xref: /spdk/test/app/fuzz/llvm_nvme_fuzz/llvm_nvme_fuzz.c (revision e450b8e728dcbba26f855289561f873728aef374)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (c) Intel Corporation. All rights reserved.
3  */
4 
5 #include "spdk/stdinc.h"
6 #include "spdk/conf.h"
7 #include "spdk/env.h"
8 #include "spdk/event.h"
9 #include "spdk/util.h"
10 #include "spdk/string.h"
11 #include "spdk/nvme_spec.h"
12 #include "spdk/nvme.h"
13 #include "spdk/likely.h"
14 #include "spdk/file.h"
15 
16 static const uint8_t *g_data;
17 static bool g_trid_specified = false;
18 static int32_t g_time_in_sec = 10;
19 static char *g_corpus_dir;
20 static uint8_t *g_repro_data;
21 static size_t g_repro_size;
22 static pthread_t g_fuzz_td;
23 static pthread_t g_reactor_td;
24 static bool g_in_fuzzer;
25 
26 #define MAX_COMMANDS 5
27 
28 struct fuzz_command {
29 	struct spdk_nvme_cmd	cmd;
30 	void			*buf;
31 	uint32_t		len;
32 };
33 
34 static struct fuzz_command g_cmds[MAX_COMMANDS];
35 
36 typedef void (*fuzz_build_cmd_fn)(struct fuzz_command *cmd);
37 
38 struct fuzz_type {
39 	fuzz_build_cmd_fn	fn;
40 	uint32_t		bytes_per_cmd;
41 	bool	is_admin;
42 };
43 
44 static void
45 fuzz_admin_command(struct fuzz_command *cmd)
46 {
47 	memcpy(&cmd->cmd, g_data, sizeof(cmd->cmd));
48 	g_data += sizeof(cmd->cmd);
49 
50 	/* ASYNC_EVENT_REQUEST won't complete, so pick a different opcode. */
51 	if (cmd->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
52 		cmd->cmd.opc = SPDK_NVME_OPC_SET_FEATURES;
53 	}
54 
55 	/* NVME_OPC_FABRIC is special for fabric transport, so pick a different opcode. */
56 	if (cmd->cmd.opc == SPDK_NVME_OPC_FABRIC) {
57 		cmd->cmd.opc = SPDK_NVME_OPC_SET_FEATURES;
58 	}
59 
60 	/* Fuzz a normal operation, so set a zero value in Fused field. */
61 	cmd->cmd.fuse = 0;
62 }
63 
64 static void
65 fuzz_admin_get_log_page_command(struct fuzz_command *cmd)
66 {
67 	memset(&cmd->cmd, 0, sizeof(cmd->cmd));
68 
69 	cmd->cmd.opc = SPDK_NVME_OPC_GET_LOG_PAGE;
70 
71 	/* Only fuzz some of the more interesting parts of the GET_LOG_PAGE command. */
72 
73 	cmd->cmd.cdw10_bits.get_log_page.numdl = ((uint16_t)g_data[0] << 8) + (uint16_t)g_data[1];
74 	cmd->cmd.cdw10_bits.get_log_page.lid = g_data[2];
75 	cmd->cmd.cdw10_bits.get_log_page.lsp = g_data[3] & (0x60 >> 5);
76 	cmd->cmd.cdw10_bits.get_log_page.rae = g_data[3] & (0x80 >> 7);
77 
78 	cmd->cmd.cdw11_bits.get_log_page.numdu = g_data[3] & (0x18 >> 3);
79 
80 	/* Log Page Offset Lower */
81 	cmd->cmd.cdw12 = ((uint16_t)g_data[4] << 8) + (uint16_t)g_data[5];
82 
83 	/* Offset Type */
84 	cmd->cmd.cdw14 = g_data[3] & (0x01 >> 0);
85 
86 	/* Log Page Offset Upper */
87 	cmd->cmd.cdw13 = g_data[3] & (0x06 >> 1);
88 
89 	g_data += 6;
90 }
91 
92 static void
93 fuzz_admin_identify_command(struct fuzz_command *cmd)
94 {
95 	memset(&cmd->cmd, 0, sizeof(cmd->cmd));
96 
97 	cmd->cmd.opc = SPDK_NVME_OPC_IDENTIFY;
98 
99 	cmd->cmd.cdw10_bits.identify.cns = g_data[0];
100 	cmd->cmd.cdw10_bits.identify.cntid = ((uint16_t)g_data[1] << 8) + (uint16_t)g_data[2];
101 
102 	cmd->cmd.cdw11_bits.identify.nvmsetid = ((uint16_t)g_data[3] << 8) + (uint16_t)g_data[4];
103 	cmd->cmd.cdw11_bits.identify.csi = g_data[5];
104 
105 	/* UUID index, bits 0-6 are used */
106 	cmd->cmd.cdw14 = (g_data[6] & 0x7f);
107 
108 	g_data += 7;
109 }
110 
111 static void
112 fuzz_admin_abort_command(struct fuzz_command *cmd)
113 {
114 	memset(&cmd->cmd, 0, sizeof(cmd->cmd));
115 	cmd->cmd.opc = SPDK_NVME_OPC_ABORT;
116 
117 	cmd->cmd.cdw10_bits.abort.sqid = ((uint16_t)g_data[0] << 8) + (uint16_t)g_data[1];
118 	cmd->cmd.cdw10_bits.abort.cid = ((uint16_t)g_data[2] << 8) + (uint16_t)g_data[3];
119 
120 	g_data += 4;
121 }
122 
123 static void
124 fuzz_admin_create_io_completion_queue_command(struct fuzz_command *cmd)
125 {
126 	memset(&cmd->cmd, 0, sizeof(cmd->cmd));
127 	cmd->cmd.opc = SPDK_NVME_OPC_CREATE_IO_CQ;
128 
129 	cmd->cmd.cdw10_bits.create_io_q.qid = ((uint16_t)g_data[0] << 8) + (uint16_t)g_data[1];
130 	cmd->cmd.cdw10_bits.create_io_q.qsize = ((uint16_t)g_data[2] << 8) + (uint16_t)g_data[3];
131 
132 	cmd->cmd.cdw11_bits.create_io_cq.iv = ((uint16_t)g_data[4] << 8) + (uint16_t)g_data[5];
133 	cmd->cmd.cdw11_bits.create_io_cq.pc = (g_data[6] >> 7) & 0x01;
134 	cmd->cmd.cdw11_bits.create_io_cq.ien = (g_data[6] >> 6) & 0x01;
135 
136 	g_data += 7;
137 }
138 
139 static void
140 fuzz_admin_create_io_submission_queue_command(struct fuzz_command *cmd)
141 {
