xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision 22c0e978842808113ce4ac166a33734c01d2ce61)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2017 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk_cunit.h"
8 
9 #include "common/lib/ut_multithread.c"
10 #include "unit/lib/json_mock.c"
11 
12 #include "spdk/config.h"
13 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
14 #undef SPDK_CONFIG_VTUNE
15 
16 #include "bdev/bdev.c"
17 
18 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
19 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
20 DEFINE_STUB(spdk_memory_domain_get_dma_device_id, const char *, (struct spdk_memory_domain *domain),
21 	    "test_domain");
22 DEFINE_STUB(spdk_memory_domain_get_dma_device_type, enum spdk_dma_device_type,
23 	    (struct spdk_memory_domain *domain), 0);
24 DEFINE_STUB(spdk_accel_sequence_finish, int,
25 	    (struct spdk_accel_sequence *seq, spdk_accel_completion_cb cb_fn, void *cb_arg), 0);
26 DEFINE_STUB_V(spdk_accel_sequence_abort, (struct spdk_accel_sequence *seq));
27 DEFINE_STUB(spdk_accel_append_copy, int,
28 	    (struct spdk_accel_sequence **seq, struct spdk_io_channel *ch, struct iovec *dst_iovs,
29 	     uint32_t dst_iovcnt, struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
30 	     struct iovec *src_iovs, uint32_t src_iovcnt, struct spdk_memory_domain *src_domain,
31 	     void *src_domain_ctx, int flags, spdk_accel_step_cb cb_fn, void *cb_arg), 0);
32 DEFINE_STUB(spdk_accel_get_memory_domain, struct spdk_memory_domain *, (void), NULL);
33 
34 static bool g_memory_domain_pull_data_called;
35 static bool g_memory_domain_push_data_called;
36 static int g_accel_io_device;
37 
38 DEFINE_RETURN_MOCK(spdk_memory_domain_pull_data, int);
39 int
40 spdk_memory_domain_pull_data(struct spdk_memory_domain *src_domain, void *src_domain_ctx,
41 			     struct iovec *src_iov, uint32_t src_iov_cnt, struct iovec *dst_iov, uint32_t dst_iov_cnt,
42 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
43 {
44 	g_memory_domain_pull_data_called = true;
45 	HANDLE_RETURN_MOCK(spdk_memory_domain_pull_data);
46 	cpl_cb(cpl_cb_arg, 0);
47 	return 0;
48 }
49 
50 DEFINE_RETURN_MOCK(spdk_memory_domain_push_data, int);
51 int
52 spdk_memory_domain_push_data(struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
53 			     struct iovec *dst_iov, uint32_t dst_iovcnt, struct iovec *src_iov, uint32_t src_iovcnt,
54 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
55 {
56 	g_memory_domain_push_data_called = true;
57 	HANDLE_RETURN_MOCK(spdk_memory_domain_push_data);
58 	cpl_cb(cpl_cb_arg, 0);
59 	return 0;
60 }
61 
62 struct spdk_io_channel *
63 spdk_accel_get_io_channel(void)
64 {
65 	return spdk_get_io_channel(&g_accel_io_device);
66 }
67 
68 int g_status;
69 int g_count;
70 enum spdk_bdev_event_type g_event_type1;
71 enum spdk_bdev_event_type g_event_type2;
72 enum spdk_bdev_event_type g_event_type3;
73 enum spdk_bdev_event_type g_event_type4;
74 struct spdk_histogram_data *g_histogram;
75 void *g_unregister_arg;
76 int g_unregister_rc;
77 
78 void
79 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
80 			 int *sc, int *sk, int *asc, int *ascq)
81 {
82 }
83 
84 static int
85 ut_accel_ch_create_cb(void *io_device, void *ctx)
86 {
87 	return 0;
88 }
89 
90 static void
91 ut_accel_ch_destroy_cb(void *io_device, void *ctx)
92 {
93 }
94 
95 static int
96 ut_bdev_setup(void)
97 {
98 	spdk_io_device_register(&g_accel_io_device, ut_accel_ch_create_cb,
99 				ut_accel_ch_destroy_cb, 0, NULL);
100 	return 0;
101 }
102 
103 static int
104 ut_bdev_teardown(void)
105 {
106 	spdk_io_device_unregister(&g_accel_io_device, NULL);
107 
108 	return 0;
109 }
110 
111 static int
112 stub_destruct(void *ctx)
113 {
114 	return 0;
115 }
116 
117 struct ut_expected_io {
118 	uint8_t				type;
119 	uint64_t			offset;
120 	uint64_t			src_offset;
121 	uint64_t			length;
122 	int				iovcnt;
123 	struct iovec			iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
124 	void				*md_buf;
125 	TAILQ_ENTRY(ut_expected_io)	link;
126 };
127 
128 struct bdev_ut_channel {
129 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
130 	uint32_t			outstanding_io_count;
131 	TAILQ_HEAD(, ut_expected_io)	expected_io;
132 };
133 
134 static bool g_io_done;
135 static struct spdk_bdev_io *g_bdev_io;
136 static enum spdk_bdev_io_status g_io_status;
137 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
138 static uint32_t g_bdev_ut_io_device;
139 static struct bdev_ut_channel *g_bdev_ut_channel;
140 static void *g_compare_read_buf;
141 static uint32_t g_compare_read_buf_len;
142 static void *g_compare_write_buf;
143 static uint32_t g_compare_write_buf_len;
144 static void *g_compare_md_buf;
145 static bool g_abort_done;
146 static enum spdk_bdev_io_status g_abort_status;
147 static void *g_zcopy_read_buf;
148 static uint32_t g_zcopy_read_buf_len;
149 static void *g_zcopy_write_buf;
150 static uint32_t g_zcopy_write_buf_len;
151 static struct spdk_bdev_io *g_zcopy_bdev_io;
152 static uint64_t g_seek_data_offset;
153 static uint64_t g_seek_hole_offset;
154 static uint64_t g_seek_offset;
155 
156 static struct ut_expected_io *
157 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
158 {
159 	struct ut_expected_io *expected_io;
160 
161 	expected_io = calloc(1, sizeof(*expected_io));
162 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
163 
164 	expected_io->type = type;
165 	expected_io->offset = offset;
166 	expected_io->length = length;
167 	expected_io->iovcnt = iovcnt;
168 
169 	return expected_io;
170 }
171 
172 static struct ut_expected_io *
173 ut_alloc_expected_copy_io(uint8_t type, uint64_t offset, uint64_t src_offset, uint64_t length)
174 {
175 	struct ut_expected_io *expected_io;
176 
177 	expected_io = calloc(1, sizeof(*expected_io));
178 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
179 
180 	expected_io->type = type;
181 	expected_io->offset = offset;
182 	expected_io->src_offset = src_offset;
183 	expected_io->length = length;
184 
185 	return expected_io;
186 }
187 
188 static void
189 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
190 {
191 	expected_io->iov[pos].iov_base = base;
192 	expected_io->iov[pos].iov_len = len;
193 }
194 
195 static void
196 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
197 {
198 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
199 	struct ut_expected_io *expected_io;
200 	struct iovec *iov, *expected_iov;
201 	struct spdk_bdev_io *bio_to_abort;
202 	int i;
203 
204 	g_bdev_io = bdev_io;
205 
206 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
207 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
208 
209 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
210 		CU_ASSERT(g_compare_read_buf_len == len);
211 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
212 		if (bdev_io->bdev->md_len && bdev_io->u.bdev.md_buf && g_compare_md_buf) {
213 			memcpy(bdev_io->u.bdev.md_buf, g_compare_md_buf,
214 			       bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks);
215 		}
216 	}
217 
218 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
219 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
220 
221 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
222 		CU_ASSERT(g_compare_write_buf_len == len);
223 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
224 	}
225 
226 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
227 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
228 
229 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
230 		CU_ASSERT(g_compare_read_buf_len == len);
231 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
232 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
233 		}
234 		if (bdev_io->u.bdev.md_buf &&
235 		    memcmp(bdev_io->u.bdev.md_buf, g_compare_md_buf,
236 			   bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks)) {
237 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
238 		}
239 	}
240 
241 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
242 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
243 			TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
244 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
245 					TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
246 					ch->outstanding_io_count--;
247 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
248 					break;
249 				}
250 			}
251 		}
252 	}
253 
254 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) {
255 		if (bdev_io->u.bdev.zcopy.start) {
256 			g_zcopy_bdev_io = bdev_io;
257 			if (bdev_io->u.bdev.zcopy.populate) {
258 				/* Start of a read */
259 				CU_ASSERT(g_zcopy_read_buf != NULL);
260 				CU_ASSERT(g_zcopy_read_buf_len > 0);
261 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_read_buf;
262 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_read_buf_len;
263 				bdev_io->u.bdev.iovcnt = 1;
264 			} else {
265 				/* Start of a write */
266 				CU_ASSERT(g_zcopy_write_buf != NULL);
267 				CU_ASSERT(g_zcopy_write_buf_len > 0);
268 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_write_buf;
269 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_write_buf_len;
270 				bdev_io->u.bdev.iovcnt = 1;
271 			}
272 		} else {
273 			if (bdev_io->u.bdev.zcopy.commit) {
274 				/* End of write */
275 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_write_buf);
276 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_write_buf_len);
277 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
278 				g_zcopy_write_buf = NULL;
279 				g_zcopy_write_buf_len = 0;
280 			} else {
281 				/* End of read */
282 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_read_buf);
283 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_read_buf_len);
284 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
285 				g_zcopy_read_buf = NULL;
286 				g_zcopy_read_buf_len = 0;
287 			}
288 		}
289 	}
290 
291 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_DATA) {
292 		bdev_io->u.bdev.seek.offset = g_seek_data_offset;
293 	}
294 
295 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_HOLE) {
296 		bdev_io->u.bdev.seek.offset = g_seek_hole_offset;
297 	}
298 
299 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
300 	ch->outstanding_io_count++;
301 
302 	expected_io = TAILQ_FIRST(&ch->expected_io);
303 	if (expected_io == NULL) {
304 		return;
305 	}
306 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
307 
308 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
309 		CU_ASSERT(bdev_io->type == expected_io->type);
310 	}
311 
312 	if (expected_io->md_buf != NULL) {
313 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
314 	}
315 
316 	if (expected_io->length == 0) {
317 		free(expected_io);
318 		return;
319 	}
320 
321 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
322 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
323 	if (expected_io->type == SPDK_BDEV_IO_TYPE_COPY) {
324 		CU_ASSERT(expected_io->src_offset == bdev_io->u.bdev.copy.src_offset_blocks);
325 	}
326 
327 	if (expected_io->iovcnt == 0) {
328 		free(expected_io);
329 		/* UNMAP, WRITE_ZEROES, FLUSH and COPY don't have iovs, so we can just return now. */
330 		return;
331 	}
332 
333 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
334 	for (i = 0; i < expected_io->iovcnt; i++) {
335 		expected_iov = &expected_io->iov[i];
336 		if (bdev_io->internal.orig_iovcnt == 0) {
337 			iov = &bdev_io->u.bdev.iovs[i];
338 		} else {
339 			iov = bdev_io->internal.orig_iovs;
340 		}
341 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
342 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
343 	}
344 
345 	free(expected_io);
346 }
347 
348 static void
349 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
350 			       struct spdk_bdev_io *bdev_io, bool success)
351 {
352 	CU_ASSERT(success == true);
353 
354 	stub_submit_request(_ch, bdev_io);
355 }
356 
357 static void
358 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
359 {
360 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
361 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
362 }
363 
364 static uint32_t
365 stub_complete_io(uint32_t num_to_complete)
366 {
367 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
368 	struct spdk_bdev_io *bdev_io;
369 	static enum spdk_bdev_io_status io_status;
370 	uint32_t num_completed = 0;
371 
372 	while (num_completed < num_to_complete) {
373 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
374 			break;
375 		}
376 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
377 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
378 		ch->outstanding_io_count--;
379 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
380 			    g_io_exp_status;
381 		spdk_bdev_io_complete(bdev_io, io_status);
382 		num_completed++;
383 	}
384 
385 	return num_completed;
386 }
387 
388 static struct spdk_io_channel *
389 bdev_ut_get_io_channel(void *ctx)
390 {
391 	return spdk_get_io_channel(&g_bdev_ut_io_device);
392 }
393 
394 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
395 	[SPDK_BDEV_IO_TYPE_READ]		= true,
396 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
397 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
398 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
399 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
400 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
401 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
402 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
403 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
404 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
405 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
406 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
407 	[SPDK_BDEV_IO_TYPE_SEEK_HOLE]		= true,
408 	[SPDK_BDEV_IO_TYPE_SEEK_DATA]		= true,
409 	[SPDK_BDEV_IO_TYPE_COPY]		= true,
410 };
411 
412 static void
413 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
414 {
415 	g_io_types_supported[io_type] = enable;
416 }
417 
418 static bool
419 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
420 {
421 	return g_io_types_supported[io_type];
422 }
423 
424 static struct spdk_bdev_fn_table fn_table = {
425 	.destruct = stub_destruct,
426 	.submit_request = stub_submit_request,
427 	.get_io_channel = bdev_ut_get_io_channel,
428 	.io_type_supported = stub_io_type_supported,
429 };
430 
431 static int
432 bdev_ut_create_ch(void *io_device, void *ctx_buf)
433 {
434 	struct bdev_ut_channel *ch = ctx_buf;
435 
436 	CU_ASSERT(g_bdev_ut_channel == NULL);
437 	g_bdev_ut_channel = ch;
438 
439 	TAILQ_INIT(&ch->outstanding_io);
440 	ch->outstanding_io_count = 0;
441 	TAILQ_INIT(&ch->expected_io);
442 	return 0;
443 }
444 
445 static void
446 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
447 {
448 	CU_ASSERT(g_bdev_ut_channel != NULL);
449 	g_bdev_ut_channel = NULL;
450 }
451 
452 struct spdk_bdev_module bdev_ut_if;
453 
454 static int
455 bdev_ut_module_init(void)
456 {
457 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
458 				sizeof(struct bdev_ut_channel), NULL);
459 	spdk_bdev_module_init_done(&bdev_ut_if);
460 	return 0;
461 }
462 
463 static void
464 bdev_ut_module_fini(void)
465 {
466 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
467 }
468 
469 struct spdk_bdev_module bdev_ut_if = {
470 	.name = "bdev_ut",
471 	.module_init = bdev_ut_module_init,
472 	.module_fini = bdev_ut_module_fini,
473 	.async_init = true,
474 };
475 
476 static void vbdev_ut_examine_config(struct spdk_bdev *bdev);
477 static void vbdev_ut_examine_disk(struct spdk_bdev *bdev);
478 
479 static int
480 vbdev_ut_module_init(void)
481 {
482 	return 0;
483 }
484 
485 static void
486 vbdev_ut_module_fini(void)
487 {
488 }
489 
490 struct spdk_bdev_module vbdev_ut_if = {
491 	.name = "vbdev_ut",
492 	.module_init = vbdev_ut_module_init,
493 	.module_fini = vbdev_ut_module_fini,
494 	.examine_config = vbdev_ut_examine_config,
495 	.examine_disk = vbdev_ut_examine_disk,
496 };
497 
498 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
499 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
500 
501 struct ut_examine_ctx {
502 	void (*examine_config)(struct spdk_bdev *bdev);
503 	void (*examine_disk)(struct spdk_bdev *bdev);
504 	uint32_t examine_config_count;
505 	uint32_t examine_disk_count;
506 };
507 
508 static void
509 vbdev_ut_examine_config(struct spdk_bdev *bdev)
510 {
511 	struct ut_examine_ctx *ctx = bdev->ctxt;
512 
513 	if (ctx != NULL) {
514 		ctx->examine_config_count++;
515 		if (ctx->examine_config != NULL) {
516 			ctx->examine_config(bdev);
517 		}
518 	}
519 
520 	spdk_bdev_module_examine_done(&vbdev_ut_if);
521 }
522 
523 static void
524 vbdev_ut_examine_disk(struct spdk_bdev *bdev)
525 {
526 	struct ut_examine_ctx *ctx = bdev->ctxt;
527 
528 	if (ctx != NULL) {
529 		ctx->examine_disk_count++;
530 		if (ctx->examine_disk != NULL) {
531 			ctx->examine_disk(bdev);
532 		}
533 	}
534 
535 	spdk_bdev_module_examine_done(&vbdev_ut_if);
536 }
537 
538 static struct spdk_bdev *
539 allocate_bdev_ctx(char *name, void *ctx)
540 {
541 	struct spdk_bdev *bdev;
542 	int rc;
543 
544 	bdev = calloc(1, sizeof(*bdev));
545 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
546 
547 	bdev->ctxt = ctx;
548 	bdev->name = name;
549 	bdev->fn_table = &fn_table;
550 	bdev->module = &bdev_ut_if;
551 	bdev->blockcnt = 1024;
552 	bdev->blocklen = 512;
553 
554 	spdk_uuid_generate(&bdev->uuid);
555 
556 	rc = spdk_bdev_register(bdev);
557 	poll_threads();
558 	CU_ASSERT(rc == 0);
559 
560 	return bdev;
561 }
562 
563 static struct spdk_bdev *
564 allocate_bdev(char *name)
565 {
566 	return allocate_bdev_ctx(name, NULL);
567 }
568 
569 static struct spdk_bdev *
570 allocate_vbdev(char *name)
571 {
572 	struct spdk_bdev *bdev;
573 	int rc;
574 
575 	bdev = calloc(1, sizeof(*bdev));
576 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
577 
578 	bdev->name = name;
579 	bdev->fn_table = &fn_table;
580 	bdev->module = &vbdev_ut_if;
581 
582 	rc = spdk_bdev_register(bdev);
583 	poll_threads();
584 	CU_ASSERT(rc == 0);
585 
586 	return bdev;
587 }
588 
589 static void
590 free_bdev(struct spdk_bdev *bdev)
591 {
592 	spdk_bdev_unregister(bdev, NULL, NULL);
593 	poll_threads();
594 	memset(bdev, 0xFF, sizeof(*bdev));
595 	free(bdev);
596 }
597 
598 static void
599 free_vbdev(struct spdk_bdev *bdev)
600 {
601 	spdk_bdev_unregister(bdev, NULL, NULL);
602 	poll_threads();
603 	memset(bdev, 0xFF, sizeof(*bdev));
604 	free(bdev);
605 }
606 
607 static void
608 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
609 {
610 	const char *bdev_name;
611 
612 	CU_ASSERT(bdev != NULL);
613 	CU_ASSERT(rc == 0);
614 	bdev_name = spdk_bdev_get_name(bdev);
615 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
616 
617 	free(stat);
618 
619 	*(bool *)cb_arg = true;
620 }
621 
622 static void
623 bdev_unregister_cb(void *cb_arg, int rc)
624 {
625 	g_unregister_arg = cb_arg;
626 	g_unregister_rc = rc;
627 }
628 
629 static void
630 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
631 {
632 }
633 
634 static void
635 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
636 {
637 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
638 
639 	g_event_type1 = type;
640 	if (SPDK_BDEV_EVENT_REMOVE == type) {
641 		spdk_bdev_close(desc);
642 	}
643 }
644 
645 static void
646 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
647 {
648 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
649 
650 	g_event_type2 = type;
651 	if (SPDK_BDEV_EVENT_REMOVE == type) {
652 		spdk_bdev_close(desc);
653 	}
654 }
655 
656 static void
657 bdev_open_cb3(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
658 {
659 	g_event_type3 = type;
660 }
661 
662 static void
663 bdev_open_cb4(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
664 {
665 	g_event_type4 = type;
666 }
667 
668 static void
669 bdev_seek_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
670 {
671 	g_seek_offset = spdk_bdev_io_get_seek_offset(bdev_io);
672 	spdk_bdev_free_io(bdev_io);
673 }
674 
675 static void
676 get_device_stat_test(void)
677 {
678 	struct spdk_bdev *bdev;
679 	struct spdk_bdev_io_stat *stat;
680 	bool done;
681 
682 	bdev = allocate_bdev("bdev0");
683 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
684 	if (stat == NULL) {
685 		free_bdev(bdev);
686 		return;
687 	}
688 
689 	done = false;
690 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
691 	while (!done) { poll_threads(); }
692 
693 	free_bdev(bdev);
694 }
695 
696 static void
697 open_write_test(void)
698 {
699 	struct spdk_bdev *bdev[9];
700 	struct spdk_bdev_desc *desc[9] = {};
701 	int rc;
702 
703 	/*
704 	 * Create a tree of bdevs to test various open w/ write cases.
705 	 *
706 	 * bdev0 through bdev3 are physical block devices, such as NVMe
707 	 * namespaces or Ceph block devices.
708 	 *
709 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
710 	 * caching or RAID use cases.
711 	 *
712 	 * bdev5 through bdev7 are all virtual bdevs with the same base
713 	 * bdev (except bdev7). This models partitioning or logical volume
714 	 * use cases.
715 	 *
716 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
717 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
718 	 * models caching, RAID, partitioning or logical volumes use cases.
719 	 *
720 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
721 	 * base bdevs are themselves virtual bdevs.
722 	 *
723 	 *                bdev8
724 	 *                  |
725 	 *            +----------+
726 	 *            |          |
727 	 *          bdev4      bdev5   bdev6   bdev7
728 	 *            |          |       |       |
729 	 *        +---+---+      +---+   +   +---+---+
730 	 *        |       |           \  |  /         \
731 	 *      bdev0   bdev1          bdev2         bdev3
732 	 */
733 
734 	bdev[0] = allocate_bdev("bdev0");
735 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
736 	CU_ASSERT(rc == 0);
737 
738 	bdev[1] = allocate_bdev("bdev1");
739 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
740 	CU_ASSERT(rc == 0);
741 
742 	bdev[2] = allocate_bdev("bdev2");
743 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
744 	CU_ASSERT(rc == 0);
745 
746 	bdev[3] = allocate_bdev("bdev3");
747 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
748 	CU_ASSERT(rc == 0);
749 
750 	bdev[4] = allocate_vbdev("bdev4");
751 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
752 	CU_ASSERT(rc == 0);
753 
754 	bdev[5] = allocate_vbdev("bdev5");
755 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
756 	CU_ASSERT(rc == 0);
757 
758 	bdev[6] = allocate_vbdev("bdev6");
759 
760 	bdev[7] = allocate_vbdev("bdev7");
761 
762 	bdev[8] = allocate_vbdev("bdev8");
763 
764 	/* Open bdev0 read-only.  This should succeed. */
765 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
766 	CU_ASSERT(rc == 0);
767 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
768 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
769 	spdk_bdev_close(desc[0]);
770 
771 	/*
772 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
773 	 * by a vbdev module.
774 	 */
775 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
776 	CU_ASSERT(rc == -EPERM);
777 
778 	/*
779 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
780 	 * by a vbdev module.
781 	 */
782 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
783 	CU_ASSERT(rc == -EPERM);
784 
785 	/* Open bdev4 read-only.  This should succeed. */
786 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
787 	CU_ASSERT(rc == 0);
788 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
789 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
790 	spdk_bdev_close(desc[4]);
791 
792 	/*
793 	 * Open bdev8 read/write.  This should succeed since it is a leaf
794 	 * bdev.
795 	 */
796 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
797 	CU_ASSERT(rc == 0);
798 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
799 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
800 	spdk_bdev_close(desc[8]);
801 
802 	/*
803 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
804 	 * by a vbdev module.
805 	 */
806 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
807 	CU_ASSERT(rc == -EPERM);
808 
809 	/* Open bdev4 read-only.  This should succeed. */
810 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
811 	CU_ASSERT(rc == 0);
812 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
813 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
814 	spdk_bdev_close(desc[5]);
815 
816 	free_vbdev(bdev[8]);
817 
818 	free_vbdev(bdev[5]);
819 	free_vbdev(bdev[6]);
820 	free_vbdev(bdev[7]);
821 
822 	free_vbdev(bdev[4]);
823 
824 	free_bdev(bdev[0]);
825 	free_bdev(bdev[1]);
826 	free_bdev(bdev[2]);
827 	free_bdev(bdev[3]);
828 }
829 
830 static void
831 claim_test(void)
832 {
833 	struct spdk_bdev *bdev;
834 	struct spdk_bdev_desc *desc, *open_desc;
835 	int rc;
836 	uint32_t count;
837 
838 	/*
839 	 * A vbdev that uses a read-only bdev may need it to remain read-only.
840 	 * To do so, it opens the bdev read-only, then claims it without
841 	 * passing a spdk_bdev_desc.
842 	 */
843 	bdev = allocate_bdev("bdev0");
844 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
845 	CU_ASSERT(rc == 0);
846 	CU_ASSERT(desc->write == false);
847 
848 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
849 	CU_ASSERT(rc == 0);
850 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
851 	CU_ASSERT(bdev->internal.claim.v1.module == &bdev_ut_if);
852 
853 	/* There should be only one open descriptor and it should still be ro */
854 	count = 0;
855 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
856 		CU_ASSERT(open_desc == desc);
857 		CU_ASSERT(!open_desc->write);
858 		count++;
859 	}
860 	CU_ASSERT(count == 1);
861 
862 	/* A read-only bdev is upgraded to read-write if desc is passed. */
863 	spdk_bdev_module_release_bdev(bdev);
864 	rc = spdk_bdev_module_claim_bdev(bdev, desc, &bdev_ut_if);
865 	CU_ASSERT(rc == 0);
866 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
867 	CU_ASSERT(bdev->internal.claim.v1.module == &bdev_ut_if);
868 
869 	/* There should be only one open descriptor and it should be rw */
870 	count = 0;
871 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
872 		CU_ASSERT(open_desc == desc);
873 		CU_ASSERT(open_desc->write);
874 		count++;
875 	}
876 	CU_ASSERT(count == 1);
877 
878 	spdk_bdev_close(desc);
879 	free_bdev(bdev);
880 }
881 
882 static void
883 bytes_to_blocks_test(void)
884 {
885 	struct spdk_bdev bdev;
886 	uint64_t offset_blocks, num_blocks;
887 
888 	memset(&bdev, 0, sizeof(bdev));
889 
890 	bdev.blocklen = 512;
891 
892 	/* All parameters valid */
893 	offset_blocks = 0;
894 	num_blocks = 0;
895 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
896 	CU_ASSERT(offset_blocks == 1);
897 	CU_ASSERT(num_blocks == 2);
898 
899 	/* Offset not a block multiple */
900 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
901 
902 	/* Length not a block multiple */
903 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
904 
905 	/* In case blocklen not the power of two */
906 	bdev.blocklen = 100;
907 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
908 	CU_ASSERT(offset_blocks == 1);
909 	CU_ASSERT(num_blocks == 2);
910 
911 	/* Offset not a block multiple */
912 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
913 
914 	/* Length not a block multiple */
915 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
916 }
917 
918 static void
919 num_blocks_test(void)
920 {
921 	struct spdk_bdev bdev;
922 	struct spdk_bdev_desc *desc = NULL;
923 	int rc;
924 
925 	memset(&bdev, 0, sizeof(bdev));
926 	bdev.name = "num_blocks";
927 	bdev.fn_table = &fn_table;
928 	bdev.module = &bdev_ut_if;
929 	spdk_bdev_register(&bdev);
930 	poll_threads();
931 	spdk_bdev_notify_blockcnt_change(&bdev, 50);
932 
933 	/* Growing block number */
934 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
935 	/* Shrinking block number */
936 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
937 
938 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc, &desc);
939 	CU_ASSERT(rc == 0);
940 	SPDK_CU_ASSERT_FATAL(desc != NULL);
941 	CU_ASSERT(&bdev == spdk_bdev_desc_get_bdev(desc));
942 
943 	/* Growing block number */
944 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
945 	/* Shrinking block number */
946 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
947 
948 	g_event_type1 = 0xFF;
949 	/* Growing block number */
950 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
951 
952 	poll_threads();
953 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
954 
955 	g_event_type1 = 0xFF;
956 	/* Growing block number and closing */
957 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
958 
959 	spdk_bdev_close(desc);
960 	spdk_bdev_unregister(&bdev, NULL, NULL);
961 
962 	poll_threads();
963 
964 	/* Callback is not called for closed device */
965 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
966 }
967 
968 static void
969 io_valid_test(void)
970 {
971 	struct spdk_bdev bdev;
972 
973 	memset(&bdev, 0, sizeof(bdev));
974 
975 	bdev.blocklen = 512;
976 	spdk_spin_init(&bdev.internal.spinlock);
977 
978 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
979 
980 	/* All parameters valid */
981 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
982 
983 	/* Last valid block */
984 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
985 
986 	/* Offset past end of bdev */
987 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
988 
989 	/* Offset + length past end of bdev */
990 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
991 
992 	/* Offset near end of uint64_t range (2^64 - 1) */
993 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
994 
995 	spdk_spin_destroy(&bdev.internal.spinlock);
996 }
997 
998 static void
999 alias_add_del_test(void)
1000 {
1001 	struct spdk_bdev *bdev[3];
1002 	int rc;
1003 
1004 	/* Creating and registering bdevs */
1005 	bdev[0] = allocate_bdev("bdev0");
1006 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
1007 
1008 	bdev[1] = allocate_bdev("bdev1");
1009 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
1010 
1011 	bdev[2] = allocate_bdev("bdev2");
1012 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
1013 
1014 	poll_threads();
1015 
1016 	/*
1017 	 * Trying adding an alias identical to name.
