xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision 18c8b52afa69f39481ebb75711b2f30b11693f9d)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (c) Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk_cunit.h"
8 
9 #include "common/lib/ut_multithread.c"
10 #include "unit/lib/json_mock.c"
11 
12 #include "spdk/config.h"
13 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
14 #undef SPDK_CONFIG_VTUNE
15 
16 #include "bdev/bdev.c"
17 
18 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
19 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
20 DEFINE_STUB(spdk_memory_domain_get_dma_device_id, const char *, (struct spdk_memory_domain *domain),
21 	    "test_domain");
22 DEFINE_STUB(spdk_memory_domain_get_dma_device_type, enum spdk_dma_device_type,
23 	    (struct spdk_memory_domain *domain), 0);
24 
25 static bool g_memory_domain_pull_data_called;
26 static bool g_memory_domain_push_data_called;
27 
28 DEFINE_RETURN_MOCK(spdk_memory_domain_pull_data, int);
29 int
30 spdk_memory_domain_pull_data(struct spdk_memory_domain *src_domain, void *src_domain_ctx,
31 			     struct iovec *src_iov, uint32_t src_iov_cnt, struct iovec *dst_iov, uint32_t dst_iov_cnt,
32 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
33 {
34 	g_memory_domain_pull_data_called = true;
35 	HANDLE_RETURN_MOCK(spdk_memory_domain_pull_data);
36 	cpl_cb(cpl_cb_arg, 0);
37 	return 0;
38 }
39 
40 DEFINE_RETURN_MOCK(spdk_memory_domain_push_data, int);
41 int
42 spdk_memory_domain_push_data(struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
43 			     struct iovec *dst_iov, uint32_t dst_iovcnt, struct iovec *src_iov, uint32_t src_iovcnt,
44 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
45 {
46 	g_memory_domain_push_data_called = true;
47 	HANDLE_RETURN_MOCK(spdk_memory_domain_push_data);
48 	cpl_cb(cpl_cb_arg, 0);
49 	return 0;
50 }
51 
52 int g_status;
53 int g_count;
54 enum spdk_bdev_event_type g_event_type1;
55 enum spdk_bdev_event_type g_event_type2;
56 enum spdk_bdev_event_type g_event_type3;
57 enum spdk_bdev_event_type g_event_type4;
58 struct spdk_histogram_data *g_histogram;
59 void *g_unregister_arg;
60 int g_unregister_rc;
61 
62 void
63 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
64 			 int *sc, int *sk, int *asc, int *ascq)
65 {
66 }
67 
68 static int
69 null_init(void)
70 {
71 	return 0;
72 }
73 
74 static int
75 null_clean(void)
76 {
77 	return 0;
78 }
79 
80 static int
81 stub_destruct(void *ctx)
82 {
83 	return 0;
84 }
85 
86 struct ut_expected_io {
87 	uint8_t				type;
88 	uint64_t			offset;
89 	uint64_t			length;
90 	int				iovcnt;
91 	struct iovec			iov[BDEV_IO_NUM_CHILD_IOV];
92 	void				*md_buf;
93 	struct spdk_bdev_ext_io_opts	*ext_io_opts;
94 	bool				copy_opts;
95 	TAILQ_ENTRY(ut_expected_io)	link;
96 };
97 
98 struct bdev_ut_channel {
99 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
100 	uint32_t			outstanding_io_count;
101 	TAILQ_HEAD(, ut_expected_io)	expected_io;
102 };
103 
104 static bool g_io_done;
105 static struct spdk_bdev_io *g_bdev_io;
106 static enum spdk_bdev_io_status g_io_status;
107 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
108 static uint32_t g_bdev_ut_io_device;
109 static struct bdev_ut_channel *g_bdev_ut_channel;
110 static void *g_compare_read_buf;
111 static uint32_t g_compare_read_buf_len;
112 static void *g_compare_write_buf;
113 static uint32_t g_compare_write_buf_len;
114 static void *g_compare_md_buf;
115 static bool g_abort_done;
116 static enum spdk_bdev_io_status g_abort_status;
117 static void *g_zcopy_read_buf;
118 static uint32_t g_zcopy_read_buf_len;
119 static void *g_zcopy_write_buf;
120 static uint32_t g_zcopy_write_buf_len;
121 static struct spdk_bdev_io *g_zcopy_bdev_io;
122 static uint64_t g_seek_data_offset;
123 static uint64_t g_seek_hole_offset;
124 static uint64_t g_seek_offset;
125 
126 static struct ut_expected_io *
127 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
128 {
129 	struct ut_expected_io *expected_io;
130 
131 	expected_io = calloc(1, sizeof(*expected_io));
132 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
133 
134 	expected_io->type = type;
135 	expected_io->offset = offset;
136 	expected_io->length = length;
137 	expected_io->iovcnt = iovcnt;
138 
139 	return expected_io;
140 }
141 
142 static void
143 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
144 {
145 	expected_io->iov[pos].iov_base = base;
146 	expected_io->iov[pos].iov_len = len;
147 }
148 
149 static void
150 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
151 {
152 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
153 	struct ut_expected_io *expected_io;
154 	struct iovec *iov, *expected_iov;
155 	struct spdk_bdev_io *bio_to_abort;
156 	int i;
157 
158 	g_bdev_io = bdev_io;
159 
160 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
161 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
162 
163 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
164 		CU_ASSERT(g_compare_read_buf_len == len);
165 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
166 		if (bdev_io->bdev->md_len && bdev_io->u.bdev.md_buf && g_compare_md_buf) {
167 			memcpy(bdev_io->u.bdev.md_buf, g_compare_md_buf,
168 			       bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks);
169 		}
170 	}
171 
172 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
173 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
174 
175 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
176 		CU_ASSERT(g_compare_write_buf_len == len);
177 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
178 	}
179 
180 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
181 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
182 
183 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
184 		CU_ASSERT(g_compare_read_buf_len == len);
185 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
186 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
187 		}
188 		if (bdev_io->u.bdev.md_buf &&
189 		    memcmp(bdev_io->u.bdev.md_buf, g_compare_md_buf,
190 			   bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks)) {
191 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
192 		}
193 	}
194 
195 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
196 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
197 			TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
198 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
199 					TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
200 					ch->outstanding_io_count--;
201 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
202 					break;
203 				}
204 			}
205 		}
206 	}
207 
208 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) {
209 		if (bdev_io->u.bdev.zcopy.start) {
210 			g_zcopy_bdev_io = bdev_io;
211 			if (bdev_io->u.bdev.zcopy.populate) {
212 				/* Start of a read */
213 				CU_ASSERT(g_zcopy_read_buf != NULL);
214 				CU_ASSERT(g_zcopy_read_buf_len > 0);
215 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_read_buf;
216 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_read_buf_len;
217 				bdev_io->u.bdev.iovcnt = 1;
218 			} else {
219 				/* Start of a write */
220 				CU_ASSERT(g_zcopy_write_buf != NULL);
221 				CU_ASSERT(g_zcopy_write_buf_len > 0);
222 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_write_buf;
223 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_write_buf_len;
224 				bdev_io->u.bdev.iovcnt = 1;
225 			}
226 		} else {
227 			if (bdev_io->u.bdev.zcopy.commit) {
228 				/* End of write */
229 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_write_buf);
230 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_write_buf_len);
231 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
232 				g_zcopy_write_buf = NULL;
233 				g_zcopy_write_buf_len = 0;
234 			} else {
235 				/* End of read */
236 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_read_buf);
237 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_read_buf_len);
238 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
239 				g_zcopy_read_buf = NULL;
240 				g_zcopy_read_buf_len = 0;
241 			}
242 		}
243 	}
244 
245 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_DATA) {
246 		bdev_io->u.bdev.seek.offset = g_seek_data_offset;
247 	}
248 
249 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_HOLE) {
250 		bdev_io->u.bdev.seek.offset = g_seek_hole_offset;
251 	}
252 
253 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
254 	ch->outstanding_io_count++;
255 
256 	expected_io = TAILQ_FIRST(&ch->expected_io);
257 	if (expected_io == NULL) {
258 		return;
259 	}
260 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
261 
262 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
263 		CU_ASSERT(bdev_io->type == expected_io->type);
264 	}
265 
266 	if (expected_io->md_buf != NULL) {
267 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
268 		if (bdev_io->u.bdev.ext_opts) {
269 			CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.ext_opts->metadata);
270 		}
271 	}
272 
273 	if (expected_io->copy_opts) {
274 		if (expected_io->ext_io_opts) {
275 			/* opts are not NULL so it should have been copied */
276 			CU_ASSERT(expected_io->ext_io_opts != bdev_io->u.bdev.ext_opts);
277 			CU_ASSERT(bdev_io->u.bdev.ext_opts == &bdev_io->internal.ext_opts_copy);
278 			/* internal opts always points to opts passed */
279 			CU_ASSERT(expected_io->ext_io_opts == bdev_io->internal.ext_opts);
280 		} else {
281 			/* passed opts was NULL so we expect bdev_io opts to be NULL */
282 			CU_ASSERT(bdev_io->u.bdev.ext_opts == NULL);
283 		}
284 	} else {
285 		/* opts were not copied so they should be equal */
286 		CU_ASSERT(expected_io->ext_io_opts == bdev_io->u.bdev.ext_opts);
287 	}
288 
289 	if (expected_io->length == 0) {
290 		free(expected_io);
291 		return;
292 	}
293 
294 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
295 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
296 
297 	if (expected_io->iovcnt == 0) {
298 		free(expected_io);
299 		/* UNMAP, WRITE_ZEROES and FLUSH don't have iovs, so we can just return now. */
300 		return;
301 	}
302 
303 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
304 	for (i = 0; i < expected_io->iovcnt; i++) {
305 		expected_iov = &expected_io->iov[i];
306 		if (bdev_io->internal.orig_iovcnt == 0) {
307 			iov = &bdev_io->u.bdev.iovs[i];
308 		} else {
309 			iov = bdev_io->internal.orig_iovs;
310 		}
311 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
312 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
313 	}
314 
315 	free(expected_io);
316 }
317 
318 static void
319 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
320 			       struct spdk_bdev_io *bdev_io, bool success)
321 {
322 	CU_ASSERT(success == true);
323 
324 	stub_submit_request(_ch, bdev_io);
325 }
326 
327 static void
328 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
329 {
330 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
331 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
332 }
333 
334 static uint32_t
335 stub_complete_io(uint32_t num_to_complete)
336 {
337 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
338 	struct spdk_bdev_io *bdev_io;
339 	static enum spdk_bdev_io_status io_status;
340 	uint32_t num_completed = 0;
341 
342 	while (num_completed < num_to_complete) {
343 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
344 			break;
345 		}
346 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
347 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
348 		ch->outstanding_io_count--;
349 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
350 			    g_io_exp_status;
351 		spdk_bdev_io_complete(bdev_io, io_status);
352 		num_completed++;
353 	}
354 
355 	return num_completed;
356 }
357 
358 static struct spdk_io_channel *
359 bdev_ut_get_io_channel(void *ctx)
360 {
361 	return spdk_get_io_channel(&g_bdev_ut_io_device);
362 }
363 
364 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
365 	[SPDK_BDEV_IO_TYPE_READ]		= true,
366 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
367 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
368 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
369 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
370 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
371 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
372 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
373 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
374 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
375 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
376 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
377 	[SPDK_BDEV_IO_TYPE_SEEK_HOLE]		= true,
378 	[SPDK_BDEV_IO_TYPE_SEEK_DATA]		= true,
379 };
380 
381 static void
382 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
383 {
384 	g_io_types_supported[io_type] = enable;
385 }
386 
387 static bool
388 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
389 {
390 	return g_io_types_supported[io_type];
391 }
392 
393 static struct spdk_bdev_fn_table fn_table = {
394 	.destruct = stub_destruct,
395 	.submit_request = stub_submit_request,
396 	.get_io_channel = bdev_ut_get_io_channel,
397 	.io_type_supported = stub_io_type_supported,
398 };
399 
400 static int
401 bdev_ut_create_ch(void *io_device, void *ctx_buf)
402 {
403 	struct bdev_ut_channel *ch = ctx_buf;
404 
405 	CU_ASSERT(g_bdev_ut_channel == NULL);
406 	g_bdev_ut_channel = ch;
407 
408 	TAILQ_INIT(&ch->outstanding_io);
409 	ch->outstanding_io_count = 0;
410 	TAILQ_INIT(&ch->expected_io);
411 	return 0;
412 }
413 
414 static void
415 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
416 {
417 	CU_ASSERT(g_bdev_ut_channel != NULL);
418 	g_bdev_ut_channel = NULL;
419 }
420 
421 struct spdk_bdev_module bdev_ut_if;
422 
423 static int
424 bdev_ut_module_init(void)
425 {
426 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
427 				sizeof(struct bdev_ut_channel), NULL);
428 	spdk_bdev_module_init_done(&bdev_ut_if);
429 	return 0;
430 }
431 
432 static void
433 bdev_ut_module_fini(void)
434 {
435 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
436 }
437 
438 struct spdk_bdev_module bdev_ut_if = {
439 	.name = "bdev_ut",
440 	.module_init = bdev_ut_module_init,
441 	.module_fini = bdev_ut_module_fini,
442 	.async_init = true,
443 };
444 
445 static void vbdev_ut_examine(struct spdk_bdev *bdev);
446 
447 static int
448 vbdev_ut_module_init(void)
449 {
450 	return 0;
451 }
452 
453 static void
454 vbdev_ut_module_fini(void)
455 {
456 }
457 
458 struct spdk_bdev_module vbdev_ut_if = {
459 	.name = "vbdev_ut",
460 	.module_init = vbdev_ut_module_init,
461 	.module_fini = vbdev_ut_module_fini,
462 	.examine_config = vbdev_ut_examine,
463 };
464 
465 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
466 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
467 
468 static void
469 vbdev_ut_examine(struct spdk_bdev *bdev)
470 {
471 	spdk_bdev_module_examine_done(&vbdev_ut_if);
472 }
473 
474 static struct spdk_bdev *
475 allocate_bdev(char *name)
476 {
477 	struct spdk_bdev *bdev;
478 	int rc;
479 
480 	bdev = calloc(1, sizeof(*bdev));
481 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
482 
483 	bdev->name = name;
484 	bdev->fn_table = &fn_table;
485 	bdev->module = &bdev_ut_if;
486 	bdev->blockcnt = 1024;
487 	bdev->blocklen = 512;
488 
489 	rc = spdk_bdev_register(bdev);
490 	poll_threads();
491 	CU_ASSERT(rc == 0);
492 
493 	return bdev;
494 }
495 
496 static struct spdk_bdev *
497 allocate_vbdev(char *name)
498 {
499 	struct spdk_bdev *bdev;
500 	int rc;
501 
502 	bdev = calloc(1, sizeof(*bdev));
503 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
504 
505 	bdev->name = name;
506 	bdev->fn_table = &fn_table;
507 	bdev->module = &vbdev_ut_if;
508 
509 	rc = spdk_bdev_register(bdev);
510 	poll_threads();
511 	CU_ASSERT(rc == 0);
512 
513 	return bdev;
514 }
515 
516 static void
517 free_bdev(struct spdk_bdev *bdev)
518 {
519 	spdk_bdev_unregister(bdev, NULL, NULL);
520 	poll_threads();
521 	memset(bdev, 0xFF, sizeof(*bdev));
522 	free(bdev);
523 }
524 
525 static void
526 free_vbdev(struct spdk_bdev *bdev)
527 {
528 	spdk_bdev_unregister(bdev, NULL, NULL);
529 	poll_threads();
530 	memset(bdev, 0xFF, sizeof(*bdev));
531 	free(bdev);
532 }
533 
534 static void
535 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
536 {
537 	const char *bdev_name;
538 
539 	CU_ASSERT(bdev != NULL);
540 	CU_ASSERT(rc == 0);
541 	bdev_name = spdk_bdev_get_name(bdev);
542 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
543 
544 	free(stat);
545 
546 	*(bool *)cb_arg = true;
547 }
548 
549 static void
550 bdev_unregister_cb(void *cb_arg, int rc)
551 {
552 	g_unregister_arg = cb_arg;
553 	g_unregister_rc = rc;
554 }
555 
556 static void
557 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
558 {
559 }
560 
561 static void
562 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
563 {
564 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
565 
566 	g_event_type1 = type;
567 	if (SPDK_BDEV_EVENT_REMOVE == type) {
568 		spdk_bdev_close(desc);
569 	}
570 }
571 
572 static void
573 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
574 {
575 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
576 
577 	g_event_type2 = type;
578 	if (SPDK_BDEV_EVENT_REMOVE == type) {
579 		spdk_bdev_close(desc);
580 	}
581 }
582 
583 static void
584 bdev_open_cb3(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
585 {
586 	g_event_type3 = type;
587 }
588 
589 static void
590 bdev_open_cb4(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
591 {
592 	g_event_type4 = type;
593 }
594 
595 static void
596 bdev_seek_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
597 {
598 	g_seek_offset = spdk_bdev_io_get_seek_offset(bdev_io);
599 	spdk_bdev_free_io(bdev_io);
600 }
601 
602 static void
603 get_device_stat_test(void)
604 {
605 	struct spdk_bdev *bdev;
606 	struct spdk_bdev_io_stat *stat;
607 	bool done;
608 
609 	bdev = allocate_bdev("bdev0");
610 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
611 	if (stat == NULL) {
612 		free_bdev(bdev);
613 		return;
614 	}
615 
616 	done = false;
617 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
618 	while (!done) { poll_threads(); }
619 
620 	free_bdev(bdev);
621 }
622 
623 static void
624 open_write_test(void)
625 {
626 	struct spdk_bdev *bdev[9];
627 	struct spdk_bdev_desc *desc[9] = {};
628 	int rc;
629 
630 	/*
631 	 * Create a tree of bdevs to test various open w/ write cases.
632 	 *
633 	 * bdev0 through bdev3 are physical block devices, such as NVMe
634 	 * namespaces or Ceph block devices.
635 	 *
636 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
637 	 * caching or RAID use cases.
638 	 *
639 	 * bdev5 through bdev7 are all virtual bdevs with the same base
640 	 * bdev (except bdev7). This models partitioning or logical volume
641 	 * use cases.
642 	 *
643 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
644 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
645 	 * models caching, RAID, partitioning or logical volumes use cases.
646 	 *
647 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
648 	 * base bdevs are themselves virtual bdevs.
649 	 *
650 	 *                bdev8
651 	 *                  |
652 	 *            +----------+
653 	 *            |          |
654 	 *          bdev4      bdev5   bdev6   bdev7
655 	 *            |          |       |       |
656 	 *        +---+---+      +---+   +   +---+---+
657 	 *        |       |           \  |  /         \
658 	 *      bdev0   bdev1          bdev2         bdev3
659 	 */
660 
661 	bdev[0] = allocate_bdev("bdev0");
662 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
663 	CU_ASSERT(rc == 0);
664 
665 	bdev[1] = allocate_bdev("bdev1");
666 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
667 	CU_ASSERT(rc == 0);
668 
669 	bdev[2] = allocate_bdev("bdev2");
670 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
671 	CU_ASSERT(rc == 0);
672 
673 	bdev[3] = allocate_bdev("bdev3");
674 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
675 	CU_ASSERT(rc == 0);
676 
677 	bdev[4] = allocate_vbdev("bdev4");
678 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
679 	CU_ASSERT(rc == 0);
680 
681 	bdev[5] = allocate_vbdev("bdev5");
682 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
683 	CU_ASSERT(rc == 0);
684 
685 	bdev[6] = allocate_vbdev("bdev6");
686 
687 	bdev[7] = allocate_vbdev("bdev7");
688 
689 	bdev[8] = allocate_vbdev("bdev8");
690 
691 	/* Open bdev0 read-only.  This should succeed. */
692 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
693 	CU_ASSERT(rc == 0);
694 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
695 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
696 	spdk_bdev_close(desc[0]);
697 
698 	/*
699 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
700 	 * by a vbdev module.
701 	 */
702 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
703 	CU_ASSERT(rc == -EPERM);
704 
705 	/*
706 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
707 	 * by a vbdev module.
708 	 */
709 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
710 	CU_ASSERT(rc == -EPERM);
711 
712 	/* Open bdev4 read-only.  This should succeed. */
713 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
714 	CU_ASSERT(rc == 0);
715 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
716 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
717 	spdk_bdev_close(desc[4]);
718 
719 	/*
720 	 * Open bdev8 read/write.  This should succeed since it is a leaf
721 	 * bdev.
722 	 */
723 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
724 	CU_ASSERT(rc == 0);
725 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
726 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
727 	spdk_bdev_close(desc[8]);
728 
729 	/*
730 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
731 	 * by a vbdev module.
732 	 */
733 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
734 	CU_ASSERT(rc == -EPERM);
735 
736 	/* Open bdev4 read-only.  This should succeed. */
737 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
738 	CU_ASSERT(rc == 0);
739 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
740 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
741 	spdk_bdev_close(desc[5]);
742 
743 	free_vbdev(bdev[8]);
744 
745 	free_vbdev(bdev[5]);
746 	free_vbdev(bdev[6]);
747 	free_vbdev(bdev[7]);
748 
749 	free_vbdev(bdev[4]);
750 
751 	free_bdev(bdev[0]);
752 	free_bdev(bdev[1]);
753 	free_bdev(bdev[2]);
754 	free_bdev(bdev[3]);
755 }
756 
757 static void
758 claim_test(void)
759 {
760 	struct spdk_bdev *bdev;
761 	struct spdk_bdev_desc *desc, *open_desc;
762 	int rc;
763 	uint32_t count;
764 
765 	/*
766 	 * A vbdev that uses a read-only bdev may need it to remain read-only.
767 	 * To do so, it opens the bdev read-only, then claims it without
768 	 * passing a spdk_bdev_desc.