142 	memset(&cmd->cmd, 0, sizeof(cmd->cmd));
143 	cmd->cmd.opc = SPDK_NVME_OPC_CREATE_IO_SQ;
144 
145 	cmd->cmd.cdw10_bits.create_io_q.qid = ((uint16_t)g_data[0] << 8) + (uint16_t)g_data[1];
146 	cmd->cmd.cdw10_bits.create_io_q.qsize = ((uint16_t)g_data[2] << 8) + (uint16_t)g_data[3];
147 
148 	cmd->cmd.cdw11_bits.create_io_sq.cqid = ((uint16_t)g_data[4] << 8) + (uint16_t)g_data[5];
149 	cmd->cmd.cdw11_bits.create_io_sq.qprio = (g_data[6] >> 6) & 0x03;
150 	cmd->cmd.cdw11_bits.create_io_sq.pc = (g_data[6] >> 5) & 0x01;
151 
152 	/* NVM Set Identifier */
153 	cmd->cmd.cdw12 = ((uint16_t)g_data[7] << 8) + (uint16_t)g_data[8];
154 
155 	g_data += 9;
156 }
157 
158 static void
159 fuzz_admin_delete_io_completion_queue_command(struct fuzz_command *cmd)
160 {
161 	memset(&cmd->cmd, 0, sizeof(cmd->cmd));
162 	cmd->cmd.opc = SPDK_NVME_OPC_DELETE_IO_CQ;
163 
164 	cmd->cmd.cdw10_bits.delete_io_q.qid = ((uint16_t)g_data[0] << 8) + (uint16_t)g_data[1];
165 
166 	g_data += 2;
167 }
168 
169 static void
170 fuzz_admin_delete_io_submission_queue_command(struct fuzz_command *cmd)
171 {
172 	memset(&cmd->cmd, 0, sizeof(cmd->cmd));
173 	cmd->cmd.opc = SPDK_NVME_OPC_DELETE_IO_SQ;
174 
175 	cmd->cmd.cdw10_bits.delete_io_q.qid = ((uint16_t)g_data[0] << 8) + (uint16_t)g_data[1];
176 
177 	g_data += 2;
178 }
179 
180 static void
181 fuzz_admin_namespace_attachment_command(struct fuzz_command *cmd)
182 {
183 	memset(&cmd->cmd, 0, sizeof(cmd->cmd));
184 	cmd->cmd.opc = SPDK_NVME_OPC_NS_ATTACHMENT;
185 
186 	cmd->cmd.cdw10_bits.ns_attach.sel = (g_data[0] >> 4) & 0x0f;
187 
188 	g_data += 1;
189 }
190 
191 static void
192 fuzz_admin_namespace_management_command(struct fuzz_command *cmd)
193 {
194 	memset(&cmd->cmd, 0, sizeof(cmd->cmd));
195 	cmd->cmd.opc = SPDK_NVME_OPC_NS_MANAGEMENT;
196 
197 	cmd->cmd.cdw10_bits.ns_manage.sel = (g_data[0] >> 4) & 0x0f;
198 
199 	g_data += 1;
200 }
201 
202 static void
203 fuzz_admin_security_receive_command(struct fuzz_command *cmd)
204 {
205 	memset(&cmd->cmd, 0, sizeof(cmd->cmd));
206 	cmd->cmd.opc = SPDK_NVME_OPC_SECURITY_RECEIVE;
207 
208 	cmd->cmd.cdw10_bits.sec_send_recv.secp = g_data[0];
209 	cmd->cmd.cdw10_bits.sec_send_recv.spsp1 = g_data[1];
210 	cmd->cmd.cdw10_bits.sec_send_recv.spsp0 = g_data[2];
211 	cmd->cmd.cdw10_bits.sec_send_recv.nssf = g_data[3];
212 
213 	/* Allocation Length(AL) */
214 	cmd->cmd.cdw11 = ((uint32_t)g_data[4] << 24) + ((uint32_t)g_data[5] << 16) +
215 			 ((uint32_t)g_data[6] << 8) + (uint32_t)g_data[7];
216 
217 	g_data += 8;
218 }
219 
220 static void
221 fuzz_admin_security_send_command(struct fuzz_command *cmd)
222 {
223 	memset(&cmd->cmd, 0, sizeof(cmd->cmd));
224 	cmd->cmd.opc = SPDK_NVME_OPC_SECURITY_SEND;
225 
226 	cmd->cmd.cdw10_bits.sec_send_recv.secp = g_data[0];
227 	cmd->cmd.cdw10_bits.sec_send_recv.spsp1 = g_data[1];
228 	cmd->cmd.cdw10_bits.sec_send_recv.spsp0 = g_data[2];
229 	cmd->cmd.cdw10_bits.sec_send_recv.nssf = g_data[3];
230 
231 	/* Transfer Length(TL) */
232 	cmd->cmd.cdw11 = (uint32_t)(g_data[4] << 24) + ((uint32_t)g_data[5] << 16) +
233 			 ((uint32_t)g_data[6] << 8) + (uint32_t)g_data[7];
234 
235 	g_data += 8;
236 }
237 
238 static void
239 fuzz_admin_directive_send_command(struct fuzz_command *cmd)
240 {
241 	memset(&cmd->cmd, 0, sizeof(cmd->cmd));
242 	cmd->cmd.opc = SPDK_NVME_OPC_DIRECTIVE_SEND;
243 
244 	cmd->cmd.cdw10 = ((uint32_t)g_data[0] << 24) + ((uint32_t)g_data[1] << 16) +
245 			 ((uint32_t)g_data[2] << 8) + (uint32_t)g_data[3];
246 
247 	cmd->cmd.cdw11_bits.directive.dspec = ((uint16_t)g_data[4] << 8) + (uint16_t)g_data[5];
248 	cmd->cmd.cdw11_bits.directive.dtype = g_data[6];
249 	cmd->cmd.cdw11_bits.directive.doper = g_data[7];
250 
251 	g_data += 8;
252 }
253 
254 static void
255 fuzz_admin_directive_receive_command(struct fuzz_command *cmd)
256 {
257 	memset(&cmd->cmd, 0, sizeof(cmd->cmd));
258 	cmd->cmd.opc = SPDK_NVME_OPC_DIRECTIVE_RECEIVE;
259 
260 	cmd->cmd.cdw10 = ((uint32_t)g_data[0] << 24) + ((uint32_t)g_data[1] << 16) +
261 			 ((uint32_t)g_data[2] << 8) + (uint32_t)g_data[3];
262 
263 	cmd->cmd.cdw11_bits.directive.dspec = ((uint16_t)g_data[4] << 8) + (uint16_t)g_data[5];
264 	cmd->cmd.cdw11_bits.directive.dtype = g_data[6];
265 	cmd->cmd.cdw11_bits.directive.doper = g_data[7];
266 
267 	g_data += 8;
268 }
269 
270 static void feat_arbitration(struct fuzz_command *cmd)
271 {
272 	cmd->cmd.cdw11_bits.feat_arbitration.bits.hpw = g_data[2];
273 	cmd->cmd.cdw11_bits.feat_arbitration.bits.mpw = g_data[3];
