xref: /spdk/test/unit/lib/accel/dpdk_compressdev.c/accel_dpdk_compressdev_ut.c (revision 30afc27748e69257ca50f7e3a4b4ca6466ffc26b)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation.
3  *   All rights reserved.
4  *   Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk_internal/cunit.h"
8 /* We have our own mock for this */
9 #define UNIT_TEST_NO_VTOPHYS
10 #include "common/lib/test_env.c"
11 #include "spdk_internal/mock.h"
12 #include "thread/thread_internal.h"
13 #include "unit/lib/json_mock.c"
14 
15 #include <rte_compressdev.h>
16 
17 /* There will be one if the data perfectly matches the chunk size,
18  * or there could be an offset into the data and a remainder after
19  * the data or both for a max of 3.
20  */
21 #define UT_MBUFS_PER_OP 3
22 /* For testing the crossing of a huge page boundary on address translation,
23  * we'll have an extra one but we only test on the source side.
24  */
25 #define UT_MBUFS_PER_OP_BOUND_TEST 4
26 
27 struct spdk_io_channel *g_io_ch;
28 struct rte_comp_op g_comp_op[2];
29 struct comp_device_qp g_device_qp;
30 struct compress_dev g_device;
31 struct rte_compressdev_capabilities g_cdev_cap;
32 static struct rte_mbuf *g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST];
33 static struct rte_mbuf *g_dst_mbufs[UT_MBUFS_PER_OP];
34 static struct rte_mbuf g_expected_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST];
35 static struct rte_mbuf g_expected_dst_mbufs[UT_MBUFS_PER_OP];
36 struct compress_io_channel *g_comp_ch;
37 
38 /* Those functions are defined as static inline in DPDK, so we can't
39  * mock them straight away. We use defines to redirect them into
40  * our custom functions.
41  */
42 
43 static int ut_total_rte_pktmbuf_attach_extbuf = 0;
44 static void mock_rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr, rte_iova_t buf_iova,
45 		uint16_t buf_len, struct rte_mbuf_ext_shared_info *shinfo);
46 #define rte_pktmbuf_attach_extbuf mock_rte_pktmbuf_attach_extbuf
47 static void
48 mock_rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr, rte_iova_t buf_iova,
49 			       uint16_t buf_len, struct rte_mbuf_ext_shared_info *shinfo)
50 {
51 	assert(m != NULL);
52 	m->buf_addr = buf_addr;
53 	m->buf_iova = buf_iova;
54 	m->buf_len = buf_len;
55 	m->data_len = m->pkt_len = 0;
56 	ut_total_rte_pktmbuf_attach_extbuf++;
57 }
58 
59 static char *mock_rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len);
60 #define rte_pktmbuf_append mock_rte_pktmbuf_append
61 static char *
62 mock_rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len)
63 {
64 	m->pkt_len = m->pkt_len + len;
65 	return NULL;
66 }
67 
68 static inline int mock_rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail);
69 #define rte_pktmbuf_chain mock_rte_pktmbuf_chain
70 static inline int
71 mock_rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail)
72 {
73 	struct rte_mbuf *cur_tail;
74 
75 	cur_tail = rte_pktmbuf_lastseg(head);
76 	cur_tail->next = tail;
77 
78 	return 0;
79 }
80 
81 uint16_t ut_max_nb_queue_pairs = 0;
82 void __rte_experimental mock_rte_compressdev_info_get(uint8_t dev_id,
83 		struct rte_compressdev_info *dev_info);
84 #define rte_compressdev_info_get mock_rte_compressdev_info_get
85 void __rte_experimental
86 mock_rte_compressdev_info_get(uint8_t dev_id, struct rte_compressdev_info *dev_info)
87 {
88 	dev_info->max_nb_queue_pairs = ut_max_nb_queue_pairs;
89 	dev_info->capabilities = &g_cdev_cap;
90 	dev_info->driver_name = "compressdev";
91 }
92 
93 int ut_rte_compressdev_configure = 0;
94 int __rte_experimental mock_rte_compressdev_configure(uint8_t dev_id,
95 		struct rte_compressdev_config *config);
96 #define rte_compressdev_configure mock_rte_compressdev_configure
97 int __rte_experimental
98 mock_rte_compressdev_configure(uint8_t dev_id, struct rte_compressdev_config *config)
99 {
100 	return ut_rte_compressdev_configure;
101 }
102 
103 int ut_rte_compressdev_queue_pair_setup = 0;
104 int __rte_experimental mock_rte_compressdev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id,
105 		uint32_t max_inflight_ops, int socket_id);
106 #define rte_compressdev_queue_pair_setup mock_rte_compressdev_queue_pair_setup
107 int __rte_experimental
108 mock_rte_compressdev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id,
109 				      uint32_t max_inflight_ops, int socket_id)
110 {
111 	return ut_rte_compressdev_queue_pair_setup;
112 }
113 
114 int ut_rte_compressdev_start = 0;
115 int __rte_experimental mock_rte_compressdev_start(uint8_t dev_id);
116 #define rte_compressdev_start mock_rte_compressdev_start
117 int __rte_experimental
118 mock_rte_compressdev_start(uint8_t dev_id)
119 {
120 	return ut_rte_compressdev_start;
121 }
