xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision 0ed85362c8132a2d1927757fbcade66b6660d26a)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk_cunit.h"
35 
36 #include "common/lib/ut_multithread.c"
37 #include "unit/lib/json_mock.c"
38 
39 #include "spdk/config.h"
40 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
41 #undef SPDK_CONFIG_VTUNE
42 
43 #include "bdev/bdev.c"
44 
45 DEFINE_STUB(spdk_conf_find_section, struct spdk_conf_section *, (struct spdk_conf *cp,
46 		const char *name), NULL);
47 DEFINE_STUB(spdk_conf_section_get_nmval, char *,
48 	    (struct spdk_conf_section *sp, const char *key, int idx1, int idx2), NULL);
49 DEFINE_STUB(spdk_conf_section_get_intval, int, (struct spdk_conf_section *sp, const char *key), -1);
50 
51 struct spdk_trace_histories *g_trace_histories;
52 DEFINE_STUB_V(spdk_trace_add_register_fn, (struct spdk_trace_register_fn *reg_fn));
53 DEFINE_STUB_V(spdk_trace_register_owner, (uint8_t type, char id_prefix));
54 DEFINE_STUB_V(spdk_trace_register_object, (uint8_t type, char id_prefix));
55 DEFINE_STUB_V(spdk_trace_register_description, (const char *name,
56 		uint16_t tpoint_id, uint8_t owner_type,
57 		uint8_t object_type, uint8_t new_object,
58 		uint8_t arg1_type, const char *arg1_name));
59 DEFINE_STUB_V(_spdk_trace_record, (uint64_t tsc, uint16_t tpoint_id, uint16_t poller_id,
60 				   uint32_t size, uint64_t object_id, uint64_t arg1));
61 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
62 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
63 
64 
65 int g_status;
66 int g_count;
67 enum spdk_bdev_event_type g_event_type1;
68 enum spdk_bdev_event_type g_event_type2;
69 struct spdk_histogram_data *g_histogram;
70 void *g_unregister_arg;
71 int g_unregister_rc;
72 
73 void
74 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
75 			 int *sc, int *sk, int *asc, int *ascq)
76 {
77 }
78 
79 static int
80 null_init(void)
81 {
82 	return 0;
83 }
84 
85 static int
86 null_clean(void)
87 {
88 	return 0;
89 }
90 
91 static int
92 stub_destruct(void *ctx)
93 {
94 	return 0;
95 }
96 
97 struct ut_expected_io {
98 	uint8_t				type;
99 	uint64_t			offset;
100 	uint64_t			length;
101 	int				iovcnt;
102 	struct iovec			iov[BDEV_IO_NUM_CHILD_IOV];
103 	void				*md_buf;
104 	TAILQ_ENTRY(ut_expected_io)	link;
105 };
106 
107 struct bdev_ut_channel {
108 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
109 	uint32_t			outstanding_io_count;
110 	TAILQ_HEAD(, ut_expected_io)	expected_io;
111 };
112 
113 static bool g_io_done;
114 static struct spdk_bdev_io *g_bdev_io;
115 static enum spdk_bdev_io_status g_io_status;
116 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
117 static uint32_t g_bdev_ut_io_device;
118 static struct bdev_ut_channel *g_bdev_ut_channel;
119 static void *g_compare_read_buf;
120 static uint32_t g_compare_read_buf_len;
121 static void *g_compare_write_buf;
122 static uint32_t g_compare_write_buf_len;
123 static bool g_abort_done;
124 static enum spdk_bdev_io_status g_abort_status;
125 
126 static struct ut_expected_io *
127 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
128 {
129 	struct ut_expected_io *expected_io;
130 
131 	expected_io = calloc(1, sizeof(*expected_io));
132 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
133 
134 	expected_io->type = type;
135 	expected_io->offset = offset;
136 	expected_io->length = length;
137 	expected_io->iovcnt = iovcnt;
138 
139 	return expected_io;
140 }
141 
142 static void
143 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
144 {
145 	expected_io->iov[pos].iov_base = base;
146 	expected_io->iov[pos].iov_len = len;
147 }
148 
149 static void
150 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
151 {
152 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
153 	struct ut_expected_io *expected_io;
154 	struct iovec *iov, *expected_iov;
155 	struct spdk_bdev_io *bio_to_abort;
156 	int i;
157 
158 	g_bdev_io = bdev_io;
159 
160 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
161 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
162 
163 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
164 		CU_ASSERT(g_compare_read_buf_len == len);
165 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
166 	}
167 
168 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
169 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
170 
171 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
172 		CU_ASSERT(g_compare_write_buf_len == len);
173 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
174 	}
175 
176 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
177 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
178 
179 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
180 		CU_ASSERT(g_compare_read_buf_len == len);
181 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
182 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
183 		}
184 	}
185 
186 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
187 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
188 			TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
189 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
190 					TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
191 					ch->outstanding_io_count--;
192 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
193 					break;
194 				}
195 			}
196 		}
197 	}
198 
199 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
200 	ch->outstanding_io_count++;
201 
202 	expected_io = TAILQ_FIRST(&ch->expected_io);
203 	if (expected_io == NULL) {
204 		return;
205 	}
206 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
207 
208 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
209 		CU_ASSERT(bdev_io->type == expected_io->type);
210 	}
211 
212 	if (expected_io->md_buf != NULL) {
213 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
214 	}
215 
216 	if (expected_io->length == 0) {
217 		free(expected_io);
218 		return;
219 	}
220 
221 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
222 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
223 
224 	if (expected_io->iovcnt == 0) {
225 		free(expected_io);
226 		/* UNMAP, WRITE_ZEROES and FLUSH don't have iovs, so we can just return now. */
227 		return;
228 	}
229 
230 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
231 	for (i = 0; i < expected_io->iovcnt; i++) {
232 		iov = &bdev_io->u.bdev.iovs[i];
233 		expected_iov = &expected_io->iov[i];
234 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
235 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
236 	}
237 
238 	free(expected_io);
239 }
240 
241 static void
242 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
243 			       struct spdk_bdev_io *bdev_io, bool success)
244 {
245 	CU_ASSERT(success == true);
246 
247 	stub_submit_request(_ch, bdev_io);
248 }
249 
250 static void
251 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
252 {
253 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
254 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
255 }
256 
257 static uint32_t
258 stub_complete_io(uint32_t num_to_complete)
259 {
260 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
261 	struct spdk_bdev_io *bdev_io;
262 	static enum spdk_bdev_io_status io_status;
263 	uint32_t num_completed = 0;
264 
265 	while (num_completed < num_to_complete) {
266 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
267 			break;
268 		}
269 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
270 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
271 		ch->outstanding_io_count--;
272 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
273 			    g_io_exp_status;
274 		spdk_bdev_io_complete(bdev_io, io_status);
275 		num_completed++;
276 	}
277 
278 	return num_completed;
279 }
280 
281 static struct spdk_io_channel *
282 bdev_ut_get_io_channel(void *ctx)
283 {
284 	return spdk_get_io_channel(&g_bdev_ut_io_device);
285 }
286 
287 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
288 	[SPDK_BDEV_IO_TYPE_READ]		= true,
289 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
290 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
291 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
292 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
293 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
294 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
295 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
296 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
297 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
298 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
299 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
300 };
301 
302 static void
303 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
304 {
305 	g_io_types_supported[io_type] = enable;
306 }
307 
308 static bool
309 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
310 {
311 	return g_io_types_supported[io_type];
312 }
313 
314 static struct spdk_bdev_fn_table fn_table = {
315 	.destruct = stub_destruct,
316 	.submit_request = stub_submit_request,
317 	.get_io_channel = bdev_ut_get_io_channel,
318 	.io_type_supported = stub_io_type_supported,
319 };
320 
321 static int
322 bdev_ut_create_ch(void *io_device, void *ctx_buf)
323 {
324 	struct bdev_ut_channel *ch = ctx_buf;
325 
326 	CU_ASSERT(g_bdev_ut_channel == NULL);
327 	g_bdev_ut_channel = ch;
328 
329 	TAILQ_INIT(&ch->outstanding_io);
330 	ch->outstanding_io_count = 0;
331 	TAILQ_INIT(&ch->expected_io);
332 	return 0;
333 }
334 
335 static void
336 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
337 {
338 	CU_ASSERT(g_bdev_ut_channel != NULL);
339 	g_bdev_ut_channel = NULL;
340 }
341 
342 struct spdk_bdev_module bdev_ut_if;
343 
344 static int
345 bdev_ut_module_init(void)
346 {
347 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
348 				sizeof(struct bdev_ut_channel), NULL);
349 	spdk_bdev_module_init_done(&bdev_ut_if);
350 	return 0;
351 }
352 
353 static void
354 bdev_ut_module_fini(void)
355 {
356 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
357 }
358 
359 struct spdk_bdev_module bdev_ut_if = {
360 	.name = "bdev_ut",
361 	.module_init = bdev_ut_module_init,
362 	.module_fini = bdev_ut_module_fini,
363 	.async_init = true,
364 };
365 
366 static void vbdev_ut_examine(struct spdk_bdev *bdev);
367 
368 static int
369 vbdev_ut_module_init(void)
370 {
371 	return 0;
372 }
373 
374 static void
375 vbdev_ut_module_fini(void)
376 {
377 }
378 
379 struct spdk_bdev_module vbdev_ut_if = {
380 	.name = "vbdev_ut",
381 	.module_init = vbdev_ut_module_init,
382 	.module_fini = vbdev_ut_module_fini,
383 	.examine_config = vbdev_ut_examine,
384 };
385 
386 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
387 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
388 
389 static void
390 vbdev_ut_examine(struct spdk_bdev *bdev)
391 {
392 	spdk_bdev_module_examine_done(&vbdev_ut_if);
393 }
394 
395 static struct spdk_bdev *
396 allocate_bdev(char *name)
397 {
398 	struct spdk_bdev *bdev;
399 	int rc;
400 
401 	bdev = calloc(1, sizeof(*bdev));
402 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
403 
404 	bdev->name = name;
405 	bdev->fn_table = &fn_table;
406 	bdev->module = &bdev_ut_if;
407 	bdev->blockcnt = 1024;
408 	bdev->blocklen = 512;
409 
410 	rc = spdk_bdev_register(bdev);
411 	CU_ASSERT(rc == 0);
412 
413 	return bdev;
414 }
415 
416 static struct spdk_bdev *
417 allocate_vbdev(char *name)
418 {
419 	struct spdk_bdev *bdev;
420 	int rc;
421 
422 	bdev = calloc(1, sizeof(*bdev));
423 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
424 
425 	bdev->name = name;
426 	bdev->fn_table = &fn_table;
427 	bdev->module = &vbdev_ut_if;
428 
429 	rc = spdk_bdev_register(bdev);
430 	CU_ASSERT(rc == 0);
431 
432 	return bdev;
433 }
434 
435 static void
436 free_bdev(struct spdk_bdev *bdev)
437 {
438 	spdk_bdev_unregister(bdev, NULL, NULL);
439 	poll_threads();
440 	memset(bdev, 0xFF, sizeof(*bdev));
441 	free(bdev);
442 }
443 
444 static void
445 free_vbdev(struct spdk_bdev *bdev)
446 {
447 	spdk_bdev_unregister(bdev, NULL, NULL);
448 	poll_threads();
449 	memset(bdev, 0xFF, sizeof(*bdev));
450 	free(bdev);
451 }
452 
453 static void
454 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
455 {
456 	const char *bdev_name;
457 
458 	CU_ASSERT(bdev != NULL);
459 	CU_ASSERT(rc == 0);
460 	bdev_name = spdk_bdev_get_name(bdev);
461 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
462 
463 	free(stat);
464 	free_bdev(bdev);
465 
466 	*(bool *)cb_arg = true;
467 }
468 
469 static void
470 bdev_unregister_cb(void *cb_arg, int rc)
471 {
472 	g_unregister_arg = cb_arg;
473 	g_unregister_rc = rc;
474 }
475 
476 static void
477 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
478 {
479 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
480 
481 	g_event_type1 = type;
482 	if (SPDK_BDEV_EVENT_REMOVE == type) {
483 		spdk_bdev_close(desc);
484 	}
485 }
486 
487 static void
488 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
489 {
490 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
491 
492 	g_event_type2 = type;
493 	if (SPDK_BDEV_EVENT_REMOVE == type) {
494 		spdk_bdev_close(desc);
495 	}
496 }
497 
498 static void
499 get_device_stat_test(void)
500 {
501 	struct spdk_bdev *bdev;
502 	struct spdk_bdev_io_stat *stat;
503 	bool done;
504 
505 	bdev = allocate_bdev("bdev0");
506 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
507 	if (stat == NULL) {
508 		free_bdev(bdev);
509 		return;
510 	}
511 
512 	done = false;
513 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
514 	while (!done) { poll_threads(); }
515 
516 
517 }
518 
519 static void
520 open_write_test(void)
521 {
522 	struct spdk_bdev *bdev[9];
523 	struct spdk_bdev_desc *desc[9] = {};
524 	int rc;
525 
526 	/*
527 	 * Create a tree of bdevs to test various open w/ write cases.
528 	 *
529 	 * bdev0 through bdev3 are physical block devices, such as NVMe
530 	 * namespaces or Ceph block devices.