274 	cmd->cmd.cdw11_bits.feat_arbitration.bits.lpw = g_data[4];
275 	cmd->cmd.cdw11_bits.feat_arbitration.bits.ab = g_data[5] & 0x07;
276 }
277 
278 static void feat_power_management(struct fuzz_command *cmd)
279 {
280 	cmd->cmd.cdw11_bits.feat_power_management.bits.wh = g_data[2] & 0x07;
281 	cmd->cmd.cdw11_bits.feat_power_management.bits.ps = (g_data[2] >> 3) & 0x1f;
282 }
283 
284 static void feat_lba_range_type(struct fuzz_command *cmd)
285 {
286 	cmd->cmd.cdw11_bits.feat_lba_range_type.bits.num = (g_data[2] >> 2) & 0x3f;
287 }
288 
289 static void feat_temperature_threshold(struct fuzz_command *cmd)
290 {
291 	cmd->cmd.cdw11_bits.feat_temp_threshold.bits.thsel = g_data[2] & 0x03;
292 	cmd->cmd.cdw11_bits.feat_temp_threshold.bits.tmpsel = (g_data[2] >> 2) & 0x0f;
293 	cmd->cmd.cdw11_bits.feat_temp_threshold.bits.tmpth = ((uint16_t)g_data[3] << 8) +
294 			(uint16_t)g_data[4];
295 }
296 
297 static void feat_error_recover(struct fuzz_command *cmd)
298 {
299 	cmd->cmd.cdw11_bits.feat_error_recovery.bits.dulbe = g_data[2] & 0x01;
300 	cmd->cmd.cdw11_bits.feat_error_recovery.bits.tler = ((uint16_t)g_data[3] << 8) +
301 			(uint16_t)g_data[4];
302 }
303 
304 static void feat_volatile_write_cache(struct fuzz_command *cmd)
305 {
306 	cmd->cmd.cdw11_bits.feat_volatile_write_cache.bits.wce = g_data[2] & 0x01;
307 }
308 
309 static void feat_number_of_queues(struct fuzz_command *cmd)
310 {
311 	cmd->cmd.cdw11_bits.feat_num_of_queues.bits.ncqr = ((uint16_t)g_data[2] << 8) + (uint16_t)g_data[3];
312 	cmd->cmd.cdw11_bits.feat_num_of_queues.bits.nsqr = ((uint16_t)g_data[4] << 8) + (uint16_t)g_data[5];
313 }
314 
315 static void feat_interrupt_coalescing(struct fuzz_command *cmd)
316 {
317 	cmd->cmd.cdw11_bits.feat_interrupt_coalescing.bits.time = g_data[2];
318 	cmd->cmd.cdw11_bits.feat_interrupt_coalescing.bits.thr = g_data[3];
319 }
320 
321 static void feat_interrupt_vector_configuration(struct fuzz_command *cmd)
322 {
323 	cmd->cmd.cdw11_bits.feat_interrupt_vector_configuration.bits.cd = g_data[2] & 0x01;
324 	cmd->cmd.cdw11_bits.feat_interrupt_vector_configuration.bits.iv = ((uint16_t)g_data[3] << 8) +
325 			(uint16_t)g_data[4];
326 }
327 
328 static void feat_write_atomicity(struct fuzz_command *cmd)
329 {
330 	cmd->cmd.cdw11_bits.feat_write_atomicity.bits.dn = g_data[2] & 0x01;
331 }
332 
333 static void feat_async_event_cfg(struct fuzz_command *cmd)
334 {
335 	cmd->cmd.cdw11_bits.feat_async_event_cfg.bits.ana_change_notice = g_data[2] & 0x01;
336 	cmd->cmd.cdw11_bits.feat_async_event_cfg.bits.discovery_log_change_notice = (g_data[2] >> 1) & 0x01;
337 	cmd->cmd.cdw11_bits.feat_async_event_cfg.bits.fw_activation_notice = (g_data[2] >> 2) & 0x01;
338 	cmd->cmd.cdw11_bits.feat_async_event_cfg.bits.ns_attr_notice = (g_data[2] >> 3) & 0x01;
339 	cmd->cmd.cdw11_bits.feat_async_event_cfg.bits.telemetry_log_notice = (g_data[2] >> 4) & 0x01;
340 
341 	cmd->cmd.cdw11_bits.feat_async_event_cfg.bits.crit_warn.bits.available_spare = g_data[3] & 0x01;
342 	cmd->cmd.cdw11_bits.feat_async_event_cfg.bits.crit_warn.bits.device_reliability =
343 		(g_data[3] >> 1) & 0x01;
344 	cmd->cmd.cdw11_bits.feat_async_event_cfg.bits.crit_warn.bits.read_only = (g_data[3] >> 2) & 0x01;
345 	cmd->cmd.cdw11_bits.feat_async_event_cfg.bits.crit_warn.bits.temperature = (g_data[3] >> 3) & 0x01;
346 	cmd->cmd.cdw11_bits.feat_async_event_cfg.bits.crit_warn.bits.volatile_memory_backup =
347 		(g_data[3] >> 4) & 0x01;
348 }
349 
350 static void feat_keep_alive_timer(struct fuzz_command *cmd)
351 {
352 	cmd->cmd.cdw11_bits.feat_keep_alive_timer.bits.kato = ((uint32_t)g_data[2] << 24) + ((
353 				uint32_t)g_data[3] << 16) +
354 			((uint32_t)g_data[4] << 8) + (uint32_t)g_data[5];
355 }
356 
357 static void feat_host_identifier(struct fuzz_command *cmd)
358 {
359 	cmd->cmd.cdw11_bits.feat_host_identifier.bits.exhid = g_data[2] & 0x01;
360 }
361 
362 static void feat_rsv_notification_mask(struct fuzz_command *cmd)
363 {
364 	cmd->cmd.cdw11_bits.feat_rsv_notification_mask.bits.regpre = g_data[2] & 0x01;
365 	cmd->cmd.cdw11_bits.feat_rsv_notification_mask.bits.respre = (g_data[2] >> 1) & 0x01;
366 	cmd->cmd.cdw11_bits.feat_rsv_notification_mask.bits.resrel = (g_data[2] >> 2) & 0x01;
367 }
368 
369 static void feat_rsv_persistence(struct fuzz_command *cmd)
370 {
371 	cmd->cmd.cdw11_bits.feat_rsv_persistence.bits.ptpl = g_data[2] & 0x01;
372 }
373 
374 static void
375 fuzz_admin_set_features_command(struct fuzz_command *cmd)