769 	 */
770 	bdev = allocate_bdev("bdev0");
771 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
772 	CU_ASSERT(rc == 0);
773 	CU_ASSERT(desc->write == false);
774 
775 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
776 	CU_ASSERT(rc == 0);
777 	CU_ASSERT(bdev->internal.claim_module == &bdev_ut_if);
778 
779 	/* There should be only one open descriptor and it should still be ro */
780 	count = 0;
781 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
782 		CU_ASSERT(open_desc == desc);
783 		CU_ASSERT(!open_desc->write);
784 		count++;
785 	}
786 	CU_ASSERT(count == 1);
787 
788 	/* A read-only bdev is upgraded to read-write if desc is passed. */
789 	spdk_bdev_module_release_bdev(bdev);
790 	rc = spdk_bdev_module_claim_bdev(bdev, desc, &bdev_ut_if);
791 	CU_ASSERT(rc == 0);
792 	CU_ASSERT(bdev->internal.claim_module == &bdev_ut_if);
793 
794 	/* There should be only one open descriptor and it should be rw */
795 	count = 0;
796 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
797 		CU_ASSERT(open_desc == desc);
798 		CU_ASSERT(open_desc->write);
799 		count++;
800 	}
801 	CU_ASSERT(count == 1);
802 
803 	spdk_bdev_close(desc);
804 	free_bdev(bdev);
805 }
806 
807 static void
808 bytes_to_blocks_test(void)
809 {
810 	struct spdk_bdev bdev;
811 	uint64_t offset_blocks, num_blocks;
812 
813 	memset(&bdev, 0, sizeof(bdev));
814 
815 	bdev.blocklen = 512;
816 
817 	/* All parameters valid */
818 	offset_blocks = 0;
819 	num_blocks = 0;
820 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
821 	CU_ASSERT(offset_blocks == 1);
822 	CU_ASSERT(num_blocks == 2);
823 
824 	/* Offset not a block multiple */
825 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
826 
827 	/* Length not a block multiple */
828 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
829 
830 	/* In case blocklen not the power of two */
831 	bdev.blocklen = 100;
832 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
833 	CU_ASSERT(offset_blocks == 1);
834 	CU_ASSERT(num_blocks == 2);
835 
836 	/* Offset not a block multiple */
837 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
838 
839 	/* Length not a block multiple */
840 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
841 }
842 
843 static void
844 num_blocks_test(void)
845 {
846 	struct spdk_bdev bdev;
847 	struct spdk_bdev_desc *desc = NULL;
848 	int rc;
849 
850 	memset(&bdev, 0, sizeof(bdev));
851 	bdev.name = "num_blocks";
852 	bdev.fn_table = &fn_table;
853 	bdev.module = &bdev_ut_if;
854 	spdk_bdev_register(&bdev);
855 	poll_threads();
856 	spdk_bdev_notify_blockcnt_change(&bdev, 50);
857 
858 	/* Growing block number */
859 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
860 	/* Shrinking block number */
861 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
862 
863 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc, &desc);
864 	CU_ASSERT(rc == 0);
865 	SPDK_CU_ASSERT_FATAL(desc != NULL);
866 	CU_ASSERT(&bdev == spdk_bdev_desc_get_bdev(desc));
867 
868 	/* Growing block number */
869 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
870 	/* Shrinking block number */
871 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
872 
873 	g_event_type1 = 0xFF;
874 	/* Growing block number */
875 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
876 
877 	poll_threads();
878 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
879 
880 	g_event_type1 = 0xFF;
881 	/* Growing block number and closing */
882 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
883 
884 	spdk_bdev_close(desc);
885 	spdk_bdev_unregister(&bdev, NULL, NULL);
886 
887 	poll_threads();
888 
889 	/* Callback is not called for closed device */
890 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
891 }
892 
893 static void
894 io_valid_test(void)
895 {
896 	struct spdk_bdev bdev;
897 
898 	memset(&bdev, 0, sizeof(bdev));
899 
900 	bdev.blocklen = 512;
901 	CU_ASSERT(pthread_mutex_init(&bdev.internal.mutex, NULL) == 0);
902 
903 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
904 
905 	/* All parameters valid */
906 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
907 
908 	/* Last valid block */
909 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
910 
911 	/* Offset past end of bdev */
912 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
913 
914 	/* Offset + length past end of bdev */
915 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
916 
917 	/* Offset near end of uint64_t range (2^64 - 1) */
918 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
919 
920 	CU_ASSERT(pthread_mutex_destroy(&bdev.internal.mutex) == 0);
921 }
922 
923 static void
924 alias_add_del_test(void)
925 {
926 	struct spdk_bdev *bdev[3];
927 	int rc;
928 
929 	/* Creating and registering bdevs */
930 	bdev[0] = allocate_bdev("bdev0");
931 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
932 
933 	bdev[1] = allocate_bdev("bdev1");
934 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
935 
936 	bdev[2] = allocate_bdev("bdev2");
937 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
938 
939 	poll_threads();
940 
941 	/*
942 	 * Trying adding an alias identical to name.
943 	 * Alias is identical to name, so it can not be added to aliases list
944 	 */
945 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
946 	CU_ASSERT(rc == -EEXIST);
947 
948 	/*
949 	 * Trying to add empty alias,
950 	 * this one should fail
951 	 */
952 	rc = spdk_bdev_alias_add(bdev[0], NULL);
953 	CU_ASSERT(rc == -EINVAL);
954 
955 	/* Trying adding same alias to two different registered bdevs */
956 
957 	/* Alias is used first time, so this one should pass */
958 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
959 	CU_ASSERT(rc == 0);
960 
961 	/* Alias was added to another bdev, so this one should fail */
962 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
963 	CU_ASSERT(rc == -EEXIST);
964 
965 	/* Alias is used first time, so this one should pass */
966 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
967 	CU_ASSERT(rc == 0);
968 
969 	/* Trying removing an alias from registered bdevs */
970 
971 	/* Alias is not on a bdev aliases list, so this one should fail */
972 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
973 	CU_ASSERT(rc == -ENOENT);
974 
975 	/* Alias is present on a bdev aliases list, so this one should pass */
976 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
977 	CU_ASSERT(rc == 0);
978 
979 	/* Alias is present on a bdev aliases list, so this one should pass */
980 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
981 	CU_ASSERT(rc == 0);
982 
983 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
984 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
985 	CU_ASSERT(rc != 0);
986 
987 	/* Trying to del all alias from empty alias list */
988 	spdk_bdev_alias_del_all(bdev[2]);
989 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
990 
991 	/* Trying to del all alias from non-empty alias list */
992 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
993 	CU_ASSERT(rc == 0);
994 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
995 	CU_ASSERT(rc == 0);
996 	spdk_bdev_alias_del_all(bdev[2]);
997 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
998 
999 	/* Unregister and free bdevs */
1000 	spdk_bdev_unregister(bdev[0], NULL, NULL);
1001 	spdk_bdev_unregister(bdev[1], NULL, NULL);
1002 	spdk_bdev_unregister(bdev[2], NULL, NULL);
1003 
1004 	poll_threads();
1005 
1006 	free(bdev[0]);
1007 	free(bdev[1]);
1008 	free(bdev[2]);
1009 }
1010 
1011 static void
1012 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
1013 {
1014 	g_io_done = true;
1015 	g_io_status = bdev_io->internal.status;
1016 	if ((bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) &&
1017 	    (bdev_io->u.bdev.zcopy.start)) {
1018 		g_zcopy_bdev_io = bdev_io;
1019 	} else {
1020 		spdk_bdev_free_io(bdev_io);
1021 		g_zcopy_bdev_io = NULL;
1022 	}
1023 }
1024 
1025 static void
1026 bdev_init_cb(void *arg, int rc)
1027 {
1028 	CU_ASSERT(rc == 0);
1029 }
1030 
1031 static void
1032 bdev_fini_cb(void *arg)
1033 {
1034 }
1035 
1036 struct bdev_ut_io_wait_entry {
1037 	struct spdk_bdev_io_wait_entry	entry;
1038 	struct spdk_io_channel		*io_ch;
1039 	struct spdk_bdev_desc		*desc;
1040 	bool				submitted;
1041 };
1042 
1043 static void
1044 io_wait_cb(void *arg)
1045 {
1046 	struct bdev_ut_io_wait_entry *entry = arg;
1047 	int rc;
1048 
1049 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
1050 	CU_ASSERT(rc == 0);
1051 	entry->submitted = true;
1052 }
1053 
1054 static void
1055 bdev_io_types_test(void)
1056 {
1057 	struct spdk_bdev *bdev;
1058 	struct spdk_bdev_desc *desc = NULL;
1059 	struct spdk_io_channel *io_ch;
1060 	struct spdk_bdev_opts bdev_opts = {};
1061 	int rc;
1062 
1063 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1064 	bdev_opts.bdev_io_pool_size = 4;
1065 	bdev_opts.bdev_io_cache_size = 2;
1066 
1067 	rc = spdk_bdev_set_opts(&bdev_opts);
1068 	CU_ASSERT(rc == 0);
1069 	spdk_bdev_initialize(bdev_init_cb, NULL);
1070 	poll_threads();
1071 
1072 	bdev = allocate_bdev("bdev0");
1073 
1074 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1075 	CU_ASSERT(rc == 0);
1076 	poll_threads();
1077 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1078 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1079 	io_ch = spdk_bdev_get_io_channel(desc);
1080 	CU_ASSERT(io_ch != NULL);
1081 
1082 	/* WRITE and WRITE ZEROES are not supported */
1083 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
1084 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
1085 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
1086 	CU_ASSERT(rc == -ENOTSUP);
1087 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
1088 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
1089 
1090 	/* NVME_IO, NVME_IO_MD and NVME_ADMIN are not supported */
1091 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, false);
1092 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, false);
1093 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, false);
1094 	rc = spdk_bdev_nvme_io_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1095 	CU_ASSERT(rc == -ENOTSUP);
1096 	rc = spdk_bdev_nvme_io_passthru_md(desc, io_ch, NULL, NULL, 0, NULL, 0, NULL, NULL);
1097 	CU_ASSERT(rc == -ENOTSUP);
1098 	rc = spdk_bdev_nvme_admin_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1099 	CU_ASSERT(rc == -ENOTSUP);
1100 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, true);
1101 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, true);
1102 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, true);
1103 
1104 	spdk_put_io_channel(io_ch);
1105 	spdk_bdev_close(desc);
1106 	free_bdev(bdev);
1107 	spdk_bdev_finish(bdev_fini_cb, NULL);
1108 	poll_threads();
1109 }
1110 
1111 static void
1112 bdev_io_wait_test(void)
1113 {
1114 	struct spdk_bdev *bdev;
1115 	struct spdk_bdev_desc *desc = NULL;
1116 	struct spdk_io_channel *io_ch;
1117 	struct spdk_bdev_opts bdev_opts = {};
1118 	struct bdev_ut_io_wait_entry io_wait_entry;
1119 	struct bdev_ut_io_wait_entry io_wait_entry2;
1120 	int rc;
1121 
1122 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1123 	bdev_opts.bdev_io_pool_size = 4;
1124 	bdev_opts.bdev_io_cache_size = 2;
1125 
1126 	rc = spdk_bdev_set_opts(&bdev_opts);
1127 	CU_ASSERT(rc == 0);
1128 	spdk_bdev_initialize(bdev_init_cb, NULL);
1129 	poll_threads();
1130 
1131 	bdev = allocate_bdev("bdev0");
1132 
1133 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1134 	CU_ASSERT(rc == 0);
1135 	poll_threads();
1136 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1137 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1138 	io_ch = spdk_bdev_get_io_channel(desc);
1139 	CU_ASSERT(io_ch != NULL);
1140 
1141 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1142 	CU_ASSERT(rc == 0);
1143 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1144 	CU_ASSERT(rc == 0);
1145 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1146 	CU_ASSERT(rc == 0);
1147 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1148 	CU_ASSERT(rc == 0);
1149 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1150 
1151 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1152 	CU_ASSERT(rc == -ENOMEM);
1153 
1154 	io_wait_entry.entry.bdev = bdev;
1155 	io_wait_entry.entry.cb_fn = io_wait_cb;
1156 	io_wait_entry.entry.cb_arg = &io_wait_entry;
1157 	io_wait_entry.io_ch = io_ch;
1158 	io_wait_entry.desc = desc;
1159 	io_wait_entry.submitted = false;
1160 	/* Cannot use the same io_wait_entry for two different calls. */
1161 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
1162 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
1163 
1164 	/* Queue two I/O waits. */
1165 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
1166 	CU_ASSERT(rc == 0);
1167 	CU_ASSERT(io_wait_entry.submitted == false);
1168 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
1169 	CU_ASSERT(rc == 0);
1170 	CU_ASSERT(io_wait_entry2.submitted == false);
1171 
1172 	stub_complete_io(1);
1173 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1174 	CU_ASSERT(io_wait_entry.submitted == true);
1175 	CU_ASSERT(io_wait_entry2.submitted == false);
1176 
1177 	stub_complete_io(1);
1178 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1179 	CU_ASSERT(io_wait_entry2.submitted == true);
1180 
1181 	stub_complete_io(4);
1182 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1183 
1184 	spdk_put_io_channel(io_ch);
1185 	spdk_bdev_close(desc);
1186 	free_bdev(bdev);
1187 	spdk_bdev_finish(bdev_fini_cb, NULL);
1188 	poll_threads();
1189 }
1190 
1191 static void
1192 bdev_io_spans_split_test(void)
1193 {
1194 	struct spdk_bdev bdev;
1195 	struct spdk_bdev_io bdev_io;
1196 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV];
1197 
1198 	memset(&bdev, 0, sizeof(bdev));
1199 	bdev_io.u.bdev.iovs = iov;
1200 
1201 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1202 	bdev.optimal_io_boundary = 0;
1203 	bdev.max_segment_size = 0;
1204 	bdev.max_num_segments = 0;
1205 	bdev_io.bdev = &bdev;
1206 
1207 	/* bdev has no optimal_io_boundary and max_size set - so this should return false. */
1208 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1209 
1210 	bdev.split_on_optimal_io_boundary = true;
1211 	bdev.optimal_io_boundary = 32;
1212 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1213 
1214 	/* RESETs are not based on LBAs - so this should return false. */
1215 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1216 
1217 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1218 	bdev_io.u.bdev.offset_blocks = 0;
1219 	bdev_io.u.bdev.num_blocks = 32;
1220 
1221 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1222 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1223 
1224 	bdev_io.u.bdev.num_blocks = 33;
1225 
1226 	/* This I/O spans a boundary. */
1227 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1228 
1229 	bdev_io.u.bdev.num_blocks = 32;
1230 	bdev.max_segment_size = 512 * 32;
1231 	bdev.max_num_segments = 1;
1232 	bdev_io.u.bdev.iovcnt = 1;
1233 	iov[0].iov_len = 512;
1234 
1235 	/* Does not cross and exceed max_size or max_segs */
1236 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1237 
1238 	bdev.split_on_optimal_io_boundary = false;
1239 	bdev.max_segment_size = 512;
1240 	bdev.max_num_segments = 1;
1241 	bdev_io.u.bdev.iovcnt = 2;
1242 
1243 	/* Exceed max_segs */
1244 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1245 
1246 	bdev.max_num_segments = 2;
1247 	iov[0].iov_len = 513;
1248 	iov[1].iov_len = 512;
1249 
1250 	/* Exceed max_sizes */
1251 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1252 }
1253 
1254 static void
1255 bdev_io_boundary_split_test(void)
1256 {
1257 	struct spdk_bdev *bdev;
1258 	struct spdk_bdev_desc *desc = NULL;
1259 	struct spdk_io_channel *io_ch;
1260 	struct spdk_bdev_opts bdev_opts = {};
1261 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1262 	struct ut_expected_io *expected_io;
1263 	void *md_buf = (void *)0xFF000000;
1264 	uint64_t i;
1265 	int rc;
1266 
1267 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1268 	bdev_opts.bdev_io_pool_size = 512;
1269 	bdev_opts.bdev_io_cache_size = 64;
1270 
1271 	rc = spdk_bdev_set_opts(&bdev_opts);
1272 	CU_ASSERT(rc == 0);
1273 	spdk_bdev_initialize(bdev_init_cb, NULL);
1274 
1275 	bdev = allocate_bdev("bdev0");
1276 
1277 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1278 	CU_ASSERT(rc == 0);
1279 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1280 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1281 	io_ch = spdk_bdev_get_io_channel(desc);
1282 	CU_ASSERT(io_ch != NULL);
1283 
1284 	bdev->optimal_io_boundary = 16;
1285 	bdev->split_on_optimal_io_boundary = false;
1286 
1287 	g_io_done = false;
1288 
1289 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1290 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1291 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1292 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1293 
1294 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1295 	CU_ASSERT(rc == 0);
1296 	CU_ASSERT(g_io_done == false);
1297 
1298 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1299 	stub_complete_io(1);
1300 	CU_ASSERT(g_io_done == true);
1301 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1302 
1303 	bdev->split_on_optimal_io_boundary = true;
1304 	bdev->md_interleave = false;
1305 	bdev->md_len = 8;
1306 
1307 	/* Now test that a single-vector command is split correctly.
1308 	 * Offset 14, length 8, payload 0xF000
1309 	 *  Child - Offset 14, length 2, payload 0xF000
1310 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1311 	 *
1312 	 * Set up the expected values before calling spdk_bdev_read_blocks
1313 	 */
1314 	g_io_done = false;
1315 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1316 	expected_io->md_buf = md_buf;
1317 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1318 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1319 
1320 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1321 	expected_io->md_buf = md_buf + 2 * 8;
1322 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1323 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1324 
1325 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1326 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1327 					   14, 8, io_done, NULL);
1328 	CU_ASSERT(rc == 0);
1329 	CU_ASSERT(g_io_done == false);
1330 
1331 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1332 	stub_complete_io(2);
1333 	CU_ASSERT(g_io_done == true);
1334 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1335 
1336 	/* Now set up a more complex, multi-vector command that needs to be split,
1337 	 *  including splitting iovecs.
1338 	 */
1339 	iov[0].iov_base = (void *)0x10000;
1340 	iov[0].iov_len = 512;
1341 	iov[1].iov_base = (void *)0x20000;
1342 	iov[1].iov_len = 20 * 512;
1343 	iov[2].iov_base = (void *)0x30000;
1344 	iov[2].iov_len = 11 * 512;
1345 
1346 	g_io_done = false;
1347 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1348 	expected_io->md_buf = md_buf;
1349 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1350 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1351 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1352 
1353 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1354 	expected_io->md_buf = md_buf + 2 * 8;
1355 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1356 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1357 
1358 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1359 	expected_io->md_buf = md_buf + 18 * 8;
1360 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1361 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1362 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1363 
1364 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1365 					     14, 32, io_done, NULL);
1366 	CU_ASSERT(rc == 0);
1367 	CU_ASSERT(g_io_done == false);
1368 
1369 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1370 	stub_complete_io(3);
1371 	CU_ASSERT(g_io_done == true);
1372 
1373 	/* Test multi vector command that needs to be split by strip and then needs to be
1374 	 * split further due to the capacity of child iovs.
1375 	 */
1376 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1377 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1378 		iov[i].iov_len = 512;
1379 	}
1380 
1381 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1382 	g_io_done = false;
1383 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1384 					   BDEV_IO_NUM_CHILD_IOV);
1385 	expected_io->md_buf = md_buf;
1386 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1387 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1388 	}
1389 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1390 
1391 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1392 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
1393 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1394 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1395 		ut_expected_io_set_iov(expected_io, i,
1396 				       (void *)((i + 1 + BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1397 	}
1398 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1399 
1400 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1401 					    0, BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1402 	CU_ASSERT(rc == 0);
1403 	CU_ASSERT(g_io_done == false);
1404 
1405 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1406 	stub_complete_io(1);
1407 	CU_ASSERT(g_io_done == false);
1408 
1409 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1410 	stub_complete_io(1);
1411 	CU_ASSERT(g_io_done == true);
1412 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1413 
1414 	/* Test multi vector command that needs to be split by strip and then needs to be
1415 	 * split further due to the capacity of child iovs. In this case, the length of
1416 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1417 	 */
1418 
1419 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1420 	 * is BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1421 	 */
1422 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1423 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1424 		iov[i].iov_len = 512;
1425 	}
1426 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1427 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1428 		iov[i].iov_len = 256;
1429 	}
1430 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1431 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1432 
1433 	/* Add an extra iovec to trigger split */
1434 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1435 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1436 
1437 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1438 	g_io_done = false;
1439 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1440 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV);
1441 	expected_io->md_buf = md_buf;
1442 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1443 		ut_expected_io_set_iov(expected_io, i,
1444 				       (void *)((i + 1) * 0x10000), 512);
1445 	}
1446 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1447 		ut_expected_io_set_iov(expected_io, i,
1448 				       (void *)((i + 1) * 0x10000), 256);
1449 	}
1450 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1451 
1452 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1453 					   1, 1);
1454 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1455 	ut_expected_io_set_iov(expected_io, 0,
1456 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1457 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1458 
1459 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1460 					   1, 1);
1461 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1462 	ut_expected_io_set_iov(expected_io, 0,
1463 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1464 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1465 
1466 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1467 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1468 	CU_ASSERT(rc == 0);
1469 	CU_ASSERT(g_io_done == false);
1470 
1471 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1472 	stub_complete_io(1);
1473 	CU_ASSERT(g_io_done == false);
1474 
1475 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1476 	stub_complete_io(2);
1477 	CU_ASSERT(g_io_done == true);
1478 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1479 
1480 	/* Test multi vector command that needs to be split by strip and then needs to be
1481 	 * split further due to the capacity of child iovs, the child request offset should
1482 	 * be rewind to last aligned offset and go success without error.
1483 	 */
1484 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1485 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1486 		iov[i].iov_len = 512;
1487 	}
1488 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1489 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1490 
1491 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1492 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1493 
1494 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1495 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1496 
1497 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1498 	g_io_done = false;
1499 	g_io_status = 0;
1500 	/* The first expected io should be start from offset 0 to BDEV_IO_NUM_CHILD_IOV - 1 */
1501 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1502 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV - 1);
1503 	expected_io->md_buf = md_buf;
1504 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1505 		ut_expected_io_set_iov(expected_io, i,
1506 				       (void *)((i + 1) * 0x10000), 512);
1507 	}
1508 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1509 	/* The second expected io should be start from offset BDEV_IO_NUM_CHILD_IOV - 1 to BDEV_IO_NUM_CHILD_IOV */
1510 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1511 					   1, 2);
1512 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1513 	ut_expected_io_set_iov(expected_io, 0,
1514 			       (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1515 	ut_expected_io_set_iov(expected_io, 1,
1516 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1517 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1518 	/* The third expected io should be start from offset BDEV_IO_NUM_CHILD_IOV to BDEV_IO_NUM_CHILD_IOV + 1 */
1519 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1520 					   1, 1);
1521 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1522 	ut_expected_io_set_iov(expected_io, 0,
1523 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1524 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1525 
1526 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1527 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1528 	CU_ASSERT(rc == 0);
1529 	CU_ASSERT(g_io_done == false);
1530 
1531 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1532 	stub_complete_io(1);
1533 	CU_ASSERT(g_io_done == false);
1534 
1535 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1536 	stub_complete_io(2);
1537 	CU_ASSERT(g_io_done == true);
1538 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1539 
1540 	/* Test multi vector command that needs to be split due to the IO boundary and
1541 	 * the capacity of child iovs. Especially test the case when the command is
1542 	 * split due to the capacity of child iovs, the tail address is not aligned with
1543 	 * block size and is rewinded to the aligned address.
1544 	 *
1545 	 * The iovecs used in read request is complex but is based on the data
1546 	 * collected in the real issue. We change the base addresses but keep the lengths
1547 	 * not to loose the credibility of the test.
