	poll_threads();
4549 
4550 	free_bdev(bdev);
4551 	spdk_bdev_finish(bdev_fini_cb, NULL);
4552 	poll_threads();
4553 }
4554 
4555 static void
4556 lba_range_overlap(void)
4557 {
4558 	struct lba_range r1, r2;
4559 
4560 	r1.offset = 100;
4561 	r1.length = 50;
4562 
4563 	r2.offset = 0;
4564 	r2.length = 1;
4565 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4566 
4567 	r2.offset = 0;
4568 	r2.length = 100;
4569 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4570 
4571 	r2.offset = 0;
4572 	r2.length = 110;
4573 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4574 
4575 	r2.offset = 100;
4576 	r2.length = 10;
4577 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4578 
4579 	r2.offset = 110;
4580 	r2.length = 20;
4581 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4582 
4583 	r2.offset = 140;
4584 	r2.length = 150;
4585 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4586 
4587 	r2.offset = 130;
4588 	r2.length = 200;
4589 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4590 
4591 	r2.offset = 150;
4592 	r2.length = 100;
4593 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4594 
4595 	r2.offset = 110;
4596 	r2.length = 0;
4597 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4598 }
4599 
4600 static bool g_lock_lba_range_done;
4601 static bool g_unlock_lba_range_done;
4602 
4603 static void
4604 lock_lba_range_done(void *ctx, int status)
4605 {
4606 	g_lock_lba_range_done = true;
4607 }
4608 
4609 static void
4610 unlock_lba_range_done(void *ctx, int status)
4611 {
4612 	g_unlock_lba_range_done = true;
4613 }
4614 
4615 static void
4616 lock_lba_range_check_ranges(void)
4617 {
4618 	struct spdk_bdev *bdev;
4619 	struct spdk_bdev_desc *desc = NULL;
4620 	struct spdk_io_channel *io_ch;
4621 	struct spdk_bdev_channel *channel;
4622 	struct lba_range *range;
4623 	int ctx1;
4624 	int rc;
4625 
4626 	spdk_bdev_initialize(bdev_init_cb, NULL);
4627 
4628 	bdev = allocate_bdev("bdev0");
4629 
4630 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4631 	CU_ASSERT(rc == 0);
4632 	CU_ASSERT(desc != NULL);
4633 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4634 	io_ch = spdk_bdev_get_io_channel(desc);
4635 	CU_ASSERT(io_ch != NULL);
4636 	channel = spdk_io_channel_get_ctx(io_ch);
4637 
4638 	g_lock_lba_range_done = false;
4639 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4640 	CU_ASSERT(rc == 0);
4641 	poll_threads();
4642 
4643 	CU_ASSERT(g_lock_lba_range_done == true);
4644 	range = TAILQ_FIRST(&channel->locked_ranges);
4645 	SPDK_CU_ASSERT_FATAL(range != NULL);
4646 	CU_ASSERT(range->offset == 20);
4647 	CU_ASSERT(range->length == 10);
4648 	CU_ASSERT(range->owner_ch == channel);
4649 
4650 	/* Unlocks must exactly match a lock. */
4651 	g_unlock_lba_range_done = false;
4652 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
4653 	CU_ASSERT(rc == -EINVAL);
4654 	CU_ASSERT(g_unlock_lba_range_done == false);
4655 
4656 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4657 	CU_ASSERT(rc == 0);
4658 	spdk_delay_us(100);
4659 	poll_threads();
4660 
4661 	CU_ASSERT(g_unlock_lba_range_done == true);
4662 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4663 
4664 	spdk_put_io_channel(io_ch);
4665 	spdk_bdev_close(desc);
4666 	free_bdev(bdev);
4667 	spdk_bdev_finish(bdev_fini_cb, NULL);
4668 	poll_threads();
4669 }
4670 
4671 static void
4672 lock_lba_range_with_io_outstanding(void)
4673 {
4674 	struct spdk_bdev *bdev;
4675 	struct spdk_bdev_desc *desc = NULL;
4676 	struct spdk_io_channel *io_ch;
4677 	struct spdk_bdev_channel *channel;
4678 	struct lba_range *range;
4679 	char buf[4096];
4680 	int ctx1;
4681 	int rc;
4682 
4683 	spdk_bdev_initialize(bdev_init_cb, NULL);
4684 
4685 	bdev = allocate_bdev("bdev0");
4686 
4687 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4688 	CU_ASSERT(rc == 0);
4689 	CU_ASSERT(desc != NULL);
4690 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4691 	io_ch = spdk_bdev_get_io_channel(desc);
4692 	CU_ASSERT(io_ch != NULL);
4693 	channel = spdk_io_channel_get_ctx(io_ch);
4694 
4695 	g_io_done = false;
4696 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4697 	CU_ASSERT(rc == 0);
4698 
4699 	g_lock_lba_range_done = false;
4700 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4701 	CU_ASSERT(rc == 0);
4702 	poll_threads();
4703 
4704 	/* The lock should immediately become valid, since there are no outstanding
4705 	 * write I/O.
4706 	 */
4707 	CU_ASSERT(g_io_done == false);
4708 	CU_ASSERT(g_lock_lba_range_done == true);
4709 	range = TAILQ_FIRST(&channel->locked_ranges);
4710 	SPDK_CU_ASSERT_FATAL(range != NULL);
4711 	CU_ASSERT(range->offset == 20);
4712 	CU_ASSERT(range->length == 10);
4713 	CU_ASSERT(range->owner_ch == channel);
4714 	CU_ASSERT(range->locked_ctx == &ctx1);
4715 
4716 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4717 	CU_ASSERT(rc == 0);
4718 	stub_complete_io(1);
4719 	spdk_delay_us(100);
4720 	poll_threads();
4721 
4722 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4723 
4724 	/* Now try again, but with a write I/O. */
4725 	g_io_done = false;
4726 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4727 	CU_ASSERT(rc == 0);
4728 
4729 	g_lock_lba_range_done = false;
4730 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4731 	CU_ASSERT(rc == 0);
4732 	poll_threads();
4733 
4734 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
4735 	 * But note that the range should be on the channel's locked_list, to make sure no
4736 	 * new write I/O are started.
4737 	 */
4738 	CU_ASSERT(g_io_done == false);
4739 	CU_ASSERT(g_lock_lba_range_done == false);
4740 	range = TAILQ_FIRST(&channel->locked_ranges);
4741 	SPDK_CU_ASSERT_FATAL(range != NULL);
4742 	CU_ASSERT(range->offset == 20);
4743 	CU_ASSERT(range->length == 10);
4744 
4745 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
4746 	 * our callback was invoked).
