xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision 0836dccda7206a4b7a3073e9290926f61f5a497f)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2017 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk_internal/cunit.h"
8 
9 #include "common/lib/ut_multithread.c"
10 #include "unit/lib/json_mock.c"
11 
12 #include "spdk/config.h"
13 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
14 #undef SPDK_CONFIG_VTUNE
15 
16 #include "bdev/bdev.c"
17 
18 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
19 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
20 DEFINE_STUB(spdk_memory_domain_get_dma_device_id, const char *, (struct spdk_memory_domain *domain),
21 	    "test_domain");
22 DEFINE_STUB(spdk_memory_domain_get_dma_device_type, enum spdk_dma_device_type,
23 	    (struct spdk_memory_domain *domain), 0);
24 DEFINE_STUB_V(spdk_accel_sequence_finish,
25 	      (struct spdk_accel_sequence *seq, spdk_accel_completion_cb cb_fn, void *cb_arg));
26 DEFINE_STUB_V(spdk_accel_sequence_abort, (struct spdk_accel_sequence *seq));
27 DEFINE_STUB_V(spdk_accel_sequence_reverse, (struct spdk_accel_sequence *seq));
28 DEFINE_STUB(spdk_accel_append_copy, int,
29 	    (struct spdk_accel_sequence **seq, struct spdk_io_channel *ch, struct iovec *dst_iovs,
30 	     uint32_t dst_iovcnt, struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
31 	     struct iovec *src_iovs, uint32_t src_iovcnt, struct spdk_memory_domain *src_domain,
32 	     void *src_domain_ctx, spdk_accel_step_cb cb_fn, void *cb_arg), 0);
33 DEFINE_STUB(spdk_accel_get_memory_domain, struct spdk_memory_domain *, (void), NULL);
34 
35 static bool g_memory_domain_pull_data_called;
36 static bool g_memory_domain_push_data_called;
37 static int g_accel_io_device;
38 
39 DEFINE_RETURN_MOCK(spdk_memory_domain_pull_data, int);
40 int
41 spdk_memory_domain_pull_data(struct spdk_memory_domain *src_domain, void *src_domain_ctx,
42 			     struct iovec *src_iov, uint32_t src_iov_cnt, struct iovec *dst_iov, uint32_t dst_iov_cnt,
43 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
44 {
45 	g_memory_domain_pull_data_called = true;
46 	HANDLE_RETURN_MOCK(spdk_memory_domain_pull_data);
47 	cpl_cb(cpl_cb_arg, 0);
48 	return 0;
49 }
50 
51 DEFINE_RETURN_MOCK(spdk_memory_domain_push_data, int);
52 int
53 spdk_memory_domain_push_data(struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
54 			     struct iovec *dst_iov, uint32_t dst_iovcnt, struct iovec *src_iov, uint32_t src_iovcnt,
55 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
56 {
57 	g_memory_domain_push_data_called = true;
58 	HANDLE_RETURN_MOCK(spdk_memory_domain_push_data);
59 	cpl_cb(cpl_cb_arg, 0);
60 	return 0;
61 }
62 
63 struct spdk_io_channel *
64 spdk_accel_get_io_channel(void)
65 {
66 	return spdk_get_io_channel(&g_accel_io_device);
67 }
68 
69 int g_status;
70 int g_count;
71 enum spdk_bdev_event_type g_event_type1;
72 enum spdk_bdev_event_type g_event_type2;
73 enum spdk_bdev_event_type g_event_type3;
74 enum spdk_bdev_event_type g_event_type4;
75 struct spdk_histogram_data *g_histogram;
76 void *g_unregister_arg;
77 int g_unregister_rc;
78 
79 void
80 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
81 			 int *sc, int *sk, int *asc, int *ascq)
82 {
83 }
84 
85 static int
86 ut_accel_ch_create_cb(void *io_device, void *ctx)
87 {
88 	return 0;
89 }
90 
91 static void
92 ut_accel_ch_destroy_cb(void *io_device, void *ctx)
93 {
94 }
95 
96 static int
97 ut_bdev_setup(void)
98 {
99 	spdk_io_device_register(&g_accel_io_device, ut_accel_ch_create_cb,
100 				ut_accel_ch_destroy_cb, 0, NULL);
101 	return 0;
102 }
103 
104 static int
105 ut_bdev_teardown(void)
106 {
107 	spdk_io_device_unregister(&g_accel_io_device, NULL);
108 
109 	return 0;
110 }
111 
112 static int
113 stub_destruct(void *ctx)
114 {
115 	return 0;
116 }
117 
118 struct ut_expected_io {
119 	uint8_t				type;
120 	uint64_t			offset;
121 	uint64_t			src_offset;
122 	uint64_t			length;
123 	int				iovcnt;
124 	struct iovec			iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
125 	void				*md_buf;
126 	TAILQ_ENTRY(ut_expected_io)	link;
127 };
128 
129 struct bdev_ut_io {
130 	TAILQ_ENTRY(bdev_ut_io)		link;
131 };
132 
133 struct bdev_ut_channel {
134 	TAILQ_HEAD(, bdev_ut_io)	outstanding_io;
135 	uint32_t			outstanding_io_count;
136 	TAILQ_HEAD(, ut_expected_io)	expected_io;
137 };
138 
139 static bool g_io_done;
140 static struct spdk_bdev_io *g_bdev_io;
141 static enum spdk_bdev_io_status g_io_status;
142 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
143 static uint32_t g_bdev_ut_io_device;
144 static struct bdev_ut_channel *g_bdev_ut_channel;
145 static void *g_compare_read_buf;
146 static uint32_t g_compare_read_buf_len;
147 static void *g_compare_write_buf;
148 static uint32_t g_compare_write_buf_len;
149 static void *g_compare_md_buf;
150 static bool g_abort_done;
151 static enum spdk_bdev_io_status g_abort_status;
152 static void *g_zcopy_read_buf;
153 static uint32_t g_zcopy_read_buf_len;
154 static void *g_zcopy_write_buf;
155 static uint32_t g_zcopy_write_buf_len;
156 static struct spdk_bdev_io *g_zcopy_bdev_io;
157 static uint64_t g_seek_data_offset;
158 static uint64_t g_seek_hole_offset;
159 static uint64_t g_seek_offset;
160 
161 static struct ut_expected_io *
162 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
163 {
164 	struct ut_expected_io *expected_io;
165 
166 	expected_io = calloc(1, sizeof(*expected_io));
167 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
168 
169 	expected_io->type = type;
170 	expected_io->offset = offset;
171 	expected_io->length = length;
172 	expected_io->iovcnt = iovcnt;
173 
174 	return expected_io;
175 }
176 
177 static struct ut_expected_io *
178 ut_alloc_expected_copy_io(uint8_t type, uint64_t offset, uint64_t src_offset, uint64_t length)
179 {
180 	struct ut_expected_io *expected_io;
181 
182 	expected_io = calloc(1, sizeof(*expected_io));
183 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
184 
185 	expected_io->type = type;
186 	expected_io->offset = offset;
187 	expected_io->src_offset = src_offset;
188 	expected_io->length = length;
189 
190 	return expected_io;
191 }
192 
193 static void
194 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
195 {
196 	expected_io->iov[pos].iov_base = base;
197 	expected_io->iov[pos].iov_len = len;
198 }
199 
200 static void
201 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
202 {
203 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
204 	struct ut_expected_io *expected_io;
205 	struct iovec *iov, *expected_iov;
206 	struct spdk_bdev_io *bio_to_abort;
207 	struct bdev_ut_io *bio;
208 	int i;
209 
210 	g_bdev_io = bdev_io;
211 
212 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
213 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
214 
215 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
216 		CU_ASSERT(g_compare_read_buf_len == len);
217 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
218 		if (bdev_io->bdev->md_len && bdev_io->u.bdev.md_buf && g_compare_md_buf) {
219 			memcpy(bdev_io->u.bdev.md_buf, g_compare_md_buf,
220 			       bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks);
221 		}
222 	}
223 
224 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
225 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
226 
227 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
228 		CU_ASSERT(g_compare_write_buf_len == len);
229 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
230 	}
231 
232 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
233 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
234 
235 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
236 		CU_ASSERT(g_compare_read_buf_len == len);
237 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
238 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
239 		}
240 		if (bdev_io->u.bdev.md_buf &&
241 		    memcmp(bdev_io->u.bdev.md_buf, g_compare_md_buf,
242 			   bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks)) {
243 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
244 		}
245 	}
246 
247 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
248 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
249 			TAILQ_FOREACH(bio, &ch->outstanding_io, link) {
250 				bio_to_abort = spdk_bdev_io_from_ctx(bio);
251 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
252 					TAILQ_REMOVE(&ch->outstanding_io, bio, link);
253 					ch->outstanding_io_count--;
254 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
255 					break;
256 				}
257 			}
258 		}
259 	}
260 
261 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) {
262 		if (bdev_io->u.bdev.zcopy.start) {
263 			g_zcopy_bdev_io = bdev_io;
264 			if (bdev_io->u.bdev.zcopy.populate) {
265 				/* Start of a read */
266 				CU_ASSERT(g_zcopy_read_buf != NULL);
267 				CU_ASSERT(g_zcopy_read_buf_len > 0);
268 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_read_buf;
269 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_read_buf_len;
270 				bdev_io->u.bdev.iovcnt = 1;
271 			} else {
272 				/* Start of a write */
273 				CU_ASSERT(g_zcopy_write_buf != NULL);
274 				CU_ASSERT(g_zcopy_write_buf_len > 0);
275 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_write_buf;
276 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_write_buf_len;
277 				bdev_io->u.bdev.iovcnt = 1;
278 			}
279 		} else {
280 			if (bdev_io->u.bdev.zcopy.commit) {
281 				/* End of write */
282 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_write_buf);
283 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_write_buf_len);
284 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
285 				g_zcopy_write_buf = NULL;
286 				g_zcopy_write_buf_len = 0;
287 			} else {
288 				/* End of read */
289 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_read_buf);
290 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_read_buf_len);
291 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
292 				g_zcopy_read_buf = NULL;
293 				g_zcopy_read_buf_len = 0;
294 			}
295 		}
296 	}
297 
298 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_DATA) {
299 		bdev_io->u.bdev.seek.offset = g_seek_data_offset;
300 	}
301 
302 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_HOLE) {
303 		bdev_io->u.bdev.seek.offset = g_seek_hole_offset;
304 	}
305 
306 	TAILQ_INSERT_TAIL(&ch->outstanding_io, (struct bdev_ut_io *)bdev_io->driver_ctx, link);
307 	ch->outstanding_io_count++;
308 
309 	expected_io = TAILQ_FIRST(&ch->expected_io);
310 	if (expected_io == NULL) {
311 		return;
312 	}
313 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
314 
315 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
316 		CU_ASSERT(bdev_io->type == expected_io->type);
317 	}
318 
319 	if (expected_io->md_buf != NULL) {
320 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
321 	}
322 
323 	if (expected_io->length == 0) {
324 		free(expected_io);
325 		return;
326 	}
327 
328 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
329 	CU_ASSERT(expected_io->length == bdev_io->u.bdev.num_blocks);
330 	if (expected_io->type == SPDK_BDEV_IO_TYPE_COPY) {
331 		CU_ASSERT(expected_io->src_offset == bdev_io->u.bdev.copy.src_offset_blocks);
332 	}
333 
334 	if (expected_io->iovcnt == 0) {
335 		free(expected_io);
336 		/* UNMAP, WRITE_ZEROES, FLUSH and COPY don't have iovs, so we can just return now. */
337 		return;
338 	}
339 
340 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
341 	for (i = 0; i < expected_io->iovcnt; i++) {
342 		expected_iov = &expected_io->iov[i];
343 		if (bdev_io->internal.f.has_bounce_buf == false) {
344 			iov = &bdev_io->u.bdev.iovs[i];
345 		} else {
346 			iov = bdev_io->internal.bounce_buf.orig_iovs;
347 		}
348 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
349 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
350 	}
351 
352 	free(expected_io);
353 }
354 
355 static void
356 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
357 			       struct spdk_bdev_io *bdev_io, bool success)
358 {
359 	CU_ASSERT(success == true);
360 
361 	stub_submit_request(_ch, bdev_io);
362 }
363 
364 static void
365 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
366 {
367 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
368 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
369 }
370 
371 static uint32_t
372 stub_complete_io(uint32_t num_to_complete)
373 {
374 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
375 	struct bdev_ut_io *bio;
376 	struct spdk_bdev_io *bdev_io;
377 	static enum spdk_bdev_io_status io_status;
378 	uint32_t num_completed = 0;
379 
380 	while (num_completed < num_to_complete) {
381 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
382 			break;
383 		}
384 		bio = TAILQ_FIRST(&ch->outstanding_io);
385 		TAILQ_REMOVE(&ch->outstanding_io, bio, link);
386 		bdev_io = spdk_bdev_io_from_ctx(bio);
387 		ch->outstanding_io_count--;
388 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
389 			    g_io_exp_status;
390 		spdk_bdev_io_complete(bdev_io, io_status);
391 		num_completed++;
392 	}
393 
394 	return num_completed;
395 }
396 
397 static struct spdk_io_channel *
398 bdev_ut_get_io_channel(void *ctx)
399 {
400 	return spdk_get_io_channel(&g_bdev_ut_io_device);
401 }
402 
403 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
404 	[SPDK_BDEV_IO_TYPE_READ]		= true,
405 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
406 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
407 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
408 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
409 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
410 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
411 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
412 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
413 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
414 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
415 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
416 	[SPDK_BDEV_IO_TYPE_SEEK_HOLE]		= true,
417 	[SPDK_BDEV_IO_TYPE_SEEK_DATA]		= true,
418 	[SPDK_BDEV_IO_TYPE_COPY]		= true,
419 };
420 
421 static void
422 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
423 {
424 	g_io_types_supported[io_type] = enable;
425 }
426 
427 static bool
428 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
429 {
430 	return g_io_types_supported[io_type];
431 }
432 
433 static struct spdk_bdev_fn_table fn_table = {
434 	.destruct = stub_destruct,
435 	.submit_request = stub_submit_request,
436 	.get_io_channel = bdev_ut_get_io_channel,
437 	.io_type_supported = stub_io_type_supported,
438 };
439 
440 static int
441 bdev_ut_create_ch(void *io_device, void *ctx_buf)
442 {
443 	struct bdev_ut_channel *ch = ctx_buf;
444 
445 	CU_ASSERT(g_bdev_ut_channel == NULL);
446 	g_bdev_ut_channel = ch;
447 
448 	TAILQ_INIT(&ch->outstanding_io);
449 	ch->outstanding_io_count = 0;
450 	TAILQ_INIT(&ch->expected_io);
451 	return 0;
452 }
453 
454 static void
455 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
456 {
457 	CU_ASSERT(g_bdev_ut_channel != NULL);
458 	g_bdev_ut_channel = NULL;
459 }
460 
461 struct spdk_bdev_module bdev_ut_if;
462 
463 static int
464 bdev_ut_module_init(void)
465 {
466 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
467 				sizeof(struct bdev_ut_channel), NULL);
468 	spdk_bdev_module_init_done(&bdev_ut_if);
469 	return 0;
470 }
471 
472 static void
473 bdev_ut_module_fini(void)
474 {
475 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
476 }
477 
478 struct spdk_bdev_module bdev_ut_if = {
479 	.name = "bdev_ut",
480 	.module_init = bdev_ut_module_init,
481 	.module_fini = bdev_ut_module_fini,
482 	.async_init = true,
483 };
484 
485 static void vbdev_ut_examine_config(struct spdk_bdev *bdev);
486 static void vbdev_ut_examine_disk(struct spdk_bdev *bdev);
487 
488 static int
489 vbdev_ut_module_init(void)
490 {
491 	return 0;
492 }
493 
494 static void
495 vbdev_ut_module_fini(void)
496 {
497 }
498 
499 static int
500 vbdev_ut_get_ctx_size(void)
501 {
502 	return sizeof(struct bdev_ut_io);
503 }
504 
505 struct spdk_bdev_module vbdev_ut_if = {
506 	.name = "vbdev_ut",
507 	.module_init = vbdev_ut_module_init,
508 	.module_fini = vbdev_ut_module_fini,
509 	.examine_config = vbdev_ut_examine_config,
510 	.examine_disk = vbdev_ut_examine_disk,
511 	.get_ctx_size = vbdev_ut_get_ctx_size,
512 };
513 
514 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
515 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
516 
517 struct ut_examine_ctx {
518 	void (*examine_config)(struct spdk_bdev *bdev);
519 	void (*examine_disk)(struct spdk_bdev *bdev);
520 	uint32_t examine_config_count;
521 	uint32_t examine_disk_count;
522 };
523 
524 static void
525 vbdev_ut_examine_config(struct spdk_bdev *bdev)
526 {
527 	struct ut_examine_ctx *ctx = bdev->ctxt;
528 
529 	if (ctx != NULL) {
530 		ctx->examine_config_count++;
531 		if (ctx->examine_config != NULL) {
532 			ctx->examine_config(bdev);
533 		}
534 	}
535 
536 	spdk_bdev_module_examine_done(&vbdev_ut_if);
537 }
538 
539 static void
540 vbdev_ut_examine_disk(struct spdk_bdev *bdev)
541 {
542 	struct ut_examine_ctx *ctx = bdev->ctxt;
543 
544 	if (ctx != NULL) {
545 		ctx->examine_disk_count++;
546 		if (ctx->examine_disk != NULL) {
547 			ctx->examine_disk(bdev);
548 		}
549 	}
550 
551 	spdk_bdev_module_examine_done(&vbdev_ut_if);
552 }
553 
554 static void
555 bdev_init_cb(void *arg, int rc)
556 {
557 	CU_ASSERT(rc == 0);
558 }
559 
560 static void
561 bdev_fini_cb(void *arg)
562 {
563 }
564 
565 static void
566 ut_init_bdev(struct spdk_bdev_opts *opts)
567 {
568 	int rc;
569 
570 	if (opts != NULL) {
571 		rc = spdk_bdev_set_opts(opts);
572 		CU_ASSERT(rc == 0);
573 	}
574 	rc = spdk_iobuf_initialize();
575 	CU_ASSERT(rc == 0);
576 	spdk_bdev_initialize(bdev_init_cb, NULL);
577 	poll_threads();
578 }
579 
580 static void
581 ut_fini_bdev(void)
582 {
583 	spdk_bdev_finish(bdev_fini_cb, NULL);
584 	spdk_iobuf_finish(bdev_fini_cb, NULL);
585 	poll_threads();
586 }
587 
588 static struct spdk_bdev *
589 allocate_bdev_ctx(char *name, void *ctx)
590 {
591 	struct spdk_bdev *bdev;
592 	int rc;
593 
594 	bdev = calloc(1, sizeof(*bdev));
595 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
596 
597 	bdev->ctxt = ctx;
598 	bdev->name = name;
599 	bdev->fn_table = &fn_table;
600 	bdev->module = &bdev_ut_if;
601 	bdev->blockcnt = 1024;
602 	bdev->blocklen = 512;
603 
604 	spdk_uuid_generate(&bdev->uuid);
605 
606 	rc = spdk_bdev_register(bdev);
607 	poll_threads();
608 	CU_ASSERT(rc == 0);
609 
610 	return bdev;
611 }
612 
613 static struct spdk_bdev *
614 allocate_bdev(char *name)
615 {
616 	return allocate_bdev_ctx(name, NULL);
617 }
618 
619 static struct spdk_bdev *
620 allocate_vbdev(char *name)
621 {
622 	struct spdk_bdev *bdev;
623 	int rc;
624 
625 	bdev = calloc(1, sizeof(*bdev));
626 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
627 
628 	bdev->name = name;
629 	bdev->fn_table = &fn_table;
630 	bdev->module = &vbdev_ut_if;
631 	bdev->blockcnt = 1024;
632 	bdev->blocklen = 512;
633 
634 	rc = spdk_bdev_register(bdev);
635 	poll_threads();
636 	CU_ASSERT(rc == 0);
637 
638 	return bdev;
639 }
640 
641 static void
642 free_bdev(struct spdk_bdev *bdev)
643 {
644 	spdk_bdev_unregister(bdev, NULL, NULL);
645 	poll_threads();
646 	memset(bdev, 0xFF, sizeof(*bdev));
647 	free(bdev);
648 }
649 
650 static void
651 free_vbdev(struct spdk_bdev *bdev)
652 {
653 	spdk_bdev_unregister(bdev, NULL, NULL);
654 	poll_threads();
655 	memset(bdev, 0xFF, sizeof(*bdev));
656 	free(bdev);
657 }
658 
659 static void
660 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
661 {
662 	const char *bdev_name;
663 
664 	CU_ASSERT(bdev != NULL);
665 	CU_ASSERT(rc == 0);
666 	bdev_name = spdk_bdev_get_name(bdev);
667 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
668 
669 	free(stat);
670 
671 	*(bool *)cb_arg = true;
672 }
673 
674 static void
675 bdev_unregister_cb(void *cb_arg, int rc)
676 {
677 	g_unregister_arg = cb_arg;
678 	g_unregister_rc = rc;
679 }
680 
681 static void
682 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
683 {
684 }
685 
686 static void
687 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
688 {
689 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
690 
691 	g_event_type1 = type;
692 	if (SPDK_BDEV_EVENT_REMOVE == type) {
693 		spdk_bdev_close(desc);
694 	}
695 }
696 
697 static void
698 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
699 {
700 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
701 
702 	g_event_type2 = type;
703 	if (SPDK_BDEV_EVENT_REMOVE == type) {
704 		spdk_bdev_close(desc);
705 	}
706 }
707 
708 static void
709 bdev_open_cb3(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
710 {
711 	g_event_type3 = type;
712 }
713 
714 static void
715 bdev_open_cb4(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
716 {
717 	g_event_type4 = type;
718 }
719 
720 static void
721 bdev_seek_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
722 {
723 	g_seek_offset = spdk_bdev_io_get_seek_offset(bdev_io);
724 	spdk_bdev_free_io(bdev_io);
725 }
726 
727 static void
728 get_device_stat_test(void)
729 {
730 	struct spdk_bdev *bdev;
731 	struct spdk_bdev_io_stat *stat;
732 	bool done;
733 
734 	bdev = allocate_bdev("bdev0");
735 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
736 	if (stat == NULL) {
737 		free_bdev(bdev);
738 		return;
739 	}
740 
741 	done = false;
742 	spdk_bdev_get_device_stat(bdev, stat, SPDK_BDEV_RESET_STAT_NONE, get_device_stat_cb, &done);
743 	while (!done) { poll_threads(); }
744 
745 	free_bdev(bdev);
746 }
747 
748 static void
749 open_write_test(void)
750 {
751 	struct spdk_bdev *bdev[9];
752 	struct spdk_bdev_desc *desc[9] = {};
753 	int rc;
754 
755 	ut_init_bdev(NULL);
756 
757 	/*
758 	 * Create a tree of bdevs to test various open w/ write cases.
759 	 *
760 	 * bdev0 through bdev3 are physical block devices, such as NVMe
761 	 * namespaces or Ceph block devices.
762 	 *
763 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
764 	 * caching or RAID use cases.
765 	 *
766 	 * bdev5 through bdev7 are all virtual bdevs with the same base
767 	 * bdev (except bdev7). This models partitioning or logical volume
768 	 * use cases.
769 	 *
770 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
771 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
772 	 * models caching, RAID, partitioning or logical volumes use cases.
773 	 *
774 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
775 	 * base bdevs are themselves virtual bdevs.
776 	 *
777 	 *                bdev8
778 	 *                  |
779 	 *            +----------+
780 	 *            |          |
781 	 *          bdev4      bdev5   bdev6   bdev7
782 	 *            |          |       |       |
783 	 *        +---+---+      +---+   +   +---+---+
784 	 *        |       |           \  |  /         \
785 	 *      bdev0   bdev1          bdev2         bdev3
786 	 */
787 
788 	bdev[0] = allocate_bdev("bdev0");
789 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
790 	CU_ASSERT(rc == 0);
791 
792 	bdev[1] = allocate_bdev("bdev1");
793 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
794 	CU_ASSERT(rc == 0);
795 
796 	bdev[2] = allocate_bdev("bdev2");
797 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
798 	CU_ASSERT(rc == 0);
799 
800 	bdev[3] = allocate_bdev("bdev3");
801 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
802 	CU_ASSERT(rc == 0);
803 
804 	bdev[4] = allocate_vbdev("bdev4");
805 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
806 	CU_ASSERT(rc == 0);
807 
808 	bdev[5] = allocate_vbdev("bdev5");
809 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
810 	CU_ASSERT(rc == 0);
811 
812 	bdev[6] = allocate_vbdev("bdev6");
813 
814 	bdev[7] = allocate_vbdev("bdev7");
815 
816 	bdev[8] = allocate_vbdev("bdev8");
817 
818 	/* Open bdev0 read-only.  This should succeed. */
819 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
820 	CU_ASSERT(rc == 0);
821 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
822 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
823 	spdk_bdev_close(desc[0]);
824 
825 	/*
826 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
827 	 * by a vbdev module.
828 	 */
829 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
830 	CU_ASSERT(rc == -EPERM);
831 
832 	/*
833 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
834 	 * by a vbdev module.
835 	 */
836 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
837 	CU_ASSERT(rc == -EPERM);
838 
839 	/* Open bdev4 read-only.  This should succeed. */
840 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
841 	CU_ASSERT(rc == 0);
842 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
843 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
844 	spdk_bdev_close(desc[4]);
845 
846 	/*
847 	 * Open bdev8 read/write.  This should succeed since it is a leaf
848 	 * bdev.
849 	 */
850 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
851 	CU_ASSERT(rc == 0);
852 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
853 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
854 	spdk_bdev_close(desc[8]);
855 
856 	/*
857 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
858 	 * by a vbdev module.
859 	 */
860 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
861 	CU_ASSERT(rc == -EPERM);
862 
863 	/* Open bdev4 read-only.  This should succeed. */
864 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
865 	CU_ASSERT(rc == 0);
866 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
867 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
868 	spdk_bdev_close(desc[5]);
869 
870 	free_vbdev(bdev[8]);
871 
872 	free_vbdev(bdev[5]);
873 	free_vbdev(bdev[6]);
874 	free_vbdev(bdev[7]);
875 
876 	free_vbdev(bdev[4]);
877 
878 	free_bdev(bdev[0]);
879 	free_bdev(bdev[1]);
880 	free_bdev(bdev[2]);
881 	free_bdev(bdev[3]);
882 
883 	ut_fini_bdev();
884 }
885 
886 static void
887 claim_test(void)
888 {
889 	struct spdk_bdev *bdev;
890 	struct spdk_bdev_desc *desc, *open_desc;
891 	int rc;
892 	uint32_t count;
893 
894 	ut_init_bdev(NULL);
895 
896 	/*
897 	 * A vbdev that uses a read-only bdev may need it to remain read-only.
898 	 * To do so, it opens the bdev read-only, then claims it without
899 	 * passing a spdk_bdev_desc.
900 	 */
901 	bdev = allocate_bdev("bdev0");
902 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
903 	CU_ASSERT(rc == 0);
904 	CU_ASSERT(desc->write == false);
905 
906 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
907 	CU_ASSERT(rc == 0);
908 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
909 	CU_ASSERT(bdev->internal.claim.v1.module == &bdev_ut_if);
910 
911 	/* There should be only one open descriptor and it should still be ro */
912 	count = 0;
913 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
914 		CU_ASSERT(open_desc == desc);
915 		CU_ASSERT(!open_desc->write);
916 		count++;
917 	}
918 	CU_ASSERT(count == 1);
919 
920 	/* A read-only bdev is upgraded to read-write if desc is passed. */
921 	spdk_bdev_module_release_bdev(bdev);
922 	rc = spdk_bdev_module_claim_bdev(bdev, desc, &bdev_ut_if);
923 	CU_ASSERT(rc == 0);
924 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
925 	CU_ASSERT(bdev->internal.claim.v1.module == &bdev_ut_if);
926 
927 	/* There should be only one open descriptor and it should be rw */
928 	count = 0;
929 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
930 		CU_ASSERT(open_desc == desc);
931 		CU_ASSERT(open_desc->write);
932 		count++;
933 	}
934 	CU_ASSERT(count == 1);
935 
936 	spdk_bdev_close(desc);
937 	free_bdev(bdev);
938 	ut_fini_bdev();
939 }
940 
941 static void
942 bytes_to_blocks_test(void)
943 {
944 	struct spdk_bdev_desc desc = {0};
945 	struct spdk_bdev bdev = {0};
946 	uint64_t offset_blocks, num_blocks;
947 
948 
949 	desc.bdev = &bdev;
950 	memset(&bdev, 0, sizeof(bdev));
951 
952 	bdev.blocklen = 512;
953 
954 	/* All parameters valid */
955 	offset_blocks = 0;
956 	num_blocks = 0;
957 	CU_ASSERT(bdev_bytes_to_blocks(&desc, 512, &offset_blocks, 1024, &num_blocks) == 0);
958 	CU_ASSERT(offset_blocks == 1);
959 	CU_ASSERT(num_blocks == 2);
960 
961 	/* Offset not a block multiple */
962 	CU_ASSERT(bdev_bytes_to_blocks(&desc, 3, &offset_blocks, 512, &num_blocks) != 0);
963 
964 	/* Length not a block multiple */
965 	CU_ASSERT(bdev_bytes_to_blocks(&desc, 512, &offset_blocks, 3, &num_blocks) != 0);
966 
967 	/* In case blocklen not the power of two */
968 	bdev.blocklen = 100;
969 	CU_ASSERT(bdev_bytes_to_blocks(&desc, 100, &offset_blocks, 200, &num_blocks) == 0);
970 	CU_ASSERT(offset_blocks == 1);
971 	CU_ASSERT(num_blocks == 2);
972 
973 	/* Offset not a block multiple */
974 	CU_ASSERT(bdev_bytes_to_blocks(&desc, 3, &offset_blocks, 100, &num_blocks) != 0);
975 
976 	/* Length not a block multiple */
977 	CU_ASSERT(bdev_bytes_to_blocks(&desc, 100, &offset_blocks, 3, &num_blocks) != 0);
978 }
979 
980 static void
981 num_blocks_test(void)
982 {
983 	struct spdk_bdev *bdev;
984 	struct spdk_bdev_desc *desc = NULL;
985 	int rc;
986 
987 	ut_init_bdev(NULL);
988 	bdev = allocate_bdev("num_blocks");
989 
990 	spdk_bdev_notify_blockcnt_change(bdev, 50);
991 
992 	/* Growing block number */
993 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 70) == 0);
994 	/* Shrinking block number */
995 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 30) == 0);
996 
997 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc, &desc);
998 	CU_ASSERT(rc == 0);
999 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1000 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1001 
1002 	/* Growing block number */
1003 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 80) == 0);
1004 	/* Shrinking block number */
1005 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 20) != 0);
1006 
1007 	g_event_type1 = 0xFF;
1008 	/* Growing block number */
1009 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 90) == 0);
1010 
1011 	poll_threads();
1012 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
1013 
1014 	g_event_type1 = 0xFF;
1015 	/* Growing block number and closing */
1016 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 100) == 0);
1017 
1018 	spdk_bdev_close(desc);
1019 	free_bdev(bdev);
1020 	ut_fini_bdev();
1021 
1022 	poll_threads();
1023 
1024 	/* Callback is not called for closed device */
1025 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
1026 }
1027 
1028 static void
1029 io_valid_test(void)
1030 {
1031 	struct spdk_bdev bdev;
1032 
1033 	memset(&bdev, 0, sizeof(bdev));
1034 
1035 	bdev.blocklen = 512;
1036 	spdk_spin_init(&bdev.internal.spinlock);
1037 
1038 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
1039 
1040 	/* All parameters valid */
1041 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
1042 
1043 	/* Last valid block */
1044 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
1045 
1046 	/* Offset past end of bdev */
1047 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
1048 
1049 	/* Offset + length past end of bdev */
1050 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
1051 
1052 	/* Offset near end of uint64_t range (2^64 - 1) */
1053 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
1054 
1055 	spdk_spin_destroy(&bdev.internal.spinlock);
1056 }
1057 
1058 static void
1059 alias_add_del_test(void)
1060 {
1061 	struct spdk_bdev *bdev[3];
1062 	int rc;
1063 
1064 	ut_init_bdev(NULL);
1065 
1066 	/* Creating and registering bdevs */
1067 	bdev[0] = allocate_bdev("bdev0");
1068 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
1069 
1070 	bdev[1] = allocate_bdev("bdev1");
1071 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
1072 
1073 	bdev[2] = allocate_bdev("bdev2");
1074 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
1075 
1076 	poll_threads();
1077 
1078 	/*
1079 	 * Trying adding an alias identical to name.
