xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision 0098e636761237b77c12c30c2408263a5d2260cc)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (c) Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk_cunit.h"
8 
9 #include "common/lib/ut_multithread.c"
10 #include "unit/lib/json_mock.c"
11 
12 #include "spdk/config.h"
13 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
14 #undef SPDK_CONFIG_VTUNE
15 
16 #include "bdev/bdev.c"
17 
18 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
19 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
20 DEFINE_STUB(spdk_memory_domain_get_dma_device_id, const char *, (struct spdk_memory_domain *domain),
21 	    "test_domain");
22 DEFINE_STUB(spdk_memory_domain_get_dma_device_type, enum spdk_dma_device_type,
23 	    (struct spdk_memory_domain *domain), 0);
24 
25 static bool g_memory_domain_pull_data_called;
26 static bool g_memory_domain_push_data_called;
27 
28 DEFINE_RETURN_MOCK(spdk_memory_domain_pull_data, int);
29 int
30 spdk_memory_domain_pull_data(struct spdk_memory_domain *src_domain, void *src_domain_ctx,
31 			     struct iovec *src_iov, uint32_t src_iov_cnt, struct iovec *dst_iov, uint32_t dst_iov_cnt,
32 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
33 {
34 	g_memory_domain_pull_data_called = true;
35 	HANDLE_RETURN_MOCK(spdk_memory_domain_pull_data);
36 	cpl_cb(cpl_cb_arg, 0);
37 	return 0;
38 }
39 
40 DEFINE_RETURN_MOCK(spdk_memory_domain_push_data, int);
41 int
42 spdk_memory_domain_push_data(struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
43 			     struct iovec *dst_iov, uint32_t dst_iovcnt, struct iovec *src_iov, uint32_t src_iovcnt,
44 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
45 {
46 	g_memory_domain_push_data_called = true;
47 	HANDLE_RETURN_MOCK(spdk_memory_domain_push_data);
48 	cpl_cb(cpl_cb_arg, 0);
49 	return 0;
50 }
51 
52 int g_status;
53 int g_count;
54 enum spdk_bdev_event_type g_event_type1;
55 enum spdk_bdev_event_type g_event_type2;
56 enum spdk_bdev_event_type g_event_type3;
57 enum spdk_bdev_event_type g_event_type4;
58 struct spdk_histogram_data *g_histogram;
59 void *g_unregister_arg;
60 int g_unregister_rc;
61 
62 void
63 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
64 			 int *sc, int *sk, int *asc, int *ascq)
65 {
66 }
67 
68 static int
69 null_init(void)
70 {
71 	return 0;
72 }
73 
74 static int
75 null_clean(void)
76 {
77 	return 0;
78 }
79 
80 static int
81 stub_destruct(void *ctx)
82 {
83 	return 0;
84 }
85 
86 struct ut_expected_io {
87 	uint8_t				type;
88 	uint64_t			offset;
89 	uint64_t			length;
90 	int				iovcnt;
91 	struct iovec			iov[BDEV_IO_NUM_CHILD_IOV];
92 	void				*md_buf;
93 	struct spdk_bdev_ext_io_opts	*ext_io_opts;
94 	TAILQ_ENTRY(ut_expected_io)	link;
95 };
96 
97 struct bdev_ut_channel {
98 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
99 	uint32_t			outstanding_io_count;
100 	TAILQ_HEAD(, ut_expected_io)	expected_io;
101 };
102 
103 static bool g_io_done;
104 static struct spdk_bdev_io *g_bdev_io;
105 static enum spdk_bdev_io_status g_io_status;
106 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
107 static uint32_t g_bdev_ut_io_device;
108 static struct bdev_ut_channel *g_bdev_ut_channel;
109 static void *g_compare_read_buf;
110 static uint32_t g_compare_read_buf_len;
111 static void *g_compare_write_buf;
112 static uint32_t g_compare_write_buf_len;
113 static bool g_abort_done;
114 static enum spdk_bdev_io_status g_abort_status;
115 static void *g_zcopy_read_buf;
116 static uint32_t g_zcopy_read_buf_len;
117 static void *g_zcopy_write_buf;
118 static uint32_t g_zcopy_write_buf_len;
119 static struct spdk_bdev_io *g_zcopy_bdev_io;
120 
121 static struct ut_expected_io *
122 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
123 {
124 	struct ut_expected_io *expected_io;
125 
126 	expected_io = calloc(1, sizeof(*expected_io));
127 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
128 
129 	expected_io->type = type;
130 	expected_io->offset = offset;
131 	expected_io->length = length;
132 	expected_io->iovcnt = iovcnt;
133 
134 	return expected_io;
135 }
136 
137 static void
138 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
139 {
140 	expected_io->iov[pos].iov_base = base;
141 	expected_io->iov[pos].iov_len = len;
142 }
143 
144 static void
145 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
146 {
147 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
148 	struct ut_expected_io *expected_io;
149 	struct iovec *iov, *expected_iov;
150 	struct spdk_bdev_io *bio_to_abort;
151 	int i;
152 
153 	g_bdev_io = bdev_io;
154 
155 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
156 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
157 
158 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
159 		CU_ASSERT(g_compare_read_buf_len == len);
160 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
161 	}
162 
163 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
164 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
165 
166 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
167 		CU_ASSERT(g_compare_write_buf_len == len);
168 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
169 	}
170 
171 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
172 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
173 
174 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
175 		CU_ASSERT(g_compare_read_buf_len == len);
176 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
177 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
178 		}
179 	}
180 
181 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
182 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
183 			TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
184 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
185 					TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
186 					ch->outstanding_io_count--;
187 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
188 					break;
189 				}
190 			}
191 		}
192 	}
193 
194 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) {
195 		if (bdev_io->u.bdev.zcopy.start) {
196 			g_zcopy_bdev_io = bdev_io;
197 			if (bdev_io->u.bdev.zcopy.populate) {
198 				/* Start of a read */
199 				CU_ASSERT(g_zcopy_read_buf != NULL);
200 				CU_ASSERT(g_zcopy_read_buf_len > 0);
201 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_read_buf;
202 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_read_buf_len;
203 				bdev_io->u.bdev.iovcnt = 1;
204 			} else {
205 				/* Start of a write */
206 				CU_ASSERT(g_zcopy_write_buf != NULL);
207 				CU_ASSERT(g_zcopy_write_buf_len > 0);
208 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_write_buf;
209 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_write_buf_len;
210 				bdev_io->u.bdev.iovcnt = 1;
211 			}
212 		} else {
213 			if (bdev_io->u.bdev.zcopy.commit) {
214 				/* End of write */
215 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_write_buf);
216 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_write_buf_len);
217 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
218 				g_zcopy_write_buf = NULL;
219 				g_zcopy_write_buf_len = 0;
220 			} else {
221 				/* End of read */
222 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_read_buf);
223 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_read_buf_len);
224 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
225 				g_zcopy_read_buf = NULL;
226 				g_zcopy_read_buf_len = 0;
227 			}
228 		}
229 	}
230 
231 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
232 	ch->outstanding_io_count++;
233 
234 	expected_io = TAILQ_FIRST(&ch->expected_io);
235 	if (expected_io == NULL) {
236 		return;
237 	}
238 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
239 
240 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
241 		CU_ASSERT(bdev_io->type == expected_io->type);
242 	}
243 
244 	if (expected_io->md_buf != NULL) {
245 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
246 		if (bdev_io->u.bdev.ext_opts) {
247 			CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.ext_opts->metadata);
248 		}
249 	}
250 
251 	if (expected_io->length == 0) {
252 		free(expected_io);
253 		return;
254 	}
255 
256 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
257 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
258 
259 	if (expected_io->iovcnt == 0) {
260 		free(expected_io);
261 		/* UNMAP, WRITE_ZEROES and FLUSH don't have iovs, so we can just return now. */
262 		return;
263 	}
264 
265 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
266 	for (i = 0; i < expected_io->iovcnt; i++) {
267 		expected_iov = &expected_io->iov[i];
268 		if (bdev_io->internal.orig_iovcnt == 0) {
269 			iov = &bdev_io->u.bdev.iovs[i];
270 		} else {
271 			iov = bdev_io->internal.orig_iovs;
272 		}
273 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
274 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
275 	}
276 
277 	if (expected_io->ext_io_opts) {
278 		CU_ASSERT(expected_io->ext_io_opts == bdev_io->internal.ext_opts)
279 	}
280 
281 	free(expected_io);
282 }
283 
284 static void
285 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
286 			       struct spdk_bdev_io *bdev_io, bool success)
287 {
288 	CU_ASSERT(success == true);
289 
290 	stub_submit_request(_ch, bdev_io);
291 }
292 
293 static void
294 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
295 {
296 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
297 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
298 }
299 
300 static uint32_t
301 stub_complete_io(uint32_t num_to_complete)
302 {
303 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
304 	struct spdk_bdev_io *bdev_io;
305 	static enum spdk_bdev_io_status io_status;
306 	uint32_t num_completed = 0;
307 
308 	while (num_completed < num_to_complete) {
309 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
310 			break;
311 		}
312 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
313 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
314 		ch->outstanding_io_count--;
315 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
316 			    g_io_exp_status;
317 		spdk_bdev_io_complete(bdev_io, io_status);
318 		num_completed++;
319 	}
320 
321 	return num_completed;
322 }
323 
324 static struct spdk_io_channel *
325 bdev_ut_get_io_channel(void *ctx)
326 {
327 	return spdk_get_io_channel(&g_bdev_ut_io_device);
328 }
329 
330 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
331 	[SPDK_BDEV_IO_TYPE_READ]		= true,
332 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
333 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
334 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
335 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
336 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
337 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
338 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
339 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
340 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
341 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
342 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
343 };
344 
345 static void
346 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
347 {
348 	g_io_types_supported[io_type] = enable;
349 }
350 
351 static bool
352 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
353 {
354 	return g_io_types_supported[io_type];
355 }
356 
357 static struct spdk_bdev_fn_table fn_table = {
358 	.destruct = stub_destruct,
359 	.submit_request = stub_submit_request,
360 	.get_io_channel = bdev_ut_get_io_channel,
361 	.io_type_supported = stub_io_type_supported,
362 };
363 
364 static int
365 bdev_ut_create_ch(void *io_device, void *ctx_buf)
366 {
367 	struct bdev_ut_channel *ch = ctx_buf;
368 
369 	CU_ASSERT(g_bdev_ut_channel == NULL);
370 	g_bdev_ut_channel = ch;
371 
372 	TAILQ_INIT(&ch->outstanding_io);
373 	ch->outstanding_io_count = 0;
374 	TAILQ_INIT(&ch->expected_io);
375 	return 0;
376 }
377 
378 static void
379 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
380 {
381 	CU_ASSERT(g_bdev_ut_channel != NULL);
382 	g_bdev_ut_channel = NULL;
383 }
384 
385 struct spdk_bdev_module bdev_ut_if;
386 
387 static int
388 bdev_ut_module_init(void)
389 {
390 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
391 				sizeof(struct bdev_ut_channel), NULL);
392 	spdk_bdev_module_init_done(&bdev_ut_if);
393 	return 0;
394 }
395 
396 static void
397 bdev_ut_module_fini(void)
398 {
399 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
400 }
401 
402 struct spdk_bdev_module bdev_ut_if = {
403 	.name = "bdev_ut",
404 	.module_init = bdev_ut_module_init,
405 	.module_fini = bdev_ut_module_fini,
406 	.async_init = true,
407 };
408 
409 static void vbdev_ut_examine(struct spdk_bdev *bdev);
410 
411 static int
412 vbdev_ut_module_init(void)
413 {
414 	return 0;
415 }
416 
417 static void
418 vbdev_ut_module_fini(void)
419 {
420 }
421 
422 struct spdk_bdev_module vbdev_ut_if = {
423 	.name = "vbdev_ut",
424 	.module_init = vbdev_ut_module_init,
425 	.module_fini = vbdev_ut_module_fini,
426 	.examine_config = vbdev_ut_examine,
427 };
428 
429 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
430 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
431 
432 static void
433 vbdev_ut_examine(struct spdk_bdev *bdev)
434 {
435 	spdk_bdev_module_examine_done(&vbdev_ut_if);
436 }
437 
438 static struct spdk_bdev *
439 allocate_bdev(char *name)
440 {
441 	struct spdk_bdev *bdev;
442 	int rc;
443 
444 	bdev = calloc(1, sizeof(*bdev));
445 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
446 
447 	bdev->name = name;
448 	bdev->fn_table = &fn_table;
449 	bdev->module = &bdev_ut_if;
450 	bdev->blockcnt = 1024;
451 	bdev->blocklen = 512;
452 
453 	rc = spdk_bdev_register(bdev);
454 	CU_ASSERT(rc == 0);
455 
456 	return bdev;
457 }
458 
459 static struct spdk_bdev *
460 allocate_vbdev(char *name)
461 {
462 	struct spdk_bdev *bdev;
463 	int rc;
464 
465 	bdev = calloc(1, sizeof(*bdev));
466 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
467 
468 	bdev->name = name;
469 	bdev->fn_table = &fn_table;
470 	bdev->module = &vbdev_ut_if;
471 
472 	rc = spdk_bdev_register(bdev);
473 	CU_ASSERT(rc == 0);
474 
475 	return bdev;
476 }
477 
478 static void
479 free_bdev(struct spdk_bdev *bdev)
480 {
481 	spdk_bdev_unregister(bdev, NULL, NULL);
482 	poll_threads();
483 	memset(bdev, 0xFF, sizeof(*bdev));
484 	free(bdev);
485 }
486 
487 static void
488 free_vbdev(struct spdk_bdev *bdev)
489 {
490 	spdk_bdev_unregister(bdev, NULL, NULL);
491 	poll_threads();
492 	memset(bdev, 0xFF, sizeof(*bdev));
493 	free(bdev);
494 }
495 
496 static void
497 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
498 {
499 	const char *bdev_name;
500 
501 	CU_ASSERT(bdev != NULL);
502 	CU_ASSERT(rc == 0);
503 	bdev_name = spdk_bdev_get_name(bdev);
504 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
505 
506 	free(stat);
507 
508 	*(bool *)cb_arg = true;
509 }
510 
511 static void
512 bdev_unregister_cb(void *cb_arg, int rc)
513 {
514 	g_unregister_arg = cb_arg;
515 	g_unregister_rc = rc;
516 }
517 
518 static void
519 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
520 {
521 }
522 
523 static void
524 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
525 {
526 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
527 
528 	g_event_type1 = type;
529 	if (SPDK_BDEV_EVENT_REMOVE == type) {
530 		spdk_bdev_close(desc);
531 	}
532 }
533 
534 static void
535 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
536 {
537 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
538 
539 	g_event_type2 = type;
540 	if (SPDK_BDEV_EVENT_REMOVE == type) {
541 		spdk_bdev_close(desc);
542 	}
543 }
544 
545 static void
546 bdev_open_cb3(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
547 {
548 	g_event_type3 = type;
549 }
550 
551 static void
552 bdev_open_cb4(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
553 {
554 	g_event_type4 = type;
555 }
556 
557 static void
558 get_device_stat_test(void)
559 {
560 	struct spdk_bdev *bdev;
561 	struct spdk_bdev_io_stat *stat;
562 	bool done;
563 
564 	bdev = allocate_bdev("bdev0");
565 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
566 	if (stat == NULL) {
567 		free_bdev(bdev);
568 		return;
569 	}
570 
571 	done = false;
572 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
573 	while (!done) { poll_threads(); }
574 
575 	free_bdev(bdev);
576 }
577 
578 static void
579 open_write_test(void)
580 {
581 	struct spdk_bdev *bdev[9];
582 	struct spdk_bdev_desc *desc[9] = {};
583 	int rc;
584 
585 	/*
586 	 * Create a tree of bdevs to test various open w/ write cases.
587 	 *
588 	 * bdev0 through bdev3 are physical block devices, such as NVMe
589 	 * namespaces or Ceph block devices.
590 	 *
591 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
592 	 * caching or RAID use cases.
593 	 *
594 	 * bdev5 through bdev7 are all virtual bdevs with the same base
595 	 * bdev (except bdev7). This models partitioning or logical volume
596 	 * use cases.
597 	 *
598 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
599 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
600 	 * models caching, RAID, partitioning or logical volumes use cases.
601 	 *
602 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
603 	 * base bdevs are themselves virtual bdevs.
604 	 *
605 	 *                bdev8
606 	 *                  |
607 	 *            +----------+
608 	 *            |          |
609 	 *          bdev4      bdev5   bdev6   bdev7
610 	 *            |          |       |       |
611 	 *        +---+---+      +---+   +   +---+---+
612 	 *        |       |           \  |  /         \
613 	 *      bdev0   bdev1          bdev2         bdev3
614 	 */
615 
616 	bdev[0] = allocate_bdev("bdev0");
617 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
618 	CU_ASSERT(rc == 0);
619 
620 	bdev[1] = allocate_bdev("bdev1");
621 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
622 	CU_ASSERT(rc == 0);
623 
624 	bdev[2] = allocate_bdev("bdev2");
625 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
626 	CU_ASSERT(rc == 0);
627 
628 	bdev[3] = allocate_bdev("bdev3");
629 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
630 	CU_ASSERT(rc == 0);
631 
632 	bdev[4] = allocate_vbdev("bdev4");
633 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
634 	CU_ASSERT(rc == 0);
635 
636 	bdev[5] = allocate_vbdev("bdev5");
637 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
638 	CU_ASSERT(rc == 0);
639 
640 	bdev[6] = allocate_vbdev("bdev6");
641 
642 	bdev[7] = allocate_vbdev("bdev7");
643 
644 	bdev[8] = allocate_vbdev("bdev8");
645 
646 	/* Open bdev0 read-only.  This should succeed. */
647 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
648 	CU_ASSERT(rc == 0);
649 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
650 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
651 	spdk_bdev_close(desc[0]);
652 
653 	/*
654 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
655 	 * by a vbdev module.
656 	 */
657 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
658 	CU_ASSERT(rc == -EPERM);
659 
660 	/*
661 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
662 	 * by a vbdev module.
663 	 */
664 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
665 	CU_ASSERT(rc == -EPERM);
666 
667 	/* Open bdev4 read-only.  This should succeed. */
668 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
669 	CU_ASSERT(rc == 0);
670 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
671 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
672 	spdk_bdev_close(desc[4]);
673 
674 	/*
675 	 * Open bdev8 read/write.  This should succeed since it is a leaf
676 	 * bdev.
677 	 */
678 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
679 	CU_ASSERT(rc == 0);
680 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
681 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
682 	spdk_bdev_close(desc[8]);
683 
684 	/*
685 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
686 	 * by a vbdev module.
687 	 */
688 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
689 	CU_ASSERT(rc == -EPERM);
690 
691 	/* Open bdev4 read-only.  This should succeed. */
692 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
693 	CU_ASSERT(rc == 0);
694 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
695 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
696 	spdk_bdev_close(desc[5]);
697 
698 	free_vbdev(bdev[8]);
699 
700 	free_vbdev(bdev[5]);
701 	free_vbdev(bdev[6]);
702 	free_vbdev(bdev[7]);
703 
704 	free_vbdev(bdev[4]);
705 
706 	free_bdev(bdev[0]);
707 	free_bdev(bdev[1]);
708 	free_bdev(bdev[2]);
709 	free_bdev(bdev[3]);
710 }
711 
712 static void
713 claim_test(void)
714 {
715 	struct spdk_bdev *bdev;
716 	struct spdk_bdev_desc *desc, *open_desc;
717 	int rc;
718 	uint32_t count;
719 
720 	/*
721 	 * A vbdev that uses a read-only bdev may need it to remain read-only.
722 	 * To do so, it opens the bdev read-only, then claims it without
723 	 * passing a spdk_bdev_desc.
