xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision 29784f35cdce03eb4b33a4d462b25f42bb4a6b60)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2017 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk_cunit.h"
8 
9 #include "common/lib/ut_multithread.c"
10 #include "unit/lib/json_mock.c"
11 
12 #include "spdk/config.h"
13 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
14 #undef SPDK_CONFIG_VTUNE
15 
16 #include "bdev/bdev.c"
17 
18 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
19 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
20 DEFINE_STUB(spdk_memory_domain_get_dma_device_id, const char *, (struct spdk_memory_domain *domain),
21 	    "test_domain");
22 DEFINE_STUB(spdk_memory_domain_get_dma_device_type, enum spdk_dma_device_type,
23 	    (struct spdk_memory_domain *domain), 0);
24 
25 static bool g_memory_domain_pull_data_called;
26 static bool g_memory_domain_push_data_called;
27 
28 DEFINE_RETURN_MOCK(spdk_memory_domain_pull_data, int);
29 int
30 spdk_memory_domain_pull_data(struct spdk_memory_domain *src_domain, void *src_domain_ctx,
31 			     struct iovec *src_iov, uint32_t src_iov_cnt, struct iovec *dst_iov, uint32_t dst_iov_cnt,
32 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
33 {
34 	g_memory_domain_pull_data_called = true;
35 	HANDLE_RETURN_MOCK(spdk_memory_domain_pull_data);
36 	cpl_cb(cpl_cb_arg, 0);
37 	return 0;
38 }
39 
40 DEFINE_RETURN_MOCK(spdk_memory_domain_push_data, int);
41 int
42 spdk_memory_domain_push_data(struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
43 			     struct iovec *dst_iov, uint32_t dst_iovcnt, struct iovec *src_iov, uint32_t src_iovcnt,
44 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
45 {
46 	g_memory_domain_push_data_called = true;
47 	HANDLE_RETURN_MOCK(spdk_memory_domain_push_data);
48 	cpl_cb(cpl_cb_arg, 0);
49 	return 0;
50 }
51 
52 int g_status;
53 int g_count;
54 enum spdk_bdev_event_type g_event_type1;
55 enum spdk_bdev_event_type g_event_type2;
56 enum spdk_bdev_event_type g_event_type3;
57 enum spdk_bdev_event_type g_event_type4;
58 struct spdk_histogram_data *g_histogram;
59 void *g_unregister_arg;
60 int g_unregister_rc;
61 
62 void
63 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
64 			 int *sc, int *sk, int *asc, int *ascq)
65 {
66 }
67 
68 static int
69 null_init(void)
70 {
71 	return 0;
72 }
73 
74 static int
75 null_clean(void)
76 {
77 	return 0;
78 }
79 
80 static int
81 stub_destruct(void *ctx)
82 {
83 	return 0;
84 }
85 
86 struct ut_expected_io {
87 	uint8_t				type;
88 	uint64_t			offset;
89 	uint64_t			src_offset;
90 	uint64_t			length;
91 	int				iovcnt;
92 	struct iovec			iov[BDEV_IO_NUM_CHILD_IOV];
93 	void				*md_buf;
94 	struct spdk_bdev_ext_io_opts	*ext_io_opts;
95 	bool				copy_opts;
96 	TAILQ_ENTRY(ut_expected_io)	link;
97 };
98 
99 struct bdev_ut_channel {
100 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
101 	uint32_t			outstanding_io_count;
102 	TAILQ_HEAD(, ut_expected_io)	expected_io;
103 };
104 
105 static bool g_io_done;
106 static struct spdk_bdev_io *g_bdev_io;
107 static enum spdk_bdev_io_status g_io_status;
108 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
109 static uint32_t g_bdev_ut_io_device;
110 static struct bdev_ut_channel *g_bdev_ut_channel;
111 static void *g_compare_read_buf;
112 static uint32_t g_compare_read_buf_len;
113 static void *g_compare_write_buf;
114 static uint32_t g_compare_write_buf_len;
115 static void *g_compare_md_buf;
116 static bool g_abort_done;
117 static enum spdk_bdev_io_status g_abort_status;
118 static void *g_zcopy_read_buf;
119 static uint32_t g_zcopy_read_buf_len;
120 static void *g_zcopy_write_buf;
121 static uint32_t g_zcopy_write_buf_len;
122 static struct spdk_bdev_io *g_zcopy_bdev_io;
123 static uint64_t g_seek_data_offset;
124 static uint64_t g_seek_hole_offset;
125 static uint64_t g_seek_offset;
126 
127 static struct ut_expected_io *
128 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
129 {
130 	struct ut_expected_io *expected_io;
131 
132 	expected_io = calloc(1, sizeof(*expected_io));
133 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
134 
135 	expected_io->type = type;
136 	expected_io->offset = offset;
137 	expected_io->length = length;
138 	expected_io->iovcnt = iovcnt;
139 
140 	return expected_io;
141 }
142 
143 static struct ut_expected_io *
144 ut_alloc_expected_copy_io(uint8_t type, uint64_t offset, uint64_t src_offset, uint64_t length)
145 {
146 	struct ut_expected_io *expected_io;
147 
148 	expected_io = calloc(1, sizeof(*expected_io));
149 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
150 
151 	expected_io->type = type;
152 	expected_io->offset = offset;
153 	expected_io->src_offset = src_offset;
154 	expected_io->length = length;
155 
156 	return expected_io;
157 }
158 
159 static void
160 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
161 {
162 	expected_io->iov[pos].iov_base = base;
163 	expected_io->iov[pos].iov_len = len;
164 }
165 
166 static void
167 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
168 {
169 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
170 	struct ut_expected_io *expected_io;
171 	struct iovec *iov, *expected_iov;
172 	struct spdk_bdev_io *bio_to_abort;
173 	int i;
174 
175 	g_bdev_io = bdev_io;
176 
177 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
178 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
179 
180 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
181 		CU_ASSERT(g_compare_read_buf_len == len);
182 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
183 		if (bdev_io->bdev->md_len && bdev_io->u.bdev.md_buf && g_compare_md_buf) {
184 			memcpy(bdev_io->u.bdev.md_buf, g_compare_md_buf,
185 			       bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks);
186 		}
187 	}
188 
189 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
190 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
191 
192 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
193 		CU_ASSERT(g_compare_write_buf_len == len);
194 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
195 	}
196 
197 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
198 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
199 
200 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
201 		CU_ASSERT(g_compare_read_buf_len == len);
202 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
203 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
204 		}
205 		if (bdev_io->u.bdev.md_buf &&
206 		    memcmp(bdev_io->u.bdev.md_buf, g_compare_md_buf,
207 			   bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks)) {
208 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
209 		}
210 	}
211 
212 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
213 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
214 			TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
215 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
216 					TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
217 					ch->outstanding_io_count--;
218 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
219 					break;
220 				}
221 			}
222 		}
223 	}
224 
225 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) {
226 		if (bdev_io->u.bdev.zcopy.start) {
227 			g_zcopy_bdev_io = bdev_io;
228 			if (bdev_io->u.bdev.zcopy.populate) {
229 				/* Start of a read */
230 				CU_ASSERT(g_zcopy_read_buf != NULL);
231 				CU_ASSERT(g_zcopy_read_buf_len > 0);
232 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_read_buf;
233 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_read_buf_len;
234 				bdev_io->u.bdev.iovcnt = 1;
235 			} else {
236 				/* Start of a write */
237 				CU_ASSERT(g_zcopy_write_buf != NULL);
238 				CU_ASSERT(g_zcopy_write_buf_len > 0);
239 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_write_buf;
240 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_write_buf_len;
241 				bdev_io->u.bdev.iovcnt = 1;
242 			}
243 		} else {
244 			if (bdev_io->u.bdev.zcopy.commit) {
245 				/* End of write */
246 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_write_buf);
247 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_write_buf_len);
248 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
249 				g_zcopy_write_buf = NULL;
250 				g_zcopy_write_buf_len = 0;
251 			} else {
252 				/* End of read */
253 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_read_buf);
254 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_read_buf_len);
255 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
256 				g_zcopy_read_buf = NULL;
257 				g_zcopy_read_buf_len = 0;
258 			}
259 		}
260 	}
261 
262 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_DATA) {
263 		bdev_io->u.bdev.seek.offset = g_seek_data_offset;
264 	}
265 
266 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_HOLE) {
267 		bdev_io->u.bdev.seek.offset = g_seek_hole_offset;
268 	}
269 
270 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
271 	ch->outstanding_io_count++;
272 
273 	expected_io = TAILQ_FIRST(&ch->expected_io);
274 	if (expected_io == NULL) {
275 		return;
276 	}
277 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
278 
279 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
280 		CU_ASSERT(bdev_io->type == expected_io->type);
281 	}
282 
283 	if (expected_io->md_buf != NULL) {
284 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
285 		if (bdev_io->u.bdev.ext_opts) {
286 			CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.ext_opts->metadata);
287 		}
288 	}
289 
290 	if (expected_io->copy_opts) {
291 		if (expected_io->ext_io_opts) {
292 			/* opts are not NULL so it should have been copied */
293 			CU_ASSERT(expected_io->ext_io_opts != bdev_io->u.bdev.ext_opts);
294 			CU_ASSERT(bdev_io->u.bdev.ext_opts == &bdev_io->internal.ext_opts_copy);
295 			/* internal opts always points to opts passed */
296 			CU_ASSERT(expected_io->ext_io_opts == bdev_io->internal.ext_opts);
297 		} else {
298 			/* passed opts was NULL so we expect bdev_io opts to be NULL */
299 			CU_ASSERT(bdev_io->u.bdev.ext_opts == NULL);
300 		}
301 	} else {
302 		/* opts were not copied so they should be equal */
303 		CU_ASSERT(expected_io->ext_io_opts == bdev_io->u.bdev.ext_opts);
304 	}
305 
306 	if (expected_io->length == 0) {
307 		free(expected_io);
308 		return;
309 	}
310 
311 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
312 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
313 	if (expected_io->type == SPDK_BDEV_IO_TYPE_COPY) {
314 		CU_ASSERT(expected_io->src_offset == bdev_io->u.bdev.copy.src_offset_blocks);
315 	}
316 
317 	if (expected_io->iovcnt == 0) {
318 		free(expected_io);
319 		/* UNMAP, WRITE_ZEROES, FLUSH and COPY don't have iovs, so we can just return now. */
320 		return;
321 	}
322 
323 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
324 	for (i = 0; i < expected_io->iovcnt; i++) {
325 		expected_iov = &expected_io->iov[i];
326 		if (bdev_io->internal.orig_iovcnt == 0) {
327 			iov = &bdev_io->u.bdev.iovs[i];
328 		} else {
329 			iov = bdev_io->internal.orig_iovs;
330 		}
331 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
332 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
333 	}
334 
335 	free(expected_io);
336 }
337 
338 static void
339 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
340 			       struct spdk_bdev_io *bdev_io, bool success)
341 {
342 	CU_ASSERT(success == true);
343 
344 	stub_submit_request(_ch, bdev_io);
345 }
346 
347 static void
348 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
349 {
350 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
351 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
352 }
353 
354 static uint32_t
355 stub_complete_io(uint32_t num_to_complete)
356 {
357 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
358 	struct spdk_bdev_io *bdev_io;
359 	static enum spdk_bdev_io_status io_status;
360 	uint32_t num_completed = 0;
361 
362 	while (num_completed < num_to_complete) {
363 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
364 			break;
365 		}
366 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
367 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
368 		ch->outstanding_io_count--;
369 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
370 			    g_io_exp_status;
371 		spdk_bdev_io_complete(bdev_io, io_status);
372 		num_completed++;
373 	}
374 
375 	return num_completed;
376 }
377 
378 static struct spdk_io_channel *
379 bdev_ut_get_io_channel(void *ctx)
380 {
381 	return spdk_get_io_channel(&g_bdev_ut_io_device);
382 }
383 
384 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
385 	[SPDK_BDEV_IO_TYPE_READ]		= true,
386 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
387 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
388 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
389 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
390 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
391 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
392 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
393 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
394 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
395 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
396 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
397 	[SPDK_BDEV_IO_TYPE_SEEK_HOLE]		= true,
398 	[SPDK_BDEV_IO_TYPE_SEEK_DATA]		= true,
399 	[SPDK_BDEV_IO_TYPE_COPY]		= true,
400 };
401 
402 static void
403 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
404 {
405 	g_io_types_supported[io_type] = enable;
406 }
407 
408 static bool
409 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
410 {
411 	return g_io_types_supported[io_type];
412 }
413 
414 static struct spdk_bdev_fn_table fn_table = {
415 	.destruct = stub_destruct,
416 	.submit_request = stub_submit_request,
417 	.get_io_channel = bdev_ut_get_io_channel,
418 	.io_type_supported = stub_io_type_supported,
419 };
420 
421 static int
422 bdev_ut_create_ch(void *io_device, void *ctx_buf)
423 {
424 	struct bdev_ut_channel *ch = ctx_buf;
425 
426 	CU_ASSERT(g_bdev_ut_channel == NULL);
427 	g_bdev_ut_channel = ch;
428 
429 	TAILQ_INIT(&ch->outstanding_io);
430 	ch->outstanding_io_count = 0;
431 	TAILQ_INIT(&ch->expected_io);
432 	return 0;
433 }
434 
435 static void
436 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
437 {
438 	CU_ASSERT(g_bdev_ut_channel != NULL);
439 	g_bdev_ut_channel = NULL;
440 }
441 
442 struct spdk_bdev_module bdev_ut_if;
443 
444 static int
445 bdev_ut_module_init(void)
446 {
447 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
448 				sizeof(struct bdev_ut_channel), NULL);
449 	spdk_bdev_module_init_done(&bdev_ut_if);
450 	return 0;
451 }
452 
453 static void
454 bdev_ut_module_fini(void)
455 {
456 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
457 }
458 
459 struct spdk_bdev_module bdev_ut_if = {
460 	.name = "bdev_ut",
461 	.module_init = bdev_ut_module_init,
462 	.module_fini = bdev_ut_module_fini,
463 	.async_init = true,
464 };
465 
466 static void vbdev_ut_examine(struct spdk_bdev *bdev);
467 
468 static int
469 vbdev_ut_module_init(void)
470 {
471 	return 0;
472 }
473 
474 static void
475 vbdev_ut_module_fini(void)
476 {
477 }
478 
479 struct spdk_bdev_module vbdev_ut_if = {
480 	.name = "vbdev_ut",
481 	.module_init = vbdev_ut_module_init,
482 	.module_fini = vbdev_ut_module_fini,
483 	.examine_config = vbdev_ut_examine,
484 };
485 
486 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
487 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
488 
489 static void
490 vbdev_ut_examine(struct spdk_bdev *bdev)
491 {
492 	spdk_bdev_module_examine_done(&vbdev_ut_if);
493 }
494 
495 static struct spdk_bdev *
496 allocate_bdev(char *name)
497 {
498 	struct spdk_bdev *bdev;
499 	int rc;
500 
501 	bdev = calloc(1, sizeof(*bdev));
502 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
503 
504 	bdev->name = name;
505 	bdev->fn_table = &fn_table;
506 	bdev->module = &bdev_ut_if;
507 	bdev->blockcnt = 1024;
508 	bdev->blocklen = 512;
509 
510 	rc = spdk_bdev_register(bdev);
511 	poll_threads();
512 	CU_ASSERT(rc == 0);
513 
514 	return bdev;
515 }
516 
517 static struct spdk_bdev *
518 allocate_vbdev(char *name)
519 {
520 	struct spdk_bdev *bdev;
521 	int rc;
522 
523 	bdev = calloc(1, sizeof(*bdev));
524 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
525 
526 	bdev->name = name;
527 	bdev->fn_table = &fn_table;
528 	bdev->module = &vbdev_ut_if;
529 
530 	rc = spdk_bdev_register(bdev);
531 	poll_threads();
532 	CU_ASSERT(rc == 0);
533 
534 	return bdev;
535 }
536 
537 static void
538 free_bdev(struct spdk_bdev *bdev)
539 {
540 	spdk_bdev_unregister(bdev, NULL, NULL);
541 	poll_threads();
542 	memset(bdev, 0xFF, sizeof(*bdev));
543 	free(bdev);
544 }
545 
546 static void
547 free_vbdev(struct spdk_bdev *bdev)
548 {
549 	spdk_bdev_unregister(bdev, NULL, NULL);
550 	poll_threads();
551 	memset(bdev, 0xFF, sizeof(*bdev));
552 	free(bdev);
553 }
554 
555 static void
556 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
557 {
558 	const char *bdev_name;
559 
560 	CU_ASSERT(bdev != NULL);
561 	CU_ASSERT(rc == 0);
562 	bdev_name = spdk_bdev_get_name(bdev);
563 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
564 
565 	free(stat);
566 
567 	*(bool *)cb_arg = true;
568 }
569 
570 static void
571 bdev_unregister_cb(void *cb_arg, int rc)
572 {
573 	g_unregister_arg = cb_arg;
574 	g_unregister_rc = rc;
575 }
576 
577 static void
578 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
579 {
580 }
581 
582 static void
583 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
584 {
585 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
586 
587 	g_event_type1 = type;
588 	if (SPDK_BDEV_EVENT_REMOVE == type) {
589 		spdk_bdev_close(desc);
590 	}
591 }
592 
593 static void
594 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
595 {
596 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
597 
598 	g_event_type2 = type;
599 	if (SPDK_BDEV_EVENT_REMOVE == type) {
600 		spdk_bdev_close(desc);
601 	}
602 }
603 
604 static void
605 bdev_open_cb3(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
606 {
607 	g_event_type3 = type;
608 }
609 
610 static void
611 bdev_open_cb4(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
612 {
613 	g_event_type4 = type;
614 }
615 
616 static void
617 bdev_seek_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
618 {
619 	g_seek_offset = spdk_bdev_io_get_seek_offset(bdev_io);
620 	spdk_bdev_free_io(bdev_io);
621 }
622 
623 static void
624 get_device_stat_test(void)
625 {
626 	struct spdk_bdev *bdev;
627 	struct spdk_bdev_io_stat *stat;
628 	bool done;
629 
630 	bdev = allocate_bdev("bdev0");
631 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
632 	if (stat == NULL) {
633 		free_bdev(bdev);
634 		return;
635 	}
636 
637 	done = false;
638 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
639 	while (!done) { poll_threads(); }
640 
641 	free_bdev(bdev);
642 }
643 
644 static void
645 open_write_test(void)
646 {
647 	struct spdk_bdev *bdev[9];
648 	struct spdk_bdev_desc *desc[9] = {};
649 	int rc;
650 
651 	/*
652 	 * Create a tree of bdevs to test various open w/ write cases.
653 	 *
654 	 * bdev0 through bdev3 are physical block devices, such as NVMe
655 	 * namespaces or Ceph block devices.
656 	 *
657 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
658 	 * caching or RAID use cases.
659 	 *
660 	 * bdev5 through bdev7 are all virtual bdevs with the same base
661 	 * bdev (except bdev7). This models partitioning or logical volume
662 	 * use cases.
663 	 *
664 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
665 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
666 	 * models caching, RAID, partitioning or logical volumes use cases.
667 	 *
668 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
669 	 * base bdevs are themselves virtual bdevs.
670 	 *
671 	 *                bdev8
672 	 *                  |
673 	 *            +----------+
674 	 *            |          |
675 	 *          bdev4      bdev5   bdev6   bdev7
676 	 *            |          |       |       |
677 	 *        +---+---+      +---+   +   +---+---+
678 	 *        |       |           \  |  /         \
679 	 *      bdev0   bdev1          bdev2         bdev3
680 	 */
681 
682 	bdev[0] = allocate_bdev("bdev0");
683 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
684 	CU_ASSERT(rc == 0);
685 
686 	bdev[1] = allocate_bdev("bdev1");
687 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
688 	CU_ASSERT(rc == 0);
689 
690 	bdev[2] = allocate_bdev("bdev2");
691 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
692 	CU_ASSERT(rc == 0);
693 
694 	bdev[3] = allocate_bdev("bdev3");
695 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
696 	CU_ASSERT(rc == 0);
697 
698 	bdev[4] = allocate_vbdev("bdev4");
699 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
700 	CU_ASSERT(rc == 0);
701 
702 	bdev[5] = allocate_vbdev("bdev5");
703 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
704 	CU_ASSERT(rc == 0);
705 
706 	bdev[6] = allocate_vbdev("bdev6");
707 
708 	bdev[7] = allocate_vbdev("bdev7");
709 
710 	bdev[8] = allocate_vbdev("bdev8");
711 
712 	/* Open bdev0 read-only.  This should succeed. */
713 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
714 	CU_ASSERT(rc == 0);
715 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
716 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
717 	spdk_bdev_close(desc[0]);
718 
719 	/*
720 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
721 	 * by a vbdev module.
722 	 */
723 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
724 	CU_ASSERT(rc == -EPERM);
725 
726 	/*
727 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
728 	 * by a vbdev module.
729 	 */
730 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
731 	CU_ASSERT(rc == -EPERM);
732 
733 	/* Open bdev4 read-only.  This should succeed. */
734 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
735 	CU_ASSERT(rc == 0);
736 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
737 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
738 	spdk_bdev_close(desc[4]);
739 
740 	/*
741 	 * Open bdev8 read/write.  This should succeed since it is a leaf
742 	 * bdev.
743 	 */
744 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
745 	CU_ASSERT(rc == 0);
746 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
747 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
748 	spdk_bdev_close(desc[8]);
749 
750 	/*
751 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
752 	 * by a vbdev module.
753 	 */
754 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
755 	CU_ASSERT(rc == -EPERM);
756 
757 	/* Open bdev4 read-only.  This should succeed. */
758 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
759 	CU_ASSERT(rc == 0);
760 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
761 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
762 	spdk_bdev_close(desc[5]);
763 
764 	free_vbdev(bdev[8]);
765 
766 	free_vbdev(bdev[5]);
767 	free_vbdev(bdev[6]);
768 	free_vbdev(bdev[7]);
769 
770 	free_vbdev(bdev[4]);
771 
772 	free_bdev(bdev[0]);
773 	free_bdev(bdev[1]);
774 	free_bdev(bdev[2]);
775 	free_bdev(bdev[3]);
776 }
777 
778 static void
779 claim_test(void)
780 {
781 	struct spdk_bdev *bdev;
782 	struct spdk_bdev_desc *desc, *open_desc;
783 	int rc;
784 	uint32_t count;
785 
786 	/*
787 	 * A vbdev that uses a read-only bdev may need it to remain read-only.
788 	 * To do so, it opens the bdev read-only, then claims it without
789 	 * passing a spdk_bdev_desc.
790 	 */
791 	bdev = allocate_bdev("bdev0");
792 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
793 	CU_ASSERT(rc == 0);
794 	CU_ASSERT(desc->write == false);
795 
796 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
797 	CU_ASSERT(rc == 0);
798 	CU_ASSERT(bdev->internal.claim_module == &bdev_ut_if);
799 
800 	/* There should be only one open descriptor and it should still be ro */
801 	count = 0;
802 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
803 		CU_ASSERT(open_desc == desc);
804 		CU_ASSERT(!open_desc->write);
805 		count++;
806 	}
807 	CU_ASSERT(count == 1);
808 
809 	/* A read-only bdev is upgraded to read-write if desc is passed. */
810 	spdk_bdev_module_release_bdev(bdev);
811 	rc = spdk_bdev_module_claim_bdev(bdev, desc, &bdev_ut_if);
812 	CU_ASSERT(rc == 0);
813 	CU_ASSERT(bdev->internal.claim_module == &bdev_ut_if);
814 
815 	/* There should be only one open descriptor and it should be rw */
816 	count = 0;
817 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
818 		CU_ASSERT(open_desc == desc);
819 		CU_ASSERT(open_desc->write);
820 		count++;
821 	}
822 	CU_ASSERT(count == 1);
823 
824 	spdk_bdev_close(desc);
825 	free_bdev(bdev);
826 }
827 
828 static void
829 bytes_to_blocks_test(void)
830 {
831 	struct spdk_bdev bdev;
832 	uint64_t offset_blocks, num_blocks;
833 
834 	memset(&bdev, 0, sizeof(bdev));
835 
836 	bdev.blocklen = 512;
837 
838 	/* All parameters valid */
839 	offset_blocks = 0;
840 	num_blocks = 0;
841 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
842 	CU_ASSERT(offset_blocks == 1);
843 	CU_ASSERT(num_blocks == 2);
844 
845 	/* Offset not a block multiple */
846 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
847 
848 	/* Length not a block multiple */
849 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
850 
851 	/* In case blocklen not the power of two */
852 	bdev.blocklen = 100;
853 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
854 	CU_ASSERT(offset_blocks == 1);
855 	CU_ASSERT(num_blocks == 2);
856 
857 	/* Offset not a block multiple */
858 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
859 
860 	/* Length not a block multiple */
861 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
862 }
863 
864 static void
865 num_blocks_test(void)
866 {
867 	struct spdk_bdev bdev;
868 	struct spdk_bdev_desc *desc = NULL;
869 	int rc;
870 
871 	memset(&bdev, 0, sizeof(bdev));
872 	bdev.name = "num_blocks";
873 	bdev.fn_table = &fn_table;
874 	bdev.module = &bdev_ut_if;
875 	spdk_bdev_register(&bdev);
876 	poll_threads();
877 	spdk_bdev_notify_blockcnt_change(&bdev, 50);
878 
879 	/* Growing block number */
880 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
881 	/* Shrinking block number */
882 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
883 
884 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc, &desc);
885 	CU_ASSERT(rc == 0);
886 	SPDK_CU_ASSERT_FATAL(desc != NULL);
887 	CU_ASSERT(&bdev == spdk_bdev_desc_get_bdev(desc));
888 
889 	/* Growing block number */
890 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
891 	/* Shrinking block number */
892 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
893 
894 	g_event_type1 = 0xFF;
895 	/* Growing block number */
896 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
897 
898 	poll_threads();
899 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
900 
901 	g_event_type1 = 0xFF;
902 	/* Growing block number and closing */
903 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
904 
905 	spdk_bdev_close(desc);
906 	spdk_bdev_unregister(&bdev, NULL, NULL);
907 
908 	poll_threads();
909 
910 	/* Callback is not called for closed device */
911 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
912 }
913 
914 static void
915 io_valid_test(void)
916 {
917 	struct spdk_bdev bdev;
918 
919 	memset(&bdev, 0, sizeof(bdev));
920 
921 	bdev.blocklen = 512;
922 	CU_ASSERT(pthread_mutex_init(&bdev.internal.mutex, NULL) == 0);
923 
924 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
925 
926 	/* All parameters valid */
927 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
928 
929 	/* Last valid block */
930 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
931 
932 	/* Offset past end of bdev */
933 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
934 
935 	/* Offset + length past end of bdev */
936 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
937 
938 	/* Offset near end of uint64_t range (2^64 - 1) */
939 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
940 
941 	CU_ASSERT(pthread_mutex_destroy(&bdev.internal.mutex) == 0);
942 }
943 
944 static void
945 alias_add_del_test(void)
946 {
947 	struct spdk_bdev *bdev[3];
948 	int rc;
949 
950 	/* Creating and registering bdevs */
951 	bdev[0] = allocate_bdev("bdev0");
952 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
953 
954 	bdev[1] = allocate_bdev("bdev1");
955 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
956 
957 	bdev[2] = allocate_bdev("bdev2");
958 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
959 
960 	poll_threads();
961 
962 	/*
963 	 * Trying adding an alias identical to name.