4747 	 */
4748 	stub_complete_io(1);
4749 	spdk_delay_us(100);
4750 	poll_threads();
4751 	CU_ASSERT(g_io_done == true);
4752 	CU_ASSERT(g_lock_lba_range_done == true);
4753 
4754 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4755 	CU_ASSERT(rc == 0);
4756 	poll_threads();
4757 
4758 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4759 
4760 	spdk_put_io_channel(io_ch);
4761 	spdk_bdev_close(desc);
4762 	free_bdev(bdev);
4763 	spdk_bdev_finish(bdev_fini_cb, NULL);
4764 	poll_threads();
4765 }
4766 
4767 static void
4768 lock_lba_range_overlapped(void)
4769 {
4770 	struct spdk_bdev *bdev;
4771 	struct spdk_bdev_desc *desc = NULL;
4772 	struct spdk_io_channel *io_ch;
4773 	struct spdk_bdev_channel *channel;
4774 	struct lba_range *range;
4775 	int ctx1;
4776 	int rc;
4777 
4778 	spdk_bdev_initialize(bdev_init_cb, NULL);
4779 
4780 	bdev = allocate_bdev("bdev0");
4781 
4782 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4783 	CU_ASSERT(rc == 0);
4784 	CU_ASSERT(desc != NULL);
4785 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4786 	io_ch = spdk_bdev_get_io_channel(desc);
4787 	CU_ASSERT(io_ch != NULL);
4788 	channel = spdk_io_channel_get_ctx(io_ch);
4789 
4790 	/* Lock range 20-29. */
4791 	g_lock_lba_range_done = false;
4792 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4793 	CU_ASSERT(rc == 0);
4794 	poll_threads();
4795 
4796 	CU_ASSERT(g_lock_lba_range_done == true);
4797 	range = TAILQ_FIRST(&channel->locked_ranges);
4798 	SPDK_CU_ASSERT_FATAL(range != NULL);
4799 	CU_ASSERT(range->offset == 20);
4800 	CU_ASSERT(range->length == 10);
4801 
4802 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
4803 	 * 20-29.
4804 	 */
4805 	g_lock_lba_range_done = false;
4806 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
4807 	CU_ASSERT(rc == 0);
4808 	poll_threads();
4809 
4810 	CU_ASSERT(g_lock_lba_range_done == false);
4811 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4812 	SPDK_CU_ASSERT_FATAL(range != NULL);
4813 	CU_ASSERT(range->offset == 25);
4814 	CU_ASSERT(range->length == 15);
4815 
4816 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
4817 	 * no longer overlaps with an active lock.
4818 	 */
4819 	g_unlock_lba_range_done = false;
4820 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4821 	CU_ASSERT(rc == 0);
4822 	poll_threads();
4823 
4824 	CU_ASSERT(g_unlock_lba_range_done == true);
4825 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4826 	range = TAILQ_FIRST(&channel->locked_ranges);
4827 	SPDK_CU_ASSERT_FATAL(range != NULL);
4828 	CU_ASSERT(range->offset == 25);
4829 	CU_ASSERT(range->length == 15);
4830 
4831 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
4832 	 * currently active 25-39 lock.
4833 	 */
4834 	g_lock_lba_range_done = false;
4835 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
4836 	CU_ASSERT(rc == 0);
4837 	poll_threads();
4838 
4839 	CU_ASSERT(g_lock_lba_range_done == true);
4840 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4841 	SPDK_CU_ASSERT_FATAL(range != NULL);
4842 	range = TAILQ_NEXT(range, tailq);
4843 	SPDK_CU_ASSERT_FATAL(range != NULL);
4844 	CU_ASSERT(range->offset == 40);
4845 	CU_ASSERT(range->length == 20);
4846 
4847 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
4848 	g_lock_lba_range_done = false;
4849 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
4850 	CU_ASSERT(rc == 0);
4851 	poll_threads();
4852 
4853 	CU_ASSERT(g_lock_lba_range_done == false);
4854 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4855 	SPDK_CU_ASSERT_FATAL(range != NULL);
4856 	CU_ASSERT(range->offset == 35);
4857 	CU_ASSERT(range->length == 10);
4858 
4859 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
4860 	 * the 40-59 lock is still active.
4861 	 */
4862 	g_unlock_lba_range_done = false;
4863 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
4864 	CU_ASSERT(rc == 0);
4865 	poll_threads();
4866 
4867 	CU_ASSERT(g_unlock_lba_range_done == true);
4868 	CU_ASSERT(g_lock_lba_range_done == false);
4869 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4870 	SPDK_CU_ASSERT_FATAL(range != NULL);
4871 	CU_ASSERT(range->offset == 35);
4872 	CU_ASSERT(range->length == 10);
4873 
4874 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
4875 	 * no longer any active overlapping locks.
4876 	 */
4877 	g_unlock_lba_range_done = false;
4878 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
4879 	CU_ASSERT(rc == 0);
4880 	poll_threads();
4881 
4882 	CU_ASSERT(g_unlock_lba_range_done == true);
4883 	CU_ASSERT(g_lock_lba_range_done == true);
4884 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4885 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4886 	SPDK_CU_ASSERT_FATAL(range != NULL);
4887 	CU_ASSERT(range->offset == 35);
4888 	CU_ASSERT(range->length == 10);
4889 
4890 	/* Finally, unlock 35-44. */
4891 	g_unlock_lba_range_done = false;
4892 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
4893 	CU_ASSERT(rc == 0);
4894 	poll_threads();
4895 
4896 	CU_ASSERT(g_unlock_lba_range_done == true);
4897 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
4898 
4899 	spdk_put_io_channel(io_ch);
4900 	spdk_bdev_close(desc);
4901 	free_bdev(bdev);
4902 	spdk_bdev_finish(bdev_fini_cb, NULL);
4903 	poll_threads();
4904 }
4905 
4906 static void
4907 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
4908 {
4909 	g_abort_done = true;
4910 	g_abort_status = bdev_io->internal.status;
4911 	spdk_bdev_free_io(bdev_io);
4912 }
4913 
4914 static void
4915 bdev_io_abort(void)
4916 {
4917 	struct spdk_bdev *bdev;
4918 	struct spdk_bdev_desc *desc = NULL;
4919 	struct spdk_io_channel *io_ch;
4920 	struct spdk_bdev_channel *channel;
4921 	struct spdk_bdev_mgmt_channel *mgmt_ch;
4922 	struct spdk_bdev_opts bdev_opts = {};
4923 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
4924 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
4925 	int rc;
4926 
4927 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4928 	bdev_opts.bdev_io_pool_size = 7;
4929 	bdev_opts.bdev_io_cache_size = 2;
4930 
4931 	rc = spdk_bdev_set_opts(&bdev_opts);
4932 	CU_ASSERT(rc == 0);
4933 	spdk_bdev_initialize(bdev_init_cb, NULL);
4934 
4935 	bdev = allocate_bdev("bdev0");
4936 
4937 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4938 	CU_ASSERT(rc == 0);
4939 	CU_ASSERT(desc != NULL);
4940 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4941 	io_ch = spdk_bdev_get_io_channel(desc);
4942 	CU_ASSERT(io_ch != NULL);
4943 	channel = spdk_io_channel_get_ctx(io_ch);
4944 	mgmt_ch = channel->shared_resource->mgmt_ch;
4945 
4946 	g_abort_done = false;
4947 
4948 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
4949 
4950 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4951 	CU_ASSERT(rc == -ENOTSUP);
4952 
4953 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
4954 
4955 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
4956 	CU_ASSERT(rc == 0);
4957 	CU_ASSERT(g_abort_done == true);
4958 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
4959 
4960 	/* Test the case that the target I/O was successfully aborted. */
4961 	g_io_done = false;
4962 
4963 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
4964 	CU_ASSERT(rc == 0);
4965 	CU_ASSERT(g_io_done == false);
4966 
4967 	g_abort_done = false;
4968 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4969 
4970 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4971 	CU_ASSERT(rc == 0);
4972 	CU_ASSERT(g_io_done == true);
4973 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4974 	stub_complete_io(1);
4975 	CU_ASSERT(g_abort_done == true);
4976 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4977 
4978 	/* Test the case that the target I/O was not aborted because it completed
4979 	 * in the middle of execution of the abort.