724 	 */
725 	bdev = allocate_bdev("bdev0");
726 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
727 	CU_ASSERT(rc == 0);
728 	CU_ASSERT(desc->write == false);
729 
730 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
731 	CU_ASSERT(rc == 0);
732 	CU_ASSERT(bdev->internal.claim_module == &bdev_ut_if);
733 
734 	/* There should be only one open descriptor and it should still be ro */
735 	count = 0;
736 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
737 		CU_ASSERT(open_desc == desc);
738 		CU_ASSERT(!open_desc->write);
739 		count++;
740 	}
741 	CU_ASSERT(count == 1);
742 
743 	/* A read-only bdev is upgraded to read-write if desc is passed. */
744 	spdk_bdev_module_release_bdev(bdev);
745 	rc = spdk_bdev_module_claim_bdev(bdev, desc, &bdev_ut_if);
746 	CU_ASSERT(rc == 0);
747 	CU_ASSERT(bdev->internal.claim_module == &bdev_ut_if);
748 
749 	/* There should be only one open descriptor and it should be rw */
750 	count = 0;
751 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
752 		CU_ASSERT(open_desc == desc);
753 		CU_ASSERT(open_desc->write);
754 		count++;
755 	}
756 	CU_ASSERT(count == 1);
757 
758 	spdk_bdev_close(desc);
759 	free_bdev(bdev);
760 }
761 
762 static void
763 bytes_to_blocks_test(void)
764 {
765 	struct spdk_bdev bdev;
766 	uint64_t offset_blocks, num_blocks;
767 
768 	memset(&bdev, 0, sizeof(bdev));
769 
770 	bdev.blocklen = 512;
771 
772 	/* All parameters valid */
773 	offset_blocks = 0;
774 	num_blocks = 0;
775 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
776 	CU_ASSERT(offset_blocks == 1);
777 	CU_ASSERT(num_blocks == 2);
778 
779 	/* Offset not a block multiple */
780 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
781 
782 	/* Length not a block multiple */
783 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
784 
785 	/* In case blocklen not the power of two */
786 	bdev.blocklen = 100;
787 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
788 	CU_ASSERT(offset_blocks == 1);
789 	CU_ASSERT(num_blocks == 2);
790 
791 	/* Offset not a block multiple */
792 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
793 
794 	/* Length not a block multiple */
795 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
796 }
797 
798 static void
799 num_blocks_test(void)
800 {
801 	struct spdk_bdev bdev;
802 	struct spdk_bdev_desc *desc = NULL;
803 	int rc;
804 
805 	memset(&bdev, 0, sizeof(bdev));
806 	bdev.name = "num_blocks";
807 	bdev.fn_table = &fn_table;
808 	bdev.module = &bdev_ut_if;
809 	spdk_bdev_register(&bdev);
810 	spdk_bdev_notify_blockcnt_change(&bdev, 50);
811 
812 	/* Growing block number */
813 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
814 	/* Shrinking block number */
815 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
816 
817 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc, &desc);
818 	CU_ASSERT(rc == 0);
819 	SPDK_CU_ASSERT_FATAL(desc != NULL);
820 	CU_ASSERT(&bdev == spdk_bdev_desc_get_bdev(desc));
821 
822 	/* Growing block number */
823 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
824 	/* Shrinking block number */
825 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
826 
827 	g_event_type1 = 0xFF;
828 	/* Growing block number */
829 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
830 
831 	poll_threads();
832 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
833 
834 	g_event_type1 = 0xFF;
835 	/* Growing block number and closing */
836 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
837 
838 	spdk_bdev_close(desc);
839 	spdk_bdev_unregister(&bdev, NULL, NULL);
840 
841 	poll_threads();
842 
843 	/* Callback is not called for closed device */
844 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
845 }
846 
847 static void
848 io_valid_test(void)
849 {
850 	struct spdk_bdev bdev;
851 
852 	memset(&bdev, 0, sizeof(bdev));
853 
854 	bdev.blocklen = 512;
855 	CU_ASSERT(pthread_mutex_init(&bdev.internal.mutex, NULL) == 0);
856 
857 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
858 
859 	/* All parameters valid */
860 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
861 
862 	/* Last valid block */
863 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
864 
865 	/* Offset past end of bdev */
866 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
867 
868 	/* Offset + length past end of bdev */
869 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
870 
871 	/* Offset near end of uint64_t range (2^64 - 1) */
872 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
873 
874 	CU_ASSERT(pthread_mutex_destroy(&bdev.internal.mutex) == 0);
875 }
876 
877 static void
878 alias_add_del_test(void)
879 {
880 	struct spdk_bdev *bdev[3];
881 	int rc;
882 
883 	/* Creating and registering bdevs */
884 	bdev[0] = allocate_bdev("bdev0");
885 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
886 
887 	bdev[1] = allocate_bdev("bdev1");
888 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
889 
890 	bdev[2] = allocate_bdev("bdev2");
891 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
892 
893 	poll_threads();
894 
895 	/*
896 	 * Trying adding an alias identical to name.
897 	 * Alias is identical to name, so it can not be added to aliases list
898 	 */
899 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
900 	CU_ASSERT(rc == -EEXIST);
901 
902 	/*
903 	 * Trying to add empty alias,
904 	 * this one should fail
905 	 */
906 	rc = spdk_bdev_alias_add(bdev[0], NULL);
907 	CU_ASSERT(rc == -EINVAL);
908 
909 	/* Trying adding same alias to two different registered bdevs */
910 
911 	/* Alias is used first time, so this one should pass */
912 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
913 	CU_ASSERT(rc == 0);
914 
915 	/* Alias was added to another bdev, so this one should fail */
916 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
917 	CU_ASSERT(rc == -EEXIST);
918 
919 	/* Alias is used first time, so this one should pass */
920 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
921 	CU_ASSERT(rc == 0);
922 
923 	/* Trying removing an alias from registered bdevs */
924 
925 	/* Alias is not on a bdev aliases list, so this one should fail */
926 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
927 	CU_ASSERT(rc == -ENOENT);
928 
929 	/* Alias is present on a bdev aliases list, so this one should pass */
930 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
931 	CU_ASSERT(rc == 0);
932 
933 	/* Alias is present on a bdev aliases list, so this one should pass */
934 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
935 	CU_ASSERT(rc == 0);
936 
937 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
938 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
939 	CU_ASSERT(rc != 0);
940 
941 	/* Trying to del all alias from empty alias list */
942 	spdk_bdev_alias_del_all(bdev[2]);
943 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
944 
945 	/* Trying to del all alias from non-empty alias list */
946 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
947 	CU_ASSERT(rc == 0);
948 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
949 	CU_ASSERT(rc == 0);
950 	spdk_bdev_alias_del_all(bdev[2]);
951 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
952 
953 	/* Unregister and free bdevs */
954 	spdk_bdev_unregister(bdev[0], NULL, NULL);
955 	spdk_bdev_unregister(bdev[1], NULL, NULL);
956 	spdk_bdev_unregister(bdev[2], NULL, NULL);
957 
958 	poll_threads();
959 
960 	free(bdev[0]);
961 	free(bdev[1]);
962 	free(bdev[2]);
963 }
964 
965 static void
966 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
967 {
968 	g_io_done = true;
969 	g_io_status = bdev_io->internal.status;
970 	if ((bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) &&
971 	    (bdev_io->u.bdev.zcopy.start)) {
972 		g_zcopy_bdev_io = bdev_io;
973 	} else {
974 		spdk_bdev_free_io(bdev_io);
975 		g_zcopy_bdev_io = NULL;
976 	}
977 }
978 
979 static void
980 bdev_init_cb(void *arg, int rc)
981 {
982 	CU_ASSERT(rc == 0);
983 }
984 
985 static void
986 bdev_fini_cb(void *arg)
987 {
988 }
989 
990 struct bdev_ut_io_wait_entry {
991 	struct spdk_bdev_io_wait_entry	entry;
992 	struct spdk_io_channel		*io_ch;
993 	struct spdk_bdev_desc		*desc;
994 	bool				submitted;
995 };
996 
997 static void
998 io_wait_cb(void *arg)
999 {
1000 	struct bdev_ut_io_wait_entry *entry = arg;
1001 	int rc;
1002 
1003 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
1004 	CU_ASSERT(rc == 0);
1005 	entry->submitted = true;
1006 }
1007 
1008 static void
1009 bdev_io_types_test(void)
1010 {
1011 	struct spdk_bdev *bdev;
1012 	struct spdk_bdev_desc *desc = NULL;
1013 	struct spdk_io_channel *io_ch;
1014 	struct spdk_bdev_opts bdev_opts = {};
1015 	int rc;
1016 
1017 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1018 	bdev_opts.bdev_io_pool_size = 4;
1019 	bdev_opts.bdev_io_cache_size = 2;
1020 
1021 	rc = spdk_bdev_set_opts(&bdev_opts);
1022 	CU_ASSERT(rc == 0);
1023 	spdk_bdev_initialize(bdev_init_cb, NULL);
1024 	poll_threads();
1025 
1026 	bdev = allocate_bdev("bdev0");
1027 
1028 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1029 	CU_ASSERT(rc == 0);
1030 	poll_threads();
1031 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1032 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1033 	io_ch = spdk_bdev_get_io_channel(desc);
1034 	CU_ASSERT(io_ch != NULL);
1035 
1036 	/* WRITE and WRITE ZEROES are not supported */
1037 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
1038 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
1039 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
1040 	CU_ASSERT(rc == -ENOTSUP);
1041 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
1042 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
1043 
1044 	/* NVME_IO, NVME_IO_MD and NVME_ADMIN are not supported */
1045 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, false);
1046 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, false);
1047 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, false);
1048 	rc = spdk_bdev_nvme_io_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1049 	CU_ASSERT(rc == -ENOTSUP);
1050 	rc = spdk_bdev_nvme_io_passthru_md(desc, io_ch, NULL, NULL, 0, NULL, 0, NULL, NULL);
1051 	CU_ASSERT(rc == -ENOTSUP);
1052 	rc = spdk_bdev_nvme_admin_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1053 	CU_ASSERT(rc == -ENOTSUP);
1054 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, true);
1055 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, true);
1056 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, true);
1057 
1058 	spdk_put_io_channel(io_ch);
1059 	spdk_bdev_close(desc);
1060 	free_bdev(bdev);
1061 	spdk_bdev_finish(bdev_fini_cb, NULL);
1062 	poll_threads();
1063 }
1064 
1065 static void
1066 bdev_io_wait_test(void)
1067 {
1068 	struct spdk_bdev *bdev;
1069 	struct spdk_bdev_desc *desc = NULL;
1070 	struct spdk_io_channel *io_ch;
1071 	struct spdk_bdev_opts bdev_opts = {};
1072 	struct bdev_ut_io_wait_entry io_wait_entry;
1073 	struct bdev_ut_io_wait_entry io_wait_entry2;
1074 	int rc;
1075 
1076 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1077 	bdev_opts.bdev_io_pool_size = 4;
1078 	bdev_opts.bdev_io_cache_size = 2;
1079 
1080 	rc = spdk_bdev_set_opts(&bdev_opts);
1081 	CU_ASSERT(rc == 0);
1082 	spdk_bdev_initialize(bdev_init_cb, NULL);
1083 	poll_threads();
1084 
1085 	bdev = allocate_bdev("bdev0");
1086 
1087 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1088 	CU_ASSERT(rc == 0);
1089 	poll_threads();
1090 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1091 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1092 	io_ch = spdk_bdev_get_io_channel(desc);
1093 	CU_ASSERT(io_ch != NULL);
1094 
1095 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1096 	CU_ASSERT(rc == 0);
1097 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1098 	CU_ASSERT(rc == 0);
1099 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1100 	CU_ASSERT(rc == 0);
1101 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1102 	CU_ASSERT(rc == 0);
1103 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1104 
1105 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1106 	CU_ASSERT(rc == -ENOMEM);
1107 
1108 	io_wait_entry.entry.bdev = bdev;
1109 	io_wait_entry.entry.cb_fn = io_wait_cb;
1110 	io_wait_entry.entry.cb_arg = &io_wait_entry;
1111 	io_wait_entry.io_ch = io_ch;
1112 	io_wait_entry.desc = desc;
1113 	io_wait_entry.submitted = false;
1114 	/* Cannot use the same io_wait_entry for two different calls. */
1115 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
1116 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
1117 
1118 	/* Queue two I/O waits. */
1119 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
1120 	CU_ASSERT(rc == 0);
1121 	CU_ASSERT(io_wait_entry.submitted == false);
1122 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
1123 	CU_ASSERT(rc == 0);
1124 	CU_ASSERT(io_wait_entry2.submitted == false);
1125 
1126 	stub_complete_io(1);
1127 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1128 	CU_ASSERT(io_wait_entry.submitted == true);
1129 	CU_ASSERT(io_wait_entry2.submitted == false);
1130 
1131 	stub_complete_io(1);
1132 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1133 	CU_ASSERT(io_wait_entry2.submitted == true);
1134 
1135 	stub_complete_io(4);
1136 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1137 
1138 	spdk_put_io_channel(io_ch);
1139 	spdk_bdev_close(desc);
1140 	free_bdev(bdev);
1141 	spdk_bdev_finish(bdev_fini_cb, NULL);
1142 	poll_threads();
1143 }
1144 
1145 static void
1146 bdev_io_spans_split_test(void)
1147 {
1148 	struct spdk_bdev bdev;
1149 	struct spdk_bdev_io bdev_io;
1150 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV];
1151 
1152 	memset(&bdev, 0, sizeof(bdev));
1153 	bdev_io.u.bdev.iovs = iov;
1154 
1155 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1156 	bdev.optimal_io_boundary = 0;
1157 	bdev.max_segment_size = 0;
1158 	bdev.max_num_segments = 0;
1159 	bdev_io.bdev = &bdev;
1160 
1161 	/* bdev has no optimal_io_boundary and max_size set - so this should return false. */
1162 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1163 
1164 	bdev.split_on_optimal_io_boundary = true;
1165 	bdev.optimal_io_boundary = 32;
1166 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1167 
1168 	/* RESETs are not based on LBAs - so this should return false. */
1169 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1170 
1171 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1172 	bdev_io.u.bdev.offset_blocks = 0;
1173 	bdev_io.u.bdev.num_blocks = 32;
1174 
1175 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1176 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1177 
1178 	bdev_io.u.bdev.num_blocks = 33;
1179 
1180 	/* This I/O spans a boundary. */
1181 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1182 
1183 	bdev_io.u.bdev.num_blocks = 32;
1184 	bdev.max_segment_size = 512 * 32;
1185 	bdev.max_num_segments = 1;
1186 	bdev_io.u.bdev.iovcnt = 1;
1187 	iov[0].iov_len = 512;
1188 
1189 	/* Does not cross and exceed max_size or max_segs */
1190 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1191 
1192 	bdev.split_on_optimal_io_boundary = false;
1193 	bdev.max_segment_size = 512;
1194 	bdev.max_num_segments = 1;
1195 	bdev_io.u.bdev.iovcnt = 2;
1196 
1197 	/* Exceed max_segs */
1198 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1199 
1200 	bdev.max_num_segments = 2;
1201 	iov[0].iov_len = 513;
1202 	iov[1].iov_len = 512;
1203 
1204 	/* Exceed max_sizes */
1205 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1206 }
1207 
1208 static void
1209 bdev_io_boundary_split_test(void)
1210 {
1211 	struct spdk_bdev *bdev;
1212 	struct spdk_bdev_desc *desc = NULL;
1213 	struct spdk_io_channel *io_ch;
1214 	struct spdk_bdev_opts bdev_opts = {};
1215 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1216 	struct ut_expected_io *expected_io;
1217 	void *md_buf = (void *)0xFF000000;
1218 	uint64_t i;
1219 	int rc;
1220 
1221 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1222 	bdev_opts.bdev_io_pool_size = 512;
1223 	bdev_opts.bdev_io_cache_size = 64;
1224 
1225 	rc = spdk_bdev_set_opts(&bdev_opts);
1226 	CU_ASSERT(rc == 0);
1227 	spdk_bdev_initialize(bdev_init_cb, NULL);
1228 
1229 	bdev = allocate_bdev("bdev0");
1230 
1231 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1232 	CU_ASSERT(rc == 0);
1233 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1234 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1235 	io_ch = spdk_bdev_get_io_channel(desc);
1236 	CU_ASSERT(io_ch != NULL);
1237 
1238 	bdev->optimal_io_boundary = 16;
1239 	bdev->split_on_optimal_io_boundary = false;
1240 
1241 	g_io_done = false;
1242 
1243 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1244 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1245 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1246 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1247 
1248 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1249 	CU_ASSERT(rc == 0);
1250 	CU_ASSERT(g_io_done == false);
1251 
1252 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1253 	stub_complete_io(1);
1254 	CU_ASSERT(g_io_done == true);
1255 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1256 
1257 	bdev->split_on_optimal_io_boundary = true;
1258 	bdev->md_interleave = false;
1259 	bdev->md_len = 8;
1260 
1261 	/* Now test that a single-vector command is split correctly.
1262 	 * Offset 14, length 8, payload 0xF000
1263 	 *  Child - Offset 14, length 2, payload 0xF000
1264 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1265 	 *
1266 	 * Set up the expected values before calling spdk_bdev_read_blocks
1267 	 */
1268 	g_io_done = false;
1269 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1270 	expected_io->md_buf = md_buf;
1271 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1272 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1273 
1274 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1275 	expected_io->md_buf = md_buf + 2 * 8;
1276 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1277 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1278 
1279 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1280 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1281 					   14, 8, io_done, NULL);
1282 	CU_ASSERT(rc == 0);
1283 	CU_ASSERT(g_io_done == false);
1284 
1285 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1286 	stub_complete_io(2);
1287 	CU_ASSERT(g_io_done == true);
1288 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1289 
1290 	/* Now set up a more complex, multi-vector command that needs to be split,
1291 	 *  including splitting iovecs.
1292 	 */
1293 	iov[0].iov_base = (void *)0x10000;
1294 	iov[0].iov_len = 512;
1295 	iov[1].iov_base = (void *)0x20000;
1296 	iov[1].iov_len = 20 * 512;
1297 	iov[2].iov_base = (void *)0x30000;
1298 	iov[2].iov_len = 11 * 512;
1299 
1300 	g_io_done = false;
1301 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1302 	expected_io->md_buf = md_buf;
1303 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1304 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1305 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1306 
1307 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1308 	expected_io->md_buf = md_buf + 2 * 8;
1309 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1310 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1311 
1312 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1313 	expected_io->md_buf = md_buf + 18 * 8;
1314 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1315 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1316 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1317 
1318 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1319 					     14, 32, io_done, NULL);
1320 	CU_ASSERT(rc == 0);
1321 	CU_ASSERT(g_io_done == false);
1322 
1323 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1324 	stub_complete_io(3);
1325 	CU_ASSERT(g_io_done == true);
1326 
1327 	/* Test multi vector command that needs to be split by strip and then needs to be
1328 	 * split further due to the capacity of child iovs.
1329 	 */
1330 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1331 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1332 		iov[i].iov_len = 512;
1333 	}
1334 
1335 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1336 	g_io_done = false;
1337 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1338 					   BDEV_IO_NUM_CHILD_IOV);
1339 	expected_io->md_buf = md_buf;
1340 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1341 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1342 	}
1343 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1344 
1345 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1346 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
1347 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1348 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1349 		ut_expected_io_set_iov(expected_io, i,
1350 				       (void *)((i + 1 + BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1351 	}
1352 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1353 
1354 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1355 					    0, BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1356 	CU_ASSERT(rc == 0);
1357 	CU_ASSERT(g_io_done == false);
1358 
1359 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1360 	stub_complete_io(1);
1361 	CU_ASSERT(g_io_done == false);
1362 
1363 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1364 	stub_complete_io(1);
1365 	CU_ASSERT(g_io_done == true);
1366 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1367 
1368 	/* Test multi vector command that needs to be split by strip and then needs to be
1369 	 * split further due to the capacity of child iovs. In this case, the length of
1370 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1371 	 */
1372 
1373 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1374 	 * is BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1375 	 */
1376 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1377 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1378 		iov[i].iov_len = 512;
1379 	}
1380 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1381 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1382 		iov[i].iov_len = 256;
1383 	}
1384 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1385 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1386 
1387 	/* Add an extra iovec to trigger split */
1388 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1389 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1390 
1391 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1392 	g_io_done = false;
1393 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1394 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV);
1395 	expected_io->md_buf = md_buf;
1396 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1397 		ut_expected_io_set_iov(expected_io, i,
1398 				       (void *)((i + 1) * 0x10000), 512);
1399 	}
1400 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1401 		ut_expected_io_set_iov(expected_io, i,
1402 				       (void *)((i + 1) * 0x10000), 256);
1403 	}
1404 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1405 
1406 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1407 					   1, 1);
1408 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1409 	ut_expected_io_set_iov(expected_io, 0,
1410 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1411 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1412 
1413 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1414 					   1, 1);
1415 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1416 	ut_expected_io_set_iov(expected_io, 0,
1417 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1418 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1419 
1420 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1421 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1422 	CU_ASSERT(rc == 0);
1423 	CU_ASSERT(g_io_done == false);
1424 
1425 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1426 	stub_complete_io(1);
1427 	CU_ASSERT(g_io_done == false);
1428 
1429 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1430 	stub_complete_io(2);
1431 	CU_ASSERT(g_io_done == true);
1432 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1433 
1434 	/* Test multi vector command that needs to be split by strip and then needs to be
1435 	 * split further due to the capacity of child iovs, the child request offset should
1436 	 * be rewind to last aligned offset and go success without error.
1437 	 */
1438 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1439 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1440 		iov[i].iov_len = 512;
1441 	}
1442 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1443 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1444 
1445 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1446 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1447 
1448 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1449 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1450 
1451 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1452 	g_io_done = false;
1453 	g_io_status = 0;
1454 	/* The first expected io should be start from offset 0 to BDEV_IO_NUM_CHILD_IOV - 1 */
1455 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1456 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV - 1);
1457 	expected_io->md_buf = md_buf;
1458 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1459 		ut_expected_io_set_iov(expected_io, i,
1460 				       (void *)((i + 1) * 0x10000), 512);
1461 	}
1462 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1463 	/* The second expected io should be start from offset BDEV_IO_NUM_CHILD_IOV - 1 to BDEV_IO_NUM_CHILD_IOV */
1464 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1465 					   1, 2);
1466 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1467 	ut_expected_io_set_iov(expected_io, 0,
1468 			       (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1469 	ut_expected_io_set_iov(expected_io, 1,
1470 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1471 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1472 	/* The third expected io should be start from offset BDEV_IO_NUM_CHILD_IOV to BDEV_IO_NUM_CHILD_IOV + 1 */
1473 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1474 					   1, 1);
1475 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1476 	ut_expected_io_set_iov(expected_io, 0,
1477 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1478 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1479 
1480 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1481 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1482 	CU_ASSERT(rc == 0);
1483 	CU_ASSERT(g_io_done == false);
1484 
1485 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1486 	stub_complete_io(1);
1487 	CU_ASSERT(g_io_done == false);
1488 
1489 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1490 	stub_complete_io(2);
1491 	CU_ASSERT(g_io_done == true);
1492 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1493 
1494 	/* Test multi vector command that needs to be split due to the IO boundary and
1495 	 * the capacity of child iovs. Especially test the case when the command is
1496 	 * split due to the capacity of child iovs, the tail address is not aligned with
1497 	 * block size and is rewinded to the aligned address.
1498 	 *
1499 	 * The iovecs used in read request is complex but is based on the data
1500 	 * collected in the real issue. We change the base addresses but keep the lengths
1501 	 * not to loose the credibility of the test.