964 	 * Alias is identical to name, so it can not be added to aliases list
965 	 */
966 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
967 	CU_ASSERT(rc == -EEXIST);
968 
969 	/*
970 	 * Trying to add empty alias,
971 	 * this one should fail
972 	 */
973 	rc = spdk_bdev_alias_add(bdev[0], NULL);
974 	CU_ASSERT(rc == -EINVAL);
975 
976 	/* Trying adding same alias to two different registered bdevs */
977 
978 	/* Alias is used first time, so this one should pass */
979 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
980 	CU_ASSERT(rc == 0);
981 
982 	/* Alias was added to another bdev, so this one should fail */
983 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
984 	CU_ASSERT(rc == -EEXIST);
985 
986 	/* Alias is used first time, so this one should pass */
987 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
988 	CU_ASSERT(rc == 0);
989 
990 	/* Trying removing an alias from registered bdevs */
991 
992 	/* Alias is not on a bdev aliases list, so this one should fail */
993 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
994 	CU_ASSERT(rc == -ENOENT);
995 
996 	/* Alias is present on a bdev aliases list, so this one should pass */
997 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
998 	CU_ASSERT(rc == 0);
999 
1000 	/* Alias is present on a bdev aliases list, so this one should pass */
1001 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
1002 	CU_ASSERT(rc == 0);
1003 
1004 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
1005 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
1006 	CU_ASSERT(rc != 0);
1007 
1008 	/* Trying to del all alias from empty alias list */
1009 	spdk_bdev_alias_del_all(bdev[2]);
1010 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
1011 
1012 	/* Trying to del all alias from non-empty alias list */
1013 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
1014 	CU_ASSERT(rc == 0);
1015 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
1016 	CU_ASSERT(rc == 0);
1017 	spdk_bdev_alias_del_all(bdev[2]);
1018 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
1019 
1020 	/* Unregister and free bdevs */
1021 	spdk_bdev_unregister(bdev[0], NULL, NULL);
1022 	spdk_bdev_unregister(bdev[1], NULL, NULL);
1023 	spdk_bdev_unregister(bdev[2], NULL, NULL);
1024 
1025 	poll_threads();
1026 
1027 	free(bdev[0]);
1028 	free(bdev[1]);
1029 	free(bdev[2]);
1030 }
1031 
1032 static void
1033 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
1034 {
1035 	g_io_done = true;
1036 	g_io_status = bdev_io->internal.status;
1037 	if ((bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) &&
1038 	    (bdev_io->u.bdev.zcopy.start)) {
1039 		g_zcopy_bdev_io = bdev_io;
1040 	} else {
1041 		spdk_bdev_free_io(bdev_io);
1042 		g_zcopy_bdev_io = NULL;
1043 	}
1044 }
1045 
1046 static void
1047 bdev_init_cb(void *arg, int rc)
1048 {
1049 	CU_ASSERT(rc == 0);
1050 }
1051 
1052 static void
1053 bdev_fini_cb(void *arg)
1054 {
1055 }
1056 
1057 struct bdev_ut_io_wait_entry {
1058 	struct spdk_bdev_io_wait_entry	entry;
1059 	struct spdk_io_channel		*io_ch;
1060 	struct spdk_bdev_desc		*desc;
1061 	bool				submitted;
1062 };
1063 
1064 static void
1065 io_wait_cb(void *arg)
1066 {
1067 	struct bdev_ut_io_wait_entry *entry = arg;
1068 	int rc;
1069 
1070 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
1071 	CU_ASSERT(rc == 0);
1072 	entry->submitted = true;
1073 }
1074 
1075 static void
1076 bdev_io_types_test(void)
1077 {
1078 	struct spdk_bdev *bdev;
1079 	struct spdk_bdev_desc *desc = NULL;
1080 	struct spdk_io_channel *io_ch;
1081 	struct spdk_bdev_opts bdev_opts = {};
1082 	int rc;
1083 
1084 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1085 	bdev_opts.bdev_io_pool_size = 4;
1086 	bdev_opts.bdev_io_cache_size = 2;
1087 
1088 	rc = spdk_bdev_set_opts(&bdev_opts);
1089 	CU_ASSERT(rc == 0);
1090 	spdk_bdev_initialize(bdev_init_cb, NULL);
1091 	poll_threads();
1092 
1093 	bdev = allocate_bdev("bdev0");
1094 
1095 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1096 	CU_ASSERT(rc == 0);
1097 	poll_threads();
1098 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1099 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1100 	io_ch = spdk_bdev_get_io_channel(desc);
1101 	CU_ASSERT(io_ch != NULL);
1102 
1103 	/* WRITE and WRITE ZEROES are not supported */
1104 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
1105 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
1106 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
1107 	CU_ASSERT(rc == -ENOTSUP);
1108 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
1109 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
1110 
1111 	/* COPY is not supported */
1112 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false);
1113 	rc = spdk_bdev_copy_blocks(desc, io_ch, 128, 0, 128, io_done, NULL);
1114 	CU_ASSERT(rc == -ENOTSUP);
1115 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true);
1116 
1117 	/* NVME_IO, NVME_IO_MD and NVME_ADMIN are not supported */
1118 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, false);
1119 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, false);
1120 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, false);
1121 	rc = spdk_bdev_nvme_io_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1122 	CU_ASSERT(rc == -ENOTSUP);
1123 	rc = spdk_bdev_nvme_io_passthru_md(desc, io_ch, NULL, NULL, 0, NULL, 0, NULL, NULL);
1124 	CU_ASSERT(rc == -ENOTSUP);
1125 	rc = spdk_bdev_nvme_admin_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1126 	CU_ASSERT(rc == -ENOTSUP);
1127 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, true);
1128 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, true);
1129 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, true);
1130 
1131 	spdk_put_io_channel(io_ch);
1132 	spdk_bdev_close(desc);
1133 	free_bdev(bdev);
1134 	spdk_bdev_finish(bdev_fini_cb, NULL);
1135 	poll_threads();
1136 }
1137 
1138 static void
1139 bdev_io_wait_test(void)
1140 {
1141 	struct spdk_bdev *bdev;
1142 	struct spdk_bdev_desc *desc = NULL;
1143 	struct spdk_io_channel *io_ch;
1144 	struct spdk_bdev_opts bdev_opts = {};
1145 	struct bdev_ut_io_wait_entry io_wait_entry;
1146 	struct bdev_ut_io_wait_entry io_wait_entry2;
1147 	int rc;
1148 
1149 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1150 	bdev_opts.bdev_io_pool_size = 4;
1151 	bdev_opts.bdev_io_cache_size = 2;
1152 
1153 	rc = spdk_bdev_set_opts(&bdev_opts);
1154 	CU_ASSERT(rc == 0);
1155 	spdk_bdev_initialize(bdev_init_cb, NULL);
1156 	poll_threads();
1157 
1158 	bdev = allocate_bdev("bdev0");
1159 
1160 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1161 	CU_ASSERT(rc == 0);
1162 	poll_threads();
1163 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1164 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1165 	io_ch = spdk_bdev_get_io_channel(desc);
1166 	CU_ASSERT(io_ch != NULL);
1167 
1168 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1169 	CU_ASSERT(rc == 0);
1170 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1171 	CU_ASSERT(rc == 0);
1172 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1173 	CU_ASSERT(rc == 0);
1174 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1175 	CU_ASSERT(rc == 0);
1176 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1177 
1178 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1179 	CU_ASSERT(rc == -ENOMEM);
1180 
1181 	io_wait_entry.entry.bdev = bdev;
1182 	io_wait_entry.entry.cb_fn = io_wait_cb;
1183 	io_wait_entry.entry.cb_arg = &io_wait_entry;
1184 	io_wait_entry.io_ch = io_ch;
1185 	io_wait_entry.desc = desc;
1186 	io_wait_entry.submitted = false;
1187 	/* Cannot use the same io_wait_entry for two different calls. */
1188 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
1189 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
1190 
1191 	/* Queue two I/O waits. */
1192 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
1193 	CU_ASSERT(rc == 0);
1194 	CU_ASSERT(io_wait_entry.submitted == false);
1195 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
1196 	CU_ASSERT(rc == 0);
1197 	CU_ASSERT(io_wait_entry2.submitted == false);
1198 
1199 	stub_complete_io(1);
1200 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1201 	CU_ASSERT(io_wait_entry.submitted == true);
1202 	CU_ASSERT(io_wait_entry2.submitted == false);
1203 
1204 	stub_complete_io(1);
1205 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1206 	CU_ASSERT(io_wait_entry2.submitted == true);
1207 
1208 	stub_complete_io(4);
1209 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1210 
1211 	spdk_put_io_channel(io_ch);
1212 	spdk_bdev_close(desc);
1213 	free_bdev(bdev);
1214 	spdk_bdev_finish(bdev_fini_cb, NULL);
1215 	poll_threads();
1216 }
1217 
1218 static void
1219 bdev_io_spans_split_test(void)
1220 {
1221 	struct spdk_bdev bdev;
1222 	struct spdk_bdev_io bdev_io;
1223 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV];
1224 
1225 	memset(&bdev, 0, sizeof(bdev));
1226 	bdev_io.u.bdev.iovs = iov;
1227 
1228 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1229 	bdev.optimal_io_boundary = 0;
1230 	bdev.max_segment_size = 0;
1231 	bdev.max_num_segments = 0;
1232 	bdev_io.bdev = &bdev;
1233 
1234 	/* bdev has no optimal_io_boundary and max_size set - so this should return false. */
1235 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1236 
1237 	bdev.split_on_optimal_io_boundary = true;
1238 	bdev.optimal_io_boundary = 32;
1239 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1240 
1241 	/* RESETs are not based on LBAs - so this should return false. */
1242 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1243 
1244 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1245 	bdev_io.u.bdev.offset_blocks = 0;
1246 	bdev_io.u.bdev.num_blocks = 32;
1247 
1248 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1249 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1250 
1251 	bdev_io.u.bdev.num_blocks = 33;
1252 
1253 	/* This I/O spans a boundary. */
1254 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1255 
1256 	bdev_io.u.bdev.num_blocks = 32;
1257 	bdev.max_segment_size = 512 * 32;
1258 	bdev.max_num_segments = 1;
1259 	bdev_io.u.bdev.iovcnt = 1;
1260 	iov[0].iov_len = 512;
1261 
1262 	/* Does not cross and exceed max_size or max_segs */
1263 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1264 
1265 	bdev.split_on_optimal_io_boundary = false;
1266 	bdev.max_segment_size = 512;
1267 	bdev.max_num_segments = 1;
1268 	bdev_io.u.bdev.iovcnt = 2;
1269 
1270 	/* Exceed max_segs */
1271 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1272 
1273 	bdev.max_num_segments = 2;
1274 	iov[0].iov_len = 513;
1275 	iov[1].iov_len = 512;
1276 
1277 	/* Exceed max_sizes */
1278 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1279 
1280 	bdev.max_segment_size = 0;
1281 	bdev.write_unit_size = 32;
1282 	bdev.split_on_write_unit = true;
1283 	bdev_io.type = SPDK_BDEV_IO_TYPE_WRITE;
1284 
1285 	/* This I/O is one write unit */
1286 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1287 
1288 	bdev_io.u.bdev.num_blocks = 32 * 2;
1289 
1290 	/* This I/O is more than one write unit */
1291 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1292 
1293 	bdev_io.u.bdev.offset_blocks = 1;
1294 	bdev_io.u.bdev.num_blocks = 32;
1295 
1296 	/* This I/O is not aligned to write unit size */
1297 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1298 }
1299 
1300 static void
1301 bdev_io_boundary_split_test(void)
1302 {
1303 	struct spdk_bdev *bdev;
1304 	struct spdk_bdev_desc *desc = NULL;
1305 	struct spdk_io_channel *io_ch;
1306 	struct spdk_bdev_opts bdev_opts = {};
1307 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1308 	struct ut_expected_io *expected_io;
1309 	void *md_buf = (void *)0xFF000000;
1310 	uint64_t i;
1311 	int rc;
1312 
1313 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1314 	bdev_opts.bdev_io_pool_size = 512;
1315 	bdev_opts.bdev_io_cache_size = 64;
1316 
1317 	rc = spdk_bdev_set_opts(&bdev_opts);
1318 	CU_ASSERT(rc == 0);
1319 	spdk_bdev_initialize(bdev_init_cb, NULL);
1320 
1321 	bdev = allocate_bdev("bdev0");
1322 
1323 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1324 	CU_ASSERT(rc == 0);
1325 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1326 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1327 	io_ch = spdk_bdev_get_io_channel(desc);
1328 	CU_ASSERT(io_ch != NULL);
1329 
1330 	bdev->optimal_io_boundary = 16;
1331 	bdev->split_on_optimal_io_boundary = false;
1332 
1333 	g_io_done = false;
1334 
1335 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1336 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1337 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1338 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1339 
1340 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1341 	CU_ASSERT(rc == 0);
1342 	CU_ASSERT(g_io_done == false);
1343 
1344 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1345 	stub_complete_io(1);
1346 	CU_ASSERT(g_io_done == true);
1347 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1348 
1349 	bdev->split_on_optimal_io_boundary = true;
1350 	bdev->md_interleave = false;
1351 	bdev->md_len = 8;
1352 
1353 	/* Now test that a single-vector command is split correctly.
1354 	 * Offset 14, length 8, payload 0xF000
1355 	 *  Child - Offset 14, length 2, payload 0xF000
1356 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1357 	 *
1358 	 * Set up the expected values before calling spdk_bdev_read_blocks
1359 	 */
1360 	g_io_done = false;
1361 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1362 	expected_io->md_buf = md_buf;
1363 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1364 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1365 
1366 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1367 	expected_io->md_buf = md_buf + 2 * 8;
1368 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1369 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1370 
1371 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1372 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1373 					   14, 8, io_done, NULL);
1374 	CU_ASSERT(rc == 0);
1375 	CU_ASSERT(g_io_done == false);
1376 
1377 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1378 	stub_complete_io(2);
1379 	CU_ASSERT(g_io_done == true);
1380 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1381 
1382 	/* Now set up a more complex, multi-vector command that needs to be split,
1383 	 *  including splitting iovecs.
1384 	 */
1385 	iov[0].iov_base = (void *)0x10000;
1386 	iov[0].iov_len = 512;
1387 	iov[1].iov_base = (void *)0x20000;
1388 	iov[1].iov_len = 20 * 512;
1389 	iov[2].iov_base = (void *)0x30000;
1390 	iov[2].iov_len = 11 * 512;
1391 
1392 	g_io_done = false;
1393 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1394 	expected_io->md_buf = md_buf;
1395 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1396 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1397 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1398 
1399 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1400 	expected_io->md_buf = md_buf + 2 * 8;
1401 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1402 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1403 
1404 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1405 	expected_io->md_buf = md_buf + 18 * 8;
1406 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1407 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1408 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1409 
1410 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1411 					     14, 32, io_done, NULL);
1412 	CU_ASSERT(rc == 0);
1413 	CU_ASSERT(g_io_done == false);
1414 
1415 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1416 	stub_complete_io(3);
1417 	CU_ASSERT(g_io_done == true);
1418 
1419 	/* Test multi vector command that needs to be split by strip and then needs to be
1420 	 * split further due to the capacity of child iovs.
1421 	 */
1422 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1423 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1424 		iov[i].iov_len = 512;
1425 	}
1426 
1427 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1428 	g_io_done = false;
1429 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1430 					   BDEV_IO_NUM_CHILD_IOV);
1431 	expected_io->md_buf = md_buf;
1432 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1433 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1434 	}
1435 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1436 
1437 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1438 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
1439 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1440 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1441 		ut_expected_io_set_iov(expected_io, i,
1442 				       (void *)((i + 1 + BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1443 	}
1444 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1445 
1446 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1447 					    0, BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1448 	CU_ASSERT(rc == 0);
1449 	CU_ASSERT(g_io_done == false);
1450 
1451 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1452 	stub_complete_io(1);
1453 	CU_ASSERT(g_io_done == false);
1454 
1455 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1456 	stub_complete_io(1);
1457 	CU_ASSERT(g_io_done == true);
1458 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1459 
1460 	/* Test multi vector command that needs to be split by strip and then needs to be
1461 	 * split further due to the capacity of child iovs. In this case, the length of
1462 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1463 	 */
1464 
1465 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1466 	 * is BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1467 	 */
1468 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1469 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1470 		iov[i].iov_len = 512;
1471 	}
1472 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1473 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1474 		iov[i].iov_len = 256;
1475 	}
1476 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1477 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1478 
1479 	/* Add an extra iovec to trigger split */
1480 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1481 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1482 
1483 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1484 	g_io_done = false;
1485 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1486 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV);
1487 	expected_io->md_buf = md_buf;
1488 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1489 		ut_expected_io_set_iov(expected_io, i,
1490 				       (void *)((i + 1) * 0x10000), 512);
1491 	}
1492 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1493 		ut_expected_io_set_iov(expected_io, i,
1494 				       (void *)((i + 1) * 0x10000), 256);
1495 	}
1496 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1497 
1498 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1499 					   1, 1);
1500 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1501 	ut_expected_io_set_iov(expected_io, 0,
1502 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1503 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1504 
1505 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1506 					   1, 1);
1507 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1508 	ut_expected_io_set_iov(expected_io, 0,
1509 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1510 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1511 
1512 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1513 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1514 	CU_ASSERT(rc == 0);
1515 	CU_ASSERT(g_io_done == false);
1516 
1517 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1518 	stub_complete_io(1);
1519 	CU_ASSERT(g_io_done == false);
1520 
1521 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1522 	stub_complete_io(2);
1523 	CU_ASSERT(g_io_done == true);
1524 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1525 
1526 	/* Test multi vector command that needs to be split by strip and then needs to be
1527 	 * split further due to the capacity of child iovs, the child request offset should
1528 	 * be rewind to last aligned offset and go success without error.
1529 	 */
1530 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1531 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1532 		iov[i].iov_len = 512;
1533 	}
1534 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1535 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1536 
1537 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1538 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1539 
1540 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1541 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1542 
1543 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1544 	g_io_done = false;
1545 	g_io_status = 0;
1546 	/* The first expected io should be start from offset 0 to BDEV_IO_NUM_CHILD_IOV - 1 */
1547 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1548 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV - 1);
1549 	expected_io->md_buf = md_buf;
1550 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1551 		ut_expected_io_set_iov(expected_io, i,
1552 				       (void *)((i + 1) * 0x10000), 512);
1553 	}
1554 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1555 	/* The second expected io should be start from offset BDEV_IO_NUM_CHILD_IOV - 1 to BDEV_IO_NUM_CHILD_IOV */
1556 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1557 					   1, 2);
1558 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1559 	ut_expected_io_set_iov(expected_io, 0,
1560 			       (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1561 	ut_expected_io_set_iov(expected_io, 1,
1562 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1563 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1564 	/* The third expected io should be start from offset BDEV_IO_NUM_CHILD_IOV to BDEV_IO_NUM_CHILD_IOV + 1 */
1565 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1566 					   1, 1);
1567 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1568 	ut_expected_io_set_iov(expected_io, 0,
1569 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1570 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1571 
1572 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1573 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1574 	CU_ASSERT(rc == 0);
1575 	CU_ASSERT(g_io_done == false);
1576 
1577 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1578 	stub_complete_io(1);
1579 	CU_ASSERT(g_io_done == false);
1580 
1581 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1582 	stub_complete_io(2);
1583 	CU_ASSERT(g_io_done == true);
1584 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1585 
1586 	/* Test multi vector command that needs to be split due to the IO boundary and
1587 	 * the capacity of child iovs. Especially test the case when the command is
1588 	 * split due to the capacity of child iovs, the tail address is not aligned with
1589 	 * block size and is rewinded to the aligned address.
1590 	 *
1591 	 * The iovecs used in read request is complex but is based on the data
1592 	 * collected in the real issue. We change the base addresses but keep the lengths
1593 	 * not to loose the credibility of the test.
1594 	 */
1595 	bdev->optimal_io_boundary = 128;
1596 	g_io_done = false;
1597 	g_io_status = 0;
1598 
1599 	for (i = 0; i < 31; i++) {
1600 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1601 		iov[i].iov_len = 1024;
1602 	}
1603 	iov[31].iov_base = (void *)0xFEED1F00000;
1604 	iov[31].iov_len = 32768;
1605 	iov[32].iov_base = (void *)0xFEED2000000;
1606 	iov[32].iov_len = 160;
1607 	iov[33].iov_base = (void *)0xFEED2100000;
1608 	iov[33].iov_len = 4096;
1609 	iov[34].iov_base = (void *)0xFEED2200000;
1610 	iov[34].iov_len = 4096;
1611 	iov[35].iov_base = (void *)0xFEED2300000;
1612 	iov[35].iov_len = 4096;
1613 	iov[36].iov_base = (void *)0xFEED2400000;
1614 	iov[36].iov_len = 4096;
1615 	iov[37].iov_base = (void *)0xFEED2500000;
1616 	iov[37].iov_len = 4096;
1617 	iov[38].iov_base = (void *)0xFEED2600000;
1618 	iov[38].iov_len = 4096;
1619 	iov[39].iov_base = (void *)0xFEED2700000;
1620 	iov[39].iov_len = 4096;
1621 	iov[40].iov_base = (void *)0xFEED2800000;
1622 	iov[40].iov_len = 4096;
1623 	iov[41].iov_base = (void *)0xFEED2900000;
1624 	iov[41].iov_len = 4096;
1625 	iov[42].iov_base = (void *)0xFEED2A00000;
1626 	iov[42].iov_len = 4096;
1627 	iov[43].iov_base = (void *)0xFEED2B00000;
1628 	iov[43].iov_len = 12288;
1629 	iov[44].iov_base = (void *)0xFEED2C00000;
1630 	iov[44].iov_len = 8192;
1631 	iov[45].iov_base = (void *)0xFEED2F00000;
1632 	iov[45].iov_len = 4096;
1633 	iov[46].iov_base = (void *)0xFEED3000000;
1634 	iov[46].iov_len = 4096;
1635 	iov[47].iov_base = (void *)0xFEED3100000;
1636 	iov[47].iov_len = 4096;
1637 	iov[48].iov_base = (void *)0xFEED3200000;
1638 	iov[48].iov_len = 24576;
1639 	iov[49].iov_base = (void *)0xFEED3300000;
1640 	iov[49].iov_len = 16384;
1641 	iov[50].iov_base = (void *)0xFEED3400000;
1642 	iov[50].iov_len = 12288;
1643 	iov[51].iov_base = (void *)0xFEED3500000;
1644 	iov[51].iov_len = 4096;
1645 	iov[52].iov_base = (void *)0xFEED3600000;
1646 	iov[52].iov_len = 4096;
1647 	iov[53].iov_base = (void *)0xFEED3700000;
1648 	iov[53].iov_len = 4096;
1649 	iov[54].iov_base = (void *)0xFEED3800000;
1650 	iov[54].iov_len = 28672;
1651 	iov[55].iov_base = (void *)0xFEED3900000;
1652 	iov[55].iov_len = 20480;
1653 	iov[56].iov_base = (void *)0xFEED3A00000;
1654 	iov[56].iov_len = 4096;
1655 	iov[57].iov_base = (void *)0xFEED3B00000;
1656 	iov[57].iov_len = 12288;
1657 	iov[58].iov_base = (void *)0xFEED3C00000;
1658 	iov[58].iov_len = 4096;
1659 	iov[59].iov_base = (void *)0xFEED3D00000;
1660 	iov[59].iov_len = 4096;
1661 	iov[60].iov_base = (void *)0xFEED3E00000;
1662 	iov[60].iov_len = 352;
1663 
1664 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1665 	 * of child iovs,
1666 	 */
1667 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1668 	expected_io->md_buf = md_buf;
1669 	for (i = 0; i < 32; i++) {
1670 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1671 	}
1672 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1673 
1674 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1675 	 * split by the IO boundary requirement.
