xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision 1299439f3d96af5edf21bd1613c50ef2719b67dc)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
6  *   Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include "spdk_cunit.h"
36 
37 #include "common/lib/ut_multithread.c"
38 #include "unit/lib/json_mock.c"
39 
40 #include "spdk/config.h"
41 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
42 #undef SPDK_CONFIG_VTUNE
43 
44 #include "bdev/bdev.c"
45 
46 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
47 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
48 DEFINE_STUB(spdk_memory_domain_get_dma_device_id, const char *, (struct spdk_memory_domain *domain),
49 	    "test_domain");
50 DEFINE_STUB(spdk_memory_domain_get_dma_device_type, enum spdk_dma_device_type,
51 	    (struct spdk_memory_domain *domain), 0);
52 
53 static bool g_memory_domain_pull_data_called;
54 static bool g_memory_domain_push_data_called;
55 
56 DEFINE_RETURN_MOCK(spdk_memory_domain_pull_data, int);
57 int
58 spdk_memory_domain_pull_data(struct spdk_memory_domain *src_domain, void *src_domain_ctx,
59 			     struct iovec *src_iov, uint32_t src_iov_cnt, struct iovec *dst_iov, uint32_t dst_iov_cnt,
60 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
61 {
62 	g_memory_domain_pull_data_called = true;
63 	HANDLE_RETURN_MOCK(spdk_memory_domain_pull_data);
64 	cpl_cb(cpl_cb_arg, 0);
65 	return 0;
66 }
67 
68 DEFINE_RETURN_MOCK(spdk_memory_domain_push_data, int);
69 int
70 spdk_memory_domain_push_data(struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
71 			     struct iovec *dst_iov, uint32_t dst_iovcnt, struct iovec *src_iov, uint32_t src_iovcnt,
72 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
73 {
74 	g_memory_domain_push_data_called = true;
75 	HANDLE_RETURN_MOCK(spdk_memory_domain_push_data);
76 	cpl_cb(cpl_cb_arg, 0);
77 	return 0;
78 }
79 
80 int g_status;
81 int g_count;
82 enum spdk_bdev_event_type g_event_type1;
83 enum spdk_bdev_event_type g_event_type2;
84 struct spdk_histogram_data *g_histogram;
85 void *g_unregister_arg;
86 int g_unregister_rc;
87 
88 void
89 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
90 			 int *sc, int *sk, int *asc, int *ascq)
91 {
92 }
93 
94 static int
95 null_init(void)
96 {
97 	return 0;
98 }
99 
100 static int
101 null_clean(void)
102 {
103 	return 0;
104 }
105 
106 static int
107 stub_destruct(void *ctx)
108 {
109 	return 0;
110 }
111 
112 struct ut_expected_io {
113 	uint8_t				type;
114 	uint64_t			offset;
115 	uint64_t			length;
116 	int				iovcnt;
117 	struct iovec			iov[BDEV_IO_NUM_CHILD_IOV];
118 	void				*md_buf;
119 	struct spdk_bdev_ext_io_opts	*ext_io_opts;
120 	TAILQ_ENTRY(ut_expected_io)	link;
121 };
122 
123 struct bdev_ut_channel {
124 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
125 	uint32_t			outstanding_io_count;
126 	TAILQ_HEAD(, ut_expected_io)	expected_io;
127 };
128 
129 static bool g_io_done;
130 static struct spdk_bdev_io *g_bdev_io;
131 static enum spdk_bdev_io_status g_io_status;
132 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
133 static uint32_t g_bdev_ut_io_device;
134 static struct bdev_ut_channel *g_bdev_ut_channel;
135 static void *g_compare_read_buf;
136 static uint32_t g_compare_read_buf_len;
137 static void *g_compare_write_buf;
138 static uint32_t g_compare_write_buf_len;
139 static bool g_abort_done;
140 static enum spdk_bdev_io_status g_abort_status;
141 static void *g_zcopy_read_buf;
142 static uint32_t g_zcopy_read_buf_len;
143 static void *g_zcopy_write_buf;
144 static uint32_t g_zcopy_write_buf_len;
145 static struct spdk_bdev_io *g_zcopy_bdev_io;
146 
147 static struct ut_expected_io *
148 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
149 {
150 	struct ut_expected_io *expected_io;
151 
152 	expected_io = calloc(1, sizeof(*expected_io));
153 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
154 
155 	expected_io->type = type;
156 	expected_io->offset = offset;
157 	expected_io->length = length;
158 	expected_io->iovcnt = iovcnt;
159 
160 	return expected_io;
161 }
162 
163 static void
164 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
165 {
166 	expected_io->iov[pos].iov_base = base;
167 	expected_io->iov[pos].iov_len = len;
168 }
169 
170 static void
171 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
172 {
173 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
174 	struct ut_expected_io *expected_io;
175 	struct iovec *iov, *expected_iov;
176 	struct spdk_bdev_io *bio_to_abort;
177 	int i;
178 
179 	g_bdev_io = bdev_io;
180 
181 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
182 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
183 
184 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
185 		CU_ASSERT(g_compare_read_buf_len == len);
186 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
187 	}
188 
189 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
190 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
191 
192 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
193 		CU_ASSERT(g_compare_write_buf_len == len);
194 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
195 	}
196 
197 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
198 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
199 
200 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
201 		CU_ASSERT(g_compare_read_buf_len == len);
202 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
203 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
204 		}
205 	}
206 
207 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
208 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
209 			TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
210 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
211 					TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
212 					ch->outstanding_io_count--;
213 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
214 					break;
215 				}
216 			}
217 		}
218 	}
219 
220 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) {
221 		if (bdev_io->u.bdev.zcopy.start) {
222 			g_zcopy_bdev_io = bdev_io;
223 			if (bdev_io->u.bdev.zcopy.populate) {
224 				/* Start of a read */
225 				CU_ASSERT(g_zcopy_read_buf != NULL);
226 				CU_ASSERT(g_zcopy_read_buf_len > 0);
227 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_read_buf;
228 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_read_buf_len;
229 				bdev_io->u.bdev.iovcnt = 1;
230 			} else {
231 				/* Start of a write */
232 				CU_ASSERT(g_zcopy_write_buf != NULL);
233 				CU_ASSERT(g_zcopy_write_buf_len > 0);
234 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_write_buf;
235 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_write_buf_len;
236 				bdev_io->u.bdev.iovcnt = 1;
237 			}
238 		} else {
239 			if (bdev_io->u.bdev.zcopy.commit) {
240 				/* End of write */
241 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_write_buf);
242 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_write_buf_len);
243 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
244 				g_zcopy_write_buf = NULL;
245 				g_zcopy_write_buf_len = 0;
246 			} else {
247 				/* End of read */
248 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_read_buf);
249 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_read_buf_len);
250 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
251 				g_zcopy_read_buf = NULL;
252 				g_zcopy_read_buf_len = 0;
253 			}
254 		}
255 	}
256 
257 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
258 	ch->outstanding_io_count++;
259 
260 	expected_io = TAILQ_FIRST(&ch->expected_io);
261 	if (expected_io == NULL) {
262 		return;
263 	}
264 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
265 
266 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
267 		CU_ASSERT(bdev_io->type == expected_io->type);
268 	}
269 
270 	if (expected_io->md_buf != NULL) {
271 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
272 		if (bdev_io->u.bdev.ext_opts) {
273 			CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.ext_opts->metadata);
274 		}
275 	}
276 
277 	if (expected_io->length == 0) {
278 		free(expected_io);
279 		return;
280 	}
281 
282 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
283 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
284 
285 	if (expected_io->iovcnt == 0) {
286 		free(expected_io);
287 		/* UNMAP, WRITE_ZEROES and FLUSH don't have iovs, so we can just return now. */
288 		return;
289 	}
290 
291 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
292 	for (i = 0; i < expected_io->iovcnt; i++) {
293 		expected_iov = &expected_io->iov[i];
294 		if (bdev_io->internal.orig_iovcnt == 0) {
295 			iov = &bdev_io->u.bdev.iovs[i];
296 		} else {
297 			iov = bdev_io->internal.orig_iovs;
298 		}
299 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
300 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
301 	}
302 
303 	if (expected_io->ext_io_opts) {
304 		CU_ASSERT(expected_io->ext_io_opts == bdev_io->internal.ext_opts)
305 	}
306 
307 	free(expected_io);
308 }
309 
310 static void
311 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
312 			       struct spdk_bdev_io *bdev_io, bool success)
313 {
314 	CU_ASSERT(success == true);
315 
316 	stub_submit_request(_ch, bdev_io);
317 }
318 
319 static void
320 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
321 {
322 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
323 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
324 }
325 
326 static uint32_t
327 stub_complete_io(uint32_t num_to_complete)
328 {
329 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
330 	struct spdk_bdev_io *bdev_io;
331 	static enum spdk_bdev_io_status io_status;
332 	uint32_t num_completed = 0;
333 
334 	while (num_completed < num_to_complete) {
335 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
336 			break;
337 		}
338 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
339 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
340 		ch->outstanding_io_count--;
341 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
342 			    g_io_exp_status;
343 		spdk_bdev_io_complete(bdev_io, io_status);
344 		num_completed++;
345 	}
346 
347 	return num_completed;
348 }
349 
350 static struct spdk_io_channel *
351 bdev_ut_get_io_channel(void *ctx)
352 {
353 	return spdk_get_io_channel(&g_bdev_ut_io_device);
354 }
355 
356 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
357 	[SPDK_BDEV_IO_TYPE_READ]		= true,
358 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
359 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
360 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
361 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
362 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
363 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
364 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
365 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
366 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
367 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
368 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
369 };
370 
371 static void
372 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
373 {
374 	g_io_types_supported[io_type] = enable;
375 }
376 
377 static bool
378 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
379 {
380 	return g_io_types_supported[io_type];
381 }
382 
383 static struct spdk_bdev_fn_table fn_table = {
384 	.destruct = stub_destruct,
385 	.submit_request = stub_submit_request,
386 	.get_io_channel = bdev_ut_get_io_channel,
387 	.io_type_supported = stub_io_type_supported,
388 };
389 
390 static int
391 bdev_ut_create_ch(void *io_device, void *ctx_buf)
392 {
393 	struct bdev_ut_channel *ch = ctx_buf;
394 
395 	CU_ASSERT(g_bdev_ut_channel == NULL);
396 	g_bdev_ut_channel = ch;
397 
398 	TAILQ_INIT(&ch->outstanding_io);
399 	ch->outstanding_io_count = 0;
400 	TAILQ_INIT(&ch->expected_io);
401 	return 0;
402 }
403 
404 static void
405 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
406 {
407 	CU_ASSERT(g_bdev_ut_channel != NULL);
408 	g_bdev_ut_channel = NULL;
409 }
410 
411 struct spdk_bdev_module bdev_ut_if;
412 
413 static int
414 bdev_ut_module_init(void)
415 {
416 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
417 				sizeof(struct bdev_ut_channel), NULL);
418 	spdk_bdev_module_init_done(&bdev_ut_if);
419 	return 0;
420 }
421 
422 static void
423 bdev_ut_module_fini(void)
424 {
425 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
426 }
427 
428 struct spdk_bdev_module bdev_ut_if = {
429 	.name = "bdev_ut",
430 	.module_init = bdev_ut_module_init,
431 	.module_fini = bdev_ut_module_fini,
432 	.async_init = true,
433 };
434 
435 static void vbdev_ut_examine(struct spdk_bdev *bdev);
436 
437 static int
438 vbdev_ut_module_init(void)
439 {
440 	return 0;
441 }
442 
443 static void
444 vbdev_ut_module_fini(void)
445 {
446 }
447 
448 struct spdk_bdev_module vbdev_ut_if = {
449 	.name = "vbdev_ut",
450 	.module_init = vbdev_ut_module_init,
451 	.module_fini = vbdev_ut_module_fini,
452 	.examine_config = vbdev_ut_examine,
453 };
454 
455 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
456 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
457 
458 static void
459 vbdev_ut_examine(struct spdk_bdev *bdev)
460 {
461 	spdk_bdev_module_examine_done(&vbdev_ut_if);
462 }
463 
464 static struct spdk_bdev *
465 allocate_bdev(char *name)
466 {
467 	struct spdk_bdev *bdev;
468 	int rc;
469 
470 	bdev = calloc(1, sizeof(*bdev));
471 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
472 
473 	bdev->name = name;
474 	bdev->fn_table = &fn_table;
475 	bdev->module = &bdev_ut_if;
476 	bdev->blockcnt = 1024;
477 	bdev->blocklen = 512;
478 
479 	rc = spdk_bdev_register(bdev);
480 	CU_ASSERT(rc == 0);
481 
482 	return bdev;
483 }
484 
485 static struct spdk_bdev *
486 allocate_vbdev(char *name)
487 {
488 	struct spdk_bdev *bdev;
489 	int rc;
490 
491 	bdev = calloc(1, sizeof(*bdev));
492 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
493 
494 	bdev->name = name;
495 	bdev->fn_table = &fn_table;
496 	bdev->module = &vbdev_ut_if;
497 
498 	rc = spdk_bdev_register(bdev);
499 	CU_ASSERT(rc == 0);
500 
501 	return bdev;
502 }
503 
504 static void
505 free_bdev(struct spdk_bdev *bdev)
506 {
507 	spdk_bdev_unregister(bdev, NULL, NULL);
508 	poll_threads();
509 	memset(bdev, 0xFF, sizeof(*bdev));
510 	free(bdev);
511 }
512 
513 static void
514 free_vbdev(struct spdk_bdev *bdev)
515 {
516 	spdk_bdev_unregister(bdev, NULL, NULL);
517 	poll_threads();
518 	memset(bdev, 0xFF, sizeof(*bdev));
519 	free(bdev);
520 }
521 
522 static void
523 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
524 {
525 	const char *bdev_name;
526 
527 	CU_ASSERT(bdev != NULL);
528 	CU_ASSERT(rc == 0);
529 	bdev_name = spdk_bdev_get_name(bdev);
530 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
531 
532 	free(stat);
533 
534 	*(bool *)cb_arg = true;
535 }
536 
537 static void
538 bdev_unregister_cb(void *cb_arg, int rc)
539 {
540 	g_unregister_arg = cb_arg;
541 	g_unregister_rc = rc;
542 }
543 
544 static void
545 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
546 {
547 }
548 
549 static void
550 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
551 {
552 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
553 
554 	g_event_type1 = type;
555 	if (SPDK_BDEV_EVENT_REMOVE == type) {
556 		spdk_bdev_close(desc);
557 	}
558 }
559 
560 static void
561 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
562 {
563 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
564 
565 	g_event_type2 = type;
566 	if (SPDK_BDEV_EVENT_REMOVE == type) {
567 		spdk_bdev_close(desc);
568 	}
569 }
570 
571 static void
572 get_device_stat_test(void)
573 {
574 	struct spdk_bdev *bdev;
575 	struct spdk_bdev_io_stat *stat;
576 	bool done;
577 
578 	bdev = allocate_bdev("bdev0");
579 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
580 	if (stat == NULL) {
581 		free_bdev(bdev);
582 		return;
583 	}
584 
585 	done = false;
586 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
587 	while (!done) { poll_threads(); }
588 
589 	free_bdev(bdev);
590 }
591 
592 static void
593 open_write_test(void)
594 {
595 	struct spdk_bdev *bdev[9];
596 	struct spdk_bdev_desc *desc[9] = {};
597 	int rc;
598 
599 	/*
600 	 * Create a tree of bdevs to test various open w/ write cases.
601 	 *
602 	 * bdev0 through bdev3 are physical block devices, such as NVMe
603 	 * namespaces or Ceph block devices.
604 	 *
605 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
606 	 * caching or RAID use cases.
607 	 *
608 	 * bdev5 through bdev7 are all virtual bdevs with the same base
609 	 * bdev (except bdev7). This models partitioning or logical volume
610 	 * use cases.
611 	 *
612 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
613 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
614 	 * models caching, RAID, partitioning or logical volumes use cases.
615 	 *
616 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
617 	 * base bdevs are themselves virtual bdevs.
618 	 *
619 	 *                bdev8
620 	 *                  |
621 	 *            +----------+
622 	 *            |          |
623 	 *          bdev4      bdev5   bdev6   bdev7
624 	 *            |          |       |       |
625 	 *        +---+---+      +---+   +   +---+---+
626 	 *        |       |           \  |  /         \
627 	 *      bdev0   bdev1          bdev2         bdev3
628 	 */
629 
630 	bdev[0] = allocate_bdev("bdev0");
631 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
632 	CU_ASSERT(rc == 0);
633 
634 	bdev[1] = allocate_bdev("bdev1");
635 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
636 	CU_ASSERT(rc == 0);
637 
638 	bdev[2] = allocate_bdev("bdev2");
639 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
640 	CU_ASSERT(rc == 0);
641 
642 	bdev[3] = allocate_bdev("bdev3");
643 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
644 	CU_ASSERT(rc == 0);
645 
646 	bdev[4] = allocate_vbdev("bdev4");
647 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
648 	CU_ASSERT(rc == 0);
649 
650 	bdev[5] = allocate_vbdev("bdev5");
651 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
652 	CU_ASSERT(rc == 0);
653 
654 	bdev[6] = allocate_vbdev("bdev6");
655 
656 	bdev[7] = allocate_vbdev("bdev7");
657 
658 	bdev[8] = allocate_vbdev("bdev8");
659 
660 	/* Open bdev0 read-only.  This should succeed. */
661 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
662 	CU_ASSERT(rc == 0);
663 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
664 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
665 	spdk_bdev_close(desc[0]);
666 
667 	/*
668 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
669 	 * by a vbdev module.
670 	 */
671 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
672 	CU_ASSERT(rc == -EPERM);
673 
674 	/*
675 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
676 	 * by a vbdev module.
677 	 */
678 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
679 	CU_ASSERT(rc == -EPERM);
680 
681 	/* Open bdev4 read-only.  This should succeed. */
682 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
683 	CU_ASSERT(rc == 0);
684 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
685 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
686 	spdk_bdev_close(desc[4]);
687 
688 	/*
689 	 * Open bdev8 read/write.  This should succeed since it is a leaf
690 	 * bdev.
691 	 */
692 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
693 	CU_ASSERT(rc == 0);
694 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
695 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
696 	spdk_bdev_close(desc[8]);
697 
698 	/*
699 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
700 	 * by a vbdev module.
701 	 */
702 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
703 	CU_ASSERT(rc == -EPERM);
704 
705 	/* Open bdev4 read-only.  This should succeed. */
706 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
707 	CU_ASSERT(rc == 0);
708 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
709 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
710 	spdk_bdev_close(desc[5]);
711 
712 	free_vbdev(bdev[8]);
713 
714 	free_vbdev(bdev[5]);
715 	free_vbdev(bdev[6]);
716 	free_vbdev(bdev[7]);
717 
718 	free_vbdev(bdev[4]);
719 
720 	free_bdev(bdev[0]);
721 	free_bdev(bdev[1]);
722 	free_bdev(bdev[2]);
723 	free_bdev(bdev[3]);
724 }
725 
726 static void
727 claim_test(void)
728 {
729 	struct spdk_bdev *bdev;
730 	struct spdk_bdev_desc *desc, *open_desc;
731 	int rc;
732 	uint32_t count;
733 
734 	/*
735 	 * A vbdev that uses a read-only bdev may need it to remain read-only.
736 	 * To do so, it opens the bdev read-only, then claims it without
737 	 * passing a spdk_bdev_desc.
