1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (C) 2016 Intel Corporation. All rights reserved. 3 * Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved. 4 * Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 5 */ 6 7 #include "spdk/stdinc.h" 8 9 #include "bdev_nvme.h" 10 11 #include "spdk/accel.h" 12 #include "spdk/config.h" 13 #include "spdk/endian.h" 14 #include "spdk/bdev.h" 15 #include "spdk/json.h" 16 #include "spdk/likely.h" 17 #include "spdk/nvme.h" 18 #include "spdk/nvme_ocssd.h" 19 #include "spdk/nvme_zns.h" 20 #include "spdk/opal.h" 21 #include "spdk/thread.h" 22 #include "spdk/trace.h" 23 #include "spdk/string.h" 24 #include "spdk/util.h" 25 26 #include "spdk/bdev_module.h" 27 #include "spdk/log.h" 28 29 #include "spdk_internal/usdt.h" 30 #include "spdk_internal/trace_defs.h" 31 32 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true 33 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS (10000) 34 35 #define NSID_STR_LEN 10 36 37 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w); 38 39 struct nvme_bdev_io { 40 /** array of iovecs to transfer. */ 41 struct iovec *iovs; 42 43 /** Number of iovecs in iovs array. */ 44 int iovcnt; 45 46 /** Current iovec position. */ 47 int iovpos; 48 49 /** Offset in current iovec. */ 50 uint32_t iov_offset; 51 52 /** I/O path the current I/O or admin passthrough is submitted on, or the I/O path 53 * being reset in a reset I/O. 54 */ 55 struct nvme_io_path *io_path; 56 57 /** array of iovecs to transfer. */ 58 struct iovec *fused_iovs; 59 60 /** Number of iovecs in iovs array. */ 61 int fused_iovcnt; 62 63 /** Current iovec position. */ 64 int fused_iovpos; 65 66 /** Offset in current iovec. */ 67 uint32_t fused_iov_offset; 68 69 /** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */ 70 struct spdk_nvme_cpl cpl; 71 72 /** Extended IO opts passed by the user to bdev layer and mapped to NVME format */ 73 struct spdk_nvme_ns_cmd_ext_io_opts ext_opts; 74 75 /** Originating thread */ 76 struct spdk_thread *orig_thread; 77 78 /** Keeps track if first of fused commands was submitted */ 79 bool first_fused_submitted; 80 81 /** Keeps track if first of fused commands was completed */ 82 bool first_fused_completed; 83 84 /** Temporary pointer to zone report buffer */ 85 struct spdk_nvme_zns_zone_report *zone_report_buf; 86 87 /** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */ 88 uint64_t handled_zones; 89 90 /** Expiration value in ticks to retry the current I/O. */ 91 uint64_t retry_ticks; 92 93 /* How many times the current I/O was retried. */ 94 int32_t retry_count; 95 }; 96 97 struct nvme_probe_skip_entry { 98 struct spdk_nvme_transport_id trid; 99 TAILQ_ENTRY(nvme_probe_skip_entry) tailq; 100 }; 101 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */ 102 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER( 103 g_skipped_nvme_ctrlrs); 104 105 static struct spdk_bdev_nvme_opts g_opts = { 106 .action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE, 107 .timeout_us = 0, 108 .timeout_admin_us = 0, 109 .keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS, 110 .transport_retry_count = 4, 111 .arbitration_burst = 0, 112 .low_priority_weight = 0, 113 .medium_priority_weight = 0, 114 .high_priority_weight = 0, 115 .nvme_adminq_poll_period_us = 10000ULL, 116 .nvme_ioq_poll_period_us = 0, 117 .io_queue_requests = 0, 118 .delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT, 119 .bdev_retry_count = 3, 120 .transport_ack_timeout = 0, 121 .ctrlr_loss_timeout_sec = 0, 122 .reconnect_delay_sec = 0, 123 .fast_io_fail_timeout_sec = 0, 124 .disable_auto_failback = false, 125 .generate_uuids = false, 126 }; 127 128 #define NVME_HOTPLUG_POLL_PERIOD_MAX 10000000ULL 129 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT 100000ULL 130 131 static int g_hot_insert_nvme_controller_index = 0; 132 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT; 133 static bool g_nvme_hotplug_enabled = false; 134 static struct spdk_thread *g_bdev_nvme_init_thread; 135 static struct spdk_poller *g_hotplug_poller; 136 static struct spdk_poller *g_hotplug_probe_poller; 137 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx; 138 139 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr, 140 struct nvme_async_probe_ctx *ctx); 141 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr, 142 struct nvme_async_probe_ctx *ctx); 143 static int bdev_nvme_library_init(void); 144 static void bdev_nvme_library_fini(void); 145 static void bdev_nvme_submit_request(struct spdk_io_channel *ch, 146 struct