1676 	 */
1677 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1678 	expected_io->md_buf = md_buf + 126 * 8;
1679 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1680 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1681 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1682 
1683 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1684 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1685 	 */
1686 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1687 	expected_io->md_buf = md_buf + 128 * 8;
1688 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1689 			       iov[33].iov_len - 864);
1690 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1691 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1692 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1693 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1694 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1695 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1696 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1697 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1698 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1699 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1700 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1701 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1702 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1703 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1704 
1705 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1706 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1707 	 */
1708 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1709 	expected_io->md_buf = md_buf + 256 * 8;
1710 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1711 			       iov[46].iov_len - 864);
1712 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1713 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1714 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1715 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1716 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1717 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1718 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1719 
1720 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1721 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1722 	 */
1723 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1724 	expected_io->md_buf = md_buf + 384 * 8;
1725 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1726 			       iov[52].iov_len - 864);
1727 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1728 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1729 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1730 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1731 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1732 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1733 
1734 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1735 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1736 	 */
1737 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1738 	expected_io->md_buf = md_buf + 512 * 8;
1739 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1740 			       iov[57].iov_len - 4960);
1741 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1742 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1743 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1744 
1745 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1746 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1747 	expected_io->md_buf = md_buf + 542 * 8;
1748 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1749 			       iov[59].iov_len - 3936);
1750 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1751 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1752 
1753 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1754 					    0, 543, io_done, NULL);
1755 	CU_ASSERT(rc == 0);
1756 	CU_ASSERT(g_io_done == false);
1757 
1758 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1759 	stub_complete_io(1);
1760 	CU_ASSERT(g_io_done == false);
1761 
1762 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1763 	stub_complete_io(5);
1764 	CU_ASSERT(g_io_done == false);
1765 
1766 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1767 	stub_complete_io(1);
1768 	CU_ASSERT(g_io_done == true);
1769 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1770 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1771 
1772 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1773 	 * split, so test that.
1774 	 */
1775 	bdev->optimal_io_boundary = 15;
1776 	g_io_done = false;
1777 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1778 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1779 
1780 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1781 	CU_ASSERT(rc == 0);
1782 	CU_ASSERT(g_io_done == false);
1783 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1784 	stub_complete_io(1);
1785 	CU_ASSERT(g_io_done == true);
1786 
1787 	/* Test an UNMAP.  This should also not be split. */
1788 	bdev->optimal_io_boundary = 16;
1789 	g_io_done = false;
1790 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1791 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1792 
1793 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1794 	CU_ASSERT(rc == 0);
1795 	CU_ASSERT(g_io_done == false);
1796 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1797 	stub_complete_io(1);
1798 	CU_ASSERT(g_io_done == true);
1799 
1800 	/* Test a FLUSH.  This should also not be split. */
1801 	bdev->optimal_io_boundary = 16;
1802 	g_io_done = false;
1803 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1804 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1805 
1806 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1807 	CU_ASSERT(rc == 0);
1808 	CU_ASSERT(g_io_done == false);
1809 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1810 	stub_complete_io(1);
1811 	CU_ASSERT(g_io_done == true);
1812 
1813 	/* Test a COPY.  This should also not be split. */
1814 	bdev->optimal_io_boundary = 15;
1815 	g_io_done = false;
1816 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
1817 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1818 
1819 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
1820 	CU_ASSERT(rc == 0);
1821 	CU_ASSERT(g_io_done == false);
1822 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1823 	stub_complete_io(1);
1824 	CU_ASSERT(g_io_done == true);
1825 
1826 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1827 
1828 	/* Children requests return an error status */
1829 	bdev->optimal_io_boundary = 16;
1830 	iov[0].iov_base = (void *)0x10000;
1831 	iov[0].iov_len = 512 * 64;
1832 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1833 	g_io_done = false;
1834 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1835 
1836 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1837 	CU_ASSERT(rc == 0);
1838 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1839 	stub_complete_io(4);
1840 	CU_ASSERT(g_io_done == false);
1841 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1842 	stub_complete_io(1);
1843 	CU_ASSERT(g_io_done == true);
1844 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1845 
1846 	/* Test if a multi vector command terminated with failure before continuing
1847 	 * splitting process when one of child I/O failed.
1848 	 * The multi vector command is as same as the above that needs to be split by strip
1849 	 * and then needs to be split further due to the capacity of child iovs.
1850 	 */
1851 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1852 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1853 		iov[i].iov_len = 512;
1854 	}
1855 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1856 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1857 
1858 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1859 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1860 
1861 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1862 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1863 
1864 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1865 
1866 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1867 	g_io_done = false;
1868 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1869 
1870 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
1871 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1872 	CU_ASSERT(rc == 0);
1873 	CU_ASSERT(g_io_done == false);
1874 
1875 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1876 	stub_complete_io(1);
1877 	CU_ASSERT(g_io_done == true);
1878 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1879 
1880 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1881 
1882 	/* for this test we will create the following conditions to hit the code path where
1883 	 * we are trying to send and IO following a split that has no iovs because we had to
1884 	 * trim them for alignment reasons.
1885 	 *
1886 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1887 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1888 	 *   position 30 and overshoot by 0x2e.
1889 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1890 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1891 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1892 	 *   and let the completion pick up the last 2 vectors.
1893 	 */
1894 	bdev->optimal_io_boundary = 32;
1895 	bdev->split_on_optimal_io_boundary = true;
1896 	g_io_done = false;
1897 
1898 	/* Init all parent IOVs to 0x212 */
1899 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1900 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1901 		iov[i].iov_len = 0x212;
1902 	}
1903 
1904 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1905 					   BDEV_IO_NUM_CHILD_IOV - 1);
1906 	/* expect 0-29 to be 1:1 with the parent iov */
1907 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1908 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1909 	}
1910 
1911 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1912 	 * where 0x1e is the amount we overshot the 16K boundary
1913 	 */
1914 	ut_expected_io_set_iov(expected_io, BDEV_IO_NUM_CHILD_IOV - 2,
1915 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1916 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1917 
1918 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1919 	 * shortened that take it to the next boundary and then a final one to get us to
1920 	 * 0x4200 bytes for the IO.
1921 	 */
1922 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1923 					   BDEV_IO_NUM_CHILD_IOV, 2);
1924 	/* position 30 picked up the remaining bytes to the next boundary */
1925 	ut_expected_io_set_iov(expected_io, 0,
1926 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
1927 
1928 	/* position 31 picked the the rest of the transfer to get us to 0x4200 */
1929 	ut_expected_io_set_iov(expected_io, 1,
1930 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
1931 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1932 
1933 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 1, 0,
1934 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1935 	CU_ASSERT(rc == 0);
1936 	CU_ASSERT(g_io_done == false);
1937 
1938 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1939 	stub_complete_io(1);
1940 	CU_ASSERT(g_io_done == false);
1941 
1942 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1943 	stub_complete_io(1);
1944 	CU_ASSERT(g_io_done == true);
1945 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1946 
1947 	spdk_put_io_channel(io_ch);
1948 	spdk_bdev_close(desc);
1949 	free_bdev(bdev);
1950 	spdk_bdev_finish(bdev_fini_cb, NULL);
1951 	poll_threads();
1952 }
1953 
1954 static void
1955 bdev_io_max_size_and_segment_split_test(void)
1956 {
1957 	struct spdk_bdev *bdev;
1958 	struct spdk_bdev_desc *desc = NULL;
1959 	struct spdk_io_channel *io_ch;
1960 	struct spdk_bdev_opts bdev_opts = {};
1961 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1962 	struct ut_expected_io *expected_io;
1963 	uint64_t i;
1964 	int rc;
1965 
1966 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1967 	bdev_opts.bdev_io_pool_size = 512;
1968 	bdev_opts.bdev_io_cache_size = 64;
1969 
1970 	bdev_opts.opts_size = sizeof(bdev_opts);
1971 	rc = spdk_bdev_set_opts(&bdev_opts);
1972 	CU_ASSERT(rc == 0);
1973 	spdk_bdev_initialize(bdev_init_cb, NULL);
1974 
1975 	bdev = allocate_bdev("bdev0");
1976 
1977 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
1978 	CU_ASSERT(rc == 0);
1979 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1980 	io_ch = spdk_bdev_get_io_channel(desc);
1981 	CU_ASSERT(io_ch != NULL);
1982 
1983 	bdev->split_on_optimal_io_boundary = false;
1984 	bdev->optimal_io_boundary = 0;
1985 
1986 	/* Case 0 max_num_segments == 0.
1987 	 * but segment size 2 * 512 > 512
1988 	 */
1989 	bdev->max_segment_size = 512;
1990 	bdev->max_num_segments = 0;
1991 	g_io_done = false;
1992 
1993 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
1994 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
1995 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
1996 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1997 
1998 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
1999 	CU_ASSERT(rc == 0);
2000 	CU_ASSERT(g_io_done == false);
2001 
2002 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2003 	stub_complete_io(1);
2004 	CU_ASSERT(g_io_done == true);
2005 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2006 
2007 	/* Case 1 max_segment_size == 0
2008 	 * but iov num 2 > 1.
2009 	 */
2010 	bdev->max_segment_size = 0;
2011 	bdev->max_num_segments = 1;
2012 	g_io_done = false;
2013 
2014 	iov[0].iov_base = (void *)0x10000;
2015 	iov[0].iov_len = 512;
2016 	iov[1].iov_base = (void *)0x20000;
2017 	iov[1].iov_len = 8 * 512;
2018 
2019 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2020 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len);
2021 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2022 
2023 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1);
2024 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len);
2025 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2026 
2027 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL);
2028 	CU_ASSERT(rc == 0);
2029 	CU_ASSERT(g_io_done == false);
2030 
2031 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2032 	stub_complete_io(2);
2033 	CU_ASSERT(g_io_done == true);
2034 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2035 
2036 	/* Test that a non-vector command is split correctly.
2037 	 * Set up the expected values before calling spdk_bdev_read_blocks
2038 	 */
2039 	bdev->max_segment_size = 512;
2040 	bdev->max_num_segments = 1;
2041 	g_io_done = false;
2042 
2043 	/* Child IO 0 */
2044 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2045 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2046 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2047 
2048 	/* Child IO 1 */
2049 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2050 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512);
2051 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2052 
2053 	/* spdk_bdev_read_blocks will submit the first child immediately. */
2054 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2055 	CU_ASSERT(rc == 0);
2056 	CU_ASSERT(g_io_done == false);
2057 
2058 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2059 	stub_complete_io(2);
2060 	CU_ASSERT(g_io_done == true);
2061 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2062 
2063 	/* Now set up a more complex, multi-vector command that needs to be split,
2064 	 * including splitting iovecs.
2065 	 */
2066 	bdev->max_segment_size = 2 * 512;
2067 	bdev->max_num_segments = 1;
2068 	g_io_done = false;
2069 
2070 	iov[0].iov_base = (void *)0x10000;
2071 	iov[0].iov_len = 2 * 512;
2072 	iov[1].iov_base = (void *)0x20000;
2073 	iov[1].iov_len = 4 * 512;
2074 	iov[2].iov_base = (void *)0x30000;
2075 	iov[2].iov_len = 6 * 512;
2076 
2077 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2078 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2);
2079 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2080 
2081 	/* Split iov[1].size to 2 iov entries then split the segments */
2082 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2083 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2);
2084 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2085 
2086 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1);
2087 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2);
2088 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2089 
2090 	/* Split iov[2].size to 3 iov entries then split the segments */
2091 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1);
2092 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2);
2093 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2094 
2095 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1);
2096 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2);
2097 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2098 
2099 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1);
2100 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2);
2101 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2102 
2103 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL);
2104 	CU_ASSERT(rc == 0);
2105 	CU_ASSERT(g_io_done == false);
2106 
2107 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2108 	stub_complete_io(6);
2109 	CU_ASSERT(g_io_done == true);
2110 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2111 
2112 	/* Test multi vector command that needs to be split by strip and then needs to be
2113 	 * split further due to the capacity of parent IO child iovs.
2114 	 */
2115 	bdev->max_segment_size = 512;
2116 	bdev->max_num_segments = 1;
2117 	g_io_done = false;
2118 
2119 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
2120 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2121 		iov[i].iov_len = 512 * 2;
2122 	}
2123 
2124 	/* Each input iov.size is split into 2 iovs,
2125 	 * half of the input iov can fill all child iov entries of a single IO.
2126 	 */
2127 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV / 2; i++) {
2128 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1);
2129 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2130 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2131 
2132 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1);
2133 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2134 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2135 	}
2136 
2137 	/* The remaining iov is split in the second round */
2138 	for (i = BDEV_IO_NUM_CHILD_IOV / 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
2139 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1);
2140 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2141 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2142 
2143 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1);
2144 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2145 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2146 	}
2147 
2148 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV, 0,
2149 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
2150 	CU_ASSERT(rc == 0);
2151 	CU_ASSERT(g_io_done == false);
2152 
2153 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == BDEV_IO_NUM_CHILD_IOV);
2154 	stub_complete_io(BDEV_IO_NUM_CHILD_IOV);
2155 	CU_ASSERT(g_io_done == false);
2156 
2157 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == BDEV_IO_NUM_CHILD_IOV);
2158 	stub_complete_io(BDEV_IO_NUM_CHILD_IOV);
2159 	CU_ASSERT(g_io_done == true);
2160 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2161 
2162 	/* A wrong case, a child IO that is divided does
2163 	 * not meet the principle of multiples of block size,
2164 	 * and exits with error
2165 	 */
2166 	bdev->max_segment_size = 512;
2167 	bdev->max_num_segments = 1;
2168 	g_io_done = false;
2169 
2170 	iov[0].iov_base = (void *)0x10000;
2171 	iov[0].iov_len = 512 + 256;
2172 	iov[1].iov_base = (void *)0x20000;
2173 	iov[1].iov_len = 256;
2174 
2175 	/* iov[0] is split to 512 and 256.
2176 	 * 256 is less than a block size, and it is found
2177 	 * in the next round of split that it is the first child IO smaller than
2178 	 * the block size, so the error exit
2179 	 */
2180 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1);
2181 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512);
2182 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2183 
2184 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL);
2185 	CU_ASSERT(rc == 0);
2186 	CU_ASSERT(g_io_done == false);
2187 
2188 	/* First child IO is OK */
2189 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2190 	stub_complete_io(1);
2191 	CU_ASSERT(g_io_done == true);
2192 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2193 
2194 	/* error exit */
2195 	stub_complete_io(1);
2196 	CU_ASSERT(g_io_done == true);
2197 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
2198 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2199 
2200 	/* Test multi vector command that needs to be split by strip and then needs to be
2201 	 * split further due to the capacity of child iovs.
2202 	 *
2203 	 * In this case, the last two iovs need to be split, but it will exceed the capacity
2204 	 * of child iovs, so it needs to wait until the first batch completed.
2205 	 */
2206 	bdev->max_segment_size = 512;
2207 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2208 	g_io_done = false;
2209 
2210 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2211 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2212 		iov[i].iov_len = 512;
2213 	}
2214 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
2215 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2216 		iov[i].iov_len = 512 * 2;
2217 	}
2218 
2219 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2220 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
2221 	/* 0 ~ (BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */
2222 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2223 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2224 	}
2225 	/* (BDEV_IO_NUM_CHILD_IOV - 2) is split */
2226 	ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512);
2227 	ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512);
2228 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2229 
2230 	/* Child iov entries exceed the max num of parent IO so split it in next round */
2231 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV, 2, 2);
2232 	ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512);
2233 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512);
2234 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2235 
2236 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV, 0,
2237 				    BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL);
2238 	CU_ASSERT(rc == 0);
2239 	CU_ASSERT(g_io_done == false);
2240 
2241 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2242 	stub_complete_io(1);
2243 	CU_ASSERT(g_io_done == false);
2244 
2245 	/* Next round */
2246 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2247 	stub_complete_io(1);
2248 	CU_ASSERT(g_io_done == true);
2249 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2250 
2251 	/* This case is similar to the previous one, but the io composed of
2252 	 * the last few entries of child iov is not enough for a blocklen, so they
2253 	 * cannot be put into this IO, but wait until the next time.
2254 	 */
2255 	bdev->max_segment_size = 512;
2256 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2257 	g_io_done = false;
2258 
2259 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2260 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2261 		iov[i].iov_len = 512;
2262 	}
2263 
2264 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2265 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2266 		iov[i].iov_len = 128;
2267 	}
2268 
2269 	/* First child iovcnt is't BDEV_IO_NUM_CHILD_IOV but BDEV_IO_NUM_CHILD_IOV - 2.
2270 	 * Because the left 2 iov is not enough for a blocklen.
2271 	 */
2272 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2273 					   BDEV_IO_NUM_CHILD_IOV - 2, BDEV_IO_NUM_CHILD_IOV - 2);
2274 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2275 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2276 	}
2277 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2278 
2279 	/* The second child io waits until the end of the first child io before executing.
2280 	 * Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO.
2281 	 * BDEV_IO_NUM_CHILD_IOV - 2 to BDEV_IO_NUM_CHILD_IOV + 2
2282 	 */
2283 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 2,
2284 					   1, 4);
2285 	ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len);
2286 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len);
2287 	ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len);
2288 	ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len);
2289 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2290 
2291 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
2292 				    BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL);
2293 	CU_ASSERT(rc == 0);
2294 	CU_ASSERT(g_io_done == false);
2295 
2296 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2297 	stub_complete_io(1);
2298 	CU_ASSERT(g_io_done == false);
2299 
2300 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2301 	stub_complete_io(1);
2302 	CU_ASSERT(g_io_done == true);
2303 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2304 
2305 	/* A very complicated case. Each sg entry exceeds max_segment_size and
2306 	 * needs to be split. At the same time, child io must be a multiple of blocklen.
2307 	 * At the same time, child iovcnt exceeds parent iovcnt.
2308 	 */
2309 	bdev->max_segment_size = 512 + 128;
2310 	bdev->max_num_segments = 3;
2311 	g_io_done = false;
2312 
2313 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2314 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2315 		iov[i].iov_len = 512 + 256;
2316 	}
2317 
2318 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2319 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2320 		iov[i].iov_len = 512 + 128;
2321 	}
2322 
2323 	/* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries.
2324 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2325 	 * Generate 9 child IOs.
2326 	 */
2327 	for (i = 0; i < 3; i++) {
2328 		uint32_t j = i * 4;
2329 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3);
2330 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2331 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2332 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2333 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2334 
2335 		/* Child io must be a multiple of blocklen
2336 		 * iov[j + 2] must be split. If the third entry is also added,
2337 		 * the multiple of blocklen cannot be guaranteed. But it still
2338 		 * occupies one iov entry of the parent child iov.
2339 		 */
2340 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2);
2341 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2342 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2343 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2344 
2345 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3);
2346 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2347 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2348 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2349 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2350 	}
2351 
2352 	/* Child iov position at 27, the 10th child IO
2353 	 * iov entry index is 3 * 4 and offset is 3 * 6
2354 	 */
2355 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3);
2356 	ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640);
2357 	ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128);
2358 	ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256);
2359 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2360 
2361 	/* Child iov position at 30, the 11th child IO */
2362 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2);
2363 	ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512);
2364 	ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512);
2365 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2366 
2367 	/* The 2nd split round and iovpos is 0, the 12th child IO */
2368 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3);
2369 	ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256);
2370 	ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640);
2371 	ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128);
2372 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2373 
2374 	/* Consume 9 child IOs and 27 child iov entries.
2375 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2376 	 * Parent IO iov index start from 16 and block offset start from 24
2377 	 */
2378 	for (i = 0; i < 3; i++) {
2379 		uint32_t j = i * 4 + 16;
2380 		uint32_t offset = i * 6 + 24;
2381 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3);
2382 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2383 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2384 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2385 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2386 
2387 		/* Child io must be a multiple of blocklen
2388 		 * iov[j + 2] must be split. If the third entry is also added,
2389 		 * the multiple of blocklen cannot be guaranteed. But it still
2390 		 * occupies one iov entry of the parent child iov.
2391 		 */
2392 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2);
2393 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2394 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2395 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2396 
2397 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3);
2398 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2399 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2400 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2401 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2402 	}
2403 
2404 	/* The 22th child IO, child iov position at 30 */
2405 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1);
2406 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512);
2407 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2408 
2409 	/* The third round */
2410 	/* Here is the 23nd child IO and child iovpos is 0 */
2411 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3);
2412 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256);
2413 	ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640);
2414 	ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128);
2415 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2416 
2417 	/* The 24th child IO */
2418 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3);
2419 	ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640);
2420 	ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640);
2421 	ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256);
2422 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2423 
2424 	/* The 25th child IO */
2425 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2);
2426 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384);
2427 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640);
2428 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2429 
2430 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
2431 				    50, io_done, NULL);
2432 	CU_ASSERT(rc == 0);
2433 	CU_ASSERT(g_io_done == false);
2434 
2435 	/* Parent IO supports up to 32 child iovs, so it is calculated that
2436 	 * a maximum of 11 IOs can be split at a time, and the
2437 	 * splitting will continue after the first batch is over.
2438 	 */
2439 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2440 	stub_complete_io(11);
2441 	CU_ASSERT(g_io_done == false);
2442 
2443 	/* The 2nd round */
2444 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2445 	stub_complete_io(11);
2446 	CU_ASSERT(g_io_done == false);
2447 
2448 	/* The last round */
2449 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2450 	stub_complete_io(3);
2451 	CU_ASSERT(g_io_done == true);
2452 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2453 
2454 	/* Test an WRITE_ZEROES.  This should also not be split. */
2455 	bdev->max_segment_size = 512;
2456 	bdev->max_num_segments = 1;
2457 	g_io_done = false;
2458 
2459 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
2460 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2461 
2462 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
2463 	CU_ASSERT(rc == 0);
2464 	CU_ASSERT(g_io_done == false);
2465 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2466 	stub_complete_io(1);
2467 	CU_ASSERT(g_io_done == true);
2468 
2469 	/* Test an UNMAP.  This should also not be split. */
2470 	g_io_done = false;
2471 
2472 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0);
2473 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2474 
2475 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL);
2476 	CU_ASSERT(rc == 0);
2477 	CU_ASSERT(g_io_done == false);
2478 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2479 	stub_complete_io(1);
2480 	CU_ASSERT(g_io_done == true);
2481 
2482 	/* Test a FLUSH.  This should also not be split. */
2483 	g_io_done = false;
2484 
2485 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0);
2486 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2487 
2488 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
2489 	CU_ASSERT(rc == 0);
2490 	CU_ASSERT(g_io_done == false);
2491 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2492 	stub_complete_io(1);
2493 	CU_ASSERT(g_io_done == true);
2494 
2495 	/* Test a COPY.  This should also not be split. */
2496 	g_io_done = false;
2497 
2498 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
2499 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2500 
2501 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
2502 	CU_ASSERT(rc == 0);
2503 	CU_ASSERT(g_io_done == false);
2504 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2505 	stub_complete_io(1);
2506 	CU_ASSERT(g_io_done == true);
2507 
2508 	spdk_put_io_channel(io_ch);
2509 	spdk_bdev_close(desc);
2510 	free_bdev(bdev);
2511 	spdk_bdev_finish(bdev_fini_cb, NULL);
2512 	poll_threads();
2513 }
2514 
2515 static void
2516 bdev_io_mix_split_test(void)
2517 {
2518 	struct spdk_bdev *bdev;
2519 	struct spdk_bdev_desc *desc = NULL;
2520 	struct spdk_io_channel *io_ch;
2521 	struct spdk_bdev_opts bdev_opts = {};
2522 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
2523 	struct ut_expected_io *expected_io;
2524 	uint64_t i;
2525 	int rc;
2526 
2527 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2528 	bdev_opts.bdev_io_pool_size = 512;
2529 	bdev_opts.bdev_io_cache_size = 64;
2530 
2531 	rc = spdk_bdev_set_opts(&bdev_opts);
2532 	CU_ASSERT(rc == 0);
2533 	spdk_bdev_initialize(bdev_init_cb, NULL);
2534 
2535 	bdev = allocate_bdev("bdev0");
2536 
2537 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2538 	CU_ASSERT(rc == 0);
2539 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2540 	io_ch = spdk_bdev_get_io_channel(desc);
2541 	CU_ASSERT(io_ch != NULL);
2542 
2543 	/* First case optimal_io_boundary == max_segment_size * max_num_segments */
2544 	bdev->split_on_optimal_io_boundary = true;
2545 	bdev->optimal_io_boundary = 16;
2546 
2547 	bdev->max_segment_size = 512;
2548 	bdev->max_num_segments = 16;
2549 	g_io_done = false;
2550 
2551 	/* IO crossing the IO boundary requires split
2552 	 * Total 2 child IOs.