376 {
377 	memset(&cmd->cmd, 0, sizeof(cmd->cmd));
378 	cmd->cmd.opc = SPDK_NVME_OPC_SET_FEATURES;
379 
380 	cmd->cmd.cdw10_bits.set_features.fid = g_data[0];
381 	cmd->cmd.cdw10_bits.set_features.sv = (g_data[1] >> 7) & 0x01;
382 
383 	switch (cmd->cmd.cdw10_bits.set_features.fid) {
384 	case SPDK_NVME_FEAT_ARBITRATION:
385 		feat_arbitration(cmd);
386 		break;
387 	case SPDK_NVME_FEAT_POWER_MANAGEMENT:
388 		feat_power_management(cmd);
389 		break;
390 	case SPDK_NVME_FEAT_LBA_RANGE_TYPE:
391 		feat_lba_range_type(cmd);
392 		break;
393 	case SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD:
394 		feat_temperature_threshold(cmd);
395 		break;
396 	case SPDK_NVME_FEAT_ERROR_RECOVERY:
397 		feat_error_recover(cmd);
398 		break;
399 	case SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE:
400 		feat_volatile_write_cache(cmd);
401 		break;
402 	case SPDK_NVME_FEAT_NUMBER_OF_QUEUES:
403 		feat_number_of_queues(cmd);
404 		break;
405 	case SPDK_NVME_FEAT_INTERRUPT_COALESCING:
406 		feat_interrupt_coalescing(cmd);
407 		break;
408 	case SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION:
409 		feat_interrupt_vector_configuration(cmd);
410 		break;
411 	case SPDK_NVME_FEAT_WRITE_ATOMICITY:
412 		feat_write_atomicity(cmd);
413 		break;
414 	case SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION:
415 		feat_async_event_cfg(cmd);
416 		break;
417 	case SPDK_NVME_FEAT_KEEP_ALIVE_TIMER:
418 		feat_keep_alive_timer(cmd);
419 		break;
420 	case SPDK_NVME_FEAT_HOST_IDENTIFIER:
421 		feat_host_identifier(cmd);
422 		break;
423 	case SPDK_NVME_FEAT_HOST_RESERVE_MASK:
424 		feat_rsv_notification_mask(cmd);
425 		break;
426 	case SPDK_NVME_FEAT_HOST_RESERVE_PERSIST:
427 		feat_rsv_persistence(cmd);
428 		break;
429 
430 	default:
431 		break;
432 	}
433 
434 	/* Use g_data[2] through g_data[5] for feature-specific
435 	   bits and set g_data[6] for cdw14 every iteration
436 	   UUID index, bits 0-6 are used */
437 	cmd->cmd.cdw14 = (g_data[6] & 0x7f);
438 
439 	g_data += 7;
440 }
441 
442 static void
443 fuzz_admin_get_features_command(struct fuzz_command *cmd)
444 {
445 	memset(&cmd->cmd, 0, sizeof(cmd->cmd));
446 	cmd->cmd.opc = SPDK_NVME_OPC_GET_FEATURES;
447 
448 	cmd->cmd.cdw10_bits.get_features.fid = g_data[0];
449 	cmd->cmd.cdw10_bits.get_features.sel = (g_data[1] >> 5) & 0x07;
450 
451 	switch (cmd->cmd.cdw10_bits.set_features.fid) {
452 	case SPDK_NVME_FEAT_ARBITRATION:
453 		feat_arbitration(cmd);
454 		break;
455 	case SPDK_NVME_FEAT_POWER_MANAGEMENT:
456 		feat_power_management(cmd);
457 		break;
458 	case SPDK_NVME_FEAT_LBA_RANGE_TYPE:
459 		feat_lba_range_type(cmd);
460 		break;
461 	case SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD:
462 		feat_temperature_threshold(cmd);
463 		break;
464 	case SPDK_NVME_FEAT_ERROR_RECOVERY:
465 		feat_error_recover(cmd);
466 		break;
467 	case SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE:
468 		feat_volatile_write_cache(cmd);
469 		break;
470 	case SPDK_NVME_FEAT_NUMBER_OF_QUEUES:
471 		feat_number_of_queues(cmd);
472 		break;
473 	case SPDK_NVME_FEAT_INTERRUPT_COALESCING:
474 		feat_interrupt_coalescing(cmd);
475 		break;
476 	case SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION:
477 		feat_interrupt_vector_configuration(cmd);
478 		break;
479 	case SPDK_NVME_FEAT_WRITE_ATOMICITY:
480 		feat_write_atomicity(cmd);
481 		break;
482 	case SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION:
483 		feat_async_event_cfg(cmd);
484 		break;
485 	case SPDK_NVME_FEAT_KEEP_ALIVE_TIMER:
486 		feat_keep_alive_timer(cmd);
487 		break;
488 
489 	default:
490 		break;
491 	}
492 
493 	/* Use g_data[2] through g_data[5] for feature-specific
494 	   bits and set g_data[6] for cdw14 every iteration
495 	   UUID index, bits 0-6 are used */
496 	cmd->cmd.cdw14 = (g_data[6] & 0x7f);
497 
498 	g_data += 7;
499 }
500 
501 static void
502 fuzz_nvm_read_command(struct fuzz_command *cmd)
503 {
504 	memset(&cmd->cmd, 0, sizeof(cmd->cmd));
505 	cmd->cmd.opc = SPDK_NVME_OPC_READ;
506 
507 	cmd->cmd.cdw10 = ((uint32_t)g_data[0] << 24) + ((uint32_t)g_data[1] << 16) +
508 			 ((uint32_t)g_data[2] << 8) + (uint32_t)g_data[3];
509 	cmd->cmd.cdw11 = ((uint32_t)g_data[4] << 24) + ((uint32_t)g_data[5] << 16) +
510 			 ((uint32_t)g_data[6] << 8) + (uint32_t)g_data[7];
511 	cmd->cmd.cdw12 = ((uint32_t)g_data[8] << 24) + ((uint32_t)g_data[9] << 16) +
512 			 ((uint32_t)g_data[10] << 8) + (uint32_t)g_data[11];