4980 	 */
4981 	g_io_done = false;
4982 
4983 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
4984 	CU_ASSERT(rc == 0);
4985 	CU_ASSERT(g_io_done == false);
4986 
4987 	g_abort_done = false;
4988 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
4989 
4990 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4991 	CU_ASSERT(rc == 0);
4992 	CU_ASSERT(g_io_done == false);
4993 
4994 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4995 	stub_complete_io(1);
4996 	CU_ASSERT(g_io_done == true);
4997 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4998 
4999 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5000 	stub_complete_io(1);
5001 	CU_ASSERT(g_abort_done == true);
5002 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5003 
5004 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5005 
5006 	bdev->optimal_io_boundary = 16;
5007 	bdev->split_on_optimal_io_boundary = true;
5008 
5009 	/* Test that a single-vector command which is split is aborted correctly.
5010 	 * Offset 14, length 8, payload 0xF000
5011 	 *  Child - Offset 14, length 2, payload 0xF000
5012 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5013 	 */
5014 	g_io_done = false;
5015 
5016 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
5017 	CU_ASSERT(rc == 0);
5018 	CU_ASSERT(g_io_done == false);
5019 
5020 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5021 
5022 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5023 
5024 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5025 	CU_ASSERT(rc == 0);
5026 	CU_ASSERT(g_io_done == true);
5027 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5028 	stub_complete_io(2);
5029 	CU_ASSERT(g_abort_done == true);
5030 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5031 
5032 	/* Test that a multi-vector command that needs to be split by strip and then
5033 	 * needs to be split is aborted correctly. Abort is requested before the second
5034 	 * child I/O was submitted. The parent I/O should complete with failure without
5035 	 * submitting the second child I/O.
5036 	 */
5037 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
5038 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
5039 		iov[i].iov_len = 512;
5040 	}
5041 
5042 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
5043 	g_io_done = false;
5044 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
5045 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
5046 	CU_ASSERT(rc == 0);
5047 	CU_ASSERT(g_io_done == false);
5048 
5049 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5050 
5051 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5052 
5053 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5054 	CU_ASSERT(rc == 0);
5055 	CU_ASSERT(g_io_done == true);
5056 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5057 	stub_complete_io(1);
5058 	CU_ASSERT(g_abort_done == true);
5059 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5060 
5061 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5062 
5063 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5064 
5065 	bdev->optimal_io_boundary = 16;
5066 	g_io_done = false;
5067 
5068 	/* Test that a ingle-vector command which is split is aborted correctly.
5069 	 * Differently from the above, the child abort request will be submitted
5070 	 * sequentially due to the capacity of spdk_bdev_io.
5071 	 */
5072 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
5073 	CU_ASSERT(rc == 0);
5074 	CU_ASSERT(g_io_done == false);
5075 
5076 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5077 
5078 	g_abort_done = false;
5079 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5080 
5081 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5082 	CU_ASSERT(rc == 0);
5083 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
5084 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5085 
5086 	stub_complete_io(1);
5087 	CU_ASSERT(g_io_done == true);
5088 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5089 	stub_complete_io(3);
5090 	CU_ASSERT(g_abort_done == true);
5091 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5092 
5093 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5094 
5095 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5096 
5097 	spdk_put_io_channel(io_ch);
5098 	spdk_bdev_close(desc);
5099 	free_bdev(bdev);
5100 	spdk_bdev_finish(bdev_fini_cb, NULL);
5101 	poll_threads();
5102 }
5103 
5104 static void
5105 bdev_unmap(void)
5106 {
5107 	struct spdk_bdev *bdev;
5108 	struct spdk_bdev_desc *desc = NULL;
5109 	struct spdk_io_channel *ioch;
5110 	struct spdk_bdev_channel *bdev_ch;
5111 	struct ut_expected_io *expected_io;
5112 	struct spdk_bdev_opts bdev_opts = {};
5113 	uint32_t i, num_outstanding;
5114 	uint64_t offset, num_blocks, max_unmap_blocks, num_children;
5115 	int rc;
5116 
5117 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5118 	bdev_opts.bdev_io_pool_size = 512;
5119 	bdev_opts.bdev_io_cache_size = 64;
5120 	rc = spdk_bdev_set_opts(&bdev_opts);
5121 	CU_ASSERT(rc == 0);
5122 
5123 	spdk_bdev_initialize(bdev_init_cb, NULL);
5124 	bdev = allocate_bdev("bdev");
5125 
5126 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5127 	CU_ASSERT_EQUAL(rc, 0);
5128 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5129 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5130 	ioch = spdk_bdev_get_io_channel(desc);
5131 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5132 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5133 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5134 
5135 	fn_table.submit_request = stub_submit_request;
5136 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5137 
5138 	/* Case 1: First test the request won't be split */
5139 	num_blocks = 32;
5140 
5141 	g_io_done = false;
5142 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 0, num_blocks, 0);
5143 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5144 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5145 	CU_ASSERT_EQUAL(rc, 0);
5146 	CU_ASSERT(g_io_done == false);
5147 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5148 	stub_complete_io(1);