2553 	 */
2554 
2555 	/* The 1st child IO split the segment_size to multiple segment entry */
2556 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2557 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2558 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2559 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2560 
2561 	/* The 2nd child IO split the segment_size to multiple segment entry */
2562 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2);
2563 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512);
2564 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512);
2565 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2566 
2567 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL);
2568 	CU_ASSERT(rc == 0);
2569 	CU_ASSERT(g_io_done == false);
2570 
2571 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2572 	stub_complete_io(2);
2573 	CU_ASSERT(g_io_done == true);
2574 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2575 
2576 	/* Second case optimal_io_boundary > max_segment_size * max_num_segments */
2577 	bdev->max_segment_size = 15 * 512;
2578 	bdev->max_num_segments = 1;
2579 	g_io_done = false;
2580 
2581 	/* IO crossing the IO boundary requires split.
2582 	 * The 1st child IO segment size exceeds the max_segment_size,
2583 	 * So 1st child IO will be splitted to multiple segment entry.
2584 	 * Then it split to 2 child IOs because of the max_num_segments.
2585 	 * Total 3 child IOs.
2586 	 */
2587 
2588 	/* The first 2 IOs are in an IO boundary.
2589 	 * Because the optimal_io_boundary > max_segment_size * max_num_segments
2590 	 * So it split to the first 2 IOs.
2591 	 */
2592 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1);
2593 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15);
2594 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2595 
2596 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2597 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512);
2598 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2599 
2600 	/* The 3rd Child IO is because of the io boundary */
2601 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2602 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2603 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2604 
2605 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2606 	CU_ASSERT(rc == 0);
2607 	CU_ASSERT(g_io_done == false);
2608 
2609 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2610 	stub_complete_io(3);
2611 	CU_ASSERT(g_io_done == true);
2612 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2613 
2614 	/* Third case optimal_io_boundary < max_segment_size * max_num_segments */
2615 	bdev->max_segment_size = 17 * 512;
2616 	bdev->max_num_segments = 1;
2617 	g_io_done = false;
2618 
2619 	/* IO crossing the IO boundary requires split.
2620 	 * Child IO does not split.
2621 	 * Total 2 child IOs.
2622 	 */
2623 
2624 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1);
2625 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16);
2626 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2627 
2628 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2629 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2630 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2631 
2632 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2633 	CU_ASSERT(rc == 0);
2634 	CU_ASSERT(g_io_done == false);
2635 
2636 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2637 	stub_complete_io(2);
2638 	CU_ASSERT(g_io_done == true);
2639 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2640 
2641 	/* Now set up a more complex, multi-vector command that needs to be split,
2642 	 * including splitting iovecs.
2643 	 * optimal_io_boundary < max_segment_size * max_num_segments
2644 	 */
2645 	bdev->max_segment_size = 3 * 512;
2646 	bdev->max_num_segments = 6;
2647 	g_io_done = false;
2648 
2649 	iov[0].iov_base = (void *)0x10000;
2650 	iov[0].iov_len = 4 * 512;
2651 	iov[1].iov_base = (void *)0x20000;
2652 	iov[1].iov_len = 4 * 512;
2653 	iov[2].iov_base = (void *)0x30000;
2654 	iov[2].iov_len = 10 * 512;
2655 
2656 	/* IO crossing the IO boundary requires split.
2657 	 * The 1st child IO segment size exceeds the max_segment_size and after
2658 	 * splitting segment_size, the num_segments exceeds max_num_segments.
2659 	 * So 1st child IO will be splitted to 2 child IOs.
2660 	 * Total 3 child IOs.
2661 	 */
2662 
2663 	/* The first 2 IOs are in an IO boundary.
2664 	 * After splitting segment size the segment num exceeds.
2665 	 * So it splits to 2 child IOs.
2666 	 */
2667 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6);
2668 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3);
2669 	ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512);
2670 	ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3);
2671 	ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512);
2672 	ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3);
2673 	ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3);
2674 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2675 
2676 	/* The 2nd child IO has the left segment entry */
2677 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2678 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2);
2679 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2680 
2681 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2682 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2);
2683 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2684 
2685 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL);
2686 	CU_ASSERT(rc == 0);
2687 	CU_ASSERT(g_io_done == false);
2688 
2689 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2690 	stub_complete_io(3);
2691 	CU_ASSERT(g_io_done == true);
2692 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2693 
2694 	/* A very complicated case. Each sg entry exceeds max_segment_size
2695 	 * and split on io boundary.
2696 	 * optimal_io_boundary < max_segment_size * max_num_segments
2697 	 */
2698 	bdev->max_segment_size = 3 * 512;
2699 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2700 	g_io_done = false;
2701 
2702 	for (i = 0; i < 20; i++) {
2703 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2704 		iov[i].iov_len = 512 * 4;
2705 	}
2706 
2707 	/* IO crossing the IO boundary requires split.
2708 	 * 80 block length can split 5 child IOs base on offset and IO boundary.
2709 	 * Each iov entry needs to be splitted to 2 entries because of max_segment_size
2710 	 * Total 5 child IOs.
2711 	 */
2712 
2713 	/* 4 iov entries are in an IO boundary and each iov entry splits to 2.
2714 	 * So each child IO occupies 8 child iov entries.
2715 	 */
2716 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8);
2717 	for (i = 0; i < 4; i++) {
2718 		int iovcnt = i * 2;
2719 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2720 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2721 	}
2722 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2723 
2724 	/* 2nd child IO and total 16 child iov entries of parent IO */
2725 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8);
2726 	for (i = 4; i < 8; i++) {
2727 		int iovcnt = (i - 4) * 2;
2728 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2729 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2730 	}
2731 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2732 
2733 	/* 3rd child IO and total 24 child iov entries of parent IO */
2734 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8);
2735 	for (i = 8; i < 12; i++) {
2736 		int iovcnt = (i - 8) * 2;
2737 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2738 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2739 	}
2740 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2741 
2742 	/* 4th child IO and total 32 child iov entries of parent IO */
2743 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8);
2744 	for (i = 12; i < 16; i++) {
2745 		int iovcnt = (i - 12) * 2;
2746 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2747 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2748 	}
2749 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2750 
2751 	/* 5th child IO and because of the child iov entry it should be splitted
2752 	 * in next round.
2753 	 */
2754 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8);
2755 	for (i = 16; i < 20; i++) {
2756 		int iovcnt = (i - 16) * 2;
2757 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2758 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2759 	}
2760 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2761 
2762 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL);
2763 	CU_ASSERT(rc == 0);
2764 	CU_ASSERT(g_io_done == false);
2765 
2766 	/* First split round */
2767 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2768 	stub_complete_io(4);
2769 	CU_ASSERT(g_io_done == false);
2770 
2771 	/* Second split round */
2772 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2773 	stub_complete_io(1);
2774 	CU_ASSERT(g_io_done == true);
2775 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2776 
2777 	spdk_put_io_channel(io_ch);
2778 	spdk_bdev_close(desc);
2779 	free_bdev(bdev);
2780 	spdk_bdev_finish(bdev_fini_cb, NULL);
2781 	poll_threads();
2782 }
2783 
2784 static void
2785 bdev_io_split_with_io_wait(void)
2786 {
2787 	struct spdk_bdev *bdev;
2788 	struct spdk_bdev_desc *desc = NULL;
2789 	struct spdk_io_channel *io_ch;
2790 	struct spdk_bdev_channel *channel;
2791 	struct spdk_bdev_mgmt_channel *mgmt_ch;
2792 	struct spdk_bdev_opts bdev_opts = {};
2793 	struct iovec iov[3];
2794 	struct ut_expected_io *expected_io;
2795 	int rc;
2796 
2797 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2798 	bdev_opts.bdev_io_pool_size = 2;
2799 	bdev_opts.bdev_io_cache_size = 1;
2800 
2801 	rc = spdk_bdev_set_opts(&bdev_opts);
2802 	CU_ASSERT(rc == 0);
2803 	spdk_bdev_initialize(bdev_init_cb, NULL);
2804 
2805 	bdev = allocate_bdev("bdev0");
2806 
2807 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2808 	CU_ASSERT(rc == 0);
2809 	CU_ASSERT(desc != NULL);
2810 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2811 	io_ch = spdk_bdev_get_io_channel(desc);
2812 	CU_ASSERT(io_ch != NULL);
2813 	channel = spdk_io_channel_get_ctx(io_ch);
2814 	mgmt_ch = channel->shared_resource->mgmt_ch;
2815 
2816 	bdev->optimal_io_boundary = 16;
2817 	bdev->split_on_optimal_io_boundary = true;
2818 
2819 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
2820 	CU_ASSERT(rc == 0);
2821 
2822 	/* Now test that a single-vector command is split correctly.
2823 	 * Offset 14, length 8, payload 0xF000
2824 	 *  Child - Offset 14, length 2, payload 0xF000
2825 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
2826 	 *
2827 	 * Set up the expected values before calling spdk_bdev_read_blocks
2828 	 */
2829 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
2830 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
2831 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2832 
2833 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
2834 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
2835 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2836 
2837 	/* The following children will be submitted sequentially due to the capacity of
2838 	 * spdk_bdev_io.
2839 	 */
2840 
2841 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
2842 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
2843 	CU_ASSERT(rc == 0);
2844 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2845 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2846 
2847 	/* Completing the first read I/O will submit the first child */
2848 	stub_complete_io(1);
2849 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2850 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2851 
2852 	/* Completing the first child will submit the second child */
2853 	stub_complete_io(1);
2854 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2855 
2856 	/* Complete the second child I/O.  This should result in our callback getting
2857 	 * invoked since the parent I/O is now complete.
2858 	 */
2859 	stub_complete_io(1);
2860 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2861 
2862 	/* Now set up a more complex, multi-vector command that needs to be split,
2863 	 *  including splitting iovecs.
2864 	 */
2865 	iov[0].iov_base = (void *)0x10000;
2866 	iov[0].iov_len = 512;
2867 	iov[1].iov_base = (void *)0x20000;
2868 	iov[1].iov_len = 20 * 512;
2869 	iov[2].iov_base = (void *)0x30000;
2870 	iov[2].iov_len = 11 * 512;
2871 
2872 	g_io_done = false;
2873 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
2874 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
2875 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
2876 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2877 
2878 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
2879 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
2880 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2881 
2882 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
2883 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
2884 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
2885 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2886 
2887 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
2888 	CU_ASSERT(rc == 0);
2889 	CU_ASSERT(g_io_done == false);
2890 
2891 	/* The following children will be submitted sequentially due to the capacity of
2892 	 * spdk_bdev_io.
2893 	 */
2894 
2895 	/* Completing the first child will submit the second child */
2896 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2897 	stub_complete_io(1);
2898 	CU_ASSERT(g_io_done == false);
2899 
2900 	/* Completing the second child will submit the third child */
2901 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2902 	stub_complete_io(1);
2903 	CU_ASSERT(g_io_done == false);
2904 
2905 	/* Completing the third child will result in our callback getting invoked
2906 	 * since the parent I/O is now complete.
2907 	 */
2908 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2909 	stub_complete_io(1);
2910 	CU_ASSERT(g_io_done == true);
2911 
2912 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
2913 
2914 	spdk_put_io_channel(io_ch);
2915 	spdk_bdev_close(desc);
2916 	free_bdev(bdev);
2917 	spdk_bdev_finish(bdev_fini_cb, NULL);
2918 	poll_threads();
2919 }
2920 
2921 static void
2922 bdev_io_write_unit_split_test(void)
2923 {
2924 	struct spdk_bdev *bdev;
2925 	struct spdk_bdev_desc *desc = NULL;
2926 	struct spdk_io_channel *io_ch;
2927 	struct spdk_bdev_opts bdev_opts = {};
2928 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 4];
2929 	struct ut_expected_io *expected_io;
2930 	uint64_t i;
2931 	int rc;
2932 
2933 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2934 	bdev_opts.bdev_io_pool_size = 512;
2935 	bdev_opts.bdev_io_cache_size = 64;
2936 
2937 	rc = spdk_bdev_set_opts(&bdev_opts);
2938 	CU_ASSERT(rc == 0);
2939 	spdk_bdev_initialize(bdev_init_cb, NULL);
2940 
2941 	bdev = allocate_bdev("bdev0");
2942 
2943 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2944 	CU_ASSERT(rc == 0);
2945 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2946 	io_ch = spdk_bdev_get_io_channel(desc);
2947 	CU_ASSERT(io_ch != NULL);
2948 
2949 	/* Write I/O 2x larger than write_unit_size should get split into 2 I/Os */
2950 	bdev->write_unit_size = 32;
2951 	bdev->split_on_write_unit = true;
2952 	g_io_done = false;
2953 
2954 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 32, 1);
2955 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 32 * 512);
2956 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2957 
2958 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 32, 1);
2959 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 32 * 512), 32 * 512);
2960 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2961 
2962 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
2963 	CU_ASSERT(rc == 0);
2964 	CU_ASSERT(g_io_done == false);
2965 
2966 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2967 	stub_complete_io(2);
2968 	CU_ASSERT(g_io_done == true);
2969 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2970 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
2971 
2972 	/* Same as above but with optimal_io_boundary < write_unit_size - the I/O should be split
2973 	 * based on write_unit_size, not optimal_io_boundary */
2974 	bdev->split_on_optimal_io_boundary = true;
2975 	bdev->optimal_io_boundary = 16;
2976 	g_io_done = false;
2977 
2978 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
2979 	CU_ASSERT(rc == 0);
2980 	CU_ASSERT(g_io_done == false);
2981 
2982 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2983 	stub_complete_io(2);
2984 	CU_ASSERT(g_io_done == true);
2985 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2986 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
2987 
2988 	/* Write I/O should fail if it is smaller than write_unit_size */
2989 	g_io_done = false;
2990 
2991 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 31, io_done, NULL);
2992 	CU_ASSERT(rc == 0);
2993 	CU_ASSERT(g_io_done == false);
2994 
2995 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2996 	poll_threads();
2997 	CU_ASSERT(g_io_done == true);
2998 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2999 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3000 
3001 	/* Same for I/O not aligned to write_unit_size */
3002 	g_io_done = false;
3003 
3004 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 1, 32, io_done, NULL);
3005 	CU_ASSERT(rc == 0);
3006 	CU_ASSERT(g_io_done == false);
3007 
3008 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3009 	poll_threads();
3010 	CU_ASSERT(g_io_done == true);
3011 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3012 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3013 
3014 	/* Write should fail if it needs to be split but there are not enough iovs to submit
3015 	 * an entire write unit */
3016 	bdev->write_unit_size = SPDK_COUNTOF(iov) / 2;
3017 	g_io_done = false;
3018 
3019 	for (i = 0; i < SPDK_COUNTOF(iov); i++) {
3020 		iov[i].iov_base = (void *)(0x1000 + 512 * i);
3021 		iov[i].iov_len = 512;
3022 	}
3023 
3024 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, SPDK_COUNTOF(iov), 0, SPDK_COUNTOF(iov),
3025 				     io_done, NULL);
3026 	CU_ASSERT(rc == 0);
3027 	CU_ASSERT(g_io_done == false);
3028 
3029 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3030 	poll_threads();
3031 	CU_ASSERT(g_io_done == true);
3032 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3033 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3034 
3035 	spdk_put_io_channel(io_ch);
3036 	spdk_bdev_close(desc);
3037 	free_bdev(bdev);
3038 	spdk_bdev_finish(bdev_fini_cb, NULL);
3039 	poll_threads();
3040 }
3041 
3042 static void
3043 bdev_io_alignment(void)
3044 {
3045 	struct spdk_bdev *bdev;
3046 	struct spdk_bdev_desc *desc = NULL;
3047 	struct spdk_io_channel *io_ch;
3048 	struct spdk_bdev_opts bdev_opts = {};
3049 	int rc;
3050 	void *buf = NULL;
3051 	struct iovec iovs[2];
3052 	int iovcnt;
3053 	uint64_t alignment;
3054 
3055 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3056 	bdev_opts.bdev_io_pool_size = 20;
3057 	bdev_opts.bdev_io_cache_size = 2;
3058 
3059 	rc = spdk_bdev_set_opts(&bdev_opts);
3060 	CU_ASSERT(rc == 0);
3061 	spdk_bdev_initialize(bdev_init_cb, NULL);
3062 
3063 	fn_table.submit_request = stub_submit_request_get_buf;
3064 	bdev = allocate_bdev("bdev0");
3065 
3066 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3067 	CU_ASSERT(rc == 0);
3068 	CU_ASSERT(desc != NULL);
3069 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3070 	io_ch = spdk_bdev_get_io_channel(desc);
3071 	CU_ASSERT(io_ch != NULL);
3072 
3073 	/* Create aligned buffer */
3074 	rc = posix_memalign(&buf, 4096, 8192);
3075 	SPDK_CU_ASSERT_FATAL(rc == 0);
3076 
3077 	/* Pass aligned single buffer with no alignment required */
3078 	alignment = 1;
3079 	bdev->required_alignment = spdk_u32log2(alignment);
3080 
3081 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3082 	CU_ASSERT(rc == 0);
3083 	stub_complete_io(1);
3084 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3085 				    alignment));
3086 
3087 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3088 	CU_ASSERT(rc == 0);
3089 	stub_complete_io(1);
3090 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3091 				    alignment));
3092 
3093 	/* Pass unaligned single buffer with no alignment required */
3094 	alignment = 1;
3095 	bdev->required_alignment = spdk_u32log2(alignment);
3096 
3097 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3098 	CU_ASSERT(rc == 0);
3099 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3100 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3101 	stub_complete_io(1);
3102 
3103 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3104 	CU_ASSERT(rc == 0);
3105 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3106 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3107 	stub_complete_io(1);
3108 
3109 	/* Pass unaligned single buffer with 512 alignment required */
3110 	alignment = 512;
3111 	bdev->required_alignment = spdk_u32log2(alignment);
3112 
3113 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3114 	CU_ASSERT(rc == 0);
3115 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3116 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3117 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3118 				    alignment));
3119 	stub_complete_io(1);
3120 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3121 
3122 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3123 	CU_ASSERT(rc == 0);
3124 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3125 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3126 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3127 				    alignment));
3128 	stub_complete_io(1);
3129 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3130 
3131 	/* Pass unaligned single buffer with 4096 alignment required */
3132 	alignment = 4096;
3133 	bdev->required_alignment = spdk_u32log2(alignment);
3134 
3135 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3136 	CU_ASSERT(rc == 0);
3137 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3138 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3139 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3140 				    alignment));
3141 	stub_complete_io(1);
3142 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3143 
3144 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3145 	CU_ASSERT(rc == 0);
3146 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3147 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3148 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3149 				    alignment));
3150 	stub_complete_io(1);
3151 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3152 
3153 	/* Pass aligned iovs with no alignment required */
3154 	alignment = 1;
3155 	bdev->required_alignment = spdk_u32log2(alignment);
3156 
3157 	iovcnt = 1;
3158 	iovs[0].iov_base = buf;
3159 	iovs[0].iov_len = 512;
3160 
3161 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3162 	CU_ASSERT(rc == 0);
3163 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3164 	stub_complete_io(1);
3165 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3166 
3167 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3168 	CU_ASSERT(rc == 0);
3169 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3170 	stub_complete_io(1);
3171 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3172 
3173 	/* Pass unaligned iovs with no alignment required */
3174 	alignment = 1;
3175 	bdev->required_alignment = spdk_u32log2(alignment);
3176 
3177 	iovcnt = 2;
3178 	iovs[0].iov_base = buf + 16;
3179 	iovs[0].iov_len = 256;
3180 	iovs[1].iov_base = buf + 16 + 256 + 32;
3181 	iovs[1].iov_len = 256;
3182 
3183 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3184 	CU_ASSERT(rc == 0);
3185 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3186 	stub_complete_io(1);
3187 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3188 
3189 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3190 	CU_ASSERT(rc == 0);
3191 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3192 	stub_complete_io(1);
3193 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3194 
3195 	/* Pass unaligned iov with 2048 alignment required */
3196 	alignment = 2048;
3197 	bdev->required_alignment = spdk_u32log2(alignment);
3198 
3199 	iovcnt = 2;
3200 	iovs[0].iov_base = buf + 16;
3201 	iovs[0].iov_len = 256;
3202 	iovs[1].iov_base = buf + 16 + 256 + 32;
3203 	iovs[1].iov_len = 256;
3204 
3205 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3206 	CU_ASSERT(rc == 0);
3207 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3208 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3209 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3210 				    alignment));
3211 	stub_complete_io(1);
3212 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3213 
3214 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3215 	CU_ASSERT(rc == 0);
3216 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3217 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3218 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3219 				    alignment));
3220 	stub_complete_io(1);
3221 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3222 
3223 	/* Pass iov without allocated buffer without alignment required */
3224 	alignment = 1;
3225 	bdev->required_alignment = spdk_u32log2(alignment);
3226 
3227 	iovcnt = 1;
3228 	iovs[0].iov_base = NULL;
3229 	iovs[0].iov_len = 0;
3230 
3231 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3232 	CU_ASSERT(rc == 0);
3233 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3234 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3235 				    alignment));
3236 	stub_complete_io(1);
3237 
3238 	/* Pass iov without allocated buffer with 1024 alignment required */
3239 	alignment = 1024;
3240 	bdev->required_alignment = spdk_u32log2(alignment);
3241 
3242 	iovcnt = 1;
3243 	iovs[0].iov_base = NULL;
3244 	iovs[0].iov_len = 0;
3245 
3246 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3247 	CU_ASSERT(rc == 0);
3248 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3249 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3250 				    alignment));
3251 	stub_complete_io(1);
3252 
3253 	spdk_put_io_channel(io_ch);
3254 	spdk_bdev_close(desc);
3255 	free_bdev(bdev);
3256 	fn_table.submit_request = stub_submit_request;
3257 	spdk_bdev_finish(bdev_fini_cb, NULL);
3258 	poll_threads();
3259 
3260 	free(buf);
3261 }
3262 
3263 static void
3264 bdev_io_alignment_with_boundary(void)
3265 {
3266 	struct spdk_bdev *bdev;
3267 	struct spdk_bdev_desc *desc = NULL;
3268 	struct spdk_io_channel *io_ch;
3269 	struct spdk_bdev_opts bdev_opts = {};
3270 	int rc;
3271 	void *buf = NULL;
3272 	struct iovec iovs[2];