1018 	 * Alias is identical to name, so it can not be added to aliases list
1019 	 */
1020 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
1021 	CU_ASSERT(rc == -EEXIST);
1022 
1023 	/*
1024 	 * Trying to add empty alias,
1025 	 * this one should fail
1026 	 */
1027 	rc = spdk_bdev_alias_add(bdev[0], NULL);
1028 	CU_ASSERT(rc == -EINVAL);
1029 
1030 	/* Trying adding same alias to two different registered bdevs */
1031 
1032 	/* Alias is used first time, so this one should pass */
1033 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
1034 	CU_ASSERT(rc == 0);
1035 
1036 	/* Alias was added to another bdev, so this one should fail */
1037 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
1038 	CU_ASSERT(rc == -EEXIST);
1039 
1040 	/* Alias is used first time, so this one should pass */
1041 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
1042 	CU_ASSERT(rc == 0);
1043 
1044 	/* Trying removing an alias from registered bdevs */
1045 
1046 	/* Alias is not on a bdev aliases list, so this one should fail */
1047 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
1048 	CU_ASSERT(rc == -ENOENT);
1049 
1050 	/* Alias is present on a bdev aliases list, so this one should pass */
1051 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
1052 	CU_ASSERT(rc == 0);
1053 
1054 	/* Alias is present on a bdev aliases list, so this one should pass */
1055 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
1056 	CU_ASSERT(rc == 0);
1057 
1058 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
1059 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
1060 	CU_ASSERT(rc != 0);
1061 
1062 	/* Trying to del all alias from empty alias list */
1063 	spdk_bdev_alias_del_all(bdev[2]);
1064 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
1065 
1066 	/* Trying to del all alias from non-empty alias list */
1067 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
1068 	CU_ASSERT(rc == 0);
1069 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
1070 	CU_ASSERT(rc == 0);
1071 	spdk_bdev_alias_del_all(bdev[2]);
1072 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
1073 
1074 	/* Unregister and free bdevs */
1075 	spdk_bdev_unregister(bdev[0], NULL, NULL);
1076 	spdk_bdev_unregister(bdev[1], NULL, NULL);
1077 	spdk_bdev_unregister(bdev[2], NULL, NULL);
1078 
1079 	poll_threads();
1080 
1081 	free(bdev[0]);
1082 	free(bdev[1]);
1083 	free(bdev[2]);
1084 }
1085 
1086 static void
1087 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
1088 {
1089 	g_io_done = true;
1090 	g_io_status = bdev_io->internal.status;
1091 	if ((bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) &&
1092 	    (bdev_io->u.bdev.zcopy.start)) {
1093 		g_zcopy_bdev_io = bdev_io;
1094 	} else {
1095 		spdk_bdev_free_io(bdev_io);
1096 		g_zcopy_bdev_io = NULL;
1097 	}
1098 }
1099 
1100 static void
1101 bdev_init_cb(void *arg, int rc)
1102 {
1103 	CU_ASSERT(rc == 0);
1104 }
1105 
1106 static void
1107 bdev_fini_cb(void *arg)
1108 {
1109 }
1110 
1111 static void
1112 ut_init_bdev(struct spdk_bdev_opts *opts)
1113 {
1114 	int rc;
1115 
1116 	if (opts != NULL) {
1117 		rc = spdk_bdev_set_opts(opts);
1118 		CU_ASSERT(rc == 0);
1119 	}
1120 	rc = spdk_iobuf_initialize();
1121 	CU_ASSERT(rc == 0);
1122 	spdk_bdev_initialize(bdev_init_cb, NULL);
1123 	poll_threads();
1124 }
1125 
1126 static void
1127 ut_fini_bdev(void)
1128 {
1129 	spdk_bdev_finish(bdev_fini_cb, NULL);
1130 	spdk_iobuf_finish(bdev_fini_cb, NULL);
1131 	poll_threads();
1132 }
1133 
1134 struct bdev_ut_io_wait_entry {
1135 	struct spdk_bdev_io_wait_entry	entry;
1136 	struct spdk_io_channel		*io_ch;
1137 	struct spdk_bdev_desc		*desc;
1138 	bool				submitted;
1139 };
1140 
1141 static void
1142 io_wait_cb(void *arg)
1143 {
1144 	struct bdev_ut_io_wait_entry *entry = arg;
1145 	int rc;
1146 
1147 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
1148 	CU_ASSERT(rc == 0);
1149 	entry->submitted = true;
1150 }
1151 
1152 static void
1153 bdev_io_types_test(void)
1154 {
1155 	struct spdk_bdev *bdev;
1156 	struct spdk_bdev_desc *desc = NULL;
1157 	struct spdk_io_channel *io_ch;
1158 	struct spdk_bdev_opts bdev_opts = {};
1159 	int rc;
1160 
1161 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1162 	bdev_opts.bdev_io_pool_size = 4;
1163 	bdev_opts.bdev_io_cache_size = 2;
1164 	ut_init_bdev(&bdev_opts);
1165 
1166 	bdev = allocate_bdev("bdev0");
1167 
1168 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1169 	CU_ASSERT(rc == 0);
1170 	poll_threads();
1171 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1172 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1173 	io_ch = spdk_bdev_get_io_channel(desc);
1174 	CU_ASSERT(io_ch != NULL);
1175 
1176 	/* WRITE and WRITE ZEROES are not supported */
1177 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
1178 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
1179 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
1180 	CU_ASSERT(rc == -ENOTSUP);
1181 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
1182 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
1183 
1184 	/* NVME_IO, NVME_IO_MD and NVME_ADMIN are not supported */
1185 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, false);
1186 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, false);
1187 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, false);
1188 	rc = spdk_bdev_nvme_io_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1189 	CU_ASSERT(rc == -ENOTSUP);
1190 	rc = spdk_bdev_nvme_io_passthru_md(desc, io_ch, NULL, NULL, 0, NULL, 0, NULL, NULL);
1191 	CU_ASSERT(rc == -ENOTSUP);
1192 	rc = spdk_bdev_nvme_admin_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1193 	CU_ASSERT(rc == -ENOTSUP);
1194 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, true);
1195 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, true);
1196 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, true);
1197 
1198 	spdk_put_io_channel(io_ch);
1199 	spdk_bdev_close(desc);
1200 	free_bdev(bdev);
1201 	ut_fini_bdev();
1202 }
1203 
1204 static void
1205 bdev_io_wait_test(void)
1206 {
1207 	struct spdk_bdev *bdev;
1208 	struct spdk_bdev_desc *desc = NULL;
1209 	struct spdk_io_channel *io_ch;
1210 	struct spdk_bdev_opts bdev_opts = {};
1211 	struct bdev_ut_io_wait_entry io_wait_entry;
1212 	struct bdev_ut_io_wait_entry io_wait_entry2;
1213 	int rc;
1214 
1215 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1216 	bdev_opts.bdev_io_pool_size = 4;
1217 	bdev_opts.bdev_io_cache_size = 2;
1218 	ut_init_bdev(&bdev_opts);
1219 
1220 	bdev = allocate_bdev("bdev0");
1221 
1222 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1223 	CU_ASSERT(rc == 0);
1224 	poll_threads();
1225 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1226 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1227 	io_ch = spdk_bdev_get_io_channel(desc);
1228 	CU_ASSERT(io_ch != NULL);
1229 
1230 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1231 	CU_ASSERT(rc == 0);
1232 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1233 	CU_ASSERT(rc == 0);
1234 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1235 	CU_ASSERT(rc == 0);
1236 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1237 	CU_ASSERT(rc == 0);
1238 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1239 
1240 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1241 	CU_ASSERT(rc == -ENOMEM);
1242 
1243 	io_wait_entry.entry.bdev = bdev;
1244 	io_wait_entry.entry.cb_fn = io_wait_cb;
1245 	io_wait_entry.entry.cb_arg = &io_wait_entry;
1246 	io_wait_entry.io_ch = io_ch;
1247 	io_wait_entry.desc = desc;
1248 	io_wait_entry.submitted = false;
1249 	/* Cannot use the same io_wait_entry for two different calls. */
1250 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
1251 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
1252 
1253 	/* Queue two I/O waits. */
1254 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
1255 	CU_ASSERT(rc == 0);
1256 	CU_ASSERT(io_wait_entry.submitted == false);
1257 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
1258 	CU_ASSERT(rc == 0);
1259 	CU_ASSERT(io_wait_entry2.submitted == false);
1260 
1261 	stub_complete_io(1);
1262 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1263 	CU_ASSERT(io_wait_entry.submitted == true);
1264 	CU_ASSERT(io_wait_entry2.submitted == false);
1265 
1266 	stub_complete_io(1);
1267 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1268 	CU_ASSERT(io_wait_entry2.submitted == true);
1269 
1270 	stub_complete_io(4);
1271 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1272 
1273 	spdk_put_io_channel(io_ch);
1274 	spdk_bdev_close(desc);
1275 	free_bdev(bdev);
1276 	ut_fini_bdev();
1277 }
1278 
1279 static void
1280 bdev_io_spans_split_test(void)
1281 {
1282 	struct spdk_bdev bdev;
1283 	struct spdk_bdev_io bdev_io;
1284 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
1285 
1286 	memset(&bdev, 0, sizeof(bdev));
1287 	bdev_io.u.bdev.iovs = iov;
1288 
1289 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1290 	bdev.optimal_io_boundary = 0;
1291 	bdev.max_segment_size = 0;
1292 	bdev.max_num_segments = 0;
1293 	bdev_io.bdev = &bdev;
1294 
1295 	/* bdev has no optimal_io_boundary and max_size set - so this should return false. */
1296 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1297 
1298 	bdev.split_on_optimal_io_boundary = true;
1299 	bdev.optimal_io_boundary = 32;
1300 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1301 
1302 	/* RESETs are not based on LBAs - so this should return false. */
1303 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1304 
1305 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1306 	bdev_io.u.bdev.offset_blocks = 0;
1307 	bdev_io.u.bdev.num_blocks = 32;
1308 
1309 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1310 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1311 
1312 	bdev_io.u.bdev.num_blocks = 33;
1313 
1314 	/* This I/O spans a boundary. */
1315 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1316 
1317 	bdev_io.u.bdev.num_blocks = 32;
1318 	bdev.max_segment_size = 512 * 32;
1319 	bdev.max_num_segments = 1;
1320 	bdev_io.u.bdev.iovcnt = 1;
1321 	iov[0].iov_len = 512;
1322 
1323 	/* Does not cross and exceed max_size or max_segs */
1324 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1325 
1326 	bdev.split_on_optimal_io_boundary = false;
1327 	bdev.max_segment_size = 512;
1328 	bdev.max_num_segments = 1;
1329 	bdev_io.u.bdev.iovcnt = 2;
1330 
1331 	/* Exceed max_segs */
1332 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1333 
1334 	bdev.max_num_segments = 2;
1335 	iov[0].iov_len = 513;
1336 	iov[1].iov_len = 512;
1337 
1338 	/* Exceed max_sizes */
1339 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1340 
1341 	bdev.max_segment_size = 0;
1342 	bdev.write_unit_size = 32;
1343 	bdev.split_on_write_unit = true;
1344 	bdev_io.type = SPDK_BDEV_IO_TYPE_WRITE;
1345 
1346 	/* This I/O is one write unit */
1347 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1348 
1349 	bdev_io.u.bdev.num_blocks = 32 * 2;
1350 
1351 	/* This I/O is more than one write unit */
1352 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1353 
1354 	bdev_io.u.bdev.offset_blocks = 1;
1355 	bdev_io.u.bdev.num_blocks = 32;
1356 
1357 	/* This I/O is not aligned to write unit size */
1358 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1359 }
1360 
1361 static void
1362 bdev_io_boundary_split_test(void)
1363 {
1364 	struct spdk_bdev *bdev;
1365 	struct spdk_bdev_desc *desc = NULL;
1366 	struct spdk_io_channel *io_ch;
1367 	struct spdk_bdev_opts bdev_opts = {};
1368 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
1369 	struct ut_expected_io *expected_io;
1370 	void *md_buf = (void *)0xFF000000;
1371 	uint64_t i;
1372 	int rc;
1373 
1374 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1375 	bdev_opts.bdev_io_pool_size = 512;
1376 	bdev_opts.bdev_io_cache_size = 64;
1377 	ut_init_bdev(&bdev_opts);
1378 
1379 	bdev = allocate_bdev("bdev0");
1380 
1381 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1382 	CU_ASSERT(rc == 0);
1383 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1384 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1385 	io_ch = spdk_bdev_get_io_channel(desc);
1386 	CU_ASSERT(io_ch != NULL);
1387 
1388 	bdev->optimal_io_boundary = 16;
1389 	bdev->split_on_optimal_io_boundary = false;
1390 
1391 	g_io_done = false;
1392 
1393 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1394 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1395 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1396 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1397 
1398 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1399 	CU_ASSERT(rc == 0);
1400 	CU_ASSERT(g_io_done == false);
1401 
1402 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1403 	stub_complete_io(1);
1404 	CU_ASSERT(g_io_done == true);
1405 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1406 
1407 	bdev->split_on_optimal_io_boundary = true;
1408 	bdev->md_interleave = false;
1409 	bdev->md_len = 8;
1410 
1411 	/* Now test that a single-vector command is split correctly.
1412 	 * Offset 14, length 8, payload 0xF000
1413 	 *  Child - Offset 14, length 2, payload 0xF000
1414 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1415 	 *
1416 	 * Set up the expected values before calling spdk_bdev_read_blocks
1417 	 */
1418 	g_io_done = false;
1419 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1420 	expected_io->md_buf = md_buf;
1421 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1422 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1423 
1424 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1425 	expected_io->md_buf = md_buf + 2 * 8;
1426 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1427 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1428 
1429 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1430 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1431 					   14, 8, io_done, NULL);
1432 	CU_ASSERT(rc == 0);
1433 	CU_ASSERT(g_io_done == false);
1434 
1435 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1436 	stub_complete_io(2);
1437 	CU_ASSERT(g_io_done == true);
1438 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1439 
1440 	/* Now set up a more complex, multi-vector command that needs to be split,
1441 	 *  including splitting iovecs.
1442 	 */
1443 	iov[0].iov_base = (void *)0x10000;
1444 	iov[0].iov_len = 512;
1445 	iov[1].iov_base = (void *)0x20000;
1446 	iov[1].iov_len = 20 * 512;
1447 	iov[2].iov_base = (void *)0x30000;
1448 	iov[2].iov_len = 11 * 512;
1449 
1450 	g_io_done = false;
1451 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1452 	expected_io->md_buf = md_buf;
1453 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1454 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1455 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1456 
1457 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1458 	expected_io->md_buf = md_buf + 2 * 8;
1459 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1460 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1461 
1462 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1463 	expected_io->md_buf = md_buf + 18 * 8;
1464 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1465 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1466 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1467 
1468 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1469 					     14, 32, io_done, NULL);
1470 	CU_ASSERT(rc == 0);
1471 	CU_ASSERT(g_io_done == false);
1472 
1473 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1474 	stub_complete_io(3);
1475 	CU_ASSERT(g_io_done == true);
1476 
1477 	/* Test multi vector command that needs to be split by strip and then needs to be
1478 	 * split further due to the capacity of child iovs.
1479 	 */
1480 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1481 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1482 		iov[i].iov_len = 512;
1483 	}
1484 
1485 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1486 	g_io_done = false;
1487 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
1488 					   SPDK_BDEV_IO_NUM_CHILD_IOV);
1489 	expected_io->md_buf = md_buf;
1490 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1491 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1492 	}
1493 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1494 
1495 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1496 					   SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
1497 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1498 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1499 		ut_expected_io_set_iov(expected_io, i,
1500 				       (void *)((i + 1 + SPDK_BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1501 	}
1502 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1503 
1504 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1505 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1506 	CU_ASSERT(rc == 0);
1507 	CU_ASSERT(g_io_done == false);
1508 
1509 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1510 	stub_complete_io(1);
1511 	CU_ASSERT(g_io_done == false);
1512 
1513 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1514 	stub_complete_io(1);
1515 	CU_ASSERT(g_io_done == true);
1516 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1517 
1518 	/* Test multi vector command that needs to be split by strip and then needs to be
1519 	 * split further due to the capacity of child iovs. In this case, the length of
1520 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1521 	 */
1522 
1523 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1524 	 * is SPDK_BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1525 	 */
1526 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1527 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1528 		iov[i].iov_len = 512;
1529 	}
1530 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1531 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1532 		iov[i].iov_len = 256;
1533 	}
1534 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1535 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1536 
1537 	/* Add an extra iovec to trigger split */
1538 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1539 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1540 
1541 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1542 	g_io_done = false;
1543 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1544 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV);
1545 	expected_io->md_buf = md_buf;
1546 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1547 		ut_expected_io_set_iov(expected_io, i,
1548 				       (void *)((i + 1) * 0x10000), 512);
1549 	}
1550 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1551 		ut_expected_io_set_iov(expected_io, i,
1552 				       (void *)((i + 1) * 0x10000), 256);
1553 	}
1554 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1555 
1556 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1557 					   1, 1);
1558 	expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1559 	ut_expected_io_set_iov(expected_io, 0,
1560 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1561 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1562 
1563 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1564 					   1, 1);
1565 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1566 	ut_expected_io_set_iov(expected_io, 0,
1567 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1568 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1569 
1570 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1571 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1572 	CU_ASSERT(rc == 0);
1573 	CU_ASSERT(g_io_done == false);
1574 
1575 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1576 	stub_complete_io(1);
1577 	CU_ASSERT(g_io_done == false);
1578 
1579 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1580 	stub_complete_io(2);
1581 	CU_ASSERT(g_io_done == true);
1582 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1583 
1584 	/* Test multi vector command that needs to be split by strip and then needs to be
1585 	 * split further due to the capacity of child iovs, the child request offset should
1586 	 * be rewind to last aligned offset and go success without error.
1587 	 */
1588 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1589 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1590 		iov[i].iov_len = 512;
1591 	}
1592 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
1593 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1594 
1595 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1596 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1597 
1598 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1599 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1600 
1601 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1602 	g_io_done = false;
1603 	g_io_status = 0;
1604 	/* The first expected io should be start from offset 0 to SPDK_BDEV_IO_NUM_CHILD_IOV - 1 */
1605 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1606 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
1607 	expected_io->md_buf = md_buf;
1608 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1609 		ut_expected_io_set_iov(expected_io, i,
1610 				       (void *)((i + 1) * 0x10000), 512);
1611 	}
1612 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1613 	/* The second expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV - 1 to SPDK_BDEV_IO_NUM_CHILD_IOV */
1614 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1615 					   1, 2);
1616 	expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1617 	ut_expected_io_set_iov(expected_io, 0,
1618 			       (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1619 	ut_expected_io_set_iov(expected_io, 1,
1620 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1621 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1622 	/* The third expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV to SPDK_BDEV_IO_NUM_CHILD_IOV + 1 */
1623 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1624 					   1, 1);
1625 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1626 	ut_expected_io_set_iov(expected_io, 0,
1627 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1628 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1629 
1630 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1631 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1632 	CU_ASSERT(rc == 0);
1633 	CU_ASSERT(g_io_done == false);
1634 
1635 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1636 	stub_complete_io(1);
1637 	CU_ASSERT(g_io_done == false);
1638 
1639 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1640 	stub_complete_io(2);
1641 	CU_ASSERT(g_io_done == true);
1642 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1643 
1644 	/* Test multi vector command that needs to be split due to the IO boundary and
1645 	 * the capacity of child iovs. Especially test the case when the command is
1646 	 * split due to the capacity of child iovs, the tail address is not aligned with
1647 	 * block size and is rewinded to the aligned address.
1648 	 *
1649 	 * The iovecs used in read request is complex but is based on the data
1650 	 * collected in the real issue. We change the base addresses but keep the lengths
1651 	 * not to loose the credibility of the test.
1652 	 */
1653 	bdev->optimal_io_boundary = 128;
1654 	g_io_done = false;
1655 	g_io_status = 0;
1656 
1657 	for (i = 0; i < 31; i++) {
1658 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1659 		iov[i].iov_len = 1024;
1660 	}
1661 	iov[31].iov_base = (void *)0xFEED1F00000;
1662 	iov[31].iov_len = 32768;
1663 	iov[32].iov_base = (void *)0xFEED2000000;
1664 	iov[32].iov_len = 160;
1665 	iov[33].iov_base = (void *)0xFEED2100000;
1666 	iov[33].iov_len = 4096;
1667 	iov[34].iov_base = (void *)0xFEED2200000;
1668 	iov[34].iov_len = 4096;
1669 	iov[35].iov_base = (void *)0xFEED2300000;
1670 	iov[35].iov_len = 4096;
1671 	iov[36].iov_base = (void *)0xFEED2400000;
1672 	iov[36].iov_len = 4096;
1673 	iov[37].iov_base = (void *)0xFEED2500000;
1674 	iov[37].iov_len = 4096;
1675 	iov[38].iov_base = (void *)0xFEED2600000;
1676 	iov[38].iov_len = 4096;
1677 	iov[39].iov_base = (void *)0xFEED2700000;
1678 	iov[39].iov_len = 4096;
1679 	iov[40].iov_base = (void *)0xFEED2800000;
1680 	iov[40].iov_len = 4096;
1681 	iov[41].iov_base = (void *)0xFEED2900000;
1682 	iov[41].iov_len = 4096;
1683 	iov[42].iov_base = (void *)0xFEED2A00000;
1684 	iov[42].iov_len = 4096;
1685 	iov[43].iov_base = (void *)0xFEED2B00000;
1686 	iov[43].iov_len = 12288;
1687 	iov[44].iov_base = (void *)0xFEED2C00000;
1688 	iov[44].iov_len = 8192;
1689 	iov[45].iov_base = (void *)0xFEED2F00000;
1690 	iov[45].iov_len = 4096;
1691 	iov[46].iov_base = (void *)0xFEED3000000;
1692 	iov[46].iov_len = 4096;
1693 	iov[47].iov_base = (void *)0xFEED3100000;
1694 	iov[47].iov_len = 4096;
1695 	iov[48].iov_base = (void *)0xFEED3200000;
1696 	iov[48].iov_len = 24576;
1697 	iov[49].iov_base = (void *)0xFEED3300000;
1698 	iov[49].iov_len = 16384;
1699 	iov[50].iov_base = (void *)0xFEED3400000;
1700 	iov[50].iov_len = 12288;
1701 	iov[51].iov_base = (void *)0xFEED3500000;
1702 	iov[51].iov_len = 4096;
1703 	iov[52].iov_base = (void *)0xFEED3600000;
1704 	iov[52].iov_len = 4096;
1705 	iov[53].iov_base = (void *)0xFEED3700000;
1706 	iov[53].iov_len = 4096;
1707 	iov[54].iov_base = (void *)0xFEED3800000;
1708 	iov[54].iov_len = 28672;
1709 	iov[55].iov_base = (void *)0xFEED3900000;
1710 	iov[55].iov_len = 20480;
1711 	iov[56].iov_base = (void *)0xFEED3A00000;
1712 	iov[56].iov_len = 4096;
1713 	iov[57].iov_base = (void *)0xFEED3B00000;
1714 	iov[57].iov_len = 12288;
1715 	iov[58].iov_base = (void *)0xFEED3C00000;
1716 	iov[58].iov_len = 4096;
1717 	iov[59].iov_base = (void *)0xFEED3D00000;
1718 	iov[59].iov_len = 4096;
1719 	iov[60].iov_base = (void *)0xFEED3E00000;
1720 	iov[60].iov_len = 352;
1721 
1722 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1723 	 * of child iovs,
1724 	 */
1725 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1726 	expected_io->md_buf = md_buf;
1727 	for (i = 0; i < 32; i++) {
1728 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1729 	}
1730 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1731 
1732 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1733 	 * split by the IO boundary requirement.
1734 	 */
1735 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1736 	expected_io->md_buf = md_buf + 126 * 8;
1737 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1738 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1739 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1740 
1741 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1742 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1743 	 */
1744 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1745 	expected_io->md_buf = md_buf + 128 * 8;
1746 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1747 			       iov[33].iov_len - 864);
1748 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1749 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1750 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1751 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1752 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1753 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1754 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1755 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1756 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1757 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1758 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1759 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1760 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1761 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1762 
1763 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1764 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1765 	 */
1766 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1767 	expected_io->md_buf = md_buf + 256 * 8;
1768 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1769 			       iov[46].iov_len - 864);
1770 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1771 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1772 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1773 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1774 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1775 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1776 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1777 
1778 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1779 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1780 	 */
1781 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1782 	expected_io->md_buf = md_buf + 384 * 8;
1783 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1784 			       iov[52].iov_len - 864);
1785 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1786 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1787 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1788 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1789 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1790 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1791 
1792 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1793 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1794 	 */
1795 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1796 	expected_io->md_buf = md_buf + 512 * 8;
1797 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1798 			       iov[57].iov_len - 4960);
1799 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1800 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1801 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1802 
1803 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1804 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1805 	expected_io->md_buf = md_buf + 542 * 8;
1806 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1807 			       iov[59].iov_len - 3936);
1808 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1809 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1810 
1811 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1812 					    0, 543, io_done, NULL);
1813 	CU_ASSERT(rc == 0);
1814 	CU_ASSERT(g_io_done == false);
1815 
1816 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1817 	stub_complete_io(1);
1818 	CU_ASSERT(g_io_done == false);
1819 
1820 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1821 	stub_complete_io(5);
1822 	CU_ASSERT(g_io_done == false);
1823 
1824 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1825 	stub_complete_io(1);
1826 	CU_ASSERT(g_io_done == true);
1827 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1828 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1829 
1830 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1831 	 * split, so test that.
1832 	 */
1833 	bdev->optimal_io_boundary = 15;
1834 	g_io_done = false;
1835 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1836 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1837 
1838 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1839 	CU_ASSERT(rc == 0);
1840 	CU_ASSERT(g_io_done == false);
1841 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1842 	stub_complete_io(1);
1843 	CU_ASSERT(g_io_done == true);
1844 
1845 	/* Test an UNMAP.  This should also not be split. */
1846 	bdev->optimal_io_boundary = 16;
1847 	g_io_done = false;
1848 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1849 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1850 
1851 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1852 	CU_ASSERT(rc == 0);
1853 	CU_ASSERT(g_io_done == false);
1854 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1855 	stub_complete_io(1);
1856 	CU_ASSERT(g_io_done == true);
1857 
1858 	/* Test a FLUSH.  This should also not be split. */
1859 	bdev->optimal_io_boundary = 16;
1860 	g_io_done = false;
1861 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1862 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1863 
1864 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1865 	CU_ASSERT(rc == 0);
1866 	CU_ASSERT(g_io_done == false);
1867 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1868 	stub_complete_io(1);
1869 	CU_ASSERT(g_io_done == true);
1870 
1871 	/* Test a COPY.  This should also not be split. */
1872 	bdev->optimal_io_boundary = 15;
1873 	g_io_done = false;
1874 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
1875 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1876 
1877 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
1878 	CU_ASSERT(rc == 0);
1879 	CU_ASSERT(g_io_done == false);
1880 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1881 	stub_complete_io(1);
1882 	CU_ASSERT(g_io_done == true);
1883 
1884 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1885 
1886 	/* Children requests return an error status */
1887 	bdev->optimal_io_boundary = 16;
1888 	iov[0].iov_base = (void *)0x10000;
1889 	iov[0].iov_len = 512 * 64;
1890 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1891 	g_io_done = false;
1892 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1893 
1894 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1895 	CU_ASSERT(rc == 0);
1896 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1897 	stub_complete_io(4);
1898 	CU_ASSERT(g_io_done == false);
1899 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1900 	stub_complete_io(1);
1901 	CU_ASSERT(g_io_done == true);
1902 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1903 
1904 	/* Test if a multi vector command terminated with failure before continuing
1905 	 * splitting process when one of child I/O failed.