531 	 *
532 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
533 	 * caching or RAID use cases.
534 	 *
535 	 * bdev5 through bdev7 are all virtual bdevs with the same base
536 	 * bdev (except bdev7). This models partitioning or logical volume
537 	 * use cases.
538 	 *
539 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
540 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
541 	 * models caching, RAID, partitioning or logical volumes use cases.
542 	 *
543 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
544 	 * base bdevs are themselves virtual bdevs.
545 	 *
546 	 *                bdev8
547 	 *                  |
548 	 *            +----------+
549 	 *            |          |
550 	 *          bdev4      bdev5   bdev6   bdev7
551 	 *            |          |       |       |
552 	 *        +---+---+      +---+   +   +---+---+
553 	 *        |       |           \  |  /         \
554 	 *      bdev0   bdev1          bdev2         bdev3
555 	 */
556 
557 	bdev[0] = allocate_bdev("bdev0");
558 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
559 	CU_ASSERT(rc == 0);
560 
561 	bdev[1] = allocate_bdev("bdev1");
562 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
563 	CU_ASSERT(rc == 0);
564 
565 	bdev[2] = allocate_bdev("bdev2");
566 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
567 	CU_ASSERT(rc == 0);
568 
569 	bdev[3] = allocate_bdev("bdev3");
570 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
571 	CU_ASSERT(rc == 0);
572 
573 	bdev[4] = allocate_vbdev("bdev4");
574 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
575 	CU_ASSERT(rc == 0);
576 
577 	bdev[5] = allocate_vbdev("bdev5");
578 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
579 	CU_ASSERT(rc == 0);
580 
581 	bdev[6] = allocate_vbdev("bdev6");
582 
583 	bdev[7] = allocate_vbdev("bdev7");
584 
585 	bdev[8] = allocate_vbdev("bdev8");
586 
587 	/* Open bdev0 read-only.  This should succeed. */
588 	rc = spdk_bdev_open(bdev[0], false, NULL, NULL, &desc[0]);
589 	CU_ASSERT(rc == 0);
590 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
591 	spdk_bdev_close(desc[0]);
592 
593 	/*
594 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
595 	 * by a vbdev module.
596 	 */
597 	rc = spdk_bdev_open(bdev[1], true, NULL, NULL, &desc[1]);
598 	CU_ASSERT(rc == -EPERM);
599 
600 	/*
601 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
602 	 * by a vbdev module.
603 	 */
604 	rc = spdk_bdev_open(bdev[4], true, NULL, NULL, &desc[4]);
605 	CU_ASSERT(rc == -EPERM);
606 
607 	/* Open bdev4 read-only.  This should succeed. */
608 	rc = spdk_bdev_open(bdev[4], false, NULL, NULL, &desc[4]);
609 	CU_ASSERT(rc == 0);
610 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
611 	spdk_bdev_close(desc[4]);
612 
613 	/*
614 	 * Open bdev8 read/write.  This should succeed since it is a leaf
615 	 * bdev.
616 	 */
617 	rc = spdk_bdev_open(bdev[8], true, NULL, NULL, &desc[8]);
618 	CU_ASSERT(rc == 0);
619 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
620 	spdk_bdev_close(desc[8]);
621 
622 	/*
623 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
624 	 * by a vbdev module.
625 	 */
626 	rc = spdk_bdev_open(bdev[5], true, NULL, NULL, &desc[5]);
627 	CU_ASSERT(rc == -EPERM);
628 
629 	/* Open bdev4 read-only.  This should succeed. */
630 	rc = spdk_bdev_open(bdev[5], false, NULL, NULL, &desc[5]);
631 	CU_ASSERT(rc == 0);
632 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
633 	spdk_bdev_close(desc[5]);
634 
635 	free_vbdev(bdev[8]);
636 
637 	free_vbdev(bdev[5]);
638 	free_vbdev(bdev[6]);
639 	free_vbdev(bdev[7]);
640 
641 	free_vbdev(bdev[4]);
642 
643 	free_bdev(bdev[0]);
644 	free_bdev(bdev[1]);
645 	free_bdev(bdev[2]);
646 	free_bdev(bdev[3]);
647 }
648 
649 static void
650 bytes_to_blocks_test(void)
651 {
652 	struct spdk_bdev bdev;
653 	uint64_t offset_blocks, num_blocks;
654 
655 	memset(&bdev, 0, sizeof(bdev));
656 
657 	bdev.blocklen = 512;
658 
659 	/* All parameters valid */
660 	offset_blocks = 0;
661 	num_blocks = 0;
662 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
663 	CU_ASSERT(offset_blocks == 1);
664 	CU_ASSERT(num_blocks == 2);
665 
666 	/* Offset not a block multiple */
667 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
668 
669 	/* Length not a block multiple */
670 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
671 
672 	/* In case blocklen not the power of two */
673 	bdev.blocklen = 100;
674 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
675 	CU_ASSERT(offset_blocks == 1);
676 	CU_ASSERT(num_blocks == 2);
677 
678 	/* Offset not a block multiple */
679 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
680 
681 	/* Length not a block multiple */
682 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
683 }
684 
685 static void
686 num_blocks_test(void)
687 {
688 	struct spdk_bdev bdev;
689 	struct spdk_bdev_desc *desc = NULL;
690 	struct spdk_bdev_desc *desc_ext = NULL;
691 	int rc;
692 
693 	memset(&bdev, 0, sizeof(bdev));
694 	bdev.name = "num_blocks";
695 	bdev.fn_table = &fn_table;
696 	bdev.module = &bdev_ut_if;
697 	spdk_bdev_register(&bdev);
698 	spdk_bdev_notify_blockcnt_change(&bdev, 50);
699 
700 	/* Growing block number */
701 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
702 	/* Shrinking block number */
703 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
704 
705 	/* In case bdev opened */
706 	rc = spdk_bdev_open(&bdev, false, NULL, NULL, &desc);
707 	CU_ASSERT(rc == 0);
708 	SPDK_CU_ASSERT_FATAL(desc != NULL);
709 
710 	/* Growing block number */
711 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
712 	/* Shrinking block number */
713 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
714 
715 	/* In case bdev opened with ext API */
716 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc_ext, &desc_ext);
717 	CU_ASSERT(rc == 0);
718 	SPDK_CU_ASSERT_FATAL(desc_ext != NULL);
719 
720 	g_event_type1 = 0xFF;
721 	/* Growing block number */
722 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
723 
724 	poll_threads();
725 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
726 
727 	g_event_type1 = 0xFF;
728 	/* Growing block number and closing */
729 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
730 
731 	spdk_bdev_close(desc);
732 	spdk_bdev_close(desc_ext);
733 	spdk_bdev_unregister(&bdev, NULL, NULL);
734 
735 	poll_threads();
736 
737 	/* Callback is not called for closed device */
738 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
739 }
740 
741 static void
742 io_valid_test(void)
743 {
744 	struct spdk_bdev bdev;
745 
746 	memset(&bdev, 0, sizeof(bdev));
747 
748 	bdev.blocklen = 512;
749 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
750 
751 	/* All parameters valid */
752 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
753 
754 	/* Last valid block */
755 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
756 
757 	/* Offset past end of bdev */
758 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
759 
760 	/* Offset + length past end of bdev */
761 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
762 
763 	/* Offset near end of uint64_t range (2^64 - 1) */
764 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
765 }
766 
767 static void
768 alias_add_del_test(void)
769 {
770 	struct spdk_bdev *bdev[3];
771 	int rc;
772 
773 	/* Creating and registering bdevs */
774 	bdev[0] = allocate_bdev("bdev0");
775 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
776 
777 	bdev[1] = allocate_bdev("bdev1");
778 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
779 
780 	bdev[2] = allocate_bdev("bdev2");
781 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
782 
783 	poll_threads();
784 
785 	/*
786 	 * Trying adding an alias identical to name.
787 	 * Alias is identical to name, so it can not be added to aliases list
788 	 */
789 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
790 	CU_ASSERT(rc == -EEXIST);
791 
792 	/*
793 	 * Trying to add empty alias,
794 	 * this one should fail
795 	 */
796 	rc = spdk_bdev_alias_add(bdev[0], NULL);
797 	CU_ASSERT(rc == -EINVAL);
798 
799 	/* Trying adding same alias to two different registered bdevs */
800 
801 	/* Alias is used first time, so this one should pass */
802 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
803 	CU_ASSERT(rc == 0);
804 
805 	/* Alias was added to another bdev, so this one should fail */
806 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
807 	CU_ASSERT(rc == -EEXIST);
808 
809 	/* Alias is used first time, so this one should pass */
810 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
811 	CU_ASSERT(rc == 0);
812 
813 	/* Trying removing an alias from registered bdevs */
814 
815 	/* Alias is not on a bdev aliases list, so this one should fail */
816 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
817 	CU_ASSERT(rc == -ENOENT);
818 
819 	/* Alias is present on a bdev aliases list, so this one should pass */
820 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
821 	CU_ASSERT(rc == 0);
822 
823 	/* Alias is present on a bdev aliases list, so this one should pass */
824 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
825 	CU_ASSERT(rc == 0);
826 
827 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
828 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
829 	CU_ASSERT(rc != 0);
830 
831 	/* Trying to del all alias from empty alias list */
832 	spdk_bdev_alias_del_all(bdev[2]);
833 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
834 
835 	/* Trying to del all alias from non-empty alias list */
836 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
837 	CU_ASSERT(rc == 0);
838 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
839 	CU_ASSERT(rc == 0);
840 	spdk_bdev_alias_del_all(bdev[2]);
841 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
842 
843 	/* Unregister and free bdevs */
844 	spdk_bdev_unregister(bdev[0], NULL, NULL);
845 	spdk_bdev_unregister(bdev[1], NULL, NULL);
846 	spdk_bdev_unregister(bdev[2], NULL, NULL);
847 
848 	poll_threads();
849 
850 	free(bdev[0]);
851 	free(bdev[1]);
852 	free(bdev[2]);
853 }
854 
855 static void
856 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
857 {
858 	g_io_done = true;
859 	g_io_status = bdev_io->internal.status;
860 	spdk_bdev_free_io(bdev_io);
861 }
862 
863 static void
864 bdev_init_cb(void *arg, int rc)
865 {
866 	CU_ASSERT(rc == 0);
867 }
868 
869 static void
870 bdev_fini_cb(void *arg)
871 {
872 }
873 
874 struct bdev_ut_io_wait_entry {
875 	struct spdk_bdev_io_wait_entry	entry;
876 	struct spdk_io_channel		*io_ch;
877 	struct spdk_bdev_desc		*desc;
878 	bool				submitted;
879 };
880 
881 static void
882 io_wait_cb(void *arg)
883 {
884 	struct bdev_ut_io_wait_entry *entry = arg;
885 	int rc;
886 
887 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
888 	CU_ASSERT(rc == 0);
889 	entry->submitted = true;
890 }
891 
892 static void
893 bdev_io_types_test(void)
894 {
895 	struct spdk_bdev *bdev;
896 	struct spdk_bdev_desc *desc = NULL;
897 	struct spdk_io_channel *io_ch;
898 	struct spdk_bdev_opts bdev_opts = {
899 		.bdev_io_pool_size = 4,
900 		.bdev_io_cache_size = 2,
901 	};
902 	int rc;
903 
904 	rc = spdk_bdev_set_opts(&bdev_opts);
905 	CU_ASSERT(rc == 0);
906 	spdk_bdev_initialize(bdev_init_cb, NULL);
907 	poll_threads();
908 
909 	bdev = allocate_bdev("bdev0");
910 
911 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
912 	CU_ASSERT(rc == 0);
913 	poll_threads();
914 	SPDK_CU_ASSERT_FATAL(desc != NULL);
915 	io_ch = spdk_bdev_get_io_channel(desc);
916 	CU_ASSERT(io_ch != NULL);
917 
918 	/* WRITE and WRITE ZEROES are not supported */
919 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
920 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
921 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
922 	CU_ASSERT(rc == -ENOTSUP);
923 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
924 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
925 
926 	spdk_put_io_channel(io_ch);
927 	spdk_bdev_close(desc);
928 	free_bdev(bdev);
929 	spdk_bdev_finish(bdev_fini_cb, NULL);
930 	poll_threads();
931 }
932 
933 static void
934 bdev_io_wait_test(void)
935 {
936 	struct spdk_bdev *bdev;
937 	struct spdk_bdev_desc *desc = NULL;
938 	struct spdk_io_channel *io_ch;
939 	struct spdk_bdev_opts bdev_opts = {
940 		.bdev_io_pool_size = 4,
941 		.bdev_io_cache_size = 2,
942 	};
943 	struct bdev_ut_io_wait_entry io_wait_entry;
944 	struct bdev_ut_io_wait_entry io_wait_entry2;
945 	int rc;
946 
947 	rc = spdk_bdev_set_opts(&bdev_opts);
948 	CU_ASSERT(rc == 0);
949 	spdk_bdev_initialize(bdev_init_cb, NULL);
950 	poll_threads();
951 
952 	bdev = allocate_bdev("bdev0");
953 
954 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
955 	CU_ASSERT(rc == 0);
956 	poll_threads();
957 	SPDK_CU_ASSERT_FATAL(desc != NULL);
958 	io_ch = spdk_bdev_get_io_channel(desc);
959 	CU_ASSERT(io_ch != NULL);
960 
961 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
962 	CU_ASSERT(rc == 0);
963 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
964 	CU_ASSERT(rc == 0);
965 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
966 	CU_ASSERT(rc == 0);
967 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
968 	CU_ASSERT(rc == 0);
969 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
970 
971 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
972 	CU_ASSERT(rc == -ENOMEM);
973 
974 	io_wait_entry.entry.bdev = bdev;
975 	io_wait_entry.entry.cb_fn = io_wait_cb;
976 	io_wait_entry.entry.cb_arg = &io_wait_entry;
977 	io_wait_entry.io_ch = io_ch;
978 	io_wait_entry.desc = desc;
979 	io_wait_entry.submitted = false;
980 	/* Cannot use the same io_wait_entry for two different calls. */
981 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
982 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
983 
984 	/* Queue two I/O waits. */
985 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
986 	CU_ASSERT(rc == 0);
987 	CU_ASSERT(io_wait_entry.submitted == false);
988 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
989 	CU_ASSERT(rc == 0);
990 	CU_ASSERT(io_wait_entry2.submitted == false);
991 
992 	stub_complete_io(1);
993 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
994 	CU_ASSERT(io_wait_entry.submitted == true);
995 	CU_ASSERT(io_wait_entry2.submitted == false);
996 
997 	stub_complete_io(1);
998 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
999 	CU_ASSERT(io_wait_entry2.submitted == true);
1000 
1001 	stub_complete_io(4);
1002 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1003 
1004 	spdk_put_io_channel(io_ch);
1005 	spdk_bdev_close(desc);
1006 	free_bdev(bdev);
1007 	spdk_bdev_finish(bdev_fini_cb, NULL);
1008 	poll_threads();
1009 }
1010 
1011 static void
1012 bdev_io_spans_boundary_test(void)
1013 {
1014 	struct spdk_bdev bdev;
1015 	struct spdk_bdev_io bdev_io;
1016 
1017 	memset(&bdev, 0, sizeof(bdev));
1018 
1019 	bdev.optimal_io_boundary = 0;
1020 	bdev_io.bdev = &bdev;
1021 