1502 	 */
1503 	bdev->optimal_io_boundary = 128;
1504 	g_io_done = false;
1505 	g_io_status = 0;
1506 
1507 	for (i = 0; i < 31; i++) {
1508 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1509 		iov[i].iov_len = 1024;
1510 	}
1511 	iov[31].iov_base = (void *)0xFEED1F00000;
1512 	iov[31].iov_len = 32768;
1513 	iov[32].iov_base = (void *)0xFEED2000000;
1514 	iov[32].iov_len = 160;
1515 	iov[33].iov_base = (void *)0xFEED2100000;
1516 	iov[33].iov_len = 4096;
1517 	iov[34].iov_base = (void *)0xFEED2200000;
1518 	iov[34].iov_len = 4096;
1519 	iov[35].iov_base = (void *)0xFEED2300000;
1520 	iov[35].iov_len = 4096;
1521 	iov[36].iov_base = (void *)0xFEED2400000;
1522 	iov[36].iov_len = 4096;
1523 	iov[37].iov_base = (void *)0xFEED2500000;
1524 	iov[37].iov_len = 4096;
1525 	iov[38].iov_base = (void *)0xFEED2600000;
1526 	iov[38].iov_len = 4096;
1527 	iov[39].iov_base = (void *)0xFEED2700000;
1528 	iov[39].iov_len = 4096;
1529 	iov[40].iov_base = (void *)0xFEED2800000;
1530 	iov[40].iov_len = 4096;
1531 	iov[41].iov_base = (void *)0xFEED2900000;
1532 	iov[41].iov_len = 4096;
1533 	iov[42].iov_base = (void *)0xFEED2A00000;
1534 	iov[42].iov_len = 4096;
1535 	iov[43].iov_base = (void *)0xFEED2B00000;
1536 	iov[43].iov_len = 12288;
1537 	iov[44].iov_base = (void *)0xFEED2C00000;
1538 	iov[44].iov_len = 8192;
1539 	iov[45].iov_base = (void *)0xFEED2F00000;
1540 	iov[45].iov_len = 4096;
1541 	iov[46].iov_base = (void *)0xFEED3000000;
1542 	iov[46].iov_len = 4096;
1543 	iov[47].iov_base = (void *)0xFEED3100000;
1544 	iov[47].iov_len = 4096;
1545 	iov[48].iov_base = (void *)0xFEED3200000;
1546 	iov[48].iov_len = 24576;
1547 	iov[49].iov_base = (void *)0xFEED3300000;
1548 	iov[49].iov_len = 16384;
1549 	iov[50].iov_base = (void *)0xFEED3400000;
1550 	iov[50].iov_len = 12288;
1551 	iov[51].iov_base = (void *)0xFEED3500000;
1552 	iov[51].iov_len = 4096;
1553 	iov[52].iov_base = (void *)0xFEED3600000;
1554 	iov[52].iov_len = 4096;
1555 	iov[53].iov_base = (void *)0xFEED3700000;
1556 	iov[53].iov_len = 4096;
1557 	iov[54].iov_base = (void *)0xFEED3800000;
1558 	iov[54].iov_len = 28672;
1559 	iov[55].iov_base = (void *)0xFEED3900000;
1560 	iov[55].iov_len = 20480;
1561 	iov[56].iov_base = (void *)0xFEED3A00000;
1562 	iov[56].iov_len = 4096;
1563 	iov[57].iov_base = (void *)0xFEED3B00000;
1564 	iov[57].iov_len = 12288;
1565 	iov[58].iov_base = (void *)0xFEED3C00000;
1566 	iov[58].iov_len = 4096;
1567 	iov[59].iov_base = (void *)0xFEED3D00000;
1568 	iov[59].iov_len = 4096;
1569 	iov[60].iov_base = (void *)0xFEED3E00000;
1570 	iov[60].iov_len = 352;
1571 
1572 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1573 	 * of child iovs,
1574 	 */
1575 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1576 	expected_io->md_buf = md_buf;
1577 	for (i = 0; i < 32; i++) {
1578 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1579 	}
1580 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1581 
1582 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1583 	 * split by the IO boundary requirement.
1584 	 */
1585 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1586 	expected_io->md_buf = md_buf + 126 * 8;
1587 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1588 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1589 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1590 
1591 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1592 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1593 	 */
1594 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1595 	expected_io->md_buf = md_buf + 128 * 8;
1596 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1597 			       iov[33].iov_len - 864);
1598 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1599 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1600 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1601 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1602 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1603 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1604 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1605 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1606 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1607 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1608 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1609 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1610 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1611 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1612 
1613 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1614 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1615 	 */
1616 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1617 	expected_io->md_buf = md_buf + 256 * 8;
1618 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1619 			       iov[46].iov_len - 864);
1620 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1621 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1622 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1623 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1624 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1625 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1626 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1627 
1628 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1629 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1630 	 */
1631 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1632 	expected_io->md_buf = md_buf + 384 * 8;
1633 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1634 			       iov[52].iov_len - 864);
1635 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1636 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1637 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1638 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1639 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1640 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1641 
1642 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1643 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1644 	 */
1645 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1646 	expected_io->md_buf = md_buf + 512 * 8;
1647 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1648 			       iov[57].iov_len - 4960);
1649 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1650 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1651 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1652 
1653 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1654 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1655 	expected_io->md_buf = md_buf + 542 * 8;
1656 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1657 			       iov[59].iov_len - 3936);
1658 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1659 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1660 
1661 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1662 					    0, 543, io_done, NULL);
1663 	CU_ASSERT(rc == 0);
1664 	CU_ASSERT(g_io_done == false);
1665 
1666 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1667 	stub_complete_io(1);
1668 	CU_ASSERT(g_io_done == false);
1669 
1670 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1671 	stub_complete_io(5);
1672 	CU_ASSERT(g_io_done == false);
1673 
1674 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1675 	stub_complete_io(1);
1676 	CU_ASSERT(g_io_done == true);
1677 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1678 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1679 
1680 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1681 	 * split, so test that.
1682 	 */
1683 	bdev->optimal_io_boundary = 15;
1684 	g_io_done = false;
1685 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1686 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1687 
1688 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1689 	CU_ASSERT(rc == 0);
1690 	CU_ASSERT(g_io_done == false);
1691 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1692 	stub_complete_io(1);
1693 	CU_ASSERT(g_io_done == true);
1694 
1695 	/* Test an UNMAP.  This should also not be split. */
1696 	bdev->optimal_io_boundary = 16;
1697 	g_io_done = false;
1698 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1699 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1700 
1701 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1702 	CU_ASSERT(rc == 0);
1703 	CU_ASSERT(g_io_done == false);
1704 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1705 	stub_complete_io(1);
1706 	CU_ASSERT(g_io_done == true);
1707 
1708 	/* Test a FLUSH.  This should also not be split. */
1709 	bdev->optimal_io_boundary = 16;
1710 	g_io_done = false;
1711 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1712 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1713 
1714 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1715 	CU_ASSERT(rc == 0);
1716 	CU_ASSERT(g_io_done == false);
1717 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1718 	stub_complete_io(1);
1719 	CU_ASSERT(g_io_done == true);
1720 
1721 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1722 
1723 	/* Children requests return an error status */
1724 	bdev->optimal_io_boundary = 16;
1725 	iov[0].iov_base = (void *)0x10000;
1726 	iov[0].iov_len = 512 * 64;
1727 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1728 	g_io_done = false;
1729 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1730 
1731 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1732 	CU_ASSERT(rc == 0);
1733 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1734 	stub_complete_io(4);
1735 	CU_ASSERT(g_io_done == false);
1736 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1737 	stub_complete_io(1);
1738 	CU_ASSERT(g_io_done == true);
1739 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1740 
1741 	/* Test if a multi vector command terminated with failure before continuing
1742 	 * splitting process when one of child I/O failed.
1743 	 * The multi vector command is as same as the above that needs to be split by strip
1744 	 * and then needs to be split further due to the capacity of child iovs.
1745 	 */
1746 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1747 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1748 		iov[i].iov_len = 512;
1749 	}
1750 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1751 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1752 
1753 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1754 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1755 
1756 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1757 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1758 
1759 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1760 
1761 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1762 	g_io_done = false;
1763 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1764 
1765 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
1766 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1767 	CU_ASSERT(rc == 0);
1768 	CU_ASSERT(g_io_done == false);
1769 
1770 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1771 	stub_complete_io(1);
1772 	CU_ASSERT(g_io_done == true);
1773 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1774 
1775 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1776 
1777 	/* for this test we will create the following conditions to hit the code path where
1778 	 * we are trying to send and IO following a split that has no iovs because we had to
1779 	 * trim them for alignment reasons.
1780 	 *
1781 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1782 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1783 	 *   position 30 and overshoot by 0x2e.
1784 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1785 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1786 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1787 	 *   and let the completion pick up the last 2 vectors.
1788 	 */
1789 	bdev->optimal_io_boundary = 32;
1790 	bdev->split_on_optimal_io_boundary = true;
1791 	g_io_done = false;
1792 
1793 	/* Init all parent IOVs to 0x212 */
1794 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1795 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1796 		iov[i].iov_len = 0x212;
1797 	}
1798 
1799 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1800 					   BDEV_IO_NUM_CHILD_IOV - 1);
1801 	/* expect 0-29 to be 1:1 with the parent iov */
1802 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1803 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1804 	}
1805 
1806 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1807 	 * where 0x1e is the amount we overshot the 16K boundary
1808 	 */
1809 	ut_expected_io_set_iov(expected_io, BDEV_IO_NUM_CHILD_IOV - 2,
1810 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1811 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1812 
1813 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1814 	 * shortened that take it to the next boundary and then a final one to get us to
1815 	 * 0x4200 bytes for the IO.
1816 	 */
1817 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1818 					   BDEV_IO_NUM_CHILD_IOV, 2);
1819 	/* position 30 picked up the remaining bytes to the next boundary */
1820 	ut_expected_io_set_iov(expected_io, 0,
1821 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
1822 
1823 	/* position 31 picked the the rest of the transfer to get us to 0x4200 */
1824 	ut_expected_io_set_iov(expected_io, 1,
1825 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
1826 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1827 
1828 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 1, 0,
1829 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1830 	CU_ASSERT(rc == 0);
1831 	CU_ASSERT(g_io_done == false);
1832 
1833 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1834 	stub_complete_io(1);
1835 	CU_ASSERT(g_io_done == false);
1836 
1837 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1838 	stub_complete_io(1);
1839 	CU_ASSERT(g_io_done == true);
1840 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1841 
1842 	spdk_put_io_channel(io_ch);
1843 	spdk_bdev_close(desc);
1844 	free_bdev(bdev);
1845 	spdk_bdev_finish(bdev_fini_cb, NULL);
1846 	poll_threads();
1847 }
1848 
1849 static void
1850 bdev_io_max_size_and_segment_split_test(void)
1851 {
1852 	struct spdk_bdev *bdev;
1853 	struct spdk_bdev_desc *desc = NULL;
1854 	struct spdk_io_channel *io_ch;
1855 	struct spdk_bdev_opts bdev_opts = {};
1856 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1857 	struct ut_expected_io *expected_io;
1858 	uint64_t i;
1859 	int rc;
1860 
1861 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1862 	bdev_opts.bdev_io_pool_size = 512;
1863 	bdev_opts.bdev_io_cache_size = 64;
1864 
1865 	bdev_opts.opts_size = sizeof(bdev_opts);
1866 	rc = spdk_bdev_set_opts(&bdev_opts);
1867 	CU_ASSERT(rc == 0);
1868 	spdk_bdev_initialize(bdev_init_cb, NULL);
1869 
1870 	bdev = allocate_bdev("bdev0");
1871 
1872 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
1873 	CU_ASSERT(rc == 0);
1874 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1875 	io_ch = spdk_bdev_get_io_channel(desc);
1876 	CU_ASSERT(io_ch != NULL);
1877 
1878 	bdev->split_on_optimal_io_boundary = false;
1879 	bdev->optimal_io_boundary = 0;
1880 
1881 	/* Case 0 max_num_segments == 0.
1882 	 * but segment size 2 * 512 > 512
1883 	 */
1884 	bdev->max_segment_size = 512;
1885 	bdev->max_num_segments = 0;
1886 	g_io_done = false;
1887 
1888 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
1889 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
1890 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
1891 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1892 
1893 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
1894 	CU_ASSERT(rc == 0);
1895 	CU_ASSERT(g_io_done == false);
1896 
1897 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1898 	stub_complete_io(1);
1899 	CU_ASSERT(g_io_done == true);
1900 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1901 
1902 	/* Case 1 max_segment_size == 0
1903 	 * but iov num 2 > 1.
1904 	 */
1905 	bdev->max_segment_size = 0;
1906 	bdev->max_num_segments = 1;
1907 	g_io_done = false;
1908 
1909 	iov[0].iov_base = (void *)0x10000;
1910 	iov[0].iov_len = 512;
1911 	iov[1].iov_base = (void *)0x20000;
1912 	iov[1].iov_len = 8 * 512;
1913 
1914 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
1915 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len);
1916 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1917 
1918 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1);
1919 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len);
1920 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1921 
1922 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL);
1923 	CU_ASSERT(rc == 0);
1924 	CU_ASSERT(g_io_done == false);
1925 
1926 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1927 	stub_complete_io(2);
1928 	CU_ASSERT(g_io_done == true);
1929 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1930 
1931 	/* Test that a non-vector command is split correctly.
1932 	 * Set up the expected values before calling spdk_bdev_read_blocks
1933 	 */
1934 	bdev->max_segment_size = 512;
1935 	bdev->max_num_segments = 1;
1936 	g_io_done = false;
1937 
1938 	/* Child IO 0 */
1939 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
1940 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
1941 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1942 
1943 	/* Child IO 1 */
1944 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
1945 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512);
1946 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1947 
1948 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1949 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
1950 	CU_ASSERT(rc == 0);
1951 	CU_ASSERT(g_io_done == false);
1952 
1953 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1954 	stub_complete_io(2);
1955 	CU_ASSERT(g_io_done == true);
1956 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1957 
1958 	/* Now set up a more complex, multi-vector command that needs to be split,
1959 	 * including splitting iovecs.
1960 	 */
1961 	bdev->max_segment_size = 2 * 512;
1962 	bdev->max_num_segments = 1;
1963 	g_io_done = false;
1964 
1965 	iov[0].iov_base = (void *)0x10000;
1966 	iov[0].iov_len = 2 * 512;
1967 	iov[1].iov_base = (void *)0x20000;
1968 	iov[1].iov_len = 4 * 512;
1969 	iov[2].iov_base = (void *)0x30000;
1970 	iov[2].iov_len = 6 * 512;
1971 
1972 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
1973 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2);
1974 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1975 
1976 	/* Split iov[1].size to 2 iov entries then split the segments */
1977 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
1978 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2);
1979 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1980 
1981 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1);
1982 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2);
1983 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1984 
1985 	/* Split iov[2].size to 3 iov entries then split the segments */
1986 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1);
1987 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2);
1988 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1989 
1990 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1);
1991 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2);
1992 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1993 
1994 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1);
1995 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2);
1996 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1997 
1998 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL);
1999 	CU_ASSERT(rc == 0);
2000 	CU_ASSERT(g_io_done == false);
2001 
2002 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2003 	stub_complete_io(6);
2004 	CU_ASSERT(g_io_done == true);
2005 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2006 
2007 	/* Test multi vector command that needs to be split by strip and then needs to be
2008 	 * split further due to the capacity of parent IO child iovs.
2009 	 */
2010 	bdev->max_segment_size = 512;
2011 	bdev->max_num_segments = 1;
2012 	g_io_done = false;
2013 
2014 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
2015 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2016 		iov[i].iov_len = 512 * 2;
2017 	}
2018 
2019 	/* Each input iov.size is split into 2 iovs,
2020 	 * half of the input iov can fill all child iov entries of a single IO.
2021 	 */
2022 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV / 2; i++) {
2023 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1);
2024 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2025 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2026 
2027 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1);
2028 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2029 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2030 	}
2031 
2032 	/* The remaining iov is split in the second round */
2033 	for (i = BDEV_IO_NUM_CHILD_IOV / 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
2034 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1);
2035 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2036 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2037 
2038 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1);
2039 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2040 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2041 	}
2042 
2043 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV, 0,
2044 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
2045 	CU_ASSERT(rc == 0);
2046 	CU_ASSERT(g_io_done == false);
2047 
2048 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == BDEV_IO_NUM_CHILD_IOV);
2049 	stub_complete_io(BDEV_IO_NUM_CHILD_IOV);
2050 	CU_ASSERT(g_io_done == false);
2051 
2052 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == BDEV_IO_NUM_CHILD_IOV);
2053 	stub_complete_io(BDEV_IO_NUM_CHILD_IOV);
2054 	CU_ASSERT(g_io_done == true);
2055 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2056 
2057 	/* A wrong case, a child IO that is divided does
2058 	 * not meet the principle of multiples of block size,
2059 	 * and exits with error
2060 	 */
2061 	bdev->max_segment_size = 512;
2062 	bdev->max_num_segments = 1;
2063 	g_io_done = false;
2064 
2065 	iov[0].iov_base = (void *)0x10000;
2066 	iov[0].iov_len = 512 + 256;
2067 	iov[1].iov_base = (void *)0x20000;
2068 	iov[1].iov_len = 256;
2069 
2070 	/* iov[0] is split to 512 and 256.
2071 	 * 256 is less than a block size, and it is found
2072 	 * in the next round of split that it is the first child IO smaller than
2073 	 * the block size, so the error exit
2074 	 */
2075 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1);
2076 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512);
2077 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2078 
2079 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL);
2080 	CU_ASSERT(rc == 0);
2081 	CU_ASSERT(g_io_done == false);
2082 
2083 	/* First child IO is OK */
2084 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2085 	stub_complete_io(1);
2086 	CU_ASSERT(g_io_done == true);
2087 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2088 
2089 	/* error exit */
2090 	stub_complete_io(1);
2091 	CU_ASSERT(g_io_done == true);
2092 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
2093 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2094 
2095 	/* Test multi vector command that needs to be split by strip and then needs to be
2096 	 * split further due to the capacity of child iovs.
2097 	 *
2098 	 * In this case, the last two iovs need to be split, but it will exceed the capacity
2099 	 * of child iovs, so it needs to wait until the first batch completed.
2100 	 */
2101 	bdev->max_segment_size = 512;
2102 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2103 	g_io_done = false;
2104 
2105 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2106 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2107 		iov[i].iov_len = 512;
2108 	}
2109 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
2110 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2111 		iov[i].iov_len = 512 * 2;
2112 	}
2113 
2114 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2115 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
2116 	/* 0 ~ (BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */
2117 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2118 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2119 	}
2120 	/* (BDEV_IO_NUM_CHILD_IOV - 2) is split */
2121 	ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512);
2122 	ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512);
2123 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2124 
2125 	/* Child iov entries exceed the max num of parent IO so split it in next round */
2126 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV, 2, 2);
2127 	ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512);
2128 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512);
2129 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2130 
2131 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV, 0,
2132 				    BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL);
2133 	CU_ASSERT(rc == 0);
2134 	CU_ASSERT(g_io_done == false);
2135 
2136 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2137 	stub_complete_io(1);
2138 	CU_ASSERT(g_io_done == false);
2139 
2140 	/* Next round */
2141 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2142 	stub_complete_io(1);
2143 	CU_ASSERT(g_io_done == true);
2144 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2145 
2146 	/* This case is similar to the previous one, but the io composed of
2147 	 * the last few entries of child iov is not enough for a blocklen, so they
2148 	 * cannot be put into this IO, but wait until the next time.
2149 	 */
2150 	bdev->max_segment_size = 512;
2151 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2152 	g_io_done = false;
2153 
2154 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2155 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2156 		iov[i].iov_len = 512;
2157 	}
2158 
2159 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2160 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2161 		iov[i].iov_len = 128;
2162 	}
2163 
2164 	/* First child iovcnt is't BDEV_IO_NUM_CHILD_IOV but BDEV_IO_NUM_CHILD_IOV - 2.
2165 	 * Because the left 2 iov is not enough for a blocklen.
2166 	 */
2167 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2168 					   BDEV_IO_NUM_CHILD_IOV - 2, BDEV_IO_NUM_CHILD_IOV - 2);
2169 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2170 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2171 	}
2172 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2173 
2174 	/* The second child io waits until the end of the first child io before executing.
2175 	 * Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO.
2176 	 * BDEV_IO_NUM_CHILD_IOV - 2 to BDEV_IO_NUM_CHILD_IOV + 2
2177 	 */
2178 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 2,
2179 					   1, 4);
2180 	ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len);
2181 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len);
2182 	ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len);
2183 	ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len);
2184 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2185 
2186 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
2187 				    BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL);
2188 	CU_ASSERT(rc == 0);
2189 	CU_ASSERT(g_io_done == false);
2190 
2191 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2192 	stub_complete_io(1);
2193 	CU_ASSERT(g_io_done == false);
2194 
2195 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2196 	stub_complete_io(1);
2197 	CU_ASSERT(g_io_done == true);
2198 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2199 
2200 	/* A very complicated case. Each sg entry exceeds max_segment_size and
2201 	 * needs to be split. At the same time, child io must be a multiple of blocklen.
2202 	 * At the same time, child iovcnt exceeds parent iovcnt.
2203 	 */
2204 	bdev->max_segment_size = 512 + 128;
2205 	bdev->max_num_segments = 3;
2206 	g_io_done = false;
2207 
2208 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2209 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2210 		iov[i].iov_len = 512 + 256;
2211 	}
2212 
2213 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2214 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2215 		iov[i].iov_len = 512 + 128;
2216 	}
2217 
2218 	/* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries.
2219 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2220 	 * Generate 9 child IOs.