spdk_bdev_io *bdev_io); 147 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, 148 void *md, uint64_t lba_count, uint64_t lba, 149 uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts); 150 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, 151 void *md, uint64_t lba_count, uint64_t lba); 152 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, 153 void *md, uint64_t lba_count, uint64_t lba, 154 uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts); 155 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, 156 void *md, uint64_t lba_count, 157 uint64_t zslba, uint32_t flags); 158 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, 159 void *md, uint64_t lba_count, uint64_t lba, 160 uint32_t flags); 161 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, 162 struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov, 163 int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba, 164 uint32_t flags); 165 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, 166 uint32_t num_zones, struct spdk_bdev_zone_info *info); 167 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id, 168 enum spdk_bdev_zone_action action); 169 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, 170 struct nvme_bdev_io *bio, 171 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes); 172 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd, 173 void *buf, size_t nbytes); 174 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd, 175 void *buf, size_t nbytes, void *md_buf, size_t md_len); 176 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, 177 struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort); 178 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio); 179 static int bdev_nvme_reset(struct nvme_ctrlr *nvme_ctrlr); 180 static int bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove); 181 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr); 182 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr); 183 184 static int 185 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2) 186 { 187 return ns1->id < ns2->id ? -1 : ns1->id > ns2->id; 188 } 189 190 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp); 191 192 struct spdk_nvme_qpair * 193 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch) 194 { 195 struct nvme_ctrlr_channel *ctrlr_ch; 196 197 assert(ctrlr_io_ch != NULL); 198 199 ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch); 200 201 return ctrlr_ch->qpair->qpair; 202 } 203 204 static int 205 bdev_nvme_get_ctx_size(void) 206 { 207 return sizeof(struct nvme_bdev_io); 208 } 209 210 static struct spdk_bdev_module nvme_if = { 211 .name = "nvme", 212 .async_fini = true, 213 .module_init = bdev_nvme_library_init, 214 .module_fini = bdev_nvme_library_fini, 215 .config_json = bdev_nvme_config_json, 216 .get_ctx_size = bdev_nvme_get_ctx_size, 217 218 }; 219 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if) 220 221 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs); 222 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER; 223 bool g_bdev_nvme_module_finish; 224 225 struct nvme_bdev_ctrlr * 226 nvme_bdev_ctrlr_get_by_name(const char *name) 227 { 228 struct nvme_bdev_ctrlr *nbdev_ctrlr; 229 230 TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) { 231 if (strcmp(name, nbdev_ctrlr->name) == 0) { 232 break; 233 } 234 } 235 236 return nbdev_ctrlr; 237 } 238 239 static struct nvme_ctrlr * 240 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr, 241 const struct spdk_nvme_transport_id *trid) 242 { 243 struct nvme_ctrlr *nvme_ctrlr; 244 245 TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) { 246 if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0) { 247 break; 248 } 249 } 250 251 return nvme_ctrlr; 252 } 253 254 static struct nvme_bdev * 255 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid) 256 { 257 struct nvme_bdev *bdev; 258 259 pthread_mutex_lock(&g_bdev_nvme_mutex); 260 TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) { 261 if (bdev->nsid == nsid) { 262 break; 263 } 264 } 265 pthread_mutex_unlock(&g_bdev_nvme_mutex); 266 267 return bdev; 268 } 269 270 struct nvme_ns * 271 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid) 272 { 273 struct nvme_ns ns; 274 275 assert(nsid > 0); 276 277 ns.id = nsid; 278 return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns); 279 } 280 281 struct nvme_ns * 282 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr) 283 { 284 return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces); 285 } 286 287 struct nvme_ns * 288 