5149 	CU_ASSERT(g_io_done == true);
5150 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5151 
5152 	/* Case 2: Test the split with 2 children requests */
5153 	bdev->max_unmap = 8;
5154 	bdev->max_unmap_segments = 2;
5155 	max_unmap_blocks = bdev->max_unmap * bdev->max_unmap_segments;
5156 	num_blocks = max_unmap_blocks * 2;
5157 	offset = 0;
5158 
5159 	g_io_done = false;
5160 	for (i = 0; i < 2; i++) {
5161 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5162 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5163 		offset += max_unmap_blocks;
5164 	}
5165 
5166 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5167 	CU_ASSERT_EQUAL(rc, 0);
5168 	CU_ASSERT(g_io_done == false);
5169 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5170 	stub_complete_io(2);
5171 	CU_ASSERT(g_io_done == true);
5172 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5173 
5174 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5175 	num_children = 15;
5176 	num_blocks = max_unmap_blocks * num_children;
5177 	g_io_done = false;
5178 	offset = 0;
5179 	for (i = 0; i < num_children; i++) {
5180 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5181 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5182 		offset += max_unmap_blocks;
5183 	}
5184 
5185 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5186 	CU_ASSERT_EQUAL(rc, 0);
5187 	CU_ASSERT(g_io_done == false);
5188 
5189 	while (num_children > 0) {
5190 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5191 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5192 		stub_complete_io(num_outstanding);
5193 		num_children -= num_outstanding;
5194 	}
5195 	CU_ASSERT(g_io_done == true);
5196 
5197 	spdk_put_io_channel(ioch);
5198 	spdk_bdev_close(desc);
5199 	free_bdev(bdev);
5200 	spdk_bdev_finish(bdev_fini_cb, NULL);
5201 	poll_threads();
5202 }
5203 
5204 static void
5205 bdev_write_zeroes_split_test(void)
5206 {
5207 	struct spdk_bdev *bdev;
5208 	struct spdk_bdev_desc *desc = NULL;
5209 	struct spdk_io_channel *ioch;
5210 	struct spdk_bdev_channel *bdev_ch;
5211 	struct ut_expected_io *expected_io;
5212 	struct spdk_bdev_opts bdev_opts = {};
5213 	uint32_t i, num_outstanding;
5214 	uint64_t offset, num_blocks, max_write_zeroes_blocks, num_children;
5215 	int rc;
5216 
5217 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5218 	bdev_opts.bdev_io_pool_size = 512;
5219 	bdev_opts.bdev_io_cache_size = 64;
5220 	rc = spdk_bdev_set_opts(&bdev_opts);
5221 	CU_ASSERT(rc == 0);
5222 
5223 	spdk_bdev_initialize(bdev_init_cb, NULL);
5224 	bdev = allocate_bdev("bdev");
5225 
5226 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5227 	CU_ASSERT_EQUAL(rc, 0);
5228 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5229 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5230 	ioch = spdk_bdev_get_io_channel(desc);
5231 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5232 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5233 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5234 
5235 	fn_table.submit_request = stub_submit_request;
5236 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5237 
5238 	/* Case 1: First test the request won't be split */
5239 	num_blocks = 32;
5240 
5241 	g_io_done = false;
5242 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
5243 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5244 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5245 	CU_ASSERT_EQUAL(rc, 0);
5246 	CU_ASSERT(g_io_done == false);
5247 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5248 	stub_complete_io(1);
5249 	CU_ASSERT(g_io_done == true);
5250 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5251 
5252 	/* Case 2: Test the split with 2 children requests */
5253 	max_write_zeroes_blocks = 8;
5254 	bdev->max_write_zeroes = max_write_zeroes_blocks;
5255 	num_blocks = max_write_zeroes_blocks * 2;
5256 	offset = 0;
5257 
5258 	g_io_done = false;
5259 	for (i = 0; i < 2; i++) {
5260 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5261 						   0);
5262 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5263 		offset += max_write_zeroes_blocks;
5264 	}
5265 
5266 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5267 	CU_ASSERT_EQUAL(rc, 0);
5268 	CU_ASSERT(g_io_done == false);
5269 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5270 	stub_complete_io(2);
5271 	CU_ASSERT(g_io_done == true);
5272 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5273 
5274 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5275 	num_children = 15;
5276 	num_blocks = max_write_zeroes_blocks * num_children;
5277 	g_io_done = false;
5278 	offset = 0;
5279 	for (i = 0; i < num_children; i++) {
5280 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5281 						   0);
5282 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5283 		offset += max_write_zeroes_blocks;
5284 	}
5285 
5286 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5287 	CU_ASSERT_EQUAL(rc, 0);
5288 	CU_ASSERT(g_io_done == false);
5289 
5290 	while (num_children > 0) {
5291 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5292 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5293 		stub_complete_io(num_outstanding);
5294 		num_children -= num_outstanding;
5295 	}
5296 	CU_ASSERT(g_io_done == true);
5297 
5298 	spdk_put_io_channel(ioch);
5299 	spdk_bdev_close(desc);
5300 	free_bdev(bdev);
5301 	spdk_bdev_finish(bdev_fini_cb, NULL);
5302 	poll_threads();
5303 }
5304 
5305 static void
5306 bdev_set_options_test(void)
5307 {
5308 	struct spdk_bdev_opts bdev_opts = {};
5309 	int rc;
5310 
5311 	/* Case1: Do not set opts_size */
5312 	rc = spdk_bdev_set_opts(&bdev_opts);
5313 	CU_ASSERT(rc == -1);
5314 
5315 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5316 	bdev_opts.bdev_io_pool_size = 4;
5317 	bdev_opts.bdev_io_cache_size = 2;
5318 	bdev_opts.small_buf_pool_size = 4;
5319 
5320 	/* Case 2: Do not set valid small_buf_pool_size and large_buf_pool_size */
5321 	rc = spdk_bdev_set_opts(&bdev_opts);
5322 	CU_ASSERT(rc == -1);
5323 
5324 	/* Case 3: Do not set valid large_buf_pool_size */
5325 	bdev_opts.small_buf_pool_size = BUF_SMALL_POOL_SIZE;