513 	cmd->cmd.cdw13 = g_data[12];
514 	cmd->cmd.cdw14 = ((uint32_t)g_data[13] << 24) + ((uint32_t)g_data[14] << 16) +
515 			 ((uint32_t)g_data[15] << 8) + (uint32_t)g_data[16];
516 	cmd->cmd.cdw15 = ((uint32_t)g_data[17] << 24) + ((uint32_t)g_data[18] << 16) +
517 			 ((uint32_t)g_data[19] << 8) + (uint32_t)g_data[20];
518 
519 	g_data += 21;
520 }
521 
522 static void
523 fuzz_nvm_write_command(struct fuzz_command *cmd)
524 {
525 	memset(&cmd->cmd, 0, sizeof(cmd->cmd));
526 	cmd->cmd.opc = SPDK_NVME_OPC_WRITE;
527 
528 	cmd->cmd.cdw10 = ((uint32_t)g_data[0] << 24) + ((uint32_t)g_data[1] << 16) +
529 			 ((uint32_t)g_data[2] << 8) + (uint32_t)g_data[3];
530 	cmd->cmd.cdw11 = ((uint32_t)g_data[4] << 24) + ((uint32_t)g_data[5] << 16) +
531 			 ((uint32_t)g_data[6] << 8) + (uint32_t)g_data[7];
532 	cmd->cmd.cdw12 = ((uint32_t)g_data[8] << 24) + ((uint32_t)g_data[9] << 16) +
533 			 ((uint32_t)g_data[10] << 8) + (uint32_t)g_data[11];
534 	cmd->cmd.cdw13 = ((uint32_t)g_data[12] << 24) + ((uint32_t)g_data[13] << 16) +
535 			 ((uint32_t)g_data[14] << 8) + (uint32_t)g_data[15];
536 	cmd->cmd.cdw14 = ((uint32_t)g_data[16] << 24) + ((uint32_t)g_data[17] << 16) +
537 			 ((uint32_t)g_data[18] << 8) + (uint32_t)g_data[19];
538 	cmd->cmd.cdw15 = ((uint32_t)g_data[20] << 24) + ((uint32_t)g_data[21] << 16) +
539 			 ((uint32_t)g_data[22] << 8) + (uint32_t)g_data[23];
540 
541 	g_data += 24;
542 }
543 
544 static void
545 fuzz_nvm_write_zeroes_command(struct fuzz_command *cmd)
546 {
547 	memset(&cmd->cmd, 0, sizeof(cmd->cmd));
548 	cmd->cmd.opc = SPDK_NVME_OPC_WRITE_ZEROES;
549 
550 	cmd->cmd.cdw10 = ((uint32_t)g_data[0] << 24) + ((uint32_t)g_data[1] << 16) +
551 			 ((uint32_t)g_data[2] << 8) + (uint32_t)g_data[3];
552 	cmd->cmd.cdw11 = ((uint32_t)g_data[4] << 24) + ((uint32_t)g_data[5] << 16) +
553 			 ((uint32_t)g_data[6] << 8) + (uint32_t)g_data[7];
554 	cmd->cmd.cdw12 = ((uint32_t)g_data[8] << 24) + ((uint32_t)g_data[9] << 16) +
555 			 ((uint32_t)g_data[10] << 8) + (uint32_t)g_data[11];
556 	cmd->cmd.cdw14 = ((uint32_t)g_data[12] << 24) + ((uint32_t)g_data[13] << 16) +
557 			 ((uint32_t)g_data[14] << 8) + (uint32_t)g_data[15];
558 	cmd->cmd.cdw15 = ((uint32_t)g_data[16] << 24) + ((uint32_t)g_data[17] << 16) +
559 			 ((uint32_t)g_data[18] << 8) + (uint32_t)g_data[19];
560 
561 	g_data += 20;
562 }
563 
564 static void
565 fuzz_nvm_write_uncorrectable_command(struct fuzz_command *cmd)
566 {
567 	memset(&cmd->cmd, 0, sizeof(cmd->cmd));
568 	cmd->cmd.opc = SPDK_NVME_OPC_WRITE_UNCORRECTABLE;
569 
570 	cmd->cmd.cdw10 = ((uint32_t)g_data[0] << 24) + ((uint32_t)g_data[1] << 16) +
571 			 ((uint32_t)g_data[2] << 8) + (uint32_t)g_data[3];
572 	cmd->cmd.cdw11 = ((uint32_t)g_data[4] << 24) + ((uint32_t)g_data[5] << 16) +
573 			 ((uint32_t)g_data[6] << 8) + (uint32_t)g_data[7];
574 	cmd->cmd.cdw12 = (g_data[8] << 8) + g_data[9];
575 
576 	g_data += 10;
577 }
578 
579 static void
580 fuzz_nvm_reservation_acquire_command(struct fuzz_command *cmd)
581 {
582 	struct spdk_nvme_reservation_acquire_data *payload = cmd->buf;
583 	memset(&cmd->cmd, 0, sizeof(cmd->cmd));
584 	cmd->cmd.opc = SPDK_NVME_OPC_RESERVATION_ACQUIRE;
585 
586 	cmd->cmd.cdw10_bits.resv_acquire.rtype = g_data[0];
587 	cmd->cmd.cdw10_bits.resv_acquire.iekey = (g_data[1] >> 7) & 0x01;
588 	cmd->cmd.cdw10_bits.resv_acquire.racqa = (g_data[1] >> 4) & 0x07;
589 
590 	payload->crkey = ((uint64_t)g_data[2] << 56) + ((uint64_t)g_data[3] << 48) +
591 			 ((uint64_t)g_data[4] << 40) + ((uint64_t)g_data[5] << 32) +
592 			 ((uint64_t)g_data[6] << 24) + ((uint64_t)g_data[7] << 16) +
593 			 ((uint64_t)g_data[8] << 8) + (uint64_t)g_data[9];
594 
595 	payload->prkey = ((uint64_t)g_data[10] << 56) + ((uint64_t)g_data[11] << 48) +
596 			 ((uint64_t)g_data[12] << 40) + ((uint64_t)g_data[13] << 32) +
597 			 ((uint64_t)g_data[14] << 24) + ((uint64_t)g_data[15] << 16) +
598 			 ((uint64_t)g_data[16] << 8) + (uint64_t)g_data[17];
599 
600 	cmd->len = sizeof(struct spdk_nvme_reservation_acquire_data);
601 
602 	g_data += 18;
603 }
604 
605 static void
606 fuzz_nvm_reservation_release_command(struct fuzz_command *cmd)
607 {
608 	struct spdk_nvme_reservation_key_data *payload = cmd->buf;
609 	memset(&cmd->cmd, 0, sizeof(cmd->cmd));
610 	cmd->cmd.opc = SPDK_NVME_OPC_RESERVATION_RELEASE;
611 
612 	cmd->cmd.cdw10_bits.resv_release.rtype = g_data[0];
613 	cmd->cmd.cdw10_bits.resv_release.iekey = (g_data[1] >> 7) & 0x01;