122 
123 int ut_rte_compressdev_private_xform_create = 0;
124 int __rte_experimental mock_rte_compressdev_private_xform_create(uint8_t dev_id,
125 		const struct rte_comp_xform *xform, void **private_xform);
126 #define rte_compressdev_private_xform_create mock_rte_compressdev_private_xform_create
127 int __rte_experimental
128 mock_rte_compressdev_private_xform_create(uint8_t dev_id,
129 		const struct rte_comp_xform *xform, void **private_xform)
130 {
131 	return ut_rte_compressdev_private_xform_create;
132 }
133 
134 uint8_t ut_rte_compressdev_count = 0;
135 uint8_t __rte_experimental mock_rte_compressdev_count(void);
136 #define rte_compressdev_count mock_rte_compressdev_count
137 uint8_t __rte_experimental
138 mock_rte_compressdev_count(void)
139 {
140 	return ut_rte_compressdev_count;
141 }
142 
143 struct rte_mempool *ut_rte_comp_op_pool_create = NULL;
144 struct rte_mempool *__rte_experimental mock_rte_comp_op_pool_create(const char *name,
145 		unsigned int nb_elts, unsigned int cache_size, uint16_t user_size,
146 		int socket_id);
147 #define rte_comp_op_pool_create mock_rte_comp_op_pool_create
148 struct rte_mempool *__rte_experimental
149 mock_rte_comp_op_pool_create(const char *name, unsigned int nb_elts,
150 			     unsigned int cache_size, uint16_t user_size, int socket_id)
151 {
152 	return ut_rte_comp_op_pool_create;
153 }
154 
155 void mock_rte_pktmbuf_free(struct rte_mbuf *m);
156 #define rte_pktmbuf_free mock_rte_pktmbuf_free
157 void
158 mock_rte_pktmbuf_free(struct rte_mbuf *m)
159 {
160 }
161 
162 void mock_rte_pktmbuf_free_bulk(struct rte_mbuf **m, unsigned int cnt);
163 #define rte_pktmbuf_free_bulk mock_rte_pktmbuf_free_bulk
164 void
165 mock_rte_pktmbuf_free_bulk(struct rte_mbuf **m, unsigned int cnt)
166 {
167 }
168 
169 static bool ut_boundary_alloc = false;
170 static int ut_rte_pktmbuf_alloc_bulk = 0;
171 int mock_rte_pktmbuf_alloc_bulk(struct rte_mempool *pool, struct rte_mbuf **mbufs,
172 				unsigned count);
173 #define rte_pktmbuf_alloc_bulk mock_rte_pktmbuf_alloc_bulk
174 int
175 mock_rte_pktmbuf_alloc_bulk(struct rte_mempool *pool, struct rte_mbuf **mbufs,
176 			    unsigned count)
177 {
178 	int i;
179 
180 	/* This mocked function only supports the alloc of up to 3 src and 3 dst. */
181 	ut_rte_pktmbuf_alloc_bulk += count;
182 
183 	if (ut_rte_pktmbuf_alloc_bulk == 1) {
184 		/* allocation of an extra mbuf for boundary cross test */
185 		ut_boundary_alloc = true;
186 		g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1]->next = NULL;
187 		*mbufs = g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1];
188 		ut_rte_pktmbuf_alloc_bulk = 0;
189 	} else if (ut_rte_pktmbuf_alloc_bulk == UT_MBUFS_PER_OP) {
190 		/* first test allocation, src mbufs */
191 		for (i = 0; i < UT_MBUFS_PER_OP; i++) {
192 			g_src_mbufs[i]->next = NULL;
193 			*mbufs++ = g_src_mbufs[i];
194 		}
195 	} else if (ut_rte_pktmbuf_alloc_bulk == UT_MBUFS_PER_OP * 2) {
196 		/* second test allocation, dst mbufs */
197 		for (i = 0; i < UT_MBUFS_PER_OP; i++) {
198 			g_dst_mbufs[i]->next = NULL;
199 			*mbufs++ = g_dst_mbufs[i];
200 		}
201 		ut_rte_pktmbuf_alloc_bulk = 0;
202 	} else {
203 		return -1;
204 	}
205 	return 0;
206 }
207 
208 struct rte_mempool *
209 rte_pktmbuf_pool_create(const char *name, unsigned n, unsigned cache_size,
210 			uint16_t priv_size, uint16_t data_room_size, int socket_id)
211 {
212 	struct spdk_mempool *tmp;
213 
214 	tmp = spdk_mempool_create("mbuf_mp", 1024, sizeof(struct rte_mbuf),
215 				  SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
216 				  SPDK_ENV_NUMA_ID_ANY);
217 
218 	return (struct rte_mempool *)tmp;
219 }
220 
221 void
222 rte_mempool_free(struct rte_mempool *mp)
223 {
224 	if (mp) {
225 		spdk_mempool_free((struct spdk_mempool *)mp);
226 	}
227 }
228 
229 #include "accel/dpdk_compressdev/accel_dpdk_compressdev.c"
230 
231 static void _compress_done(void *arg, int status);
232 static int ut_expected_task_status = 0;
233 void
234 spdk_accel_task_complete(struct spdk_accel_task *accel_task, int status)
235 {
236 	CU_ASSERT(status == ut_expected_task_status);
237 	accel_task->cb_fn(accel_task, status);
238 }
239 
240 /* SPDK stubs */
241 DEFINE_STUB_V(spdk_accel_module_finish, (void));
242 DEFINE_STUB_V(spdk_accel_module_list_add, (struct spdk_accel_module_if *accel_module));
243 
244 /* DPDK stubs */
245 DEFINE_STUB(rte_compressdev_capability_get, const struct rte_compressdev_capabilities *,
246 	    (uint8_t dev_id,
247 	     enum rte_comp_algorithm algo), NULL);
248 #define DPDK_DYNFIELD_OFFSET offsetof(struct rte_mbuf, dynfield1[1])
249 DEFINE_STUB(rte_mbuf_dynfield_register, int, (const struct rte_mbuf_dynfield *params),