738 	 */
739 	bdev = allocate_bdev("bdev0");
740 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
741 	CU_ASSERT(rc == 0);
742 	CU_ASSERT(desc->write == false);
743 
744 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
745 	CU_ASSERT(rc == 0);
746 	CU_ASSERT(bdev->internal.claim_module == &bdev_ut_if);
747 
748 	/* There should be only one open descriptor and it should still be ro */
749 	count = 0;
750 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
751 		CU_ASSERT(open_desc == desc);
752 		CU_ASSERT(!open_desc->write);
753 		count++;
754 	}
755 	CU_ASSERT(count == 1);
756 
757 	/* A read-only bdev is upgraded to read-write if desc is passed. */
758 	spdk_bdev_module_release_bdev(bdev);
759 	rc = spdk_bdev_module_claim_bdev(bdev, desc, &bdev_ut_if);
760 	CU_ASSERT(rc == 0);
761 	CU_ASSERT(bdev->internal.claim_module == &bdev_ut_if);
762 
763 	/* There should be only one open descriptor and it should be rw */
764 	count = 0;
765 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
766 		CU_ASSERT(open_desc == desc);
767 		CU_ASSERT(open_desc->write);
768 		count++;
769 	}
770 	CU_ASSERT(count == 1);
771 
772 	spdk_bdev_close(desc);
773 	free_bdev(bdev);
774 }
775 
776 static void
777 bytes_to_blocks_test(void)
778 {
779 	struct spdk_bdev bdev;
780 	uint64_t offset_blocks, num_blocks;
781 
782 	memset(&bdev, 0, sizeof(bdev));
783 
784 	bdev.blocklen = 512;
785 
786 	/* All parameters valid */
787 	offset_blocks = 0;
788 	num_blocks = 0;
789 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
790 	CU_ASSERT(offset_blocks == 1);
791 	CU_ASSERT(num_blocks == 2);
792 
793 	/* Offset not a block multiple */
794 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
795 
796 	/* Length not a block multiple */
797 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
798 
799 	/* In case blocklen not the power of two */
800 	bdev.blocklen = 100;
801 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
802 	CU_ASSERT(offset_blocks == 1);
803 	CU_ASSERT(num_blocks == 2);
804 
805 	/* Offset not a block multiple */
806 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
807 
808 	/* Length not a block multiple */
809 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
810 }
811 
812 static void
813 num_blocks_test(void)
814 {
815 	struct spdk_bdev bdev;
816 	struct spdk_bdev_desc *desc = NULL;
817 	int rc;
818 
819 	memset(&bdev, 0, sizeof(bdev));
820 	bdev.name = "num_blocks";
821 	bdev.fn_table = &fn_table;
822 	bdev.module = &bdev_ut_if;
823 	spdk_bdev_register(&bdev);
824 	spdk_bdev_notify_blockcnt_change(&bdev, 50);
825 
826 	/* Growing block number */
827 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
828 	/* Shrinking block number */
829 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
830 
831 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc, &desc);
832 	CU_ASSERT(rc == 0);
833 	SPDK_CU_ASSERT_FATAL(desc != NULL);
834 	CU_ASSERT(&bdev == spdk_bdev_desc_get_bdev(desc));
835 
836 	/* Growing block number */
837 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
838 	/* Shrinking block number */
839 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
840 
841 	g_event_type1 = 0xFF;
842 	/* Growing block number */
843 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
844 
845 	poll_threads();
846 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
847 
848 	g_event_type1 = 0xFF;
849 	/* Growing block number and closing */
850 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
851 
852 	spdk_bdev_close(desc);
853 	spdk_bdev_unregister(&bdev, NULL, NULL);
854 
855 	poll_threads();
856 
857 	/* Callback is not called for closed device */
858 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
859 }
860 
861 static void
862 io_valid_test(void)
863 {
864 	struct spdk_bdev bdev;
865 
866 	memset(&bdev, 0, sizeof(bdev));
867 
868 	bdev.blocklen = 512;
869 	CU_ASSERT(pthread_mutex_init(&bdev.internal.mutex, NULL) == 0);
870 
871 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
872 
873 	/* All parameters valid */
874 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
875 
876 	/* Last valid block */
877 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
878 
879 	/* Offset past end of bdev */
880 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
881 
882 	/* Offset + length past end of bdev */
883 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
884 
885 	/* Offset near end of uint64_t range (2^64 - 1) */
886 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
887 
888 	CU_ASSERT(pthread_mutex_destroy(&bdev.internal.mutex) == 0);
889 }
890 
891 static void
892 alias_add_del_test(void)
893 {
894 	struct spdk_bdev *bdev[3];
895 	int rc;
896 
897 	/* Creating and registering bdevs */
898 	bdev[0] = allocate_bdev("bdev0");
899 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
900 
901 	bdev[1] = allocate_bdev("bdev1");
902 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
903 
904 	bdev[2] = allocate_bdev("bdev2");
905 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
906 
907 	poll_threads();
908 
909 	/*
910 	 * Trying adding an alias identical to name.
911 	 * Alias is identical to name, so it can not be added to aliases list
912 	 */
913 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
914 	CU_ASSERT(rc == -EEXIST);
915 
916 	/*
917 	 * Trying to add empty alias,
918 	 * this one should fail
919 	 */
920 	rc = spdk_bdev_alias_add(bdev[0], NULL);
921 	CU_ASSERT(rc == -EINVAL);
922 
923 	/* Trying adding same alias to two different registered bdevs */
924 
925 	/* Alias is used first time, so this one should pass */
926 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
927 	CU_ASSERT(rc == 0);
928 
929 	/* Alias was added to another bdev, so this one should fail */
930 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
931 	CU_ASSERT(rc == -EEXIST);
932 
933 	/* Alias is used first time, so this one should pass */
934 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
935 	CU_ASSERT(rc == 0);
936 
937 	/* Trying removing an alias from registered bdevs */
938 
939 	/* Alias is not on a bdev aliases list, so this one should fail */
940 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
941 	CU_ASSERT(rc == -ENOENT);
942 
943 	/* Alias is present on a bdev aliases list, so this one should pass */
944 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
945 	CU_ASSERT(rc == 0);
946 
947 	/* Alias is present on a bdev aliases list, so this one should pass */
948 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
949 	CU_ASSERT(rc == 0);
950 
951 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
952 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
953 	CU_ASSERT(rc != 0);
954 
955 	/* Trying to del all alias from empty alias list */
956 	spdk_bdev_alias_del_all(bdev[2]);
957 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
958 
959 	/* Trying to del all alias from non-empty alias list */
960 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
961 	CU_ASSERT(rc == 0);
962 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
963 	CU_ASSERT(rc == 0);
964 	spdk_bdev_alias_del_all(bdev[2]);
965 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
966 
967 	/* Unregister and free bdevs */
968 	spdk_bdev_unregister(bdev[0], NULL, NULL);
969 	spdk_bdev_unregister(bdev[1], NULL, NULL);
970 	spdk_bdev_unregister(bdev[2], NULL, NULL);
971 
972 	poll_threads();
973 
974 	free(bdev[0]);
975 	free(bdev[1]);
976 	free(bdev[2]);
977 }
978 
979 static void
980 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
981 {
982 	g_io_done = true;
983 	g_io_status = bdev_io->internal.status;
984 	if ((bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) &&
985 	    (bdev_io->u.bdev.zcopy.start)) {
986 		g_zcopy_bdev_io = bdev_io;
987 	} else {
988 		spdk_bdev_free_io(bdev_io);
989 		g_zcopy_bdev_io = NULL;
990 	}
991 }
992 
993 static void
994 bdev_init_cb(void *arg, int rc)
995 {
996 	CU_ASSERT(rc == 0);
997 }
998 
999 static void
1000 bdev_fini_cb(void *arg)
1001 {
1002 }
1003 
1004 struct bdev_ut_io_wait_entry {
1005 	struct spdk_bdev_io_wait_entry	entry;
1006 	struct spdk_io_channel		*io_ch;
1007 	struct spdk_bdev_desc		*desc;
1008 	bool				submitted;
1009 };
1010 
1011 static void
1012 io_wait_cb(void *arg)
1013 {
1014 	struct bdev_ut_io_wait_entry *entry = arg;
1015 	int rc;
1016 
1017 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
1018 	CU_ASSERT(rc == 0);
1019 	entry->submitted = true;
1020 }
1021 
1022 static void
1023 bdev_io_types_test(void)
1024 {
1025 	struct spdk_bdev *bdev;
1026 	struct spdk_bdev_desc *desc = NULL;
1027 	struct spdk_io_channel *io_ch;
1028 	struct spdk_bdev_opts bdev_opts = {};
1029 	int rc;
1030 
1031 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1032 	bdev_opts.bdev_io_pool_size = 4;
1033 	bdev_opts.bdev_io_cache_size = 2;
1034 
1035 	rc = spdk_bdev_set_opts(&bdev_opts);
1036 	CU_ASSERT(rc == 0);
1037 	spdk_bdev_initialize(bdev_init_cb, NULL);
1038 	poll_threads();
1039 
1040 	bdev = allocate_bdev("bdev0");
1041 
1042 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1043 	CU_ASSERT(rc == 0);
1044 	poll_threads();
1045 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1046 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1047 	io_ch = spdk_bdev_get_io_channel(desc);
1048 	CU_ASSERT(io_ch != NULL);
1049 
1050 	/* WRITE and WRITE ZEROES are not supported */
1051 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
1052 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
1053 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
1054 	CU_ASSERT(rc == -ENOTSUP);
1055 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
1056 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
1057 
1058 	/* NVME_IO, NVME_IO_MD and NVME_ADMIN are not supported */
1059 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, false);
1060 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, false);
1061 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, false);
1062 	rc = spdk_bdev_nvme_io_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1063 	CU_ASSERT(rc == -ENOTSUP);
1064 	rc = spdk_bdev_nvme_io_passthru_md(desc, io_ch, NULL, NULL, 0, NULL, 0, NULL, NULL);
1065 	CU_ASSERT(rc == -ENOTSUP);
1066 	rc = spdk_bdev_nvme_admin_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1067 	CU_ASSERT(rc == -ENOTSUP);
1068 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, true);
1069 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, true);
1070 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, true);
1071 
1072 	spdk_put_io_channel(io_ch);
1073 	spdk_bdev_close(desc);
1074 	free_bdev(bdev);
1075 	spdk_bdev_finish(bdev_fini_cb, NULL);
1076 	poll_threads();
1077 }
1078 
1079 static void
1080 bdev_io_wait_test(void)
1081 {
1082 	struct spdk_bdev *bdev;
1083 	struct spdk_bdev_desc *desc = NULL;
1084 	struct spdk_io_channel *io_ch;
1085 	struct spdk_bdev_opts bdev_opts = {};
1086 	struct bdev_ut_io_wait_entry io_wait_entry;
1087 	struct bdev_ut_io_wait_entry io_wait_entry2;
1088 	int rc;
1089 
1090 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1091 	bdev_opts.bdev_io_pool_size = 4;
1092 	bdev_opts.bdev_io_cache_size = 2;
1093 
1094 	rc = spdk_bdev_set_opts(&bdev_opts);
1095 	CU_ASSERT(rc == 0);
1096 	spdk_bdev_initialize(bdev_init_cb, NULL);
1097 	poll_threads();
1098 
1099 	bdev = allocate_bdev("bdev0");
1100 
1101 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1102 	CU_ASSERT(rc == 0);
1103 	poll_threads();
1104 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1105 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1106 	io_ch = spdk_bdev_get_io_channel(desc);
1107 	CU_ASSERT(io_ch != NULL);
1108 
1109 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1110 	CU_ASSERT(rc == 0);
1111 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1112 	CU_ASSERT(rc == 0);
1113 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1114 	CU_ASSERT(rc == 0);
1115 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1116 	CU_ASSERT(rc == 0);
1117 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1118 
1119 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1120 	CU_ASSERT(rc == -ENOMEM);
1121 
1122 	io_wait_entry.entry.bdev = bdev;
1123 	io_wait_entry.entry.cb_fn = io_wait_cb;
1124 	io_wait_entry.entry.cb_arg = &io_wait_entry;
1125 	io_wait_entry.io_ch = io_ch;
1126 	io_wait_entry.desc = desc;
1127 	io_wait_entry.submitted = false;
1128 	/* Cannot use the same io_wait_entry for two different calls. */
1129 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
1130 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
1131 
1132 	/* Queue two I/O waits. */
1133 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
1134 	CU_ASSERT(rc == 0);
1135 	CU_ASSERT(io_wait_entry.submitted == false);
1136 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
1137 	CU_ASSERT(rc == 0);
1138 	CU_ASSERT(io_wait_entry2.submitted == false);
1139 
1140 	stub_complete_io(1);
1141 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1142 	CU_ASSERT(io_wait_entry.submitted == true);
1143 	CU_ASSERT(io_wait_entry2.submitted == false);
1144 
1145 	stub_complete_io(1);
1146 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1147 	CU_ASSERT(io_wait_entry2.submitted == true);
1148 
1149 	stub_complete_io(4);
1150 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1151 
1152 	spdk_put_io_channel(io_ch);
1153 	spdk_bdev_close(desc);
1154 	free_bdev(bdev);
1155 	spdk_bdev_finish(bdev_fini_cb, NULL);
1156 	poll_threads();
1157 }
1158 
1159 static void
1160 bdev_io_spans_split_test(void)
1161 {
1162 	struct spdk_bdev bdev;
1163 	struct spdk_bdev_io bdev_io;
1164 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV];
1165 
1166 	memset(&bdev, 0, sizeof(bdev));
1167 	bdev_io.u.bdev.iovs = iov;
1168 
1169 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1170 	bdev.optimal_io_boundary = 0;
1171 	bdev.max_segment_size = 0;
1172 	bdev.max_num_segments = 0;
1173 	bdev_io.bdev = &bdev;
1174 
1175 	/* bdev has no optimal_io_boundary and max_size set - so this should return false. */
1176 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1177 
1178 	bdev.split_on_optimal_io_boundary = true;
1179 	bdev.optimal_io_boundary = 32;
1180 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1181 
1182 	/* RESETs are not based on LBAs - so this should return false. */
1183 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1184 
1185 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1186 	bdev_io.u.bdev.offset_blocks = 0;
1187 	bdev_io.u.bdev.num_blocks = 32;
1188 
1189 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1190 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1191 
1192 	bdev_io.u.bdev.num_blocks = 33;
1193 
1194 	/* This I/O spans a boundary. */
1195 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1196 
1197 	bdev_io.u.bdev.num_blocks = 32;
1198 	bdev.max_segment_size = 512 * 32;
1199 	bdev.max_num_segments = 1;
1200 	bdev_io.u.bdev.iovcnt = 1;
1201 	iov[0].iov_len = 512;
1202 
1203 	/* Does not cross and exceed max_size or max_segs */
1204 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1205 
1206 	bdev.split_on_optimal_io_boundary = false;
1207 	bdev.max_segment_size = 512;
1208 	bdev.max_num_segments = 1;
1209 	bdev_io.u.bdev.iovcnt = 2;
1210 
1211 	/* Exceed max_segs */
1212 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1213 
1214 	bdev.max_num_segments = 2;
1215 	iov[0].iov_len = 513;
1216 	iov[1].iov_len = 512;
1217 
1218 	/* Exceed max_sizes */
1219 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1220 }
1221 
1222 static void
1223 bdev_io_boundary_split_test(void)
1224 {
1225 	struct spdk_bdev *bdev;
1226 	struct spdk_bdev_desc *desc = NULL;
1227 	struct spdk_io_channel *io_ch;
1228 	struct spdk_bdev_opts bdev_opts = {};
1229 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1230 	struct ut_expected_io *expected_io;
1231 	void *md_buf = (void *)0xFF000000;
1232 	uint64_t i;
1233 	int rc;
1234 
1235 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1236 	bdev_opts.bdev_io_pool_size = 512;
1237 	bdev_opts.bdev_io_cache_size = 64;
1238 
1239 	rc = spdk_bdev_set_opts(&bdev_opts);
1240 	CU_ASSERT(rc == 0);
1241 	spdk_bdev_initialize(bdev_init_cb, NULL);
1242 
1243 	bdev = allocate_bdev("bdev0");
1244 
1245 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1246 	CU_ASSERT(rc == 0);
1247 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1248 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1249 	io_ch = spdk_bdev_get_io_channel(desc);
1250 	CU_ASSERT(io_ch != NULL);
1251 
1252 	bdev->optimal_io_boundary = 16;
1253 	bdev->split_on_optimal_io_boundary = false;
1254 
1255 	g_io_done = false;
1256 
1257 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1258 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1259 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1260 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1261 
1262 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1263 	CU_ASSERT(rc == 0);
1264 	CU_ASSERT(g_io_done == false);
1265 
1266 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1267 	stub_complete_io(1);
1268 	CU_ASSERT(g_io_done == true);
1269 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1270 
1271 	bdev->split_on_optimal_io_boundary = true;
1272 	bdev->md_interleave = false;
1273 	bdev->md_len = 8;
1274 
1275 	/* Now test that a single-vector command is split correctly.
1276 	 * Offset 14, length 8, payload 0xF000
1277 	 *  Child - Offset 14, length 2, payload 0xF000
1278 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1279 	 *
1280 	 * Set up the expected values before calling spdk_bdev_read_blocks
1281 	 */
1282 	g_io_done = false;
1283 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1284 	expected_io->md_buf = md_buf;
1285 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1286 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1287 
1288 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1289 	expected_io->md_buf = md_buf + 2 * 8;
1290 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1291 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1292 
1293 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1294 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1295 					   14, 8, io_done, NULL);
1296 	CU_ASSERT(rc == 0);
1297 	CU_ASSERT(g_io_done == false);
1298 
1299 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1300 	stub_complete_io(2);
1301 	CU_ASSERT(g_io_done == true);
1302 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1303 
1304 	/* Now set up a more complex, multi-vector command that needs to be split,
1305 	 *  including splitting iovecs.
1306 	 */
1307 	iov[0].iov_base = (void *)0x10000;
1308 	iov[0].iov_len = 512;
1309 	iov[1].iov_base = (void *)0x20000;
1310 	iov[1].iov_len = 20 * 512;
1311 	iov[2].iov_base = (void *)0x30000;
1312 	iov[2].iov_len = 11 * 512;
1313 
1314 	g_io_done = false;
1315 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1316 	expected_io->md_buf = md_buf;
1317 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1318 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1319 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1320 
1321 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1322 	expected_io->md_buf = md_buf + 2 * 8;
1323 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1324 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1325 
1326 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1327 	expected_io->md_buf = md_buf + 18 * 8;
1328 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1329 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1330 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1331 
1332 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1333 					     14, 32, io_done, NULL);
1334 	CU_ASSERT(rc == 0);
1335 	CU_ASSERT(g_io_done == false);
1336 
1337 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1338 	stub_complete_io(3);
1339 	CU_ASSERT(g_io_done == true);
1340 
1341 	/* Test multi vector command that needs to be split by strip and then needs to be
1342 	 * split further due to the capacity of child iovs.
1343 	 */
1344 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1345 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1346 		iov[i].iov_len = 512;
1347 	}
1348 
1349 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1350 	g_io_done = false;
1351 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1352 					   BDEV_IO_NUM_CHILD_IOV);
1353 	expected_io->md_buf = md_buf;
1354 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1355 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1356 	}
1357 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1358 
1359 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1360 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
1361 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1362 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1363 		ut_expected_io_set_iov(expected_io, i,
1364 				       (void *)((i + 1 + BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1365 	}
1366 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1367 
1368 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1369 					    0, BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1370 	CU_ASSERT(rc == 0);
1371 	CU_ASSERT(g_io_done == false);
1372 
1373 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1374 	stub_complete_io(1);
1375 	CU_ASSERT(g_io_done == false);
1376 
1377 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1378 	stub_complete_io(1);
1379 	CU_ASSERT(g_io_done == true);
1380 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1381 
1382 	/* Test multi vector command that needs to be split by strip and then needs to be
1383 	 * split further due to the capacity of child iovs. In this case, the length of
1384 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1385 	 */
1386 
1387 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1388 	 * is BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1389 	 */
1390 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1391 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1392 		iov[i].iov_len = 512;
1393 	}
1394 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1395 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1396 		iov[i].iov_len = 256;
1397 	}
1398 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1399 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1400 
1401 	/* Add an extra iovec to trigger split */
1402 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1403 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1404 
1405 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1406 	g_io_done = false;
1407 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1408 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV);
1409 	expected_io->md_buf = md_buf;
1410 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1411 		ut_expected_io_set_iov(expected_io, i,
1412 				       (void *)((i + 1) * 0x10000), 512);
1413 	}
1414 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1415 		ut_expected_io_set_iov(expected_io, i,
1416 				       (void *)((i + 1) * 0x10000), 256);
1417 	}
1418 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1419 
1420 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1421 					   1, 1);
1422 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1423 	ut_expected_io_set_iov(expected_io, 0,
1424 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1425 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1426 
1427 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1428 					   1, 1);
1429 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1430 	ut_expected_io_set_iov(expected_io, 0,
1431 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1432 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1433 
1434 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1435 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1436 	CU_ASSERT(rc == 0);
1437 	CU_ASSERT(g_io_done == false);
1438 
1439 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1440 	stub_complete_io(1);
1441 	CU_ASSERT(g_io_done == false);
1442 
1443 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1444 	stub_complete_io(2);
1445 	CU_ASSERT(g_io_done == true);
1446 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1447 
1448 	/* Test multi vector command that needs to be split by strip and then needs to be
1449 	 * split further due to the capacity of child iovs, the child request offset should
1450 	 * be rewind to last aligned offset and go success without error.