2221 	 */
2222 	for (i = 0; i < 3; i++) {
2223 		uint32_t j = i * 4;
2224 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3);
2225 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2226 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2227 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2228 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2229 
2230 		/* Child io must be a multiple of blocklen
2231 		 * iov[j + 2] must be split. If the third entry is also added,
2232 		 * the multiple of blocklen cannot be guaranteed. But it still
2233 		 * occupies one iov entry of the parent child iov.
2234 		 */
2235 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2);
2236 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2237 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2238 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2239 
2240 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3);
2241 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2242 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2243 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2244 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2245 	}
2246 
2247 	/* Child iov position at 27, the 10th child IO
2248 	 * iov entry index is 3 * 4 and offset is 3 * 6
2249 	 */
2250 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3);
2251 	ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640);
2252 	ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128);
2253 	ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256);
2254 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2255 
2256 	/* Child iov position at 30, the 11th child IO */
2257 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2);
2258 	ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512);
2259 	ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512);
2260 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2261 
2262 	/* The 2nd split round and iovpos is 0, the 12th child IO */
2263 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3);
2264 	ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256);
2265 	ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640);
2266 	ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128);
2267 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2268 
2269 	/* Consume 9 child IOs and 27 child iov entries.
2270 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2271 	 * Parent IO iov index start from 16 and block offset start from 24
2272 	 */
2273 	for (i = 0; i < 3; i++) {
2274 		uint32_t j = i * 4 + 16;
2275 		uint32_t offset = i * 6 + 24;
2276 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3);
2277 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2278 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2279 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2280 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2281 
2282 		/* Child io must be a multiple of blocklen
2283 		 * iov[j + 2] must be split. If the third entry is also added,
2284 		 * the multiple of blocklen cannot be guaranteed. But it still
2285 		 * occupies one iov entry of the parent child iov.
2286 		 */
2287 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2);
2288 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2289 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2290 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2291 
2292 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3);
2293 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2294 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2295 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2296 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2297 	}
2298 
2299 	/* The 22th child IO, child iov position at 30 */
2300 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1);
2301 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512);
2302 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2303 
2304 	/* The third round */
2305 	/* Here is the 23nd child IO and child iovpos is 0 */
2306 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3);
2307 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256);
2308 	ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640);
2309 	ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128);
2310 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2311 
2312 	/* The 24th child IO */
2313 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3);
2314 	ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640);
2315 	ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640);
2316 	ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256);
2317 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2318 
2319 	/* The 25th child IO */
2320 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2);
2321 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384);
2322 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640);
2323 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2324 
2325 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
2326 				    50, io_done, NULL);
2327 	CU_ASSERT(rc == 0);
2328 	CU_ASSERT(g_io_done == false);
2329 
2330 	/* Parent IO supports up to 32 child iovs, so it is calculated that
2331 	 * a maximum of 11 IOs can be split at a time, and the
2332 	 * splitting will continue after the first batch is over.
2333 	 */
2334 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2335 	stub_complete_io(11);
2336 	CU_ASSERT(g_io_done == false);
2337 
2338 	/* The 2nd round */
2339 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2340 	stub_complete_io(11);
2341 	CU_ASSERT(g_io_done == false);
2342 
2343 	/* The last round */
2344 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2345 	stub_complete_io(3);
2346 	CU_ASSERT(g_io_done == true);
2347 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2348 
2349 	/* Test an WRITE_ZEROES.  This should also not be split. */
2350 	bdev->max_segment_size = 512;
2351 	bdev->max_num_segments = 1;
2352 	g_io_done = false;
2353 
2354 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
2355 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2356 
2357 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
2358 	CU_ASSERT(rc == 0);
2359 	CU_ASSERT(g_io_done == false);
2360 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2361 	stub_complete_io(1);
2362 	CU_ASSERT(g_io_done == true);
2363 
2364 	/* Test an UNMAP.  This should also not be split. */
2365 	g_io_done = false;
2366 
2367 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0);
2368 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2369 
2370 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL);
2371 	CU_ASSERT(rc == 0);
2372 	CU_ASSERT(g_io_done == false);
2373 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2374 	stub_complete_io(1);
2375 	CU_ASSERT(g_io_done == true);
2376 
2377 	/* Test a FLUSH.  This should also not be split. */
2378 	g_io_done = false;
2379 
2380 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0);
2381 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2382 
2383 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
2384 	CU_ASSERT(rc == 0);
2385 	CU_ASSERT(g_io_done == false);
2386 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2387 	stub_complete_io(1);
2388 	CU_ASSERT(g_io_done == true);
2389 
2390 	spdk_put_io_channel(io_ch);
2391 	spdk_bdev_close(desc);
2392 	free_bdev(bdev);
2393 	spdk_bdev_finish(bdev_fini_cb, NULL);
2394 	poll_threads();
2395 }
2396 
2397 static void
2398 bdev_io_mix_split_test(void)
2399 {
2400 	struct spdk_bdev *bdev;
2401 	struct spdk_bdev_desc *desc = NULL;
2402 	struct spdk_io_channel *io_ch;
2403 	struct spdk_bdev_opts bdev_opts = {};
2404 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
2405 	struct ut_expected_io *expected_io;
2406 	uint64_t i;
2407 	int rc;
2408 
2409 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2410 	bdev_opts.bdev_io_pool_size = 512;
2411 	bdev_opts.bdev_io_cache_size = 64;
2412 
2413 	rc = spdk_bdev_set_opts(&bdev_opts);
2414 	CU_ASSERT(rc == 0);
2415 	spdk_bdev_initialize(bdev_init_cb, NULL);
2416 
2417 	bdev = allocate_bdev("bdev0");
2418 
2419 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2420 	CU_ASSERT(rc == 0);
2421 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2422 	io_ch = spdk_bdev_get_io_channel(desc);
2423 	CU_ASSERT(io_ch != NULL);
2424 
2425 	/* First case optimal_io_boundary == max_segment_size * max_num_segments */
2426 	bdev->split_on_optimal_io_boundary = true;
2427 	bdev->optimal_io_boundary = 16;
2428 
2429 	bdev->max_segment_size = 512;
2430 	bdev->max_num_segments = 16;
2431 	g_io_done = false;
2432 
2433 	/* IO crossing the IO boundary requires split
2434 	 * Total 2 child IOs.
2435 	 */
2436 
2437 	/* The 1st child IO split the segment_size to multiple segment entry */
2438 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2439 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2440 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2441 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2442 
2443 	/* The 2nd child IO split the segment_size to multiple segment entry */
2444 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2);
2445 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512);
2446 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512);
2447 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2448 
2449 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL);
2450 	CU_ASSERT(rc == 0);
2451 	CU_ASSERT(g_io_done == false);
2452 
2453 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2454 	stub_complete_io(2);
2455 	CU_ASSERT(g_io_done == true);
2456 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2457 
2458 	/* Second case optimal_io_boundary > max_segment_size * max_num_segments */
2459 	bdev->max_segment_size = 15 * 512;
2460 	bdev->max_num_segments = 1;
2461 	g_io_done = false;
2462 
2463 	/* IO crossing the IO boundary requires split.
2464 	 * The 1st child IO segment size exceeds the max_segment_size,
2465 	 * So 1st child IO will be splitted to multiple segment entry.
2466 	 * Then it split to 2 child IOs because of the max_num_segments.
2467 	 * Total 3 child IOs.
2468 	 */
2469 
2470 	/* The first 2 IOs are in an IO boundary.
2471 	 * Because the optimal_io_boundary > max_segment_size * max_num_segments
2472 	 * So it split to the first 2 IOs.
2473 	 */
2474 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1);
2475 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15);
2476 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2477 
2478 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2479 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512);
2480 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2481 
2482 	/* The 3rd Child IO is because of the io boundary */
2483 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2484 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2485 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2486 
2487 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2488 	CU_ASSERT(rc == 0);
2489 	CU_ASSERT(g_io_done == false);
2490 
2491 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2492 	stub_complete_io(3);
2493 	CU_ASSERT(g_io_done == true);
2494 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2495 
2496 	/* Third case optimal_io_boundary < max_segment_size * max_num_segments */
2497 	bdev->max_segment_size = 17 * 512;
2498 	bdev->max_num_segments = 1;
2499 	g_io_done = false;
2500 
2501 	/* IO crossing the IO boundary requires split.
2502 	 * Child IO does not split.
2503 	 * Total 2 child IOs.
2504 	 */
2505 
2506 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1);
2507 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16);
2508 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2509 
2510 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2511 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2512 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2513 
2514 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2515 	CU_ASSERT(rc == 0);
2516 	CU_ASSERT(g_io_done == false);
2517 
2518 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2519 	stub_complete_io(2);
2520 	CU_ASSERT(g_io_done == true);
2521 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2522 
2523 	/* Now set up a more complex, multi-vector command that needs to be split,
2524 	 * including splitting iovecs.
2525 	 * optimal_io_boundary < max_segment_size * max_num_segments
2526 	 */
2527 	bdev->max_segment_size = 3 * 512;
2528 	bdev->max_num_segments = 6;
2529 	g_io_done = false;
2530 
2531 	iov[0].iov_base = (void *)0x10000;
2532 	iov[0].iov_len = 4 * 512;
2533 	iov[1].iov_base = (void *)0x20000;
2534 	iov[1].iov_len = 4 * 512;
2535 	iov[2].iov_base = (void *)0x30000;
2536 	iov[2].iov_len = 10 * 512;
2537 
2538 	/* IO crossing the IO boundary requires split.
2539 	 * The 1st child IO segment size exceeds the max_segment_size and after
2540 	 * splitting segment_size, the num_segments exceeds max_num_segments.
2541 	 * So 1st child IO will be splitted to 2 child IOs.
2542 	 * Total 3 child IOs.
2543 	 */
2544 
2545 	/* The first 2 IOs are in an IO boundary.
2546 	 * After splitting segment size the segment num exceeds.
2547 	 * So it splits to 2 child IOs.
2548 	 */
2549 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6);
2550 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3);
2551 	ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512);
2552 	ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3);
2553 	ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512);
2554 	ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3);
2555 	ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3);
2556 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2557 
2558 	/* The 2nd child IO has the left segment entry */
2559 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2560 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2);
2561 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2562 
2563 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2564 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2);
2565 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2566 
2567 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL);
2568 	CU_ASSERT(rc == 0);
2569 	CU_ASSERT(g_io_done == false);
2570 
2571 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2572 	stub_complete_io(3);
2573 	CU_ASSERT(g_io_done == true);
2574 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2575 
2576 	/* A very complicated case. Each sg entry exceeds max_segment_size
2577 	 * and split on io boundary.
2578 	 * optimal_io_boundary < max_segment_size * max_num_segments
2579 	 */
2580 	bdev->max_segment_size = 3 * 512;
2581 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2582 	g_io_done = false;
2583 
2584 	for (i = 0; i < 20; i++) {
2585 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2586 		iov[i].iov_len = 512 * 4;
2587 	}
2588 
2589 	/* IO crossing the IO boundary requires split.
2590 	 * 80 block length can split 5 child IOs base on offset and IO boundary.
2591 	 * Each iov entry needs to be splitted to 2 entries because of max_segment_size
2592 	 * Total 5 child IOs.
2593 	 */
2594 
2595 	/* 4 iov entries are in an IO boundary and each iov entry splits to 2.
2596 	 * So each child IO occupies 8 child iov entries.
2597 	 */
2598 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8);
2599 	for (i = 0; i < 4; i++) {
2600 		int iovcnt = i * 2;
2601 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2602 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2603 	}
2604 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2605 
2606 	/* 2nd child IO and total 16 child iov entries of parent IO */
2607 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8);
2608 	for (i = 4; i < 8; i++) {
2609 		int iovcnt = (i - 4) * 2;
2610 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2611 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2612 	}
2613 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2614 
2615 	/* 3rd child IO and total 24 child iov entries of parent IO */
2616 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8);
2617 	for (i = 8; i < 12; i++) {
2618 		int iovcnt = (i - 8) * 2;
2619 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2620 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2621 	}
2622 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2623 
2624 	/* 4th child IO and total 32 child iov entries of parent IO */
2625 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8);
2626 	for (i = 12; i < 16; i++) {
2627 		int iovcnt = (i - 12) * 2;
2628 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2629 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2630 	}
2631 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2632 
2633 	/* 5th child IO and because of the child iov entry it should be splitted
2634 	 * in next round.
2635 	 */
2636 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8);
2637 	for (i = 16; i < 20; i++) {
2638 		int iovcnt = (i - 16) * 2;
2639 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2640 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2641 	}
2642 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2643 
2644 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL);
2645 	CU_ASSERT(rc == 0);
2646 	CU_ASSERT(g_io_done == false);
2647 
2648 	/* First split round */
2649 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2650 	stub_complete_io(4);
2651 	CU_ASSERT(g_io_done == false);
2652 
2653 	/* Second split round */
2654 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2655 	stub_complete_io(1);
2656 	CU_ASSERT(g_io_done == true);
2657 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2658 
2659 	spdk_put_io_channel(io_ch);
2660 	spdk_bdev_close(desc);
2661 	free_bdev(bdev);
2662 	spdk_bdev_finish(bdev_fini_cb, NULL);
2663 	poll_threads();
2664 }
2665 
2666 static void
2667 bdev_io_split_with_io_wait(void)
2668 {
2669 	struct spdk_bdev *bdev;
2670 	struct spdk_bdev_desc *desc = NULL;
2671 	struct spdk_io_channel *io_ch;
2672 	struct spdk_bdev_channel *channel;
2673 	struct spdk_bdev_mgmt_channel *mgmt_ch;
2674 	struct spdk_bdev_opts bdev_opts = {};
2675 	struct iovec iov[3];
2676 	struct ut_expected_io *expected_io;
2677 	int rc;
2678 
2679 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2680 	bdev_opts.bdev_io_pool_size = 2;
2681 	bdev_opts.bdev_io_cache_size = 1;
2682 
2683 	rc = spdk_bdev_set_opts(&bdev_opts);
2684 	CU_ASSERT(rc == 0);
2685 	spdk_bdev_initialize(bdev_init_cb, NULL);
2686 
2687 	bdev = allocate_bdev("bdev0");
2688 
2689 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2690 	CU_ASSERT(rc == 0);
2691 	CU_ASSERT(desc != NULL);
2692 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2693 	io_ch = spdk_bdev_get_io_channel(desc);
2694 	CU_ASSERT(io_ch != NULL);
2695 	channel = spdk_io_channel_get_ctx(io_ch);
2696 	mgmt_ch = channel->shared_resource->mgmt_ch;
2697 
2698 	bdev->optimal_io_boundary = 16;
2699 	bdev->split_on_optimal_io_boundary = true;
2700 
2701 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
2702 	CU_ASSERT(rc == 0);
2703 
2704 	/* Now test that a single-vector command is split correctly.
2705 	 * Offset 14, length 8, payload 0xF000
2706 	 *  Child - Offset 14, length 2, payload 0xF000
2707 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
2708 	 *
2709 	 * Set up the expected values before calling spdk_bdev_read_blocks
2710 	 */
2711 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
2712 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
2713 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2714 
2715 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
2716 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
2717 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2718 
2719 	/* The following children will be submitted sequentially due to the capacity of
2720 	 * spdk_bdev_io.
2721 	 */
2722 
2723 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
2724 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
2725 	CU_ASSERT(rc == 0);
2726 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2727 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2728 
2729 	/* Completing the first read I/O will submit the first child */
2730 	stub_complete_io(1);
2731 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2732 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2733 
2734 	/* Completing the first child will submit the second child */
2735 	stub_complete_io(1);
2736 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2737 
2738 	/* Complete the second child I/O.  This should result in our callback getting
2739 	 * invoked since the parent I/O is now complete.
2740 	 */
2741 	stub_complete_io(1);
2742 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2743 
2744 	/* Now set up a more complex, multi-vector command that needs to be split,
2745 	 *  including splitting iovecs.
2746 	 */
2747 	iov[0].iov_base = (void *)0x10000;
2748 	iov[0].iov_len = 512;
2749 	iov[1].iov_base = (void *)0x20000;
2750 	iov[1].iov_len = 20 * 512;
2751 	iov[2].iov_base = (void *)0x30000;
2752 	iov[2].iov_len = 11 * 512;
2753 
2754 	g_io_done = false;
2755 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
2756 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
2757 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
2758 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2759 
2760 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
2761 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
2762 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2763 
2764 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
2765 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
2766 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
2767 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2768 
2769 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
2770 	CU_ASSERT(rc == 0);
2771 	CU_ASSERT(g_io_done == false);
2772 
2773 	/* The following children will be submitted sequentially due to the capacity of
2774 	 * spdk_bdev_io.
2775 	 */
2776 
2777 	/* Completing the first child will submit the second child */
2778 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2779 	stub_complete_io(1);
2780 	CU_ASSERT(g_io_done == false);
2781 
2782 	/* Completing the second child will submit the third child */
2783 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2784 	stub_complete_io(1);
2785 	CU_ASSERT(g_io_done == false);
2786 
2787 	/* Completing the third child will result in our callback getting invoked
2788 	 * since the parent I/O is now complete.