1906 	 * The multi vector command is as same as the above that needs to be split by strip
1907 	 * and then needs to be split further due to the capacity of child iovs.
1908 	 */
1909 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1910 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1911 		iov[i].iov_len = 512;
1912 	}
1913 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
1914 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1915 
1916 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1917 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1918 
1919 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1920 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1921 
1922 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1923 
1924 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1925 	g_io_done = false;
1926 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1927 
1928 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
1929 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1930 	CU_ASSERT(rc == 0);
1931 	CU_ASSERT(g_io_done == false);
1932 
1933 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1934 	stub_complete_io(1);
1935 	CU_ASSERT(g_io_done == true);
1936 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1937 
1938 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1939 
1940 	/* for this test we will create the following conditions to hit the code path where
1941 	 * we are trying to send and IO following a split that has no iovs because we had to
1942 	 * trim them for alignment reasons.
1943 	 *
1944 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1945 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1946 	 *   position 30 and overshoot by 0x2e.
1947 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1948 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1949 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1950 	 *   and let the completion pick up the last 2 vectors.
1951 	 */
1952 	bdev->optimal_io_boundary = 32;
1953 	bdev->split_on_optimal_io_boundary = true;
1954 	g_io_done = false;
1955 
1956 	/* Init all parent IOVs to 0x212 */
1957 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1958 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1959 		iov[i].iov_len = 0x212;
1960 	}
1961 
1962 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
1963 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
1964 	/* expect 0-29 to be 1:1 with the parent iov */
1965 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1966 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1967 	}
1968 
1969 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1970 	 * where 0x1e is the amount we overshot the 16K boundary
1971 	 */
1972 	ut_expected_io_set_iov(expected_io, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
1973 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1974 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1975 
1976 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1977 	 * shortened that take it to the next boundary and then a final one to get us to
1978 	 * 0x4200 bytes for the IO.
1979 	 */
1980 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1981 					   SPDK_BDEV_IO_NUM_CHILD_IOV, 2);
1982 	/* position 30 picked up the remaining bytes to the next boundary */
1983 	ut_expected_io_set_iov(expected_io, 0,
1984 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
1985 
1986 	/* position 31 picked the the rest of the transfer to get us to 0x4200 */
1987 	ut_expected_io_set_iov(expected_io, 1,
1988 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
1989 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1990 
1991 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, 0,
1992 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1993 	CU_ASSERT(rc == 0);
1994 	CU_ASSERT(g_io_done == false);
1995 
1996 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1997 	stub_complete_io(1);
1998 	CU_ASSERT(g_io_done == false);
1999 
2000 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2001 	stub_complete_io(1);
2002 	CU_ASSERT(g_io_done == true);
2003 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2004 
2005 	spdk_put_io_channel(io_ch);
2006 	spdk_bdev_close(desc);
2007 	free_bdev(bdev);
2008 	ut_fini_bdev();
2009 }
2010 
2011 static void
2012 bdev_io_max_size_and_segment_split_test(void)
2013 {
2014 	struct spdk_bdev *bdev;
2015 	struct spdk_bdev_desc *desc = NULL;
2016 	struct spdk_io_channel *io_ch;
2017 	struct spdk_bdev_opts bdev_opts = {};
2018 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
2019 	struct ut_expected_io *expected_io;
2020 	uint64_t i;
2021 	int rc;
2022 
2023 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2024 	bdev_opts.bdev_io_pool_size = 512;
2025 	bdev_opts.bdev_io_cache_size = 64;
2026 	bdev_opts.opts_size = sizeof(bdev_opts);
2027 	ut_init_bdev(&bdev_opts);
2028 
2029 	bdev = allocate_bdev("bdev0");
2030 
2031 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2032 	CU_ASSERT(rc == 0);
2033 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2034 	io_ch = spdk_bdev_get_io_channel(desc);
2035 	CU_ASSERT(io_ch != NULL);
2036 
2037 	bdev->split_on_optimal_io_boundary = false;
2038 	bdev->optimal_io_boundary = 0;
2039 
2040 	/* Case 0 max_num_segments == 0.
2041 	 * but segment size 2 * 512 > 512
2042 	 */
2043 	bdev->max_segment_size = 512;
2044 	bdev->max_num_segments = 0;
2045 	g_io_done = false;
2046 
2047 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2048 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2049 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2050 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2051 
2052 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2053 	CU_ASSERT(rc == 0);
2054 	CU_ASSERT(g_io_done == false);
2055 
2056 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2057 	stub_complete_io(1);
2058 	CU_ASSERT(g_io_done == true);
2059 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2060 
2061 	/* Case 1 max_segment_size == 0
2062 	 * but iov num 2 > 1.
2063 	 */
2064 	bdev->max_segment_size = 0;
2065 	bdev->max_num_segments = 1;
2066 	g_io_done = false;
2067 
2068 	iov[0].iov_base = (void *)0x10000;
2069 	iov[0].iov_len = 512;
2070 	iov[1].iov_base = (void *)0x20000;
2071 	iov[1].iov_len = 8 * 512;
2072 
2073 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2074 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len);
2075 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2076 
2077 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1);
2078 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len);
2079 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2080 
2081 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL);
2082 	CU_ASSERT(rc == 0);
2083 	CU_ASSERT(g_io_done == false);
2084 
2085 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2086 	stub_complete_io(2);
2087 	CU_ASSERT(g_io_done == true);
2088 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2089 
2090 	/* Test that a non-vector command is split correctly.
2091 	 * Set up the expected values before calling spdk_bdev_read_blocks
2092 	 */
2093 	bdev->max_segment_size = 512;
2094 	bdev->max_num_segments = 1;
2095 	g_io_done = false;
2096 
2097 	/* Child IO 0 */
2098 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2099 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2100 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2101 
2102 	/* Child IO 1 */
2103 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2104 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512);
2105 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2106 
2107 	/* spdk_bdev_read_blocks will submit the first child immediately. */
2108 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2109 	CU_ASSERT(rc == 0);
2110 	CU_ASSERT(g_io_done == false);
2111 
2112 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2113 	stub_complete_io(2);
2114 	CU_ASSERT(g_io_done == true);
2115 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2116 
2117 	/* Now set up a more complex, multi-vector command that needs to be split,
2118 	 * including splitting iovecs.
2119 	 */
2120 	bdev->max_segment_size = 2 * 512;
2121 	bdev->max_num_segments = 1;
2122 	g_io_done = false;
2123 
2124 	iov[0].iov_base = (void *)0x10000;
2125 	iov[0].iov_len = 2 * 512;
2126 	iov[1].iov_base = (void *)0x20000;
2127 	iov[1].iov_len = 4 * 512;
2128 	iov[2].iov_base = (void *)0x30000;
2129 	iov[2].iov_len = 6 * 512;
2130 
2131 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2132 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2);
2133 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2134 
2135 	/* Split iov[1].size to 2 iov entries then split the segments */
2136 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2137 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2);
2138 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2139 
2140 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1);
2141 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2);
2142 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2143 
2144 	/* Split iov[2].size to 3 iov entries then split the segments */
2145 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1);
2146 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2);
2147 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2148 
2149 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1);
2150 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2);
2151 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2152 
2153 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1);
2154 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2);
2155 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2156 
2157 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL);
2158 	CU_ASSERT(rc == 0);
2159 	CU_ASSERT(g_io_done == false);
2160 
2161 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2162 	stub_complete_io(6);
2163 	CU_ASSERT(g_io_done == true);
2164 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2165 
2166 	/* Test multi vector command that needs to be split by strip and then needs to be
2167 	 * split further due to the capacity of parent IO child iovs.
2168 	 */
2169 	bdev->max_segment_size = 512;
2170 	bdev->max_num_segments = 1;
2171 	g_io_done = false;
2172 
2173 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2174 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2175 		iov[i].iov_len = 512 * 2;
2176 	}
2177 
2178 	/* Each input iov.size is split into 2 iovs,
2179 	 * half of the input iov can fill all child iov entries of a single IO.
2180 	 */
2181 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i++) {
2182 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1);
2183 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2184 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2185 
2186 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1);
2187 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2188 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2189 	}
2190 
2191 	/* The remaining iov is split in the second round */
2192 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2193 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1);
2194 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2195 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2196 
2197 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1);
2198 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2199 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2200 	}
2201 
2202 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
2203 				    SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
2204 	CU_ASSERT(rc == 0);
2205 	CU_ASSERT(g_io_done == false);
2206 
2207 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2208 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2209 	CU_ASSERT(g_io_done == false);
2210 
2211 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2212 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2213 	CU_ASSERT(g_io_done == true);
2214 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2215 
2216 	/* A wrong case, a child IO that is divided does
2217 	 * not meet the principle of multiples of block size,
2218 	 * and exits with error
2219 	 */
2220 	bdev->max_segment_size = 512;
2221 	bdev->max_num_segments = 1;
2222 	g_io_done = false;
2223 
2224 	iov[0].iov_base = (void *)0x10000;
2225 	iov[0].iov_len = 512 + 256;
2226 	iov[1].iov_base = (void *)0x20000;
2227 	iov[1].iov_len = 256;
2228 
2229 	/* iov[0] is split to 512 and 256.
2230 	 * 256 is less than a block size, and it is found
2231 	 * in the next round of split that it is the first child IO smaller than
2232 	 * the block size, so the error exit
2233 	 */
2234 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1);
2235 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512);
2236 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2237 
2238 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL);
2239 	CU_ASSERT(rc == 0);
2240 	CU_ASSERT(g_io_done == false);
2241 
2242 	/* First child IO is OK */
2243 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2244 	stub_complete_io(1);
2245 	CU_ASSERT(g_io_done == true);
2246 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2247 
2248 	/* error exit */
2249 	stub_complete_io(1);
2250 	CU_ASSERT(g_io_done == true);
2251 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
2252 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2253 
2254 	/* Test multi vector command that needs to be split by strip and then needs to be
2255 	 * split further due to the capacity of child iovs.
2256 	 *
2257 	 * In this case, the last two iovs need to be split, but it will exceed the capacity
2258 	 * of child iovs, so it needs to wait until the first batch completed.
2259 	 */
2260 	bdev->max_segment_size = 512;
2261 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2262 	g_io_done = false;
2263 
2264 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2265 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2266 		iov[i].iov_len = 512;
2267 	}
2268 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2269 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2270 		iov[i].iov_len = 512 * 2;
2271 	}
2272 
2273 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2274 					   SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
2275 	/* 0 ~ (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */
2276 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2277 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2278 	}
2279 	/* (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) is split */
2280 	ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512);
2281 	ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512);
2282 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2283 
2284 	/* Child iov entries exceed the max num of parent IO so split it in next round */
2285 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV, 2, 2);
2286 	ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512);
2287 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512);
2288 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2289 
2290 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
2291 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL);
2292 	CU_ASSERT(rc == 0);
2293 	CU_ASSERT(g_io_done == false);
2294 
2295 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2296 	stub_complete_io(1);
2297 	CU_ASSERT(g_io_done == false);
2298 
2299 	/* Next round */
2300 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2301 	stub_complete_io(1);
2302 	CU_ASSERT(g_io_done == true);
2303 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2304 
2305 	/* This case is similar to the previous one, but the io composed of
2306 	 * the last few entries of child iov is not enough for a blocklen, so they
2307 	 * cannot be put into this IO, but wait until the next time.
2308 	 */
2309 	bdev->max_segment_size = 512;
2310 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2311 	g_io_done = false;
2312 
2313 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2314 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2315 		iov[i].iov_len = 512;
2316 	}
2317 
2318 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2319 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2320 		iov[i].iov_len = 128;
2321 	}
2322 
2323 	/* First child iovcnt is't SPDK_BDEV_IO_NUM_CHILD_IOV but SPDK_BDEV_IO_NUM_CHILD_IOV - 2.
2324 	 * Because the left 2 iov is not enough for a blocklen.
2325 	 */
2326 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2327 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 2, SPDK_BDEV_IO_NUM_CHILD_IOV - 2);
2328 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2329 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2330 	}
2331 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2332 
2333 	/* The second child io waits until the end of the first child io before executing.
2334 	 * Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO.
2335 	 * SPDK_BDEV_IO_NUM_CHILD_IOV - 2 to SPDK_BDEV_IO_NUM_CHILD_IOV + 2
2336 	 */
2337 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
2338 					   1, 4);
2339 	ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len);
2340 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len);
2341 	ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len);
2342 	ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len);
2343 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2344 
2345 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
2346 				    SPDK_BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL);
2347 	CU_ASSERT(rc == 0);
2348 	CU_ASSERT(g_io_done == false);
2349 
2350 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2351 	stub_complete_io(1);
2352 	CU_ASSERT(g_io_done == false);
2353 
2354 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2355 	stub_complete_io(1);
2356 	CU_ASSERT(g_io_done == true);
2357 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2358 
2359 	/* A very complicated case. Each sg entry exceeds max_segment_size and
2360 	 * needs to be split. At the same time, child io must be a multiple of blocklen.
2361 	 * At the same time, child iovcnt exceeds parent iovcnt.
2362 	 */
2363 	bdev->max_segment_size = 512 + 128;
2364 	bdev->max_num_segments = 3;
2365 	g_io_done = false;
2366 
2367 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2368 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2369 		iov[i].iov_len = 512 + 256;
2370 	}
2371 
2372 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2373 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2374 		iov[i].iov_len = 512 + 128;
2375 	}
2376 
2377 	/* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries.
2378 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2379 	 * Generate 9 child IOs.
2380 	 */
2381 	for (i = 0; i < 3; i++) {
2382 		uint32_t j = i * 4;
2383 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3);
2384 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2385 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2386 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2387 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2388 
2389 		/* Child io must be a multiple of blocklen
2390 		 * iov[j + 2] must be split. If the third entry is also added,
2391 		 * the multiple of blocklen cannot be guaranteed. But it still
2392 		 * occupies one iov entry of the parent child iov.
2393 		 */
2394 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2);
2395 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2396 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2397 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2398 
2399 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3);
2400 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2401 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2402 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2403 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2404 	}
2405 
2406 	/* Child iov position at 27, the 10th child IO
2407 	 * iov entry index is 3 * 4 and offset is 3 * 6
2408 	 */
2409 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3);
2410 	ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640);
2411 	ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128);
2412 	ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256);
2413 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2414 
2415 	/* Child iov position at 30, the 11th child IO */
2416 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2);
2417 	ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512);
2418 	ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512);
2419 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2420 
2421 	/* The 2nd split round and iovpos is 0, the 12th child IO */
2422 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3);
2423 	ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256);
2424 	ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640);
2425 	ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128);
2426 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2427 
2428 	/* Consume 9 child IOs and 27 child iov entries.
2429 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2430 	 * Parent IO iov index start from 16 and block offset start from 24
2431 	 */
2432 	for (i = 0; i < 3; i++) {
2433 		uint32_t j = i * 4 + 16;
2434 		uint32_t offset = i * 6 + 24;
2435 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3);
2436 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2437 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2438 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2439 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2440 
2441 		/* Child io must be a multiple of blocklen
2442 		 * iov[j + 2] must be split. If the third entry is also added,
2443 		 * the multiple of blocklen cannot be guaranteed. But it still
2444 		 * occupies one iov entry of the parent child iov.
2445 		 */
2446 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2);
2447 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2448 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2449 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2450 
2451 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3);
2452 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2453 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2454 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2455 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2456 	}
2457 
2458 	/* The 22th child IO, child iov position at 30 */
2459 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1);
2460 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512);
2461 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2462 
2463 	/* The third round */
2464 	/* Here is the 23nd child IO and child iovpos is 0 */
2465 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3);
2466 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256);
2467 	ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640);
2468 	ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128);
2469 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2470 
2471 	/* The 24th child IO */
2472 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3);
2473 	ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640);
2474 	ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640);
2475 	ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256);
2476 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2477 
2478 	/* The 25th child IO */
2479 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2);
2480 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384);
2481 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640);
2482 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2483 
2484 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
2485 				    50, io_done, NULL);
2486 	CU_ASSERT(rc == 0);
2487 	CU_ASSERT(g_io_done == false);
2488 
2489 	/* Parent IO supports up to 32 child iovs, so it is calculated that
2490 	 * a maximum of 11 IOs can be split at a time, and the
2491 	 * splitting will continue after the first batch is over.
2492 	 */
2493 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2494 	stub_complete_io(11);
2495 	CU_ASSERT(g_io_done == false);
2496 
2497 	/* The 2nd round */
2498 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2499 	stub_complete_io(11);
2500 	CU_ASSERT(g_io_done == false);
2501 
2502 	/* The last round */
2503 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2504 	stub_complete_io(3);
2505 	CU_ASSERT(g_io_done == true);
2506 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2507 
2508 	/* Test an WRITE_ZEROES.  This should also not be split. */
2509 	bdev->max_segment_size = 512;
2510 	bdev->max_num_segments = 1;
2511 	g_io_done = false;
2512 
2513 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
2514 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2515 
2516 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
2517 	CU_ASSERT(rc == 0);
2518 	CU_ASSERT(g_io_done == false);
2519 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2520 	stub_complete_io(1);
2521 	CU_ASSERT(g_io_done == true);
2522 
2523 	/* Test an UNMAP.  This should also not be split. */
2524 	g_io_done = false;
2525 
2526 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0);
2527 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2528 
2529 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL);
2530 	CU_ASSERT(rc == 0);
2531 	CU_ASSERT(g_io_done == false);
2532 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2533 	stub_complete_io(1);
2534 	CU_ASSERT(g_io_done == true);
2535 
2536 	/* Test a FLUSH.  This should also not be split. */
2537 	g_io_done = false;
2538 
2539 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0);
2540 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2541 
2542 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
2543 	CU_ASSERT(rc == 0);
2544 	CU_ASSERT(g_io_done == false);
2545 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2546 	stub_complete_io(1);
2547 	CU_ASSERT(g_io_done == true);
2548 
2549 	/* Test a COPY.  This should also not be split. */
2550 	g_io_done = false;
2551 
2552 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
2553 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2554 
2555 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
2556 	CU_ASSERT(rc == 0);
2557 	CU_ASSERT(g_io_done == false);
2558 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2559 	stub_complete_io(1);
2560 	CU_ASSERT(g_io_done == true);
2561 
2562 	spdk_put_io_channel(io_ch);
2563 	spdk_bdev_close(desc);
2564 	free_bdev(bdev);
2565 	ut_fini_bdev();
2566 }
2567 
2568 static void
2569 bdev_io_mix_split_test(void)
2570 {
2571 	struct spdk_bdev *bdev;
2572 	struct spdk_bdev_desc *desc = NULL;
2573 	struct spdk_io_channel *io_ch;
2574 	struct spdk_bdev_opts bdev_opts = {};
2575 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
2576 	struct ut_expected_io *expected_io;
2577 	uint64_t i;
2578 	int rc;
2579 
2580 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2581 	bdev_opts.bdev_io_pool_size = 512;
2582 	bdev_opts.bdev_io_cache_size = 64;
2583 	ut_init_bdev(&bdev_opts);
2584 
2585 	bdev = allocate_bdev("bdev0");
2586 
2587 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2588 	CU_ASSERT(rc == 0);
2589 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2590 	io_ch = spdk_bdev_get_io_channel(desc);
2591 	CU_ASSERT(io_ch != NULL);
2592 
2593 	/* First case optimal_io_boundary == max_segment_size * max_num_segments */
2594 	bdev->split_on_optimal_io_boundary = true;
2595 	bdev->optimal_io_boundary = 16;
2596 
2597 	bdev->max_segment_size = 512;
2598 	bdev->max_num_segments = 16;
2599 	g_io_done = false;
2600 
2601 	/* IO crossing the IO boundary requires split
2602 	 * Total 2 child IOs.
2603 	 */
2604 
2605 	/* The 1st child IO split the segment_size to multiple segment entry */
2606 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2607 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2608 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2609 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2610 
2611 	/* The 2nd child IO split the segment_size to multiple segment entry */
2612 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2);
2613 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512);
2614 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512);
2615 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2616 
2617 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL);
2618 	CU_ASSERT(rc == 0);
2619 	CU_ASSERT(g_io_done == false);
2620 
2621 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2622 	stub_complete_io(2);
2623 	CU_ASSERT(g_io_done == true);
2624 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2625 
2626 	/* Second case optimal_io_boundary > max_segment_size * max_num_segments */
2627 	bdev->max_segment_size = 15 * 512;
2628 	bdev->max_num_segments = 1;
2629 	g_io_done = false;
2630 
2631 	/* IO crossing the IO boundary requires split.
2632 	 * The 1st child IO segment size exceeds the max_segment_size,
2633 	 * So 1st child IO will be split to multiple segment entry.
2634 	 * Then it split to 2 child IOs because of the max_num_segments.
2635 	 * Total 3 child IOs.
2636 	 */
2637 
2638 	/* The first 2 IOs are in an IO boundary.
2639 	 * Because the optimal_io_boundary > max_segment_size * max_num_segments
2640 	 * So it split to the first 2 IOs.
2641 	 */
2642 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1);
2643 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15);
2644 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2645 
2646 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2647 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512);
2648 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2649 
2650 	/* The 3rd Child IO is because of the io boundary */
2651 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2652 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2653 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2654 
2655 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2656 	CU_ASSERT(rc == 0);
2657 	CU_ASSERT(g_io_done == false);
2658 
2659 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2660 	stub_complete_io(3);
2661 	CU_ASSERT(g_io_done == true);
2662 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2663 
2664 	/* Third case optimal_io_boundary < max_segment_size * max_num_segments */
2665 	bdev->max_segment_size = 17 * 512;
2666 	bdev->max_num_segments = 1;
2667 	g_io_done = false;
2668 
2669 	/* IO crossing the IO boundary requires split.
2670 	 * Child IO does not split.
2671 	 * Total 2 child IOs.
2672 	 */
2673 
2674 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1);
2675 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16);
2676 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2677 
2678 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2679 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2680 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2681 
2682 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2683 	CU_ASSERT(rc == 0);
2684 	CU_ASSERT(g_io_done == false);
2685 
2686 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2687 	stub_complete_io(2);
2688 	CU_ASSERT(g_io_done == true);
2689 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2690 
2691 	/* Now set up a more complex, multi-vector command that needs to be split,
2692 	 * including splitting iovecs.
2693 	 * optimal_io_boundary < max_segment_size * max_num_segments
2694 	 */
2695 	bdev->max_segment_size = 3 * 512;
2696 	bdev->max_num_segments = 6;
2697 	g_io_done = false;
2698 
2699 	iov[0].iov_base = (void *)0x10000;
2700 	iov[0].iov_len = 4 * 512;
2701 	iov[1].iov_base = (void *)0x20000;
2702 	iov[1].iov_len = 4 * 512;
2703 	iov[2].iov_base = (void *)0x30000;
2704 	iov[2].iov_len = 10 * 512;
2705 
2706 	/* IO crossing the IO boundary requires split.
2707 	 * The 1st child IO segment size exceeds the max_segment_size and after
2708 	 * splitting segment_size, the num_segments exceeds max_num_segments.
2709 	 * So 1st child IO will be split to 2 child IOs.
2710 	 * Total 3 child IOs.
2711 	 */
2712 
2713 	/* The first 2 IOs are in an IO boundary.
2714 	 * After splitting segment size the segment num exceeds.
2715 	 * So it splits to 2 child IOs.
2716 	 */
2717 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6);
2718 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3);
2719 	ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512);
2720 	ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3);
2721 	ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512);
2722 	ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3);
2723 	ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3);
2724 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2725 
2726 	/* The 2nd child IO has the left segment entry */
2727 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2728 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2);
2729 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2730 
2731 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2732 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2);
2733 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2734 
2735 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL);
2736 	CU_ASSERT(rc == 0);
2737 	CU_ASSERT(g_io_done == false);
2738 
2739 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2740 	stub_complete_io(3);
2741 	CU_ASSERT(g_io_done == true);
2742 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2743 
2744 	/* A very complicated case. Each sg entry exceeds max_segment_size
2745 	 * and split on io boundary.
2746 	 * optimal_io_boundary < max_segment_size * max_num_segments
2747 	 */
2748 	bdev->max_segment_size = 3 * 512;
2749 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2750 	g_io_done = false;
2751 
2752 	for (i = 0; i < 20; i++) {
2753 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2754 		iov[i].iov_len = 512 * 4;
2755 	}
2756 
2757 	/* IO crossing the IO boundary requires split.
2758 	 * 80 block length can split 5 child IOs base on offset and IO boundary.
2759 	 * Each iov entry needs to be split to 2 entries because of max_segment_size
2760 	 * Total 5 child IOs.
2761 	 */
2762 
2763 	/* 4 iov entries are in an IO boundary and each iov entry splits to 2.
2764 	 * So each child IO occupies 8 child iov entries.
2765 	 */
2766 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8);
2767 	for (i = 0; i < 4; i++) {
2768 		int iovcnt = i * 2;
2769 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2770 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2771 	}
2772 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2773 
2774 	/* 2nd child IO and total 16 child iov entries of parent IO */
2775 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8);
2776 	for (i = 4; i < 8; i++) {
2777 		int iovcnt = (i - 4) * 2;
2778 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2779 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2780 	}
2781 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2782 
2783 	/* 3rd child IO and total 24 child iov entries of parent IO */
2784 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8);
2785 	for (i = 8; i < 12; i++) {
2786 		int iovcnt = (i - 8) * 2;
2787 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2788 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2789 	}
2790 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2791 
2792 	/* 4th child IO and total 32 child iov entries of parent IO */
2793 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8);
2794 	for (i = 12; i < 16; i++) {
2795 		int iovcnt = (i - 12) * 2;
2796 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2797 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2798 	}
2799 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2800 
2801 	/* 5th child IO and because of the child iov entry it should be split
2802 	 * in next round.
2803 	 */
2804 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8);
2805 	for (i = 16; i < 20; i++) {
2806 		int iovcnt = (i - 16) * 2;
2807 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2808 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2809 	}
2810 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2811 
2812 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL);
2813 	CU_ASSERT(rc == 0);
2814 	CU_ASSERT(g_io_done == false);
2815 
2816 	/* First split round */
2817 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2818 	stub_complete_io(4);
2819 	CU_ASSERT(g_io_done == false);
2820 
2821 	/* Second split round */
2822 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2823 	stub_complete_io(1);
2824 	CU_ASSERT(g_io_done == true);
2825 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2826 
2827 	spdk_put_io_channel(io_ch);
2828 	spdk_bdev_close(desc);
2829 	free_bdev(bdev);
2830 	ut_fini_bdev();
2831 }
2832 
2833 static void
2834 bdev_io_split_with_io_wait(void)
2835 {
2836 	struct spdk_bdev *bdev;
2837 	struct spdk_bdev_desc *desc = NULL;
2838 	struct spdk_io_channel *io_ch;
2839 	struct spdk_bdev_channel *channel;
2840 	struct spdk_bdev_mgmt_channel *mgmt_ch;
2841 	struct spdk_bdev_opts bdev_opts = {};
2842 	struct iovec iov[3];
2843 	struct ut_expected_io *expected_io;
2844 	int rc;
2845 
2846 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2847 	bdev_opts.bdev_io_pool_size = 2;
2848 	bdev_opts.bdev_io_cache_size = 1;
2849 	ut_init_bdev(&bdev_opts);
2850 
2851 	bdev = allocate_bdev("bdev0");
2852 
2853 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2854 	CU_ASSERT(rc == 0);
2855 	CU_ASSERT(desc != NULL);
2856 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2857 	io_ch = spdk_bdev_get_io_channel(desc);
2858 	CU_ASSERT(io_ch != NULL);
2859 	channel = spdk_io_channel_get_ctx(io_ch);
2860 	mgmt_ch = channel->shared_resource->mgmt_ch;
2861 
2862 	bdev->optimal_io_boundary = 16;
2863 	bdev->split_on_optimal_io_boundary = true;
2864 
2865 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
2866 	CU_ASSERT(rc == 0);
2867 
2868 	/* Now test that a single-vector command is split correctly.
2869 	 * Offset 14, length 8, payload 0xF000
2870 	 *  Child - Offset 14, length 2, payload 0xF000
2871 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
2872 	 *
2873 	 * Set up the expected values before calling spdk_bdev_read_blocks
2874 	 */
2875 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
2876 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
2877 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2878 
2879 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
2880 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
2881 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2882 
2883 	/* The following children will be submitted sequentially due to the capacity of
2884 	 * spdk_bdev_io.