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns) 289 { 290 if (ns == NULL) { 291 return NULL; 292 } 293 294 return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns); 295 } 296 297 static struct nvme_ctrlr * 298 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid) 299 { 300 struct nvme_bdev_ctrlr *nbdev_ctrlr; 301 struct nvme_ctrlr *nvme_ctrlr = NULL; 302 303 pthread_mutex_lock(&g_bdev_nvme_mutex); 304 TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) { 305 nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid); 306 if (nvme_ctrlr != NULL) { 307 break; 308 } 309 } 310 pthread_mutex_unlock(&g_bdev_nvme_mutex); 311 312 return nvme_ctrlr; 313 } 314 315 struct nvme_ctrlr * 316 nvme_ctrlr_get_by_name(const char *name) 317 { 318 struct nvme_bdev_ctrlr *nbdev_ctrlr; 319 struct nvme_ctrlr *nvme_ctrlr = NULL; 320 321 if (name == NULL) { 322 return NULL; 323 } 324 325 pthread_mutex_lock(&g_bdev_nvme_mutex); 326 nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name); 327 if (nbdev_ctrlr != NULL) { 328 nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs); 329 } 330 pthread_mutex_unlock(&g_bdev_nvme_mutex); 331 332 return nvme_ctrlr; 333 } 334 335 void 336 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx) 337 { 338 struct nvme_bdev_ctrlr *nbdev_ctrlr; 339 340 pthread_mutex_lock(&g_bdev_nvme_mutex); 341 TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) { 342 fn(nbdev_ctrlr, ctx); 343 } 344 pthread_mutex_unlock(&g_bdev_nvme_mutex); 345 } 346 347 void 348 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w) 349 { 350 const char *trtype_str; 351 const char *adrfam_str; 352 353 trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype); 354 if (trtype_str) { 355 spdk_json_write_named_string(w, "trtype", trtype_str); 356 } 357 358 adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam); 359 if (adrfam_str) { 360 spdk_json_write_named_string(w, "adrfam", adrfam_str); 361 } 362 363 if (trid->traddr[0] != '\0') { 364 spdk_json_write_named_string(w, "traddr", trid->traddr); 365 } 366 367 if (trid->trsvcid[0] != '\0') { 368 spdk_json_write_named_string(w, "trsvcid", trid->trsvcid); 369 } 370 371 if (trid->subnqn[0] != '\0') { 372 spdk_json_write_named_string(w, "subnqn", trid->subnqn); 373 } 374 } 375 376 static void 377 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr, 378 struct nvme_ctrlr *nvme_ctrlr) 379 { 380 SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name); 381 pthread_mutex_lock(&g_bdev_nvme_mutex); 382 383 TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq); 384 if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) { 385 pthread_mutex_unlock(&g_bdev_nvme_mutex); 386 387 return; 388 } 389 TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq); 390 391 pthread_mutex_unlock(&g_bdev_nvme_mutex); 392 393 assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs)); 394 395 free(nbdev_ctrlr->name); 396 free(nbdev_ctrlr); 397 } 398 399 static void 400 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr) 401 { 402 struct nvme_path_id *path_id, *tmp_path; 403 struct nvme_ns *ns, *tmp_ns; 404 405 free(nvme_ctrlr->copied_ana_desc); 406 spdk_free(nvme_ctrlr->ana_log_page); 407 408 if (nvme_ctrlr->opal_dev) { 409 spdk_opal_dev_destruct(nvme_ctrlr->opal_dev); 410 nvme_ctrlr->opal_dev = NULL; 411 } 412 413 if (nvme_ctrlr->nbdev_ctrlr) { 414 nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr); 415 } 416 417 RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) { 418 RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns); 419 free(ns); 420 } 421 422 TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) { 423 TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link); 424 free(path_id); 425 } 426 427 pthread_mutex_destroy(&nvme_ctrlr->mutex); 428 429 free(nvme_ctrlr); 430 431 pthread_mutex_lock(&g_bdev_nvme_mutex); 432 if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) { 433 pthread_mutex_unlock(&g_bdev_nvme_mutex); 434 spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL); 435 spdk_bdev_module_fini_done(); 436 return; 437 } 438 pthread_mutex_unlock(&g_bdev_nvme_mutex); 439 } 440 441 static int 442 nvme_detach_poller(void *arg) 443 { 444 struct nvme_ctrlr *nvme_ctrlr = arg; 445 int rc; 446 447 rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx); 448 if (rc != -EAGAIN) { 449 spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller); 450 _nvme_ctrlr_delete(nvme_ctrlr); 451 } 452 453 return SPDK_POLLER_BUSY; 454 } 455 456 static void 457 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr) 