1451 	 */
1452 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1453 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1454 		iov[i].iov_len = 512;
1455 	}
1456 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1457 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1458 
1459 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1460 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1461 
1462 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1463 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1464 
1465 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1466 	g_io_done = false;
1467 	g_io_status = 0;
1468 	/* The first expected io should be start from offset 0 to BDEV_IO_NUM_CHILD_IOV - 1 */
1469 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1470 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV - 1);
1471 	expected_io->md_buf = md_buf;
1472 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1473 		ut_expected_io_set_iov(expected_io, i,
1474 				       (void *)((i + 1) * 0x10000), 512);
1475 	}
1476 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1477 	/* The second expected io should be start from offset BDEV_IO_NUM_CHILD_IOV - 1 to BDEV_IO_NUM_CHILD_IOV */
1478 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1479 					   1, 2);
1480 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1481 	ut_expected_io_set_iov(expected_io, 0,
1482 			       (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1483 	ut_expected_io_set_iov(expected_io, 1,
1484 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1485 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1486 	/* The third expected io should be start from offset BDEV_IO_NUM_CHILD_IOV to BDEV_IO_NUM_CHILD_IOV + 1 */
1487 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1488 					   1, 1);
1489 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1490 	ut_expected_io_set_iov(expected_io, 0,
1491 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1492 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1493 
1494 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1495 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1496 	CU_ASSERT(rc == 0);
1497 	CU_ASSERT(g_io_done == false);
1498 
1499 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1500 	stub_complete_io(1);
1501 	CU_ASSERT(g_io_done == false);
1502 
1503 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1504 	stub_complete_io(2);
1505 	CU_ASSERT(g_io_done == true);
1506 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1507 
1508 	/* Test multi vector command that needs to be split due to the IO boundary and
1509 	 * the capacity of child iovs. Especially test the case when the command is
1510 	 * split due to the capacity of child iovs, the tail address is not aligned with
1511 	 * block size and is rewinded to the aligned address.
1512 	 *
1513 	 * The iovecs used in read request is complex but is based on the data
1514 	 * collected in the real issue. We change the base addresses but keep the lengths
1515 	 * not to loose the credibility of the test.
1516 	 */
1517 	bdev->optimal_io_boundary = 128;
1518 	g_io_done = false;
1519 	g_io_status = 0;
1520 
1521 	for (i = 0; i < 31; i++) {
1522 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1523 		iov[i].iov_len = 1024;
1524 	}
1525 	iov[31].iov_base = (void *)0xFEED1F00000;
1526 	iov[31].iov_len = 32768;
1527 	iov[32].iov_base = (void *)0xFEED2000000;
1528 	iov[32].iov_len = 160;
1529 	iov[33].iov_base = (void *)0xFEED2100000;
1530 	iov[33].iov_len = 4096;
1531 	iov[34].iov_base = (void *)0xFEED2200000;
1532 	iov[34].iov_len = 4096;
1533 	iov[35].iov_base = (void *)0xFEED2300000;
1534 	iov[35].iov_len = 4096;
1535 	iov[36].iov_base = (void *)0xFEED2400000;
1536 	iov[36].iov_len = 4096;
1537 	iov[37].iov_base = (void *)0xFEED2500000;
1538 	iov[37].iov_len = 4096;
1539 	iov[38].iov_base = (void *)0xFEED2600000;
1540 	iov[38].iov_len = 4096;
1541 	iov[39].iov_base = (void *)0xFEED2700000;
1542 	iov[39].iov_len = 4096;
1543 	iov[40].iov_base = (void *)0xFEED2800000;
1544 	iov[40].iov_len = 4096;
1545 	iov[41].iov_base = (void *)0xFEED2900000;
1546 	iov[41].iov_len = 4096;
1547 	iov[42].iov_base = (void *)0xFEED2A00000;
1548 	iov[42].iov_len = 4096;
1549 	iov[43].iov_base = (void *)0xFEED2B00000;
1550 	iov[43].iov_len = 12288;
1551 	iov[44].iov_base = (void *)0xFEED2C00000;
1552 	iov[44].iov_len = 8192;
1553 	iov[45].iov_base = (void *)0xFEED2F00000;
1554 	iov[45].iov_len = 4096;
1555 	iov[46].iov_base = (void *)0xFEED3000000;
1556 	iov[46].iov_len = 4096;
1557 	iov[47].iov_base = (void *)0xFEED3100000;
1558 	iov[47].iov_len = 4096;
1559 	iov[48].iov_base = (void *)0xFEED3200000;
1560 	iov[48].iov_len = 24576;
1561 	iov[49].iov_base = (void *)0xFEED3300000;
1562 	iov[49].iov_len = 16384;
1563 	iov[50].iov_base = (void *)0xFEED3400000;
1564 	iov[50].iov_len = 12288;
1565 	iov[51].iov_base = (void *)0xFEED3500000;
1566 	iov[51].iov_len = 4096;
1567 	iov[52].iov_base = (void *)0xFEED3600000;
1568 	iov[52].iov_len = 4096;
1569 	iov[53].iov_base = (void *)0xFEED3700000;
1570 	iov[53].iov_len = 4096;
1571 	iov[54].iov_base = (void *)0xFEED3800000;
1572 	iov[54].iov_len = 28672;
1573 	iov[55].iov_base = (void *)0xFEED3900000;
1574 	iov[55].iov_len = 20480;
1575 	iov[56].iov_base = (void *)0xFEED3A00000;
1576 	iov[56].iov_len = 4096;
1577 	iov[57].iov_base = (void *)0xFEED3B00000;
1578 	iov[57].iov_len = 12288;
1579 	iov[58].iov_base = (void *)0xFEED3C00000;
1580 	iov[58].iov_len = 4096;
1581 	iov[59].iov_base = (void *)0xFEED3D00000;
1582 	iov[59].iov_len = 4096;
1583 	iov[60].iov_base = (void *)0xFEED3E00000;
1584 	iov[60].iov_len = 352;
1585 
1586 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1587 	 * of child iovs,
1588 	 */
1589 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1590 	expected_io->md_buf = md_buf;
1591 	for (i = 0; i < 32; i++) {
1592 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1593 	}
1594 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1595 
1596 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1597 	 * split by the IO boundary requirement.
1598 	 */
1599 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1600 	expected_io->md_buf = md_buf + 126 * 8;
1601 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1602 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1603 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1604 
1605 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1606 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1607 	 */
1608 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1609 	expected_io->md_buf = md_buf + 128 * 8;
1610 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1611 			       iov[33].iov_len - 864);
1612 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1613 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1614 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1615 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1616 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1617 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1618 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1619 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1620 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1621 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1622 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1623 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1624 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1625 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1626 
1627 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1628 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1629 	 */
1630 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1631 	expected_io->md_buf = md_buf + 256 * 8;
1632 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1633 			       iov[46].iov_len - 864);
1634 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1635 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1636 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1637 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1638 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1639 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1640 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1641 
1642 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1643 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1644 	 */
1645 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1646 	expected_io->md_buf = md_buf + 384 * 8;
1647 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1648 			       iov[52].iov_len - 864);
1649 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1650 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1651 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1652 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1653 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1654 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1655 
1656 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1657 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1658 	 */
1659 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1660 	expected_io->md_buf = md_buf + 512 * 8;
1661 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1662 			       iov[57].iov_len - 4960);
1663 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1664 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1665 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1666 
1667 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1668 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1669 	expected_io->md_buf = md_buf + 542 * 8;
1670 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1671 			       iov[59].iov_len - 3936);
1672 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1673 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1674 
1675 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1676 					    0, 543, io_done, NULL);
1677 	CU_ASSERT(rc == 0);
1678 	CU_ASSERT(g_io_done == false);
1679 
1680 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1681 	stub_complete_io(1);
1682 	CU_ASSERT(g_io_done == false);
1683 
1684 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1685 	stub_complete_io(5);
1686 	CU_ASSERT(g_io_done == false);
1687 
1688 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1689 	stub_complete_io(1);
1690 	CU_ASSERT(g_io_done == true);
1691 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1692 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1693 
1694 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1695 	 * split, so test that.
1696 	 */
1697 	bdev->optimal_io_boundary = 15;
1698 	g_io_done = false;
1699 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1700 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1701 
1702 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1703 	CU_ASSERT(rc == 0);
1704 	CU_ASSERT(g_io_done == false);
1705 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1706 	stub_complete_io(1);
1707 	CU_ASSERT(g_io_done == true);
1708 
1709 	/* Test an UNMAP.  This should also not be split. */
1710 	bdev->optimal_io_boundary = 16;
1711 	g_io_done = false;
1712 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1713 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1714 
1715 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1716 	CU_ASSERT(rc == 0);
1717 	CU_ASSERT(g_io_done == false);
1718 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1719 	stub_complete_io(1);
1720 	CU_ASSERT(g_io_done == true);
1721 
1722 	/* Test a FLUSH.  This should also not be split. */
1723 	bdev->optimal_io_boundary = 16;
1724 	g_io_done = false;
1725 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1726 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1727 
1728 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1729 	CU_ASSERT(rc == 0);
1730 	CU_ASSERT(g_io_done == false);
1731 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1732 	stub_complete_io(1);
1733 	CU_ASSERT(g_io_done == true);
1734 
1735 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1736 
1737 	/* Children requests return an error status */
1738 	bdev->optimal_io_boundary = 16;
1739 	iov[0].iov_base = (void *)0x10000;
1740 	iov[0].iov_len = 512 * 64;
1741 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1742 	g_io_done = false;
1743 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1744 
1745 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1746 	CU_ASSERT(rc == 0);
1747 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1748 	stub_complete_io(4);
1749 	CU_ASSERT(g_io_done == false);
1750 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1751 	stub_complete_io(1);
1752 	CU_ASSERT(g_io_done == true);
1753 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1754 
1755 	/* Test if a multi vector command terminated with failure before continuing
1756 	 * splitting process when one of child I/O failed.
1757 	 * The multi vector command is as same as the above that needs to be split by strip
1758 	 * and then needs to be split further due to the capacity of child iovs.
1759 	 */
1760 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1761 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1762 		iov[i].iov_len = 512;
1763 	}
1764 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1765 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1766 
1767 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1768 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1769 
1770 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1771 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1772 
1773 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1774 
1775 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1776 	g_io_done = false;
1777 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1778 
1779 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
1780 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1781 	CU_ASSERT(rc == 0);
1782 	CU_ASSERT(g_io_done == false);
1783 
1784 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1785 	stub_complete_io(1);
1786 	CU_ASSERT(g_io_done == true);
1787 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1788 
1789 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1790 
1791 	/* for this test we will create the following conditions to hit the code path where
1792 	 * we are trying to send and IO following a split that has no iovs because we had to
1793 	 * trim them for alignment reasons.
1794 	 *
1795 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1796 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1797 	 *   position 30 and overshoot by 0x2e.
1798 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1799 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1800 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1801 	 *   and let the completion pick up the last 2 vectors.
1802 	 */
1803 	bdev->optimal_io_boundary = 32;
1804 	bdev->split_on_optimal_io_boundary = true;
1805 	g_io_done = false;
1806 
1807 	/* Init all parent IOVs to 0x212 */
1808 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1809 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1810 		iov[i].iov_len = 0x212;
1811 	}
1812 
1813 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1814 					   BDEV_IO_NUM_CHILD_IOV - 1);
1815 	/* expect 0-29 to be 1:1 with the parent iov */
1816 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1817 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1818 	}
1819 
1820 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1821 	 * where 0x1e is the amount we overshot the 16K boundary
1822 	 */
1823 	ut_expected_io_set_iov(expected_io, BDEV_IO_NUM_CHILD_IOV - 2,
1824 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1825 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1826 
1827 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1828 	 * shortened that take it to the next boundary and then a final one to get us to
1829 	 * 0x4200 bytes for the IO.
1830 	 */
1831 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1832 					   BDEV_IO_NUM_CHILD_IOV, 2);
1833 	/* position 30 picked up the remaining bytes to the next boundary */
1834 	ut_expected_io_set_iov(expected_io, 0,
1835 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
1836 
1837 	/* position 31 picked the the rest of the transfer to get us to 0x4200 */
1838 	ut_expected_io_set_iov(expected_io, 1,
1839 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
1840 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1841 
1842 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 1, 0,
1843 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1844 	CU_ASSERT(rc == 0);
1845 	CU_ASSERT(g_io_done == false);
1846 
1847 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1848 	stub_complete_io(1);
1849 	CU_ASSERT(g_io_done == false);
1850 
1851 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1852 	stub_complete_io(1);
1853 	CU_ASSERT(g_io_done == true);
1854 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1855 
1856 	spdk_put_io_channel(io_ch);
1857 	spdk_bdev_close(desc);
1858 	free_bdev(bdev);
1859 	spdk_bdev_finish(bdev_fini_cb, NULL);
1860 	poll_threads();
1861 }
1862 
1863 static void
1864 bdev_io_max_size_and_segment_split_test(void)
1865 {
1866 	struct spdk_bdev *bdev;
1867 	struct spdk_bdev_desc *desc = NULL;
1868 	struct spdk_io_channel *io_ch;
1869 	struct spdk_bdev_opts bdev_opts = {};
1870 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1871 	struct ut_expected_io *expected_io;
1872 	uint64_t i;
1873 	int rc;
1874 
1875 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1876 	bdev_opts.bdev_io_pool_size = 512;
1877 	bdev_opts.bdev_io_cache_size = 64;
1878 
1879 	bdev_opts.opts_size = sizeof(bdev_opts);
1880 	rc = spdk_bdev_set_opts(&bdev_opts);
1881 	CU_ASSERT(rc == 0);
1882 	spdk_bdev_initialize(bdev_init_cb, NULL);
1883 
1884 	bdev = allocate_bdev("bdev0");
1885 
1886 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
1887 	CU_ASSERT(rc == 0);
1888 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1889 	io_ch = spdk_bdev_get_io_channel(desc);
1890 	CU_ASSERT(io_ch != NULL);
1891 
1892 	bdev->split_on_optimal_io_boundary = false;
1893 	bdev->optimal_io_boundary = 0;
1894 
1895 	/* Case 0 max_num_segments == 0.
1896 	 * but segment size 2 * 512 > 512
1897 	 */
1898 	bdev->max_segment_size = 512;
1899 	bdev->max_num_segments = 0;
1900 	g_io_done = false;
1901 
1902 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
1903 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
1904 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
1905 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1906 
1907 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
1908 	CU_ASSERT(rc == 0);
1909 	CU_ASSERT(g_io_done == false);
1910 
1911 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1912 	stub_complete_io(1);
1913 	CU_ASSERT(g_io_done == true);
1914 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1915 
1916 	/* Case 1 max_segment_size == 0
1917 	 * but iov num 2 > 1.
1918 	 */
1919 	bdev->max_segment_size = 0;
1920 	bdev->max_num_segments = 1;
1921 	g_io_done = false;
1922 
1923 	iov[0].iov_base = (void *)0x10000;
1924 	iov[0].iov_len = 512;
1925 	iov[1].iov_base = (void *)0x20000;
1926 	iov[1].iov_len = 8 * 512;
1927 
1928 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
1929 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len);
1930 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1931 
1932 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1);
1933 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len);
1934 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1935 
1936 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL);
1937 	CU_ASSERT(rc == 0);
1938 	CU_ASSERT(g_io_done == false);
1939 
1940 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1941 	stub_complete_io(2);
1942 	CU_ASSERT(g_io_done == true);
1943 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1944 
1945 	/* Test that a non-vector command is split correctly.
1946 	 * Set up the expected values before calling spdk_bdev_read_blocks
1947 	 */
1948 	bdev->max_segment_size = 512;
1949 	bdev->max_num_segments = 1;
1950 	g_io_done = false;
1951 
1952 	/* Child IO 0 */
1953 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
1954 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
1955 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1956 
1957 	/* Child IO 1 */
1958 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
1959 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512);
1960 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1961 
1962 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1963 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
1964 	CU_ASSERT(rc == 0);
1965 	CU_ASSERT(g_io_done == false);
1966 
1967 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1968 	stub_complete_io(2);
1969 	CU_ASSERT(g_io_done == true);
1970 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1971 
1972 	/* Now set up a more complex, multi-vector command that needs to be split,
1973 	 * including splitting iovecs.
1974 	 */
1975 	bdev->max_segment_size = 2 * 512;
1976 	bdev->max_num_segments = 1;
1977 	g_io_done = false;
1978 
1979 	iov[0].iov_base = (void *)0x10000;
1980 	iov[0].iov_len = 2 * 512;
1981 	iov[1].iov_base = (void *)0x20000;
1982 	iov[1].iov_len = 4 * 512;
1983 	iov[2].iov_base = (void *)0x30000;
1984 	iov[2].iov_len = 6 * 512;
1985 
1986 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
1987 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2);
1988 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1989 
1990 	/* Split iov[1].size to 2 iov entries then split the segments */
1991 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
1992 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2);
1993 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1994 
1995 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1);
1996 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2);
1997 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1998 
1999 	/* Split iov[2].size to 3 iov entries then split the segments */
2000 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1);
2001 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2);
2002 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2003 
2004 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1);
2005 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2);
2006 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2007 
2008 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1);
2009 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2);
2010 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2011 
2012 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL);
2013 	CU_ASSERT(rc == 0);
2014 	CU_ASSERT(g_io_done == false);
2015 
2016 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2017 	stub_complete_io(6);
2018 	CU_ASSERT(g_io_done == true);
2019 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2020 
2021 	/* Test multi vector command that needs to be split by strip and then needs to be
2022 	 * split further due to the capacity of parent IO child iovs.
2023 	 */
2024 	bdev->max_segment_size = 512;
2025 	bdev->max_num_segments = 1;
2026 	g_io_done = false;
2027 
2028 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
2029 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2030 		iov[i].iov_len = 512 * 2;
2031 	}
2032 
2033 	/* Each input iov.size is split into 2 iovs,
2034 	 * half of the input iov can fill all child iov entries of a single IO.
2035 	 */
2036 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV / 2; i++) {
2037 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1);
2038 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2039 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2040 
2041 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1);
2042 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2043 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2044 	}
2045 
2046 	/* The remaining iov is split in the second round */
2047 	for (i = BDEV_IO_NUM_CHILD_IOV / 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
2048 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1);
2049 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2050 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2051 
2052 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1);
2053 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2054 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2055 	}
2056 
2057 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV, 0,
2058 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
2059 	CU_ASSERT(rc == 0);
2060 	CU_ASSERT(g_io_done == false);
2061 
2062 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == BDEV_IO_NUM_CHILD_IOV);
2063 	stub_complete_io(BDEV_IO_NUM_CHILD_IOV);
2064 	CU_ASSERT(g_io_done == false);
2065 
2066 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == BDEV_IO_NUM_CHILD_IOV);
2067 	stub_complete_io(BDEV_IO_NUM_CHILD_IOV);
2068 	CU_ASSERT(g_io_done == true);
2069 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2070 
2071 	/* A wrong case, a child IO that is divided does
2072 	 * not meet the principle of multiples of block size,
2073 	 * and exits with error
2074 	 */
2075 	bdev->max_segment_size = 512;
2076 	bdev->max_num_segments = 1;
2077 	g_io_done = false;
2078 
2079 	iov[0].iov_base = (void *)0x10000;
2080 	iov[0].iov_len = 512 + 256;
2081 	iov[1].iov_base = (void *)0x20000;
2082 	iov[1].iov_len = 256;
2083 
2084 	/* iov[0] is split to 512 and 256.
2085 	 * 256 is less than a block size, and it is found
2086 	 * in the next round of split that it is the first child IO smaller than
2087 	 * the block size, so the error exit
2088 	 */
2089 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1);
2090 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512);
2091 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2092 
2093 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL);
2094 	CU_ASSERT(rc == 0);
2095 	CU_ASSERT(g_io_done == false);
2096 
2097 	/* First child IO is OK */
2098 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2099 	stub_complete_io(1);
2100 	CU_ASSERT(g_io_done == true);
2101 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2102 
2103 	/* error exit */
2104 	stub_complete_io(1);
2105 	CU_ASSERT(g_io_done == true);
2106 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
2107 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2108 
2109 	/* Test multi vector command that needs to be split by strip and then needs to be
2110 	 * split further due to the capacity of child iovs.
2111 	 *
2112 	 * In this case, the last two iovs need to be split, but it will exceed the capacity
2113 	 * of child iovs, so it needs to wait until the first batch completed.
2114 	 */
2115 	bdev->max_segment_size = 512;
2116 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2117 	g_io_done = false;
2118 
2119 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2120 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2121 		iov[i].iov_len = 512;
2122 	}
2123 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
2124 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2125 		iov[i].iov_len = 512 * 2;
2126 	}
2127 
2128 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2129 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
2130 	/* 0 ~ (BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */
2131 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2132 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2133 	}
2134 	/* (BDEV_IO_NUM_CHILD_IOV - 2) is split */
2135 	ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512);
2136 	ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512);
2137 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2138 
2139 	/* Child iov entries exceed the max num of parent IO so split it in next round */
2140 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV, 2, 2);
2141 	ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512);
2142 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512);
2143 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2144 
2145 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV, 0,
2146 				    BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL);
2147 	CU_ASSERT(rc == 0);
2148 	CU_ASSERT(g_io_done == false);
2149 
2150 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2151 	stub_complete_io(1);
2152 	CU_ASSERT(g_io_done == false);
2153 
2154 	/* Next round */
2155 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2156 	stub_complete_io(1);
2157 	CU_ASSERT(g_io_done == true);
2158 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2159 
2160 	/* This case is similar to the previous one, but the io composed of
2161 	 * the last few entries of child iov is not enough for a blocklen, so they
2162 	 * cannot be put into this IO, but wait until the next time.
