1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (C) 2018 Intel Corporation. 3 * All rights reserved. 4 * Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 5 */ 6 7 #include "spdk_internal/cunit.h" 8 /* We have our own mock for this */ 9 #define UNIT_TEST_NO_VTOPHYS 10 #include "common/lib/test_env.c" 11 #include "spdk_internal/mock.h" 12 #include "thread/thread_internal.h" 13 #include "unit/lib/json_mock.c" 14 15 #include <rte_compressdev.h> 16 17 /* There will be one if the data perfectly matches the chunk size, 18 * or there could be an offset into the data and a remainder after 19 * the data or both for a max of 3. 20 */ 21 #define UT_MBUFS_PER_OP 3 22 /* For testing the crossing of a huge page boundary on address translation, 23 * we'll have an extra one but we only test on the source side. 24 */ 25 #define UT_MBUFS_PER_OP_BOUND_TEST 4 26 27 struct spdk_io_channel *g_io_ch; 28 struct rte_comp_op g_comp_op[2]; 29 struct comp_device_qp g_device_qp; 30 struct compress_dev g_device; 31 struct rte_compressdev_capabilities g_cdev_cap; 32 static struct rte_mbuf *g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST]; 33 static struct rte_mbuf *g_dst_mbufs[UT_MBUFS_PER_OP]; 34 static struct rte_mbuf g_expected_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST]; 35 static struct rte_mbuf g_expected_dst_mbufs[UT_MBUFS_PER_OP]; 36 struct compress_io_channel *g_comp_ch; 37 38 /* Those functions are defined as static inline in DPDK, so we can't 39 * mock them straight away. We use defines to redirect them into 40 * our custom functions. 41 */ 42 43 static int ut_total_rte_pktmbuf_attach_extbuf = 0; 44 static void mock_rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr, rte_iova_t buf_iova, 45 uint16_t buf_len, struct rte_mbuf_ext_shared_info *shinfo); 46 #define rte_pktmbuf_attach_extbuf mock_rte_pktmbuf_attach_extbuf 47 static void 48 mock_rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr, rte_iova_t buf_iova, 49 uint16_t buf_len, struct rte_mbuf_ext_shared_info *shinfo) 50 { 51 assert(m != NULL); 52 m->buf_addr = buf_addr; 53 m->buf_iova = buf_iova; 54 m->buf_len = buf_len; 55 m->data_len = m->pkt_len = 0; 56 ut_total_rte_pktmbuf_attach_extbuf++; 57 } 58 59 static char *mock_rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len); 60 #define rte_pktmbuf_append mock_rte_pktmbuf_append 61 static char * 62 mock_rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len) 63 { 64 m->pkt_len = m->pkt_len + len; 65 return NULL; 66 } 67 68 static inline int mock_rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail); 69 #define rte_pktmbuf_chain mock_rte_pktmbuf_chain 70 static inline int 71 mock_rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail) 72 { 73 struct rte_mbuf *cur_tail; 74 75 cur_tail = rte_pktmbuf_lastseg(head); 76 cur_tail->next = tail; 77 78 return 0; 79 } 80 81 uint16_t ut_max_nb_queue_pairs = 0; 82 void __rte_experimental mock_rte_compressdev_info_get(uint8_t dev_id, 83 struct rte_compressdev_info *dev_info); 84 #define rte_compressdev_info_get mock_rte_compressdev_info_get 85 void __rte_experimental 86 mock_rte_compressdev_info_get(uint8_t dev_id, struct rte_compressdev_info *dev_info) 87 { 88 dev_info->max_nb_queue_pairs = ut_max_nb_queue_pairs; 89 dev_info->capabilities = &g_cdev_cap; 90 dev_info->driver_name = "compressdev"; 91 } 92 93 int ut_rte_compressdev_configure = 0; 94 int __rte_experimental mock_rte_compressdev_configure(uint8_t dev_id, 95 struct rte_compressdev_config *config); 96 #define rte_compressdev_configure mock_rte_compressdev_configure 97 int __rte_experimental 98 mock_rte_compressdev_configure(uint8_t dev_id, struct rte_compressdev_config *config) 99 { 100 return ut_rte_compressdev_configure; 101 } 102 103 int ut_rte_compressdev_queue_pair_setup = 0; 104 int __rte_experimental mock_rte_compressdev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id, 105 uint32_t max_inflight_ops, int socket_id); 106 #define rte_compressdev_queue_pair_setup mock_rte_compressdev_queue_pair_setup 107 int __rte_experimental 108 mock_rte_compressdev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id, 109 uint32_t max_inflight_ops, int socket_id) 110 { 111 return ut_rte_compressdev_queue_pair_setup; 112 } 113 114 int ut_rte_compressdev_start = 0; 115 int __rte_experimental mock_rte_compressdev_start(uint8_t dev_id); 116 #define rte_compressdev_start mock_rte_compressdev_start 117 int __rte_experimental 118 mock_rte_compressdev_start(uint8_t dev_id) 119 { 120 return ut_rte_compressdev_start; 121 } 122 123 int ut_rte_compressdev_private_xform_create = 0; 124 int __rte_experimental mock_rte_compressdev_private_xform_create(uint8_t dev_id, 125 const struct rte_comp_xform *xform, void **private_xform); 126 #define rte_compressdev_private_xform_create mock_rte_compressdev_private_xform_create 127 int __rte_experimental 128 mock_rte_compressdev_private_xform_create(uint8_t dev_id, 129 const struct rte_comp_xform *xform, void **private_xform) 130 { 131 return ut_rte_compressdev_private_xform_create; 132 } 133 134 uint8_t ut_rte_compressdev_count = 0; 135 uint8_t __rte_experimental mock_rte_compressdev_count(void); 136 #define rte_compressdev_count mock_rte_compressdev_count 137 uint8_t __rte_experimental 138 mock_rte_compressdev_count(void) 139 { 140 return ut_rte_compressdev_count; 141 } 142 143 struct rte_mempool *ut_rte_comp_op_pool_create = NULL; 144 struct rte_mempool *__rte_experimental mock_rte_comp_op_pool_create(const char *name, 145 unsigned int nb_elts, unsigned int cache_size, uint16_t user_size, 146 int socket_id); 147 #define rte_comp_op_pool_create mock_rte_comp_op_pool_create 148 struct rte_mempool *__rte_experimental 149 mock_rte_comp_op_pool_create(const char *name, unsigned int nb_elts, 150 unsigned int cache_size, uint16_t user_size, int socket_id) 151 { 152 return ut_rte_comp_op_pool_create; 153 } 154 155 void mock_rte_pktmbuf_free(struct rte_mbuf *m); 156 #define rte_pktmbuf_free mock_rte_pktmbuf_free 157 void 158 mock_rte_pktmbuf_free(struct rte_mbuf *m) 159 { 160 } 161 162 void mock_rte_pktmbuf_free_bulk(struct rte_mbuf **m, unsigned int cnt); 163 #define rte_pktmbuf_free_bulk mock_rte_pktmbuf_free_bulk 164 void 165 mock_rte_pktmbuf_free_bulk(struct rte_mbuf **m, unsigned int cnt) 166 { 167 } 168 169 static bool ut_boundary_alloc = false; 170 static int ut_rte_pktmbuf_alloc_bulk = 0; 171 int mock_rte_pktmbuf_alloc_bulk(struct rte_mempool *pool, struct rte_mbuf **mbufs, 172 unsigned count); 173 #define rte_pktmbuf_alloc_bulk mock_rte_pktmbuf_alloc_bulk 174 int 175 mock_rte_pktmbuf_alloc_bulk(struct rte_mempool *pool, struct rte_mbuf **mbufs, 176 unsigned count) 177 { 178 int i; 179 180 /* This mocked function only supports the alloc of up to 3 src and 3 dst. */ 181 ut_rte_pktmbuf_alloc_bulk += count; 182 183 if (ut_rte_pktmbuf_alloc_bulk == 1) { 184 /* allocation of an extra mbuf for boundary cross test */ 185 ut_boundary_alloc = true; 186 g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1]->next = NULL; 187 *mbufs = g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1]; 188 ut_rte_pktmbuf_alloc_bulk = 0; 189 } else if (ut_rte_pktmbuf_alloc_bulk == UT_MBUFS_PER_OP) { 190 /* first test allocation, src mbufs */ 191 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 192 g_src_mbufs[i]->next = NULL; 193 *mbufs++ = g_src_mbufs[i]; 194 } 195 } else if (ut_rte_pktmbuf_alloc_bulk == UT_MBUFS_PER_OP * 2) { 196 /* second test allocation, dst mbufs */ 197 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 198 g_dst_mbufs[i]->next = NULL; 199 *mbufs++ = g_dst_mbufs[i]; 200 } 201 ut_rte_pktmbuf_alloc_bulk = 0; 202 } else { 203 return -1; 204 } 205 return 0; 206 } 207 208 struct rte_mempool * 209 rte_pktmbuf_pool_create(const char *name, unsigned n, unsigned cache_size, 210 uint16_t priv_size, uint16_t data_room_size, int socket_id) 211 { 212 struct spdk_mempool *tmp; 213 214 tmp = spdk_mempool_create("mbuf_mp", 1024, sizeof(struct rte_mbuf), 215 SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, 216 SPDK_ENV_NUMA_ID_ANY); 217 218 return (struct rte_mempool *)tmp; 219 } 220 221 void 222 rte_mempool_free(struct rte_mempool *mp) 223 { 224 if (mp) { 225 spdk_mempool_free((struct spdk_mempool *)mp); 226 } 227 } 228 229 #include "accel/dpdk_compressdev/accel_dpdk_compressdev.c" 230 231 static void _compress_done(void *arg, int status); 232 static int ut_expected_task_status = 0; 233 void 234 spdk_accel_task_complete(struct spdk_accel_task *accel_task, int status) 235 { 236 CU_ASSERT(status == ut_expected_task_status); 237 accel_task->cb_fn(accel_task, status); 238 } 239 240 /* SPDK stubs */ 241 DEFINE_STUB_V(spdk_accel_module_finish, (void)); 242 DEFINE_STUB_V(spdk_accel_module_list_add, (struct spdk_accel_module_if *accel_module)); 243 244 /* DPDK stubs */ 245 DEFINE_STUB(rte_compressdev_capability_get, const struct rte_compressdev_capabilities *, 246 (uint8_t dev_id, 247 enum rte_comp_algorithm algo), NULL); 248 #define DPDK_DYNFIELD_OFFSET offsetof(struct rte_mbuf, dynfield1[1]) 249 DEFINE_STUB(rte_mbuf_dynfield_register, int, (const struct rte_mbuf_dynfield *params), 250 DPDK_DYNFIELD_OFFSET); 251 DEFINE_STUB(rte_socket_id, unsigned, (void), 0); 252 DEFINE_STUB(rte_vdev_init, int, (const char *name, const char *args), 0); 253 DEFINE_STUB(rte_vdev_uninit, int, (const char *name), 0); 254 DEFINE_STUB_V(rte_compressdev_stop, (uint8_t dev_id)); 255 DEFINE_STUB(rte_compressdev_close, int, (uint8_t dev_id), 0); 256 DEFINE_STUB_V(rte_comp_op_free, (struct rte_comp_op *op)); 257 DEFINE_STUB(rte_comp_op_alloc, struct rte_comp_op *, (struct rte_mempool *mempool), NULL); 258 259 int g_small_size_counter = 0; 260 int