458 { 459 int rc; 460 461 spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer); 462 463 /* First, unregister the adminq poller, as the driver will poll adminq if necessary */ 464 spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller); 465 466 /* If we got here, the reset/detach poller cannot be active */ 467 assert(nvme_ctrlr->reset_detach_poller == NULL); 468 nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller, 469 nvme_ctrlr, 1000); 470 if (nvme_ctrlr->reset_detach_poller == NULL) { 471 SPDK_ERRLOG("Failed to register detach poller\n"); 472 goto error; 473 } 474 475 rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx); 476 if (rc != 0) { 477 SPDK_ERRLOG("Failed to detach the NVMe controller\n"); 478 goto error; 479 } 480 481 return; 482 error: 483 /* We don't have a good way to handle errors here, so just do what we can and delete the 484 * controller without detaching the underlying NVMe device. 485 */ 486 spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller); 487 _nvme_ctrlr_delete(nvme_ctrlr); 488 } 489 490 static void 491 nvme_ctrlr_unregister_cb(void *io_device) 492 { 493 struct nvme_ctrlr *nvme_ctrlr = io_device; 494 495 nvme_ctrlr_delete(nvme_ctrlr); 496 } 497 498 static void 499 nvme_ctrlr_unregister(void *ctx) 500 { 501 struct nvme_ctrlr *nvme_ctrlr = ctx; 502 503 spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb); 504 } 505 506 static bool 507 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr) 508 { 509 if (!nvme_ctrlr->destruct) { 510 return false; 511 } 512 513 if (nvme_ctrlr->ref > 0) { 514 return false; 515 } 516 517 if (nvme_ctrlr->resetting) { 518 return false; 519 } 520 521 if (nvme_ctrlr->ana_log_page_updating) { 522 return false; 523 } 524 525 if (nvme_ctrlr->io_path_cache_clearing) { 526 return false; 527 } 528 529 return true; 530 } 531 532 static void 533 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr) 534 { 535 pthread_mutex_lock(&nvme_ctrlr->mutex); 536 SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref); 537 538 assert(nvme_ctrlr->ref > 0); 539 nvme_ctrlr->ref--; 540 541 if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) { 542 pthread_mutex_unlock(&nvme_ctrlr->mutex); 543 return; 544 } 545 546 pthread_mutex_unlock(&nvme_ctrlr->mutex); 547 548 spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr); 549 } 550 551 static struct nvme_io_path * 552 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns) 553 { 554 struct nvme_io_path *io_path; 555 556 STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) { 557 if (io_path->nvme_ns == nvme_ns) { 558 break; 559 } 560 } 561 562 return io_path; 563 } 564 565 static int 566 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns) 567 { 568 struct nvme_io_path *io_path; 569 struct spdk_io_channel *ch; 570 struct nvme_ctrlr_channel *ctrlr_ch; 571 struct nvme_qpair *nvme_qpair; 572 573 io_path = calloc(1, sizeof(*io_path)); 574 if (io_path == NULL) { 575 SPDK_ERRLOG("Failed to alloc io_path.\n"); 576 return -ENOMEM; 577 } 578 579 io_path->nvme_ns = nvme_ns; 580 io_path->io_outstanding = 0; 581 582 ch = spdk_get_io_channel(nvme_ns->ctrlr); 583 if (ch == NULL) { 584 free(io_path); 585 SPDK_ERRLOG("Failed to alloc io_channel.\n"); 586 return -ENOMEM; 587 } 588 589 ctrlr_ch = spdk_io_channel_get_ctx(ch); 590 591 nvme_qpair = ctrlr_ch->qpair; 592 assert(nvme_qpair != NULL); 593 594 io_path->qpair = nvme_qpair; 595 TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq); 596 597 io_path->nbdev_ch = nbdev_ch; 598 STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq); 599 600 nbdev_ch->current_io_path = NULL; 601 602 return 0; 603 } 604 605 static void 606 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path) 607 { 608 struct spdk_io_channel *ch; 609 struct nvme_qpair *nvme_qpair; 610 struct nvme_ctrlr_channel *ctrlr_ch; 611 612 assert(io_path->io_outstanding == 0); 613 nbdev_ch->current_io_path = NULL; 614 615 STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq); 616 617 nvme_qpair = io_path->qpair; 618 assert(nvme_qpair != NULL); 619 620 TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq); 621 622 ctrlr_ch = nvme_qpair->ctrlr_ch; 623 assert(ctrlr_ch != NULL); 624 625 ch = spdk_io_channel_from_ctx(ctrlr_ch); 626 spdk_put_io_channel(ch); 627 628 free(io_path); 629 } 630 631 static void 632 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch) 633 { 634 struct nvme_io_path *io_path, *tmp_io_path; 635 636 STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) { 637 _bdev_nvme_delete_io_path(nbdev_ch, io_path); 