2163 	 */
2164 	bdev->max_segment_size = 512;
2165 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2166 	g_io_done = false;
2167 
2168 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2169 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2170 		iov[i].iov_len = 512;
2171 	}
2172 
2173 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2174 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2175 		iov[i].iov_len = 128;
2176 	}
2177 
2178 	/* First child iovcnt is't BDEV_IO_NUM_CHILD_IOV but BDEV_IO_NUM_CHILD_IOV - 2.
2179 	 * Because the left 2 iov is not enough for a blocklen.
2180 	 */
2181 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2182 					   BDEV_IO_NUM_CHILD_IOV - 2, BDEV_IO_NUM_CHILD_IOV - 2);
2183 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2184 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2185 	}
2186 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2187 
2188 	/* The second child io waits until the end of the first child io before executing.
2189 	 * Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO.
2190 	 * BDEV_IO_NUM_CHILD_IOV - 2 to BDEV_IO_NUM_CHILD_IOV + 2
2191 	 */
2192 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 2,
2193 					   1, 4);
2194 	ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len);
2195 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len);
2196 	ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len);
2197 	ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len);
2198 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2199 
2200 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
2201 				    BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL);
2202 	CU_ASSERT(rc == 0);
2203 	CU_ASSERT(g_io_done == false);
2204 
2205 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2206 	stub_complete_io(1);
2207 	CU_ASSERT(g_io_done == false);
2208 
2209 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2210 	stub_complete_io(1);
2211 	CU_ASSERT(g_io_done == true);
2212 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2213 
2214 	/* A very complicated case. Each sg entry exceeds max_segment_size and
2215 	 * needs to be split. At the same time, child io must be a multiple of blocklen.
2216 	 * At the same time, child iovcnt exceeds parent iovcnt.
2217 	 */
2218 	bdev->max_segment_size = 512 + 128;
2219 	bdev->max_num_segments = 3;
2220 	g_io_done = false;
2221 
2222 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2223 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2224 		iov[i].iov_len = 512 + 256;
2225 	}
2226 
2227 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2228 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2229 		iov[i].iov_len = 512 + 128;
2230 	}
2231 
2232 	/* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries.
2233 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2234 	 * Generate 9 child IOs.
2235 	 */
2236 	for (i = 0; i < 3; i++) {
2237 		uint32_t j = i * 4;
2238 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3);
2239 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2240 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2241 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2242 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2243 
2244 		/* Child io must be a multiple of blocklen
2245 		 * iov[j + 2] must be split. If the third entry is also added,
2246 		 * the multiple of blocklen cannot be guaranteed. But it still
2247 		 * occupies one iov entry of the parent child iov.
2248 		 */
2249 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2);
2250 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2251 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2252 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2253 
2254 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3);
2255 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2256 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2257 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2258 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2259 	}
2260 
2261 	/* Child iov position at 27, the 10th child IO
2262 	 * iov entry index is 3 * 4 and offset is 3 * 6
2263 	 */
2264 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3);
2265 	ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640);
2266 	ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128);
2267 	ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256);
2268 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2269 
2270 	/* Child iov position at 30, the 11th child IO */
2271 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2);
2272 	ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512);
2273 	ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512);
2274 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2275 
2276 	/* The 2nd split round and iovpos is 0, the 12th child IO */
2277 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3);
2278 	ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256);
2279 	ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640);
2280 	ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128);
2281 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2282 
2283 	/* Consume 9 child IOs and 27 child iov entries.
2284 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2285 	 * Parent IO iov index start from 16 and block offset start from 24
2286 	 */
2287 	for (i = 0; i < 3; i++) {
2288 		uint32_t j = i * 4 + 16;
2289 		uint32_t offset = i * 6 + 24;
2290 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3);
2291 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2292 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2293 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2294 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2295 
2296 		/* Child io must be a multiple of blocklen
2297 		 * iov[j + 2] must be split. If the third entry is also added,
2298 		 * the multiple of blocklen cannot be guaranteed. But it still
2299 		 * occupies one iov entry of the parent child iov.
2300 		 */
2301 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2);
2302 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2303 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2304 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2305 
2306 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3);
2307 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2308 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2309 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2310 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2311 	}
2312 
2313 	/* The 22th child IO, child iov position at 30 */
2314 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1);
2315 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512);
2316 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2317 
2318 	/* The third round */
2319 	/* Here is the 23nd child IO and child iovpos is 0 */
2320 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3);
2321 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256);
2322 	ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640);
2323 	ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128);
2324 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2325 
2326 	/* The 24th child IO */
2327 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3);
2328 	ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640);
2329 	ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640);
2330 	ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256);
2331 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2332 
2333 	/* The 25th child IO */
2334 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2);
2335 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384);
2336 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640);
2337 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2338 
2339 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
2340 				    50, io_done, NULL);
2341 	CU_ASSERT(rc == 0);
2342 	CU_ASSERT(g_io_done == false);
2343 
2344 	/* Parent IO supports up to 32 child iovs, so it is calculated that
2345 	 * a maximum of 11 IOs can be split at a time, and the
2346 	 * splitting will continue after the first batch is over.
2347 	 */
2348 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2349 	stub_complete_io(11);
2350 	CU_ASSERT(g_io_done == false);
2351 
2352 	/* The 2nd round */
2353 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2354 	stub_complete_io(11);
2355 	CU_ASSERT(g_io_done == false);
2356 
2357 	/* The last round */
2358 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2359 	stub_complete_io(3);
2360 	CU_ASSERT(g_io_done == true);
2361 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2362 
2363 	/* Test an WRITE_ZEROES.  This should also not be split. */
2364 	bdev->max_segment_size = 512;
2365 	bdev->max_num_segments = 1;
2366 	g_io_done = false;
2367 
2368 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
2369 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2370 
2371 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
2372 	CU_ASSERT(rc == 0);
2373 	CU_ASSERT(g_io_done == false);
2374 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2375 	stub_complete_io(1);
2376 	CU_ASSERT(g_io_done == true);
2377 
2378 	/* Test an UNMAP.  This should also not be split. */
2379 	g_io_done = false;
2380 
2381 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0);
2382 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2383 
2384 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL);
2385 	CU_ASSERT(rc == 0);
2386 	CU_ASSERT(g_io_done == false);
2387 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2388 	stub_complete_io(1);
2389 	CU_ASSERT(g_io_done == true);
2390 
2391 	/* Test a FLUSH.  This should also not be split. */
2392 	g_io_done = false;
2393 
2394 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0);
2395 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2396 
2397 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
2398 	CU_ASSERT(rc == 0);
2399 	CU_ASSERT(g_io_done == false);
2400 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2401 	stub_complete_io(1);
2402 	CU_ASSERT(g_io_done == true);
2403 
2404 	spdk_put_io_channel(io_ch);
2405 	spdk_bdev_close(desc);
2406 	free_bdev(bdev);
2407 	spdk_bdev_finish(bdev_fini_cb, NULL);
2408 	poll_threads();
2409 }
2410 
2411 static void
2412 bdev_io_mix_split_test(void)
2413 {
2414 	struct spdk_bdev *bdev;
2415 	struct spdk_bdev_desc *desc = NULL;
2416 	struct spdk_io_channel *io_ch;
2417 	struct spdk_bdev_opts bdev_opts = {};
2418 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
2419 	struct ut_expected_io *expected_io;
2420 	uint64_t i;
2421 	int rc;
2422 
2423 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2424 	bdev_opts.bdev_io_pool_size = 512;
2425 	bdev_opts.bdev_io_cache_size = 64;
2426 
2427 	rc = spdk_bdev_set_opts(&bdev_opts);
2428 	CU_ASSERT(rc == 0);
2429 	spdk_bdev_initialize(bdev_init_cb, NULL);
2430 
2431 	bdev = allocate_bdev("bdev0");
2432 
2433 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2434 	CU_ASSERT(rc == 0);
2435 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2436 	io_ch = spdk_bdev_get_io_channel(desc);
2437 	CU_ASSERT(io_ch != NULL);
2438 
2439 	/* First case optimal_io_boundary == max_segment_size * max_num_segments */
2440 	bdev->split_on_optimal_io_boundary = true;
2441 	bdev->optimal_io_boundary = 16;
2442 
2443 	bdev->max_segment_size = 512;
2444 	bdev->max_num_segments = 16;
2445 	g_io_done = false;
2446 
2447 	/* IO crossing the IO boundary requires split
2448 	 * Total 2 child IOs.
2449 	 */
2450 
2451 	/* The 1st child IO split the segment_size to multiple segment entry */
2452 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2453 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2454 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2455 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2456 
2457 	/* The 2nd child IO split the segment_size to multiple segment entry */
2458 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2);
2459 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512);
2460 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512);
2461 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2462 
2463 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL);
2464 	CU_ASSERT(rc == 0);
2465 	CU_ASSERT(g_io_done == false);
2466 
2467 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2468 	stub_complete_io(2);
2469 	CU_ASSERT(g_io_done == true);
2470 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2471 
2472 	/* Second case optimal_io_boundary > max_segment_size * max_num_segments */
2473 	bdev->max_segment_size = 15 * 512;
2474 	bdev->max_num_segments = 1;
2475 	g_io_done = false;
2476 
2477 	/* IO crossing the IO boundary requires split.
2478 	 * The 1st child IO segment size exceeds the max_segment_size,
2479 	 * So 1st child IO will be splitted to multiple segment entry.
2480 	 * Then it split to 2 child IOs because of the max_num_segments.
2481 	 * Total 3 child IOs.
2482 	 */
2483 
2484 	/* The first 2 IOs are in an IO boundary.
2485 	 * Because the optimal_io_boundary > max_segment_size * max_num_segments
2486 	 * So it split to the first 2 IOs.
2487 	 */
2488 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1);
2489 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15);
2490 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2491 
2492 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2493 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512);
2494 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2495 
2496 	/* The 3rd Child IO is because of the io boundary */
2497 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2498 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2499 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2500 
2501 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2502 	CU_ASSERT(rc == 0);
2503 	CU_ASSERT(g_io_done == false);
2504 
2505 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2506 	stub_complete_io(3);
2507 	CU_ASSERT(g_io_done == true);
2508 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2509 
2510 	/* Third case optimal_io_boundary < max_segment_size * max_num_segments */
2511 	bdev->max_segment_size = 17 * 512;
2512 	bdev->max_num_segments = 1;
2513 	g_io_done = false;
2514 
2515 	/* IO crossing the IO boundary requires split.
2516 	 * Child IO does not split.
2517 	 * Total 2 child IOs.
2518 	 */
2519 
2520 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1);
2521 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16);
2522 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2523 
2524 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2525 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2526 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2527 
2528 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2529 	CU_ASSERT(rc == 0);
2530 	CU_ASSERT(g_io_done == false);
2531 
2532 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2533 	stub_complete_io(2);
2534 	CU_ASSERT(g_io_done == true);
2535 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2536 
2537 	/* Now set up a more complex, multi-vector command that needs to be split,
2538 	 * including splitting iovecs.
2539 	 * optimal_io_boundary < max_segment_size * max_num_segments
2540 	 */
2541 	bdev->max_segment_size = 3 * 512;
2542 	bdev->max_num_segments = 6;
2543 	g_io_done = false;
2544 
2545 	iov[0].iov_base = (void *)0x10000;
2546 	iov[0].iov_len = 4 * 512;
2547 	iov[1].iov_base = (void *)0x20000;
2548 	iov[1].iov_len = 4 * 512;
2549 	iov[2].iov_base = (void *)0x30000;
2550 	iov[2].iov_len = 10 * 512;
2551 
2552 	/* IO crossing the IO boundary requires split.
2553 	 * The 1st child IO segment size exceeds the max_segment_size and after
2554 	 * splitting segment_size, the num_segments exceeds max_num_segments.
2555 	 * So 1st child IO will be splitted to 2 child IOs.
2556 	 * Total 3 child IOs.
2557 	 */
2558 
2559 	/* The first 2 IOs are in an IO boundary.
2560 	 * After splitting segment size the segment num exceeds.
2561 	 * So it splits to 2 child IOs.
2562 	 */
2563 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6);
2564 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3);
2565 	ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512);
2566 	ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3);
2567 	ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512);
2568 	ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3);
2569 	ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3);
2570 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2571 
2572 	/* The 2nd child IO has the left segment entry */
2573 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2574 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2);
2575 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2576 
2577 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2578 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2);
2579 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2580 
2581 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL);
2582 	CU_ASSERT(rc == 0);
2583 	CU_ASSERT(g_io_done == false);
2584 
2585 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2586 	stub_complete_io(3);
2587 	CU_ASSERT(g_io_done == true);
2588 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2589 
2590 	/* A very complicated case. Each sg entry exceeds max_segment_size
2591 	 * and split on io boundary.
2592 	 * optimal_io_boundary < max_segment_size * max_num_segments
2593 	 */
2594 	bdev->max_segment_size = 3 * 512;
2595 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2596 	g_io_done = false;
2597 
2598 	for (i = 0; i < 20; i++) {
2599 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2600 		iov[i].iov_len = 512 * 4;
2601 	}
2602 
2603 	/* IO crossing the IO boundary requires split.
2604 	 * 80 block length can split 5 child IOs base on offset and IO boundary.
2605 	 * Each iov entry needs to be splitted to 2 entries because of max_segment_size
2606 	 * Total 5 child IOs.
2607 	 */
2608 
2609 	/* 4 iov entries are in an IO boundary and each iov entry splits to 2.
2610 	 * So each child IO occupies 8 child iov entries.
2611 	 */
2612 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8);
2613 	for (i = 0; i < 4; i++) {
2614 		int iovcnt = i * 2;
2615 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2616 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2617 	}
2618 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2619 
2620 	/* 2nd child IO and total 16 child iov entries of parent IO */
2621 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8);
2622 	for (i = 4; i < 8; i++) {
2623 		int iovcnt = (i - 4) * 2;
2624 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2625 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2626 	}
2627 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2628 
2629 	/* 3rd child IO and total 24 child iov entries of parent IO */
2630 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8);
2631 	for (i = 8; i < 12; i++) {
2632 		int iovcnt = (i - 8) * 2;
2633 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2634 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2635 	}
2636 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2637 
2638 	/* 4th child IO and total 32 child iov entries of parent IO */
2639 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8);
2640 	for (i = 12; i < 16; i++) {
2641 		int iovcnt = (i - 12) * 2;
2642 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2643 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2644 	}
2645 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2646 
2647 	/* 5th child IO and because of the child iov entry it should be splitted
2648 	 * in next round.
2649 	 */
2650 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8);
2651 	for (i = 16; i < 20; i++) {
2652 		int iovcnt = (i - 16) * 2;
2653 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2654 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2655 	}
2656 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2657 
2658 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL);
2659 	CU_ASSERT(rc == 0);
2660 	CU_ASSERT(g_io_done == false);
2661 
2662 	/* First split round */
2663 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2664 	stub_complete_io(4);
2665 	CU_ASSERT(g_io_done == false);
2666 
2667 	/* Second split round */
2668 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2669 	stub_complete_io(1);
2670 	CU_ASSERT(g_io_done == true);
2671 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2672 
2673 	spdk_put_io_channel(io_ch);
2674 	spdk_bdev_close(desc);
2675 	free_bdev(bdev);
2676 	spdk_bdev_finish(bdev_fini_cb, NULL);
2677 	poll_threads();
2678 }
2679 
2680 static void
2681 bdev_io_split_with_io_wait(void)
2682 {
2683 	struct spdk_bdev *bdev;
2684 	struct spdk_bdev_desc *desc = NULL;
2685 	struct spdk_io_channel *io_ch;
2686 	struct spdk_bdev_channel *channel;
2687 	struct spdk_bdev_mgmt_channel *mgmt_ch;
2688 	struct spdk_bdev_opts bdev_opts = {};
2689 	struct iovec iov[3];
2690 	struct ut_expected_io *expected_io;
2691 	int rc;
2692 
2693 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2694 	bdev_opts.bdev_io_pool_size = 2;
2695 	bdev_opts.bdev_io_cache_size = 1;
2696 
2697 	rc = spdk_bdev_set_opts(&bdev_opts);
2698 	CU_ASSERT(rc == 0);
2699 	spdk_bdev_initialize(bdev_init_cb, NULL);
2700 
2701 	bdev = allocate_bdev("bdev0");
2702 
2703 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2704 	CU_ASSERT(rc == 0);
2705 	CU_ASSERT(desc != NULL);
2706 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2707 	io_ch = spdk_bdev_get_io_channel(desc);
2708 	CU_ASSERT(io_ch != NULL);
2709 	channel = spdk_io_channel_get_ctx(io_ch);
2710 	mgmt_ch = channel->shared_resource->mgmt_ch;
2711 
2712 	bdev->optimal_io_boundary = 16;
2713 	bdev->split_on_optimal_io_boundary = true;
2714 
2715 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
2716 	CU_ASSERT(rc == 0);
2717 
2718 	/* Now test that a single-vector command is split correctly.
2719 	 * Offset 14, length 8, payload 0xF000
2720 	 *  Child - Offset 14, length 2, payload 0xF000
2721 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
2722 	 *
2723 	 * Set up the expected values before calling spdk_bdev_read_blocks
2724 	 */
2725 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
2726 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
2727 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2728 
2729 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
2730 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
2731 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2732 
2733 	/* The following children will be submitted sequentially due to the capacity of
2734 	 * spdk_bdev_io.
2735 	 */
2736 
2737 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
2738 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
2739 	CU_ASSERT(rc == 0);
2740 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2741 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2742 
2743 	/* Completing the first read I/O will submit the first child */
2744 	stub_complete_io(1);
2745 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2746 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2747 
2748 	/* Completing the first child will submit the second child */
2749 	stub_complete_io(1);
2750 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2751 
2752 	/* Complete the second child I/O.  This should result in our callback getting
2753 	 * invoked since the parent I/O is now complete.
2754 	 */
2755 	stub_complete_io(1);
2756 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2757 
2758 	/* Now set up a more complex, multi-vector command that needs to be split,
2759 	 *  including splitting iovecs.
2760 	 */
2761 	iov[0].iov_base = (void *)0x10000;
2762 	iov[0].iov_len = 512;
2763 	iov[1].iov_base = (void *)0x20000;
2764 	iov[1].iov_len = 20 * 512;
2765 	iov[2].iov_base = (void *)0x30000;
2766 	iov[2].iov_len = 11 * 512;
2767 
2768 	g_io_done = false;
2769 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
2770 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
2771 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
2772 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2773 
2774 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
2775 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
2776 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2777 
2778 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
2779 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
2780 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
2781 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2782 
2783 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
2784 	CU_ASSERT(rc == 0);
2785 	CU_ASSERT(g_io_done == false);
2786 
2787 	/* The following children will be submitted sequentially due to the capacity of
2788 	 * spdk_bdev_io.
2789 	 */
2790 
2791 	/* Completing the first child will submit the second child */
2792 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2793 	stub_complete_io(1);
2794 	CU_ASSERT(g_io_done == false);
2795 
2796 	/* Completing the second child will submit the third child */
2797 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2798 	stub_complete_io(1);
2799 	CU_ASSERT(g_io_done == false);
2800 
2801 	/* Completing the third child will result in our callback getting invoked
2802 	 * since the parent I/O is now complete.