250 	    DPDK_DYNFIELD_OFFSET);
251 DEFINE_STUB(rte_socket_id, unsigned, (void), 0);
252 DEFINE_STUB(rte_vdev_init, int, (const char *name, const char *args), 0);
253 DEFINE_STUB_V(rte_comp_op_free, (struct rte_comp_op *op));
254 DEFINE_STUB(rte_comp_op_alloc, struct rte_comp_op *, (struct rte_mempool *mempool), NULL);
255 
256 int g_small_size_counter = 0;
257 int g_small_size_modify = 0;
258 uint64_t g_small_size = 0;
259 uint64_t
260 spdk_vtophys(const void *buf, uint64_t *size)
261 {
262 	g_small_size_counter++;
263 	if (g_small_size_counter == g_small_size_modify) {
264 		*size = g_small_size;
265 		g_small_size_counter = 0;
266 		g_small_size_modify = 0;
267 	}
268 	return (uint64_t)buf;
269 }
270 
271 static uint16_t ut_rte_compressdev_dequeue_burst = 0;
272 uint16_t
273 rte_compressdev_dequeue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_comp_op **ops,
274 			      uint16_t nb_op)
275 {
276 	if (ut_rte_compressdev_dequeue_burst == 0) {
277 		return 0;
278 	}
279 
280 	ops[0] = &g_comp_op[0];
281 	ops[1] = &g_comp_op[1];
282 
283 	return ut_rte_compressdev_dequeue_burst;
284 }
285 
286 static uint16_t g_done_count = 1;
287 static void
288 _compress_done(void *arg, int status)
289 {
290 	struct spdk_accel_task *task  = arg;
291 
292 	if (status == 0) {
293 		CU_ASSERT(*task->output_size == g_comp_op[g_done_count++].produced);
294 	}
295 }
296 
297 static void
298 _get_mbuf_array(struct rte_mbuf **mbuf_array, struct rte_mbuf *mbuf_head,
299 		int mbuf_count, bool null_final)
300 {
301 	int i;
302 
303 	for (i = 0; i < mbuf_count; i++) {
304 		mbuf_array[i] = mbuf_head;
305 		if (mbuf_head) {
306 			mbuf_head = mbuf_head->next;
307 		}
308 	}
309 	if (null_final) {
310 		mbuf_array[i - 1] = NULL;
311 	}
312 }
313 
314 #define FAKE_ENQUEUE_SUCCESS 255
315 #define FAKE_ENQUEUE_ERROR 128
316 #define FAKE_ENQUEUE_BUSY 64
317 static uint16_t ut_enqueue_value = FAKE_ENQUEUE_SUCCESS;
318 static struct rte_comp_op ut_expected_op;
319 uint16_t
320 rte_compressdev_enqueue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_comp_op **ops,
321 			      uint16_t nb_ops)
322 {
323 	struct rte_comp_op *op = *ops;
324 	struct rte_mbuf *op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST];
325 	struct rte_mbuf *exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST];
326 	int i, num_src_mbufs = UT_MBUFS_PER_OP;
327 
328 	switch (ut_enqueue_value) {
329 	case FAKE_ENQUEUE_BUSY:
330 		op->status = RTE_COMP_OP_STATUS_NOT_PROCESSED;
331 		return 0;
332 	case FAKE_ENQUEUE_SUCCESS:
333 		op->status = RTE_COMP_OP_STATUS_SUCCESS;
334 		return 1;
335 	case FAKE_ENQUEUE_ERROR:
336 		op->status = RTE_COMP_OP_STATUS_ERROR;
337 		return 0;
338 	default:
339 		break;
340 	}
341 
342 	/* by design the compress module will never send more than 1 op at a time */
343 	CU_ASSERT(op->private_xform == ut_expected_op.private_xform);
344 
345 	/* setup our local pointers to the chained mbufs, those pointed to in the
346 	 * operation struct and the expected values.
347 	 */
348 	_get_mbuf_array(op_mbuf, op->m_src, SPDK_COUNTOF(op_mbuf), true);
349 	_get_mbuf_array(exp_mbuf, ut_expected_op.m_src, SPDK_COUNTOF(exp_mbuf), true);
350 
351 	if (ut_boundary_alloc == true) {
352 		/* if we crossed a boundary, we need to check the 4th src mbuf and
353 		 * reset the global that is used to identify whether we crossed
354 		 * or not
355 		 */
356 		num_src_mbufs = UT_MBUFS_PER_OP_BOUND_TEST;
357 		exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] = ut_expected_op.m_src->next->next->next;
358 		op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] = op->m_src->next->next->next;
359 		ut_boundary_alloc = false;
360 	}
361 
362 	for (i = 0; i < num_src_mbufs; i++) {
363 		CU_ASSERT(op_mbuf[i]->buf_addr == exp_mbuf[i]->buf_addr);
364 		CU_ASSERT(op_mbuf[i]->buf_iova == exp_mbuf[i]->buf_iova);
365 		CU_ASSERT(op_mbuf[i]->buf_len == exp_mbuf[i]->buf_len);
366 		CU_ASSERT(op_mbuf[i]->pkt_len == exp_mbuf[i]->pkt_len);
367 	}
368 
369 	/* if only 3 mbufs were used in the test, the 4th should be zeroed */
370 	if (num_src_mbufs == UT_MBUFS_PER_OP) {
371 		CU_ASSERT(op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] == NULL);
372 		CU_ASSERT(exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] == NULL);
373 	}
374 	CU_ASSERT(*RTE_MBUF_DYNFIELD(op->m_src, g_mbuf_offset, uint64_t *) ==
375 		  *RTE_MBUF_DYNFIELD(ut_expected_op.m_src, g_mbuf_offset, uint64_t *));
376 	CU_ASSERT(op->src.offset == ut_expected_op.src.offset);
377 	CU_ASSERT(op->src.length == ut_expected_op.src.length);
378 
379 	/* check dst mbuf values */
380 	_get_mbuf_array(op_mbuf, op->m_dst, SPDK_COUNTOF(op_mbuf), true);
381 	_get_mbuf_array(exp_mbuf, ut_expected_op.m_dst, SPDK_COUNTOF(exp_mbuf), true);