5326 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE - 1;
5327 	rc = spdk_bdev_set_opts(&bdev_opts);
5328 	CU_ASSERT(rc == -1);
5329 
5330 	/* Case4: set valid large buf_pool_size */
5331 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE;
5332 	rc = spdk_bdev_set_opts(&bdev_opts);
5333 	CU_ASSERT(rc == 0);
5334 
5335 	/* Case5: Set different valid value for small and large buf pool */
5336 	bdev_opts.large_buf_pool_size = BUF_SMALL_POOL_SIZE + 3;
5337 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE + 3;
5338 	rc = spdk_bdev_set_opts(&bdev_opts);
5339 	CU_ASSERT(rc == 0);
5340 }
5341 
5342 static uint64_t
5343 get_ns_time(void)
5344 {
5345 	int rc;
5346 	struct timespec ts;
5347 
5348 	rc = clock_gettime(CLOCK_MONOTONIC, &ts);
5349 	CU_ASSERT(rc == 0);
5350 	return ts.tv_sec * 1000 * 1000 * 1000 + ts.tv_nsec;
5351 }
5352 
5353 static int
5354 rb_tree_get_height(struct spdk_bdev_name *bdev_name)
5355 {
5356 	int h1, h2;
5357 
5358 	if (bdev_name == NULL) {
5359 		return -1;
5360 	} else {
5361 		h1 = rb_tree_get_height(RB_LEFT(bdev_name, node));
5362 		h2 = rb_tree_get_height(RB_RIGHT(bdev_name, node));
5363 
5364 		return spdk_max(h1, h2) + 1;
5365 	}
5366 }
5367 
5368 static void
5369 bdev_multi_allocation(void)
5370 {
5371 	const int max_bdev_num = 1024 * 16;
5372 	char name[max_bdev_num][16];
5373 	char noexist_name[] = "invalid_bdev";
5374 	struct spdk_bdev *bdev[max_bdev_num];
5375 	int i, j;
5376 	uint64_t last_time;
5377 	int bdev_num;
5378 	int height;
5379 
5380 	for (j = 0; j < max_bdev_num; j++) {
5381 		snprintf(name[j], sizeof(name[j]), "bdev%d", j);
5382 	}
5383 
5384 	for (i = 0; i < 16; i++) {
5385 		last_time = get_ns_time();
5386 		bdev_num = 1024 * (i + 1);
5387 		for (j = 0; j < bdev_num; j++) {
5388 			bdev[j] = allocate_bdev(name[j]);
5389 			height = rb_tree_get_height(&bdev[j]->internal.bdev_name);
5390 			CU_ASSERT(height <= (int)(spdk_u32log2(2 * j + 2)));
5391 		}
5392 		SPDK_NOTICELOG("alloc bdev num %d takes %" PRIu64 " ms\n", bdev_num,
5393 			       (get_ns_time() - last_time) / 1000 / 1000);
5394 		for (j = 0; j < bdev_num; j++) {
5395 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) != NULL);
5396 		}
5397 		CU_ASSERT(spdk_bdev_get_by_name(noexist_name) == NULL);
5398 
5399 		for (j = 0; j < bdev_num; j++) {
5400 			free_bdev(bdev[j]);
5401 		}
5402 		for (j = 0; j < bdev_num; j++) {
5403 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) == NULL);
5404 		}
5405 	}
5406 }
5407 
5408 static struct spdk_memory_domain *g_bdev_memory_domain = (struct spdk_memory_domain *) 0xf00df00d;
5409 
5410 static int
5411 test_bdev_get_supported_dma_device_types_op(void *ctx, struct spdk_memory_domain **domains,
5412 		int array_size)
5413 {
5414 	if (array_size > 0 && domains) {
5415 		domains[0] = g_bdev_memory_domain;
5416 	}
5417 
5418 	return 1;
5419 }
5420 
5421 static void
5422 bdev_get_memory_domains(void)
5423 {
5424 	struct spdk_bdev_fn_table fn_table = {
5425 		.get_memory_domains = test_bdev_get_supported_dma_device_types_op
5426 	};
5427 	struct spdk_bdev bdev = { .fn_table = &fn_table };
5428 	struct spdk_memory_domain *domains[2] = {};
5429 	int rc;
5430 
5431 	/* bdev is NULL */
5432 	rc = spdk_bdev_get_memory_domains(NULL, domains, 2);
5433 	CU_ASSERT(rc == -EINVAL);
5434 
5435 	/* domains is NULL */
5436 	rc = spdk_bdev_get_memory_domains(&bdev, NULL, 2);
5437 	CU_ASSERT(rc == 1);
5438 
5439 	/* array size is 0 */
5440 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 0);
5441 	CU_ASSERT(rc == 1);
5442 
5443 	/* get_supported_dma_device_types op is set */
5444 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5445 	CU_ASSERT(rc == 1);
5446 	CU_ASSERT(domains[0] == g_bdev_memory_domain);
5447 
5448 	/* get_supported_dma_device_types op is not set */
5449 	fn_table.get_memory_domains = NULL;
5450 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5451 	CU_ASSERT(rc == 0);
5452 }
5453 
5454 static void
5455 _bdev_io_ext(struct spdk_bdev_ext_io_opts *ext_io_opts)
5456 {
5457 	struct spdk_bdev *bdev;
5458 	struct spdk_bdev_desc *desc = NULL;
5459 	struct spdk_io_channel *io_ch;
5460 	char io_buf[512];
5461 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5462 	struct ut_expected_io *expected_io;
5463 	int rc;
5464 
5465 	spdk_bdev_initialize(bdev_init_cb, NULL);
5466 
5467 	bdev = allocate_bdev("bdev0");
5468 	bdev->md_interleave = false;
5469 	bdev->md_len = 8;
5470 
5471 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5472 	CU_ASSERT(rc == 0);
5473 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5474 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5475 	io_ch = spdk_bdev_get_io_channel(desc);
5476 	CU_ASSERT(io_ch != NULL);
5477 
5478 	/* read */
5479 	g_io_done = false;
5480 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5481 	if (ext_io_opts) {
5482 		expected_io->md_buf = ext_io_opts->metadata;
5483 		expected_io->ext_io_opts = ext_io_opts;
5484 	}
5485 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5486 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5487 
5488 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5489 
5490 	CU_ASSERT(rc == 0);
5491 	CU_ASSERT(g_io_done == false);
5492 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5493 	stub_complete_io(1);
5494 	CU_ASSERT(g_io_done == true);
5495 
5496 	/* write */
5497 	g_io_done = false;
5498 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5499 	if (ext_io_opts) {
5500 		expected_io->md_buf = ext_io_opts->metadata;
5501 		expected_io->ext_io_opts = ext_io_opts;
5502 	}
5503 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5504 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5505 
5506 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5507 
5508 	CU_ASSERT(rc == 0);
5509 	CU_ASSERT(g_io_done == false);
5510 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5511 	stub_complete_io(1);
5512 	CU_ASSERT(g_io_done == true);
5513 
5514 	spdk_put_io_channel(io_ch);
5515 	spdk_bdev_close(desc);
5516 	free_bdev(bdev);
5517 	spdk_bdev_finish(bdev_fini_cb, NULL);
5518 	poll_threads();
5519 
5520 }
5521 
5522 static void