2803 	 */
2804 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2805 	stub_complete_io(1);
2806 	CU_ASSERT(g_io_done == true);
2807 
2808 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
2809 
2810 	spdk_put_io_channel(io_ch);
2811 	spdk_bdev_close(desc);
2812 	free_bdev(bdev);
2813 	spdk_bdev_finish(bdev_fini_cb, NULL);
2814 	poll_threads();
2815 }
2816 
2817 static void
2818 bdev_io_alignment(void)
2819 {
2820 	struct spdk_bdev *bdev;
2821 	struct spdk_bdev_desc *desc = NULL;
2822 	struct spdk_io_channel *io_ch;
2823 	struct spdk_bdev_opts bdev_opts = {};
2824 	int rc;
2825 	void *buf = NULL;
2826 	struct iovec iovs[2];
2827 	int iovcnt;
2828 	uint64_t alignment;
2829 
2830 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2831 	bdev_opts.bdev_io_pool_size = 20;
2832 	bdev_opts.bdev_io_cache_size = 2;
2833 
2834 	rc = spdk_bdev_set_opts(&bdev_opts);
2835 	CU_ASSERT(rc == 0);
2836 	spdk_bdev_initialize(bdev_init_cb, NULL);
2837 
2838 	fn_table.submit_request = stub_submit_request_get_buf;
2839 	bdev = allocate_bdev("bdev0");
2840 
2841 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2842 	CU_ASSERT(rc == 0);
2843 	CU_ASSERT(desc != NULL);
2844 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2845 	io_ch = spdk_bdev_get_io_channel(desc);
2846 	CU_ASSERT(io_ch != NULL);
2847 
2848 	/* Create aligned buffer */
2849 	rc = posix_memalign(&buf, 4096, 8192);
2850 	SPDK_CU_ASSERT_FATAL(rc == 0);
2851 
2852 	/* Pass aligned single buffer with no alignment required */
2853 	alignment = 1;
2854 	bdev->required_alignment = spdk_u32log2(alignment);
2855 
2856 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
2857 	CU_ASSERT(rc == 0);
2858 	stub_complete_io(1);
2859 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2860 				    alignment));
2861 
2862 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
2863 	CU_ASSERT(rc == 0);
2864 	stub_complete_io(1);
2865 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2866 				    alignment));
2867 
2868 	/* Pass unaligned single buffer with no alignment required */
2869 	alignment = 1;
2870 	bdev->required_alignment = spdk_u32log2(alignment);
2871 
2872 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2873 	CU_ASSERT(rc == 0);
2874 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2875 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
2876 	stub_complete_io(1);
2877 
2878 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2879 	CU_ASSERT(rc == 0);
2880 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2881 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
2882 	stub_complete_io(1);
2883 
2884 	/* Pass unaligned single buffer with 512 alignment required */
2885 	alignment = 512;
2886 	bdev->required_alignment = spdk_u32log2(alignment);
2887 
2888 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2889 	CU_ASSERT(rc == 0);
2890 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2891 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2892 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2893 				    alignment));
2894 	stub_complete_io(1);
2895 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2896 
2897 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2898 	CU_ASSERT(rc == 0);
2899 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2900 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2901 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2902 				    alignment));
2903 	stub_complete_io(1);
2904 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2905 
2906 	/* Pass unaligned single buffer with 4096 alignment required */
2907 	alignment = 4096;
2908 	bdev->required_alignment = spdk_u32log2(alignment);
2909 
2910 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
2911 	CU_ASSERT(rc == 0);
2912 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2913 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2914 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2915 				    alignment));
2916 	stub_complete_io(1);
2917 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2918 
2919 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
2920 	CU_ASSERT(rc == 0);
2921 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2922 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2923 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2924 				    alignment));
2925 	stub_complete_io(1);
2926 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2927 
2928 	/* Pass aligned iovs with no alignment required */
2929 	alignment = 1;
2930 	bdev->required_alignment = spdk_u32log2(alignment);
2931 
2932 	iovcnt = 1;
2933 	iovs[0].iov_base = buf;
2934 	iovs[0].iov_len = 512;
2935 
2936 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2937 	CU_ASSERT(rc == 0);
2938 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2939 	stub_complete_io(1);
2940 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2941 
2942 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2943 	CU_ASSERT(rc == 0);
2944 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2945 	stub_complete_io(1);
2946 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2947 
2948 	/* Pass unaligned iovs with no alignment required */
2949 	alignment = 1;
2950 	bdev->required_alignment = spdk_u32log2(alignment);
2951 
2952 	iovcnt = 2;
2953 	iovs[0].iov_base = buf + 16;
2954 	iovs[0].iov_len = 256;
2955 	iovs[1].iov_base = buf + 16 + 256 + 32;
2956 	iovs[1].iov_len = 256;
2957 
2958 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2959 	CU_ASSERT(rc == 0);
2960 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2961 	stub_complete_io(1);
2962 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2963 
2964 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2965 	CU_ASSERT(rc == 0);
2966 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2967 	stub_complete_io(1);
2968 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2969 
2970 	/* Pass unaligned iov with 2048 alignment required */
2971 	alignment = 2048;
2972 	bdev->required_alignment = spdk_u32log2(alignment);
2973 
2974 	iovcnt = 2;
2975 	iovs[0].iov_base = buf + 16;
2976 	iovs[0].iov_len = 256;
2977 	iovs[1].iov_base = buf + 16 + 256 + 32;
2978 	iovs[1].iov_len = 256;
2979 
2980 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2981 	CU_ASSERT(rc == 0);
2982 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
2983 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2984 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2985 				    alignment));
2986 	stub_complete_io(1);
2987 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2988 
2989 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2990 	CU_ASSERT(rc == 0);
2991 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
2992 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2993 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2994 				    alignment));
2995 	stub_complete_io(1);
2996 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2997 
2998 	/* Pass iov without allocated buffer without alignment required */
2999 	alignment = 1;
3000 	bdev->required_alignment = spdk_u32log2(alignment);
3001 
3002 	iovcnt = 1;
3003 	iovs[0].iov_base = NULL;
3004 	iovs[0].iov_len = 0;
3005 
3006 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3007 	CU_ASSERT(rc == 0);
3008 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3009 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3010 				    alignment));
3011 	stub_complete_io(1);
3012 
3013 	/* Pass iov without allocated buffer with 1024 alignment required */
3014 	alignment = 1024;
3015 	bdev->required_alignment = spdk_u32log2(alignment);
3016 
3017 	iovcnt = 1;
3018 	iovs[0].iov_base = NULL;
3019 	iovs[0].iov_len = 0;
3020 
3021 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3022 	CU_ASSERT(rc == 0);
3023 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3024 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3025 				    alignment));
3026 	stub_complete_io(1);
3027 
3028 	spdk_put_io_channel(io_ch);
3029 	spdk_bdev_close(desc);
3030 	free_bdev(bdev);
3031 	fn_table.submit_request = stub_submit_request;
3032 	spdk_bdev_finish(bdev_fini_cb, NULL);
3033 	poll_threads();
3034 
3035 	free(buf);
3036 }
3037 
3038 static void
3039 bdev_io_alignment_with_boundary(void)
3040 {
3041 	struct spdk_bdev *bdev;
3042 	struct spdk_bdev_desc *desc = NULL;
3043 	struct spdk_io_channel *io_ch;
3044 	struct spdk_bdev_opts bdev_opts = {};
3045 	int rc;
3046 	void *buf = NULL;
3047 	struct iovec iovs[2];
3048 	int iovcnt;
3049 	uint64_t alignment;
3050 
3051 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3052 	bdev_opts.bdev_io_pool_size = 20;
3053 	bdev_opts.bdev_io_cache_size = 2;
3054 
3055 	bdev_opts.opts_size = sizeof(bdev_opts);
3056 	rc = spdk_bdev_set_opts(&bdev_opts);
3057 	CU_ASSERT(rc == 0);
3058 	spdk_bdev_initialize(bdev_init_cb, NULL);
3059 
3060 	fn_table.submit_request = stub_submit_request_get_buf;
3061 	bdev = allocate_bdev("bdev0");
3062 
3063 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3064 	CU_ASSERT(rc == 0);
3065 	CU_ASSERT(desc != NULL);
3066 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3067 	io_ch = spdk_bdev_get_io_channel(desc);
3068 	CU_ASSERT(io_ch != NULL);
3069 
3070 	/* Create aligned buffer */
3071 	rc = posix_memalign(&buf, 4096, 131072);
3072 	SPDK_CU_ASSERT_FATAL(rc == 0);
3073 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3074 
3075 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
3076 	alignment = 512;
3077 	bdev->required_alignment = spdk_u32log2(alignment);
3078 	bdev->optimal_io_boundary = 2;
3079 	bdev->split_on_optimal_io_boundary = true;
3080 
3081 	iovcnt = 1;
3082 	iovs[0].iov_base = NULL;
3083 	iovs[0].iov_len = 512 * 3;
3084 
3085 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3086 	CU_ASSERT(rc == 0);
3087 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3088 	stub_complete_io(2);
3089 
3090 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
3091 	alignment = 512;
3092 	bdev->required_alignment = spdk_u32log2(alignment);
3093 	bdev->optimal_io_boundary = 16;
3094 	bdev->split_on_optimal_io_boundary = true;
3095 
3096 	iovcnt = 1;
3097 	iovs[0].iov_base = NULL;
3098 	iovs[0].iov_len = 512 * 16;
3099 
3100 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
3101 	CU_ASSERT(rc == 0);
3102 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3103 	stub_complete_io(2);
3104 
3105 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
3106 	alignment = 512;
3107 	bdev->required_alignment = spdk_u32log2(alignment);
3108 	bdev->optimal_io_boundary = 128;
3109 	bdev->split_on_optimal_io_boundary = true;
3110 
3111 	iovcnt = 1;
3112 	iovs[0].iov_base = buf + 16;
3113 	iovs[0].iov_len = 512 * 160;
3114 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3115 	CU_ASSERT(rc == 0);
3116 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3117 	stub_complete_io(2);
3118 
3119 	/* 512 * 3 with 2 IO boundary */
3120 	alignment = 512;
3121 	bdev->required_alignment = spdk_u32log2(alignment);
3122 	bdev->optimal_io_boundary = 2;
3123 	bdev->split_on_optimal_io_boundary = true;
3124 
3125 	iovcnt = 2;
3126 	iovs[0].iov_base = buf + 16;
3127 	iovs[0].iov_len = 512;
3128 	iovs[1].iov_base = buf + 16 + 512 + 32;
3129 	iovs[1].iov_len = 1024;
3130 
3131 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3132 	CU_ASSERT(rc == 0);
3133 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3134 	stub_complete_io(2);
3135 
3136 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3137 	CU_ASSERT(rc == 0);
3138 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3139 	stub_complete_io(2);
3140 
3141 	/* 512 * 64 with 32 IO boundary */
3142 	bdev->optimal_io_boundary = 32;
3143 	iovcnt = 2;
3144 	iovs[0].iov_base = buf + 16;
3145 	iovs[0].iov_len = 16384;
3146 	iovs[1].iov_base = buf + 16 + 16384 + 32;
3147 	iovs[1].iov_len = 16384;
3148 
3149 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3150 	CU_ASSERT(rc == 0);
3151 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3152 	stub_complete_io(3);
3153 
3154 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3155 	CU_ASSERT(rc == 0);
3156 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3157 	stub_complete_io(3);
3158 
3159 	/* 512 * 160 with 32 IO boundary */
3160 	iovcnt = 1;
3161 	iovs[0].iov_base = buf + 16;
3162 	iovs[0].iov_len = 16384 + 65536;
3163 
3164 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3165 	CU_ASSERT(rc == 0);
3166 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
3167 	stub_complete_io(6);
3168 
3169 	spdk_put_io_channel(io_ch);
3170 	spdk_bdev_close(desc);
3171 	free_bdev(bdev);
3172 	fn_table.submit_request = stub_submit_request;
3173 	spdk_bdev_finish(bdev_fini_cb, NULL);
3174 	poll_threads();
3175 
3176 	free(buf);
3177 }
3178 
3179 static void
3180 histogram_status_cb(void *cb_arg, int status)
3181 {
3182 	g_status = status;
3183 }
3184 
3185 static void
3186 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3187 {
3188 	g_status = status;
3189 	g_histogram = histogram;
3190 }
3191 
3192 static void
3193 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
3194 		   uint64_t total, uint64_t so_far)
3195 {
3196 	g_count += count;
3197 }
3198 
3199 static void
3200 bdev_histograms(void)
3201 {
3202 	struct spdk_bdev *bdev;
3203 	struct spdk_bdev_desc *desc = NULL;
3204 	struct spdk_io_channel *ch;
3205 	struct spdk_histogram_data *histogram;
3206 	uint8_t buf[4096];
3207 	int rc;
3208 
3209 	spdk_bdev_initialize(bdev_init_cb, NULL);
3210 
3211 	bdev = allocate_bdev("bdev");
3212 
3213 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3214 	CU_ASSERT(rc == 0);
3215 	CU_ASSERT(desc != NULL);
3216 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3217 
3218 	ch = spdk_bdev_get_io_channel(desc);
3219 	CU_ASSERT(ch != NULL);
3220 
3221 	/* Enable histogram */
3222 	g_status = -1;
3223 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
3224 	poll_threads();
3225 	CU_ASSERT(g_status == 0);
3226 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3227 
3228 	/* Allocate histogram */
3229 	histogram = spdk_histogram_data_alloc();
3230 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
3231 
3232 	/* Check if histogram is zeroed */
3233 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3234 	poll_threads();
3235 	CU_ASSERT(g_status == 0);
3236 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3237 
3238 	g_count = 0;
3239 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3240 
3241 	CU_ASSERT(g_count == 0);
3242 
3243 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3244 	CU_ASSERT(rc == 0);
3245 
3246 	spdk_delay_us(10);
3247 	stub_complete_io(1);
3248 	poll_threads();
3249 
3250 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3251 	CU_ASSERT(rc == 0);
3252 
3253 	spdk_delay_us(10);
3254 	stub_complete_io(1);
3255 	poll_threads();
3256 
3257 	/* Check if histogram gathered data from all I/O channels */
3258 	g_histogram = NULL;
3259 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3260 	poll_threads();
3261 	CU_ASSERT(g_status == 0);
3262 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3263 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3264 
3265 	g_count = 0;
3266 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3267 	CU_ASSERT(g_count == 2);
3268 
3269 	/* Disable histogram */
3270 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
3271 	poll_threads();
3272 	CU_ASSERT(g_status == 0);
3273 	CU_ASSERT(bdev->internal.histogram_enabled == false);
3274 
3275 	/* Try to run histogram commands on disabled bdev */
3276 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3277 	poll_threads();
3278 	CU_ASSERT(g_status == -EFAULT);
3279 
3280 	spdk_histogram_data_free(histogram);
3281 	spdk_put_io_channel(ch);
3282 	spdk_bdev_close(desc);
3283 	free_bdev(bdev);
3284 	spdk_bdev_finish(bdev_fini_cb, NULL);
3285 	poll_threads();
3286 }
3287 
3288 static void
3289 _bdev_compare(bool emulated)
3290 {
3291 	struct spdk_bdev *bdev;
3292 	struct spdk_bdev_desc *desc = NULL;
3293 	struct spdk_io_channel *ioch;
3294 	struct ut_expected_io *expected_io;
3295 	uint64_t offset, num_blocks;
3296 	uint32_t num_completed;
3297 	char aa_buf[512];
3298 	char bb_buf[512];
3299 	struct iovec compare_iov;
3300 	uint8_t io_type;
3301 	int rc;
3302 
3303 	if (emulated) {
3304 		io_type = SPDK_BDEV_IO_TYPE_READ;
3305 	} else {
3306 		io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3307 	}
3308 
3309 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3310 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3311 
3312 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3313 
3314 	spdk_bdev_initialize(bdev_init_cb, NULL);
3315 	fn_table.submit_request = stub_submit_request_get_buf;
3316 	bdev = allocate_bdev("bdev");
3317 
3318 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3319 	CU_ASSERT_EQUAL(rc, 0);
3320 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3321 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3322 	ioch = spdk_bdev_get_io_channel(desc);
3323 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3324 
3325 	fn_table.submit_request = stub_submit_request_get_buf;
3326 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3327 
3328 	offset = 50;
3329 	num_blocks = 1;
3330 	compare_iov.iov_base = aa_buf;
3331 	compare_iov.iov_len = sizeof(aa_buf);
3332 
3333 	expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
3334 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3335 
3336 	g_io_done = false;
3337 	g_compare_read_buf = aa_buf;
3338 	g_compare_read_buf_len = sizeof(aa_buf);
3339 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3340 	CU_ASSERT_EQUAL(rc, 0);
3341 	num_completed = stub_complete_io(1);
3342 	CU_ASSERT_EQUAL(num_completed, 1);
3343 	CU_ASSERT(g_io_done == true);
3344 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3345 
3346 	expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
3347 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3348 
3349 	g_io_done = false;
3350 	g_compare_read_buf = bb_buf;
3351 	g_compare_read_buf_len = sizeof(bb_buf);
3352 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3353 	CU_ASSERT_EQUAL(rc, 0);
3354 	num_completed = stub_complete_io(1);
3355 	CU_ASSERT_EQUAL(num_completed, 1);
3356 	CU_ASSERT(g_io_done == true);
3357 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3358 
3359 	spdk_put_io_channel(ioch);
3360 	spdk_bdev_close(desc);
3361 	free_bdev(bdev);
3362 	fn_table.submit_request = stub_submit_request;
3363 	spdk_bdev_finish(bdev_fini_cb, NULL);
3364 	poll_threads();
3365 
3366 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3367 
3368 	g_compare_read_buf = NULL;
3369 }
3370 
3371 static void
3372 bdev_compare(void)
3373 {
3374 	_bdev_compare(true);
3375 	_bdev_compare(false);
3376 }
3377 
3378 static void
3379 bdev_compare_and_write(void)
3380 {
3381 	struct spdk_bdev *bdev;
3382 	struct spdk_bdev_desc *desc = NULL;
3383 	struct spdk_io_channel *ioch;
3384 	struct ut_expected_io *expected_io;
3385 	uint64_t offset, num_blocks;
3386 	uint32_t num_completed;
3387 	char aa_buf[512];
3388 	char bb_buf[512];
3389 	char cc_buf[512];
3390 	char write_buf[512];
3391 	struct iovec compare_iov;
3392 	struct iovec write_iov;
3393 	int rc;
3394 
3395 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3396 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3397 	memset(cc_buf, 0xcc, sizeof(cc_buf));
3398 
3399 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
3400 
3401 	spdk_bdev_initialize(bdev_init_cb, NULL);
3402 	fn_table.submit_request = stub_submit_request_get_buf;
3403 	bdev = allocate_bdev("bdev");
3404 
3405 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3406 	CU_ASSERT_EQUAL(rc, 0);
3407 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3408 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3409 	ioch = spdk_bdev_get_io_channel(desc);
3410 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3411 
3412 	fn_table.submit_request = stub_submit_request_get_buf;
3413 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3414 
3415 	offset = 50;
3416 	num_blocks = 1;
3417 	compare_iov.iov_base = aa_buf;
3418 	compare_iov.iov_len = sizeof(aa_buf);
3419 	write_iov.iov_base = bb_buf;
3420 	write_iov.iov_len = sizeof(bb_buf);
3421 
3422 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3423 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3424 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
3425 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3426 
3427 	g_io_done = false;
3428 	g_compare_read_buf = aa_buf;
3429 	g_compare_read_buf_len = sizeof(aa_buf);
3430 	memset(write_buf, 0, sizeof(write_buf));
3431 	g_compare_write_buf = write_buf;
3432 	g_compare_write_buf_len = sizeof(write_buf);
3433 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3434 			offset, num_blocks, io_done, NULL);
3435 	/* Trigger range locking */
3436 	poll_threads();
3437 	CU_ASSERT_EQUAL(rc, 0);
3438 	num_completed = stub_complete_io(1);
3439 	CU_ASSERT_EQUAL(num_completed, 1);
3440 	CU_ASSERT(g_io_done == false);
3441 	num_completed = stub_complete_io(1);
3442 	/* Trigger range unlocking */
3443 	poll_threads();
3444 	CU_ASSERT_EQUAL(num_completed, 1);
3445 	CU_ASSERT(g_io_done == true);
3446 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3447 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
3448 
3449 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3450 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3451 
3452 	g_io_done = false;
3453 	g_compare_read_buf = cc_buf;
3454 	g_compare_read_buf_len = sizeof(cc_buf);
3455 	memset(write_buf, 0, sizeof(write_buf));
3456 	g_compare_write_buf = write_buf;
3457 	g_compare_write_buf_len = sizeof(write_buf);
3458 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3459 			offset, num_blocks, io_done, NULL);
3460 	/* Trigger range locking */
3461 	poll_threads();
3462 	CU_ASSERT_EQUAL(rc, 0);
3463 	num_completed = stub_complete_io(1);
3464 	/* Trigger range unlocking earlier because we expect error here */
3465 	poll_threads();
3466 	CU_ASSERT_EQUAL(num_completed, 1);
3467 	CU_ASSERT(g_io_done == true);
3468 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3469 	num_completed = stub_complete_io(1);
3470 	CU_ASSERT_EQUAL(num_completed, 0);
3471 
3472 	spdk_put_io_channel(ioch);
3473 	spdk_bdev_close(desc);
3474 	free_bdev(bdev);
3475 	fn_table.submit_request = stub_submit_request;
3476 	spdk_bdev_finish(bdev_fini_cb, NULL);
3477 	poll_threads();
3478 
3479 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3480 
3481 	g_compare_read_buf = NULL;
3482 	g_compare_write_buf = NULL;
3483 }
3484 
3485 static void
3486 bdev_write_zeroes(void)
3487 {
3488 	struct spdk_bdev *bdev;
3489 	struct spdk_bdev_desc *desc = NULL;
3490 	struct spdk_io_channel *ioch;
3491 	struct ut_expected_io *expected_io;
3492 	uint64_t offset, num_io_blocks, num_blocks;
3493 	uint32_t num_completed, num_requests;
3494 	int rc;
3495 
3496 	spdk_bdev_initialize(bdev_init_cb, NULL);
3497 	bdev = allocate_bdev("bdev");
3498 
3499 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3500 	CU_ASSERT_EQUAL(rc, 0);
3501 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3502 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3503 	ioch = spdk_bdev_get_io_channel(desc);
3504 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3505 
3506 	fn_table.submit_request = stub_submit_request;
3507 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3508 
3509 	/* First test that if the bdev supports write_zeroes, the request won't be split */
3510 	bdev->md_len = 0;
3511 	bdev->blocklen = 4096;
3512 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3513 
3514 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
3515 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3516 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3517 	CU_ASSERT_EQUAL(rc, 0);
3518 	num_completed = stub_complete_io(1);
3519 	CU_ASSERT_EQUAL(num_completed, 1);
3520 
3521 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
3522 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
3523 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
3524 	num_requests = 2;
3525 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
3526 
3527 	for (offset = 0; offset < num_requests; ++offset) {
3528 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3529 						   offset * num_io_blocks, num_io_blocks, 0);
3530 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3531 	}
3532 
3533 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3534 	CU_ASSERT_EQUAL(rc, 0);
3535 	num_completed = stub_complete_io(num_requests);
3536 	CU_ASSERT_EQUAL(num_completed, num_requests);
3537 
3538 	/* Check that the splitting is correct if bdev has interleaved metadata */
3539 	bdev->md_interleave = true;
3540 	bdev->md_len = 64;
3541 	bdev->blocklen = 4096 + 64;
3542 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3543 
3544 	num_requests = offset = 0;
3545 	while (offset < num_blocks) {
3546 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
3547 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3548 						   offset, num_io_blocks, 0);
3549 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3550 		offset += num_io_blocks;
3551 		num_requests++;
3552 	}
3553 
3554 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3555 	CU_ASSERT_EQUAL(rc, 0);
3556 	num_completed = stub_complete_io(num_requests);
3557 	CU_ASSERT_EQUAL(num_completed, num_requests);
3558 	num_completed = stub_complete_io(num_requests);
3559 	assert(num_completed == 0);
3560 
3561 	/* Check the the same for separate metadata buffer */
3562 	bdev->md_interleave = false;
3563 	bdev->md_len = 64;
3564 	bdev->blocklen = 4096;
3565 
3566 	num_requests = offset = 0;
3567 	while (offset < num_blocks) {
3568 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
3569 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3570 						   offset, num_io_blocks, 0);
3571 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
3572 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3573 		offset += num_io_blocks;
3574 		num_requests++;
3575 	}
3576 
3577 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3578 	CU_ASSERT_EQUAL(rc, 0);
3579 	num_completed = stub_complete_io(num_requests);
3580 	CU_ASSERT_EQUAL(num_completed, num_requests);
3581 
3582 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
3583 	spdk_put_io_channel(ioch);
3584 	spdk_bdev_close(desc);
3585 	free_bdev(bdev);
3586 	spdk_bdev_finish(bdev_fini_cb, NULL);
3587 	poll_threads();
3588 }
3589 
3590 static void
3591 bdev_zcopy_write(void)
3592 {
3593 	struct spdk_bdev *bdev;
3594 	struct spdk_bdev_desc *desc = NULL;
3595 	struct spdk_io_channel *ioch;
3596 	struct ut_expected_io *expected_io;
3597 	uint64_t offset, num_blocks;
3598 	uint32_t num_completed;
3599 	char aa_buf[512];
3600 	struct iovec iov;
3601 	int rc;
3602 	const bool populate = false;
3603 	const bool commit = true;
3604 
3605 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3606 
3607 	spdk_bdev_initialize(bdev_init_cb, NULL);
3608 	bdev = allocate_bdev("bdev");
3609 
3610 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3611 	CU_ASSERT_EQUAL(rc, 0);
3612 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3613 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3614 	ioch = spdk_bdev_get_io_channel(desc);
3615 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3616 
3617 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3618 
3619 	offset = 50;
3620 	num_blocks = 1;
3621 	iov.iov_base = NULL;
3622 	iov.iov_len = 0;
3623 
3624 	g_zcopy_read_buf = (void *) 0x1122334455667788UL;
3625 	g_zcopy_read_buf_len = (uint32_t) -1;
3626 	/* Do a zcopy start for a write (populate=false) */
3627 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3628 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3629 	g_io_done = false;
3630 	g_zcopy_write_buf = aa_buf;
3631 	g_zcopy_write_buf_len = sizeof(aa_buf);
3632 	g_zcopy_bdev_io = NULL;
3633 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
3634 	CU_ASSERT_EQUAL(rc, 0);
3635 	num_completed = stub_complete_io(1);
3636 	CU_ASSERT_EQUAL(num_completed, 1);
3637 	CU_ASSERT(g_io_done == true);
3638 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3639 	/* Check that the iov has been set up */
3640 	CU_ASSERT(iov.iov_base == g_zcopy_write_buf);
3641 	CU_ASSERT(iov.iov_len == g_zcopy_write_buf_len);
3642 	/* Check that the bdev_io has been saved */
3643 	CU_ASSERT(g_zcopy_bdev_io != NULL);
3644 	/* Now do the zcopy end for a write (commit=true) */
3645 	g_io_done = false;
3646 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3647 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3648 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
3649 	CU_ASSERT_EQUAL(rc, 0);
3650 	num_completed = stub_complete_io(1);
3651 	CU_ASSERT_EQUAL(num_completed, 1);
3652 	CU_ASSERT(g_io_done == true);
3653 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3654 	/* Check the g_zcopy are reset by io_done */
3655 	CU_ASSERT(g_zcopy_write_buf == NULL);
3656 	CU_ASSERT(g_zcopy_write_buf_len == 0);
3657 	/* Check that io_done has freed the g_zcopy_bdev_io */
3658 	CU_ASSERT(g_zcopy_bdev_io == NULL);
3659 
3660 	/* Check the zcopy read buffer has not been touched which
3661 	 * ensures that the correct buffers were used.