382 
383 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
384 		CU_ASSERT(op_mbuf[i]->buf_addr == exp_mbuf[i]->buf_addr);
385 		CU_ASSERT(op_mbuf[i]->buf_iova == exp_mbuf[i]->buf_iova);
386 		CU_ASSERT(op_mbuf[i]->buf_len == exp_mbuf[i]->buf_len);
387 		CU_ASSERT(op_mbuf[i]->pkt_len == exp_mbuf[i]->pkt_len);
388 	}
389 	CU_ASSERT(op->dst.offset == ut_expected_op.dst.offset);
390 
391 	return ut_enqueue_value;
392 }
393 
394 /* Global setup for all tests that share a bunch of preparation... */
395 static int
396 test_setup(void)
397 {
398 	struct spdk_thread *thread;
399 	int i;
400 
401 	spdk_thread_lib_init(NULL, 0);
402 
403 	thread = spdk_thread_create(NULL, NULL);
404 	spdk_set_thread(thread);
405 
406 	g_comp_xform = (struct rte_comp_xform) {
407 		.type = RTE_COMP_COMPRESS,
408 		.compress = {
409 			.algo = RTE_COMP_ALGO_DEFLATE,
410 			.deflate.huffman = RTE_COMP_HUFFMAN_DEFAULT,
411 			.level = RTE_COMP_LEVEL_MAX,
412 			.window_size = DEFAULT_WINDOW_SIZE,
413 			.chksum = RTE_COMP_CHECKSUM_NONE,
414 			.hash_algo = RTE_COMP_HASH_ALGO_NONE
415 		}
416 	};
417 
418 	g_decomp_xform = (struct rte_comp_xform) {
419 		.type = RTE_COMP_DECOMPRESS,
420 		.decompress = {
421 			.algo = RTE_COMP_ALGO_DEFLATE,
422 			.chksum = RTE_COMP_CHECKSUM_NONE,
423 			.window_size = DEFAULT_WINDOW_SIZE,
424 			.hash_algo = RTE_COMP_HASH_ALGO_NONE
425 		}
426 	};
427 	g_device.comp_xform = &g_comp_xform;
428 	g_device.decomp_xform = &g_decomp_xform;
429 	g_cdev_cap.comp_feature_flags = RTE_COMP_FF_SHAREABLE_PRIV_XFORM;
430 	g_device.cdev_info.driver_name = "compressdev";
431 	g_device.cdev_info.capabilities = &g_cdev_cap;
432 	for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST; i++) {
433 		g_src_mbufs[i] = spdk_zmalloc(sizeof(struct rte_mbuf), 0x40, NULL,
434 					      SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
435 	}
436 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
437 		g_dst_mbufs[i] = spdk_zmalloc(sizeof(struct rte_mbuf), 0x40, NULL,
438 					      SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
439 	}
440 
441 	g_io_ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct compress_io_channel));
442 	g_io_ch->thread = thread;
443 	g_comp_ch = (struct compress_io_channel *)spdk_io_channel_get_ctx(g_io_ch);
444 	g_comp_ch->device_qp = &g_device_qp;
445 	g_comp_ch->device_qp->device = &g_device;
446 	g_device_qp.device->sgl_in = true;
447 	g_device_qp.device->sgl_out = true;
448 	g_comp_ch->src_mbufs = calloc(UT_MBUFS_PER_OP_BOUND_TEST, sizeof(void *));
449 	g_comp_ch->dst_mbufs = calloc(UT_MBUFS_PER_OP, sizeof(void *));
450 	STAILQ_INIT(&g_comp_ch->queued_tasks);
451 
452 	for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST - 1; i++) {
453 		g_expected_src_mbufs[i].next = &g_expected_src_mbufs[i + 1];
454 	}
455 	g_expected_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1].next = NULL;
456 
457 	/* we only test w/4 mbufs on src side */
458 	for (i = 0; i < UT_MBUFS_PER_OP - 1; i++) {
459 		g_expected_dst_mbufs[i].next = &g_expected_dst_mbufs[i + 1];
460 	}
461 	g_expected_dst_mbufs[UT_MBUFS_PER_OP - 1].next = NULL;
462 	g_mbuf_offset = DPDK_DYNFIELD_OFFSET;
463 
464 	return 0;
465 }
466 
467 /* Global teardown for all tests */
468 static int
469 test_cleanup(void)
470 {
471 	struct spdk_thread *thread;
472 	int i;
473 
474 	for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST; i++) {
475 		spdk_free(g_src_mbufs[i]);
476 	}
477 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
478 		spdk_free(g_dst_mbufs[i]);
479 	}
480 	free(g_comp_ch->src_mbufs);
481 	free(g_comp_ch->dst_mbufs);
482 	free(g_io_ch);
483 
484 	thread = spdk_get_thread();
485 	spdk_thread_exit(thread);
486 	while (!spdk_thread_is_exited(thread)) {
487 		spdk_thread_poll(thread, 0, 0);
488 	}
489 	spdk_thread_destroy(thread);
490 
491 	spdk_thread_lib_fini();
492 
493 	return 0;
494 }
495 
496 static void
497 test_compress_operation(void)
498 {
499 	struct iovec src_iovs[3] = {};
500 	int src_iovcnt;
501 	struct iovec dst_iovs[3] = {};
502 	int dst_iovcnt;
503 	struct spdk_accel_task task = {};
504 	int rc, i;
505 	struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP];
506 	struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP];
507 	uint32_t output_size;
508 
509 	src_iovcnt = dst_iovcnt = 3;
510 	for (i = 0; i < dst_iovcnt; i++) {
511 		src_iovs[i].iov_len = 0x1000;
512 		dst_iovs[i].iov_len = 0x1000;
513 		src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i;
514 		dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i;
515 	}
516 
517 	task.cb_fn = _compress_done;
518 	task.op_code = SPDK_ACCEL_OPC_COMPRESS;