1548 	 */
1549 	bdev->optimal_io_boundary = 128;
1550 	g_io_done = false;
1551 	g_io_status = 0;
1552 
1553 	for (i = 0; i < 31; i++) {
1554 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1555 		iov[i].iov_len = 1024;
1556 	}
1557 	iov[31].iov_base = (void *)0xFEED1F00000;
1558 	iov[31].iov_len = 32768;
1559 	iov[32].iov_base = (void *)0xFEED2000000;
1560 	iov[32].iov_len = 160;
1561 	iov[33].iov_base = (void *)0xFEED2100000;
1562 	iov[33].iov_len = 4096;
1563 	iov[34].iov_base = (void *)0xFEED2200000;
1564 	iov[34].iov_len = 4096;
1565 	iov[35].iov_base = (void *)0xFEED2300000;
1566 	iov[35].iov_len = 4096;
1567 	iov[36].iov_base = (void *)0xFEED2400000;
1568 	iov[36].iov_len = 4096;
1569 	iov[37].iov_base = (void *)0xFEED2500000;
1570 	iov[37].iov_len = 4096;
1571 	iov[38].iov_base = (void *)0xFEED2600000;
1572 	iov[38].iov_len = 4096;
1573 	iov[39].iov_base = (void *)0xFEED2700000;
1574 	iov[39].iov_len = 4096;
1575 	iov[40].iov_base = (void *)0xFEED2800000;
1576 	iov[40].iov_len = 4096;
1577 	iov[41].iov_base = (void *)0xFEED2900000;
1578 	iov[41].iov_len = 4096;
1579 	iov[42].iov_base = (void *)0xFEED2A00000;
1580 	iov[42].iov_len = 4096;
1581 	iov[43].iov_base = (void *)0xFEED2B00000;
1582 	iov[43].iov_len = 12288;
1583 	iov[44].iov_base = (void *)0xFEED2C00000;
1584 	iov[44].iov_len = 8192;
1585 	iov[45].iov_base = (void *)0xFEED2F00000;
1586 	iov[45].iov_len = 4096;
1587 	iov[46].iov_base = (void *)0xFEED3000000;
1588 	iov[46].iov_len = 4096;
1589 	iov[47].iov_base = (void *)0xFEED3100000;
1590 	iov[47].iov_len = 4096;
1591 	iov[48].iov_base = (void *)0xFEED3200000;
1592 	iov[48].iov_len = 24576;
1593 	iov[49].iov_base = (void *)0xFEED3300000;
1594 	iov[49].iov_len = 16384;
1595 	iov[50].iov_base = (void *)0xFEED3400000;
1596 	iov[50].iov_len = 12288;
1597 	iov[51].iov_base = (void *)0xFEED3500000;
1598 	iov[51].iov_len = 4096;
1599 	iov[52].iov_base = (void *)0xFEED3600000;
1600 	iov[52].iov_len = 4096;
1601 	iov[53].iov_base = (void *)0xFEED3700000;
1602 	iov[53].iov_len = 4096;
1603 	iov[54].iov_base = (void *)0xFEED3800000;
1604 	iov[54].iov_len = 28672;
1605 	iov[55].iov_base = (void *)0xFEED3900000;
1606 	iov[55].iov_len = 20480;
1607 	iov[56].iov_base = (void *)0xFEED3A00000;
1608 	iov[56].iov_len = 4096;
1609 	iov[57].iov_base = (void *)0xFEED3B00000;
1610 	iov[57].iov_len = 12288;
1611 	iov[58].iov_base = (void *)0xFEED3C00000;
1612 	iov[58].iov_len = 4096;
1613 	iov[59].iov_base = (void *)0xFEED3D00000;
1614 	iov[59].iov_len = 4096;
1615 	iov[60].iov_base = (void *)0xFEED3E00000;
1616 	iov[60].iov_len = 352;
1617 
1618 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1619 	 * of child iovs,
1620 	 */
1621 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1622 	expected_io->md_buf = md_buf;
1623 	for (i = 0; i < 32; i++) {
1624 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1625 	}
1626 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1627 
1628 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1629 	 * split by the IO boundary requirement.
1630 	 */
1631 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1632 	expected_io->md_buf = md_buf + 126 * 8;
1633 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1634 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1635 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1636 
1637 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1638 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1639 	 */
1640 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1641 	expected_io->md_buf = md_buf + 128 * 8;
1642 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1643 			       iov[33].iov_len - 864);
1644 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1645 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1646 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1647 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1648 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1649 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1650 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1651 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1652 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1653 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1654 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1655 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1656 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1657 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1658 
1659 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1660 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1661 	 */
1662 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1663 	expected_io->md_buf = md_buf + 256 * 8;
1664 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1665 			       iov[46].iov_len - 864);
1666 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1667 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1668 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1669 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1670 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1671 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1672 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1673 
1674 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1675 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1676 	 */
1677 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1678 	expected_io->md_buf = md_buf + 384 * 8;
1679 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1680 			       iov[52].iov_len - 864);
1681 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1682 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1683 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1684 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1685 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1686 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1687 
1688 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1689 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1690 	 */
1691 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1692 	expected_io->md_buf = md_buf + 512 * 8;
1693 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1694 			       iov[57].iov_len - 4960);
1695 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1696 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1697 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1698 
1699 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1700 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1701 	expected_io->md_buf = md_buf + 542 * 8;
1702 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1703 			       iov[59].iov_len - 3936);
1704 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1705 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1706 
1707 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1708 					    0, 543, io_done, NULL);
1709 	CU_ASSERT(rc == 0);
1710 	CU_ASSERT(g_io_done == false);
1711 
1712 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1713 	stub_complete_io(1);
1714 	CU_ASSERT(g_io_done == false);
1715 
1716 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1717 	stub_complete_io(5);
1718 	CU_ASSERT(g_io_done == false);
1719 
1720 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1721 	stub_complete_io(1);
1722 	CU_ASSERT(g_io_done == true);
1723 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1724 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1725 
1726 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1727 	 * split, so test that.
1728 	 */
1729 	bdev->optimal_io_boundary = 15;
1730 	g_io_done = false;
1731 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1732 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1733 
1734 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1735 	CU_ASSERT(rc == 0);
1736 	CU_ASSERT(g_io_done == false);
1737 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1738 	stub_complete_io(1);
1739 	CU_ASSERT(g_io_done == true);
1740 
1741 	/* Test an UNMAP.  This should also not be split. */
1742 	bdev->optimal_io_boundary = 16;
1743 	g_io_done = false;
1744 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1745 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1746 
1747 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1748 	CU_ASSERT(rc == 0);
1749 	CU_ASSERT(g_io_done == false);
1750 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1751 	stub_complete_io(1);
1752 	CU_ASSERT(g_io_done == true);
1753 
1754 	/* Test a FLUSH.  This should also not be split. */
1755 	bdev->optimal_io_boundary = 16;
1756 	g_io_done = false;
1757 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1758 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1759 
1760 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1761 	CU_ASSERT(rc == 0);
1762 	CU_ASSERT(g_io_done == false);
1763 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1764 	stub_complete_io(1);
1765 	CU_ASSERT(g_io_done == true);
1766 
1767 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1768 
1769 	/* Children requests return an error status */
1770 	bdev->optimal_io_boundary = 16;
1771 	iov[0].iov_base = (void *)0x10000;
1772 	iov[0].iov_len = 512 * 64;
1773 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1774 	g_io_done = false;
1775 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1776 
1777 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1778 	CU_ASSERT(rc == 0);
1779 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1780 	stub_complete_io(4);
1781 	CU_ASSERT(g_io_done == false);
1782 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1783 	stub_complete_io(1);
1784 	CU_ASSERT(g_io_done == true);
1785 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1786 
1787 	/* Test if a multi vector command terminated with failure before continuing
1788 	 * splitting process when one of child I/O failed.
1789 	 * The multi vector command is as same as the above that needs to be split by strip
1790 	 * and then needs to be split further due to the capacity of child iovs.
1791 	 */
1792 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1793 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1794 		iov[i].iov_len = 512;
1795 	}
1796 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1797 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1798 
1799 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1800 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1801 
1802 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1803 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1804 
1805 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1806 
1807 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1808 	g_io_done = false;
1809 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1810 
1811 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
1812 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1813 	CU_ASSERT(rc == 0);
1814 	CU_ASSERT(g_io_done == false);
1815 
1816 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1817 	stub_complete_io(1);
1818 	CU_ASSERT(g_io_done == true);
1819 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1820 
1821 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1822 
1823 	/* for this test we will create the following conditions to hit the code path where
1824 	 * we are trying to send and IO following a split that has no iovs because we had to
1825 	 * trim them for alignment reasons.
1826 	 *
1827 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1828 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1829 	 *   position 30 and overshoot by 0x2e.
1830 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1831 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1832 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1833 	 *   and let the completion pick up the last 2 vectors.
1834 	 */
1835 	bdev->optimal_io_boundary = 32;
1836 	bdev->split_on_optimal_io_boundary = true;
1837 	g_io_done = false;
1838 
1839 	/* Init all parent IOVs to 0x212 */
1840 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1841 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1842 		iov[i].iov_len = 0x212;
1843 	}
1844 
1845 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1846 					   BDEV_IO_NUM_CHILD_IOV - 1);
1847 	/* expect 0-29 to be 1:1 with the parent iov */
1848 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1849 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1850 	}
1851 
1852 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1853 	 * where 0x1e is the amount we overshot the 16K boundary
1854 	 */
1855 	ut_expected_io_set_iov(expected_io, BDEV_IO_NUM_CHILD_IOV - 2,
1856 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1857 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1858 
1859 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1860 	 * shortened that take it to the next boundary and then a final one to get us to
1861 	 * 0x4200 bytes for the IO.
1862 	 */
1863 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1864 					   BDEV_IO_NUM_CHILD_IOV, 2);
1865 	/* position 30 picked up the remaining bytes to the next boundary */
1866 	ut_expected_io_set_iov(expected_io, 0,
1867 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
1868 
1869 	/* position 31 picked the the rest of the transfer to get us to 0x4200 */
1870 	ut_expected_io_set_iov(expected_io, 1,
1871 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
1872 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1873 
1874 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 1, 0,
1875 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1876 	CU_ASSERT(rc == 0);
1877 	CU_ASSERT(g_io_done == false);
1878 
1879 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1880 	stub_complete_io(1);
1881 	CU_ASSERT(g_io_done == false);
1882 
1883 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1884 	stub_complete_io(1);
1885 	CU_ASSERT(g_io_done == true);
1886 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1887 
1888 	spdk_put_io_channel(io_ch);
1889 	spdk_bdev_close(desc);
1890 	free_bdev(bdev);
1891 	spdk_bdev_finish(bdev_fini_cb, NULL);
1892 	poll_threads();
1893 }
1894 
1895 static void
1896 bdev_io_max_size_and_segment_split_test(void)
1897 {
1898 	struct spdk_bdev *bdev;
1899 	struct spdk_bdev_desc *desc = NULL;
1900 	struct spdk_io_channel *io_ch;
1901 	struct spdk_bdev_opts bdev_opts = {};
1902 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1903 	struct ut_expected_io *expected_io;
1904 	uint64_t i;
1905 	int rc;
1906 
1907 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1908 	bdev_opts.bdev_io_pool_size = 512;
1909 	bdev_opts.bdev_io_cache_size = 64;
1910 
1911 	bdev_opts.opts_size = sizeof(bdev_opts);
1912 	rc = spdk_bdev_set_opts(&bdev_opts);
1913 	CU_ASSERT(rc == 0);
1914 	spdk_bdev_initialize(bdev_init_cb, NULL);
1915 
1916 	bdev = allocate_bdev("bdev0");
1917 
1918 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
1919 	CU_ASSERT(rc == 0);
1920 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1921 	io_ch = spdk_bdev_get_io_channel(desc);
1922 	CU_ASSERT(io_ch != NULL);
1923 
1924 	bdev->split_on_optimal_io_boundary = false;
1925 	bdev->optimal_io_boundary = 0;
1926 
1927 	/* Case 0 max_num_segments == 0.
1928 	 * but segment size 2 * 512 > 512
1929 	 */
1930 	bdev->max_segment_size = 512;
1931 	bdev->max_num_segments = 0;
1932 	g_io_done = false;
1933 
1934 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
1935 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
1936 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
1937 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1938 
1939 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
1940 	CU_ASSERT(rc == 0);
1941 	CU_ASSERT(g_io_done == false);
1942 
1943 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1944 	stub_complete_io(1);
1945 	CU_ASSERT(g_io_done == true);
1946 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1947 
1948 	/* Case 1 max_segment_size == 0
1949 	 * but iov num 2 > 1.
1950 	 */
1951 	bdev->max_segment_size = 0;
1952 	bdev->max_num_segments = 1;
1953 	g_io_done = false;
1954 
1955 	iov[0].iov_base = (void *)0x10000;
1956 	iov[0].iov_len = 512;
1957 	iov[1].iov_base = (void *)0x20000;
1958 	iov[1].iov_len = 8 * 512;
1959 
1960 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
1961 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len);
1962 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1963 
1964 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1);
1965 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len);
1966 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1967 
1968 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL);
1969 	CU_ASSERT(rc == 0);
1970 	CU_ASSERT(g_io_done == false);
1971 
1972 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1973 	stub_complete_io(2);
1974 	CU_ASSERT(g_io_done == true);
1975 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1976 
1977 	/* Test that a non-vector command is split correctly.
1978 	 * Set up the expected values before calling spdk_bdev_read_blocks
1979 	 */
1980 	bdev->max_segment_size = 512;
1981 	bdev->max_num_segments = 1;
1982 	g_io_done = false;
1983 
1984 	/* Child IO 0 */
1985 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
1986 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
1987 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1988 
1989 	/* Child IO 1 */
1990 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
1991 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512);
1992 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1993 
1994 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1995 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
1996 	CU_ASSERT(rc == 0);
1997 	CU_ASSERT(g_io_done == false);
1998 
1999 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2000 	stub_complete_io(2);
2001 	CU_ASSERT(g_io_done == true);
2002 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2003 
2004 	/* Now set up a more complex, multi-vector command that needs to be split,
2005 	 * including splitting iovecs.
2006 	 */
2007 	bdev->max_segment_size = 2 * 512;
2008 	bdev->max_num_segments = 1;
2009 	g_io_done = false;
2010 
2011 	iov[0].iov_base = (void *)0x10000;
2012 	iov[0].iov_len = 2 * 512;
2013 	iov[1].iov_base = (void *)0x20000;
2014 	iov[1].iov_len = 4 * 512;
2015 	iov[2].iov_base = (void *)0x30000;
2016 	iov[2].iov_len = 6 * 512;
2017 
2018 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2019 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2);
2020 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2021 
2022 	/* Split iov[1].size to 2 iov entries then split the segments */
2023 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2024 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2);
2025 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2026 
2027 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1);
2028 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2);
2029 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2030 
2031 	/* Split iov[2].size to 3 iov entries then split the segments */
2032 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1);
2033 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2);
2034 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2035 
2036 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1);
2037 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2);
2038 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2039 
2040 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1);
2041 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2);
2042 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2043 
2044 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL);
2045 	CU_ASSERT(rc == 0);
2046 	CU_ASSERT(g_io_done == false);
2047 
2048 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2049 	stub_complete_io(6);
2050 	CU_ASSERT(g_io_done == true);
2051 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2052 
2053 	/* Test multi vector command that needs to be split by strip and then needs to be
2054 	 * split further due to the capacity of parent IO child iovs.
2055 	 */
2056 	bdev->max_segment_size = 512;
2057 	bdev->max_num_segments = 1;
2058 	g_io_done = false;
2059 
2060 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
2061 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2062 		iov[i].iov_len = 512 * 2;
2063 	}
2064 
2065 	/* Each input iov.size is split into 2 iovs,
2066 	 * half of the input iov can fill all child iov entries of a single IO.
2067 	 */
2068 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV / 2; i++) {
2069 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1);
2070 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2071 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2072 
2073 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1);
2074 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2075 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2076 	}
2077 
2078 	/* The remaining iov is split in the second round */
2079 	for (i = BDEV_IO_NUM_CHILD_IOV / 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
2080 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1);
2081 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2082 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2083 
2084 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1);
2085 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2086 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2087 	}
2088 
2089 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV, 0,
2090 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
2091 	CU_ASSERT(rc == 0);
2092 	CU_ASSERT(g_io_done == false);
2093 
2094 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == BDEV_IO_NUM_CHILD_IOV);
2095 	stub_complete_io(BDEV_IO_NUM_CHILD_IOV);
2096 	CU_ASSERT(g_io_done == false);
2097 
2098 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == BDEV_IO_NUM_CHILD_IOV);
2099 	stub_complete_io(BDEV_IO_NUM_CHILD_IOV);
2100 	CU_ASSERT(g_io_done == true);
2101 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2102 
2103 	/* A wrong case, a child IO that is divided does
2104 	 * not meet the principle of multiples of block size,
2105 	 * and exits with error
2106 	 */
2107 	bdev->max_segment_size = 512;
2108 	bdev->max_num_segments = 1;
2109 	g_io_done = false;
2110 
2111 	iov[0].iov_base = (void *)0x10000;
2112 	iov[0].iov_len = 512 + 256;
2113 	iov[1].iov_base = (void *)0x20000;
2114 	iov[1].iov_len = 256;
2115 
2116 	/* iov[0] is split to 512 and 256.
2117 	 * 256 is less than a block size, and it is found
2118 	 * in the next round of split that it is the first child IO smaller than
2119 	 * the block size, so the error exit
2120 	 */
2121 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1);
2122 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512);
2123 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2124 
2125 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL);
2126 	CU_ASSERT(rc == 0);
2127 	CU_ASSERT(g_io_done == false);
2128 
2129 	/* First child IO is OK */
2130 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2131 	stub_complete_io(1);
2132 	CU_ASSERT(g_io_done == true);
2133 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2134 
2135 	/* error exit */
2136 	stub_complete_io(1);
2137 	CU_ASSERT(g_io_done == true);
2138 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
2139 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2140 
2141 	/* Test multi vector command that needs to be split by strip and then needs to be
2142 	 * split further due to the capacity of child iovs.
2143 	 *
2144 	 * In this case, the last two iovs need to be split, but it will exceed the capacity
2145 	 * of child iovs, so it needs to wait until the first batch completed.
2146 	 */
2147 	bdev->max_segment_size = 512;
2148 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2149 	g_io_done = false;
2150 
2151 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2152 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2153 		iov[i].iov_len = 512;
2154 	}
2155 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
2156 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2157 		iov[i].iov_len = 512 * 2;
2158 	}
2159 
2160 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2161 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
2162 	/* 0 ~ (BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */
2163 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2164 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2165 	}
2166 	/* (BDEV_IO_NUM_CHILD_IOV - 2) is split */
2167 	ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512);
2168 	ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512);
2169 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2170 
2171 	/* Child iov entries exceed the max num of parent IO so split it in next round */
2172 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV, 2, 2);
2173 	ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512);
2174 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512);
2175 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2176 
2177 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV, 0,
2178 				    BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL);
2179 	CU_ASSERT(rc == 0);
2180 	CU_ASSERT(g_io_done == false);
2181 
2182 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2183 	stub_complete_io(1);
2184 	CU_ASSERT(g_io_done == false);
2185 
2186 	/* Next round */
2187 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2188 	stub_complete_io(1);
2189 	CU_ASSERT(g_io_done == true);
2190 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2191 
2192 	/* This case is similar to the previous one, but the io composed of
2193 	 * the last few entries of child iov is not enough for a blocklen, so they
2194 	 * cannot be put into this IO, but wait until the next time.
2195 	 */
2196 	bdev->max_segment_size = 512;
2197 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2198 	g_io_done = false;
2199 
2200 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2201 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2202 		iov[i].iov_len = 512;
2203 	}
2204 
2205 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2206 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2207 		iov[i].iov_len = 128;
2208 	}
2209 
2210 	/* First child iovcnt is't BDEV_IO_NUM_CHILD_IOV but BDEV_IO_NUM_CHILD_IOV - 2.
2211 	 * Because the left 2 iov is not enough for a blocklen.
2212 	 */
2213 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2214 					   BDEV_IO_NUM_CHILD_IOV - 2, BDEV_IO_NUM_CHILD_IOV - 2);
2215 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2216 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2217 	}
2218 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2219 
2220 	/* The second child io waits until the end of the first child io before executing.
2221 	 * Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO.
2222 	 * BDEV_IO_NUM_CHILD_IOV - 2 to BDEV_IO_NUM_CHILD_IOV + 2
2223 	 */
2224 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 2,
2225 					   1, 4);
2226 	ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len);
2227 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len);
2228 	ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len);
2229 	ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len);
2230 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2231 
2232 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
2233 				    BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL);
2234 	CU_ASSERT(rc == 0);
2235 	CU_ASSERT(g_io_done == false);
2236 
2237 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2238 	stub_complete_io(1);
2239 	CU_ASSERT(g_io_done == false);
2240 
2241 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2242 	stub_complete_io(1);
2243 	CU_ASSERT(g_io_done == true);
2244 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2245 
2246 	/* A very complicated case. Each sg entry exceeds max_segment_size and
2247 	 * needs to be split. At the same time, child io must be a multiple of blocklen.
2248 	 * At the same time, child iovcnt exceeds parent iovcnt.
2249 	 */
2250 	bdev->max_segment_size = 512 + 128;
2251 	bdev->max_num_segments = 3;
2252 	g_io_done = false;
2253 
2254 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2255 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2256 		iov[i].iov_len = 512 + 256;
2257 	}
2258 
2259 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2260 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2261 		iov[i].iov_len = 512 + 128;
2262 	}
2263 
2264 	/* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries.
2265 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2266 	 * Generate 9 child IOs.
2267 	 */
2268 	for (i = 0; i < 3; i++) {
2269 		uint32_t j = i * 4;
2270 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3);
2271 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2272 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2273 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2274 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2275 
2276 		/* Child io must be a multiple of blocklen
2277 		 * iov[j + 2] must be split. If the third entry is also added,
2278 		 * the multiple of blocklen cannot be guaranteed. But it still
2279 		 * occupies one iov entry of the parent child iov.
2280 		 */
2281 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2);
2282 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2283 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2284 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2285 
2286 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3);
2287 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2288 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2289 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2290 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2291 	}
2292 
2293 	/* Child iov position at 27, the 10th child IO
2294 	 * iov entry index is 3 * 4 and offset is 3 * 6
2295 	 */
2296 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3);
2297 	ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640);
2298 	ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128);
2299 	ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256);
2300 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2301 
2302 	/* Child iov position at 30, the 11th child IO */
2303 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2);
2304 	ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512);
2305 	ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512);
2306 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2307 
2308 	/* The 2nd split round and iovpos is 0, the 12th child IO */
2309 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3);
2310 	ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256);
2311 	ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640);
2312 	ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128);
2313 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2314 
2315 	/* Consume 9 child IOs and 27 child iov entries.
2316 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2317 	 * Parent IO iov index start from 16 and block offset start from 24
2318 	 */
2319 	for (i = 0; i < 3; i++) {
2320 		uint32_t j = i * 4 + 16;
2321 		uint32_t offset = i * 6 + 24;
2322 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3);
2323 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2324 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2325 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2326 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2327 
2328 		/* Child io must be a multiple of blocklen
2329 		 * iov[j + 2] must be split. If the third entry is also added,
2330 		 * the multiple of blocklen cannot be guaranteed. But it still
2331 		 * occupies one iov entry of the parent child iov.
2332 		 */
2333 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2);
2334 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2335 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2336 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2337 
2338 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3);
2339 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2340 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2341 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2342 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2343 	}
2344 
2345 	/* The 22th child IO, child iov position at 30 */
2346 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1);
2347 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512);
2348 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2349 
2350 	/* The third round */
2351 	/* Here is the 23nd child IO and child iovpos is 0 */
2352 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3);
2353 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256);
2354 	ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640);
2355 	ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128);
2356 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2357 
2358 	/* The 24th child IO */
2359 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3);
2360 	ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640);
2361 	ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640);
2362 	ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256);
2363 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2364 
2365 	/* The 25th child IO */
2366 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2);
2367 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384);
2368 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640);
2369 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2370 
2371 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
2372 				    50, io_done, NULL);
2373 	CU_ASSERT(rc == 0);
2374 	CU_ASSERT(g_io_done == false);
2375 
2376 	/* Parent IO supports up to 32 child iovs, so it is calculated that
2377 	 * a maximum of 11 IOs can be split at a time, and the
2378 	 * splitting will continue after the first batch is over.