3662 	 */
3663 	CU_ASSERT(g_zcopy_read_buf == (void *) 0x1122334455667788UL);
3664 	CU_ASSERT(g_zcopy_read_buf_len == (uint32_t) -1);
3665 
3666 	spdk_put_io_channel(ioch);
3667 	spdk_bdev_close(desc);
3668 	free_bdev(bdev);
3669 	spdk_bdev_finish(bdev_fini_cb, NULL);
3670 	poll_threads();
3671 }
3672 
3673 static void
3674 bdev_zcopy_read(void)
3675 {
3676 	struct spdk_bdev *bdev;
3677 	struct spdk_bdev_desc *desc = NULL;
3678 	struct spdk_io_channel *ioch;
3679 	struct ut_expected_io *expected_io;
3680 	uint64_t offset, num_blocks;
3681 	uint32_t num_completed;
3682 	char aa_buf[512];
3683 	struct iovec iov;
3684 	int rc;
3685 	const bool populate = true;
3686 	const bool commit = false;
3687 
3688 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3689 
3690 	spdk_bdev_initialize(bdev_init_cb, NULL);
3691 	bdev = allocate_bdev("bdev");
3692 
3693 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3694 	CU_ASSERT_EQUAL(rc, 0);
3695 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3696 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3697 	ioch = spdk_bdev_get_io_channel(desc);
3698 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3699 
3700 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3701 
3702 	offset = 50;
3703 	num_blocks = 1;
3704 	iov.iov_base = NULL;
3705 	iov.iov_len = 0;
3706 
3707 	g_zcopy_write_buf = (void *) 0x1122334455667788UL;
3708 	g_zcopy_write_buf_len = (uint32_t) -1;
3709 
3710 	/* Do a zcopy start for a read (populate=true) */
3711 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3712 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3713 	g_io_done = false;
3714 	g_zcopy_read_buf = aa_buf;
3715 	g_zcopy_read_buf_len = sizeof(aa_buf);
3716 	g_zcopy_bdev_io = NULL;
3717 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
3718 	CU_ASSERT_EQUAL(rc, 0);
3719 	num_completed = stub_complete_io(1);
3720 	CU_ASSERT_EQUAL(num_completed, 1);
3721 	CU_ASSERT(g_io_done == true);
3722 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3723 	/* Check that the iov has been set up */
3724 	CU_ASSERT(iov.iov_base == g_zcopy_read_buf);
3725 	CU_ASSERT(iov.iov_len == g_zcopy_read_buf_len);
3726 	/* Check that the bdev_io has been saved */
3727 	CU_ASSERT(g_zcopy_bdev_io != NULL);
3728 
3729 	/* Now do the zcopy end for a read (commit=false) */
3730 	g_io_done = false;
3731 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3732 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3733 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
3734 	CU_ASSERT_EQUAL(rc, 0);
3735 	num_completed = stub_complete_io(1);
3736 	CU_ASSERT_EQUAL(num_completed, 1);
3737 	CU_ASSERT(g_io_done == true);
3738 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3739 	/* Check the g_zcopy are reset by io_done */
3740 	CU_ASSERT(g_zcopy_read_buf == NULL);
3741 	CU_ASSERT(g_zcopy_read_buf_len == 0);
3742 	/* Check that io_done has freed the g_zcopy_bdev_io */
3743 	CU_ASSERT(g_zcopy_bdev_io == NULL);
3744 
3745 	/* Check the zcopy write buffer has not been touched which
3746 	 * ensures that the correct buffers were used.
3747 	 */
3748 	CU_ASSERT(g_zcopy_write_buf == (void *) 0x1122334455667788UL);
3749 	CU_ASSERT(g_zcopy_write_buf_len == (uint32_t) -1);
3750 
3751 	spdk_put_io_channel(ioch);
3752 	spdk_bdev_close(desc);
3753 	free_bdev(bdev);
3754 	spdk_bdev_finish(bdev_fini_cb, NULL);
3755 	poll_threads();
3756 }
3757 
3758 static void
3759 bdev_open_while_hotremove(void)
3760 {
3761 	struct spdk_bdev *bdev;
3762 	struct spdk_bdev_desc *desc[2] = {};
3763 	int rc;
3764 
3765 	bdev = allocate_bdev("bdev");
3766 
3767 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
3768 	CU_ASSERT(rc == 0);
3769 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
3770 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
3771 
3772 	spdk_bdev_unregister(bdev, NULL, NULL);
3773 
3774 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
3775 	CU_ASSERT(rc == -ENODEV);
3776 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
3777 
3778 	spdk_bdev_close(desc[0]);
3779 	free_bdev(bdev);
3780 }
3781 
3782 static void
3783 bdev_close_while_hotremove(void)
3784 {
3785 	struct spdk_bdev *bdev;
3786 	struct spdk_bdev_desc *desc = NULL;
3787 	int rc = 0;
3788 
3789 	bdev = allocate_bdev("bdev");
3790 
3791 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
3792 	CU_ASSERT_EQUAL(rc, 0);
3793 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3794 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3795 
3796 	/* Simulate hot-unplug by unregistering bdev */
3797 	g_event_type1 = 0xFF;
3798 	g_unregister_arg = NULL;
3799 	g_unregister_rc = -1;
3800 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
3801 	/* Close device while remove event is in flight */
3802 	spdk_bdev_close(desc);
3803 
3804 	/* Ensure that unregister callback is delayed */
3805 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
3806 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
3807 
3808 	poll_threads();
3809 
3810 	/* Event callback shall not be issued because device was closed */
3811 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
3812 	/* Unregister callback is issued */
3813 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
3814 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
3815 
3816 	free_bdev(bdev);
3817 }
3818 
3819 static void
3820 bdev_open_ext(void)
3821 {
3822 	struct spdk_bdev *bdev;
3823 	struct spdk_bdev_desc *desc1 = NULL;
3824 	struct spdk_bdev_desc *desc2 = NULL;
3825 	int rc = 0;
3826 
3827 	bdev = allocate_bdev("bdev");
3828 
3829 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
3830 	CU_ASSERT_EQUAL(rc, -EINVAL);
3831 
3832 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
3833 	CU_ASSERT_EQUAL(rc, 0);
3834 
3835 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
3836 	CU_ASSERT_EQUAL(rc, 0);
3837 
3838 	g_event_type1 = 0xFF;
3839 	g_event_type2 = 0xFF;
3840 
3841 	/* Simulate hot-unplug by unregistering bdev */
3842 	spdk_bdev_unregister(bdev, NULL, NULL);
3843 	poll_threads();
3844 
3845 	/* Check if correct events have been triggered in event callback fn */
3846 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
3847 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
3848 
3849 	free_bdev(bdev);
3850 	poll_threads();
3851 }
3852 
3853 struct timeout_io_cb_arg {
3854 	struct iovec iov;
3855 	uint8_t type;
3856 };
3857 
3858 static int
3859 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
3860 {
3861 	struct spdk_bdev_io *bdev_io;
3862 	int n = 0;
3863 
3864 	if (!ch) {
3865 		return -1;
3866 	}
3867 
3868 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
3869 		n++;
3870 	}
3871 
3872 	return n;
3873 }
3874 
3875 static void
3876 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
3877 {
3878 	struct timeout_io_cb_arg *ctx = cb_arg;
3879 
3880 	ctx->type = bdev_io->type;
3881 	ctx->iov.iov_base = bdev_io->iov.iov_base;
3882 	ctx->iov.iov_len = bdev_io->iov.iov_len;
3883 }
3884 
3885 static void
3886 bdev_set_io_timeout(void)
3887 {
3888 	struct spdk_bdev *bdev;
3889 	struct spdk_bdev_desc *desc = NULL;
3890 	struct spdk_io_channel *io_ch = NULL;
3891 	struct spdk_bdev_channel *bdev_ch = NULL;
3892 	struct timeout_io_cb_arg cb_arg;
3893 
3894 	spdk_bdev_initialize(bdev_init_cb, NULL);
3895 
3896 	bdev = allocate_bdev("bdev");
3897 
3898 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
3899 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3900 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3901 
3902 	io_ch = spdk_bdev_get_io_channel(desc);
3903 	CU_ASSERT(io_ch != NULL);
3904 
3905 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
3906 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
3907 
3908 	/* This is the part1.
3909 	 * We will check the bdev_ch->io_submitted list
3910 	 * TO make sure that it can link IOs and only the user submitted IOs
3911 	 */
3912 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
3913 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
3914 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
3915 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
3916 	stub_complete_io(1);
3917 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
3918 	stub_complete_io(1);
3919 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
3920 
3921 	/* Split IO */
3922 	bdev->optimal_io_boundary = 16;
3923 	bdev->split_on_optimal_io_boundary = true;
3924 
3925 	/* Now test that a single-vector command is split correctly.
3926 	 * Offset 14, length 8, payload 0xF000
3927 	 *  Child - Offset 14, length 2, payload 0xF000
3928 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
3929 	 *
3930 	 * Set up the expected values before calling spdk_bdev_read_blocks
3931 	 */
3932 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
3933 	/* We count all submitted IOs including IO that are generated by splitting. */
3934 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
3935 	stub_complete_io(1);
3936 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
3937 	stub_complete_io(1);
3938 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
3939 
3940 	/* Also include the reset IO */
3941 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
3942 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
3943 	poll_threads();
3944 	stub_complete_io(1);
3945 	poll_threads();
3946 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
3947 
3948 	/* This is part2
3949 	 * Test the desc timeout poller register
3950 	 */
3951 
3952 	/* Successfully set the timeout */
3953 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
3954 	CU_ASSERT(desc->io_timeout_poller != NULL);
3955 	CU_ASSERT(desc->timeout_in_sec == 30);
3956 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
3957 	CU_ASSERT(desc->cb_arg == &cb_arg);
3958 
3959 	/* Change the timeout limit */
3960 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
3961 	CU_ASSERT(desc->io_timeout_poller != NULL);
3962 	CU_ASSERT(desc->timeout_in_sec == 20);
3963 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
3964 	CU_ASSERT(desc->cb_arg == &cb_arg);
3965 
3966 	/* Disable the timeout */
3967 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
3968 	CU_ASSERT(desc->io_timeout_poller == NULL);
3969 
3970 	/* This the part3
3971 	 * We will test to catch timeout IO and check whether the IO is
3972 	 * the submitted one.
3973 	 */
3974 	memset(&cb_arg, 0, sizeof(cb_arg));
3975 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
3976 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
3977 
3978 	/* Don't reach the limit */
3979 	spdk_delay_us(15 * spdk_get_ticks_hz());
3980 	poll_threads();
3981 	CU_ASSERT(cb_arg.type == 0);
3982 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
3983 	CU_ASSERT(cb_arg.iov.iov_len == 0);
3984 
3985 	/* 15 + 15 = 30 reach the limit */
3986 	spdk_delay_us(15 * spdk_get_ticks_hz());
3987 	poll_threads();
3988 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
3989 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
3990 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
3991 	stub_complete_io(1);
3992 
3993 	/* Use the same split IO above and check the IO */
3994 	memset(&cb_arg, 0, sizeof(cb_arg));
3995 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
3996 
3997 	/* The first child complete in time */
3998 	spdk_delay_us(15 * spdk_get_ticks_hz());
3999 	poll_threads();
4000 	stub_complete_io(1);
4001 	CU_ASSERT(cb_arg.type == 0);
4002 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4003 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4004 
4005 	/* The second child reach the limit */
4006 	spdk_delay_us(15 * spdk_get_ticks_hz());
4007 	poll_threads();
4008 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4009 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
4010 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
4011 	stub_complete_io(1);
4012 
4013 	/* Also include the reset IO */
4014 	memset(&cb_arg, 0, sizeof(cb_arg));
4015 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4016 	spdk_delay_us(30 * spdk_get_ticks_hz());
4017 	poll_threads();
4018 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
4019 	stub_complete_io(1);
4020 	poll_threads();
4021 
4022 	spdk_put_io_channel(io_ch);
4023 	spdk_bdev_close(desc);
4024 	free_bdev(bdev);
4025 	spdk_bdev_finish(bdev_fini_cb, NULL);
4026 	poll_threads();
4027 }
4028 
4029 static void
4030 lba_range_overlap(void)
4031 {
4032 	struct lba_range r1, r2;
4033 
4034 	r1.offset = 100;
4035 	r1.length = 50;
4036 
4037 	r2.offset = 0;
4038 	r2.length = 1;
4039 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4040 
4041 	r2.offset = 0;
4042 	r2.length = 100;
4043 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4044 
4045 	r2.offset = 0;
4046 	r2.length = 110;
4047 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4048 
4049 	r2.offset = 100;
4050 	r2.length = 10;
4051 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4052 
4053 	r2.offset = 110;
4054 	r2.length = 20;
4055 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4056 
4057 	r2.offset = 140;
4058 	r2.length = 150;
4059 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4060 
4061 	r2.offset = 130;
4062 	r2.length = 200;
4063 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4064 
4065 	r2.offset = 150;
4066 	r2.length = 100;
4067 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4068 
4069 	r2.offset = 110;
4070 	r2.length = 0;
4071 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4072 }
4073 
4074 static bool g_lock_lba_range_done;
4075 static bool g_unlock_lba_range_done;
4076 
4077 static void
4078 lock_lba_range_done(void *ctx, int status)
4079 {
4080 	g_lock_lba_range_done = true;
4081 }
4082 
4083 static void
4084 unlock_lba_range_done(void *ctx, int status)
4085 {
4086 	g_unlock_lba_range_done = true;
4087 }
4088 
4089 static void
4090 lock_lba_range_check_ranges(void)
4091 {
4092 	struct spdk_bdev *bdev;
4093 	struct spdk_bdev_desc *desc = NULL;
4094 	struct spdk_io_channel *io_ch;
4095 	struct spdk_bdev_channel *channel;
4096 	struct lba_range *range;
4097 	int ctx1;
4098 	int rc;
4099 
4100 	spdk_bdev_initialize(bdev_init_cb, NULL);
4101 
4102 	bdev = allocate_bdev("bdev0");
4103 
4104 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4105 	CU_ASSERT(rc == 0);
4106 	CU_ASSERT(desc != NULL);
4107 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4108 	io_ch = spdk_bdev_get_io_channel(desc);
4109 	CU_ASSERT(io_ch != NULL);
4110 	channel = spdk_io_channel_get_ctx(io_ch);
4111 
4112 	g_lock_lba_range_done = false;
4113 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4114 	CU_ASSERT(rc == 0);
4115 	poll_threads();
4116 
4117 	CU_ASSERT(g_lock_lba_range_done == true);
4118 	range = TAILQ_FIRST(&channel->locked_ranges);
4119 	SPDK_CU_ASSERT_FATAL(range != NULL);
4120 	CU_ASSERT(range->offset == 20);
4121 	CU_ASSERT(range->length == 10);
4122 	CU_ASSERT(range->owner_ch == channel);
4123 
4124 	/* Unlocks must exactly match a lock. */
4125 	g_unlock_lba_range_done = false;
4126 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
4127 	CU_ASSERT(rc == -EINVAL);
4128 	CU_ASSERT(g_unlock_lba_range_done == false);
4129 
4130 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4131 	CU_ASSERT(rc == 0);
4132 	spdk_delay_us(100);
4133 	poll_threads();
4134 
4135 	CU_ASSERT(g_unlock_lba_range_done == true);
4136 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4137 
4138 	spdk_put_io_channel(io_ch);
4139 	spdk_bdev_close(desc);
4140 	free_bdev(bdev);
4141 	spdk_bdev_finish(bdev_fini_cb, NULL);
4142 	poll_threads();
4143 }
4144 
4145 static void
4146 lock_lba_range_with_io_outstanding(void)
4147 {
4148 	struct spdk_bdev *bdev;
4149 	struct spdk_bdev_desc *desc = NULL;
4150 	struct spdk_io_channel *io_ch;
4151 	struct spdk_bdev_channel *channel;
4152 	struct lba_range *range;
4153 	char buf[4096];
4154 	int ctx1;
4155 	int rc;
4156 
4157 	spdk_bdev_initialize(bdev_init_cb, NULL);
4158 
4159 	bdev = allocate_bdev("bdev0");
4160 
4161 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4162 	CU_ASSERT(rc == 0);
4163 	CU_ASSERT(desc != NULL);
4164 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4165 	io_ch = spdk_bdev_get_io_channel(desc);
4166 	CU_ASSERT(io_ch != NULL);
4167 	channel = spdk_io_channel_get_ctx(io_ch);
4168 
4169 	g_io_done = false;
4170 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4171 	CU_ASSERT(rc == 0);
4172 
4173 	g_lock_lba_range_done = false;
4174 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4175 	CU_ASSERT(rc == 0);
4176 	poll_threads();
4177 
4178 	/* The lock should immediately become valid, since there are no outstanding
4179 	 * write I/O.