1022 	/* bdev has no optimal_io_boundary set - so this should return false. */
1023 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1024 
1025 	bdev.optimal_io_boundary = 32;
1026 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1027 
1028 	/* RESETs are not based on LBAs - so this should return false. */
1029 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1030 
1031 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1032 	bdev_io.u.bdev.offset_blocks = 0;
1033 	bdev_io.u.bdev.num_blocks = 32;
1034 
1035 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1036 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1037 
1038 	bdev_io.u.bdev.num_blocks = 33;
1039 
1040 	/* This I/O spans a boundary. */
1041 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1042 }
1043 
1044 static void
1045 bdev_io_split_test(void)
1046 {
1047 	struct spdk_bdev *bdev;
1048 	struct spdk_bdev_desc *desc = NULL;
1049 	struct spdk_io_channel *io_ch;
1050 	struct spdk_bdev_opts bdev_opts = {
1051 		.bdev_io_pool_size = 512,
1052 		.bdev_io_cache_size = 64,
1053 	};
1054 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1055 	struct ut_expected_io *expected_io;
1056 	uint64_t i;
1057 	int rc;
1058 
1059 	rc = spdk_bdev_set_opts(&bdev_opts);
1060 	CU_ASSERT(rc == 0);
1061 	spdk_bdev_initialize(bdev_init_cb, NULL);
1062 
1063 	bdev = allocate_bdev("bdev0");
1064 
1065 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
1066 	CU_ASSERT(rc == 0);
1067 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1068 	io_ch = spdk_bdev_get_io_channel(desc);
1069 	CU_ASSERT(io_ch != NULL);
1070 
1071 	bdev->optimal_io_boundary = 16;
1072 	bdev->split_on_optimal_io_boundary = false;
1073 
1074 	g_io_done = false;
1075 
1076 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1077 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1078 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1079 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1080 
1081 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1082 	CU_ASSERT(rc == 0);
1083 	CU_ASSERT(g_io_done == false);
1084 
1085 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1086 	stub_complete_io(1);
1087 	CU_ASSERT(g_io_done == true);
1088 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1089 
1090 	bdev->split_on_optimal_io_boundary = true;
1091 
1092 	/* Now test that a single-vector command is split correctly.
1093 	 * Offset 14, length 8, payload 0xF000
1094 	 *  Child - Offset 14, length 2, payload 0xF000
1095 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1096 	 *
1097 	 * Set up the expected values before calling spdk_bdev_read_blocks
1098 	 */
1099 	g_io_done = false;
1100 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1101 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1102 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1103 
1104 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1105 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1106 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1107 
1108 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1109 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1110 	CU_ASSERT(rc == 0);
1111 	CU_ASSERT(g_io_done == false);
1112 
1113 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1114 	stub_complete_io(2);
1115 	CU_ASSERT(g_io_done == true);
1116 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1117 
1118 	/* Now set up a more complex, multi-vector command that needs to be split,
1119 	 *  including splitting iovecs.
1120 	 */
1121 	iov[0].iov_base = (void *)0x10000;
1122 	iov[0].iov_len = 512;
1123 	iov[1].iov_base = (void *)0x20000;
1124 	iov[1].iov_len = 20 * 512;
1125 	iov[2].iov_base = (void *)0x30000;
1126 	iov[2].iov_len = 11 * 512;
1127 
1128 	g_io_done = false;
1129 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1130 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1131 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1132 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1133 
1134 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1135 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1136 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1137 
1138 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1139 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1140 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1141 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1142 
1143 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
1144 	CU_ASSERT(rc == 0);
1145 	CU_ASSERT(g_io_done == false);
1146 
1147 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1148 	stub_complete_io(3);
1149 	CU_ASSERT(g_io_done == true);
1150 
1151 	/* Test multi vector command that needs to be split by strip and then needs to be
1152 	 * split further due to the capacity of child iovs.
1153 	 */
1154 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1155 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1156 		iov[i].iov_len = 512;
1157 	}
1158 
1159 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1160 	g_io_done = false;
1161 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1162 					   BDEV_IO_NUM_CHILD_IOV);
1163 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1164 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1165 	}
1166 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1167 
1168 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1169 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
1170 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1171 		ut_expected_io_set_iov(expected_io, i,
1172 				       (void *)((i + 1 + BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1173 	}
1174 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1175 
1176 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
1177 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1178 	CU_ASSERT(rc == 0);
1179 	CU_ASSERT(g_io_done == false);
1180 
1181 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1182 	stub_complete_io(1);
1183 	CU_ASSERT(g_io_done == false);
1184 
1185 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1186 	stub_complete_io(1);
1187 	CU_ASSERT(g_io_done == true);
1188 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1189 
1190 	/* Test multi vector command that needs to be split by strip and then needs to be
1191 	 * split further due to the capacity of child iovs. In this case, the length of
1192 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1193 	 */
1194 
1195 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1196 	 * is BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1197 	 */
1198 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1199 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1200 		iov[i].iov_len = 512;
1201 	}
1202 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1203 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1204 		iov[i].iov_len = 256;
1205 	}
1206 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1207 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1208 
1209 	/* Add an extra iovec to trigger split */
1210 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1211 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1212 
1213 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1214 	g_io_done = false;
1215 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1216 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV);
1217 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1218 		ut_expected_io_set_iov(expected_io, i,
1219 				       (void *)((i + 1) * 0x10000), 512);
1220 	}
1221 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1222 		ut_expected_io_set_iov(expected_io, i,
1223 				       (void *)((i + 1) * 0x10000), 256);
1224 	}
1225 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1226 
1227 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1228 					   1, 1);
1229 	ut_expected_io_set_iov(expected_io, 0,
1230 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1231 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1232 
1233 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1234 					   1, 1);
1235 	ut_expected_io_set_iov(expected_io, 0,
1236 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1237 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1238 
1239 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
1240 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1241 	CU_ASSERT(rc == 0);
1242 	CU_ASSERT(g_io_done == false);
1243 
1244 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1245 	stub_complete_io(1);
1246 	CU_ASSERT(g_io_done == false);
1247 
1248 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1249 	stub_complete_io(2);
1250 	CU_ASSERT(g_io_done == true);
1251 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1252 
1253 	/* Test multi vector command that needs to be split by strip and then needs to be
1254 	 * split further due to the capacity of child iovs, the child request offset should
1255 	 * be rewind to last aligned offset and go success without error.
1256 	 */
1257 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1258 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1259 		iov[i].iov_len = 512;
1260 	}
1261 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1262 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1263 
1264 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1265 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1266 
1267 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1268 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1269 
1270 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1271 	g_io_done = false;
1272 	g_io_status = 0;
1273 	/* The first expected io should be start from offset 0 to BDEV_IO_NUM_CHILD_IOV - 1 */
1274 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1275 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV - 1);
1276 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1277 		ut_expected_io_set_iov(expected_io, i,
1278 				       (void *)((i + 1) * 0x10000), 512);
1279 	}
1280 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1281 	/* The second expected io should be start from offset BDEV_IO_NUM_CHILD_IOV - 1 to BDEV_IO_NUM_CHILD_IOV */
1282 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1283 					   1, 2);
1284 	ut_expected_io_set_iov(expected_io, 0,
1285 			       (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1286 	ut_expected_io_set_iov(expected_io, 1,
1287 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1288 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1289 	/* The third expected io should be start from offset BDEV_IO_NUM_CHILD_IOV to BDEV_IO_NUM_CHILD_IOV + 1 */
1290 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1291 					   1, 1);
1292 	ut_expected_io_set_iov(expected_io, 0,
1293 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1294 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1295 
1296 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
1297 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1298 	CU_ASSERT(rc == 0);
1299 	CU_ASSERT(g_io_done == false);
1300 
1301 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1302 	stub_complete_io(1);
1303 	CU_ASSERT(g_io_done == false);
1304 
1305 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1306 	stub_complete_io(2);
1307 	CU_ASSERT(g_io_done == true);
1308 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1309 
1310 	/* Test multi vector command that needs to be split due to the IO boundary and
1311 	 * the capacity of child iovs. Especially test the case when the command is
1312 	 * split due to the capacity of child iovs, the tail address is not aligned with
1313 	 * block size and is rewinded to the aligned address.
1314 	 *
1315 	 * The iovecs used in read request is complex but is based on the data
1316 	 * collected in the real issue. We change the base addresses but keep the lengths
1317 	 * not to loose the credibility of the test.
1318 	 */
1319 	bdev->optimal_io_boundary = 128;
1320 	g_io_done = false;
1321 	g_io_status = 0;
1322 
1323 	for (i = 0; i < 31; i++) {
1324 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1325 		iov[i].iov_len = 1024;
1326 	}
1327 	iov[31].iov_base = (void *)0xFEED1F00000;
1328 	iov[31].iov_len = 32768;
1329 	iov[32].iov_base = (void *)0xFEED2000000;
1330 	iov[32].iov_len = 160;
1331 	iov[33].iov_base = (void *)0xFEED2100000;
1332 	iov[33].iov_len = 4096;
1333 	iov[34].iov_base = (void *)0xFEED2200000;
1334 	iov[34].iov_len = 4096;
1335 	iov[35].iov_base = (void *)0xFEED2300000;
1336 	iov[35].iov_len = 4096;
1337 	iov[36].iov_base = (void *)0xFEED2400000;
1338 	iov[36].iov_len = 4096;
1339 	iov[37].iov_base = (void *)0xFEED2500000;
1340 	iov[37].iov_len = 4096;
1341 	iov[38].iov_base = (void *)0xFEED2600000;
1342 	iov[38].iov_len = 4096;
1343 	iov[39].iov_base = (void *)0xFEED2700000;
1344 	iov[39].iov_len = 4096;
1345 	iov[40].iov_base = (void *)0xFEED2800000;
1346 	iov[40].iov_len = 4096;
1347 	iov[41].iov_base = (void *)0xFEED2900000;
1348 	iov[41].iov_len = 4096;
1349 	iov[42].iov_base = (void *)0xFEED2A00000;
1350 	iov[42].iov_len = 4096;
1351 	iov[43].iov_base = (void *)0xFEED2B00000;
1352 	iov[43].iov_len = 12288;
1353 	iov[44].iov_base = (void *)0xFEED2C00000;
1354 	iov[44].iov_len = 8192;
1355 	iov[45].iov_base = (void *)0xFEED2F00000;
1356 	iov[45].iov_len = 4096;
1357 	iov[46].iov_base = (void *)0xFEED3000000;
1358 	iov[46].iov_len = 4096;
1359 	iov[47].iov_base = (void *)0xFEED3100000;
1360 	iov[47].iov_len = 4096;
1361 	iov[48].iov_base = (void *)0xFEED3200000;
1362 	iov[48].iov_len = 24576;
1363 	iov[49].iov_base = (void *)0xFEED3300000;
1364 	iov[49].iov_len = 16384;
1365 	iov[50].iov_base = (void *)0xFEED3400000;
1366 	iov[50].iov_len = 12288;
1367 	iov[51].iov_base = (void *)0xFEED3500000;
1368 	iov[51].iov_len = 4096;
1369 	iov[52].iov_base = (void *)0xFEED3600000;
1370 	iov[52].iov_len = 4096;
1371 	iov[53].iov_base = (void *)0xFEED3700000;
1372 	iov[53].iov_len = 4096;
1373 	iov[54].iov_base = (void *)0xFEED3800000;
1374 	iov[54].iov_len = 28672;
1375 	iov[55].iov_base = (void *)0xFEED3900000;
1376 	iov[55].iov_len = 20480;
1377 	iov[56].iov_base = (void *)0xFEED3A00000;
1378 	iov[56].iov_len = 4096;
1379 	iov[57].iov_base = (void *)0xFEED3B00000;
1380 	iov[57].iov_len = 12288;
1381 	iov[58].iov_base = (void *)0xFEED3C00000;
1382 	iov[58].iov_len = 4096;
1383 	iov[59].iov_base = (void *)0xFEED3D00000;
1384 	iov[59].iov_len = 4096;
1385 	iov[60].iov_base = (void *)0xFEED3E00000;
1386 	iov[60].iov_len = 352;
1387 
1388 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1389 	 * of child iovs,
1390 	 */
1391 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1392 	for (i = 0; i < 32; i++) {
1393 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1394 	}
1395 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1396 
1397 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1398 	 * split by the IO boundary requirement.