519 	task.output_size = &output_size;
520 	task.d.iovs = dst_iovs;
521 	task.d.iovcnt = dst_iovcnt;
522 	task.s.iovs = src_iovs;
523 	task.s.iovcnt = src_iovcnt;
524 
525 	/* test rte_comp_op_alloc failure */
526 	MOCK_SET(rte_comp_op_alloc, NULL);
527 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true);
528 	rc = _compress_operation(g_comp_ch, &task);
529 	CU_ASSERT(rc == 0);
530 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == false);
531 	while (!STAILQ_EMPTY(&g_comp_ch->queued_tasks)) {
532 		STAILQ_REMOVE_HEAD(&g_comp_ch->queued_tasks, link);
533 	}
534 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true);
535 
536 	/* test mempool get failure */
537 	MOCK_SET(rte_comp_op_alloc, &g_comp_op[0]);
538 	ut_rte_pktmbuf_alloc_bulk = -1;
539 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true);
540 	rc = _compress_operation(g_comp_ch, &task);
541 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == false);
542 	while (!STAILQ_EMPTY(&g_comp_ch->queued_tasks)) {
543 		STAILQ_REMOVE_HEAD(&g_comp_ch->queued_tasks, link);
544 	}
545 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true);
546 	CU_ASSERT(rc == 0);
547 	ut_rte_pktmbuf_alloc_bulk = 0;
548 
549 	/* test enqueue failure busy */
550 	ut_enqueue_value = FAKE_ENQUEUE_BUSY;
551 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true);
552 	rc = _compress_operation(g_comp_ch, &task);
553 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == false);
554 	while (!STAILQ_EMPTY(&g_comp_ch->queued_tasks)) {
555 		STAILQ_REMOVE_HEAD(&g_comp_ch->queued_tasks, link);
556 	}
557 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true);
558 	CU_ASSERT(rc == 0);
559 	ut_enqueue_value = 1;
560 
561 	/* test enqueue failure error */
562 	ut_enqueue_value = FAKE_ENQUEUE_ERROR;
563 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true);
564 	rc = _compress_operation(g_comp_ch, &task);
565 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true);
566 	CU_ASSERT(rc == -EINVAL);
567 	ut_enqueue_value = FAKE_ENQUEUE_SUCCESS;
568 
569 	/* test success with 3 vector iovec */
570 	ut_expected_op.private_xform = &g_decomp_xform;
571 	ut_expected_op.src.offset = 0;
572 	ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len;
573 
574 	/* setup the src expected values */
575 	_get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false);
576 	ut_expected_op.m_src = exp_src_mbuf[0];
577 
578 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
579 		*RTE_MBUF_DYNFIELD(exp_src_mbuf[i], g_mbuf_offset, uint64_t *) = (uint64_t)&task;
580 		exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base;
581 		exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len);
582 		exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len;
583 		exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len;
584 	}
585 
586 	/* setup the dst expected values */
587 	_get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false);
588 	ut_expected_op.dst.offset = 0;
589 	ut_expected_op.m_dst = exp_dst_mbuf[0];
590 
591 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
592 		exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base;
593 		exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len);
594 		exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len;
595 		exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len;
596 	}
597 
598 	rc = _compress_operation(g_comp_ch, &task);
599 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true);
600 	CU_ASSERT(rc == 0);
601 
602 	/* test sgl out failure */
603 	g_device.sgl_out = false;
604 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true);
605 	rc = _compress_operation(g_comp_ch, &task);
606 	CU_ASSERT(rc == -EINVAL);
607 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true);
608 	g_device.sgl_out = true;
609 
610 	/* test sgl in failure */
611 	g_device.sgl_in = false;
612 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true);
613 	rc = _compress_operation(g_comp_ch, &task);
614 	CU_ASSERT(rc == -EINVAL);
615 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true);
616 	g_device.sgl_in = true;
617 }
618 
619 static void
620 test_compress_operation_cross_boundary(void)
621 {
622 	struct iovec src_iovs[3] = {};
623 	int src_iovcnt;
624 	struct iovec dst_iovs[3] = {};
625 	int dst_iovcnt;
626 	int rc, i;
627 	struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP_BOUND_TEST];
628 	struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP_BOUND_TEST];
629 	struct spdk_accel_task task = {};
630 	uint32_t output_size;
631 
632 	/* Setup the same basic 3 IOV test as used in the simple success case
633 	 * but then we'll start testing a vtophy boundary crossing at each
634 	 * position.
