1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (C) 2018 Intel Corporation. 3 * All rights reserved. 4 * Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 5 */ 6 7 #include "spdk_internal/cunit.h" 8 /* We have our own mock for this */ 9 #define UNIT_TEST_NO_VTOPHYS 10 #include "common/lib/test_env.c" 11 #include "spdk_internal/mock.h" 12 #include "thread/thread_internal.h" 13 #include "unit/lib/json_mock.c" 14 15 #include <rte_compressdev.h> 16 17 /* There will be one if the data perfectly matches the chunk size, 18 * or there could be an offset into the data and a remainder after 19 * the data or both for a max of 3. 20 */ 21 #define UT_MBUFS_PER_OP 3 22 /* For testing the crossing of a huge page boundary on address translation, 23 * we'll have an extra one but we only test on the source side. 24 */ 25 #define UT_MBUFS_PER_OP_BOUND_TEST 4 26 27 struct spdk_io_channel *g_io_ch; 28 struct rte_comp_op g_comp_op[2]; 29 struct comp_device_qp g_device_qp; 30 struct compress_dev g_device; 31 struct rte_compressdev_capabilities g_cdev_cap; 32 static struct rte_mbuf *g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST]; 33 static struct rte_mbuf *g_dst_mbufs[UT_MBUFS_PER_OP]; 34 static struct rte_mbuf g_expected_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST]; 35 static struct rte_mbuf g_expected_dst_mbufs[UT_MBUFS_PER_OP]; 36 struct compress_io_channel *g_comp_ch; 37 38 /* Those functions are defined as static inline in DPDK, so we can't 39 * mock them straight away. We use defines to redirect them into 40 * our custom functions. 41 */ 42 43 static int ut_total_rte_pktmbuf_attach_extbuf = 0; 44 static void mock_rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr, rte_iova_t buf_iova, 45 uint16_t buf_len, struct rte_mbuf_ext_shared_info *shinfo); 46 #define rte_pktmbuf_attach_extbuf mock_rte_pktmbuf_attach_extbuf 47 static void 48 mock_rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr, rte_iova_t buf_iova, 49 uint16_t buf_len, struct rte_mbuf_ext_shared_info *shinfo) 50 { 51 assert(m != NULL); 52 m->buf_addr = buf_addr; 53 m->buf_iova = buf_iova; 54 m->buf_len = buf_len; 55 m->data_len = m->pkt_len = 0; 56 ut_total_rte_pktmbuf_attach_extbuf++; 57 } 58 59 static char *mock_rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len); 60 #define rte_pktmbuf_append mock_rte_pktmbuf_append 61 static char * 62 mock_rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len) 63 { 64 m->pkt_len = m->pkt_len + len; 65 return NULL; 66 } 67 68 static inline int mock_rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail); 69 #define rte_pktmbuf_chain mock_rte_pktmbuf_chain 70 static inline int 71 mock_rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail) 72 { 73 struct rte_mbuf *cur_tail; 74 75 cur_tail = rte_pktmbuf_lastseg(head); 76 cur_tail->next = tail; 77 78 return 0; 79 } 80 81 uint16_t ut_max_nb_queue_pairs = 0; 82 void __rte_experimental mock_rte_compressdev_info_get(uint8_t dev_id, 83 struct rte_compressdev_info *dev_info); 84 #define rte_compressdev_info_get mock_rte_compressdev_info_get 85 void __rte_experimental 86 mock_rte_compressdev_info_get(uint8_t dev_id, struct rte_compressdev_info *dev_info) 87 { 88 dev_info->max_nb_queue_pairs = ut_max_nb_queue_pairs; 89 dev_info->capabilities = &g_cdev_cap; 90 dev_info->driver_name = "compressdev"; 91 } 92 93 int ut_rte_compressdev_configure = 0; 94 int __rte_experimental mock_rte_compressdev_configure(uint8_t dev_id, 95 struct rte_compressdev_config *config); 96 #define rte_compressdev_configure mock_rte_compressdev_configure 97 int __rte_experimental 98 mock_rte_compressdev_configure(uint8_t dev_id, struct rte_compressdev_config *config) 99 { 100 return ut_rte_compressdev_configure; 101 } 102 103 int ut_rte_compressdev_queue_pair_setup = 0; 104 int __rte_experimental mock_rte_compressdev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id, 105 uint32_t max_inflight_ops, int socket_id); 106 #define rte_compressdev_queue_pair_setup mock_rte_compressdev_queue_pair_setup 107 int __rte_experimental 108 mock_rte_compressdev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id, 109 uint32_t max_inflight_ops, int socket_id) 110 { 111 return ut_rte_compressdev_queue_pair_setup; 112 } 113 114 int ut_rte_compressdev_start = 0; 115 int __rte_experimental mock_rte_compressdev_start(uint8_t dev_id); 116 #define rte_compressdev_start mock_rte_compressdev_start 117 int __rte_experimental 118 mock_rte_compressdev_start(uint8_t dev_id) 119 { 120 return ut_rte_compressdev_start; 121 } 122 123 int ut_rte_compressdev_private_xform_create = 0; 124 int __rte_experimental mock_rte_compressdev_private_xform_create(uint8_t dev_id, 125 const struct rte_comp_xform *xform, void **private_xform); 126 #define rte_compressdev_private_xform_create mock_rte_compressdev_private_xform_create 