g_small_size_modify = 0; 261 uint64_t g_small_size = 0; 262 uint64_t 263 spdk_vtophys(const void *buf, uint64_t *size) 264 { 265 g_small_size_counter++; 266 if (g_small_size_counter == g_small_size_modify) { 267 *size = g_small_size; 268 g_small_size_counter = 0; 269 g_small_size_modify = 0; 270 } 271 return (uint64_t)buf; 272 } 273 274 static uint16_t ut_rte_compressdev_dequeue_burst = 0; 275 uint16_t 276 rte_compressdev_dequeue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_comp_op **ops, 277 uint16_t nb_op) 278 { 279 if (ut_rte_compressdev_dequeue_burst == 0) { 280 return 0; 281 } 282 283 ops[0] = &g_comp_op[0]; 284 ops[1] = &g_comp_op[1]; 285 286 return ut_rte_compressdev_dequeue_burst; 287 } 288 289 static uint16_t g_done_count = 1; 290 static void 291 _compress_done(void *arg, int status) 292 { 293 struct spdk_accel_task *task = arg; 294 295 if (status == 0) { 296 CU_ASSERT(*task->output_size == g_comp_op[g_done_count++].produced); 297 } 298 } 299 300 static void 301 _get_mbuf_array(struct rte_mbuf **mbuf_array, struct rte_mbuf *mbuf_head, 302 int mbuf_count, bool null_final) 303 { 304 int i; 305 306 for (i = 0; i < mbuf_count; i++) { 307 mbuf_array[i] = mbuf_head; 308 if (mbuf_head) { 309 mbuf_head = mbuf_head->next; 310 } 311 } 312 if (null_final) { 313 mbuf_array[i - 1] = NULL; 314 } 315 } 316 317 #define FAKE_ENQUEUE_SUCCESS 255 318 #define FAKE_ENQUEUE_ERROR 128 319 #define FAKE_ENQUEUE_BUSY 64 320 static uint16_t ut_enqueue_value = FAKE_ENQUEUE_SUCCESS; 321 static struct rte_comp_op ut_expected_op; 322 uint16_t 323 rte_compressdev_enqueue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_comp_op **ops, 324 uint16_t nb_ops) 325 { 326 struct rte_comp_op *op = *ops; 327 struct rte_mbuf *op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 328 struct rte_mbuf *exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 329 int i, num_src_mbufs = UT_MBUFS_PER_OP; 330 331 switch (ut_enqueue_value) { 332 case FAKE_ENQUEUE_BUSY: 333 op->status = RTE_COMP_OP_STATUS_NOT_PROCESSED; 334 return 0; 335 case FAKE_ENQUEUE_SUCCESS: 336 op->status = RTE_COMP_OP_STATUS_SUCCESS; 337 return 1; 338 case FAKE_ENQUEUE_ERROR: 339 op->status = RTE_COMP_OP_STATUS_ERROR; 340 return 0; 341 default: 342 break; 343 } 344 345 /* by design the compress module will never send more than 1 op at a time */ 346 CU_ASSERT(op->private_xform == ut_expected_op.private_xform); 347 348 /* setup our local pointers to the chained mbufs, those pointed to in the 349 * operation struct and the expected values. 350 */ 351 _get_mbuf_array(op_mbuf, op->m_src, SPDK_COUNTOF(op_mbuf), true); 352 _get_mbuf_array(exp_mbuf, ut_expected_op.m_src, SPDK_COUNTOF(exp_mbuf), true); 353 354 if (ut_boundary_alloc == true) { 355 /* if we crossed a boundary, we need to check the 4th src mbuf and 356 * reset the global that is used to identify whether we crossed 357 * or not 358 */ 359 num_src_mbufs = UT_MBUFS_PER_OP_BOUND_TEST; 360 exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] = ut_expected_op.m_src->next->next->next; 361 op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] = op->m_src->next->next->next; 362 ut_boundary_alloc = false; 363 } 364 365 for (i = 0; i < num_src_mbufs; i++) { 366 CU_ASSERT(op_mbuf[i]->buf_addr == exp_mbuf[i]->buf_addr); 367 CU_ASSERT(op_mbuf[i]->buf_iova == exp_mbuf[i]->buf_iova); 368 CU_ASSERT(op_mbuf[i]->buf_len == exp_mbuf[i]->buf_len); 369 CU_ASSERT(op_mbuf[i]->pkt_len == exp_mbuf[i]->pkt_len); 370 } 371 372 /* if only 3 mbufs were used in the test, the 4th should be zeroed */ 373 if (num_src_mbufs == UT_MBUFS_PER_OP) { 374 CU_ASSERT(op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] == NULL); 375 CU_ASSERT(exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] == NULL); 376 } 377 CU_ASSERT(*RTE_MBUF_DYNFIELD(op->m_src, g_mbuf_offset, uint64_t *) == 378 *RTE_MBUF_DYNFIELD(ut_expected_op.m_src, g_mbuf_offset, uint64_t *)); 379 CU_ASSERT(op->src.offset == ut_expected_op.src.offset); 380 CU_ASSERT(op->src.length == ut_expected_op.src.length); 381 382 /* check dst mbuf values */ 383 _get_mbuf_array(op_mbuf, op->m_dst, SPDK_COUNTOF(op_mbuf), true); 384 _get_mbuf_array(exp_mbuf, ut_expected_op.m_dst, SPDK_COUNTOF(exp_mbuf), true); 385 386 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 387 CU_ASSERT(op_mbuf[i]->buf_addr == exp_mbuf[i]->buf_addr); 388 CU_ASSERT(op_mbuf[i]->buf_iova == exp_mbuf[i]->buf_iova); 389 CU_ASSERT(op_mbuf[i]->buf_len == exp_mbuf[i]->buf_len); 390 CU_ASSERT(op_mbuf[i]->pkt_len == exp_mbuf[i]->pkt_len); 391 } 392 CU_ASSERT(op->dst.offset == ut_expected_op.dst.offset); 393 394 return ut_enqueue_value; 395 } 396 397 /* Global setup for all tests that share a bunch of preparation... */ 398 static int 399 test_setup(void) 400 { 401 struct spdk_thread *thread; 402 int i; 403 404 spdk_thread_lib_init(NULL, 0); 405 406 thread = spdk_thread_create(NULL, NULL); 407 spdk_set_thread(thread); 408 409 g_comp_xform = (struct rte_comp_xform) { 410 .type = RTE_COMP_COMPRESS, 411 .compress = { 412 .algo = RTE_COMP_ALGO_DEFLATE, 413 .deflate.huffman = RTE_COMP_HUFFMAN_DEFAULT, 414 .level = RTE_COMP_LEVEL_MAX, 415 .window_size = DEFAULT_WINDOW_SIZE, 416 .chksum = RTE_COMP_CHECKSUM_NONE, 417 .hash_algo = RTE_COMP_HASH_ALGO_NONE 418 } 419 }; 420 421 g_decomp_xform = (struct rte_comp_xform) { 422 .type = RTE_COMP_DECOMPRESS, 423 .decompress = { 424 .algo = RTE_COMP_ALGO_DEFLATE, 425 .chksum = RTE_COMP_CHECKSUM_NONE, 426 .window_size = DEFAULT_WINDOW_SIZE, 427 .hash_algo = RTE_COMP_HASH_ALGO_NONE 428 } 429 }; 430 g_device.comp_xform = &g_comp_xform; 431 g_device.decomp_xform = &g_decomp_xform; 432 g_cdev_cap.comp_feature_flags = RTE_COMP_FF_SHAREABLE_PRIV_XFORM; 433 g_device.cdev_info.driver_name = "compressdev"; 434 g_device.cdev_info.capabilities = &g_cdev_cap; 435 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST; i++) { 436 g_src_mbufs[i] = spdk_zmalloc(sizeof(struct rte_mbuf), 0x40, NULL, 437 SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 438 } 439 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 440 g_dst_mbufs[i] = spdk_zmalloc(sizeof(struct rte_mbuf), 0x40, NULL, 441 SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 442 } 443 444 g_io_ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct compress_io_channel)); 445 g_io_ch->thread = thread; 446 g_comp_ch = (struct compress_io_channel *)spdk_io_channel_get_ctx(g_io_ch); 447 g_comp_ch->device_qp = &g_device_qp; 448 g_comp_ch->device_qp->device = &g_device; 449 g_device_qp.device->sgl_in = true; 450 g_device_qp.device->sgl_out = true; 451 g_comp_ch->src_mbufs = calloc(UT_MBUFS_PER_OP_BOUND_TEST, sizeof(void *)); 452 g_comp_ch->dst_mbufs = calloc(UT_MBUFS_PER_OP, sizeof(void *)); 453 STAILQ_INIT(&g_comp_ch->queued_tasks); 454 455 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST - 1; i++) { 456 g_expected_src_mbufs[i].next = &g_expected_src_mbufs[i + 1]; 457 } 458 g_expected_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1].next = NULL; 459 460 /* we only test w/4 mbufs on src side */ 461 for (i = 0; i < UT_MBUFS_PER_OP - 1; i++) { 462 g_expected_dst_mbufs[i].next = &g_expected_dst_mbufs[i + 1]; 463 } 464 g_expected_dst_mbufs[UT_MBUFS_PER_OP - 1].next = NULL; 465 g_mbuf_offset = DPDK_DYNFIELD_OFFSET; 466 467 return 0; 468 } 469 470 /* Global teardown for all tests */ 471 static int 472 test_cleanup(void) 473 { 474 struct spdk_thread *thread; 475 int i; 476 477 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST; i++) { 478 spdk_free(g_src_mbufs[i]); 479 } 480 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 481 spdk_free(g_dst_mbufs[i]); 482 } 483 free(g_comp_ch->src_mbufs); 484 free(g_comp_ch->dst_mbufs); 485 free(g_io_ch); 486 487 thread = spdk_get_thread(); 488 spdk_thread_exit(thread); 489 while (!spdk_thread_is_exited(thread)) { 490 spdk_thread_poll(thread, 0, 0); 491 } 492 spdk_thread_destroy(thread); 493 494 spdk_thread_lib_fini(); 495 496 return 0; 497 } 498 499 static void 500 test_compress_operation(void) 501 { 502 struct iovec src_iovs[3] = {}; 503 int src_iovcnt; 504 struct iovec dst_iovs[3] = {}; 505 int dst_iovcnt; 506 struct spdk_accel_task task = {}; 507 int rc, i; 508 struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP]; 509 struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP]; 510 uint32_t output_size; 511 512 src_iovcnt = dst_iovcnt = 3; 513 for (i = 0; i < dst_iovcnt; i++) { 514 src_iovs[i].iov_len = 0x1000; 515 dst_iovs[i].iov_len = 0x1000; 516 src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i; 517 dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i; 518 } 519 520 task.cb_fn = _compress_done; 521 task.op_code = SPDK_ACCEL_OPC_COMPRESS; 522 task.output_size = &output_size; 523 task.d.iovs = dst_iovs; 524 task.d.iovcnt = dst_iovcnt; 525 task.s.iovs = src_iovs; 526 task.s.iovcnt = src_iovcnt; 527 528 /* test rte_comp_op_alloc failure */ 529 MOCK_SET(rte_comp_op_alloc, NULL); 530 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 531 rc = _compress_operation(g_comp_ch, &task); 532 CU_ASSERT(rc == 0); 533 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == false); 534 while (!STAILQ_EMPTY(&g_comp_ch->queued_tasks)) { 535 STAILQ_REMOVE_HEAD(&g_comp_ch->queued_tasks, link); 536 } 537 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 538 539 /* test mempool get failure */ 540 MOCK_SET(rte_comp_op_alloc, &g_comp_op[0]); 541 ut_rte_pktmbuf_alloc_bulk = -1; 542 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 543 rc = _compress_operation(g_comp_ch, &task); 544 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == false); 545 while (!STAILQ_EMPTY(&g_comp_ch->queued_tasks)) { 546 STAILQ_REMOVE_HEAD(&g_comp_ch->queued_tasks, link); 547 } 548 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 549 CU_ASSERT(rc == 0); 550 ut_rte_pktmbuf_alloc_bulk = 0; 551 552 /* test enqueue failure busy */ 553 ut_enqueue_value = FAKE_ENQUEUE_BUSY; 554 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 555 rc = _compress_operation(g_comp_ch, &task); 556 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == false); 557 while (!STAILQ_EMPTY(&g_comp_ch->queued_tasks)) { 558 STAILQ_REMOVE_HEAD(&g_comp_ch->queued_tasks, link); 559 } 560 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 561 CU_ASSERT(rc == 0); 562 ut_enqueue_value = 1; 563 564 /* test enqueue failure error */ 565 ut_enqueue_value = FAKE_ENQUEUE_ERROR; 566 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 567 rc = _compress_operation(g_comp_ch, &task); 568 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 569 CU_ASSERT(rc == -EINVAL); 570 ut_enqueue_value = FAKE_ENQUEUE_SUCCESS; 571 572 /* test success with 3 vector iovec */ 573 ut_expected_op.private_xform = &g_decomp_xform; 574 ut_expected_op.src.offset = 0; 575 ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len; 576 577 /* setup the src expected values */ 578 _get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false); 579 ut_expected_op.m_src = exp_src_mbuf[0]; 580 581 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 582 *RTE_MBUF_DYNFIELD(exp_src_mbuf[i], g_mbuf_offset, uint64_t *) = (uint64_t)&task; 583 exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base; 584 exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len); 585 exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len; 586 exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len; 587 } 588 589 /* setup the dst expected values */ 590 _get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false); 591 ut_expected_op.dst.offset = 0; 592 ut_expected_op.m_dst = exp_dst_mbuf[0]; 593 594 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 595 exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base; 596 exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len); 597 exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len; 598 exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len; 599 } 600 601 rc = _compress_operation(g_comp_ch, &task); 602 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 603 CU_ASSERT(rc == 0); 604 605 /* test sgl out failure */ 606 g_device.sgl_out = false; 607 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 608 rc = _compress_operation(g_comp_ch, &task); 609 CU_ASSERT(rc == -EINVAL); 610 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 611 g_device.sgl_out = true; 612 613 /* test sgl in failure */ 614 g_device.sgl_in = false; 615 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 616 rc = _compress_operation(g_comp_ch, &task); 617 CU_ASSERT(rc == -EINVAL); 618 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 619 g_device.sgl_in = true; 620 } 621 622 static void 623 test_compress_operation_cross_boundary(void) 624 { 625 struct iovec src_iovs[3] = {}; 626 int src_iovcnt; 627 struct iovec dst_iovs[3] = {}; 628 int dst_iovcnt; 629 int rc, i; 630 struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 631 struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 632 struct spdk_accel_task task = {}; 633 uint32_t output_size; 634 635 /* Setup the same basic 3 IOV test as used in the simple success case 636 * but then we'll start testing a vtophy boundary crossing at each 637 * position. 638 */ 639 src_iovcnt = dst_iovcnt = 3; 640 for (i = 0; i < dst_iovcnt; i++) { 641 src_iovs[i].iov_len = 0x1000; 642 dst_iovs[i].iov_len = 0x1000; 643 src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i; 644 dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i; 645 } 646 647 ut_expected_op.private_xform = &g_decomp_xform; 648 ut_expected_op.src.offset = 0; 649 ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len; 650 651 /* setup the src expected values */ 652 _get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false); 653 ut_expected_op.m_src = exp_src_mbuf[0]; 654 655 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 656 *RTE_MBUF_DYNFIELD(exp_src_mbuf[i], g_mbuf_offset, uint64_t *) = (uint64_t)&task; 657 exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base; 658 exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len); 659 exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len; 660 exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len; 661 } 662 663 /* setup the dst expected values, we don't test needing a 4th dst mbuf */ 664 _get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false); 665 ut_expected_op.dst.offset = 0; 666 ut_expected_op.m_dst = exp_dst_mbuf[0]; 667 668 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 669 exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base; 670 exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len); 671 exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len; 672 exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len; 673 } 674 675 /* force the 1st IOV to get partial length from spdk_vtophys */ 676 g_small_size_counter = 0; 677 g_small_size_modify = 1; 678 g_small_size = 0x800; 679 *RTE_MBUF_DYNFIELD(exp_src_mbuf[3], g_mbuf_offset, uint64_t *) = (uint64_t)&task; 680 681 /* first only has shorter length */ 682 exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x800; 683 684 /* 2nd was inserted by the boundary crossing condition and finishes off 685 * the length from the first */ 686 exp_src_mbuf[1]->buf_addr = (void *)0x10000800; 687 exp_src_mbuf[1]->buf_iova = 0x10000800; 688 exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x800; 689 690 /* 3rd looks like that the 2nd would have */ 691 exp_src_mbuf[2]->buf_addr = (void *)0x10001000; 692 exp_src_mbuf[2]->buf_iova = 0x10001000; 693 exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x1000; 694 695 /* a new 4th looks like what the 3rd would have */ 696 exp_src_mbuf[3]->buf_addr = (void *)0x10002000; 697 exp_src_mbuf[3]->buf_iova = 0x10002000; 698 exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x1000; 699 700 task.cb_fn = _compress_done; 701 task.op_code = SPDK_ACCEL_OPC_COMPRESS; 702 task.output_size = &output_size; 703 task.d.iovs = dst_iovs; 704 task.d.iovcnt = dst_iovcnt; 705 task.s.iovs = src_iovs; 706 task.s.iovcnt = src_iovcnt; 707 708 rc = _compress_operation(g_comp_ch, &task); 709 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 710 CU_ASSERT(rc == 0); 711 712 /* Now force the 2nd IOV to get partial length from spdk_vtophys */ 713 g_small_size_counter = 0; 714 g_small_size_modify = 2; 715 g_small_size = 0x800; 716 717 /* first is normal */ 718 exp_src_mbuf[0]->buf_addr = (void *)0x10000000; 719 exp_src_mbuf[0]->buf_iova = 0x10000000; 720 exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x1000; 721 722 /* second only has shorter length */ 723 exp_src_mbuf[1]->buf_addr = (void *)0x10001000; 724 exp_src_mbuf[1]->buf_iova = 0x10001000; 725 exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x800; 726 727 /* 3rd was inserted by the boundary crossing condition and finishes off 728 * the length from the first */ 729 exp_src_mbuf[2]->buf_addr = (void *)0x10001800; 730 exp_src_mbuf[2]->buf_iova = 0x10001800; 731 exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x800; 732 733 /* a new 4th looks like what the 3rd would have */ 734 exp_src_mbuf[3]->buf_addr = (void *)0x10002000; 735 exp_src_mbuf[3]->buf_iova = 0x10002000; 736 exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x1000; 737 738 rc = _compress_operation(g_comp_ch, &task); 739 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 740 CU_ASSERT(rc == 0); 741 742 /* Finally force the 3rd IOV to get partial length from spdk_vtophys */ 743 g_small_size_counter = 0; 744 g_small_size_modify = 3; 745 g_small_size = 0x800; 746 747 /* first is normal */ 748 exp_src_mbuf[0]->buf_addr = (void *)0x10000000; 749 exp_src_mbuf[0]->buf_iova = 0x10000000; 750 exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x1000; 751 752 /* second is normal */ 753 exp_src_mbuf[1]->buf_addr = (void *)0x10001000; 754 exp_src_mbuf[1]->buf_iova = 0x10001000; 755 exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x1000; 756 757 /* 3rd has shorter length */ 758 exp_src_mbuf[2]->buf_addr = (void *)0x10002000; 759 exp_src_mbuf[2]->buf_iova = 0x10002000; 760 exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x800; 761 762 /* a new 4th handles the remainder from the 3rd */ 763 exp_src_mbuf[3]->buf_addr = (void *)0x10002800; 764 exp_src_mbuf[3]->buf_iova = 0x10002800; 765 exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x800; 766 767 rc = _compress_operation(g_comp_ch, &task); 768 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 769 CU_ASSERT(rc == 0); 770 771 /* Single input iov is split on page boundary, sgl_in is not supported */ 772 g_device.sgl_in = false; 773 g_small_size_counter = 0; 774 g_small_size_modify = 1; 775 g_small_size = 0x800; 776 rc = _compress_operation(g_comp_ch, &task); 777 CU_ASSERT(rc == -EINVAL); 778 g_device.sgl_in = true; 779 780 /* Single output iov is split on page boundary, sgl_out is not supported */ 781 g_device.sgl_out = false; 782 g_small_size_counter = 0; 783 g_small_size_modify = 2; 784 g_small_size = 0x800; 785 rc = _compress_operation(g_comp_ch, &task); 786 CU_ASSERT(rc == -EINVAL); 787 g_device.sgl_out = true; 788 } 789 790 static void 791 test_setup_compress_mbuf(void) 792 { 793 struct iovec src_iovs = {}; 794 int src_iovcnt = 1; 795 struct spdk_accel_task task = {}; 796 int src_mbuf_added = 0; 797 uint64_t total_length; 798 struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 799 int rc, i; 800 801 /* setup