638 } 639 } 640 641 static int 642 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf) 643 { 644 struct nvme_bdev_channel *nbdev_ch = ctx_buf; 645 struct nvme_bdev *nbdev = io_device; 646 struct nvme_ns *nvme_ns; 647 int rc; 648 649 STAILQ_INIT(&nbdev_ch->io_path_list); 650 TAILQ_INIT(&nbdev_ch->retry_io_list); 651 652 pthread_mutex_lock(&nbdev->mutex); 653 654 nbdev_ch->mp_policy = nbdev->mp_policy; 655 656 TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) { 657 rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns); 658 if (rc != 0) { 659 pthread_mutex_unlock(&nbdev->mutex); 660 661 _bdev_nvme_delete_io_paths(nbdev_ch); 662 return rc; 663 } 664 } 665 pthread_mutex_unlock(&nbdev->mutex); 666 667 return 0; 668 } 669 670 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'. 671 * If cpl == NULL, complete the bdev_io with bdev status based on 'status'. 672 */ 673 static inline void 674 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status, 675 const struct spdk_nvme_cpl *cpl) 676 { 677 spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx, 678 (uintptr_t)bdev_io); 679 if (cpl) { 680 spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc); 681 } else { 682 spdk_bdev_io_complete(bdev_io, status); 683 } 684 } 685 686 static void 687 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch) 688 { 689 struct spdk_bdev_io *bdev_io, *tmp_io; 690 691 TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_io) { 692 TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link); 693 __bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED, NULL); 694 } 695 696 spdk_poller_unregister(&nbdev_ch->retry_io_poller); 697 } 698 699 static void 700 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf) 701 { 702 struct nvme_bdev_channel *nbdev_ch = ctx_buf; 703 704 bdev_nvme_abort_retry_ios(nbdev_ch); 705 _bdev_nvme_delete_io_paths(nbdev_ch); 706 } 707 708 static inline bool 709 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type) 710 { 711 switch (io_type) { 712 case SPDK_BDEV_IO_TYPE_RESET: 713 case SPDK_BDEV_IO_TYPE_NVME_ADMIN: 714 case SPDK_BDEV_IO_TYPE_ABORT: 715 return true; 716 default: 717 break; 718 } 719 720 return false; 721 } 722 723 static inline bool 724 nvme_ns_is_accessible(struct nvme_ns *nvme_ns) 725 { 726 if (spdk_unlikely(nvme_ns->ana_state_updating)) { 727 return false; 728 } 729 730 switch (nvme_ns->ana_state) { 731 case SPDK_NVME_ANA_OPTIMIZED_STATE: 732 case SPDK_NVME_ANA_NON_OPTIMIZED_STATE: 733 return true; 734 default: 735 break; 736 } 737 738 return false; 739 } 740 741 static inline bool 742 nvme_io_path_is_connected(struct nvme_io_path *io_path) 743 { 744 if (spdk_unlikely(io_path->qpair->qpair == NULL)) { 745 return false; 746 } 747 748 if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(io_path->qpair->qpair) != 749 SPDK_NVME_QPAIR_FAILURE_NONE)) { 750 return false; 751 } 752 753 if (spdk_unlikely(io_path->qpair->ctrlr_ch->reset_iter != NULL)) { 754 return false; 755 } 756 757 if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(io_path->qpair->ctrlr->ctrlr) != 758 SPDK_NVME_QPAIR_FAILURE_NONE) { 759 return false; 760 } 761 762 return true; 763 } 764 765 static inline bool 766 nvme_io_path_is_available(struct nvme_io_path *io_path) 767 { 768 if (spdk_unlikely(!nvme_io_path_is_connected(io_path))) { 769 return false; 770 } 771 772 if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) { 773 return false; 774 } 775 776 return true; 777 } 778 779 static inline bool 780 nvme_io_path_is_failed(struct nvme_io_path *io_path) 781 { 782 struct nvme_ctrlr *nvme_ctrlr; 783 784 nvme_ctrlr = io_path->qpair->ctrlr; 785 786 if (nvme_ctrlr->destruct) { 787 return true; 788 } 789 790 if (nvme_ctrlr->fast_io_fail_timedout) { 791 return true; 792 } 793 794 if (nvme_ctrlr->resetting) { 795 if (nvme_ctrlr->opts.reconnect_delay_sec != 0) { 796 return false; 797 } else { 798 return true; 799 } 800 } 801 802 if (nvme_ctrlr->reconnect_is_delayed) { 803 return false; 804 } 805 806 if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) { 807 return true; 808 } else { 809 return false; 810 } 811 } 812 813 static bool 814 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr) 815 { 816 if (nvme_ctrlr->destruct) { 817 return false; 818 } 819 820 if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) { 821 return false; 822 } 823 824 if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) { 825 return false; 826 } 827 828 return true; 829 } 830 831 /* Simulate circular linked list. */ 832 static inline struct nvme_io_path * 833 