2789 	 */
2790 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2791 	stub_complete_io(1);
2792 	CU_ASSERT(g_io_done == true);
2793 
2794 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
2795 
2796 	spdk_put_io_channel(io_ch);
2797 	spdk_bdev_close(desc);
2798 	free_bdev(bdev);
2799 	spdk_bdev_finish(bdev_fini_cb, NULL);
2800 	poll_threads();
2801 }
2802 
2803 static void
2804 bdev_io_alignment(void)
2805 {
2806 	struct spdk_bdev *bdev;
2807 	struct spdk_bdev_desc *desc = NULL;
2808 	struct spdk_io_channel *io_ch;
2809 	struct spdk_bdev_opts bdev_opts = {};
2810 	int rc;
2811 	void *buf = NULL;
2812 	struct iovec iovs[2];
2813 	int iovcnt;
2814 	uint64_t alignment;
2815 
2816 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2817 	bdev_opts.bdev_io_pool_size = 20;
2818 	bdev_opts.bdev_io_cache_size = 2;
2819 
2820 	rc = spdk_bdev_set_opts(&bdev_opts);
2821 	CU_ASSERT(rc == 0);
2822 	spdk_bdev_initialize(bdev_init_cb, NULL);
2823 
2824 	fn_table.submit_request = stub_submit_request_get_buf;
2825 	bdev = allocate_bdev("bdev0");
2826 
2827 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2828 	CU_ASSERT(rc == 0);
2829 	CU_ASSERT(desc != NULL);
2830 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2831 	io_ch = spdk_bdev_get_io_channel(desc);
2832 	CU_ASSERT(io_ch != NULL);
2833 
2834 	/* Create aligned buffer */
2835 	rc = posix_memalign(&buf, 4096, 8192);
2836 	SPDK_CU_ASSERT_FATAL(rc == 0);
2837 
2838 	/* Pass aligned single buffer with no alignment required */
2839 	alignment = 1;
2840 	bdev->required_alignment = spdk_u32log2(alignment);
2841 
2842 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
2843 	CU_ASSERT(rc == 0);
2844 	stub_complete_io(1);
2845 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2846 				    alignment));
2847 
2848 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
2849 	CU_ASSERT(rc == 0);
2850 	stub_complete_io(1);
2851 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2852 				    alignment));
2853 
2854 	/* Pass unaligned single buffer with no alignment required */
2855 	alignment = 1;
2856 	bdev->required_alignment = spdk_u32log2(alignment);
2857 
2858 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2859 	CU_ASSERT(rc == 0);
2860 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2861 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
2862 	stub_complete_io(1);
2863 
2864 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2865 	CU_ASSERT(rc == 0);
2866 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2867 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
2868 	stub_complete_io(1);
2869 
2870 	/* Pass unaligned single buffer with 512 alignment required */
2871 	alignment = 512;
2872 	bdev->required_alignment = spdk_u32log2(alignment);
2873 
2874 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2875 	CU_ASSERT(rc == 0);
2876 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2877 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2878 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2879 				    alignment));
2880 	stub_complete_io(1);
2881 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2882 
2883 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2884 	CU_ASSERT(rc == 0);
2885 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2886 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2887 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2888 				    alignment));
2889 	stub_complete_io(1);
2890 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2891 
2892 	/* Pass unaligned single buffer with 4096 alignment required */
2893 	alignment = 4096;
2894 	bdev->required_alignment = spdk_u32log2(alignment);
2895 
2896 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
2897 	CU_ASSERT(rc == 0);
2898 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2899 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2900 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2901 				    alignment));
2902 	stub_complete_io(1);
2903 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2904 
2905 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
2906 	CU_ASSERT(rc == 0);
2907 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2908 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2909 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2910 				    alignment));
2911 	stub_complete_io(1);
2912 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2913 
2914 	/* Pass aligned iovs with no alignment required */
2915 	alignment = 1;
2916 	bdev->required_alignment = spdk_u32log2(alignment);
2917 
2918 	iovcnt = 1;
2919 	iovs[0].iov_base = buf;
2920 	iovs[0].iov_len = 512;
2921 
2922 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2923 	CU_ASSERT(rc == 0);
2924 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2925 	stub_complete_io(1);
2926 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2927 
2928 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2929 	CU_ASSERT(rc == 0);
2930 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2931 	stub_complete_io(1);
2932 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2933 
2934 	/* Pass unaligned iovs with no alignment required */
2935 	alignment = 1;
2936 	bdev->required_alignment = spdk_u32log2(alignment);
2937 
2938 	iovcnt = 2;
2939 	iovs[0].iov_base = buf + 16;
2940 	iovs[0].iov_len = 256;
2941 	iovs[1].iov_base = buf + 16 + 256 + 32;
2942 	iovs[1].iov_len = 256;
2943 
2944 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2945 	CU_ASSERT(rc == 0);
2946 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2947 	stub_complete_io(1);
2948 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2949 
2950 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2951 	CU_ASSERT(rc == 0);
2952 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2953 	stub_complete_io(1);
2954 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2955 
2956 	/* Pass unaligned iov with 2048 alignment required */
2957 	alignment = 2048;
2958 	bdev->required_alignment = spdk_u32log2(alignment);
2959 
2960 	iovcnt = 2;
2961 	iovs[0].iov_base = buf + 16;
2962 	iovs[0].iov_len = 256;
2963 	iovs[1].iov_base = buf + 16 + 256 + 32;
2964 	iovs[1].iov_len = 256;
2965 
2966 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2967 	CU_ASSERT(rc == 0);
2968 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
2969 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2970 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2971 				    alignment));
2972 	stub_complete_io(1);
2973 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2974 
2975 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2976 	CU_ASSERT(rc == 0);
2977 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
2978 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2979 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2980 				    alignment));
2981 	stub_complete_io(1);
2982 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2983 
2984 	/* Pass iov without allocated buffer without alignment required */
2985 	alignment = 1;
2986 	bdev->required_alignment = spdk_u32log2(alignment);
2987 
2988 	iovcnt = 1;
2989 	iovs[0].iov_base = NULL;
2990 	iovs[0].iov_len = 0;
2991 
2992 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2993 	CU_ASSERT(rc == 0);
2994 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2995 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2996 				    alignment));
2997 	stub_complete_io(1);
2998 
2999 	/* Pass iov without allocated buffer with 1024 alignment required */
3000 	alignment = 1024;
3001 	bdev->required_alignment = spdk_u32log2(alignment);
3002 
3003 	iovcnt = 1;
3004 	iovs[0].iov_base = NULL;
3005 	iovs[0].iov_len = 0;
3006 
3007 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3008 	CU_ASSERT(rc == 0);
3009 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3010 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3011 				    alignment));
3012 	stub_complete_io(1);
3013 
3014 	spdk_put_io_channel(io_ch);
3015 	spdk_bdev_close(desc);
3016 	free_bdev(bdev);
3017 	fn_table.submit_request = stub_submit_request;
3018 	spdk_bdev_finish(bdev_fini_cb, NULL);
3019 	poll_threads();
3020 
3021 	free(buf);
3022 }
3023 
3024 static void
3025 bdev_io_alignment_with_boundary(void)
3026 {
3027 	struct spdk_bdev *bdev;
3028 	struct spdk_bdev_desc *desc = NULL;
3029 	struct spdk_io_channel *io_ch;
3030 	struct spdk_bdev_opts bdev_opts = {};
3031 	int rc;
3032 	void *buf = NULL;
3033 	struct iovec iovs[2];
3034 	int iovcnt;
3035 	uint64_t alignment;
3036 
3037 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3038 	bdev_opts.bdev_io_pool_size = 20;
3039 	bdev_opts.bdev_io_cache_size = 2;
3040 
3041 	bdev_opts.opts_size = sizeof(bdev_opts);
3042 	rc = spdk_bdev_set_opts(&bdev_opts);
3043 	CU_ASSERT(rc == 0);
3044 	spdk_bdev_initialize(bdev_init_cb, NULL);
3045 
3046 	fn_table.submit_request = stub_submit_request_get_buf;
3047 	bdev = allocate_bdev("bdev0");
3048 
3049 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3050 	CU_ASSERT(rc == 0);
3051 	CU_ASSERT(desc != NULL);
3052 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3053 	io_ch = spdk_bdev_get_io_channel(desc);
3054 	CU_ASSERT(io_ch != NULL);
3055 
3056 	/* Create aligned buffer */
3057 	rc = posix_memalign(&buf, 4096, 131072);
3058 	SPDK_CU_ASSERT_FATAL(rc == 0);
3059 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3060 
3061 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
3062 	alignment = 512;
3063 	bdev->required_alignment = spdk_u32log2(alignment);
3064 	bdev->optimal_io_boundary = 2;
3065 	bdev->split_on_optimal_io_boundary = true;
3066 
3067 	iovcnt = 1;
3068 	iovs[0].iov_base = NULL;
3069 	iovs[0].iov_len = 512 * 3;
3070 
3071 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3072 	CU_ASSERT(rc == 0);
3073 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3074 	stub_complete_io(2);
3075 
3076 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
3077 	alignment = 512;
3078 	bdev->required_alignment = spdk_u32log2(alignment);
3079 	bdev->optimal_io_boundary = 16;
3080 	bdev->split_on_optimal_io_boundary = true;
3081 
3082 	iovcnt = 1;
3083 	iovs[0].iov_base = NULL;
3084 	iovs[0].iov_len = 512 * 16;
3085 
3086 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
3087 	CU_ASSERT(rc == 0);
3088 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3089 	stub_complete_io(2);
3090 
3091 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
3092 	alignment = 512;
3093 	bdev->required_alignment = spdk_u32log2(alignment);
3094 	bdev->optimal_io_boundary = 128;
3095 	bdev->split_on_optimal_io_boundary = true;
3096 
3097 	iovcnt = 1;
3098 	iovs[0].iov_base = buf + 16;
3099 	iovs[0].iov_len = 512 * 160;
3100 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3101 	CU_ASSERT(rc == 0);
3102 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3103 	stub_complete_io(2);
3104 
3105 	/* 512 * 3 with 2 IO boundary */
3106 	alignment = 512;
3107 	bdev->required_alignment = spdk_u32log2(alignment);
3108 	bdev->optimal_io_boundary = 2;
3109 	bdev->split_on_optimal_io_boundary = true;
3110 
3111 	iovcnt = 2;
3112 	iovs[0].iov_base = buf + 16;
3113 	iovs[0].iov_len = 512;
3114 	iovs[1].iov_base = buf + 16 + 512 + 32;
3115 	iovs[1].iov_len = 1024;
3116 
3117 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3118 	CU_ASSERT(rc == 0);
3119 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3120 	stub_complete_io(2);
3121 
3122 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3123 	CU_ASSERT(rc == 0);
3124 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3125 	stub_complete_io(2);
3126 
3127 	/* 512 * 64 with 32 IO boundary */
3128 	bdev->optimal_io_boundary = 32;
3129 	iovcnt = 2;
3130 	iovs[0].iov_base = buf + 16;
3131 	iovs[0].iov_len = 16384;
3132 	iovs[1].iov_base = buf + 16 + 16384 + 32;
3133 	iovs[1].iov_len = 16384;
3134 
3135 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3136 	CU_ASSERT(rc == 0);
3137 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3138 	stub_complete_io(3);
3139 
3140 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3141 	CU_ASSERT(rc == 0);
3142 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3143 	stub_complete_io(3);
3144 
3145 	/* 512 * 160 with 32 IO boundary */
3146 	iovcnt = 1;
3147 	iovs[0].iov_base = buf + 16;
3148 	iovs[0].iov_len = 16384 + 65536;
3149 
3150 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3151 	CU_ASSERT(rc == 0);
3152 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
3153 	stub_complete_io(6);
3154 
3155 	spdk_put_io_channel(io_ch);
3156 	spdk_bdev_close(desc);
3157 	free_bdev(bdev);
3158 	fn_table.submit_request = stub_submit_request;
3159 	spdk_bdev_finish(bdev_fini_cb, NULL);
3160 	poll_threads();
3161 
3162 	free(buf);
3163 }
3164 
3165 static void
3166 histogram_status_cb(void *cb_arg, int status)
3167 {
3168 	g_status = status;
3169 }
3170 
3171 static void
3172 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3173 {
3174 	g_status = status;
3175 	g_histogram = histogram;
3176 }
3177 
3178 static void
3179 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
3180 		   uint64_t total, uint64_t so_far)
3181 {
3182 	g_count += count;
3183 }
3184 
3185 static void
3186 bdev_histograms(void)
3187 {
3188 	struct spdk_bdev *bdev;
3189 	struct spdk_bdev_desc *desc = NULL;
3190 	struct spdk_io_channel *ch;
3191 	struct spdk_histogram_data *histogram;
3192 	uint8_t buf[4096];
3193 	int rc;
3194 
3195 	spdk_bdev_initialize(bdev_init_cb, NULL);
3196 
3197 	bdev = allocate_bdev("bdev");
3198 
3199 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3200 	CU_ASSERT(rc == 0);
3201 	CU_ASSERT(desc != NULL);
3202 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3203 
3204 	ch = spdk_bdev_get_io_channel(desc);
3205 	CU_ASSERT(ch != NULL);
3206 
3207 	/* Enable histogram */
3208 	g_status = -1;
3209 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
3210 	poll_threads();
3211 	CU_ASSERT(g_status == 0);
3212 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3213 
3214 	/* Allocate histogram */
3215 	histogram = spdk_histogram_data_alloc();
3216 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
3217 
3218 	/* Check if histogram is zeroed */
3219 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3220 	poll_threads();
3221 	CU_ASSERT(g_status == 0);
3222 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3223 
3224 	g_count = 0;
3225 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3226 
3227 	CU_ASSERT(g_count == 0);
3228 
3229 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3230 	CU_ASSERT(rc == 0);
3231 
3232 	spdk_delay_us(10);
3233 	stub_complete_io(1);
3234 	poll_threads();
3235 
3236 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3237 	CU_ASSERT(rc == 0);
3238 
3239 	spdk_delay_us(10);
3240 	stub_complete_io(1);
3241 	poll_threads();
3242 
3243 	/* Check if histogram gathered data from all I/O channels */
3244 	g_histogram = NULL;
3245 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3246 	poll_threads();
3247 	CU_ASSERT(g_status == 0);
3248 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3249 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3250 
3251 	g_count = 0;
3252 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3253 	CU_ASSERT(g_count == 2);
3254 
3255 	/* Disable histogram */
3256 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
3257 	poll_threads();
3258 	CU_ASSERT(g_status == 0);
3259 	CU_ASSERT(bdev->internal.histogram_enabled == false);
3260 
3261 	/* Try to run histogram commands on disabled bdev */
3262 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3263 	poll_threads();
3264 	CU_ASSERT(g_status == -EFAULT);
3265 
3266 	spdk_histogram_data_free(histogram);
3267 	spdk_put_io_channel(ch);
3268 	spdk_bdev_close(desc);
3269 	free_bdev(bdev);
3270 	spdk_bdev_finish(bdev_fini_cb, NULL);
3271 	poll_threads();
3272 }
3273 
3274 static void
3275 _bdev_compare(bool emulated)
3276 {
3277 	struct spdk_bdev *bdev;
3278 	struct spdk_bdev_desc *desc = NULL;
3279 	struct spdk_io_channel *ioch;
3280 	struct ut_expected_io *expected_io;
3281 	uint64_t offset, num_blocks;
3282 	uint32_t num_completed;
3283 	char aa_buf[512];
3284 	char bb_buf[512];
3285 	struct iovec compare_iov;
3286 	uint8_t io_type;
3287 	int rc;
3288 
3289 	if (emulated) {
3290 		io_type = SPDK_BDEV_IO_TYPE_READ;
3291 	} else {
3292 		io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3293 	}
3294 
3295 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3296 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3297 
3298 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3299 
3300 	spdk_bdev_initialize(bdev_init_cb, NULL);
3301 	fn_table.submit_request = stub_submit_request_get_buf;
3302 	bdev = allocate_bdev("bdev");
3303 
3304 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3305 	CU_ASSERT_EQUAL(rc, 0);
3306 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3307 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3308 	ioch = spdk_bdev_get_io_channel(desc);
3309 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3310 
3311 	fn_table.submit_request = stub_submit_request_get_buf;
3312 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3313 
3314 	offset = 50;
3315 	num_blocks = 1;
3316 	compare_iov.iov_base = aa_buf;
3317 	compare_iov.iov_len = sizeof(aa_buf);
3318 
3319 	expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
3320 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3321 
3322 	g_io_done = false;
3323 	g_compare_read_buf = aa_buf;
3324 	g_compare_read_buf_len = sizeof(aa_buf);
3325 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3326 	CU_ASSERT_EQUAL(rc, 0);
3327 	num_completed = stub_complete_io(1);
3328 	CU_ASSERT_EQUAL(num_completed, 1);
3329 	CU_ASSERT(g_io_done == true);
3330 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3331 
3332 	expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
3333 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3334 
3335 	g_io_done = false;
3336 	g_compare_read_buf = bb_buf;
3337 	g_compare_read_buf_len = sizeof(bb_buf);
3338 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3339 	CU_ASSERT_EQUAL(rc, 0);
3340 	num_completed = stub_complete_io(1);
3341 	CU_ASSERT_EQUAL(num_completed, 1);
3342 	CU_ASSERT(g_io_done == true);
3343 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3344 
3345 	spdk_put_io_channel(ioch);
3346 	spdk_bdev_close(desc);
3347 	free_bdev(bdev);
3348 	fn_table.submit_request = stub_submit_request;
3349 	spdk_bdev_finish(bdev_fini_cb, NULL);
3350 	poll_threads();
3351 
3352 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3353 
3354 	g_compare_read_buf = NULL;
3355 }
3356 
3357 static void
3358 bdev_compare(void)
3359 {
3360 	_bdev_compare(true);
3361 	_bdev_compare(false);
3362 }
3363 
3364 static void
3365 bdev_compare_and_write(void)
3366 {
3367 	struct spdk_bdev *bdev;
3368 	struct spdk_bdev_desc *desc = NULL;
3369 	struct spdk_io_channel *ioch;
3370 	struct ut_expected_io *expected_io;
3371 	uint64_t offset, num_blocks;
3372 	uint32_t num_completed;
3373 	char aa_buf[512];
3374 	char bb_buf[512];
3375 	char cc_buf[512];
3376 	char write_buf[512];
3377 	struct iovec compare_iov;
3378 	struct iovec write_iov;
3379 	int rc;
3380 
3381 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3382 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3383 	memset(cc_buf, 0xcc, sizeof(cc_buf));
3384 
3385 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
3386 
3387 	spdk_bdev_initialize(bdev_init_cb, NULL);
3388 	fn_table.submit_request = stub_submit_request_get_buf;
3389 	bdev = allocate_bdev("bdev");
3390 
3391 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3392 	CU_ASSERT_EQUAL(rc, 0);
3393 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3394 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3395 	ioch = spdk_bdev_get_io_channel(desc);
3396 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3397 
3398 	fn_table.submit_request = stub_submit_request_get_buf;
3399 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3400 
3401 	offset = 50;
3402 	num_blocks = 1;
3403 	compare_iov.iov_base = aa_buf;
3404 	compare_iov.iov_len = sizeof(aa_buf);
3405 	write_iov.iov_base = bb_buf;
3406 	write_iov.iov_len = sizeof(bb_buf);
3407 
3408 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3409 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3410 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
3411 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3412 
3413 	g_io_done = false;
3414 	g_compare_read_buf = aa_buf;
3415 	g_compare_read_buf_len = sizeof(aa_buf);
3416 	memset(write_buf, 0, sizeof(write_buf));
3417 	g_compare_write_buf = write_buf;
3418 	g_compare_write_buf_len = sizeof(write_buf);
3419 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3420 			offset, num_blocks, io_done, NULL);
3421 	/* Trigger range locking */
3422 	poll_threads();
3423 	CU_ASSERT_EQUAL(rc, 0);
3424 	num_completed = stub_complete_io(1);
3425 	CU_ASSERT_EQUAL(num_completed, 1);
3426 	CU_ASSERT(g_io_done == false);
3427 	num_completed = stub_complete_io(1);
3428 	/* Trigger range unlocking */
3429 	poll_threads();
3430 	CU_ASSERT_EQUAL(num_completed, 1);
3431 	CU_ASSERT(g_io_done == true);
3432 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3433 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
3434 
3435 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3436 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3437 
3438 	g_io_done = false;
3439 	g_compare_read_buf = cc_buf;
3440 	g_compare_read_buf_len = sizeof(cc_buf);
3441 	memset(write_buf, 0, sizeof(write_buf));
3442 	g_compare_write_buf = write_buf;
3443 	g_compare_write_buf_len = sizeof(write_buf);
3444 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3445 			offset, num_blocks, io_done, NULL);
3446 	/* Trigger range locking */
3447 	poll_threads();
3448 	CU_ASSERT_EQUAL(rc, 0);
3449 	num_completed = stub_complete_io(1);
3450 	/* Trigger range unlocking earlier because we expect error here */
3451 	poll_threads();
3452 	CU_ASSERT_EQUAL(num_completed, 1);
3453 	CU_ASSERT(g_io_done == true);
3454 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3455 	num_completed = stub_complete_io(1);
3456 	CU_ASSERT_EQUAL(num_completed, 0);
3457 
3458 	spdk_put_io_channel(ioch);
3459 	spdk_bdev_close(desc);
3460 	free_bdev(bdev);
3461 	fn_table.submit_request = stub_submit_request;
3462 	spdk_bdev_finish(bdev_fini_cb, NULL);
3463 	poll_threads();
3464 
3465 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3466 
3467 	g_compare_read_buf = NULL;
3468 	g_compare_write_buf = NULL;
3469 }
3470 
3471 static void
3472 bdev_write_zeroes(void)
3473 {
3474 	struct spdk_bdev *bdev;
3475 	struct spdk_bdev_desc *desc = NULL;
3476 	struct spdk_io_channel *ioch;
3477 	struct ut_expected_io *expected_io;
3478 	uint64_t offset, num_io_blocks, num_blocks;
3479 	uint32_t num_completed, num_requests;
3480 	int rc;
3481 
3482 	spdk_bdev_initialize(bdev_init_cb, NULL);
3483 	bdev = allocate_bdev("bdev");
3484 
3485 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3486 	CU_ASSERT_EQUAL(rc, 0);
3487 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3488 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3489 	ioch = spdk_bdev_get_io_channel(desc);
3490 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3491 
3492 	fn_table.submit_request = stub_submit_request;
3493 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3494 
3495 	/* First test that if the bdev supports write_zeroes, the request won't be split */
3496 	bdev->md_len = 0;
3497 	bdev->blocklen = 4096;
3498 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3499 
3500 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
3501 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3502 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3503 	CU_ASSERT_EQUAL(rc, 0);
3504 	num_completed = stub_complete_io(1);
3505 	CU_ASSERT_EQUAL(num_completed, 1);
3506 
3507 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
3508 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
3509 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
3510 	num_requests = 2;
3511 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
3512 
3513 	for (offset = 0; offset < num_requests; ++offset) {
3514 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3515 						   offset * num_io_blocks, num_io_blocks, 0);
3516 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3517 	}
3518 
3519 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3520 	CU_ASSERT_EQUAL(rc, 0);
3521 	num_completed = stub_complete_io(num_requests);
3522 	CU_ASSERT_EQUAL(num_completed, num_requests);
3523 
3524 	/* Check that the splitting is correct if bdev has interleaved metadata */
3525 	bdev->md_interleave = true;
3526 	bdev->md_len = 64;
3527 	bdev->blocklen = 4096 + 64;
3528 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3529 
3530 	num_requests = offset = 0;
3531 	while (offset < num_blocks) {
3532 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
3533 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3534 						   offset, num_io_blocks, 0);
3535 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3536 		offset += num_io_blocks;
3537 		num_requests++;
3538 	}
3539 
3540 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3541 	CU_ASSERT_EQUAL(rc, 0);
3542 	num_completed = stub_complete_io(num_requests);
3543 	CU_ASSERT_EQUAL(num_completed, num_requests);
3544 	num_completed = stub_complete_io(num_requests);
3545 	assert(num_completed == 0);
3546 
3547 	/* Check the the same for separate metadata buffer */
3548 	bdev->md_interleave = false;
3549 	bdev->md_len = 64;
3550 	bdev->blocklen = 4096;
3551 
3552 	num_requests = offset = 0;
3553 	while (offset < num_blocks) {
3554 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
3555 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3556 						   offset, num_io_blocks, 0);
3557 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
3558 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3559 		offset += num_io_blocks;
3560 		num_requests++;
3561 	}
3562 
3563 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3564 	CU_ASSERT_EQUAL(rc, 0);
3565 	num_completed = stub_complete_io(num_requests);
3566 	CU_ASSERT_EQUAL(num_completed, num_requests);
3567 
3568 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
3569 	spdk_put_io_channel(ioch);
3570 	spdk_bdev_close(desc);
3571 	free_bdev(bdev);
3572 	spdk_bdev_finish(bdev_fini_cb, NULL);
3573 	poll_threads();
3574 }
3575 
3576 static void
3577 bdev_zcopy_write(void)
3578 {
3579 	struct spdk_bdev *bdev;
3580 	struct spdk_bdev_desc *desc = NULL;
3581 	struct spdk_io_channel *ioch;
3582 	struct ut_expected_io *expected_io;
3583 	uint64_t offset, num_blocks;
3584 	uint32_t num_completed;
3585 	char aa_buf[512];
3586 	struct iovec iov;
3587 	int rc;
3588 	const bool populate = false;
3589 	const bool commit = true;
3590 
3591 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3592 
3593 	spdk_bdev_initialize(bdev_init_cb, NULL);
3594 	bdev = allocate_bdev("bdev");
3595 
3596 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3597 	CU_ASSERT_EQUAL(rc, 0);
3598 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3599 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3600 	ioch = spdk_bdev_get_io_channel(desc);
3601 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3602 
3603 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3604 
3605 	offset = 50;
3606 	num_blocks = 1;
3607 	iov.iov_base = NULL;
3608 	iov.iov_len = 0;
3609 
3610 	g_zcopy_read_buf = (void *) 0x1122334455667788UL;
3611 	g_zcopy_read_buf_len = (uint32_t) -1;
3612 	/* Do a zcopy start for a write (populate=false) */
3613 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3614 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3615 	g_io_done = false;
3616 	g_zcopy_write_buf = aa_buf;
3617 	g_zcopy_write_buf_len = sizeof(aa_buf);
3618 	g_zcopy_bdev_io = NULL;
3619 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
3620 	CU_ASSERT_EQUAL(rc, 0);
3621 	num_completed = stub_complete_io(1);
3622 	CU_ASSERT_EQUAL(num_completed, 1);
3623 	CU_ASSERT(g_io_done == true);
3624 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3625 	/* Check that the iov has been set up */
3626 	CU_ASSERT(iov.iov_base == g_zcopy_write_buf);
3627 	CU_ASSERT(iov.iov_len == g_zcopy_write_buf_len);
3628 	/* Check that the bdev_io has been saved */
3629 	CU_ASSERT(g_zcopy_bdev_io != NULL);
3630 	/* Now do the zcopy end for a write (commit=true) */
3631 	g_io_done = false;
3632 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3633 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3634 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
3635 	CU_ASSERT_EQUAL(rc, 0);
3636 	num_completed = stub_complete_io(1);
3637 	CU_ASSERT_EQUAL(num_completed, 1);
3638 	CU_ASSERT(g_io_done == true);
3639 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3640 	/* Check the g_zcopy are reset by io_done */
3641 	CU_ASSERT(g_zcopy_write_buf == NULL);
3642 	CU_ASSERT(g_zcopy_write_buf_len == 0);
3643 	/* Check that io_done has freed the g_zcopy_bdev_io */
3644 	CU_ASSERT(g_zcopy_bdev_io == NULL);
3645 
3646 	/* Check the zcopy read buffer has not been touched which
3647 	 * ensures that the correct buffers were used.