1080 	 * Alias is identical to name, so it can not be added to aliases list
1081 	 */
1082 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
1083 	CU_ASSERT(rc == -EEXIST);
1084 
1085 	/*
1086 	 * Trying to add empty alias,
1087 	 * this one should fail
1088 	 */
1089 	rc = spdk_bdev_alias_add(bdev[0], NULL);
1090 	CU_ASSERT(rc == -EINVAL);
1091 
1092 	/* Trying adding same alias to two different registered bdevs */
1093 
1094 	/* Alias is used first time, so this one should pass */
1095 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
1096 	CU_ASSERT(rc == 0);
1097 
1098 	/* Alias was added to another bdev, so this one should fail */
1099 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
1100 	CU_ASSERT(rc == -EEXIST);
1101 
1102 	/* Alias is used first time, so this one should pass */
1103 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
1104 	CU_ASSERT(rc == 0);
1105 
1106 	/* Trying removing an alias from registered bdevs */
1107 
1108 	/* Alias is not on a bdev aliases list, so this one should fail */
1109 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
1110 	CU_ASSERT(rc == -ENOENT);
1111 
1112 	/* Alias is present on a bdev aliases list, so this one should pass */
1113 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
1114 	CU_ASSERT(rc == 0);
1115 
1116 	/* Alias is present on a bdev aliases list, so this one should pass */
1117 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
1118 	CU_ASSERT(rc == 0);
1119 
1120 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
1121 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
1122 	CU_ASSERT(rc != 0);
1123 
1124 	/* Trying to del all alias from empty alias list */
1125 	spdk_bdev_alias_del_all(bdev[2]);
1126 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
1127 
1128 	/* Trying to del all alias from non-empty alias list */
1129 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
1130 	CU_ASSERT(rc == 0);
1131 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
1132 	CU_ASSERT(rc == 0);
1133 	spdk_bdev_alias_del_all(bdev[2]);
1134 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
1135 
1136 	/* Unregister and free bdevs */
1137 	spdk_bdev_unregister(bdev[0], NULL, NULL);
1138 	spdk_bdev_unregister(bdev[1], NULL, NULL);
1139 	spdk_bdev_unregister(bdev[2], NULL, NULL);
1140 
1141 	poll_threads();
1142 
1143 	free(bdev[0]);
1144 	free(bdev[1]);
1145 	free(bdev[2]);
1146 
1147 	ut_fini_bdev();
1148 }
1149 
1150 static void
1151 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
1152 {
1153 	g_io_done = true;
1154 	g_io_status = bdev_io->internal.status;
1155 	if ((bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) &&
1156 	    (bdev_io->u.bdev.zcopy.start)) {
1157 		g_zcopy_bdev_io = bdev_io;
1158 	} else {
1159 		spdk_bdev_free_io(bdev_io);
1160 		g_zcopy_bdev_io = NULL;
1161 	}
1162 }
1163 
1164 struct bdev_ut_io_wait_entry {
1165 	struct spdk_bdev_io_wait_entry	entry;
1166 	struct spdk_io_channel		*io_ch;
1167 	struct spdk_bdev_desc		*desc;
1168 	bool				submitted;
1169 };
1170 
1171 static void
1172 io_wait_cb(void *arg)
1173 {
1174 	struct bdev_ut_io_wait_entry *entry = arg;
1175 	int rc;
1176 
1177 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
1178 	CU_ASSERT(rc == 0);
1179 	entry->submitted = true;
1180 }
1181 
1182 static void
1183 bdev_io_types_test(void)
1184 {
1185 	struct spdk_bdev *bdev;
1186 	struct spdk_bdev_desc *desc = NULL;
1187 	struct spdk_io_channel *io_ch;
1188 	struct spdk_bdev_opts bdev_opts = {};
1189 	int rc;
1190 
1191 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1192 	bdev_opts.bdev_io_pool_size = 4;
1193 	bdev_opts.bdev_io_cache_size = 2;
1194 	ut_init_bdev(&bdev_opts);
1195 
1196 	bdev = allocate_bdev("bdev0");
1197 
1198 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1199 	CU_ASSERT(rc == 0);
1200 	poll_threads();
1201 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1202 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1203 	io_ch = spdk_bdev_get_io_channel(desc);
1204 	CU_ASSERT(io_ch != NULL);
1205 
1206 	/* WRITE and WRITE ZEROES are not supported */
1207 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
1208 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
1209 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
1210 	CU_ASSERT(rc == -ENOTSUP);
1211 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
1212 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
1213 
1214 	/* NVME_IO, NVME_IO_MD and NVME_ADMIN are not supported */
1215 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, false);
1216 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, false);
1217 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, false);
1218 	rc = spdk_bdev_nvme_io_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1219 	CU_ASSERT(rc == -ENOTSUP);
1220 	rc = spdk_bdev_nvme_io_passthru_md(desc, io_ch, NULL, NULL, 0, NULL, 0, NULL, NULL);
1221 	CU_ASSERT(rc == -ENOTSUP);
1222 	rc = spdk_bdev_nvme_admin_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1223 	CU_ASSERT(rc == -ENOTSUP);
1224 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, true);
1225 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, true);
1226 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, true);
1227 
1228 	spdk_put_io_channel(io_ch);
1229 	spdk_bdev_close(desc);
1230 	free_bdev(bdev);
1231 	ut_fini_bdev();
1232 }
1233 
1234 static void
1235 bdev_io_wait_test(void)
1236 {
1237 	struct spdk_bdev *bdev;
1238 	struct spdk_bdev_desc *desc = NULL;
1239 	struct spdk_io_channel *io_ch;
1240 	struct spdk_bdev_opts bdev_opts = {};
1241 	struct bdev_ut_io_wait_entry io_wait_entry;
1242 	struct bdev_ut_io_wait_entry io_wait_entry2;
1243 	int rc;
1244 
1245 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1246 	bdev_opts.bdev_io_pool_size = 4;
1247 	bdev_opts.bdev_io_cache_size = 2;
1248 	ut_init_bdev(&bdev_opts);
1249 
1250 	bdev = allocate_bdev("bdev0");
1251 
1252 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1253 	CU_ASSERT(rc == 0);
1254 	poll_threads();
1255 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1256 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1257 	io_ch = spdk_bdev_get_io_channel(desc);
1258 	CU_ASSERT(io_ch != NULL);
1259 
1260 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1261 	CU_ASSERT(rc == 0);
1262 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1263 	CU_ASSERT(rc == 0);
1264 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1265 	CU_ASSERT(rc == 0);
1266 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1267 	CU_ASSERT(rc == 0);
1268 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1269 
1270 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1271 	CU_ASSERT(rc == -ENOMEM);
1272 
1273 	io_wait_entry.entry.bdev = bdev;
1274 	io_wait_entry.entry.cb_fn = io_wait_cb;
1275 	io_wait_entry.entry.cb_arg = &io_wait_entry;
1276 	io_wait_entry.io_ch = io_ch;
1277 	io_wait_entry.desc = desc;
1278 	io_wait_entry.submitted = false;
1279 	/* Cannot use the same io_wait_entry for two different calls. */
1280 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
1281 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
1282 
1283 	/* Queue two I/O waits. */
1284 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
1285 	CU_ASSERT(rc == 0);
1286 	CU_ASSERT(io_wait_entry.submitted == false);
1287 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
1288 	CU_ASSERT(rc == 0);
1289 	CU_ASSERT(io_wait_entry2.submitted == false);
1290 
1291 	stub_complete_io(1);
1292 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1293 	CU_ASSERT(io_wait_entry.submitted == true);
1294 	CU_ASSERT(io_wait_entry2.submitted == false);
1295 
1296 	stub_complete_io(1);
1297 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1298 	CU_ASSERT(io_wait_entry2.submitted == true);
1299 
1300 	stub_complete_io(4);
1301 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1302 
1303 	spdk_put_io_channel(io_ch);
1304 	spdk_bdev_close(desc);
1305 	free_bdev(bdev);
1306 	ut_fini_bdev();
1307 }
1308 
1309 static void
1310 bdev_io_spans_split_test(void)
1311 {
1312 	struct spdk_bdev bdev;
1313 	struct spdk_bdev_io bdev_io;
1314 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
1315 
1316 	memset(&bdev, 0, sizeof(bdev));
1317 	bdev_io.u.bdev.iovs = iov;
1318 
1319 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1320 	bdev.optimal_io_boundary = 0;
1321 	bdev.max_segment_size = 0;
1322 	bdev.max_num_segments = 0;
1323 	bdev_io.bdev = &bdev;
1324 
1325 	/* bdev has no optimal_io_boundary and max_size set - so this should return false. */
1326 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1327 
1328 	bdev.split_on_optimal_io_boundary = true;
1329 	bdev.optimal_io_boundary = 32;
1330 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1331 
1332 	/* RESETs are not based on LBAs - so this should return false. */
1333 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1334 
1335 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1336 	bdev_io.u.bdev.offset_blocks = 0;
1337 	bdev_io.u.bdev.num_blocks = 32;
1338 
1339 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1340 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1341 
1342 	bdev_io.u.bdev.num_blocks = 33;
1343 
1344 	/* This I/O spans a boundary. */
1345 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1346 
1347 	bdev_io.u.bdev.num_blocks = 32;
1348 	bdev.max_segment_size = 512 * 32;
1349 	bdev.max_num_segments = 1;
1350 	bdev_io.u.bdev.iovcnt = 1;
1351 	iov[0].iov_len = 512;
1352 
1353 	/* Does not cross and exceed max_size or max_segs */
1354 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1355 
1356 	bdev.split_on_optimal_io_boundary = false;
1357 	bdev.max_segment_size = 512;
1358 	bdev.max_num_segments = 1;
1359 	bdev_io.u.bdev.iovcnt = 2;
1360 
1361 	/* Exceed max_segs */
1362 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1363 
1364 	bdev.max_num_segments = 2;
1365 	iov[0].iov_len = 513;
1366 	iov[1].iov_len = 512;
1367 
1368 	/* Exceed max_sizes */
1369 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1370 
1371 	bdev.max_segment_size = 0;
1372 	bdev.write_unit_size = 32;
1373 	bdev.split_on_write_unit = true;
1374 	bdev_io.type = SPDK_BDEV_IO_TYPE_WRITE;
1375 
1376 	/* This I/O is one write unit */
1377 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1378 
1379 	bdev_io.u.bdev.num_blocks = 32 * 2;
1380 
1381 	/* This I/O is more than one write unit */
1382 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1383 
1384 	bdev_io.u.bdev.offset_blocks = 1;
1385 	bdev_io.u.bdev.num_blocks = 32;
1386 
1387 	/* This I/O is not aligned to write unit size */
1388 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1389 }
1390 
1391 static void
1392 bdev_io_boundary_split_test(void)
1393 {
1394 	struct spdk_bdev *bdev;
1395 	struct spdk_bdev_desc *desc = NULL;
1396 	struct spdk_io_channel *io_ch;
1397 	struct spdk_bdev_opts bdev_opts = {};
1398 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
1399 	struct ut_expected_io *expected_io;
1400 	void *md_buf = (void *)0xFF000000;
1401 	uint64_t i;
1402 	int rc;
1403 
1404 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1405 	bdev_opts.bdev_io_pool_size = 512;
1406 	bdev_opts.bdev_io_cache_size = 64;
1407 	ut_init_bdev(&bdev_opts);
1408 
1409 	bdev = allocate_bdev("bdev0");
1410 
1411 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1412 	CU_ASSERT(rc == 0);
1413 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1414 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1415 	io_ch = spdk_bdev_get_io_channel(desc);
1416 	CU_ASSERT(io_ch != NULL);
1417 
1418 	bdev->optimal_io_boundary = 16;
1419 	bdev->split_on_optimal_io_boundary = false;
1420 
1421 	g_io_done = false;
1422 
1423 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1424 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1425 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1426 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1427 
1428 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1429 	CU_ASSERT(rc == 0);
1430 	CU_ASSERT(g_io_done == false);
1431 
1432 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1433 	stub_complete_io(1);
1434 	CU_ASSERT(g_io_done == true);
1435 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1436 
1437 	bdev->split_on_optimal_io_boundary = true;
1438 	bdev->md_interleave = false;
1439 	bdev->md_len = 8;
1440 
1441 	/* Now test that a single-vector command is split correctly.
1442 	 * Offset 14, length 8, payload 0xF000
1443 	 *  Child - Offset 14, length 2, payload 0xF000
1444 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1445 	 *
1446 	 * Set up the expected values before calling spdk_bdev_read_blocks
1447 	 */
1448 	g_io_done = false;
1449 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1450 	expected_io->md_buf = md_buf;
1451 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1452 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1453 
1454 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1455 	expected_io->md_buf = md_buf + 2 * 8;
1456 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1457 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1458 
1459 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1460 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1461 					   14, 8, io_done, NULL);
1462 	CU_ASSERT(rc == 0);
1463 	CU_ASSERT(g_io_done == false);
1464 
1465 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1466 	stub_complete_io(2);
1467 	CU_ASSERT(g_io_done == true);
1468 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1469 
1470 	/* Now set up a more complex, multi-vector command that needs to be split,
1471 	 *  including splitting iovecs.
1472 	 */
1473 	iov[0].iov_base = (void *)0x10000;
1474 	iov[0].iov_len = 512;
1475 	iov[1].iov_base = (void *)0x20000;
1476 	iov[1].iov_len = 20 * 512;
1477 	iov[2].iov_base = (void *)0x30000;
1478 	iov[2].iov_len = 11 * 512;
1479 
1480 	g_io_done = false;
1481 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1482 	expected_io->md_buf = md_buf;
1483 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1484 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1485 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1486 
1487 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1488 	expected_io->md_buf = md_buf + 2 * 8;
1489 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1490 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1491 
1492 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1493 	expected_io->md_buf = md_buf + 18 * 8;
1494 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1495 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1496 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1497 
1498 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1499 					     14, 32, io_done, NULL);
1500 	CU_ASSERT(rc == 0);
1501 	CU_ASSERT(g_io_done == false);
1502 
1503 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1504 	stub_complete_io(3);
1505 	CU_ASSERT(g_io_done == true);
1506 
1507 	/* Test multi vector command that needs to be split by strip and then needs to be
1508 	 * split further due to the capacity of child iovs.
1509 	 */
1510 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1511 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1512 		iov[i].iov_len = 512;
1513 	}
1514 
1515 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1516 	g_io_done = false;
1517 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
1518 					   SPDK_BDEV_IO_NUM_CHILD_IOV);
1519 	expected_io->md_buf = md_buf;
1520 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1521 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1522 	}
1523 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1524 
1525 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1526 					   SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
1527 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1528 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1529 		ut_expected_io_set_iov(expected_io, i,
1530 				       (void *)((i + 1 + SPDK_BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1531 	}
1532 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1533 
1534 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1535 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1536 	CU_ASSERT(rc == 0);
1537 	CU_ASSERT(g_io_done == false);
1538 
1539 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1540 	stub_complete_io(1);
1541 	CU_ASSERT(g_io_done == false);
1542 
1543 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1544 	stub_complete_io(1);
1545 	CU_ASSERT(g_io_done == true);
1546 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1547 
1548 	/* Test multi vector command that needs to be split by strip and then needs to be
1549 	 * split further due to the capacity of child iovs. In this case, the length of
1550 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1551 	 */
1552 
1553 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1554 	 * is SPDK_BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1555 	 */
1556 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1557 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1558 		iov[i].iov_len = 512;
1559 	}
1560 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1561 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1562 		iov[i].iov_len = 256;
1563 	}
1564 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1565 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1566 
1567 	/* Add an extra iovec to trigger split */
1568 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1569 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1570 
1571 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1572 	g_io_done = false;
1573 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1574 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV);
1575 	expected_io->md_buf = md_buf;
1576 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1577 		ut_expected_io_set_iov(expected_io, i,
1578 				       (void *)((i + 1) * 0x10000), 512);
1579 	}
1580 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1581 		ut_expected_io_set_iov(expected_io, i,
1582 				       (void *)((i + 1) * 0x10000), 256);
1583 	}
1584 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1585 
1586 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1587 					   1, 1);
1588 	expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1589 	ut_expected_io_set_iov(expected_io, 0,
1590 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1591 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1592 
1593 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1594 					   1, 1);
1595 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1596 	ut_expected_io_set_iov(expected_io, 0,
1597 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1598 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1599 
1600 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1601 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1602 	CU_ASSERT(rc == 0);
1603 	CU_ASSERT(g_io_done == false);
1604 
1605 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1606 	stub_complete_io(1);
1607 	CU_ASSERT(g_io_done == false);
1608 
1609 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1610 	stub_complete_io(2);
1611 	CU_ASSERT(g_io_done == true);
1612 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1613 
1614 	/* Test multi vector command that needs to be split by strip and then needs to be
1615 	 * split further due to the capacity of child iovs, the child request offset should
1616 	 * be rewind to last aligned offset and go success without error.
1617 	 */
1618 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1619 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1620 		iov[i].iov_len = 512;
1621 	}
1622 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
1623 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1624 
1625 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1626 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1627 
1628 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1629 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1630 
1631 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1632 	g_io_done = false;
1633 	g_io_status = 0;
1634 	/* The first expected io should be start from offset 0 to SPDK_BDEV_IO_NUM_CHILD_IOV - 1 */
1635 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1636 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
1637 	expected_io->md_buf = md_buf;
1638 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1639 		ut_expected_io_set_iov(expected_io, i,
1640 				       (void *)((i + 1) * 0x10000), 512);
1641 	}
1642 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1643 	/* The second expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV - 1 to SPDK_BDEV_IO_NUM_CHILD_IOV */
1644 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1645 					   1, 2);
1646 	expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1647 	ut_expected_io_set_iov(expected_io, 0,
1648 			       (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1649 	ut_expected_io_set_iov(expected_io, 1,
1650 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1651 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1652 	/* The third expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV to SPDK_BDEV_IO_NUM_CHILD_IOV + 1 */
1653 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1654 					   1, 1);
1655 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1656 	ut_expected_io_set_iov(expected_io, 0,
1657 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1658 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1659 
1660 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1661 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1662 	CU_ASSERT(rc == 0);
1663 	CU_ASSERT(g_io_done == false);
1664 
1665 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1666 	stub_complete_io(1);
1667 	CU_ASSERT(g_io_done == false);
1668 
1669 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1670 	stub_complete_io(2);
1671 	CU_ASSERT(g_io_done == true);
1672 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1673 
1674 	/* Test multi vector command that needs to be split due to the IO boundary and
1675 	 * the capacity of child iovs. Especially test the case when the command is
1676 	 * split due to the capacity of child iovs, the tail address is not aligned with
1677 	 * block size and is rewinded to the aligned address.
1678 	 *
1679 	 * The iovecs used in read request is complex but is based on the data
1680 	 * collected in the real issue. We change the base addresses but keep the lengths
1681 	 * not to loose the credibility of the test.
1682 	 */
1683 	bdev->optimal_io_boundary = 128;
1684 	g_io_done = false;
1685 	g_io_status = 0;
1686 
1687 	for (i = 0; i < 31; i++) {
1688 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1689 		iov[i].iov_len = 1024;
1690 	}
1691 	iov[31].iov_base = (void *)0xFEED1F00000;
1692 	iov[31].iov_len = 32768;
1693 	iov[32].iov_base = (void *)0xFEED2000000;
1694 	iov[32].iov_len = 160;
1695 	iov[33].iov_base = (void *)0xFEED2100000;
1696 	iov[33].iov_len = 4096;
1697 	iov[34].iov_base = (void *)0xFEED2200000;
1698 	iov[34].iov_len = 4096;
1699 	iov[35].iov_base = (void *)0xFEED2300000;
1700 	iov[35].iov_len = 4096;
1701 	iov[36].iov_base = (void *)0xFEED2400000;
1702 	iov[36].iov_len = 4096;
1703 	iov[37].iov_base = (void *)0xFEED2500000;
1704 	iov[37].iov_len = 4096;
1705 	iov[38].iov_base = (void *)0xFEED2600000;
1706 	iov[38].iov_len = 4096;
1707 	iov[39].iov_base = (void *)0xFEED2700000;
1708 	iov[39].iov_len = 4096;
1709 	iov[40].iov_base = (void *)0xFEED2800000;
1710 	iov[40].iov_len = 4096;
1711 	iov[41].iov_base = (void *)0xFEED2900000;
1712 	iov[41].iov_len = 4096;
1713 	iov[42].iov_base = (void *)0xFEED2A00000;
1714 	iov[42].iov_len = 4096;
1715 	iov[43].iov_base = (void *)0xFEED2B00000;
1716 	iov[43].iov_len = 12288;
1717 	iov[44].iov_base = (void *)0xFEED2C00000;
1718 	iov[44].iov_len = 8192;
1719 	iov[45].iov_base = (void *)0xFEED2F00000;
1720 	iov[45].iov_len = 4096;
1721 	iov[46].iov_base = (void *)0xFEED3000000;
1722 	iov[46].iov_len = 4096;
1723 	iov[47].iov_base = (void *)0xFEED3100000;
1724 	iov[47].iov_len = 4096;
1725 	iov[48].iov_base = (void *)0xFEED3200000;
1726 	iov[48].iov_len = 24576;
1727 	iov[49].iov_base = (void *)0xFEED3300000;
1728 	iov[49].iov_len = 16384;
1729 	iov[50].iov_base = (void *)0xFEED3400000;
1730 	iov[50].iov_len = 12288;
1731 	iov[51].iov_base = (void *)0xFEED3500000;
1732 	iov[51].iov_len = 4096;
1733 	iov[52].iov_base = (void *)0xFEED3600000;
1734 	iov[52].iov_len = 4096;
1735 	iov[53].iov_base = (void *)0xFEED3700000;
1736 	iov[53].iov_len = 4096;
1737 	iov[54].iov_base = (void *)0xFEED3800000;
1738 	iov[54].iov_len = 28672;
1739 	iov[55].iov_base = (void *)0xFEED3900000;
1740 	iov[55].iov_len = 20480;
1741 	iov[56].iov_base = (void *)0xFEED3A00000;
1742 	iov[56].iov_len = 4096;
1743 	iov[57].iov_base = (void *)0xFEED3B00000;
1744 	iov[57].iov_len = 12288;
1745 	iov[58].iov_base = (void *)0xFEED3C00000;
1746 	iov[58].iov_len = 4096;
1747 	iov[59].iov_base = (void *)0xFEED3D00000;
1748 	iov[59].iov_len = 4096;
1749 	iov[60].iov_base = (void *)0xFEED3E00000;
1750 	iov[60].iov_len = 352;
1751 
1752 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1753 	 * of child iovs,
1754 	 */
1755 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1756 	expected_io->md_buf = md_buf;
1757 	for (i = 0; i < 32; i++) {
1758 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1759 	}
1760 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1761 
1762 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1763 	 * split by the IO boundary requirement.
1764 	 */
1765 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1766 	expected_io->md_buf = md_buf + 126 * 8;
1767 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1768 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1769 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1770 
1771 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1772 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1773 	 */
1774 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1775 	expected_io->md_buf = md_buf + 128 * 8;
1776 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1777 			       iov[33].iov_len - 864);
1778 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1779 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1780 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1781 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1782 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1783 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1784 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1785 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1786 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1787 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1788 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1789 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1790 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1791 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1792 
1793 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1794 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1795 	 */
1796 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1797 	expected_io->md_buf = md_buf + 256 * 8;
1798 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1799 			       iov[46].iov_len - 864);
1800 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1801 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1802 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1803 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1804 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1805 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1806 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1807 
1808 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1809 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1810 	 */
1811 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1812 	expected_io->md_buf = md_buf + 384 * 8;
1813 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1814 			       iov[52].iov_len - 864);
1815 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1816 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1817 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1818 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1819 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1820 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1821 
1822 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1823 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1824 	 */
1825 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1826 	expected_io->md_buf = md_buf + 512 * 8;
1827 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1828 			       iov[57].iov_len - 4960);
1829 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1830 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1831 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1832 
1833 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1834 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1835 	expected_io->md_buf = md_buf + 542 * 8;
1836 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1837 			       iov[59].iov_len - 3936);
1838 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1839 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1840 
1841 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1842 					    0, 543, io_done, NULL);
1843 	CU_ASSERT(rc == 0);
1844 	CU_ASSERT(g_io_done == false);
1845 
1846 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1847 	stub_complete_io(1);
1848 	CU_ASSERT(g_io_done == false);
1849 
1850 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1851 	stub_complete_io(5);
1852 	CU_ASSERT(g_io_done == false);
1853 
1854 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1855 	stub_complete_io(1);
1856 	CU_ASSERT(g_io_done == true);
1857 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1858 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1859 
1860 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1861 	 * split, so test that.
1862 	 */
1863 	bdev->optimal_io_boundary = 15;
1864 	g_io_done = false;
1865 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1866 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1867 
1868 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1869 	CU_ASSERT(rc == 0);
1870 	CU_ASSERT(g_io_done == false);
1871 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1872 	stub_complete_io(1);
1873 	CU_ASSERT(g_io_done == true);
1874 
1875 	/* Test an UNMAP.  This should also not be split. */
1876 	bdev->optimal_io_boundary = 16;
1877 	g_io_done = false;
1878 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1879 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1880 
1881 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1882 	CU_ASSERT(rc == 0);
1883 	CU_ASSERT(g_io_done == false);
1884 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1885 	stub_complete_io(1);
1886 	CU_ASSERT(g_io_done == true);
1887 
1888 	/* Test a FLUSH.  This should also not be split. */
1889 	bdev->optimal_io_boundary = 16;
1890 	g_io_done = false;
1891 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1892 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1893 
1894 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1895 	CU_ASSERT(rc == 0);
1896 	CU_ASSERT(g_io_done == false);
1897 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1898 	stub_complete_io(1);
1899 	CU_ASSERT(g_io_done == true);
1900 
1901 	/* Test a COPY.  This should also not be split. */
1902 	bdev->optimal_io_boundary = 15;
1903 	g_io_done = false;
1904 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
1905 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1906 
1907 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
1908 	CU_ASSERT(rc == 0);
1909 	CU_ASSERT(g_io_done == false);
1910 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1911 	stub_complete_io(1);
1912 	CU_ASSERT(g_io_done == true);
1913 
1914 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1915 
1916 	/* Children requests return an error status */
1917 	bdev->optimal_io_boundary = 16;
1918 	iov[0].iov_base = (void *)0x10000;
1919 	iov[0].iov_len = 512 * 64;
1920 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1921 	g_io_done = false;
1922 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1923 
1924 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1925 	CU_ASSERT(rc == 0);
1926 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1927 	stub_complete_io(4);
1928 	CU_ASSERT(g_io_done == false);
1929 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1930 	stub_complete_io(1);
1931 	CU_ASSERT(g_io_done == true);
1932 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1933 
1934 	/* Test if a multi vector command terminated with failure before continuing
1935 	 * splitting process when one of child I/O failed.
1936 	 * The multi vector command is as same as the above that needs to be split by strip
1937 	 * and then needs to be split further due to the capacity of child iovs.
1938 	 */
1939 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1940 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1941 		iov[i].iov_len = 512;
1942 	}
1943 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
1944 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1945 
1946 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1947 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1948 
1949 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1950 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1951 
1952 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1953 
1954 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1955 	g_io_done = false;
1956 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1957 
1958 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
1959 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1960 	CU_ASSERT(rc == 0);
1961 	CU_ASSERT(g_io_done == false);
1962 
1963 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1964 	stub_complete_io(1);
1965 	CU_ASSERT(g_io_done == true);
1966 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1967 
1968 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1969 
1970 	/* for this test we will create the following conditions to hit the code path where
1971 	 * we are trying to send and IO following a split that has no iovs because we had to
1972 	 * trim them for alignment reasons.
1973 	 *
1974 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1975 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1976 	 *   position 30 and overshoot by 0x2e.
1977 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1978 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1979 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1980 	 *   and let the completion pick up the last 2 vectors.
1981 	 */
1982 	bdev->optimal_io_boundary = 32;
1983 	bdev->split_on_optimal_io_boundary = true;
1984 	g_io_done = false;
1985 
1986 	/* Init all parent IOVs to 0x212 */
1987 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1988 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1989 		iov[i].iov_len = 0x212;
1990 	}
1991 
1992 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
1993 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
1994 	/* expect 0-29 to be 1:1 with the parent iov */
1995 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1996 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1997 	}
1998 
1999 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
2000 	 * where 0x1e is the amount we overshot the 16K boundary
2001 	 */
2002 	ut_expected_io_set_iov(expected_io, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
2003 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
2004 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2005 
2006 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
2007 	 * shortened that take it to the next boundary and then a final one to get us to
2008 	 * 0x4200 bytes for the IO.
2009 	 */
2010 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
2011 					   1, 2);
2012 	/* position 30 picked up the remaining bytes to the next boundary */
2013 	ut_expected_io_set_iov(expected_io, 0,
2014 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
2015 
2016 	/* position 31 picked the the rest of the transfer to get us to 0x4200 */
2017 	ut_expected_io_set_iov(expected_io, 1,
2018 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
2019 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2020 
2021 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, 0,
2022 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
2023 	CU_ASSERT(rc == 0);
2024 	CU_ASSERT(g_io_done == false);
2025 
2026 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2027 	stub_complete_io(1);
2028 	CU_ASSERT(g_io_done == false);
2029 
2030 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2031 	stub_complete_io(1);
2032 	CU_ASSERT(g_io_done == true);
2033 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2034 
2035 	spdk_put_io_channel(io_ch);
2036 	spdk_bdev_close(desc);
2037 	free_bdev(bdev);
2038 	ut_fini_bdev();
2039 }
2040 
2041 static void
2042 bdev_io_max_size_and_segment_split_test(void)
2043 {
2044 	struct spdk_bdev *bdev;
2045 	struct spdk_bdev_desc *desc = NULL;
2046 	struct spdk_io_channel *io_ch;
2047 	struct spdk_bdev_opts bdev_opts = {};
2048 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
2049 	struct ut_expected_io *expected_io;
2050 	uint64_t i;
2051 	int rc;
2052 
2053 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2054 	bdev_opts.bdev_io_pool_size = 512;
2055 	bdev_opts.bdev_io_cache_size = 64;
2056 	bdev_opts.opts_size = sizeof(bdev_opts);
2057 	ut_init_bdev(&bdev_opts);
2058 
2059 	bdev = allocate_bdev("bdev0");
2060 
2061 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2062 	CU_ASSERT(rc == 0);
2063 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2064 	io_ch = spdk_bdev_get_io_channel(desc);
2065 	CU_ASSERT(io_ch != NULL);
2066 
2067 	bdev->split_on_optimal_io_boundary = false;
2068 	bdev->optimal_io_boundary = 0;
2069 
2070 	/* Case 0 max_num_segments == 0.
2071 	 * but segment size 2 * 512 > 512
2072 	 */
2073 	bdev->max_segment_size = 512;
2074 	bdev->max_num_segments = 0;
2075 	g_io_done = false;
2076 
2077 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2078 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2079 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2080 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2081 
2082 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2083 	CU_ASSERT(rc == 0);
2084 	CU_ASSERT(g_io_done == false);
2085 
2086 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2087 	stub_complete_io(1);
2088 	CU_ASSERT(g_io_done == true);
2089 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2090 
2091 	/* Case 1 max_segment_size == 0
2092 	 * but iov num 2 > 1.
2093 	 */
2094 	bdev->max_segment_size = 0;
2095 	bdev->max_num_segments = 1;
2096 	g_io_done = false;
2097 
2098 	iov[0].iov_base = (void *)0x10000;
2099 	iov[0].iov_len = 512;
2100 	iov[1].iov_base = (void *)0x20000;
2101 	iov[1].iov_len = 8 * 512;
2102 
2103 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2104 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len);
2105 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2106 
2107 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1);
2108 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len);
2109 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2110 
2111 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL);
2112 	CU_ASSERT(rc == 0);
2113 	CU_ASSERT(g_io_done == false);
2114 
2115 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2116 	stub_complete_io(2);
2117 	CU_ASSERT(g_io_done == true);
2118 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2119 
2120 	/* Test that a non-vector command is split correctly.