127 int __rte_experimental 128 mock_rte_compressdev_private_xform_create(uint8_t dev_id, 129 const struct rte_comp_xform *xform, void **private_xform) 130 { 131 return ut_rte_compressdev_private_xform_create; 132 } 133 134 uint8_t ut_rte_compressdev_count = 0; 135 uint8_t __rte_experimental mock_rte_compressdev_count(void); 136 #define rte_compressdev_count mock_rte_compressdev_count 137 uint8_t __rte_experimental 138 mock_rte_compressdev_count(void) 139 { 140 return ut_rte_compressdev_count; 141 } 142 143 struct rte_mempool *ut_rte_comp_op_pool_create = NULL; 144 struct rte_mempool *__rte_experimental mock_rte_comp_op_pool_create(const char *name, 145 unsigned int nb_elts, unsigned int cache_size, uint16_t user_size, 146 int socket_id); 147 #define rte_comp_op_pool_create mock_rte_comp_op_pool_create 148 struct rte_mempool *__rte_experimental 149 mock_rte_comp_op_pool_create(const char *name, unsigned int nb_elts, 150 unsigned int cache_size, uint16_t user_size, int socket_id) 151 { 152 return ut_rte_comp_op_pool_create; 153 } 154 155 void mock_rte_pktmbuf_free(struct rte_mbuf *m); 156 #define rte_pktmbuf_free mock_rte_pktmbuf_free 157 void 158 mock_rte_pktmbuf_free(struct rte_mbuf *m) 159 { 160 } 161 162 void mock_rte_pktmbuf_free_bulk(struct rte_mbuf **m, unsigned int cnt); 163 #define rte_pktmbuf_free_bulk mock_rte_pktmbuf_free_bulk 164 void 165 mock_rte_pktmbuf_free_bulk(struct rte_mbuf **m, unsigned int cnt) 166 { 167 } 168 169 static bool ut_boundary_alloc = false; 170 static int ut_rte_pktmbuf_alloc_bulk = 0; 171 int mock_rte_pktmbuf_alloc_bulk(struct rte_mempool *pool, struct rte_mbuf **mbufs, 172 unsigned count); 173 #define rte_pktmbuf_alloc_bulk mock_rte_pktmbuf_alloc_bulk 174 int 175 mock_rte_pktmbuf_alloc_bulk(struct rte_mempool *pool, struct rte_mbuf **mbufs, 176 unsigned count) 177 { 178 int i; 179 180 /* This mocked function only supports the alloc of up to 3 src and 3 dst. */ 181 ut_rte_pktmbuf_alloc_bulk += count; 182 183 if (ut_rte_pktmbuf_alloc_bulk == 1) { 184 /* allocation of an extra mbuf for boundary cross test */ 185 ut_boundary_alloc = true; 186 g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1]->next = NULL; 187 *mbufs = g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1]; 188 ut_rte_pktmbuf_alloc_bulk = 0; 189 } else if (ut_rte_pktmbuf_alloc_bulk == UT_MBUFS_PER_OP) { 190 /* first test allocation, src mbufs */ 191 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 192 g_src_mbufs[i]->next = NULL; 193 *mbufs++ = g_src_mbufs[i]; 194 } 195 } else if (ut_rte_pktmbuf_alloc_bulk == UT_MBUFS_PER_OP * 2) { 196 /* second test allocation, dst mbufs */ 197 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 198 g_dst_mbufs[i]->next = NULL; 199 *mbufs++ = g_dst_mbufs[i]; 200 } 201 ut_rte_pktmbuf_alloc_bulk = 0; 202 } else { 203 return -1; 204 } 205 return 0; 206 } 207 208 struct rte_mempool * 209 rte_pktmbuf_pool_create(const char *name, unsigned n, unsigned cache_size, 210 uint16_t priv_size, uint16_t data_room_size, int socket_id) 211 { 212 struct spdk_mempool *tmp; 213 214 tmp = spdk_mempool_create("mbuf_mp", 1024, sizeof(struct rte_mbuf), 215 SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, 216 SPDK_ENV_SOCKET_ID_ANY); 217 218 return (struct rte_mempool *)tmp; 219 } 220 221 void 222 rte_mempool_free(struct rte_mempool *mp) 223 { 224 if (mp) { 225 spdk_mempool_free((struct spdk_mempool *)mp); 226 } 227 } 228 229 #include "accel/dpdk_compressdev/accel_dpdk_compressdev.c" 230 231 static void _compress_done(void *arg, int status); 232 static int ut_expected_task_status = 0; 233 void 234 spdk_accel_task_complete(struct spdk_accel_task *accel_task, int status) 235 { 236 CU_ASSERT(status == ut_expected_task_status); 237 accel_task->cb_fn(accel_task, status); 238 } 239 240 /* SPDK stubs */ 241 DEFINE_STUB_V(spdk_accel_module_finish, (void)); 242 DEFINE_STUB_V(spdk_accel_module_list_add, (struct spdk_accel_module_if *accel_module)); 243 244 /* DPDK stubs */ 245 DEFINE_STUB(rte_compressdev_capability_get, const struct rte_compressdev_capabilities *, 246 (uint8_t dev_id, 247 enum rte_comp_algorithm algo), NULL); 248 #define DPDK_DYNFIELD_OFFSET offsetof(struct rte_mbuf, dynfield1[1]) 249 DEFINE_STUB(rte_mbuf_dynfield_register, int, (const struct rte_mbuf_dynfield *params), 250 DPDK_DYNFIELD_OFFSET); 251 DEFINE_STUB(rte_socket_id, unsigned, (void), 0); 252 DEFINE_STUB(rte_vdev_init, int, (const char *name, const char *args), 0); 253 DEFINE_STUB_V(rte_comp_op_free, (struct rte_comp_op *op)); 254 DEFINE_STUB(rte_comp_op_alloc, struct rte_comp_op *, (struct rte_mempool *mempool), NULL); 255 256 int g_small_size_counter = 0; 257 int g_small_size_modify = 0; 258 uint64_t g_small_size = 0; 259 uint64_t 260 spdk_vtophys(const void *buf, uint64_t *size) 261 { 262 g_small_size_counter++; 