3273 	int iovcnt;
3274 	uint64_t alignment;
3275 
3276 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3277 	bdev_opts.bdev_io_pool_size = 20;
3278 	bdev_opts.bdev_io_cache_size = 2;
3279 
3280 	bdev_opts.opts_size = sizeof(bdev_opts);
3281 	rc = spdk_bdev_set_opts(&bdev_opts);
3282 	CU_ASSERT(rc == 0);
3283 	spdk_bdev_initialize(bdev_init_cb, NULL);
3284 
3285 	fn_table.submit_request = stub_submit_request_get_buf;
3286 	bdev = allocate_bdev("bdev0");
3287 
3288 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3289 	CU_ASSERT(rc == 0);
3290 	CU_ASSERT(desc != NULL);
3291 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3292 	io_ch = spdk_bdev_get_io_channel(desc);
3293 	CU_ASSERT(io_ch != NULL);
3294 
3295 	/* Create aligned buffer */
3296 	rc = posix_memalign(&buf, 4096, 131072);
3297 	SPDK_CU_ASSERT_FATAL(rc == 0);
3298 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3299 
3300 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
3301 	alignment = 512;
3302 	bdev->required_alignment = spdk_u32log2(alignment);
3303 	bdev->optimal_io_boundary = 2;
3304 	bdev->split_on_optimal_io_boundary = true;
3305 
3306 	iovcnt = 1;
3307 	iovs[0].iov_base = NULL;
3308 	iovs[0].iov_len = 512 * 3;
3309 
3310 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3311 	CU_ASSERT(rc == 0);
3312 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3313 	stub_complete_io(2);
3314 
3315 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
3316 	alignment = 512;
3317 	bdev->required_alignment = spdk_u32log2(alignment);
3318 	bdev->optimal_io_boundary = 16;
3319 	bdev->split_on_optimal_io_boundary = true;
3320 
3321 	iovcnt = 1;
3322 	iovs[0].iov_base = NULL;
3323 	iovs[0].iov_len = 512 * 16;
3324 
3325 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
3326 	CU_ASSERT(rc == 0);
3327 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3328 	stub_complete_io(2);
3329 
3330 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
3331 	alignment = 512;
3332 	bdev->required_alignment = spdk_u32log2(alignment);
3333 	bdev->optimal_io_boundary = 128;
3334 	bdev->split_on_optimal_io_boundary = true;
3335 
3336 	iovcnt = 1;
3337 	iovs[0].iov_base = buf + 16;
3338 	iovs[0].iov_len = 512 * 160;
3339 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3340 	CU_ASSERT(rc == 0);
3341 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3342 	stub_complete_io(2);
3343 
3344 	/* 512 * 3 with 2 IO boundary */
3345 	alignment = 512;
3346 	bdev->required_alignment = spdk_u32log2(alignment);
3347 	bdev->optimal_io_boundary = 2;
3348 	bdev->split_on_optimal_io_boundary = true;
3349 
3350 	iovcnt = 2;
3351 	iovs[0].iov_base = buf + 16;
3352 	iovs[0].iov_len = 512;
3353 	iovs[1].iov_base = buf + 16 + 512 + 32;
3354 	iovs[1].iov_len = 1024;
3355 
3356 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3357 	CU_ASSERT(rc == 0);
3358 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3359 	stub_complete_io(2);
3360 
3361 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3362 	CU_ASSERT(rc == 0);
3363 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3364 	stub_complete_io(2);
3365 
3366 	/* 512 * 64 with 32 IO boundary */
3367 	bdev->optimal_io_boundary = 32;
3368 	iovcnt = 2;
3369 	iovs[0].iov_base = buf + 16;
3370 	iovs[0].iov_len = 16384;
3371 	iovs[1].iov_base = buf + 16 + 16384 + 32;
3372 	iovs[1].iov_len = 16384;
3373 
3374 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3375 	CU_ASSERT(rc == 0);
3376 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3377 	stub_complete_io(3);
3378 
3379 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3380 	CU_ASSERT(rc == 0);
3381 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3382 	stub_complete_io(3);
3383 
3384 	/* 512 * 160 with 32 IO boundary */
3385 	iovcnt = 1;
3386 	iovs[0].iov_base = buf + 16;
3387 	iovs[0].iov_len = 16384 + 65536;
3388 
3389 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3390 	CU_ASSERT(rc == 0);
3391 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
3392 	stub_complete_io(6);
3393 
3394 	spdk_put_io_channel(io_ch);
3395 	spdk_bdev_close(desc);
3396 	free_bdev(bdev);
3397 	fn_table.submit_request = stub_submit_request;
3398 	spdk_bdev_finish(bdev_fini_cb, NULL);
3399 	poll_threads();
3400 
3401 	free(buf);
3402 }
3403 
3404 static void
3405 histogram_status_cb(void *cb_arg, int status)
3406 {
3407 	g_status = status;
3408 }
3409 
3410 static void
3411 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3412 {
3413 	g_status = status;
3414 	g_histogram = histogram;
3415 }
3416 
3417 static void
3418 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
3419 		   uint64_t total, uint64_t so_far)
3420 {
3421 	g_count += count;
3422 }
3423 
3424 static void
3425 bdev_histograms(void)
3426 {
3427 	struct spdk_bdev *bdev;
3428 	struct spdk_bdev_desc *desc = NULL;
3429 	struct spdk_io_channel *ch;
3430 	struct spdk_histogram_data *histogram;
3431 	uint8_t buf[4096];
3432 	int rc;
3433 
3434 	spdk_bdev_initialize(bdev_init_cb, NULL);
3435 
3436 	bdev = allocate_bdev("bdev");
3437 
3438 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3439 	CU_ASSERT(rc == 0);
3440 	CU_ASSERT(desc != NULL);
3441 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3442 
3443 	ch = spdk_bdev_get_io_channel(desc);
3444 	CU_ASSERT(ch != NULL);
3445 
3446 	/* Enable histogram */
3447 	g_status = -1;
3448 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
3449 	poll_threads();
3450 	CU_ASSERT(g_status == 0);
3451 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3452 
3453 	/* Allocate histogram */
3454 	histogram = spdk_histogram_data_alloc();
3455 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
3456 
3457 	/* Check if histogram is zeroed */
3458 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3459 	poll_threads();
3460 	CU_ASSERT(g_status == 0);
3461 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3462 
3463 	g_count = 0;
3464 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3465 
3466 	CU_ASSERT(g_count == 0);
3467 
3468 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3469 	CU_ASSERT(rc == 0);
3470 
3471 	spdk_delay_us(10);
3472 	stub_complete_io(1);
3473 	poll_threads();
3474 
3475 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3476 	CU_ASSERT(rc == 0);
3477 
3478 	spdk_delay_us(10);
3479 	stub_complete_io(1);
3480 	poll_threads();
3481 
3482 	/* Check if histogram gathered data from all I/O channels */
3483 	g_histogram = NULL;
3484 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3485 	poll_threads();
3486 	CU_ASSERT(g_status == 0);
3487 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3488 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3489 
3490 	g_count = 0;
3491 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3492 	CU_ASSERT(g_count == 2);
3493 
3494 	/* Disable histogram */
3495 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
3496 	poll_threads();
3497 	CU_ASSERT(g_status == 0);
3498 	CU_ASSERT(bdev->internal.histogram_enabled == false);
3499 
3500 	/* Try to run histogram commands on disabled bdev */
3501 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3502 	poll_threads();
3503 	CU_ASSERT(g_status == -EFAULT);
3504 
3505 	spdk_histogram_data_free(histogram);
3506 	spdk_put_io_channel(ch);
3507 	spdk_bdev_close(desc);
3508 	free_bdev(bdev);
3509 	spdk_bdev_finish(bdev_fini_cb, NULL);
3510 	poll_threads();
3511 }
3512 
3513 static void
3514 _bdev_compare(bool emulated)
3515 {
3516 	struct spdk_bdev *bdev;
3517 	struct spdk_bdev_desc *desc = NULL;
3518 	struct spdk_io_channel *ioch;
3519 	struct ut_expected_io *expected_io;
3520 	uint64_t offset, num_blocks;
3521 	uint32_t num_completed;
3522 	char aa_buf[512];
3523 	char bb_buf[512];
3524 	struct iovec compare_iov;
3525 	uint8_t expected_io_type;
3526 	int rc;
3527 
3528 	if (emulated) {
3529 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3530 	} else {
3531 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3532 	}
3533 
3534 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3535 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3536 
3537 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3538 
3539 	spdk_bdev_initialize(bdev_init_cb, NULL);
3540 	fn_table.submit_request = stub_submit_request_get_buf;
3541 	bdev = allocate_bdev("bdev");
3542 
3543 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3544 	CU_ASSERT_EQUAL(rc, 0);
3545 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3546 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3547 	ioch = spdk_bdev_get_io_channel(desc);
3548 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3549 
3550 	fn_table.submit_request = stub_submit_request_get_buf;
3551 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3552 
3553 	offset = 50;
3554 	num_blocks = 1;
3555 	compare_iov.iov_base = aa_buf;
3556 	compare_iov.iov_len = sizeof(aa_buf);
3557 
3558 	/* 1. successful compare */
3559 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3560 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3561 
3562 	g_io_done = false;
3563 	g_compare_read_buf = aa_buf;
3564 	g_compare_read_buf_len = sizeof(aa_buf);
3565 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3566 	CU_ASSERT_EQUAL(rc, 0);
3567 	num_completed = stub_complete_io(1);
3568 	CU_ASSERT_EQUAL(num_completed, 1);
3569 	CU_ASSERT(g_io_done == true);
3570 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3571 
3572 	/* 2. miscompare */
3573 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3574 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3575 
3576 	g_io_done = false;
3577 	g_compare_read_buf = bb_buf;
3578 	g_compare_read_buf_len = sizeof(bb_buf);
3579 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3580 	CU_ASSERT_EQUAL(rc, 0);
3581 	num_completed = stub_complete_io(1);
3582 	CU_ASSERT_EQUAL(num_completed, 1);
3583 	CU_ASSERT(g_io_done == true);
3584 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3585 
3586 	spdk_put_io_channel(ioch);
3587 	spdk_bdev_close(desc);
3588 	free_bdev(bdev);
3589 	fn_table.submit_request = stub_submit_request;
3590 	spdk_bdev_finish(bdev_fini_cb, NULL);
3591 	poll_threads();
3592 
3593 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3594 
3595 	g_compare_read_buf = NULL;
3596 }
3597 
3598 static void
3599 _bdev_compare_with_md(bool emulated)
3600 {
3601 	struct spdk_bdev *bdev;
3602 	struct spdk_bdev_desc *desc = NULL;
3603 	struct spdk_io_channel *ioch;
3604 	struct ut_expected_io *expected_io;
3605 	uint64_t offset, num_blocks;
3606 	uint32_t num_completed;
3607 	char buf[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3608 	char buf_interleaved_miscompare[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3609 	char buf_miscompare[1024 /* 2 * blocklen */];
3610 	char md_buf[16];
3611 	char md_buf_miscompare[16];
3612 	struct iovec compare_iov;
3613 	uint8_t expected_io_type;
3614 	int rc;
3615 
3616 	if (emulated) {
3617 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3618 	} else {
3619 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3620 	}
3621 
3622 	memset(buf, 0xaa, sizeof(buf));
3623 	memset(buf_interleaved_miscompare, 0xaa, sizeof(buf_interleaved_miscompare));
3624 	/* make last md different */
3625 	memset(buf_interleaved_miscompare + 1024 + 8, 0xbb, 8);
3626 	memset(buf_miscompare, 0xbb, sizeof(buf_miscompare));
3627 	memset(md_buf, 0xaa, 16);
3628 	memset(md_buf_miscompare, 0xbb, 16);
3629 
3630 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3631 
3632 	spdk_bdev_initialize(bdev_init_cb, NULL);
3633 	fn_table.submit_request = stub_submit_request_get_buf;
3634 	bdev = allocate_bdev("bdev");
3635 
3636 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3637 	CU_ASSERT_EQUAL(rc, 0);
3638 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3639 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3640 	ioch = spdk_bdev_get_io_channel(desc);
3641 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3642 
3643 	fn_table.submit_request = stub_submit_request_get_buf;
3644 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3645 
3646 	offset = 50;
3647 	num_blocks = 2;
3648 
3649 	/* interleaved md & data */
3650 	bdev->md_interleave = true;
3651 	bdev->md_len = 8;
3652 	bdev->blocklen = 512 + 8;
3653 	compare_iov.iov_base = buf;
3654 	compare_iov.iov_len = sizeof(buf);
3655 
3656 	/* 1. successful compare with md interleaved */
3657 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3658 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3659 
3660 	g_io_done = false;
3661 	g_compare_read_buf = buf;
3662 	g_compare_read_buf_len = sizeof(buf);
3663 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3664 	CU_ASSERT_EQUAL(rc, 0);
3665 	num_completed = stub_complete_io(1);
3666 	CU_ASSERT_EQUAL(num_completed, 1);
3667 	CU_ASSERT(g_io_done == true);
3668 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3669 
3670 	/* 2. miscompare with md interleaved */
3671 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3672 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3673 
3674 	g_io_done = false;
3675 	g_compare_read_buf = buf_interleaved_miscompare;
3676 	g_compare_read_buf_len = sizeof(buf_interleaved_miscompare);
3677 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3678 	CU_ASSERT_EQUAL(rc, 0);
3679 	num_completed = stub_complete_io(1);
3680 	CU_ASSERT_EQUAL(num_completed, 1);
3681 	CU_ASSERT(g_io_done == true);
3682 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3683 
3684 	/* Separate data & md buffers */
3685 	bdev->md_interleave = false;
3686 	bdev->blocklen = 512;
3687 	compare_iov.iov_base = buf;
3688 	compare_iov.iov_len = 1024;
3689 
3690 	/* 3. successful compare with md separated */
3691 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3692 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3693 
3694 	g_io_done = false;
3695 	g_compare_read_buf = buf;
3696 	g_compare_read_buf_len = 1024;
3697 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3698 	g_compare_md_buf = md_buf;
3699 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3700 					       offset, num_blocks, io_done, NULL);
3701 	CU_ASSERT_EQUAL(rc, 0);
3702 	num_completed = stub_complete_io(1);
3703 	CU_ASSERT_EQUAL(num_completed, 1);
3704 	CU_ASSERT(g_io_done == true);
3705 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3706 
3707 	/* 4. miscompare with md separated where md buf is different */
3708 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3709 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3710 
3711 	g_io_done = false;
3712 	g_compare_read_buf = buf;
3713 	g_compare_read_buf_len = 1024;
3714 	g_compare_md_buf = md_buf_miscompare;
3715 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3716 					       offset, num_blocks, io_done, NULL);
3717 	CU_ASSERT_EQUAL(rc, 0);
3718 	num_completed = stub_complete_io(1);
3719 	CU_ASSERT_EQUAL(num_completed, 1);
3720 	CU_ASSERT(g_io_done == true);
3721 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3722 
3723 	/* 5. miscompare with md separated where buf is different */
3724 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3725 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3726 
3727 	g_io_done = false;
3728 	g_compare_read_buf = buf_miscompare;
3729 	g_compare_read_buf_len = sizeof(buf_miscompare);
3730 	g_compare_md_buf = md_buf;
3731 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3732 					       offset, num_blocks, io_done, NULL);
3733 	CU_ASSERT_EQUAL(rc, 0);
3734 	num_completed = stub_complete_io(1);
3735 	CU_ASSERT_EQUAL(num_completed, 1);
3736 	CU_ASSERT(g_io_done == true);
3737 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3738 
3739 	bdev->md_len = 0;
3740 	g_compare_md_buf = NULL;
3741 
3742 	spdk_put_io_channel(ioch);
3743 	spdk_bdev_close(desc);
3744 	free_bdev(bdev);
3745 	fn_table.submit_request = stub_submit_request;
3746 	spdk_bdev_finish(bdev_fini_cb, NULL);
3747 	poll_threads();
3748 
3749 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3750 
3751 	g_compare_read_buf = NULL;
3752 }
3753 
3754 static void
3755 bdev_compare(void)
3756 {
3757 	_bdev_compare(false);
3758 	_bdev_compare_with_md(false);
3759 }
3760 
3761 static void
3762 bdev_compare_emulated(void)
3763 {
3764 	_bdev_compare(true);
3765 	_bdev_compare_with_md(true);
3766 }
3767 
3768 static void
3769 bdev_compare_and_write(void)
3770 {
3771 	struct spdk_bdev *bdev;
3772 	struct spdk_bdev_desc *desc = NULL;
3773 	struct spdk_io_channel *ioch;
3774 	struct ut_expected_io *expected_io;
3775 	uint64_t offset, num_blocks;
3776 	uint32_t num_completed;
3777 	char aa_buf[512];
3778 	char bb_buf[512];
3779 	char cc_buf[512];
3780 	char write_buf[512];
3781 	struct iovec compare_iov;
3782 	struct iovec write_iov;
3783 	int rc;
3784 
3785 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3786 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3787 	memset(cc_buf, 0xcc, sizeof(cc_buf));
3788 
3789 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
3790 
3791 	spdk_bdev_initialize(bdev_init_cb, NULL);
3792 	fn_table.submit_request = stub_submit_request_get_buf;
3793 	bdev = allocate_bdev("bdev");
3794 
3795 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3796 	CU_ASSERT_EQUAL(rc, 0);
3797 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3798 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3799 	ioch = spdk_bdev_get_io_channel(desc);
3800 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3801 
3802 	fn_table.submit_request = stub_submit_request_get_buf;
3803 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3804 
3805 	offset = 50;
3806 	num_blocks = 1;
3807 	compare_iov.iov_base = aa_buf;
3808 	compare_iov.iov_len = sizeof(aa_buf);
3809 	write_iov.iov_base = bb_buf;
3810 	write_iov.iov_len = sizeof(bb_buf);
3811 
3812 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3813 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3814 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
3815 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3816 
3817 	g_io_done = false;
3818 	g_compare_read_buf = aa_buf;
3819 	g_compare_read_buf_len = sizeof(aa_buf);
3820 	memset(write_buf, 0, sizeof(write_buf));
3821 	g_compare_write_buf = write_buf;
3822 	g_compare_write_buf_len = sizeof(write_buf);
3823 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3824 			offset, num_blocks, io_done, NULL);
3825 	/* Trigger range locking */
3826 	poll_threads();
3827 	CU_ASSERT_EQUAL(rc, 0);
3828 	num_completed = stub_complete_io(1);
3829 	CU_ASSERT_EQUAL(num_completed, 1);
3830 	CU_ASSERT(g_io_done == false);
3831 	num_completed = stub_complete_io(1);
3832 	/* Trigger range unlocking */
3833 	poll_threads();
3834 	CU_ASSERT_EQUAL(num_completed, 1);
3835 	CU_ASSERT(g_io_done == true);
3836 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3837 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
3838 
3839 	/* Test miscompare */
3840 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3841 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3842 
3843 	g_io_done = false;
3844 	g_compare_read_buf = cc_buf;
3845 	g_compare_read_buf_len = sizeof(cc_buf);
3846 	memset(write_buf, 0, sizeof(write_buf));
3847 	g_compare_write_buf = write_buf;
3848 	g_compare_write_buf_len = sizeof(write_buf);
3849 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3850 			offset, num_blocks, io_done, NULL);
3851 	/* Trigger range locking */
3852 	poll_threads();
3853 	CU_ASSERT_EQUAL(rc, 0);
3854 	num_completed = stub_complete_io(1);
3855 	/* Trigger range unlocking earlier because we expect error here */
3856 	poll_threads();
3857 	CU_ASSERT_EQUAL(num_completed, 1);
3858 	CU_ASSERT(g_io_done == true);
3859 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3860 	num_completed = stub_complete_io(1);
3861 	CU_ASSERT_EQUAL(num_completed, 0);
3862 
3863 	spdk_put_io_channel(ioch);
3864 	spdk_bdev_close(desc);
3865 	free_bdev(bdev);
3866 	fn_table.submit_request = stub_submit_request;
3867 	spdk_bdev_finish(bdev_fini_cb, NULL);
3868 	poll_threads();
3869 
3870 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3871 
3872 	g_compare_read_buf = NULL;
3873 	g_compare_write_buf = NULL;
3874 }
3875 
3876 static void
3877 bdev_write_zeroes(void)
3878 {
3879 	struct spdk_bdev *bdev;
3880 	struct spdk_bdev_desc *desc = NULL;
3881 	struct spdk_io_channel *ioch;
3882 	struct ut_expected_io *expected_io;
3883 	uint64_t offset, num_io_blocks, num_blocks;
3884 	uint32_t num_completed, num_requests;
3885 	int rc;
3886 
3887 	spdk_bdev_initialize(bdev_init_cb, NULL);
3888 	bdev = allocate_bdev("bdev");
3889 
3890 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3891 	CU_ASSERT_EQUAL(rc, 0);
3892 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3893 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3894 	ioch = spdk_bdev_get_io_channel(desc);
3895 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3896 
3897 	fn_table.submit_request = stub_submit_request;
3898 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3899 
3900 	/* First test that if the bdev supports write_zeroes, the request won't be split */
3901 	bdev->md_len = 0;
3902 	bdev->blocklen = 4096;
3903 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3904 
3905 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
3906 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3907 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3908 	CU_ASSERT_EQUAL(rc, 0);
3909 	num_completed = stub_complete_io(1);
3910 	CU_ASSERT_EQUAL(num_completed, 1);
3911 
3912 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
3913 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
3914 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
3915 	num_requests = 2;
3916 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
3917 
3918 	for (offset = 0; offset < num_requests; ++offset) {
3919 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3920 						   offset * num_io_blocks, num_io_blocks, 0);
3921 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3922 	}
3923 
3924 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3925 	CU_ASSERT_EQUAL(rc, 0);
3926 	num_completed = stub_complete_io(num_requests);
3927 	CU_ASSERT_EQUAL(num_completed, num_requests);
3928 
3929 	/* Check that the splitting is correct if bdev has interleaved metadata */
3930 	bdev->md_interleave = true;
3931 	bdev->md_len = 64;
3932 	bdev->blocklen = 4096 + 64;
3933 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3934 
3935 	num_requests = offset = 0;
3936 	while (offset < num_blocks) {
3937 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
3938 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3939 						   offset, num_io_blocks, 0);
3940 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3941 		offset += num_io_blocks;
3942 		num_requests++;
3943 	}
3944 
3945 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3946 	CU_ASSERT_EQUAL(rc, 0);
3947 	num_completed = stub_complete_io(num_requests);
3948 	CU_ASSERT_EQUAL(num_completed, num_requests);
3949 	num_completed = stub_complete_io(num_requests);
3950 	assert(num_completed == 0);
3951 
3952 	/* Check the the same for separate metadata buffer */
3953 	bdev->md_interleave = false;
3954 	bdev->md_len = 64;
3955 	bdev->blocklen = 4096;
3956 
3957 	num_requests = offset = 0;
3958 	while (offset < num_blocks) {
3959 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
3960 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3961 						   offset, num_io_blocks, 0);
3962 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
3963 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3964 		offset += num_io_blocks;
3965 		num_requests++;
3966 	}
3967 
3968 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3969 	CU_ASSERT_EQUAL(rc, 0);
3970 	num_completed = stub_complete_io(num_requests);
3971 	CU_ASSERT_EQUAL(num_completed, num_requests);
3972 
3973 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
3974 	spdk_put_io_channel(ioch);
3975 	spdk_bdev_close(desc);
3976 	free_bdev(bdev);
3977 	spdk_bdev_finish(bdev_fini_cb, NULL);
3978 	poll_threads();
3979 }
3980 
3981 static void
3982 bdev_zcopy_write(void)
3983 {
3984 	struct spdk_bdev *bdev;
3985 	struct spdk_bdev_desc *desc = NULL;
3986 	struct spdk_io_channel *ioch;
3987 	struct ut_expected_io *expected_io;
3988 	uint64_t offset, num_blocks;
3989 	uint32_t num_completed;
3990 	char aa_buf[512];
3991 	struct iovec iov;
3992 	int rc;
3993 	const bool populate = false;
3994 	const bool commit = true;
3995 
3996 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3997 
3998 	spdk_bdev_initialize(bdev_init_cb, NULL);
3999 	bdev = allocate_bdev("bdev");
4000 
4001 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4002 	CU_ASSERT_EQUAL(rc, 0);
4003 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4004 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4005 	ioch = spdk_bdev_get_io_channel(desc);
4006 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4007 
4008 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4009 
4010 	offset = 50;
4011 	num_blocks = 1;
4012 	iov.iov_base = NULL;
4013 	iov.iov_len = 0;
4014 
4015 	g_zcopy_read_buf = (void *) 0x1122334455667788UL;
4016 	g_zcopy_read_buf_len = (uint32_t) -1;
4017 	/* Do a zcopy start for a write (populate=false) */
4018 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4019 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4020 	g_io_done = false;
4021 	g_zcopy_write_buf = aa_buf;
4022 	g_zcopy_write_buf_len = sizeof(aa_buf);
4023 	g_zcopy_bdev_io = NULL;
4024 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4025 	CU_ASSERT_EQUAL(rc, 0);
4026 	num_completed = stub_complete_io(1);
4027 	CU_ASSERT_EQUAL(num_completed, 1);
4028 	CU_ASSERT(g_io_done == true);
4029 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4030 	/* Check that the iov has been set up */
4031 	CU_ASSERT(iov.iov_base == g_zcopy_write_buf);
4032 	CU_ASSERT(iov.iov_len == g_zcopy_write_buf_len);
4033 	/* Check that the bdev_io has been saved */
4034 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4035 	/* Now do the zcopy end for a write (commit=true) */
4036 	g_io_done = false;
4037 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4038 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4039 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4040 	CU_ASSERT_EQUAL(rc, 0);
4041 	num_completed = stub_complete_io(1);
4042 	CU_ASSERT_EQUAL(num_completed, 1);
4043 	CU_ASSERT(g_io_done == true);
4044 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4045 	/* Check the g_zcopy are reset by io_done */
4046 	CU_ASSERT(g_zcopy_write_buf == NULL);
4047 	CU_ASSERT(g_zcopy_write_buf_len == 0);
4048 	/* Check that io_done has freed the g_zcopy_bdev_io */
4049 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4050 
4051 	/* Check the zcopy read buffer has not been touched which
4052 	 * ensures that the correct buffers were used.