3648 	 */
3649 	CU_ASSERT(g_zcopy_read_buf == (void *) 0x1122334455667788UL);
3650 	CU_ASSERT(g_zcopy_read_buf_len == (uint32_t) -1);
3651 
3652 	spdk_put_io_channel(ioch);
3653 	spdk_bdev_close(desc);
3654 	free_bdev(bdev);
3655 	spdk_bdev_finish(bdev_fini_cb, NULL);
3656 	poll_threads();
3657 }
3658 
3659 static void
3660 bdev_zcopy_read(void)
3661 {
3662 	struct spdk_bdev *bdev;
3663 	struct spdk_bdev_desc *desc = NULL;
3664 	struct spdk_io_channel *ioch;
3665 	struct ut_expected_io *expected_io;
3666 	uint64_t offset, num_blocks;
3667 	uint32_t num_completed;
3668 	char aa_buf[512];
3669 	struct iovec iov;
3670 	int rc;
3671 	const bool populate = true;
3672 	const bool commit = false;
3673 
3674 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3675 
3676 	spdk_bdev_initialize(bdev_init_cb, NULL);
3677 	bdev = allocate_bdev("bdev");
3678 
3679 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3680 	CU_ASSERT_EQUAL(rc, 0);
3681 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3682 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3683 	ioch = spdk_bdev_get_io_channel(desc);
3684 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3685 
3686 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3687 
3688 	offset = 50;
3689 	num_blocks = 1;
3690 	iov.iov_base = NULL;
3691 	iov.iov_len = 0;
3692 
3693 	g_zcopy_write_buf = (void *) 0x1122334455667788UL;
3694 	g_zcopy_write_buf_len = (uint32_t) -1;
3695 
3696 	/* Do a zcopy start for a read (populate=true) */
3697 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3698 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3699 	g_io_done = false;
3700 	g_zcopy_read_buf = aa_buf;
3701 	g_zcopy_read_buf_len = sizeof(aa_buf);
3702 	g_zcopy_bdev_io = NULL;
3703 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
3704 	CU_ASSERT_EQUAL(rc, 0);
3705 	num_completed = stub_complete_io(1);
3706 	CU_ASSERT_EQUAL(num_completed, 1);
3707 	CU_ASSERT(g_io_done == true);
3708 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3709 	/* Check that the iov has been set up */
3710 	CU_ASSERT(iov.iov_base == g_zcopy_read_buf);
3711 	CU_ASSERT(iov.iov_len == g_zcopy_read_buf_len);
3712 	/* Check that the bdev_io has been saved */
3713 	CU_ASSERT(g_zcopy_bdev_io != NULL);
3714 
3715 	/* Now do the zcopy end for a read (commit=false) */
3716 	g_io_done = false;
3717 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
3718 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3719 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
3720 	CU_ASSERT_EQUAL(rc, 0);
3721 	num_completed = stub_complete_io(1);
3722 	CU_ASSERT_EQUAL(num_completed, 1);
3723 	CU_ASSERT(g_io_done == true);
3724 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3725 	/* Check the g_zcopy are reset by io_done */
3726 	CU_ASSERT(g_zcopy_read_buf == NULL);
3727 	CU_ASSERT(g_zcopy_read_buf_len == 0);
3728 	/* Check that io_done has freed the g_zcopy_bdev_io */
3729 	CU_ASSERT(g_zcopy_bdev_io == NULL);
3730 
3731 	/* Check the zcopy write buffer has not been touched which
3732 	 * ensures that the correct buffers were used.
3733 	 */
3734 	CU_ASSERT(g_zcopy_write_buf == (void *) 0x1122334455667788UL);
3735 	CU_ASSERT(g_zcopy_write_buf_len == (uint32_t) -1);
3736 
3737 	spdk_put_io_channel(ioch);
3738 	spdk_bdev_close(desc);
3739 	free_bdev(bdev);
3740 	spdk_bdev_finish(bdev_fini_cb, NULL);
3741 	poll_threads();
3742 }
3743 
3744 static void
3745 bdev_open_while_hotremove(void)
3746 {
3747 	struct spdk_bdev *bdev;
3748 	struct spdk_bdev_desc *desc[2] = {};
3749 	int rc;
3750 
3751 	bdev = allocate_bdev("bdev");
3752 
3753 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
3754 	CU_ASSERT(rc == 0);
3755 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
3756 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
3757 
3758 	spdk_bdev_unregister(bdev, NULL, NULL);
3759 	/* Bdev unregister is handled asynchronously. Poll thread to complete. */
3760 	poll_threads();
3761 
3762 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
3763 	CU_ASSERT(rc == -ENODEV);
3764 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
3765 
3766 	spdk_bdev_close(desc[0]);
3767 	free_bdev(bdev);
3768 }
3769 
3770 static void
3771 bdev_close_while_hotremove(void)
3772 {
3773 	struct spdk_bdev *bdev;
3774 	struct spdk_bdev_desc *desc = NULL;
3775 	int rc = 0;
3776 
3777 	bdev = allocate_bdev("bdev");
3778 
3779 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
3780 	CU_ASSERT_EQUAL(rc, 0);
3781 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3782 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3783 
3784 	/* Simulate hot-unplug by unregistering bdev */
3785 	g_event_type1 = 0xFF;
3786 	g_unregister_arg = NULL;
3787 	g_unregister_rc = -1;
3788 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
3789 	/* Close device while remove event is in flight */
3790 	spdk_bdev_close(desc);
3791 
3792 	/* Ensure that unregister callback is delayed */
3793 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
3794 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
3795 
3796 	poll_threads();
3797 
3798 	/* Event callback shall not be issued because device was closed */
3799 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
3800 	/* Unregister callback is issued */
3801 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
3802 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
3803 
3804 	free_bdev(bdev);
3805 }
3806 
3807 static void
3808 bdev_open_ext(void)
3809 {
3810 	struct spdk_bdev *bdev;
3811 	struct spdk_bdev_desc *desc1 = NULL;
3812 	struct spdk_bdev_desc *desc2 = NULL;
3813 	int rc = 0;
3814 
3815 	bdev = allocate_bdev("bdev");
3816 
3817 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
3818 	CU_ASSERT_EQUAL(rc, -EINVAL);
3819 
3820 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
3821 	CU_ASSERT_EQUAL(rc, 0);
3822 
3823 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
3824 	CU_ASSERT_EQUAL(rc, 0);
3825 
3826 	g_event_type1 = 0xFF;
3827 	g_event_type2 = 0xFF;
3828 
3829 	/* Simulate hot-unplug by unregistering bdev */
3830 	spdk_bdev_unregister(bdev, NULL, NULL);
3831 	poll_threads();
3832 
3833 	/* Check if correct events have been triggered in event callback fn */
3834 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
3835 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
3836 
3837 	free_bdev(bdev);
3838 	poll_threads();
3839 }
3840 
3841 static void
3842 bdev_open_ext_unregister(void)
3843 {
3844 	struct spdk_bdev *bdev;
3845 	struct spdk_bdev_desc *desc1 = NULL;
3846 	struct spdk_bdev_desc *desc2 = NULL;
3847 	struct spdk_bdev_desc *desc3 = NULL;
3848 	struct spdk_bdev_desc *desc4 = NULL;
3849 	int rc = 0;
3850 
3851 	bdev = allocate_bdev("bdev");
3852 
3853 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
3854 	CU_ASSERT_EQUAL(rc, -EINVAL);
3855 
3856 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
3857 	CU_ASSERT_EQUAL(rc, 0);
3858 
3859 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
3860 	CU_ASSERT_EQUAL(rc, 0);
3861 
3862 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb3, &desc3, &desc3);
3863 	CU_ASSERT_EQUAL(rc, 0);
3864 
3865 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb4, &desc4, &desc4);
3866 	CU_ASSERT_EQUAL(rc, 0);
3867 
3868 	g_event_type1 = 0xFF;
3869 	g_event_type2 = 0xFF;
3870 	g_event_type3 = 0xFF;
3871 	g_event_type4 = 0xFF;
3872 
3873 	g_unregister_arg = NULL;
3874 	g_unregister_rc = -1;
3875 
3876 	/* Simulate hot-unplug by unregistering bdev */
3877 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
3878 
3879 	/*
3880 	 * Unregister is handled asynchronously and event callback
3881 	 * (i.e., above bdev_open_cbN) will be called.
3882 	 * For bdev_open_cb3 and bdev_open_cb4, it is intended to not
3883 	 * close the desc3 and desc4 so that the bdev is not closed.
3884 	 */
3885 	poll_threads();
3886 
3887 	/* Check if correct events have been triggered in event callback fn */
3888 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
3889 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
3890 	CU_ASSERT_EQUAL(g_event_type3, SPDK_BDEV_EVENT_REMOVE);
3891 	CU_ASSERT_EQUAL(g_event_type4, SPDK_BDEV_EVENT_REMOVE);
3892 
3893 	/* Check that unregister callback is delayed */
3894 	CU_ASSERT(g_unregister_arg == NULL);
3895 	CU_ASSERT(g_unregister_rc == -1);
3896 
3897 	/*
3898 	 * Explicitly close desc3. As desc4 is still opened there, the
3899 	 * unergister callback is still delayed to execute.
3900 	 */
3901 	spdk_bdev_close(desc3);
3902 	CU_ASSERT(g_unregister_arg == NULL);
3903 	CU_ASSERT(g_unregister_rc == -1);
3904 
3905 	/*
3906 	 * Explicitly close desc4 to trigger the ongoing bdev unregister
3907 	 * operation after last desc is closed.
3908 	 */
3909 	spdk_bdev_close(desc4);
3910 
3911 	/* Poll the thread for the async unregister operation */
3912 	poll_threads();
3913 
3914 	/* Check that unregister callback is executed */
3915 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
3916 	CU_ASSERT(g_unregister_rc == 0);
3917 
3918 	free_bdev(bdev);
3919 	poll_threads();
3920 }
3921 
3922 struct timeout_io_cb_arg {
3923 	struct iovec iov;
3924 	uint8_t type;
3925 };
3926 
3927 static int
3928 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
3929 {
3930 	struct spdk_bdev_io *bdev_io;
3931 	int n = 0;
3932 
3933 	if (!ch) {
3934 		return -1;
3935 	}
3936 
3937 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
3938 		n++;
3939 	}
3940 
3941 	return n;
3942 }
3943 
3944 static void
3945 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
3946 {
3947 	struct timeout_io_cb_arg *ctx = cb_arg;
3948 
3949 	ctx->type = bdev_io->type;
3950 	ctx->iov.iov_base = bdev_io->iov.iov_base;
3951 	ctx->iov.iov_len = bdev_io->iov.iov_len;
3952 }
3953 
3954 static void
3955 bdev_set_io_timeout(void)
3956 {
3957 	struct spdk_bdev *bdev;
3958 	struct spdk_bdev_desc *desc = NULL;
3959 	struct spdk_io_channel *io_ch = NULL;
3960 	struct spdk_bdev_channel *bdev_ch = NULL;
3961 	struct timeout_io_cb_arg cb_arg;
3962 
3963 	spdk_bdev_initialize(bdev_init_cb, NULL);
3964 
3965 	bdev = allocate_bdev("bdev");
3966 
3967 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
3968 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3969 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3970 
3971 	io_ch = spdk_bdev_get_io_channel(desc);
3972 	CU_ASSERT(io_ch != NULL);
3973 
3974 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
3975 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
3976 
3977 	/* This is the part1.
3978 	 * We will check the bdev_ch->io_submitted list
3979 	 * TO make sure that it can link IOs and only the user submitted IOs
3980 	 */
3981 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
3982 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
3983 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
3984 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
3985 	stub_complete_io(1);
3986 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
3987 	stub_complete_io(1);
3988 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
3989 
3990 	/* Split IO */
3991 	bdev->optimal_io_boundary = 16;
3992 	bdev->split_on_optimal_io_boundary = true;
3993 
3994 	/* Now test that a single-vector command is split correctly.
3995 	 * Offset 14, length 8, payload 0xF000
3996 	 *  Child - Offset 14, length 2, payload 0xF000
3997 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
3998 	 *
3999 	 * Set up the expected values before calling spdk_bdev_read_blocks
4000 	 */
4001 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4002 	/* We count all submitted IOs including IO that are generated by splitting. */
4003 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
4004 	stub_complete_io(1);
4005 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4006 	stub_complete_io(1);
4007 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4008 
4009 	/* Also include the reset IO */
4010 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4011 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4012 	poll_threads();
4013 	stub_complete_io(1);
4014 	poll_threads();
4015 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4016 
4017 	/* This is part2
4018 	 * Test the desc timeout poller register
4019 	 */
4020 
4021 	/* Successfully set the timeout */
4022 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4023 	CU_ASSERT(desc->io_timeout_poller != NULL);
4024 	CU_ASSERT(desc->timeout_in_sec == 30);
4025 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4026 	CU_ASSERT(desc->cb_arg == &cb_arg);
4027 
4028 	/* Change the timeout limit */
4029 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4030 	CU_ASSERT(desc->io_timeout_poller != NULL);
4031 	CU_ASSERT(desc->timeout_in_sec == 20);
4032 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4033 	CU_ASSERT(desc->cb_arg == &cb_arg);
4034 
4035 	/* Disable the timeout */
4036 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
4037 	CU_ASSERT(desc->io_timeout_poller == NULL);
4038 
4039 	/* This the part3
4040 	 * We will test to catch timeout IO and check whether the IO is
4041 	 * the submitted one.
4042 	 */
4043 	memset(&cb_arg, 0, sizeof(cb_arg));
4044 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4045 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
4046 
4047 	/* Don't reach the limit */
4048 	spdk_delay_us(15 * spdk_get_ticks_hz());
4049 	poll_threads();
4050 	CU_ASSERT(cb_arg.type == 0);
4051 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4052 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4053 
4054 	/* 15 + 15 = 30 reach the limit */
4055 	spdk_delay_us(15 * spdk_get_ticks_hz());
4056 	poll_threads();
4057 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4058 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
4059 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
4060 	stub_complete_io(1);
4061 
4062 	/* Use the same split IO above and check the IO */
4063 	memset(&cb_arg, 0, sizeof(cb_arg));
4064 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4065 
4066 	/* The first child complete in time */
4067 	spdk_delay_us(15 * spdk_get_ticks_hz());
4068 	poll_threads();
4069 	stub_complete_io(1);
4070 	CU_ASSERT(cb_arg.type == 0);
4071 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4072 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4073 
4074 	/* The second child reach the limit */
4075 	spdk_delay_us(15 * spdk_get_ticks_hz());
4076 	poll_threads();
4077 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4078 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
4079 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
4080 	stub_complete_io(1);
4081 
4082 	/* Also include the reset IO */
4083 	memset(&cb_arg, 0, sizeof(cb_arg));
4084 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4085 	spdk_delay_us(30 * spdk_get_ticks_hz());
4086 	poll_threads();
4087 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
4088 	stub_complete_io(1);
4089 	poll_threads();
4090 
4091 	spdk_put_io_channel(io_ch);
4092 	spdk_bdev_close(desc);
4093 	free_bdev(bdev);
4094 	spdk_bdev_finish(bdev_fini_cb, NULL);
4095 	poll_threads();
4096 }
4097 
4098 static void
4099 bdev_set_qd_sampling(void)
4100 {
4101 	struct spdk_bdev *bdev;
4102 	struct spdk_bdev_desc *desc = NULL;
4103 	struct spdk_io_channel *io_ch = NULL;
4104 	struct spdk_bdev_channel *bdev_ch = NULL;
4105 	struct timeout_io_cb_arg cb_arg;
4106 
4107 	spdk_bdev_initialize(bdev_init_cb, NULL);
4108 
4109 	bdev = allocate_bdev("bdev");
4110 
4111 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4112 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4113 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4114 
4115 	io_ch = spdk_bdev_get_io_channel(desc);
4116 	CU_ASSERT(io_ch != NULL);
4117 
4118 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4119 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4120 
4121 	/* This is the part1.
4122 	 * We will check the bdev_ch->io_submitted list
4123 	 * TO make sure that it can link IOs and only the user submitted IOs
4124 	 */
4125 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4126 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4127 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4128 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4129 	stub_complete_io(1);
4130 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4131 	stub_complete_io(1);
4132 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4133 
4134 	/* This is the part2.
4135 	 * Test the bdev's qd poller register
4136 	 */
4137 	/* 1st Successfully set the qd sampling period */
4138 	spdk_bdev_set_qd_sampling_period(bdev, 10);
4139 	CU_ASSERT(bdev->internal.new_period == 10);
4140 	CU_ASSERT(bdev->internal.period == 10);
4141 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4142 	poll_threads();
4143 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4144 
4145 	/* 2nd Change the qd sampling period */
4146 	spdk_bdev_set_qd_sampling_period(bdev, 20);
4147 	CU_ASSERT(bdev->internal.new_period == 20);
4148 	CU_ASSERT(bdev->internal.period == 10);
4149 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4150 	poll_threads();
4151 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4152 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4153 
4154 	/* 3rd Change the qd sampling period and verify qd_poll_in_progress */
4155 	spdk_delay_us(20);
4156 	poll_thread_times(0, 1);
4157 	CU_ASSERT(bdev->internal.qd_poll_in_progress == true);
4158 	spdk_bdev_set_qd_sampling_period(bdev, 30);
4159 	CU_ASSERT(bdev->internal.new_period == 30);
4160 	CU_ASSERT(bdev->internal.period == 20);
4161 	poll_threads();
4162 	CU_ASSERT(bdev->internal.qd_poll_in_progress == false);
4163 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4164 
4165 	/* 4th Disable the qd sampling period */
4166 	spdk_bdev_set_qd_sampling_period(bdev, 0);
4167 	CU_ASSERT(bdev->internal.new_period == 0);
4168 	CU_ASSERT(bdev->internal.period == 30);
4169 	poll_threads();
4170 	CU_ASSERT(bdev->internal.qd_poller == NULL);
4171 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4172 	CU_ASSERT(bdev->internal.qd_desc == NULL);
4173 
4174 	/* This is the part3.
4175 	 * We will test the submitted IO and reset works
4176 	 * properly with the qd sampling.