263 if (g_small_size_counter == g_small_size_modify) { 264 *size = g_small_size; 265 g_small_size_counter = 0; 266 g_small_size_modify = 0; 267 } 268 return (uint64_t)buf; 269 } 270 271 static uint16_t ut_rte_compressdev_dequeue_burst = 0; 272 uint16_t 273 rte_compressdev_dequeue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_comp_op **ops, 274 uint16_t nb_op) 275 { 276 if (ut_rte_compressdev_dequeue_burst == 0) { 277 return 0; 278 } 279 280 ops[0] = &g_comp_op[0]; 281 ops[1] = &g_comp_op[1]; 282 283 return ut_rte_compressdev_dequeue_burst; 284 } 285 286 static uint16_t g_done_count = 1; 287 static void 288 _compress_done(void *arg, int status) 289 { 290 struct spdk_accel_task *task = arg; 291 292 if (status == 0) { 293 CU_ASSERT(*task->output_size == g_comp_op[g_done_count++].produced); 294 } 295 } 296 297 static void 298 _get_mbuf_array(struct rte_mbuf **mbuf_array, struct rte_mbuf *mbuf_head, 299 int mbuf_count, bool null_final) 300 { 301 int i; 302 303 for (i = 0; i < mbuf_count; i++) { 304 mbuf_array[i] = mbuf_head; 305 if (mbuf_head) { 306 mbuf_head = mbuf_head->next; 307 } 308 } 309 if (null_final) { 310 mbuf_array[i - 1] = NULL; 311 } 312 } 313 314 #define FAKE_ENQUEUE_SUCCESS 255 315 #define FAKE_ENQUEUE_ERROR 128 316 #define FAKE_ENQUEUE_BUSY 64 317 static uint16_t ut_enqueue_value = FAKE_ENQUEUE_SUCCESS; 318 static struct rte_comp_op ut_expected_op; 319 uint16_t 320 rte_compressdev_enqueue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_comp_op **ops, 321 uint16_t nb_ops) 322 { 323 struct rte_comp_op *op = *ops; 324 struct rte_mbuf *op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 325 struct rte_mbuf *exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 326 int i, num_src_mbufs = UT_MBUFS_PER_OP; 327 328 switch (ut_enqueue_value) { 329 case FAKE_ENQUEUE_BUSY: 330 op->status = RTE_COMP_OP_STATUS_NOT_PROCESSED; 331 return 0; 332 case FAKE_ENQUEUE_SUCCESS: 333 op->status = RTE_COMP_OP_STATUS_SUCCESS; 334 return 1; 335 case FAKE_ENQUEUE_ERROR: 336 op->status = RTE_COMP_OP_STATUS_ERROR; 337 return 0; 338 default: 339 break; 340 } 341 342 /* by design the compress module will never send more than 1 op at a time */ 343 CU_ASSERT(op->private_xform == ut_expected_op.private_xform); 344 345 /* setup our local pointers to the chained mbufs, those pointed to in the 346 * operation struct and the expected values. 347 */ 348 _get_mbuf_array(op_mbuf, op->m_src, SPDK_COUNTOF(op_mbuf), true); 349 _get_mbuf_array(exp_mbuf, ut_expected_op.m_src, SPDK_COUNTOF(exp_mbuf), true); 350 351 if (ut_boundary_alloc == true) { 352 /* if we crossed a boundary, we need to check the 4th src mbuf and 353 * reset the global that is used to identify whether we crossed 354 * or not 355 */ 356 num_src_mbufs = UT_MBUFS_PER_OP_BOUND_TEST; 357 exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] = ut_expected_op.m_src->next->next->next; 358 op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] = op->m_src->next->next->next; 359 ut_boundary_alloc = false; 360 } 361 362 for (i = 0; i < num_src_mbufs; i++) { 363 CU_ASSERT(op_mbuf[i]->buf_addr == exp_mbuf[i]->buf_addr); 364 CU_ASSERT(op_mbuf[i]->buf_iova == exp_mbuf[i]->buf_iova); 365 CU_ASSERT(op_mbuf[i]->buf_len == exp_mbuf[i]->buf_len); 366 CU_ASSERT(op_mbuf[i]->pkt_len == exp_mbuf[i]->pkt_len); 367 } 368 369 /* if only 3 mbufs were used in the test, the 4th should be zeroed */ 370 if (num_src_mbufs == UT_MBUFS_PER_OP) { 371 CU_ASSERT(op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] == NULL); 372 CU_ASSERT(exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] == NULL); 373 } 374 CU_ASSERT(*RTE_MBUF_DYNFIELD(op->m_src, g_mbuf_offset, uint64_t *) == 375 *RTE_MBUF_DYNFIELD(ut_expected_op.m_src, g_mbuf_offset, uint64_t *)); 376 CU_ASSERT(op->src.offset == ut_expected_op.src.offset); 377 CU_ASSERT(op->src.length == ut_expected_op.src.length); 378 379 /* check dst mbuf values */ 380 _get_mbuf_array(op_mbuf, op->m_dst, SPDK_COUNTOF(op_mbuf), true); 381 _get_mbuf_array(exp_mbuf, ut_expected_op.m_dst, SPDK_COUNTOF(exp_mbuf), true); 382 383 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 384 CU_ASSERT(op_mbuf[i]->buf_addr == exp_mbuf[i]->buf_addr); 385 CU_ASSERT(op_mbuf[i]->buf_iova == exp_mbuf[i]->buf_iova); 386 CU_ASSERT(op_mbuf[i]->buf_len == exp_mbuf[i]->buf_len); 387 CU_ASSERT(op_mbuf[i]->pkt_len == exp_mbuf[i]->pkt_len); 388 } 389 CU_ASSERT(op->dst.offset == ut_expected_op.dst.offset); 390 391 return ut_enqueue_value; 392 } 393 394 /* Global setup for all tests that share a bunch of preparation... */ 395 static int 396 test_setup(void) 397 { 398 struct spdk_thread *thread; 399 int i; 400 401 spdk_thread_lib_init(NULL, 0); 402 403 thread = spdk_thread_create(NULL, NULL); 404 spdk_set_thread(thread); 405 406 g_comp_xform = (struct rte_comp_xform) { 407 .type = RTE_COMP_COMPRESS, 408 .compress = { 409 .algo = RTE_COMP_ALGO_DEFLATE, 410 .deflate.huffman = RTE_COMP_HUFFMAN_DEFAULT, 411 .level = RTE_COMP_LEVEL_MAX, 412 .window_size = DEFAULT_WINDOW_SIZE, 413 .chksum = RTE_COMP_CHECKSUM_NONE, 414 .hash_algo = RTE_COMP_HASH_ALGO_NONE 415 } 416 }; 417 418 g_decomp_xform = (struct rte_comp_xform) { 419 .type = RTE_COMP_DECOMPRESS, 420 .decompress = { 421 .algo = RTE_COMP_ALGO_DEFLATE, 422 .chksum = RTE_COMP_CHECKSUM_NONE, 423 .window_size = DEFAULT_WINDOW_SIZE, 424 .hash_algo = RTE_COMP_HASH_ALGO_NONE 425 } 426 }; 427 g_device.comp_xform = &g_comp_xform; 428 g_device.decomp_xform = &g_decomp_xform; 429 g_cdev_cap.comp_feature_flags = RTE_COMP_FF_SHAREABLE_PRIV_XFORM; 430 g_device.cdev_info.driver_name = "compressdev"; 431 g_device.cdev_info.capabilities = &g_cdev_cap; 432 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST; i++) { 433 g_src_mbufs[i] = spdk_zmalloc(sizeof(struct rte_mbuf), 0x40, NULL, 434 SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 435 } 436 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 437 g_dst_mbufs[i] = spdk_zmalloc(sizeof(struct rte_mbuf), 0x40, NULL, 438 SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 439 } 440 441 g_io_ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct compress_io_channel)); 442 g_io_ch->thread = thread; 443 g_comp_ch = (struct compress_io_channel *)spdk_io_channel_get_ctx(g_io_ch); 444 g_comp_ch->device_qp = &g_device_qp; 445 g_comp_ch->device_qp->device = &g_device; 446 g_device_qp.device->sgl_in = true; 447 g_device_qp.device->sgl_out = true; 448 g_comp_ch->src_mbufs = calloc(UT_MBUFS_PER_OP_BOUND_TEST, sizeof(void *)); 449 g_comp_ch->dst_mbufs = calloc(UT_MBUFS_PER_OP, sizeof(void *)); 450 STAILQ_INIT(&g_comp_ch->queued_tasks); 451 452 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST - 1; i++) { 453 g_expected_src_mbufs[i].next = &g_expected_src_mbufs[i + 1]; 454 } 455 g_expected_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1].next = NULL; 456 457 /* we only test w/4 mbufs on src side */ 458 for (i = 0; i < UT_MBUFS_PER_OP - 1; i++) { 459 g_expected_dst_mbufs[i].next = &g_expected_dst_mbufs[i + 1]; 460 } 461 g_expected_dst_mbufs[UT_MBUFS_PER_OP - 1].next = NULL; 462 g_mbuf_offset = DPDK_DYNFIELD_OFFSET; 463 464 return 0; 465 } 466 467 /* Global teardown for all tests */ 468 static int 469 test_cleanup(void) 470 { 471 struct spdk_thread *thread; 472 int i; 473 474 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST; i++) { 475 spdk_free(g_src_mbufs[i]); 476 } 477 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 478 spdk_free(g_dst_mbufs[i]); 479 } 480 free(g_comp_ch->src_mbufs); 481 free(g_comp_ch->dst_mbufs); 482 free(g_io_ch); 483 484 thread = spdk_get_thread(); 485 spdk_thread_exit(thread); 486 while (!spdk_thread_is_exited(thread)) { 487 spdk_thread_poll(thread, 0, 0); 488 } 489 spdk_thread_destroy(thread); 490 491 spdk_thread_lib_fini(); 492 493 return 0; 494 } 495 496 static void 497 test_compress_operation(void) 498 { 499 struct iovec src_iovs[3] = {}; 500 int src_iovcnt; 501 struct iovec dst_iovs[3] = {}; 502 int dst_iovcnt; 503 struct spdk_accel_task task = {}; 504 int rc, i; 505 struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP]; 506 struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP]; 507 uint32_t output_size; 508 509 src_iovcnt = dst_iovcnt = 3; 510 for (i = 0; i < dst_iovcnt; i++) { 511 src_iovs[i].iov_len = 0x1000; 512 dst_iovs[i].iov_len = 0x1000; 513 src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i; 514 dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i; 515 } 516 517 task.cb_fn = _compress_done; 518 task.op_code = SPDK_ACCEL_OPC_COMPRESS; 519 task.output_size = &output_size; 520 task.d.iovs = dst_iovs; 521 task.d.iovcnt = dst_iovcnt; 522 task.s.iovs = src_iovs; 523 task.s.iovcnt = src_iovcnt; 524 525 /* test rte_comp_op_alloc failure */ 526 MOCK_SET(rte_comp_op_alloc, NULL); 527 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 528 rc = _compress_operation(g_comp_ch, &task); 529 CU_ASSERT(rc == 0); 530 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == false); 531 while (!STAILQ_EMPTY(&g_comp_ch->queued_tasks)) { 532 STAILQ_REMOVE_HEAD(&g_comp_ch->queued_tasks, link); 533 } 534 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 535 536 /* test mempool get failure */ 537 MOCK_SET(rte_comp_op_alloc, &g_comp_op[0]); 538 ut_rte_pktmbuf_alloc_bulk = -1; 539 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 540 rc = _compress_operation(g_comp_ch, &task); 541 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == false); 542 while (!STAILQ_EMPTY(&g_comp_ch->queued_tasks)) { 543 STAILQ_REMOVE_HEAD(&g_comp_ch->queued_tasks, link); 544 } 545 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 546 CU_ASSERT(rc == 0); 