1399 	 */
1400 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1401 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1402 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1403 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1404 
1405 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1406 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1407 	 */
1408 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1409 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1410 			       iov[33].iov_len - 864);
1411 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1412 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1413 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1414 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1415 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1416 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1417 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1418 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1419 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1420 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1421 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1422 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1423 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1424 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1425 
1426 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1427 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1428 	 */
1429 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1430 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1431 			       iov[46].iov_len - 864);
1432 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1433 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1434 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1435 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1436 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1437 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1438 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1439 
1440 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1441 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1442 	 */
1443 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1444 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1445 			       iov[52].iov_len - 864);
1446 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1447 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1448 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1449 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1450 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1451 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1452 
1453 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1454 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1455 	 */
1456 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1457 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1458 			       iov[57].iov_len - 4960);
1459 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1460 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1461 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1462 
1463 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1464 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1465 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1466 			       iov[59].iov_len - 3936);
1467 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1468 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1469 
1470 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 61, 0, 543, io_done, NULL);
1471 	CU_ASSERT(rc == 0);
1472 	CU_ASSERT(g_io_done == false);
1473 
1474 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1475 	stub_complete_io(1);
1476 	CU_ASSERT(g_io_done == false);
1477 
1478 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1479 	stub_complete_io(5);
1480 	CU_ASSERT(g_io_done == false);
1481 
1482 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1483 	stub_complete_io(1);
1484 	CU_ASSERT(g_io_done == true);
1485 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1486 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1487 
1488 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1489 	 * split, so test that.
1490 	 */
1491 	bdev->optimal_io_boundary = 15;
1492 	g_io_done = false;
1493 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1494 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1495 
1496 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1497 	CU_ASSERT(rc == 0);
1498 	CU_ASSERT(g_io_done == false);
1499 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1500 	stub_complete_io(1);
1501 	CU_ASSERT(g_io_done == true);
1502 
1503 	/* Test an UNMAP.  This should also not be split. */
1504 	bdev->optimal_io_boundary = 16;
1505 	g_io_done = false;
1506 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1507 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1508 
1509 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1510 	CU_ASSERT(rc == 0);
1511 	CU_ASSERT(g_io_done == false);
1512 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1513 	stub_complete_io(1);
1514 	CU_ASSERT(g_io_done == true);
1515 
1516 	/* Test a FLUSH.  This should also not be split. */
1517 	bdev->optimal_io_boundary = 16;
1518 	g_io_done = false;
1519 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1520 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1521 
1522 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1523 	CU_ASSERT(rc == 0);
1524 	CU_ASSERT(g_io_done == false);
1525 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1526 	stub_complete_io(1);
1527 	CU_ASSERT(g_io_done == true);
1528 
1529 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1530 
1531 	/* Children requests return an error status */
1532 	bdev->optimal_io_boundary = 16;
1533 	iov[0].iov_base = (void *)0x10000;
1534 	iov[0].iov_len = 512 * 64;
1535 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1536 	g_io_done = false;
1537 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1538 
1539 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1540 	CU_ASSERT(rc == 0);
1541 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1542 	stub_complete_io(4);
1543 	CU_ASSERT(g_io_done == false);
1544 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1545 	stub_complete_io(1);
1546 	CU_ASSERT(g_io_done == true);
1547 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1548 
1549 	/* Test if a multi vector command terminated with failure before continueing
1550 	 * splitting process when one of child I/O failed.
1551 	 * The multi vector command is as same as the above that needs to be split by strip
1552 	 * and then needs to be split further due to the capacity of child iovs.
1553 	 */
1554 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1555 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1556 		iov[i].iov_len = 512;
1557 	}
1558 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1559 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1560 
1561 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1562 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1563 
1564 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1565 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1566 
1567 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1568 
1569 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1570 	g_io_done = false;
1571 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1572 
1573 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
1574 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1575 	CU_ASSERT(rc == 0);
1576 	CU_ASSERT(g_io_done == false);
1577 
1578 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1579 	stub_complete_io(1);
1580 	CU_ASSERT(g_io_done == true);
1581 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1582 
1583 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1584 
1585 	/* for this test we will create the following conditions to hit the code path where
1586 	 * we are trying to send and IO following a split that has no iovs because we had to
1587 	 * trim them for alignment reasons.
1588 	 *
1589 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1590 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1591 	 *   position 30 and overshoot by 0x2e.
1592 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1593 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1594 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1595 	 *   and let the completion pick up the last 2 vectors.
1596 	 */
1597 	bdev->optimal_io_boundary = 32;
1598 	bdev->split_on_optimal_io_boundary = true;
1599 	g_io_done = false;
1600 
1601 	/* Init all parent IOVs to 0x212 */
1602 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1603 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1604 		iov[i].iov_len = 0x212;
1605 	}
1606 
1607 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1608 					   BDEV_IO_NUM_CHILD_IOV - 1);
1609 	/* expect 0-29 to be 1:1 with the parent iov */
1610 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1611 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1612 	}
1613 
1614 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1615 	 * where 0x1e is the amount we overshot the 16K boundary
1616 	 */
1617 	ut_expected_io_set_iov(expected_io, BDEV_IO_NUM_CHILD_IOV - 2,
1618 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1619 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1620 
1621 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1622 	 * shortened that take it to the next boundary and then a final one to get us to
1623 	 * 0x4200 bytes for the IO.
1624 	 */
1625 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1626 					   BDEV_IO_NUM_CHILD_IOV, 2);
1627 	/* position 30 picked up the remaining bytes to the next boundary */
1628 	ut_expected_io_set_iov(expected_io, 0,
1629 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
1630 
1631 	/* position 31 picked the the rest of the trasnfer to get us to 0x4200 */
1632 	ut_expected_io_set_iov(expected_io, 1,
1633 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
1634 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1635 
1636 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 1, 0,
1637 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1638 	CU_ASSERT(rc == 0);
1639 	CU_ASSERT(g_io_done == false);
1640 
1641 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1642 	stub_complete_io(1);
1643 	CU_ASSERT(g_io_done == false);
1644 
1645 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1646 	stub_complete_io(1);
1647 	CU_ASSERT(g_io_done == true);
1648 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1649 
1650 	spdk_put_io_channel(io_ch);
1651 	spdk_bdev_close(desc);
1652 	free_bdev(bdev);
1653 	spdk_bdev_finish(bdev_fini_cb, NULL);
1654 	poll_threads();
1655 }
1656 
1657 static void
1658 bdev_io_split_with_io_wait(void)
1659 {
1660 	struct spdk_bdev *bdev;
1661 	struct spdk_bdev_desc *desc = NULL;
1662 	struct spdk_io_channel *io_ch;
1663 	struct spdk_bdev_channel *channel;
1664 	struct spdk_bdev_mgmt_channel *mgmt_ch;
1665 	struct spdk_bdev_opts bdev_opts = {
1666 		.bdev_io_pool_size = 2,
1667 		.bdev_io_cache_size = 1,
1668 	};
1669 	struct iovec iov[3];
1670 	struct ut_expected_io *expected_io;
1671 	int rc;
1672 
1673 	rc = spdk_bdev_set_opts(&bdev_opts);
1674 	CU_ASSERT(rc == 0);
1675 	spdk_bdev_initialize(bdev_init_cb, NULL);
1676 
1677 	bdev = allocate_bdev("bdev0");
1678 
1679 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
1680 	CU_ASSERT(rc == 0);
1681 	CU_ASSERT(desc != NULL);
1682 	io_ch = spdk_bdev_get_io_channel(desc);
1683 	CU_ASSERT(io_ch != NULL);
1684 	channel = spdk_io_channel_get_ctx(io_ch);
1685 	mgmt_ch = channel->shared_resource->mgmt_ch;
1686 
1687 	bdev->optimal_io_boundary = 16;
1688 	bdev->split_on_optimal_io_boundary = true;
1689 
1690 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1691 	CU_ASSERT(rc == 0);
1692 
1693 	/* Now test that a single-vector command is split correctly.
1694 	 * Offset 14, length 8, payload 0xF000
1695 	 *  Child - Offset 14, length 2, payload 0xF000
1696 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1697 	 *
1698 	 * Set up the expected values before calling spdk_bdev_read_blocks
1699 	 */
1700 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1701 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1702 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1703 
1704 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1705 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1706 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1707 
1708 	/* The following children will be submitted sequentially due to the capacity of
1709 	 * spdk_bdev_io.
1710 	 */
1711 
1712 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
1713 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1714 	CU_ASSERT(rc == 0);
1715 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
1716 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1717 
1718 	/* Completing the first read I/O will submit the first child */
1719 	stub_complete_io(1);
1720 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
1721 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1722 
1723 	/* Completing the first child will submit the second child */
1724 	stub_complete_io(1);
1725 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1726 
1727 	/* Complete the second child I/O.  This should result in our callback getting
1728 	 * invoked since the parent I/O is now complete.
1729 	 */
1730 	stub_complete_io(1);
1731 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1732 
1733 	/* Now set up a more complex, multi-vector command that needs to be split,
1734 	 *  including splitting iovecs.
1735 	 */
1736 	iov[0].iov_base = (void *)0x10000;
1737 	iov[0].iov_len = 512;
1738 	iov[1].iov_base = (void *)0x20000;
1739 	iov[1].iov_len = 20 * 512;
1740 	iov[2].iov_base = (void *)0x30000;
1741 	iov[2].iov_len = 11 * 512;
1742 
1743 	g_io_done = false;
1744 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1745 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1746 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1747 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1748 
1749 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1750 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1751 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1752 
1753 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1754 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1755 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1756 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1757 
1758 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
1759 	CU_ASSERT(rc == 0);
1760 	CU_ASSERT(g_io_done == false);
1761 
1762 	/* The following children will be submitted sequentially due to the capacity of
1763 	 * spdk_bdev_io.
1764 	 */
1765 
1766 	/* Completing the first child will submit the second child */
1767 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1768 	stub_complete_io(1);
1769 	CU_ASSERT(g_io_done == false);
1770 
1771 	/* Completing the second child will submit the third child */
1772 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1773 	stub_complete_io(1);
1774 	CU_ASSERT(g_io_done == false);
1775 
1776 	/* Completing the third child will result in our callback getting invoked
1777 	 * since the parent I/O is now complete.