2379 	 */
2380 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2381 	stub_complete_io(11);
2382 	CU_ASSERT(g_io_done == false);
2383 
2384 	/* The 2nd round */
2385 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2386 	stub_complete_io(11);
2387 	CU_ASSERT(g_io_done == false);
2388 
2389 	/* The last round */
2390 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2391 	stub_complete_io(3);
2392 	CU_ASSERT(g_io_done == true);
2393 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2394 
2395 	/* Test an WRITE_ZEROES.  This should also not be split. */
2396 	bdev->max_segment_size = 512;
2397 	bdev->max_num_segments = 1;
2398 	g_io_done = false;
2399 
2400 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
2401 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2402 
2403 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
2404 	CU_ASSERT(rc == 0);
2405 	CU_ASSERT(g_io_done == false);
2406 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2407 	stub_complete_io(1);
2408 	CU_ASSERT(g_io_done == true);
2409 
2410 	/* Test an UNMAP.  This should also not be split. */
2411 	g_io_done = false;
2412 
2413 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0);
2414 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2415 
2416 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL);
2417 	CU_ASSERT(rc == 0);
2418 	CU_ASSERT(g_io_done == false);
2419 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2420 	stub_complete_io(1);
2421 	CU_ASSERT(g_io_done == true);
2422 
2423 	/* Test a FLUSH.  This should also not be split. */
2424 	g_io_done = false;
2425 
2426 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0);
2427 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2428 
2429 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
2430 	CU_ASSERT(rc == 0);
2431 	CU_ASSERT(g_io_done == false);
2432 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2433 	stub_complete_io(1);
2434 	CU_ASSERT(g_io_done == true);
2435 
2436 	spdk_put_io_channel(io_ch);
2437 	spdk_bdev_close(desc);
2438 	free_bdev(bdev);
2439 	spdk_bdev_finish(bdev_fini_cb, NULL);
2440 	poll_threads();
2441 }
2442 
2443 static void
2444 bdev_io_mix_split_test(void)
2445 {
2446 	struct spdk_bdev *bdev;
2447 	struct spdk_bdev_desc *desc = NULL;
2448 	struct spdk_io_channel *io_ch;
2449 	struct spdk_bdev_opts bdev_opts = {};
2450 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
2451 	struct ut_expected_io *expected_io;
2452 	uint64_t i;
2453 	int rc;
2454 
2455 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2456 	bdev_opts.bdev_io_pool_size = 512;
2457 	bdev_opts.bdev_io_cache_size = 64;
2458 
2459 	rc = spdk_bdev_set_opts(&bdev_opts);
2460 	CU_ASSERT(rc == 0);
2461 	spdk_bdev_initialize(bdev_init_cb, NULL);
2462 
2463 	bdev = allocate_bdev("bdev0");
2464 
2465 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2466 	CU_ASSERT(rc == 0);
2467 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2468 	io_ch = spdk_bdev_get_io_channel(desc);
2469 	CU_ASSERT(io_ch != NULL);
2470 
2471 	/* First case optimal_io_boundary == max_segment_size * max_num_segments */
2472 	bdev->split_on_optimal_io_boundary = true;
2473 	bdev->optimal_io_boundary = 16;
2474 
2475 	bdev->max_segment_size = 512;
2476 	bdev->max_num_segments = 16;
2477 	g_io_done = false;
2478 
2479 	/* IO crossing the IO boundary requires split
2480 	 * Total 2 child IOs.
2481 	 */
2482 
2483 	/* The 1st child IO split the segment_size to multiple segment entry */
2484 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2485 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2486 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2487 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2488 
2489 	/* The 2nd child IO split the segment_size to multiple segment entry */
2490 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2);
2491 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512);
2492 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512);
2493 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2494 
2495 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL);
2496 	CU_ASSERT(rc == 0);
2497 	CU_ASSERT(g_io_done == false);
2498 
2499 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2500 	stub_complete_io(2);
2501 	CU_ASSERT(g_io_done == true);
2502 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2503 
2504 	/* Second case optimal_io_boundary > max_segment_size * max_num_segments */
2505 	bdev->max_segment_size = 15 * 512;
2506 	bdev->max_num_segments = 1;
2507 	g_io_done = false;
2508 
2509 	/* IO crossing the IO boundary requires split.
2510 	 * The 1st child IO segment size exceeds the max_segment_size,
2511 	 * So 1st child IO will be splitted to multiple segment entry.
2512 	 * Then it split to 2 child IOs because of the max_num_segments.
2513 	 * Total 3 child IOs.
2514 	 */
2515 
2516 	/* The first 2 IOs are in an IO boundary.
2517 	 * Because the optimal_io_boundary > max_segment_size * max_num_segments
2518 	 * So it split to the first 2 IOs.
2519 	 */
2520 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1);
2521 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15);
2522 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2523 
2524 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2525 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512);
2526 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2527 
2528 	/* The 3rd Child IO is because of the io boundary */
2529 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2530 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2531 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2532 
2533 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2534 	CU_ASSERT(rc == 0);
2535 	CU_ASSERT(g_io_done == false);
2536 
2537 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2538 	stub_complete_io(3);
2539 	CU_ASSERT(g_io_done == true);
2540 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2541 
2542 	/* Third case optimal_io_boundary < max_segment_size * max_num_segments */
2543 	bdev->max_segment_size = 17 * 512;
2544 	bdev->max_num_segments = 1;
2545 	g_io_done = false;
2546 
2547 	/* IO crossing the IO boundary requires split.
2548 	 * Child IO does not split.
2549 	 * Total 2 child IOs.
2550 	 */
2551 
2552 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1);
2553 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16);
2554 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2555 
2556 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2557 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2558 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2559 
2560 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2561 	CU_ASSERT(rc == 0);
2562 	CU_ASSERT(g_io_done == false);
2563 
2564 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2565 	stub_complete_io(2);
2566 	CU_ASSERT(g_io_done == true);
2567 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2568 
2569 	/* Now set up a more complex, multi-vector command that needs to be split,
2570 	 * including splitting iovecs.
2571 	 * optimal_io_boundary < max_segment_size * max_num_segments
2572 	 */
2573 	bdev->max_segment_size = 3 * 512;
2574 	bdev->max_num_segments = 6;
2575 	g_io_done = false;
2576 
2577 	iov[0].iov_base = (void *)0x10000;
2578 	iov[0].iov_len = 4 * 512;
2579 	iov[1].iov_base = (void *)0x20000;
2580 	iov[1].iov_len = 4 * 512;
2581 	iov[2].iov_base = (void *)0x30000;
2582 	iov[2].iov_len = 10 * 512;
2583 
2584 	/* IO crossing the IO boundary requires split.
2585 	 * The 1st child IO segment size exceeds the max_segment_size and after
2586 	 * splitting segment_size, the num_segments exceeds max_num_segments.
2587 	 * So 1st child IO will be splitted to 2 child IOs.
2588 	 * Total 3 child IOs.
2589 	 */
2590 
2591 	/* The first 2 IOs are in an IO boundary.
2592 	 * After splitting segment size the segment num exceeds.
2593 	 * So it splits to 2 child IOs.
2594 	 */
2595 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6);
2596 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3);
2597 	ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512);
2598 	ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3);
2599 	ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512);
2600 	ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3);
2601 	ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3);
2602 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2603 
2604 	/* The 2nd child IO has the left segment entry */
2605 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2606 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2);
2607 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2608 
2609 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2610 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2);
2611 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2612 
2613 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL);
2614 	CU_ASSERT(rc == 0);
2615 	CU_ASSERT(g_io_done == false);
2616 
2617 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2618 	stub_complete_io(3);
2619 	CU_ASSERT(g_io_done == true);
2620 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2621 
2622 	/* A very complicated case. Each sg entry exceeds max_segment_size
2623 	 * and split on io boundary.
2624 	 * optimal_io_boundary < max_segment_size * max_num_segments
2625 	 */
2626 	bdev->max_segment_size = 3 * 512;
2627 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2628 	g_io_done = false;
2629 
2630 	for (i = 0; i < 20; i++) {
2631 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2632 		iov[i].iov_len = 512 * 4;
2633 	}
2634 
2635 	/* IO crossing the IO boundary requires split.
2636 	 * 80 block length can split 5 child IOs base on offset and IO boundary.
2637 	 * Each iov entry needs to be splitted to 2 entries because of max_segment_size
2638 	 * Total 5 child IOs.
2639 	 */
2640 
2641 	/* 4 iov entries are in an IO boundary and each iov entry splits to 2.
2642 	 * So each child IO occupies 8 child iov entries.
2643 	 */
2644 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8);
2645 	for (i = 0; i < 4; i++) {
2646 		int iovcnt = i * 2;
2647 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2648 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2649 	}
2650 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2651 
2652 	/* 2nd child IO and total 16 child iov entries of parent IO */
2653 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8);
2654 	for (i = 4; i < 8; i++) {
2655 		int iovcnt = (i - 4) * 2;
2656 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2657 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2658 	}
2659 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2660 
2661 	/* 3rd child IO and total 24 child iov entries of parent IO */
2662 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8);
2663 	for (i = 8; i < 12; i++) {
2664 		int iovcnt = (i - 8) * 2;
2665 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2666 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2667 	}
2668 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2669 
2670 	/* 4th child IO and total 32 child iov entries of parent IO */
2671 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8);
2672 	for (i = 12; i < 16; i++) {
2673 		int iovcnt = (i - 12) * 2;
2674 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2675 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2676 	}
2677 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2678 
2679 	/* 5th child IO and because of the child iov entry it should be splitted
2680 	 * in next round.
2681 	 */
2682 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8);
2683 	for (i = 16; i < 20; i++) {
2684 		int iovcnt = (i - 16) * 2;
2685 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2686 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2687 	}
2688 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2689 
2690 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL);
2691 	CU_ASSERT(rc == 0);
2692 	CU_ASSERT(g_io_done == false);
2693 
2694 	/* First split round */
2695 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2696 	stub_complete_io(4);
2697 	CU_ASSERT(g_io_done == false);
2698 
2699 	/* Second split round */
2700 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2701 	stub_complete_io(1);
2702 	CU_ASSERT(g_io_done == true);
2703 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2704 
2705 	spdk_put_io_channel(io_ch);
2706 	spdk_bdev_close(desc);
2707 	free_bdev(bdev);
2708 	spdk_bdev_finish(bdev_fini_cb, NULL);
2709 	poll_threads();
2710 }
2711 
2712 static void
2713 bdev_io_split_with_io_wait(void)
2714 {
2715 	struct spdk_bdev *bdev;
2716 	struct spdk_bdev_desc *desc = NULL;
2717 	struct spdk_io_channel *io_ch;
2718 	struct spdk_bdev_channel *channel;
2719 	struct spdk_bdev_mgmt_channel *mgmt_ch;
2720 	struct spdk_bdev_opts bdev_opts = {};
2721 	struct iovec iov[3];
2722 	struct ut_expected_io *expected_io;
2723 	int rc;
2724 
2725 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2726 	bdev_opts.bdev_io_pool_size = 2;
2727 	bdev_opts.bdev_io_cache_size = 1;
2728 
2729 	rc = spdk_bdev_set_opts(&bdev_opts);
2730 	CU_ASSERT(rc == 0);
2731 	spdk_bdev_initialize(bdev_init_cb, NULL);
2732 
2733 	bdev = allocate_bdev("bdev0");
2734 
2735 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2736 	CU_ASSERT(rc == 0);
2737 	CU_ASSERT(desc != NULL);
2738 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2739 	io_ch = spdk_bdev_get_io_channel(desc);
2740 	CU_ASSERT(io_ch != NULL);
2741 	channel = spdk_io_channel_get_ctx(io_ch);
2742 	mgmt_ch = channel->shared_resource->mgmt_ch;
2743 
2744 	bdev->optimal_io_boundary = 16;
2745 	bdev->split_on_optimal_io_boundary = true;
2746 
2747 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
2748 	CU_ASSERT(rc == 0);
2749 
2750 	/* Now test that a single-vector command is split correctly.
2751 	 * Offset 14, length 8, payload 0xF000
2752 	 *  Child - Offset 14, length 2, payload 0xF000
2753 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
2754 	 *
2755 	 * Set up the expected values before calling spdk_bdev_read_blocks
2756 	 */
2757 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
2758 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
2759 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2760 
2761 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
2762 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
2763 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2764 
2765 	/* The following children will be submitted sequentially due to the capacity of
2766 	 * spdk_bdev_io.
2767 	 */
2768 
2769 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
2770 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
2771 	CU_ASSERT(rc == 0);
2772 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2773 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2774 
2775 	/* Completing the first read I/O will submit the first child */
2776 	stub_complete_io(1);
2777 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2778 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2779 
2780 	/* Completing the first child will submit the second child */
2781 	stub_complete_io(1);
2782 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2783 
2784 	/* Complete the second child I/O.  This should result in our callback getting
2785 	 * invoked since the parent I/O is now complete.
2786 	 */
2787 	stub_complete_io(1);
2788 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2789 
2790 	/* Now set up a more complex, multi-vector command that needs to be split,
2791 	 *  including splitting iovecs.
2792 	 */
2793 	iov[0].iov_base = (void *)0x10000;
2794 	iov[0].iov_len = 512;
2795 	iov[1].iov_base = (void *)0x20000;
2796 	iov[1].iov_len = 20 * 512;
2797 	iov[2].iov_base = (void *)0x30000;
2798 	iov[2].iov_len = 11 * 512;
2799 
2800 	g_io_done = false;
2801 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
2802 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
2803 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
2804 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2805 
2806 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
2807 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
2808 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2809 
2810 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
2811 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
2812 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
2813 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2814 
2815 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
2816 	CU_ASSERT(rc == 0);
2817 	CU_ASSERT(g_io_done == false);
2818 
2819 	/* The following children will be submitted sequentially due to the capacity of
2820 	 * spdk_bdev_io.
2821 	 */
2822 
2823 	/* Completing the first child will submit the second child */
2824 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2825 	stub_complete_io(1);
2826 	CU_ASSERT(g_io_done == false);
2827 
2828 	/* Completing the second child will submit the third child */
2829 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2830 	stub_complete_io(1);
2831 	CU_ASSERT(g_io_done == false);
2832 
2833 	/* Completing the third child will result in our callback getting invoked
2834 	 * since the parent I/O is now complete.
2835 	 */
2836 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2837 	stub_complete_io(1);
2838 	CU_ASSERT(g_io_done == true);
2839 
2840 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
2841 
2842 	spdk_put_io_channel(io_ch);
2843 	spdk_bdev_close(desc);
2844 	free_bdev(bdev);
2845 	spdk_bdev_finish(bdev_fini_cb, NULL);
2846 	poll_threads();
2847 }
2848 
2849 static void
2850 bdev_io_alignment(void)
2851 {
2852 	struct spdk_bdev *bdev;
2853 	struct spdk_bdev_desc *desc = NULL;
2854 	struct spdk_io_channel *io_ch;
2855 	struct spdk_bdev_opts bdev_opts = {};
2856 	int rc;
2857 	void *buf = NULL;
2858 	struct iovec iovs[2];
2859 	int iovcnt;
2860 	uint64_t alignment;
2861 
2862 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2863 	bdev_opts.bdev_io_pool_size = 20;
2864 	bdev_opts.bdev_io_cache_size = 2;
2865 
2866 	rc = spdk_bdev_set_opts(&bdev_opts);
2867 	CU_ASSERT(rc == 0);
2868 	spdk_bdev_initialize(bdev_init_cb, NULL);
2869 
2870 	fn_table.submit_request = stub_submit_request_get_buf;
2871 	bdev = allocate_bdev("bdev0");
2872 
2873 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2874 	CU_ASSERT(rc == 0);
2875 	CU_ASSERT(desc != NULL);
2876 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2877 	io_ch = spdk_bdev_get_io_channel(desc);
2878 	CU_ASSERT(io_ch != NULL);
2879 
2880 	/* Create aligned buffer */
2881 	rc = posix_memalign(&buf, 4096, 8192);
2882 	SPDK_CU_ASSERT_FATAL(rc == 0);
2883 
2884 	/* Pass aligned single buffer with no alignment required */
2885 	alignment = 1;
2886 	bdev->required_alignment = spdk_u32log2(alignment);
2887 
2888 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
2889 	CU_ASSERT(rc == 0);
2890 	stub_complete_io(1);
2891 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2892 				    alignment));
2893 
2894 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
2895 	CU_ASSERT(rc == 0);
2896 	stub_complete_io(1);
2897 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2898 				    alignment));
2899 
2900 	/* Pass unaligned single buffer with no alignment required */
2901 	alignment = 1;
2902 	bdev->required_alignment = spdk_u32log2(alignment);
2903 
2904 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2905 	CU_ASSERT(rc == 0);
2906 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2907 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
2908 	stub_complete_io(1);
2909 
2910 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2911 	CU_ASSERT(rc == 0);
2912 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2913 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
2914 	stub_complete_io(1);
2915 
2916 	/* Pass unaligned single buffer with 512 alignment required */
2917 	alignment = 512;
2918 	bdev->required_alignment = spdk_u32log2(alignment);
2919 
2920 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2921 	CU_ASSERT(rc == 0);
2922 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2923 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2924 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2925 				    alignment));
2926 	stub_complete_io(1);
2927 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2928 
2929 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2930 	CU_ASSERT(rc == 0);
2931 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2932 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2933 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2934 				    alignment));
2935 	stub_complete_io(1);
2936 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2937 
2938 	/* Pass unaligned single buffer with 4096 alignment required */
2939 	alignment = 4096;
2940 	bdev->required_alignment = spdk_u32log2(alignment);
2941 
2942 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
2943 	CU_ASSERT(rc == 0);
2944 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2945 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2946 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2947 				    alignment));
2948 	stub_complete_io(1);
2949 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2950 
2951 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
2952 	CU_ASSERT(rc == 0);
2953 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2954 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2955 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2956 				    alignment));
2957 	stub_complete_io(1);
2958 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2959 
2960 	/* Pass aligned iovs with no alignment required */
2961 	alignment = 1;
2962 	bdev->required_alignment = spdk_u32log2(alignment);
2963 
2964 	iovcnt = 1;
2965 	iovs[0].iov_base = buf;
2966 	iovs[0].iov_len = 512;
2967 
2968 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2969 	CU_ASSERT(rc == 0);
2970 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2971 	stub_complete_io(1);
2972 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2973 
2974 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2975 	CU_ASSERT(rc == 0);
2976 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2977 	stub_complete_io(1);
2978 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2979 
2980 	/* Pass unaligned iovs with no alignment required */
2981 	alignment = 1;
2982 	bdev->required_alignment = spdk_u32log2(alignment);
2983 
2984 	iovcnt = 2;
2985 	iovs[0].iov_base = buf + 16;
2986 	iovs[0].iov_len = 256;
2987 	iovs[1].iov_base = buf + 16 + 256 + 32;
2988 	iovs[1].iov_len = 256;
2989 
2990 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2991 	CU_ASSERT(rc == 0);
2992 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2993 	stub_complete_io(1);
2994 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2995 
2996 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2997 	CU_ASSERT(rc == 0);
2998 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2999 	stub_complete_io(1);
3000 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3001 
3002 	/* Pass unaligned iov with 2048 alignment required */
3003 	alignment = 2048;
3004 	bdev->required_alignment = spdk_u32log2(alignment);
3005 
3006 	iovcnt = 2;
3007 	iovs[0].iov_base = buf + 16;
3008 	iovs[0].iov_len = 256;
3009 	iovs[1].iov_base = buf + 16 + 256 + 32;
3010 	iovs[1].iov_len = 256;
3011 
3012 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3013 	CU_ASSERT(rc == 0);
3014 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3015 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3016 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3017 				    alignment));
3018 	stub_complete_io(1);
3019 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3020 
3021 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3022 	CU_ASSERT(rc == 0);
3023 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3024 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3025 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3026 				    alignment));
3027 	stub_complete_io(1);
3028 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3029 
3030 	/* Pass iov without allocated buffer without alignment required */
3031 	alignment = 1;
3032 	bdev->required_alignment = spdk_u32log2(alignment);
3033 
3034 	iovcnt = 1;
3035 	iovs[0].iov_base = NULL;
3036 	iovs[0].iov_len = 0;
3037 
3038 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3039 	CU_ASSERT(rc == 0);
3040 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3041 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3042 				    alignment));
3043 	stub_complete_io(1);
3044 
3045 	/* Pass iov without allocated buffer with 1024 alignment required */
3046 	alignment = 1024;
3047 	bdev->required_alignment = spdk_u32log2(alignment);
3048 
3049 	iovcnt = 1;
3050 	iovs[0].iov_base = NULL;
3051 	iovs[0].iov_len = 0;
3052 
3053 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3054 	CU_ASSERT(rc == 0);
3055 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3056 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3057 				    alignment));
3058 	stub_complete_io(1);
3059 
3060 	spdk_put_io_channel(io_ch);
3061 	spdk_bdev_close(desc);
3062 	free_bdev(bdev);
3063 	fn_table.submit_request = stub_submit_request;
3064 	spdk_bdev_finish(bdev_fini_cb, NULL);
3065 	poll_threads();
3066 
3067 	free(buf);
3068 }
3069 
3070 static void
3071 bdev_io_alignment_with_boundary(void)
3072 {
3073 	struct spdk_bdev *bdev;
3074 	struct spdk_bdev_desc *desc = NULL;
3075 	struct spdk_io_channel *io_ch;
3076 	struct spdk_bdev_opts bdev_opts = {};
3077 	int rc;
3078 	void *buf = NULL;
3079 	struct iovec iovs[2];
3080 	int iovcnt;
3081 	uint64_t alignment;
3082 
3083 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3084 	bdev_opts.bdev_io_pool_size = 20;
3085 	bdev_opts.bdev_io_cache_size = 2;
3086 
3087 	bdev_opts.opts_size = sizeof(bdev_opts);
3088 	rc = spdk_bdev_set_opts(&bdev_opts);
3089 	CU_ASSERT(rc == 0);
3090 	spdk_bdev_initialize(bdev_init_cb, NULL);
3091 
3092 	fn_table.submit_request = stub_submit_request_get_buf;
3093 	bdev = allocate_bdev("bdev0");
3094 