635 	 */
636 	src_iovcnt = dst_iovcnt = 3;
637 	for (i = 0; i < dst_iovcnt; i++) {
638 		src_iovs[i].iov_len = 0x1000;
639 		dst_iovs[i].iov_len = 0x1000;
640 		src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i;
641 		dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i;
642 	}
643 
644 	ut_expected_op.private_xform = &g_decomp_xform;
645 	ut_expected_op.src.offset = 0;
646 	ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len;
647 
648 	/* setup the src expected values */
649 	_get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false);
650 	ut_expected_op.m_src = exp_src_mbuf[0];
651 
652 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
653 		*RTE_MBUF_DYNFIELD(exp_src_mbuf[i], g_mbuf_offset, uint64_t *) = (uint64_t)&task;
654 		exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base;
655 		exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len);
656 		exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len;
657 		exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len;
658 	}
659 
660 	/* setup the dst expected values, we don't test needing a 4th dst mbuf */
661 	_get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false);
662 	ut_expected_op.dst.offset = 0;
663 	ut_expected_op.m_dst = exp_dst_mbuf[0];
664 
665 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
666 		exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base;
667 		exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len);
668 		exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len;
669 		exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len;
670 	}
671 
672 	/* force the 1st IOV to get partial length from spdk_vtophys */
673 	g_small_size_counter = 0;
674 	g_small_size_modify = 1;
675 	g_small_size = 0x800;
676 	*RTE_MBUF_DYNFIELD(exp_src_mbuf[3], g_mbuf_offset, uint64_t *) = (uint64_t)&task;
677 
678 	/* first only has shorter length */
679 	exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x800;
680 
681 	/* 2nd was inserted by the boundary crossing condition and finishes off
682 	 * the length from the first */
683 	exp_src_mbuf[1]->buf_addr = (void *)0x10000800;
684 	exp_src_mbuf[1]->buf_iova = 0x10000800;
685 	exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x800;
686 
687 	/* 3rd looks like that the 2nd would have */
688 	exp_src_mbuf[2]->buf_addr = (void *)0x10001000;
689 	exp_src_mbuf[2]->buf_iova = 0x10001000;
690 	exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x1000;
691 
692 	/* a new 4th looks like what the 3rd would have */
693 	exp_src_mbuf[3]->buf_addr = (void *)0x10002000;
694 	exp_src_mbuf[3]->buf_iova = 0x10002000;
695 	exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x1000;
696 
697 	task.cb_fn = _compress_done;
698 	task.op_code = SPDK_ACCEL_OPC_COMPRESS;
699 	task.output_size = &output_size;
700 	task.d.iovs = dst_iovs;
701 	task.d.iovcnt = dst_iovcnt;
702 	task.s.iovs = src_iovs;
703 	task.s.iovcnt = src_iovcnt;
704 
705 	rc = _compress_operation(g_comp_ch, &task);
706 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true);
707 	CU_ASSERT(rc == 0);
708 
709 	/* Now force the 2nd IOV to get partial length from spdk_vtophys */
710 	g_small_size_counter = 0;
711 	g_small_size_modify = 2;
712 	g_small_size = 0x800;
713 
714 	/* first is normal */
715 	exp_src_mbuf[0]->buf_addr = (void *)0x10000000;
716 	exp_src_mbuf[0]->buf_iova = 0x10000000;
717 	exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x1000;
718 
719 	/* second only has shorter length */
720 	exp_src_mbuf[1]->buf_addr = (void *)0x10001000;
721 	exp_src_mbuf[1]->buf_iova = 0x10001000;
722 	exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x800;
723 
724 	/* 3rd was inserted by the boundary crossing condition and finishes off
725 	 * the length from the first */
726 	exp_src_mbuf[2]->buf_addr = (void *)0x10001800;
727 	exp_src_mbuf[2]->buf_iova = 0x10001800;
728 	exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x800;
729 
730 	/* a new 4th looks like what the 3rd would have */
731 	exp_src_mbuf[3]->buf_addr = (void *)0x10002000;
732 	exp_src_mbuf[3]->buf_iova = 0x10002000;
733 	exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x1000;
734 
735 	rc = _compress_operation(g_comp_ch, &task);
736 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true);
737 	CU_ASSERT(rc == 0);
738 
739 	/* Finally force the 3rd IOV to get partial length from spdk_vtophys */
740 	g_small_size_counter = 0;
741 	g_small_size_modify = 3;
742 	g_small_size = 0x800;
743 
744 	/* first is normal */
745 	exp_src_mbuf[0]->buf_addr = (void *)0x10000000;
746 	exp_src_mbuf[0]->buf_iova = 0x10000000;
747 	exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x1000;
748 
749 	/* second is normal */
750 	exp_src_mbuf[1]->buf_addr = (void *)0x10001000;
751 	exp_src_mbuf[1]->buf_iova = 0x10001000;
752 	exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x1000;
753 
754 	/* 3rd has shorter length */
755 	exp_src_mbuf[2]->buf_addr = (void *)0x10002000;
756 	exp_src_mbuf[2]->buf_iova = 0x10002000;
757 	exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x800;
758 
759 	/* a new 4th handles the remainder from the 3rd */
760 	exp_src_mbuf[3]->buf_addr = (void *)0x10002800;
761 	exp_src_mbuf[3]->buf_iova = 0x10002800;
762 	exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x800;
763 
764 	rc = _compress_operation(g_comp_ch, &task);