2121 	 * Set up the expected values before calling spdk_bdev_read_blocks
2122 	 */
2123 	bdev->max_segment_size = 512;
2124 	bdev->max_num_segments = 1;
2125 	g_io_done = false;
2126 
2127 	/* Child IO 0 */
2128 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2129 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2130 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2131 
2132 	/* Child IO 1 */
2133 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2134 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512);
2135 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2136 
2137 	/* spdk_bdev_read_blocks will submit the first child immediately. */
2138 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2139 	CU_ASSERT(rc == 0);
2140 	CU_ASSERT(g_io_done == false);
2141 
2142 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2143 	stub_complete_io(2);
2144 	CU_ASSERT(g_io_done == true);
2145 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2146 
2147 	/* Now set up a more complex, multi-vector command that needs to be split,
2148 	 * including splitting iovecs.
2149 	 */
2150 	bdev->max_segment_size = 2 * 512;
2151 	bdev->max_num_segments = 1;
2152 	g_io_done = false;
2153 
2154 	iov[0].iov_base = (void *)0x10000;
2155 	iov[0].iov_len = 2 * 512;
2156 	iov[1].iov_base = (void *)0x20000;
2157 	iov[1].iov_len = 4 * 512;
2158 	iov[2].iov_base = (void *)0x30000;
2159 	iov[2].iov_len = 6 * 512;
2160 
2161 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2162 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2);
2163 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2164 
2165 	/* Split iov[1].size to 2 iov entries then split the segments */
2166 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2167 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2);
2168 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2169 
2170 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1);
2171 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2);
2172 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2173 
2174 	/* Split iov[2].size to 3 iov entries then split the segments */
2175 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1);
2176 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2);
2177 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2178 
2179 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1);
2180 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2);
2181 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2182 
2183 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1);
2184 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2);
2185 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2186 
2187 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL);
2188 	CU_ASSERT(rc == 0);
2189 	CU_ASSERT(g_io_done == false);
2190 
2191 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2192 	stub_complete_io(6);
2193 	CU_ASSERT(g_io_done == true);
2194 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2195 
2196 	/* Test multi vector command that needs to be split by strip and then needs to be
2197 	 * split further due to the capacity of parent IO child iovs.
2198 	 */
2199 	bdev->max_segment_size = 512;
2200 	bdev->max_num_segments = 1;
2201 	g_io_done = false;
2202 
2203 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2204 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2205 		iov[i].iov_len = 512 * 2;
2206 	}
2207 
2208 	/* Each input iov.size is split into 2 iovs,
2209 	 * half of the input iov can fill all child iov entries of a single IO.
2210 	 */
2211 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i++) {
2212 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1);
2213 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2214 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2215 
2216 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1);
2217 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2218 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2219 	}
2220 
2221 	/* The remaining iov is split in the second round */
2222 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2223 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1);
2224 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2225 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2226 
2227 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1);
2228 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2229 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2230 	}
2231 
2232 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
2233 				    SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
2234 	CU_ASSERT(rc == 0);
2235 	CU_ASSERT(g_io_done == false);
2236 
2237 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2238 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2239 	CU_ASSERT(g_io_done == false);
2240 
2241 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2242 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2243 	CU_ASSERT(g_io_done == true);
2244 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2245 
2246 	/* A wrong case, a child IO that is divided does
2247 	 * not meet the principle of multiples of block size,
2248 	 * and exits with error
2249 	 */
2250 	bdev->max_segment_size = 512;
2251 	bdev->max_num_segments = 1;
2252 	g_io_done = false;
2253 
2254 	iov[0].iov_base = (void *)0x10000;
2255 	iov[0].iov_len = 512 + 256;
2256 	iov[1].iov_base = (void *)0x20000;
2257 	iov[1].iov_len = 256;
2258 
2259 	/* iov[0] is split to 512 and 256.
2260 	 * 256 is less than a block size, and it is found
2261 	 * in the next round of split that it is the first child IO smaller than
2262 	 * the block size, so the error exit
2263 	 */
2264 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1);
2265 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512);
2266 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2267 
2268 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL);
2269 	CU_ASSERT(rc == 0);
2270 	CU_ASSERT(g_io_done == false);
2271 
2272 	/* First child IO is OK */
2273 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2274 	stub_complete_io(1);
2275 	CU_ASSERT(g_io_done == true);
2276 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2277 
2278 	/* error exit */
2279 	stub_complete_io(1);
2280 	CU_ASSERT(g_io_done == true);
2281 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
2282 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2283 
2284 	/* Test multi vector command that needs to be split by strip and then needs to be
2285 	 * split further due to the capacity of child iovs.
2286 	 *
2287 	 * In this case, the last two iovs need to be split, but it will exceed the capacity
2288 	 * of child iovs, so it needs to wait until the first batch completed.
2289 	 */
2290 	bdev->max_segment_size = 512;
2291 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2292 	g_io_done = false;
2293 
2294 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2295 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2296 		iov[i].iov_len = 512;
2297 	}
2298 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2299 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2300 		iov[i].iov_len = 512 * 2;
2301 	}
2302 
2303 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2304 					   SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
2305 	/* 0 ~ (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */
2306 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2307 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2308 	}
2309 	/* (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) is split */
2310 	ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512);
2311 	ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512);
2312 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2313 
2314 	/* Child iov entries exceed the max num of parent IO so split it in next round */
2315 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV, 2, 2);
2316 	ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512);
2317 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512);
2318 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2319 
2320 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
2321 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL);
2322 	CU_ASSERT(rc == 0);
2323 	CU_ASSERT(g_io_done == false);
2324 
2325 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2326 	stub_complete_io(1);
2327 	CU_ASSERT(g_io_done == false);
2328 
2329 	/* Next round */
2330 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2331 	stub_complete_io(1);
2332 	CU_ASSERT(g_io_done == true);
2333 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2334 
2335 	/* This case is similar to the previous one, but the io composed of
2336 	 * the last few entries of child iov is not enough for a blocklen, so they
2337 	 * cannot be put into this IO, but wait until the next time.
2338 	 */
2339 	bdev->max_segment_size = 512;
2340 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2341 	g_io_done = false;
2342 
2343 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2344 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2345 		iov[i].iov_len = 512;
2346 	}
2347 
2348 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2349 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2350 		iov[i].iov_len = 128;
2351 	}
2352 
2353 	/* First child iovcnt is't SPDK_BDEV_IO_NUM_CHILD_IOV but SPDK_BDEV_IO_NUM_CHILD_IOV - 2.
2354 	 * Because the left 2 iov is not enough for a blocklen.
2355 	 */
2356 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2357 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 2, SPDK_BDEV_IO_NUM_CHILD_IOV - 2);
2358 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2359 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2360 	}
2361 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2362 
2363 	/* The second child io waits until the end of the first child io before executing.
2364 	 * Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO.
2365 	 * SPDK_BDEV_IO_NUM_CHILD_IOV - 2 to SPDK_BDEV_IO_NUM_CHILD_IOV + 2
2366 	 */
2367 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
2368 					   1, 4);
2369 	ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len);
2370 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len);
2371 	ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len);
2372 	ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len);
2373 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2374 
2375 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
2376 				    SPDK_BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL);
2377 	CU_ASSERT(rc == 0);
2378 	CU_ASSERT(g_io_done == false);
2379 
2380 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2381 	stub_complete_io(1);
2382 	CU_ASSERT(g_io_done == false);
2383 
2384 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2385 	stub_complete_io(1);
2386 	CU_ASSERT(g_io_done == true);
2387 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2388 
2389 	/* A very complicated case. Each sg entry exceeds max_segment_size and
2390 	 * needs to be split. At the same time, child io must be a multiple of blocklen.
2391 	 * At the same time, child iovcnt exceeds parent iovcnt.
2392 	 */
2393 	bdev->max_segment_size = 512 + 128;
2394 	bdev->max_num_segments = 3;
2395 	g_io_done = false;
2396 
2397 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2398 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2399 		iov[i].iov_len = 512 + 256;
2400 	}
2401 
2402 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2403 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2404 		iov[i].iov_len = 512 + 128;
2405 	}
2406 
2407 	/* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries.
2408 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2409 	 * Generate 9 child IOs.
2410 	 */
2411 	for (i = 0; i < 3; i++) {
2412 		uint32_t j = i * 4;
2413 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3);
2414 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2415 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2416 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2417 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2418 
2419 		/* Child io must be a multiple of blocklen
2420 		 * iov[j + 2] must be split. If the third entry is also added,
2421 		 * the multiple of blocklen cannot be guaranteed. But it still
2422 		 * occupies one iov entry of the parent child iov.
2423 		 */
2424 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2);
2425 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2426 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2427 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2428 
2429 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3);
2430 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2431 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2432 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2433 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2434 	}
2435 
2436 	/* Child iov position at 27, the 10th child IO
2437 	 * iov entry index is 3 * 4 and offset is 3 * 6
2438 	 */
2439 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3);
2440 	ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640);
2441 	ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128);
2442 	ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256);
2443 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2444 
2445 	/* Child iov position at 30, the 11th child IO */
2446 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2);
2447 	ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512);
2448 	ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512);
2449 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2450 
2451 	/* The 2nd split round and iovpos is 0, the 12th child IO */
2452 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3);
2453 	ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256);
2454 	ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640);
2455 	ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128);
2456 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2457 
2458 	/* Consume 9 child IOs and 27 child iov entries.
2459 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2460 	 * Parent IO iov index start from 16 and block offset start from 24
2461 	 */
2462 	for (i = 0; i < 3; i++) {
2463 		uint32_t j = i * 4 + 16;
2464 		uint32_t offset = i * 6 + 24;
2465 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3);
2466 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2467 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2468 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2469 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2470 
2471 		/* Child io must be a multiple of blocklen
2472 		 * iov[j + 2] must be split. If the third entry is also added,
2473 		 * the multiple of blocklen cannot be guaranteed. But it still
2474 		 * occupies one iov entry of the parent child iov.
2475 		 */
2476 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2);
2477 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2478 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2479 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2480 
2481 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3);
2482 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2483 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2484 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2485 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2486 	}
2487 
2488 	/* The 22th child IO, child iov position at 30 */
2489 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1);
2490 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512);
2491 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2492 
2493 	/* The third round */
2494 	/* Here is the 23nd child IO and child iovpos is 0 */
2495 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3);
2496 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256);
2497 	ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640);
2498 	ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128);
2499 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2500 
2501 	/* The 24th child IO */
2502 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3);
2503 	ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640);
2504 	ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640);
2505 	ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256);
2506 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2507 
2508 	/* The 25th child IO */
2509 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2);
2510 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384);
2511 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640);
2512 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2513 
2514 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
2515 				    50, io_done, NULL);
2516 	CU_ASSERT(rc == 0);
2517 	CU_ASSERT(g_io_done == false);
2518 
2519 	/* Parent IO supports up to 32 child iovs, so it is calculated that
2520 	 * a maximum of 11 IOs can be split at a time, and the
2521 	 * splitting will continue after the first batch is over.
2522 	 */
2523 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2524 	stub_complete_io(11);
2525 	CU_ASSERT(g_io_done == false);
2526 
2527 	/* The 2nd round */
2528 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2529 	stub_complete_io(11);
2530 	CU_ASSERT(g_io_done == false);
2531 
2532 	/* The last round */
2533 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2534 	stub_complete_io(3);
2535 	CU_ASSERT(g_io_done == true);
2536 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2537 
2538 	/* Test an WRITE_ZEROES.  This should also not be split. */
2539 	bdev->max_segment_size = 512;
2540 	bdev->max_num_segments = 1;
2541 	g_io_done = false;
2542 
2543 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
2544 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2545 
2546 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
2547 	CU_ASSERT(rc == 0);
2548 	CU_ASSERT(g_io_done == false);
2549 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2550 	stub_complete_io(1);
2551 	CU_ASSERT(g_io_done == true);
2552 
2553 	/* Test an UNMAP.  This should also not be split. */
2554 	g_io_done = false;
2555 
2556 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0);
2557 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2558 
2559 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL);
2560 	CU_ASSERT(rc == 0);
2561 	CU_ASSERT(g_io_done == false);
2562 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2563 	stub_complete_io(1);
2564 	CU_ASSERT(g_io_done == true);
2565 
2566 	/* Test a FLUSH.  This should also not be split. */
2567 	g_io_done = false;
2568 
2569 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0);
2570 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2571 
2572 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 4, io_done, NULL);
2573 	CU_ASSERT(rc == 0);
2574 	CU_ASSERT(g_io_done == false);
2575 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2576 	stub_complete_io(1);
2577 	CU_ASSERT(g_io_done == true);
2578 
2579 	/* Test a COPY.  This should also not be split. */
2580 	g_io_done = false;
2581 
2582 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
2583 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2584 
2585 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
2586 	CU_ASSERT(rc == 0);
2587 	CU_ASSERT(g_io_done == false);
2588 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2589 	stub_complete_io(1);
2590 	CU_ASSERT(g_io_done == true);
2591 
2592 	/* Test that IOs are split on max_rw_size */
2593 	bdev->max_rw_size = 2;
2594 	bdev->max_segment_size = 0;
2595 	bdev->max_num_segments = 0;
2596 	g_io_done = false;
2597 
2598 	/* 5 blocks in a contiguous buffer */
2599 	iov[0].iov_base = (void *)0x10000;
2600 	iov[0].iov_len = 5 * 512;
2601 
2602 	/* First: offset=0, num_blocks=2 */
2603 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 2, 1);
2604 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 2 * 512);
2605 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2606 	/* Second: offset=2, num_blocks=2 */
2607 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2, 2, 1);
2608 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + 2 * 512, 2 * 512);
2609 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2610 	/* Third: offset=4, num_blocks=1 */
2611 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 4, 1, 1);
2612 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + 4 * 512, 512);
2613 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2614 
2615 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 0, 5, io_done, NULL);
2616 	CU_ASSERT(rc == 0);
2617 	CU_ASSERT(g_io_done == false);
2618 
2619 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2620 	stub_complete_io(3);
2621 	CU_ASSERT(g_io_done == true);
2622 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2623 
2624 	/* Check splitting on both max_rw_size + max_num_segments */
2625 	bdev->max_rw_size = 2;
2626 	bdev->max_num_segments = 2;
2627 	bdev->max_segment_size = 0;
2628 	g_io_done = false;
2629 
2630 	/* 5 blocks split across 4 iovs */
2631 	iov[0].iov_base = (void *)0x10000;
2632 	iov[0].iov_len = 3 * 512;
2633 	iov[1].iov_base = (void *)0x20000;
2634 	iov[1].iov_len = 256;
2635 	iov[2].iov_base = (void *)0x30000;
2636 	iov[2].iov_len = 256;
2637 	iov[3].iov_base = (void *)0x40000;
2638 	iov[3].iov_len = 512;
2639 
2640 	/* First: offset=0, num_blocks=2, iovcnt=1 */
2641 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 2, 1);
2642 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 2 * 512);
2643 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2644 	/* Second: offset=2, num_blocks=1, iovcnt=1 (max_segment_size prevents from submitting
2645 	 * the rest of iov[0], and iov[1]+iov[2])
2646 	 */
2647 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2, 1, 1);
2648 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + 2 * 512, 512);
2649 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2650 	/* Third: offset=3, num_blocks=1, iovcnt=2 (iov[1]+iov[2]) */
2651 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 3, 1, 2);
2652 	ut_expected_io_set_iov(expected_io, 0, (void *)0x20000, 256);
2653 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 256);
2654 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2655 	/* Fourth: offset=4, num_blocks=1, iovcnt=1 (iov[3]) */
2656 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 4, 1, 1);
2657 	ut_expected_io_set_iov(expected_io, 0, (void *)0x40000, 512);
2658 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2659 
2660 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 4, 0, 5, io_done, NULL);
2661 	CU_ASSERT(rc == 0);
2662 	CU_ASSERT(g_io_done == false);
2663 
2664 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2665 	stub_complete_io(4);
2666 	CU_ASSERT(g_io_done == true);
2667 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2668 
2669 	/* Check splitting on both max_rw_size + max_segment_size */
2670 	bdev->max_rw_size = 2;
2671 	bdev->max_segment_size = 512;
2672 	bdev->max_num_segments = 0;
2673 	g_io_done = false;
2674 
2675 	/* 6 blocks in a contiguous buffer */
2676 	iov[0].iov_base = (void *)0x10000;
2677 	iov[0].iov_len = 6 * 512;
2678 
2679 	/* We expect 3 IOs each with 2 blocks and 2 iovs */
2680 	for (i = 0; i < 3; ++i) {
2681 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 2, 2);
2682 		ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + i * 2 * 512, 512);
2683 		ut_expected_io_set_iov(expected_io, 1, (void *)0x10000 + i * 2 * 512 + 512, 512);
2684 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2685 	}
2686 
2687 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 0, 6, io_done, NULL);
2688 	CU_ASSERT(rc == 0);
2689 	CU_ASSERT(g_io_done == false);
2690 
2691 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2692 	stub_complete_io(3);
2693 	CU_ASSERT(g_io_done == true);
2694 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2695 
2696 	/* Check splitting on max_rw_size limited by SPDK_BDEV_IO_NUM_CHILD_IOV */
2697 	bdev->max_rw_size = 1;
2698 	bdev->max_segment_size = 0;
2699 	bdev->max_num_segments = 0;
2700 	g_io_done = false;
2701 
2702 	/* SPDK_BDEV_IO_NUM_CHILD_IOV + 1 blocks */
2703 	iov[0].iov_base = (void *)0x10000;
2704 	iov[0].iov_len = (SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 512;
2705 
2706 	/* We expect SPDK_BDEV_IO_NUM_CHILD_IOV + 1 IOs each with a single iov */
2707 	for (i = 0; i < 3; ++i) {
2708 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i, 1, 1);
2709 		ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + i * 512, 512);
2710 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2711 	}
2712 
2713 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
2714 	CU_ASSERT(rc == 0);
2715 	CU_ASSERT(g_io_done == false);
2716 
2717 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2718 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2719 	CU_ASSERT(g_io_done == false);
2720 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2721 	stub_complete_io(1);
2722 	CU_ASSERT(g_io_done == true);
2723 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2724 
2725 	spdk_put_io_channel(io_ch);
2726 	spdk_bdev_close(desc);
2727 	free_bdev(bdev);
2728 	ut_fini_bdev();
2729 }
2730 
2731 static void
2732 bdev_io_mix_split_test(void)
2733 {
2734 	struct spdk_bdev *bdev;
2735 	struct spdk_bdev_desc *desc = NULL;
2736 	struct spdk_io_channel *io_ch;
2737 	struct spdk_bdev_opts bdev_opts = {};
2738 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
2739 	struct ut_expected_io *expected_io;
2740 	uint64_t i;
2741 	int rc;
2742 
2743 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2744 	bdev_opts.bdev_io_pool_size = 512;
2745 	bdev_opts.bdev_io_cache_size = 64;
2746 	ut_init_bdev(&bdev_opts);
2747 
2748 	bdev = allocate_bdev("bdev0");
2749 
2750 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2751 	CU_ASSERT(rc == 0);
2752 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2753 	io_ch = spdk_bdev_get_io_channel(desc);
2754 	CU_ASSERT(io_ch != NULL);
2755 
2756 	/* First case optimal_io_boundary == max_segment_size * max_num_segments */
2757 	bdev->split_on_optimal_io_boundary = true;
2758 	bdev->optimal_io_boundary = 16;
2759 
2760 	bdev->max_segment_size = 512;
2761 	bdev->max_num_segments = 16;
2762 	g_io_done = false;
2763 
2764 	/* IO crossing the IO boundary requires split
2765 	 * Total 2 child IOs.
2766 	 */
2767 
2768 	/* The 1st child IO split the segment_size to multiple segment entry */
2769 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2770 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2771 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2772 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2773 
2774 	/* The 2nd child IO split the segment_size to multiple segment entry */
2775 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2);
2776 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512);
2777 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512);
2778 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2779 
2780 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL);
2781 	CU_ASSERT(rc == 0);
2782 	CU_ASSERT(g_io_done == false);
2783 
2784 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2785 	stub_complete_io(2);
2786 	CU_ASSERT(g_io_done == true);
2787 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2788 
2789 	/* Second case optimal_io_boundary > max_segment_size * max_num_segments */
2790 	bdev->max_segment_size = 15 * 512;
2791 	bdev->max_num_segments = 1;
2792 	g_io_done = false;
2793 
2794 	/* IO crossing the IO boundary requires split.
2795 	 * The 1st child IO segment size exceeds the max_segment_size,
2796 	 * So 1st child IO will be split to multiple segment entry.
2797 	 * Then it split to 2 child IOs because of the max_num_segments.
2798 	 * Total 3 child IOs.
2799 	 */
2800 
2801 	/* The first 2 IOs are in an IO boundary.
2802 	 * Because the optimal_io_boundary > max_segment_size * max_num_segments
2803 	 * So it split to the first 2 IOs.
2804 	 */
2805 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1);
2806 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15);
2807 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2808 
2809 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2810 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512);
2811 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2812 
2813 	/* The 3rd Child IO is because of the io boundary */
2814 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2815 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2816 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2817 
2818 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2819 	CU_ASSERT(rc == 0);
2820 	CU_ASSERT(g_io_done == false);
2821 
2822 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2823 	stub_complete_io(3);
2824 	CU_ASSERT(g_io_done == true);
2825 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2826 
2827 	/* Third case optimal_io_boundary < max_segment_size * max_num_segments */
2828 	bdev->max_segment_size = 17 * 512;
2829 	bdev->max_num_segments = 1;
2830 	g_io_done = false;
2831 
2832 	/* IO crossing the IO boundary requires split.
2833 	 * Child IO does not split.
2834 	 * Total 2 child IOs.
2835 	 */
2836 
2837 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1);
2838 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16);
2839 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2840 
2841 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2842 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2843 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2844 
2845 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2846 	CU_ASSERT(rc == 0);
2847 	CU_ASSERT(g_io_done == false);
2848 
2849 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2850 	stub_complete_io(2);
2851 	CU_ASSERT(g_io_done == true);
2852 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2853 
2854 	/* Now set up a more complex, multi-vector command that needs to be split,
2855 	 * including splitting iovecs.
2856 	 * optimal_io_boundary < max_segment_size * max_num_segments
2857 	 */
2858 	bdev->max_segment_size = 3 * 512;
2859 	bdev->max_num_segments = 6;
2860 	g_io_done = false;
2861 
2862 	iov[0].iov_base = (void *)0x10000;
2863 	iov[0].iov_len = 4 * 512;
2864 	iov[1].iov_base = (void *)0x20000;
2865 	iov[1].iov_len = 4 * 512;
2866 	iov[2].iov_base = (void *)0x30000;
2867 	iov[2].iov_len = 10 * 512;
2868 
2869 	/* IO crossing the IO boundary requires split.
2870 	 * The 1st child IO segment size exceeds the max_segment_size and after
2871 	 * splitting segment_size, the num_segments exceeds max_num_segments.
2872 	 * So 1st child IO will be split to 2 child IOs.
2873 	 * Total 3 child IOs.
2874 	 */
2875 
2876 	/* The first 2 IOs are in an IO boundary.
2877 	 * After splitting segment size the segment num exceeds.
2878 	 * So it splits to 2 child IOs.
2879 	 */
2880 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6);
2881 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3);
2882 	ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512);
2883 	ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3);
2884 	ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512);
2885 	ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3);
2886 	ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3);
2887 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2888 
2889 	/* The 2nd child IO has the left segment entry */
2890 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2891 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2);
2892 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2893 
2894 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2895 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2);
2896 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2897 
2898 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL);
2899 	CU_ASSERT(rc == 0);
2900 	CU_ASSERT(g_io_done == false);
2901 
2902 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2903 	stub_complete_io(3);
2904 	CU_ASSERT(g_io_done == true);
2905 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2906 
2907 	/* A very complicated case. Each sg entry exceeds max_segment_size
2908 	 * and split on io boundary.
2909 	 * optimal_io_boundary < max_segment_size * max_num_segments
2910 	 */
2911 	bdev->max_segment_size = 3 * 512;
2912 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2913 	g_io_done = false;
2914 
2915 	for (i = 0; i < 20; i++) {
2916 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2917 		iov[i].iov_len = 512 * 4;
2918 	}
2919 
2920 	/* IO crossing the IO boundary requires split.
2921 	 * 80 block length can split 5 child IOs base on offset and IO boundary.
2922 	 * Each iov entry needs to be split to 2 entries because of max_segment_size
2923 	 * Total 5 child IOs.
2924 	 */
2925 
2926 	/* 4 iov entries are in an IO boundary and each iov entry splits to 2.
2927 	 * So each child IO occupies 8 child iov entries.
2928 	 */
2929 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8);
2930 	for (i = 0; i < 4; i++) {
2931 		int iovcnt = i * 2;
2932 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2933 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2934 	}
2935 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2936 
2937 	/* 2nd child IO and total 16 child iov entries of parent IO */
2938 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8);
2939 	for (i = 4; i < 8; i++) {
2940 		int iovcnt = (i - 4) * 2;
2941 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2942 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2943 	}
2944 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2945 
2946 	/* 3rd child IO and total 24 child iov entries of parent IO */
2947 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8);
2948 	for (i = 8; i < 12; i++) {
2949 		int iovcnt = (i - 8) * 2;
2950 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2951 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2952 	}
2953 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2954 
2955 	/* 4th child IO and total 32 child iov entries of parent IO */
2956 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8);
2957 	for (i = 12; i < 16; i++) {
2958 		int iovcnt = (i - 12) * 2;
2959 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2960 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2961 	}
2962 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2963 
2964 	/* 5th child IO and because of the child iov entry it should be split
2965 	 * in next round.
2966 	 */
2967 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8);
2968 	for (i = 16; i < 20; i++) {
2969 		int iovcnt = (i - 16) * 2;
2970 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2971 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2972 	}
2973 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2974 
2975 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL);
2976 	CU_ASSERT(rc == 0);
2977 	CU_ASSERT(g_io_done == false);
2978 
2979 	/* First split round */
2980 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2981 	stub_complete_io(4);
2982 	CU_ASSERT(g_io_done == false);
2983 
2984 	/* Second split round */
2985 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2986 	stub_complete_io(1);
2987 	CU_ASSERT(g_io_done == true);
2988 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2989 
2990 	spdk_put_io_channel(io_ch);
2991 	spdk_bdev_close(desc);
2992 	free_bdev(bdev);
2993 	ut_fini_bdev();
2994 }
2995 
2996 static void
2997 bdev_io_split_with_io_wait(void)
2998 {
2999 	struct spdk_bdev *bdev;
3000 	struct spdk_bdev_desc *desc = NULL;
3001 	struct spdk_io_channel *io_ch;
3002 	struct spdk_bdev_channel *channel;
3003 	struct spdk_bdev_mgmt_channel *mgmt_ch;
3004 	struct spdk_bdev_opts bdev_opts = {};
3005 	struct iovec iov[3];
3006 	struct ut_expected_io *expected_io;
3007 	int rc;
3008 
3009 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3010 	bdev_opts.bdev_io_pool_size = 2;
3011 	bdev_opts.bdev_io_cache_size = 1;
3012 	ut_init_bdev(&bdev_opts);
3013 
3014 	bdev = allocate_bdev("bdev0");
3015 
3016 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3017 	CU_ASSERT(rc == 0);
3018 	CU_ASSERT(desc != NULL);
3019 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3020 	io_ch = spdk_bdev_get_io_channel(desc);
3021 	CU_ASSERT(io_ch != NULL);
3022 	channel = spdk_io_channel_get_ctx(io_ch);
3023 	mgmt_ch = channel->shared_resource->mgmt_ch;
3024 
3025 	bdev->optimal_io_boundary = 16;
3026 	bdev->split_on_optimal_io_boundary = true;
3027 
3028 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
3029 	CU_ASSERT(rc == 0);
3030 
3031 	/* Now test that a single-vector command is split correctly.
3032 	 * Offset 14, length 8, payload 0xF000
3033 	 *  Child - Offset 14, length 2, payload 0xF000
3034 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
3035 	 *
3036 	 * Set up the expected values before calling spdk_bdev_read_blocks
3037 	 */
3038 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
3039 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
3040 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3041 
3042 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
3043 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
3044 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3045 
3046 	/* The following children will be submitted sequentially due to the capacity of
3047 	 * spdk_bdev_io.
3048 	 */
3049 
3050 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
3051 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
3052 	CU_ASSERT(rc == 0);
3053 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
3054 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3055 
3056 	/* Completing the first read I/O will submit the first child */
3057 	stub_complete_io(1);
3058 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
3059 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3060 
3061 	/* Completing the first child will submit the second child */
3062 	stub_complete_io(1);
3063 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3064 
3065 	/* Complete the second child I/O.  This should result in our callback getting
3066 	 * invoked since the parent I/O is now complete.
3067 	 */
3068 	stub_complete_io(1);
3069 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3070 
3071 	/* Now set up a more complex, multi-vector command that needs to be split,
3072 	 *  including splitting iovecs.
3073 	 */
3074 	iov[0].iov_base = (void *)0x10000;
3075 	iov[0].iov_len = 512;
3076 	iov[1].iov_base = (void *)0x20000;
3077 	iov[1].iov_len = 20 * 512;
3078 	iov[2].iov_base = (void *)0x30000;
3079 	iov[2].iov_len = 11 * 512;
3080 
3081 	g_io_done = false;
3082 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
3083 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
3084 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
3085 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3086 
3087 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
3088 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
3089 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3090 
3091 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
3092 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
3093 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
3094 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3095 
3096 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
3097 	CU_ASSERT(rc == 0);
3098 	CU_ASSERT(g_io_done == false);
3099 
3100 	/* The following children will be submitted sequentially due to the capacity of
3101 	 * spdk_bdev_io.
3102 	 */
3103 
3104 	/* Completing the first child will submit the second child */
3105 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3106 	stub_complete_io(1);
3107 	CU_ASSERT(g_io_done == false);
3108 
3109 	/* Completing the second child will submit the third child */
3110 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3111 	stub_complete_io(1);
3112 	CU_ASSERT(g_io_done == false);
3113 
3114 	/* Completing the third child will result in our callback getting invoked
3115 	 * since the parent I/O is now complete.