2885 	 */
2886 
2887 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
2888 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
2889 	CU_ASSERT(rc == 0);
2890 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2891 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2892 
2893 	/* Completing the first read I/O will submit the first child */
2894 	stub_complete_io(1);
2895 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2896 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2897 
2898 	/* Completing the first child will submit the second child */
2899 	stub_complete_io(1);
2900 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2901 
2902 	/* Complete the second child I/O.  This should result in our callback getting
2903 	 * invoked since the parent I/O is now complete.
2904 	 */
2905 	stub_complete_io(1);
2906 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2907 
2908 	/* Now set up a more complex, multi-vector command that needs to be split,
2909 	 *  including splitting iovecs.
2910 	 */
2911 	iov[0].iov_base = (void *)0x10000;
2912 	iov[0].iov_len = 512;
2913 	iov[1].iov_base = (void *)0x20000;
2914 	iov[1].iov_len = 20 * 512;
2915 	iov[2].iov_base = (void *)0x30000;
2916 	iov[2].iov_len = 11 * 512;
2917 
2918 	g_io_done = false;
2919 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
2920 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
2921 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
2922 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2923 
2924 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
2925 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
2926 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2927 
2928 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
2929 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
2930 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
2931 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2932 
2933 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
2934 	CU_ASSERT(rc == 0);
2935 	CU_ASSERT(g_io_done == false);
2936 
2937 	/* The following children will be submitted sequentially due to the capacity of
2938 	 * spdk_bdev_io.
2939 	 */
2940 
2941 	/* Completing the first child will submit the second child */
2942 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2943 	stub_complete_io(1);
2944 	CU_ASSERT(g_io_done == false);
2945 
2946 	/* Completing the second child will submit the third child */
2947 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2948 	stub_complete_io(1);
2949 	CU_ASSERT(g_io_done == false);
2950 
2951 	/* Completing the third child will result in our callback getting invoked
2952 	 * since the parent I/O is now complete.
2953 	 */
2954 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2955 	stub_complete_io(1);
2956 	CU_ASSERT(g_io_done == true);
2957 
2958 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
2959 
2960 	spdk_put_io_channel(io_ch);
2961 	spdk_bdev_close(desc);
2962 	free_bdev(bdev);
2963 	ut_fini_bdev();
2964 }
2965 
2966 static void
2967 bdev_io_write_unit_split_test(void)
2968 {
2969 	struct spdk_bdev *bdev;
2970 	struct spdk_bdev_desc *desc = NULL;
2971 	struct spdk_io_channel *io_ch;
2972 	struct spdk_bdev_opts bdev_opts = {};
2973 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 4];
2974 	struct ut_expected_io *expected_io;
2975 	uint64_t i;
2976 	int rc;
2977 
2978 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2979 	bdev_opts.bdev_io_pool_size = 512;
2980 	bdev_opts.bdev_io_cache_size = 64;
2981 	ut_init_bdev(&bdev_opts);
2982 
2983 	bdev = allocate_bdev("bdev0");
2984 
2985 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2986 	CU_ASSERT(rc == 0);
2987 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2988 	io_ch = spdk_bdev_get_io_channel(desc);
2989 	CU_ASSERT(io_ch != NULL);
2990 
2991 	/* Write I/O 2x larger than write_unit_size should get split into 2 I/Os */
2992 	bdev->write_unit_size = 32;
2993 	bdev->split_on_write_unit = true;
2994 	g_io_done = false;
2995 
2996 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 32, 1);
2997 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 32 * 512);
2998 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2999 
3000 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 32, 1);
3001 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 32 * 512), 32 * 512);
3002 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3003 
3004 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
3005 	CU_ASSERT(rc == 0);
3006 	CU_ASSERT(g_io_done == false);
3007 
3008 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3009 	stub_complete_io(2);
3010 	CU_ASSERT(g_io_done == true);
3011 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3012 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3013 
3014 	/* Same as above but with optimal_io_boundary < write_unit_size - the I/O should be split
3015 	 * based on write_unit_size, not optimal_io_boundary */
3016 	bdev->split_on_optimal_io_boundary = true;
3017 	bdev->optimal_io_boundary = 16;
3018 	g_io_done = false;
3019 
3020 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
3021 	CU_ASSERT(rc == 0);
3022 	CU_ASSERT(g_io_done == false);
3023 
3024 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3025 	stub_complete_io(2);
3026 	CU_ASSERT(g_io_done == true);
3027 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3028 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3029 
3030 	/* Write I/O should fail if it is smaller than write_unit_size */
3031 	g_io_done = false;
3032 
3033 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 31, io_done, NULL);
3034 	CU_ASSERT(rc == 0);
3035 	CU_ASSERT(g_io_done == false);
3036 
3037 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3038 	poll_threads();
3039 	CU_ASSERT(g_io_done == true);
3040 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3041 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3042 
3043 	/* Same for I/O not aligned to write_unit_size */
3044 	g_io_done = false;
3045 
3046 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 1, 32, io_done, NULL);
3047 	CU_ASSERT(rc == 0);
3048 	CU_ASSERT(g_io_done == false);
3049 
3050 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3051 	poll_threads();
3052 	CU_ASSERT(g_io_done == true);
3053 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3054 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3055 
3056 	/* Write should fail if it needs to be split but there are not enough iovs to submit
3057 	 * an entire write unit */
3058 	bdev->write_unit_size = SPDK_COUNTOF(iov) / 2;
3059 	g_io_done = false;
3060 
3061 	for (i = 0; i < SPDK_COUNTOF(iov); i++) {
3062 		iov[i].iov_base = (void *)(0x1000 + 512 * i);
3063 		iov[i].iov_len = 512;
3064 	}
3065 
3066 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, SPDK_COUNTOF(iov), 0, SPDK_COUNTOF(iov),
3067 				     io_done, NULL);
3068 	CU_ASSERT(rc == 0);
3069 	CU_ASSERT(g_io_done == false);
3070 
3071 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3072 	poll_threads();
3073 	CU_ASSERT(g_io_done == true);
3074 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3075 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3076 
3077 	spdk_put_io_channel(io_ch);
3078 	spdk_bdev_close(desc);
3079 	free_bdev(bdev);
3080 	ut_fini_bdev();
3081 }
3082 
3083 static void
3084 bdev_io_alignment(void)
3085 {
3086 	struct spdk_bdev *bdev;
3087 	struct spdk_bdev_desc *desc = NULL;
3088 	struct spdk_io_channel *io_ch;
3089 	struct spdk_bdev_opts bdev_opts = {};
3090 	int rc;
3091 	void *buf = NULL;
3092 	struct iovec iovs[2];
3093 	int iovcnt;
3094 	uint64_t alignment;
3095 
3096 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3097 	bdev_opts.bdev_io_pool_size = 20;
3098 	bdev_opts.bdev_io_cache_size = 2;
3099 	ut_init_bdev(&bdev_opts);
3100 
3101 	fn_table.submit_request = stub_submit_request_get_buf;
3102 	bdev = allocate_bdev("bdev0");
3103 
3104 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3105 	CU_ASSERT(rc == 0);
3106 	CU_ASSERT(desc != NULL);
3107 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3108 	io_ch = spdk_bdev_get_io_channel(desc);
3109 	CU_ASSERT(io_ch != NULL);
3110 
3111 	/* Create aligned buffer */
3112 	rc = posix_memalign(&buf, 4096, 8192);
3113 	SPDK_CU_ASSERT_FATAL(rc == 0);
3114 
3115 	/* Pass aligned single buffer with no alignment required */
3116 	alignment = 1;
3117 	bdev->required_alignment = spdk_u32log2(alignment);
3118 
3119 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3120 	CU_ASSERT(rc == 0);
3121 	stub_complete_io(1);
3122 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3123 				    alignment));
3124 
3125 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3126 	CU_ASSERT(rc == 0);
3127 	stub_complete_io(1);
3128 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3129 				    alignment));
3130 
3131 	/* Pass unaligned single buffer with no alignment required */
3132 	alignment = 1;
3133 	bdev->required_alignment = spdk_u32log2(alignment);
3134 
3135 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3136 	CU_ASSERT(rc == 0);
3137 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3138 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3139 	stub_complete_io(1);
3140 
3141 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3142 	CU_ASSERT(rc == 0);
3143 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3144 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3145 	stub_complete_io(1);
3146 
3147 	/* Pass unaligned single buffer with 512 alignment required */
3148 	alignment = 512;
3149 	bdev->required_alignment = spdk_u32log2(alignment);
3150 
3151 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3152 	CU_ASSERT(rc == 0);
3153 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3154 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3155 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3156 				    alignment));
3157 	stub_complete_io(1);
3158 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3159 
3160 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3161 	CU_ASSERT(rc == 0);
3162 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3163 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3164 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3165 				    alignment));
3166 	stub_complete_io(1);
3167 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3168 
3169 	/* Pass unaligned single buffer with 4096 alignment required */
3170 	alignment = 4096;
3171 	bdev->required_alignment = spdk_u32log2(alignment);
3172 
3173 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3174 	CU_ASSERT(rc == 0);
3175 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3176 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3177 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3178 				    alignment));
3179 	stub_complete_io(1);
3180 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3181 
3182 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3183 	CU_ASSERT(rc == 0);
3184 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3185 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3186 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3187 				    alignment));
3188 	stub_complete_io(1);
3189 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3190 
3191 	/* Pass aligned iovs with no alignment required */
3192 	alignment = 1;
3193 	bdev->required_alignment = spdk_u32log2(alignment);
3194 
3195 	iovcnt = 1;
3196 	iovs[0].iov_base = buf;
3197 	iovs[0].iov_len = 512;
3198 
3199 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3200 	CU_ASSERT(rc == 0);
3201 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3202 	stub_complete_io(1);
3203 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3204 
3205 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3206 	CU_ASSERT(rc == 0);
3207 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3208 	stub_complete_io(1);
3209 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3210 
3211 	/* Pass unaligned iovs with no alignment required */
3212 	alignment = 1;
3213 	bdev->required_alignment = spdk_u32log2(alignment);
3214 
3215 	iovcnt = 2;
3216 	iovs[0].iov_base = buf + 16;
3217 	iovs[0].iov_len = 256;
3218 	iovs[1].iov_base = buf + 16 + 256 + 32;
3219 	iovs[1].iov_len = 256;
3220 
3221 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3222 	CU_ASSERT(rc == 0);
3223 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3224 	stub_complete_io(1);
3225 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3226 
3227 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3228 	CU_ASSERT(rc == 0);
3229 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3230 	stub_complete_io(1);
3231 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3232 
3233 	/* Pass unaligned iov with 2048 alignment required */
3234 	alignment = 2048;
3235 	bdev->required_alignment = spdk_u32log2(alignment);
3236 
3237 	iovcnt = 2;
3238 	iovs[0].iov_base = buf + 16;
3239 	iovs[0].iov_len = 256;
3240 	iovs[1].iov_base = buf + 16 + 256 + 32;
3241 	iovs[1].iov_len = 256;
3242 
3243 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3244 	CU_ASSERT(rc == 0);
3245 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3246 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3247 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3248 				    alignment));
3249 	stub_complete_io(1);
3250 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3251 
3252 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3253 	CU_ASSERT(rc == 0);
3254 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3255 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3256 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3257 				    alignment));
3258 	stub_complete_io(1);
3259 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3260 
3261 	/* Pass iov without allocated buffer without alignment required */
3262 	alignment = 1;
3263 	bdev->required_alignment = spdk_u32log2(alignment);
3264 
3265 	iovcnt = 1;
3266 	iovs[0].iov_base = NULL;
3267 	iovs[0].iov_len = 0;
3268 
3269 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3270 	CU_ASSERT(rc == 0);
3271 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3272 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3273 				    alignment));
3274 	stub_complete_io(1);
3275 
3276 	/* Pass iov without allocated buffer with 1024 alignment required */
3277 	alignment = 1024;
3278 	bdev->required_alignment = spdk_u32log2(alignment);
3279 
3280 	iovcnt = 1;
3281 	iovs[0].iov_base = NULL;
3282 	iovs[0].iov_len = 0;
3283 
3284 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3285 	CU_ASSERT(rc == 0);
3286 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3287 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3288 				    alignment));
3289 	stub_complete_io(1);
3290 
3291 	spdk_put_io_channel(io_ch);
3292 	spdk_bdev_close(desc);
3293 	free_bdev(bdev);
3294 	fn_table.submit_request = stub_submit_request;
3295 	ut_fini_bdev();
3296 
3297 	free(buf);
3298 }
3299 
3300 static void
3301 bdev_io_alignment_with_boundary(void)
3302 {
3303 	struct spdk_bdev *bdev;
3304 	struct spdk_bdev_desc *desc = NULL;
3305 	struct spdk_io_channel *io_ch;
3306 	struct spdk_bdev_opts bdev_opts = {};
3307 	int rc;
3308 	void *buf = NULL;
3309 	struct iovec iovs[2];
3310 	int iovcnt;
3311 	uint64_t alignment;
3312 
3313 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3314 	bdev_opts.bdev_io_pool_size = 20;
3315 	bdev_opts.bdev_io_cache_size = 2;
3316 	bdev_opts.opts_size = sizeof(bdev_opts);
3317 	ut_init_bdev(&bdev_opts);
3318 
3319 	fn_table.submit_request = stub_submit_request_get_buf;
3320 	bdev = allocate_bdev("bdev0");
3321 
3322 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3323 	CU_ASSERT(rc == 0);
3324 	CU_ASSERT(desc != NULL);
3325 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3326 	io_ch = spdk_bdev_get_io_channel(desc);
3327 	CU_ASSERT(io_ch != NULL);
3328 
3329 	/* Create aligned buffer */
3330 	rc = posix_memalign(&buf, 4096, 131072);
3331 	SPDK_CU_ASSERT_FATAL(rc == 0);
3332 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3333 
3334 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
3335 	alignment = 512;
3336 	bdev->required_alignment = spdk_u32log2(alignment);
3337 	bdev->optimal_io_boundary = 2;
3338 	bdev->split_on_optimal_io_boundary = true;
3339 
3340 	iovcnt = 1;
3341 	iovs[0].iov_base = NULL;
3342 	iovs[0].iov_len = 512 * 3;
3343 
3344 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3345 	CU_ASSERT(rc == 0);
3346 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3347 	stub_complete_io(2);
3348 
3349 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
3350 	alignment = 512;
3351 	bdev->required_alignment = spdk_u32log2(alignment);
3352 	bdev->optimal_io_boundary = 16;
3353 	bdev->split_on_optimal_io_boundary = true;
3354 
3355 	iovcnt = 1;
3356 	iovs[0].iov_base = NULL;
3357 	iovs[0].iov_len = 512 * 16;
3358 
3359 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
3360 	CU_ASSERT(rc == 0);
3361 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3362 	stub_complete_io(2);
3363 
3364 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
3365 	alignment = 512;
3366 	bdev->required_alignment = spdk_u32log2(alignment);
3367 	bdev->optimal_io_boundary = 128;
3368 	bdev->split_on_optimal_io_boundary = true;
3369 
3370 	iovcnt = 1;
3371 	iovs[0].iov_base = buf + 16;
3372 	iovs[0].iov_len = 512 * 160;
3373 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3374 	CU_ASSERT(rc == 0);
3375 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3376 	stub_complete_io(2);
3377 
3378 	/* 512 * 3 with 2 IO boundary */
3379 	alignment = 512;
3380 	bdev->required_alignment = spdk_u32log2(alignment);
3381 	bdev->optimal_io_boundary = 2;
3382 	bdev->split_on_optimal_io_boundary = true;
3383 
3384 	iovcnt = 2;
3385 	iovs[0].iov_base = buf + 16;
3386 	iovs[0].iov_len = 512;
3387 	iovs[1].iov_base = buf + 16 + 512 + 32;
3388 	iovs[1].iov_len = 1024;
3389 
3390 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3391 	CU_ASSERT(rc == 0);
3392 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3393 	stub_complete_io(2);
3394 
3395 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3396 	CU_ASSERT(rc == 0);
3397 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3398 	stub_complete_io(2);
3399 
3400 	/* 512 * 64 with 32 IO boundary */
3401 	bdev->optimal_io_boundary = 32;
3402 	iovcnt = 2;
3403 	iovs[0].iov_base = buf + 16;
3404 	iovs[0].iov_len = 16384;
3405 	iovs[1].iov_base = buf + 16 + 16384 + 32;
3406 	iovs[1].iov_len = 16384;
3407 
3408 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3409 	CU_ASSERT(rc == 0);
3410 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3411 	stub_complete_io(3);
3412 
3413 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3414 	CU_ASSERT(rc == 0);
3415 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3416 	stub_complete_io(3);
3417 
3418 	/* 512 * 160 with 32 IO boundary */
3419 	iovcnt = 1;
3420 	iovs[0].iov_base = buf + 16;
3421 	iovs[0].iov_len = 16384 + 65536;
3422 
3423 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3424 	CU_ASSERT(rc == 0);
3425 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
3426 	stub_complete_io(6);
3427 
3428 	spdk_put_io_channel(io_ch);
3429 	spdk_bdev_close(desc);
3430 	free_bdev(bdev);
3431 	fn_table.submit_request = stub_submit_request;
3432 	ut_fini_bdev();
3433 
3434 	free(buf);
3435 }
3436 
3437 static void
3438 histogram_status_cb(void *cb_arg, int status)
3439 {
3440 	g_status = status;
3441 }
3442 
3443 static void
3444 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3445 {
3446 	g_status = status;
3447 	g_histogram = histogram;
3448 }
3449 
3450 static void
3451 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
3452 		   uint64_t total, uint64_t so_far)
3453 {
3454 	g_count += count;
3455 }
3456 
3457 static void
3458 histogram_channel_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3459 {
3460 	spdk_histogram_data_fn cb_fn = cb_arg;
3461 
3462 	g_status = status;
3463 
3464 	if (status == 0) {
3465 		spdk_histogram_data_iterate(histogram, cb_fn, NULL);
3466 	}
3467 }
3468 
3469 static void
3470 bdev_histograms(void)
3471 {
3472 	struct spdk_bdev *bdev;
3473 	struct spdk_bdev_desc *desc = NULL;
3474 	struct spdk_io_channel *ch;
3475 	struct spdk_histogram_data *histogram;
3476 	uint8_t buf[4096];
3477 	int rc;
3478 
3479 	ut_init_bdev(NULL);
3480 
3481 	bdev = allocate_bdev("bdev");
3482 
3483 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3484 	CU_ASSERT(rc == 0);
3485 	CU_ASSERT(desc != NULL);
3486 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3487 
3488 	ch = spdk_bdev_get_io_channel(desc);
3489 	CU_ASSERT(ch != NULL);
3490 
3491 	/* Enable histogram */
3492 	g_status = -1;
3493 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
3494 	poll_threads();
3495 	CU_ASSERT(g_status == 0);
3496 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3497 
3498 	/* Allocate histogram */
3499 	histogram = spdk_histogram_data_alloc();
3500 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
3501 
3502 	/* Check if histogram is zeroed */
3503 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3504 	poll_threads();
3505 	CU_ASSERT(g_status == 0);
3506 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3507 
3508 	g_count = 0;
3509 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3510 
3511 	CU_ASSERT(g_count == 0);
3512 
3513 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3514 	CU_ASSERT(rc == 0);
3515 
3516 	spdk_delay_us(10);
3517 	stub_complete_io(1);
3518 	poll_threads();
3519 
3520 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3521 	CU_ASSERT(rc == 0);
3522 
3523 	spdk_delay_us(10);
3524 	stub_complete_io(1);
3525 	poll_threads();
3526 
3527 	/* Check if histogram gathered data from all I/O channels */
3528 	g_histogram = NULL;
3529 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3530 	poll_threads();
3531 	CU_ASSERT(g_status == 0);
3532 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3533 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3534 
3535 	g_count = 0;
3536 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3537 	CU_ASSERT(g_count == 2);
3538 
3539 	g_count = 0;
3540 	spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, histogram_io_count);
3541 	CU_ASSERT(g_status == 0);
3542 	CU_ASSERT(g_count == 2);
3543 
3544 	/* Disable histogram */
3545 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
3546 	poll_threads();
3547 	CU_ASSERT(g_status == 0);
3548 	CU_ASSERT(bdev->internal.histogram_enabled == false);
3549 
3550 	/* Try to run histogram commands on disabled bdev */
3551 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3552 	poll_threads();
3553 	CU_ASSERT(g_status == -EFAULT);
3554 
3555 	spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, NULL);
3556 	CU_ASSERT(g_status == -EFAULT);
3557 
3558 	spdk_histogram_data_free(histogram);
3559 	spdk_put_io_channel(ch);
3560 	spdk_bdev_close(desc);
3561 	free_bdev(bdev);
3562 	ut_fini_bdev();
3563 }
3564 
3565 static void
3566 _bdev_compare(bool emulated)
3567 {
3568 	struct spdk_bdev *bdev;
3569 	struct spdk_bdev_desc *desc = NULL;
3570 	struct spdk_io_channel *ioch;
3571 	struct ut_expected_io *expected_io;
3572 	uint64_t offset, num_blocks;
3573 	uint32_t num_completed;
3574 	char aa_buf[512];
3575 	char bb_buf[512];
3576 	struct iovec compare_iov;
3577 	uint8_t expected_io_type;
3578 	int rc;
3579 
3580 	if (emulated) {
3581 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3582 	} else {
3583 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3584 	}
3585 
3586 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3587 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3588 
3589 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3590 
3591 	ut_init_bdev(NULL);
3592 	fn_table.submit_request = stub_submit_request_get_buf;
3593 	bdev = allocate_bdev("bdev");
3594 
3595 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3596 	CU_ASSERT_EQUAL(rc, 0);
3597 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3598 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3599 	ioch = spdk_bdev_get_io_channel(desc);
3600 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3601 
3602 	fn_table.submit_request = stub_submit_request_get_buf;
3603 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3604 
3605 	offset = 50;
3606 	num_blocks = 1;
3607 	compare_iov.iov_base = aa_buf;
3608 	compare_iov.iov_len = sizeof(aa_buf);
3609 
3610 	/* 1. successful compare */
3611 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3612 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3613 
3614 	g_io_done = false;
3615 	g_compare_read_buf = aa_buf;
3616 	g_compare_read_buf_len = sizeof(aa_buf);
3617 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3618 	CU_ASSERT_EQUAL(rc, 0);
3619 	num_completed = stub_complete_io(1);
3620 	CU_ASSERT_EQUAL(num_completed, 1);
3621 	CU_ASSERT(g_io_done == true);
3622 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3623 
3624 	/* 2. miscompare */
3625 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3626 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3627 
3628 	g_io_done = false;
3629 	g_compare_read_buf = bb_buf;
3630 	g_compare_read_buf_len = sizeof(bb_buf);
3631 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3632 	CU_ASSERT_EQUAL(rc, 0);
3633 	num_completed = stub_complete_io(1);
3634 	CU_ASSERT_EQUAL(num_completed, 1);
3635 	CU_ASSERT(g_io_done == true);
3636 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3637 
3638 	spdk_put_io_channel(ioch);
3639 	spdk_bdev_close(desc);
3640 	free_bdev(bdev);
3641 	fn_table.submit_request = stub_submit_request;
3642 	ut_fini_bdev();
3643 
3644 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3645 
3646 	g_compare_read_buf = NULL;
3647 }
3648 
3649 static void
3650 _bdev_compare_with_md(bool emulated)
3651 {
3652 	struct spdk_bdev *bdev;
3653 	struct spdk_bdev_desc *desc = NULL;
3654 	struct spdk_io_channel *ioch;
3655 	struct ut_expected_io *expected_io;
3656 	uint64_t offset, num_blocks;
3657 	uint32_t num_completed;
3658 	char buf[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3659 	char buf_interleaved_miscompare[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3660 	char buf_miscompare[1024 /* 2 * blocklen */];
3661 	char md_buf[16];
3662 	char md_buf_miscompare[16];
3663 	struct iovec compare_iov;
3664 	uint8_t expected_io_type;
3665 	int rc;
3666 
3667 	if (emulated) {
3668 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3669 	} else {
3670 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3671 	}
3672 
3673 	memset(buf, 0xaa, sizeof(buf));
3674 	memset(buf_interleaved_miscompare, 0xaa, sizeof(buf_interleaved_miscompare));
3675 	/* make last md different */
3676 	memset(buf_interleaved_miscompare + 1024 + 8, 0xbb, 8);
3677 	memset(buf_miscompare, 0xbb, sizeof(buf_miscompare));
3678 	memset(md_buf, 0xaa, 16);
3679 	memset(md_buf_miscompare, 0xbb, 16);
3680 
3681 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3682 
3683 	ut_init_bdev(NULL);
3684 	fn_table.submit_request = stub_submit_request_get_buf;
3685 	bdev = allocate_bdev("bdev");
3686 
3687 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3688 	CU_ASSERT_EQUAL(rc, 0);
3689 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3690 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3691 	ioch = spdk_bdev_get_io_channel(desc);
3692 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3693 
3694 	fn_table.submit_request = stub_submit_request_get_buf;
3695 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3696 
3697 	offset = 50;
3698 	num_blocks = 2;
3699 
3700 	/* interleaved md & data */
3701 	bdev->md_interleave = true;
3702 	bdev->md_len = 8;
3703 	bdev->blocklen = 512 + 8;
3704 	compare_iov.iov_base = buf;
3705 	compare_iov.iov_len = sizeof(buf);
3706 
3707 	/* 1. successful compare with md interleaved */
3708 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3709 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3710 
3711 	g_io_done = false;
3712 	g_compare_read_buf = buf;
3713 	g_compare_read_buf_len = sizeof(buf);
3714 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3715 	CU_ASSERT_EQUAL(rc, 0);
3716 	num_completed = stub_complete_io(1);
3717 	CU_ASSERT_EQUAL(num_completed, 1);
3718 	CU_ASSERT(g_io_done == true);
3719 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3720 
3721 	/* 2. miscompare with md interleaved */
3722 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3723 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3724 
3725 	g_io_done = false;
3726 	g_compare_read_buf = buf_interleaved_miscompare;
3727 	g_compare_read_buf_len = sizeof(buf_interleaved_miscompare);
3728 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3729 	CU_ASSERT_EQUAL(rc, 0);
3730 	num_completed = stub_complete_io(1);
3731 	CU_ASSERT_EQUAL(num_completed, 1);
3732 	CU_ASSERT(g_io_done == true);
3733 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3734 
3735 	/* Separate data & md buffers */
3736 	bdev->md_interleave = false;
3737 	bdev->blocklen = 512;
3738 	compare_iov.iov_base = buf;
3739 	compare_iov.iov_len = 1024;
3740 
3741 	/* 3. successful compare with md separated */
3742 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3743 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3744 
3745 	g_io_done = false;
3746 	g_compare_read_buf = buf;
3747 	g_compare_read_buf_len = 1024;
3748 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3749 	g_compare_md_buf = md_buf;
3750 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3751 					       offset, num_blocks, io_done, NULL);
3752 	CU_ASSERT_EQUAL(rc, 0);
3753 	num_completed = stub_complete_io(1);
3754 	CU_ASSERT_EQUAL(num_completed, 1);
3755 	CU_ASSERT(g_io_done == true);
3756 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3757 
3758 	/* 4. miscompare with md separated where md buf is different */
3759 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3760 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3761 
3762 	g_io_done = false;
3763 	g_compare_read_buf = buf;