1778 	 */
1779 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1780 	stub_complete_io(1);
1781 	CU_ASSERT(g_io_done == true);
1782 
1783 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1784 
1785 	spdk_put_io_channel(io_ch);
1786 	spdk_bdev_close(desc);
1787 	free_bdev(bdev);
1788 	spdk_bdev_finish(bdev_fini_cb, NULL);
1789 	poll_threads();
1790 }
1791 
1792 static void
1793 bdev_io_alignment(void)
1794 {
1795 	struct spdk_bdev *bdev;
1796 	struct spdk_bdev_desc *desc = NULL;
1797 	struct spdk_io_channel *io_ch;
1798 	struct spdk_bdev_opts bdev_opts = {
1799 		.bdev_io_pool_size = 20,
1800 		.bdev_io_cache_size = 2,
1801 	};
1802 	int rc;
1803 	void *buf;
1804 	struct iovec iovs[2];
1805 	int iovcnt;
1806 	uint64_t alignment;
1807 
1808 	rc = spdk_bdev_set_opts(&bdev_opts);
1809 	CU_ASSERT(rc == 0);
1810 	spdk_bdev_initialize(bdev_init_cb, NULL);
1811 
1812 	fn_table.submit_request = stub_submit_request_get_buf;
1813 	bdev = allocate_bdev("bdev0");
1814 
1815 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
1816 	CU_ASSERT(rc == 0);
1817 	CU_ASSERT(desc != NULL);
1818 	io_ch = spdk_bdev_get_io_channel(desc);
1819 	CU_ASSERT(io_ch != NULL);
1820 
1821 	/* Create aligned buffer */
1822 	rc = posix_memalign(&buf, 4096, 8192);
1823 	SPDK_CU_ASSERT_FATAL(rc == 0);
1824 
1825 	/* Pass aligned single buffer with no alignment required */
1826 	alignment = 1;
1827 	bdev->required_alignment = spdk_u32log2(alignment);
1828 
1829 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
1830 	CU_ASSERT(rc == 0);
1831 	stub_complete_io(1);
1832 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1833 				    alignment));
1834 
1835 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
1836 	CU_ASSERT(rc == 0);
1837 	stub_complete_io(1);
1838 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1839 				    alignment));
1840 
1841 	/* Pass unaligned single buffer with no alignment required */
1842 	alignment = 1;
1843 	bdev->required_alignment = spdk_u32log2(alignment);
1844 
1845 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
1846 	CU_ASSERT(rc == 0);
1847 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1848 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
1849 	stub_complete_io(1);
1850 
1851 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
1852 	CU_ASSERT(rc == 0);
1853 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1854 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
1855 	stub_complete_io(1);
1856 
1857 	/* Pass unaligned single buffer with 512 alignment required */
1858 	alignment = 512;
1859 	bdev->required_alignment = spdk_u32log2(alignment);
1860 
1861 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
1862 	CU_ASSERT(rc == 0);
1863 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
1864 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1865 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1866 				    alignment));
1867 	stub_complete_io(1);
1868 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1869 
1870 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
1871 	CU_ASSERT(rc == 0);
1872 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
1873 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1874 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1875 				    alignment));
1876 	stub_complete_io(1);
1877 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1878 
1879 	/* Pass unaligned single buffer with 4096 alignment required */
1880 	alignment = 4096;
1881 	bdev->required_alignment = spdk_u32log2(alignment);
1882 
1883 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
1884 	CU_ASSERT(rc == 0);
1885 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
1886 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1887 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1888 				    alignment));
1889 	stub_complete_io(1);
1890 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1891 
1892 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
1893 	CU_ASSERT(rc == 0);
1894 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
1895 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1896 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1897 				    alignment));
1898 	stub_complete_io(1);
1899 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1900 
1901 	/* Pass aligned iovs with no alignment required */
1902 	alignment = 1;
1903 	bdev->required_alignment = spdk_u32log2(alignment);
1904 
1905 	iovcnt = 1;
1906 	iovs[0].iov_base = buf;
1907 	iovs[0].iov_len = 512;
1908 
1909 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1910 	CU_ASSERT(rc == 0);
1911 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1912 	stub_complete_io(1);
1913 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
1914 
1915 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1916 	CU_ASSERT(rc == 0);
1917 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1918 	stub_complete_io(1);
1919 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
1920 
1921 	/* Pass unaligned iovs with no alignment required */
1922 	alignment = 1;
1923 	bdev->required_alignment = spdk_u32log2(alignment);
1924 
1925 	iovcnt = 2;
1926 	iovs[0].iov_base = buf + 16;
1927 	iovs[0].iov_len = 256;
1928 	iovs[1].iov_base = buf + 16 + 256 + 32;
1929 	iovs[1].iov_len = 256;
1930 
1931 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1932 	CU_ASSERT(rc == 0);
1933 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1934 	stub_complete_io(1);
1935 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
1936 
1937 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1938 	CU_ASSERT(rc == 0);
1939 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1940 	stub_complete_io(1);
1941 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
1942 
1943 	/* Pass unaligned iov with 2048 alignment required */
1944 	alignment = 2048;
1945 	bdev->required_alignment = spdk_u32log2(alignment);
1946 
1947 	iovcnt = 2;
1948 	iovs[0].iov_base = buf + 16;
1949 	iovs[0].iov_len = 256;
1950 	iovs[1].iov_base = buf + 16 + 256 + 32;
1951 	iovs[1].iov_len = 256;
1952 
1953 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1954 	CU_ASSERT(rc == 0);
1955 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
1956 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1957 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1958 				    alignment));
1959 	stub_complete_io(1);
1960 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1961 
1962 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1963 	CU_ASSERT(rc == 0);
1964 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
1965 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1966 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1967 				    alignment));
1968 	stub_complete_io(1);
1969 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1970 
1971 	/* Pass iov without allocated buffer without alignment required */
1972 	alignment = 1;
1973 	bdev->required_alignment = spdk_u32log2(alignment);
1974 
1975 	iovcnt = 1;
1976 	iovs[0].iov_base = NULL;
1977 	iovs[0].iov_len = 0;
1978 
1979 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1980 	CU_ASSERT(rc == 0);
1981 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1982 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1983 				    alignment));
1984 	stub_complete_io(1);
1985 
1986 	/* Pass iov without allocated buffer with 1024 alignment required */
1987 	alignment = 1024;
1988 	bdev->required_alignment = spdk_u32log2(alignment);
1989 
1990 	iovcnt = 1;
1991 	iovs[0].iov_base = NULL;
1992 	iovs[0].iov_len = 0;
1993 
1994 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1995 	CU_ASSERT(rc == 0);
1996 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1997 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1998 				    alignment));
1999 	stub_complete_io(1);
2000 
2001 	spdk_put_io_channel(io_ch);
2002 	spdk_bdev_close(desc);
2003 	free_bdev(bdev);
2004 	fn_table.submit_request = stub_submit_request;
2005 	spdk_bdev_finish(bdev_fini_cb, NULL);
2006 	poll_threads();
2007 
2008 	free(buf);
2009 }
2010 
2011 static void
2012 bdev_io_alignment_with_boundary(void)
2013 {
2014 	struct spdk_bdev *bdev;
2015 	struct spdk_bdev_desc *desc = NULL;
2016 	struct spdk_io_channel *io_ch;
2017 	struct spdk_bdev_opts bdev_opts = {
2018 		.bdev_io_pool_size = 20,
2019 		.bdev_io_cache_size = 2,
2020 	};
2021 	int rc;
2022 	void *buf;
2023 	struct iovec iovs[2];
2024 	int iovcnt;
2025 	uint64_t alignment;
2026 
2027 	rc = spdk_bdev_set_opts(&bdev_opts);
2028 	CU_ASSERT(rc == 0);
2029 	spdk_bdev_initialize(bdev_init_cb, NULL);
2030 
2031 	fn_table.submit_request = stub_submit_request_get_buf;
2032 	bdev = allocate_bdev("bdev0");
2033 
2034 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
2035 	CU_ASSERT(rc == 0);
2036 	CU_ASSERT(desc != NULL);
2037 	io_ch = spdk_bdev_get_io_channel(desc);
2038 	CU_ASSERT(io_ch != NULL);
2039 
2040 	/* Create aligned buffer */
2041 	rc = posix_memalign(&buf, 4096, 131072);
2042 	SPDK_CU_ASSERT_FATAL(rc == 0);
2043 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2044 
2045 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
2046 	alignment = 512;
2047 	bdev->required_alignment = spdk_u32log2(alignment);
2048 	bdev->optimal_io_boundary = 2;
2049 	bdev->split_on_optimal_io_boundary = true;
2050 
2051 	iovcnt = 1;
2052 	iovs[0].iov_base = NULL;
2053 	iovs[0].iov_len = 512 * 3;
2054 
2055 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
2056 	CU_ASSERT(rc == 0);
2057 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2058 	stub_complete_io(2);
2059 
2060 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
2061 	alignment = 512;
2062 	bdev->required_alignment = spdk_u32log2(alignment);
2063 	bdev->optimal_io_boundary = 16;
2064 	bdev->split_on_optimal_io_boundary = true;
2065 
2066 	iovcnt = 1;
2067 	iovs[0].iov_base = NULL;
2068 	iovs[0].iov_len = 512 * 16;
2069 
2070 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
2071 	CU_ASSERT(rc == 0);
2072 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2073 	stub_complete_io(2);
2074 
2075 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
2076 	alignment = 512;
2077 	bdev->required_alignment = spdk_u32log2(alignment);
2078 	bdev->optimal_io_boundary = 128;
2079 	bdev->split_on_optimal_io_boundary = true;
2080 
2081 	iovcnt = 1;
2082 	iovs[0].iov_base = buf + 16;
2083 	iovs[0].iov_len = 512 * 160;
2084 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
2085 	CU_ASSERT(rc == 0);
2086 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2087 	stub_complete_io(2);
2088 
2089 	/* 512 * 3 with 2 IO boundary */
2090 	alignment = 512;
2091 	bdev->required_alignment = spdk_u32log2(alignment);
2092 	bdev->optimal_io_boundary = 2;
2093 	bdev->split_on_optimal_io_boundary = true;
2094 
2095 	iovcnt = 2;
2096 	iovs[0].iov_base = buf + 16;
2097 	iovs[0].iov_len = 512;
2098 	iovs[1].iov_base = buf + 16 + 512 + 32;
2099 	iovs[1].iov_len = 1024;
2100 
2101 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
2102 	CU_ASSERT(rc == 0);
2103 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2104 	stub_complete_io(2);
2105 
2106 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
2107 	CU_ASSERT(rc == 0);
2108 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2109 	stub_complete_io(2);
2110 
2111 	/* 512 * 64 with 32 IO boundary */
2112 	bdev->optimal_io_boundary = 32;
2113 	iovcnt = 2;
2114 	iovs[0].iov_base = buf + 16;
2115 	iovs[0].iov_len = 16384;
2116 	iovs[1].iov_base = buf + 16 + 16384 + 32;
2117 	iovs[1].iov_len = 16384;
2118 
2119 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
2120 	CU_ASSERT(rc == 0);
2121 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2122 	stub_complete_io(3);
2123 
2124 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
2125 	CU_ASSERT(rc == 0);
2126 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2127 	stub_complete_io(3);
2128 
2129 	/* 512 * 160 with 32 IO boundary */
2130 	iovcnt = 1;
2131 	iovs[0].iov_base = buf + 16;
2132 	iovs[0].iov_len = 16384 + 65536;
2133 
2134 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
2135 	CU_ASSERT(rc == 0);
2136 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2137 	stub_complete_io(6);
2138 
2139 	spdk_put_io_channel(io_ch);
2140 	spdk_bdev_close(desc);
2141 	free_bdev(bdev);
2142 	fn_table.submit_request = stub_submit_request;
2143 	spdk_bdev_finish(bdev_fini_cb, NULL);
2144 	poll_threads();
2145 
2146 	free(buf);
2147 }
2148 
2149 static void
2150 histogram_status_cb(void *cb_arg, int status)
2151 {
2152 	g_status = status;
2153 }
2154 
2155 static void
2156 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
2157 {
2158 	g_status = status;
2159 	g_histogram = histogram;
2160 }
2161 
2162 static void
2163 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
2164 		   uint64_t total, uint64_t so_far)
2165 {
2166 	g_count += count;
2167 }
2168 
2169 static void
2170 bdev_histograms(void)
2171 {
2172 	struct spdk_bdev *bdev;
2173 	struct spdk_bdev_desc *desc = NULL;
2174 	struct spdk_io_channel *ch;
2175 	struct spdk_histogram_data *histogram;
2176 	uint8_t buf[4096];
2177 	int rc;
2178 
2179 	spdk_bdev_initialize(bdev_init_cb, NULL);
2180 
2181 	bdev = allocate_bdev("bdev");
2182 
2183 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
2184 	CU_ASSERT(rc == 0);
2185 	CU_ASSERT(desc != NULL);
2186 
2187 	ch = spdk_bdev_get_io_channel(desc);
2188 	CU_ASSERT(ch != NULL);
2189 
2190 	/* Enable histogram */
2191 	g_status = -1;
2192 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
2193 	poll_threads();
2194 	CU_ASSERT(g_status == 0);
2195 	CU_ASSERT(bdev->internal.histogram_enabled == true);
2196 
2197 	/* Allocate histogram */
2198 	histogram = spdk_histogram_data_alloc();
2199 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
2200 
2201 	/* Check if histogram is zeroed */
2202 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
2203 	poll_threads();
2204 	CU_ASSERT(g_status == 0);
2205 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
2206 
2207 	g_count = 0;
2208 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
2209 
2210 	CU_ASSERT(g_count == 0);
2211 
2212 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
2213 	CU_ASSERT(rc == 0);
2214 
2215 	spdk_delay_us(10);
2216 	stub_complete_io(1);
2217 	poll_threads();
2218 
2219 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
2220 	CU_ASSERT(rc == 0);
2221 
2222 	spdk_delay_us(10);
2223 	stub_complete_io(1);
2224 	poll_threads();
2225 
2226 	/* Check if histogram gathered data from all I/O channels */
2227 	g_histogram = NULL;
2228 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
2229 	poll_threads();
2230 	CU_ASSERT(g_status == 0);
2231 	CU_ASSERT(bdev->internal.histogram_enabled == true);
2232 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
2233 
2234 	g_count = 0;
2235 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
2236 	CU_ASSERT(g_count == 2);
2237 
2238 	/* Disable histogram */
2239 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
2240 	poll_threads();