547 ut_rte_pktmbuf_alloc_bulk = 0; 548 549 /* test enqueue failure busy */ 550 ut_enqueue_value = FAKE_ENQUEUE_BUSY; 551 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 552 rc = _compress_operation(g_comp_ch, &task); 553 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == false); 554 while (!STAILQ_EMPTY(&g_comp_ch->queued_tasks)) { 555 STAILQ_REMOVE_HEAD(&g_comp_ch->queued_tasks, link); 556 } 557 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 558 CU_ASSERT(rc == 0); 559 ut_enqueue_value = 1; 560 561 /* test enqueue failure error */ 562 ut_enqueue_value = FAKE_ENQUEUE_ERROR; 563 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 564 rc = _compress_operation(g_comp_ch, &task); 565 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 566 CU_ASSERT(rc == -EINVAL); 567 ut_enqueue_value = FAKE_ENQUEUE_SUCCESS; 568 569 /* test success with 3 vector iovec */ 570 ut_expected_op.private_xform = &g_decomp_xform; 571 ut_expected_op.src.offset = 0; 572 ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len; 573 574 /* setup the src expected values */ 575 _get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false); 576 ut_expected_op.m_src = exp_src_mbuf[0]; 577 578 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 579 *RTE_MBUF_DYNFIELD(exp_src_mbuf[i], g_mbuf_offset, uint64_t *) = (uint64_t)&task; 580 exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base; 581 exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len); 582 exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len; 583 exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len; 584 } 585 586 /* setup the dst expected values */ 587 _get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false); 588 ut_expected_op.dst.offset = 0; 589 ut_expected_op.m_dst = exp_dst_mbuf[0]; 590 591 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 592 exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base; 593 exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len); 594 exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len; 595 exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len; 596 } 597 598 rc = _compress_operation(g_comp_ch, &task); 599 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 600 CU_ASSERT(rc == 0); 601 602 /* test sgl out failure */ 603 g_device.sgl_out = false; 604 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 605 rc = _compress_operation(g_comp_ch, &task); 606 CU_ASSERT(rc == -EINVAL); 607 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 608 g_device.sgl_out = true; 609 610 /* test sgl in failure */ 611 g_device.sgl_in = false; 612 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 613 rc = _compress_operation(g_comp_ch, &task); 614 CU_ASSERT(rc == -EINVAL); 615 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 616 g_device.sgl_in = true; 617 } 618 619 static void 620 test_compress_operation_cross_boundary(void) 621 { 622 struct iovec src_iovs[3] = {}; 623 int src_iovcnt; 624 struct iovec dst_iovs[3] = {}; 625 int dst_iovcnt; 626 int rc, i; 627 struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 628 struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 629 struct spdk_accel_task task = {}; 630 uint32_t output_size; 631 632 /* Setup the same basic 3 IOV test as used in the simple success case 633 * but then we'll start testing a vtophy boundary crossing at each 634 * position. 635 */ 636 src_iovcnt = dst_iovcnt = 3; 637 for (i = 0; i < dst_iovcnt; i++) { 638 src_iovs[i].iov_len = 0x1000; 639 dst_iovs[i].iov_len = 0x1000; 640 src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i; 641 dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i; 642 } 643 644 ut_expected_op.private_xform = &g_decomp_xform; 645 ut_expected_op.src.offset = 0; 646 ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len; 647 648 /* setup the src expected values */ 649 _get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false); 650 ut_expected_op.m_src = exp_src_mbuf[0]; 651 652 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 653 *RTE_MBUF_DYNFIELD(exp_src_mbuf[i], g_mbuf_offset, uint64_t *) = (uint64_t)&task; 654 exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base; 655 exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len); 656 exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len; 657 exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len; 658 } 659 660 /* setup the dst expected values, we don't test needing a 4th dst mbuf */ 661 _get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false); 662 ut_expected_op.dst.offset = 0; 663 ut_expected_op.m_dst = exp_dst_mbuf[0]; 664 665 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 666 exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base; 667 exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len); 668 exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len; 669 exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len; 670 } 671 672 /* force the 1st IOV to get partial length from spdk_vtophys */ 673 g_small_size_counter = 0; 674 g_small_size_modify = 1; 675 g_small_size = 0x800; 676 *RTE_MBUF_DYNFIELD(exp_src_mbuf[3], g_mbuf_offset, uint64_t *) = (uint64_t)&task; 677 678 /* first only has shorter length */ 679 exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x800; 680 681 /* 2nd was inserted by the boundary crossing condition and finishes off 682 * the length from the first */ 683 exp_src_mbuf[1]->buf_addr = (void *)0x10000800; 684 exp_src_mbuf[1]->buf_iova = 0x10000800; 685 exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x800; 686 687 /* 3rd looks like that the 2nd would have */ 688 exp_src_mbuf[2]->buf_addr = (void *)0x10001000; 689 exp_src_mbuf[2]->buf_iova = 0x10001000; 690 exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x1000; 691 692 /* a new 4th looks like what the 3rd would have */ 693 exp_src_mbuf[3]->buf_addr = (void *)0x10002000; 694 exp_src_mbuf[3]->buf_iova = 0x10002000; 695 exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x1000; 696 697 task.cb_fn = _compress_done; 698 task.op_code = SPDK_ACCEL_OPC_COMPRESS; 699 task.output_size = &output_size; 700 task.d.iovs = dst_iovs; 701 task.d.iovcnt = dst_iovcnt; 702 task.s.iovs = src_iovs; 703 task.s.iovcnt = src_iovcnt; 704 705 rc = _compress_operation(g_comp_ch, &task); 706 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 707 CU_ASSERT(rc == 0); 708 709 /* Now force the 2nd IOV to get partial length from spdk_vtophys */ 710 g_small_size_counter = 0; 711 g_small_size_modify = 2; 712 g_small_size = 0x800; 713 714 /* first is normal */ 715 exp_src_mbuf[0]->buf_addr = (void *)0x10000000; 716 exp_src_mbuf[0]->buf_iova = 0x10000000; 717 exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x1000; 718 719 /* second only has shorter length */ 720 exp_src_mbuf[1]->buf_addr = (void *)0x10001000; 721 exp_src_mbuf[1]->buf_iova = 0x10001000; 722 exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x800; 723 724 /* 3rd was inserted by the boundary crossing condition and finishes off 725 * the length from the first */ 726 exp_src_mbuf[2]->buf_addr = (void *)0x10001800; 727 exp_src_mbuf[2]->buf_iova = 0x10001800; 728 exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x800; 729 730 /* a new 4th looks like what the 3rd would have */ 731 exp_src_mbuf[3]->buf_addr = (void *)0x10002000; 732 exp_src_mbuf[3]->buf_iova = 0x10002000; 733 exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x1000; 734 735 rc = _compress_operation(g_comp_ch, &task); 736 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 737 CU_ASSERT(rc == 0); 738 739 /* Finally force the 3rd IOV to get partial length from spdk_vtophys */ 740 g_small_size_counter = 0; 741 g_small_size_modify = 3; 742 g_small_size = 0x800; 743 744 /* first is normal */ 745 exp_src_mbuf[0]->buf_addr = (void *)0x10000000; 746 exp_src_mbuf[0]->buf_iova = 0x10000000; 747 exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x1000; 748 749 /* second is normal */ 750 exp_src_mbuf[1]->buf_addr = (void *)0x10001000; 751 exp_src_mbuf[1]->buf_iova = 0x10001000; 752 exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x1000; 753 754 /* 3rd has shorter length */ 755 exp_src_mbuf[2]->buf_addr = (void *)0x10002000; 756 exp_src_mbuf[2]->buf_iova = 0x10002000; 757 exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x800; 758 759 /* a new 4th handles the remainder from the 3rd */ 760 exp_src_mbuf[3]->buf_addr = (void *)0x10002800; 761 exp_src_mbuf[3]->buf_iova = 0x10002800; 762 exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x800; 763 764 rc = _compress_operation(g_comp_ch, &task); 765 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 766 CU_ASSERT(rc == 0); 767 768 /* Single input iov is split on page boundary, sgl_in is not supported */ 769 g_device.sgl_in = false; 770 g_small_size_counter = 0; 771 g_small_size_modify = 1; 772 g_small_size = 0x800; 773 rc = _compress_operation(g_comp_ch, &task); 774 CU_ASSERT(rc == -EINVAL); 775 g_device.sgl_in = true; 776 777 /* Single output iov is split on page boundary, sgl_out is not supported */ 778 g_device.sgl_out = false; 779 g_small_size_counter = 0; 780 g_small_size_modify = 2; 781 g_small_size = 0x800; 782 rc = _compress_operation(g_comp_ch, &task); 783 CU_ASSERT(rc == -EINVAL); 784 g_device.sgl_out = true; 785 } 786 787 static void 788 test_setup_compress_mbuf(void) 789 { 790 struct iovec src_iovs = {}; 791 int src_iovcnt = 1; 792 struct spdk_accel_task task = {}; 793 int src_mbuf_added = 0; 794 uint64_t total_length; 795 struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 796 int rc, i; 797 798 /* setup the src expected values */ 799 _get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false); 800 801 /* no splitting */ 802 total_length = 0; 803 ut_total_rte_pktmbuf_attach_extbuf = 0; 804 src_iovs.iov_len = 0x1000; 805 src_iovs.iov_base = (void *)0x10000000 + 0x1000; 806 rc = _setup_compress_mbuf(exp_src_mbuf, &src_mbuf_added, &total_length, 807 &src_iovs, src_iovcnt, &task); 808 CU_ASSERT(rc == 0); 809 CU_ASSERT(total_length = src_iovs.iov_len); 810 CU_ASSERT(src_mbuf_added == 0); 811 CU_ASSERT(ut_total_rte_pktmbuf_attach_extbuf == 1); 812 813 /* one split, for splitting tests we need the global mbuf array unlinked, 814 * otherwise the functional code will attempt to link them but if they are 815 * already linked, it will just create a chain that links to itself */ 816 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST - 1; i++) { 817 g_expected_src_mbufs[i].next = NULL; 818 } 819 total_length = 0; 820 ut_total_rte_pktmbuf_attach_extbuf = 0; 821 src_iovs.iov_len = 0x1000 + MBUF_SPLIT; 822 exp_src_mbuf[0]->buf_len = src_iovs.iov_len; 823 exp_src_mbuf[0]->pkt_len = src_iovs.iov_len; 824 rc = _setup_compress_mbuf(exp_src_mbuf, &src_mbuf_added, &total_length, 825 &src_iovs, src_iovcnt, &task); 826 CU_ASSERT(rc == 0); 827 CU_ASSERT(total_length = src_iovs.iov_len); 828 CU_ASSERT(src_mbuf_added == 0); 829 CU_ASSERT(ut_total_rte_pktmbuf_attach_extbuf == 2); 830 831 /* two splits */ 832 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST - 1; i++) { 833 g_expected_src_mbufs[i].next = NULL; 834 } 835 total_length = 0; 836 ut_total_rte_pktmbuf_attach_extbuf = 0; 837 src_iovs.iov_len = 0x1000 + 2 * MBUF_SPLIT; 838 exp_src_mbuf[0]->buf_len = src_iovs.iov_len; 839 exp_src_mbuf[0]->pkt_len = src_iovs.iov_len; 840 841 rc = _setup_compress_mbuf(exp_src_mbuf, &src_mbuf_added, &total_length, 842 &src_iovs, src_iovcnt, &task); 843 CU_ASSERT(rc == 0); 844 CU_ASSERT(total_length = src_iovs.iov_len); 845 CU_ASSERT(src_mbuf_added == 0); 846 CU_ASSERT(ut_total_rte_pktmbuf_attach_extbuf == 3); 847 848 /* relink the global mbuf array */ 849 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST - 1; i++) { 850 g_expected_src_mbufs[i].next = &g_expected_src_mbufs[i + 1]; 851 } 852 } 853 854 static void 855 test_poller(void) 856 { 857 int rc; 858 struct compress_io_channel *args; 859 struct rte_mbuf mbuf[4]; /* one src, one dst, 2 ops */ 860 struct iovec src_iovs[3] = {}; 861 struct iovec dst_iovs[3] = {}; 862 uint32_t output_size[2]; 863 struct spdk_accel_task task[2] = {}; 864 struct spdk_accel_task *task_to_resubmit; 865 struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP]; 866 struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP]; 867 int i; 868 869 args = calloc(1, sizeof(*args)); 870 SPDK_CU_ASSERT_FATAL(args != NULL); 871 memset(&g_comp_op[0], 0, sizeof(struct rte_comp_op)); 872 g_comp_op[0].m_src = &mbuf[0]; 873 g_comp_op[1].m_src = &mbuf[1]; 874 g_comp_op[0].m_dst = &mbuf[2]; 875 g_comp_op[1].m_dst = &mbuf[3]; 876 for (i = 0; i < 3; i++) { 877 src_iovs[i].iov_len = 0x1000; 878 dst_iovs[i].iov_len = 0x1000; 879 src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i; 880 dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i; 881 } 882 task[0].cb_fn = task[1].cb_fn = _compress_done; 883 task[0].output_size = &output_size[0]; 884 task[1].output_size = &output_size[1]; 885 886 /* Error from dequeue, nothing needing to be resubmitted. 887 */ 888 ut_rte_compressdev_dequeue_burst = 1; 889 ut_expected_task_status = RTE_COMP_OP_STATUS_NOT_PROCESSED; 890 /* setup what we want dequeue to return for the op */ 891 *RTE_MBUF_DYNFIELD(g_comp_op[0].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)&task[0]; 892 g_comp_op[0].produced = 1; 893 g_done_count = 0; 894 g_comp_op[0].status = RTE_COMP_OP_STATUS_NOT_PROCESSED; 895 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 896 rc = comp_dev_poller((void *)g_comp_ch); 897 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 898 CU_ASSERT(rc == SPDK_POLLER_BUSY); 899 ut_expected_task_status = RTE_COMP_OP_STATUS_SUCCESS; 900 901 /* Success from dequeue, 2 ops. nothing needing to be resubmitted. 902 */ 903 ut_rte_compressdev_dequeue_burst = 2; 904 /* setup what we want dequeue to return for the op */ 905 *RTE_MBUF_DYNFIELD(g_comp_op[0].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)&task[0]; 906 g_comp_op[0].produced = 16; 907 g_comp_op[0].status = RTE_COMP_OP_STATUS_SUCCESS; 908 *RTE_MBUF_DYNFIELD(g_comp_op[1].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)&task[1]; 909 g_comp_op[1].produced = 32; 910 g_comp_op[1].status = RTE_COMP_OP_STATUS_SUCCESS; 911 g_done_count = 0; 912 ut_enqueue_value = FAKE_ENQUEUE_SUCCESS; 913 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 914 rc = comp_dev_poller((void *)g_comp_ch); 915 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 916 CU_ASSERT(rc == SPDK_POLLER_BUSY); 917 918 /* One to dequeue, one op to be resubmitted. */ 919 ut_rte_compressdev_dequeue_burst = 1; 920 /* setup what we want dequeue to return for the op */ 921 *RTE_MBUF_DYNFIELD(g_comp_op[0].