5523 bdev_io_ext(void)
5524 {
5525 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5526 		.metadata = (void *)0xFF000000,
5527 		.size = sizeof(ext_io_opts)
5528 	};
5529 
5530 	_bdev_io_ext(&ext_io_opts);
5531 }
5532 
5533 static void
5534 bdev_io_ext_no_opts(void)
5535 {
5536 	_bdev_io_ext(NULL);
5537 }
5538 
5539 static void
5540 bdev_io_ext_invalid_opts(void)
5541 {
5542 	struct spdk_bdev *bdev;
5543 	struct spdk_bdev_desc *desc = NULL;
5544 	struct spdk_io_channel *io_ch;
5545 	char io_buf[512];
5546 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5547 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5548 		.metadata = (void *)0xFF000000,
5549 		.size = sizeof(ext_io_opts)
5550 	};
5551 	int rc;
5552 
5553 	spdk_bdev_initialize(bdev_init_cb, NULL);
5554 
5555 	bdev = allocate_bdev("bdev0");
5556 	bdev->md_interleave = false;
5557 	bdev->md_len = 8;
5558 
5559 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5560 	CU_ASSERT(rc == 0);
5561 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5562 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5563 	io_ch = spdk_bdev_get_io_channel(desc);
5564 	CU_ASSERT(io_ch != NULL);
5565 
5566 	/* Test invalid ext_opts size */
5567 	ext_io_opts.size = 0;
5568 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5569 	CU_ASSERT(rc == -EINVAL);
5570 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5571 	CU_ASSERT(rc == -EINVAL);
5572 
5573 	ext_io_opts.size = sizeof(ext_io_opts) * 2;
5574 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5575 	CU_ASSERT(rc == -EINVAL);
5576 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5577 	CU_ASSERT(rc == -EINVAL);
5578 
5579 	ext_io_opts.size = offsetof(struct spdk_bdev_ext_io_opts, metadata) +
5580 			   sizeof(ext_io_opts.metadata) - 1;
5581 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5582 	CU_ASSERT(rc == -EINVAL);
5583 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5584 	CU_ASSERT(rc == -EINVAL);
5585 
5586 	spdk_put_io_channel(io_ch);
5587 	spdk_bdev_close(desc);
5588 	free_bdev(bdev);
5589 	spdk_bdev_finish(bdev_fini_cb, NULL);
5590 	poll_threads();
5591 }
5592 
5593 static void
5594 bdev_io_ext_split(void)
5595 {
5596 	struct spdk_bdev *bdev;
5597 	struct spdk_bdev_desc *desc = NULL;
5598 	struct spdk_io_channel *io_ch;
5599 	char io_buf[512];
5600 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5601 	struct ut_expected_io *expected_io;
5602 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5603 		.metadata = (void *)0xFF000000,
5604 		.size = sizeof(ext_io_opts)
5605 	};
5606 	int rc;
5607 
5608 	spdk_bdev_initialize(bdev_init_cb, NULL);
5609 
5610 	bdev = allocate_bdev("bdev0");
5611 	bdev->md_interleave = false;
5612 	bdev->md_len = 8;
5613 
5614 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5615 	CU_ASSERT(rc == 0);
5616 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5617 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5618 	io_ch = spdk_bdev_get_io_channel(desc);
5619 	CU_ASSERT(io_ch != NULL);
5620 
5621 	/* Check that IO request with ext_opts and metadata is split correctly
5622 	 * Offset 14, length 8, payload 0xF000
5623 	 *  Child - Offset 14, length 2, payload 0xF000
5624 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5625 	 */
5626 	bdev->optimal_io_boundary = 16;
5627 	bdev->split_on_optimal_io_boundary = true;
5628 	bdev->md_interleave = false;
5629 	bdev->md_len = 8;
5630 
5631 	iov.iov_base = (void *)0xF000;
5632 	iov.iov_len = 4096;
5633 	memset(&ext_io_opts, 0, sizeof(ext_io_opts));
5634 	ext_io_opts.metadata = (void *)0xFF000000;
5635 	ext_io_opts.size = sizeof(ext_io_opts);
5636 	g_io_done = false;
5637 
5638 	/* read */
5639 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
5640 	expected_io->md_buf = ext_io_opts.metadata;
5641 	expected_io->ext_io_opts = &ext_io_opts;
5642 	expected_io->copy_opts = true;
5643 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5644 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5645 
5646 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
5647 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5648 	expected_io->ext_io_opts = &ext_io_opts;
5649 	expected_io->copy_opts = true;
5650 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5651 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5652 
5653 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5654 	CU_ASSERT(rc == 0);
5655 	CU_ASSERT(g_io_done == false);
5656 
5657 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5658 	stub_complete_io(2);
5659 	CU_ASSERT(g_io_done == true);
5660 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5661 
5662 	/* write */
5663 	g_io_done = false;
5664 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
5665 	expected_io->md_buf = ext_io_opts.metadata;
5666 	expected_io->ext_io_opts = &ext_io_opts;
5667 	expected_io->copy_opts = true;
5668 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5669 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5670 
5671 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 6, 1);
5672 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5673 	expected_io->ext_io_opts = &ext_io_opts;
5674 	expected_io->copy_opts = true;
5675 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5676 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5677 
5678 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5679 	CU_ASSERT(rc == 0);
5680 	CU_ASSERT(g_io_done == false);
5681 
5682 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5683 	stub_complete_io(2);
5684 	CU_ASSERT(g_io_done == true);
5685 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5686 
5687 	spdk_put_io_channel(io_ch);
5688 	spdk_bdev_close(desc);
5689 	free_bdev(bdev);
5690 	spdk_bdev_finish(bdev_fini_cb, NULL);
5691 	poll_threads();
5692 }
5693 
5694 static void
5695 bdev_io_ext_bounce_buffer(void)
5696 {
5697 	struct spdk_bdev *bdev;
5698 	struct spdk_bdev_desc *desc = NULL;
5699 	struct spdk_io_channel *io_ch;
5700 	char io_buf[512];
5701 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5702 	struct ut_expected_io *expected_io;