3095 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3096 	CU_ASSERT(rc == 0);
3097 	CU_ASSERT(desc != NULL);
3098 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3099 	io_ch = spdk_bdev_get_io_channel(desc);
3100 	CU_ASSERT(io_ch != NULL);
3101 
3102 	/* Create aligned buffer */
3103 	rc = posix_memalign(&buf, 4096, 131072);
3104 	SPDK_CU_ASSERT_FATAL(rc == 0);
3105 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3106 
3107 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
3108 	alignment = 512;
3109 	bdev->required_alignment = spdk_u32log2(alignment);
3110 	bdev->optimal_io_boundary = 2;
3111 	bdev->split_on_optimal_io_boundary = true;
3112 
3113 	iovcnt = 1;
3114 	iovs[0].iov_base = NULL;
3115 	iovs[0].iov_len = 512 * 3;
3116 
3117 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3118 	CU_ASSERT(rc == 0);
3119 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3120 	stub_complete_io(2);
3121 
3122 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
3123 	alignment = 512;
3124 	bdev->required_alignment = spdk_u32log2(alignment);
3125 	bdev->optimal_io_boundary = 16;
3126 	bdev->split_on_optimal_io_boundary = true;
3127 
3128 	iovcnt = 1;
3129 	iovs[0].iov_base = NULL;
3130 	iovs[0].iov_len = 512 * 16;
3131 
3132 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
3133 	CU_ASSERT(rc == 0);
3134 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3135 	stub_complete_io(2);
3136 
3137 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
3138 	alignment = 512;
3139 	bdev->required_alignment = spdk_u32log2(alignment);
3140 	bdev->optimal_io_boundary = 128;
3141 	bdev->split_on_optimal_io_boundary = true;
3142 
3143 	iovcnt = 1;
3144 	iovs[0].iov_base = buf + 16;
3145 	iovs[0].iov_len = 512 * 160;
3146 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3147 	CU_ASSERT(rc == 0);
3148 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3149 	stub_complete_io(2);
3150 
3151 	/* 512 * 3 with 2 IO boundary */
3152 	alignment = 512;
3153 	bdev->required_alignment = spdk_u32log2(alignment);
3154 	bdev->optimal_io_boundary = 2;
3155 	bdev->split_on_optimal_io_boundary = true;
3156 
3157 	iovcnt = 2;
3158 	iovs[0].iov_base = buf + 16;
3159 	iovs[0].iov_len = 512;
3160 	iovs[1].iov_base = buf + 16 + 512 + 32;
3161 	iovs[1].iov_len = 1024;
3162 
3163 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3164 	CU_ASSERT(rc == 0);
3165 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3166 	stub_complete_io(2);
3167 
3168 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3169 	CU_ASSERT(rc == 0);
3170 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3171 	stub_complete_io(2);
3172 
3173 	/* 512 * 64 with 32 IO boundary */
3174 	bdev->optimal_io_boundary = 32;
3175 	iovcnt = 2;
3176 	iovs[0].iov_base = buf + 16;
3177 	iovs[0].iov_len = 16384;
3178 	iovs[1].iov_base = buf + 16 + 16384 + 32;
3179 	iovs[1].iov_len = 16384;
3180 
3181 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3182 	CU_ASSERT(rc == 0);
3183 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3184 	stub_complete_io(3);
3185 
3186 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3187 	CU_ASSERT(rc == 0);
3188 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3189 	stub_complete_io(3);
3190 
3191 	/* 512 * 160 with 32 IO boundary */
3192 	iovcnt = 1;
3193 	iovs[0].iov_base = buf + 16;
3194 	iovs[0].iov_len = 16384 + 65536;
3195 
3196 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3197 	CU_ASSERT(rc == 0);
3198 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
3199 	stub_complete_io(6);
3200 
3201 	spdk_put_io_channel(io_ch);
3202 	spdk_bdev_close(desc);
3203 	free_bdev(bdev);
3204 	fn_table.submit_request = stub_submit_request;
3205 	spdk_bdev_finish(bdev_fini_cb, NULL);
3206 	poll_threads();
3207 
3208 	free(buf);
3209 }
3210 
3211 static void
3212 histogram_status_cb(void *cb_arg, int status)
3213 {
3214 	g_status = status;
3215 }
3216 
3217 static void
3218 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3219 {
3220 	g_status = status;
3221 	g_histogram = histogram;
3222 }
3223 
3224 static void
3225 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
3226 		   uint64_t total, uint64_t so_far)
3227 {
3228 	g_count += count;
3229 }
3230 
3231 static void
3232 bdev_histograms(void)
3233 {
3234 	struct spdk_bdev *bdev;
3235 	struct spdk_bdev_desc *desc = NULL;
3236 	struct spdk_io_channel *ch;
3237 	struct spdk_histogram_data *histogram;
3238 	uint8_t buf[4096];
3239 	int rc;
3240 
3241 	spdk_bdev_initialize(bdev_init_cb, NULL);
3242 
3243 	bdev = allocate_bdev("bdev");
3244 
3245 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3246 	CU_ASSERT(rc == 0);
3247 	CU_ASSERT(desc != NULL);
3248 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3249 
3250 	ch = spdk_bdev_get_io_channel(desc);
3251 	CU_ASSERT(ch != NULL);
3252 
3253 	/* Enable histogram */
3254 	g_status = -1;
3255 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
3256 	poll_threads();
3257 	CU_ASSERT(g_status == 0);
3258 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3259 
3260 	/* Allocate histogram */
3261 	histogram = spdk_histogram_data_alloc();
3262 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
3263 
3264 	/* Check if histogram is zeroed */
3265 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3266 	poll_threads();
3267 	CU_ASSERT(g_status == 0);
3268 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3269 
3270 	g_count = 0;
3271 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3272 
3273 	CU_ASSERT(g_count == 0);
3274 
3275 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3276 	CU_ASSERT(rc == 0);
3277 
3278 	spdk_delay_us(10);
3279 	stub_complete_io(1);
3280 	poll_threads();
3281 
3282 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3283 	CU_ASSERT(rc == 0);
3284 
3285 	spdk_delay_us(10);
3286 	stub_complete_io(1);
3287 	poll_threads();
3288 
3289 	/* Check if histogram gathered data from all I/O channels */
3290 	g_histogram = NULL;
3291 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3292 	poll_threads();
3293 	CU_ASSERT(g_status == 0);
3294 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3295 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3296 
3297 	g_count = 0;
3298 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3299 	CU_ASSERT(g_count == 2);
3300 
3301 	/* Disable histogram */
3302 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
3303 	poll_threads();
3304 	CU_ASSERT(g_status == 0);
3305 	CU_ASSERT(bdev->internal.histogram_enabled == false);
3306 
3307 	/* Try to run histogram commands on disabled bdev */
3308 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3309 	poll_threads();
3310 	CU_ASSERT(g_status == -EFAULT);
3311 
3312 	spdk_histogram_data_free(histogram);
3313 	spdk_put_io_channel(ch);
3314 	spdk_bdev_close(desc);
3315 	free_bdev(bdev);
3316 	spdk_bdev_finish(bdev_fini_cb, NULL);
3317 	poll_threads();
3318 }
3319 
3320 static void
3321 _bdev_compare(bool emulated)
3322 {
3323 	struct spdk_bdev *bdev;
3324 	struct spdk_bdev_desc *desc = NULL;
3325 	struct spdk_io_channel *ioch;
3326 	struct ut_expected_io *expected_io;
3327 	uint64_t offset, num_blocks;
3328 	uint32_t num_completed;
3329 	char aa_buf[512];
3330 	char bb_buf[512];
3331 	struct iovec compare_iov;
3332 	uint8_t expected_io_type;
3333 	int rc;
3334 
3335 	if (emulated) {
3336 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3337 	} else {
3338 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3339 	}
3340 
3341 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3342 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3343 
3344 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3345 
3346 	spdk_bdev_initialize(bdev_init_cb, NULL);
3347 	fn_table.submit_request = stub_submit_request_get_buf;
3348 	bdev = allocate_bdev("bdev");
3349 
3350 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3351 	CU_ASSERT_EQUAL(rc, 0);
3352 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3353 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3354 	ioch = spdk_bdev_get_io_channel(desc);
3355 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3356 
3357 	fn_table.submit_request = stub_submit_request_get_buf;
3358 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3359 
3360 	offset = 50;
3361 	num_blocks = 1;
3362 	compare_iov.iov_base = aa_buf;
3363 	compare_iov.iov_len = sizeof(aa_buf);
3364 
3365 	/* 1. successful compare */
3366 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3367 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3368 
3369 	g_io_done = false;
3370 	g_compare_read_buf = aa_buf;
3371 	g_compare_read_buf_len = sizeof(aa_buf);
3372 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3373 	CU_ASSERT_EQUAL(rc, 0);
3374 	num_completed = stub_complete_io(1);
3375 	CU_ASSERT_EQUAL(num_completed, 1);
3376 	CU_ASSERT(g_io_done == true);
3377 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3378 
3379 	/* 2. miscompare */
3380 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3381 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3382 
3383 	g_io_done = false;
3384 	g_compare_read_buf = bb_buf;
3385 	g_compare_read_buf_len = sizeof(bb_buf);
3386 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3387 	CU_ASSERT_EQUAL(rc, 0);
3388 	num_completed = stub_complete_io(1);
3389 	CU_ASSERT_EQUAL(num_completed, 1);
3390 	CU_ASSERT(g_io_done == true);
3391 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3392 
3393 	spdk_put_io_channel(ioch);
3394 	spdk_bdev_close(desc);
3395 	free_bdev(bdev);
3396 	fn_table.submit_request = stub_submit_request;
3397 	spdk_bdev_finish(bdev_fini_cb, NULL);
3398 	poll_threads();
3399 
3400 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3401 
3402 	g_compare_read_buf = NULL;
3403 }
3404 
3405 static void
3406 _bdev_compare_with_md(bool emulated)
3407 {
3408 	struct spdk_bdev *bdev;
3409 	struct spdk_bdev_desc *desc = NULL;
3410 	struct spdk_io_channel *ioch;
3411 	struct ut_expected_io *expected_io;
3412 	uint64_t offset, num_blocks;
3413 	uint32_t num_completed;
3414 	char buf[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3415 	char buf_interleaved_miscompare[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3416 	char buf_miscompare[1024 /* 2 * blocklen */];
3417 	char md_buf[16];
3418 	char md_buf_miscompare[16];
3419 	struct iovec compare_iov;
3420 	uint8_t expected_io_type;
3421 	int rc;
3422 
3423 	if (emulated) {
3424 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3425 	} else {
3426 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3427 	}
3428 
3429 	memset(buf, 0xaa, sizeof(buf));
3430 	memset(buf_interleaved_miscompare, 0xaa, sizeof(buf_interleaved_miscompare));
3431 	/* make last md different */
3432 	memset(buf_interleaved_miscompare + 1024 + 8, 0xbb, 8);
3433 	memset(buf_miscompare, 0xbb, sizeof(buf_miscompare));
3434 	memset(md_buf, 0xaa, 16);
3435 	memset(md_buf_miscompare, 0xbb, 16);
3436 
3437 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3438 
3439 	spdk_bdev_initialize(bdev_init_cb, NULL);
3440 	fn_table.submit_request = stub_submit_request_get_buf;
3441 	bdev = allocate_bdev("bdev");
3442 
3443 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3444 	CU_ASSERT_EQUAL(rc, 0);
3445 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3446 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3447 	ioch = spdk_bdev_get_io_channel(desc);
3448 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3449 
3450 	fn_table.submit_request = stub_submit_request_get_buf;
3451 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3452 
3453 	offset = 50;
3454 	num_blocks = 2;
3455 
3456 	/* interleaved md & data */
3457 	bdev->md_interleave = true;
3458 	bdev->md_len = 8;
3459 	bdev->blocklen = 512 + 8;
3460 	compare_iov.iov_base = buf;
3461 	compare_iov.iov_len = sizeof(buf);
3462 
3463 	/* 1. successful compare with md interleaved */
3464 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3465 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3466 
3467 	g_io_done = false;
3468 	g_compare_read_buf = buf;
3469 	g_compare_read_buf_len = sizeof(buf);
3470 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3471 	CU_ASSERT_EQUAL(rc, 0);
3472 	num_completed = stub_complete_io(1);
3473 	CU_ASSERT_EQUAL(num_completed, 1);
3474 	CU_ASSERT(g_io_done == true);
3475 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3476 
3477 	/* 2. miscompare with md interleaved */
3478 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3479 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3480 
3481 	g_io_done = false;
3482 	g_compare_read_buf = buf_interleaved_miscompare;
3483 	g_compare_read_buf_len = sizeof(buf_interleaved_miscompare);
3484 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3485 	CU_ASSERT_EQUAL(rc, 0);
3486 	num_completed = stub_complete_io(1);
3487 	CU_ASSERT_EQUAL(num_completed, 1);
3488 	CU_ASSERT(g_io_done == true);
3489 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3490 
3491 	/* Separate data & md buffers */
3492 	bdev->md_interleave = false;
3493 	bdev->blocklen = 512;
3494 	compare_iov.iov_base = buf;
3495 	compare_iov.iov_len = 1024;
3496 
3497 	/* 3. successful compare with md separated */
3498 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3499 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3500 
3501 	g_io_done = false;
3502 	g_compare_read_buf = buf;
3503 	g_compare_read_buf_len = 1024;
3504 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3505 	g_compare_md_buf = md_buf;
3506 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3507 					       offset, num_blocks, io_done, NULL);
3508 	CU_ASSERT_EQUAL(rc, 0);
3509 	num_completed = stub_complete_io(1);
3510 	CU_ASSERT_EQUAL(num_completed, 1);
3511 	CU_ASSERT(g_io_done == true);
3512 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3513 
3514 	/* 4. miscompare with md separated where md buf is different */
3515 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3516 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3517 
3518 	g_io_done = false;
3519 	g_compare_read_buf = buf;
3520 	g_compare_read_buf_len = 1024;
3521 	g_compare_md_buf = md_buf_miscompare;
3522 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3523 					       offset, num_blocks, io_done, NULL);
3524 	CU_ASSERT_EQUAL(rc, 0);
3525 	num_completed = stub_complete_io(1);
3526 	CU_ASSERT_EQUAL(num_completed, 1);
3527 	CU_ASSERT(g_io_done == true);
3528 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3529 
3530 	/* 5. miscompare with md separated where buf is different */
3531 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3532 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3533 
3534 	g_io_done = false;
3535 	g_compare_read_buf = buf_miscompare;
3536 	g_compare_read_buf_len = sizeof(buf_miscompare);
3537 	g_compare_md_buf = md_buf;
3538 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3539 					       offset, num_blocks, io_done, NULL);
3540 	CU_ASSERT_EQUAL(rc, 0);
3541 	num_completed = stub_complete_io(1);
3542 	CU_ASSERT_EQUAL(num_completed, 1);
3543 	CU_ASSERT(g_io_done == true);
3544 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3545 
3546 	bdev->md_len = 0;
3547 	g_compare_md_buf = NULL;
3548 
3549 	spdk_put_io_channel(ioch);
3550 	spdk_bdev_close(desc);
3551 	free_bdev(bdev);
3552 	fn_table.submit_request = stub_submit_request;
3553 	spdk_bdev_finish(bdev_fini_cb, NULL);
3554 	poll_threads();
3555 
3556 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3557 
3558 	g_compare_read_buf = NULL;
3559 }
3560 
3561 static void
3562 bdev_compare(void)
3563 {
3564 	_bdev_compare(false);
3565 	_bdev_compare_with_md(false);
3566 }
3567 
3568 static void
3569 bdev_compare_emulated(void)
3570 {
3571 	_bdev_compare(true);
3572 	_bdev_compare_with_md(true);
3573 }
3574 
3575 static void
3576 bdev_compare_and_write(void)
3577 {
3578 	struct spdk_bdev *bdev;
3579 	struct spdk_bdev_desc *desc = NULL;
3580 	struct spdk_io_channel *ioch;
3581 	struct ut_expected_io *expected_io;
3582 	uint64_t offset, num_blocks;
3583 	uint32_t num_completed;
3584 	char aa_buf[512];
3585 	char bb_buf[512];
3586 	char cc_buf[512];
3587 	char write_buf[512];
3588 	struct iovec compare_iov;
3589 	struct iovec write_iov;
3590 	int rc;
3591 
3592 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3593 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3594 	memset(cc_buf, 0xcc, sizeof(cc_buf));
3595 
3596 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
3597 
3598 	spdk_bdev_initialize(bdev_init_cb, NULL);
3599 	fn_table.submit_request = stub_submit_request_get_buf;
3600 	bdev = allocate_bdev("bdev");
3601 
3602 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3603 	CU_ASSERT_EQUAL(rc, 0);
3604 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3605 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3606 	ioch = spdk_bdev_get_io_channel(desc);
3607 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3608 
3609 	fn_table.submit_request = stub_submit_request_get_buf;
3610 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3611 
3612 	offset = 50;
3613 	num_blocks = 1;
3614 	compare_iov.iov_base = aa_buf;
3615 	compare_iov.iov_len = sizeof(aa_buf);
3616 	write_iov.iov_base = bb_buf;
3617 	write_iov.iov_len = sizeof(bb_buf);
3618 
3619 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3620 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3621 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
3622 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3623 
3624 	g_io_done = false;
3625 	g_compare_read_buf = aa_buf;
3626 	g_compare_read_buf_len = sizeof(aa_buf);
3627 	memset(write_buf, 0, sizeof(write_buf));
3628 	g_compare_write_buf = write_buf;
3629 	g_compare_write_buf_len = sizeof(write_buf);
3630 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3631 			offset, num_blocks, io_done, NULL);
3632 	/* Trigger range locking */
3633 	poll_threads();
3634 	CU_ASSERT_EQUAL(rc, 0);
3635 	num_completed = stub_complete_io(1);
3636 	CU_ASSERT_EQUAL(num_completed, 1);
3637 	CU_ASSERT(g_io_done == false);
3638 	num_completed = stub_complete_io(1);
3639 	/* Trigger range unlocking */
3640 	poll_threads();
3641 	CU_ASSERT_EQUAL(num_completed, 1);
3642 	CU_ASSERT(g_io_done == true);
3643 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3644 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
3645 
3646 	/* Test miscompare */
3647 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3648 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3649 
3650 	g_io_done = false;
3651 	g_compare_read_buf = cc_buf;
3652 	g_compare_read_buf_len = sizeof(cc_buf);
3653 	memset(write_buf, 0, sizeof(write_buf));
3654 	g_compare_write_buf = write_buf;
3655 	g_compare_write_buf_len = sizeof(write_buf);
3656 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3657 			offset, num_blocks, io_done, NULL);
3658 	/* Trigger range locking */
3659 	poll_threads();
3660 	CU_ASSERT_EQUAL(rc, 0);
3661 	num_completed = stub_complete_io(1);
3662 	/* Trigger range unlocking earlier because we expect error here */
3663 	poll_threads();
3664 	CU_ASSERT_EQUAL(num_completed, 1);
3665 	CU_ASSERT(g_io_done == true);
3666 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3667 	num_completed = stub_complete_io(1);
3668 	CU_ASSERT_EQUAL(num_completed, 0);
3669 
3670 	spdk_put_io_channel(ioch);
3671 	spdk_bdev_close(desc);
3672 	free_bdev(bdev);
3673 	fn_table.submit_request = stub_submit_request;
3674 	spdk_bdev_finish(bdev_fini_cb, NULL);
3675 	poll_threads();
3676 
3677 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3678 
3679 	g_compare_read_buf = NULL;
3680 	g_compare_write_buf = NULL;
3681 }
3682 
3683 static void
3684 bdev_write_zeroes(void)
3685 {
3686 	struct spdk_bdev *bdev;
3687 	struct spdk_bdev_desc *desc = NULL;
3688 	struct spdk_io_channel *ioch;
3689 	struct ut_expected_io *expected_io;
3690 	uint64_t offset, num_io_blocks, num_blocks;
3691 	uint32_t num_completed, num_requests;
3692 	int rc;
3693 
3694 	spdk_bdev_initialize(bdev_init_cb, NULL);
3695 	bdev = allocate_bdev("bdev");
3696 
3697 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3698 	CU_ASSERT_EQUAL(rc, 0);
3699 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3700 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3701 	ioch = spdk_bdev_get_io_channel(desc);
3702 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3703 
3704 	fn_table.submit_request = stub_submit_request;
3705 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3706 
3707 	/* First test that if the bdev supports write_zeroes, the request won't be split */
3708 	bdev->md_len = 0;
3709 	bdev->blocklen = 4096;
3710 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3711 
3712 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
3713 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3714 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3715 	CU_ASSERT_EQUAL(rc, 0);
3716 	num_completed = stub_complete_io(1);
3717 	CU_ASSERT_EQUAL(num_completed, 1);
3718 
3719 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
3720 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
3721 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
3722 	num_requests = 2;
3723 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
3724 
3725 	for (offset = 0; offset < num_requests; ++offset) {
3726 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3727 						   offset * num_io_blocks, num_io_blocks, 0);
3728 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3729 	}
3730 
3731 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3732 	CU_ASSERT_EQUAL(rc, 0);
3733 	num_completed = stub_complete_io(num_requests);
3734 	CU_ASSERT_EQUAL(num_completed, num_requests);
3735 
3736 	/* Check that the splitting is correct if bdev has interleaved metadata */
3737 	bdev->md_interleave = true;
3738 	bdev->md_len = 64;
3739 	bdev->blocklen = 4096 + 64;
3740 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3741 
3742 	num_requests = offset = 0;
3743 	while (offset < num_blocks) {
3744 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
3745 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3746 						   offset, num_io_blocks, 0);
3747 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3748 		offset += num_io_blocks;
3749 		num_requests++;
3750 	}
3751 
3752 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3753 	CU_ASSERT_EQUAL(rc, 0);
3754 	num_completed = stub_complete_io(num_requests);
3755 	CU_ASSERT_EQUAL(num_completed, num_requests);
3756 	num_completed = stub_complete_io(num_requests);
3757 	assert(num_completed == 0);
3758 
3759 	/* Check the the same for separate metadata buffer */
3760 	bdev->md_interleave = false;
3761 	bdev->md_len = 64;
3762 	bdev->blocklen = 4096;
3763 
3764 	num_requests = offset = 0;
3765 	while (offset < num_blocks) {
3766 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
3767 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3768 						   offset, num_io_blocks, 0);
3769 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
3770 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3771 		offset += num_io_blocks;
3772 		num_requests++;
3773 	}
3774 
3775 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3776 	CU_ASSERT_EQUAL(rc, 0);
3777 	num_completed = stub_complete_io(num_requests);
3778 	CU_ASSERT_EQUAL(num_completed, num_requests);
3779 
3780 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
3781 	spdk_put_io_channel(ioch);
3782 	spdk_bdev_close(desc);
3783 	free_bdev(bdev);
3784 	spdk_bdev_finish(bdev_fini_cb, NULL);
3785 	poll_threads();
3786 }
3787 
3788 static void
3789 bdev_zcopy_write(void)
3790 {
3791 	struct spdk_bdev *bdev;
3792 	struct spdk_bdev_desc *desc = NULL;
3793 	struct spdk_io_channel *ioch;
3794 	struct ut_expected_io *expected_io;
3795 	uint64_t offset, num_blocks;
3796 	uint32_t num_completed;
3797 	char aa_buf[512];
3798 	struct iovec iov;
3799 	int rc;
3800 	const bool populate = false;
3801 	const bool commit = true;
3802 
3803 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3804 
3805 	spdk_bdev_initialize(bdev_init_cb, NULL);
3806 	bdev = allocate_bdev("bdev");
3807 
3808 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3809 	CU_ASSERT_EQUAL(rc, 0);
3810 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3811 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3812 	ioch = spdk_bdev_get_io_channel(desc);
3813 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3814 
3815 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3816 
3817 	offset = 50;
3818 	num_blocks = 1;
3819 	iov.iov_base = NULL;
3820 	iov.iov_len = 0;
3821 
3822 	g_zcopy_read_buf = (void *) 0x1122334455667788UL;
3823 	g_zcopy_read_buf_len = (uint32_t) -1;
3824 	/* Do a zcopy start for a write (populate=false) */
3825 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3826 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3827 	g_io_done = false;
3828 	g_zcopy_write_buf = aa_buf;
3829 	g_zcopy_write_buf_len = sizeof(aa_buf);
3830 	g_zcopy_bdev_io = NULL;
3831 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
3832 	CU_ASSERT_EQUAL(rc, 0);
3833 	num_completed = stub_complete_io(1);
3834 	CU_ASSERT_EQUAL(num_completed, 1);
3835 	CU_ASSERT(g_io_done == true);
3836 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3837 	/* Check that the iov has been set up */
3838 	CU_ASSERT(iov.iov_base == g_zcopy_write_buf);
3839 	CU_ASSERT(iov.iov_len == g_zcopy_write_buf_len);
3840 	/* Check that the bdev_io has been saved */
3841 	CU_ASSERT(g_zcopy_bdev_io != NULL);
3842 	/* Now do the zcopy end for a write (commit=true) */
3843 	g_io_done = false;
3844 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3845 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3846 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
3847 	CU_ASSERT_EQUAL(rc, 0);
3848 	num_completed = stub_complete_io(1);
3849 	CU_ASSERT_EQUAL(num_completed, 1);
3850 	CU_ASSERT(g_io_done == true);
3851 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3852 	/* Check the g_zcopy are reset by io_done */
3853 	CU_ASSERT(g_zcopy_write_buf == NULL);
3854 	CU_ASSERT(g_zcopy_write_buf_len == 0);
3855 	/* Check that io_done has freed the g_zcopy_bdev_io */
3856 	CU_ASSERT(g_zcopy_bdev_io == NULL);
3857 
3858 	/* Check the zcopy read buffer has not been touched which
3859 	 * ensures that the correct buffers were used.