3764 	g_compare_read_buf_len = 1024;
3765 	g_compare_md_buf = md_buf_miscompare;
3766 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3767 					       offset, num_blocks, io_done, NULL);
3768 	CU_ASSERT_EQUAL(rc, 0);
3769 	num_completed = stub_complete_io(1);
3770 	CU_ASSERT_EQUAL(num_completed, 1);
3771 	CU_ASSERT(g_io_done == true);
3772 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3773 
3774 	/* 5. miscompare with md separated where buf is different */
3775 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3776 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3777 
3778 	g_io_done = false;
3779 	g_compare_read_buf = buf_miscompare;
3780 	g_compare_read_buf_len = sizeof(buf_miscompare);
3781 	g_compare_md_buf = md_buf;
3782 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3783 					       offset, num_blocks, io_done, NULL);
3784 	CU_ASSERT_EQUAL(rc, 0);
3785 	num_completed = stub_complete_io(1);
3786 	CU_ASSERT_EQUAL(num_completed, 1);
3787 	CU_ASSERT(g_io_done == true);
3788 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3789 
3790 	bdev->md_len = 0;
3791 	g_compare_md_buf = NULL;
3792 
3793 	spdk_put_io_channel(ioch);
3794 	spdk_bdev_close(desc);
3795 	free_bdev(bdev);
3796 	fn_table.submit_request = stub_submit_request;
3797 	ut_fini_bdev();
3798 
3799 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3800 
3801 	g_compare_read_buf = NULL;
3802 }
3803 
3804 static void
3805 bdev_compare(void)
3806 {
3807 	_bdev_compare(false);
3808 	_bdev_compare_with_md(false);
3809 }
3810 
3811 static void
3812 bdev_compare_emulated(void)
3813 {
3814 	_bdev_compare(true);
3815 	_bdev_compare_with_md(true);
3816 }
3817 
3818 static void
3819 bdev_compare_and_write(void)
3820 {
3821 	struct spdk_bdev *bdev;
3822 	struct spdk_bdev_desc *desc = NULL;
3823 	struct spdk_io_channel *ioch;
3824 	struct ut_expected_io *expected_io;
3825 	uint64_t offset, num_blocks;
3826 	uint32_t num_completed;
3827 	char aa_buf[512];
3828 	char bb_buf[512];
3829 	char cc_buf[512];
3830 	char write_buf[512];
3831 	struct iovec compare_iov;
3832 	struct iovec write_iov;
3833 	int rc;
3834 
3835 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3836 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3837 	memset(cc_buf, 0xcc, sizeof(cc_buf));
3838 
3839 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
3840 
3841 	ut_init_bdev(NULL);
3842 	fn_table.submit_request = stub_submit_request_get_buf;
3843 	bdev = allocate_bdev("bdev");
3844 
3845 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3846 	CU_ASSERT_EQUAL(rc, 0);
3847 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3848 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3849 	ioch = spdk_bdev_get_io_channel(desc);
3850 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3851 
3852 	fn_table.submit_request = stub_submit_request_get_buf;
3853 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3854 
3855 	offset = 50;
3856 	num_blocks = 1;
3857 	compare_iov.iov_base = aa_buf;
3858 	compare_iov.iov_len = sizeof(aa_buf);
3859 	write_iov.iov_base = bb_buf;
3860 	write_iov.iov_len = sizeof(bb_buf);
3861 
3862 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3863 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3864 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
3865 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3866 
3867 	g_io_done = false;
3868 	g_compare_read_buf = aa_buf;
3869 	g_compare_read_buf_len = sizeof(aa_buf);
3870 	memset(write_buf, 0, sizeof(write_buf));
3871 	g_compare_write_buf = write_buf;
3872 	g_compare_write_buf_len = sizeof(write_buf);
3873 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3874 			offset, num_blocks, io_done, NULL);
3875 	/* Trigger range locking */
3876 	poll_threads();
3877 	CU_ASSERT_EQUAL(rc, 0);
3878 	num_completed = stub_complete_io(1);
3879 	CU_ASSERT_EQUAL(num_completed, 1);
3880 	CU_ASSERT(g_io_done == false);
3881 	num_completed = stub_complete_io(1);
3882 	/* Trigger range unlocking */
3883 	poll_threads();
3884 	CU_ASSERT_EQUAL(num_completed, 1);
3885 	CU_ASSERT(g_io_done == true);
3886 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3887 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
3888 
3889 	/* Test miscompare */
3890 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3891 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3892 
3893 	g_io_done = false;
3894 	g_compare_read_buf = cc_buf;
3895 	g_compare_read_buf_len = sizeof(cc_buf);
3896 	memset(write_buf, 0, sizeof(write_buf));
3897 	g_compare_write_buf = write_buf;
3898 	g_compare_write_buf_len = sizeof(write_buf);
3899 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3900 			offset, num_blocks, io_done, NULL);
3901 	/* Trigger range locking */
3902 	poll_threads();
3903 	CU_ASSERT_EQUAL(rc, 0);
3904 	num_completed = stub_complete_io(1);
3905 	/* Trigger range unlocking earlier because we expect error here */
3906 	poll_threads();
3907 	CU_ASSERT_EQUAL(num_completed, 1);
3908 	CU_ASSERT(g_io_done == true);
3909 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3910 	num_completed = stub_complete_io(1);
3911 	CU_ASSERT_EQUAL(num_completed, 0);
3912 
3913 	spdk_put_io_channel(ioch);
3914 	spdk_bdev_close(desc);
3915 	free_bdev(bdev);
3916 	fn_table.submit_request = stub_submit_request;
3917 	ut_fini_bdev();
3918 
3919 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3920 
3921 	g_compare_read_buf = NULL;
3922 	g_compare_write_buf = NULL;
3923 }
3924 
3925 static void
3926 bdev_write_zeroes(void)
3927 {
3928 	struct spdk_bdev *bdev;
3929 	struct spdk_bdev_desc *desc = NULL;
3930 	struct spdk_io_channel *ioch;
3931 	struct ut_expected_io *expected_io;
3932 	uint64_t offset, num_io_blocks, num_blocks;
3933 	uint32_t num_completed, num_requests;
3934 	int rc;
3935 
3936 	ut_init_bdev(NULL);
3937 	bdev = allocate_bdev("bdev");
3938 
3939 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3940 	CU_ASSERT_EQUAL(rc, 0);
3941 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3942 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3943 	ioch = spdk_bdev_get_io_channel(desc);
3944 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3945 
3946 	fn_table.submit_request = stub_submit_request;
3947 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3948 
3949 	/* First test that if the bdev supports write_zeroes, the request won't be split */
3950 	bdev->md_len = 0;
3951 	bdev->blocklen = 4096;
3952 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3953 
3954 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
3955 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3956 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3957 	CU_ASSERT_EQUAL(rc, 0);
3958 	num_completed = stub_complete_io(1);
3959 	CU_ASSERT_EQUAL(num_completed, 1);
3960 
3961 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
3962 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
3963 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
3964 	num_requests = 2;
3965 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
3966 
3967 	for (offset = 0; offset < num_requests; ++offset) {
3968 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3969 						   offset * num_io_blocks, num_io_blocks, 0);
3970 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3971 	}
3972 
3973 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3974 	CU_ASSERT_EQUAL(rc, 0);
3975 	num_completed = stub_complete_io(num_requests);
3976 	CU_ASSERT_EQUAL(num_completed, num_requests);
3977 
3978 	/* Check that the splitting is correct if bdev has interleaved metadata */
3979 	bdev->md_interleave = true;
3980 	bdev->md_len = 64;
3981 	bdev->blocklen = 4096 + 64;
3982 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3983 
3984 	num_requests = offset = 0;
3985 	while (offset < num_blocks) {
3986 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
3987 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3988 						   offset, num_io_blocks, 0);
3989 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3990 		offset += num_io_blocks;
3991 		num_requests++;
3992 	}
3993 
3994 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3995 	CU_ASSERT_EQUAL(rc, 0);
3996 	num_completed = stub_complete_io(num_requests);
3997 	CU_ASSERT_EQUAL(num_completed, num_requests);
3998 	num_completed = stub_complete_io(num_requests);
3999 	assert(num_completed == 0);
4000 
4001 	/* Check the the same for separate metadata buffer */
4002 	bdev->md_interleave = false;
4003 	bdev->md_len = 64;
4004 	bdev->blocklen = 4096;
4005 
4006 	num_requests = offset = 0;
4007 	while (offset < num_blocks) {
4008 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
4009 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
4010 						   offset, num_io_blocks, 0);
4011 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
4012 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4013 		offset += num_io_blocks;
4014 		num_requests++;
4015 	}
4016 
4017 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4018 	CU_ASSERT_EQUAL(rc, 0);
4019 	num_completed = stub_complete_io(num_requests);
4020 	CU_ASSERT_EQUAL(num_completed, num_requests);
4021 
4022 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
4023 	spdk_put_io_channel(ioch);
4024 	spdk_bdev_close(desc);
4025 	free_bdev(bdev);
4026 	ut_fini_bdev();
4027 }
4028 
4029 static void
4030 bdev_zcopy_write(void)
4031 {
4032 	struct spdk_bdev *bdev;
4033 	struct spdk_bdev_desc *desc = NULL;
4034 	struct spdk_io_channel *ioch;
4035 	struct ut_expected_io *expected_io;
4036 	uint64_t offset, num_blocks;
4037 	uint32_t num_completed;
4038 	char aa_buf[512];
4039 	struct iovec iov;
4040 	int rc;
4041 	const bool populate = false;
4042 	const bool commit = true;
4043 
4044 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4045 
4046 	ut_init_bdev(NULL);
4047 	bdev = allocate_bdev("bdev");
4048 
4049 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4050 	CU_ASSERT_EQUAL(rc, 0);
4051 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4052 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4053 	ioch = spdk_bdev_get_io_channel(desc);
4054 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4055 
4056 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4057 
4058 	offset = 50;
4059 	num_blocks = 1;
4060 	iov.iov_base = NULL;
4061 	iov.iov_len = 0;
4062 
4063 	g_zcopy_read_buf = (void *) 0x1122334455667788UL;
4064 	g_zcopy_read_buf_len = (uint32_t) -1;
4065 	/* Do a zcopy start for a write (populate=false) */
4066 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4067 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4068 	g_io_done = false;
4069 	g_zcopy_write_buf = aa_buf;
4070 	g_zcopy_write_buf_len = sizeof(aa_buf);
4071 	g_zcopy_bdev_io = NULL;
4072 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4073 	CU_ASSERT_EQUAL(rc, 0);
4074 	num_completed = stub_complete_io(1);
4075 	CU_ASSERT_EQUAL(num_completed, 1);
4076 	CU_ASSERT(g_io_done == true);
4077 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4078 	/* Check that the iov has been set up */
4079 	CU_ASSERT(iov.iov_base == g_zcopy_write_buf);
4080 	CU_ASSERT(iov.iov_len == g_zcopy_write_buf_len);
4081 	/* Check that the bdev_io has been saved */
4082 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4083 	/* Now do the zcopy end for a write (commit=true) */
4084 	g_io_done = false;
4085 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4086 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4087 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4088 	CU_ASSERT_EQUAL(rc, 0);
4089 	num_completed = stub_complete_io(1);
4090 	CU_ASSERT_EQUAL(num_completed, 1);
4091 	CU_ASSERT(g_io_done == true);
4092 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4093 	/* Check the g_zcopy are reset by io_done */
4094 	CU_ASSERT(g_zcopy_write_buf == NULL);
4095 	CU_ASSERT(g_zcopy_write_buf_len == 0);
4096 	/* Check that io_done has freed the g_zcopy_bdev_io */
4097 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4098 
4099 	/* Check the zcopy read buffer has not been touched which
4100 	 * ensures that the correct buffers were used.
4101 	 */
4102 	CU_ASSERT(g_zcopy_read_buf == (void *) 0x1122334455667788UL);
4103 	CU_ASSERT(g_zcopy_read_buf_len == (uint32_t) -1);
4104 
4105 	spdk_put_io_channel(ioch);
4106 	spdk_bdev_close(desc);
4107 	free_bdev(bdev);
4108 	ut_fini_bdev();
4109 }
4110 
4111 static void
4112 bdev_zcopy_read(void)
4113 {
4114 	struct spdk_bdev *bdev;
4115 	struct spdk_bdev_desc *desc = NULL;
4116 	struct spdk_io_channel *ioch;
4117 	struct ut_expected_io *expected_io;
4118 	uint64_t offset, num_blocks;
4119 	uint32_t num_completed;
4120 	char aa_buf[512];
4121 	struct iovec iov;
4122 	int rc;
4123 	const bool populate = true;
4124 	const bool commit = false;
4125 
4126 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4127 
4128 	ut_init_bdev(NULL);
4129 	bdev = allocate_bdev("bdev");
4130 
4131 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4132 	CU_ASSERT_EQUAL(rc, 0);
4133 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4134 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4135 	ioch = spdk_bdev_get_io_channel(desc);
4136 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4137 
4138 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4139 
4140 	offset = 50;
4141 	num_blocks = 1;
4142 	iov.iov_base = NULL;
4143 	iov.iov_len = 0;
4144 
4145 	g_zcopy_write_buf = (void *) 0x1122334455667788UL;
4146 	g_zcopy_write_buf_len = (uint32_t) -1;
4147 
4148 	/* Do a zcopy start for a read (populate=true) */
4149 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4150 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4151 	g_io_done = false;
4152 	g_zcopy_read_buf = aa_buf;
4153 	g_zcopy_read_buf_len = sizeof(aa_buf);
4154 	g_zcopy_bdev_io = NULL;
4155 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4156 	CU_ASSERT_EQUAL(rc, 0);
4157 	num_completed = stub_complete_io(1);
4158 	CU_ASSERT_EQUAL(num_completed, 1);
4159 	CU_ASSERT(g_io_done == true);
4160 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4161 	/* Check that the iov has been set up */
4162 	CU_ASSERT(iov.iov_base == g_zcopy_read_buf);
4163 	CU_ASSERT(iov.iov_len == g_zcopy_read_buf_len);
4164 	/* Check that the bdev_io has been saved */
4165 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4166 
4167 	/* Now do the zcopy end for a read (commit=false) */
4168 	g_io_done = false;
4169 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4170 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4171 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4172 	CU_ASSERT_EQUAL(rc, 0);
4173 	num_completed = stub_complete_io(1);
4174 	CU_ASSERT_EQUAL(num_completed, 1);
4175 	CU_ASSERT(g_io_done == true);
4176 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4177 	/* Check the g_zcopy are reset by io_done */
4178 	CU_ASSERT(g_zcopy_read_buf == NULL);
4179 	CU_ASSERT(g_zcopy_read_buf_len == 0);
4180 	/* Check that io_done has freed the g_zcopy_bdev_io */
4181 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4182 
4183 	/* Check the zcopy write buffer has not been touched which
4184 	 * ensures that the correct buffers were used.
4185 	 */
4186 	CU_ASSERT(g_zcopy_write_buf == (void *) 0x1122334455667788UL);
4187 	CU_ASSERT(g_zcopy_write_buf_len == (uint32_t) -1);
4188 
4189 	spdk_put_io_channel(ioch);
4190 	spdk_bdev_close(desc);
4191 	free_bdev(bdev);
4192 	ut_fini_bdev();
4193 }
4194 
4195 static void
4196 bdev_open_while_hotremove(void)
4197 {
4198 	struct spdk_bdev *bdev;
4199 	struct spdk_bdev_desc *desc[2] = {};
4200 	int rc;
4201 
4202 	bdev = allocate_bdev("bdev");
4203 
4204 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
4205 	CU_ASSERT(rc == 0);
4206 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
4207 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
4208 
4209 	spdk_bdev_unregister(bdev, NULL, NULL);
4210 	/* Bdev unregister is handled asynchronously. Poll thread to complete. */
4211 	poll_threads();
4212 
4213 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
4214 	CU_ASSERT(rc == -ENODEV);
4215 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
4216 
4217 	spdk_bdev_close(desc[0]);
4218 	free_bdev(bdev);
4219 }
4220 
4221 static void
4222 bdev_close_while_hotremove(void)
4223 {
4224 	struct spdk_bdev *bdev;
4225 	struct spdk_bdev_desc *desc = NULL;
4226 	int rc = 0;
4227 
4228 	bdev = allocate_bdev("bdev");
4229 
4230 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
4231 	CU_ASSERT_EQUAL(rc, 0);
4232 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4233 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4234 
4235 	/* Simulate hot-unplug by unregistering bdev */
4236 	g_event_type1 = 0xFF;
4237 	g_unregister_arg = NULL;
4238 	g_unregister_rc = -1;
4239 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4240 	/* Close device while remove event is in flight */
4241 	spdk_bdev_close(desc);
4242 
4243 	/* Ensure that unregister callback is delayed */
4244 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
4245 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
4246 
4247 	poll_threads();
4248 
4249 	/* Event callback shall not be issued because device was closed */
4250 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
4251 	/* Unregister callback is issued */
4252 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
4253 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
4254 
4255 	free_bdev(bdev);
4256 }
4257 
4258 static void
4259 bdev_open_ext(void)
4260 {
4261 	struct spdk_bdev *bdev;
4262 	struct spdk_bdev_desc *desc1 = NULL;
4263 	struct spdk_bdev_desc *desc2 = NULL;
4264 	int rc = 0;
4265 
4266 	bdev = allocate_bdev("bdev");
4267 
4268 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4269 	CU_ASSERT_EQUAL(rc, -EINVAL);
4270 
4271 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4272 	CU_ASSERT_EQUAL(rc, 0);
4273 
4274 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4275 	CU_ASSERT_EQUAL(rc, 0);
4276 
4277 	g_event_type1 = 0xFF;
4278 	g_event_type2 = 0xFF;
4279 
4280 	/* Simulate hot-unplug by unregistering bdev */
4281 	spdk_bdev_unregister(bdev, NULL, NULL);
4282 	poll_threads();
4283 
4284 	/* Check if correct events have been triggered in event callback fn */
4285 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4286 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4287 
4288 	free_bdev(bdev);
4289 	poll_threads();
4290 }
4291 
4292 static void
4293 bdev_open_ext_unregister(void)
4294 {
4295 	struct spdk_bdev *bdev;
4296 	struct spdk_bdev_desc *desc1 = NULL;
4297 	struct spdk_bdev_desc *desc2 = NULL;
4298 	struct spdk_bdev_desc *desc3 = NULL;
4299 	struct spdk_bdev_desc *desc4 = NULL;
4300 	int rc = 0;
4301 
4302 	bdev = allocate_bdev("bdev");
4303 
4304 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4305 	CU_ASSERT_EQUAL(rc, -EINVAL);
4306 
4307 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4308 	CU_ASSERT_EQUAL(rc, 0);
4309 
4310 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4311 	CU_ASSERT_EQUAL(rc, 0);
4312 
4313 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb3, &desc3, &desc3);
4314 	CU_ASSERT_EQUAL(rc, 0);
4315 
4316 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb4, &desc4, &desc4);
4317 	CU_ASSERT_EQUAL(rc, 0);
4318 
4319 	g_event_type1 = 0xFF;
4320 	g_event_type2 = 0xFF;
4321 	g_event_type3 = 0xFF;
4322 	g_event_type4 = 0xFF;
4323 
4324 	g_unregister_arg = NULL;
4325 	g_unregister_rc = -1;
4326 
4327 	/* Simulate hot-unplug by unregistering bdev */
4328 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4329 
4330 	/*
4331 	 * Unregister is handled asynchronously and event callback
4332 	 * (i.e., above bdev_open_cbN) will be called.
4333 	 * For bdev_open_cb3 and bdev_open_cb4, it is intended to not
4334 	 * close the desc3 and desc4 so that the bdev is not closed.
4335 	 */
4336 	poll_threads();
4337 
4338 	/* Check if correct events have been triggered in event callback fn */
4339 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4340 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4341 	CU_ASSERT_EQUAL(g_event_type3, SPDK_BDEV_EVENT_REMOVE);
4342 	CU_ASSERT_EQUAL(g_event_type4, SPDK_BDEV_EVENT_REMOVE);
4343 
4344 	/* Check that unregister callback is delayed */
4345 	CU_ASSERT(g_unregister_arg == NULL);
4346 	CU_ASSERT(g_unregister_rc == -1);
4347 
4348 	/*
4349 	 * Explicitly close desc3. As desc4 is still opened there, the
4350 	 * unergister callback is still delayed to execute.
4351 	 */
4352 	spdk_bdev_close(desc3);
4353 	CU_ASSERT(g_unregister_arg == NULL);
4354 	CU_ASSERT(g_unregister_rc == -1);
4355 
4356 	/*
4357 	 * Explicitly close desc4 to trigger the ongoing bdev unregister
4358 	 * operation after last desc is closed.
4359 	 */
4360 	spdk_bdev_close(desc4);
4361 
4362 	/* Poll the thread for the async unregister operation */
4363 	poll_threads();
4364 
4365 	/* Check that unregister callback is executed */
4366 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
4367 	CU_ASSERT(g_unregister_rc == 0);
4368 
4369 	free_bdev(bdev);
4370 	poll_threads();
4371 }
4372 
4373 struct timeout_io_cb_arg {
4374 	struct iovec iov;
4375 	uint8_t type;
4376 };
4377 
4378 static int
4379 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
4380 {
4381 	struct spdk_bdev_io *bdev_io;
4382 	int n = 0;
4383 
4384 	if (!ch) {
4385 		return -1;
4386 	}
4387 
4388 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
4389 		n++;
4390 	}
4391 
4392 	return n;
4393 }
4394 
4395 static void
4396 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
4397 {
4398 	struct timeout_io_cb_arg *ctx = cb_arg;
4399 
4400 	ctx->type = bdev_io->type;
4401 	ctx->iov.iov_base = bdev_io->iov.iov_base;
4402 	ctx->iov.iov_len = bdev_io->iov.iov_len;
4403 }
4404 
4405 static void
4406 bdev_set_io_timeout(void)
4407 {
4408 	struct spdk_bdev *bdev;
4409 	struct spdk_bdev_desc *desc = NULL;
4410 	struct spdk_io_channel *io_ch = NULL;
4411 	struct spdk_bdev_channel *bdev_ch = NULL;
4412 	struct timeout_io_cb_arg cb_arg;
4413 
4414 	ut_init_bdev(NULL);
4415 	bdev = allocate_bdev("bdev");
4416 
4417 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4418 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4419 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4420 
4421 	io_ch = spdk_bdev_get_io_channel(desc);
4422 	CU_ASSERT(io_ch != NULL);
4423 
4424 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4425 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4426 
4427 	/* This is the part1.
4428 	 * We will check the bdev_ch->io_submitted list
4429 	 * TO make sure that it can link IOs and only the user submitted IOs
4430 	 */
4431 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4432 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4433 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4434 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4435 	stub_complete_io(1);
4436 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4437 	stub_complete_io(1);
4438 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4439 
4440 	/* Split IO */
4441 	bdev->optimal_io_boundary = 16;
4442 	bdev->split_on_optimal_io_boundary = true;
4443 
4444 	/* Now test that a single-vector command is split correctly.
4445 	 * Offset 14, length 8, payload 0xF000
4446 	 *  Child - Offset 14, length 2, payload 0xF000
4447 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4448 	 *
4449 	 * Set up the expected values before calling spdk_bdev_read_blocks
4450 	 */
4451 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4452 	/* We count all submitted IOs including IO that are generated by splitting. */
4453 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
4454 	stub_complete_io(1);
4455 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4456 	stub_complete_io(1);
4457 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4458 
4459 	/* Also include the reset IO */
4460 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4461 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4462 	poll_threads();
4463 	stub_complete_io(1);
4464 	poll_threads();
4465 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4466 
4467 	/* This is part2
4468 	 * Test the desc timeout poller register
4469 	 */
4470 
4471 	/* Successfully set the timeout */
4472 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4473 	CU_ASSERT(desc->io_timeout_poller != NULL);
4474 	CU_ASSERT(desc->timeout_in_sec == 30);
4475 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4476 	CU_ASSERT(desc->cb_arg == &cb_arg);
4477 
4478 	/* Change the timeout limit */
4479 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4480 	CU_ASSERT(desc->io_timeout_poller != NULL);
4481 	CU_ASSERT(desc->timeout_in_sec == 20);
4482 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4483 	CU_ASSERT(desc->cb_arg == &cb_arg);
4484 
4485 	/* Disable the timeout */
4486 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
4487 	CU_ASSERT(desc->io_timeout_poller == NULL);
4488 
4489 	/* This the part3
4490 	 * We will test to catch timeout IO and check whether the IO is
4491 	 * the submitted one.
4492 	 */
4493 	memset(&cb_arg, 0, sizeof(cb_arg));
4494 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4495 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
4496 
4497 	/* Don't reach the limit */
4498 	spdk_delay_us(15 * spdk_get_ticks_hz());
4499 	poll_threads();
4500 	CU_ASSERT(cb_arg.type == 0);
4501 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4502 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4503 
4504 	/* 15 + 15 = 30 reach the limit */
4505 	spdk_delay_us(15 * spdk_get_ticks_hz());
4506 	poll_threads();
4507 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4508 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
4509 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
4510 	stub_complete_io(1);
4511 
4512 	/* Use the same split IO above and check the IO */
4513 	memset(&cb_arg, 0, sizeof(cb_arg));
4514 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4515 
4516 	/* The first child complete in time */
4517 	spdk_delay_us(15 * spdk_get_ticks_hz());
4518 	poll_threads();
4519 	stub_complete_io(1);
4520 	CU_ASSERT(cb_arg.type == 0);
4521 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4522 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4523 
4524 	/* The second child reach the limit */
4525 	spdk_delay_us(15 * spdk_get_ticks_hz());
4526 	poll_threads();
4527 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4528 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
4529 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
4530 	stub_complete_io(1);
4531 
4532 	/* Also include the reset IO */
4533 	memset(&cb_arg, 0, sizeof(cb_arg));
4534 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4535 	spdk_delay_us(30 * spdk_get_ticks_hz());
4536 	poll_threads();
4537 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
4538 	stub_complete_io(1);
4539 	poll_threads();
4540 
4541 	spdk_put_io_channel(io_ch);
4542 	spdk_bdev_close(desc);
4543 	free_bdev(bdev);
4544 	ut_fini_bdev();
4545 }
4546 
4547 static void
4548 bdev_set_qd_sampling(void)
4549 {
4550 	struct spdk_bdev *bdev;
4551 	struct spdk_bdev_desc *desc = NULL;
4552 	struct spdk_io_channel *io_ch = NULL;
4553 	struct spdk_bdev_channel *bdev_ch = NULL;
4554 	struct timeout_io_cb_arg cb_arg;
4555 
4556 	ut_init_bdev(NULL);
4557 	bdev = allocate_bdev("bdev");
4558 
4559 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4560 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4561 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4562 
4563 	io_ch = spdk_bdev_get_io_channel(desc);
4564 	CU_ASSERT(io_ch != NULL);
4565 
4566 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4567 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4568 
4569 	/* This is the part1.
4570 	 * We will check the bdev_ch->io_submitted list
4571 	 * TO make sure that it can link IOs and only the user submitted IOs
4572 	 */
4573 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4574 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4575 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4576 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4577 	stub_complete_io(1);
4578 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4579 	stub_complete_io(1);
4580 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4581 
4582 	/* This is the part2.
4583 	 * Test the bdev's qd poller register
4584 	 */
4585 	/* 1st Successfully set the qd sampling period */
4586 	spdk_bdev_set_qd_sampling_period(bdev, 10);
4587 	CU_ASSERT(bdev->internal.new_period == 10);
4588 	CU_ASSERT(bdev->internal.period == 10);
4589 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4590 	poll_threads();
4591 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4592 
4593 	/* 2nd Change the qd sampling period */
4594 	spdk_bdev_set_qd_sampling_period(bdev, 20);
4595 	CU_ASSERT(bdev->internal.new_period == 20);
4596 	CU_ASSERT(bdev->internal.period == 10);
4597 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4598 	poll_threads();
4599 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4600 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4601 
4602 	/* 3rd Change the qd sampling period and verify qd_poll_in_progress */
4603 	spdk_delay_us(20);
4604 	poll_thread_times(0, 1);
4605 	CU_ASSERT(bdev->internal.qd_poll_in_progress == true);
4606 	spdk_bdev_set_qd_sampling_period(bdev, 30);
4607 	CU_ASSERT(bdev->internal.new_period == 30);
4608 	CU_ASSERT(bdev->internal.period == 20);
4609 	poll_threads();
4610 	CU_ASSERT(bdev->internal.qd_poll_in_progress == false);
4611 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4612 
4613 	/* 4th Disable the qd sampling period */
4614 	spdk_bdev_set_qd_sampling_period(bdev, 0);
4615 	CU_ASSERT(bdev->internal.new_period == 0);
4616 	CU_ASSERT(bdev->internal.period == 30);
4617 	poll_threads();
4618 	CU_ASSERT(bdev->internal.qd_poller == NULL);
4619 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4620 	CU_ASSERT(bdev->internal.qd_desc == NULL);
4621 
4622 	/* This is the part3.
4623 	 * We will test the submitted IO and reset works
4624 	 * properly with the qd sampling.