5703 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5704 		.metadata = (void *)0xFF000000,
5705 		.size = sizeof(ext_io_opts)
5706 	};
5707 	int rc;
5708 
5709 	spdk_bdev_initialize(bdev_init_cb, NULL);
5710 
5711 	bdev = allocate_bdev("bdev0");
5712 	bdev->md_interleave = false;
5713 	bdev->md_len = 8;
5714 
5715 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5716 	CU_ASSERT(rc == 0);
5717 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5718 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5719 	io_ch = spdk_bdev_get_io_channel(desc);
5720 	CU_ASSERT(io_ch != NULL);
5721 
5722 	/* Verify data pull/push
5723 	 * bdev doesn't support memory domains, so buffers from bdev memory pool will be used */
5724 	ext_io_opts.memory_domain = (struct spdk_memory_domain *)0xdeadbeef;
5725 
5726 	/* read */
5727 	g_io_done = false;
5728 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5729 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5730 	expected_io->ext_io_opts = &ext_io_opts;
5731 	expected_io->copy_opts = true;
5732 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5733 
5734 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5735 
5736 	CU_ASSERT(rc == 0);
5737 	CU_ASSERT(g_io_done == false);
5738 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5739 	stub_complete_io(1);
5740 	CU_ASSERT(g_memory_domain_push_data_called == true);
5741 	CU_ASSERT(g_io_done == true);
5742 
5743 	/* write */
5744 	g_io_done = false;
5745 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5746 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5747 	expected_io->ext_io_opts = &ext_io_opts;
5748 	expected_io->copy_opts = true;
5749 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5750 
5751 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5752 
5753 	CU_ASSERT(rc == 0);
5754 	CU_ASSERT(g_memory_domain_pull_data_called == true);
5755 	CU_ASSERT(g_io_done == false);
5756 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5757 	stub_complete_io(1);
5758 	CU_ASSERT(g_io_done == true);
5759 
5760 	spdk_put_io_channel(io_ch);
5761 	spdk_bdev_close(desc);
5762 	free_bdev(bdev);
5763 	spdk_bdev_finish(bdev_fini_cb, NULL);
5764 	poll_threads();
5765 }
5766 
5767 static void
5768 bdev_register_uuid_alias(void)
5769 {
5770 	struct spdk_bdev *bdev, *second;
5771 	char uuid[SPDK_UUID_STRING_LEN];
5772 	int rc;
5773 
5774 	spdk_bdev_initialize(bdev_init_cb, NULL);
5775 	bdev = allocate_bdev("bdev0");
5776 
5777 	/* Make sure an UUID was generated  */
5778 	CU_ASSERT_FALSE(spdk_mem_all_zero(&bdev->uuid, sizeof(bdev->uuid)));
5779 
5780 	/* Check that an UUID alias was registered */
5781 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5782 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5783 
5784 	/* Unregister the bdev */
5785 	spdk_bdev_unregister(bdev, NULL, NULL);
5786 	poll_threads();
5787 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5788 
5789 	/* Check the same, but this time register the bdev with non-zero UUID */
5790 	rc = spdk_bdev_register(bdev);
5791 	CU_ASSERT_EQUAL(rc, 0);
5792 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5793 
5794 	/* Unregister the bdev */
5795 	spdk_bdev_unregister(bdev, NULL, NULL);
5796 	poll_threads();
5797 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5798 
5799 	/* Regiser the bdev using UUID as the name */
5800 	bdev->name = uuid;
5801 	rc = spdk_bdev_register(bdev);
5802 	CU_ASSERT_EQUAL(rc, 0);
5803 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5804 
5805 	/* Unregister the bdev */
5806 	spdk_bdev_unregister(bdev, NULL, NULL);
5807 	poll_threads();
5808 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5809 
5810 	/* Check that it's not possible to register two bdevs with the same UUIDs */
5811 	bdev->name = "bdev0";
5812 	second = allocate_bdev("bdev1");
5813 	spdk_uuid_copy(&bdev->uuid, &second->uuid);
5814 	rc = spdk_bdev_register(bdev);
5815 	CU_ASSERT_EQUAL(rc, -EEXIST);
5816 
5817 	/* Regenerate the UUID and re-check */
5818 	spdk_uuid_generate(&bdev->uuid);
5819 	rc = spdk_bdev_register(bdev);
5820 	CU_ASSERT_EQUAL(rc, 0);
5821 
5822 	/* And check that both bdevs can be retrieved through their UUIDs */
5823 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5824 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5825 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &second->uuid);
5826 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), second);
5827 
5828 	free_bdev(second);
5829 	free_bdev(bdev);
5830 	spdk_bdev_finish(bdev_fini_cb, NULL);
5831 	poll_threads();
5832 }
5833 
5834 static void
5835 bdev_unregister_by_name(void)
5836 {
5837 	struct spdk_bdev *bdev;
5838 	int rc;
5839 
5840 	bdev = allocate_bdev("bdev");
5841 
5842 	g_event_type1 = 0xFF;
5843 	g_unregister_arg = NULL;
5844 	g_unregister_rc = -1;
5845 
5846 	rc = spdk_bdev_unregister_by_name("bdev1", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5847 	CU_ASSERT(rc == -ENODEV);
5848 
5849 	rc = spdk_bdev_unregister_by_name("bdev", &vbdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5850 	CU_ASSERT(rc == -ENODEV);
5851 
5852 	rc = spdk_bdev_unregister_by_name("bdev", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5853 	CU_ASSERT(rc == 0);
5854 
5855 	/* Check that unregister callback is delayed */
5856 	CU_ASSERT(g_unregister_arg == NULL);
5857 	CU_ASSERT(g_unregister_rc == -1);
5858 
5859 	poll_threads();
5860 
5861 	/* Event callback shall not be issued because device was closed */
5862 	CU_ASSERT(g_event_type1 == 0xFF);
5863 	/* Unregister callback is issued */
5864 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
5865 	CU_ASSERT(g_unregister_rc == 0);
5866 
5867 	free_bdev(bdev);
5868 }
5869 
5870 static int
5871 count_bdevs(void *ctx, struct spdk_bdev *bdev)
5872 {
5873 	int *count = ctx;
5874 
5875 	(*count)++;
5876 
5877 	return 0;
5878 }
5879 
5880 static void
5881 for_each_bdev_test(void)
5882 {
5883 	struct spdk_bdev *bdev[8];
5884 	int rc, count;
5885 
5886 	bdev[0] = allocate_bdev("bdev0");
5887 
5888 	bdev[1] = allocate_bdev("bdev1");
5889 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
5890 	CU_ASSERT(rc == 0);
5891 