3860 	 */
3861 	CU_ASSERT(g_zcopy_read_buf == (void *) 0x1122334455667788UL);
3862 	CU_ASSERT(g_zcopy_read_buf_len == (uint32_t) -1);
3863 
3864 	spdk_put_io_channel(ioch);
3865 	spdk_bdev_close(desc);
3866 	free_bdev(bdev);
3867 	spdk_bdev_finish(bdev_fini_cb, NULL);
3868 	poll_threads();
3869 }
3870 
3871 static void
3872 bdev_zcopy_read(void)
3873 {
3874 	struct spdk_bdev *bdev;
3875 	struct spdk_bdev_desc *desc = NULL;
3876 	struct spdk_io_channel *ioch;
3877 	struct ut_expected_io *expected_io;
3878 	uint64_t offset, num_blocks;
3879 	uint32_t num_completed;
3880 	char aa_buf[512];
3881 	struct iovec iov;
3882 	int rc;
3883 	const bool populate = true;
3884 	const bool commit = false;
3885 
3886 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3887 
3888 	spdk_bdev_initialize(bdev_init_cb, NULL);
3889 	bdev = allocate_bdev("bdev");
3890 
3891 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3892 	CU_ASSERT_EQUAL(rc, 0);
3893 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3894 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3895 	ioch = spdk_bdev_get_io_channel(desc);
3896 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3897 
3898 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3899 
3900 	offset = 50;
3901 	num_blocks = 1;
3902 	iov.iov_base = NULL;
3903 	iov.iov_len = 0;
3904 
3905 	g_zcopy_write_buf = (void *) 0x1122334455667788UL;
3906 	g_zcopy_write_buf_len = (uint32_t) -1;
3907 
3908 	/* Do a zcopy start for a read (populate=true) */
3909 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3910 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3911 	g_io_done = false;
3912 	g_zcopy_read_buf = aa_buf;
3913 	g_zcopy_read_buf_len = sizeof(aa_buf);
3914 	g_zcopy_bdev_io = NULL;
3915 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
3916 	CU_ASSERT_EQUAL(rc, 0);
3917 	num_completed = stub_complete_io(1);
3918 	CU_ASSERT_EQUAL(num_completed, 1);
3919 	CU_ASSERT(g_io_done == true);
3920 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3921 	/* Check that the iov has been set up */
3922 	CU_ASSERT(iov.iov_base == g_zcopy_read_buf);
3923 	CU_ASSERT(iov.iov_len == g_zcopy_read_buf_len);
3924 	/* Check that the bdev_io has been saved */
3925 	CU_ASSERT(g_zcopy_bdev_io != NULL);
3926 
3927 	/* Now do the zcopy end for a read (commit=false) */
3928 	g_io_done = false;
3929 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3930 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3931 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
3932 	CU_ASSERT_EQUAL(rc, 0);
3933 	num_completed = stub_complete_io(1);
3934 	CU_ASSERT_EQUAL(num_completed, 1);
3935 	CU_ASSERT(g_io_done == true);
3936 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3937 	/* Check the g_zcopy are reset by io_done */
3938 	CU_ASSERT(g_zcopy_read_buf == NULL);
3939 	CU_ASSERT(g_zcopy_read_buf_len == 0);
3940 	/* Check that io_done has freed the g_zcopy_bdev_io */
3941 	CU_ASSERT(g_zcopy_bdev_io == NULL);
3942 
3943 	/* Check the zcopy write buffer has not been touched which
3944 	 * ensures that the correct buffers were used.
3945 	 */
3946 	CU_ASSERT(g_zcopy_write_buf == (void *) 0x1122334455667788UL);
3947 	CU_ASSERT(g_zcopy_write_buf_len == (uint32_t) -1);
3948 
3949 	spdk_put_io_channel(ioch);
3950 	spdk_bdev_close(desc);
3951 	free_bdev(bdev);
3952 	spdk_bdev_finish(bdev_fini_cb, NULL);
3953 	poll_threads();
3954 }
3955 
3956 static void
3957 bdev_open_while_hotremove(void)
3958 {
3959 	struct spdk_bdev *bdev;
3960 	struct spdk_bdev_desc *desc[2] = {};
3961 	int rc;
3962 
3963 	bdev = allocate_bdev("bdev");
3964 
3965 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
3966 	CU_ASSERT(rc == 0);
3967 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
3968 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
3969 
3970 	spdk_bdev_unregister(bdev, NULL, NULL);
3971 	/* Bdev unregister is handled asynchronously. Poll thread to complete. */
3972 	poll_threads();
3973 
3974 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
3975 	CU_ASSERT(rc == -ENODEV);
3976 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
3977 
3978 	spdk_bdev_close(desc[0]);
3979 	free_bdev(bdev);
3980 }
3981 
3982 static void
3983 bdev_close_while_hotremove(void)
3984 {
3985 	struct spdk_bdev *bdev;
3986 	struct spdk_bdev_desc *desc = NULL;
3987 	int rc = 0;
3988 
3989 	bdev = allocate_bdev("bdev");
3990 
3991 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
3992 	CU_ASSERT_EQUAL(rc, 0);
3993 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3994 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3995 
3996 	/* Simulate hot-unplug by unregistering bdev */
3997 	g_event_type1 = 0xFF;
3998 	g_unregister_arg = NULL;
3999 	g_unregister_rc = -1;
4000 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4001 	/* Close device while remove event is in flight */
4002 	spdk_bdev_close(desc);
4003 
4004 	/* Ensure that unregister callback is delayed */
4005 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
4006 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
4007 
4008 	poll_threads();
4009 
4010 	/* Event callback shall not be issued because device was closed */
4011 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
4012 	/* Unregister callback is issued */
4013 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
4014 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
4015 
4016 	free_bdev(bdev);
4017 }
4018 
4019 static void
4020 bdev_open_ext(void)
4021 {
4022 	struct spdk_bdev *bdev;
4023 	struct spdk_bdev_desc *desc1 = NULL;
4024 	struct spdk_bdev_desc *desc2 = NULL;
4025 	int rc = 0;
4026 
4027 	bdev = allocate_bdev("bdev");
4028 
4029 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4030 	CU_ASSERT_EQUAL(rc, -EINVAL);
4031 
4032 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4033 	CU_ASSERT_EQUAL(rc, 0);
4034 
4035 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4036 	CU_ASSERT_EQUAL(rc, 0);
4037 
4038 	g_event_type1 = 0xFF;
4039 	g_event_type2 = 0xFF;
4040 
4041 	/* Simulate hot-unplug by unregistering bdev */
4042 	spdk_bdev_unregister(bdev, NULL, NULL);
4043 	poll_threads();
4044 
4045 	/* Check if correct events have been triggered in event callback fn */
4046 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4047 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4048 
4049 	free_bdev(bdev);
4050 	poll_threads();
4051 }
4052 
4053 static void
4054 bdev_open_ext_unregister(void)
4055 {
4056 	struct spdk_bdev *bdev;
4057 	struct spdk_bdev_desc *desc1 = NULL;
4058 	struct spdk_bdev_desc *desc2 = NULL;
4059 	struct spdk_bdev_desc *desc3 = NULL;
4060 	struct spdk_bdev_desc *desc4 = NULL;
4061 	int rc = 0;
4062 
4063 	bdev = allocate_bdev("bdev");
4064 
4065 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4066 	CU_ASSERT_EQUAL(rc, -EINVAL);
4067 
4068 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4069 	CU_ASSERT_EQUAL(rc, 0);
4070 
4071 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4072 	CU_ASSERT_EQUAL(rc, 0);
4073 
4074 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb3, &desc3, &desc3);
4075 	CU_ASSERT_EQUAL(rc, 0);
4076 
4077 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb4, &desc4, &desc4);
4078 	CU_ASSERT_EQUAL(rc, 0);
4079 
4080 	g_event_type1 = 0xFF;
4081 	g_event_type2 = 0xFF;
4082 	g_event_type3 = 0xFF;
4083 	g_event_type4 = 0xFF;
4084 
4085 	g_unregister_arg = NULL;
4086 	g_unregister_rc = -1;
4087 
4088 	/* Simulate hot-unplug by unregistering bdev */
4089 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4090 
4091 	/*
4092 	 * Unregister is handled asynchronously and event callback
4093 	 * (i.e., above bdev_open_cbN) will be called.
4094 	 * For bdev_open_cb3 and bdev_open_cb4, it is intended to not
4095 	 * close the desc3 and desc4 so that the bdev is not closed.
4096 	 */
4097 	poll_threads();
4098 
4099 	/* Check if correct events have been triggered in event callback fn */
4100 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4101 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4102 	CU_ASSERT_EQUAL(g_event_type3, SPDK_BDEV_EVENT_REMOVE);
4103 	CU_ASSERT_EQUAL(g_event_type4, SPDK_BDEV_EVENT_REMOVE);
4104 
4105 	/* Check that unregister callback is delayed */
4106 	CU_ASSERT(g_unregister_arg == NULL);
4107 	CU_ASSERT(g_unregister_rc == -1);
4108 
4109 	/*
4110 	 * Explicitly close desc3. As desc4 is still opened there, the
4111 	 * unergister callback is still delayed to execute.
4112 	 */
4113 	spdk_bdev_close(desc3);
4114 	CU_ASSERT(g_unregister_arg == NULL);
4115 	CU_ASSERT(g_unregister_rc == -1);
4116 
4117 	/*
4118 	 * Explicitly close desc4 to trigger the ongoing bdev unregister
4119 	 * operation after last desc is closed.
4120 	 */
4121 	spdk_bdev_close(desc4);
4122 
4123 	/* Poll the thread for the async unregister operation */
4124 	poll_threads();
4125 
4126 	/* Check that unregister callback is executed */
4127 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
4128 	CU_ASSERT(g_unregister_rc == 0);
4129 
4130 	free_bdev(bdev);
4131 	poll_threads();
4132 }
4133 
4134 struct timeout_io_cb_arg {
4135 	struct iovec iov;
4136 	uint8_t type;
4137 };
4138 
4139 static int
4140 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
4141 {
4142 	struct spdk_bdev_io *bdev_io;
4143 	int n = 0;
4144 
4145 	if (!ch) {
4146 		return -1;
4147 	}
4148 
4149 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
4150 		n++;
4151 	}
4152 
4153 	return n;
4154 }
4155 
4156 static void
4157 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
4158 {
4159 	struct timeout_io_cb_arg *ctx = cb_arg;
4160 
4161 	ctx->type = bdev_io->type;
4162 	ctx->iov.iov_base = bdev_io->iov.iov_base;
4163 	ctx->iov.iov_len = bdev_io->iov.iov_len;
4164 }
4165 
4166 static void
4167 bdev_set_io_timeout(void)
4168 {
4169 	struct spdk_bdev *bdev;
4170 	struct spdk_bdev_desc *desc = NULL;
4171 	struct spdk_io_channel *io_ch = NULL;
4172 	struct spdk_bdev_channel *bdev_ch = NULL;
4173 	struct timeout_io_cb_arg cb_arg;
4174 
4175 	spdk_bdev_initialize(bdev_init_cb, NULL);
4176 
4177 	bdev = allocate_bdev("bdev");
4178 
4179 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4180 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4181 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4182 
4183 	io_ch = spdk_bdev_get_io_channel(desc);
4184 	CU_ASSERT(io_ch != NULL);
4185 
4186 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4187 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4188 
4189 	/* This is the part1.
4190 	 * We will check the bdev_ch->io_submitted list
4191 	 * TO make sure that it can link IOs and only the user submitted IOs
4192 	 */
4193 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4194 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4195 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4196 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4197 	stub_complete_io(1);
4198 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4199 	stub_complete_io(1);
4200 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4201 
4202 	/* Split IO */
4203 	bdev->optimal_io_boundary = 16;
4204 	bdev->split_on_optimal_io_boundary = true;
4205 
4206 	/* Now test that a single-vector command is split correctly.
4207 	 * Offset 14, length 8, payload 0xF000
4208 	 *  Child - Offset 14, length 2, payload 0xF000
4209 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4210 	 *
4211 	 * Set up the expected values before calling spdk_bdev_read_blocks
4212 	 */
4213 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4214 	/* We count all submitted IOs including IO that are generated by splitting. */
4215 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
4216 	stub_complete_io(1);
4217 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4218 	stub_complete_io(1);
4219 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4220 
4221 	/* Also include the reset IO */
4222 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4223 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4224 	poll_threads();
4225 	stub_complete_io(1);
4226 	poll_threads();
4227 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4228 
4229 	/* This is part2
4230 	 * Test the desc timeout poller register
4231 	 */
4232 
4233 	/* Successfully set the timeout */
4234 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4235 	CU_ASSERT(desc->io_timeout_poller != NULL);
4236 	CU_ASSERT(desc->timeout_in_sec == 30);
4237 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4238 	CU_ASSERT(desc->cb_arg == &cb_arg);
4239 
4240 	/* Change the timeout limit */
4241 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4242 	CU_ASSERT(desc->io_timeout_poller != NULL);
4243 	CU_ASSERT(desc->timeout_in_sec == 20);
4244 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4245 	CU_ASSERT(desc->cb_arg == &cb_arg);
4246 
4247 	/* Disable the timeout */
4248 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
4249 	CU_ASSERT(desc->io_timeout_poller == NULL);
4250 
4251 	/* This the part3
4252 	 * We will test to catch timeout IO and check whether the IO is
4253 	 * the submitted one.
4254 	 */
4255 	memset(&cb_arg, 0, sizeof(cb_arg));
4256 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4257 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
4258 
4259 	/* Don't reach the limit */
4260 	spdk_delay_us(15 * spdk_get_ticks_hz());
4261 	poll_threads();
4262 	CU_ASSERT(cb_arg.type == 0);
4263 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4264 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4265 
4266 	/* 15 + 15 = 30 reach the limit */
4267 	spdk_delay_us(15 * spdk_get_ticks_hz());
4268 	poll_threads();
4269 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4270 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
4271 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
4272 	stub_complete_io(1);
4273 
4274 	/* Use the same split IO above and check the IO */
4275 	memset(&cb_arg, 0, sizeof(cb_arg));
4276 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4277 
4278 	/* The first child complete in time */
4279 	spdk_delay_us(15 * spdk_get_ticks_hz());
4280 	poll_threads();
4281 	stub_complete_io(1);
4282 	CU_ASSERT(cb_arg.type == 0);
4283 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4284 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4285 
4286 	/* The second child reach the limit */
4287 	spdk_delay_us(15 * spdk_get_ticks_hz());
4288 	poll_threads();
4289 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4290 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
4291 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
4292 	stub_complete_io(1);
4293 
4294 	/* Also include the reset IO */
4295 	memset(&cb_arg, 0, sizeof(cb_arg));
4296 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4297 	spdk_delay_us(30 * spdk_get_ticks_hz());
4298 	poll_threads();
4299 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
4300 	stub_complete_io(1);
4301 	poll_threads();
4302 
4303 	spdk_put_io_channel(io_ch);
4304 	spdk_bdev_close(desc);
4305 	free_bdev(bdev);
4306 	spdk_bdev_finish(bdev_fini_cb, NULL);
4307 	poll_threads();
4308 }
4309 
4310 static void
4311 bdev_set_qd_sampling(void)
4312 {
4313 	struct spdk_bdev *bdev;
4314 	struct spdk_bdev_desc *desc = NULL;
4315 	struct spdk_io_channel *io_ch = NULL;
4316 	struct spdk_bdev_channel *bdev_ch = NULL;
4317 	struct timeout_io_cb_arg cb_arg;
4318 
4319 	spdk_bdev_initialize(bdev_init_cb, NULL);
4320 
4321 	bdev = allocate_bdev("bdev");
4322 
4323 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4324 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4325 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4326 
4327 	io_ch = spdk_bdev_get_io_channel(desc);
4328 	CU_ASSERT(io_ch != NULL);
4329 
4330 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4331 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4332 
4333 	/* This is the part1.
4334 	 * We will check the bdev_ch->io_submitted list
4335 	 * TO make sure that it can link IOs and only the user submitted IOs
4336 	 */
4337 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4338 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4339 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4340 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4341 	stub_complete_io(1);
4342 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4343 	stub_complete_io(1);
4344 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4345 
4346 	/* This is the part2.
4347 	 * Test the bdev's qd poller register
4348 	 */
4349 	/* 1st Successfully set the qd sampling period */
4350 	spdk_bdev_set_qd_sampling_period(bdev, 10);
4351 	CU_ASSERT(bdev->internal.new_period == 10);
4352 	CU_ASSERT(bdev->internal.period == 10);
4353 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4354 	poll_threads();
4355 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4356 
4357 	/* 2nd Change the qd sampling period */
4358 	spdk_bdev_set_qd_sampling_period(bdev, 20);
4359 	CU_ASSERT(bdev->internal.new_period == 20);
4360 	CU_ASSERT(bdev->internal.period == 10);
4361 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4362 	poll_threads();
4363 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4364 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4365 
4366 	/* 3rd Change the qd sampling period and verify qd_poll_in_progress */
4367 	spdk_delay_us(20);
4368 	poll_thread_times(0, 1);
4369 	CU_ASSERT(bdev->internal.qd_poll_in_progress == true);
4370 	spdk_bdev_set_qd_sampling_period(bdev, 30);
4371 	CU_ASSERT(bdev->internal.new_period == 30);
4372 	CU_ASSERT(bdev->internal.period == 20);
4373 	poll_threads();
4374 	CU_ASSERT(bdev->internal.qd_poll_in_progress == false);
4375 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4376 
4377 	/* 4th Disable the qd sampling period */
4378 	spdk_bdev_set_qd_sampling_period(bdev, 0);
4379 	CU_ASSERT(bdev->internal.new_period == 0);
4380 	CU_ASSERT(bdev->internal.period == 30);
4381 	poll_threads();
4382 	CU_ASSERT(bdev->internal.qd_poller == NULL);
4383 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4384 	CU_ASSERT(bdev->internal.qd_desc == NULL);
4385 
4386 	/* This is the part3.
4387 	 * We will test the submitted IO and reset works
4388 	 * properly with the qd sampling.
4389 	 */
4390 	memset(&cb_arg, 0, sizeof(cb_arg));
4391 	spdk_bdev_set_qd_sampling_period(bdev, 1);
4392 	poll_threads();
4393 
4394 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4395 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4396 
4397 	/* Also include the reset IO */
4398 	memset(&cb_arg, 0, sizeof(cb_arg));
4399 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4400 	poll_threads();
4401 
4402 	/* Close the desc */
4403 	spdk_put_io_channel(io_ch);
4404 	spdk_bdev_close(desc);
4405 
4406 	/* Complete the submitted IO and reset */
4407 	stub_complete_io(2);
4408 	poll_threads();
4409 
4410 	free_bdev(bdev);
4411 	spdk_bdev_finish(bdev_fini_cb, NULL);
4412 	poll_threads();
4413 }
4414 
4415 static void
4416 lba_range_overlap(void)
4417 {
4418 	struct lba_range r1, r2;
4419 
4420 	r1.offset = 100;
4421 	r1.length = 50;
4422 
4423 	r2.offset = 0;
4424 	r2.length = 1;
4425 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4426 
4427 	r2.offset = 0;
4428 	r2.length = 100;
4429 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4430 
4431 	r2.offset = 0;
4432 	r2.length = 110;
4433 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4434 
4435 	r2.offset = 100;
4436 	r2.length = 10;
4437 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4438 
4439 	r2.offset = 110;
4440 	r2.length = 20;
4441 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4442 
4443 	r2.offset = 140;
4444 	r2.length = 150;
4445 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4446 
4447 	r2.offset = 130;
4448 	r2.length = 200;
4449 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4450 
4451 	r2.offset = 150;
4452 	r2.length = 100;
4453 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4454 
4455 	r2.offset = 110;
4456 	r2.length = 0;
4457 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4458 }
4459 
4460 static bool g_lock_lba_range_done;
4461 static bool g_unlock_lba_range_done;
4462 
4463 static void
4464 lock_lba_range_done(void *ctx, int status)
4465 {
4466 	g_lock_lba_range_done = true;
4467 }
4468 
4469 static void
4470 unlock_lba_range_done(void *ctx, int status)
4471 {
4472 	g_unlock_lba_range_done = true;
4473 }
4474 
4475 static void
4476 lock_lba_range_check_ranges(void)
4477 {
4478 	struct spdk_bdev *bdev;
4479 	struct spdk_bdev_desc *desc = NULL;
4480 	struct spdk_io_channel *io_ch;
4481 	struct spdk_bdev_channel *channel;
4482 	struct lba_range *range;
4483 	int ctx1;
4484 	int rc;
4485 
4486 	spdk_bdev_initialize(bdev_init_cb, NULL);
4487 
4488 	bdev = allocate_bdev("bdev0");
4489 
4490 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4491 	CU_ASSERT(rc == 0);
4492 	CU_ASSERT(desc != NULL);
4493 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4494 	io_ch = spdk_bdev_get_io_channel(desc);
4495 	CU_ASSERT(io_ch != NULL);
4496 	channel = spdk_io_channel_get_ctx(io_ch);
4497 
4498 	g_lock_lba_range_done = false;
4499 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4500 	CU_ASSERT(rc == 0);
4501 	poll_threads();
4502 
4503 	CU_ASSERT(g_lock_lba_range_done == true);
4504 	range = TAILQ_FIRST(&channel->locked_ranges);
4505 	SPDK_CU_ASSERT_FATAL(range != NULL);
4506 	CU_ASSERT(range->offset == 20);
4507 	CU_ASSERT(range->length == 10);
4508 	CU_ASSERT(range->owner_ch == channel);
4509 
4510 	/* Unlocks must exactly match a lock. */
4511 	g_unlock_lba_range_done = false;
4512 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
4513 	CU_ASSERT(rc == -EINVAL);
4514 	CU_ASSERT(g_unlock_lba_range_done == false);
4515 
4516 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4517 	CU_ASSERT(rc == 0);
4518 	spdk_delay_us(100);
4519 	poll_threads();
4520 
4521 	CU_ASSERT(g_unlock_lba_range_done == true);
4522 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4523 
4524 	spdk_put_io_channel(io_ch);
4525 	spdk_bdev_close(desc);
4526 	free_bdev(bdev);
4527 	spdk_bdev_finish(bdev_fini_cb, NULL);
4528 	poll_threads();
4529 }
4530 
4531 static void
4532 lock_lba_range_with_io_outstanding(void)
4533 {
4534 	struct spdk_bdev *bdev;
4535 	struct spdk_bdev_desc *desc = NULL;
4536 	struct spdk_io_channel *io_ch;
4537 	struct spdk_bdev_channel *channel;
4538 	struct lba_range *range;
4539 	char buf[4096];
4540 	int ctx1;
4541 	int rc;
4542 
4543 	spdk_bdev_initialize(bdev_init_cb, NULL);
4544 
4545 	bdev = allocate_bdev("bdev0");
4546 
4547 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4548 	CU_ASSERT(rc == 0);
4549 	CU_ASSERT(desc != NULL);
4550 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4551 	io_ch = spdk_bdev_get_io_channel(desc);
4552 	CU_ASSERT(io_ch != NULL);
4553 	channel = spdk_io_channel_get_ctx(io_ch);
4554 
4555 	g_io_done = false;
4556 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4557 	CU_ASSERT(rc == 0);
4558 
4559 	g_lock_lba_range_done = false;
4560 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4561 	CU_ASSERT(rc == 0);
4562 	poll_threads();
4563 
4564 	/* The lock should immediately become valid, since there are no outstanding
4565 	 * write I/O.