4625 	 */
4626 	memset(&cb_arg, 0, sizeof(cb_arg));
4627 	spdk_bdev_set_qd_sampling_period(bdev, 1);
4628 	poll_threads();
4629 
4630 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4631 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4632 
4633 	/* Also include the reset IO */
4634 	memset(&cb_arg, 0, sizeof(cb_arg));
4635 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4636 	poll_threads();
4637 
4638 	/* Close the desc */
4639 	spdk_put_io_channel(io_ch);
4640 	spdk_bdev_close(desc);
4641 
4642 	/* Complete the submitted IO and reset */
4643 	stub_complete_io(2);
4644 	poll_threads();
4645 
4646 	free_bdev(bdev);
4647 	ut_fini_bdev();
4648 }
4649 
4650 static void
4651 lba_range_overlap(void)
4652 {
4653 	struct lba_range r1, r2;
4654 
4655 	r1.offset = 100;
4656 	r1.length = 50;
4657 
4658 	r2.offset = 0;
4659 	r2.length = 1;
4660 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4661 
4662 	r2.offset = 0;
4663 	r2.length = 100;
4664 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4665 
4666 	r2.offset = 0;
4667 	r2.length = 110;
4668 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4669 
4670 	r2.offset = 100;
4671 	r2.length = 10;
4672 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4673 
4674 	r2.offset = 110;
4675 	r2.length = 20;
4676 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4677 
4678 	r2.offset = 140;
4679 	r2.length = 150;
4680 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4681 
4682 	r2.offset = 130;
4683 	r2.length = 200;
4684 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4685 
4686 	r2.offset = 150;
4687 	r2.length = 100;
4688 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4689 
4690 	r2.offset = 110;
4691 	r2.length = 0;
4692 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4693 }
4694 
4695 static bool g_lock_lba_range_done;
4696 static bool g_unlock_lba_range_done;
4697 
4698 static void
4699 lock_lba_range_done(void *ctx, int status)
4700 {
4701 	g_lock_lba_range_done = true;
4702 }
4703 
4704 static void
4705 unlock_lba_range_done(void *ctx, int status)
4706 {
4707 	g_unlock_lba_range_done = true;
4708 }
4709 
4710 static void
4711 lock_lba_range_check_ranges(void)
4712 {
4713 	struct spdk_bdev *bdev;
4714 	struct spdk_bdev_desc *desc = NULL;
4715 	struct spdk_io_channel *io_ch;
4716 	struct spdk_bdev_channel *channel;
4717 	struct lba_range *range;
4718 	int ctx1;
4719 	int rc;
4720 
4721 	ut_init_bdev(NULL);
4722 	bdev = allocate_bdev("bdev0");
4723 
4724 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4725 	CU_ASSERT(rc == 0);
4726 	CU_ASSERT(desc != NULL);
4727 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4728 	io_ch = spdk_bdev_get_io_channel(desc);
4729 	CU_ASSERT(io_ch != NULL);
4730 	channel = spdk_io_channel_get_ctx(io_ch);
4731 
4732 	g_lock_lba_range_done = false;
4733 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4734 	CU_ASSERT(rc == 0);
4735 	poll_threads();
4736 
4737 	CU_ASSERT(g_lock_lba_range_done == true);
4738 	range = TAILQ_FIRST(&channel->locked_ranges);
4739 	SPDK_CU_ASSERT_FATAL(range != NULL);
4740 	CU_ASSERT(range->offset == 20);
4741 	CU_ASSERT(range->length == 10);
4742 	CU_ASSERT(range->owner_ch == channel);
4743 
4744 	/* Unlocks must exactly match a lock. */
4745 	g_unlock_lba_range_done = false;
4746 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
4747 	CU_ASSERT(rc == -EINVAL);
4748 	CU_ASSERT(g_unlock_lba_range_done == false);
4749 
4750 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4751 	CU_ASSERT(rc == 0);
4752 	spdk_delay_us(100);
4753 	poll_threads();
4754 
4755 	CU_ASSERT(g_unlock_lba_range_done == true);
4756 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4757 
4758 	spdk_put_io_channel(io_ch);
4759 	spdk_bdev_close(desc);
4760 	free_bdev(bdev);
4761 	ut_fini_bdev();
4762 }
4763 
4764 static void
4765 lock_lba_range_with_io_outstanding(void)
4766 {
4767 	struct spdk_bdev *bdev;
4768 	struct spdk_bdev_desc *desc = NULL;
4769 	struct spdk_io_channel *io_ch;
4770 	struct spdk_bdev_channel *channel;
4771 	struct lba_range *range;
4772 	char buf[4096];
4773 	int ctx1;
4774 	int rc;
4775 
4776 	ut_init_bdev(NULL);
4777 	bdev = allocate_bdev("bdev0");
4778 
4779 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4780 	CU_ASSERT(rc == 0);
4781 	CU_ASSERT(desc != NULL);
4782 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4783 	io_ch = spdk_bdev_get_io_channel(desc);
4784 	CU_ASSERT(io_ch != NULL);
4785 	channel = spdk_io_channel_get_ctx(io_ch);
4786 
4787 	g_io_done = false;
4788 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4789 	CU_ASSERT(rc == 0);
4790 
4791 	g_lock_lba_range_done = false;
4792 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4793 	CU_ASSERT(rc == 0);
4794 	poll_threads();
4795 
4796 	/* The lock should immediately become valid, since there are no outstanding
4797 	 * write I/O.
4798 	 */
4799 	CU_ASSERT(g_io_done == false);
4800 	CU_ASSERT(g_lock_lba_range_done == true);
4801 	range = TAILQ_FIRST(&channel->locked_ranges);
4802 	SPDK_CU_ASSERT_FATAL(range != NULL);
4803 	CU_ASSERT(range->offset == 20);
4804 	CU_ASSERT(range->length == 10);
4805 	CU_ASSERT(range->owner_ch == channel);
4806 	CU_ASSERT(range->locked_ctx == &ctx1);
4807 
4808 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4809 	CU_ASSERT(rc == 0);
4810 	stub_complete_io(1);
4811 	spdk_delay_us(100);
4812 	poll_threads();
4813 
4814 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4815 
4816 	/* Now try again, but with a write I/O. */
4817 	g_io_done = false;
4818 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4819 	CU_ASSERT(rc == 0);
4820 
4821 	g_lock_lba_range_done = false;
4822 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4823 	CU_ASSERT(rc == 0);
4824 	poll_threads();
4825 
4826 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
4827 	 * But note that the range should be on the channel's locked_list, to make sure no
4828 	 * new write I/O are started.
4829 	 */
4830 	CU_ASSERT(g_io_done == false);
4831 	CU_ASSERT(g_lock_lba_range_done == false);
4832 	range = TAILQ_FIRST(&channel->locked_ranges);
4833 	SPDK_CU_ASSERT_FATAL(range != NULL);
4834 	CU_ASSERT(range->offset == 20);
4835 	CU_ASSERT(range->length == 10);
4836 
4837 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
4838 	 * our callback was invoked).
4839 	 */
4840 	stub_complete_io(1);
4841 	spdk_delay_us(100);
4842 	poll_threads();
4843 	CU_ASSERT(g_io_done == true);
4844 	CU_ASSERT(g_lock_lba_range_done == true);
4845 
4846 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4847 	CU_ASSERT(rc == 0);
4848 	poll_threads();
4849 
4850 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4851 
4852 	spdk_put_io_channel(io_ch);
4853 	spdk_bdev_close(desc);
4854 	free_bdev(bdev);
4855 	ut_fini_bdev();
4856 }
4857 
4858 static void
4859 lock_lba_range_overlapped(void)
4860 {
4861 	struct spdk_bdev *bdev;
4862 	struct spdk_bdev_desc *desc = NULL;
4863 	struct spdk_io_channel *io_ch;
4864 	struct spdk_bdev_channel *channel;
4865 	struct lba_range *range;
4866 	int ctx1;
4867 	int rc;
4868 
4869 	ut_init_bdev(NULL);
4870 	bdev = allocate_bdev("bdev0");
4871 
4872 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4873 	CU_ASSERT(rc == 0);
4874 	CU_ASSERT(desc != NULL);
4875 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4876 	io_ch = spdk_bdev_get_io_channel(desc);
4877 	CU_ASSERT(io_ch != NULL);
4878 	channel = spdk_io_channel_get_ctx(io_ch);
4879 
4880 	/* Lock range 20-29. */
4881 	g_lock_lba_range_done = false;
4882 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4883 	CU_ASSERT(rc == 0);
4884 	poll_threads();
4885 
4886 	CU_ASSERT(g_lock_lba_range_done == true);
4887 	range = TAILQ_FIRST(&channel->locked_ranges);
4888 	SPDK_CU_ASSERT_FATAL(range != NULL);
4889 	CU_ASSERT(range->offset == 20);
4890 	CU_ASSERT(range->length == 10);
4891 
4892 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
4893 	 * 20-29.
4894 	 */
4895 	g_lock_lba_range_done = false;
4896 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
4897 	CU_ASSERT(rc == 0);
4898 	poll_threads();
4899 
4900 	CU_ASSERT(g_lock_lba_range_done == false);
4901 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4902 	SPDK_CU_ASSERT_FATAL(range != NULL);
4903 	CU_ASSERT(range->offset == 25);
4904 	CU_ASSERT(range->length == 15);
4905 
4906 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
4907 	 * no longer overlaps with an active lock.
4908 	 */
4909 	g_unlock_lba_range_done = false;
4910 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4911 	CU_ASSERT(rc == 0);
4912 	poll_threads();
4913 
4914 	CU_ASSERT(g_unlock_lba_range_done == true);
4915 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4916 	range = TAILQ_FIRST(&channel->locked_ranges);
4917 	SPDK_CU_ASSERT_FATAL(range != NULL);
4918 	CU_ASSERT(range->offset == 25);
4919 	CU_ASSERT(range->length == 15);
4920 
4921 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
4922 	 * currently active 25-39 lock.
4923 	 */
4924 	g_lock_lba_range_done = false;
4925 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
4926 	CU_ASSERT(rc == 0);
4927 	poll_threads();
4928 
4929 	CU_ASSERT(g_lock_lba_range_done == true);
4930 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4931 	SPDK_CU_ASSERT_FATAL(range != NULL);
4932 	range = TAILQ_NEXT(range, tailq);
4933 	SPDK_CU_ASSERT_FATAL(range != NULL);
4934 	CU_ASSERT(range->offset == 40);
4935 	CU_ASSERT(range->length == 20);
4936 
4937 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
4938 	g_lock_lba_range_done = false;
4939 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
4940 	CU_ASSERT(rc == 0);
4941 	poll_threads();
4942 
4943 	CU_ASSERT(g_lock_lba_range_done == false);
4944 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4945 	SPDK_CU_ASSERT_FATAL(range != NULL);
4946 	CU_ASSERT(range->offset == 35);
4947 	CU_ASSERT(range->length == 10);
4948 
4949 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
4950 	 * the 40-59 lock is still active.
4951 	 */
4952 	g_unlock_lba_range_done = false;
4953 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
4954 	CU_ASSERT(rc == 0);
4955 	poll_threads();
4956 
4957 	CU_ASSERT(g_unlock_lba_range_done == true);
4958 	CU_ASSERT(g_lock_lba_range_done == false);
4959 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4960 	SPDK_CU_ASSERT_FATAL(range != NULL);
4961 	CU_ASSERT(range->offset == 35);
4962 	CU_ASSERT(range->length == 10);
4963 
4964 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
4965 	 * no longer any active overlapping locks.
4966 	 */
4967 	g_unlock_lba_range_done = false;
4968 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
4969 	CU_ASSERT(rc == 0);
4970 	poll_threads();
4971 
4972 	CU_ASSERT(g_unlock_lba_range_done == true);
4973 	CU_ASSERT(g_lock_lba_range_done == true);
4974 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4975 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4976 	SPDK_CU_ASSERT_FATAL(range != NULL);
4977 	CU_ASSERT(range->offset == 35);
4978 	CU_ASSERT(range->length == 10);
4979 
4980 	/* Finally, unlock 35-44. */
4981 	g_unlock_lba_range_done = false;
4982 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
4983 	CU_ASSERT(rc == 0);
4984 	poll_threads();
4985 
4986 	CU_ASSERT(g_unlock_lba_range_done == true);
4987 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
4988 
4989 	spdk_put_io_channel(io_ch);
4990 	spdk_bdev_close(desc);
4991 	free_bdev(bdev);
4992 	ut_fini_bdev();
4993 }
4994 
4995 static void
4996 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
4997 {
4998 	g_abort_done = true;
4999 	g_abort_status = bdev_io->internal.status;
5000 	spdk_bdev_free_io(bdev_io);
5001 }
5002 
5003 static void
5004 bdev_io_abort(void)
5005 {
5006 	struct spdk_bdev *bdev;
5007 	struct spdk_bdev_desc *desc = NULL;
5008 	struct spdk_io_channel *io_ch;
5009 	struct spdk_bdev_channel *channel;
5010 	struct spdk_bdev_mgmt_channel *mgmt_ch;
5011 	struct spdk_bdev_opts bdev_opts = {};
5012 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
5013 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
5014 	int rc;
5015 
5016 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5017 	bdev_opts.bdev_io_pool_size = 7;
5018 	bdev_opts.bdev_io_cache_size = 2;
5019 	ut_init_bdev(&bdev_opts);
5020 
5021 	bdev = allocate_bdev("bdev0");
5022 
5023 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5024 	CU_ASSERT(rc == 0);
5025 	CU_ASSERT(desc != NULL);
5026 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5027 	io_ch = spdk_bdev_get_io_channel(desc);
5028 	CU_ASSERT(io_ch != NULL);
5029 	channel = spdk_io_channel_get_ctx(io_ch);
5030 	mgmt_ch = channel->shared_resource->mgmt_ch;
5031 
5032 	g_abort_done = false;
5033 
5034 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
5035 
5036 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5037 	CU_ASSERT(rc == -ENOTSUP);
5038 
5039 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
5040 
5041 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
5042 	CU_ASSERT(rc == 0);
5043 	CU_ASSERT(g_abort_done == true);
5044 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
5045 
5046 	/* Test the case that the target I/O was successfully aborted. */
5047 	g_io_done = false;
5048 
5049 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5050 	CU_ASSERT(rc == 0);
5051 	CU_ASSERT(g_io_done == false);
5052 
5053 	g_abort_done = false;
5054 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5055 
5056 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5057 	CU_ASSERT(rc == 0);
5058 	CU_ASSERT(g_io_done == true);
5059 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5060 	stub_complete_io(1);
5061 	CU_ASSERT(g_abort_done == true);
5062 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5063 
5064 	/* Test the case that the target I/O was not aborted because it completed
5065 	 * in the middle of execution of the abort.
5066 	 */
5067 	g_io_done = false;
5068 
5069 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5070 	CU_ASSERT(rc == 0);
5071 	CU_ASSERT(g_io_done == false);
5072 
5073 	g_abort_done = false;
5074 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5075 
5076 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5077 	CU_ASSERT(rc == 0);
5078 	CU_ASSERT(g_io_done == false);
5079 
5080 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5081 	stub_complete_io(1);
5082 	CU_ASSERT(g_io_done == true);
5083 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5084 
5085 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5086 	stub_complete_io(1);
5087 	CU_ASSERT(g_abort_done == true);
5088 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5089 
5090 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5091 
5092 	bdev->optimal_io_boundary = 16;
5093 	bdev->split_on_optimal_io_boundary = true;
5094 
5095 	/* Test that a single-vector command which is split is aborted correctly.
5096 	 * Offset 14, length 8, payload 0xF000
5097 	 *  Child - Offset 14, length 2, payload 0xF000
5098 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5099 	 */
5100 	g_io_done = false;
5101 
5102 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
5103 	CU_ASSERT(rc == 0);
5104 	CU_ASSERT(g_io_done == false);
5105 
5106 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5107 
5108 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5109 
5110 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5111 	CU_ASSERT(rc == 0);
5112 	CU_ASSERT(g_io_done == true);
5113 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5114 	stub_complete_io(2);
5115 	CU_ASSERT(g_abort_done == true);
5116 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5117 
5118 	/* Test that a multi-vector command that needs to be split by strip and then
5119 	 * needs to be split is aborted correctly. Abort is requested before the second
5120 	 * child I/O was submitted. The parent I/O should complete with failure without
5121 	 * submitting the second child I/O.
5122 	 */
5123 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
5124 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
5125 		iov[i].iov_len = 512;
5126 	}
5127 
5128 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
5129 	g_io_done = false;
5130 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
5131 				    SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
5132 	CU_ASSERT(rc == 0);
5133 	CU_ASSERT(g_io_done == false);
5134 
5135 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5136 
5137 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5138 
5139 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5140 	CU_ASSERT(rc == 0);
5141 	CU_ASSERT(g_io_done == true);
5142 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5143 	stub_complete_io(1);
5144 	CU_ASSERT(g_abort_done == true);
5145 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5146 
5147 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5148 
5149 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5150 
5151 	bdev->optimal_io_boundary = 16;
5152 	g_io_done = false;
5153 
5154 	/* Test that a ingle-vector command which is split is aborted correctly.
5155 	 * Differently from the above, the child abort request will be submitted
5156 	 * sequentially due to the capacity of spdk_bdev_io.
5157 	 */
5158 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
5159 	CU_ASSERT(rc == 0);
5160 	CU_ASSERT(g_io_done == false);
5161 
5162 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5163 
5164 	g_abort_done = false;
5165 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5166 
5167 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5168 	CU_ASSERT(rc == 0);
5169 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
5170 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5171 
5172 	stub_complete_io(1);
5173 	CU_ASSERT(g_io_done == true);
5174 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5175 	stub_complete_io(3);
5176 	CU_ASSERT(g_abort_done == true);
5177 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5178 
5179 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5180 
5181 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5182 
5183 	spdk_put_io_channel(io_ch);
5184 	spdk_bdev_close(desc);
5185 	free_bdev(bdev);
5186 	ut_fini_bdev();
5187 }
5188 
5189 static void
5190 bdev_unmap(void)
5191 {
5192 	struct spdk_bdev *bdev;
5193 	struct spdk_bdev_desc *desc = NULL;
5194 	struct spdk_io_channel *ioch;
5195 	struct spdk_bdev_channel *bdev_ch;
5196 	struct ut_expected_io *expected_io;
5197 	struct spdk_bdev_opts bdev_opts = {};
5198 	uint32_t i, num_outstanding;
5199 	uint64_t offset, num_blocks, max_unmap_blocks, num_children;
5200 	int rc;
5201 
5202 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5203 	bdev_opts.bdev_io_pool_size = 512;
5204 	bdev_opts.bdev_io_cache_size = 64;
5205 	ut_init_bdev(&bdev_opts);
5206 
5207 	bdev = allocate_bdev("bdev");
5208 
5209 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5210 	CU_ASSERT_EQUAL(rc, 0);
5211 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5212 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5213 	ioch = spdk_bdev_get_io_channel(desc);
5214 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5215 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5216 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5217 
5218 	fn_table.submit_request = stub_submit_request;
5219 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5220 
5221 	/* Case 1: First test the request won't be split */
5222 	num_blocks = 32;
5223 
5224 	g_io_done = false;
5225 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 0, num_blocks, 0);
5226 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5227 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5228 	CU_ASSERT_EQUAL(rc, 0);
5229 	CU_ASSERT(g_io_done == false);
5230 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5231 	stub_complete_io(1);
5232 	CU_ASSERT(g_io_done == true);
5233 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5234 
5235 	/* Case 2: Test the split with 2 children requests */
5236 	bdev->max_unmap = 8;
5237 	bdev->max_unmap_segments = 2;
5238 	max_unmap_blocks = bdev->max_unmap * bdev->max_unmap_segments;
5239 	num_blocks = max_unmap_blocks * 2;
5240 	offset = 0;
5241 
5242 	g_io_done = false;
5243 	for (i = 0; i < 2; i++) {
5244 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5245 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5246 		offset += max_unmap_blocks;
5247 	}
5248 
5249 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5250 	CU_ASSERT_EQUAL(rc, 0);
5251 	CU_ASSERT(g_io_done == false);
5252 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5253 	stub_complete_io(2);
5254 	CU_ASSERT(g_io_done == true);
5255 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5256 
5257 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5258 	num_children = 15;
5259 	num_blocks = max_unmap_blocks * num_children;
5260 	g_io_done = false;
5261 	offset = 0;
5262 	for (i = 0; i < num_children; i++) {
5263 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5264 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5265 		offset += max_unmap_blocks;
5266 	}
5267 
5268 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5269 	CU_ASSERT_EQUAL(rc, 0);
5270 	CU_ASSERT(g_io_done == false);
5271 
5272 	while (num_children > 0) {
5273 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5274 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5275 		stub_complete_io(num_outstanding);
5276 		num_children -= num_outstanding;
5277 	}
5278 	CU_ASSERT(g_io_done == true);
5279 
5280 	spdk_put_io_channel(ioch);
5281 	spdk_bdev_close(desc);
5282 	free_bdev(bdev);
5283 	ut_fini_bdev();
5284 }
5285 
5286 static void
5287 bdev_write_zeroes_split_test(void)
5288 {
5289 	struct spdk_bdev *bdev;
5290 	struct spdk_bdev_desc *desc = NULL;
5291 	struct spdk_io_channel *ioch;
5292 	struct spdk_bdev_channel *bdev_ch;
5293 	struct ut_expected_io *expected_io;
5294 	struct spdk_bdev_opts bdev_opts = {};
5295 	uint32_t i, num_outstanding;
5296 	uint64_t offset, num_blocks, max_write_zeroes_blocks, num_children;
5297 	int rc;
5298 
5299 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5300 	bdev_opts.bdev_io_pool_size = 512;
5301 	bdev_opts.bdev_io_cache_size = 64;
5302 	ut_init_bdev(&bdev_opts);
5303 
5304 	bdev = allocate_bdev("bdev");
5305 
5306 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5307 	CU_ASSERT_EQUAL(rc, 0);
5308 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5309 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5310 	ioch = spdk_bdev_get_io_channel(desc);
5311 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5312 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5313 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5314 
5315 	fn_table.submit_request = stub_submit_request;
5316 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5317 
5318 	/* Case 1: First test the request won't be split */
5319 	num_blocks = 32;
5320 
5321 	g_io_done = false;
5322 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
5323 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5324 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5325 	CU_ASSERT_EQUAL(rc, 0);
5326 	CU_ASSERT(g_io_done == false);
5327 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5328 	stub_complete_io(1);
5329 	CU_ASSERT(g_io_done == true);
5330 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5331 
5332 	/* Case 2: Test the split with 2 children requests */
5333 	max_write_zeroes_blocks = 8;
5334 	bdev->max_write_zeroes = max_write_zeroes_blocks;
5335 	num_blocks = max_write_zeroes_blocks * 2;
5336 	offset = 0;
5337 
5338 	g_io_done = false;
5339 	for (i = 0; i < 2; i++) {
5340 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5341 						   0);
5342 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5343 		offset += max_write_zeroes_blocks;
5344 	}
5345 
5346 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5347 	CU_ASSERT_EQUAL(rc, 0);
5348 	CU_ASSERT(g_io_done == false);
5349 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5350 	stub_complete_io(2);
5351 	CU_ASSERT(g_io_done == true);
5352 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5353 
5354 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5355 	num_children = 15;
5356 	num_blocks = max_write_zeroes_blocks * num_children;
5357 	g_io_done = false;
5358 	offset = 0;
5359 	for (i = 0; i < num_children; i++) {
5360 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5361 						   0);
5362 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5363 		offset += max_write_zeroes_blocks;
5364 	}
5365 
5366 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5367 	CU_ASSERT_EQUAL(rc, 0);
5368 	CU_ASSERT(g_io_done == false);
5369 
5370 	while (num_children > 0) {
5371 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5372 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5373 		stub_complete_io(num_outstanding);
5374 		num_children -= num_outstanding;
5375 	}
5376 	CU_ASSERT(g_io_done == true);
5377 
5378 	spdk_put_io_channel(ioch);
5379 	spdk_bdev_close(desc);
5380 	free_bdev(bdev);
5381 	ut_fini_bdev();
5382 }
5383 
5384 static void
5385 bdev_set_options_test(void)
5386 {
5387 	struct spdk_bdev_opts bdev_opts = {};
5388 	int rc;
5389 
5390 	/* Case1: Do not set opts_size */
5391 	rc = spdk_bdev_set_opts(&bdev_opts);
5392 	CU_ASSERT(rc == -1);
5393 
5394 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5395 	bdev_opts.bdev_io_pool_size = 4;
5396 	bdev_opts.bdev_io_cache_size = 2;
5397 	bdev_opts.small_buf_pool_size = 4;
5398 
5399 	/* Case 2: Do not set valid small_buf_pool_size and large_buf_pool_size */
5400 	rc = spdk_bdev_set_opts(&bdev_opts);
5401 	CU_ASSERT(rc == -1);
5402 
5403 	/* Case 3: Do not set valid large_buf_pool_size */
5404 	bdev_opts.small_buf_pool_size = BUF_SMALL_POOL_SIZE;
5405 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE - 1;
5406 	rc = spdk_bdev_set_opts(&bdev_opts);
5407 	CU_ASSERT(rc == -1);
5408 
5409 	/* Case4: set valid large buf_pool_size */
5410 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE;
5411 	rc = spdk_bdev_set_opts(&bdev_opts);
5412 	CU_ASSERT(rc == 0);
5413 
5414 	/* Case5: Set different valid value for small and large buf pool */
5415 	bdev_opts.large_buf_pool_size = BUF_SMALL_POOL_SIZE + 3;
5416 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE + 3;
5417 	rc = spdk_bdev_set_opts(&bdev_opts);
5418 	CU_ASSERT(rc == 0);
5419 }
5420 
5421 static uint64_t
5422 get_ns_time(void)
5423 {
5424 	int rc;
5425 	struct timespec ts;
5426 
5427 	rc = clock_gettime(CLOCK_MONOTONIC, &ts);
5428 	CU_ASSERT(rc == 0);
5429 	return ts.tv_sec * 1000 * 1000 * 1000 + ts.tv_nsec;
5430 }
5431 
5432 static int
5433 rb_tree_get_height(struct spdk_bdev_name *bdev_name)
5434 {
5435 	int h1, h2;
5436 
5437 	if (bdev_name == NULL) {
5438 		return -1;
5439 	} else {
5440 		h1 = rb_tree_get_height(RB_LEFT(bdev_name, node));
5441 		h2 = rb_tree_get_height(RB_RIGHT(bdev_name, node));
5442 
5443 		return spdk_max(h1, h2) + 1;
5444 	}
5445 }
5446 
5447 static void
5448 bdev_multi_allocation(void)
5449 {
5450 	const int max_bdev_num = 1024 * 16;
5451 	char name[max_bdev_num][16];
5452 	char noexist_name[] = "invalid_bdev";
5453 	struct spdk_bdev *bdev[max_bdev_num];
5454 	int i, j;
5455 	uint64_t last_time;
5456 	int bdev_num;
5457 	int height;
5458 
5459 	for (j = 0; j < max_bdev_num; j++) {
5460 		snprintf(name[j], sizeof(name[j]), "bdev%d", j);
5461 	}
5462 
5463 	for (i = 0; i < 16; i++) {
5464 		last_time = get_ns_time();
5465 		bdev_num = 1024 * (i + 1);
5466 		for (j = 0; j < bdev_num; j++) {
5467 			bdev[j] = allocate_bdev(name[j]);
5468 			height = rb_tree_get_height(&bdev[j]->internal.bdev_name);
5469 			CU_ASSERT(height <= (int)(spdk_u32log2(2 * j + 2)));
5470 		}
5471 		SPDK_NOTICELOG("alloc bdev num %d takes %" PRIu64 " ms\n", bdev_num,
5472 			       (get_ns_time() - last_time) / 1000 / 1000);
5473 		for (j = 0; j < bdev_num; j++) {
5474 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) != NULL);
5475 		}
5476 		CU_ASSERT(spdk_bdev_get_by_name(noexist_name) == NULL);
5477 
5478 		for (j = 0; j < bdev_num; j++) {
5479 			free_bdev(bdev[j]);
5480 		}
5481 		for (j = 0; j < bdev_num; j++) {
5482 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) == NULL);
5483 		}
5484 	}
5485 }
5486 
5487 static struct spdk_memory_domain *g_bdev_memory_domain = (struct spdk_memory_domain *) 0xf00df00d;
5488 