2241 	CU_ASSERT(g_status == 0);
2242 	CU_ASSERT(bdev->internal.histogram_enabled == false);
2243 
2244 	/* Try to run histogram commands on disabled bdev */
2245 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
2246 	poll_threads();
2247 	CU_ASSERT(g_status == -EFAULT);
2248 
2249 	spdk_histogram_data_free(histogram);
2250 	spdk_put_io_channel(ch);
2251 	spdk_bdev_close(desc);
2252 	free_bdev(bdev);
2253 	spdk_bdev_finish(bdev_fini_cb, NULL);
2254 	poll_threads();
2255 }
2256 
2257 static void
2258 _bdev_compare(bool emulated)
2259 {
2260 	struct spdk_bdev *bdev;
2261 	struct spdk_bdev_desc *desc = NULL;
2262 	struct spdk_io_channel *ioch;
2263 	struct ut_expected_io *expected_io;
2264 	uint64_t offset, num_blocks;
2265 	uint32_t num_completed;
2266 	char aa_buf[512];
2267 	char bb_buf[512];
2268 	struct iovec compare_iov;
2269 	uint8_t io_type;
2270 	int rc;
2271 
2272 	if (emulated) {
2273 		io_type = SPDK_BDEV_IO_TYPE_READ;
2274 	} else {
2275 		io_type = SPDK_BDEV_IO_TYPE_COMPARE;
2276 	}
2277 
2278 	memset(aa_buf, 0xaa, sizeof(aa_buf));
2279 	memset(bb_buf, 0xbb, sizeof(bb_buf));
2280 
2281 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
2282 
2283 	spdk_bdev_initialize(bdev_init_cb, NULL);
2284 	fn_table.submit_request = stub_submit_request_get_buf;
2285 	bdev = allocate_bdev("bdev");
2286 
2287 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
2288 	CU_ASSERT_EQUAL(rc, 0);
2289 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2290 	ioch = spdk_bdev_get_io_channel(desc);
2291 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
2292 
2293 	fn_table.submit_request = stub_submit_request_get_buf;
2294 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2295 
2296 	offset = 50;
2297 	num_blocks = 1;
2298 	compare_iov.iov_base = aa_buf;
2299 	compare_iov.iov_len = sizeof(aa_buf);
2300 
2301 	expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
2302 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2303 
2304 	g_io_done = false;
2305 	g_compare_read_buf = aa_buf;
2306 	g_compare_read_buf_len = sizeof(aa_buf);
2307 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
2308 	CU_ASSERT_EQUAL(rc, 0);
2309 	num_completed = stub_complete_io(1);
2310 	CU_ASSERT_EQUAL(num_completed, 1);
2311 	CU_ASSERT(g_io_done == true);
2312 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
2313 
2314 	expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
2315 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2316 
2317 	g_io_done = false;
2318 	g_compare_read_buf = bb_buf;
2319 	g_compare_read_buf_len = sizeof(bb_buf);
2320 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
2321 	CU_ASSERT_EQUAL(rc, 0);
2322 	num_completed = stub_complete_io(1);
2323 	CU_ASSERT_EQUAL(num_completed, 1);
2324 	CU_ASSERT(g_io_done == true);
2325 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
2326 
2327 	spdk_put_io_channel(ioch);
2328 	spdk_bdev_close(desc);
2329 	free_bdev(bdev);
2330 	fn_table.submit_request = stub_submit_request;
2331 	spdk_bdev_finish(bdev_fini_cb, NULL);
2332 	poll_threads();
2333 
2334 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
2335 
2336 	g_compare_read_buf = NULL;
2337 }
2338 
2339 static void
2340 bdev_compare(void)
2341 {
2342 	_bdev_compare(true);
2343 	_bdev_compare(false);
2344 }
2345 
2346 static void
2347 bdev_compare_and_write(void)
2348 {
2349 	struct spdk_bdev *bdev;
2350 	struct spdk_bdev_desc *desc = NULL;
2351 	struct spdk_io_channel *ioch;
2352 	struct ut_expected_io *expected_io;
2353 	uint64_t offset, num_blocks;
2354 	uint32_t num_completed;
2355 	char aa_buf[512];
2356 	char bb_buf[512];
2357 	char cc_buf[512];
2358 	char write_buf[512];
2359 	struct iovec compare_iov;
2360 	struct iovec write_iov;
2361 	int rc;
2362 
2363 	memset(aa_buf, 0xaa, sizeof(aa_buf));
2364 	memset(bb_buf, 0xbb, sizeof(bb_buf));
2365 	memset(cc_buf, 0xcc, sizeof(cc_buf));
2366 
2367 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
2368 
2369 	spdk_bdev_initialize(bdev_init_cb, NULL);
2370 	fn_table.submit_request = stub_submit_request_get_buf;
2371 	bdev = allocate_bdev("bdev");
2372 
2373 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
2374 	CU_ASSERT_EQUAL(rc, 0);
2375 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2376 	ioch = spdk_bdev_get_io_channel(desc);
2377 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
2378 
2379 	fn_table.submit_request = stub_submit_request_get_buf;
2380 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2381 
2382 	offset = 50;
2383 	num_blocks = 1;
2384 	compare_iov.iov_base = aa_buf;
2385 	compare_iov.iov_len = sizeof(aa_buf);
2386 	write_iov.iov_base = bb_buf;
2387 	write_iov.iov_len = sizeof(bb_buf);
2388 
2389 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
2390 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2391 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
2392 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2393 
2394 	g_io_done = false;
2395 	g_compare_read_buf = aa_buf;
2396 	g_compare_read_buf_len = sizeof(aa_buf);
2397 	memset(write_buf, 0, sizeof(write_buf));
2398 	g_compare_write_buf = write_buf;
2399 	g_compare_write_buf_len = sizeof(write_buf);
2400 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
2401 			offset, num_blocks, io_done, NULL);
2402 	/* Trigger range locking */
2403 	poll_threads();
2404 	CU_ASSERT_EQUAL(rc, 0);
2405 	num_completed = stub_complete_io(1);
2406 	CU_ASSERT_EQUAL(num_completed, 1);
2407 	CU_ASSERT(g_io_done == false);
2408 	num_completed = stub_complete_io(1);
2409 	/* Trigger range unlocking */
2410 	poll_threads();
2411 	CU_ASSERT_EQUAL(num_completed, 1);
2412 	CU_ASSERT(g_io_done == true);
2413 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
2414 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
2415 
2416 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
2417 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2418 
2419 	g_io_done = false;
2420 	g_compare_read_buf = cc_buf;
2421 	g_compare_read_buf_len = sizeof(cc_buf);
2422 	memset(write_buf, 0, sizeof(write_buf));
2423 	g_compare_write_buf = write_buf;
2424 	g_compare_write_buf_len = sizeof(write_buf);
2425 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
2426 			offset, num_blocks, io_done, NULL);
2427 	/* Trigger range locking */
2428 	poll_threads();
2429 	CU_ASSERT_EQUAL(rc, 0);
2430 	num_completed = stub_complete_io(1);
2431 	/* Trigger range unlocking earlier because we expect error here */
2432 	poll_threads();
2433 	CU_ASSERT_EQUAL(num_completed, 1);
2434 	CU_ASSERT(g_io_done == true);
2435 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
2436 	num_completed = stub_complete_io(1);
2437 	CU_ASSERT_EQUAL(num_completed, 0);
2438 
2439 	spdk_put_io_channel(ioch);
2440 	spdk_bdev_close(desc);
2441 	free_bdev(bdev);
2442 	fn_table.submit_request = stub_submit_request;
2443 	spdk_bdev_finish(bdev_fini_cb, NULL);
2444 	poll_threads();
2445 
2446 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
2447 
2448 	g_compare_read_buf = NULL;
2449 	g_compare_write_buf = NULL;
2450 }
2451 
2452 static void
2453 bdev_write_zeroes(void)
2454 {
2455 	struct spdk_bdev *bdev;
2456 	struct spdk_bdev_desc *desc = NULL;
2457 	struct spdk_io_channel *ioch;
2458 	struct ut_expected_io *expected_io;
2459 	uint64_t offset, num_io_blocks, num_blocks;
2460 	uint32_t num_completed, num_requests;
2461 	int rc;
2462 
2463 	spdk_bdev_initialize(bdev_init_cb, NULL);
2464 	bdev = allocate_bdev("bdev");
2465 
2466 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
2467 	CU_ASSERT_EQUAL(rc, 0);
2468 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2469 	ioch = spdk_bdev_get_io_channel(desc);
2470 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
2471 
2472 	fn_table.submit_request = stub_submit_request;
2473 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2474 
2475 	/* First test that if the bdev supports write_zeroes, the request won't be split */
2476 	bdev->md_len = 0;
2477 	bdev->blocklen = 4096;
2478 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
2479 
2480 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
2481 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2482 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
2483 	CU_ASSERT_EQUAL(rc, 0);
2484 	num_completed = stub_complete_io(1);
2485 	CU_ASSERT_EQUAL(num_completed, 1);
2486 
2487 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
2488 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
2489 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
2490 	num_requests = 2;
2491 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
2492 
2493 	for (offset = 0; offset < num_requests; ++offset) {
2494 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
2495 						   offset * num_io_blocks, num_io_blocks, 0);
2496 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2497 	}
2498 
2499 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
2500 	CU_ASSERT_EQUAL(rc, 0);
2501 	num_completed = stub_complete_io(num_requests);
2502 	CU_ASSERT_EQUAL(num_completed, num_requests);
2503 
2504 	/* Check that the splitting is correct if bdev has interleaved metadata */
2505 	bdev->md_interleave = true;
2506 	bdev->md_len = 64;
2507 	bdev->blocklen = 4096 + 64;
2508 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
2509 
2510 	num_requests = offset = 0;
2511 	while (offset < num_blocks) {
2512 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
2513 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
2514 						   offset, num_io_blocks, 0);
2515 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2516 		offset += num_io_blocks;
2517 		num_requests++;
2518 	}
2519 
2520 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
2521 	CU_ASSERT_EQUAL(rc, 0);
2522 	num_completed = stub_complete_io(num_requests);
2523 	CU_ASSERT_EQUAL(num_completed, num_requests);
2524 	num_completed = stub_complete_io(num_requests);
2525 	assert(num_completed == 0);
2526 
2527 	/* Check the the same for separate metadata buffer */
2528 	bdev->md_interleave = false;
2529 	bdev->md_len = 64;
2530 	bdev->blocklen = 4096;
2531 
2532 	num_requests = offset = 0;
2533 	while (offset < num_blocks) {
2534 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
2535 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
2536 						   offset, num_io_blocks, 0);
2537 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
2538 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2539 		offset += num_io_blocks;
2540 		num_requests++;
2541 	}
2542 
2543 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
2544 	CU_ASSERT_EQUAL(rc, 0);
2545 	num_completed = stub_complete_io(num_requests);
2546 	CU_ASSERT_EQUAL(num_completed, num_requests);
2547 
2548 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
2549 	spdk_put_io_channel(ioch);
2550 	spdk_bdev_close(desc);
2551 	free_bdev(bdev);
2552 	spdk_bdev_finish(bdev_fini_cb, NULL);
2553 	poll_threads();
2554 }
2555 
2556 static void
2557 bdev_open_while_hotremove(void)
2558 {
2559 	struct spdk_bdev *bdev;
2560 	struct spdk_bdev_desc *desc[2] = {};
2561 	int rc;
2562 
2563 	bdev = allocate_bdev("bdev");
2564 
2565 	rc = spdk_bdev_open(bdev, false, NULL, NULL, &desc[0]);
2566 	CU_ASSERT(rc == 0);
2567 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
2568 
2569 	spdk_bdev_unregister(bdev, NULL, NULL);
2570 
2571 	rc = spdk_bdev_open(bdev, false, NULL, NULL, &desc[1]);
2572 	CU_ASSERT(rc == -ENODEV);
2573 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
2574 
2575 	spdk_bdev_close(desc[0]);
2576 	free_bdev(bdev);
2577 }
2578 
2579 static void
2580 bdev_close_while_hotremove(void)
2581 {
2582 	struct spdk_bdev *bdev;
2583 	struct spdk_bdev_desc *desc = NULL;
2584 	int rc = 0;
2585 
2586 	bdev = allocate_bdev("bdev");
2587 
2588 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
2589 	CU_ASSERT_EQUAL(rc, 0);
2590 
2591 	/* Simulate hot-unplug by unregistering bdev */
2592 	g_event_type1 = 0xFF;
2593 	g_unregister_arg = NULL;
2594 	g_unregister_rc = -1;
2595 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
2596 	/* Close device while remove event is in flight */
2597 	spdk_bdev_close(desc);
2598 
2599 	/* Ensure that unregister callback is delayed */
2600 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
2601 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
2602 
2603 	poll_threads();
2604 
2605 	/* Event callback shall not be issued because device was closed */
2606 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
2607 	/* Unregister callback is issued */
2608 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
2609 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
2610 
2611 	free_bdev(bdev);
2612 }
2613 
2614 static void
2615 bdev_open_ext(void)
2616 {
2617 	struct spdk_bdev *bdev;
2618 	struct spdk_bdev_desc *desc1 = NULL;
2619 	struct spdk_bdev_desc *desc2 = NULL;
2620 	int rc = 0;
2621 
2622 	bdev = allocate_bdev("bdev");
2623 
2624 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
2625 	CU_ASSERT_EQUAL(rc, -EINVAL);
2626 
2627 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
2628 	CU_ASSERT_EQUAL(rc, 0);
2629 
2630 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
2631 	CU_ASSERT_EQUAL(rc, 0);
2632 
2633 	g_event_type1 = 0xFF;
2634 	g_event_type2 = 0xFF;
2635 
2636 	/* Simulate hot-unplug by unregistering bdev */
2637 	spdk_bdev_unregister(bdev, NULL, NULL);
2638 	poll_threads();
2639 
2640 	/* Check if correct events have been triggered in event callback fn */
2641 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
2642 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
2643 
2644 	free_bdev(bdev);
2645 	poll_threads();
2646 }
2647 
2648 struct timeout_io_cb_arg {
2649 	struct iovec iov;
2650 	uint8_t type;
2651 };
2652 
2653 static int
2654 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
2655 {
2656 	struct spdk_bdev_io *bdev_io;
2657 	int n = 0;
2658 
2659 	if (!ch) {
2660 		return -1;
2661 	}
2662 
2663 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
2664 		n++;
2665 	}
2666 
2667 	return n;
2668 }
2669 
2670 static void
2671 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
2672 {
2673 	struct timeout_io_cb_arg *ctx = cb_arg;
2674 
2675 	ctx->type = bdev_io->type;
2676 	ctx->iov.iov_base = bdev_io->iov.iov_base;
2677 	ctx->iov.iov_len = bdev_io->iov.iov_len;
2678 }
2679 
2680 static void
2681 bdev_set_io_timeout(void)
2682 {
2683 	struct spdk_bdev *bdev;
2684 	struct spdk_bdev_desc *desc = NULL;
2685 	struct spdk_io_channel *io_ch = NULL;
2686 	struct spdk_bdev_channel *bdev_ch = NULL;
2687 	struct timeout_io_cb_arg cb_arg;
2688 
2689 	spdk_bdev_initialize(bdev_init_cb, NULL);
2690 
2691 	bdev = allocate_bdev("bdev");
2692 
2693 	CU_ASSERT(spdk_bdev_open(bdev, true, NULL, NULL, &desc) == 0);
2694 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2695 	io_ch = spdk_bdev_get_io_channel(desc);
2696 	CU_ASSERT(io_ch != NULL);
2697 
2698 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
2699 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
2700 
2701 	/* This is the part1.