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path) 834 { 835 struct nvme_io_path *next_path; 836 837 next_path = STAILQ_NEXT(prev_path, stailq); 838 if (next_path != NULL) { 839 return next_path; 840 } else { 841 return STAILQ_FIRST(&nbdev_ch->io_path_list); 842 } 843 } 844 845 static struct nvme_io_path * 846 bdev_nvme_find_next_io_path(struct nvme_bdev_channel *nbdev_ch, 847 struct nvme_io_path *prev) 848 { 849 struct nvme_io_path *io_path, *start, *non_optimized = NULL; 850 851 start = nvme_io_path_get_next(nbdev_ch, prev); 852 853 io_path = start; 854 do { 855 if (spdk_likely(nvme_io_path_is_connected(io_path) && 856 !io_path->nvme_ns->ana_state_updating)) { 857 switch (io_path->nvme_ns->ana_state) { 858 case SPDK_NVME_ANA_OPTIMIZED_STATE: 859 nbdev_ch->current_io_path = io_path; 860 return io_path; 861 case SPDK_NVME_ANA_NON_OPTIMIZED_STATE: 862 if (non_optimized == NULL) { 863 non_optimized = io_path; 864 } 865 break; 866 default: 867 break; 868 } 869 } 870 io_path = nvme_io_path_get_next(nbdev_ch, io_path); 871 } while (io_path != start); 872 873 /* We come here only if there is no optimized path. Cache even non_optimized 874 * path for load balance across multiple non_optimized paths. 875 */ 876 nbdev_ch->current_io_path = non_optimized; 877 return non_optimized; 878 } 879 880 static struct nvme_io_path * 881 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch) 882 { 883 struct nvme_io_path *io_path, *non_optimized = NULL; 884 885 STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) { 886 if (spdk_unlikely(!nvme_io_path_is_connected(io_path))) { 887 /* The device is currently resetting. */ 888 continue; 889 } 890 891 if (spdk_unlikely(io_path->nvme_ns->ana_state_updating)) { 892 continue; 893 } 894 895 switch (io_path->nvme_ns->ana_state) { 896 case SPDK_NVME_ANA_OPTIMIZED_STATE: 897 nbdev_ch->current_io_path = io_path; 898 return io_path; 899 case SPDK_NVME_ANA_NON_OPTIMIZED_STATE: 900 if (non_optimized == NULL) { 901 non_optimized = io_path; 902 } 903 break; 904 default: 905 break; 906 } 907 } 908 909 return non_optimized; 910 } 911 912 static inline struct nvme_io_path * 913 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch) 914 { 915 if (spdk_unlikely(nbdev_ch->current_io_path == NULL)) { 916 return _bdev_nvme_find_io_path(nbdev_ch); 917 } 918 919 if (spdk_likely(nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE)) { 920 return nbdev_ch->current_io_path; 921 } else { 922 return bdev_nvme_find_next_io_path(nbdev_ch, nbdev_ch->current_io_path); 923 } 924 } 925 926 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed, 927 * or false otherwise. 928 * 929 * If any io_path has an active qpair but find_io_path() returned NULL, its namespace 930 * is likely to be non-accessible now but may become accessible. 931 * 932 * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr 933 * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed 934 * when starting to reset it but it is set to failed when the reset failed. Hence, if 935 * a ctrlr is unfailed, it is likely that it works fine or is resetting. 936 */ 937 static bool 938 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch) 939 { 940 struct nvme_io_path *io_path; 941 942 STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) { 943 if (io_path->nvme_ns->ana_transition_timedout) { 944 continue; 945 } 946 947 if (nvme_io_path_is_connected(io_path) || 948 !nvme_io_path_is_failed(io_path)) { 949 return true; 950 } 951 } 952 953 return false; 954 } 955 956 static int 957 bdev_nvme_retry_ios(void *arg) 958 { 959 struct nvme_bdev_channel *nbdev_ch = arg; 960 struct spdk_io_channel *ch = spdk_io_channel_from_ctx(nbdev_ch); 961 struct spdk_bdev_io *bdev_io, *tmp_bdev_io; 962 struct nvme_bdev_io *bio; 963 uint64_t now, delay_us; 964 965 now = spdk_get_ticks(); 966 967 TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_bdev_io) { 968 bio = (struct nvme_bdev_io *)bdev_io->driver_ctx; 969 if (bio->retry_ticks > now) { 970 break; 971 } 972 973 TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link); 974 975 bdev_nvme_submit_request(ch, bdev_io); 976 } 977 978 spdk_poller_unregister(&nbdev_ch->retry_io_poller); 979 980 bdev_io = TAILQ_FIRST(&nbdev_ch->retry_io_list); 981 if (bdev_io != NULL) { 982 bio = (struct nvme_bdev_io *)bdev_io->driver_ctx; 983 984 delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz(); 985 986 nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch, 987 delay_us); 988 } 989 990 return SPDK_POLLER_BUSY; 991 } 992 993 static void 994 