4053 	 */
4054 	CU_ASSERT(g_zcopy_read_buf == (void *) 0x1122334455667788UL);
4055 	CU_ASSERT(g_zcopy_read_buf_len == (uint32_t) -1);
4056 
4057 	spdk_put_io_channel(ioch);
4058 	spdk_bdev_close(desc);
4059 	free_bdev(bdev);
4060 	spdk_bdev_finish(bdev_fini_cb, NULL);
4061 	poll_threads();
4062 }
4063 
4064 static void
4065 bdev_zcopy_read(void)
4066 {
4067 	struct spdk_bdev *bdev;
4068 	struct spdk_bdev_desc *desc = NULL;
4069 	struct spdk_io_channel *ioch;
4070 	struct ut_expected_io *expected_io;
4071 	uint64_t offset, num_blocks;
4072 	uint32_t num_completed;
4073 	char aa_buf[512];
4074 	struct iovec iov;
4075 	int rc;
4076 	const bool populate = true;
4077 	const bool commit = false;
4078 
4079 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4080 
4081 	spdk_bdev_initialize(bdev_init_cb, NULL);
4082 	bdev = allocate_bdev("bdev");
4083 
4084 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4085 	CU_ASSERT_EQUAL(rc, 0);
4086 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4087 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4088 	ioch = spdk_bdev_get_io_channel(desc);
4089 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4090 
4091 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4092 
4093 	offset = 50;
4094 	num_blocks = 1;
4095 	iov.iov_base = NULL;
4096 	iov.iov_len = 0;
4097 
4098 	g_zcopy_write_buf = (void *) 0x1122334455667788UL;
4099 	g_zcopy_write_buf_len = (uint32_t) -1;
4100 
4101 	/* Do a zcopy start for a read (populate=true) */
4102 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4103 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4104 	g_io_done = false;
4105 	g_zcopy_read_buf = aa_buf;
4106 	g_zcopy_read_buf_len = sizeof(aa_buf);
4107 	g_zcopy_bdev_io = NULL;
4108 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4109 	CU_ASSERT_EQUAL(rc, 0);
4110 	num_completed = stub_complete_io(1);
4111 	CU_ASSERT_EQUAL(num_completed, 1);
4112 	CU_ASSERT(g_io_done == true);
4113 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4114 	/* Check that the iov has been set up */
4115 	CU_ASSERT(iov.iov_base == g_zcopy_read_buf);
4116 	CU_ASSERT(iov.iov_len == g_zcopy_read_buf_len);
4117 	/* Check that the bdev_io has been saved */
4118 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4119 
4120 	/* Now do the zcopy end for a read (commit=false) */
4121 	g_io_done = false;
4122 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4123 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4124 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4125 	CU_ASSERT_EQUAL(rc, 0);
4126 	num_completed = stub_complete_io(1);
4127 	CU_ASSERT_EQUAL(num_completed, 1);
4128 	CU_ASSERT(g_io_done == true);
4129 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4130 	/* Check the g_zcopy are reset by io_done */
4131 	CU_ASSERT(g_zcopy_read_buf == NULL);
4132 	CU_ASSERT(g_zcopy_read_buf_len == 0);
4133 	/* Check that io_done has freed the g_zcopy_bdev_io */
4134 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4135 
4136 	/* Check the zcopy write buffer has not been touched which
4137 	 * ensures that the correct buffers were used.
4138 	 */
4139 	CU_ASSERT(g_zcopy_write_buf == (void *) 0x1122334455667788UL);
4140 	CU_ASSERT(g_zcopy_write_buf_len == (uint32_t) -1);
4141 
4142 	spdk_put_io_channel(ioch);
4143 	spdk_bdev_close(desc);
4144 	free_bdev(bdev);
4145 	spdk_bdev_finish(bdev_fini_cb, NULL);
4146 	poll_threads();
4147 }
4148 
4149 static void
4150 bdev_open_while_hotremove(void)
4151 {
4152 	struct spdk_bdev *bdev;
4153 	struct spdk_bdev_desc *desc[2] = {};
4154 	int rc;
4155 
4156 	bdev = allocate_bdev("bdev");
4157 
4158 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
4159 	CU_ASSERT(rc == 0);
4160 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
4161 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
4162 
4163 	spdk_bdev_unregister(bdev, NULL, NULL);
4164 	/* Bdev unregister is handled asynchronously. Poll thread to complete. */
4165 	poll_threads();
4166 
4167 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
4168 	CU_ASSERT(rc == -ENODEV);
4169 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
4170 
4171 	spdk_bdev_close(desc[0]);
4172 	free_bdev(bdev);
4173 }
4174 
4175 static void
4176 bdev_close_while_hotremove(void)
4177 {
4178 	struct spdk_bdev *bdev;
4179 	struct spdk_bdev_desc *desc = NULL;
4180 	int rc = 0;
4181 
4182 	bdev = allocate_bdev("bdev");
4183 
4184 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
4185 	CU_ASSERT_EQUAL(rc, 0);
4186 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4187 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4188 
4189 	/* Simulate hot-unplug by unregistering bdev */
4190 	g_event_type1 = 0xFF;
4191 	g_unregister_arg = NULL;
4192 	g_unregister_rc = -1;
4193 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4194 	/* Close device while remove event is in flight */
4195 	spdk_bdev_close(desc);
4196 
4197 	/* Ensure that unregister callback is delayed */
4198 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
4199 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
4200 
4201 	poll_threads();
4202 
4203 	/* Event callback shall not be issued because device was closed */
4204 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
4205 	/* Unregister callback is issued */
4206 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
4207 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
4208 
4209 	free_bdev(bdev);
4210 }
4211 
4212 static void
4213 bdev_open_ext(void)
4214 {
4215 	struct spdk_bdev *bdev;
4216 	struct spdk_bdev_desc *desc1 = NULL;
4217 	struct spdk_bdev_desc *desc2 = NULL;
4218 	int rc = 0;
4219 
4220 	bdev = allocate_bdev("bdev");
4221 
4222 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4223 	CU_ASSERT_EQUAL(rc, -EINVAL);
4224 
4225 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4226 	CU_ASSERT_EQUAL(rc, 0);
4227 
4228 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4229 	CU_ASSERT_EQUAL(rc, 0);
4230 
4231 	g_event_type1 = 0xFF;
4232 	g_event_type2 = 0xFF;
4233 
4234 	/* Simulate hot-unplug by unregistering bdev */
4235 	spdk_bdev_unregister(bdev, NULL, NULL);
4236 	poll_threads();
4237 
4238 	/* Check if correct events have been triggered in event callback fn */
4239 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4240 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4241 
4242 	free_bdev(bdev);
4243 	poll_threads();
4244 }
4245 
4246 static void
4247 bdev_open_ext_unregister(void)
4248 {
4249 	struct spdk_bdev *bdev;
4250 	struct spdk_bdev_desc *desc1 = NULL;
4251 	struct spdk_bdev_desc *desc2 = NULL;
4252 	struct spdk_bdev_desc *desc3 = NULL;
4253 	struct spdk_bdev_desc *desc4 = NULL;
4254 	int rc = 0;
4255 
4256 	bdev = allocate_bdev("bdev");
4257 
4258 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4259 	CU_ASSERT_EQUAL(rc, -EINVAL);
4260 
4261 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4262 	CU_ASSERT_EQUAL(rc, 0);
4263 
4264 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4265 	CU_ASSERT_EQUAL(rc, 0);
4266 
4267 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb3, &desc3, &desc3);
4268 	CU_ASSERT_EQUAL(rc, 0);
4269 
4270 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb4, &desc4, &desc4);
4271 	CU_ASSERT_EQUAL(rc, 0);
4272 
4273 	g_event_type1 = 0xFF;
4274 	g_event_type2 = 0xFF;
4275 	g_event_type3 = 0xFF;
4276 	g_event_type4 = 0xFF;
4277 
4278 	g_unregister_arg = NULL;
4279 	g_unregister_rc = -1;
4280 
4281 	/* Simulate hot-unplug by unregistering bdev */
4282 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4283 
4284 	/*
4285 	 * Unregister is handled asynchronously and event callback
4286 	 * (i.e., above bdev_open_cbN) will be called.
4287 	 * For bdev_open_cb3 and bdev_open_cb4, it is intended to not
4288 	 * close the desc3 and desc4 so that the bdev is not closed.
4289 	 */
4290 	poll_threads();
4291 
4292 	/* Check if correct events have been triggered in event callback fn */
4293 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4294 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4295 	CU_ASSERT_EQUAL(g_event_type3, SPDK_BDEV_EVENT_REMOVE);
4296 	CU_ASSERT_EQUAL(g_event_type4, SPDK_BDEV_EVENT_REMOVE);
4297 
4298 	/* Check that unregister callback is delayed */
4299 	CU_ASSERT(g_unregister_arg == NULL);
4300 	CU_ASSERT(g_unregister_rc == -1);
4301 
4302 	/*
4303 	 * Explicitly close desc3. As desc4 is still opened there, the
4304 	 * unergister callback is still delayed to execute.
4305 	 */
4306 	spdk_bdev_close(desc3);
4307 	CU_ASSERT(g_unregister_arg == NULL);
4308 	CU_ASSERT(g_unregister_rc == -1);
4309 
4310 	/*
4311 	 * Explicitly close desc4 to trigger the ongoing bdev unregister
4312 	 * operation after last desc is closed.
4313 	 */
4314 	spdk_bdev_close(desc4);
4315 
4316 	/* Poll the thread for the async unregister operation */
4317 	poll_threads();
4318 
4319 	/* Check that unregister callback is executed */
4320 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
4321 	CU_ASSERT(g_unregister_rc == 0);
4322 
4323 	free_bdev(bdev);
4324 	poll_threads();
4325 }
4326 
4327 struct timeout_io_cb_arg {
4328 	struct iovec iov;
4329 	uint8_t type;
4330 };
4331 
4332 static int
4333 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
4334 {
4335 	struct spdk_bdev_io *bdev_io;
4336 	int n = 0;
4337 
4338 	if (!ch) {
4339 		return -1;
4340 	}
4341 
4342 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
4343 		n++;
4344 	}
4345 
4346 	return n;
4347 }
4348 
4349 static void
4350 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
4351 {
4352 	struct timeout_io_cb_arg *ctx = cb_arg;
4353 
4354 	ctx->type = bdev_io->type;
4355 	ctx->iov.iov_base = bdev_io->iov.iov_base;
4356 	ctx->iov.iov_len = bdev_io->iov.iov_len;
4357 }
4358 
4359 static void
4360 bdev_set_io_timeout(void)
4361 {
4362 	struct spdk_bdev *bdev;
4363 	struct spdk_bdev_desc *desc = NULL;
4364 	struct spdk_io_channel *io_ch = NULL;
4365 	struct spdk_bdev_channel *bdev_ch = NULL;
4366 	struct timeout_io_cb_arg cb_arg;
4367 
4368 	spdk_bdev_initialize(bdev_init_cb, NULL);
4369 
4370 	bdev = allocate_bdev("bdev");
4371 
4372 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4373 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4374 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4375 
4376 	io_ch = spdk_bdev_get_io_channel(desc);
4377 	CU_ASSERT(io_ch != NULL);
4378 
4379 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4380 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4381 
4382 	/* This is the part1.
4383 	 * We will check the bdev_ch->io_submitted list
4384 	 * TO make sure that it can link IOs and only the user submitted IOs
4385 	 */
4386 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4387 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4388 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4389 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4390 	stub_complete_io(1);
4391 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4392 	stub_complete_io(1);
4393 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4394 
4395 	/* Split IO */
4396 	bdev->optimal_io_boundary = 16;
4397 	bdev->split_on_optimal_io_boundary = true;
4398 
4399 	/* Now test that a single-vector command is split correctly.
4400 	 * Offset 14, length 8, payload 0xF000
4401 	 *  Child - Offset 14, length 2, payload 0xF000
4402 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4403 	 *
4404 	 * Set up the expected values before calling spdk_bdev_read_blocks
4405 	 */
4406 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4407 	/* We count all submitted IOs including IO that are generated by splitting. */
4408 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
4409 	stub_complete_io(1);
4410 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4411 	stub_complete_io(1);
4412 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4413 
4414 	/* Also include the reset IO */
4415 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4416 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4417 	poll_threads();
4418 	stub_complete_io(1);
4419 	poll_threads();
4420 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4421 
4422 	/* This is part2
4423 	 * Test the desc timeout poller register
4424 	 */
4425 
4426 	/* Successfully set the timeout */
4427 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4428 	CU_ASSERT(desc->io_timeout_poller != NULL);
4429 	CU_ASSERT(desc->timeout_in_sec == 30);
4430 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4431 	CU_ASSERT(desc->cb_arg == &cb_arg);
4432 
4433 	/* Change the timeout limit */
4434 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4435 	CU_ASSERT(desc->io_timeout_poller != NULL);
4436 	CU_ASSERT(desc->timeout_in_sec == 20);
4437 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4438 	CU_ASSERT(desc->cb_arg == &cb_arg);
4439 
4440 	/* Disable the timeout */
4441 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
4442 	CU_ASSERT(desc->io_timeout_poller == NULL);
4443 
4444 	/* This the part3
4445 	 * We will test to catch timeout IO and check whether the IO is
4446 	 * the submitted one.
4447 	 */
4448 	memset(&cb_arg, 0, sizeof(cb_arg));
4449 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4450 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
4451 
4452 	/* Don't reach the limit */
4453 	spdk_delay_us(15 * spdk_get_ticks_hz());
4454 	poll_threads();
4455 	CU_ASSERT(cb_arg.type == 0);
4456 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4457 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4458 
4459 	/* 15 + 15 = 30 reach the limit */
4460 	spdk_delay_us(15 * spdk_get_ticks_hz());
4461 	poll_threads();
4462 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4463 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
4464 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
4465 	stub_complete_io(1);
4466 
4467 	/* Use the same split IO above and check the IO */
4468 	memset(&cb_arg, 0, sizeof(cb_arg));
4469 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4470 
4471 	/* The first child complete in time */
4472 	spdk_delay_us(15 * spdk_get_ticks_hz());
4473 	poll_threads();
4474 	stub_complete_io(1);
4475 	CU_ASSERT(cb_arg.type == 0);
4476 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4477 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4478 
4479 	/* The second child reach the limit */
4480 	spdk_delay_us(15 * spdk_get_ticks_hz());
4481 	poll_threads();
4482 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4483 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
4484 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
4485 	stub_complete_io(1);
4486 
4487 	/* Also include the reset IO */
4488 	memset(&cb_arg, 0, sizeof(cb_arg));
4489 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4490 	spdk_delay_us(30 * spdk_get_ticks_hz());
4491 	poll_threads();
4492 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
4493 	stub_complete_io(1);
4494 	poll_threads();
4495 
4496 	spdk_put_io_channel(io_ch);
4497 	spdk_bdev_close(desc);
4498 	free_bdev(bdev);
4499 	spdk_bdev_finish(bdev_fini_cb, NULL);
4500 	poll_threads();
4501 }
4502 
4503 static void
4504 bdev_set_qd_sampling(void)
4505 {
4506 	struct spdk_bdev *bdev;
4507 	struct spdk_bdev_desc *desc = NULL;
4508 	struct spdk_io_channel *io_ch = NULL;
4509 	struct spdk_bdev_channel *bdev_ch = NULL;
4510 	struct timeout_io_cb_arg cb_arg;
4511 
4512 	spdk_bdev_initialize(bdev_init_cb, NULL);
4513 
4514 	bdev = allocate_bdev("bdev");
4515 
4516 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4517 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4518 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4519 
4520 	io_ch = spdk_bdev_get_io_channel(desc);
4521 	CU_ASSERT(io_ch != NULL);
4522 
4523 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4524 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4525 
4526 	/* This is the part1.
4527 	 * We will check the bdev_ch->io_submitted list
4528 	 * TO make sure that it can link IOs and only the user submitted IOs
4529 	 */
4530 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4531 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4532 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4533 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4534 	stub_complete_io(1);
4535 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4536 	stub_complete_io(1);
4537 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4538 
4539 	/* This is the part2.
4540 	 * Test the bdev's qd poller register
4541 	 */
4542 	/* 1st Successfully set the qd sampling period */
4543 	spdk_bdev_set_qd_sampling_period(bdev, 10);
4544 	CU_ASSERT(bdev->internal.new_period == 10);
4545 	CU_ASSERT(bdev->internal.period == 10);
4546 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4547 	poll_threads();
4548 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4549 
4550 	/* 2nd Change the qd sampling period */
4551 	spdk_bdev_set_qd_sampling_period(bdev, 20);
4552 	CU_ASSERT(bdev->internal.new_period == 20);
4553 	CU_ASSERT(bdev->internal.period == 10);
4554 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4555 	poll_threads();
4556 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4557 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4558 
4559 	/* 3rd Change the qd sampling period and verify qd_poll_in_progress */
4560 	spdk_delay_us(20);
4561 	poll_thread_times(0, 1);
4562 	CU_ASSERT(bdev->internal.qd_poll_in_progress == true);
4563 	spdk_bdev_set_qd_sampling_period(bdev, 30);
4564 	CU_ASSERT(bdev->internal.new_period == 30);
4565 	CU_ASSERT(bdev->internal.period == 20);
4566 	poll_threads();
4567 	CU_ASSERT(bdev->internal.qd_poll_in_progress == false);
4568 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4569 
4570 	/* 4th Disable the qd sampling period */
4571 	spdk_bdev_set_qd_sampling_period(bdev, 0);
4572 	CU_ASSERT(bdev->internal.new_period == 0);
4573 	CU_ASSERT(bdev->internal.period == 30);
4574 	poll_threads();
4575 	CU_ASSERT(bdev->internal.qd_poller == NULL);
4576 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4577 	CU_ASSERT(bdev->internal.qd_desc == NULL);
4578 
4579 	/* This is the part3.
4580 	 * We will test the submitted IO and reset works
4581 	 * properly with the qd sampling.
4582 	 */
4583 	memset(&cb_arg, 0, sizeof(cb_arg));
4584 	spdk_bdev_set_qd_sampling_period(bdev, 1);
4585 	poll_threads();
4586 
4587 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4588 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4589 
4590 	/* Also include the reset IO */
4591 	memset(&cb_arg, 0, sizeof(cb_arg));
4592 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4593 	poll_threads();
4594 
4595 	/* Close the desc */
4596 	spdk_put_io_channel(io_ch);
4597 	spdk_bdev_close(desc);
4598 
4599 	/* Complete the submitted IO and reset */
4600 	stub_complete_io(2);
4601 	poll_threads();
4602 
4603 	free_bdev(bdev);
4604 	spdk_bdev_finish(bdev_fini_cb, NULL);
4605 	poll_threads();
4606 }
4607 
4608 static void
4609 lba_range_overlap(void)
4610 {
4611 	struct lba_range r1, r2;
4612 
4613 	r1.offset = 100;
4614 	r1.length = 50;
4615 
4616 	r2.offset = 0;
4617 	r2.length = 1;
4618 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4619 
4620 	r2.offset = 0;
4621 	r2.length = 100;
4622 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4623 
4624 	r2.offset = 0;
4625 	r2.length = 110;
4626 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4627 
4628 	r2.offset = 100;
4629 	r2.length = 10;
4630 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4631 
4632 	r2.offset = 110;
4633 	r2.length = 20;
4634 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4635 
4636 	r2.offset = 140;
4637 	r2.length = 150;
4638 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4639 
4640 	r2.offset = 130;
4641 	r2.length = 200;
4642 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4643 
4644 	r2.offset = 150;
4645 	r2.length = 100;
4646 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4647 
4648 	r2.offset = 110;
4649 	r2.length = 0;
4650 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4651 }
4652 
4653 static bool g_lock_lba_range_done;
4654 static bool g_unlock_lba_range_done;
4655 
4656 static void
4657 lock_lba_range_done(void *ctx, int status)
4658 {
4659 	g_lock_lba_range_done = true;
4660 }
4661 
4662 static void
4663 unlock_lba_range_done(void *ctx, int status)
4664 {
4665 	g_unlock_lba_range_done = true;
4666 }
4667 
4668 static void
4669 lock_lba_range_check_ranges(void)
4670 {
4671 	struct spdk_bdev *bdev;
4672 	struct spdk_bdev_desc *desc = NULL;
4673 	struct spdk_io_channel *io_ch;
4674 	struct spdk_bdev_channel *channel;
4675 	struct lba_range *range;
4676 	int ctx1;
4677 	int rc;
4678 
4679 	spdk_bdev_initialize(bdev_init_cb, NULL);
4680 
4681 	bdev = allocate_bdev("bdev0");
4682 
4683 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4684 	CU_ASSERT(rc == 0);
4685 	CU_ASSERT(desc != NULL);
4686 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4687 	io_ch = spdk_bdev_get_io_channel(desc);
4688 	CU_ASSERT(io_ch != NULL);
4689 	channel = spdk_io_channel_get_ctx(io_ch);
4690 
4691 	g_lock_lba_range_done = false;
4692 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4693 	CU_ASSERT(rc == 0);
4694 	poll_threads();
4695 
4696 	CU_ASSERT(g_lock_lba_range_done == true);
4697 	range = TAILQ_FIRST(&channel->locked_ranges);
4698 	SPDK_CU_ASSERT_FATAL(range != NULL);
4699 	CU_ASSERT(range->offset == 20);
4700 	CU_ASSERT(range->length == 10);
4701 	CU_ASSERT(range->owner_ch == channel);
4702 
4703 	/* Unlocks must exactly match a lock. */
4704 	g_unlock_lba_range_done = false;
4705 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
4706 	CU_ASSERT(rc == -EINVAL);
4707 	CU_ASSERT(g_unlock_lba_range_done == false);
4708 
4709 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4710 	CU_ASSERT(rc == 0);
4711 	spdk_delay_us(100);
4712 	poll_threads();
4713 
4714 	CU_ASSERT(g_unlock_lba_range_done == true);
4715 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4716 
4717 	spdk_put_io_channel(io_ch);
4718 	spdk_bdev_close(desc);
4719 	free_bdev(bdev);
4720 	spdk_bdev_finish(bdev_fini_cb, NULL);
4721 	poll_threads();
4722 }
4723 
4724 static void
4725 lock_lba_range_with_io_outstanding(void)
4726 {
4727 	struct spdk_bdev *bdev;
4728 	struct spdk_bdev_desc *desc = NULL;
4729 	struct spdk_io_channel *io_ch;
4730 	struct spdk_bdev_channel *channel;
4731 	struct lba_range *range;
4732 	char buf[4096];
4733 	int ctx1;
4734 	int rc;
4735 
4736 	spdk_bdev_initialize(bdev_init_cb, NULL);
4737 
4738 	bdev = allocate_bdev("bdev0");
4739 
4740 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4741 	CU_ASSERT(rc == 0);
4742 	CU_ASSERT(desc != NULL);
4743 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4744 	io_ch = spdk_bdev_get_io_channel(desc);
4745 	CU_ASSERT(io_ch != NULL);
4746 	channel = spdk_io_channel_get_ctx(io_ch);
4747 
4748 	g_io_done = false;
4749 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4750 	CU_ASSERT(rc == 0);
4751 
4752 	g_lock_lba_range_done = false;
4753 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4754 	CU_ASSERT(rc == 0);
4755 	poll_threads();
4756 
4757 	/* The lock should immediately become valid, since there are no outstanding
4758 	 * write I/O.
4759 	 */
4760 	CU_ASSERT(g_io_done == false);
4761 	CU_ASSERT(g_lock_lba_range_done == true);
4762 	range = TAILQ_FIRST(&channel->locked_ranges);
4763 	SPDK_CU_ASSERT_FATAL(range != NULL);
4764 	CU_ASSERT(range->offset == 20);
4765 	CU_ASSERT(range->length == 10);
4766 	CU_ASSERT(range->owner_ch == channel);
4767 	CU_ASSERT(range->locked_ctx == &ctx1);
4768 
4769 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4770 	CU_ASSERT(rc == 0);
4771 	stub_complete_io(1);
4772 	spdk_delay_us(100);
4773 	poll_threads();
4774 
4775 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4776 
4777 	/* Now try again, but with a write I/O. */
4778 	g_io_done = false;
4779 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4780 	CU_ASSERT(rc == 0);
4781 
4782 	g_lock_lba_range_done = false;
4783 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4784 	CU_ASSERT(rc == 0);
4785 	poll_threads();
4786 
4787 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
4788 	 * But note that the range should be on the channel's locked_list, to make sure no
4789 	 * new write I/O are started.
4790 	 */
4791 	CU_ASSERT(g_io_done == false);
4792 	CU_ASSERT(g_lock_lba_range_done == false);
4793 	range = TAILQ_FIRST(&channel->locked_ranges);
4794 	SPDK_CU_ASSERT_FATAL(range != NULL);
4795 	CU_ASSERT(range->offset == 20);
4796 	CU_ASSERT(range->length == 10);
4797 
4798 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
4799 	 * our callback was invoked).