2702 	 * We will check the bdev_ch->io_submitted list
2703 	 * TO make sure that it can link IOs and only the user submitted IOs
2704 	 */
2705 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
2706 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
2707 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
2708 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
2709 	stub_complete_io(1);
2710 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
2711 	stub_complete_io(1);
2712 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
2713 
2714 	/* Split IO */
2715 	bdev->optimal_io_boundary = 16;
2716 	bdev->split_on_optimal_io_boundary = true;
2717 
2718 	/* Now test that a single-vector command is split correctly.
2719 	 * Offset 14, length 8, payload 0xF000
2720 	 *  Child - Offset 14, length 2, payload 0xF000
2721 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
2722 	 *
2723 	 * Set up the expected values before calling spdk_bdev_read_blocks
2724 	 */
2725 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
2726 	/* We count all submitted IOs including IO that are generated by splitting. */
2727 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
2728 	stub_complete_io(1);
2729 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
2730 	stub_complete_io(1);
2731 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
2732 
2733 	/* Also include the reset IO */
2734 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
2735 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
2736 	poll_threads();
2737 	stub_complete_io(1);
2738 	poll_threads();
2739 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
2740 
2741 	/* This is part2
2742 	 * Test the desc timeout poller register
2743 	 */
2744 
2745 	/* Successfully set the timeout */
2746 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
2747 	CU_ASSERT(desc->io_timeout_poller != NULL);
2748 	CU_ASSERT(desc->timeout_in_sec == 30);
2749 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
2750 	CU_ASSERT(desc->cb_arg == &cb_arg);
2751 
2752 	/* Change the timeout limit */
2753 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
2754 	CU_ASSERT(desc->io_timeout_poller != NULL);
2755 	CU_ASSERT(desc->timeout_in_sec == 20);
2756 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
2757 	CU_ASSERT(desc->cb_arg == &cb_arg);
2758 
2759 	/* Disable the timeout */
2760 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
2761 	CU_ASSERT(desc->io_timeout_poller == NULL);
2762 
2763 	/* This the part3
2764 	 * We will test to catch timeout IO and check whether the IO is
2765 	 * the submitted one.
2766 	 */
2767 	memset(&cb_arg, 0, sizeof(cb_arg));
2768 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
2769 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
2770 
2771 	/* Don't reach the limit */
2772 	spdk_delay_us(15 * spdk_get_ticks_hz());
2773 	poll_threads();
2774 	CU_ASSERT(cb_arg.type == 0);
2775 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
2776 	CU_ASSERT(cb_arg.iov.iov_len == 0);
2777 
2778 	/* 15 + 15 = 30 reach the limit */
2779 	spdk_delay_us(15 * spdk_get_ticks_hz());
2780 	poll_threads();
2781 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
2782 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
2783 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
2784 	stub_complete_io(1);
2785 
2786 	/* Use the same split IO above and check the IO */
2787 	memset(&cb_arg, 0, sizeof(cb_arg));
2788 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
2789 
2790 	/* The first child complete in time */
2791 	spdk_delay_us(15 * spdk_get_ticks_hz());
2792 	poll_threads();
2793 	stub_complete_io(1);
2794 	CU_ASSERT(cb_arg.type == 0);
2795 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
2796 	CU_ASSERT(cb_arg.iov.iov_len == 0);
2797 
2798 	/* The second child reach the limit */
2799 	spdk_delay_us(15 * spdk_get_ticks_hz());
2800 	poll_threads();
2801 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
2802 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
2803 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
2804 	stub_complete_io(1);
2805 
2806 	/* Also include the reset IO */
2807 	memset(&cb_arg, 0, sizeof(cb_arg));
2808 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
2809 	spdk_delay_us(30 * spdk_get_ticks_hz());
2810 	poll_threads();
2811 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
2812 	stub_complete_io(1);
2813 	poll_threads();
2814 
2815 	spdk_put_io_channel(io_ch);
2816 	spdk_bdev_close(desc);
2817 	free_bdev(bdev);
2818 	spdk_bdev_finish(bdev_fini_cb, NULL);
2819 	poll_threads();
2820 }
2821 
2822 static void
2823 lba_range_overlap(void)
2824 {
2825 	struct lba_range r1, r2;
2826 
2827 	r1.offset = 100;
2828 	r1.length = 50;
2829 
2830 	r2.offset = 0;
2831 	r2.length = 1;
2832 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
2833 
2834 	r2.offset = 0;
2835 	r2.length = 100;
2836 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
2837 
2838 	r2.offset = 0;
2839 	r2.length = 110;
2840 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2841 
2842 	r2.offset = 100;
2843 	r2.length = 10;
2844 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2845 
2846 	r2.offset = 110;
2847 	r2.length = 20;
2848 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2849 
2850 	r2.offset = 140;
2851 	r2.length = 150;
2852 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2853 
2854 	r2.offset = 130;
2855 	r2.length = 200;
2856 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2857 
2858 	r2.offset = 150;
2859 	r2.length = 100;
2860 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
2861 
2862 	r2.offset = 110;
2863 	r2.length = 0;
2864 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
2865 }
2866 
2867 static bool g_lock_lba_range_done;
2868 static bool g_unlock_lba_range_done;
2869 
2870 static void
2871 lock_lba_range_done(void *ctx, int status)
2872 {
2873 	g_lock_lba_range_done = true;
2874 }
2875 
2876 static void
2877 unlock_lba_range_done(void *ctx, int status)
2878 {
2879 	g_unlock_lba_range_done = true;
2880 }
2881 
2882 static void
2883 lock_lba_range_check_ranges(void)
2884 {
2885 	struct spdk_bdev *bdev;
2886 	struct spdk_bdev_desc *desc = NULL;
2887 	struct spdk_io_channel *io_ch;
2888 	struct spdk_bdev_channel *channel;
2889 	struct lba_range *range;
2890 	int ctx1;
2891 	int rc;
2892 
2893 	spdk_bdev_initialize(bdev_init_cb, NULL);
2894 
2895 	bdev = allocate_bdev("bdev0");
2896 
2897 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
2898 	CU_ASSERT(rc == 0);
2899 	CU_ASSERT(desc != NULL);
2900 	io_ch = spdk_bdev_get_io_channel(desc);
2901 	CU_ASSERT(io_ch != NULL);
2902 	channel = spdk_io_channel_get_ctx(io_ch);
2903 
2904 	g_lock_lba_range_done = false;
2905 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
2906 	CU_ASSERT(rc == 0);
2907 	poll_threads();
2908 
2909 	CU_ASSERT(g_lock_lba_range_done == true);
2910 	range = TAILQ_FIRST(&channel->locked_ranges);
2911 	SPDK_CU_ASSERT_FATAL(range != NULL);
2912 	CU_ASSERT(range->offset == 20);
2913 	CU_ASSERT(range->length == 10);
2914 	CU_ASSERT(range->owner_ch == channel);
2915 
2916 	/* Unlocks must exactly match a lock. */
2917 	g_unlock_lba_range_done = false;
2918 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
2919 	CU_ASSERT(rc == -EINVAL);
2920 	CU_ASSERT(g_unlock_lba_range_done == false);
2921 
2922 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
2923 	CU_ASSERT(rc == 0);
2924 	spdk_delay_us(100);
2925 	poll_threads();
2926 
2927 	CU_ASSERT(g_unlock_lba_range_done == true);
2928 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
2929 
2930 	spdk_put_io_channel(io_ch);
2931 	spdk_bdev_close(desc);
2932 	free_bdev(bdev);
2933 	spdk_bdev_finish(bdev_fini_cb, NULL);
2934 	poll_threads();
2935 }
2936 
2937 static void
2938 lock_lba_range_with_io_outstanding(void)
2939 {
2940 	struct spdk_bdev *bdev;
2941 	struct spdk_bdev_desc *desc = NULL;
2942 	struct spdk_io_channel *io_ch;
2943 	struct spdk_bdev_channel *channel;
2944 	struct lba_range *range;
2945 	char buf[4096];
2946 	int ctx1;
2947 	int rc;
2948 
2949 	spdk_bdev_initialize(bdev_init_cb, NULL);
2950 
2951 	bdev = allocate_bdev("bdev0");
2952 
2953 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
2954 	CU_ASSERT(rc == 0);
2955 	CU_ASSERT(desc != NULL);
2956 	io_ch = spdk_bdev_get_io_channel(desc);
2957 	CU_ASSERT(io_ch != NULL);
2958 	channel = spdk_io_channel_get_ctx(io_ch);
2959 
2960 	g_io_done = false;
2961 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
2962 	CU_ASSERT(rc == 0);
2963 
2964 	g_lock_lba_range_done = false;
2965 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
2966 	CU_ASSERT(rc == 0);
2967 	poll_threads();
2968 
2969 	/* The lock should immediately become valid, since there are no outstanding
2970 	 * write I/O.
2971 	 */
2972 	CU_ASSERT(g_io_done == false);
2973 	CU_ASSERT(g_lock_lba_range_done == true);
2974 	range = TAILQ_FIRST(&channel->locked_ranges);
2975 	SPDK_CU_ASSERT_FATAL(range != NULL);
2976 	CU_ASSERT(range->offset == 20);
2977 	CU_ASSERT(range->length == 10);
2978 	CU_ASSERT(range->owner_ch == channel);
2979 	CU_ASSERT(range->locked_ctx == &ctx1);
2980 
2981 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
2982 	CU_ASSERT(rc == 0);
2983 	stub_complete_io(1);
2984 	spdk_delay_us(100);
2985 	poll_threads();
2986 
2987 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
2988 
2989 	/* Now try again, but with a write I/O. */
2990 	g_io_done = false;
2991 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
2992 	CU_ASSERT(rc == 0);
2993 
2994 	g_lock_lba_range_done = false;
2995 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
2996 	CU_ASSERT(rc == 0);
2997 	poll_threads();
2998 
2999 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
3000 	 * But note that the range should be on the channel's locked_list, to make sure no
3001 	 * new write I/O are started.
3002 	 */
3003 	CU_ASSERT(g_io_done == false);
3004 	CU_ASSERT(g_lock_lba_range_done == false);
3005 	range = TAILQ_FIRST(&channel->locked_ranges);
3006 	SPDK_CU_ASSERT_FATAL(range != NULL);
3007 	CU_ASSERT(range->offset == 20);
3008 	CU_ASSERT(range->length == 10);
3009 
3010 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
3011 	 * our callback was invoked).