4566 	 */
4567 	CU_ASSERT(g_io_done == false);
4568 	CU_ASSERT(g_lock_lba_range_done == true);
4569 	range = TAILQ_FIRST(&channel->locked_ranges);
4570 	SPDK_CU_ASSERT_FATAL(range != NULL);
4571 	CU_ASSERT(range->offset == 20);
4572 	CU_ASSERT(range->length == 10);
4573 	CU_ASSERT(range->owner_ch == channel);
4574 	CU_ASSERT(range->locked_ctx == &ctx1);
4575 
4576 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4577 	CU_ASSERT(rc == 0);
4578 	stub_complete_io(1);
4579 	spdk_delay_us(100);
4580 	poll_threads();
4581 
4582 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4583 
4584 	/* Now try again, but with a write I/O. */
4585 	g_io_done = false;
4586 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4587 	CU_ASSERT(rc == 0);
4588 
4589 	g_lock_lba_range_done = false;
4590 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4591 	CU_ASSERT(rc == 0);
4592 	poll_threads();
4593 
4594 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
4595 	 * But note that the range should be on the channel's locked_list, to make sure no
4596 	 * new write I/O are started.
4597 	 */
4598 	CU_ASSERT(g_io_done == false);
4599 	CU_ASSERT(g_lock_lba_range_done == false);
4600 	range = TAILQ_FIRST(&channel->locked_ranges);
4601 	SPDK_CU_ASSERT_FATAL(range != NULL);
4602 	CU_ASSERT(range->offset == 20);
4603 	CU_ASSERT(range->length == 10);
4604 
4605 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
4606 	 * our callback was invoked).
4607 	 */
4608 	stub_complete_io(1);
4609 	spdk_delay_us(100);
4610 	poll_threads();
4611 	CU_ASSERT(g_io_done == true);
4612 	CU_ASSERT(g_lock_lba_range_done == true);
4613 
4614 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4615 	CU_ASSERT(rc == 0);
4616 	poll_threads();
4617 
4618 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4619 
4620 	spdk_put_io_channel(io_ch);
4621 	spdk_bdev_close(desc);
4622 	free_bdev(bdev);
4623 	spdk_bdev_finish(bdev_fini_cb, NULL);
4624 	poll_threads();
4625 }
4626 
4627 static void
4628 lock_lba_range_overlapped(void)
4629 {
4630 	struct spdk_bdev *bdev;
4631 	struct spdk_bdev_desc *desc = NULL;
4632 	struct spdk_io_channel *io_ch;
4633 	struct spdk_bdev_channel *channel;
4634 	struct lba_range *range;
4635 	int ctx1;
4636 	int rc;
4637 
4638 	spdk_bdev_initialize(bdev_init_cb, NULL);
4639 
4640 	bdev = allocate_bdev("bdev0");
4641 
4642 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4643 	CU_ASSERT(rc == 0);
4644 	CU_ASSERT(desc != NULL);
4645 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4646 	io_ch = spdk_bdev_get_io_channel(desc);
4647 	CU_ASSERT(io_ch != NULL);
4648 	channel = spdk_io_channel_get_ctx(io_ch);
4649 
4650 	/* Lock range 20-29. */
4651 	g_lock_lba_range_done = false;
4652 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4653 	CU_ASSERT(rc == 0);
4654 	poll_threads();
4655 
4656 	CU_ASSERT(g_lock_lba_range_done == true);
4657 	range = TAILQ_FIRST(&channel->locked_ranges);
4658 	SPDK_CU_ASSERT_FATAL(range != NULL);
4659 	CU_ASSERT(range->offset == 20);
4660 	CU_ASSERT(range->length == 10);
4661 
4662 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
4663 	 * 20-29.
4664 	 */
4665 	g_lock_lba_range_done = false;
4666 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
4667 	CU_ASSERT(rc == 0);
4668 	poll_threads();
4669 
4670 	CU_ASSERT(g_lock_lba_range_done == false);
4671 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4672 	SPDK_CU_ASSERT_FATAL(range != NULL);
4673 	CU_ASSERT(range->offset == 25);
4674 	CU_ASSERT(range->length == 15);
4675 
4676 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
4677 	 * no longer overlaps with an active lock.
4678 	 */
4679 	g_unlock_lba_range_done = false;
4680 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4681 	CU_ASSERT(rc == 0);
4682 	poll_threads();
4683 
4684 	CU_ASSERT(g_unlock_lba_range_done == true);
4685 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4686 	range = TAILQ_FIRST(&channel->locked_ranges);
4687 	SPDK_CU_ASSERT_FATAL(range != NULL);
4688 	CU_ASSERT(range->offset == 25);
4689 	CU_ASSERT(range->length == 15);
4690 
4691 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
4692 	 * currently active 25-39 lock.
4693 	 */
4694 	g_lock_lba_range_done = false;
4695 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
4696 	CU_ASSERT(rc == 0);
4697 	poll_threads();
4698 
4699 	CU_ASSERT(g_lock_lba_range_done == true);
4700 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4701 	SPDK_CU_ASSERT_FATAL(range != NULL);
4702 	range = TAILQ_NEXT(range, tailq);
4703 	SPDK_CU_ASSERT_FATAL(range != NULL);
4704 	CU_ASSERT(range->offset == 40);
4705 	CU_ASSERT(range->length == 20);
4706 
4707 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
4708 	g_lock_lba_range_done = false;
4709 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
4710 	CU_ASSERT(rc == 0);
4711 	poll_threads();
4712 
4713 	CU_ASSERT(g_lock_lba_range_done == false);
4714 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4715 	SPDK_CU_ASSERT_FATAL(range != NULL);
4716 	CU_ASSERT(range->offset == 35);
4717 	CU_ASSERT(range->length == 10);
4718 
4719 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
4720 	 * the 40-59 lock is still active.
4721 	 */
4722 	g_unlock_lba_range_done = false;
4723 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
4724 	CU_ASSERT(rc == 0);
4725 	poll_threads();
4726 
4727 	CU_ASSERT(g_unlock_lba_range_done == true);
4728 	CU_ASSERT(g_lock_lba_range_done == false);
4729 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4730 	SPDK_CU_ASSERT_FATAL(range != NULL);
4731 	CU_ASSERT(range->offset == 35);
4732 	CU_ASSERT(range->length == 10);
4733 
4734 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
4735 	 * no longer any active overlapping locks.
4736 	 */
4737 	g_unlock_lba_range_done = false;
4738 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
4739 	CU_ASSERT(rc == 0);
4740 	poll_threads();
4741 
4742 	CU_ASSERT(g_unlock_lba_range_done == true);
4743 	CU_ASSERT(g_lock_lba_range_done == true);
4744 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4745 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4746 	SPDK_CU_ASSERT_FATAL(range != NULL);
4747 	CU_ASSERT(range->offset == 35);
4748 	CU_ASSERT(range->length == 10);
4749 
4750 	/* Finally, unlock 35-44. */
4751 	g_unlock_lba_range_done = false;
4752 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
4753 	CU_ASSERT(rc == 0);
4754 	poll_threads();
4755 
4756 	CU_ASSERT(g_unlock_lba_range_done == true);
4757 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
4758 
4759 	spdk_put_io_channel(io_ch);
4760 	spdk_bdev_close(desc);
4761 	free_bdev(bdev);
4762 	spdk_bdev_finish(bdev_fini_cb, NULL);
4763 	poll_threads();
4764 }
4765 
4766 static void
4767 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
4768 {
4769 	g_abort_done = true;
4770 	g_abort_status = bdev_io->internal.status;
4771 	spdk_bdev_free_io(bdev_io);
4772 }
4773 
4774 static void
4775 bdev_io_abort(void)
4776 {
4777 	struct spdk_bdev *bdev;
4778 	struct spdk_bdev_desc *desc = NULL;
4779 	struct spdk_io_channel *io_ch;
4780 	struct spdk_bdev_channel *channel;
4781 	struct spdk_bdev_mgmt_channel *mgmt_ch;
4782 	struct spdk_bdev_opts bdev_opts = {};
4783 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
4784 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
4785 	int rc;
4786 
4787 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4788 	bdev_opts.bdev_io_pool_size = 7;
4789 	bdev_opts.bdev_io_cache_size = 2;
4790 
4791 	rc = spdk_bdev_set_opts(&bdev_opts);
4792 	CU_ASSERT(rc == 0);
4793 	spdk_bdev_initialize(bdev_init_cb, NULL);
4794 
4795 	bdev = allocate_bdev("bdev0");
4796 
4797 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4798 	CU_ASSERT(rc == 0);
4799 	CU_ASSERT(desc != NULL);
4800 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4801 	io_ch = spdk_bdev_get_io_channel(desc);
4802 	CU_ASSERT(io_ch != NULL);
4803 	channel = spdk_io_channel_get_ctx(io_ch);
4804 	mgmt_ch = channel->shared_resource->mgmt_ch;
4805 
4806 	g_abort_done = false;
4807 
4808 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
4809 
4810 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4811 	CU_ASSERT(rc == -ENOTSUP);
4812 
4813 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
4814 
4815 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
4816 	CU_ASSERT(rc == 0);
4817 	CU_ASSERT(g_abort_done == true);
4818 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
4819 
4820 	/* Test the case that the target I/O was successfully aborted. */
4821 	g_io_done = false;
4822 
4823 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
4824 	CU_ASSERT(rc == 0);
4825 	CU_ASSERT(g_io_done == false);
4826 
4827 	g_abort_done = false;
4828 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4829 
4830 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4831 	CU_ASSERT(rc == 0);
4832 	CU_ASSERT(g_io_done == true);
4833 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4834 	stub_complete_io(1);
4835 	CU_ASSERT(g_abort_done == true);
4836 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4837 
4838 	/* Test the case that the target I/O was not aborted because it completed
4839 	 * in the middle of execution of the abort.
4840 	 */
4841 	g_io_done = false;
4842 
4843 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
4844 	CU_ASSERT(rc == 0);
4845 	CU_ASSERT(g_io_done == false);
4846 
4847 	g_abort_done = false;
4848 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
4849 
4850 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4851 	CU_ASSERT(rc == 0);
4852 	CU_ASSERT(g_io_done == false);
4853 
4854 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4855 	stub_complete_io(1);
4856 	CU_ASSERT(g_io_done == true);
4857 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4858 
4859 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
4860 	stub_complete_io(1);
4861 	CU_ASSERT(g_abort_done == true);
4862 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4863 
4864 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4865 
4866 	bdev->optimal_io_boundary = 16;
4867 	bdev->split_on_optimal_io_boundary = true;
4868 
4869 	/* Test that a single-vector command which is split is aborted correctly.
4870 	 * Offset 14, length 8, payload 0xF000
4871 	 *  Child - Offset 14, length 2, payload 0xF000
4872 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4873 	 */
4874 	g_io_done = false;
4875 
4876 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
4877 	CU_ASSERT(rc == 0);
4878 	CU_ASSERT(g_io_done == false);
4879 
4880 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
4881 
4882 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4883 
4884 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4885 	CU_ASSERT(rc == 0);
4886 	CU_ASSERT(g_io_done == true);
4887 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4888 	stub_complete_io(2);
4889 	CU_ASSERT(g_abort_done == true);
4890 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4891 
4892 	/* Test that a multi-vector command that needs to be split by strip and then
4893 	 * needs to be split is aborted correctly. Abort is requested before the second
4894 	 * child I/O was submitted. The parent I/O should complete with failure without
4895 	 * submitting the second child I/O.
4896 	 */
4897 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
4898 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
4899 		iov[i].iov_len = 512;
4900 	}
4901 
4902 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
4903 	g_io_done = false;
4904 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
4905 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
4906 	CU_ASSERT(rc == 0);
4907 	CU_ASSERT(g_io_done == false);
4908 
4909 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
4910 
4911 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4912 
4913 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4914 	CU_ASSERT(rc == 0);
4915 	CU_ASSERT(g_io_done == true);
4916 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4917 	stub_complete_io(1);
4918 	CU_ASSERT(g_abort_done == true);
4919 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4920 
4921 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4922 
4923 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4924 
4925 	bdev->optimal_io_boundary = 16;
4926 	g_io_done = false;
4927 
4928 	/* Test that a ingle-vector command which is split is aborted correctly.
4929 	 * Differently from the above, the child abort request will be submitted
4930 	 * sequentially due to the capacity of spdk_bdev_io.
4931 	 */
4932 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
4933 	CU_ASSERT(rc == 0);
4934 	CU_ASSERT(g_io_done == false);
4935 
4936 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
4937 
4938 	g_abort_done = false;
4939 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4940 
4941 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4942 	CU_ASSERT(rc == 0);
4943 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
4944 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
4945 
4946 	stub_complete_io(1);
4947 	CU_ASSERT(g_io_done == true);
4948 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4949 	stub_complete_io(3);
4950 	CU_ASSERT(g_abort_done == true);
4951 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4952 
4953 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4954 
4955 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4956 
4957 	spdk_put_io_channel(io_ch);
4958 	spdk_bdev_close(desc);
4959 	free_bdev(bdev);
4960 	spdk_bdev_finish(bdev_fini_cb, NULL);
4961 	poll_threads();
4962 }
4963 
4964 static void
4965 bdev_unmap(void)
4966 {
4967 	struct spdk_bdev *bdev;
4968 	struct spdk_bdev_desc *desc = NULL;
4969 	struct spdk_io_channel *ioch;
4970 	struct spdk_bdev_channel *bdev_ch;
4971 	struct ut_expected_io *expected_io;
4972 	struct spdk_bdev_opts bdev_opts = {};
4973 	uint32_t i, num_outstanding;
4974 	uint64_t offset, num_blocks, max_unmap_blocks, num_children;
4975 	int rc;
4976 
4977 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4978 	bdev_opts.bdev_io_pool_size = 512;
4979 	bdev_opts.bdev_io_cache_size = 64;
4980 	rc = spdk_bdev_set_opts(&bdev_opts);
4981 	CU_ASSERT(rc == 0);
4982 
4983 	spdk_bdev_initialize(bdev_init_cb, NULL);
4984 	bdev = allocate_bdev("bdev");
4985 
4986 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4987 	CU_ASSERT_EQUAL(rc, 0);
4988 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4989 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4990 	ioch = spdk_bdev_get_io_channel(desc);
4991 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4992 	bdev_ch = spdk_io_channel_get_ctx(ioch);
4993 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4994 
4995 	fn_table.submit_request = stub_submit_request;
4996 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4997 
4998 	/* Case 1: First test the request won't be split */
4999 	num_blocks = 32;
5000 
5001 	g_io_done = false;
5002 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 0, num_blocks, 0);
5003 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5004 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5005 	CU_ASSERT_EQUAL(rc, 0);
5006 	CU_ASSERT(g_io_done == false);
5007 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5008 	stub_complete_io(1);
5009 	CU_ASSERT(g_io_done == true);
5010 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5011 
5012 	/* Case 2: Test the split with 2 children requests */
5013 	bdev->max_unmap = 8;
5014 	bdev->max_unmap_segments = 2;
5015 	max_unmap_blocks = bdev->max_unmap * bdev->max_unmap_segments;
5016 	num_blocks = max_unmap_blocks * 2;
5017 	offset = 0;
5018 
5019 	g_io_done = false;
5020 	for (i = 0; i < 2; i++) {
5021 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5022 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5023 		offset += max_unmap_blocks;
5024 	}
5025 
5026 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5027 	CU_ASSERT_EQUAL(rc, 0);
5028 	CU_ASSERT(g_io_done == false);
5029 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5030 	stub_complete_io(2);
5031 	CU_ASSERT(g_io_done == true);
5032 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5033 
5034 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5035 	num_children = 15;
5036 	num_blocks = max_unmap_blocks * num_children;
5037 	g_io_done = false;
5038 	offset = 0;
5039 	for (i = 0; i < num_children; i++) {
5040 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5041 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5042 		offset += max_unmap_blocks;
5043 	}
5044 
5045 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5046 	CU_ASSERT_EQUAL(rc, 0);
5047 	CU_ASSERT(g_io_done == false);
5048 
5049 	while (num_children > 0) {
5050 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5051 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5052 		stub_complete_io(num_outstanding);
5053 		num_children -= num_outstanding;
5054 	}
5055 	CU_ASSERT(g_io_done == true);
5056 
5057 	spdk_put_io_channel(ioch);
5058 	spdk_bdev_close(desc);
5059 	free_bdev(bdev);
5060 	spdk_bdev_finish(bdev_fini_cb, NULL);
5061 	poll_threads();
5062 }
5063 
5064 static void
5065 bdev_write_zeroes_split_test(void)
5066 {
5067 	struct spdk_bdev *bdev;
5068 	struct spdk_bdev_desc *desc = NULL;
5069 	struct spdk_io_channel *ioch;
5070 	struct spdk_bdev_channel *bdev_ch;
5071 	struct ut_expected_io *expected_io;
5072 	struct spdk_bdev_opts bdev_opts = {};
5073 	uint32_t i, num_outstanding;
5074 	uint64_t offset, num_blocks, max_write_zeroes_blocks, num_children;
5075 	int rc;
5076 
5077 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5078 	bdev_opts.bdev_io_pool_size = 512;
5079 	bdev_opts.bdev_io_cache_size = 64;
5080 	rc = spdk_bdev_set_opts(&bdev_opts);
5081 	CU_ASSERT(rc == 0);
5082 
5083 	spdk_bdev_initialize(bdev_init_cb, NULL);
5084 	bdev = allocate_bdev("bdev");
5085 
5086 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5087 	CU_ASSERT_EQUAL(rc, 0);
5088 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5089 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5090 	ioch = spdk_bdev_get_io_channel(desc);
5091 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5092 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5093 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5094 
5095 	fn_table.submit_request = stub_submit_request;
5096 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5097 
5098 	/* Case 1: First test the request won't be split */
5099 	num_blocks = 32;
5100 
5101 	g_io_done = false;
5102 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
5103 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5104 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5105 	CU_ASSERT_EQUAL(rc, 0);
5106 	CU_ASSERT(g_io_done == false);
5107 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5108 	stub_complete_io(1);
5109 	CU_ASSERT(g_io_done == true);
5110 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5111 
5112 	/* Case 2: Test the split with 2 children requests */
5113 	max_write_zeroes_blocks = 8;
5114 	bdev->max_write_zeroes = max_write_zeroes_blocks;
5115 	num_blocks = max_write_zeroes_blocks * 2;
5116 	offset = 0;
5117 
5118 	g_io_done = false;
5119 	for (i = 0; i < 2; i++) {
5120 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5121 						   0);
5122 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5123 		offset += max_write_zeroes_blocks;
5124 	}
5125 
5126 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5127 	CU_ASSERT_EQUAL(rc, 0);
5128 	CU_ASSERT(g_io_done == false);
5129 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5130 	stub_complete_io(2);
5131 	CU_ASSERT(g_io_done == true);
5132 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5133 
5134 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5135 	num_children = 15;
5136 	num_blocks = max_write_zeroes_blocks * num_children;
5137 	g_io_done = false;
5138 	offset = 0;
5139 	for (i = 0; i < num_children; i++) {
5140 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5141 						   0);
5142 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5143 		offset += max_write_zeroes_blocks;
5144 	}
5145 
5146 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5147 	CU_ASSERT_EQUAL(rc, 0);
5148 	CU_ASSERT(g_io_done == false);
5149 
5150 	while (num_children > 0) {
5151 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5152 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5153 		stub_complete_io(num_outstanding);
5154 		num_children -= num_outstanding;
5155 	}
5156 	CU_ASSERT(g_io_done == true);
5157 
5158 	spdk_put_io_channel(ioch);
5159 	spdk_bdev_close(desc);
5160 	free_bdev(bdev);
5161 	spdk_bdev_finish(bdev_fini_cb, NULL);
5162 	poll_threads();
5163 }
5164 
5165 static void
5166 bdev_set_options_test(void)
5167 {
5168 	struct spdk_bdev_opts bdev_opts = {};
5169 	int rc;
5170 
5171 	/* Case1: Do not set opts_size */
5172 	rc = spdk_bdev_set_opts(&bdev_opts);
5173 	CU_ASSERT(rc == -1);
5174 
5175 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5176 	bdev_opts.bdev_io_pool_size = 4;
5177 	bdev_opts.bdev_io_cache_size = 2;
5178 	bdev_opts.small_buf_pool_size = 4;
5179 
5180 	/* Case 2: Do not set valid small_buf_pool_size and large_buf_pool_size */
5181 	rc = spdk_bdev_set_opts(&bdev_opts);
5182 	CU_ASSERT(rc == -1);
5183 
5184 	/* Case 3: Do not set valid large_buf_pool_size */
5185 	bdev_opts.small_buf_pool_size = BUF_SMALL_POOL_SIZE;
5186 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE - 1;
5187 	rc = spdk_bdev_set_opts(&bdev_opts);
5188 	CU_ASSERT(rc == -1);
5189 
5190 	/* Case4: set valid large buf_pool_size */
5191 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE;
5192 	rc = spdk_bdev_set_opts(&bdev_opts);
5193 	CU_ASSERT(rc == 0);
5194 
5195 	/* Case5: Set different valid value for small and large buf pool */
5196 	bdev_opts.large_buf_pool_size = BUF_SMALL_POOL_SIZE + 3;
5197 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE + 3;
5198 	rc = spdk_bdev_set_opts(&bdev_opts);
5199 	CU_ASSERT(rc == 0);
5200 }
5201 
5202 static uint64_t
5203 get_ns_time(void)
5204 {
5205 	int rc;
5206 	struct timespec ts;
5207 
5208 	rc = clock_gettime(CLOCK_MONOTONIC, &ts);
5209 	CU_ASSERT(rc == 0);
5210 	return ts.tv_sec * 1000 * 1000 * 1000 + ts.tv_nsec;
5211 }
5212 
5213 static int
5214 rb_tree_get_height(struct spdk_bdev_name *bdev_name)
5215 {
5216 	int h1, h2;
5217 
5218 	if (bdev_name == NULL) {
5219 		return -1;
5220 	} else {
5221 		h1 = rb_tree_get_height(RB_LEFT(bdev_name, node));
5222 		h2 = rb_tree_get_height(RB_RIGHT(bdev_name, node));
5223 
5224 		return spdk_max(h1, h2) + 1;
5225 	}
5226 }
5227 
5228 static void
5229 bdev_multi_allocation(void)
5230 {
5231 	const int max_bdev_num = 1024 * 16;
5232 	char name[max_bdev_num][16];
5233 	char noexist_name[] = "invalid_bdev";
5234 	struct spdk_bdev *bdev[max_bdev_num];
5235 	int i, j;
5236 	uint64_t last_time;
5237 	int bdev_num;