4180 	 */
4181 	CU_ASSERT(g_io_done == false);
4182 	CU_ASSERT(g_lock_lba_range_done == true);
4183 	range = TAILQ_FIRST(&channel->locked_ranges);
4184 	SPDK_CU_ASSERT_FATAL(range != NULL);
4185 	CU_ASSERT(range->offset == 20);
4186 	CU_ASSERT(range->length == 10);
4187 	CU_ASSERT(range->owner_ch == channel);
4188 	CU_ASSERT(range->locked_ctx == &ctx1);
4189 
4190 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4191 	CU_ASSERT(rc == 0);
4192 	stub_complete_io(1);
4193 	spdk_delay_us(100);
4194 	poll_threads();
4195 
4196 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4197 
4198 	/* Now try again, but with a write I/O. */
4199 	g_io_done = false;
4200 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4201 	CU_ASSERT(rc == 0);
4202 
4203 	g_lock_lba_range_done = false;
4204 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4205 	CU_ASSERT(rc == 0);
4206 	poll_threads();
4207 
4208 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
4209 	 * But note that the range should be on the channel's locked_list, to make sure no
4210 	 * new write I/O are started.
4211 	 */
4212 	CU_ASSERT(g_io_done == false);
4213 	CU_ASSERT(g_lock_lba_range_done == false);
4214 	range = TAILQ_FIRST(&channel->locked_ranges);
4215 	SPDK_CU_ASSERT_FATAL(range != NULL);
4216 	CU_ASSERT(range->offset == 20);
4217 	CU_ASSERT(range->length == 10);
4218 
4219 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
4220 	 * our callback was invoked).
4221 	 */
4222 	stub_complete_io(1);
4223 	spdk_delay_us(100);
4224 	poll_threads();
4225 	CU_ASSERT(g_io_done == true);
4226 	CU_ASSERT(g_lock_lba_range_done == true);
4227 
4228 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4229 	CU_ASSERT(rc == 0);
4230 	poll_threads();
4231 
4232 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4233 
4234 	spdk_put_io_channel(io_ch);
4235 	spdk_bdev_close(desc);
4236 	free_bdev(bdev);
4237 	spdk_bdev_finish(bdev_fini_cb, NULL);
4238 	poll_threads();
4239 }
4240 
4241 static void
4242 lock_lba_range_overlapped(void)
4243 {
4244 	struct spdk_bdev *bdev;
4245 	struct spdk_bdev_desc *desc = NULL;
4246 	struct spdk_io_channel *io_ch;
4247 	struct spdk_bdev_channel *channel;
4248 	struct lba_range *range;
4249 	int ctx1;
4250 	int rc;
4251 
4252 	spdk_bdev_initialize(bdev_init_cb, NULL);
4253 
4254 	bdev = allocate_bdev("bdev0");
4255 
4256 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4257 	CU_ASSERT(rc == 0);
4258 	CU_ASSERT(desc != NULL);
4259 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4260 	io_ch = spdk_bdev_get_io_channel(desc);
4261 	CU_ASSERT(io_ch != NULL);
4262 	channel = spdk_io_channel_get_ctx(io_ch);
4263 
4264 	/* Lock range 20-29. */
4265 	g_lock_lba_range_done = false;
4266 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4267 	CU_ASSERT(rc == 0);
4268 	poll_threads();
4269 
4270 	CU_ASSERT(g_lock_lba_range_done == true);
4271 	range = TAILQ_FIRST(&channel->locked_ranges);
4272 	SPDK_CU_ASSERT_FATAL(range != NULL);
4273 	CU_ASSERT(range->offset == 20);
4274 	CU_ASSERT(range->length == 10);
4275 
4276 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
4277 	 * 20-29.
4278 	 */
4279 	g_lock_lba_range_done = false;
4280 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
4281 	CU_ASSERT(rc == 0);
4282 	poll_threads();
4283 
4284 	CU_ASSERT(g_lock_lba_range_done == false);
4285 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4286 	SPDK_CU_ASSERT_FATAL(range != NULL);
4287 	CU_ASSERT(range->offset == 25);
4288 	CU_ASSERT(range->length == 15);
4289 
4290 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
4291 	 * no longer overlaps with an active lock.
4292 	 */
4293 	g_unlock_lba_range_done = false;
4294 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4295 	CU_ASSERT(rc == 0);
4296 	poll_threads();
4297 
4298 	CU_ASSERT(g_unlock_lba_range_done == true);
4299 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4300 	range = TAILQ_FIRST(&channel->locked_ranges);
4301 	SPDK_CU_ASSERT_FATAL(range != NULL);
4302 	CU_ASSERT(range->offset == 25);
4303 	CU_ASSERT(range->length == 15);
4304 
4305 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
4306 	 * currently active 25-39 lock.
4307 	 */
4308 	g_lock_lba_range_done = false;
4309 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
4310 	CU_ASSERT(rc == 0);
4311 	poll_threads();
4312 
4313 	CU_ASSERT(g_lock_lba_range_done == true);
4314 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4315 	SPDK_CU_ASSERT_FATAL(range != NULL);
4316 	range = TAILQ_NEXT(range, tailq);
4317 	SPDK_CU_ASSERT_FATAL(range != NULL);
4318 	CU_ASSERT(range->offset == 40);
4319 	CU_ASSERT(range->length == 20);
4320 
4321 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
4322 	g_lock_lba_range_done = false;
4323 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
4324 	CU_ASSERT(rc == 0);
4325 	poll_threads();
4326 
4327 	CU_ASSERT(g_lock_lba_range_done == false);
4328 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4329 	SPDK_CU_ASSERT_FATAL(range != NULL);
4330 	CU_ASSERT(range->offset == 35);
4331 	CU_ASSERT(range->length == 10);
4332 
4333 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
4334 	 * the 40-59 lock is still active.
4335 	 */
4336 	g_unlock_lba_range_done = false;
4337 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
4338 	CU_ASSERT(rc == 0);
4339 	poll_threads();
4340 
4341 	CU_ASSERT(g_unlock_lba_range_done == true);
4342 	CU_ASSERT(g_lock_lba_range_done == false);
4343 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4344 	SPDK_CU_ASSERT_FATAL(range != NULL);
4345 	CU_ASSERT(range->offset == 35);
4346 	CU_ASSERT(range->length == 10);
4347 
4348 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
4349 	 * no longer any active overlapping locks.
4350 	 */
4351 	g_unlock_lba_range_done = false;
4352 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
4353 	CU_ASSERT(rc == 0);
4354 	poll_threads();
4355 
4356 	CU_ASSERT(g_unlock_lba_range_done == true);
4357 	CU_ASSERT(g_lock_lba_range_done == true);
4358 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4359 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4360 	SPDK_CU_ASSERT_FATAL(range != NULL);
4361 	CU_ASSERT(range->offset == 35);
4362 	CU_ASSERT(range->length == 10);
4363 
4364 	/* Finally, unlock 35-44. */
4365 	g_unlock_lba_range_done = false;
4366 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
4367 	CU_ASSERT(rc == 0);
4368 	poll_threads();
4369 
4370 	CU_ASSERT(g_unlock_lba_range_done == true);
4371 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
4372 
4373 	spdk_put_io_channel(io_ch);
4374 	spdk_bdev_close(desc);
4375 	free_bdev(bdev);
4376 	spdk_bdev_finish(bdev_fini_cb, NULL);
4377 	poll_threads();
4378 }
4379 
4380 static void
4381 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
4382 {
4383 	g_abort_done = true;
4384 	g_abort_status = bdev_io->internal.status;
4385 	spdk_bdev_free_io(bdev_io);
4386 }
4387 
4388 static void
4389 bdev_io_abort(void)
4390 {
4391 	struct spdk_bdev *bdev;
4392 	struct spdk_bdev_desc *desc = NULL;
4393 	struct spdk_io_channel *io_ch;
4394 	struct spdk_bdev_channel *channel;
4395 	struct spdk_bdev_mgmt_channel *mgmt_ch;
4396 	struct spdk_bdev_opts bdev_opts = {};
4397 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
4398 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
4399 	int rc;
4400 
4401 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4402 	bdev_opts.bdev_io_pool_size = 7;
4403 	bdev_opts.bdev_io_cache_size = 2;
4404 
4405 	rc = spdk_bdev_set_opts(&bdev_opts);
4406 	CU_ASSERT(rc == 0);
4407 	spdk_bdev_initialize(bdev_init_cb, NULL);
4408 
4409 	bdev = allocate_bdev("bdev0");
4410 
4411 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4412 	CU_ASSERT(rc == 0);
4413 	CU_ASSERT(desc != NULL);
4414 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4415 	io_ch = spdk_bdev_get_io_channel(desc);
4416 	CU_ASSERT(io_ch != NULL);
4417 	channel = spdk_io_channel_get_ctx(io_ch);
4418 	mgmt_ch = channel->shared_resource->mgmt_ch;
4419 
4420 	g_abort_done = false;
4421 
4422 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
4423 
4424 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4425 	CU_ASSERT(rc == -ENOTSUP);
4426 
4427 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
4428 
4429 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
4430 	CU_ASSERT(rc == 0);
4431 	CU_ASSERT(g_abort_done == true);
4432 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
4433 
4434 	/* Test the case that the target I/O was successfully aborted. */
4435 	g_io_done = false;
4436 
4437 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
4438 	CU_ASSERT(rc == 0);
4439 	CU_ASSERT(g_io_done == false);
4440 
4441 	g_abort_done = false;
4442 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4443 
4444 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4445 	CU_ASSERT(rc == 0);
4446 	CU_ASSERT(g_io_done == true);
4447 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4448 	stub_complete_io(1);
4449 	CU_ASSERT(g_abort_done == true);
4450 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4451 
4452 	/* Test the case that the target I/O was not aborted because it completed
4453 	 * in the middle of execution of the abort.
4454 	 */
4455 	g_io_done = false;
4456 
4457 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
4458 	CU_ASSERT(rc == 0);
4459 	CU_ASSERT(g_io_done == false);
4460 
4461 	g_abort_done = false;
4462 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
4463 
4464 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4465 	CU_ASSERT(rc == 0);
4466 	CU_ASSERT(g_io_done == false);
4467 
4468 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4469 	stub_complete_io(1);
4470 	CU_ASSERT(g_io_done == true);
4471 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4472 
4473 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
4474 	stub_complete_io(1);
4475 	CU_ASSERT(g_abort_done == true);
4476 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4477 
4478 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4479 
4480 	bdev->optimal_io_boundary = 16;
4481 	bdev->split_on_optimal_io_boundary = true;
4482 
4483 	/* Test that a single-vector command which is split is aborted correctly.
4484 	 * Offset 14, length 8, payload 0xF000
4485 	 *  Child - Offset 14, length 2, payload 0xF000
4486 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4487 	 */
4488 	g_io_done = false;
4489 
4490 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
4491 	CU_ASSERT(rc == 0);
4492 	CU_ASSERT(g_io_done == false);
4493 
4494 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
4495 
4496 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4497 
4498 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4499 	CU_ASSERT(rc == 0);
4500 	CU_ASSERT(g_io_done == true);
4501 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4502 	stub_complete_io(2);
4503 	CU_ASSERT(g_abort_done == true);
4504 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4505 
4506 	/* Test that a multi-vector command that needs to be split by strip and then
4507 	 * needs to be split is aborted correctly. Abort is requested before the second
4508 	 * child I/O was submitted. The parent I/O should complete with failure without
4509 	 * submitting the second child I/O.
4510 	 */
4511 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
4512 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
4513 		iov[i].iov_len = 512;
4514 	}
4515 
4516 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
4517 	g_io_done = false;
4518 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
4519 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
4520 	CU_ASSERT(rc == 0);
4521 	CU_ASSERT(g_io_done == false);
4522 
4523 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
4524 
4525 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4526 
4527 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4528 	CU_ASSERT(rc == 0);
4529 	CU_ASSERT(g_io_done == true);
4530 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4531 	stub_complete_io(1);
4532 	CU_ASSERT(g_abort_done == true);
4533 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4534 
4535 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4536 
4537 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4538 
4539 	bdev->optimal_io_boundary = 16;
4540 	g_io_done = false;
4541 
4542 	/* Test that a ingle-vector command which is split is aborted correctly.
4543 	 * Differently from the above, the child abort request will be submitted
4544 	 * sequentially due to the capacity of spdk_bdev_io.
4545 	 */
4546 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
4547 	CU_ASSERT(rc == 0);
4548 	CU_ASSERT(g_io_done == false);
4549 
4550 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
4551 
4552 	g_abort_done = false;
4553 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4554 
4555 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4556 	CU_ASSERT(rc == 0);
4557 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
4558 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
4559 
4560 	stub_complete_io(1);
4561 	CU_ASSERT(g_io_done == true);
4562 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4563 	stub_complete_io(3);
4564 	CU_ASSERT(g_abort_done == true);
4565 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4566 
4567 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4568 
4569 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4570 
4571 	spdk_put_io_channel(io_ch);
4572 	spdk_bdev_close(desc);
4573 	free_bdev(bdev);
4574 	spdk_bdev_finish(bdev_fini_cb, NULL);
4575 	poll_threads();
4576 }
4577 
4578 static void
4579 bdev_unmap(void)
4580 {
4581 	struct spdk_bdev *bdev;
4582 	struct spdk_bdev_desc *desc = NULL;
4583 	struct spdk_io_channel *ioch;
4584 	struct spdk_bdev_channel *bdev_ch;
4585 	struct ut_expected_io *expected_io;
4586 	struct spdk_bdev_opts bdev_opts = {};
4587 	uint32_t i, num_outstanding;
4588 	uint64_t offset, num_blocks, max_unmap_blocks, num_children;
4589 	int rc;
4590 
4591 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4592 	bdev_opts.bdev_io_pool_size = 512;
4593 	bdev_opts.bdev_io_cache_size = 64;
4594 	rc = spdk_bdev_set_opts(&bdev_opts);
4595 	CU_ASSERT(rc == 0);
4596 
4597 	spdk_bdev_initialize(bdev_init_cb, NULL);
4598 	bdev = allocate_bdev("bdev");
4599 
4600 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4601 	CU_ASSERT_EQUAL(rc, 0);
4602 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4603 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4604 	ioch = spdk_bdev_get_io_channel(desc);
4605 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4606 	bdev_ch = spdk_io_channel_get_ctx(ioch);
4607 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4608 
4609 	fn_table.submit_request = stub_submit_request;
4610 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4611 
4612 	/* Case 1: First test the request won't be split */
4613 	num_blocks = 32;
4614 
4615 	g_io_done = false;
4616 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 0, num_blocks, 0);
4617 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4618 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4619 	CU_ASSERT_EQUAL(rc, 0);
4620 	CU_ASSERT(g_io_done == false);
4621 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
4622 	stub_complete_io(1);
4623 	CU_ASSERT(g_io_done == true);
4624 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4625 
4626 	/* Case 2: Test the split with 2 children requests */
4627 	bdev->max_unmap = 8;
4628 	bdev->max_unmap_segments = 2;
4629 	max_unmap_blocks = bdev->max_unmap * bdev->max_unmap_segments;
4630 	num_blocks = max_unmap_blocks * 2;
4631 	offset = 0;
4632 
4633 	g_io_done = false;
4634 	for (i = 0; i < 2; i++) {
4635 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
4636 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4637 		offset += max_unmap_blocks;
4638 	}
4639 
4640 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4641 	CU_ASSERT_EQUAL(rc, 0);
4642 	CU_ASSERT(g_io_done == false);
4643 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
4644 	stub_complete_io(2);
4645 	CU_ASSERT(g_io_done == true);
4646 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4647 
4648 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
4649 	num_children = 15;
4650 	num_blocks = max_unmap_blocks * num_children;
4651 	g_io_done = false;
4652 	offset = 0;
4653 	for (i = 0; i < num_children; i++) {
4654 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
4655 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4656 		offset += max_unmap_blocks;
4657 	}
4658 
4659 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4660 	CU_ASSERT_EQUAL(rc, 0);
4661 	CU_ASSERT(g_io_done == false);
4662 
4663 	while (num_children > 0) {
4664 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
4665 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
4666 		stub_complete_io(num_outstanding);
4667 		num_children -= num_outstanding;
4668 	}
4669 	CU_ASSERT(g_io_done == true);
4670 
4671 	spdk_put_io_channel(ioch);
4672 	spdk_bdev_close(desc);
4673 	free_bdev(bdev);
4674 	spdk_bdev_finish(bdev_fini_cb, NULL);
4675 	poll_threads();
4676 }
4677 
4678 static void
4679 bdev_write_zeroes_split_test(void)
4680 {
4681 	struct spdk_bdev *bdev;
4682 	struct spdk_bdev_desc *desc = NULL;
4683 	struct spdk_io_channel *ioch;
4684 	struct spdk_bdev_channel *bdev_ch;
4685 	struct ut_expected_io *expected_io;
4686 	struct spdk_bdev_opts bdev_opts = {};
4687 	uint32_t i, num_outstanding;
4688 	uint64_t offset, num_blocks, max_write_zeroes_blocks, num_children;
4689 	int rc;
4690 
4691 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4692 	bdev_opts.bdev_io_pool_size = 512;
4693 	bdev_opts.bdev_io_cache_size = 64;
4694 	rc = spdk_bdev_set_opts(&bdev_opts);
4695 	CU_ASSERT(rc == 0);
4696 
4697 	spdk_bdev_initialize(bdev_init_cb, NULL);
4698 	bdev = allocate_bdev("bdev");
4699 
4700 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4701 	CU_ASSERT_EQUAL(rc, 0);
4702 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4703 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4704 	ioch = spdk_bdev_get_io_channel(desc);
4705 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4706 	bdev_ch = spdk_io_channel_get_ctx(ioch);
4707 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4708 
4709 	fn_table.submit_request = stub_submit_request;
4710 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4711 
4712 	/* Case 1: First test the request won't be split */
4713 	num_blocks = 32;
4714 
4715 	g_io_done = false;
4716 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
4717 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4718 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4719 	CU_ASSERT_EQUAL(rc, 0);
4720 	CU_ASSERT(g_io_done == false);
4721 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
4722 	stub_complete_io(1);
4723 	CU_ASSERT(g_io_done == true);
4724 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4725 
4726 	/* Case 2: Test the split with 2 children requests */
4727 	max_write_zeroes_blocks = 8;
4728 	bdev->max_write_zeroes = max_write_zeroes_blocks;
4729 	num_blocks = max_write_zeroes_blocks * 2;
4730 	offset = 0;
4731 
4732 	g_io_done = false;
4733 	for (i = 0; i < 2; i++) {
4734 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
4735 						   0);
4736 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4737 		offset += max_write_zeroes_blocks;
4738 	}
4739 
4740 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4741 	CU_ASSERT_EQUAL(rc, 0);
4742 	CU_ASSERT(g_io_done == false);
4743 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
4744 	stub_complete_io(2);
4745 	CU_ASSERT(g_io_done == true);
4746 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4747 
4748 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
4749 	num_children = 15;
4750 	num_blocks = max_write_zeroes_blocks * num_children;
4751 	g_io_done = false;
4752 	offset = 0;
4753 	for (i = 0; i < num_children; i++) {