3116 	 */
3117 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3118 	stub_complete_io(1);
3119 	CU_ASSERT(g_io_done == true);
3120 
3121 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
3122 
3123 	spdk_put_io_channel(io_ch);
3124 	spdk_bdev_close(desc);
3125 	free_bdev(bdev);
3126 	ut_fini_bdev();
3127 }
3128 
3129 static void
3130 bdev_io_write_unit_split_test(void)
3131 {
3132 	struct spdk_bdev *bdev;
3133 	struct spdk_bdev_desc *desc = NULL;
3134 	struct spdk_io_channel *io_ch;
3135 	struct spdk_bdev_opts bdev_opts = {};
3136 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 4];
3137 	struct ut_expected_io *expected_io;
3138 	uint64_t i;
3139 	int rc;
3140 
3141 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3142 	bdev_opts.bdev_io_pool_size = 512;
3143 	bdev_opts.bdev_io_cache_size = 64;
3144 	ut_init_bdev(&bdev_opts);
3145 
3146 	bdev = allocate_bdev("bdev0");
3147 
3148 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
3149 	CU_ASSERT(rc == 0);
3150 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3151 	io_ch = spdk_bdev_get_io_channel(desc);
3152 	CU_ASSERT(io_ch != NULL);
3153 
3154 	/* Write I/O 2x larger than write_unit_size should get split into 2 I/Os */
3155 	bdev->write_unit_size = 32;
3156 	bdev->split_on_write_unit = true;
3157 	g_io_done = false;
3158 
3159 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 32, 1);
3160 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 32 * 512);
3161 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3162 
3163 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 32, 1);
3164 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 32 * 512), 32 * 512);
3165 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3166 
3167 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
3168 	CU_ASSERT(rc == 0);
3169 	CU_ASSERT(g_io_done == false);
3170 
3171 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3172 	stub_complete_io(2);
3173 	CU_ASSERT(g_io_done == true);
3174 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3175 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3176 
3177 	/* Same as above but with optimal_io_boundary < write_unit_size - the I/O should be split
3178 	 * based on write_unit_size, not optimal_io_boundary */
3179 	bdev->split_on_optimal_io_boundary = true;
3180 	bdev->optimal_io_boundary = 16;
3181 	g_io_done = false;
3182 
3183 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
3184 	CU_ASSERT(rc == 0);
3185 	CU_ASSERT(g_io_done == false);
3186 
3187 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3188 	stub_complete_io(2);
3189 	CU_ASSERT(g_io_done == true);
3190 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3191 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3192 
3193 	/* Write I/O should fail if it is smaller than write_unit_size */
3194 	g_io_done = false;
3195 
3196 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 31, io_done, NULL);
3197 	CU_ASSERT(rc == 0);
3198 	CU_ASSERT(g_io_done == false);
3199 
3200 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3201 	poll_threads();
3202 	CU_ASSERT(g_io_done == true);
3203 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3204 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3205 
3206 	/* Same for I/O not aligned to write_unit_size */
3207 	g_io_done = false;
3208 
3209 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 1, 32, io_done, NULL);
3210 	CU_ASSERT(rc == 0);
3211 	CU_ASSERT(g_io_done == false);
3212 
3213 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3214 	poll_threads();
3215 	CU_ASSERT(g_io_done == true);
3216 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3217 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3218 
3219 	/* Write should fail if it needs to be split but there are not enough iovs to submit
3220 	 * an entire write unit */
3221 	bdev->write_unit_size = SPDK_COUNTOF(iov) / 2;
3222 	g_io_done = false;
3223 
3224 	for (i = 0; i < SPDK_COUNTOF(iov); i++) {
3225 		iov[i].iov_base = (void *)(0x1000 + 512 * i);
3226 		iov[i].iov_len = 512;
3227 	}
3228 
3229 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, SPDK_COUNTOF(iov), 0, SPDK_COUNTOF(iov),
3230 				     io_done, NULL);
3231 	CU_ASSERT(rc == 0);
3232 	CU_ASSERT(g_io_done == false);
3233 
3234 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3235 	poll_threads();
3236 	CU_ASSERT(g_io_done == true);
3237 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3238 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3239 
3240 	spdk_put_io_channel(io_ch);
3241 	spdk_bdev_close(desc);
3242 	free_bdev(bdev);
3243 	ut_fini_bdev();
3244 }
3245 
3246 static void
3247 bdev_io_alignment(void)
3248 {
3249 	struct spdk_bdev *bdev;
3250 	struct spdk_bdev_desc *desc = NULL;
3251 	struct spdk_io_channel *io_ch;
3252 	struct spdk_bdev_opts bdev_opts = {};
3253 	int rc;
3254 	void *buf = NULL;
3255 	struct iovec iovs[2];
3256 	int iovcnt;
3257 	uint64_t alignment;
3258 
3259 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3260 	bdev_opts.bdev_io_pool_size = 20;
3261 	bdev_opts.bdev_io_cache_size = 2;
3262 	ut_init_bdev(&bdev_opts);
3263 
3264 	fn_table.submit_request = stub_submit_request_get_buf;
3265 	bdev = allocate_bdev("bdev0");
3266 
3267 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3268 	CU_ASSERT(rc == 0);
3269 	CU_ASSERT(desc != NULL);
3270 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3271 	io_ch = spdk_bdev_get_io_channel(desc);
3272 	CU_ASSERT(io_ch != NULL);
3273 
3274 	/* Create aligned buffer */
3275 	rc = posix_memalign(&buf, 4096, 8192);
3276 	SPDK_CU_ASSERT_FATAL(rc == 0);
3277 
3278 	/* Pass aligned single buffer with no alignment required */
3279 	alignment = 1;
3280 	bdev->required_alignment = spdk_u32log2(alignment);
3281 
3282 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3283 	CU_ASSERT(rc == 0);
3284 	stub_complete_io(1);
3285 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3286 				    alignment));
3287 
3288 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3289 	CU_ASSERT(rc == 0);
3290 	stub_complete_io(1);
3291 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3292 				    alignment));
3293 
3294 	/* Pass unaligned single buffer with no alignment required */
3295 	alignment = 1;
3296 	bdev->required_alignment = spdk_u32log2(alignment);
3297 
3298 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3299 	CU_ASSERT(rc == 0);
3300 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3301 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3302 	stub_complete_io(1);
3303 
3304 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3305 	CU_ASSERT(rc == 0);
3306 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3307 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3308 	stub_complete_io(1);
3309 
3310 	/* Pass unaligned single buffer with 512 alignment required */
3311 	alignment = 512;
3312 	bdev->required_alignment = spdk_u32log2(alignment);
3313 
3314 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3315 	CU_ASSERT(rc == 0);
3316 	CU_ASSERT(g_bdev_io->internal.bounce_buf.orig_iovcnt == 1);
3317 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_buf.iov);
3318 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3319 				    alignment));
3320 	stub_complete_io(1);
3321 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3322 
3323 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3324 	CU_ASSERT(rc == 0);
3325 	CU_ASSERT(g_bdev_io->internal.bounce_buf.orig_iovcnt == 1);
3326 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_buf.iov);
3327 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3328 				    alignment));
3329 	stub_complete_io(1);
3330 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3331 
3332 	/* Pass unaligned single buffer with 4096 alignment required */
3333 	alignment = 4096;
3334 	bdev->required_alignment = spdk_u32log2(alignment);
3335 
3336 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3337 	CU_ASSERT(rc == 0);
3338 	CU_ASSERT(g_bdev_io->internal.bounce_buf.orig_iovcnt == 1);
3339 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_buf.iov);
3340 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3341 				    alignment));
3342 	stub_complete_io(1);
3343 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3344 
3345 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3346 	CU_ASSERT(rc == 0);
3347 	CU_ASSERT(g_bdev_io->internal.bounce_buf.orig_iovcnt == 1);
3348 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_buf.iov);
3349 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3350 				    alignment));
3351 	stub_complete_io(1);
3352 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3353 
3354 	/* Pass aligned iovs with no alignment required */
3355 	alignment = 1;
3356 	bdev->required_alignment = spdk_u32log2(alignment);
3357 
3358 	iovcnt = 1;
3359 	iovs[0].iov_base = buf;
3360 	iovs[0].iov_len = 512;
3361 
3362 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3363 	CU_ASSERT(rc == 0);
3364 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3365 	stub_complete_io(1);
3366 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3367 
3368 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3369 	CU_ASSERT(rc == 0);
3370 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3371 	stub_complete_io(1);
3372 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3373 
3374 	/* Pass unaligned iovs with no alignment required */
3375 	alignment = 1;
3376 	bdev->required_alignment = spdk_u32log2(alignment);
3377 
3378 	iovcnt = 2;
3379 	iovs[0].iov_base = buf + 16;
3380 	iovs[0].iov_len = 256;
3381 	iovs[1].iov_base = buf + 16 + 256 + 32;
3382 	iovs[1].iov_len = 256;
3383 
3384 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3385 	CU_ASSERT(rc == 0);
3386 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3387 	stub_complete_io(1);
3388 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3389 
3390 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3391 	CU_ASSERT(rc == 0);
3392 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3393 	stub_complete_io(1);
3394 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3395 
3396 	/* Pass unaligned iov with 2048 alignment required */
3397 	alignment = 2048;
3398 	bdev->required_alignment = spdk_u32log2(alignment);
3399 
3400 	iovcnt = 2;
3401 	iovs[0].iov_base = buf + 16;
3402 	iovs[0].iov_len = 256;
3403 	iovs[1].iov_base = buf + 16 + 256 + 32;
3404 	iovs[1].iov_len = 256;
3405 
3406 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3407 	CU_ASSERT(rc == 0);
3408 	CU_ASSERT(g_bdev_io->internal.bounce_buf.orig_iovcnt == iovcnt);
3409 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_buf.iov);
3410 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3411 				    alignment));
3412 	stub_complete_io(1);
3413 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3414 
3415 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3416 	CU_ASSERT(rc == 0);
3417 	CU_ASSERT(g_bdev_io->internal.bounce_buf.orig_iovcnt == iovcnt);
3418 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_buf.iov);
3419 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3420 				    alignment));
3421 	stub_complete_io(1);
3422 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3423 
3424 	/* Pass iov without allocated buffer without alignment required */
3425 	alignment = 1;
3426 	bdev->required_alignment = spdk_u32log2(alignment);
3427 
3428 	iovcnt = 1;
3429 	iovs[0].iov_base = NULL;
3430 	iovs[0].iov_len = 0;
3431 
3432 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3433 	CU_ASSERT(rc == 0);
3434 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3435 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3436 				    alignment));
3437 	stub_complete_io(1);
3438 
3439 	/* Pass iov without allocated buffer with 1024 alignment required */
3440 	alignment = 1024;
3441 	bdev->required_alignment = spdk_u32log2(alignment);
3442 
3443 	iovcnt = 1;
3444 	iovs[0].iov_base = NULL;
3445 	iovs[0].iov_len = 0;
3446 
3447 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3448 	CU_ASSERT(rc == 0);
3449 	CU_ASSERT(g_bdev_io->internal.f.has_bounce_buf == false);
3450 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3451 				    alignment));
3452 	stub_complete_io(1);
3453 
3454 	spdk_put_io_channel(io_ch);
3455 	spdk_bdev_close(desc);
3456 	free_bdev(bdev);
3457 	fn_table.submit_request = stub_submit_request;
3458 	ut_fini_bdev();
3459 
3460 	free(buf);
3461 }
3462 
3463 static void
3464 bdev_io_alignment_with_boundary(void)
3465 {
3466 	struct spdk_bdev *bdev;
3467 	struct spdk_bdev_desc *desc = NULL;
3468 	struct spdk_io_channel *io_ch;
3469 	struct spdk_bdev_opts bdev_opts = {};
3470 	int rc;
3471 	void *buf = NULL;
3472 	struct iovec iovs[2];
3473 	int iovcnt;
3474 	uint64_t alignment;
3475 
3476 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3477 	bdev_opts.bdev_io_pool_size = 20;
3478 	bdev_opts.bdev_io_cache_size = 2;
3479 	bdev_opts.opts_size = sizeof(bdev_opts);
3480 	ut_init_bdev(&bdev_opts);
3481 
3482 	fn_table.submit_request = stub_submit_request_get_buf;
3483 	bdev = allocate_bdev("bdev0");
3484 
3485 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3486 	CU_ASSERT(rc == 0);
3487 	CU_ASSERT(desc != NULL);
3488 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3489 	io_ch = spdk_bdev_get_io_channel(desc);
3490 	CU_ASSERT(io_ch != NULL);
3491 
3492 	/* Create aligned buffer */
3493 	rc = posix_memalign(&buf, 4096, 131072);
3494 	SPDK_CU_ASSERT_FATAL(rc == 0);
3495 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3496 
3497 #ifdef NOTDEF
3498 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
3499 	alignment = 512;
3500 	bdev->required_alignment = spdk_u32log2(alignment);
3501 	bdev->optimal_io_boundary = 2;
3502 	bdev->split_on_optimal_io_boundary = true;
3503 
3504 	iovcnt = 1;
3505 	iovs[0].iov_base = NULL;
3506 	iovs[0].iov_len = 512 * 3;
3507 
3508 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3509 	CU_ASSERT(rc == 0);
3510 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3511 	stub_complete_io(2);
3512 
3513 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
3514 	alignment = 512;
3515 	bdev->required_alignment = spdk_u32log2(alignment);
3516 	bdev->optimal_io_boundary = 16;
3517 	bdev->split_on_optimal_io_boundary = true;
3518 
3519 	iovcnt = 1;
3520 	iovs[0].iov_base = NULL;
3521 	iovs[0].iov_len = 512 * 16;
3522 
3523 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
3524 	CU_ASSERT(rc == 0);
3525 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3526 	stub_complete_io(2);
3527 
3528 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
3529 	alignment = 512;
3530 	bdev->required_alignment = spdk_u32log2(alignment);
3531 	bdev->optimal_io_boundary = 128;
3532 	bdev->split_on_optimal_io_boundary = true;
3533 
3534 	iovcnt = 1;
3535 	iovs[0].iov_base = buf + 16;
3536 	iovs[0].iov_len = 512 * 160;
3537 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3538 	CU_ASSERT(rc == 0);
3539 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3540 	stub_complete_io(2);
3541 
3542 #endif
3543 
3544 	/* 512 * 3 with 2 IO boundary */
3545 	alignment = 512;
3546 	bdev->required_alignment = spdk_u32log2(alignment);
3547 	bdev->optimal_io_boundary = 2;
3548 	bdev->split_on_optimal_io_boundary = true;
3549 
3550 	iovcnt = 2;
3551 	iovs[0].iov_base = buf + 16;
3552 	iovs[0].iov_len = 512;
3553 	iovs[1].iov_base = buf + 16 + 512 + 32;
3554 	iovs[1].iov_len = 1024;
3555 
3556 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3557 	CU_ASSERT(rc == 0);
3558 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3559 	stub_complete_io(2);
3560 
3561 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3562 	CU_ASSERT(rc == 0);
3563 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3564 	stub_complete_io(2);
3565 
3566 	/* 512 * 64 with 32 IO boundary */
3567 	bdev->optimal_io_boundary = 32;
3568 	iovcnt = 2;
3569 	iovs[0].iov_base = buf + 16;
3570 	iovs[0].iov_len = 16384;
3571 	iovs[1].iov_base = buf + 16 + 16384 + 32;
3572 	iovs[1].iov_len = 16384;
3573 
3574 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3575 	CU_ASSERT(rc == 0);
3576 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3577 	stub_complete_io(3);
3578 
3579 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3580 	CU_ASSERT(rc == 0);
3581 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3582 	stub_complete_io(3);
3583 
3584 	/* 512 * 160 with 32 IO boundary */
3585 	iovcnt = 1;
3586 	iovs[0].iov_base = buf + 16;
3587 	iovs[0].iov_len = 16384 + 65536;
3588 
3589 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3590 	CU_ASSERT(rc == 0);
3591 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
3592 	stub_complete_io(6);
3593 
3594 	spdk_put_io_channel(io_ch);
3595 	spdk_bdev_close(desc);
3596 	free_bdev(bdev);
3597 	fn_table.submit_request = stub_submit_request;
3598 	ut_fini_bdev();
3599 
3600 	free(buf);
3601 }
3602 
3603 static void
3604 histogram_status_cb(void *cb_arg, int status)
3605 {
3606 	g_status = status;
3607 }
3608 
3609 static void
3610 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3611 {
3612 	g_status = status;
3613 	g_histogram = histogram;
3614 }
3615 
3616 static void
3617 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
3618 		   uint64_t total, uint64_t so_far)
3619 {
3620 	g_count += count;
3621 }
3622 
3623 static void
3624 histogram_channel_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3625 {
3626 	spdk_histogram_data_fn cb_fn = cb_arg;
3627 
3628 	g_status = status;
3629 
3630 	if (status == 0) {
3631 		spdk_histogram_data_iterate(histogram, cb_fn, NULL);
3632 	}
3633 }
3634 
3635 static void
3636 bdev_histograms(void)
3637 {
3638 	struct spdk_bdev *bdev;
3639 	struct spdk_bdev_desc *desc = NULL;
3640 	struct spdk_io_channel *ch;
3641 	struct spdk_histogram_data *histogram;
3642 	uint8_t buf[4096];
3643 	int rc;
3644 
3645 	ut_init_bdev(NULL);
3646 
3647 	bdev = allocate_bdev("bdev");
3648 
3649 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3650 	CU_ASSERT(rc == 0);
3651 	CU_ASSERT(desc != NULL);
3652 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3653 
3654 	ch = spdk_bdev_get_io_channel(desc);
3655 	CU_ASSERT(ch != NULL);
3656 
3657 	/* Enable histogram */
3658 	g_status = -1;
3659 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
3660 	poll_threads();
3661 	CU_ASSERT(g_status == 0);
3662 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3663 
3664 	/* Allocate histogram */
3665 	histogram = spdk_histogram_data_alloc();
3666 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
3667 
3668 	/* Check if histogram is zeroed */
3669 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3670 	poll_threads();
3671 	CU_ASSERT(g_status == 0);
3672 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3673 
3674 	g_count = 0;
3675 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3676 
3677 	CU_ASSERT(g_count == 0);
3678 
3679 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3680 	CU_ASSERT(rc == 0);
3681 
3682 	spdk_delay_us(10);
3683 	stub_complete_io(1);
3684 	poll_threads();
3685 
3686 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3687 	CU_ASSERT(rc == 0);
3688 
3689 	spdk_delay_us(10);
3690 	stub_complete_io(1);
3691 	poll_threads();
3692 
3693 	/* Check if histogram gathered data from all I/O channels */
3694 	g_histogram = NULL;
3695 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3696 	poll_threads();
3697 	CU_ASSERT(g_status == 0);
3698 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3699 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3700 
3701 	g_count = 0;
3702 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3703 	CU_ASSERT(g_count == 2);
3704 
3705 	g_count = 0;
3706 	spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, histogram_io_count);
3707 	CU_ASSERT(g_status == 0);
3708 	CU_ASSERT(g_count == 2);
3709 
3710 	/* Disable histogram */
3711 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
3712 	poll_threads();
3713 	CU_ASSERT(g_status == 0);
3714 	CU_ASSERT(bdev->internal.histogram_enabled == false);
3715 
3716 	/* Try to run histogram commands on disabled bdev */
3717 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3718 	poll_threads();
3719 	CU_ASSERT(g_status == -EFAULT);
3720 
3721 	spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, NULL);
3722 	CU_ASSERT(g_status == -EFAULT);
3723 
3724 	spdk_histogram_data_free(histogram);
3725 	spdk_put_io_channel(ch);
3726 	spdk_bdev_close(desc);
3727 	free_bdev(bdev);
3728 	ut_fini_bdev();
3729 }
3730 
3731 static void
3732 _bdev_compare(bool emulated)
3733 {
3734 	struct spdk_bdev *bdev;
3735 	struct spdk_bdev_desc *desc = NULL;
3736 	struct spdk_io_channel *ioch;
3737 	struct ut_expected_io *expected_io;
3738 	uint64_t offset, num_blocks;
3739 	uint32_t num_completed;
3740 	char aa_buf[512];
3741 	char bb_buf[512];
3742 	struct iovec compare_iov;
3743 	uint8_t expected_io_type;
3744 	int rc;
3745 
3746 	if (emulated) {
3747 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3748 	} else {
3749 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3750 	}
3751 
3752 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3753 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3754 
3755 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3756 
3757 	ut_init_bdev(NULL);
3758 	fn_table.submit_request = stub_submit_request_get_buf;
3759 	bdev = allocate_bdev("bdev");
3760 
3761 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3762 	CU_ASSERT_EQUAL(rc, 0);
3763 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3764 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3765 	ioch = spdk_bdev_get_io_channel(desc);
3766 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3767 
3768 	fn_table.submit_request = stub_submit_request_get_buf;
3769 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3770 
3771 	offset = 50;
3772 	num_blocks = 1;
3773 	compare_iov.iov_base = aa_buf;
3774 	compare_iov.iov_len = sizeof(aa_buf);
3775 
3776 	/* 1. successful comparev */
3777 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3778 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3779 
3780 	g_io_done = false;
3781 	g_compare_read_buf = aa_buf;
3782 	g_compare_read_buf_len = sizeof(aa_buf);
3783 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3784 	CU_ASSERT_EQUAL(rc, 0);
3785 	num_completed = stub_complete_io(1);
3786 	CU_ASSERT_EQUAL(num_completed, 1);
3787 	CU_ASSERT(g_io_done == true);
3788 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3789 
3790 	/* 2. miscompare comparev */
3791 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3792 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3793 
3794 	g_io_done = false;
3795 	g_compare_read_buf = bb_buf;
3796 	g_compare_read_buf_len = sizeof(bb_buf);
3797 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3798 	CU_ASSERT_EQUAL(rc, 0);
3799 	num_completed = stub_complete_io(1);
3800 	CU_ASSERT_EQUAL(num_completed, 1);
3801 	CU_ASSERT(g_io_done == true);
3802 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3803 
3804 	/* 3. successful compare */
3805 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3806 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3807 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3808 
3809 	g_io_done = false;
3810 	g_compare_read_buf = aa_buf;
3811 	g_compare_read_buf_len = sizeof(aa_buf);
3812 	rc = spdk_bdev_compare_blocks(desc, ioch, aa_buf, offset, num_blocks, io_done, NULL);
3813 	CU_ASSERT_EQUAL(rc, 0);
3814 	num_completed = stub_complete_io(1);
3815 	CU_ASSERT_EQUAL(num_completed, 1);
3816 	CU_ASSERT(g_io_done == true);
3817 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3818 
3819 	/* 4. miscompare compare */
3820 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3821 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3822 
3823 	g_io_done = false;
3824 	g_compare_read_buf = bb_buf;
3825 	g_compare_read_buf_len = sizeof(bb_buf);
3826 	rc = spdk_bdev_compare_blocks(desc, ioch, aa_buf, offset, num_blocks, io_done, NULL);
3827 	CU_ASSERT_EQUAL(rc, 0);
3828 	num_completed = stub_complete_io(1);
3829 	CU_ASSERT_EQUAL(num_completed, 1);
3830 	CU_ASSERT(g_io_done == true);
3831 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3832 
3833 	spdk_put_io_channel(ioch);
3834 	spdk_bdev_close(desc);
3835 	free_bdev(bdev);
3836 	fn_table.submit_request = stub_submit_request;
3837 	ut_fini_bdev();
3838 
3839 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3840 
3841 	g_compare_read_buf = NULL;
3842 }
3843 
3844 static void
3845 _bdev_compare_with_md(bool emulated)
3846 {
3847 	struct spdk_bdev *bdev;
3848 	struct spdk_bdev_desc *desc = NULL;
3849 	struct spdk_io_channel *ioch;
3850 	struct ut_expected_io *expected_io;
3851 	uint64_t offset, num_blocks;
3852 	uint32_t num_completed;
3853 	char buf[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3854 	char buf_interleaved_miscompare[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3855 	char buf_miscompare[1024 /* 2 * blocklen */];
3856 	char md_buf[16];
3857 	char md_buf_miscompare[16];
3858 	struct iovec compare_iov;
3859 	uint8_t expected_io_type;
3860 	int rc;
3861 
3862 	if (emulated) {
3863 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3864 	} else {
3865 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3866 	}
3867 
3868 	memset(buf, 0xaa, sizeof(buf));
3869 	memset(buf_interleaved_miscompare, 0xaa, sizeof(buf_interleaved_miscompare));
3870 	/* make last md different */
3871 	memset(buf_interleaved_miscompare + 1024 + 8, 0xbb, 8);
3872 	memset(buf_miscompare, 0xbb, sizeof(buf_miscompare));
3873 	memset(md_buf, 0xaa, 16);
3874 	memset(md_buf_miscompare, 0xbb, 16);
3875 
3876 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3877 
3878 	ut_init_bdev(NULL);
3879 	fn_table.submit_request = stub_submit_request_get_buf;
3880 	bdev = allocate_bdev("bdev");
3881 
3882 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3883 	CU_ASSERT_EQUAL(rc, 0);
3884 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3885 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3886 	ioch = spdk_bdev_get_io_channel(desc);
3887 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3888 
3889 	fn_table.submit_request = stub_submit_request_get_buf;
3890 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3891 
3892 	offset = 50;
3893 	num_blocks = 2;
3894 
3895 	/* interleaved md & data */
3896 	bdev->md_interleave = true;
3897 	bdev->md_len = 8;
3898 	bdev->blocklen = 512 + 8;
3899 	compare_iov.iov_base = buf;
3900 	compare_iov.iov_len = sizeof(buf);
3901 
3902 	/* 1. successful compare with md interleaved */
3903 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3904 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3905 
3906 	g_io_done = false;
3907 	g_compare_read_buf = buf;
3908 	g_compare_read_buf_len = sizeof(buf);
3909 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3910 	CU_ASSERT_EQUAL(rc, 0);
3911 	num_completed = stub_complete_io(1);
3912 	CU_ASSERT_EQUAL(num_completed, 1);
3913 	CU_ASSERT(g_io_done == true);
3914 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3915 
3916 	/* 2. miscompare with md interleaved */
3917 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3918 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3919 
3920 	g_io_done = false;
3921 	g_compare_read_buf = buf_interleaved_miscompare;
3922 	g_compare_read_buf_len = sizeof(buf_interleaved_miscompare);
3923 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3924 	CU_ASSERT_EQUAL(rc, 0);
3925 	num_completed = stub_complete_io(1);
3926 	CU_ASSERT_EQUAL(num_completed, 1);
3927 	CU_ASSERT(g_io_done == true);
3928 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3929 
3930 	/* Separate data & md buffers */
3931 	bdev->md_interleave = false;
3932 	bdev->blocklen = 512;
3933 	compare_iov.iov_base = buf;
3934 	compare_iov.iov_len = 1024;
3935 
3936 	/* 3. successful compare with md separated */
3937 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3938 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3939 
3940 	g_io_done = false;
3941 	g_compare_read_buf = buf;
3942 	g_compare_read_buf_len = 1024;
3943 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3944 	g_compare_md_buf = md_buf;
3945 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3946 					       offset, num_blocks, io_done, NULL);
3947 	CU_ASSERT_EQUAL(rc, 0);
3948 	num_completed = stub_complete_io(1);
3949 	CU_ASSERT_EQUAL(num_completed, 1);
3950 	CU_ASSERT(g_io_done == true);
3951 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3952 
3953 	/* 4. miscompare with md separated where md buf is different */
3954 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3955 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3956 
3957 	g_io_done = false;
3958 	g_compare_read_buf = buf;
3959 	g_compare_read_buf_len = 1024;
3960 	g_compare_md_buf = md_buf_miscompare;
3961 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3962 					       offset, num_blocks, io_done, NULL);
3963 	CU_ASSERT_EQUAL(rc, 0);
3964 	num_completed = stub_complete_io(1);
3965 	CU_ASSERT_EQUAL(num_completed, 1);
3966 	CU_ASSERT(g_io_done == true);
3967 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3968 
3969 	/* 5. miscompare with md separated where buf is different */
3970 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3971 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3972 
3973 	g_io_done = false;
3974 	g_compare_read_buf = buf_miscompare;
3975 	g_compare_read_buf_len = sizeof(buf_miscompare);
3976 	g_compare_md_buf = md_buf;
3977 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3978 					       offset, num_blocks, io_done, NULL);
3979 	CU_ASSERT_EQUAL(rc, 0);
3980 	num_completed = stub_complete_io(1);
3981 	CU_ASSERT_EQUAL(num_completed, 1);
3982 	CU_ASSERT(g_io_done == true);
3983 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3984 
3985 	bdev->md_len = 0;
3986 	g_compare_md_buf = NULL;
3987 
3988 	spdk_put_io_channel(ioch);
3989 	spdk_bdev_close(desc);
3990 	free_bdev(bdev);
3991 	fn_table.submit_request = stub_submit_request;
3992 	ut_fini_bdev();
3993 
3994 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3995 
3996 	g_compare_read_buf = NULL;
3997 }
3998 
3999 static void
4000 bdev_compare(void)
4001 {
4002 	_bdev_compare(false);
4003 	_bdev_compare_with_md(false);
4004 }
4005 
4006 static void
4007 bdev_compare_emulated(void)
4008 {
4009 	_bdev_compare(true);
4010 	_bdev_compare_with_md(true);
4011 }
4012 
4013 static void
4014 bdev_compare_and_write(void)
4015 {
4016 	struct spdk_bdev *bdev;
4017 	struct spdk_bdev_desc *desc = NULL;
4018 	struct spdk_io_channel *ioch;
4019 	struct ut_expected_io *expected_io;
4020 	uint64_t offset, num_blocks;
4021 	uint32_t num_completed;
4022 	char aa_buf[512];
4023 	char bb_buf[512];
4024 	char cc_buf[512];
4025 	char write_buf[512];
4026 	struct iovec compare_iov;
4027 	struct iovec write_iov;
4028 	int rc;
4029 
4030 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4031 	memset(bb_buf, 0xbb, sizeof(bb_buf));
4032 	memset(cc_buf, 0xcc, sizeof(cc_buf));
4033 
4034 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
4035 
4036 	ut_init_bdev(NULL);
4037 	fn_table.submit_request = stub_submit_request_get_buf;
4038 	bdev = allocate_bdev("bdev");
4039 
4040 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4041 	CU_ASSERT_EQUAL(rc, 0);
4042 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4043 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4044 	ioch = spdk_bdev_get_io_channel(desc);
4045 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4046 
4047 	fn_table.submit_request = stub_submit_request_get_buf;
4048 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4049 
4050 	offset = 50;
4051 	num_blocks = 1;
4052 	compare_iov.iov_base = aa_buf;
4053 	compare_iov.iov_len = sizeof(aa_buf);
4054 	write_iov.iov_base = bb_buf;
4055 	write_iov.iov_len = sizeof(bb_buf);
4056 
4057 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
4058 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4059 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
4060 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4061 
4062 	g_io_done = false;
4063 	g_compare_read_buf = aa_buf;
4064 	g_compare_read_buf_len = sizeof(aa_buf);
4065 	memset(write_buf, 0, sizeof(write_buf));
4066 	g_compare_write_buf = write_buf;
4067 	g_compare_write_buf_len = sizeof(write_buf);
4068 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
4069 			offset, num_blocks, io_done, NULL);
4070 	/* Trigger range locking */
4071 	poll_threads();
4072 	CU_ASSERT_EQUAL(rc, 0);
4073 	num_completed = stub_complete_io(1);
4074 	CU_ASSERT_EQUAL(num_completed, 1);
4075 	CU_ASSERT(g_io_done == false);
4076 	num_completed = stub_complete_io(1);
4077 	/* Trigger range unlocking */
4078 	poll_threads();
4079 	CU_ASSERT_EQUAL(num_completed, 1);
4080 	CU_ASSERT(g_io_done == true);
4081 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4082 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
4083 
4084 	/* Test miscompare */
4085 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
4086 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4087 
4088 	g_io_done = false;
4089 	g_compare_read_buf = cc_buf;
4090 	g_compare_read_buf_len = sizeof(cc_buf);
4091 	memset(write_buf, 0, sizeof(write_buf));
4092 	g_compare_write_buf = write_buf;
4093 	g_compare_write_buf_len = sizeof(write_buf);
4094 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
4095 			offset, num_blocks, io_done, NULL);
4096 	/* Trigger range locking */
4097 	poll_threads();
4098 	CU_ASSERT_EQUAL(rc, 0);
4099 	num_completed = stub_complete_io(1);
4100 	/* Trigger range unlocking earlier because we expect error here */
4101 	poll_threads();
4102 	CU_ASSERT_EQUAL(num_completed, 1);
4103 	CU_ASSERT(g_io_done == true);
4104 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
4105 	num_completed = stub_complete_io(1);
4106 	CU_ASSERT_EQUAL(num_completed, 0);
4107 
4108 	spdk_put_io_channel(ioch);
4109 	spdk_bdev_close(desc);
4110 	free_bdev(bdev);
4111 	fn_table.submit_request = stub_submit_request;
4112 	ut_fini_bdev();
4113 
4114 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
4115 
4116 	g_compare_read_buf = NULL;
4117 	g_compare_write_buf = NULL;
4118 }
4119 
4120 static void
4121 bdev_write_zeroes(void)
4122 {
4123 	struct spdk_bdev *bdev;
4124 	struct spdk_bdev_desc *desc = NULL;
4125 	struct spdk_io_channel *ioch;
4126 	struct ut_expected_io *expected_io;
4127 	uint64_t offset, num_io_blocks, num_blocks;
4128 	uint32_t num_completed, num_requests;
4129 	int rc;
4130 
4131 	ut_init_bdev(NULL);
4132 	bdev = allocate_bdev("bdev");
4133 
4134 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4135 	CU_ASSERT_EQUAL(rc, 0);
4136 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4137 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4138 	ioch = spdk_bdev_get_io_channel(desc);
4139 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4140 
4141 	fn_table.submit_request = stub_submit_request;
4142 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4143 
4144 	/* First test that if the bdev supports write_zeroes, the request won't be split */
4145 	bdev->md_len = 0;
4146 	bdev->blocklen = 4096;
4147 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
4148 
4149 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
4150 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4151 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4152 	CU_ASSERT_EQUAL(rc, 0);
4153 	num_completed = stub_complete_io(1);
4154 	CU_ASSERT_EQUAL(num_completed, 1);
4155 
4156 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
4157 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
4158 	bdev->max_write_zeroes = bdev_get_max_write(bdev, ZERO_BUFFER_SIZE);
4159 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
4160 	num_requests = 2;
4161 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
4162 
4163 	for (offset = 0; offset < num_requests; ++offset) {
4164 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
4165 						   offset * num_io_blocks, num_io_blocks, 0);
4166 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4167 	}
4168 
4169 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4170 	CU_ASSERT_EQUAL(rc, 0);
4171 	num_completed = stub_complete_io(num_requests);
4172 	CU_ASSERT_EQUAL(num_completed, num_requests);
4173 
4174 	/* Check that the splitting is correct if bdev has interleaved metadata */
4175 	bdev->md_interleave = true;
4176 	bdev->md_len = 64;
4177 	bdev->blocklen = 4096 + 64;
4178 	bdev->max_write_zeroes = bdev_get_max_write(bdev, ZERO_BUFFER_SIZE);
4179 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
4180 
4181 	num_requests = offset = 0;
4182 	while (offset < num_blocks) {
4183 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
4184 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
4185 						   offset, num_io_blocks, 0);
4186 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4187 		offset += num_io_blocks;
4188 		num_requests++;
4189 	}
4190 
4191 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4192 	CU_ASSERT_EQUAL(rc, 0);
4193 	num_completed = stub_complete_io(num_requests);
4194 	CU_ASSERT_EQUAL(num_completed, num_requests);
4195 	num_completed = stub_complete_io(num_requests);
4196 	assert(num_completed == 0);
4197 
4198 	/* Check the the same for separate metadata buffer */
4199 	bdev->md_interleave = false;
4200 	bdev->md_len = 64;
4201 	bdev->blocklen = 4096;
4202 	bdev->max_write_zeroes = bdev_get_max_write(bdev, ZERO_BUFFER_SIZE);
4203 
4204 	num_requests = offset = 0;
4205 	while (offset < num_blocks) {
4206 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
4207 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
4208 						   offset, num_io_blocks, 0);
4209 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
4210 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4211 		offset += num_io_blocks;
4212 		num_requests++;
4213 	}
4214 
4215 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4216 	CU_ASSERT_EQUAL(rc, 0);
4217 	num_completed = stub_complete_io(num_requests);
4218 	CU_ASSERT_EQUAL(num_completed, num_requests);
4219 
4220 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
4221 	spdk_put_io_channel(ioch);
4222 	spdk_bdev_close(desc);
4223 	free_bdev(bdev);
4224 	ut_fini_bdev();
4225 }
4226 
4227 static void
4228 bdev_zcopy_write(void)
4229 {
4230 	struct spdk_bdev *bdev;
4231 	struct spdk_bdev_desc *desc = NULL;
4232 	struct spdk_io_channel *ioch;
4233 	struct ut_expected_io *expected_io;
4234 	uint64_t offset, num_blocks;
4235 	uint32_t num_completed;
4236 	char aa_buf[512];
4237 	struct iovec iov;
4238 	int rc;
4239 	const bool populate = false;
4240 	const bool commit = true;
4241 
4242 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4243 
4244 	ut_init_bdev(NULL);
4245 	bdev = allocate_bdev("bdev");
4246 
4247 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4248 	CU_ASSERT_EQUAL(rc, 0);
4249 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4250 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4251 	ioch = spdk_bdev_get_io_channel(desc);
4252 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4253 
4254 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4255 
4256 	offset = 50;
4257 	num_blocks = 1;
4258 	iov.iov_base = NULL;
4259 	iov.iov_len = 0;
4260 
4261 	g_zcopy_read_buf = (void *) 0x1122334455667788UL;
4262 	g_zcopy_read_buf_len = (uint32_t) -1;
4263 	/* Do a zcopy start for a write (populate=false) */
4264 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4265 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4266 	g_io_done = false;
4267 	g_zcopy_write_buf = aa_buf;
4268 	g_zcopy_write_buf_len = sizeof(aa_buf);
4269 	g_zcopy_bdev_io = NULL;
4270 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4271 	CU_ASSERT_EQUAL(rc, 0);
4272 	num_completed = stub_complete_io(1);
4273 	CU_ASSERT_EQUAL(num_completed, 1);
4274 	CU_ASSERT(g_io_done == true);
4275 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4276 	/* Check that the iov has been set up */
4277 	CU_ASSERT(iov.iov_base == g_zcopy_write_buf);
4278 	CU_ASSERT(iov.iov_len == g_zcopy_write_buf_len);
4279 	/* Check that the bdev_io has been saved */
4280 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4281 	/* Now do the zcopy end for a write (commit=true) */
4282 	g_io_done = false;
4283 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4284 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4285 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4286 	CU_ASSERT_EQUAL(rc, 0);
4287 	num_completed = stub_complete_io(1);
4288 	CU_ASSERT_EQUAL(num_completed, 1);
4289 	CU_ASSERT(g_io_done == true);
4290 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4291 	/* Check the g_zcopy are reset by io_done */
4292 	CU_ASSERT(g_zcopy_write_buf == NULL);
4293 	CU_ASSERT(g_zcopy_write_buf_len == 0);
4294 	/* Check that io_done has freed the g_zcopy_bdev_io */
4295 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4296 
4297 	/* Check the zcopy read buffer has not been touched which
4298 	 * ensures that the correct buffers were used.