3012 	 */
3013 	stub_complete_io(1);
3014 	spdk_delay_us(100);
3015 	poll_threads();
3016 	CU_ASSERT(g_io_done == true);
3017 	CU_ASSERT(g_lock_lba_range_done == true);
3018 
3019 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
3020 	CU_ASSERT(rc == 0);
3021 	poll_threads();
3022 
3023 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
3024 
3025 	spdk_put_io_channel(io_ch);
3026 	spdk_bdev_close(desc);
3027 	free_bdev(bdev);
3028 	spdk_bdev_finish(bdev_fini_cb, NULL);
3029 	poll_threads();
3030 }
3031 
3032 static void
3033 lock_lba_range_overlapped(void)
3034 {
3035 	struct spdk_bdev *bdev;
3036 	struct spdk_bdev_desc *desc = NULL;
3037 	struct spdk_io_channel *io_ch;
3038 	struct spdk_bdev_channel *channel;
3039 	struct lba_range *range;
3040 	int ctx1;
3041 	int rc;
3042 
3043 	spdk_bdev_initialize(bdev_init_cb, NULL);
3044 
3045 	bdev = allocate_bdev("bdev0");
3046 
3047 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
3048 	CU_ASSERT(rc == 0);
3049 	CU_ASSERT(desc != NULL);
3050 	io_ch = spdk_bdev_get_io_channel(desc);
3051 	CU_ASSERT(io_ch != NULL);
3052 	channel = spdk_io_channel_get_ctx(io_ch);
3053 
3054 	/* Lock range 20-29. */
3055 	g_lock_lba_range_done = false;
3056 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3057 	CU_ASSERT(rc == 0);
3058 	poll_threads();
3059 
3060 	CU_ASSERT(g_lock_lba_range_done == true);
3061 	range = TAILQ_FIRST(&channel->locked_ranges);
3062 	SPDK_CU_ASSERT_FATAL(range != NULL);
3063 	CU_ASSERT(range->offset == 20);
3064 	CU_ASSERT(range->length == 10);
3065 
3066 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
3067 	 * 20-29.
3068 	 */
3069 	g_lock_lba_range_done = false;
3070 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
3071 	CU_ASSERT(rc == 0);
3072 	poll_threads();
3073 
3074 	CU_ASSERT(g_lock_lba_range_done == false);
3075 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
3076 	SPDK_CU_ASSERT_FATAL(range != NULL);
3077 	CU_ASSERT(range->offset == 25);
3078 	CU_ASSERT(range->length == 15);
3079 
3080 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
3081 	 * no longer overlaps with an active lock.
3082 	 */
3083 	g_unlock_lba_range_done = false;
3084 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
3085 	CU_ASSERT(rc == 0);
3086 	poll_threads();
3087 
3088 	CU_ASSERT(g_unlock_lba_range_done == true);
3089 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
3090 	range = TAILQ_FIRST(&channel->locked_ranges);
3091 	SPDK_CU_ASSERT_FATAL(range != NULL);
3092 	CU_ASSERT(range->offset == 25);
3093 	CU_ASSERT(range->length == 15);
3094 
3095 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
3096 	 * currently active 25-39 lock.
3097 	 */
3098 	g_lock_lba_range_done = false;
3099 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
3100 	CU_ASSERT(rc == 0);
3101 	poll_threads();
3102 
3103 	CU_ASSERT(g_lock_lba_range_done == true);
3104 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
3105 	SPDK_CU_ASSERT_FATAL(range != NULL);
3106 	range = TAILQ_NEXT(range, tailq);
3107 	SPDK_CU_ASSERT_FATAL(range != NULL);
3108 	CU_ASSERT(range->offset == 40);
3109 	CU_ASSERT(range->length == 20);
3110 
3111 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
3112 	g_lock_lba_range_done = false;
3113 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
3114 	CU_ASSERT(rc == 0);
3115 	poll_threads();
3116 
3117 	CU_ASSERT(g_lock_lba_range_done == false);
3118 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
3119 	SPDK_CU_ASSERT_FATAL(range != NULL);
3120 	CU_ASSERT(range->offset == 35);
3121 	CU_ASSERT(range->length == 10);
3122 
3123 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
3124 	 * the 40-59 lock is still active.
3125 	 */
3126 	g_unlock_lba_range_done = false;
3127 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
3128 	CU_ASSERT(rc == 0);
3129 	poll_threads();
3130 
3131 	CU_ASSERT(g_unlock_lba_range_done == true);
3132 	CU_ASSERT(g_lock_lba_range_done == false);
3133 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
3134 	SPDK_CU_ASSERT_FATAL(range != NULL);
3135 	CU_ASSERT(range->offset == 35);
3136 	CU_ASSERT(range->length == 10);
3137 
3138 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
3139 	 * no longer any active overlapping locks.
3140 	 */
3141 	g_unlock_lba_range_done = false;
3142 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
3143 	CU_ASSERT(rc == 0);
3144 	poll_threads();
3145 
3146 	CU_ASSERT(g_unlock_lba_range_done == true);
3147 	CU_ASSERT(g_lock_lba_range_done == true);
3148 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
3149 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
3150 	SPDK_CU_ASSERT_FATAL(range != NULL);
3151 	CU_ASSERT(range->offset == 35);
3152 	CU_ASSERT(range->length == 10);
3153 
3154 	/* Finally, unlock 35-44. */
3155 	g_unlock_lba_range_done = false;
3156 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
3157 	CU_ASSERT(rc == 0);
3158 	poll_threads();
3159 
3160 	CU_ASSERT(g_unlock_lba_range_done == true);
3161 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
3162 
3163 	spdk_put_io_channel(io_ch);
3164 	spdk_bdev_close(desc);
3165 	free_bdev(bdev);
3166 	spdk_bdev_finish(bdev_fini_cb, NULL);
3167 	poll_threads();
3168 }
3169 
3170 static void
3171 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
3172 {
3173 	g_abort_done = true;
3174 	g_abort_status = bdev_io->internal.status;
3175 	spdk_bdev_free_io(bdev_io);
3176 }
3177 
3178 static void
3179 bdev_io_abort(void)
3180 {
3181 	struct spdk_bdev *bdev;
3182 	struct spdk_bdev_desc *desc = NULL;
3183 	struct spdk_io_channel *io_ch;
3184 	struct spdk_bdev_channel *channel;
3185 	struct spdk_bdev_mgmt_channel *mgmt_ch;
3186 	struct spdk_bdev_opts bdev_opts = {
3187 		.bdev_io_pool_size = 7,
3188 		.bdev_io_cache_size = 2,
3189 	};
3190 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
3191 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
3192 	int rc;
3193 
3194 	rc = spdk_bdev_set_opts(&bdev_opts);
3195 	CU_ASSERT(rc == 0);
3196 	spdk_bdev_initialize(bdev_init_cb, NULL);
3197 
3198 	bdev = allocate_bdev("bdev0");
3199 
3200 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
3201 	CU_ASSERT(rc == 0);
3202 	CU_ASSERT(desc != NULL);
3203 	io_ch = spdk_bdev_get_io_channel(desc);
3204 	CU_ASSERT(io_ch != NULL);
3205 	channel = spdk_io_channel_get_ctx(io_ch);
3206 	mgmt_ch = channel->shared_resource->mgmt_ch;
3207 
3208 	g_abort_done = false;
3209 
3210 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
3211 
3212 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3213 	CU_ASSERT(rc == -ENOTSUP);
3214 
3215 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
3216 
3217 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
3218 	CU_ASSERT(rc == 0);
3219 	CU_ASSERT(g_abort_done == true);
3220 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
3221 
3222 	/* Test the case that the target I/O was successfully aborted. */
3223 	g_io_done = false;
3224 
3225 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
3226 	CU_ASSERT(rc == 0);
3227 	CU_ASSERT(g_io_done == false);
3228 
3229 	g_abort_done = false;
3230 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3231 
3232 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3233 	CU_ASSERT(rc == 0);
3234 	CU_ASSERT(g_io_done == true);
3235 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3236 	stub_complete_io(1);
3237 	CU_ASSERT(g_abort_done == true);
3238 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3239 
3240 	/* Test the case that the target I/O was not aborted because it completed
3241 	 * in the middle of execution of the abort.
3242 	 */
3243 	g_io_done = false;
3244 
3245 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
3246 	CU_ASSERT(rc == 0);
3247 	CU_ASSERT(g_io_done == false);
3248 
3249 	g_abort_done = false;
3250 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
3251 
3252 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3253 	CU_ASSERT(rc == 0);
3254 	CU_ASSERT(g_io_done == false);
3255 
3256 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3257 	stub_complete_io(1);
3258 	CU_ASSERT(g_io_done == true);
3259 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3260 
3261 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
3262 	stub_complete_io(1);
3263 	CU_ASSERT(g_abort_done == true);
3264 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3265 
3266 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3267 
3268 	bdev->optimal_io_boundary = 16;
3269 	bdev->split_on_optimal_io_boundary = true;
3270 
3271 	/* Test that a single-vector command which is split is aborted correctly.
3272 	 * Offset 14, length 8, payload 0xF000
3273 	 *  Child - Offset 14, length 2, payload 0xF000
3274 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
3275 	 */
3276 	g_io_done = false;
3277 
3278 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
3279 	CU_ASSERT(rc == 0);
3280 	CU_ASSERT(g_io_done == false);
3281 
3282 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3283 
3284 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3285 
3286 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3287 	CU_ASSERT(rc == 0);
3288 	CU_ASSERT(g_io_done == true);
3289 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3290 	stub_complete_io(2);
3291 	CU_ASSERT(g_abort_done == true);
3292 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3293 
3294 	/* Test that a multi-vector command that needs to be split by strip and then
3295 	 * needs to be split is aborted correctly. Abort is requested before the second
3296 	 * child I/O was submitted. The parent I/O should complete with failure without
3297 	 * submitting the second child I/O.
3298 	 */
3299 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
3300 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
3301 		iov[i].iov_len = 512;
3302 	}
3303 
3304 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
3305 	g_io_done = false;
3306 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
3307 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
3308 	CU_ASSERT(rc == 0);
3309 	CU_ASSERT(g_io_done == false);
3310 
3311 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3312 
3313 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3314 
3315 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3316 	CU_ASSERT(rc == 0);
3317 	CU_ASSERT(g_io_done == true);
3318 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3319 	stub_complete_io(1);
3320 	CU_ASSERT(g_abort_done == true);
3321 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3322 
3323 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3324 
3325 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3326 
3327 	bdev->optimal_io_boundary = 16;
3328 	g_io_done = false;
3329 
3330 	/* Test that a ingle-vector command which is split is aborted correctly.
3331 	 * Differently from the above, the child abort request will be submitted
3332 	 * sequentially due to the capacity of spdk_bdev_io.
3333 	 */
3334 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
3335 	CU_ASSERT(rc == 0);
3336 	CU_ASSERT(g_io_done == false);
3337 
3338 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
3339 
3340 	g_abort_done = false;
3341 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3342 
3343 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3344 	CU_ASSERT(rc == 0);
3345 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
3346 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
3347 
3348 	stub_complete_io(1);
3349 	CU_ASSERT(g_io_done == true);
3350 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3351 	stub_complete_io(3);
3352 	CU_ASSERT(g_abort_done == true);
3353 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3354 
3355 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3356 
3357 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3358 
3359 	spdk_put_io_channel(io_ch);
3360 	spdk_bdev_close(desc);
3361 	free_bdev(bdev);
3362 	spdk_bdev_finish(bdev_fini_cb, NULL);
3363 	poll_threads();
3364 }
3365 
3366 int
3367 main(int argc, char **argv)
3368 {
3369 	CU_pSuite		suite = NULL;
3370 	unsigned int		num_failures;
3371 
3372 	CU_set_error_action(CUEA_ABORT);
3373 	CU_initialize_registry();
3374 
3375 	suite = CU_add_suite("bdev", null_init, null_clean);
3376 
3377 	CU_ADD_TEST(suite, bytes_to_blocks_test);
3378 	CU_ADD_TEST(suite, num_blocks_test);
3379 	CU_ADD_TEST(suite, io_valid_test);
3380 	CU_ADD_TEST(suite, open_write_test);
3381 	CU_ADD_TEST(suite, alias_add_del_test);
3382 	CU_ADD_TEST(suite, get_device_stat_test);
3383 	CU_ADD_TEST(suite, bdev_io_types_test);
3384 	CU_ADD_TEST(suite, bdev_io_wait_test);
3385 	CU_ADD_TEST(suite, bdev_io_spans_boundary_test);
3386 	CU_ADD_TEST(suite, bdev_io_split_test);
3387 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
3388 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
3389 	CU_ADD_TEST(suite, bdev_io_alignment);
3390 	CU_ADD_TEST(suite, bdev_histograms);
3391 	CU_ADD_TEST(suite, bdev_write_zeroes);
3392 	CU_ADD_TEST(suite, bdev_compare_and_write);
3393 	CU_ADD_TEST(suite, bdev_compare);
3394 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
3395 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
3396 	CU_ADD_TEST(suite, bdev_open_ext);
3397 	CU_ADD_TEST(suite, bdev_set_io_timeout);
3398 	CU_ADD_TEST(suite, lba_range_overlap);
3399 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
3400 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
3401 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
3402 	CU_ADD_TEST(suite, bdev_io_abort);
3403 
3404 	allocate_cores(1);
3405 	allocate_threads(1);
3406 	set_thread(0);
3407 
3408 	CU_basic_set_mode(CU_BRM_VERBOSE);
3409 	CU_basic_run_tests();
3410 	num_failures = CU_get_number_of_failures();
3411 	CU_cleanup_registry();
3412 
3413 	free_threads();
3414 	free_cores();
3415 
3416 	return num_failures;
3417 }
3418