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)&task[0]; 922 g_comp_op[0].produced = 16; 923 g_comp_op[0].status = 0; 924 g_done_count = 0; 925 task_to_resubmit = calloc(1, sizeof(struct spdk_accel_task)); 926 SPDK_CU_ASSERT_FATAL(task_to_resubmit != NULL); 927 task_to_resubmit->s.iovs = &src_iovs[0]; 928 task_to_resubmit->s.iovcnt = 3; 929 task_to_resubmit->d.iovs = &dst_iovs[0]; 930 task_to_resubmit->d.iovcnt = 3; 931 task_to_resubmit->op_code = SPDK_ACCEL_OPC_COMPRESS; 932 task_to_resubmit->cb_arg = args; 933 ut_enqueue_value = FAKE_ENQUEUE_SUCCESS; 934 ut_expected_op.private_xform = &g_decomp_xform; 935 ut_expected_op.src.offset = 0; 936 ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len; 937 938 /* setup the src expected values */ 939 _get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false); 940 ut_expected_op.m_src = exp_src_mbuf[0]; 941 942 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 943 *RTE_MBUF_DYNFIELD(exp_src_mbuf[i], g_mbuf_offset, uint64_t *) = (uint64_t)&task[0]; 944 exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base; 945 exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len); 946 exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len; 947 exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len; 948 } 949 950 /* setup the dst expected values */ 951 _get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false); 952 ut_expected_op.dst.offset = 0; 953 ut_expected_op.m_dst = exp_dst_mbuf[0]; 954 955 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 956 exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base; 957 exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len); 958 exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len; 959 exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len; 960 } 961 MOCK_SET(rte_comp_op_alloc, &g_comp_op[0]); 962 STAILQ_INSERT_TAIL(&g_comp_ch->queued_tasks, 963 task_to_resubmit, 964 link); 965 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == false); 966 rc = comp_dev_poller((void *)g_comp_ch); 967 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 968 CU_ASSERT(rc == SPDK_POLLER_BUSY); 969 970 free(task_to_resubmit); 971 free(args); 972 } 973 974 static void 975 test_initdrivers(void) 976 { 977 int rc; 978 979 /* compressdev count 0 */ 980 rc = accel_init_compress_drivers(); 981 CU_ASSERT(rc == 0); 982 983 /* bogus count */ 984 ut_rte_compressdev_count = RTE_COMPRESS_MAX_DEVS + 1; 985 rc = accel_init_compress_drivers(); 986 CU_ASSERT(rc == -EINVAL); 987 988 /* failure with rte_mbuf_dynfield_register */ 989 ut_rte_compressdev_count = 1; 990 MOCK_SET(rte_mbuf_dynfield_register, -1); 991 rc = accel_init_compress_drivers(); 992 CU_ASSERT(rc == -EINVAL); 993 MOCK_SET(rte_mbuf_dynfield_register, DPDK_DYNFIELD_OFFSET); 994 995 /* error on create_compress_dev() */ 996 ut_rte_comp_op_pool_create = (struct rte_mempool *)0xDEADBEEF; 997 ut_rte_compressdev_count = 1; 998 ut_rte_compressdev_configure = -1; 999 rc = accel_init_compress_drivers(); 1000 CU_ASSERT(rc == -1); 1001 1002 /* error on create_compress_dev() but coverage for large num queues */ 1003 ut_max_nb_queue_pairs = 99; 1004 rc = accel_init_compress_drivers(); 1005 CU_ASSERT(rc == -1); 1006 1007 /* qpair setup fails */ 1008 ut_rte_compressdev_configure = 0; 1009 ut_max_nb_queue_pairs = 0; 1010 ut_rte_compressdev_queue_pair_setup = -1; 1011 rc = accel_init_compress_drivers(); 1012 CU_ASSERT(rc == -EINVAL); 1013 1014 /* rte_compressdev_start fails */ 1015 ut_rte_compressdev_queue_pair_setup = 0; 1016 ut_rte_compressdev_start = -1; 1017 rc = accel_init_compress_drivers(); 1018 CU_ASSERT(rc == -1); 1019 1020 /* rte_compressdev_private_xform_create() fails */ 1021 ut_rte_compressdev_start = 0; 1022 ut_rte_compressdev_private_xform_create = -2; 1023 rc = accel_init_compress_drivers(); 1024 CU_ASSERT(rc == -2); 1025 1026 /* success */ 1027 ut_rte_compressdev_private_xform_create = 0; 1028 rc = accel_init_compress_drivers(); 1029 CU_ASSERT(rc == 0); 1030 } 1031 1032 int 1033 main(int argc, char **argv) 1034 { 1035 CU_pSuite suite = NULL; 1036 unsigned int num_failures; 1037 1038 CU_initialize_registry(); 1039 1040 suite = CU_add_suite("compress", test_setup, test_cleanup); 1041 CU_ADD_TEST(suite, test_compress_operation); 1042 CU_ADD_TEST(suite, test_compress_operation_cross_boundary); 1043 CU_ADD_TEST(suite, test_setup_compress_mbuf); 1044 CU_ADD_TEST(suite, test_initdrivers); 1045 CU_ADD_TEST(suite, test_poller); 1046 1047 num_failures = spdk_ut_run_tests(argc, argv, NULL); 1048 CU_cleanup_registry(); 1049 return num_failures; 1050 } 1051