4299 	 */
4300 	CU_ASSERT(g_zcopy_read_buf == (void *) 0x1122334455667788UL);
4301 	CU_ASSERT(g_zcopy_read_buf_len == (uint32_t) -1);
4302 
4303 	spdk_put_io_channel(ioch);
4304 	spdk_bdev_close(desc);
4305 	free_bdev(bdev);
4306 	ut_fini_bdev();
4307 }
4308 
4309 static void
4310 bdev_zcopy_read(void)
4311 {
4312 	struct spdk_bdev *bdev;
4313 	struct spdk_bdev_desc *desc = NULL;
4314 	struct spdk_io_channel *ioch;
4315 	struct ut_expected_io *expected_io;
4316 	uint64_t offset, num_blocks;
4317 	uint32_t num_completed;
4318 	char aa_buf[512];
4319 	struct iovec iov;
4320 	int rc;
4321 	const bool populate = true;
4322 	const bool commit = false;
4323 
4324 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4325 
4326 	ut_init_bdev(NULL);
4327 	bdev = allocate_bdev("bdev");
4328 
4329 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4330 	CU_ASSERT_EQUAL(rc, 0);
4331 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4332 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4333 	ioch = spdk_bdev_get_io_channel(desc);
4334 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4335 
4336 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4337 
4338 	offset = 50;
4339 	num_blocks = 1;
4340 	iov.iov_base = NULL;
4341 	iov.iov_len = 0;
4342 
4343 	g_zcopy_write_buf = (void *) 0x1122334455667788UL;
4344 	g_zcopy_write_buf_len = (uint32_t) -1;
4345 
4346 	/* Do a zcopy start for a read (populate=true) */
4347 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4348 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4349 	g_io_done = false;
4350 	g_zcopy_read_buf = aa_buf;
4351 	g_zcopy_read_buf_len = sizeof(aa_buf);
4352 	g_zcopy_bdev_io = NULL;
4353 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4354 	CU_ASSERT_EQUAL(rc, 0);
4355 	num_completed = stub_complete_io(1);
4356 	CU_ASSERT_EQUAL(num_completed, 1);
4357 	CU_ASSERT(g_io_done == true);
4358 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4359 	/* Check that the iov has been set up */
4360 	CU_ASSERT(iov.iov_base == g_zcopy_read_buf);
4361 	CU_ASSERT(iov.iov_len == g_zcopy_read_buf_len);
4362 	/* Check that the bdev_io has been saved */
4363 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4364 
4365 	/* Now do the zcopy end for a read (commit=false) */
4366 	g_io_done = false;
4367 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4368 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4369 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4370 	CU_ASSERT_EQUAL(rc, 0);
4371 	num_completed = stub_complete_io(1);
4372 	CU_ASSERT_EQUAL(num_completed, 1);
4373 	CU_ASSERT(g_io_done == true);
4374 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4375 	/* Check the g_zcopy are reset by io_done */
4376 	CU_ASSERT(g_zcopy_read_buf == NULL);
4377 	CU_ASSERT(g_zcopy_read_buf_len == 0);
4378 	/* Check that io_done has freed the g_zcopy_bdev_io */
4379 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4380 
4381 	/* Check the zcopy write buffer has not been touched which
4382 	 * ensures that the correct buffers were used.
4383 	 */
4384 	CU_ASSERT(g_zcopy_write_buf == (void *) 0x1122334455667788UL);
4385 	CU_ASSERT(g_zcopy_write_buf_len == (uint32_t) -1);
4386 
4387 	spdk_put_io_channel(ioch);
4388 	spdk_bdev_close(desc);
4389 	free_bdev(bdev);
4390 	ut_fini_bdev();
4391 }
4392 
4393 static void
4394 bdev_open_while_hotremove(void)
4395 {
4396 	struct spdk_bdev *bdev;
4397 	struct spdk_bdev_desc *desc[2] = {};
4398 	int rc;
4399 
4400 	bdev = allocate_bdev("bdev");
4401 
4402 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
4403 	CU_ASSERT(rc == 0);
4404 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
4405 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
4406 
4407 	spdk_bdev_unregister(bdev, NULL, NULL);
4408 	/* Bdev unregister is handled asynchronously. Poll thread to complete. */
4409 	poll_threads();
4410 
4411 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
4412 	CU_ASSERT(rc == -ENODEV);
4413 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
4414 
4415 	spdk_bdev_close(desc[0]);
4416 	free_bdev(bdev);
4417 }
4418 
4419 static void
4420 bdev_close_while_hotremove(void)
4421 {
4422 	struct spdk_bdev *bdev;
4423 	struct spdk_bdev_desc *desc = NULL;
4424 	int rc = 0;
4425 
4426 	bdev = allocate_bdev("bdev");
4427 
4428 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
4429 	CU_ASSERT_EQUAL(rc, 0);
4430 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4431 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4432 
4433 	/* Simulate hot-unplug by unregistering bdev */
4434 	g_event_type1 = 0xFF;
4435 	g_unregister_arg = NULL;
4436 	g_unregister_rc = -1;
4437 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4438 	/* Close device while remove event is in flight */
4439 	spdk_bdev_close(desc);
4440 
4441 	/* Ensure that unregister callback is delayed */
4442 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
4443 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
4444 
4445 	poll_threads();
4446 
4447 	/* Event callback shall not be issued because device was closed */
4448 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
4449 	/* Unregister callback is issued */
4450 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
4451 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
4452 
4453 	free_bdev(bdev);
4454 }
4455 
4456 static void
4457 bdev_open_ext_test(void)
4458 {
4459 	struct spdk_bdev *bdev;
4460 	struct spdk_bdev_desc *desc1 = NULL;
4461 	struct spdk_bdev_desc *desc2 = NULL;
4462 	int rc = 0;
4463 
4464 	bdev = allocate_bdev("bdev");
4465 
4466 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4467 	CU_ASSERT_EQUAL(rc, -EINVAL);
4468 
4469 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4470 	CU_ASSERT_EQUAL(rc, 0);
4471 
4472 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4473 	CU_ASSERT_EQUAL(rc, 0);
4474 
4475 	g_event_type1 = 0xFF;
4476 	g_event_type2 = 0xFF;
4477 
4478 	/* Simulate hot-unplug by unregistering bdev */
4479 	spdk_bdev_unregister(bdev, NULL, NULL);
4480 	poll_threads();
4481 
4482 	/* Check if correct events have been triggered in event callback fn */
4483 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4484 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4485 
4486 	free_bdev(bdev);
4487 	poll_threads();
4488 }
4489 
4490 static void
4491 bdev_open_ext_unregister(void)
4492 {
4493 	struct spdk_bdev *bdev;
4494 	struct spdk_bdev_desc *desc1 = NULL;
4495 	struct spdk_bdev_desc *desc2 = NULL;
4496 	struct spdk_bdev_desc *desc3 = NULL;
4497 	struct spdk_bdev_desc *desc4 = NULL;
4498 	int rc = 0;
4499 
4500 	bdev = allocate_bdev("bdev");
4501 
4502 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4503 	CU_ASSERT_EQUAL(rc, -EINVAL);
4504 
4505 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4506 	CU_ASSERT_EQUAL(rc, 0);
4507 
4508 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4509 	CU_ASSERT_EQUAL(rc, 0);
4510 
4511 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb3, &desc3, &desc3);
4512 	CU_ASSERT_EQUAL(rc, 0);
4513 
4514 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb4, &desc4, &desc4);
4515 	CU_ASSERT_EQUAL(rc, 0);
4516 
4517 	g_event_type1 = 0xFF;
4518 	g_event_type2 = 0xFF;
4519 	g_event_type3 = 0xFF;
4520 	g_event_type4 = 0xFF;
4521 
4522 	g_unregister_arg = NULL;
4523 	g_unregister_rc = -1;
4524 
4525 	/* Simulate hot-unplug by unregistering bdev */
4526 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4527 
4528 	/*
4529 	 * Unregister is handled asynchronously and event callback
4530 	 * (i.e., above bdev_open_cbN) will be called.
4531 	 * For bdev_open_cb3 and bdev_open_cb4, it is intended to not
4532 	 * close the desc3 and desc4 so that the bdev is not closed.
4533 	 */
4534 	poll_threads();
4535 
4536 	/* Check if correct events have been triggered in event callback fn */
4537 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4538 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4539 	CU_ASSERT_EQUAL(g_event_type3, SPDK_BDEV_EVENT_REMOVE);
4540 	CU_ASSERT_EQUAL(g_event_type4, SPDK_BDEV_EVENT_REMOVE);
4541 
4542 	/* Check that unregister callback is delayed */
4543 	CU_ASSERT(g_unregister_arg == NULL);
4544 	CU_ASSERT(g_unregister_rc == -1);
4545 
4546 	/*
4547 	 * Explicitly close desc3. As desc4 is still opened there, the
4548 	 * unergister callback is still delayed to execute.
4549 	 */
4550 	spdk_bdev_close(desc3);
4551 	CU_ASSERT(g_unregister_arg == NULL);
4552 	CU_ASSERT(g_unregister_rc == -1);
4553 
4554 	/*
4555 	 * Explicitly close desc4 to trigger the ongoing bdev unregister
4556 	 * operation after last desc is closed.
4557 	 */
4558 	spdk_bdev_close(desc4);
4559 
4560 	/* Poll the thread for the async unregister operation */
4561 	poll_threads();
4562 
4563 	/* Check that unregister callback is executed */
4564 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
4565 	CU_ASSERT(g_unregister_rc == 0);
4566 
4567 	free_bdev(bdev);
4568 	poll_threads();
4569 }
4570 
4571 struct timeout_io_cb_arg {
4572 	struct iovec iov;
4573 	uint8_t type;
4574 };
4575 
4576 static int
4577 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
4578 {
4579 	struct spdk_bdev_io *bdev_io;
4580 	int n = 0;
4581 
4582 	if (!ch) {
4583 		return -1;
4584 	}
4585 
4586 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
4587 		n++;
4588 	}
4589 
4590 	return n;
4591 }
4592 
4593 static void
4594 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
4595 {
4596 	struct timeout_io_cb_arg *ctx = cb_arg;
4597 
4598 	ctx->type = bdev_io->type;
4599 	ctx->iov.iov_base = bdev_io->iov.iov_base;
4600 	ctx->iov.iov_len = bdev_io->iov.iov_len;
4601 }
4602 
4603 static void
4604 bdev_set_io_timeout(void)
4605 {
4606 	struct spdk_bdev *bdev;
4607 	struct spdk_bdev_desc *desc = NULL;
4608 	struct spdk_io_channel *io_ch = NULL;
4609 	struct spdk_bdev_channel *bdev_ch = NULL;
4610 	struct timeout_io_cb_arg cb_arg;
4611 
4612 	ut_init_bdev(NULL);
4613 	bdev = allocate_bdev("bdev");
4614 
4615 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4616 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4617 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4618 
4619 	io_ch = spdk_bdev_get_io_channel(desc);
4620 	CU_ASSERT(io_ch != NULL);
4621 
4622 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4623 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4624 
4625 	/* This is the part1.
4626 	 * We will check the bdev_ch->io_submitted list
4627 	 * TO make sure that it can link IOs and only the user submitted IOs
4628 	 */
4629 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4630 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4631 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4632 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4633 	stub_complete_io(1);
4634 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4635 	stub_complete_io(1);
4636 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4637 
4638 	/* Split IO */
4639 	bdev->optimal_io_boundary = 16;
4640 	bdev->split_on_optimal_io_boundary = true;
4641 
4642 	/* Now test that a single-vector command is split correctly.
4643 	 * Offset 14, length 8, payload 0xF000
4644 	 *  Child - Offset 14, length 2, payload 0xF000
4645 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4646 	 *
4647 	 * Set up the expected values before calling spdk_bdev_read_blocks
4648 	 */
4649 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4650 	/* We count all submitted IOs including IO that are generated by splitting. */
4651 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
4652 	stub_complete_io(1);
4653 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4654 	stub_complete_io(1);
4655 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4656 
4657 	/* Also include the reset IO */
4658 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4659 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4660 	poll_threads();
4661 	stub_complete_io(1);
4662 	poll_threads();
4663 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4664 
4665 	/* This is part2
4666 	 * Test the desc timeout poller register
4667 	 */
4668 
4669 	/* Successfully set the timeout */
4670 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4671 	CU_ASSERT(desc->io_timeout_poller != NULL);
4672 	CU_ASSERT(desc->timeout_in_sec == 30);
4673 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4674 	CU_ASSERT(desc->cb_arg == &cb_arg);
4675 
4676 	/* Change the timeout limit */
4677 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4678 	CU_ASSERT(desc->io_timeout_poller != NULL);
4679 	CU_ASSERT(desc->timeout_in_sec == 20);
4680 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4681 	CU_ASSERT(desc->cb_arg == &cb_arg);
4682 
4683 	/* Disable the timeout */
4684 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
4685 	CU_ASSERT(desc->io_timeout_poller == NULL);
4686 
4687 	/* This the part3
4688 	 * We will test to catch timeout IO and check whether the IO is
4689 	 * the submitted one.
4690 	 */
4691 	memset(&cb_arg, 0, sizeof(cb_arg));
4692 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4693 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
4694 
4695 	/* Don't reach the limit */
4696 	spdk_delay_us(15 * spdk_get_ticks_hz());
4697 	poll_threads();
4698 	CU_ASSERT(cb_arg.type == 0);
4699 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4700 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4701 
4702 	/* 15 + 15 = 30 reach the limit */
4703 	spdk_delay_us(15 * spdk_get_ticks_hz());
4704 	poll_threads();
4705 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4706 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
4707 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
4708 	stub_complete_io(1);
4709 
4710 	/* Use the same split IO above and check the IO */
4711 	memset(&cb_arg, 0, sizeof(cb_arg));
4712 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4713 
4714 	/* The first child complete in time */
4715 	spdk_delay_us(15 * spdk_get_ticks_hz());
4716 	poll_threads();
4717 	stub_complete_io(1);
4718 	CU_ASSERT(cb_arg.type == 0);
4719 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4720 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4721 
4722 	/* The second child reach the limit */
4723 	spdk_delay_us(15 * spdk_get_ticks_hz());
4724 	poll_threads();
4725 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4726 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
4727 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
4728 	stub_complete_io(1);
4729 
4730 	/* Also include the reset IO */
4731 	memset(&cb_arg, 0, sizeof(cb_arg));
4732 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4733 	spdk_delay_us(30 * spdk_get_ticks_hz());
4734 	poll_threads();
4735 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
4736 	stub_complete_io(1);
4737 	poll_threads();
4738 
4739 	spdk_put_io_channel(io_ch);
4740 	spdk_bdev_close(desc);
4741 	free_bdev(bdev);
4742 	ut_fini_bdev();
4743 }
4744 
4745 static void
4746 bdev_set_qd_sampling(void)
4747 {
4748 	struct spdk_bdev *bdev;
4749 	struct spdk_bdev_desc *desc = NULL;
4750 	struct spdk_io_channel *io_ch = NULL;
4751 	struct spdk_bdev_channel *bdev_ch = NULL;
4752 	struct timeout_io_cb_arg cb_arg;
4753 
4754 	ut_init_bdev(NULL);
4755 	bdev = allocate_bdev("bdev");
4756 
4757 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4758 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4759 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4760 
4761 	io_ch = spdk_bdev_get_io_channel(desc);
4762 	CU_ASSERT(io_ch != NULL);
4763 
4764 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4765 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4766 
4767 	/* This is the part1.
4768 	 * We will check the bdev_ch->io_submitted list
4769 	 * TO make sure that it can link IOs and only the user submitted IOs
4770 	 */
4771 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4772 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4773 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4774 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4775 	stub_complete_io(1);
4776 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4777 	stub_complete_io(1);
4778 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4779 
4780 	/* This is the part2.
4781 	 * Test the bdev's qd poller register
4782 	 */
4783 	/* 1st Successfully set the qd sampling period */
4784 	spdk_bdev_set_qd_sampling_period(bdev, 10);
4785 	CU_ASSERT(bdev->internal.new_period == 10);
4786 	CU_ASSERT(bdev->internal.period == 10);
4787 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4788 	poll_threads();
4789 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4790 
4791 	/* 2nd Change the qd sampling period */
4792 	spdk_bdev_set_qd_sampling_period(bdev, 20);
4793 	CU_ASSERT(bdev->internal.new_period == 20);
4794 	CU_ASSERT(bdev->internal.period == 10);
4795 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4796 	poll_threads();
4797 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4798 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4799 
4800 	/* 3rd Change the qd sampling period and verify qd_poll_in_progress */
4801 	spdk_delay_us(20);
4802 	poll_thread_times(0, 1);
4803 	CU_ASSERT(bdev->internal.qd_poll_in_progress == true);
4804 	spdk_bdev_set_qd_sampling_period(bdev, 30);
4805 	CU_ASSERT(bdev->internal.new_period == 30);
4806 	CU_ASSERT(bdev->internal.period == 20);
4807 	poll_threads();
4808 	CU_ASSERT(bdev->internal.qd_poll_in_progress == false);
4809 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4810 
4811 	/* 4th Disable the qd sampling period */
4812 	spdk_bdev_set_qd_sampling_period(bdev, 0);
4813 	CU_ASSERT(bdev->internal.new_period == 0);
4814 	CU_ASSERT(bdev->internal.period == 30);
4815 	poll_threads();
4816 	CU_ASSERT(bdev->internal.qd_poller == NULL);
4817 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4818 	CU_ASSERT(bdev->internal.qd_desc == NULL);
4819 
4820 	/* This is the part3.
4821 	 * We will test the submitted IO and reset works
4822 	 * properly with the qd sampling.
4823 	 */
4824 	memset(&cb_arg, 0, sizeof(cb_arg));
4825 	spdk_bdev_set_qd_sampling_period(bdev, 1);
4826 	poll_threads();
4827 
4828 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4829 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4830 
4831 	/* Also include the reset IO */
4832 	memset(&cb_arg, 0, sizeof(cb_arg));
4833 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4834 	poll_threads();
4835 
4836 	/* Close the desc */
4837 	spdk_put_io_channel(io_ch);
4838 	spdk_bdev_close(desc);
4839 
4840 	/* Complete the submitted IO and reset */
4841 	stub_complete_io(2);
4842 	poll_threads();
4843 
4844 	free_bdev(bdev);
4845 	ut_fini_bdev();
4846 }
4847 
4848 static void
4849 lba_range_overlap(void)
4850 {
4851 	struct lba_range r1, r2;
4852 
4853 	r1.offset = 100;
4854 	r1.length = 50;
4855 
4856 	r2.offset = 0;
4857 	r2.length = 1;
4858 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4859 
4860 	r2.offset = 0;
4861 	r2.length = 100;
4862 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4863 
4864 	r2.offset = 0;
4865 	r2.length = 110;
4866 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4867 
4868 	r2.offset = 100;
4869 	r2.length = 10;
4870 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4871 
4872 	r2.offset = 110;
4873 	r2.length = 20;
4874 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4875 
4876 	r2.offset = 140;
4877 	r2.length = 150;
4878 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4879 
4880 	r2.offset = 130;
4881 	r2.length = 200;
4882 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4883 
4884 	r2.offset = 150;
4885 	r2.length = 100;
4886 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4887 
4888 	r2.offset = 110;
4889 	r2.length = 0;
4890 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4891 }
4892 
4893 static bool g_lock_lba_range_done;
4894 static bool g_unlock_lba_range_done;
4895 
4896 static void
4897 lock_lba_range_done(struct lba_range *range, void *ctx, int status)
4898 {
4899 	g_lock_lba_range_done = true;
4900 }
4901 
4902 static void
4903 unlock_lba_range_done(struct lba_range *range, void *ctx, int status)
4904 {
4905 	g_unlock_lba_range_done = true;
4906 }
4907 
4908 static void
4909 lock_lba_range_check_ranges(void)
4910 {
4911 	struct spdk_bdev *bdev;
4912 	struct spdk_bdev_desc *desc = NULL;
4913 	struct spdk_io_channel *io_ch;
4914 	struct spdk_bdev_channel *channel;
4915 	struct lba_range *range;
4916 	int ctx1;
4917 	int rc;
4918 
4919 	ut_init_bdev(NULL);
4920 	bdev = allocate_bdev("bdev0");
4921 
4922 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4923 	CU_ASSERT(rc == 0);
4924 	CU_ASSERT(desc != NULL);
4925 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4926 	io_ch = spdk_bdev_get_io_channel(desc);
4927 	CU_ASSERT(io_ch != NULL);
4928 	channel = spdk_io_channel_get_ctx(io_ch);
4929 
4930 	g_lock_lba_range_done = false;
4931 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4932 	CU_ASSERT(rc == 0);
4933 	poll_threads();
4934 
4935 	CU_ASSERT(g_lock_lba_range_done == true);
4936 	range = TAILQ_FIRST(&channel->locked_ranges);
4937 	SPDK_CU_ASSERT_FATAL(range != NULL);
4938 	CU_ASSERT(range->offset == 20);
4939 	CU_ASSERT(range->length == 10);
4940 	CU_ASSERT(range->owner_ch == channel);
4941 
4942 	/* Unlocks must exactly match a lock. */
4943 	g_unlock_lba_range_done = false;
4944 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
4945 	CU_ASSERT(rc == -EINVAL);
4946 	CU_ASSERT(g_unlock_lba_range_done == false);
4947 
4948 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4949 	CU_ASSERT(rc == 0);
4950 	spdk_delay_us(100);
4951 	poll_threads();
4952 
4953 	CU_ASSERT(g_unlock_lba_range_done == true);
4954 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4955 
4956 	spdk_put_io_channel(io_ch);
4957 	spdk_bdev_close(desc);
4958 	free_bdev(bdev);
4959 	ut_fini_bdev();
4960 }
4961 
4962 static void
4963 lock_lba_range_with_io_outstanding(void)
4964 {
4965 	struct spdk_bdev *bdev;
4966 	struct spdk_bdev_desc *desc = NULL;
4967 	struct spdk_io_channel *io_ch;
4968 	struct spdk_bdev_channel *channel;
4969 	struct lba_range *range;
4970 	char buf[4096];
4971 	int ctx1;
4972 	int rc;
4973 
4974 	ut_init_bdev(NULL);
4975 	bdev = allocate_bdev("bdev0");
4976 
4977 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4978 	CU_ASSERT(rc == 0);
4979 	CU_ASSERT(desc != NULL);
4980 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4981 	io_ch = spdk_bdev_get_io_channel(desc);
4982 	CU_ASSERT(io_ch != NULL);
4983 	channel = spdk_io_channel_get_ctx(io_ch);
4984 
4985 	g_io_done = false;
4986 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4987 	CU_ASSERT(rc == 0);
4988 
4989 	g_lock_lba_range_done = false;
4990 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4991 	CU_ASSERT(rc == 0);
4992 	poll_threads();
4993 
4994 	/* The lock should immediately become valid, since there are no outstanding
4995 	 * write I/O.
4996 	 */
4997 	CU_ASSERT(g_io_done == false);
4998 	CU_ASSERT(g_lock_lba_range_done == true);
4999 	range = TAILQ_FIRST(&channel->locked_ranges);
5000 	SPDK_CU_ASSERT_FATAL(range != NULL);
5001 	CU_ASSERT(range->offset == 20);
5002 	CU_ASSERT(range->length == 10);
5003 	CU_ASSERT(range->owner_ch == channel);
5004 	CU_ASSERT(range->locked_ctx == &ctx1);
5005 
5006 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
5007 	CU_ASSERT(rc == 0);
5008 	stub_complete_io(1);
5009 	spdk_delay_us(100);
5010 	poll_threads();
5011 
5012 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5013 
5014 	/* Now try again, but with a write I/O. */
5015 	g_io_done = false;
5016 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
5017 	CU_ASSERT(rc == 0);
5018 
5019 	g_lock_lba_range_done = false;
5020 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
5021 	CU_ASSERT(rc == 0);
5022 	poll_threads();
5023 
5024 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
5025 	 * But note that the range should be on the channel's locked_list, to make sure no
5026 	 * new write I/O are started.
5027 	 */
5028 	CU_ASSERT(g_io_done == false);
5029 	CU_ASSERT(g_lock_lba_range_done == false);
5030 	range = TAILQ_FIRST(&channel->locked_ranges);
5031 	SPDK_CU_ASSERT_FATAL(range != NULL);
5032 	CU_ASSERT(range->offset == 20);
5033 	CU_ASSERT(range->length == 10);
5034 
5035 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
5036 	 * our callback was invoked).
5037 	 */
5038 	stub_complete_io(1);
5039 	spdk_delay_us(100);
5040 	poll_threads();
5041 	CU_ASSERT(g_io_done == true);
5042 	CU_ASSERT(g_lock_lba_range_done == true);
5043 
5044 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
5045 	CU_ASSERT(rc == 0);
5046 	poll_threads();
5047 
5048 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5049 
5050 	spdk_put_io_channel(io_ch);
5051 	spdk_bdev_close(desc);
5052 	free_bdev(bdev);
5053 	ut_fini_bdev();
5054 }
5055 
5056 static void
5057 lock_lba_range_overlapped(void)
5058 {
5059 	struct spdk_bdev *bdev;
5060 	struct spdk_bdev_desc *desc = NULL;
5061 	struct spdk_io_channel *io_ch;
5062 	struct spdk_bdev_channel *channel;
5063 	struct lba_range *range;
5064 	int ctx1;
5065 	int rc;
5066 
5067 	ut_init_bdev(NULL);
5068 	bdev = allocate_bdev("bdev0");
5069 
5070 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5071 	CU_ASSERT(rc == 0);
5072 	CU_ASSERT(desc != NULL);
5073 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5074 	io_ch = spdk_bdev_get_io_channel(desc);
5075 	CU_ASSERT(io_ch != NULL);
5076 	channel = spdk_io_channel_get_ctx(io_ch);
5077 
5078 	/* Lock range 20-29. */
5079 	g_lock_lba_range_done = false;
5080 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
5081 	CU_ASSERT(rc == 0);
5082 	poll_threads();
5083 
5084 	CU_ASSERT(g_lock_lba_range_done == true);
5085 	range = TAILQ_FIRST(&channel->locked_ranges);
5086 	SPDK_CU_ASSERT_FATAL(range != NULL);
5087 	CU_ASSERT(range->offset == 20);
5088 	CU_ASSERT(range->length == 10);
5089 
5090 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
5091 	 * 20-29.
5092 	 */
5093 	g_lock_lba_range_done = false;
5094 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
5095 	CU_ASSERT(rc == 0);
5096 	poll_threads();
5097 
5098 	CU_ASSERT(g_lock_lba_range_done == false);
5099 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
5100 	SPDK_CU_ASSERT_FATAL(range != NULL);
5101 	CU_ASSERT(range->offset == 25);
5102 	CU_ASSERT(range->length == 15);
5103 
5104 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
5105 	 * no longer overlaps with an active lock.
5106 	 */
5107 	g_unlock_lba_range_done = false;
5108 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
5109 	CU_ASSERT(rc == 0);
5110 	poll_threads();
5111 
5112 	CU_ASSERT(g_unlock_lba_range_done == true);
5113 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
5114 	range = TAILQ_FIRST(&channel->locked_ranges);
5115 	SPDK_CU_ASSERT_FATAL(range != NULL);
5116 	CU_ASSERT(range->offset == 25);
5117 	CU_ASSERT(range->length == 15);
5118 
5119 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
5120 	 * currently active 25-39 lock.