the src expected values */ 802 _get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false); 803 804 /* no splitting */ 805 total_length = 0; 806 ut_total_rte_pktmbuf_attach_extbuf = 0; 807 src_iovs.iov_len = 0x1000; 808 src_iovs.iov_base = (void *)0x10000000 + 0x1000; 809 rc = _setup_compress_mbuf(exp_src_mbuf, &src_mbuf_added, &total_length, 810 &src_iovs, src_iovcnt, &task); 811 CU_ASSERT(rc == 0); 812 CU_ASSERT(total_length = src_iovs.iov_len); 813 CU_ASSERT(src_mbuf_added == 0); 814 CU_ASSERT(ut_total_rte_pktmbuf_attach_extbuf == 1); 815 816 /* one split, for splitting tests we need the global mbuf array unlinked, 817 * otherwise the functional code will attempt to link them but if they are 818 * already linked, it will just create a chain that links to itself */ 819 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST - 1; i++) { 820 g_expected_src_mbufs[i].next = NULL; 821 } 822 total_length = 0; 823 ut_total_rte_pktmbuf_attach_extbuf = 0; 824 src_iovs.iov_len = 0x1000 + MBUF_SPLIT; 825 exp_src_mbuf[0]->buf_len = src_iovs.iov_len; 826 exp_src_mbuf[0]->pkt_len = src_iovs.iov_len; 827 rc = _setup_compress_mbuf(exp_src_mbuf, &src_mbuf_added, &total_length, 828 &src_iovs, src_iovcnt, &task); 829 CU_ASSERT(rc == 0); 830 CU_ASSERT(total_length = src_iovs.iov_len); 831 CU_ASSERT(src_mbuf_added == 0); 832 CU_ASSERT(ut_total_rte_pktmbuf_attach_extbuf == 2); 833 834 /* two splits */ 835 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST - 1; i++) { 836 g_expected_src_mbufs[i].next = NULL; 837 } 838 total_length = 0; 839 ut_total_rte_pktmbuf_attach_extbuf = 0; 840 src_iovs.iov_len = 0x1000 + 2 * MBUF_SPLIT; 841 exp_src_mbuf[0]->buf_len = src_iovs.iov_len; 842 exp_src_mbuf[0]->pkt_len = src_iovs.iov_len; 843 844 rc = _setup_compress_mbuf(exp_src_mbuf, &src_mbuf_added, &total_length, 845 &src_iovs, src_iovcnt, &task); 846 CU_ASSERT(rc == 0); 847 CU_ASSERT(total_length = src_iovs.iov_len); 848 CU_ASSERT(src_mbuf_added == 0); 849 CU_ASSERT(ut_total_rte_pktmbuf_attach_extbuf == 3); 850 851 /* relink the global mbuf array */ 852 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST - 1; i++) { 853 g_expected_src_mbufs[i].next = &g_expected_src_mbufs[i + 1]; 854 } 855 } 856 857 static void 858 test_poller(void) 859 { 860 int rc; 861 struct compress_io_channel *args; 862 struct rte_mbuf mbuf[4]; /* one src, one dst, 2 ops */ 863 struct iovec src_iovs[3] = {}; 864 struct iovec dst_iovs[3] = {}; 865 uint32_t output_size[2]; 866 struct spdk_accel_task task[2] = {}; 867 struct spdk_accel_task *task_to_resubmit; 868 struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP]; 869 struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP]; 870 int i; 871 872 args = calloc(1, sizeof(*args)); 873 SPDK_CU_ASSERT_FATAL(args != NULL); 874 memset(&g_comp_op[0], 0, sizeof(struct rte_comp_op)); 875 g_comp_op[0].m_src = &mbuf[0]; 876 g_comp_op[1].m_src = &mbuf[1]; 877 g_comp_op[0].m_dst = &mbuf[2]; 878 g_comp_op[1].m_dst = &mbuf[3]; 879 for (i = 0; i < 3; i++) { 880 src_iovs[i].iov_len = 0x1000; 881 dst_iovs[i].iov_len = 0x1000; 882 src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i; 883 dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i; 884 } 885 task[0].cb_fn = task[1].cb_fn = _compress_done; 886 task[0].output_size = &output_size[0]; 887 task[1].output_size = &output_size[1]; 888 889 /* Error from dequeue, nothing needing to be resubmitted. 890 */ 891 ut_rte_compressdev_dequeue_burst = 1; 892 ut_expected_task_status = RTE_COMP_OP_STATUS_NOT_PROCESSED; 893 /* setup what we want dequeue to return for the op */ 894 *RTE_MBUF_DYNFIELD(g_comp_op[0].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)&task[0]; 895 g_comp_op[0].produced = 1; 896 g_done_count = 0; 897 g_comp_op[0].status = RTE_COMP_OP_STATUS_NOT_PROCESSED; 898 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 899 rc = comp_dev_poller((void *)g_comp_ch); 900 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 901 CU_ASSERT(rc == SPDK_POLLER_BUSY); 902 ut_expected_task_status = RTE_COMP_OP_STATUS_SUCCESS; 903 904 /* Success from dequeue, 2 ops. nothing needing to be resubmitted. 905 */ 906 ut_rte_compressdev_dequeue_burst = 2; 907 /* setup what we want dequeue to return for the op */ 908 *RTE_MBUF_DYNFIELD(g_comp_op[0].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)&task[0]; 909 g_comp_op[0].produced = 16; 910 g_comp_op[0].status = RTE_COMP_OP_STATUS_SUCCESS; 911 *RTE_MBUF_DYNFIELD(g_comp_op[1].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)&task[1]; 912 g_comp_op[1].produced = 32; 913 g_comp_op[1].status = RTE_COMP_OP_STATUS_SUCCESS; 914 g_done_count = 0; 915 ut_enqueue_value = FAKE_ENQUEUE_SUCCESS; 916 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 917 rc = comp_dev_poller((void *)g_comp_ch); 918 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 919 CU_ASSERT(rc == SPDK_POLLER_BUSY); 920 921 /* One to dequeue, one op to be resubmitted. */ 922 ut_rte_compressdev_dequeue_burst = 1; 923 /* setup what we want dequeue to return for the op */ 924 *RTE_MBUF_DYNFIELD(g_comp_op[0].