4177 	 */
4178 	memset(&cb_arg, 0, sizeof(cb_arg));
4179 	spdk_bdev_set_qd_sampling_period(bdev, 1);
4180 	poll_threads();
4181 
4182 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4183 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4184 
4185 	/* Also include the reset IO */
4186 	memset(&cb_arg, 0, sizeof(cb_arg));
4187 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4188 	poll_threads();
4189 
4190 	/* Close the desc */
4191 	spdk_put_io_channel(io_ch);
4192 	spdk_bdev_close(desc);
4193 
4194 	/* Complete the submitted IO and reset */
4195 	stub_complete_io(2);
4196 	poll_threads();
4197 
4198 	free_bdev(bdev);
4199 	spdk_bdev_finish(bdev_fini_cb, NULL);
4200 	poll_threads();
4201 }
4202 
4203 static void
4204 lba_range_overlap(void)
4205 {
4206 	struct lba_range r1, r2;
4207 
4208 	r1.offset = 100;
4209 	r1.length = 50;
4210 
4211 	r2.offset = 0;
4212 	r2.length = 1;
4213 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4214 
4215 	r2.offset = 0;
4216 	r2.length = 100;
4217 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4218 
4219 	r2.offset = 0;
4220 	r2.length = 110;
4221 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4222 
4223 	r2.offset = 100;
4224 	r2.length = 10;
4225 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4226 
4227 	r2.offset = 110;
4228 	r2.length = 20;
4229 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4230 
4231 	r2.offset = 140;
4232 	r2.length = 150;
4233 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4234 
4235 	r2.offset = 130;
4236 	r2.length = 200;
4237 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4238 
4239 	r2.offset = 150;
4240 	r2.length = 100;
4241 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4242 
4243 	r2.offset = 110;
4244 	r2.length = 0;
4245 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4246 }
4247 
4248 static bool g_lock_lba_range_done;
4249 static bool g_unlock_lba_range_done;
4250 
4251 static void
4252 lock_lba_range_done(void *ctx, int status)
4253 {
4254 	g_lock_lba_range_done = true;
4255 }
4256 
4257 static void
4258 unlock_lba_range_done(void *ctx, int status)
4259 {
4260 	g_unlock_lba_range_done = true;
4261 }
4262 
4263 static void
4264 lock_lba_range_check_ranges(void)
4265 {
4266 	struct spdk_bdev *bdev;
4267 	struct spdk_bdev_desc *desc = NULL;
4268 	struct spdk_io_channel *io_ch;
4269 	struct spdk_bdev_channel *channel;
4270 	struct lba_range *range;
4271 	int ctx1;
4272 	int rc;
4273 
4274 	spdk_bdev_initialize(bdev_init_cb, NULL);
4275 
4276 	bdev = allocate_bdev("bdev0");
4277 
4278 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4279 	CU_ASSERT(rc == 0);
4280 	CU_ASSERT(desc != NULL);
4281 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4282 	io_ch = spdk_bdev_get_io_channel(desc);
4283 	CU_ASSERT(io_ch != NULL);
4284 	channel = spdk_io_channel_get_ctx(io_ch);
4285 
4286 	g_lock_lba_range_done = false;
4287 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4288 	CU_ASSERT(rc == 0);
4289 	poll_threads();
4290 
4291 	CU_ASSERT(g_lock_lba_range_done == true);
4292 	range = TAILQ_FIRST(&channel->locked_ranges);
4293 	SPDK_CU_ASSERT_FATAL(range != NULL);
4294 	CU_ASSERT(range->offset == 20);
4295 	CU_ASSERT(range->length == 10);
4296 	CU_ASSERT(range->owner_ch == channel);
4297 
4298 	/* Unlocks must exactly match a lock. */
4299 	g_unlock_lba_range_done = false;
4300 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
4301 	CU_ASSERT(rc == -EINVAL);
4302 	CU_ASSERT(g_unlock_lba_range_done == false);
4303 
4304 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4305 	CU_ASSERT(rc == 0);
4306 	spdk_delay_us(100);
4307 	poll_threads();
4308 
4309 	CU_ASSERT(g_unlock_lba_range_done == true);
4310 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4311 
4312 	spdk_put_io_channel(io_ch);
4313 	spdk_bdev_close(desc);
4314 	free_bdev(bdev);
4315 	spdk_bdev_finish(bdev_fini_cb, NULL);
4316 	poll_threads();
4317 }
4318 
4319 static void
4320 lock_lba_range_with_io_outstanding(void)
4321 {
4322 	struct spdk_bdev *bdev;
4323 	struct spdk_bdev_desc *desc = NULL;
4324 	struct spdk_io_channel *io_ch;
4325 	struct spdk_bdev_channel *channel;
4326 	struct lba_range *range;
4327 	char buf[4096];
4328 	int ctx1;
4329 	int rc;
4330 
4331 	spdk_bdev_initialize(bdev_init_cb, NULL);
4332 
4333 	bdev = allocate_bdev("bdev0");
4334 
4335 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4336 	CU_ASSERT(rc == 0);
4337 	CU_ASSERT(desc != NULL);
4338 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4339 	io_ch = spdk_bdev_get_io_channel(desc);
4340 	CU_ASSERT(io_ch != NULL);
4341 	channel = spdk_io_channel_get_ctx(io_ch);
4342 
4343 	g_io_done = false;
4344 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4345 	CU_ASSERT(rc == 0);
4346 
4347 	g_lock_lba_range_done = false;
4348 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4349 	CU_ASSERT(rc == 0);
4350 	poll_threads();
4351 
4352 	/* The lock should immediately become valid, since there are no outstanding
4353 	 * write I/O.
4354 	 */
4355 	CU_ASSERT(g_io_done == false);
4356 	CU_ASSERT(g_lock_lba_range_done == true);
4357 	range = TAILQ_FIRST(&channel->locked_ranges);
4358 	SPDK_CU_ASSERT_FATAL(range != NULL);
4359 	CU_ASSERT(range->offset == 20);
4360 	CU_ASSERT(range->length == 10);
4361 	CU_ASSERT(range->owner_ch == channel);
4362 	CU_ASSERT(range->locked_ctx == &ctx1);
4363 
4364 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4365 	CU_ASSERT(rc == 0);
4366 	stub_complete_io(1);
4367 	spdk_delay_us(100);
4368 	poll_threads();
4369 
4370 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4371 
4372 	/* Now try again, but with a write I/O. */
4373 	g_io_done = false;
4374 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4375 	CU_ASSERT(rc == 0);
4376 
4377 	g_lock_lba_range_done = false;
4378 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4379 	CU_ASSERT(rc == 0);
4380 	poll_threads();
4381 
4382 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
4383 	 * But note that the range should be on the channel's locked_list, to make sure no
4384 	 * new write I/O are started.
4385 	 */
4386 	CU_ASSERT(g_io_done == false);
4387 	CU_ASSERT(g_lock_lba_range_done == false);
4388 	range = TAILQ_FIRST(&channel->locked_ranges);
4389 	SPDK_CU_ASSERT_FATAL(range != NULL);
4390 	CU_ASSERT(range->offset == 20);
4391 	CU_ASSERT(range->length == 10);
4392 
4393 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
4394 	 * our callback was invoked).
4395 	 */
4396 	stub_complete_io(1);
4397 	spdk_delay_us(100);
4398 	poll_threads();
4399 	CU_ASSERT(g_io_done == true);
4400 	CU_ASSERT(g_lock_lba_range_done == true);
4401 
4402 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4403 	CU_ASSERT(rc == 0);
4404 	poll_threads();
4405 
4406 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4407 
4408 	spdk_put_io_channel(io_ch);
4409 	spdk_bdev_close(desc);
4410 	free_bdev(bdev);
4411 	spdk_bdev_finish(bdev_fini_cb, NULL);
4412 	poll_threads();
4413 }
4414 
4415 static void
4416 lock_lba_range_overlapped(void)
4417 {
4418 	struct spdk_bdev *bdev;
4419 	struct spdk_bdev_desc *desc = NULL;
4420 	struct spdk_io_channel *io_ch;
4421 	struct spdk_bdev_channel *channel;
4422 	struct lba_range *range;
4423 	int ctx1;
4424 	int rc;
4425 
4426 	spdk_bdev_initialize(bdev_init_cb, NULL);
4427 
4428 	bdev = allocate_bdev("bdev0");
4429 
4430 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4431 	CU_ASSERT(rc == 0);
4432 	CU_ASSERT(desc != NULL);
4433 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4434 	io_ch = spdk_bdev_get_io_channel(desc);
4435 	CU_ASSERT(io_ch != NULL);
4436 	channel = spdk_io_channel_get_ctx(io_ch);
4437 
4438 	/* Lock range 20-29. */
4439 	g_lock_lba_range_done = false;
4440 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4441 	CU_ASSERT(rc == 0);
4442 	poll_threads();
4443 
4444 	CU_ASSERT(g_lock_lba_range_done == true);
4445 	range = TAILQ_FIRST(&channel->locked_ranges);
4446 	SPDK_CU_ASSERT_FATAL(range != NULL);
4447 	CU_ASSERT(range->offset == 20);
4448 	CU_ASSERT(range->length == 10);
4449 
4450 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
4451 	 * 20-29.
4452 	 */
4453 	g_lock_lba_range_done = false;
4454 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
4455 	CU_ASSERT(rc == 0);
4456 	poll_threads();
4457 
4458 	CU_ASSERT(g_lock_lba_range_done == false);
4459 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4460 	SPDK_CU_ASSERT_FATAL(range != NULL);
4461 	CU_ASSERT(range->offset == 25);
4462 	CU_ASSERT(range->length == 15);
4463 
4464 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
4465 	 * no longer overlaps with an active lock.
4466 	 */
4467 	g_unlock_lba_range_done = false;
4468 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4469 	CU_ASSERT(rc == 0);
4470 	poll_threads();
4471 
4472 	CU_ASSERT(g_unlock_lba_range_done == true);
4473 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4474 	range = TAILQ_FIRST(&channel->locked_ranges);
4475 	SPDK_CU_ASSERT_FATAL(range != NULL);
4476 	CU_ASSERT(range->offset == 25);
4477 	CU_ASSERT(range->length == 15);
4478 
4479 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
4480 	 * currently active 25-39 lock.
4481 	 */
4482 	g_lock_lba_range_done = false;
4483 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
4484 	CU_ASSERT(rc == 0);
4485 	poll_threads();
4486 
4487 	CU_ASSERT(g_lock_lba_range_done == true);
4488 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4489 	SPDK_CU_ASSERT_FATAL(range != NULL);
4490 	range = TAILQ_NEXT(range, tailq);
4491 	SPDK_CU_ASSERT_FATAL(range != NULL);
4492 	CU_ASSERT(range->offset == 40);
4493 	CU_ASSERT(range->length == 20);
4494 
4495 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
4496 	g_lock_lba_range_done = false;
4497 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
4498 	CU_ASSERT(rc == 0);
4499 	poll_threads();
4500 
4501 	CU_ASSERT(g_lock_lba_range_done == false);
4502 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4503 	SPDK_CU_ASSERT_FATAL(range != NULL);
4504 	CU_ASSERT(range->offset == 35);
4505 	CU_ASSERT(range->length == 10);
4506 
4507 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
4508 	 * the 40-59 lock is still active.
4509 	 */
4510 	g_unlock_lba_range_done = false;
4511 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
4512 	CU_ASSERT(rc == 0);
4513 	poll_threads();
4514 
4515 	CU_ASSERT(g_unlock_lba_range_done == true);
4516 	CU_ASSERT(g_lock_lba_range_done == false);
4517 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4518 	SPDK_CU_ASSERT_FATAL(range != NULL);
4519 	CU_ASSERT(range->offset == 35);
4520 	CU_ASSERT(range->length == 10);
4521 
4522 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
4523 	 * no longer any active overlapping locks.
4524 	 */
4525 	g_unlock_lba_range_done = false;
4526 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
4527 	CU_ASSERT(rc == 0);
4528 	poll_threads();
4529 
4530 	CU_ASSERT(g_unlock_lba_range_done == true);
4531 	CU_ASSERT(g_lock_lba_range_done == true);
4532 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4533 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4534 	SPDK_CU_ASSERT_FATAL(range != NULL);
4535 	CU_ASSERT(range->offset == 35);
4536 	CU_ASSERT(range->length == 10);
4537 
4538 	/* Finally, unlock 35-44. */
4539 	g_unlock_lba_range_done = false;
4540 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
4541 	CU_ASSERT(rc == 0);
4542 	poll_threads();
4543 
4544 	CU_ASSERT(g_unlock_lba_range_done == true);
4545 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
4546 
4547 	spdk_put_io_channel(io_ch);
4548 	spdk_bdev_close(desc);
4549 	free_bdev(bdev);
4550 	spdk_bdev_finish(bdev_fini_cb, NULL);
4551 	poll_threads();
4552 }
4553 
4554 static void
4555 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
4556 {
4557 	g_abort_done = true;
4558 	g_abort_status = bdev_io->internal.status;
4559 	spdk_bdev_free_io(bdev_io);
4560 }
4561 
4562 static void
4563 bdev_io_abort(void)
4564 {
4565 	struct spdk_bdev *bdev;
4566 	struct spdk_bdev_desc *desc = NULL;
4567 	struct spdk_io_channel *io_ch;
4568 	struct spdk_bdev_channel *channel;
4569 	struct spdk_bdev_mgmt_channel *mgmt_ch;
4570 	struct spdk_bdev_opts bdev_opts = {};
4571 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
4572 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
4573 	int rc;
4574 
4575 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4576 	bdev_opts.bdev_io_pool_size = 7;
4577 	bdev_opts.bdev_io_cache_size = 2;
4578 
4579 	rc = spdk_bdev_set_opts(&bdev_opts);
4580 	CU_ASSERT(rc == 0);
4581 	spdk_bdev_initialize(bdev_init_cb, NULL);
4582 
4583 	bdev = allocate_bdev("bdev0");
4584 
4585 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4586 	CU_ASSERT(rc == 0);
4587 	CU_ASSERT(desc != NULL);
4588 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4589 	io_ch = spdk_bdev_get_io_channel(desc);
4590 	CU_ASSERT(io_ch != NULL);
4591 	channel = spdk_io_channel_get_ctx(io_ch);
4592 	mgmt_ch = channel->shared_resource->mgmt_ch;
4593 
4594 	g_abort_done = false;
4595 
4596 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
4597 
4598 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4599 	CU_ASSERT(rc == -ENOTSUP);
4600 
4601 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
4602 
4603 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
4604 	CU_ASSERT(rc == 0);
4605 	CU_ASSERT(g_abort_done == true);
4606 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
4607 
4608 	/* Test the case that the target I/O was successfully aborted. */
4609 	g_io_done = false;
4610 
4611 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
4612 	CU_ASSERT(rc == 0);
4613 	CU_ASSERT(g_io_done == false);
4614 
4615 	g_abort_done = false;
4616 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4617 
4618 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4619 	CU_ASSERT(rc == 0);
4620 	CU_ASSERT(g_io_done == true);
4621 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4622 	stub_complete_io(1);
4623 	CU_ASSERT(g_abort_done == true);
4624 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4625 
4626 	/* Test the case that the target I/O was not aborted because it completed
4627 	 * in the middle of execution of the abort.
4628 	 */
4629 	g_io_done = false;
4630 
4631 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
4632 	CU_ASSERT(rc == 0);
4633 	CU_ASSERT(g_io_done == false);
4634 
4635 	g_abort_done = false;
4636 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
4637 
4638 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4639 	CU_ASSERT(rc == 0);
4640 	CU_ASSERT(g_io_done == false);
4641 
4642 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4643 	stub_complete_io(1);
4644 	CU_ASSERT(g_io_done == true);
4645 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4646 
4647 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
4648 	stub_complete_io(1);
4649 	CU_ASSERT(g_abort_done == true);
4650 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4651 
4652 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4653 
4654 	bdev->optimal_io_boundary = 16;
4655 	bdev->split_on_optimal_io_boundary = true;
4656 
4657 	/* Test that a single-vector command which is split is aborted correctly.
4658 	 * Offset 14, length 8, payload 0xF000
4659 	 *  Child - Offset 14, length 2, payload 0xF000
4660 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4661 	 */
4662 	g_io_done = false;
4663 
4664 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
4665 	CU_ASSERT(rc == 0);
4666 	CU_ASSERT(g_io_done == false);
4667 
4668 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
4669 
4670 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4671 
4672 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4673 	CU_ASSERT(rc == 0);
4674 	CU_ASSERT(g_io_done == true);
4675 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4676 	stub_complete_io(2);
4677 	CU_ASSERT(g_abort_done == true);
4678 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4679 
4680 	/* Test that a multi-vector command that needs to be split by strip and then
4681 	 * needs to be split is aborted correctly. Abort is requested before the second
4682 	 * child I/O was submitted. The parent I/O should complete with failure without
4683 	 * submitting the second child I/O.
4684 	 */
4685 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
4686 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
4687 		iov[i].iov_len = 512;
4688 	}
4689 
4690 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
4691 	g_io_done = false;
4692 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
4693 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
4694 	CU_ASSERT(rc == 0);
4695 	CU_ASSERT(g_io_done == false);
4696 
4697 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
4698 
4699 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4700 
4701 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4702 	CU_ASSERT(rc == 0);
4703 	CU_ASSERT(g_io_done == true);
4704 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4705 	stub_complete_io(1);
4706 	CU_ASSERT(g_abort_done == true);
4707 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4708 
4709 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4710 
4711 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4712 
4713 	bdev->optimal_io_boundary = 16;
4714 	g_io_done = false;
4715 
4716 	/* Test that a ingle-vector command which is split is aborted correctly.
4717 	 * Differently from the above, the child abort request will be submitted
4718 	 * sequentially due to the capacity of spdk_bdev_io.