5121 	 */
5122 	g_lock_lba_range_done = false;
5123 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
5124 	CU_ASSERT(rc == 0);
5125 	poll_threads();
5126 
5127 	CU_ASSERT(g_lock_lba_range_done == true);
5128 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
5129 	SPDK_CU_ASSERT_FATAL(range != NULL);
5130 	range = TAILQ_NEXT(range, tailq);
5131 	SPDK_CU_ASSERT_FATAL(range != NULL);
5132 	CU_ASSERT(range->offset == 40);
5133 	CU_ASSERT(range->length == 20);
5134 
5135 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
5136 	g_lock_lba_range_done = false;
5137 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
5138 	CU_ASSERT(rc == 0);
5139 	poll_threads();
5140 
5141 	CU_ASSERT(g_lock_lba_range_done == false);
5142 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
5143 	SPDK_CU_ASSERT_FATAL(range != NULL);
5144 	CU_ASSERT(range->offset == 35);
5145 	CU_ASSERT(range->length == 10);
5146 
5147 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
5148 	 * the 40-59 lock is still active.
5149 	 */
5150 	g_unlock_lba_range_done = false;
5151 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
5152 	CU_ASSERT(rc == 0);
5153 	poll_threads();
5154 
5155 	CU_ASSERT(g_unlock_lba_range_done == true);
5156 	CU_ASSERT(g_lock_lba_range_done == false);
5157 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
5158 	SPDK_CU_ASSERT_FATAL(range != NULL);
5159 	CU_ASSERT(range->offset == 35);
5160 	CU_ASSERT(range->length == 10);
5161 
5162 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
5163 	 * no longer any active overlapping locks.
5164 	 */
5165 	g_unlock_lba_range_done = false;
5166 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
5167 	CU_ASSERT(rc == 0);
5168 	poll_threads();
5169 
5170 	CU_ASSERT(g_unlock_lba_range_done == true);
5171 	CU_ASSERT(g_lock_lba_range_done == true);
5172 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
5173 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
5174 	SPDK_CU_ASSERT_FATAL(range != NULL);
5175 	CU_ASSERT(range->offset == 35);
5176 	CU_ASSERT(range->length == 10);
5177 
5178 	/* Finally, unlock 35-44. */
5179 	g_unlock_lba_range_done = false;
5180 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
5181 	CU_ASSERT(rc == 0);
5182 	poll_threads();
5183 
5184 	CU_ASSERT(g_unlock_lba_range_done == true);
5185 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
5186 
5187 	spdk_put_io_channel(io_ch);
5188 	spdk_bdev_close(desc);
5189 	free_bdev(bdev);
5190 	ut_fini_bdev();
5191 }
5192 
5193 static void
5194 bdev_quiesce_done(void *ctx, int status)
5195 {
5196 	g_lock_lba_range_done = true;
5197 }
5198 
5199 static void
5200 bdev_unquiesce_done(void *ctx, int status)
5201 {
5202 	g_unlock_lba_range_done = true;
5203 }
5204 
5205 static void
5206 bdev_quiesce_done_unquiesce(void *ctx, int status)
5207 {
5208 	struct spdk_bdev *bdev = ctx;
5209 	int rc;
5210 
5211 	g_lock_lba_range_done = true;
5212 
5213 	rc = spdk_bdev_unquiesce(bdev, &bdev_ut_if, bdev_unquiesce_done, NULL);
5214 	CU_ASSERT(rc == 0);
5215 }
5216 
5217 static void
5218 bdev_quiesce(void)
5219 {
5220 	struct spdk_bdev *bdev;
5221 	struct spdk_bdev_desc *desc = NULL;
5222 	struct spdk_io_channel *io_ch;
5223 	struct spdk_bdev_channel *channel;
5224 	struct lba_range *range;
5225 	struct spdk_bdev_io *bdev_io;
5226 	int ctx1;
5227 	int rc;
5228 
5229 	ut_init_bdev(NULL);
5230 	bdev = allocate_bdev("bdev0");
5231 
5232 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5233 	CU_ASSERT(rc == 0);
5234 	CU_ASSERT(desc != NULL);
5235 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5236 	io_ch = spdk_bdev_get_io_channel(desc);
5237 	CU_ASSERT(io_ch != NULL);
5238 	channel = spdk_io_channel_get_ctx(io_ch);
5239 
5240 	g_lock_lba_range_done = false;
5241 	rc = spdk_bdev_quiesce(bdev, &bdev_ut_if, bdev_quiesce_done, &ctx1);
5242 	CU_ASSERT(rc == 0);
5243 	poll_threads();
5244 
5245 	CU_ASSERT(g_lock_lba_range_done == true);
5246 	range = TAILQ_FIRST(&channel->locked_ranges);
5247 	SPDK_CU_ASSERT_FATAL(range != NULL);
5248 	CU_ASSERT(range->offset == 0);
5249 	CU_ASSERT(range->length == bdev->blockcnt);
5250 	CU_ASSERT(range->owner_ch == NULL);
5251 	range = TAILQ_FIRST(&bdev_ut_if.internal.quiesced_ranges);
5252 	SPDK_CU_ASSERT_FATAL(range != NULL);
5253 	CU_ASSERT(range->offset == 0);
5254 	CU_ASSERT(range->length == bdev->blockcnt);
5255 	CU_ASSERT(range->owner_ch == NULL);
5256 
5257 	g_unlock_lba_range_done = false;
5258 	rc = spdk_bdev_unquiesce(bdev, &bdev_ut_if, bdev_unquiesce_done, &ctx1);
5259 	CU_ASSERT(rc == 0);
5260 	spdk_delay_us(100);
5261 	poll_threads();
5262 
5263 	CU_ASSERT(g_unlock_lba_range_done == true);
5264 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5265 	CU_ASSERT(TAILQ_EMPTY(&bdev_ut_if.internal.quiesced_ranges));
5266 
5267 	g_lock_lba_range_done = false;
5268 	rc = spdk_bdev_quiesce_range(bdev, &bdev_ut_if, 20, 10, bdev_quiesce_done, &ctx1);
5269 	CU_ASSERT(rc == 0);
5270 	poll_threads();
5271 
5272 	CU_ASSERT(g_lock_lba_range_done == true);
5273 	range = TAILQ_FIRST(&channel->locked_ranges);
5274 	SPDK_CU_ASSERT_FATAL(range != NULL);
5275 	CU_ASSERT(range->offset == 20);
5276 	CU_ASSERT(range->length == 10);
5277 	CU_ASSERT(range->owner_ch == NULL);
5278 	range = TAILQ_FIRST(&bdev_ut_if.internal.quiesced_ranges);
5279 	SPDK_CU_ASSERT_FATAL(range != NULL);
5280 	CU_ASSERT(range->offset == 20);
5281 	CU_ASSERT(range->length == 10);
5282 	CU_ASSERT(range->owner_ch == NULL);
5283 
5284 	/* Unlocks must exactly match a lock. */
5285 	g_unlock_lba_range_done = false;
5286 	rc = spdk_bdev_unquiesce_range(bdev, &bdev_ut_if, 20, 1, bdev_unquiesce_done, &ctx1);
5287 	CU_ASSERT(rc == -EINVAL);
5288 	CU_ASSERT(g_unlock_lba_range_done == false);
5289 
5290 	rc = spdk_bdev_unquiesce_range(bdev, &bdev_ut_if, 20, 10, bdev_unquiesce_done, &ctx1);
5291 	CU_ASSERT(rc == 0);
5292 	spdk_delay_us(100);
5293 	poll_threads();
5294 
5295 	CU_ASSERT(g_unlock_lba_range_done == true);
5296 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5297 	CU_ASSERT(TAILQ_EMPTY(&bdev_ut_if.internal.quiesced_ranges));
5298 
5299 	/* Test unquiesce from quiesce cb */
5300 	g_lock_lba_range_done = false;
5301 	g_unlock_lba_range_done = false;
5302 	rc = spdk_bdev_quiesce(bdev, &bdev_ut_if, bdev_quiesce_done_unquiesce, bdev);
5303 	CU_ASSERT(rc == 0);
5304 	poll_threads();
5305 
5306 	CU_ASSERT(g_lock_lba_range_done == true);
5307 	CU_ASSERT(g_unlock_lba_range_done == true);
5308 
5309 	/* Test quiesce with read I/O */
5310 	g_lock_lba_range_done = false;
5311 	g_unlock_lba_range_done = false;
5312 	g_io_done = false;
5313 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 20, 1, io_done, &ctx1);
5314 	CU_ASSERT(rc == 0);
5315 
5316 	rc = spdk_bdev_quiesce(bdev, &bdev_ut_if, bdev_quiesce_done, &ctx1);
5317 	CU_ASSERT(rc == 0);
5318 	poll_threads();
5319 
5320 	CU_ASSERT(g_io_done == false);
5321 	CU_ASSERT(g_lock_lba_range_done == false);
5322 	range = TAILQ_FIRST(&channel->locked_ranges);
5323 	SPDK_CU_ASSERT_FATAL(range != NULL);
5324 
5325 	stub_complete_io(1);
5326 	spdk_delay_us(100);
5327 	poll_threads();
5328 	CU_ASSERT(g_io_done == true);
5329 	CU_ASSERT(g_lock_lba_range_done == true);
5330 	CU_ASSERT(TAILQ_EMPTY(&channel->io_locked));
5331 
5332 	g_io_done = false;
5333 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 20, 1, io_done, &ctx1);
5334 	CU_ASSERT(rc == 0);
5335 
5336 	bdev_io = TAILQ_FIRST(&channel->io_locked);
5337 	SPDK_CU_ASSERT_FATAL(bdev_io != NULL);
5338 	CU_ASSERT(bdev_io->u.bdev.offset_blocks == 20);
5339 	CU_ASSERT(bdev_io->u.bdev.num_blocks == 1);
5340 
5341 	rc = spdk_bdev_unquiesce(bdev, &bdev_ut_if, bdev_unquiesce_done, &ctx1);
5342 	CU_ASSERT(rc == 0);
5343 	spdk_delay_us(100);
5344 	poll_threads();
5345 
5346 	CU_ASSERT(g_unlock_lba_range_done == true);
5347 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5348 	CU_ASSERT(TAILQ_EMPTY(&bdev_ut_if.internal.quiesced_ranges));
5349 
5350 	CU_ASSERT(TAILQ_EMPTY(&channel->io_locked));
5351 	spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
5352 	poll_threads();
5353 	CU_ASSERT(g_io_done == true);
5354 
5355 	spdk_put_io_channel(io_ch);
5356 	spdk_bdev_close(desc);
5357 	free_bdev(bdev);
5358 	ut_fini_bdev();
5359 }
5360 
5361 static void
5362 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
5363 {
5364 	g_abort_done = true;
5365 	g_abort_status = bdev_io->internal.status;
5366 	spdk_bdev_free_io(bdev_io);
5367 }
5368 
5369 static void
5370 bdev_io_abort(void)
5371 {
5372 	struct spdk_bdev *bdev;
5373 	struct spdk_bdev_desc *desc = NULL;
5374 	struct spdk_io_channel *io_ch;
5375 	struct spdk_bdev_channel *channel;
5376 	struct spdk_bdev_mgmt_channel *mgmt_ch;
5377 	struct spdk_bdev_opts bdev_opts = {};
5378 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
5379 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
5380 	int rc;
5381 
5382 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5383 	bdev_opts.bdev_io_pool_size = 7;
5384 	bdev_opts.bdev_io_cache_size = 2;
5385 	ut_init_bdev(&bdev_opts);
5386 
5387 	bdev = allocate_bdev("bdev0");
5388 
5389 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5390 	CU_ASSERT(rc == 0);
5391 	CU_ASSERT(desc != NULL);
5392 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5393 	io_ch = spdk_bdev_get_io_channel(desc);
5394 	CU_ASSERT(io_ch != NULL);
5395 	channel = spdk_io_channel_get_ctx(io_ch);
5396 	mgmt_ch = channel->shared_resource->mgmt_ch;
5397 
5398 	g_abort_done = false;
5399 
5400 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
5401 
5402 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5403 	CU_ASSERT(rc == -ENOTSUP);
5404 
5405 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
5406 
5407 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
5408 	CU_ASSERT(rc == 0);
5409 	CU_ASSERT(g_abort_done == true);
5410 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
5411 
5412 	/* Test the case that the target I/O was successfully aborted. */
5413 	g_io_done = false;
5414 
5415 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5416 	CU_ASSERT(rc == 0);
5417 	CU_ASSERT(g_io_done == false);
5418 
5419 	g_abort_done = false;
5420 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5421 
5422 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5423 	CU_ASSERT(rc == 0);
5424 	CU_ASSERT(g_io_done == true);
5425 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5426 	stub_complete_io(1);
5427 	CU_ASSERT(g_abort_done == true);
5428 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5429 
5430 	/* Test the case that the target I/O was not aborted because it completed
5431 	 * in the middle of execution of the abort.
5432 	 */
5433 	g_io_done = false;
5434 
5435 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5436 	CU_ASSERT(rc == 0);
5437 	CU_ASSERT(g_io_done == false);
5438 
5439 	g_abort_done = false;
5440 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5441 
5442 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5443 	CU_ASSERT(rc == 0);
5444 	CU_ASSERT(g_io_done == false);
5445 
5446 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5447 	stub_complete_io(1);
5448 	CU_ASSERT(g_io_done == true);
5449 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5450 
5451 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5452 	stub_complete_io(1);
5453 	CU_ASSERT(g_abort_done == true);
5454 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5455 
5456 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5457 
5458 	bdev->optimal_io_boundary = 16;
5459 	bdev->split_on_optimal_io_boundary = true;
5460 
5461 	/* Test that a single-vector command which is split is aborted correctly.
5462 	 * Offset 14, length 8, payload 0xF000
5463 	 *  Child - Offset 14, length 2, payload 0xF000
5464 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5465 	 */
5466 	g_io_done = false;
5467 
5468 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
5469 	CU_ASSERT(rc == 0);
5470 	CU_ASSERT(g_io_done == false);
5471 
5472 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5473 
5474 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5475 
5476 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5477 	CU_ASSERT(rc == 0);
5478 	CU_ASSERT(g_io_done == true);
5479 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5480 	stub_complete_io(2);
5481 	CU_ASSERT(g_abort_done == true);
5482 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5483 
5484 	/* Test that a multi-vector command that needs to be split by strip and then
5485 	 * needs to be split is aborted correctly. Abort is requested before the second
5486 	 * child I/O was submitted. The parent I/O should complete with failure without
5487 	 * submitting the second child I/O.
5488 	 */
5489 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
5490 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
5491 		iov[i].iov_len = 512;
5492 	}
5493 
5494 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
5495 	g_io_done = false;
5496 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
5497 				    SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
5498 	CU_ASSERT(rc == 0);
5499 	CU_ASSERT(g_io_done == false);
5500 
5501 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5502 
5503 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5504 
5505 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5506 	CU_ASSERT(rc == 0);
5507 	CU_ASSERT(g_io_done == true);
5508 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5509 	stub_complete_io(1);
5510 	CU_ASSERT(g_abort_done == true);
5511 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5512 
5513 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5514 
5515 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5516 
5517 	bdev->optimal_io_boundary = 16;
5518 	g_io_done = false;
5519 
5520 	/* Test that a single-vector command which is split is aborted correctly.
5521 	 * Differently from the above, the child abort request will be submitted
5522 	 * sequentially due to the capacity of spdk_bdev_io.
5523 	 */
5524 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
5525 	CU_ASSERT(rc == 0);
5526 	CU_ASSERT(g_io_done == false);
5527 
5528 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5529 
5530 	g_abort_done = false;
5531 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5532 
5533 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5534 	CU_ASSERT(rc == 0);
5535 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
5536 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5537 
5538 	stub_complete_io(1);
5539 	CU_ASSERT(g_io_done == true);
5540 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5541 	stub_complete_io(3);
5542 	CU_ASSERT(g_abort_done == true);
5543 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5544 
5545 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5546 
5547 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5548 
5549 	bdev->split_on_optimal_io_boundary = false;
5550 	bdev->split_on_write_unit = true;
5551 	bdev->write_unit_size = 16;
5552 
5553 	/* Test that a single-vector command which is split is aborted correctly.
5554 	 * Offset 16, length 32, payload 0xF000
5555 	 *  Child - Offset 16, length 16, payload 0xF000
5556 	 *  Child - Offset 32, length 16, payload 0xF000 + 16 * 512
5557 	 *
5558 	 * Use bdev->split_on_write_unit as a split condition.
5559 	 */
5560 	g_io_done = false;
5561 
5562 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 16, 32, io_done, &io_ctx1);
5563 	CU_ASSERT(rc == 0);
5564 	CU_ASSERT(g_io_done == false);
5565 
5566 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5567 
5568 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5569 
5570 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5571 	CU_ASSERT(rc == 0);
5572 	CU_ASSERT(g_io_done == true);
5573 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5574 	stub_complete_io(2);
5575 	CU_ASSERT(g_abort_done == true);
5576 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5577 
5578 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5579 
5580 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5581 
5582 	bdev->split_on_write_unit = false;
5583 	bdev->max_rw_size = 16;
5584 
5585 	/* Test that a single-vector command which is split is aborted correctly.
5586 	 * Use bdev->max_rw_size as a split condition.
5587 	 */
5588 	g_io_done = false;
5589 
5590 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 32, io_done, &io_ctx1);
5591 	CU_ASSERT(rc == 0);
5592 	CU_ASSERT(g_io_done == false);
5593 
5594 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5595 
5596 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5597 
5598 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5599 	CU_ASSERT(rc == 0);
5600 	CU_ASSERT(g_io_done == true);
5601 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5602 	stub_complete_io(2);
5603 	CU_ASSERT(g_abort_done == true);
5604 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5605 
5606 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5607 
5608 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5609 
5610 	bdev->max_rw_size = 0;
5611 	bdev->max_segment_size = 512 * 16;
5612 	bdev->max_num_segments = 1;
5613 
5614 	/* Test that a single-vector command which is split is aborted correctly.
5615 	 * Use bdev->max_segment_size and bdev->max_num_segments together as split conditions.
5616 	 *
5617 	 * One single-vector command is changed to one two-vectors command, but
5618 	 * bdev->max_num_segments is 1 and it is split into two single-vector commands.
5619 	 */
5620 	g_io_done = false;
5621 
5622 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 32, io_done, &io_ctx1);
5623 	CU_ASSERT(rc == 0);
5624 	CU_ASSERT(g_io_done == false);
5625 
5626 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5627 
5628 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5629 
5630 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5631 	CU_ASSERT(rc == 0);
5632 	CU_ASSERT(g_io_done == true);
5633 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5634 	stub_complete_io(2);
5635 	CU_ASSERT(g_abort_done == true);
5636 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5637 
5638 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5639 
5640 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5641 
5642 	spdk_put_io_channel(io_ch);
5643 	spdk_bdev_close(desc);
5644 	free_bdev(bdev);
5645 	ut_fini_bdev();
5646 }
5647 
5648 static void
5649 bdev_unmap(void)
5650 {
5651 	struct spdk_bdev *bdev;
5652 	struct spdk_bdev_desc *desc = NULL;
5653 	struct spdk_io_channel *ioch;
5654 	struct spdk_bdev_channel *bdev_ch;
5655 	struct ut_expected_io *expected_io;
5656 	struct spdk_bdev_opts bdev_opts = {};
5657 	uint32_t i, num_outstanding;
5658 	uint64_t offset, num_blocks, max_unmap_blocks, num_children;
5659 	int rc;
5660 
5661 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5662 	bdev_opts.bdev_io_pool_size = 512;
5663 	bdev_opts.bdev_io_cache_size = 64;
5664 	ut_init_bdev(&bdev_opts);
5665 
5666 	bdev = allocate_bdev("bdev");
5667 
5668 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5669 	CU_ASSERT_EQUAL(rc, 0);
5670 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5671 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5672 	ioch = spdk_bdev_get_io_channel(desc);
5673 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5674 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5675 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5676 
5677 	fn_table.submit_request = stub_submit_request;
5678 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5679 
5680 	/* Case 1: First test the request won't be split */
5681 	num_blocks = 32;
5682 
5683 	g_io_done = false;
5684 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 0, num_blocks, 0);
5685 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5686 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5687 	CU_ASSERT_EQUAL(rc, 0);
5688 	CU_ASSERT(g_io_done == false);
5689 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5690 	stub_complete_io(1);
5691 	CU_ASSERT(g_io_done == true);
5692 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5693 
5694 	/* Case 2: Test the split with 2 children requests */
5695 	bdev->max_unmap = 8;
5696 	bdev->max_unmap_segments = 2;
5697 	max_unmap_blocks = bdev->max_unmap * bdev->max_unmap_segments;
5698 	num_blocks = max_unmap_blocks * 2;
5699 	offset = 0;
5700 
5701 	g_io_done = false;
5702 	for (i = 0; i < 2; i++) {
5703 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5704 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5705 		offset += max_unmap_blocks;
5706 	}
5707 
5708 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5709 	CU_ASSERT_EQUAL(rc, 0);
5710 	CU_ASSERT(g_io_done == false);
5711 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5712 	stub_complete_io(2);
5713 	CU_ASSERT(g_io_done == true);
5714 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5715 
5716 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5717 	num_children = 15;
5718 	num_blocks = max_unmap_blocks * num_children;
5719 	g_io_done = false;
5720 	offset = 0;
5721 	for (i = 0; i < num_children; i++) {
5722 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5723 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5724 		offset += max_unmap_blocks;
5725 	}
5726 
5727 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5728 	CU_ASSERT_EQUAL(rc, 0);
5729 	CU_ASSERT(g_io_done == false);
5730 
5731 	while (num_children > 0) {
5732 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5733 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5734 		stub_complete_io(num_outstanding);
5735 		num_children -= num_outstanding;
5736 	}
5737 	CU_ASSERT(g_io_done == true);
5738 
5739 	spdk_put_io_channel(ioch);
5740 	spdk_bdev_close(desc);
5741 	free_bdev(bdev);
5742 	ut_fini_bdev();
5743 }
5744 
5745 static void
5746 bdev_write_zeroes_split_test(void)
5747 {
5748 	struct spdk_bdev *bdev;
5749 	struct spdk_bdev_desc *desc = NULL;
5750 	struct spdk_io_channel *ioch;
5751 	struct spdk_bdev_channel *bdev_ch;
5752 	struct ut_expected_io *expected_io;
5753 	struct spdk_bdev_opts bdev_opts = {};
5754 	uint32_t i, num_outstanding;
5755 	uint64_t offset, num_blocks, max_write_zeroes_blocks, num_children;
5756 	int rc;
5757 
5758 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5759 	bdev_opts.bdev_io_pool_size = 512;
5760 	bdev_opts.bdev_io_cache_size = 64;
5761 	ut_init_bdev(&bdev_opts);
5762 
5763 	bdev = allocate_bdev("bdev");
5764 
5765 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5766 	CU_ASSERT_EQUAL(rc, 0);
5767 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5768 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5769 	ioch = spdk_bdev_get_io_channel(desc);
5770 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5771 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5772 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5773 
5774 	fn_table.submit_request = stub_submit_request;
5775 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5776 
5777 	/* Case 1: First test the request won't be split */
5778 	num_blocks = 32;
5779 
5780 	g_io_done = false;
5781 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
5782 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5783 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5784 	CU_ASSERT_EQUAL(rc, 0);
5785 	CU_ASSERT(g_io_done == false);
5786 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5787 	stub_complete_io(1);
5788 	CU_ASSERT(g_io_done == true);
5789 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5790 
5791 	/* Case 2: Test the split with 2 children requests */
5792 	max_write_zeroes_blocks = 8;
5793 	bdev->max_write_zeroes = max_write_zeroes_blocks;
5794 	num_blocks = max_write_zeroes_blocks * 2;
5795 	offset = 0;
5796 
5797 	g_io_done = false;
5798 	for (i = 0; i < 2; i++) {
5799 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5800 						   0);
5801 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5802 		offset += max_write_zeroes_blocks;
5803 	}
5804 
5805 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5806 	CU_ASSERT_EQUAL(rc, 0);
5807 	CU_ASSERT(g_io_done == false);
5808 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5809 	stub_complete_io(2);
5810 	CU_ASSERT(g_io_done == true);
5811 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5812 
5813 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5814 	num_children = 15;
5815 	num_blocks = max_write_zeroes_blocks * num_children;
5816 	g_io_done = false;
5817 	offset = 0;
5818 	for (i = 0; i < num_children; i++) {
5819 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5820 						   0);
5821 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5822 		offset += max_write_zeroes_blocks;
5823 	}
5824 
5825 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5826 	CU_ASSERT_EQUAL(rc, 0);
5827 	CU_ASSERT(g_io_done == false);
5828 
5829 	while (num_children > 0) {
5830 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5831 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5832 		stub_complete_io(num_outstanding);
5833 		num_children -= num_outstanding;
5834 	}
5835 	CU_ASSERT(g_io_done == true);
5836 
5837 	spdk_put_io_channel(ioch);
5838 	spdk_bdev_close(desc);
5839 	free_bdev(bdev);
5840 	ut_fini_bdev();
5841 }
5842 
5843 static void
5844 bdev_set_options_test(void)
5845 {
5846 	struct spdk_bdev_opts bdev_opts = {};
5847 	int rc;
5848 
5849 	/* Case1: Do not set opts_size */
5850 	rc = spdk_bdev_set_opts(&bdev_opts);
5851 	CU_ASSERT(rc == -1);
5852 }
5853 
5854 static struct spdk_memory_domain *g_bdev_memory_domain = (struct spdk_memory_domain *) 0xf00df00d;
5855 
5856 static int
5857 test_bdev_get_supported_dma_device_types_op(void *ctx, struct spdk_memory_domain **domains,
5858 		int array_size)
5859 {
5860 	if (array_size > 0 && domains) {
5861 		domains[0] = g_bdev_memory_domain;
5862 	}
5863 
5864 	return 1;
5865 }
5866 
5867 static void
5868 bdev_get_memory_domains(void)
5869 {
5870 	struct spdk_bdev_fn_table fn_table = {
5871 		.get_memory_domains = test_bdev_get_supported_dma_device_types_op
5872 	};
5873 	struct spdk_bdev bdev = { .fn_table = &fn_table };
5874 	struct spdk_memory_domain *domains[2] = {};
5875 	int rc;
5876 
5877 	/* bdev is NULL */
5878 	rc = spdk_bdev_get_memory_domains(NULL, domains, 2);
5879 	CU_ASSERT(rc == -EINVAL);
5880 
5881 	/* domains is NULL */
5882 	rc = spdk_bdev_get_memory_domains(&bdev, NULL, 2);
5883 	CU_ASSERT(rc == 1);
5884 
5885 	/* array size is 0 */
5886 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 0);
5887 	CU_ASSERT(rc == 1);
5888 
5889 	/* get_supported_dma_device_types op is set */
5890 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5891 	CU_ASSERT(rc == 1);
5892 	CU_ASSERT(domains[0] == g_bdev_memory_domain);
5893 
5894 	/* get_supported_dma_device_types op is not set */
5895 	fn_table.get_memory_domains = NULL;
5896 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5897 	CU_ASSERT(rc == 0);
5898 }
5899 
5900 static void
5901 _bdev_io_ext(struct spdk_bdev_ext_io_opts *ext_io_opts)
5902 {
5903 	struct spdk_bdev *bdev;
5904 	struct spdk_bdev_desc *desc = NULL;
5905 	struct spdk_io_channel *io_ch;
5906 	char io_buf[512];
5907 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5908 	struct ut_expected_io *expected_io;
5909 	int rc;
5910 
5911 	ut_init_bdev(NULL);
5912 
5913 	bdev = allocate_bdev("bdev0");
5914 	bdev->md_interleave = false;
5915 	bdev->md_len = 8;
5916 
5917 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5918 	CU_ASSERT(rc == 0);
5919 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5920 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5921 	io_ch = spdk_bdev_get_io_channel(desc);
5922 	CU_ASSERT(io_ch != NULL);
5923 
5924 	/* read */
5925 	g_io_done = false;
5926 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5927 	if (ext_io_opts) {
5928 		expected_io->md_buf = ext_io_opts->metadata;
5929 	}
5930 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5931 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5932 
5933 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5934 
5935 	CU_ASSERT(rc == 0);
5936 	CU_ASSERT(g_io_done == false);
5937 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5938 	stub_complete_io(1);
5939 	CU_ASSERT(g_io_done == true);
5940 
5941 	/* write */
5942 	g_io_done = false;
5943 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5944 	if (ext_io_opts) {
5945 		expected_io->md_buf = ext_io_opts->metadata;
5946 	}
5947 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5948 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5949 
5950 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5951 
5952 	CU_ASSERT(rc == 0);
5953 	CU_ASSERT(g_io_done == false);
5954 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5955 	stub_complete_io(1);
5956 	CU_ASSERT(g_io_done == true);
5957 
5958 	spdk_put_io_channel(io_ch);
5959 	spdk_bdev_close(desc);
5960 	free_bdev(bdev);
5961 	ut_fini_bdev();
5962 
5963 }
5964 
5965 static void
5966 bdev_io_ext(void)
5967 {
5968 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5969 		.metadata = (void *)0xFF000000,
5970 		.size = sizeof(ext_io_opts),
5971 		.dif_check_flags_exclude_mask = 0
5972 	};
5973 
5974 	_bdev_io_ext(&ext_io_opts);
5975 }
5976 
5977 static void
5978 bdev_io_ext_no_opts(void)
5979 {
5980 	_bdev_io_ext(NULL);
5981 }
5982 
5983 static void
5984 bdev_io_ext_invalid_opts(void)
5985 {
5986 	struct spdk_bdev *bdev;
5987 	struct spdk_bdev_desc *desc = NULL;
5988 	struct spdk_io_channel *io_ch;
5989 	char io_buf[512];
5990 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5991 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5992 		.metadata = (void *)0xFF000000,
5993 		.size = sizeof(ext_io_opts),
5994 		.dif_check_flags_exclude_mask = 0
5995 	};
5996 	int rc;
5997 
5998 	ut_init_bdev(NULL);
5999 
6000 	bdev = allocate_bdev("bdev0");
6001 	bdev->md_interleave = false;
6002 	bdev->md_len = 8;
6003 
6004 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6005 	CU_ASSERT(rc == 0);
6006 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6007 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6008 	io_ch = spdk_bdev_get_io_channel(desc);
6009 	CU_ASSERT(io_ch != NULL);
6010 
6011 	/* Test invalid ext_opts size */
6012 	ext_io_opts.size = 0;
6013 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6014 	CU_ASSERT(rc == -EINVAL);
6015 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6016 	CU_ASSERT(rc == -EINVAL);
6017 
6018 	ext_io_opts.size = sizeof(ext_io_opts) * 2;
6019 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6020 	CU_ASSERT(rc == -EINVAL);
6021 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6022 	CU_ASSERT(rc == -EINVAL);
6023 
6024 	ext_io_opts.size = offsetof(struct spdk_bdev_ext_io_opts, metadata) +
6025 			   sizeof(ext_io_opts.metadata) - 1;
6026 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6027 	CU_ASSERT(rc == -EINVAL);
6028 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6029 	CU_ASSERT(rc == -EINVAL);
6030 
6031 	spdk_put_io_channel(io_ch);
6032 	spdk_bdev_close(desc);
6033 	free_bdev(bdev);
6034 	ut_fini_bdev();
6035 }
6036 
6037 static void
6038 bdev_io_ext_split(void)
6039 {
6040 	struct spdk_bdev *bdev;
6041 	struct spdk_bdev_desc *desc = NULL;
6042 	struct spdk_io_channel *io_ch;
6043 	char io_buf[512];
6044 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
6045 	struct ut_expected_io *expected_io;
6046 	struct spdk_bdev_ext_io_opts ext_io_opts = {
6047 		.metadata = (void *)0xFF000000,
6048 		.size = sizeof(ext_io_opts),
6049 		.dif_check_flags_exclude_mask = 0
6050 	};
6051 	int rc;
6052 
6053 	ut_init_bdev(NULL);
6054 