614 	cmd->cmd.cdw10_bits.resv_release.rrela = (g_data[1] >> 4) & 0x07;
615 
616 	payload->crkey = ((uint64_t)g_data[2] << 56) + ((uint64_t)g_data[3] << 48) +
617 			 ((uint64_t)g_data[4] << 40) + ((uint64_t)g_data[5] << 32) +
618 			 ((uint64_t)g_data[6] << 24) + ((uint64_t)g_data[7] << 16) +
619 			 ((uint64_t)g_data[8] << 8) + (uint64_t)g_data[9];
620 
621 	cmd->len = sizeof(struct spdk_nvme_reservation_key_data);
622 
623 	g_data += 10;
624 }
625 
626 static void
627 fuzz_nvm_reservation_register_command(struct fuzz_command *cmd)
628 {
629 	struct spdk_nvme_reservation_register_data *payload = cmd->buf;
630 	memset(&cmd->cmd, 0, sizeof(cmd->cmd));
631 	cmd->cmd.opc = SPDK_NVME_OPC_RESERVATION_REGISTER;
632 
633 	cmd->cmd.cdw10_bits.resv_register.cptpl = (g_data[0] >> 6) & 0x03;
634 	cmd->cmd.cdw10_bits.resv_register.iekey = (g_data[0] >> 5) & 0x01;
635 	cmd->cmd.cdw10_bits.resv_register.rrega = (g_data[0] >> 2) & 0x07;
636 
637 	payload->crkey = ((uint64_t)g_data[1] << 56) + ((uint64_t)g_data[2] << 48) +
638 			 ((uint64_t)g_data[3] << 40) + ((uint64_t)g_data[4] << 32) +
639 			 ((uint64_t)g_data[5] << 24) + ((uint64_t)g_data[6] << 16) +
640 			 ((uint64_t)g_data[7] << 8) + (uint64_t)g_data[8];
641 
642 	payload->nrkey = ((uint64_t)g_data[9] << 56) + ((uint64_t)g_data[10] << 48) +
643 			 ((uint64_t)g_data[11] << 40) + ((uint64_t)g_data[12] << 32) +
644 			 ((uint64_t)g_data[13] << 24) + ((uint64_t)g_data[14] << 16) +
645 			 ((uint64_t)g_data[15] << 8) + (uint64_t)g_data[16];
646 
647 
648 	cmd->len = sizeof(struct spdk_nvme_reservation_register_data);
649 
650 	g_data += 17;
651 }
652 
653 static void
654 fuzz_nvm_reservation_report_command(struct fuzz_command *cmd)
655 {
656 	memset(&cmd->cmd, 0, sizeof(cmd->cmd));
657 	cmd->cmd.opc = SPDK_NVME_OPC_RESERVATION_REPORT;
658 
659 	cmd->cmd.cdw10 = ((uint32_t)g_data[0] << 24) + ((uint32_t)g_data[1] << 16) +
660 			 ((uint32_t)g_data[2] << 8) + (uint32_t)g_data[3];
661 
662 	cmd->cmd.cdw11_bits.resv_report.eds = (g_data[4] >> 7) & 0x01;
663 
664 	g_data += 5;
665 }
666 
667 static void
668 fuzz_nvm_compare_command(struct fuzz_command *cmd)
669 {
670 	memset(&cmd->cmd, 0, sizeof(cmd->cmd));
671 	cmd->cmd.opc = SPDK_NVME_OPC_COMPARE;
672 
673 	cmd->cmd.cdw10 = ((uint32_t)g_data[0] << 24) + ((uint32_t)g_data[1] << 16) +
674 			 ((uint32_t)g_data[2] << 8) + (uint32_t)g_data[3];
675 	cmd->cmd.cdw11 = ((uint32_t)g_data[4] << 24) + ((uint32_t)g_data[5] << 16) +
676 			 ((uint32_t)g_data[6] << 8) + (uint32_t)g_data[7];
677 	cmd->cmd.cdw12 = ((uint32_t)g_data[8] << 24) + ((uint32_t)g_data[9] << 16) +
678 			 ((uint32_t)g_data[10] << 8) + (uint32_t)g_data[11];
679 	cmd->cmd.cdw14 = ((uint32_t)g_data[12] << 24) + ((uint32_t)g_data[13] << 16) +
680 			 ((uint32_t)g_data[14] << 8) + (uint32_t)g_data[15];
681 	cmd->cmd.cdw15 = ((uint32_t)g_data[16] << 24) + ((uint32_t)g_data[17] << 16) +
682 			 ((uint32_t)g_data[18] << 8) + (uint32_t)g_data[19];
683 
684 	g_data += 20;
685 }
686 
687 static struct fuzz_type g_fuzzers[] = {
688 	{ .fn = fuzz_admin_command, .bytes_per_cmd = sizeof(struct spdk_nvme_cmd), .is_admin = true},
689 	{ .fn = fuzz_admin_get_log_page_command, .bytes_per_cmd = 6, .is_admin = true},
690 	{ .fn = fuzz_admin_identify_command, .bytes_per_cmd = 7, .is_admin = true},
691 	{ .fn = fuzz_admin_abort_command, .bytes_per_cmd = 4, .is_admin = true},
692 	{ .fn = fuzz_admin_create_io_completion_queue_command, .bytes_per_cmd = 7, .is_admin = true},
693 	{ .fn = fuzz_admin_create_io_submission_queue_command, .bytes_per_cmd = 9, .is_admin = true},
694 	{ .fn = fuzz_admin_delete_io_completion_queue_command, .bytes_per_cmd = 2, .is_admin = true},
695 	{ .fn = fuzz_admin_delete_io_submission_queue_command, .bytes_per_cmd = 2, .is_admin = true},
696 	{ .fn = fuzz_admin_namespace_attachment_command, .bytes_per_cmd = 1, .is_admin = true},
697 	{ .fn = fuzz_admin_namespace_management_command, .bytes_per_cmd = 1, .is_admin = true},
698 	{ .fn = fuzz_admin_security_receive_command, .bytes_per_cmd = 8, .is_admin = true},
699 	{ .fn = fuzz_admin_security_send_command, .bytes_per_cmd = 8, .is_admin = true},
700 	{ .fn = fuzz_admin_directive_send_command, .bytes_per_cmd = 8, .is_admin = true},
701 	{ .fn = fuzz_admin_directive_receive_command, .bytes_per_cmd = 8, .is_admin = true},
702 	{ .fn = fuzz_admin_set_features_command, .bytes_per_cmd = 7, .is_admin = true},
703 	{ .fn = fuzz_admin_get_features_command, .bytes_per_cmd = 7, .is_admin = true},