4800 	 */
4801 	stub_complete_io(1);
4802 	spdk_delay_us(100);
4803 	poll_threads();
4804 	CU_ASSERT(g_io_done == true);
4805 	CU_ASSERT(g_lock_lba_range_done == true);
4806 
4807 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4808 	CU_ASSERT(rc == 0);
4809 	poll_threads();
4810 
4811 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4812 
4813 	spdk_put_io_channel(io_ch);
4814 	spdk_bdev_close(desc);
4815 	free_bdev(bdev);
4816 	spdk_bdev_finish(bdev_fini_cb, NULL);
4817 	poll_threads();
4818 }
4819 
4820 static void
4821 lock_lba_range_overlapped(void)
4822 {
4823 	struct spdk_bdev *bdev;
4824 	struct spdk_bdev_desc *desc = NULL;
4825 	struct spdk_io_channel *io_ch;
4826 	struct spdk_bdev_channel *channel;
4827 	struct lba_range *range;
4828 	int ctx1;
4829 	int rc;
4830 
4831 	spdk_bdev_initialize(bdev_init_cb, NULL);
4832 
4833 	bdev = allocate_bdev("bdev0");
4834 
4835 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4836 	CU_ASSERT(rc == 0);
4837 	CU_ASSERT(desc != NULL);
4838 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4839 	io_ch = spdk_bdev_get_io_channel(desc);
4840 	CU_ASSERT(io_ch != NULL);
4841 	channel = spdk_io_channel_get_ctx(io_ch);
4842 
4843 	/* Lock range 20-29. */
4844 	g_lock_lba_range_done = false;
4845 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4846 	CU_ASSERT(rc == 0);
4847 	poll_threads();
4848 
4849 	CU_ASSERT(g_lock_lba_range_done == true);
4850 	range = TAILQ_FIRST(&channel->locked_ranges);
4851 	SPDK_CU_ASSERT_FATAL(range != NULL);
4852 	CU_ASSERT(range->offset == 20);
4853 	CU_ASSERT(range->length == 10);
4854 
4855 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
4856 	 * 20-29.
4857 	 */
4858 	g_lock_lba_range_done = false;
4859 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
4860 	CU_ASSERT(rc == 0);
4861 	poll_threads();
4862 
4863 	CU_ASSERT(g_lock_lba_range_done == false);
4864 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4865 	SPDK_CU_ASSERT_FATAL(range != NULL);
4866 	CU_ASSERT(range->offset == 25);
4867 	CU_ASSERT(range->length == 15);
4868 
4869 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
4870 	 * no longer overlaps with an active lock.
4871 	 */
4872 	g_unlock_lba_range_done = false;
4873 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4874 	CU_ASSERT(rc == 0);
4875 	poll_threads();
4876 
4877 	CU_ASSERT(g_unlock_lba_range_done == true);
4878 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4879 	range = TAILQ_FIRST(&channel->locked_ranges);
4880 	SPDK_CU_ASSERT_FATAL(range != NULL);
4881 	CU_ASSERT(range->offset == 25);
4882 	CU_ASSERT(range->length == 15);
4883 
4884 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
4885 	 * currently active 25-39 lock.
4886 	 */
4887 	g_lock_lba_range_done = false;
4888 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
4889 	CU_ASSERT(rc == 0);
4890 	poll_threads();
4891 
4892 	CU_ASSERT(g_lock_lba_range_done == true);
4893 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4894 	SPDK_CU_ASSERT_FATAL(range != NULL);
4895 	range = TAILQ_NEXT(range, tailq);
4896 	SPDK_CU_ASSERT_FATAL(range != NULL);
4897 	CU_ASSERT(range->offset == 40);
4898 	CU_ASSERT(range->length == 20);
4899 
4900 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
4901 	g_lock_lba_range_done = false;
4902 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
4903 	CU_ASSERT(rc == 0);
4904 	poll_threads();
4905 
4906 	CU_ASSERT(g_lock_lba_range_done == false);
4907 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4908 	SPDK_CU_ASSERT_FATAL(range != NULL);
4909 	CU_ASSERT(range->offset == 35);
4910 	CU_ASSERT(range->length == 10);
4911 
4912 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
4913 	 * the 40-59 lock is still active.
4914 	 */
4915 	g_unlock_lba_range_done = false;
4916 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
4917 	CU_ASSERT(rc == 0);
4918 	poll_threads();
4919 
4920 	CU_ASSERT(g_unlock_lba_range_done == true);
4921 	CU_ASSERT(g_lock_lba_range_done == false);
4922 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4923 	SPDK_CU_ASSERT_FATAL(range != NULL);
4924 	CU_ASSERT(range->offset == 35);
4925 	CU_ASSERT(range->length == 10);
4926 
4927 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
4928 	 * no longer any active overlapping locks.
4929 	 */
4930 	g_unlock_lba_range_done = false;
4931 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
4932 	CU_ASSERT(rc == 0);
4933 	poll_threads();
4934 
4935 	CU_ASSERT(g_unlock_lba_range_done == true);
4936 	CU_ASSERT(g_lock_lba_range_done == true);
4937 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4938 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4939 	SPDK_CU_ASSERT_FATAL(range != NULL);
4940 	CU_ASSERT(range->offset == 35);
4941 	CU_ASSERT(range->length == 10);
4942 
4943 	/* Finally, unlock 35-44. */
4944 	g_unlock_lba_range_done = false;
4945 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
4946 	CU_ASSERT(rc == 0);
4947 	poll_threads();
4948 
4949 	CU_ASSERT(g_unlock_lba_range_done == true);
4950 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
4951 
4952 	spdk_put_io_channel(io_ch);
4953 	spdk_bdev_close(desc);
4954 	free_bdev(bdev);
4955 	spdk_bdev_finish(bdev_fini_cb, NULL);
4956 	poll_threads();
4957 }
4958 
4959 static void
4960 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
4961 {
4962 	g_abort_done = true;
4963 	g_abort_status = bdev_io->internal.status;
4964 	spdk_bdev_free_io(bdev_io);
4965 }
4966 
4967 static void
4968 bdev_io_abort(void)
4969 {
4970 	struct spdk_bdev *bdev;
4971 	struct spdk_bdev_desc *desc = NULL;
4972 	struct spdk_io_channel *io_ch;
4973 	struct spdk_bdev_channel *channel;
4974 	struct spdk_bdev_mgmt_channel *mgmt_ch;
4975 	struct spdk_bdev_opts bdev_opts = {};
4976 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
4977 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
4978 	int rc;
4979 
4980 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4981 	bdev_opts.bdev_io_pool_size = 7;
4982 	bdev_opts.bdev_io_cache_size = 2;
4983 
4984 	rc = spdk_bdev_set_opts(&bdev_opts);
4985 	CU_ASSERT(rc == 0);
4986 	spdk_bdev_initialize(bdev_init_cb, NULL);
4987 
4988 	bdev = allocate_bdev("bdev0");
4989 
4990 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4991 	CU_ASSERT(rc == 0);
4992 	CU_ASSERT(desc != NULL);
4993 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4994 	io_ch = spdk_bdev_get_io_channel(desc);
4995 	CU_ASSERT(io_ch != NULL);
4996 	channel = spdk_io_channel_get_ctx(io_ch);
4997 	mgmt_ch = channel->shared_resource->mgmt_ch;
4998 
4999 	g_abort_done = false;
5000 
5001 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
5002 
5003 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5004 	CU_ASSERT(rc == -ENOTSUP);
5005 
5006 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
5007 
5008 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
5009 	CU_ASSERT(rc == 0);
5010 	CU_ASSERT(g_abort_done == true);
5011 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
5012 
5013 	/* Test the case that the target I/O was successfully aborted. */
5014 	g_io_done = false;
5015 
5016 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5017 	CU_ASSERT(rc == 0);
5018 	CU_ASSERT(g_io_done == false);
5019 
5020 	g_abort_done = false;
5021 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5022 
5023 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5024 	CU_ASSERT(rc == 0);
5025 	CU_ASSERT(g_io_done == true);
5026 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5027 	stub_complete_io(1);
5028 	CU_ASSERT(g_abort_done == true);
5029 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5030 
5031 	/* Test the case that the target I/O was not aborted because it completed
5032 	 * in the middle of execution of the abort.
5033 	 */
5034 	g_io_done = false;
5035 
5036 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5037 	CU_ASSERT(rc == 0);
5038 	CU_ASSERT(g_io_done == false);
5039 
5040 	g_abort_done = false;
5041 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5042 
5043 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5044 	CU_ASSERT(rc == 0);
5045 	CU_ASSERT(g_io_done == false);
5046 
5047 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5048 	stub_complete_io(1);
5049 	CU_ASSERT(g_io_done == true);
5050 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5051 
5052 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5053 	stub_complete_io(1);
5054 	CU_ASSERT(g_abort_done == true);
5055 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5056 
5057 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5058 
5059 	bdev->optimal_io_boundary = 16;
5060 	bdev->split_on_optimal_io_boundary = true;
5061 
5062 	/* Test that a single-vector command which is split is aborted correctly.
5063 	 * Offset 14, length 8, payload 0xF000
5064 	 *  Child - Offset 14, length 2, payload 0xF000
5065 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5066 	 */
5067 	g_io_done = false;
5068 
5069 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
5070 	CU_ASSERT(rc == 0);
5071 	CU_ASSERT(g_io_done == false);
5072 
5073 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5074 
5075 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5076 
5077 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5078 	CU_ASSERT(rc == 0);
5079 	CU_ASSERT(g_io_done == true);
5080 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5081 	stub_complete_io(2);
5082 	CU_ASSERT(g_abort_done == true);
5083 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5084 
5085 	/* Test that a multi-vector command that needs to be split by strip and then
5086 	 * needs to be split is aborted correctly. Abort is requested before the second
5087 	 * child I/O was submitted. The parent I/O should complete with failure without
5088 	 * submitting the second child I/O.
5089 	 */
5090 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
5091 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
5092 		iov[i].iov_len = 512;
5093 	}
5094 
5095 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
5096 	g_io_done = false;
5097 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
5098 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
5099 	CU_ASSERT(rc == 0);
5100 	CU_ASSERT(g_io_done == false);
5101 
5102 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5103 
5104 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5105 
5106 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5107 	CU_ASSERT(rc == 0);
5108 	CU_ASSERT(g_io_done == true);
5109 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5110 	stub_complete_io(1);
5111 	CU_ASSERT(g_abort_done == true);
5112 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5113 
5114 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5115 
5116 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5117 
5118 	bdev->optimal_io_boundary = 16;
5119 	g_io_done = false;
5120 
5121 	/* Test that a ingle-vector command which is split is aborted correctly.
5122 	 * Differently from the above, the child abort request will be submitted
5123 	 * sequentially due to the capacity of spdk_bdev_io.
5124 	 */
5125 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
5126 	CU_ASSERT(rc == 0);
5127 	CU_ASSERT(g_io_done == false);
5128 
5129 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5130 
5131 	g_abort_done = false;
5132 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5133 
5134 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5135 	CU_ASSERT(rc == 0);
5136 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
5137 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5138 
5139 	stub_complete_io(1);
5140 	CU_ASSERT(g_io_done == true);
5141 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5142 	stub_complete_io(3);
5143 	CU_ASSERT(g_abort_done == true);
5144 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5145 
5146 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5147 
5148 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5149 
5150 	spdk_put_io_channel(io_ch);
5151 	spdk_bdev_close(desc);
5152 	free_bdev(bdev);
5153 	spdk_bdev_finish(bdev_fini_cb, NULL);
5154 	poll_threads();
5155 }
5156 
5157 static void
5158 bdev_unmap(void)
5159 {
5160 	struct spdk_bdev *bdev;
5161 	struct spdk_bdev_desc *desc = NULL;
5162 	struct spdk_io_channel *ioch;
5163 	struct spdk_bdev_channel *bdev_ch;
5164 	struct ut_expected_io *expected_io;
5165 	struct spdk_bdev_opts bdev_opts = {};
5166 	uint32_t i, num_outstanding;
5167 	uint64_t offset, num_blocks, max_unmap_blocks, num_children;
5168 	int rc;
5169 
5170 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5171 	bdev_opts.bdev_io_pool_size = 512;
5172 	bdev_opts.bdev_io_cache_size = 64;
5173 	rc = spdk_bdev_set_opts(&bdev_opts);
5174 	CU_ASSERT(rc == 0);
5175 
5176 	spdk_bdev_initialize(bdev_init_cb, NULL);
5177 	bdev = allocate_bdev("bdev");
5178 
5179 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5180 	CU_ASSERT_EQUAL(rc, 0);
5181 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5182 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5183 	ioch = spdk_bdev_get_io_channel(desc);
5184 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5185 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5186 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5187 
5188 	fn_table.submit_request = stub_submit_request;
5189 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5190 
5191 	/* Case 1: First test the request won't be split */
5192 	num_blocks = 32;
5193 
5194 	g_io_done = false;
5195 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 0, num_blocks, 0);
5196 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5197 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5198 	CU_ASSERT_EQUAL(rc, 0);
5199 	CU_ASSERT(g_io_done == false);
5200 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5201 	stub_complete_io(1);
5202 	CU_ASSERT(g_io_done == true);
5203 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5204 
5205 	/* Case 2: Test the split with 2 children requests */
5206 	bdev->max_unmap = 8;
5207 	bdev->max_unmap_segments = 2;
5208 	max_unmap_blocks = bdev->max_unmap * bdev->max_unmap_segments;
5209 	num_blocks = max_unmap_blocks * 2;
5210 	offset = 0;
5211 
5212 	g_io_done = false;
5213 	for (i = 0; i < 2; i++) {
5214 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5215 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5216 		offset += max_unmap_blocks;
5217 	}
5218 
5219 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5220 	CU_ASSERT_EQUAL(rc, 0);
5221 	CU_ASSERT(g_io_done == false);
5222 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5223 	stub_complete_io(2);
5224 	CU_ASSERT(g_io_done == true);
5225 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5226 
5227 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5228 	num_children = 15;
5229 	num_blocks = max_unmap_blocks * num_children;
5230 	g_io_done = false;
5231 	offset = 0;
5232 	for (i = 0; i < num_children; i++) {
5233 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5234 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5235 		offset += max_unmap_blocks;
5236 	}
5237 
5238 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5239 	CU_ASSERT_EQUAL(rc, 0);
5240 	CU_ASSERT(g_io_done == false);
5241 
5242 	while (num_children > 0) {
5243 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5244 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5245 		stub_complete_io(num_outstanding);
5246 		num_children -= num_outstanding;
5247 	}
5248 	CU_ASSERT(g_io_done == true);
5249 
5250 	spdk_put_io_channel(ioch);
5251 	spdk_bdev_close(desc);
5252 	free_bdev(bdev);
5253 	spdk_bdev_finish(bdev_fini_cb, NULL);
5254 	poll_threads();
5255 }
5256 
5257 static void
5258 bdev_write_zeroes_split_test(void)
5259 {
5260 	struct spdk_bdev *bdev;
5261 	struct spdk_bdev_desc *desc = NULL;
5262 	struct spdk_io_channel *ioch;
5263 	struct spdk_bdev_channel *bdev_ch;
5264 	struct ut_expected_io *expected_io;
5265 	struct spdk_bdev_opts bdev_opts = {};
5266 	uint32_t i, num_outstanding;
5267 	uint64_t offset, num_blocks, max_write_zeroes_blocks, num_children;
5268 	int rc;
5269 
5270 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5271 	bdev_opts.bdev_io_pool_size = 512;
5272 	bdev_opts.bdev_io_cache_size = 64;
5273 	rc = spdk_bdev_set_opts(&bdev_opts);
5274 	CU_ASSERT(rc == 0);
5275 
5276 	spdk_bdev_initialize(bdev_init_cb, NULL);
5277 	bdev = allocate_bdev("bdev");
5278 
5279 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5280 	CU_ASSERT_EQUAL(rc, 0);
5281 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5282 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5283 	ioch = spdk_bdev_get_io_channel(desc);
5284 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5285 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5286 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5287 
5288 	fn_table.submit_request = stub_submit_request;
5289 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5290 
5291 	/* Case 1: First test the request won't be split */
5292 	num_blocks = 32;
5293 
5294 	g_io_done = false;
5295 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
5296 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5297 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5298 	CU_ASSERT_EQUAL(rc, 0);
5299 	CU_ASSERT(g_io_done == false);
5300 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5301 	stub_complete_io(1);
5302 	CU_ASSERT(g_io_done == true);
5303 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5304 
5305 	/* Case 2: Test the split with 2 children requests */
5306 	max_write_zeroes_blocks = 8;
5307 	bdev->max_write_zeroes = max_write_zeroes_blocks;
5308 	num_blocks = max_write_zeroes_blocks * 2;
5309 	offset = 0;
5310 
5311 	g_io_done = false;
5312 	for (i = 0; i < 2; i++) {
5313 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5314 						   0);
5315 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5316 		offset += max_write_zeroes_blocks;
5317 	}
5318 
5319 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5320 	CU_ASSERT_EQUAL(rc, 0);
5321 	CU_ASSERT(g_io_done == false);
5322 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5323 	stub_complete_io(2);
5324 	CU_ASSERT(g_io_done == true);
5325 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5326 
5327 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5328 	num_children = 15;
5329 	num_blocks = max_write_zeroes_blocks * num_children;
5330 	g_io_done = false;
5331 	offset = 0;
5332 	for (i = 0; i < num_children; i++) {
5333 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5334 						   0);
5335 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5336 		offset += max_write_zeroes_blocks;
5337 	}
5338 
5339 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5340 	CU_ASSERT_EQUAL(rc, 0);
5341 	CU_ASSERT(g_io_done == false);
5342 
5343 	while (num_children > 0) {
5344 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5345 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5346 		stub_complete_io(num_outstanding);
5347 		num_children -= num_outstanding;
5348 	}
5349 	CU_ASSERT(g_io_done == true);
5350 
5351 	spdk_put_io_channel(ioch);
5352 	spdk_bdev_close(desc);
5353 	free_bdev(bdev);
5354 	spdk_bdev_finish(bdev_fini_cb, NULL);
5355 	poll_threads();
5356 }
5357 
5358 static void
5359 bdev_set_options_test(void)
5360 {
5361 	struct spdk_bdev_opts bdev_opts = {};
5362 	int rc;
5363 
5364 	/* Case1: Do not set opts_size */
5365 	rc = spdk_bdev_set_opts(&bdev_opts);
5366 	CU_ASSERT(rc == -1);
5367 
5368 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5369 	bdev_opts.bdev_io_pool_size = 4;
5370 	bdev_opts.bdev_io_cache_size = 2;
5371 	bdev_opts.small_buf_pool_size = 4;
5372 
5373 	/* Case 2: Do not set valid small_buf_pool_size and large_buf_pool_size */
5374 	rc = spdk_bdev_set_opts(&bdev_opts);
5375 	CU_ASSERT(rc == -1);
5376 
5377 	/* Case 3: Do not set valid large_buf_pool_size */
5378 	bdev_opts.small_buf_pool_size = BUF_SMALL_POOL_SIZE;
5379 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE - 1;
5380 	rc = spdk_bdev_set_opts(&bdev_opts);
5381 	CU_ASSERT(rc == -1);
5382 
5383 	/* Case4: set valid large buf_pool_size */
5384 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE;
5385 	rc = spdk_bdev_set_opts(&bdev_opts);
5386 	CU_ASSERT(rc == 0);
5387 
5388 	/* Case5: Set different valid value for small and large buf pool */
5389 	bdev_opts.large_buf_pool_size = BUF_SMALL_POOL_SIZE + 3;
5390 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE + 3;
5391 	rc = spdk_bdev_set_opts(&bdev_opts);
5392 	CU_ASSERT(rc == 0);
5393 }
5394 
5395 static uint64_t
5396 get_ns_time(void)
5397 {
5398 	int rc;
5399 	struct timespec ts;
5400 
5401 	rc = clock_gettime(CLOCK_MONOTONIC, &ts);
5402 	CU_ASSERT(rc == 0);
5403 	return ts.tv_sec * 1000 * 1000 * 1000 + ts.tv_nsec;
5404 }
5405 
5406 static int
5407 rb_tree_get_height(struct spdk_bdev_name *bdev_name)
5408 {
5409 	int h1, h2;
5410 
5411 	if (bdev_name == NULL) {
5412 		return -1;
5413 	} else {
5414 		h1 = rb_tree_get_height(RB_LEFT(bdev_name, node));
5415 		h2 = rb_tree_get_height(RB_RIGHT(bdev_name, node));
5416 
5417 		return spdk_max(h1, h2) + 1;
5418 	}
5419 }
5420 
5421 static void
5422 bdev_multi_allocation(void)
5423 {
5424 	const int max_bdev_num = 1024 * 16;
5425 	char name[max_bdev_num][16];
5426 	char noexist_name[] = "invalid_bdev";
5427 	struct spdk_bdev *bdev[max_bdev_num];
5428 	int i, j;
5429 	uint64_t last_time;
5430 	int bdev_num;
5431 	int height;
5432 
5433 	for (j = 0; j < max_bdev_num; j++) {
5434 		snprintf(name[j], sizeof(name[j]), "bdev%d", j);
5435 	}
5436 
5437 	for (i = 0; i < 16; i++) {
5438 		last_time = get_ns_time();
5439 		bdev_num = 1024 * (i + 1);
5440 		for (j = 0; j < bdev_num; j++) {
5441 			bdev[j] = allocate_bdev(name[j]);
5442 			height = rb_tree_get_height(&bdev[j]->internal.bdev_name);
5443 			CU_ASSERT(height <= (int)(spdk_u32log2(2 * j + 2)));
5444 		}
5445 		SPDK_NOTICELOG("alloc bdev num %d takes %" PRIu64 " ms\n", bdev_num,
5446 			       (get_ns_time() - last_time) / 1000 / 1000);
5447 		for (j = 0; j < bdev_num; j++) {
5448 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) != NULL);
5449 		}
5450 		CU_ASSERT(spdk_bdev_get_by_name(noexist_name) == NULL);
5451 
5452 		for (j = 0; j < bdev_num; j++) {
5453 			free_bdev(bdev[j]);
5454 		}
5455 		for (j = 0; j < bdev_num; j++) {
5456 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) == NULL);
5457 		}
5458 	}
5459 }
5460 
5461 static struct spdk_memory_domain *g_bdev_memory_domain = (struct spdk_memory_domain *) 0xf00df00d;
5462 
5463 static int
5464 test_bdev_get_supported_dma_device_types_op(void *ctx, struct spdk_memory_domain **domains,
5465 		int array_size)
5466 {
5467 	if (array_size > 0 && domains) {
5468 		domains[0] = g_bdev_memory_domain;
5469 	}
5470 
5471 	return 1;
5472 }
5473 
5474 static void
5475 bdev_get_memory_domains(void)
5476 {
5477 	struct spdk_bdev_fn_table fn_table = {
5478 		.get_memory_domains = test_bdev_get_supported_dma_device_types_op
5479 	};
5480 	struct spdk_bdev bdev = { .fn_table = &fn_table };
5481 	struct spdk_memory_domain *domains[2] = {};
5482 	int rc;
5483 
5484 	/* bdev is NULL */
5485 	rc = spdk_bdev_get_memory_domains(NULL, domains, 2);
5486 	CU_ASSERT(rc == -EINVAL);
5487 
5488 	/* domains is NULL */
5489 	rc = spdk_bdev_get_memory_domains(&bdev, NULL, 2);
5490 	CU_ASSERT(rc == 1);
5491 
5492 	/* array size is 0 */
5493 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 0);
5494 	CU_ASSERT(rc == 1);
5495 
5496 	/* get_supported_dma_device_types op is set */
5497 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5498 	CU_ASSERT(rc == 1);
5499 	CU_ASSERT(domains[0] == g_bdev_memory_domain);
5500 
5501 	/* get_supported_dma_device_types op is not set */
5502 	fn_table.get_memory_domains = NULL;
5503 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5504 	CU_ASSERT(rc == 0);
5505 }
5506 
5507 static void
5508 _bdev_io_ext(struct spdk_bdev_ext_io_opts *ext_io_opts)
5509 {
5510 	struct spdk_bdev *bdev;
5511 	struct spdk_bdev_desc *desc = NULL;
5512 	struct spdk_io_channel *io_ch;
5513 	char io_buf[512];
5514 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5515 	struct ut_expected_io *expected_io;
5516 	int rc;
5517 
5518 	spdk_bdev_initialize(bdev_init_cb, NULL);
5519 
5520 	bdev = allocate_bdev("bdev0");
5521 	bdev->md_interleave = false;
5522 	bdev->md_len = 8;
5523 
5524 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5525 	CU_ASSERT(rc == 0);
5526 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5527 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5528 	io_ch = spdk_bdev_get_io_channel(desc);
5529 	CU_ASSERT(io_ch != NULL);
5530 
5531 	/* read */
5532 	g_io_done = false;
5533 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5534 	if (ext_io_opts) {
5535 		expected_io->md_buf = ext_io_opts->metadata;
5536 		expected_io->ext_io_opts = ext_io_opts;
5537 	}
5538 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5539 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5540 