6055 	bdev = allocate_bdev("bdev0");
6056 	bdev->md_interleave = false;
6057 	bdev->md_len = 8;
6058 
6059 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6060 	CU_ASSERT(rc == 0);
6061 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6062 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6063 	io_ch = spdk_bdev_get_io_channel(desc);
6064 	CU_ASSERT(io_ch != NULL);
6065 
6066 	/* Check that IO request with ext_opts and metadata is split correctly
6067 	 * Offset 14, length 8, payload 0xF000
6068 	 *  Child - Offset 14, length 2, payload 0xF000
6069 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
6070 	 */
6071 	bdev->optimal_io_boundary = 16;
6072 	bdev->split_on_optimal_io_boundary = true;
6073 	bdev->md_interleave = false;
6074 	bdev->md_len = 8;
6075 
6076 	iov.iov_base = (void *)0xF000;
6077 	iov.iov_len = 4096;
6078 	memset(&ext_io_opts, 0, sizeof(ext_io_opts));
6079 	ext_io_opts.metadata = (void *)0xFF000000;
6080 	ext_io_opts.size = sizeof(ext_io_opts);
6081 	g_io_done = false;
6082 
6083 	/* read */
6084 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
6085 	expected_io->md_buf = ext_io_opts.metadata;
6086 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
6087 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6088 
6089 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
6090 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
6091 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
6092 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6093 
6094 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
6095 	CU_ASSERT(rc == 0);
6096 	CU_ASSERT(g_io_done == false);
6097 
6098 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
6099 	stub_complete_io(2);
6100 	CU_ASSERT(g_io_done == true);
6101 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6102 
6103 	/* write */
6104 	g_io_done = false;
6105 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
6106 	expected_io->md_buf = ext_io_opts.metadata;
6107 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
6108 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6109 
6110 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 6, 1);
6111 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
6112 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
6113 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6114 
6115 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
6116 	CU_ASSERT(rc == 0);
6117 	CU_ASSERT(g_io_done == false);
6118 
6119 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
6120 	stub_complete_io(2);
6121 	CU_ASSERT(g_io_done == true);
6122 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6123 
6124 	spdk_put_io_channel(io_ch);
6125 	spdk_bdev_close(desc);
6126 	free_bdev(bdev);
6127 	ut_fini_bdev();
6128 }
6129 
6130 static void
6131 bdev_io_ext_bounce_buffer(void)
6132 {
6133 	struct spdk_bdev *bdev;
6134 	struct spdk_bdev_desc *desc = NULL;
6135 	struct spdk_io_channel *io_ch;
6136 	char io_buf[512];
6137 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
6138 	struct ut_expected_io *expected_io, *aux_io;
6139 	struct spdk_bdev_ext_io_opts ext_io_opts = {
6140 		.metadata = (void *)0xFF000000,
6141 		.size = sizeof(ext_io_opts),
6142 		.dif_check_flags_exclude_mask = 0
6143 	};
6144 	int rc;
6145 
6146 	ut_init_bdev(NULL);
6147 
6148 	bdev = allocate_bdev("bdev0");
6149 	bdev->md_interleave = false;
6150 	bdev->md_len = 8;
6151 
6152 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6153 	CU_ASSERT(rc == 0);
6154 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6155 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6156 	io_ch = spdk_bdev_get_io_channel(desc);
6157 	CU_ASSERT(io_ch != NULL);
6158 
6159 	/* Verify data pull/push
6160 	 * bdev doesn't support memory domains, so buffers from bdev memory pool will be used */
6161 	ext_io_opts.memory_domain = (struct spdk_memory_domain *)0xdeadbeef;
6162 
6163 	/* read */
6164 	g_io_done = false;
6165 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
6166 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
6167 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6168 
6169 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6170 
6171 	CU_ASSERT(rc == 0);
6172 	CU_ASSERT(g_io_done == false);
6173 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6174 	stub_complete_io(1);
6175 	CU_ASSERT(g_memory_domain_push_data_called == true);
6176 	CU_ASSERT(g_io_done == true);
6177 
6178 	/* write */
6179 	g_io_done = false;
6180 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
6181 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
6182 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6183 
6184 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6185 
6186 	CU_ASSERT(rc == 0);
6187 	CU_ASSERT(g_memory_domain_pull_data_called == true);
6188 	CU_ASSERT(g_io_done == false);
6189 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6190 	stub_complete_io(1);
6191 	CU_ASSERT(g_io_done == true);
6192 
6193 	/* Verify the request is queued after receiving ENOMEM from pull */
6194 	g_io_done = false;
6195 	aux_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
6196 	ut_expected_io_set_iov(aux_io, 0, iov.iov_base, iov.iov_len);
6197 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, aux_io, link);
6198 	rc = spdk_bdev_writev_blocks(desc, io_ch, &iov, 1, 32, 14, io_done, NULL);
6199 	CU_ASSERT(rc == 0);
6200 	CU_ASSERT(g_io_done == false);
6201 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6202 
6203 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
6204 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
6205 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6206 
6207 	MOCK_SET(spdk_memory_domain_pull_data, -ENOMEM);
6208 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6209 	CU_ASSERT(rc == 0);
6210 	CU_ASSERT(g_io_done == false);
6211 	/* The second IO has been queued */
6212 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6213 
6214 	MOCK_CLEAR(spdk_memory_domain_pull_data);
6215 	g_memory_domain_pull_data_called = false;
6216 	stub_complete_io(1);
6217 	CU_ASSERT(g_io_done == true);
6218 	CU_ASSERT(g_memory_domain_pull_data_called == true);
6219 	/* The second IO should be submitted now */
6220 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6221 	g_io_done = false;
6222 	stub_complete_io(1);
6223 	CU_ASSERT(g_io_done == true);
6224 
6225 	/* Verify the request is queued after receiving ENOMEM from push */
6226 	g_io_done = false;
6227 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
6228 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
6229 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6230 
6231 	MOCK_SET(spdk_memory_domain_push_data, -ENOMEM);
6232 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6233 	CU_ASSERT(rc == 0);
6234 	CU_ASSERT(g_io_done == false);
6235 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6236 
6237 	aux_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
6238 	ut_expected_io_set_iov(aux_io, 0, iov.iov_base, iov.iov_len);
6239 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, aux_io, link);
6240 	rc = spdk_bdev_writev_blocks(desc, io_ch, &iov, 1, 32, 14, io_done, NULL);
6241 	CU_ASSERT(rc == 0);
6242 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
6243 
6244 	stub_complete_io(1);
6245 	/* The IO isn't done yet, it's still waiting on push */
6246 	CU_ASSERT(g_io_done == false);
6247 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6248 	MOCK_CLEAR(spdk_memory_domain_push_data);
6249 	g_memory_domain_push_data_called = false;
6250 	/* Completing the second IO should also trigger push on the first one */
6251 	stub_complete_io(1);
6252 	CU_ASSERT(g_io_done == true);
6253 	CU_ASSERT(g_memory_domain_push_data_called == true);
6254 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6255 
6256 	spdk_put_io_channel(io_ch);
6257 	spdk_bdev_close(desc);
6258 	free_bdev(bdev);
6259 	ut_fini_bdev();
6260 }
6261 
6262 static void
6263 bdev_register_uuid_alias(void)
6264 {
6265 	struct spdk_bdev *bdev, *second;
6266 	char uuid[SPDK_UUID_STRING_LEN];
6267 	int rc;
6268 
6269 	ut_init_bdev(NULL);
6270 	bdev = allocate_bdev("bdev0");
6271 
6272 	/* Make sure an UUID was generated  */
6273 	CU_ASSERT_FALSE(spdk_uuid_is_null(&bdev->uuid));
6274 
6275 	/* Check that an UUID alias was registered */
6276 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
6277 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
6278 
6279 	/* Unregister the bdev */
6280 	spdk_bdev_unregister(bdev, NULL, NULL);
6281 	poll_threads();
6282 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
6283 
6284 	/* Check the same, but this time register the bdev with non-zero UUID */
6285 	rc = spdk_bdev_register(bdev);
6286 	CU_ASSERT_EQUAL(rc, 0);
6287 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
6288 
6289 	/* Unregister the bdev */
6290 	spdk_bdev_unregister(bdev, NULL, NULL);
6291 	poll_threads();
6292 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
6293 
6294 	/* Register the bdev using UUID as the name */
6295 	bdev->name = uuid;
6296 	rc = spdk_bdev_register(bdev);
6297 	CU_ASSERT_EQUAL(rc, 0);
6298 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
6299 
6300 	/* Unregister the bdev */
6301 	spdk_bdev_unregister(bdev, NULL, NULL);
6302 	poll_threads();
6303 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
6304 
6305 	/* Check that it's not possible to register two bdevs with the same UUIDs */
6306 	bdev->name = "bdev0";
6307 	second = allocate_bdev("bdev1");
6308 	spdk_uuid_copy(&bdev->uuid, &second->uuid);
6309 	rc = spdk_bdev_register(bdev);
6310 	CU_ASSERT_EQUAL(rc, -EEXIST);
6311 
6312 	/* Regenerate the UUID and re-check */
6313 	spdk_uuid_generate(&bdev->uuid);
6314 	rc = spdk_bdev_register(bdev);
6315 	CU_ASSERT_EQUAL(rc, 0);
6316 
6317 	/* And check that both bdevs can be retrieved through their UUIDs */
6318 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
6319 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
6320 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &second->uuid);
6321 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), second);
6322 
6323 	free_bdev(second);
6324 	free_bdev(bdev);
6325 	ut_fini_bdev();
6326 }
6327 
6328 static void
6329 bdev_unregister_by_name(void)
6330 {
6331 	struct spdk_bdev *bdev;
6332 	int rc;
6333 
6334 	bdev = allocate_bdev("bdev");
6335 
6336 	g_event_type1 = 0xFF;
6337 	g_unregister_arg = NULL;
6338 	g_unregister_rc = -1;
6339 
6340 	rc = spdk_bdev_unregister_by_name("bdev1", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
6341 	CU_ASSERT(rc == -ENODEV);
6342 
6343 	rc = spdk_bdev_unregister_by_name("bdev", &vbdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
6344 	CU_ASSERT(rc == -ENODEV);
6345 
6346 	rc = spdk_bdev_unregister_by_name("bdev", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
6347 	CU_ASSERT(rc == 0);
6348 
6349 	/* Check that unregister callback is delayed */
6350 	CU_ASSERT(g_unregister_arg == NULL);
6351 	CU_ASSERT(g_unregister_rc == -1);
6352 
6353 	poll_threads();
6354 
6355 	/* Event callback shall not be issued because device was closed */
6356 	CU_ASSERT(g_event_type1 == 0xFF);
6357 	/* Unregister callback is issued */
6358 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
6359 	CU_ASSERT(g_unregister_rc == 0);
6360 
6361 	free_bdev(bdev);
6362 }
6363 
6364 static int
6365 count_bdevs(void *ctx, struct spdk_bdev *bdev)
6366 {
6367 	int *count = ctx;
6368 
6369 	(*count)++;
6370 
6371 	return 0;
6372 }
6373 
6374 static void
6375 for_each_bdev_test(void)
6376 {
6377 	struct spdk_bdev *bdev[8];
6378 	int rc, count;
6379 
6380 	bdev[0] = allocate_bdev("bdev0");
6381 	bdev[0]->internal.status = SPDK_BDEV_STATUS_REMOVING;
6382 
6383 	bdev[1] = allocate_bdev("bdev1");
6384 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
6385 	CU_ASSERT(rc == 0);
6386 
6387 	bdev[2] = allocate_bdev("bdev2");
6388 
6389 	bdev[3] = allocate_bdev("bdev3");
6390 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
6391 	CU_ASSERT(rc == 0);
6392 
6393 	bdev[4] = allocate_bdev("bdev4");
6394 
6395 	bdev[5] = allocate_bdev("bdev5");
6396 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
6397 	CU_ASSERT(rc == 0);
6398 
6399 	bdev[6] = allocate_bdev("bdev6");
6400 
6401 	bdev[7] = allocate_bdev("bdev7");
6402 
6403 	count = 0;
6404 	rc = spdk_for_each_bdev(&count, count_bdevs);
6405 	CU_ASSERT(rc == 0);
6406 	CU_ASSERT(count == 7);
6407 
6408 	count = 0;
6409 	rc = spdk_for_each_bdev_leaf(&count, count_bdevs);
6410 	CU_ASSERT(rc == 0);
6411 	CU_ASSERT(count == 4);
6412 
6413 	bdev[0]->internal.status = SPDK_BDEV_STATUS_READY;
6414 	free_bdev(bdev[0]);
6415 	free_bdev(bdev[1]);
6416 	free_bdev(bdev[2]);
6417 	free_bdev(bdev[3]);
6418 	free_bdev(bdev[4]);
6419 	free_bdev(bdev[5]);
6420 	free_bdev(bdev[6]);
6421 	free_bdev(bdev[7]);
6422 }
6423 
6424 static void
6425 bdev_seek_test(void)
6426 {
6427 	struct spdk_bdev *bdev;
6428 	struct spdk_bdev_desc *desc = NULL;
6429 	struct spdk_io_channel *io_ch;
6430 	int rc;
6431 
6432 	ut_init_bdev(NULL);
6433 	poll_threads();
6434 
6435 	bdev = allocate_bdev("bdev0");
6436 
6437 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6438 	CU_ASSERT(rc == 0);
6439 	poll_threads();
6440 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6441 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6442 	io_ch = spdk_bdev_get_io_channel(desc);
6443 	CU_ASSERT(io_ch != NULL);
6444 
6445 	/* Seek data not supported */
6446 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, false);
6447 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
6448 	CU_ASSERT(rc == 0);
6449 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6450 	poll_threads();
6451 	CU_ASSERT(g_seek_offset == 0);
6452 
6453 	/* Seek hole not supported */
6454 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, false);
6455 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
6456 	CU_ASSERT(rc == 0);
6457 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6458 	poll_threads();
6459 	CU_ASSERT(g_seek_offset == UINT64_MAX);
6460 
6461 	/* Seek data supported */
6462 	g_seek_data_offset = 12345;
6463 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, true);
6464 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
6465 	CU_ASSERT(rc == 0);
6466 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6467 	stub_complete_io(1);
6468 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6469 	CU_ASSERT(g_seek_offset == 12345);
6470 
6471 	/* Seek hole supported */
6472 	g_seek_hole_offset = 67890;
6473 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, true);
6474 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
6475 	CU_ASSERT(rc == 0);
6476 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6477 	stub_complete_io(1);
6478 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6479 	CU_ASSERT(g_seek_offset == 67890);
6480 
6481 	spdk_put_io_channel(io_ch);
6482 	spdk_bdev_close(desc);
6483 	free_bdev(bdev);
6484 	ut_fini_bdev();
6485 }
6486 
6487 static void
6488 bdev_copy(void)
6489 {
6490 	struct spdk_bdev *bdev;
6491 	struct spdk_bdev_desc *desc = NULL;
6492 	struct spdk_io_channel *ioch;
6493 	struct ut_expected_io *expected_io;
6494 	uint64_t src_offset, num_blocks;
6495 	uint32_t num_completed;
6496 	int rc;
6497 
6498 	ut_init_bdev(NULL);
6499 	bdev = allocate_bdev("bdev");
6500 
6501 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6502 	CU_ASSERT_EQUAL(rc, 0);
6503 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6504 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6505 	ioch = spdk_bdev_get_io_channel(desc);
6506 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6507 
6508 	fn_table.submit_request = stub_submit_request;
6509 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6510 
6511 	/* First test that if the bdev supports copy, the request won't be split */
6512 	bdev->md_len = 0;
6513 	bdev->blocklen = 512;
6514 	num_blocks = 128;
6515 	src_offset = bdev->blockcnt - num_blocks;
6516 
6517 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6518 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6519 
6520 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6521 	CU_ASSERT_EQUAL(rc, 0);
6522 	num_completed = stub_complete_io(1);
6523 	CU_ASSERT_EQUAL(num_completed, 1);
6524 
6525 	/* Check that if copy is not supported it'll still work */
6526 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, src_offset, num_blocks, 0);
6527 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6528 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, num_blocks, 0);
6529 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6530 
6531 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false);
6532 
6533 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6534 	CU_ASSERT_EQUAL(rc, 0);
6535 	num_completed = stub_complete_io(1);
6536 	CU_ASSERT_EQUAL(num_completed, 1);
6537 	num_completed = stub_complete_io(1);
6538 	CU_ASSERT_EQUAL(num_completed, 1);
6539 
6540 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true);
6541 	spdk_put_io_channel(ioch);
6542 	spdk_bdev_close(desc);
6543 	free_bdev(bdev);
6544 	ut_fini_bdev();
6545 }
6546 
6547 static void
6548 bdev_copy_split_test(void)
6549 {
6550 	struct spdk_bdev *bdev;
6551 	struct spdk_bdev_desc *desc = NULL;
6552 	struct spdk_io_channel *ioch;
6553 	struct spdk_bdev_channel *bdev_ch;
6554 	struct ut_expected_io *expected_io;
6555 	struct spdk_bdev_opts bdev_opts = {};
6556 	uint32_t i, num_outstanding;
6557 	uint64_t offset, src_offset, num_blocks, max_copy_blocks, num_children;
6558 	int rc;
6559 
6560 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
6561 	bdev_opts.bdev_io_pool_size = 512;
6562 	bdev_opts.bdev_io_cache_size = 64;
6563 	rc = spdk_bdev_set_opts(&bdev_opts);
6564 	CU_ASSERT(rc == 0);
6565 
6566 	ut_init_bdev(NULL);
6567 	bdev = allocate_bdev("bdev");
6568 
6569 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6570 	CU_ASSERT_EQUAL(rc, 0);
6571 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6572 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6573 	ioch = spdk_bdev_get_io_channel(desc);
6574 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6575 	bdev_ch = spdk_io_channel_get_ctx(ioch);
6576 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
6577 
6578 	fn_table.submit_request = stub_submit_request;
6579 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6580 
6581 	/* Case 1: First test the request won't be split */
6582 	num_blocks = 32;
6583 	src_offset = bdev->blockcnt - num_blocks;
6584 
6585 	g_io_done = false;
6586 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6587 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6588 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6589 	CU_ASSERT_EQUAL(rc, 0);
6590 	CU_ASSERT(g_io_done == false);
6591 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6592 	stub_complete_io(1);
6593 	CU_ASSERT(g_io_done == true);
6594 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6595 
6596 	/* Case 2: Test the split with 2 children requests */
6597 	max_copy_blocks = 8;
6598 	bdev->max_copy = max_copy_blocks;
6599 	num_children = 2;
6600 	num_blocks = max_copy_blocks * num_children;
6601 	offset = 0;
6602 	src_offset = bdev->blockcnt - num_blocks;
6603 
6604 	g_io_done = false;
6605 	for (i = 0; i < num_children; i++) {
6606 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6607 							src_offset + offset, max_copy_blocks);
6608 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6609 		offset += max_copy_blocks;
6610 	}
6611 
6612 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6613 	CU_ASSERT_EQUAL(rc, 0);
6614 	CU_ASSERT(g_io_done == false);
6615 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_children);
6616 	stub_complete_io(num_children);
6617 	CU_ASSERT(g_io_done == true);
6618 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6619 
6620 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
6621 	num_children = 15;
6622 	num_blocks = max_copy_blocks * num_children;
6623 	offset = 0;
6624 	src_offset = bdev->blockcnt - num_blocks;
6625 
6626 	g_io_done = false;
6627 	for (i = 0; i < num_children; i++) {
6628 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6629 							src_offset + offset, max_copy_blocks);
6630 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6631 		offset += max_copy_blocks;
6632 	}
6633 
6634 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6635 	CU_ASSERT_EQUAL(rc, 0);
6636 	CU_ASSERT(g_io_done == false);
6637 
6638 	while (num_children > 0) {
6639 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_COPY_REQS);
6640 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6641 		stub_complete_io(num_outstanding);
6642 		num_children -= num_outstanding;
6643 	}
6644 	CU_ASSERT(g_io_done == true);
6645 
6646 	/* Case 4: Same test scenario as the case 2 but the configuration is different.
6647 	 * Copy is not supported.
6648 	 */
6649 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false);
6650 
6651 	num_children = 2;
6652 	max_copy_blocks = spdk_bdev_get_max_copy(bdev);
6653 	num_blocks = max_copy_blocks * num_children;
6654 	src_offset = bdev->blockcnt - num_blocks;
6655 	offset = 0;
6656 
6657 	g_io_done = false;
6658 	for (i = 0; i < num_children; i++) {
6659 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, src_offset,
6660 						   max_copy_blocks, 0);
6661 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6662 		src_offset += max_copy_blocks;
6663 	}
6664 	for (i = 0; i < num_children; i++) {
6665 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset,
6666 						   max_copy_blocks, 0);
6667 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6668 		offset += max_copy_blocks;
6669 	}
6670 
6671 	src_offset = bdev->blockcnt - num_blocks;
6672 	offset = 0;
6673 
6674 	rc = spdk_bdev_copy_blocks(desc, ioch, offset, src_offset, num_blocks, io_done, NULL);
6675 	CU_ASSERT_EQUAL(rc, 0);
6676 	CU_ASSERT(g_io_done == false);
6677 
6678 	while (num_children > 0) {
6679 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_COPY_REQS);
6680 
6681 		/* One copy request is split into one read and one write requests. */
6682 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6683 		stub_complete_io(num_outstanding);
6684 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6685 		stub_complete_io(num_outstanding);
6686 
6687 		num_children -= num_outstanding;
6688 	}
6689 	CU_ASSERT(g_io_done == true);
6690 
6691 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true);
6692 
6693 	spdk_put_io_channel(ioch);
6694 	spdk_bdev_close(desc);
6695 	free_bdev(bdev);
6696 	ut_fini_bdev();
6697 }
6698 
6699 static void
6700 examine_claim_v1(struct spdk_bdev *bdev)
6701 {
6702 	int rc;
6703 
6704 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &vbdev_ut_if);
6705 	CU_ASSERT(rc == 0);
6706 }
6707 
6708 static void
6709 examine_no_lock_held(struct spdk_bdev *bdev)
6710 {
6711 	CU_ASSERT(!spdk_spin_held(&g_bdev_mgr.spinlock));
6712 	CU_ASSERT(!spdk_spin_held(&bdev->internal.spinlock));
6713 }
6714 
6715 struct examine_claim_v2_ctx {
6716 	struct ut_examine_ctx examine_ctx;
6717 	enum spdk_bdev_claim_type claim_type;
6718 	struct spdk_bdev_desc *desc;
6719 };
6720 
6721 static void
6722 examine_claim_v2(struct spdk_bdev *bdev)
6723 {
6724 	struct examine_claim_v2_ctx *ctx = bdev->ctxt;
6725 	int rc;
6726 
6727 	rc = spdk_bdev_open_ext(bdev->name, false, bdev_ut_event_cb, NULL, &ctx->desc);
6728 	CU_ASSERT(rc == 0);
6729 
6730 	rc = spdk_bdev_module_claim_bdev_desc(ctx->desc, ctx->claim_type, NULL, &vbdev_ut_if);
6731 	CU_ASSERT(rc == 0);
6732 }
6733 
6734 static void
6735 examine_locks(void)
6736 {
6737 	struct spdk_bdev *bdev;
6738 	struct ut_examine_ctx ctx = { 0 };
6739 	struct examine_claim_v2_ctx v2_ctx;
6740 
6741 	/* Without any claims, one code path is taken */
6742 	ctx.examine_config = examine_no_lock_held;
6743 	ctx.examine_disk = examine_no_lock_held;
6744 	bdev = allocate_bdev_ctx("bdev0", &ctx);
6745 	CU_ASSERT(ctx.examine_config_count == 1);
6746 	CU_ASSERT(ctx.examine_disk_count == 1);
6747 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6748 	CU_ASSERT(bdev->internal.claim.v1.module == NULL);
6749 	free_bdev(bdev);
6750 
6751 	/* Exercise another path that is taken when examine_config() takes a v1 claim. */
6752 	memset(&ctx, 0, sizeof(ctx));
6753 	ctx.examine_config = examine_claim_v1;
6754 	ctx.examine_disk = examine_no_lock_held;
6755 	bdev = allocate_bdev_ctx("bdev0", &ctx);
6756 	CU_ASSERT(ctx.examine_config_count == 1);
6757 	CU_ASSERT(ctx.examine_disk_count == 1);
6758 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
6759 	CU_ASSERT(bdev->internal.claim.v1.module == &vbdev_ut_if);
6760 	spdk_bdev_module_release_bdev(bdev);
6761 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6762 	CU_ASSERT(bdev->internal.claim.v1.module == NULL);
6763 	free_bdev(bdev);
6764 
6765 	/* Exercise the final path that comes with v2 claims. */
6766 	memset(&v2_ctx, 0, sizeof(v2_ctx));
6767 	v2_ctx.examine_ctx.examine_config = examine_claim_v2;
6768 	v2_ctx.examine_ctx.examine_disk = examine_no_lock_held;
6769 	v2_ctx.claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
6770 	bdev = allocate_bdev_ctx("bdev0", &v2_ctx);
6771 	CU_ASSERT(v2_ctx.examine_ctx.examine_config_count == 1);
6772 	CU_ASSERT(v2_ctx.examine_ctx.examine_disk_count == 1);
6773 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6774 	spdk_bdev_close(v2_ctx.desc);
6775 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6776 	free_bdev(bdev);
6777 }
6778 
6779 #define UT_ASSERT_CLAIM_V2_COUNT(bdev, expect) \
6780 	do { \
6781 		uint32_t len = 0; \
6782 		struct spdk_bdev_module_claim *claim; \
6783 		TAILQ_FOREACH(claim, &bdev->internal.claim.v2.claims, link) { \
6784 			len++; \
6785 		} \
6786 		CU_ASSERT(len == expect); \
6787 	} while (0)
6788 
6789 static void
6790 claim_v2_rwo(void)
6791 {
6792 	struct spdk_bdev *bdev;
6793 	struct spdk_bdev_desc *desc;
6794 	struct spdk_bdev_desc *desc2;
6795 	struct spdk_bdev_claim_opts opts;
6796 	int rc;
6797 
6798 	bdev = allocate_bdev("bdev0");
6799 
6800 	/* Claim without options */
6801 	desc = NULL;
6802 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6803 	CU_ASSERT(rc == 0);
6804 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6805 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6806 					      &bdev_ut_if);
6807 	CU_ASSERT(rc == 0);
6808 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6809 	CU_ASSERT(desc->claim != NULL);
6810 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6811 	CU_ASSERT(strcmp(desc->claim->name, "") == 0);
6812 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6813 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6814 
6815 	/* Release the claim by closing the descriptor */
6816 	spdk_bdev_close(desc);
6817 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6818 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6819 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6820 
6821 	/* Claim with options */
6822 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6823 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6824 	desc = NULL;
6825 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6826 	CU_ASSERT(rc == 0);
6827 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6828 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, &opts,
6829 					      &bdev_ut_if);
6830 	CU_ASSERT(rc == 0);
6831 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6832 	CU_ASSERT(desc->claim != NULL);
6833 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6834 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6835 	memset(&opts, 0, sizeof(opts));
6836 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6837 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6838 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6839 
6840 	/* The claim blocks new writers. */
6841 	desc2 = NULL;
6842 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6843 	CU_ASSERT(rc == -EPERM);
6844 	CU_ASSERT(desc2 == NULL);
6845 
6846 	/* New readers are allowed */
6847 	desc2 = NULL;
6848 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6849 	CU_ASSERT(rc == 0);
6850 	CU_ASSERT(desc2 != NULL);
6851 	CU_ASSERT(!desc2->write);
6852 
6853 	/* No new v2 RWO claims are allowed */
6854 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6855 					      &bdev_ut_if);
6856 	CU_ASSERT(rc == -EPERM);
6857 
6858 	/* No new v2 ROM claims are allowed */
6859 	CU_ASSERT(!desc2->write);
6860 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6861 					      &bdev_ut_if);
6862 	CU_ASSERT(rc == -EPERM);
6863 	CU_ASSERT(!desc2->write);
6864 
6865 	/* No new v2 RWM claims are allowed */
6866 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6867 	opts.shared_claim_key = (uint64_t)&opts;
6868 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6869 					      &bdev_ut_if);
6870 	CU_ASSERT(rc == -EPERM);
6871 	CU_ASSERT(!desc2->write);
6872 
6873 	/* No new v1 claims are allowed */
6874 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6875 	CU_ASSERT(rc == -EPERM);
6876 
6877 	/* None of the above changed the existing claim */
6878 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6879 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6880 
6881 	/* Closing the first descriptor now allows a new claim and it is promoted to rw. */
6882 	spdk_bdev_close(desc);
6883 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6884 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6885 	CU_ASSERT(!desc2->write);
6886 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6887 					      &bdev_ut_if);
6888 	CU_ASSERT(rc == 0);
6889 	CU_ASSERT(desc2->claim != NULL);
6890 	CU_ASSERT(desc2->write);
6891 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6892 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
6893 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6894 	spdk_bdev_close(desc2);
6895 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6896 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6897 
6898 	/* Cannot claim with a key */
6899 	desc = NULL;
6900 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6901 	CU_ASSERT(rc == 0);
6902 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6903 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6904 	opts.shared_claim_key = (uint64_t)&opts;
6905 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, &opts,
6906 					      &bdev_ut_if);
6907 	CU_ASSERT(rc == -EINVAL);
6908 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6909 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6910 	spdk_bdev_close(desc);
6911 
6912 	/* Clean up */
6913 	free_bdev(bdev);
6914 }
6915 
6916 static void
6917 claim_v2_rom(void)
6918 {
6919 	struct spdk_bdev *bdev;
6920 	struct spdk_bdev_desc *desc;
6921 	struct spdk_bdev_desc *desc2;
6922 	struct spdk_bdev_claim_opts opts;
6923 	int rc;
6924 
6925 	bdev = allocate_bdev("bdev0");
6926 
6927 	/* Claim without options */
6928 	desc = NULL;
6929 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6930 	CU_ASSERT(rc == 0);
6931 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6932 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6933 					      &bdev_ut_if);
6934 	CU_ASSERT(rc == 0);
6935 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6936 	CU_ASSERT(desc->claim != NULL);
6937 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6938 	CU_ASSERT(strcmp(desc->claim->name, "") == 0);
6939 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6940 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6941 
6942 	/* Release the claim by closing the descriptor */