704 	{ .fn = fuzz_nvm_read_command, .bytes_per_cmd = 21, .is_admin = false},
705 	{ .fn = fuzz_nvm_write_command, .bytes_per_cmd = 24, .is_admin = false},
706 	{ .fn = fuzz_nvm_write_zeroes_command, .bytes_per_cmd = 20, .is_admin = false},
707 	{ .fn = fuzz_nvm_write_uncorrectable_command, .bytes_per_cmd = 10, .is_admin = false},
708 	{ .fn = fuzz_nvm_reservation_acquire_command, .bytes_per_cmd = 18, .is_admin = false},
709 	{ .fn = fuzz_nvm_reservation_release_command, .bytes_per_cmd = 10, .is_admin = false},
710 	{ .fn = fuzz_nvm_reservation_register_command, .bytes_per_cmd = 17, .is_admin = false},
711 	{ .fn = fuzz_nvm_reservation_report_command, .bytes_per_cmd = 5, .is_admin = false},
712 	{ .fn = fuzz_nvm_compare_command, .bytes_per_cmd = 20, .is_admin = false},
713 	{ .fn = NULL, .bytes_per_cmd = 0, .is_admin = 0}
714 };
715 
716 #define NUM_FUZZERS (SPDK_COUNTOF(g_fuzzers) - 1)
717 
718 static struct fuzz_type *g_fuzzer;
719 
720 struct spdk_nvme_transport_id g_trid;
721 static struct spdk_nvme_ctrlr *g_ctrlr;
722 static struct spdk_nvme_qpair *g_io_qpair;
723 static void
724 nvme_fuzz_cpl_cb(void *cb_arg, const struct spdk_nvme_cpl *cpl)
725 {
726 	int *outstanding = cb_arg;
727 
728 	assert(*outstanding > 0);
729 	(*outstanding)--;
730 }
731 
732 static int
733 run_cmds(uint32_t queue_depth)
734 {
735 	int rc, outstanding = 0;
736 	uint32_t i;
737 
738 	for (i = 0; i < queue_depth; i++) {
739 		struct fuzz_command *cmd = &g_cmds[i];
740 
741 		g_fuzzer->fn(cmd);
742 		outstanding++;
743 		if (g_fuzzer->is_admin) {
744 			rc = spdk_nvme_ctrlr_cmd_admin_raw(g_ctrlr, &cmd->cmd, cmd->buf, cmd->len, nvme_fuzz_cpl_cb,
745 							   &outstanding);
746 		} else {
747 			rc = spdk_nvme_ctrlr_cmd_io_raw(g_ctrlr, g_io_qpair, &cmd->cmd, cmd->buf, cmd->len,
748 							nvme_fuzz_cpl_cb, &outstanding);
749 		}
750 		if (rc) {
751 			return rc;
752 		}
753 	}
754 
755 	while (outstanding > 0) {
756 		spdk_nvme_qpair_process_completions(g_io_qpair, 0);
757 		spdk_nvme_ctrlr_process_admin_completions(g_ctrlr);
758 	}
759 	return 0;
760 }
761 
762 static int TestOneInput(const uint8_t *data, size_t size)
763 {
764 	struct spdk_nvme_detach_ctx *detach_ctx = NULL;
765 
766 	g_ctrlr = spdk_nvme_connect(&g_trid, NULL, 0);
767 	if (g_ctrlr == NULL) {
768 		fprintf(stderr, "spdk_nvme_connect() failed for transport address '%s'\n",
769 			g_trid.traddr);
770 		spdk_app_stop(-1);
771 	}
772 
773 	g_io_qpair = spdk_nvme_ctrlr_alloc_io_qpair(g_ctrlr, NULL, 0);
774 	if (g_io_qpair == NULL) {
775 		fprintf(stderr, "spdk_nvme_ctrlr_alloc_io_qpair failed\n");
776 		spdk_app_stop(-1);
777 	}
778 
779 	g_data = data;
780 
781 	run_cmds(size / g_fuzzer->bytes_per_cmd);
782 	spdk_nvme_ctrlr_free_io_qpair(g_io_qpair);
783 	spdk_nvme_detach_async(g_ctrlr, &detach_ctx);
784 
785 	if (detach_ctx) {
786 		spdk_nvme_detach_poll(detach_ctx);
787 	}
788 
789 	return 0;
790 }
791 
792 int LLVMFuzzerRunDriver(int *argc, char ***argv, int (*UserCb)(const uint8_t *Data, size_t Size));
793 
794 static void exit_handler(void)
795 {
796 	if (g_in_fuzzer) {
797 		spdk_app_stop(0);
798 		pthread_join(g_reactor_td, NULL);
799 	}
800 }
801 
802 static void *
803 start_fuzzer(void *ctx)
804 {
805 	char *_argv[] = {
806 		"spdk",
807 		"-len_control=0",
808 		"-detect_leaks=1",
809 		NULL,
810 		NULL,
811 		NULL
812 	};
813 	char time_str[128];
814 	char len_str[128];
815 	char **argv = _argv;
816 	int argc = SPDK_COUNTOF(_argv);
817 	uint32_t len;
818 
819 	spdk_unaffinitize_thread();
820 	len = MAX_COMMANDS * g_fuzzer->bytes_per_cmd;
821 	snprintf(len_str, sizeof(len_str), "-max_len=%d", len);
822 	argv[argc - 3] = len_str;
823 	snprintf(time_str, sizeof(time_str), "-max_total_time=%d", g_time_in_sec);
824 	argv[argc - 2] = time_str;
825 	argv[argc - 1] = g_corpus_dir;
826 
827 	g_in_fuzzer = true;
828 	atexit(exit_handler);
829 	if (g_repro_data) {
830 		printf("Running single test based on reproduction data file.\n");
831 		TestOneInput(g_repro_data, g_repro_size);
832 		printf("Done.\n");
833 	} else {
834 		LLVMFuzzerRunDriver(&argc, &argv, TestOneInput);
835 		/* TODO: in the normal case, LLVMFuzzerRunDriver never returns - it calls exit()
836 		 * directly and we never get here.  But this behavior isn't really documented
837 		 * anywhere by LLVM, so call spdk_app_stop(0) if it does return, which will
838 		 * result in the app exiting like a normal SPDK application (spdk_app_start()
839 		 * returns to main().