765 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true);
766 	CU_ASSERT(rc == 0);
767 
768 	/* Single input iov is split on page boundary, sgl_in is not supported */
769 	g_device.sgl_in = false;
770 	g_small_size_counter = 0;
771 	g_small_size_modify = 1;
772 	g_small_size = 0x800;
773 	rc = _compress_operation(g_comp_ch, &task);
774 	CU_ASSERT(rc == -EINVAL);
775 	g_device.sgl_in = true;
776 
777 	/* Single output iov is split on page boundary, sgl_out is not supported */
778 	g_device.sgl_out = false;
779 	g_small_size_counter = 0;
780 	g_small_size_modify = 2;
781 	g_small_size = 0x800;
782 	rc = _compress_operation(g_comp_ch, &task);
783 	CU_ASSERT(rc == -EINVAL);
784 	g_device.sgl_out = true;
785 }
786 
787 static void
788 test_setup_compress_mbuf(void)
789 {
790 	struct iovec src_iovs = {};
791 	int src_iovcnt = 1;
792 	struct spdk_accel_task task = {};
793 	int src_mbuf_added = 0;
794 	uint64_t total_length;
795 	struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP_BOUND_TEST];
796 	int rc, i;
797 
798 	/* setup the src expected values */
799 	_get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false);
800 
801 	/* no splitting */
802 	total_length = 0;
803 	ut_total_rte_pktmbuf_attach_extbuf = 0;
804 	src_iovs.iov_len = 0x1000;
805 	src_iovs.iov_base = (void *)0x10000000 + 0x1000;
806 	rc = _setup_compress_mbuf(exp_src_mbuf, &src_mbuf_added, &total_length,
807 				  &src_iovs, src_iovcnt, &task);
808 	CU_ASSERT(rc == 0);
809 	CU_ASSERT(total_length = src_iovs.iov_len);
810 	CU_ASSERT(src_mbuf_added == 0);
811 	CU_ASSERT(ut_total_rte_pktmbuf_attach_extbuf == 1);
812 
813 	/* one split, for splitting tests we need the global mbuf array unlinked,
814 	 * otherwise the functional code will attempt to link them but if they are
815 	 * already linked, it will just create a chain that links to itself */
816 	for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST - 1; i++) {
817 		g_expected_src_mbufs[i].next = NULL;
818 	}
819 	total_length = 0;
820 	ut_total_rte_pktmbuf_attach_extbuf = 0;
821 	src_iovs.iov_len = 0x1000 + MBUF_SPLIT;
822 	exp_src_mbuf[0]->buf_len = src_iovs.iov_len;
823 	exp_src_mbuf[0]->pkt_len = src_iovs.iov_len;
824 	rc = _setup_compress_mbuf(exp_src_mbuf, &src_mbuf_added, &total_length,
825 				  &src_iovs, src_iovcnt, &task);
826 	CU_ASSERT(rc == 0);
827 	CU_ASSERT(total_length = src_iovs.iov_len);
828 	CU_ASSERT(src_mbuf_added == 0);
829 	CU_ASSERT(ut_total_rte_pktmbuf_attach_extbuf == 2);
830 
831 	/* two splits */
832 	for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST - 1; i++) {
833 		g_expected_src_mbufs[i].next = NULL;
834 	}
835 	total_length = 0;
836 	ut_total_rte_pktmbuf_attach_extbuf = 0;
837 	src_iovs.iov_len = 0x1000 + 2 * MBUF_SPLIT;
838 	exp_src_mbuf[0]->buf_len = src_iovs.iov_len;
839 	exp_src_mbuf[0]->pkt_len = src_iovs.iov_len;
840 
841 	rc = _setup_compress_mbuf(exp_src_mbuf, &src_mbuf_added, &total_length,
842 				  &src_iovs, src_iovcnt, &task);
843 	CU_ASSERT(rc == 0);
844 	CU_ASSERT(total_length = src_iovs.iov_len);
845 	CU_ASSERT(src_mbuf_added == 0);
846 	CU_ASSERT(ut_total_rte_pktmbuf_attach_extbuf == 3);
847 
848 	/* relink the global mbuf array */
849 	for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST - 1; i++) {
850 		g_expected_src_mbufs[i].next = &g_expected_src_mbufs[i + 1];
851 	}
852 }
853 
854 static void
855 test_poller(void)
856 {
857 	int rc;
858 	struct compress_io_channel *args;
859 	struct rte_mbuf mbuf[4]; /* one src, one dst, 2 ops */
860 	struct iovec src_iovs[3] = {};
861 	struct iovec dst_iovs[3] = {};
862 	uint32_t output_size[2];
863 	struct spdk_accel_task task[2] = {};
864 	struct spdk_accel_task *task_to_resubmit;
865 	struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP];
866 	struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP];
867 	int i;
868 
869 	args = calloc(1, sizeof(*args));
870 	SPDK_CU_ASSERT_FATAL(args != NULL);
871 	memset(&g_comp_op[0], 0, sizeof(struct rte_comp_op));
872 	g_comp_op[0].m_src = &mbuf[0];
873 	g_comp_op[1].m_src = &mbuf[1];
874 	g_comp_op[0].m_dst = &mbuf[2];
875 	g_comp_op[1].m_dst = &mbuf[3];
876 	for (i = 0; i < 3; i++) {
877 		src_iovs[i].iov_len = 0x1000;
878 		dst_iovs[i].iov_len = 0x1000;
879 		src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i;
880 		dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i;
881 	}
882 	task[0].cb_fn = task[1].cb_fn = _compress_done;
883 	task[0].output_size = &output_size[0];
884 	task[1].output_size = &output_size[1];
885 
886 	/* Error from dequeue, nothing needing to be resubmitted.
887 	 */
888 	ut_rte_compressdev_dequeue_burst = 1;
889 	ut_expected_task_status = RTE_COMP_OP_STATUS_NOT_PROCESSED;
890 	/* setup what we want dequeue to return for the op */
891 	*RTE_MBUF_DYNFIELD(g_comp_op[0].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)&task[0];
892 	g_comp_op[0].produced = 1;
893 	g_done_count = 0;
894 	g_comp_op[0].status = RTE_COMP_OP_STATUS_NOT_PROCESSED;
895 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true);
896 	rc = comp_dev_poller((void *)g_comp_ch);
897 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true);
898 	CU_ASSERT(rc == SPDK_POLLER_BUSY);
899 	ut_expected_task_status = RTE_COMP_OP_STATUS_SUCCESS;
900 
901 	/* Success from dequeue, 2 ops. nothing needing to be resubmitted.