5238 	int height;
5239 
5240 	for (j = 0; j < max_bdev_num; j++) {
5241 		snprintf(name[j], sizeof(name[j]), "bdev%d", j);
5242 	}
5243 
5244 	for (i = 0; i < 16; i++) {
5245 		last_time = get_ns_time();
5246 		bdev_num = 1024 * (i + 1);
5247 		for (j = 0; j < bdev_num; j++) {
5248 			bdev[j] = allocate_bdev(name[j]);
5249 			height = rb_tree_get_height(&bdev[j]->internal.bdev_name);
5250 			CU_ASSERT(height <= (int)(spdk_u32log2(2 * j + 2)));
5251 		}
5252 		SPDK_NOTICELOG("alloc bdev num %d takes %" PRIu64 " ms\n", bdev_num,
5253 			       (get_ns_time() - last_time) / 1000 / 1000);
5254 		for (j = 0; j < bdev_num; j++) {
5255 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) != NULL);
5256 		}
5257 		CU_ASSERT(spdk_bdev_get_by_name(noexist_name) == NULL);
5258 
5259 		for (j = 0; j < bdev_num; j++) {
5260 			free_bdev(bdev[j]);
5261 		}
5262 		for (j = 0; j < bdev_num; j++) {
5263 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) == NULL);
5264 		}
5265 	}
5266 }
5267 
5268 static struct spdk_memory_domain *g_bdev_memory_domain = (struct spdk_memory_domain *) 0xf00df00d;
5269 
5270 static int
5271 test_bdev_get_supported_dma_device_types_op(void *ctx, struct spdk_memory_domain **domains,
5272 		int array_size)
5273 {
5274 	if (array_size > 0 && domains) {
5275 		domains[0] = g_bdev_memory_domain;
5276 	}
5277 
5278 	return 1;
5279 }
5280 
5281 static void
5282 bdev_get_memory_domains(void)
5283 {
5284 	struct spdk_bdev_fn_table fn_table = {
5285 		.get_memory_domains = test_bdev_get_supported_dma_device_types_op
5286 	};
5287 	struct spdk_bdev bdev = { .fn_table = &fn_table };
5288 	struct spdk_memory_domain *domains[2] = {};
5289 	int rc;
5290 
5291 	/* bdev is NULL */
5292 	rc = spdk_bdev_get_memory_domains(NULL, domains, 2);
5293 	CU_ASSERT(rc == -EINVAL);
5294 
5295 	/* domains is NULL */
5296 	rc = spdk_bdev_get_memory_domains(&bdev, NULL, 2);
5297 	CU_ASSERT(rc == 1);
5298 
5299 	/* array size is 0 */
5300 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 0);
5301 	CU_ASSERT(rc == 1);
5302 
5303 	/* get_supported_dma_device_types op is set */
5304 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5305 	CU_ASSERT(rc == 1);
5306 	CU_ASSERT(domains[0] == g_bdev_memory_domain);
5307 
5308 	/* get_supported_dma_device_types op is not set */
5309 	fn_table.get_memory_domains = NULL;
5310 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5311 	CU_ASSERT(rc == 0);
5312 }
5313 
5314 static void
5315 _bdev_io_ext(struct spdk_bdev_ext_io_opts *ext_io_opts)
5316 {
5317 	struct spdk_bdev *bdev;
5318 	struct spdk_bdev_desc *desc = NULL;
5319 	struct spdk_io_channel *io_ch;
5320 	char io_buf[512];
5321 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5322 	struct ut_expected_io *expected_io;
5323 	int rc;
5324 
5325 	spdk_bdev_initialize(bdev_init_cb, NULL);
5326 
5327 	bdev = allocate_bdev("bdev0");
5328 	bdev->md_interleave = false;
5329 	bdev->md_len = 8;
5330 
5331 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5332 	CU_ASSERT(rc == 0);
5333 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5334 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5335 	io_ch = spdk_bdev_get_io_channel(desc);
5336 	CU_ASSERT(io_ch != NULL);
5337 
5338 	/* read */
5339 	g_io_done = false;
5340 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5341 	if (ext_io_opts) {
5342 		expected_io->md_buf = ext_io_opts->metadata;
5343 		expected_io->ext_io_opts = ext_io_opts;
5344 	}
5345 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5346 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5347 
5348 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5349 
5350 	CU_ASSERT(rc == 0);
5351 	CU_ASSERT(g_io_done == false);
5352 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5353 	stub_complete_io(1);
5354 	CU_ASSERT(g_io_done == true);
5355 
5356 	/* write */
5357 	g_io_done = false;
5358 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5359 	if (ext_io_opts) {
5360 		expected_io->md_buf = ext_io_opts->metadata;
5361 		expected_io->ext_io_opts = ext_io_opts;
5362 	}
5363 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5364 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5365 
5366 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5367 
5368 	CU_ASSERT(rc == 0);
5369 	CU_ASSERT(g_io_done == false);
5370 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5371 	stub_complete_io(1);
5372 	CU_ASSERT(g_io_done == true);
5373 
5374 	spdk_put_io_channel(io_ch);
5375 	spdk_bdev_close(desc);
5376 	free_bdev(bdev);
5377 	spdk_bdev_finish(bdev_fini_cb, NULL);
5378 	poll_threads();
5379 
5380 }
5381 
5382 static void
5383 bdev_io_ext(void)
5384 {
5385 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5386 		.metadata = (void *)0xFF000000,
5387 		.size = sizeof(ext_io_opts)
5388 	};
5389 
5390 	_bdev_io_ext(&ext_io_opts);
5391 }
5392 
5393 static void
5394 bdev_io_ext_no_opts(void)
5395 {
5396 	_bdev_io_ext(NULL);
5397 }
5398 
5399 static void
5400 bdev_io_ext_invalid_opts(void)
5401 {
5402 	struct spdk_bdev *bdev;
5403 	struct spdk_bdev_desc *desc = NULL;
5404 	struct spdk_io_channel *io_ch;
5405 	char io_buf[512];
5406 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5407 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5408 		.metadata = (void *)0xFF000000,
5409 		.size = sizeof(ext_io_opts)
5410 	};
5411 	int rc;
5412 
5413 	spdk_bdev_initialize(bdev_init_cb, NULL);
5414 
5415 	bdev = allocate_bdev("bdev0");
5416 	bdev->md_interleave = false;
5417 	bdev->md_len = 8;
5418 
5419 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5420 	CU_ASSERT(rc == 0);
5421 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5422 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5423 	io_ch = spdk_bdev_get_io_channel(desc);
5424 	CU_ASSERT(io_ch != NULL);
5425 
5426 	/* Test invalid ext_opts size */
5427 	ext_io_opts.size = 0;
5428 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5429 	CU_ASSERT(rc == -EINVAL);
5430 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5431 	CU_ASSERT(rc == -EINVAL);
5432 
5433 	ext_io_opts.size = sizeof(ext_io_opts) * 2;
5434 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5435 	CU_ASSERT(rc == -EINVAL);
5436 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5437 	CU_ASSERT(rc == -EINVAL);
5438 
5439 	ext_io_opts.size = offsetof(struct spdk_bdev_ext_io_opts, metadata) +
5440 			   sizeof(ext_io_opts.metadata) - 1;
5441 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5442 	CU_ASSERT(rc == -EINVAL);
5443 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5444 	CU_ASSERT(rc == -EINVAL);
5445 
5446 	spdk_put_io_channel(io_ch);
5447 	spdk_bdev_close(desc);
5448 	free_bdev(bdev);
5449 	spdk_bdev_finish(bdev_fini_cb, NULL);
5450 	poll_threads();
5451 }
5452 
5453 static void
5454 bdev_io_ext_split(void)
5455 {
5456 	struct spdk_bdev *bdev;
5457 	struct spdk_bdev_desc *desc = NULL;
5458 	struct spdk_io_channel *io_ch;
5459 	char io_buf[512];
5460 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5461 	struct ut_expected_io *expected_io;
5462 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5463 		.metadata = (void *)0xFF000000,
5464 		.size = sizeof(ext_io_opts)
5465 	};
5466 	int rc;
5467 
5468 	spdk_bdev_initialize(bdev_init_cb, NULL);
5469 
5470 	bdev = allocate_bdev("bdev0");
5471 	bdev->md_interleave = false;
5472 	bdev->md_len = 8;
5473 
5474 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5475 	CU_ASSERT(rc == 0);
5476 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5477 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5478 	io_ch = spdk_bdev_get_io_channel(desc);
5479 	CU_ASSERT(io_ch != NULL);
5480 
5481 	/* Check that IO request with ext_opts and metadata is split correctly
5482 	 * Offset 14, length 8, payload 0xF000
5483 	 *  Child - Offset 14, length 2, payload 0xF000
5484 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5485 	 */
5486 	bdev->optimal_io_boundary = 16;
5487 	bdev->split_on_optimal_io_boundary = true;
5488 	bdev->md_interleave = false;
5489 	bdev->md_len = 8;
5490 
5491 	iov.iov_base = (void *)0xF000;
5492 	iov.iov_len = 4096;
5493 	memset(&ext_io_opts, 0, sizeof(ext_io_opts));
5494 	ext_io_opts.metadata = (void *)0xFF000000;
5495 	ext_io_opts.size = sizeof(ext_io_opts);
5496 	g_io_done = false;
5497 
5498 	/* read */
5499 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
5500 	expected_io->md_buf = ext_io_opts.metadata;
5501 	expected_io->ext_io_opts = &ext_io_opts;
5502 	expected_io->copy_opts = true;
5503 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5504 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5505 
5506 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
5507 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5508 	expected_io->ext_io_opts = &ext_io_opts;
5509 	expected_io->copy_opts = true;
5510 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5511 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5512 
5513 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5514 	CU_ASSERT(rc == 0);
5515 	CU_ASSERT(g_io_done == false);
5516 
5517 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5518 	stub_complete_io(2);
5519 	CU_ASSERT(g_io_done == true);
5520 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5521 
5522 	/* write */
5523 	g_io_done = false;
5524 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
5525 	expected_io->md_buf = ext_io_opts.metadata;
5526 	expected_io->ext_io_opts = &ext_io_opts;
5527 	expected_io->copy_opts = true;
5528 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5529 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5530 
5531 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 6, 1);
5532 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5533 	expected_io->ext_io_opts = &ext_io_opts;
5534 	expected_io->copy_opts = true;
5535 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5536 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5537 
5538 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5539 	CU_ASSERT(rc == 0);
5540 	CU_ASSERT(g_io_done == false);
5541 
5542 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5543 	stub_complete_io(2);
5544 	CU_ASSERT(g_io_done == true);
5545 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5546 
5547 	spdk_put_io_channel(io_ch);
5548 	spdk_bdev_close(desc);
5549 	free_bdev(bdev);
5550 	spdk_bdev_finish(bdev_fini_cb, NULL);
5551 	poll_threads();
5552 }
5553 
5554 static void
5555 bdev_io_ext_bounce_buffer(void)
5556 {
5557 	struct spdk_bdev *bdev;
5558 	struct spdk_bdev_desc *desc = NULL;
5559 	struct spdk_io_channel *io_ch;
5560 	char io_buf[512];
5561 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5562 	struct ut_expected_io *expected_io;
5563 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5564 		.metadata = (void *)0xFF000000,
5565 		.size = sizeof(ext_io_opts)
5566 	};
5567 	int rc;
5568 
5569 	spdk_bdev_initialize(bdev_init_cb, NULL);
5570 
5571 	bdev = allocate_bdev("bdev0");
5572 	bdev->md_interleave = false;
5573 	bdev->md_len = 8;
5574 
5575 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5576 	CU_ASSERT(rc == 0);
5577 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5578 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5579 	io_ch = spdk_bdev_get_io_channel(desc);
5580 	CU_ASSERT(io_ch != NULL);
5581 
5582 	/* Verify data pull/push
5583 	 * bdev doesn't support memory domains, so buffers from bdev memory pool will be used */
5584 	ext_io_opts.memory_domain = (struct spdk_memory_domain *)0xdeadbeef;
5585 
5586 	/* read */
5587 	g_io_done = false;
5588 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5589 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5590 	expected_io->ext_io_opts = &ext_io_opts;
5591 	expected_io->copy_opts = true;
5592 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5593 
5594 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5595 
5596 	CU_ASSERT(rc == 0);
5597 	CU_ASSERT(g_io_done == false);
5598 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5599 	stub_complete_io(1);
5600 	CU_ASSERT(g_memory_domain_push_data_called == true);
5601 	CU_ASSERT(g_io_done == true);
5602 
5603 	/* write */
5604 	g_io_done = false;
5605 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5606 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5607 	expected_io->ext_io_opts = &ext_io_opts;
5608 	expected_io->copy_opts = true;
5609 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5610 
5611 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5612 
5613 	CU_ASSERT(rc == 0);
5614 	CU_ASSERT(g_memory_domain_pull_data_called == true);
5615 	CU_ASSERT(g_io_done == false);
5616 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5617 	stub_complete_io(1);
5618 	CU_ASSERT(g_io_done == true);
5619 
5620 	spdk_put_io_channel(io_ch);
5621 	spdk_bdev_close(desc);
5622 	free_bdev(bdev);
5623 	spdk_bdev_finish(bdev_fini_cb, NULL);
5624 	poll_threads();
5625 }
5626 
5627 static void
5628 bdev_register_uuid_alias(void)
5629 {
5630 	struct spdk_bdev *bdev, *second;
5631 	char uuid[SPDK_UUID_STRING_LEN];
5632 	int rc;
5633 
5634 	spdk_bdev_initialize(bdev_init_cb, NULL);
5635 	bdev = allocate_bdev("bdev0");
5636 
5637 	/* Make sure an UUID was generated  */
5638 	CU_ASSERT_FALSE(spdk_mem_all_zero(&bdev->uuid, sizeof(bdev->uuid)));
5639 
5640 	/* Check that an UUID alias was registered */
5641 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5642 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5643 
5644 	/* Unregister the bdev */
5645 	spdk_bdev_unregister(bdev, NULL, NULL);
5646 	poll_threads();
5647 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5648 
5649 	/* Check the same, but this time register the bdev with non-zero UUID */
5650 	rc = spdk_bdev_register(bdev);
5651 	CU_ASSERT_EQUAL(rc, 0);
5652 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5653 
5654 	/* Unregister the bdev */
5655 	spdk_bdev_unregister(bdev, NULL, NULL);
5656 	poll_threads();
5657 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5658 
5659 	/* Regiser the bdev using UUID as the name */
5660 	bdev->name = uuid;
5661 	rc = spdk_bdev_register(bdev);
5662 	CU_ASSERT_EQUAL(rc, 0);
5663 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5664 
5665 	/* Unregister the bdev */
5666 	spdk_bdev_unregister(bdev, NULL, NULL);
5667 	poll_threads();
5668 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5669 
5670 	/* Check that it's not possible to register two bdevs with the same UUIDs */
5671 	bdev->name = "bdev0";
5672 	second = allocate_bdev("bdev1");
5673 	spdk_uuid_copy(&bdev->uuid, &second->uuid);
5674 	rc = spdk_bdev_register(bdev);
5675 	CU_ASSERT_EQUAL(rc, -EEXIST);
5676 
5677 	/* Regenerate the UUID and re-check */
5678 	spdk_uuid_generate(&bdev->uuid);
5679 	rc = spdk_bdev_register(bdev);
5680 	CU_ASSERT_EQUAL(rc, 0);
5681 
5682 	/* And check that both bdevs can be retrieved through their UUIDs */
5683 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5684 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5685 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &second->uuid);
5686 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), second);
5687 
5688 	free_bdev(second);
5689 	free_bdev(bdev);
5690 	spdk_bdev_finish(bdev_fini_cb, NULL);
5691 	poll_threads();
5692 }
5693 
5694 static void
5695 bdev_unregister_by_name(void)
5696 {
5697 	struct spdk_bdev *bdev;
5698 	int rc;
5699 
5700 	bdev = allocate_bdev("bdev");
5701 
5702 	g_event_type1 = 0xFF;
5703 	g_unregister_arg = NULL;
5704 	g_unregister_rc = -1;
5705 
5706 	rc = spdk_bdev_unregister_by_name("bdev1", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5707 	CU_ASSERT(rc == -ENODEV);
5708 
5709 	rc = spdk_bdev_unregister_by_name("bdev", &vbdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5710 	CU_ASSERT(rc == -ENODEV);
5711 
5712 	rc = spdk_bdev_unregister_by_name("bdev", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5713 	CU_ASSERT(rc == 0);
5714 
5715 	/* Check that unregister callback is delayed */
5716 	CU_ASSERT(g_unregister_arg == NULL);
5717 	CU_ASSERT(g_unregister_rc == -1);
5718 
5719 	poll_threads();
5720 
5721 	/* Event callback shall not be issued because device was closed */
5722 	CU_ASSERT(g_event_type1 == 0xFF);
5723 	/* Unregister callback is issued */
5724 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
5725 	CU_ASSERT(g_unregister_rc == 0);
5726 
5727 	free_bdev(bdev);
5728 }
5729 
5730 static int
5731 count_bdevs(void *ctx, struct spdk_bdev *bdev)
5732 {
5733 	int *count = ctx;
5734 
5735 	(*count)++;
5736 
5737 	return 0;
5738 }
5739 
5740 static void
5741 for_each_bdev_test(void)
5742 {
5743 	struct spdk_bdev *bdev[8];
5744 	int rc, count;
5745 
5746 	bdev[0] = allocate_bdev("bdev0");
5747 
5748 	bdev[1] = allocate_bdev("bdev1");
5749 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
5750 	CU_ASSERT(rc == 0);
5751 
5752 	bdev[2] = allocate_bdev("bdev2");
5753 
5754 	bdev[3] = allocate_bdev("bdev3");
5755 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
5756 	CU_ASSERT(rc == 0);
5757 
5758 	bdev[4] = allocate_bdev("bdev4");
5759 
5760 	bdev[5] = allocate_bdev("bdev5");
5761 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
5762 	CU_ASSERT(rc == 0);
5763 
5764 	bdev[6] = allocate_bdev("bdev6");
5765 
5766 	bdev[7] = allocate_bdev("bdev7");
5767 
5768 	count = 0;
5769 	rc = spdk_for_each_bdev(&count, count_bdevs);
5770 	CU_ASSERT(rc == 0);
5771 	CU_ASSERT(count == 8);
5772 
5773 	count = 0;
5774 	rc = spdk_for_each_bdev_leaf(&count, count_bdevs);
5775 	CU_ASSERT(rc == 0);
5776 	CU_ASSERT(count == 5);
5777 
5778 	free_bdev(bdev[0]);
5779 	free_bdev(bdev[1]);
5780 	free_bdev(bdev[2]);
5781 	free_bdev(bdev[3]);
5782 	free_bdev(bdev[4]);
5783 	free_bdev(bdev[5]);
5784 	free_bdev(bdev[6]);
5785 	free_bdev(bdev[7]);
5786 }
5787 
5788 static void
5789 bdev_seek_test(void)
5790 {
5791 	struct spdk_bdev *bdev;
5792 	struct spdk_bdev_desc *desc = NULL;
5793 	struct spdk_io_channel *io_ch;
5794 	int rc;
5795 
5796 	spdk_bdev_initialize(bdev_init_cb, NULL);
5797 	poll_threads();
5798 
5799 	bdev = allocate_bdev("bdev0");
5800 
5801 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5802 	CU_ASSERT(rc == 0);
5803 	poll_threads();
5804 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5805 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5806 	io_ch = spdk_bdev_get_io_channel(desc);
5807 	CU_ASSERT(io_ch != NULL);
5808 
5809 	/* Seek data not supported */
5810 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, false);
5811 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
5812 	CU_ASSERT(rc == 0);
5813 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5814 	poll_threads();
5815 	CU_ASSERT(g_seek_offset == 0);
5816 
5817 	/* Seek hole not supported */
5818 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, false);
5819 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
5820 	CU_ASSERT(rc == 0);
5821 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5822 	poll_threads();
5823 	CU_ASSERT(g_seek_offset == UINT64_MAX);
5824 
5825 	/* Seek data supported */
5826 	g_seek_data_offset = 12345;
5827 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, true);
5828 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
5829 	CU_ASSERT(rc == 0);
5830 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5831 	stub_complete_io(1);
5832 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5833 	CU_ASSERT(g_seek_offset == 12345);
5834 
5835 	/* Seek hole supported */
5836 	g_seek_hole_offset = 67890;
5837 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, true);
5838 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
5839 	CU_ASSERT(rc == 0);
5840 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5841 	stub_complete_io(1);
5842 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5843 	CU_ASSERT(g_seek_offset == 67890);
5844 
5845 	spdk_put_io_channel(io_ch);
5846 	spdk_bdev_close(desc);
5847 	free_bdev(bdev);
5848 	spdk_bdev_finish(bdev_fini_cb, NULL);
5849 	poll_threads();
5850 }
5851 
5852 int
5853 main(int argc, char **argv)
5854 {
5855 	CU_pSuite		suite = NULL;
5856 	unsigned int		num_failures;
5857 
5858 	CU_set_error_action(CUEA_ABORT);
5859 	CU_initialize_registry();
5860 
5861 	suite = CU_add_suite("bdev", null_init, null_clean);
5862 
5863 	CU_ADD_TEST(suite, bytes_to_blocks_test);
5864 	CU_ADD_TEST(suite, num_blocks_test);
5865 	CU_ADD_TEST(suite, io_valid_test);
5866 	CU_ADD_TEST(suite, open_write_test);
5867 	CU_ADD_TEST(suite, claim_test);
5868 	CU_ADD_TEST(suite, alias_add_del_test);
5869 	CU_ADD_TEST(suite, get_device_stat_test);
5870 	CU_ADD_TEST(suite, bdev_io_types_test);
5871 	CU_ADD_TEST(suite, bdev_io_wait_test);
5872 	CU_ADD_TEST(suite, bdev_io_spans_split_test);
5873 	CU_ADD_TEST(suite, bdev_io_boundary_split_test);
5874 	CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test);
5875 	CU_ADD_TEST(suite, bdev_io_mix_split_test);
5876 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
5877 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
5878 	CU_ADD_TEST(suite, bdev_io_alignment);
5879 	CU_ADD_TEST(suite, bdev_histograms);
5880 	CU_ADD_TEST(suite, bdev_write_zeroes);
5881 	CU_ADD_TEST(suite, bdev_compare_and_write);
5882 	CU_ADD_TEST(suite, bdev_compare);
5883 	CU_ADD_TEST(suite, bdev_compare_emulated);
5884 	CU_ADD_TEST(suite, bdev_zcopy_write);
5885 	CU_ADD_TEST(suite, bdev_zcopy_read);
5886 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
5887 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
5888 	CU_ADD_TEST(suite, bdev_open_ext);
5889 	CU_ADD_TEST(suite, bdev_open_ext_unregister);
5890 	CU_ADD_TEST(suite, bdev_set_io_timeout);
5891 	CU_ADD_TEST(suite, bdev_set_qd_sampling);
5892 	CU_ADD_TEST(suite, lba_range_overlap);
5893 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
5894 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
5895 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
5896 	CU_ADD_TEST(suite, bdev_io_abort);
5897 	CU_ADD_TEST(suite, bdev_unmap);
5898 	CU_ADD_TEST(suite, bdev_write_zeroes_split_test);
5899 	CU_ADD_TEST(suite, bdev_set_options_test);
5900 	CU_ADD_TEST(suite, bdev_multi_allocation);
5901 	CU_ADD_TEST(suite, bdev_get_memory_domains);
5902 	CU_ADD_TEST(suite, bdev_io_ext);
5903 	CU_ADD_TEST(suite, bdev_io_ext_no_opts);
5904 	CU_ADD_TEST(suite, bdev_io_ext_invalid_opts);
5905 	CU_ADD_TEST(suite, bdev_io_ext_split);
5906 	CU_ADD_TEST(suite, bdev_io_ext_bounce_buffer);
5907 	CU_ADD_TEST(suite, bdev_register_uuid_alias);
5908 	CU_ADD_TEST(suite, bdev_unregister_by_name);
5909 	CU_ADD_TEST(suite, for_each_bdev_test);
5910 	CU_ADD_TEST(suite, bdev_seek_test);
5911 
5912 	allocate_cores(1);
5913 	allocate_threads(1);
5914 	set_thread(0);
5915 
5916 	CU_basic_set_mode(CU_BRM_VERBOSE);
5917 	CU_basic_run_tests();
5918 	num_failures = CU_get_number_of_failures();
5919 	CU_cleanup_registry();
5920 
5921 	free_threads();
5922 	free_cores();
5923 
5924 	return num_failures;
5925 }
5926