5489 static int
5490 test_bdev_get_supported_dma_device_types_op(void *ctx, struct spdk_memory_domain **domains,
5491 		int array_size)
5492 {
5493 	if (array_size > 0 && domains) {
5494 		domains[0] = g_bdev_memory_domain;
5495 	}
5496 
5497 	return 1;
5498 }
5499 
5500 static void
5501 bdev_get_memory_domains(void)
5502 {
5503 	struct spdk_bdev_fn_table fn_table = {
5504 		.get_memory_domains = test_bdev_get_supported_dma_device_types_op
5505 	};
5506 	struct spdk_bdev bdev = { .fn_table = &fn_table };
5507 	struct spdk_memory_domain *domains[2] = {};
5508 	int rc;
5509 
5510 	/* bdev is NULL */
5511 	rc = spdk_bdev_get_memory_domains(NULL, domains, 2);
5512 	CU_ASSERT(rc == -EINVAL);
5513 
5514 	/* domains is NULL */
5515 	rc = spdk_bdev_get_memory_domains(&bdev, NULL, 2);
5516 	CU_ASSERT(rc == 1);
5517 
5518 	/* array size is 0 */
5519 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 0);
5520 	CU_ASSERT(rc == 1);
5521 
5522 	/* get_supported_dma_device_types op is set */
5523 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5524 	CU_ASSERT(rc == 1);
5525 	CU_ASSERT(domains[0] == g_bdev_memory_domain);
5526 
5527 	/* get_supported_dma_device_types op is not set */
5528 	fn_table.get_memory_domains = NULL;
5529 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5530 	CU_ASSERT(rc == 0);
5531 }
5532 
5533 static void
5534 _bdev_io_ext(struct spdk_bdev_ext_io_opts *ext_io_opts)
5535 {
5536 	struct spdk_bdev *bdev;
5537 	struct spdk_bdev_desc *desc = NULL;
5538 	struct spdk_io_channel *io_ch;
5539 	char io_buf[512];
5540 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5541 	struct ut_expected_io *expected_io;
5542 	int rc;
5543 
5544 	ut_init_bdev(NULL);
5545 
5546 	bdev = allocate_bdev("bdev0");
5547 	bdev->md_interleave = false;
5548 	bdev->md_len = 8;
5549 
5550 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5551 	CU_ASSERT(rc == 0);
5552 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5553 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5554 	io_ch = spdk_bdev_get_io_channel(desc);
5555 	CU_ASSERT(io_ch != NULL);
5556 
5557 	/* read */
5558 	g_io_done = false;
5559 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5560 	if (ext_io_opts) {
5561 		expected_io->md_buf = ext_io_opts->metadata;
5562 	}
5563 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5564 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5565 
5566 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5567 
5568 	CU_ASSERT(rc == 0);
5569 	CU_ASSERT(g_io_done == false);
5570 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5571 	stub_complete_io(1);
5572 	CU_ASSERT(g_io_done == true);
5573 
5574 	/* write */
5575 	g_io_done = false;
5576 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5577 	if (ext_io_opts) {
5578 		expected_io->md_buf = ext_io_opts->metadata;
5579 	}
5580 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5581 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5582 
5583 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5584 
5585 	CU_ASSERT(rc == 0);
5586 	CU_ASSERT(g_io_done == false);
5587 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5588 	stub_complete_io(1);
5589 	CU_ASSERT(g_io_done == true);
5590 
5591 	spdk_put_io_channel(io_ch);
5592 	spdk_bdev_close(desc);
5593 	free_bdev(bdev);
5594 	ut_fini_bdev();
5595 
5596 }
5597 
5598 static void
5599 bdev_io_ext(void)
5600 {
5601 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5602 		.metadata = (void *)0xFF000000,
5603 		.size = sizeof(ext_io_opts)
5604 	};
5605 
5606 	_bdev_io_ext(&ext_io_opts);
5607 }
5608 
5609 static void
5610 bdev_io_ext_no_opts(void)
5611 {
5612 	_bdev_io_ext(NULL);
5613 }
5614 
5615 static void
5616 bdev_io_ext_invalid_opts(void)
5617 {
5618 	struct spdk_bdev *bdev;
5619 	struct spdk_bdev_desc *desc = NULL;
5620 	struct spdk_io_channel *io_ch;
5621 	char io_buf[512];
5622 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5623 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5624 		.metadata = (void *)0xFF000000,
5625 		.size = sizeof(ext_io_opts)
5626 	};
5627 	int rc;
5628 
5629 	ut_init_bdev(NULL);
5630 
5631 	bdev = allocate_bdev("bdev0");
5632 	bdev->md_interleave = false;
5633 	bdev->md_len = 8;
5634 
5635 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5636 	CU_ASSERT(rc == 0);
5637 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5638 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5639 	io_ch = spdk_bdev_get_io_channel(desc);
5640 	CU_ASSERT(io_ch != NULL);
5641 
5642 	/* Test invalid ext_opts size */
5643 	ext_io_opts.size = 0;
5644 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5645 	CU_ASSERT(rc == -EINVAL);
5646 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5647 	CU_ASSERT(rc == -EINVAL);
5648 
5649 	ext_io_opts.size = sizeof(ext_io_opts) * 2;
5650 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5651 	CU_ASSERT(rc == -EINVAL);
5652 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5653 	CU_ASSERT(rc == -EINVAL);
5654 
5655 	ext_io_opts.size = offsetof(struct spdk_bdev_ext_io_opts, metadata) +
5656 			   sizeof(ext_io_opts.metadata) - 1;
5657 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5658 	CU_ASSERT(rc == -EINVAL);
5659 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5660 	CU_ASSERT(rc == -EINVAL);
5661 
5662 	spdk_put_io_channel(io_ch);
5663 	spdk_bdev_close(desc);
5664 	free_bdev(bdev);
5665 	ut_fini_bdev();
5666 }
5667 
5668 static void
5669 bdev_io_ext_split(void)
5670 {
5671 	struct spdk_bdev *bdev;
5672 	struct spdk_bdev_desc *desc = NULL;
5673 	struct spdk_io_channel *io_ch;
5674 	char io_buf[512];
5675 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5676 	struct ut_expected_io *expected_io;
5677 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5678 		.metadata = (void *)0xFF000000,
5679 		.size = sizeof(ext_io_opts)
5680 	};
5681 	int rc;
5682 
5683 	ut_init_bdev(NULL);
5684 
5685 	bdev = allocate_bdev("bdev0");
5686 	bdev->md_interleave = false;
5687 	bdev->md_len = 8;
5688 
5689 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5690 	CU_ASSERT(rc == 0);
5691 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5692 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5693 	io_ch = spdk_bdev_get_io_channel(desc);
5694 	CU_ASSERT(io_ch != NULL);
5695 
5696 	/* Check that IO request with ext_opts and metadata is split correctly
5697 	 * Offset 14, length 8, payload 0xF000
5698 	 *  Child - Offset 14, length 2, payload 0xF000
5699 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5700 	 */
5701 	bdev->optimal_io_boundary = 16;
5702 	bdev->split_on_optimal_io_boundary = true;
5703 	bdev->md_interleave = false;
5704 	bdev->md_len = 8;
5705 
5706 	iov.iov_base = (void *)0xF000;
5707 	iov.iov_len = 4096;
5708 	memset(&ext_io_opts, 0, sizeof(ext_io_opts));
5709 	ext_io_opts.metadata = (void *)0xFF000000;
5710 	ext_io_opts.size = sizeof(ext_io_opts);
5711 	g_io_done = false;
5712 
5713 	/* read */
5714 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
5715 	expected_io->md_buf = ext_io_opts.metadata;
5716 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5717 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5718 
5719 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
5720 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5721 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5722 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5723 
5724 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5725 	CU_ASSERT(rc == 0);
5726 	CU_ASSERT(g_io_done == false);
5727 
5728 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5729 	stub_complete_io(2);
5730 	CU_ASSERT(g_io_done == true);
5731 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5732 
5733 	/* write */
5734 	g_io_done = false;
5735 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
5736 	expected_io->md_buf = ext_io_opts.metadata;
5737 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5738 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5739 
5740 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 6, 1);
5741 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5742 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5743 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5744 
5745 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5746 	CU_ASSERT(rc == 0);
5747 	CU_ASSERT(g_io_done == false);
5748 
5749 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5750 	stub_complete_io(2);
5751 	CU_ASSERT(g_io_done == true);
5752 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5753 
5754 	spdk_put_io_channel(io_ch);
5755 	spdk_bdev_close(desc);
5756 	free_bdev(bdev);
5757 	ut_fini_bdev();
5758 }
5759 
5760 static void
5761 bdev_io_ext_bounce_buffer(void)
5762 {
5763 	struct spdk_bdev *bdev;
5764 	struct spdk_bdev_desc *desc = NULL;
5765 	struct spdk_io_channel *io_ch;
5766 	char io_buf[512];
5767 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5768 	struct ut_expected_io *expected_io;
5769 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5770 		.metadata = (void *)0xFF000000,
5771 		.size = sizeof(ext_io_opts)
5772 	};
5773 	int rc;
5774 
5775 	ut_init_bdev(NULL);
5776 
5777 	bdev = allocate_bdev("bdev0");
5778 	bdev->md_interleave = false;
5779 	bdev->md_len = 8;
5780 
5781 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5782 	CU_ASSERT(rc == 0);
5783 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5784 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5785 	io_ch = spdk_bdev_get_io_channel(desc);
5786 	CU_ASSERT(io_ch != NULL);
5787 
5788 	/* Verify data pull/push
5789 	 * bdev doesn't support memory domains, so buffers from bdev memory pool will be used */
5790 	ext_io_opts.memory_domain = (struct spdk_memory_domain *)0xdeadbeef;
5791 
5792 	/* read */
5793 	g_io_done = false;
5794 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5795 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5796 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5797 
5798 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5799 
5800 	CU_ASSERT(rc == 0);
5801 	CU_ASSERT(g_io_done == false);
5802 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5803 	stub_complete_io(1);
5804 	CU_ASSERT(g_memory_domain_push_data_called == true);
5805 	CU_ASSERT(g_io_done == true);
5806 
5807 	/* write */
5808 	g_io_done = false;
5809 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5810 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5811 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5812 
5813 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5814 
5815 	CU_ASSERT(rc == 0);
5816 	CU_ASSERT(g_memory_domain_pull_data_called == true);
5817 	CU_ASSERT(g_io_done == false);
5818 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5819 	stub_complete_io(1);
5820 	CU_ASSERT(g_io_done == true);
5821 
5822 	spdk_put_io_channel(io_ch);
5823 	spdk_bdev_close(desc);
5824 	free_bdev(bdev);
5825 	ut_fini_bdev();
5826 }
5827 
5828 static void
5829 bdev_register_uuid_alias(void)
5830 {
5831 	struct spdk_bdev *bdev, *second;
5832 	char uuid[SPDK_UUID_STRING_LEN];
5833 	int rc;
5834 
5835 	ut_init_bdev(NULL);
5836 	bdev = allocate_bdev("bdev0");
5837 
5838 	/* Make sure an UUID was generated  */
5839 	CU_ASSERT_FALSE(spdk_mem_all_zero(&bdev->uuid, sizeof(bdev->uuid)));
5840 
5841 	/* Check that an UUID alias was registered */
5842 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5843 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5844 
5845 	/* Unregister the bdev */
5846 	spdk_bdev_unregister(bdev, NULL, NULL);
5847 	poll_threads();
5848 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5849 
5850 	/* Check the same, but this time register the bdev with non-zero UUID */
5851 	rc = spdk_bdev_register(bdev);
5852 	CU_ASSERT_EQUAL(rc, 0);
5853 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5854 
5855 	/* Unregister the bdev */
5856 	spdk_bdev_unregister(bdev, NULL, NULL);
5857 	poll_threads();
5858 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5859 
5860 	/* Regiser the bdev using UUID as the name */
5861 	bdev->name = uuid;
5862 	rc = spdk_bdev_register(bdev);
5863 	CU_ASSERT_EQUAL(rc, 0);
5864 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5865 
5866 	/* Unregister the bdev */
5867 	spdk_bdev_unregister(bdev, NULL, NULL);
5868 	poll_threads();
5869 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5870 
5871 	/* Check that it's not possible to register two bdevs with the same UUIDs */
5872 	bdev->name = "bdev0";
5873 	second = allocate_bdev("bdev1");
5874 	spdk_uuid_copy(&bdev->uuid, &second->uuid);
5875 	rc = spdk_bdev_register(bdev);
5876 	CU_ASSERT_EQUAL(rc, -EEXIST);
5877 
5878 	/* Regenerate the UUID and re-check */
5879 	spdk_uuid_generate(&bdev->uuid);
5880 	rc = spdk_bdev_register(bdev);
5881 	CU_ASSERT_EQUAL(rc, 0);
5882 
5883 	/* And check that both bdevs can be retrieved through their UUIDs */
5884 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5885 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5886 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &second->uuid);
5887 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), second);
5888 
5889 	free_bdev(second);
5890 	free_bdev(bdev);
5891 	ut_fini_bdev();
5892 }
5893 
5894 static void
5895 bdev_unregister_by_name(void)
5896 {
5897 	struct spdk_bdev *bdev;
5898 	int rc;
5899 
5900 	bdev = allocate_bdev("bdev");
5901 
5902 	g_event_type1 = 0xFF;
5903 	g_unregister_arg = NULL;
5904 	g_unregister_rc = -1;
5905 
5906 	rc = spdk_bdev_unregister_by_name("bdev1", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5907 	CU_ASSERT(rc == -ENODEV);
5908 
5909 	rc = spdk_bdev_unregister_by_name("bdev", &vbdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5910 	CU_ASSERT(rc == -ENODEV);
5911 
5912 	rc = spdk_bdev_unregister_by_name("bdev", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5913 	CU_ASSERT(rc == 0);
5914 
5915 	/* Check that unregister callback is delayed */
5916 	CU_ASSERT(g_unregister_arg == NULL);
5917 	CU_ASSERT(g_unregister_rc == -1);
5918 
5919 	poll_threads();
5920 
5921 	/* Event callback shall not be issued because device was closed */
5922 	CU_ASSERT(g_event_type1 == 0xFF);
5923 	/* Unregister callback is issued */
5924 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
5925 	CU_ASSERT(g_unregister_rc == 0);
5926 
5927 	free_bdev(bdev);
5928 }
5929 
5930 static int
5931 count_bdevs(void *ctx, struct spdk_bdev *bdev)
5932 {
5933 	int *count = ctx;
5934 
5935 	(*count)++;
5936 
5937 	return 0;
5938 }
5939 
5940 static void
5941 for_each_bdev_test(void)
5942 {
5943 	struct spdk_bdev *bdev[8];
5944 	int rc, count;
5945 
5946 	bdev[0] = allocate_bdev("bdev0");
5947 	bdev[0]->internal.status = SPDK_BDEV_STATUS_REMOVING;
5948 
5949 	bdev[1] = allocate_bdev("bdev1");
5950 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
5951 	CU_ASSERT(rc == 0);
5952 
5953 	bdev[2] = allocate_bdev("bdev2");
5954 
5955 	bdev[3] = allocate_bdev("bdev3");
5956 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
5957 	CU_ASSERT(rc == 0);
5958 
5959 	bdev[4] = allocate_bdev("bdev4");
5960 
5961 	bdev[5] = allocate_bdev("bdev5");
5962 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
5963 	CU_ASSERT(rc == 0);
5964 
5965 	bdev[6] = allocate_bdev("bdev6");
5966 
5967 	bdev[7] = allocate_bdev("bdev7");
5968 
5969 	count = 0;
5970 	rc = spdk_for_each_bdev(&count, count_bdevs);
5971 	CU_ASSERT(rc == 0);
5972 	CU_ASSERT(count == 7);
5973 
5974 	count = 0;
5975 	rc = spdk_for_each_bdev_leaf(&count, count_bdevs);
5976 	CU_ASSERT(rc == 0);
5977 	CU_ASSERT(count == 4);
5978 
5979 	bdev[0]->internal.status = SPDK_BDEV_STATUS_READY;
5980 	free_bdev(bdev[0]);
5981 	free_bdev(bdev[1]);
5982 	free_bdev(bdev[2]);
5983 	free_bdev(bdev[3]);
5984 	free_bdev(bdev[4]);
5985 	free_bdev(bdev[5]);
5986 	free_bdev(bdev[6]);
5987 	free_bdev(bdev[7]);
5988 }
5989 
5990 static void
5991 bdev_seek_test(void)
5992 {
5993 	struct spdk_bdev *bdev;
5994 	struct spdk_bdev_desc *desc = NULL;
5995 	struct spdk_io_channel *io_ch;
5996 	int rc;
5997 
5998 	ut_init_bdev(NULL);
5999 	poll_threads();
6000 
6001 	bdev = allocate_bdev("bdev0");
6002 
6003 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6004 	CU_ASSERT(rc == 0);
6005 	poll_threads();
6006 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6007 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6008 	io_ch = spdk_bdev_get_io_channel(desc);
6009 	CU_ASSERT(io_ch != NULL);
6010 
6011 	/* Seek data not supported */
6012 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, false);
6013 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
6014 	CU_ASSERT(rc == 0);
6015 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6016 	poll_threads();
6017 	CU_ASSERT(g_seek_offset == 0);
6018 
6019 	/* Seek hole not supported */
6020 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, false);
6021 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
6022 	CU_ASSERT(rc == 0);
6023 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6024 	poll_threads();
6025 	CU_ASSERT(g_seek_offset == UINT64_MAX);
6026 
6027 	/* Seek data supported */
6028 	g_seek_data_offset = 12345;
6029 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, true);
6030 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
6031 	CU_ASSERT(rc == 0);
6032 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6033 	stub_complete_io(1);
6034 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6035 	CU_ASSERT(g_seek_offset == 12345);
6036 
6037 	/* Seek hole supported */
6038 	g_seek_hole_offset = 67890;
6039 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, true);
6040 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
6041 	CU_ASSERT(rc == 0);
6042 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6043 	stub_complete_io(1);
6044 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6045 	CU_ASSERT(g_seek_offset == 67890);
6046 
6047 	spdk_put_io_channel(io_ch);
6048 	spdk_bdev_close(desc);
6049 	free_bdev(bdev);
6050 	ut_fini_bdev();
6051 }
6052 
6053 static void
6054 bdev_copy(void)
6055 {
6056 	struct spdk_bdev *bdev;
6057 	struct spdk_bdev_desc *desc = NULL;
6058 	struct spdk_io_channel *ioch;
6059 	struct ut_expected_io *expected_io;
6060 	uint64_t src_offset, num_blocks;
6061 	uint32_t num_completed;
6062 	int rc;
6063 
6064 	ut_init_bdev(NULL);
6065 	bdev = allocate_bdev("bdev");
6066 
6067 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6068 	CU_ASSERT_EQUAL(rc, 0);
6069 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6070 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6071 	ioch = spdk_bdev_get_io_channel(desc);
6072 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6073 
6074 	fn_table.submit_request = stub_submit_request;
6075 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6076 
6077 	/* First test that if the bdev supports copy, the request won't be split */
6078 	bdev->md_len = 0;
6079 	bdev->blocklen = 512;
6080 	num_blocks = 128;
6081 	src_offset = bdev->blockcnt - num_blocks;
6082 
6083 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6084 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6085 
6086 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6087 	CU_ASSERT_EQUAL(rc, 0);
6088 	num_completed = stub_complete_io(1);
6089 	CU_ASSERT_EQUAL(num_completed, 1);
6090 
6091 	/* Check that if copy is not supported it'll still work */
6092 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, src_offset, num_blocks, 0);
6093 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6094 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, num_blocks, 0);
6095 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6096 
6097 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false);
6098 
6099 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6100 	CU_ASSERT_EQUAL(rc, 0);
6101 	num_completed = stub_complete_io(1);
6102 	CU_ASSERT_EQUAL(num_completed, 1);
6103 	num_completed = stub_complete_io(1);
6104 	CU_ASSERT_EQUAL(num_completed, 1);
6105 
6106 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true);
6107 	spdk_put_io_channel(ioch);
6108 	spdk_bdev_close(desc);
6109 	free_bdev(bdev);
6110 	ut_fini_bdev();
6111 }
6112 
6113 static void
6114 bdev_copy_split_test(void)
6115 {
6116 	struct spdk_bdev *bdev;
6117 	struct spdk_bdev_desc *desc = NULL;
6118 	struct spdk_io_channel *ioch;
6119 	struct spdk_bdev_channel *bdev_ch;
6120 	struct ut_expected_io *expected_io;
6121 	struct spdk_bdev_opts bdev_opts = {};
6122 	uint32_t i, num_outstanding;
6123 	uint64_t offset, src_offset, num_blocks, max_copy_blocks, num_children;
6124 	int rc;
6125 
6126 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
6127 	bdev_opts.bdev_io_pool_size = 512;
6128 	bdev_opts.bdev_io_cache_size = 64;
6129 	rc = spdk_bdev_set_opts(&bdev_opts);
6130 	CU_ASSERT(rc == 0);
6131 
6132 	ut_init_bdev(NULL);
6133 	bdev = allocate_bdev("bdev");
6134 
6135 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6136 	CU_ASSERT_EQUAL(rc, 0);
6137 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6138 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6139 	ioch = spdk_bdev_get_io_channel(desc);
6140 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6141 	bdev_ch = spdk_io_channel_get_ctx(ioch);
6142 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
6143 
6144 	fn_table.submit_request = stub_submit_request;
6145 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6146 
6147 	/* Case 1: First test the request won't be split */
6148 	num_blocks = 32;
6149 	src_offset = bdev->blockcnt - num_blocks;
6150 
6151 	g_io_done = false;
6152 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6153 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6154 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6155 	CU_ASSERT_EQUAL(rc, 0);
6156 	CU_ASSERT(g_io_done == false);
6157 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6158 	stub_complete_io(1);
6159 	CU_ASSERT(g_io_done == true);
6160 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6161 
6162 	/* Case 2: Test the split with 2 children requests */
6163 	max_copy_blocks = 8;
6164 	bdev->max_copy = max_copy_blocks;
6165 	num_children = 2;
6166 	num_blocks = max_copy_blocks * num_children;
6167 	offset = 0;
6168 	src_offset = bdev->blockcnt - num_blocks;
6169 
6170 	g_io_done = false;
6171 	for (i = 0; i < num_children; i++) {
6172 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6173 							src_offset + offset, max_copy_blocks);
6174 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6175 		offset += max_copy_blocks;
6176 	}
6177 
6178 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6179 	CU_ASSERT_EQUAL(rc, 0);
6180 	CU_ASSERT(g_io_done == false);
6181 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_children);
6182 	stub_complete_io(num_children);
6183 	CU_ASSERT(g_io_done == true);
6184 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6185 
6186 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
6187 	num_children = 15;
6188 	num_blocks = max_copy_blocks * num_children;
6189 	offset = 0;
6190 	src_offset = bdev->blockcnt - num_blocks;
6191 
6192 	g_io_done = false;
6193 	for (i = 0; i < num_children; i++) {
6194 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6195 							src_offset + offset, max_copy_blocks);
6196 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6197 		offset += max_copy_blocks;
6198 	}
6199 
6200 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6201 	CU_ASSERT_EQUAL(rc, 0);
6202 	CU_ASSERT(g_io_done == false);
6203 
6204 	while (num_children > 0) {
6205 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_COPY_REQS);
6206 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6207 		stub_complete_io(num_outstanding);
6208 		num_children -= num_outstanding;
6209 	}
6210 	CU_ASSERT(g_io_done == true);
6211 
6212 	spdk_put_io_channel(ioch);
6213 	spdk_bdev_close(desc);
6214 	free_bdev(bdev);
6215 	ut_fini_bdev();
6216 }
6217 
6218 static void
6219 examine_claim_v1(struct spdk_bdev *bdev)
6220 {
6221 	int rc;
6222 
6223 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &vbdev_ut_if);
6224 	CU_ASSERT(rc == 0);
6225 }
6226 
6227 static void
6228 examine_no_lock_held(struct spdk_bdev *bdev)
6229 {
6230 	CU_ASSERT(!spdk_spin_held(&g_bdev_mgr.spinlock));
6231 	CU_ASSERT(!spdk_spin_held(&bdev->internal.spinlock));
6232 }
6233 
6234 struct examine_claim_v2_ctx {
6235 	struct ut_examine_ctx examine_ctx;
6236 	enum spdk_bdev_claim_type claim_type;
6237 	struct spdk_bdev_desc *desc;
6238 };
6239 
6240 static void
6241 examine_claim_v2(struct spdk_bdev *bdev)
6242 {
6243 	struct examine_claim_v2_ctx *ctx = bdev->ctxt;
6244 	int rc;
6245 
6246 	rc = spdk_bdev_open_ext(bdev->name, false, bdev_ut_event_cb, NULL, &ctx->desc);
6247 	CU_ASSERT(rc == 0);
6248 
6249 	rc = spdk_bdev_module_claim_bdev_desc(ctx->desc, ctx->claim_type, NULL, &vbdev_ut_if);
6250 	CU_ASSERT(rc == 0);
6251 }
6252 
6253 static void
6254 examine_locks(void)
6255 {
6256 	struct spdk_bdev *bdev;
6257 	struct ut_examine_ctx ctx = { 0 };
6258 	struct examine_claim_v2_ctx v2_ctx;
6259 
6260 	/* Without any claims, one code path is taken */
6261 	ctx.examine_config = examine_no_lock_held;
6262 	ctx.examine_disk = examine_no_lock_held;
6263 	bdev = allocate_bdev_ctx("bdev0", &ctx);
6264 	CU_ASSERT(ctx.examine_config_count == 1);
6265 	CU_ASSERT(ctx.examine_disk_count == 1);
6266 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6267 	CU_ASSERT(bdev->internal.claim.v1.module == NULL);
6268 	free_bdev(bdev);
6269 
6270 	/* Exercise another path that is taken when examine_config() takes a v1 claim. */
6271 	memset(&ctx, 0, sizeof(ctx));
6272 	ctx.examine_config = examine_claim_v1;
6273 	ctx.examine_disk = examine_no_lock_held;
6274 	bdev = allocate_bdev_ctx("bdev0", &ctx);
6275 	CU_ASSERT(ctx.examine_config_count == 1);
6276 	CU_ASSERT(ctx.examine_disk_count == 1);
6277 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
6278 	CU_ASSERT(bdev->internal.claim.v1.module == &vbdev_ut_if);
6279 	spdk_bdev_module_release_bdev(bdev);
6280 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6281 	CU_ASSERT(bdev->internal.claim.v1.module == NULL);
6282 	free_bdev(bdev);
6283 
6284 	/* Exercise the final path that comes with v2 claims. */
6285 	memset(&v2_ctx, 0, sizeof(v2_ctx));
6286 	v2_ctx.examine_ctx.examine_config = examine_claim_v2;
6287 	v2_ctx.examine_ctx.examine_disk = examine_no_lock_held;
6288 	v2_ctx.claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
6289 	bdev = allocate_bdev_ctx("bdev0", &v2_ctx);
6290 	CU_ASSERT(v2_ctx.examine_ctx.examine_config_count == 1);
6291 	CU_ASSERT(v2_ctx.examine_ctx.examine_disk_count == 1);
6292 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6293 	spdk_bdev_close(v2_ctx.desc);
6294 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6295 	free_bdev(bdev);
6296 }
6297 
6298 #define UT_ASSERT_CLAIM_V2_COUNT(bdev, expect) \
6299 	do { \
6300 		uint32_t len = 0; \
6301 		struct spdk_bdev_module_claim *claim; \
6302 		TAILQ_FOREACH(claim, &bdev->internal.claim.v2.claims, link) { \
6303 			len++; \
6304 		} \
6305 		CU_ASSERT(len == expect); \
6306 	} while (0)
6307 
6308 static void
6309 claim_v2_rwo(void)
6310 {
6311 	struct spdk_bdev *bdev;
6312 	struct spdk_bdev_desc *desc;
6313 	struct spdk_bdev_desc *desc2;
6314 	struct spdk_bdev_claim_opts opts;
6315 	int rc;
6316 
6317 	bdev = allocate_bdev("bdev0");
6318 
6319 	/* Claim without options */
6320 	desc = NULL;
6321 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6322 	CU_ASSERT(rc == 0);
6323 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6324 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6325 					      &bdev_ut_if);
6326 	CU_ASSERT(rc == 0);
6327 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6328 	CU_ASSERT(desc->claim != NULL);
6329 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6330 	CU_ASSERT(strcmp(desc->claim->name, "") == 0);
6331 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6332 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6333 
6334 	/* Release the claim by closing the descriptor */
6335 	spdk_bdev_close(desc);
6336 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6337 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6338 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6339 
6340 	/* Claim with options */
6341 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6342 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6343 	desc = NULL;