6943 	spdk_bdev_close(desc);
6944 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6945 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6946 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6947 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6948 
6949 	/* Claim with options */
6950 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6951 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6952 	desc = NULL;
6953 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6954 	CU_ASSERT(rc == 0);
6955 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6956 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, &opts,
6957 					      &bdev_ut_if);
6958 	CU_ASSERT(rc == 0);
6959 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6960 	SPDK_CU_ASSERT_FATAL(desc->claim != NULL);
6961 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6962 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6963 	memset(&opts, 0, sizeof(opts));
6964 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6965 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6966 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6967 
6968 	/* The claim blocks new writers. */
6969 	desc2 = NULL;
6970 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6971 	CU_ASSERT(rc == -EPERM);
6972 	CU_ASSERT(desc2 == NULL);
6973 
6974 	/* New readers are allowed */
6975 	desc2 = NULL;
6976 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6977 	CU_ASSERT(rc == 0);
6978 	CU_ASSERT(desc2 != NULL);
6979 	CU_ASSERT(!desc2->write);
6980 
6981 	/* No new v2 RWO claims are allowed */
6982 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6983 					      &bdev_ut_if);
6984 	CU_ASSERT(rc == -EPERM);
6985 
6986 	/* No new v2 RWM claims are allowed */
6987 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6988 	opts.shared_claim_key = (uint64_t)&opts;
6989 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6990 					      &bdev_ut_if);
6991 	CU_ASSERT(rc == -EPERM);
6992 	CU_ASSERT(!desc2->write);
6993 
6994 	/* No new v1 claims are allowed */
6995 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6996 	CU_ASSERT(rc == -EPERM);
6997 
6998 	/* None of the above messed up the existing claim */
6999 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
7000 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
7001 
7002 	/* New v2 ROM claims are allowed and the descriptor stays read-only. */
7003 	CU_ASSERT(!desc2->write);
7004 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
7005 					      &bdev_ut_if);
7006 	CU_ASSERT(rc == 0);
7007 	CU_ASSERT(!desc2->write);
7008 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
7009 	CU_ASSERT(TAILQ_NEXT(desc->claim, link) == desc2->claim);
7010 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 2);
7011 
7012 	/* Claim remains when closing the first descriptor */
7013 	spdk_bdev_close(desc);
7014 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
7015 	CU_ASSERT(!TAILQ_EMPTY(&bdev->internal.open_descs));
7016 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
7017 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
7018 
7019 	/* Claim removed when closing the other descriptor */
7020 	spdk_bdev_close(desc2);
7021 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7022 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
7023 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
7024 
7025 	/* Cannot claim with a key */
7026 	desc = NULL;
7027 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
7028 	CU_ASSERT(rc == 0);
7029 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7030 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7031 	opts.shared_claim_key = (uint64_t)&opts;
7032 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, &opts,
7033 					      &bdev_ut_if);
7034 	CU_ASSERT(rc == -EINVAL);
7035 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7036 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
7037 	spdk_bdev_close(desc);
7038 
7039 	/* Cannot claim with a read-write descriptor */
7040 	desc = NULL;
7041 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
7042 	CU_ASSERT(rc == 0);
7043 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7044 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
7045 					      &bdev_ut_if);
7046 	CU_ASSERT(rc == -EINVAL);
7047 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7048 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
7049 	spdk_bdev_close(desc);
7050 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
7051 
7052 	/* Clean up */
7053 	free_bdev(bdev);
7054 }
7055 
7056 static void
7057 claim_v2_rwm(void)
7058 {
7059 	struct spdk_bdev *bdev;
7060 	struct spdk_bdev_desc *desc;
7061 	struct spdk_bdev_desc *desc2;
7062 	struct spdk_bdev_claim_opts opts;
7063 	char good_key, bad_key;
7064 	int rc;
7065 
7066 	bdev = allocate_bdev("bdev0");
7067 
7068 	/* Claim without options should fail */
7069 	desc = NULL;
7070 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
7071 	CU_ASSERT(rc == 0);
7072 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7073 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, NULL,
7074 					      &bdev_ut_if);
7075 	CU_ASSERT(rc == -EINVAL);
7076 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7077 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
7078 	CU_ASSERT(desc->claim == NULL);
7079 
7080 	/* Claim with options */
7081 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7082 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
7083 	opts.shared_claim_key = (uint64_t)&good_key;
7084 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
7085 					      &bdev_ut_if);
7086 	CU_ASSERT(rc == 0);
7087 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED);
7088 	SPDK_CU_ASSERT_FATAL(desc->claim != NULL);
7089 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
7090 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
7091 	memset(&opts, 0, sizeof(opts));
7092 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
7093 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
7094 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
7095 
7096 	/* The claim blocks new writers. */
7097 	desc2 = NULL;
7098 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
7099 	CU_ASSERT(rc == -EPERM);
7100 	CU_ASSERT(desc2 == NULL);
7101 
7102 	/* New readers are allowed */
7103 	desc2 = NULL;
7104 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
7105 	CU_ASSERT(rc == 0);
7106 	CU_ASSERT(desc2 != NULL);
7107 	CU_ASSERT(!desc2->write);
7108 
7109 	/* No new v2 RWO claims are allowed */
7110 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
7111 					      &bdev_ut_if);
7112 	CU_ASSERT(rc == -EPERM);
7113 
7114 	/* No new v2 ROM claims are allowed and the descriptor stays read-only. */
7115 	CU_ASSERT(!desc2->write);
7116 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
7117 					      &bdev_ut_if);
7118 	CU_ASSERT(rc == -EPERM);
7119 	CU_ASSERT(!desc2->write);
7120 
7121 	/* No new v1 claims are allowed */
7122 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
7123 	CU_ASSERT(rc == -EPERM);
7124 
7125 	/* No new v2 RWM claims are allowed if the key does not match */
7126 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7127 	opts.shared_claim_key = (uint64_t)&bad_key;
7128 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
7129 					      &bdev_ut_if);
7130 	CU_ASSERT(rc == -EPERM);
7131 	CU_ASSERT(!desc2->write);
7132 
7133 	/* None of the above messed up the existing claim */
7134 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
7135 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
7136 
7137 	/* New v2 RWM claims are allowed and the descriptor is promoted if the key matches. */
7138 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7139 	opts.shared_claim_key = (uint64_t)&good_key;
7140 	CU_ASSERT(!desc2->write);
7141 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
7142 					      &bdev_ut_if);
7143 	CU_ASSERT(rc == 0);
7144 	CU_ASSERT(desc2->write);
7145 	CU_ASSERT(TAILQ_NEXT(desc->claim, link) == desc2->claim);
7146 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 2);
7147 
7148 	/* Claim remains when closing the first descriptor */
7149 	spdk_bdev_close(desc);
7150 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED);
7151 	CU_ASSERT(!TAILQ_EMPTY(&bdev->internal.open_descs));
7152 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
7153 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
7154 
7155 	/* Claim removed when closing the other descriptor */
7156 	spdk_bdev_close(desc2);
7157 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7158 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
7159 
7160 	/* Cannot claim without a key */
7161 	desc = NULL;
7162 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
7163 	CU_ASSERT(rc == 0);
7164 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7165 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7166 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
7167 					      &bdev_ut_if);
7168 	CU_ASSERT(rc == -EINVAL);
7169 	spdk_bdev_close(desc);
7170 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7171 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
7172 
7173 	/* Clean up */
7174 	free_bdev(bdev);
7175 }
7176 
7177 static void
7178 claim_v2_existing_writer(void)
7179 {
7180 	struct spdk_bdev *bdev;
7181 	struct spdk_bdev_desc *desc;
7182 	struct spdk_bdev_desc *desc2;
7183 	struct spdk_bdev_claim_opts opts;
7184 	enum spdk_bdev_claim_type type;
7185 	enum spdk_bdev_claim_type types[] = {
7186 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
7187 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
7188 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
7189 	};
7190 	size_t i;
7191 	int rc;
7192 
7193 	bdev = allocate_bdev("bdev0");
7194 
7195 	desc = NULL;
7196 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
7197 	CU_ASSERT(rc == 0);
7198 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7199 	desc2 = NULL;
7200 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
7201 	CU_ASSERT(rc == 0);
7202 	SPDK_CU_ASSERT_FATAL(desc2 != NULL);
7203 
7204 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
7205 		type = types[i];
7206 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7207 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
7208 			opts.shared_claim_key = (uint64_t)&opts;
7209 		}
7210 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
7211 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE) {
7212 			CU_ASSERT(rc == -EINVAL);
7213 		} else {
7214 			CU_ASSERT(rc == -EPERM);
7215 		}
7216 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7217 		rc = spdk_bdev_module_claim_bdev_desc(desc2, type, &opts, &bdev_ut_if);
7218 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE) {
7219 			CU_ASSERT(rc == -EINVAL);
7220 		} else {
7221 			CU_ASSERT(rc == -EPERM);
7222 		}
7223 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7224 	}
7225 
7226 	spdk_bdev_close(desc);
7227 	spdk_bdev_close(desc2);
7228 
7229 	/* Clean up */
7230 	free_bdev(bdev);
7231 }
7232 
7233 static void
7234 claim_v2_existing_v1(void)
7235 {
7236 	struct spdk_bdev *bdev;
7237 	struct spdk_bdev_desc *desc;
7238 	struct spdk_bdev_claim_opts opts;
7239 	enum spdk_bdev_claim_type type;
7240 	enum spdk_bdev_claim_type types[] = {
7241 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
7242 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
7243 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
7244 	};
7245 	size_t i;
7246 	int rc;
7247 
7248 	bdev = allocate_bdev("bdev0");
7249 
7250 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
7251 	CU_ASSERT(rc == 0);
7252 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
7253 
7254 	desc = NULL;
7255 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
7256 	CU_ASSERT(rc == 0);
7257 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7258 
7259 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
7260 		type = types[i];
7261 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7262 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
7263 			opts.shared_claim_key = (uint64_t)&opts;
7264 		}
7265 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
7266 		CU_ASSERT(rc == -EPERM);
7267 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
7268 	}
7269 
7270 	spdk_bdev_module_release_bdev(bdev);
7271 	spdk_bdev_close(desc);
7272 
7273 	/* Clean up */
7274 	free_bdev(bdev);
7275 }
7276 
7277 static void
7278 claim_v1_existing_v2(void)
7279 {
7280 	struct spdk_bdev *bdev;
7281 	struct spdk_bdev_desc *desc;
7282 	struct spdk_bdev_claim_opts opts;
7283 	enum spdk_bdev_claim_type type;
7284 	enum spdk_bdev_claim_type types[] = {
7285 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
7286 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
7287 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
7288 	};
7289 	size_t i;
7290 	int rc;
7291 
7292 	bdev = allocate_bdev("bdev0");
7293 
7294 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
7295 		type = types[i];
7296 
7297 		desc = NULL;
7298 		rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
7299 		CU_ASSERT(rc == 0);
7300 		SPDK_CU_ASSERT_FATAL(desc != NULL);
7301 
7302 		/* Get a v2 claim */
7303 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7304 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
7305 			opts.shared_claim_key = (uint64_t)&opts;
7306 		}
7307 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
7308 		CU_ASSERT(rc == 0);
7309 
7310 		/* Fail to get a v1 claim */
7311 		rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
7312 		CU_ASSERT(rc == -EPERM);
7313 
7314 		spdk_bdev_close(desc);
7315 
7316 		/* Now v1 succeeds */
7317 		rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
7318 		CU_ASSERT(rc == 0)
7319 		spdk_bdev_module_release_bdev(bdev);
7320 	}
7321 
7322 	/* Clean up */
7323 	free_bdev(bdev);
7324 }
7325 
7326 static int ut_examine_claimed_init0(void);
7327 static int ut_examine_claimed_init1(void);
7328 static void ut_examine_claimed_config0(struct spdk_bdev *bdev);
7329 static void ut_examine_claimed_disk0(struct spdk_bdev *bdev);
7330 static void ut_examine_claimed_config1(struct spdk_bdev *bdev);
7331 static void ut_examine_claimed_disk1(struct spdk_bdev *bdev);
7332 
7333 #define UT_MAX_EXAMINE_MODS 2
7334 struct spdk_bdev_module examine_claimed_mods[UT_MAX_EXAMINE_MODS] = {
7335 	{
7336 		.name = "vbdev_ut_examine0",
7337 		.module_init = ut_examine_claimed_init0,
7338 		.module_fini = vbdev_ut_module_fini,
7339 		.examine_config = ut_examine_claimed_config0,
7340 		.examine_disk = ut_examine_claimed_disk0,
7341 	},
7342 	{
7343 		.name = "vbdev_ut_examine1",
7344 		.module_init = ut_examine_claimed_init1,
7345 		.module_fini = vbdev_ut_module_fini,
7346 		.examine_config = ut_examine_claimed_config1,
7347 		.examine_disk = ut_examine_claimed_disk1,
7348 	}
7349 };
7350 
7351 SPDK_BDEV_MODULE_REGISTER(bdev_ut_claimed0, &examine_claimed_mods[0])
7352 SPDK_BDEV_MODULE_REGISTER(bdev_ut_claimed1, &examine_claimed_mods[1])
7353 
7354 struct ut_examine_claimed_ctx {
7355 	uint32_t examine_config_count;
7356 	uint32_t examine_disk_count;
7357 
7358 	/* Claim type to take, with these options */
7359 	enum spdk_bdev_claim_type claim_type;
7360 	struct spdk_bdev_claim_opts claim_opts;
7361 
7362 	/* Expected return value from spdk_bdev_module_claim_bdev_desc() */
7363 	int expect_claim_err;
7364 
7365 	/* Descriptor used for a claim */
7366 	struct spdk_bdev_desc *desc;
7367 } examine_claimed_ctx[UT_MAX_EXAMINE_MODS];
7368 
7369 bool ut_testing_examine_claimed;
7370 
7371 /*
7372  * Store the order in which the modules were initialized,
7373  * since we have no guarantee on the order of execution of the constructors.
7374  * Modules are examined in reverse order of their initialization.
7375  */
7376 static int g_ut_examine_claimed_order[UT_MAX_EXAMINE_MODS];
7377 static int
7378 ut_examine_claimed_init(uint32_t modnum)
7379 {
7380 	static int current = UT_MAX_EXAMINE_MODS;
7381 
7382 	/* Only do this for the first initialization of the bdev framework */
7383 	if (current == 0) {
7384 		return 0;
7385 	}
7386 	g_ut_examine_claimed_order[modnum] = --current;
7387 
7388 	return 0;
7389 }
7390 
7391 static int
7392 ut_examine_claimed_init0(void)
7393 {
7394 	return ut_examine_claimed_init(0);
7395 }
7396 
7397 static int
7398 ut_examine_claimed_init1(void)
7399 {
7400 	return ut_examine_claimed_init(1);
7401 }
7402 
7403 static void
7404 reset_examine_claimed_ctx(void)
7405 {
7406 	struct ut_examine_claimed_ctx *ctx;
7407 	uint32_t i;
7408 
7409 	for (i = 0; i < SPDK_COUNTOF(examine_claimed_ctx); i++) {
7410 		ctx = &examine_claimed_ctx[i];
7411 		if (ctx->desc != NULL) {
7412 			spdk_bdev_close(ctx->desc);
7413 		}
7414 		memset(ctx, 0, sizeof(*ctx));
7415 		spdk_bdev_claim_opts_init(&ctx->claim_opts, sizeof(ctx->claim_opts));
7416 	}
7417 }
7418 
7419 static void
7420 examine_claimed_config(struct spdk_bdev *bdev, uint32_t modnum)
7421 {
7422 	SPDK_CU_ASSERT_FATAL(modnum < UT_MAX_EXAMINE_MODS);
7423 	struct spdk_bdev_module *module = &examine_claimed_mods[modnum];
7424 	struct ut_examine_claimed_ctx *ctx = &examine_claimed_ctx[modnum];
7425 	int rc;
7426 
7427 	if (!ut_testing_examine_claimed) {
7428 		spdk_bdev_module_examine_done(module);
7429 		return;
7430 	}
7431 
7432 	ctx->examine_config_count++;
7433 
7434 	if (ctx->claim_type != SPDK_BDEV_CLAIM_NONE) {
7435 		rc = spdk_bdev_open_ext(bdev->name, false, bdev_ut_event_cb, &ctx->claim_opts,
7436 					&ctx->desc);
7437 		CU_ASSERT(rc == 0);
7438 
7439 		rc = spdk_bdev_module_claim_bdev_desc(ctx->desc, ctx->claim_type, NULL, module);
7440 		CU_ASSERT(rc == ctx->expect_claim_err);
7441 	}
7442 	spdk_bdev_module_examine_done(module);
7443 }
7444 
7445 static void
7446 ut_examine_claimed_config0(struct spdk_bdev *bdev)
7447 {
7448 	examine_claimed_config(bdev, g_ut_examine_claimed_order[0]);
7449 }
7450 
7451 static void
7452 ut_examine_claimed_config1(struct spdk_bdev *bdev)
7453 {
7454 	examine_claimed_config(bdev, g_ut_examine_claimed_order[1]);
7455 }
7456 
7457 static void
7458 examine_claimed_disk(struct spdk_bdev *bdev, uint32_t modnum)
7459 {
7460 	SPDK_CU_ASSERT_FATAL(modnum < UT_MAX_EXAMINE_MODS);
7461 	struct spdk_bdev_module *module = &examine_claimed_mods[modnum];
7462 	struct ut_examine_claimed_ctx *ctx = &examine_claimed_ctx[modnum];
7463 
7464 	if (!ut_testing_examine_claimed) {
7465 		spdk_bdev_module_examine_done(module);
7466 		return;
7467 	}
7468 
7469 	ctx->examine_disk_count++;
7470 
7471 	spdk_bdev_module_examine_done(module);
7472 }
7473 
7474 static void
7475 ut_examine_claimed_disk0(struct spdk_bdev *bdev)
7476 {
7477 	examine_claimed_disk(bdev, 0);
7478 }
7479 
7480 static void
7481 ut_examine_claimed_disk1(struct spdk_bdev *bdev)
7482 {
7483 	examine_claimed_disk(bdev, 1);
7484 }
7485 
7486 static bool g_examine_done = false;
7487 
7488 static void
7489 ut_examine_done_cb(void *ctx)
7490 {
7491 	g_examine_done = true;
7492 }
7493 
7494 static void
7495 examine_claimed_common(bool autoexamine)
7496 {
7497 	struct spdk_bdev *bdev;
7498 	struct spdk_bdev_module *mod = examine_claimed_mods;
7499 	struct ut_examine_claimed_ctx *ctx = examine_claimed_ctx;
7500 	struct spdk_bdev_opts bdev_opts = {};
7501 	int rc;
7502 
7503 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
7504 	bdev_opts.bdev_auto_examine = autoexamine;
7505 	ut_init_bdev(&bdev_opts);
7506 
7507 	ut_testing_examine_claimed = true;
7508 	reset_examine_claimed_ctx();
7509 
7510 	/*
7511 	 * With one module claiming, both modules' examine_config should be called, but only the
7512 	 * claiming module's examine_disk should be called.
7513 	 */
7514 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7515 	g_examine_done = false;
7516 	bdev = allocate_bdev("bdev0");
7517 
7518 	if (!autoexamine) {
7519 		rc = spdk_bdev_examine("bdev0");
7520 		CU_ASSERT(rc == 0);
7521 		rc = spdk_bdev_wait_for_examine(ut_examine_done_cb, NULL);
7522 		CU_ASSERT(rc == 0);
7523 		CU_ASSERT(!g_examine_done);
7524 		poll_threads();
7525 		CU_ASSERT(g_examine_done);
7526 	}
7527 
7528 	CU_ASSERT(ctx[0].examine_config_count == 1);
7529 	CU_ASSERT(ctx[0].examine_disk_count == 1);
7530 	SPDK_CU_ASSERT_FATAL(ctx[0].desc != NULL);
7531 	CU_ASSERT(ctx[0].desc->claim->module == &mod[0]);
7532 	CU_ASSERT(ctx[1].examine_config_count == 1);
7533 	CU_ASSERT(ctx[1].examine_disk_count == 0);
7534 	CU_ASSERT(ctx[1].desc == NULL);
7535 	reset_examine_claimed_ctx();
7536 	free_bdev(bdev);
7537 
7538 	/*
7539 	 * With two modules claiming, both modules' examine_config and examine_disk should be
7540 	 * called.
7541 	 */
7542 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7543 	ctx[1].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7544 	g_examine_done = false;
7545 	bdev = allocate_bdev("bdev0");
7546 
7547 	if (!autoexamine) {
7548 		rc = spdk_bdev_examine("bdev0");
7549 		CU_ASSERT(rc == 0);
7550 		rc = spdk_bdev_wait_for_examine(ut_examine_done_cb, NULL);
7551 		CU_ASSERT(rc == 0);
7552 		CU_ASSERT(!g_examine_done);
7553 		poll_threads();
7554 		CU_ASSERT(g_examine_done);
7555 	}
7556 
7557 	CU_ASSERT(ctx[0].examine_config_count == 1);
7558 	CU_ASSERT(ctx[0].examine_disk_count == 1);
7559 	SPDK_CU_ASSERT_FATAL(ctx[0].desc != NULL);
7560 	CU_ASSERT(ctx[0].desc->claim->module == &mod[0]);
7561 	CU_ASSERT(ctx[1].examine_config_count == 1);
7562 	CU_ASSERT(ctx[1].examine_disk_count == 1);
7563 	SPDK_CU_ASSERT_FATAL(ctx[1].desc != NULL);
7564 	CU_ASSERT(ctx[1].desc->claim->module == &mod[1]);
7565 	reset_examine_claimed_ctx();
7566 	free_bdev(bdev);
7567 
7568 	/*
7569 	 * If two vbdev modules try to claim with conflicting claim types, the module that was added
7570 	 * last wins. The winner gets the claim and is the only one that has its examine_disk
7571 	 * callback invoked.
7572 	 */
7573 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7574 	ctx[0].expect_claim_err = -EPERM;
7575 	ctx[1].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE;
7576 	g_examine_done = false;
7577 	bdev = allocate_bdev("bdev0");
7578 
7579 	if (!autoexamine) {
7580 		rc = spdk_bdev_examine("bdev0");
7581 		CU_ASSERT(rc == 0);
7582 		rc = spdk_bdev_wait_for_examine(ut_examine_done_cb, NULL);
7583 		CU_ASSERT(rc == 0);
7584 		CU_ASSERT(!g_examine_done);
7585 		poll_threads();
7586 		CU_ASSERT(g_examine_done);
7587 	}
7588 
7589 	CU_ASSERT(ctx[0].examine_config_count == 1);
7590 	CU_ASSERT(ctx[0].examine_disk_count == 0);
7591 	CU_ASSERT(ctx[1].examine_config_count == 1);
7592 	CU_ASSERT(ctx[1].examine_disk_count == 1);
7593 	SPDK_CU_ASSERT_FATAL(ctx[1].desc != NULL);
7594 	CU_ASSERT(ctx[1].desc->claim->module == &mod[1]);
7595 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
7596 	reset_examine_claimed_ctx();
7597 	free_bdev(bdev);
7598 
7599 	ut_testing_examine_claimed = false;
7600 
7601 	ut_fini_bdev();
7602 }
7603 
7604 static void
7605 examine_claimed(void)
7606 {
7607 	examine_claimed_common(true);
7608 }
7609 
7610 static void
7611 examine_claimed_manual(void)
7612 {
7613 	examine_claimed_common(false);
7614 }
7615 
7616 static void
7617 get_numa_id(void)
7618 {
7619 	struct spdk_bdev bdev = {};
7620 
7621 	bdev.numa.id = 0;
7622 	bdev.numa.id_valid = 0;
7623 	CU_ASSERT(spdk_bdev_get_numa_id(&bdev) == SPDK_ENV_NUMA_ID_ANY);
7624 
7625 	bdev.numa.id_valid = 1;
7626 	CU_ASSERT(spdk_bdev_get_numa_id(&bdev) == 0);
7627 
7628 	bdev.numa.id = SPDK_ENV_NUMA_ID_ANY;
7629 	CU_ASSERT(spdk_bdev_get_numa_id(&bdev) == SPDK_ENV_NUMA_ID_ANY);
7630 }
7631 
7632 static void
7633 get_device_stat_with_reset_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg,
7634 			      int rc)
7635 {
7636 	*(bool *)cb_arg = true;
7637 }
7638 
7639 static void
7640 get_device_stat_with_given_reset(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat,
7641 				 enum spdk_bdev_reset_stat_mode mode)
7642 {
7643 	bool done = false;
7644 
7645 	spdk_bdev_get_device_stat(bdev, stat, mode, get_device_stat_with_reset_cb, &done);
7646 	while (!done) { poll_threads(); }
7647 }
7648 
7649 static void
7650 get_device_stat_with_reset(void)
7651 {
7652 	struct spdk_bdev *bdev;
7653 	struct spdk_bdev_desc *desc = NULL;
7654 	struct spdk_io_channel *io_ch;
7655 	struct spdk_bdev_opts bdev_opts = {};
7656 	struct spdk_bdev_io_stat *stat;
7657 
7658 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
7659 	bdev_opts.bdev_io_pool_size = 2;
7660 	bdev_opts.bdev_io_cache_size = 1;
7661 	ut_init_bdev(&bdev_opts);
7662 	bdev = allocate_bdev("bdev0");
7663 
7664 	CU_ASSERT(spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc) == 0);
7665 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7666 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
7667 	io_ch = spdk_bdev_get_io_channel(desc);
7668 	CU_ASSERT(io_ch != NULL);
7669 
7670 	g_io_done = false;
7671 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
7672 	spdk_delay_us(10);
7673 	stub_complete_io(1);
7674 	CU_ASSERT(g_io_done == true);
7675 
7676 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
7677 	SPDK_CU_ASSERT_FATAL(stat != NULL);
7678 
7679 	/* Get stat without resetting and check that it is correct  */
7680 	get_device_stat_with_given_reset(bdev, stat, SPDK_BDEV_RESET_STAT_NONE);
7681 	CU_ASSERT(stat->bytes_read == 4096);
7682 	CU_ASSERT(stat->max_read_latency_ticks == 10);
7683 
7684 	/**
7685 	 * Check that stat was not reseted after previous step,
7686 	 * send get request with resetting maxmin stats
7687 	 */
7688 	get_device_stat_with_given_reset(bdev, stat, SPDK_BDEV_RESET_STAT_MAXMIN);
7689 	CU_ASSERT(stat->bytes_read == 4096);
7690 	CU_ASSERT(stat->max_read_latency_ticks == 10);
7691 
7692 	/**
7693 	 * Check that maxmins stats are reseted after previous step,
7694 	 * send get request with resetting all stats
7695 	 */
7696 	get_device_stat_with_given_reset(bdev, stat, SPDK_BDEV_RESET_STAT_ALL);
7697 	CU_ASSERT(stat->bytes_read == 4096);
7698 	CU_ASSERT(stat->max_read_latency_ticks == 0);
7699 
7700 	/* Check that all stats are reseted after previous step */
7701 	get_device_stat_with_given_reset(bdev, stat, SPDK_BDEV_RESET_STAT_NONE);
7702 	CU_ASSERT(stat->bytes_read == 0);
7703 	CU_ASSERT(stat->max_read_latency_ticks == 0);
7704 
7705 	free(stat);
7706 	spdk_put_io_channel(io_ch);
7707 	spdk_bdev_close(desc);
7708 	free_bdev(bdev);
7709 	ut_fini_bdev();
7710 }
7711 
7712 static void
7713 open_ext_v2_test(void)
7714 {
7715 	struct spdk_bdev_open_opts opts;
7716 	struct spdk_bdev *bdev;
7717 	struct spdk_bdev_desc *desc;
7718 	int rc;
7719 
7720 	bdev = allocate_bdev("bdev0");
7721 
7722 	rc = spdk_bdev_open_ext_v2("bdev0", true, bdev_ut_event_cb, NULL, NULL, &desc);
7723 	CU_ASSERT(rc == 0);
7724 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7725 	CU_ASSERT(desc->write == true);
7726 	CU_ASSERT(desc->opts.hide_metadata == false);
7727 
7728 	spdk_bdev_close(desc);
7729 
7730 	spdk_bdev_open_opts_init(&opts, sizeof(opts));
7731 	opts.hide_metadata = true;
7732 
7733 	rc = spdk_bdev_open_ext_v2("bdev0", true, bdev_ut_event_cb, NULL, &opts, &desc);
7734 	CU_ASSERT(rc == 0);
7735 	CU_ASSERT(desc->write == true);
7736 	CU_ASSERT(desc->opts.hide_metadata == true);
7737 
7738 	spdk_bdev_close(desc);
7739 
7740 	free_bdev(bdev);
7741 }
7742 
7743 static void
7744 bdev_io_init_dif_ctx_test(void)
7745 {
7746 	struct spdk_bdev *bdev;
7747 	struct spdk_bdev_io bdev_io;
7748 	int rc;
7749 
7750 	bdev = allocate_bdev("bdev0");
7751 
7752 	/* This is invalid because md_len should be larger than PI size. */
7753 	bdev->dif_pi_format = SPDK_DIF_PI_FORMAT_32;
7754 	bdev->blocklen = 4096 + 8;
7755 	bdev->md_len = 8;
7756 	bdev->md_interleave = true;
7757 
7758 	bdev_io.bdev = bdev;
7759 
7760 	/* Check if initialization detects error. */
7761 	rc = bdev_io_init_dif_ctx(&bdev_io);
7762 	CU_ASSERT(rc != 0);
7763 
7764 	/* Increase md_len to pass initialization check. */
7765 	bdev->blocklen = 4096 + 16;
7766 	bdev->md_len = 16;
7767 
7768 	rc = bdev_io_init_dif_ctx(&bdev_io);
7769 	CU_ASSERT(rc == 0);
7770 
7771 	free_bdev(bdev);
7772 }
7773 
7774 int
7775 main(int argc, char **argv)
7776 {
7777 	CU_pSuite		suite = NULL;
7778 	unsigned int		num_failures;
7779 
7780 	CU_initialize_registry();
7781 
7782 	suite = CU_add_suite("bdev", ut_bdev_setup, ut_bdev_teardown);
7783 
7784 	CU_ADD_TEST(suite, bytes_to_blocks_test);
7785 	CU_ADD_TEST(suite, num_blocks_test);
7786 	CU_ADD_TEST(suite, io_valid_test);
7787 	CU_ADD_TEST(suite, open_write_test);
7788 	CU_ADD_TEST(suite, claim_test);
7789 	CU_ADD_TEST(suite, alias_add_del_test);
7790 	CU_ADD_TEST(suite, get_device_stat_test);
7791 	CU_ADD_TEST(suite, bdev_io_types_test);
7792 	CU_ADD_TEST(suite, bdev_io_wait_test);
7793 	CU_ADD_TEST(suite, bdev_io_spans_split_test);
7794 	CU_ADD_TEST(suite, bdev_io_boundary_split_test);
7795 	CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test);
7796 	CU_ADD_TEST(suite, bdev_io_mix_split_test);
7797 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
7798 	CU_ADD_TEST(suite, bdev_io_write_unit_split_test);
7799 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
7800 	CU_ADD_TEST(suite, bdev_io_alignment);
7801 	CU_ADD_TEST(suite, bdev_histograms);
7802 	CU_ADD_TEST(suite, bdev_write_zeroes);
7803 	CU_ADD_TEST(suite, bdev_compare_and_write);
7804 	CU_ADD_TEST(suite, bdev_compare);
7805 	CU_ADD_TEST(suite, bdev_compare_emulated);
7806 	CU_ADD_TEST(suite, bdev_zcopy_write);
7807 	CU_ADD_TEST(suite, bdev_zcopy_read);
7808 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
7809 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
7810 	CU_ADD_TEST(suite, bdev_open_ext_test);
7811 	CU_ADD_TEST(suite, bdev_open_ext_unregister);
7812 	CU_ADD_TEST(suite, bdev_set_io_timeout);
7813 	CU_ADD_TEST(suite, bdev_set_qd_sampling);
7814 	CU_ADD_TEST(suite, lba_range_overlap);
7815 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
7816 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
7817 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
7818 	CU_ADD_TEST(suite, bdev_quiesce);
7819 	CU_ADD_TEST(suite, bdev_io_abort);
7820 	CU_ADD_TEST(suite, bdev_unmap);
7821 	CU_ADD_TEST(suite, bdev_write_zeroes_split_test);
7822 	CU_ADD_TEST(suite, bdev_set_options_test);
7823 	CU_ADD_TEST(suite, bdev_get_memory_domains);
7824 	CU_ADD_TEST(suite, bdev_io_ext);
7825 	CU_ADD_TEST(suite, bdev_io_ext_no_opts);
7826 	CU_ADD_TEST(suite, bdev_io_ext_invalid_opts);
7827 	CU_ADD_TEST(suite, bdev_io_ext_split);
7828 	CU_ADD_TEST(suite, bdev_io_ext_bounce_buffer);
7829 	CU_ADD_TEST(suite, bdev_register_uuid_alias);
7830 	CU_ADD_TEST(suite, bdev_unregister_by_name);
7831 	CU_ADD_TEST(suite, for_each_bdev_test);
7832 	CU_ADD_TEST(suite, bdev_seek_test);
7833 	CU_ADD_TEST(suite, bdev_copy);
7834 	CU_ADD_TEST(suite, bdev_copy_split_test);
7835 	CU_ADD_TEST(suite, examine_locks);
7836 	CU_ADD_TEST(suite, claim_v2_rwo);
7837 	CU_ADD_TEST(suite, claim_v2_rom);
7838 	CU_ADD_TEST(suite, claim_v2_rwm);
7839 	CU_ADD_TEST(suite, claim_v2_existing_writer);
7840 	CU_ADD_TEST(suite, claim_v2_existing_v1);
7841 	CU_ADD_TEST(suite, claim_v1_existing_v2);
7842 	CU_ADD_TEST(suite, examine_claimed);
7843 	CU_ADD_TEST(suite, examine_claimed_manual);
7844 	CU_ADD_TEST(suite, get_numa_id);
7845 	CU_ADD_TEST(suite, get_device_stat_with_reset);
7846 	CU_ADD_TEST(suite, open_ext_v2_test);
7847 	CU_ADD_TEST(suite, bdev_io_init_dif_ctx_test);
7848 
7849 	allocate_cores(1);
7850 	allocate_threads(1);
7851 	set_thread(0);
7852 
7853 	num_failures = spdk_ut_run_tests(argc, argv, NULL);
7854 	CU_cleanup_registry();
7855 
7856 	free_threads();
7857 	free_cores();
7858 
7859 	return num_failures;
7860 }
7861