840 		 */
841 	}
842 	g_in_fuzzer = false;
843 	spdk_app_stop(0);
844 
845 	return NULL;
846 }
847 
848 static void
849 begin_fuzz(void *ctx)
850 {
851 	int i;
852 
853 	g_reactor_td = pthread_self();
854 
855 	for (i = 0; i < MAX_COMMANDS; i++) {
856 		g_cmds[i].buf = spdk_malloc(4096, 0, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
857 		assert(g_cmds[i].buf);
858 		g_cmds[i].len = 4096;
859 	}
860 
861 	pthread_create(&g_fuzz_td, NULL, start_fuzzer, NULL);
862 }
863 
864 static void
865 nvme_fuzz_usage(void)
866 {
867 	fprintf(stderr, " -D                        Path of corpus directory.\n");
868 	fprintf(stderr, " -F                        Transport ID for subsystem that should be fuzzed.\n");
869 	fprintf(stderr, " -N                        Name of reproduction data file.\n");
870 	fprintf(stderr, " -t                        Time to run fuzz tests (in seconds). Default: 10\n");
871 	fprintf(stderr, " -Z                        Fuzzer to run (0 to %lu)\n", NUM_FUZZERS - 1);
872 }
873 
874 static int
875 nvme_fuzz_parse(int ch, char *arg)
876 {
877 	long long tmp;
878 	int rc;
879 	FILE *repro_file;
880 
881 	switch (ch) {
882 	case 'D':
883 		g_corpus_dir = strdup(optarg);
884 		break;
885 	case 'F':
886 		if (g_trid_specified) {
887 			fprintf(stderr, "Can only specify one trid\n");
888 			return -1;
889 		}
890 		g_trid_specified = true;
891 		rc = spdk_nvme_transport_id_parse(&g_trid, optarg);
892 		if (rc < 0) {
893 			fprintf(stderr, "failed to parse transport ID: %s\n", optarg);
894 			return -1;
895 		}
896 		break;
897 	case 'N':
898 		repro_file = fopen(optarg, "r");
899 		if (repro_file == NULL) {
900 			fprintf(stderr, "could not open %s: %s\n", optarg, spdk_strerror(errno));
901 			return -1;
902 		}
903 		g_repro_data = spdk_posix_file_load(repro_file, &g_repro_size);
904 		if (g_repro_data == NULL) {
905 			fprintf(stderr, "could not load data for file %s\n", optarg);
906 			return -1;
907 		}
908 		break;
909 	case 't':
910 	case 'Z':
911 		tmp = spdk_strtoll(optarg, 10);
912 		if (tmp < 0 || tmp >= INT_MAX) {
913 			fprintf(stderr, "Invalid value '%s' for option -%c.\n", optarg, ch);
914 			return -EINVAL;
915 		}
916 		switch (ch) {
917 		case 't':
918 			g_time_in_sec = tmp;
919 			break;
920 		case 'Z':
921 			if ((unsigned long)tmp >= NUM_FUZZERS) {
922 				fprintf(stderr, "Invalid fuzz type %lld (max %lu)\n", tmp, NUM_FUZZERS - 1);
923 				return -EINVAL;
924 			}
925 			g_fuzzer = &g_fuzzers[tmp];
926 			break;
927 		}
928 		break;
929 	case '?':
930 	default:
931 		return -EINVAL;
932 	}
933 	return 0;
934 }
935 
936 static void
937 fuzz_shutdown(void)
938 {
939 	/* If the user terminates the fuzzer prematurely, it is likely due
940 	 * to an input hang.  So raise a SIGSEGV signal which will cause the
941 	 * fuzzer to generate a crash file for the last input.
942 	 *
943 	 * Note that the fuzzer will always generate a crash file, even if
944 	 * we get our TestOneInput() function (which is called by the fuzzer)
945 	 * to pthread_exit().  So just doing the SIGSEGV here in all cases is
946 	 * simpler than trying to differentiate between hung inputs and
947 	 * an impatient user.
948 	 */
949 	pthread_kill(g_fuzz_td, SIGSEGV);
950 }
951 
952 int
953 main(int argc, char **argv)
954 {
955 	struct spdk_app_opts opts = {};
956 	int rc;
957 
958 	spdk_app_opts_init(&opts, sizeof(opts));
959 	opts.name = "nvme_fuzz";
960 	opts.shutdown_cb = fuzz_shutdown;
961 
962 	if ((rc = spdk_app_parse_args(argc, argv, &opts, "D:F:N:t:Z:", NULL, nvme_fuzz_parse,
963 				      nvme_fuzz_usage) != SPDK_APP_PARSE_ARGS_SUCCESS)) {
964 		return rc;
965 	}
966 
967 	if (!g_corpus_dir) {
968 		fprintf(stderr, "Must specify corpus dir with -D option\n");
969 		return -1;
970 	}
971 
972 	if (!g_trid_specified) {
973 		fprintf(stderr, "Must specify trid with -F option\n");
974 		return -1;
975 	}
976 
977 	if (!g_fuzzer) {
978 		fprintf(stderr, "Must specify fuzzer with -Z option\n");
979 		return -1;
980 	}
981 
982 	rc = spdk_app_start(&opts, begin_fuzz, NULL);
983 
984 	spdk_app_fini();
985 	return rc;
986 }
987