902 	 */
903 	ut_rte_compressdev_dequeue_burst = 2;
904 	/* setup what we want dequeue to return for the op */
905 	*RTE_MBUF_DYNFIELD(g_comp_op[0].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)&task[0];
906 	g_comp_op[0].produced = 16;
907 	g_comp_op[0].status = RTE_COMP_OP_STATUS_SUCCESS;
908 	*RTE_MBUF_DYNFIELD(g_comp_op[1].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)&task[1];
909 	g_comp_op[1].produced = 32;
910 	g_comp_op[1].status = RTE_COMP_OP_STATUS_SUCCESS;
911 	g_done_count = 0;
912 	ut_enqueue_value = FAKE_ENQUEUE_SUCCESS;
913 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true);
914 	rc = comp_dev_poller((void *)g_comp_ch);
915 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true);
916 	CU_ASSERT(rc == SPDK_POLLER_BUSY);
917 
918 	/* One to dequeue, one op to be resubmitted. */
919 	ut_rte_compressdev_dequeue_burst = 1;
920 	/* setup what we want dequeue to return for the op */
921 	*RTE_MBUF_DYNFIELD(g_comp_op[0].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)&task[0];
922 	g_comp_op[0].produced = 16;
923 	g_comp_op[0].status = 0;
924 	g_done_count = 0;
925 	task_to_resubmit = calloc(1, sizeof(struct spdk_accel_task));
926 	SPDK_CU_ASSERT_FATAL(task_to_resubmit != NULL);
927 	task_to_resubmit->s.iovs = &src_iovs[0];
928 	task_to_resubmit->s.iovcnt = 3;
929 	task_to_resubmit->d.iovs = &dst_iovs[0];
930 	task_to_resubmit->d.iovcnt = 3;
931 	task_to_resubmit->op_code = SPDK_ACCEL_OPC_COMPRESS;
932 	task_to_resubmit->cb_arg = args;
933 	ut_enqueue_value = FAKE_ENQUEUE_SUCCESS;
934 	ut_expected_op.private_xform = &g_decomp_xform;
935 	ut_expected_op.src.offset = 0;
936 	ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len;
937 
938 	/* setup the src expected values */
939 	_get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false);
940 	ut_expected_op.m_src = exp_src_mbuf[0];
941 
942 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
943 		*RTE_MBUF_DYNFIELD(exp_src_mbuf[i], g_mbuf_offset, uint64_t *) = (uint64_t)&task[0];
944 		exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base;
945 		exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len);
946 		exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len;
947 		exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len;
948 	}
949 
950 	/* setup the dst expected values */
951 	_get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false);
952 	ut_expected_op.dst.offset = 0;
953 	ut_expected_op.m_dst = exp_dst_mbuf[0];
954 
955 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
956 		exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base;
957 		exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len);
958 		exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len;
959 		exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len;
960 	}
961 	MOCK_SET(rte_comp_op_alloc, &g_comp_op[0]);
962 	STAILQ_INSERT_TAIL(&g_comp_ch->queued_tasks,
963 			   task_to_resubmit,
964 			   link);
965 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == false);
966 	rc = comp_dev_poller((void *)g_comp_ch);
967 	CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true);
968 	CU_ASSERT(rc == SPDK_POLLER_BUSY);
969 
970 	free(task_to_resubmit);
971 	free(args);
972 }
973 
974 static void
975 test_initdrivers(void)
976 {
977 	int rc;
978 
979 	/* compressdev count 0 */
980 	rc = accel_init_compress_drivers();
981 	CU_ASSERT(rc == -ENODEV);
982 
983 	/* bogus count */
984 	ut_rte_compressdev_count = RTE_COMPRESS_MAX_DEVS + 1;
985 	rc = accel_init_compress_drivers();
986 	CU_ASSERT(rc == -EINVAL);
987 
988 	/* failure with rte_mbuf_dynfield_register */
989 	ut_rte_compressdev_count = 1;
990 	MOCK_SET(rte_mbuf_dynfield_register, -1);
991 	rc = accel_init_compress_drivers();
992 	CU_ASSERT(rc == -EINVAL);
993 	MOCK_SET(rte_mbuf_dynfield_register, DPDK_DYNFIELD_OFFSET);
994 
995 	/* error on create_compress_dev() */
996 	ut_rte_comp_op_pool_create = (struct rte_mempool *)0xDEADBEEF;
997 	ut_rte_compressdev_count = 1;
998 	ut_rte_compressdev_configure = -1;
999 	rc = accel_init_compress_drivers();
1000 	CU_ASSERT(rc == -1);
1001 
1002 	/* error on create_compress_dev() but coverage for large num queues */
1003 	ut_max_nb_queue_pairs = 99;
1004 	rc = accel_init_compress_drivers();
1005 	CU_ASSERT(rc == -1);
1006 
1007 	/* qpair setup fails */
1008 	ut_rte_compressdev_configure = 0;
1009 	ut_max_nb_queue_pairs = 0;
1010 	ut_rte_compressdev_queue_pair_setup = -1;
1011 	rc = accel_init_compress_drivers();
1012 	CU_ASSERT(rc == -EINVAL);
1013 
1014 	/* rte_compressdev_start fails */
1015 	ut_rte_compressdev_queue_pair_setup = 0;
1016 	ut_rte_compressdev_start = -1;
1017 	rc = accel_init_compress_drivers();
1018 	CU_ASSERT(rc == -1);
1019 
1020 	/* rte_compressdev_private_xform_create() fails */
1021 	ut_rte_compressdev_start = 0;
1022 	ut_rte_compressdev_private_xform_create = -2;
1023 	rc = accel_init_compress_drivers();
1024 	CU_ASSERT(rc == -2);
1025 
1026 	/* success */
1027 	ut_rte_compressdev_private_xform_create = 0;
1028 	rc = accel_init_compress_drivers();
1029 	CU_ASSERT(rc == 0);
1030 }
1031 
1032 int
1033 main(int argc, char **argv)
1034 {
1035 	CU_pSuite	suite = NULL;
1036 	unsigned int	num_failures;
1037 
1038 	CU_initialize_registry();
1039 
1040 	suite = CU_add_suite("compress", test_setup, test_cleanup);
1041 	CU_ADD_TEST(suite, test_compress_operation);
1042 	CU_ADD_TEST(suite, test_compress_operation_cross_boundary);
1043 	CU_ADD_TEST(suite, test_setup_compress_mbuf);
1044 	CU_ADD_TEST(suite, test_initdrivers);
1045 	CU_ADD_TEST(suite, test_poller);
1046 
1047 	num_failures = spdk_ut_run_tests(argc, argv, NULL);
1048 	CU_cleanup_registry();
1049 	return num_failures;
1050 }
1051