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)&task[0]; 925 g_comp_op[0].produced = 16; 926 g_comp_op[0].status = 0; 927 g_done_count = 0; 928 task_to_resubmit = calloc(1, sizeof(struct spdk_accel_task)); 929 SPDK_CU_ASSERT_FATAL(task_to_resubmit != NULL); 930 task_to_resubmit->s.iovs = &src_iovs[0]; 931 task_to_resubmit->s.iovcnt = 3; 932 task_to_resubmit->d.iovs = &dst_iovs[0]; 933 task_to_resubmit->d.iovcnt = 3; 934 task_to_resubmit->op_code = SPDK_ACCEL_OPC_COMPRESS; 935 task_to_resubmit->cb_arg = args; 936 ut_enqueue_value = FAKE_ENQUEUE_SUCCESS; 937 ut_expected_op.private_xform = &g_decomp_xform; 938 ut_expected_op.src.offset = 0; 939 ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len; 940 941 /* setup the src expected values */ 942 _get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false); 943 ut_expected_op.m_src = exp_src_mbuf[0]; 944 945 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 946 *RTE_MBUF_DYNFIELD(exp_src_mbuf[i], g_mbuf_offset, uint64_t *) = (uint64_t)&task[0]; 947 exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base; 948 exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len); 949 exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len; 950 exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len; 951 } 952 953 /* setup the dst expected values */ 954 _get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false); 955 ut_expected_op.dst.offset = 0; 956 ut_expected_op.m_dst = exp_dst_mbuf[0]; 957 958 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 959 exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base; 960 exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len); 961 exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len; 962 exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len; 963 } 964 MOCK_SET(rte_comp_op_alloc, &g_comp_op[0]); 965 STAILQ_INSERT_TAIL(&g_comp_ch->queued_tasks, 966 task_to_resubmit, 967 link); 968 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == false); 969 rc = comp_dev_poller((void *)g_comp_ch); 970 CU_ASSERT(STAILQ_EMPTY(&g_comp_ch->queued_tasks) == true); 971 CU_ASSERT(rc == SPDK_POLLER_BUSY); 972 973 free(task_to_resubmit); 974 free(args); 975 } 976 977 static void 978 test_initdrivers(void) 979 { 980 int rc; 981 982 /* compressdev count 0 */ 983 rc = accel_init_compress_drivers(); 984 CU_ASSERT(rc == -ENODEV); 985 986 /* bogus count */ 987 ut_rte_compressdev_count = RTE_COMPRESS_MAX_DEVS + 1; 988 rc = accel_init_compress_drivers(); 989 CU_ASSERT(rc == -EINVAL); 990 991 /* failure with rte_mbuf_dynfield_register */ 992 ut_rte_compressdev_count = 1; 993 MOCK_SET(rte_mbuf_dynfield_register, -1); 994 rc = accel_init_compress_drivers(); 995 CU_ASSERT(rc == -EINVAL); 996 MOCK_SET(rte_mbuf_dynfield_register, DPDK_DYNFIELD_OFFSET); 997 998 /* error on create_compress_dev() */ 999 ut_rte_comp_op_pool_create = (struct rte_mempool *)0xDEADBEEF; 1000 ut_rte_compressdev_count = 1; 1001 ut_rte_compressdev_configure = -1; 1002 rc = accel_init_compress_drivers(); 1003 CU_ASSERT(rc == -1); 1004 1005 /* error on create_compress_dev() but coverage for large num queues */ 1006 ut_max_nb_queue_pairs = 99; 1007 rc = accel_init_compress_drivers(); 1008 CU_ASSERT(rc == -1); 1009 1010 /* qpair setup fails */ 1011 ut_rte_compressdev_configure = 0; 1012 ut_max_nb_queue_pairs = 0; 1013 ut_rte_compressdev_queue_pair_setup = -1; 1014 rc = accel_init_compress_drivers(); 1015 CU_ASSERT(rc == -EINVAL); 1016 1017 /* rte_compressdev_start fails */ 1018 ut_rte_compressdev_queue_pair_setup = 0; 1019 ut_rte_compressdev_start = -1; 1020 rc = accel_init_compress_drivers(); 1021 CU_ASSERT(rc == -1); 1022 1023 /* rte_compressdev_private_xform_create() fails */ 1024 ut_rte_compressdev_start = 0; 1025 ut_rte_compressdev_private_xform_create = -2; 1026 rc = accel_init_compress_drivers(); 1027 CU_ASSERT(rc == -2); 1028 1029 /* success */ 1030 ut_rte_compressdev_private_xform_create = 0; 1031 rc = accel_init_compress_drivers(); 1032 CU_ASSERT(rc == 0); 1033 } 1034 1035 int 1036 main(int argc, char **argv) 1037 { 1038 CU_pSuite suite = NULL; 1039 unsigned int num_failures; 1040 1041 CU_initialize_registry(); 1042 1043 suite = CU_add_suite("compress", test_setup, test_cleanup); 1044 CU_ADD_TEST(suite, test_compress_operation); 1045 CU_ADD_TEST(suite, test_compress_operation_cross_boundary); 1046 CU_ADD_TEST(suite, test_setup_compress_mbuf); 1047 CU_ADD_TEST(suite, test_initdrivers); 1048 CU_ADD_TEST(suite, test_poller); 1049 1050 num_failures = spdk_ut_run_tests(argc, argv, NULL); 1051 CU_cleanup_registry(); 1052 return num_failures; 1053 } 1054