6344 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6345 	CU_ASSERT(rc == 0);
6346 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6347 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, &opts,
6348 					      &bdev_ut_if);
6349 	CU_ASSERT(rc == 0);
6350 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6351 	CU_ASSERT(desc->claim != NULL);
6352 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6353 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6354 	memset(&opts, 0, sizeof(opts));
6355 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6356 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6357 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6358 
6359 	/* The claim blocks new writers. */
6360 	desc2 = NULL;
6361 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6362 	CU_ASSERT(rc == -EPERM);
6363 	CU_ASSERT(desc2 == NULL);
6364 
6365 	/* New readers are allowed */
6366 	desc2 = NULL;
6367 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6368 	CU_ASSERT(rc == 0);
6369 	CU_ASSERT(desc2 != NULL);
6370 	CU_ASSERT(!desc2->write);
6371 
6372 	/* No new v2 RWO claims are allowed */
6373 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6374 					      &bdev_ut_if);
6375 	CU_ASSERT(rc == -EPERM);
6376 
6377 	/* No new v2 ROM claims are allowed */
6378 	CU_ASSERT(!desc2->write);
6379 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6380 					      &bdev_ut_if);
6381 	CU_ASSERT(rc == -EPERM);
6382 	CU_ASSERT(!desc2->write);
6383 
6384 	/* No new v2 RWM claims are allowed */
6385 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6386 	opts.shared_claim_key = (uint64_t)&opts;
6387 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6388 					      &bdev_ut_if);
6389 	CU_ASSERT(rc == -EPERM);
6390 	CU_ASSERT(!desc2->write);
6391 
6392 	/* No new v1 claims are allowed */
6393 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6394 	CU_ASSERT(rc == -EPERM);
6395 
6396 	/* None of the above changed the existing claim */
6397 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6398 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6399 
6400 	/* Closing the first descriptor now allows a new claim and it is promoted to rw. */
6401 	spdk_bdev_close(desc);
6402 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6403 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6404 	CU_ASSERT(!desc2->write);
6405 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6406 					      &bdev_ut_if);
6407 	CU_ASSERT(rc == 0);
6408 	CU_ASSERT(desc2->claim != NULL);
6409 	CU_ASSERT(desc2->write);
6410 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6411 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
6412 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6413 	spdk_bdev_close(desc2);
6414 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6415 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6416 
6417 	/* Cannot claim with a key */
6418 	desc = NULL;
6419 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6420 	CU_ASSERT(rc == 0);
6421 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6422 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6423 	opts.shared_claim_key = (uint64_t)&opts;
6424 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, &opts,
6425 					      &bdev_ut_if);
6426 	CU_ASSERT(rc == -EINVAL);
6427 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6428 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6429 	spdk_bdev_close(desc);
6430 
6431 	/* Clean up */
6432 	free_bdev(bdev);
6433 }
6434 
6435 static void
6436 claim_v2_rom(void)
6437 {
6438 	struct spdk_bdev *bdev;
6439 	struct spdk_bdev_desc *desc;
6440 	struct spdk_bdev_desc *desc2;
6441 	struct spdk_bdev_claim_opts opts;
6442 	int rc;
6443 
6444 	bdev = allocate_bdev("bdev0");
6445 
6446 	/* Claim without options */
6447 	desc = NULL;
6448 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6449 	CU_ASSERT(rc == 0);
6450 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6451 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6452 					      &bdev_ut_if);
6453 	CU_ASSERT(rc == 0);
6454 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6455 	CU_ASSERT(desc->claim != NULL);
6456 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6457 	CU_ASSERT(strcmp(desc->claim->name, "") == 0);
6458 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6459 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6460 
6461 	/* Release the claim by closing the descriptor */
6462 	spdk_bdev_close(desc);
6463 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6464 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6465 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6466 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6467 
6468 	/* Claim with options */
6469 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6470 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6471 	desc = NULL;
6472 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6473 	CU_ASSERT(rc == 0);
6474 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6475 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, &opts,
6476 					      &bdev_ut_if);
6477 	CU_ASSERT(rc == 0);
6478 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6479 	SPDK_CU_ASSERT_FATAL(desc->claim != NULL);
6480 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6481 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6482 	memset(&opts, 0, sizeof(opts));
6483 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6484 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6485 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6486 
6487 	/* The claim blocks new writers. */
6488 	desc2 = NULL;
6489 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6490 	CU_ASSERT(rc == -EPERM);
6491 	CU_ASSERT(desc2 == NULL);
6492 
6493 	/* New readers are allowed */
6494 	desc2 = NULL;
6495 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6496 	CU_ASSERT(rc == 0);
6497 	CU_ASSERT(desc2 != NULL);
6498 	CU_ASSERT(!desc2->write);
6499 
6500 	/* No new v2 RWO claims are allowed */
6501 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6502 					      &bdev_ut_if);
6503 	CU_ASSERT(rc == -EPERM);
6504 
6505 	/* No new v2 RWM claims are allowed */
6506 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6507 	opts.shared_claim_key = (uint64_t)&opts;
6508 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6509 					      &bdev_ut_if);
6510 	CU_ASSERT(rc == -EPERM);
6511 	CU_ASSERT(!desc2->write);
6512 
6513 	/* No new v1 claims are allowed */
6514 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6515 	CU_ASSERT(rc == -EPERM);
6516 
6517 	/* None of the above messed up the existing claim */
6518 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6519 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6520 
6521 	/* New v2 ROM claims are allowed and the descriptor stays read-only. */
6522 	CU_ASSERT(!desc2->write);
6523 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6524 					      &bdev_ut_if);
6525 	CU_ASSERT(rc == 0);
6526 	CU_ASSERT(!desc2->write);
6527 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6528 	CU_ASSERT(TAILQ_NEXT(desc->claim, link) == desc2->claim);
6529 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 2);
6530 
6531 	/* Claim remains when closing the first descriptor */
6532 	spdk_bdev_close(desc);
6533 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6534 	CU_ASSERT(!TAILQ_EMPTY(&bdev->internal.open_descs));
6535 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
6536 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6537 
6538 	/* Claim removed when closing the other descriptor */
6539 	spdk_bdev_close(desc2);
6540 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6541 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6542 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6543 
6544 	/* Cannot claim with a key */
6545 	desc = NULL;
6546 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6547 	CU_ASSERT(rc == 0);
6548 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6549 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6550 	opts.shared_claim_key = (uint64_t)&opts;
6551 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, &opts,
6552 					      &bdev_ut_if);
6553 	CU_ASSERT(rc == -EINVAL);
6554 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6555 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6556 	spdk_bdev_close(desc);
6557 
6558 	/* Cannot claim with a read-write descriptor */
6559 	desc = NULL;
6560 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6561 	CU_ASSERT(rc == 0);
6562 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6563 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6564 					      &bdev_ut_if);
6565 	CU_ASSERT(rc == -EINVAL);
6566 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6567 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6568 	spdk_bdev_close(desc);
6569 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6570 
6571 	/* Clean up */
6572 	free_bdev(bdev);
6573 }
6574 
6575 static void
6576 claim_v2_rwm(void)
6577 {
6578 	struct spdk_bdev *bdev;
6579 	struct spdk_bdev_desc *desc;
6580 	struct spdk_bdev_desc *desc2;
6581 	struct spdk_bdev_claim_opts opts;
6582 	char good_key, bad_key;
6583 	int rc;
6584 
6585 	bdev = allocate_bdev("bdev0");
6586 
6587 	/* Claim without options should fail */
6588 	desc = NULL;
6589 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6590 	CU_ASSERT(rc == 0);
6591 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6592 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, NULL,
6593 					      &bdev_ut_if);
6594 	CU_ASSERT(rc == -EINVAL);
6595 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6596 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6597 	CU_ASSERT(desc->claim == NULL);
6598 
6599 	/* Claim with options */
6600 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6601 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6602 	opts.shared_claim_key = (uint64_t)&good_key;
6603 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6604 					      &bdev_ut_if);
6605 	CU_ASSERT(rc == 0);
6606 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED);
6607 	SPDK_CU_ASSERT_FATAL(desc->claim != NULL);
6608 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6609 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6610 	memset(&opts, 0, sizeof(opts));
6611 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6612 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6613 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6614 
6615 	/* The claim blocks new writers. */
6616 	desc2 = NULL;
6617 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6618 	CU_ASSERT(rc == -EPERM);
6619 	CU_ASSERT(desc2 == NULL);
6620 
6621 	/* New readers are allowed */
6622 	desc2 = NULL;
6623 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6624 	CU_ASSERT(rc == 0);
6625 	CU_ASSERT(desc2 != NULL);
6626 	CU_ASSERT(!desc2->write);
6627 
6628 	/* No new v2 RWO claims are allowed */
6629 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6630 					      &bdev_ut_if);
6631 	CU_ASSERT(rc == -EPERM);
6632 
6633 	/* No new v2 ROM claims are allowed and the descriptor stays read-only. */
6634 	CU_ASSERT(!desc2->write);
6635 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6636 					      &bdev_ut_if);
6637 	CU_ASSERT(rc == -EPERM);
6638 	CU_ASSERT(!desc2->write);
6639 
6640 	/* No new v1 claims are allowed */
6641 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6642 	CU_ASSERT(rc == -EPERM);
6643 
6644 	/* No new v2 RWM claims are allowed if the key does not match */
6645 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6646 	opts.shared_claim_key = (uint64_t)&bad_key;
6647 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6648 					      &bdev_ut_if);
6649 	CU_ASSERT(rc == -EPERM);
6650 	CU_ASSERT(!desc2->write);
6651 
6652 	/* None of the above messed up the existing claim */
6653 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6654 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6655 
6656 	/* New v2 RWM claims are allowed and the descriptor is promoted if the key matches. */
6657 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6658 	opts.shared_claim_key = (uint64_t)&good_key;
6659 	CU_ASSERT(!desc2->write);
6660 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6661 					      &bdev_ut_if);
6662 	CU_ASSERT(rc == 0);
6663 	CU_ASSERT(desc2->write);
6664 	CU_ASSERT(TAILQ_NEXT(desc->claim, link) == desc2->claim);
6665 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 2);
6666 
6667 	/* Claim remains when closing the first descriptor */
6668 	spdk_bdev_close(desc);
6669 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED);
6670 	CU_ASSERT(!TAILQ_EMPTY(&bdev->internal.open_descs));
6671 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
6672 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6673 
6674 	/* Claim removed when closing the other descriptor */
6675 	spdk_bdev_close(desc2);
6676 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6677 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6678 
6679 	/* Cannot claim without a key */
6680 	desc = NULL;
6681 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6682 	CU_ASSERT(rc == 0);
6683 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6684 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6685 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6686 					      &bdev_ut_if);
6687 	CU_ASSERT(rc == -EINVAL);
6688 	spdk_bdev_close(desc);
6689 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6690 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6691 
6692 	/* Clean up */
6693 	free_bdev(bdev);
6694 }
6695 
6696 static void
6697 claim_v2_existing_writer(void)
6698 {
6699 	struct spdk_bdev *bdev;
6700 	struct spdk_bdev_desc *desc;
6701 	struct spdk_bdev_desc *desc2;
6702 	struct spdk_bdev_claim_opts opts;
6703 	enum spdk_bdev_claim_type type;
6704 	enum spdk_bdev_claim_type types[] = {
6705 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
6706 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
6707 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
6708 	};
6709 	size_t i;
6710 	int rc;
6711 
6712 	bdev = allocate_bdev("bdev0");
6713 
6714 	desc = NULL;
6715 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6716 	CU_ASSERT(rc == 0);
6717 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6718 	desc2 = NULL;
6719 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6720 	CU_ASSERT(rc == 0);
6721 	SPDK_CU_ASSERT_FATAL(desc2 != NULL);
6722 
6723 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
6724 		type = types[i];
6725 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6726 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
6727 			opts.shared_claim_key = (uint64_t)&opts;
6728 		}
6729 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
6730 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE) {
6731 			CU_ASSERT(rc == -EINVAL);
6732 		} else {
6733 			CU_ASSERT(rc == -EPERM);
6734 		}
6735 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6736 		rc = spdk_bdev_module_claim_bdev_desc(desc2, type, &opts, &bdev_ut_if);
6737 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE) {
6738 			CU_ASSERT(rc == -EINVAL);
6739 		} else {
6740 			CU_ASSERT(rc == -EPERM);
6741 		}
6742 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6743 	}
6744 
6745 	spdk_bdev_close(desc);
6746 	spdk_bdev_close(desc2);
6747 
6748 	/* Clean up */
6749 	free_bdev(bdev);
6750 }
6751 
6752 static void
6753 claim_v2_existing_v1(void)
6754 {
6755 	struct spdk_bdev *bdev;
6756 	struct spdk_bdev_desc *desc;
6757 	struct spdk_bdev_claim_opts opts;
6758 	enum spdk_bdev_claim_type type;
6759 	enum spdk_bdev_claim_type types[] = {
6760 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
6761 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
6762 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
6763 	};
6764 	size_t i;
6765 	int rc;
6766 
6767 	bdev = allocate_bdev("bdev0");
6768 
6769 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6770 	CU_ASSERT(rc == 0);
6771 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
6772 
6773 	desc = NULL;
6774 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6775 	CU_ASSERT(rc == 0);
6776 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6777 
6778 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
6779 		type = types[i];
6780 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6781 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
6782 			opts.shared_claim_key = (uint64_t)&opts;
6783 		}
6784 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
6785 		CU_ASSERT(rc == -EPERM);
6786 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
6787 	}
6788 
6789 	spdk_bdev_module_release_bdev(bdev);
6790 	spdk_bdev_close(desc);
6791 
6792 	/* Clean up */
6793 	free_bdev(bdev);
6794 }
6795 
6796 static void
6797 claim_v1_existing_v2(void)
6798 {
6799 	struct spdk_bdev *bdev;
6800 	struct spdk_bdev_desc *desc;
6801 	struct spdk_bdev_claim_opts opts;
6802 	enum spdk_bdev_claim_type type;
6803 	enum spdk_bdev_claim_type types[] = {
6804 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
6805 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
6806 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
6807 	};
6808 	size_t i;
6809 	int rc;
6810 
6811 	bdev = allocate_bdev("bdev0");
6812 
6813 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
6814 		type = types[i];
6815 
6816 		desc = NULL;
6817 		rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6818 		CU_ASSERT(rc == 0);
6819 		SPDK_CU_ASSERT_FATAL(desc != NULL);
6820 
6821 		/* Get a v2 claim */
6822 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6823 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
6824 			opts.shared_claim_key = (uint64_t)&opts;
6825 		}
6826 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
6827 		CU_ASSERT(rc == 0);
6828 
6829 		/* Fail to get a v1 claim */
6830 		rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6831 		CU_ASSERT(rc == -EPERM);
6832 
6833 		spdk_bdev_close(desc);
6834 
6835 		/* Now v1 succeeds */
6836 		rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6837 		CU_ASSERT(rc == 0)
6838 		spdk_bdev_module_release_bdev(bdev);
6839 	}
6840 
6841 	/* Clean up */
6842 	free_bdev(bdev);
6843 }
6844 
6845 static void ut_examine_claimed_config0(struct spdk_bdev *bdev);
6846 static void ut_examine_claimed_disk0(struct spdk_bdev *bdev);
6847 static void ut_examine_claimed_config1(struct spdk_bdev *bdev);
6848 static void ut_examine_claimed_disk1(struct spdk_bdev *bdev);
6849 
6850 #define UT_MAX_EXAMINE_MODS 2
6851 struct spdk_bdev_module examine_claimed_mods[UT_MAX_EXAMINE_MODS] = {
6852 	{
6853 		.name = "vbdev_ut_examine0",
6854 		.module_init = vbdev_ut_module_init,
6855 		.module_fini = vbdev_ut_module_fini,
6856 		.examine_config = ut_examine_claimed_config0,
6857 		.examine_disk = ut_examine_claimed_disk0,
6858 	},
6859 	{
6860 		.name = "vbdev_ut_examine1",
6861 		.module_init = vbdev_ut_module_init,
6862 		.module_fini = vbdev_ut_module_fini,
6863 		.examine_config = ut_examine_claimed_config1,
6864 		.examine_disk = ut_examine_claimed_disk1,
6865 	}
6866 };
6867 
6868 SPDK_BDEV_MODULE_REGISTER(bdev_ut_claimed0, &examine_claimed_mods[0])
6869 SPDK_BDEV_MODULE_REGISTER(bdev_ut_claimed1, &examine_claimed_mods[1])
6870 
6871 struct ut_examine_claimed_ctx {
6872 	uint32_t examine_config_count;
6873 	uint32_t examine_disk_count;
6874 
6875 	/* Claim type to take, with these options */
6876 	enum spdk_bdev_claim_type claim_type;
6877 	struct spdk_bdev_claim_opts claim_opts;
6878 
6879 	/* Expected return value from spdk_bdev_module_claim_bdev_desc() */
6880 	int expect_claim_err;
6881 
6882 	/* Descriptor used for a claim */
6883 	struct spdk_bdev_desc *desc;
6884 } examine_claimed_ctx[UT_MAX_EXAMINE_MODS];
6885 
6886 bool ut_testing_examine_claimed;
6887 
6888 static void
6889 reset_examine_claimed_ctx(void)
6890 {
6891 	struct ut_examine_claimed_ctx *ctx;
6892 	uint32_t i;
6893 
6894 	for (i = 0; i < SPDK_COUNTOF(examine_claimed_ctx); i++) {
6895 		ctx = &examine_claimed_ctx[i];
6896 		if (ctx->desc != NULL) {
6897 			spdk_bdev_close(ctx->desc);
6898 		}
6899 		memset(ctx, 0, sizeof(*ctx));
6900 		spdk_bdev_claim_opts_init(&ctx->claim_opts, sizeof(ctx->claim_opts));
6901 	}
6902 }
6903 
6904 static void
6905 examine_claimed_config(struct spdk_bdev *bdev, uint32_t modnum)
6906 {
6907 	SPDK_CU_ASSERT_FATAL(modnum < UT_MAX_EXAMINE_MODS);
6908 	struct spdk_bdev_module *module = &examine_claimed_mods[modnum];
6909 	struct ut_examine_claimed_ctx *ctx = &examine_claimed_ctx[modnum];
6910 	int rc;
6911 
6912 	if (!ut_testing_examine_claimed) {
6913 		spdk_bdev_module_examine_done(module);
6914 		return;
6915 	}
6916 
6917 	ctx->examine_config_count++;
6918 
6919 	if (ctx->claim_type != SPDK_BDEV_CLAIM_NONE) {
6920 		rc = spdk_bdev_open_ext(bdev->name, false, bdev_ut_event_cb, &ctx->claim_opts,
6921 					&ctx->desc);
6922 		CU_ASSERT(rc == 0);
6923 
6924 		rc = spdk_bdev_module_claim_bdev_desc(ctx->desc, ctx->claim_type, NULL, module);
6925 		CU_ASSERT(rc == ctx->expect_claim_err);
6926 	}
6927 	spdk_bdev_module_examine_done(module);
6928 }
6929 
6930 static void
6931 ut_examine_claimed_config0(struct spdk_bdev *bdev)
6932 {
6933 	examine_claimed_config(bdev, 0);
6934 }
6935 
6936 static void
6937 ut_examine_claimed_config1(struct spdk_bdev *bdev)
6938 {
6939 	examine_claimed_config(bdev, 1);
6940 }
6941 
6942 static void
6943 examine_claimed_disk(struct spdk_bdev *bdev, uint32_t modnum)
6944 {
6945 	SPDK_CU_ASSERT_FATAL(modnum < UT_MAX_EXAMINE_MODS);
6946 	struct spdk_bdev_module *module = &examine_claimed_mods[modnum];
6947 	struct ut_examine_claimed_ctx *ctx = &examine_claimed_ctx[modnum];
6948 
6949 	if (!ut_testing_examine_claimed) {
6950 		spdk_bdev_module_examine_done(module);
6951 		return;
6952 	}
6953 
6954 	ctx->examine_disk_count++;
6955 
6956 	spdk_bdev_module_examine_done(module);
6957 }
6958 
6959 static void
6960 ut_examine_claimed_disk0(struct spdk_bdev *bdev)
6961 {
6962 	examine_claimed_disk(bdev, 0);
6963 }
6964 
6965 static void
6966 ut_examine_claimed_disk1(struct spdk_bdev *bdev)
6967 {
6968 	examine_claimed_disk(bdev, 1);
6969 }
6970 
6971 static void
6972 examine_claimed(void)
6973 {
6974 	struct spdk_bdev *bdev;
6975 	struct spdk_bdev_module *mod = examine_claimed_mods;
6976 	struct ut_examine_claimed_ctx *ctx = examine_claimed_ctx;
6977 
6978 	ut_testing_examine_claimed = true;
6979 	reset_examine_claimed_ctx();
6980 
6981 	/*
6982 	 * With one module claiming, both modules' examine_config should be called, but only the
6983 	 * claiming module's examine_disk should be called.
6984 	 */
6985 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
6986 	bdev = allocate_bdev("bdev0");
6987 	CU_ASSERT(ctx[0].examine_config_count == 1);
6988 	CU_ASSERT(ctx[0].examine_disk_count == 1);
6989 	SPDK_CU_ASSERT_FATAL(ctx[0].desc != NULL);
6990 	CU_ASSERT(ctx[0].desc->claim->module == &mod[0]);
6991 	CU_ASSERT(ctx[1].examine_config_count == 1);
6992 	CU_ASSERT(ctx[1].examine_disk_count == 0);
6993 	CU_ASSERT(ctx[1].desc == NULL);
6994 	reset_examine_claimed_ctx();
6995 	free_bdev(bdev);
6996 
6997 	/*
6998 	 * With two modules claiming, both modules' examine_config and examine_disk should be
6999 	 * called.
7000 	 */
7001 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7002 	ctx[1].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7003 	bdev = allocate_bdev("bdev0");
7004 	CU_ASSERT(ctx[0].examine_config_count == 1);
7005 	CU_ASSERT(ctx[0].examine_disk_count == 1);
7006 	SPDK_CU_ASSERT_FATAL(ctx[0].desc != NULL);
7007 	CU_ASSERT(ctx[0].desc->claim->module == &mod[0]);
7008 	CU_ASSERT(ctx[1].examine_config_count == 1);
7009 	CU_ASSERT(ctx[1].examine_disk_count == 1);
7010 	SPDK_CU_ASSERT_FATAL(ctx[1].desc != NULL);
7011 	CU_ASSERT(ctx[1].desc->claim->module == &mod[1]);
7012 	reset_examine_claimed_ctx();
7013 	free_bdev(bdev);
7014 
7015 	/*
7016 	 * If two vbdev modules try to claim with conflicting claim types, the module that was added
7017 	 * last wins. The winner gets the claim and is the only one that has its examine_disk
7018 	 * callback invoked.
7019 	 */
7020 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7021 	ctx[0].expect_claim_err = -EPERM;
7022 	ctx[1].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE;
7023 	bdev = allocate_bdev("bdev0");
7024 	CU_ASSERT(ctx[0].examine_config_count == 1);
7025 	CU_ASSERT(ctx[0].examine_disk_count == 0);
7026 	CU_ASSERT(ctx[1].examine_config_count == 1);
7027 	CU_ASSERT(ctx[1].examine_disk_count == 1);
7028 	SPDK_CU_ASSERT_FATAL(ctx[1].desc != NULL);
7029 	CU_ASSERT(ctx[1].desc->claim->module == &mod[1]);
7030 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
7031 	reset_examine_claimed_ctx();
7032 	free_bdev(bdev);
7033 
7034 	ut_testing_examine_claimed = false;
7035 }
7036 
7037 int
7038 main(int argc, char **argv)
7039 {
7040 	CU_pSuite		suite = NULL;
7041 	unsigned int		num_failures;
7042 
7043 	CU_set_error_action(CUEA_ABORT);
7044 	CU_initialize_registry();
7045 
7046 	suite = CU_add_suite("bdev", ut_bdev_setup, ut_bdev_teardown);
7047 
7048 	CU_ADD_TEST(suite, bytes_to_blocks_test);
7049 	CU_ADD_TEST(suite, num_blocks_test);
7050 	CU_ADD_TEST(suite, io_valid_test);
7051 	CU_ADD_TEST(suite, open_write_test);
7052 	CU_ADD_TEST(suite, claim_test);
7053 	CU_ADD_TEST(suite, alias_add_del_test);
7054 	CU_ADD_TEST(suite, get_device_stat_test);
7055 	CU_ADD_TEST(suite, bdev_io_types_test);
7056 	CU_ADD_TEST(suite, bdev_io_wait_test);
7057 	CU_ADD_TEST(suite, bdev_io_spans_split_test);
7058 	CU_ADD_TEST(suite, bdev_io_boundary_split_test);
7059 	CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test);
7060 	CU_ADD_TEST(suite, bdev_io_mix_split_test);
7061 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
7062 	CU_ADD_TEST(suite, bdev_io_write_unit_split_test);
7063 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
7064 	CU_ADD_TEST(suite, bdev_io_alignment);
7065 	CU_ADD_TEST(suite, bdev_histograms);
7066 	CU_ADD_TEST(suite, bdev_write_zeroes);
7067 	CU_ADD_TEST(suite, bdev_compare_and_write);
7068 	CU_ADD_TEST(suite, bdev_compare);
7069 	CU_ADD_TEST(suite, bdev_compare_emulated);
7070 	CU_ADD_TEST(suite, bdev_zcopy_write);
7071 	CU_ADD_TEST(suite, bdev_zcopy_read);
7072 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
7073 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
7074 	CU_ADD_TEST(suite, bdev_open_ext);
7075 	CU_ADD_TEST(suite, bdev_open_ext_unregister);
7076 	CU_ADD_TEST(suite, bdev_set_io_timeout);
7077 	CU_ADD_TEST(suite, bdev_set_qd_sampling);
7078 	CU_ADD_TEST(suite, lba_range_overlap);
7079 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
7080 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
7081 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
7082 	CU_ADD_TEST(suite, bdev_io_abort);
7083 	CU_ADD_TEST(suite, bdev_unmap);
7084 	CU_ADD_TEST(suite, bdev_write_zeroes_split_test);
7085 	CU_ADD_TEST(suite, bdev_set_options_test);
7086 	CU_ADD_TEST(suite, bdev_multi_allocation);
7087 	CU_ADD_TEST(suite, bdev_get_memory_domains);
7088 	CU_ADD_TEST(suite, bdev_io_ext);
7089 	CU_ADD_TEST(suite, bdev_io_ext_no_opts);
7090 	CU_ADD_TEST(suite, bdev_io_ext_invalid_opts);
7091 	CU_ADD_TEST(suite, bdev_io_ext_split);
7092 	CU_ADD_TEST(suite, bdev_io_ext_bounce_buffer);
7093 	CU_ADD_TEST(suite, bdev_register_uuid_alias);
7094 	CU_ADD_TEST(suite, bdev_unregister_by_name);
7095 	CU_ADD_TEST(suite, for_each_bdev_test);
7096 	CU_ADD_TEST(suite, bdev_seek_test);
7097 	CU_ADD_TEST(suite, bdev_copy);
7098 	CU_ADD_TEST(suite, bdev_copy_split_test);
7099 	CU_ADD_TEST(suite, examine_locks);
7100 	CU_ADD_TEST(suite, claim_v2_rwo);
7101 	CU_ADD_TEST(suite, claim_v2_rom);
7102 	CU_ADD_TEST(suite, claim_v2_rwm);
7103 	CU_ADD_TEST(suite, claim_v2_existing_writer);
7104 	CU_ADD_TEST(suite, claim_v2_existing_v1);
7105 	CU_ADD_TEST(suite, claim_v1_existing_v2);
7106 	CU_ADD_TEST(suite, examine_claimed);
7107 
7108 	allocate_cores(1);
7109 	allocate_threads(1);
7110 	set_thread(0);
7111 
7112 	CU_basic_set_mode(CU_BRM_VERBOSE);
7113 	CU_basic_run_tests();
7114 	num_failures = CU_get_number_of_failures();
7115 	CU_cleanup_registry();
7116 
7117 	free_threads();
7118 	free_cores();
7119 
7120 	return num_failures;
7121 }
7122