4719 	 */
4720 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
4721 	CU_ASSERT(rc == 0);
4722 	CU_ASSERT(g_io_done == false);
4723 
4724 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
4725 
4726 	g_abort_done = false;
4727 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4728 
4729 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4730 	CU_ASSERT(rc == 0);
4731 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
4732 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
4733 
4734 	stub_complete_io(1);
4735 	CU_ASSERT(g_io_done == true);
4736 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4737 	stub_complete_io(3);
4738 	CU_ASSERT(g_abort_done == true);
4739 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4740 
4741 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4742 
4743 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4744 
4745 	spdk_put_io_channel(io_ch);
4746 	spdk_bdev_close(desc);
4747 	free_bdev(bdev);
4748 	spdk_bdev_finish(bdev_fini_cb, NULL);
4749 	poll_threads();
4750 }
4751 
4752 static void
4753 bdev_unmap(void)
4754 {
4755 	struct spdk_bdev *bdev;
4756 	struct spdk_bdev_desc *desc = NULL;
4757 	struct spdk_io_channel *ioch;
4758 	struct spdk_bdev_channel *bdev_ch;
4759 	struct ut_expected_io *expected_io;
4760 	struct spdk_bdev_opts bdev_opts = {};
4761 	uint32_t i, num_outstanding;
4762 	uint64_t offset, num_blocks, max_unmap_blocks, num_children;
4763 	int rc;
4764 
4765 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4766 	bdev_opts.bdev_io_pool_size = 512;
4767 	bdev_opts.bdev_io_cache_size = 64;
4768 	rc = spdk_bdev_set_opts(&bdev_opts);
4769 	CU_ASSERT(rc == 0);
4770 
4771 	spdk_bdev_initialize(bdev_init_cb, NULL);
4772 	bdev = allocate_bdev("bdev");
4773 
4774 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4775 	CU_ASSERT_EQUAL(rc, 0);
4776 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4777 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4778 	ioch = spdk_bdev_get_io_channel(desc);
4779 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4780 	bdev_ch = spdk_io_channel_get_ctx(ioch);
4781 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4782 
4783 	fn_table.submit_request = stub_submit_request;
4784 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4785 
4786 	/* Case 1: First test the request won't be split */
4787 	num_blocks = 32;
4788 
4789 	g_io_done = false;
4790 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 0, num_blocks, 0);
4791 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4792 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4793 	CU_ASSERT_EQUAL(rc, 0);
4794 	CU_ASSERT(g_io_done == false);
4795 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
4796 	stub_complete_io(1);
4797 	CU_ASSERT(g_io_done == true);
4798 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4799 
4800 	/* Case 2: Test the split with 2 children requests */
4801 	bdev->max_unmap = 8;
4802 	bdev->max_unmap_segments = 2;
4803 	max_unmap_blocks = bdev->max_unmap * bdev->max_unmap_segments;
4804 	num_blocks = max_unmap_blocks * 2;
4805 	offset = 0;
4806 
4807 	g_io_done = false;
4808 	for (i = 0; i < 2; i++) {
4809 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
4810 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4811 		offset += max_unmap_blocks;
4812 	}
4813 
4814 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4815 	CU_ASSERT_EQUAL(rc, 0);
4816 	CU_ASSERT(g_io_done == false);
4817 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
4818 	stub_complete_io(2);
4819 	CU_ASSERT(g_io_done == true);
4820 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4821 
4822 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
4823 	num_children = 15;
4824 	num_blocks = max_unmap_blocks * num_children;
4825 	g_io_done = false;
4826 	offset = 0;
4827 	for (i = 0; i < num_children; i++) {
4828 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
4829 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4830 		offset += max_unmap_blocks;
4831 	}
4832 
4833 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4834 	CU_ASSERT_EQUAL(rc, 0);
4835 	CU_ASSERT(g_io_done == false);
4836 
4837 	while (num_children > 0) {
4838 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
4839 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
4840 		stub_complete_io(num_outstanding);
4841 		num_children -= num_outstanding;
4842 	}
4843 	CU_ASSERT(g_io_done == true);
4844 
4845 	spdk_put_io_channel(ioch);
4846 	spdk_bdev_close(desc);
4847 	free_bdev(bdev);
4848 	spdk_bdev_finish(bdev_fini_cb, NULL);
4849 	poll_threads();
4850 }
4851 
4852 static void
4853 bdev_write_zeroes_split_test(void)
4854 {
4855 	struct spdk_bdev *bdev;
4856 	struct spdk_bdev_desc *desc = NULL;
4857 	struct spdk_io_channel *ioch;
4858 	struct spdk_bdev_channel *bdev_ch;
4859 	struct ut_expected_io *expected_io;
4860 	struct spdk_bdev_opts bdev_opts = {};
4861 	uint32_t i, num_outstanding;
4862 	uint64_t offset, num_blocks, max_write_zeroes_blocks, num_children;
4863 	int rc;
4864 
4865 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4866 	bdev_opts.bdev_io_pool_size = 512;
4867 	bdev_opts.bdev_io_cache_size = 64;
4868 	rc = spdk_bdev_set_opts(&bdev_opts);
4869 	CU_ASSERT(rc == 0);
4870 
4871 	spdk_bdev_initialize(bdev_init_cb, NULL);
4872 	bdev = allocate_bdev("bdev");
4873 
4874 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4875 	CU_ASSERT_EQUAL(rc, 0);
4876 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4877 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4878 	ioch = spdk_bdev_get_io_channel(desc);
4879 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4880 	bdev_ch = spdk_io_channel_get_ctx(ioch);
4881 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4882 
4883 	fn_table.submit_request = stub_submit_request;
4884 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4885 
4886 	/* Case 1: First test the request won't be split */
4887 	num_blocks = 32;
4888 
4889 	g_io_done = false;
4890 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
4891 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4892 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4893 	CU_ASSERT_EQUAL(rc, 0);
4894 	CU_ASSERT(g_io_done == false);
4895 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
4896 	stub_complete_io(1);
4897 	CU_ASSERT(g_io_done == true);
4898 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4899 
4900 	/* Case 2: Test the split with 2 children requests */
4901 	max_write_zeroes_blocks = 8;
4902 	bdev->max_write_zeroes = max_write_zeroes_blocks;
4903 	num_blocks = max_write_zeroes_blocks * 2;
4904 	offset = 0;
4905 
4906 	g_io_done = false;
4907 	for (i = 0; i < 2; i++) {
4908 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
4909 						   0);
4910 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4911 		offset += max_write_zeroes_blocks;
4912 	}
4913 
4914 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4915 	CU_ASSERT_EQUAL(rc, 0);
4916 	CU_ASSERT(g_io_done == false);
4917 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
4918 	stub_complete_io(2);
4919 	CU_ASSERT(g_io_done == true);
4920 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4921 
4922 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
4923 	num_children = 15;
4924 	num_blocks = max_write_zeroes_blocks * num_children;
4925 	g_io_done = false;
4926 	offset = 0;
4927 	for (i = 0; i < num_children; i++) {
4928 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
4929 						   0);
4930 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4931 		offset += max_write_zeroes_blocks;
4932 	}
4933 
4934 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4935 	CU_ASSERT_EQUAL(rc, 0);
4936 	CU_ASSERT(g_io_done == false);
4937 
4938 	while (num_children > 0) {
4939 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
4940 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
4941 		stub_complete_io(num_outstanding);
4942 		num_children -= num_outstanding;
4943 	}
4944 	CU_ASSERT(g_io_done == true);
4945 
4946 	spdk_put_io_channel(ioch);
4947 	spdk_bdev_close(desc);
4948 	free_bdev(bdev);
4949 	spdk_bdev_finish(bdev_fini_cb, NULL);
4950 	poll_threads();
4951 }
4952 
4953 static void
4954 bdev_set_options_test(void)
4955 {
4956 	struct spdk_bdev_opts bdev_opts = {};
4957 	int rc;
4958 
4959 	/* Case1: Do not set opts_size */
4960 	rc = spdk_bdev_set_opts(&bdev_opts);
4961 	CU_ASSERT(rc == -1);
4962 
4963 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4964 	bdev_opts.bdev_io_pool_size = 4;
4965 	bdev_opts.bdev_io_cache_size = 2;
4966 	bdev_opts.small_buf_pool_size = 4;
4967 
4968 	/* Case 2: Do not set valid small_buf_pool_size and large_buf_pool_size */
4969 	rc = spdk_bdev_set_opts(&bdev_opts);
4970 	CU_ASSERT(rc == -1);
4971 
4972 	/* Case 3: Do not set valid large_buf_pool_size */
4973 	bdev_opts.small_buf_pool_size = BUF_SMALL_POOL_SIZE;
4974 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE - 1;
4975 	rc = spdk_bdev_set_opts(&bdev_opts);
4976 	CU_ASSERT(rc == -1);
4977 
4978 	/* Case4: set valid large buf_pool_size */
4979 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE;
4980 	rc = spdk_bdev_set_opts(&bdev_opts);
4981 	CU_ASSERT(rc == 0);
4982 
4983 	/* Case5: Set different valid value for small and large buf pool */
4984 	bdev_opts.large_buf_pool_size = BUF_SMALL_POOL_SIZE + 3;
4985 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE + 3;
4986 	rc = spdk_bdev_set_opts(&bdev_opts);
4987 	CU_ASSERT(rc == 0);
4988 }
4989 
4990 static uint64_t
4991 get_ns_time(void)
4992 {
4993 	int rc;
4994 	struct timespec ts;
4995 
4996 	rc = clock_gettime(CLOCK_MONOTONIC, &ts);
4997 	CU_ASSERT(rc == 0);
4998 	return ts.tv_sec * 1000 * 1000 * 1000 + ts.tv_nsec;
4999 }
5000 
5001 static int
5002 rb_tree_get_height(struct spdk_bdev_name *bdev_name)
5003 {
5004 	int h1, h2;
5005 
5006 	if (bdev_name == NULL) {
5007 		return -1;
5008 	} else {
5009 		h1 = rb_tree_get_height(RB_LEFT(bdev_name, node));
5010 		h2 = rb_tree_get_height(RB_RIGHT(bdev_name, node));
5011 
5012 		return spdk_max(h1, h2) + 1;
5013 	}
5014 }
5015 
5016 static void
5017 bdev_multi_allocation(void)
5018 {
5019 	const int max_bdev_num = 1024 * 16;
5020 	char name[max_bdev_num][16];
5021 	char noexist_name[] = "invalid_bdev";
5022 	struct spdk_bdev *bdev[max_bdev_num];
5023 	int i, j;
5024 	uint64_t last_time;
5025 	int bdev_num;
5026 	int height;
5027 
5028 	for (j = 0; j < max_bdev_num; j++) {
5029 		snprintf(name[j], sizeof(name[j]), "bdev%d", j);
5030 	}
5031 
5032 	for (i = 0; i < 16; i++) {
5033 		last_time = get_ns_time();
5034 		bdev_num = 1024 * (i + 1);
5035 		for (j = 0; j < bdev_num; j++) {
5036 			bdev[j] = allocate_bdev(name[j]);
5037 			height = rb_tree_get_height(&bdev[j]->internal.bdev_name);
5038 			CU_ASSERT(height <= (int)(spdk_u32log2(2 * j + 2)));
5039 		}
5040 		SPDK_NOTICELOG("alloc bdev num %d takes %" PRIu64 " ms\n", bdev_num,
5041 			       (get_ns_time() - last_time) / 1000 / 1000);
5042 		for (j = 0; j < bdev_num; j++) {
5043 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) != NULL);
5044 		}
5045 		CU_ASSERT(spdk_bdev_get_by_name(noexist_name) == NULL);
5046 
5047 		for (j = 0; j < bdev_num; j++) {
5048 			free_bdev(bdev[j]);
5049 		}
5050 		for (j = 0; j < bdev_num; j++) {
5051 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) == NULL);
5052 		}
5053 	}
5054 }
5055 
5056 static struct spdk_memory_domain *g_bdev_memory_domain = (struct spdk_memory_domain *) 0xf00df00d;
5057 
5058 static int
5059 test_bdev_get_supported_dma_device_types_op(void *ctx, struct spdk_memory_domain **domains,
5060 		int array_size)
5061 {
5062 	if (array_size > 0 && domains) {
5063 		domains[0] = g_bdev_memory_domain;
5064 	}
5065 
5066 	return 1;
5067 }
5068 
5069 static void
5070 bdev_get_memory_domains(void)
5071 {
5072 	struct spdk_bdev_fn_table fn_table = {
5073 		.get_memory_domains = test_bdev_get_supported_dma_device_types_op
5074 	};
5075 	struct spdk_bdev bdev = { .fn_table = &fn_table };
5076 	struct spdk_memory_domain *domains[2] = {};
5077 	int rc;
5078 
5079 	/* bdev is NULL */
5080 	rc = spdk_bdev_get_memory_domains(NULL, domains, 2);
5081 	CU_ASSERT(rc == -EINVAL);
5082 
5083 	/* domains is NULL */
5084 	rc = spdk_bdev_get_memory_domains(&bdev, NULL, 2);
5085 	CU_ASSERT(rc == 1);
5086 
5087 	/* array size is 0 */
5088 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 0);
5089 	CU_ASSERT(rc == 1);
5090 
5091 	/* get_supported_dma_device_types op is set */
5092 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5093 	CU_ASSERT(rc == 1);
5094 	CU_ASSERT(domains[0] == g_bdev_memory_domain);
5095 
5096 	/* get_supported_dma_device_types op is not set */
5097 	fn_table.get_memory_domains = NULL;
5098 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5099 	CU_ASSERT(rc == 0);
5100 }
5101 
5102 static void
5103 bdev_writev_readv_ext(void)
5104 {
5105 	struct spdk_bdev *bdev;
5106 	struct spdk_bdev_desc *desc = NULL;
5107 	struct spdk_io_channel *io_ch;
5108 	char io_buf[512];
5109 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5110 	struct ut_expected_io *expected_io;
5111 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5112 		.metadata = (void *)0xFF000000,
5113 		.size = sizeof(ext_io_opts)
5114 	};
5115 	int rc;
5116 
5117 	spdk_bdev_initialize(bdev_init_cb, NULL);
5118 
5119 	bdev = allocate_bdev("bdev0");
5120 	bdev->md_interleave = false;
5121 	bdev->md_len = 8;
5122 
5123 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5124 	CU_ASSERT(rc == 0);
5125 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5126 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5127 	io_ch = spdk_bdev_get_io_channel(desc);
5128 	CU_ASSERT(io_ch != NULL);
5129 
5130 	/* Test 1, Simple test */
5131 	g_io_done = false;
5132 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5133 	expected_io->md_buf = ext_io_opts.metadata;
5134 	expected_io->ext_io_opts = &ext_io_opts;
5135 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5136 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5137 
5138 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5139 
5140 	CU_ASSERT(rc == 0);
5141 	CU_ASSERT(g_io_done == false);
5142 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5143 	stub_complete_io(1);
5144 	CU_ASSERT(g_io_done == true);
5145 
5146 	g_io_done = false;
5147 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5148 	expected_io->md_buf = ext_io_opts.metadata;
5149 	expected_io->ext_io_opts = &ext_io_opts;
5150 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5151 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5152 
5153 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5154 
5155 	CU_ASSERT(rc == 0);
5156 	CU_ASSERT(g_io_done == false);
5157 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5158 	stub_complete_io(1);
5159 	CU_ASSERT(g_io_done == true);
5160 
5161 	/* Test 2, invalid ext_opts size */
5162 	ext_io_opts.size = 0;
5163 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5164 	CU_ASSERT(rc != 0);
5165 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5166 	CU_ASSERT(rc != 0);
5167 
5168 	ext_io_opts.size = sizeof(ext_io_opts) * 2;
5169 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5170 	CU_ASSERT(rc != 0);
5171 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5172 	CU_ASSERT(rc != 0);
5173 
5174 	ext_io_opts.size = offsetof(struct spdk_bdev_ext_io_opts, metadata) +
5175 			   sizeof(ext_io_opts.metadata) - 1;
5176 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5177 	CU_ASSERT(rc != 0);
5178 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5179 	CU_ASSERT(rc != 0);
5180 
5181 	/* Test 3, Check that IO request with ext_opts and metadata is split correctly
5182 	 * Offset 14, length 8, payload 0xF000
5183 	 *  Child - Offset 14, length 2, payload 0xF000
5184 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5185 	 */
5186 	bdev->optimal_io_boundary = 16;
5187 	bdev->split_on_optimal_io_boundary = true;
5188 	bdev->md_interleave = false;
5189 	bdev->md_len = 8;
5190 
5191 	iov.iov_base = (void *)0xF000;
5192 	iov.iov_len = 4096;
5193 	memset(&ext_io_opts, 0, sizeof(ext_io_opts));
5194 	ext_io_opts.metadata = (void *)0xFF000000;
5195 	ext_io_opts.size = sizeof(ext_io_opts);
5196 	g_io_done = false;
5197 
5198 	/* read */
5199 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
5200 	expected_io->md_buf = ext_io_opts.metadata;
5201 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5202 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5203 
5204 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
5205 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5206 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5207 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5208 
5209 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5210 	CU_ASSERT(rc == 0);
5211 	CU_ASSERT(g_io_done == false);
5212 
5213 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5214 	stub_complete_io(2);
5215 	CU_ASSERT(g_io_done == true);
5216 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5217 
5218 	/* write */
5219 	g_io_done = false;
5220 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
5221 	expected_io->md_buf = ext_io_opts.metadata;
5222 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5223 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5224 
5225 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 6, 1);
5226 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5227 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5228 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5229 
5230 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5231 	CU_ASSERT(rc == 0);
5232 	CU_ASSERT(g_io_done == false);
5233 
5234 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5235 	stub_complete_io(2);
5236 	CU_ASSERT(g_io_done == true);
5237 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5238 
5239 	/* Test 4, Verify data pull/push
5240 	 * bdev doens't support memory domains, so buffers from bdev memory pool will be used */
5241 	ext_io_opts.memory_domain = (struct spdk_memory_domain *)0xdeadbeef;
5242 
5243 	g_io_done = false;
5244 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5245 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5246 	expected_io->ext_io_opts = &ext_io_opts;
5247 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5248 
5249 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5250 
5251 	CU_ASSERT(rc == 0);
5252 	CU_ASSERT(g_io_done == false);
5253 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5254 	stub_complete_io(1);
5255 	CU_ASSERT(g_memory_domain_push_data_called == true);
5256 	CU_ASSERT(g_io_done == true);
5257 
5258 	g_io_done = false;
5259 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5260 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5261 	expected_io->ext_io_opts = &ext_io_opts;
5262 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5263 
5264 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5265 
5266 	CU_ASSERT(rc == 0);
5267 	CU_ASSERT(g_memory_domain_pull_data_called == true);
5268 	CU_ASSERT(g_io_done == false);
5269 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5270 	stub_complete_io(1);
5271 	CU_ASSERT(g_io_done == true);
5272 
5273 	spdk_put_io_channel(io_ch);
5274 	spdk_bdev_close(desc);
5275 	free_bdev(bdev);
5276 	spdk_bdev_finish(bdev_fini_cb, NULL);
5277 	poll_threads();
5278 }
5279 
5280 static void
5281 bdev_register_uuid_alias(void)
5282 {
5283 	struct spdk_bdev *bdev, *second;
5284 	char uuid[SPDK_UUID_STRING_LEN];
5285 	int rc;
5286 
5287 	spdk_bdev_initialize(bdev_init_cb, NULL);
5288 	bdev = allocate_bdev("bdev0");
5289 
5290 	/* Make sure an UUID was generated  */
5291 	CU_ASSERT_FALSE(spdk_mem_all_zero(&bdev->uuid, sizeof(bdev->uuid)));
5292 
5293 	/* Check that an UUID alias was registered */
5294 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5295 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5296 
5297 	/* Unregister the bdev */
5298 	spdk_bdev_unregister(bdev, NULL, NULL);
5299 	poll_threads();
5300 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5301 
5302 	/* Check the same, but this time register the bdev with non-zero UUID */
5303 	rc = spdk_bdev_register(bdev);
5304 	CU_ASSERT_EQUAL(rc, 0);
5305 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5306 
5307 	/* Unregister the bdev */
5308 	spdk_bdev_unregister(bdev, NULL, NULL);
5309 	poll_threads();
5310 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5311 
5312 	/* Regiser the bdev using UUID as the name */
5313 	bdev->name = uuid;
5314 	rc = spdk_bdev_register(bdev);
5315 	CU_ASSERT_EQUAL(rc, 0);
5316 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5317 
5318 	/* Unregister the bdev */
5319 	spdk_bdev_unregister(bdev, NULL, NULL);
5320 	poll_threads();
5321 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5322 
5323 	/* Check that it's not possible to register two bdevs with the same UUIDs */
5324 	bdev->name = "bdev0";
5325 	second = allocate_bdev("bdev1");
5326 	spdk_uuid_copy(&bdev->uuid, &second->uuid);
5327 	rc = spdk_bdev_register(bdev);
5328 	CU_ASSERT_EQUAL(rc, -EEXIST);
5329 
5330 	/* Regenerate the UUID and re-check */
5331 	spdk_uuid_generate(&bdev->uuid);
5332 	rc = spdk_bdev_register(bdev);
5333 	CU_ASSERT_EQUAL(rc, 0);
5334 
5335 	/* And check that both bdevs can be retrieved through their UUIDs */
5336 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5337 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5338 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &second->uuid);
5339 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), second);
5340 
5341 	free_bdev(second);
5342 	free_bdev(bdev);
5343 	spdk_bdev_finish(bdev_fini_cb, NULL);
5344 	poll_threads();
5345 }
5346 
5347 static void
5348 bdev_unregister_by_name(void)
5349 {
5350 	struct spdk_bdev *bdev;
5351 	int rc;
5352 
5353 	bdev = allocate_bdev("bdev");
5354 
5355 	g_event_type1 = 0xFF;
5356 	g_unregister_arg = NULL;
5357 	g_unregister_rc = -1;
5358 
5359 	rc = spdk_bdev_unregister_by_name("bdev1", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5360 	CU_ASSERT(rc == -ENODEV);
5361 
5362 	rc = spdk_bdev_unregister_by_name("bdev", &vbdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5363 	CU_ASSERT(rc == -ENODEV);
5364 
5365 	rc = spdk_bdev_unregister_by_name("bdev", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5366 	CU_ASSERT(rc == 0);
5367 
5368 	/* Check that unregister callback is delayed */
5369 	CU_ASSERT(g_unregister_arg == NULL);
5370 	CU_ASSERT(g_unregister_rc == -1);
5371 
5372 	poll_threads();
5373 
5374 	/* Event callback shall not be issued because device was closed */
5375 	CU_ASSERT(g_event_type1 == 0xFF);
5376 	/* Unregister callback is issued */
5377 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
5378 	CU_ASSERT(g_unregister_rc == 0);
5379 
5380 	free_bdev(bdev);
5381 }
5382 
5383 static int
5384 count_bdevs(void *ctx, struct spdk_bdev *bdev)
5385 {
5386 	int *count = ctx;
5387 
5388 	(*count)++;
5389 
5390 	return 0;
5391 }
5392 
5393 static void
5394 for_each_bdev_test(void)
5395 {
5396 	struct spdk_bdev *bdev[8];
5397 	int rc, count;
5398 
5399 	bdev[0] = allocate_bdev("bdev0");
5400 
5401 	bdev[1] = allocate_bdev("bdev1");
5402 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
5403 	CU_ASSERT(rc == 0);
5404 
5405 	bdev[2] = allocate_bdev("bdev2");
5406 
5407 	bdev[3] = allocate_bdev("bdev3");
5408 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
5409 	CU_ASSERT(rc == 0);
5410 
5411 	bdev[4] = allocate_bdev("bdev4");
5412 
5413 	bdev[5] = allocate_bdev("bdev5");
5414 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
5415 	CU_ASSERT(rc == 0);
5416 
5417 	bdev[6] = allocate_bdev("bdev6");
5418 
5419 	bdev[7] = allocate_bdev("bdev7");
5420 
5421 	count = 0;
5422 	rc = spdk_for_each_bdev(&count, count_bdevs);
5423 	CU_ASSERT(rc == 0);
5424 	CU_ASSERT(count == 8);
5425 
5426 	count = 0;
5427 	rc = spdk_for_each_bdev_leaf(&count, count_bdevs);
5428 	CU_ASSERT(rc == 0);
5429 	CU_ASSERT(count == 5);
5430 
5431 	free_bdev(bdev[0]);
5432 	free_bdev(bdev[1]);
5433 	free_bdev(bdev[2]);
5434 	free_bdev(bdev[3]);
5435 	free_bdev(bdev[4]);
5436 	free_bdev(bdev[5]);
5437 	free_bdev(bdev[6]);
5438 	free_bdev(bdev[7]);
5439 }
5440 
5441 int
5442 main(int argc, char **argv)
5443 {
5444 	CU_pSuite		suite = NULL;
5445 	unsigned int		num_failures;
5446 
5447 	CU_set_error_action(CUEA_ABORT);
5448 	CU_initialize_registry();
5449 
5450 	suite = CU_add_suite("bdev", null_init, null_clean);
5451 
5452 	CU_ADD_TEST(suite, bytes_to_blocks_test);
5453 	CU_ADD_TEST(suite, num_blocks_test);
5454 	CU_ADD_TEST(suite, io_valid_test);
5455 	CU_ADD_TEST(suite, open_write_test);
5456 	CU_ADD_TEST(suite, claim_test);
5457 	CU_ADD_TEST(suite, alias_add_del_test);
5458 	CU_ADD_TEST(suite, get_device_stat_test);
5459 	CU_ADD_TEST(suite, bdev_io_types_test);
5460 	CU_ADD_TEST(suite, bdev_io_wait_test);
5461 	CU_ADD_TEST(suite, bdev_io_spans_split_test);
5462 	CU_ADD_TEST(suite, bdev_io_boundary_split_test);
5463 	CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test);
5464 	CU_ADD_TEST(suite, bdev_io_mix_split_test);
5465 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
5466 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
5467 	CU_ADD_TEST(suite, bdev_io_alignment);
5468 	CU_ADD_TEST(suite, bdev_histograms);
5469 	CU_ADD_TEST(suite, bdev_write_zeroes);
5470 	CU_ADD_TEST(suite, bdev_compare_and_write);
5471 	CU_ADD_TEST(suite, bdev_compare);
5472 	CU_ADD_TEST(suite, bdev_zcopy_write);
5473 	CU_ADD_TEST(suite, bdev_zcopy_read);
5474 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
5475 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
5476 	CU_ADD_TEST(suite, bdev_open_ext);
5477 	CU_ADD_TEST(suite, bdev_open_ext_unregister);
5478 	CU_ADD_TEST(suite, bdev_set_io_timeout);
5479 	CU_ADD_TEST(suite, bdev_set_qd_sampling);
5480 	CU_ADD_TEST(suite, lba_range_overlap);
5481 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
5482 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
5483 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
5484 	CU_ADD_TEST(suite, bdev_io_abort);
5485 	CU_ADD_TEST(suite, bdev_unmap);
5486 	CU_ADD_TEST(suite, bdev_write_zeroes_split_test);
5487 	CU_ADD_TEST(suite, bdev_set_options_test);
5488 	CU_ADD_TEST(suite, bdev_multi_allocation);
5489 	CU_ADD_TEST(suite, bdev_get_memory_domains);
5490 	CU_ADD_TEST(suite, bdev_writev_readv_ext);
5491 	CU_ADD_TEST(suite, bdev_register_uuid_alias);
5492 	CU_ADD_TEST(suite, bdev_unregister_by_name);
5493 	CU_ADD_TEST(suite, for_each_bdev_test);
5494 
5495 	allocate_cores(1);
5496 	allocate_threads(1);
5497 	set_thread(0);
5498 
5499 	CU_basic_set_mode(CU_BRM_VERBOSE);
5500 	CU_basic_run_tests();
5501 	num_failures = CU_get_number_of_failures();
5502 	CU_cleanup_registry();
5503 
5504 	free_threads();
5505 	free_cores();
5506 
5507 	return num_failures;
5508 }
5509