5541 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5542 
5543 	CU_ASSERT(rc == 0);
5544 	CU_ASSERT(g_io_done == false);
5545 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5546 	stub_complete_io(1);
5547 	CU_ASSERT(g_io_done == true);
5548 
5549 	/* write */
5550 	g_io_done = false;
5551 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5552 	if (ext_io_opts) {
5553 		expected_io->md_buf = ext_io_opts->metadata;
5554 		expected_io->ext_io_opts = ext_io_opts;
5555 	}
5556 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5557 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5558 
5559 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5560 
5561 	CU_ASSERT(rc == 0);
5562 	CU_ASSERT(g_io_done == false);
5563 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5564 	stub_complete_io(1);
5565 	CU_ASSERT(g_io_done == true);
5566 
5567 	spdk_put_io_channel(io_ch);
5568 	spdk_bdev_close(desc);
5569 	free_bdev(bdev);
5570 	spdk_bdev_finish(bdev_fini_cb, NULL);
5571 	poll_threads();
5572 
5573 }
5574 
5575 static void
5576 bdev_io_ext(void)
5577 {
5578 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5579 		.metadata = (void *)0xFF000000,
5580 		.size = sizeof(ext_io_opts)
5581 	};
5582 
5583 	_bdev_io_ext(&ext_io_opts);
5584 }
5585 
5586 static void
5587 bdev_io_ext_no_opts(void)
5588 {
5589 	_bdev_io_ext(NULL);
5590 }
5591 
5592 static void
5593 bdev_io_ext_invalid_opts(void)
5594 {
5595 	struct spdk_bdev *bdev;
5596 	struct spdk_bdev_desc *desc = NULL;
5597 	struct spdk_io_channel *io_ch;
5598 	char io_buf[512];
5599 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5600 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5601 		.metadata = (void *)0xFF000000,
5602 		.size = sizeof(ext_io_opts)
5603 	};
5604 	int rc;
5605 
5606 	spdk_bdev_initialize(bdev_init_cb, NULL);
5607 
5608 	bdev = allocate_bdev("bdev0");
5609 	bdev->md_interleave = false;
5610 	bdev->md_len = 8;
5611 
5612 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5613 	CU_ASSERT(rc == 0);
5614 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5615 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5616 	io_ch = spdk_bdev_get_io_channel(desc);
5617 	CU_ASSERT(io_ch != NULL);
5618 
5619 	/* Test invalid ext_opts size */
5620 	ext_io_opts.size = 0;
5621 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5622 	CU_ASSERT(rc == -EINVAL);
5623 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5624 	CU_ASSERT(rc == -EINVAL);
5625 
5626 	ext_io_opts.size = sizeof(ext_io_opts) * 2;
5627 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5628 	CU_ASSERT(rc == -EINVAL);
5629 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5630 	CU_ASSERT(rc == -EINVAL);
5631 
5632 	ext_io_opts.size = offsetof(struct spdk_bdev_ext_io_opts, metadata) +
5633 			   sizeof(ext_io_opts.metadata) - 1;
5634 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5635 	CU_ASSERT(rc == -EINVAL);
5636 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5637 	CU_ASSERT(rc == -EINVAL);
5638 
5639 	spdk_put_io_channel(io_ch);
5640 	spdk_bdev_close(desc);
5641 	free_bdev(bdev);
5642 	spdk_bdev_finish(bdev_fini_cb, NULL);
5643 	poll_threads();
5644 }
5645 
5646 static void
5647 bdev_io_ext_split(void)
5648 {
5649 	struct spdk_bdev *bdev;
5650 	struct spdk_bdev_desc *desc = NULL;
5651 	struct spdk_io_channel *io_ch;
5652 	char io_buf[512];
5653 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5654 	struct ut_expected_io *expected_io;
5655 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5656 		.metadata = (void *)0xFF000000,
5657 		.size = sizeof(ext_io_opts)
5658 	};
5659 	int rc;
5660 
5661 	spdk_bdev_initialize(bdev_init_cb, NULL);
5662 
5663 	bdev = allocate_bdev("bdev0");
5664 	bdev->md_interleave = false;
5665 	bdev->md_len = 8;
5666 
5667 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5668 	CU_ASSERT(rc == 0);
5669 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5670 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5671 	io_ch = spdk_bdev_get_io_channel(desc);
5672 	CU_ASSERT(io_ch != NULL);
5673 
5674 	/* Check that IO request with ext_opts and metadata is split correctly
5675 	 * Offset 14, length 8, payload 0xF000
5676 	 *  Child - Offset 14, length 2, payload 0xF000
5677 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5678 	 */
5679 	bdev->optimal_io_boundary = 16;
5680 	bdev->split_on_optimal_io_boundary = true;
5681 	bdev->md_interleave = false;
5682 	bdev->md_len = 8;
5683 
5684 	iov.iov_base = (void *)0xF000;
5685 	iov.iov_len = 4096;
5686 	memset(&ext_io_opts, 0, sizeof(ext_io_opts));
5687 	ext_io_opts.metadata = (void *)0xFF000000;
5688 	ext_io_opts.size = sizeof(ext_io_opts);
5689 	g_io_done = false;
5690 
5691 	/* read */
5692 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
5693 	expected_io->md_buf = ext_io_opts.metadata;
5694 	expected_io->ext_io_opts = &ext_io_opts;
5695 	expected_io->copy_opts = true;
5696 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5697 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5698 
5699 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
5700 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5701 	expected_io->ext_io_opts = &ext_io_opts;
5702 	expected_io->copy_opts = true;
5703 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5704 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5705 
5706 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5707 	CU_ASSERT(rc == 0);
5708 	CU_ASSERT(g_io_done == false);
5709 
5710 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5711 	stub_complete_io(2);
5712 	CU_ASSERT(g_io_done == true);
5713 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5714 
5715 	/* write */
5716 	g_io_done = false;
5717 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
5718 	expected_io->md_buf = ext_io_opts.metadata;
5719 	expected_io->ext_io_opts = &ext_io_opts;
5720 	expected_io->copy_opts = true;
5721 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5722 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5723 
5724 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 6, 1);
5725 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5726 	expected_io->ext_io_opts = &ext_io_opts;
5727 	expected_io->copy_opts = true;
5728 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5729 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5730 
5731 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5732 	CU_ASSERT(rc == 0);
5733 	CU_ASSERT(g_io_done == false);
5734 
5735 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5736 	stub_complete_io(2);
5737 	CU_ASSERT(g_io_done == true);
5738 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5739 
5740 	spdk_put_io_channel(io_ch);
5741 	spdk_bdev_close(desc);
5742 	free_bdev(bdev);
5743 	spdk_bdev_finish(bdev_fini_cb, NULL);
5744 	poll_threads();
5745 }
5746 
5747 static void
5748 bdev_io_ext_bounce_buffer(void)
5749 {
5750 	struct spdk_bdev *bdev;
5751 	struct spdk_bdev_desc *desc = NULL;
5752 	struct spdk_io_channel *io_ch;
5753 	char io_buf[512];
5754 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5755 	struct ut_expected_io *expected_io;
5756 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5757 		.metadata = (void *)0xFF000000,
5758 		.size = sizeof(ext_io_opts)
5759 	};
5760 	int rc;
5761 
5762 	spdk_bdev_initialize(bdev_init_cb, NULL);
5763 
5764 	bdev = allocate_bdev("bdev0");
5765 	bdev->md_interleave = false;
5766 	bdev->md_len = 8;
5767 
5768 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5769 	CU_ASSERT(rc == 0);
5770 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5771 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5772 	io_ch = spdk_bdev_get_io_channel(desc);
5773 	CU_ASSERT(io_ch != NULL);
5774 
5775 	/* Verify data pull/push
5776 	 * bdev doesn't support memory domains, so buffers from bdev memory pool will be used */
5777 	ext_io_opts.memory_domain = (struct spdk_memory_domain *)0xdeadbeef;
5778 
5779 	/* read */
5780 	g_io_done = false;
5781 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5782 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5783 	expected_io->ext_io_opts = &ext_io_opts;
5784 	expected_io->copy_opts = true;
5785 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5786 
5787 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5788 
5789 	CU_ASSERT(rc == 0);
5790 	CU_ASSERT(g_io_done == false);
5791 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5792 	stub_complete_io(1);
5793 	CU_ASSERT(g_memory_domain_push_data_called == true);
5794 	CU_ASSERT(g_io_done == true);
5795 
5796 	/* write */
5797 	g_io_done = false;
5798 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5799 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5800 	expected_io->ext_io_opts = &ext_io_opts;
5801 	expected_io->copy_opts = true;
5802 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5803 
5804 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5805 
5806 	CU_ASSERT(rc == 0);
5807 	CU_ASSERT(g_memory_domain_pull_data_called == true);
5808 	CU_ASSERT(g_io_done == false);
5809 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5810 	stub_complete_io(1);
5811 	CU_ASSERT(g_io_done == true);
5812 
5813 	spdk_put_io_channel(io_ch);
5814 	spdk_bdev_close(desc);
5815 	free_bdev(bdev);
5816 	spdk_bdev_finish(bdev_fini_cb, NULL);
5817 	poll_threads();
5818 }
5819 
5820 static void
5821 bdev_register_uuid_alias(void)
5822 {
5823 	struct spdk_bdev *bdev, *second;
5824 	char uuid[SPDK_UUID_STRING_LEN];
5825 	int rc;
5826 
5827 	spdk_bdev_initialize(bdev_init_cb, NULL);
5828 	bdev = allocate_bdev("bdev0");
5829 
5830 	/* Make sure an UUID was generated  */
5831 	CU_ASSERT_FALSE(spdk_mem_all_zero(&bdev->uuid, sizeof(bdev->uuid)));
5832 
5833 	/* Check that an UUID alias was registered */
5834 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5835 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5836 
5837 	/* Unregister the bdev */
5838 	spdk_bdev_unregister(bdev, NULL, NULL);
5839 	poll_threads();
5840 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5841 
5842 	/* Check the same, but this time register the bdev with non-zero UUID */
5843 	rc = spdk_bdev_register(bdev);
5844 	CU_ASSERT_EQUAL(rc, 0);
5845 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5846 
5847 	/* Unregister the bdev */
5848 	spdk_bdev_unregister(bdev, NULL, NULL);
5849 	poll_threads();
5850 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5851 
5852 	/* Regiser the bdev using UUID as the name */
5853 	bdev->name = uuid;
5854 	rc = spdk_bdev_register(bdev);
5855 	CU_ASSERT_EQUAL(rc, 0);
5856 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5857 
5858 	/* Unregister the bdev */
5859 	spdk_bdev_unregister(bdev, NULL, NULL);
5860 	poll_threads();
5861 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5862 
5863 	/* Check that it's not possible to register two bdevs with the same UUIDs */
5864 	bdev->name = "bdev0";
5865 	second = allocate_bdev("bdev1");
5866 	spdk_uuid_copy(&bdev->uuid, &second->uuid);
5867 	rc = spdk_bdev_register(bdev);
5868 	CU_ASSERT_EQUAL(rc, -EEXIST);
5869 
5870 	/* Regenerate the UUID and re-check */
5871 	spdk_uuid_generate(&bdev->uuid);
5872 	rc = spdk_bdev_register(bdev);
5873 	CU_ASSERT_EQUAL(rc, 0);
5874 
5875 	/* And check that both bdevs can be retrieved through their UUIDs */
5876 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5877 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5878 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &second->uuid);
5879 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), second);
5880 
5881 	free_bdev(second);
5882 	free_bdev(bdev);
5883 	spdk_bdev_finish(bdev_fini_cb, NULL);
5884 	poll_threads();
5885 }
5886 
5887 static void
5888 bdev_unregister_by_name(void)
5889 {
5890 	struct spdk_bdev *bdev;
5891 	int rc;
5892 
5893 	bdev = allocate_bdev("bdev");
5894 
5895 	g_event_type1 = 0xFF;
5896 	g_unregister_arg = NULL;
5897 	g_unregister_rc = -1;
5898 
5899 	rc = spdk_bdev_unregister_by_name("bdev1", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5900 	CU_ASSERT(rc == -ENODEV);
5901 
5902 	rc = spdk_bdev_unregister_by_name("bdev", &vbdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5903 	CU_ASSERT(rc == -ENODEV);
5904 
5905 	rc = spdk_bdev_unregister_by_name("bdev", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5906 	CU_ASSERT(rc == 0);
5907 
5908 	/* Check that unregister callback is delayed */
5909 	CU_ASSERT(g_unregister_arg == NULL);
5910 	CU_ASSERT(g_unregister_rc == -1);
5911 
5912 	poll_threads();
5913 
5914 	/* Event callback shall not be issued because device was closed */
5915 	CU_ASSERT(g_event_type1 == 0xFF);
5916 	/* Unregister callback is issued */
5917 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
5918 	CU_ASSERT(g_unregister_rc == 0);
5919 
5920 	free_bdev(bdev);
5921 }
5922 
5923 static int
5924 count_bdevs(void *ctx, struct spdk_bdev *bdev)
5925 {
5926 	int *count = ctx;
5927 
5928 	(*count)++;
5929 
5930 	return 0;
5931 }
5932 
5933 static void
5934 for_each_bdev_test(void)
5935 {
5936 	struct spdk_bdev *bdev[8];
5937 	int rc, count;
5938 
5939 	bdev[0] = allocate_bdev("bdev0");
5940 
5941 	bdev[1] = allocate_bdev("bdev1");
5942 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
5943 	CU_ASSERT(rc == 0);
5944 
5945 	bdev[2] = allocate_bdev("bdev2");
5946 
5947 	bdev[3] = allocate_bdev("bdev3");
5948 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
5949 	CU_ASSERT(rc == 0);
5950 
5951 	bdev[4] = allocate_bdev("bdev4");
5952 
5953 	bdev[5] = allocate_bdev("bdev5");
5954 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
5955 	CU_ASSERT(rc == 0);
5956 
5957 	bdev[6] = allocate_bdev("bdev6");
5958 
5959 	bdev[7] = allocate_bdev("bdev7");
5960 
5961 	count = 0;
5962 	rc = spdk_for_each_bdev(&count, count_bdevs);
5963 	CU_ASSERT(rc == 0);
5964 	CU_ASSERT(count == 8);
5965 
5966 	count = 0;
5967 	rc = spdk_for_each_bdev_leaf(&count, count_bdevs);
5968 	CU_ASSERT(rc == 0);
5969 	CU_ASSERT(count == 5);
5970 
5971 	free_bdev(bdev[0]);
5972 	free_bdev(bdev[1]);
5973 	free_bdev(bdev[2]);
5974 	free_bdev(bdev[3]);
5975 	free_bdev(bdev[4]);
5976 	free_bdev(bdev[5]);
5977 	free_bdev(bdev[6]);
5978 	free_bdev(bdev[7]);
5979 }
5980 
5981 static void
5982 bdev_seek_test(void)
5983 {
5984 	struct spdk_bdev *bdev;
5985 	struct spdk_bdev_desc *desc = NULL;
5986 	struct spdk_io_channel *io_ch;
5987 	int rc;
5988 
5989 	spdk_bdev_initialize(bdev_init_cb, NULL);
5990 	poll_threads();
5991 
5992 	bdev = allocate_bdev("bdev0");
5993 
5994 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5995 	CU_ASSERT(rc == 0);
5996 	poll_threads();
5997 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5998 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5999 	io_ch = spdk_bdev_get_io_channel(desc);
6000 	CU_ASSERT(io_ch != NULL);
6001 
6002 	/* Seek data not supported */
6003 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, false);
6004 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
6005 	CU_ASSERT(rc == 0);
6006 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6007 	poll_threads();
6008 	CU_ASSERT(g_seek_offset == 0);
6009 
6010 	/* Seek hole not supported */
6011 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, false);
6012 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
6013 	CU_ASSERT(rc == 0);
6014 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6015 	poll_threads();
6016 	CU_ASSERT(g_seek_offset == UINT64_MAX);
6017 
6018 	/* Seek data supported */
6019 	g_seek_data_offset = 12345;
6020 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, true);
6021 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
6022 	CU_ASSERT(rc == 0);
6023 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6024 	stub_complete_io(1);
6025 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6026 	CU_ASSERT(g_seek_offset == 12345);
6027 
6028 	/* Seek hole supported */
6029 	g_seek_hole_offset = 67890;
6030 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, true);
6031 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
6032 	CU_ASSERT(rc == 0);
6033 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6034 	stub_complete_io(1);
6035 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6036 	CU_ASSERT(g_seek_offset == 67890);
6037 
6038 	spdk_put_io_channel(io_ch);
6039 	spdk_bdev_close(desc);
6040 	free_bdev(bdev);
6041 	spdk_bdev_finish(bdev_fini_cb, NULL);
6042 	poll_threads();
6043 }
6044 
6045 static void
6046 bdev_copy(void)
6047 {
6048 	struct spdk_bdev *bdev;
6049 	struct spdk_bdev_desc *desc = NULL;
6050 	struct spdk_io_channel *ioch;
6051 	struct ut_expected_io *expected_io;
6052 	uint64_t src_offset, num_blocks;
6053 	uint32_t num_completed;
6054 	int rc;
6055 
6056 	spdk_bdev_initialize(bdev_init_cb, NULL);
6057 	bdev = allocate_bdev("bdev");
6058 
6059 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6060 	CU_ASSERT_EQUAL(rc, 0);
6061 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6062 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6063 	ioch = spdk_bdev_get_io_channel(desc);
6064 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6065 
6066 	fn_table.submit_request = stub_submit_request;
6067 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6068 
6069 	/* First test that if the bdev supports copy, the request won't be split */
6070 	bdev->md_len = 0;
6071 	bdev->blocklen = 4096;
6072 	num_blocks = 512;
6073 	src_offset = bdev->blockcnt - num_blocks;
6074 
6075 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6076 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6077 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6078 	CU_ASSERT_EQUAL(rc, 0);
6079 	num_completed = stub_complete_io(1);
6080 	CU_ASSERT_EQUAL(num_completed, 1);
6081 
6082 	/* Check that if copy is not supported it'll fail */
6083 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false);
6084 
6085 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6086 	CU_ASSERT_EQUAL(rc, -ENOTSUP);
6087 
6088 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true);
6089 	spdk_put_io_channel(ioch);
6090 	spdk_bdev_close(desc);
6091 	free_bdev(bdev);
6092 	spdk_bdev_finish(bdev_fini_cb, NULL);
6093 	poll_threads();
6094 }
6095 
6096 static void
6097 bdev_copy_split_test(void)
6098 {
6099 	struct spdk_bdev *bdev;
6100 	struct spdk_bdev_desc *desc = NULL;
6101 	struct spdk_io_channel *ioch;
6102 	struct spdk_bdev_channel *bdev_ch;
6103 	struct ut_expected_io *expected_io;
6104 	struct spdk_bdev_opts bdev_opts = {};
6105 	uint32_t i, num_outstanding;
6106 	uint64_t offset, src_offset, num_blocks, max_copy_blocks, num_children;
6107 	int rc;
6108 
6109 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
6110 	bdev_opts.bdev_io_pool_size = 512;
6111 	bdev_opts.bdev_io_cache_size = 64;
6112 	rc = spdk_bdev_set_opts(&bdev_opts);
6113 	CU_ASSERT(rc == 0);
6114 
6115 	spdk_bdev_initialize(bdev_init_cb, NULL);
6116 	bdev = allocate_bdev("bdev");
6117 
6118 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6119 	CU_ASSERT_EQUAL(rc, 0);
6120 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6121 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6122 	ioch = spdk_bdev_get_io_channel(desc);
6123 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6124 	bdev_ch = spdk_io_channel_get_ctx(ioch);
6125 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
6126 
6127 	fn_table.submit_request = stub_submit_request;
6128 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6129 
6130 	/* Case 1: First test the request won't be split */
6131 	num_blocks = 32;
6132 	src_offset = bdev->blockcnt - num_blocks;
6133 
6134 	g_io_done = false;
6135 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6136 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6137 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6138 	CU_ASSERT_EQUAL(rc, 0);
6139 	CU_ASSERT(g_io_done == false);
6140 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6141 	stub_complete_io(1);
6142 	CU_ASSERT(g_io_done == true);
6143 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6144 
6145 	/* Case 2: Test the split with 2 children requests */
6146 	max_copy_blocks = 8;
6147 	bdev->max_copy = max_copy_blocks;
6148 	num_children = 2;
6149 	num_blocks = max_copy_blocks * num_children;
6150 	offset = 0;
6151 	src_offset = bdev->blockcnt - num_blocks;
6152 
6153 	g_io_done = false;
6154 	for (i = 0; i < num_children; i++) {
6155 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6156 							src_offset + offset, max_copy_blocks);
6157 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6158 		offset += max_copy_blocks;
6159 	}
6160 
6161 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6162 	CU_ASSERT_EQUAL(rc, 0);
6163 	CU_ASSERT(g_io_done == false);
6164 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_children);
6165 	stub_complete_io(num_children);
6166 	CU_ASSERT(g_io_done == true);
6167 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6168 
6169 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
6170 	num_children = 15;
6171 	num_blocks = max_copy_blocks * num_children;
6172 	offset = 0;
6173 	src_offset = bdev->blockcnt - num_blocks;
6174 
6175 	g_io_done = false;
6176 	for (i = 0; i < num_children; i++) {
6177 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6178 							src_offset + offset, max_copy_blocks);
6179 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6180 		offset += max_copy_blocks;
6181 	}
6182 
6183 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6184 	CU_ASSERT_EQUAL(rc, 0);
6185 	CU_ASSERT(g_io_done == false);
6186 
6187 	while (num_children > 0) {
6188 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_COPY_REQS);
6189 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6190 		stub_complete_io(num_outstanding);
6191 		num_children -= num_outstanding;
6192 	}
6193 	CU_ASSERT(g_io_done == true);
6194 
6195 	spdk_put_io_channel(ioch);
6196 	spdk_bdev_close(desc);
6197 	free_bdev(bdev);
6198 	spdk_bdev_finish(bdev_fini_cb, NULL);
6199 	poll_threads();
6200 }
6201 
6202 int
6203 main(int argc, char **argv)
6204 {
6205 	CU_pSuite		suite = NULL;
6206 	unsigned int		num_failures;
6207 
6208 	CU_set_error_action(CUEA_ABORT);
6209 	CU_initialize_registry();
6210 
6211 	suite = CU_add_suite("bdev", null_init, null_clean);
6212 
6213 	CU_ADD_TEST(suite, bytes_to_blocks_test);
6214 	CU_ADD_TEST(suite, num_blocks_test);
6215 	CU_ADD_TEST(suite, io_valid_test);
6216 	CU_ADD_TEST(suite, open_write_test);
6217 	CU_ADD_TEST(suite, claim_test);
6218 	CU_ADD_TEST(suite, alias_add_del_test);
6219 	CU_ADD_TEST(suite, get_device_stat_test);
6220 	CU_ADD_TEST(suite, bdev_io_types_test);
6221 	CU_ADD_TEST(suite, bdev_io_wait_test);
6222 	CU_ADD_TEST(suite, bdev_io_spans_split_test);
6223 	CU_ADD_TEST(suite, bdev_io_boundary_split_test);
6224 	CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test);
6225 	CU_ADD_TEST(suite, bdev_io_mix_split_test);
6226 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
6227 	CU_ADD_TEST(suite, bdev_io_write_unit_split_test);
6228 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
6229 	CU_ADD_TEST(suite, bdev_io_alignment);
6230 	CU_ADD_TEST(suite, bdev_histograms);
6231 	CU_ADD_TEST(suite, bdev_write_zeroes);
6232 	CU_ADD_TEST(suite, bdev_compare_and_write);
6233 	CU_ADD_TEST(suite, bdev_compare);
6234 	CU_ADD_TEST(suite, bdev_compare_emulated);
6235 	CU_ADD_TEST(suite, bdev_zcopy_write);
6236 	CU_ADD_TEST(suite, bdev_zcopy_read);
6237 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
6238 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
6239 	CU_ADD_TEST(suite, bdev_open_ext);
6240 	CU_ADD_TEST(suite, bdev_open_ext_unregister);
6241 	CU_ADD_TEST(suite, bdev_set_io_timeout);
6242 	CU_ADD_TEST(suite, bdev_set_qd_sampling);
6243 	CU_ADD_TEST(suite, lba_range_overlap);
6244 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
6245 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
6246 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
6247 	CU_ADD_TEST(suite, bdev_io_abort);
6248 	CU_ADD_TEST(suite, bdev_unmap);
6249 	CU_ADD_TEST(suite, bdev_write_zeroes_split_test);
6250 	CU_ADD_TEST(suite, bdev_set_options_test);
6251 	CU_ADD_TEST(suite, bdev_multi_allocation);
6252 	CU_ADD_TEST(suite, bdev_get_memory_domains);
6253 	CU_ADD_TEST(suite, bdev_io_ext);
6254 	CU_ADD_TEST(suite, bdev_io_ext_no_opts);
6255 	CU_ADD_TEST(suite, bdev_io_ext_invalid_opts);
6256 	CU_ADD_TEST(suite, bdev_io_ext_split);
6257 	CU_ADD_TEST(suite, bdev_io_ext_bounce_buffer);
6258 	CU_ADD_TEST(suite, bdev_register_uuid_alias);
6259 	CU_ADD_TEST(suite, bdev_unregister_by_name);
6260 	CU_ADD_TEST(suite, for_each_bdev_test);
6261 	CU_ADD_TEST(suite, bdev_seek_test);
6262 	CU_ADD_TEST(suite, bdev_copy);
6263 	CU_ADD_TEST(suite, bdev_copy_split_test);
6264 
6265 	allocate_cores(1);
6266 	allocate_threads(1);
6267 	set_thread(0);
6268 
6269 	CU_basic_set_mode(CU_BRM_VERBOSE);
6270 	CU_basic_run_tests();
6271 	num_failures = CU_get_number_of_failures();
6272 	CU_cleanup_registry();
6273 
6274 	free_threads();
6275 	free_cores();
6276 
6277 	return num_failures;
6278 }
6279