4754 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
4755 						   0);
4756 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4757 		offset += max_write_zeroes_blocks;
4758 	}
4759 
4760 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4761 	CU_ASSERT_EQUAL(rc, 0);
4762 	CU_ASSERT(g_io_done == false);
4763 
4764 	while (num_children > 0) {
4765 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
4766 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
4767 		stub_complete_io(num_outstanding);
4768 		num_children -= num_outstanding;
4769 	}
4770 	CU_ASSERT(g_io_done == true);
4771 
4772 	spdk_put_io_channel(ioch);
4773 	spdk_bdev_close(desc);
4774 	free_bdev(bdev);
4775 	spdk_bdev_finish(bdev_fini_cb, NULL);
4776 	poll_threads();
4777 }
4778 
4779 static void
4780 bdev_set_options_test(void)
4781 {
4782 	struct spdk_bdev_opts bdev_opts = {};
4783 	int rc;
4784 
4785 	/* Case1: Do not set opts_size */
4786 	rc = spdk_bdev_set_opts(&bdev_opts);
4787 	CU_ASSERT(rc == -1);
4788 
4789 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4790 	bdev_opts.bdev_io_pool_size = 4;
4791 	bdev_opts.bdev_io_cache_size = 2;
4792 	bdev_opts.small_buf_pool_size = 4;
4793 
4794 	/* Case 2: Do not set valid small_buf_pool_size and large_buf_pool_size */
4795 	rc = spdk_bdev_set_opts(&bdev_opts);
4796 	CU_ASSERT(rc == -1);
4797 
4798 	/* Case 3: Do not set valid large_buf_pool_size */
4799 	bdev_opts.small_buf_pool_size = BUF_SMALL_POOL_SIZE;
4800 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE - 1;
4801 	rc = spdk_bdev_set_opts(&bdev_opts);
4802 	CU_ASSERT(rc == -1);
4803 
4804 	/* Case4: set valid large buf_pool_size */
4805 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE;
4806 	rc = spdk_bdev_set_opts(&bdev_opts);
4807 	CU_ASSERT(rc == 0);
4808 
4809 	/* Case5: Set different valid value for small and large buf pool */
4810 	bdev_opts.large_buf_pool_size = BUF_SMALL_POOL_SIZE + 3;
4811 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE + 3;
4812 	rc = spdk_bdev_set_opts(&bdev_opts);
4813 	CU_ASSERT(rc == 0);
4814 }
4815 
4816 static uint64_t
4817 get_ns_time(void)
4818 {
4819 	int rc;
4820 	struct timespec ts;
4821 
4822 	rc = clock_gettime(CLOCK_MONOTONIC, &ts);
4823 	CU_ASSERT(rc == 0);
4824 	return ts.tv_sec * 1000 * 1000 * 1000 + ts.tv_nsec;
4825 }
4826 
4827 static int
4828 rb_tree_get_height(struct spdk_bdev_name *bdev_name)
4829 {
4830 	int h1, h2;
4831 
4832 	if (bdev_name == NULL) {
4833 		return -1;
4834 	} else {
4835 		h1 = rb_tree_get_height(RB_LEFT(bdev_name, node));
4836 		h2 = rb_tree_get_height(RB_RIGHT(bdev_name, node));
4837 
4838 		return spdk_max(h1, h2) + 1;
4839 	}
4840 }
4841 
4842 static void
4843 bdev_multi_allocation(void)
4844 {
4845 	const int max_bdev_num = 1024 * 16;
4846 	char name[max_bdev_num][16];
4847 	char noexist_name[] = "invalid_bdev";
4848 	struct spdk_bdev *bdev[max_bdev_num];
4849 	int i, j;
4850 	uint64_t last_time;
4851 	int bdev_num;
4852 	int height;
4853 
4854 	for (j = 0; j < max_bdev_num; j++) {
4855 		snprintf(name[j], sizeof(name[j]), "bdev%d", j);
4856 	}
4857 
4858 	for (i = 0; i < 16; i++) {
4859 		last_time = get_ns_time();
4860 		bdev_num = 1024 * (i + 1);
4861 		for (j = 0; j < bdev_num; j++) {
4862 			bdev[j] = allocate_bdev(name[j]);
4863 			height = rb_tree_get_height(&bdev[j]->internal.bdev_name);
4864 			CU_ASSERT(height <= (int)(spdk_u32log2(2 * j + 2)));
4865 		}
4866 		SPDK_NOTICELOG("alloc bdev num %d takes %" PRIu64 " ms\n", bdev_num,
4867 			       (get_ns_time() - last_time) / 1000 / 1000);
4868 		for (j = 0; j < bdev_num; j++) {
4869 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) != NULL);
4870 		}
4871 		CU_ASSERT(spdk_bdev_get_by_name(noexist_name) == NULL);
4872 
4873 		for (j = 0; j < bdev_num; j++) {
4874 			free_bdev(bdev[j]);
4875 		}
4876 		for (j = 0; j < bdev_num; j++) {
4877 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) == NULL);
4878 		}
4879 	}
4880 }
4881 
4882 static struct spdk_memory_domain *g_bdev_memory_domain = (struct spdk_memory_domain *) 0xf00df00d;
4883 
4884 static int
4885 test_bdev_get_supported_dma_device_types_op(void *ctx, struct spdk_memory_domain **domains,
4886 		int array_size)
4887 {
4888 	if (array_size > 0 && domains) {
4889 		domains[0] = g_bdev_memory_domain;
4890 	}
4891 
4892 	return 1;
4893 }
4894 
4895 static void
4896 bdev_get_memory_domains(void)
4897 {
4898 	struct spdk_bdev_fn_table fn_table = {
4899 		.get_memory_domains = test_bdev_get_supported_dma_device_types_op
4900 	};
4901 	struct spdk_bdev bdev = { .fn_table = &fn_table };
4902 	struct spdk_memory_domain *domains[2] = {};
4903 	int rc;
4904 
4905 	/* bdev is NULL */
4906 	rc = spdk_bdev_get_memory_domains(NULL, domains, 2);
4907 	CU_ASSERT(rc == -EINVAL);
4908 
4909 	/* domains is NULL */
4910 	rc = spdk_bdev_get_memory_domains(&bdev, NULL, 2);
4911 	CU_ASSERT(rc == 1);
4912 
4913 	/* array size is 0 */
4914 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 0);
4915 	CU_ASSERT(rc == 1);
4916 
4917 	/* get_supported_dma_device_types op is set */
4918 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
4919 	CU_ASSERT(rc == 1);
4920 	CU_ASSERT(domains[0] == g_bdev_memory_domain);
4921 
4922 	/* get_supported_dma_device_types op is not set */
4923 	fn_table.get_memory_domains = NULL;
4924 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
4925 	CU_ASSERT(rc == 0);
4926 }
4927 
4928 static void
4929 bdev_writev_readv_ext(void)
4930 {
4931 	struct spdk_bdev *bdev;
4932 	struct spdk_bdev_desc *desc = NULL;
4933 	struct spdk_io_channel *io_ch;
4934 	char io_buf[512];
4935 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
4936 	struct ut_expected_io *expected_io;
4937 	struct spdk_bdev_ext_io_opts ext_io_opts = {
4938 		.metadata = (void *)0xFF000000,
4939 		.size = sizeof(ext_io_opts)
4940 	};
4941 	int rc;
4942 
4943 	spdk_bdev_initialize(bdev_init_cb, NULL);
4944 
4945 	bdev = allocate_bdev("bdev0");
4946 	bdev->md_interleave = false;
4947 	bdev->md_len = 8;
4948 
4949 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4950 	CU_ASSERT(rc == 0);
4951 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4952 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4953 	io_ch = spdk_bdev_get_io_channel(desc);
4954 	CU_ASSERT(io_ch != NULL);
4955 
4956 	/* Test 1, Simple test */
4957 	g_io_done = false;
4958 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
4959 	expected_io->md_buf = ext_io_opts.metadata;
4960 	expected_io->ext_io_opts = &ext_io_opts;
4961 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
4962 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4963 
4964 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
4965 
4966 	CU_ASSERT(rc == 0);
4967 	CU_ASSERT(g_io_done == false);
4968 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
4969 	stub_complete_io(1);
4970 	CU_ASSERT(g_io_done == true);
4971 
4972 	g_io_done = false;
4973 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
4974 	expected_io->md_buf = ext_io_opts.metadata;
4975 	expected_io->ext_io_opts = &ext_io_opts;
4976 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
4977 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4978 
4979 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
4980 
4981 	CU_ASSERT(rc == 0);
4982 	CU_ASSERT(g_io_done == false);
4983 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
4984 	stub_complete_io(1);
4985 	CU_ASSERT(g_io_done == true);
4986 
4987 	/* Test 2, invalid ext_opts size */
4988 	ext_io_opts.size = 0;
4989 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
4990 	CU_ASSERT(rc != 0);
4991 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
4992 	CU_ASSERT(rc != 0);
4993 
4994 	ext_io_opts.size = sizeof(ext_io_opts) * 2;
4995 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
4996 	CU_ASSERT(rc != 0);
4997 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
4998 	CU_ASSERT(rc != 0);
4999 
5000 	/* Test 3, Check that IO request with ext_opts and metadata is split correctly
5001 	 * Offset 14, length 8, payload 0xF000
5002 	 *  Child - Offset 14, length 2, payload 0xF000
5003 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5004 	 */
5005 	bdev->optimal_io_boundary = 16;
5006 	bdev->split_on_optimal_io_boundary = true;
5007 	bdev->md_interleave = false;
5008 	bdev->md_len = 8;
5009 
5010 	iov.iov_base = (void *)0xF000;
5011 	iov.iov_len = 4096;
5012 	memset(&ext_io_opts, 0, sizeof(ext_io_opts));
5013 	ext_io_opts.metadata = (void *)0xFF000000;
5014 	ext_io_opts.size = sizeof(ext_io_opts);
5015 	g_io_done = false;
5016 
5017 	/* read */
5018 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
5019 	expected_io->md_buf = ext_io_opts.metadata;
5020 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5021 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5022 
5023 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
5024 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5025 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5026 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5027 
5028 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5029 	CU_ASSERT(rc == 0);
5030 	CU_ASSERT(g_io_done == false);
5031 
5032 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5033 	stub_complete_io(2);
5034 	CU_ASSERT(g_io_done == true);
5035 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5036 
5037 	/* write */
5038 	g_io_done = false;
5039 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
5040 	expected_io->md_buf = ext_io_opts.metadata;
5041 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5042 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5043 
5044 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 6, 1);
5045 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5046 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5047 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5048 
5049 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5050 	CU_ASSERT(rc == 0);
5051 	CU_ASSERT(g_io_done == false);
5052 
5053 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5054 	stub_complete_io(2);
5055 	CU_ASSERT(g_io_done == true);
5056 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5057 
5058 	/* ext_opts contains metadata but ext_opts::size doesn't cover metadata pointer.
5059 	 * Check that IO request with ext_opts and metadata is split correctly - metadata pointer is not copied, so split
5060 	 * requests do not have metadata
5061 	 * Offset 14, length 8, payload 0xF000
5062 	 *  Child - Offset 14, length 2, payload 0xF000
5063 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5064 	 */
5065 	iov.iov_base = (void *)0xF000;
5066 	iov.iov_len = 4096;
5067 	memset(&ext_io_opts, 0, sizeof(ext_io_opts));
5068 	ext_io_opts.metadata = (void *)0xFF000000;
5069 	ext_io_opts.size = offsetof(struct spdk_bdev_ext_io_opts, metadata);;
5070 	g_io_done = false;
5071 
5072 	/* read */
5073 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
5074 	/* Split request must not contain metadata pointer */
5075 	expected_io->md_buf = NULL;
5076 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5077 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5078 
5079 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
5080 	expected_io->md_buf = NULL;
5081 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5082 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5083 
5084 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5085 	CU_ASSERT(rc == 0);
5086 	CU_ASSERT(g_io_done == false);
5087 
5088 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5089 	stub_complete_io(2);
5090 	CU_ASSERT(g_io_done == true);
5091 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5092 
5093 	/* write */
5094 	g_io_done = false;
5095 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
5096 	expected_io->md_buf = NULL;
5097 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5098 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5099 
5100 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 6, 1);
5101 	/* Split request must not contain metadata pointer */
5102 	expected_io->md_buf = NULL;
5103 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5104 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5105 
5106 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5107 	CU_ASSERT(rc == 0);
5108 	CU_ASSERT(g_io_done == false);
5109 
5110 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5111 	stub_complete_io(2);
5112 	CU_ASSERT(g_io_done == true);
5113 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5114 
5115 	/* Test 4, Verify data pull/push
5116 	 * bdev doens't support memory domains, so buffers from bdev memory pool will be used */
5117 	ext_io_opts.memory_domain = (struct spdk_memory_domain *)0xdeadbeef;
5118 
5119 	g_io_done = false;
5120 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5121 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5122 	expected_io->ext_io_opts = &ext_io_opts;
5123 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5124 
5125 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5126 
5127 	CU_ASSERT(rc == 0);
5128 	CU_ASSERT(g_io_done == false);
5129 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5130 	stub_complete_io(1);
5131 	CU_ASSERT(g_memory_domain_push_data_called == true);
5132 	CU_ASSERT(g_io_done == true);
5133 
5134 	g_io_done = false;
5135 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5136 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5137 	expected_io->ext_io_opts = &ext_io_opts;
5138 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5139 
5140 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5141 
5142 	CU_ASSERT(rc == 0);
5143 	CU_ASSERT(g_memory_domain_pull_data_called == true);
5144 	CU_ASSERT(g_io_done == false);
5145 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5146 	stub_complete_io(1);
5147 	CU_ASSERT(g_io_done == true);
5148 
5149 	spdk_put_io_channel(io_ch);
5150 	spdk_bdev_close(desc);
5151 	free_bdev(bdev);
5152 	spdk_bdev_finish(bdev_fini_cb, NULL);
5153 	poll_threads();
5154 }
5155 
5156 static void
5157 bdev_register_uuid_alias(void)
5158 {
5159 	struct spdk_bdev *bdev, *second;
5160 	char uuid[SPDK_UUID_STRING_LEN];
5161 	int rc;
5162 
5163 	spdk_bdev_initialize(bdev_init_cb, NULL);
5164 	bdev = allocate_bdev("bdev0");
5165 
5166 	/* Make sure an UUID was generated  */
5167 	CU_ASSERT_FALSE(spdk_mem_all_zero(&bdev->uuid, sizeof(bdev->uuid)));
5168 
5169 	/* Check that an UUID alias was registered */
5170 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5171 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5172 
5173 	/* Unregister the bdev */
5174 	spdk_bdev_unregister(bdev, NULL, NULL);
5175 	poll_threads();
5176 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5177 
5178 	/* Check the same, but this time register the bdev with non-zero UUID */
5179 	rc = spdk_bdev_register(bdev);
5180 	CU_ASSERT_EQUAL(rc, 0);
5181 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5182 
5183 	/* Unregister the bdev */
5184 	spdk_bdev_unregister(bdev, NULL, NULL);
5185 	poll_threads();
5186 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5187 
5188 	/* Regiser the bdev using UUID as the name */
5189 	bdev->name = uuid;
5190 	rc = spdk_bdev_register(bdev);
5191 	CU_ASSERT_EQUAL(rc, 0);
5192 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5193 
5194 	/* Unregister the bdev */
5195 	spdk_bdev_unregister(bdev, NULL, NULL);
5196 	poll_threads();
5197 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5198 
5199 	/* Check that it's not possible to register two bdevs with the same UUIDs */
5200 	bdev->name = "bdev0";
5201 	second = allocate_bdev("bdev1");
5202 	spdk_uuid_copy(&bdev->uuid, &second->uuid);
5203 	rc = spdk_bdev_register(bdev);
5204 	CU_ASSERT_EQUAL(rc, -EEXIST);
5205 
5206 	/* Regenerate the UUID and re-check */
5207 	spdk_uuid_generate(&bdev->uuid);
5208 	rc = spdk_bdev_register(bdev);
5209 	CU_ASSERT_EQUAL(rc, 0);
5210 
5211 	/* And check that both bdevs can be retrieved through their UUIDs */
5212 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5213 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5214 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &second->uuid);
5215 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), second);
5216 
5217 	free_bdev(second);
5218 	free_bdev(bdev);
5219 	spdk_bdev_finish(bdev_fini_cb, NULL);
5220 	poll_threads();
5221 }
5222 
5223 static void
5224 bdev_unregister_by_name(void)
5225 {
5226 	struct spdk_bdev *bdev;
5227 	int rc;
5228 
5229 	bdev = allocate_bdev("bdev");
5230 
5231 	g_event_type1 = 0xFF;
5232 	g_unregister_arg = NULL;
5233 	g_unregister_rc = -1;
5234 
5235 	rc = spdk_bdev_unregister_by_name("bdev1", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5236 	CU_ASSERT(rc == -ENODEV);
5237 
5238 	rc = spdk_bdev_unregister_by_name("bdev", &vbdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5239 	CU_ASSERT(rc == -ENODEV);
5240 
5241 	rc = spdk_bdev_unregister_by_name("bdev", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5242 	CU_ASSERT(rc == 0);
5243 
5244 	/* Check that unregister callback is delayed */
5245 	CU_ASSERT(g_unregister_arg == NULL);
5246 	CU_ASSERT(g_unregister_rc == -1);
5247 
5248 	poll_threads();
5249 
5250 	/* Event callback shall not be issued because device was closed */
5251 	CU_ASSERT(g_event_type1 == 0xFF);
5252 	/* Unregister callback is issued */
5253 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
5254 	CU_ASSERT(g_unregister_rc == 0);
5255 
5256 	free_bdev(bdev);
5257 }
5258 
5259 int
5260 main(int argc, char **argv)
5261 {
5262 	CU_pSuite		suite = NULL;
5263 	unsigned int		num_failures;
5264 
5265 	CU_set_error_action(CUEA_ABORT);
5266 	CU_initialize_registry();
5267 
5268 	suite = CU_add_suite("bdev", null_init, null_clean);
5269 
5270 	CU_ADD_TEST(suite, bytes_to_blocks_test);
5271 	CU_ADD_TEST(suite, num_blocks_test);
5272 	CU_ADD_TEST(suite, io_valid_test);
5273 	CU_ADD_TEST(suite, open_write_test);
5274 	CU_ADD_TEST(suite, claim_test);
5275 	CU_ADD_TEST(suite, alias_add_del_test);
5276 	CU_ADD_TEST(suite, get_device_stat_test);
5277 	CU_ADD_TEST(suite, bdev_io_types_test);
5278 	CU_ADD_TEST(suite, bdev_io_wait_test);
5279 	CU_ADD_TEST(suite, bdev_io_spans_split_test);
5280 	CU_ADD_TEST(suite, bdev_io_boundary_split_test);
5281 	CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test);
5282 	CU_ADD_TEST(suite, bdev_io_mix_split_test);
5283 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
5284 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
5285 	CU_ADD_TEST(suite, bdev_io_alignment);
5286 	CU_ADD_TEST(suite, bdev_histograms);
5287 	CU_ADD_TEST(suite, bdev_write_zeroes);
5288 	CU_ADD_TEST(suite, bdev_compare_and_write);
5289 	CU_ADD_TEST(suite, bdev_compare);
5290 	CU_ADD_TEST(suite, bdev_zcopy_write);
5291 	CU_ADD_TEST(suite, bdev_zcopy_read);
5292 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
5293 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
5294 	CU_ADD_TEST(suite, bdev_open_ext);
5295 	CU_ADD_TEST(suite, bdev_set_io_timeout);
5296 	CU_ADD_TEST(suite, lba_range_overlap);
5297 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
5298 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
5299 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
5300 	CU_ADD_TEST(suite, bdev_io_abort);
5301 	CU_ADD_TEST(suite, bdev_unmap);
5302 	CU_ADD_TEST(suite, bdev_write_zeroes_split_test);
5303 	CU_ADD_TEST(suite, bdev_set_options_test);
5304 	CU_ADD_TEST(suite, bdev_multi_allocation);
5305 	CU_ADD_TEST(suite, bdev_get_memory_domains);
5306 	CU_ADD_TEST(suite, bdev_writev_readv_ext);
5307 	CU_ADD_TEST(suite, bdev_register_uuid_alias);
5308 	CU_ADD_TEST(suite, bdev_unregister_by_name);
5309 
5310 	allocate_cores(1);
5311 	allocate_threads(1);
5312 	set_thread(0);
5313 
5314 	CU_basic_set_mode(CU_BRM_VERBOSE);
5315 	CU_basic_run_tests();
5316 	num_failures = CU_get_number_of_failures();
5317 	CU_cleanup_registry();
5318 
5319 	free_threads();
5320 	free_cores();
5321 
5322 	return num_failures;
5323 }
5324