5892 	bdev[2] = allocate_bdev("bdev2");
5893 
5894 	bdev[3] = allocate_bdev("bdev3");
5895 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
5896 	CU_ASSERT(rc == 0);
5897 
5898 	bdev[4] = allocate_bdev("bdev4");
5899 
5900 	bdev[5] = allocate_bdev("bdev5");
5901 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
5902 	CU_ASSERT(rc == 0);
5903 
5904 	bdev[6] = allocate_bdev("bdev6");
5905 
5906 	bdev[7] = allocate_bdev("bdev7");
5907 
5908 	count = 0;
5909 	rc = spdk_for_each_bdev(&count, count_bdevs);
5910 	CU_ASSERT(rc == 0);
5911 	CU_ASSERT(count == 8);
5912 
5913 	count = 0;
5914 	rc = spdk_for_each_bdev_leaf(&count, count_bdevs);
5915 	CU_ASSERT(rc == 0);
5916 	CU_ASSERT(count == 5);
5917 
5918 	free_bdev(bdev[0]);
5919 	free_bdev(bdev[1]);
5920 	free_bdev(bdev[2]);
5921 	free_bdev(bdev[3]);
5922 	free_bdev(bdev[4]);
5923 	free_bdev(bdev[5]);
5924 	free_bdev(bdev[6]);
5925 	free_bdev(bdev[7]);
5926 }
5927 
5928 static void
5929 bdev_seek_test(void)
5930 {
5931 	struct spdk_bdev *bdev;
5932 	struct spdk_bdev_desc *desc = NULL;
5933 	struct spdk_io_channel *io_ch;
5934 	int rc;
5935 
5936 	spdk_bdev_initialize(bdev_init_cb, NULL);
5937 	poll_threads();
5938 
5939 	bdev = allocate_bdev("bdev0");
5940 
5941 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5942 	CU_ASSERT(rc == 0);
5943 	poll_threads();
5944 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5945 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5946 	io_ch = spdk_bdev_get_io_channel(desc);
5947 	CU_ASSERT(io_ch != NULL);
5948 
5949 	/* Seek data not supported */
5950 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, false);
5951 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
5952 	CU_ASSERT(rc == 0);
5953 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5954 	poll_threads();
5955 	CU_ASSERT(g_seek_offset == 0);
5956 
5957 	/* Seek hole not supported */
5958 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, false);
5959 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
5960 	CU_ASSERT(rc == 0);
5961 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5962 	poll_threads();
5963 	CU_ASSERT(g_seek_offset == UINT64_MAX);
5964 
5965 	/* Seek data supported */
5966 	g_seek_data_offset = 12345;
5967 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, true);
5968 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
5969 	CU_ASSERT(rc == 0);
5970 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5971 	stub_complete_io(1);
5972 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5973 	CU_ASSERT(g_seek_offset == 12345);
5974 
5975 	/* Seek hole supported */
5976 	g_seek_hole_offset = 67890;
5977 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, true);
5978 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
5979 	CU_ASSERT(rc == 0);
5980 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5981 	stub_complete_io(1);
5982 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5983 	CU_ASSERT(g_seek_offset == 67890);
5984 
5985 	spdk_put_io_channel(io_ch);
5986 	spdk_bdev_close(desc);
5987 	free_bdev(bdev);
5988 	spdk_bdev_finish(bdev_fini_cb, NULL);
5989 	poll_threads();
5990 }
5991 
5992 int
5993 main(int argc, char **argv)
5994 {
5995 	CU_pSuite		suite = NULL;
5996 	unsigned int		num_failures;
5997 
5998 	CU_set_error_action(CUEA_ABORT);
5999 	CU_initialize_registry();
6000 
6001 	suite = CU_add_suite("bdev", null_init, null_clean);
6002 
6003 	CU_ADD_TEST(suite, bytes_to_blocks_test);
6004 	CU_ADD_TEST(suite, num_blocks_test);
6005 	CU_ADD_TEST(suite, io_valid_test);
6006 	CU_ADD_TEST(suite, open_write_test);
6007 	CU_ADD_TEST(suite, claim_test);
6008 	CU_ADD_TEST(suite, alias_add_del_test);
6009 	CU_ADD_TEST(suite, get_device_stat_test);
6010 	CU_ADD_TEST(suite, bdev_io_types_test);
6011 	CU_ADD_TEST(suite, bdev_io_wait_test);
6012 	CU_ADD_TEST(suite, bdev_io_spans_split_test);
6013 	CU_ADD_TEST(suite, bdev_io_boundary_split_test);
6014 	CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test);
6015 	CU_ADD_TEST(suite, bdev_io_mix_split_test);
6016 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
6017 	CU_ADD_TEST(suite, bdev_io_write_unit_split_test);
6018 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
6019 	CU_ADD_TEST(suite, bdev_io_alignment);
6020 	CU_ADD_TEST(suite, bdev_histograms);
6021 	CU_ADD_TEST(suite, bdev_write_zeroes);
6022 	CU_ADD_TEST(suite, bdev_compare_and_write);
6023 	CU_ADD_TEST(suite, bdev_compare);
6024 	CU_ADD_TEST(suite, bdev_compare_emulated);
6025 	CU_ADD_TEST(suite, bdev_zcopy_write);
6026 	CU_ADD_TEST(suite, bdev_zcopy_read);
6027 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
6028 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
6029 	CU_ADD_TEST(suite, bdev_open_ext);
6030 	CU_ADD_TEST(suite, bdev_open_ext_unregister);
6031 	CU_ADD_TEST(suite, bdev_set_io_timeout);
6032 	CU_ADD_TEST(suite, bdev_set_qd_sampling);
6033 	CU_ADD_TEST(suite, lba_range_overlap);
6034 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
6035 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
6036 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
6037 	CU_ADD_TEST(suite, bdev_io_abort);
6038 	CU_ADD_TEST(suite, bdev_unmap);
6039 	CU_ADD_TEST(suite, bdev_write_zeroes_split_test);
6040 	CU_ADD_TEST(suite, bdev_set_options_test);
6041 	CU_ADD_TEST(suite, bdev_multi_allocation);
6042 	CU_ADD_TEST(suite, bdev_get_memory_domains);
6043 	CU_ADD_TEST(suite, bdev_io_ext);
6044 	CU_ADD_TEST(suite, bdev_io_ext_no_opts);
6045 	CU_ADD_TEST(suite, bdev_io_ext_invalid_opts);
6046 	CU_ADD_TEST(suite, bdev_io_ext_split);
6047 	CU_ADD_TEST(suite, bdev_io_ext_bounce_buffer);
6048 	CU_ADD_TEST(suite, bdev_register_uuid_alias);
6049 	CU_ADD_TEST(suite, bdev_unregister_by_name);
6050 	CU_ADD_TEST(suite, for_each_bdev_test);
6051 	CU_ADD_TEST(suite, bdev_seek_test);
6052 
6053 	allocate_cores(1);
6054 	allocate_threads(1);
6055 	set_thread(0);
6056 
6057 	CU_basic_set_mode(CU_BRM_VERBOSE);
6058 	CU_basic_run_tests();
6059 	num_failures = CU_get_number_of_failures();
6060 	CU_cleanup_registry();
6061 
6062 	free_threads();
6063 	free_cores();
6064 
6065 	return num_failures;
6066 }
6067