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch, 995 struct nvme_bdev_io *bio, uint64_t delay_ms) 996 { 997 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 998 struct spdk_bdev_io *tmp_bdev_io; 999 struct nvme_bdev_io *tmp_bio; 1000 1001 bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL; 1002 1003 TAILQ_FOREACH_REVERSE(tmp_bdev_io, &nbdev_ch->retry_io_list, retry_io_head, module_link) { 1004 tmp_bio = (struct nvme_bdev_io *)tmp_bdev_io->driver_ctx; 1005 1006 if (tmp_bio->retry_ticks <= bio->retry_ticks) { 1007 TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bdev_io, bdev_io, 1008 module_link); 1009 return; 1010 } 1011 } 1012 1013 /* No earlier I/Os were found. This I/O must be the new head. */ 1014 TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bdev_io, module_link); 1015 1016 spdk_poller_unregister(&nbdev_ch->retry_io_poller); 1017 1018 nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch, 1019 delay_ms * 1000ULL); 1020 } 1021 1022 static inline void 1023 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio, 1024 const struct spdk_nvme_cpl *cpl) 1025 { 1026 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 1027 struct nvme_bdev_channel *nbdev_ch; 1028 struct nvme_ctrlr *nvme_ctrlr; 1029 const struct spdk_nvme_ctrlr_data *cdata; 1030 uint64_t delay_ms; 1031 1032 assert(!bdev_nvme_io_type_is_admin(bdev_io->type)); 1033 1034 assert(bio->io_path != NULL); 1035 assert(bio->io_path->io_outstanding > 0); 1036 bio->io_path->io_outstanding--; 1037 1038 if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) { 1039 goto complete; 1040 } 1041 1042 if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) || 1043 (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) { 1044 goto complete; 1045 } 1046 1047 nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io)); 1048 1049 nvme_ctrlr = bio->io_path->qpair->ctrlr; 1050 1051 if (spdk_nvme_cpl_is_path_error(cpl) || 1052 spdk_nvme_cpl_is_aborted_sq_deletion(cpl) || 1053 !nvme_io_path_is_available(bio->io_path) || 1054 !nvme_ctrlr_is_available(nvme_ctrlr)) { 1055 nbdev_ch->current_io_path = NULL; 1056 if (spdk_nvme_cpl_is_ana_error(cpl)) { 1057 if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) { 1058 bio->io_path->nvme_ns->ana_state_updating = true; 1059 } 1060 } 1061 delay_ms = 0; 1062 } else { 1063 bio->retry_count++; 1064 1065 cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr); 1066 1067 if (cpl->status.crd != 0) { 1068 delay_ms = cdata->crdt[cpl->status.crd] * 100; 1069 } else { 1070 delay_ms = 0; 1071 } 1072 } 1073 1074 if (any_io_path_may_become_available(nbdev_ch)) { 1075 bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms); 1076 return; 1077 } 1078 1079 complete: 1080 bio->retry_count = 0; 1081 __bdev_nvme_io_complete(bdev_io, 0, cpl); 1082 } 1083 1084 static inline void 1085 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc) 1086 { 1087 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 1088 struct nvme_bdev_channel *nbdev_ch; 1089 enum spdk_bdev_io_status io_status; 1090 1091 switch (rc) { 1092 case 0: 1093 io_status = SPDK_BDEV_IO_STATUS_SUCCESS; 1094 break; 1095 case -ENOMEM: 1096 io_status = SPDK_BDEV_IO_STATUS_NOMEM; 1097 break; 1098 case -ENXIO: 1099 nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io)); 1100 1101 nbdev_ch->current_io_path = NULL; 1102 1103 if (any_io_path_may_become_available(nbdev_ch)) { 1104 bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL); 1105 return; 1106 } 1107 1108 /* fallthrough */ 1109 default: 1110 io_status = SPDK_BDEV_IO_STATUS_FAILED; 1111 break; 1112 } 1113 1114 bio->retry_count = 0; 1115 __bdev_nvme_io_complete(bdev_io, io_status, NULL); 1116 } 1117 1118 static inline void 1119 bdev_nvme_admin_passthru_complete(struct nvme_bdev_io *bio, int rc) 1120 { 1121 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 1122 enum spdk_bdev_io_status io_status; 1123 1124 switch (rc) { 1125 case 0: 1126 io_status = SPDK_BDEV_IO_STATUS_SUCCESS; 1127 break; 1128 case -ENOMEM: 1129 io_status = SPDK_BDEV_IO_STATUS_NOMEM; 1130 break; 1131 case -ENXIO: 1132 /* fallthrough */ 1133 default: 1134 io_status = SPDK_BDEV_IO_STATUS_FAILED; 1135 break; 1136 } 1137 1138 __bdev_nvme_io_complete(bdev_io, io_status, NULL); 1139 } 1140 1141 static void 1142 bdev_nvme_clear_io_path_caches_done(struct spdk_io_channel_iter *i, int status) 1143 { 1144 struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i); 1145 1146 pthread_mutex_lock(&nvme_ctrlr->mutex); 1147 1148 assert(nvme_ctrlr->io_path_cache_clearing == true); 1149 nvme_ctrlr->io_path_cache_clearing = false; 1150 1151 if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) { 1152 pthread_mutex_unlock(&nvme_ctrlr->mutex); 1153 return; 1154 } 1155 1156 pthread_mutex_unlock(&nvme_ctrlr->mutex); 1157 1158 nvme_ctrlr_unregister(nvme_ctrlr); 1159 } 1160 1161 static void 1162 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair) 1163 { 1164 struct nvme_io_path *io_path; 1165 1166 TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) { 1167 io_path->nbdev_ch->current_io_path = NULL; 1168 } 1169 } 1170 1171 static void 1172 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i) 1173 { 1174 struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); 1175 struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch); 1176 1177 assert(ctrlr_ch->qpair != NULL); 1178 1179 _bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair); 1180 1181 spdk_for_each_channel_continue(i, 0); 1182 } 1183 1184 static void 1185 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr) 1186 { 1187 pthread_mutex_lock(&nvme_ctrlr->mutex); 1188 if (!nvme_ctrlr_is_available(nvme_ctrlr) || 1189 nvme_ctrlr->io_path_cache_clearing) { 1190 pthread_mutex_unlock(&nvme_ctrlr->mutex); 1191 return; 1192 } 1193 1194 nvme_ctrlr->io_path_cache_clearing = true; 1195 pthread_mutex_unlock(&nvme_ctrlr->mutex); 1196 1197 spdk_for_each_channel(nvme_ctrlr, 1198 bdev_nvme_clear_io_path_cache, 1199 NULL, 1200 bdev_nvme_clear_io_path_caches_done); 1201 } 1202 1203 static struct nvme_qpair * 1204 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair) 1205 { 1206 struct nvme_qpair *nvme_qpair; 1207 1208 TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) { 1209 if (nvme_qpair->qpair == qpair) { 1210 break; 1211 } 1212 } 1213 1214 return nvme_qpair; 1215 } 1216 1217 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair); 1218 1219 static void 1220 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx) 1221 { 1222 struct nvme_poll_group *group = poll_group_ctx; 1223 struct nvme_qpair *nvme_qpair; 1224 struct nvme_ctrlr_channel *ctrlr_ch; 1225 1226 nvme_qpair = nvme_poll_group_get_qpair(group, qpair); 1227 if (nvme_qpair == NULL) { 1228 return; 1229 } 1230 1231 if (nvme_qpair->qpair != NULL) { 1232 spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair); 1233 nvme_qpair->qpair = NULL; 1234 } 1235 1236 _bdev_nvme_clear_io_path_cache(nvme_qpair); 1237 1238 ctrlr_ch = nvme_qpair->ctrlr_ch; 1239 1240 if (ctrlr_ch != NULL) { 1241 if (ctrlr_ch->reset_iter != NULL) { 1242 /* If we are already in a full reset sequence, we do not have 1243 * to restart it. Just move to the next ctrlr_channel. 1244 */ 1245 SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n", 1246 qpair); 1247 spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0); 1248 ctrlr_ch->reset_iter = NULL; 1249 } else { 1250 /* qpair was disconnected unexpectedly. Reset controller for recovery. */ 1251 SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair); 1252 bdev_nvme_failover(nvme_qpair->ctrlr, false); 1253 } 1254 } else { 1255 /* In this case, ctrlr_channel is already deleted. */ 1256 SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair); 1257 nvme_qpair_delete(nvme_qpair); 1258 } 1259 } 1260 1261 static void 1262 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group) 1263 { 1264 struct nvme_qpair *nvme_qpair; 1265 1266 TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) { 1267 if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) { 1268 continue; 1269 } 1270 1271 if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) != 1272 SPDK_NVME_QPAIR_FAILURE_NONE) { 1273 _bdev_nvme_clear_io_path_cache(nvme_qpair); 1274 } 1275 } 1276 } 1277 1278 static int 1279 bdev_nvme_poll(void *arg) 1280 { 1281 struct nvme_poll_group *group = arg; 1282 int64_t num_completions; 1283 1284 if (group->collect_spin_stat && group->start_ticks == 0) { 1285 group->start_ticks = spdk_get_ticks(); 1286 } 1287 1288 num_completions = spdk_nvme_poll_group_process_completions(group->group, 0, 1289 bdev_nvme_disconnected_qpair_cb); 1290 if (group->collect_spin_stat) { 1291 if (num_completions > 0) { 1292 if (group->end_ticks != 0) { 1293 group->spin_ticks += (group->end_ticks - group->start_ticks); 1294 group->end_ticks = 0; 1295 } 1296 group->start_ticks = 0; 1297 } else { 1298 group->end_ticks = spdk_get_ticks(); 1299 } 1300 } 1301 1302 if (spdk_unlikely(num_completions < 0)) { 1303 bdev_nvme_check_io_qpairs(group); 1304 } 1305 1306 return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE; 1307 } 1308 1309 static int bdev_nvme_poll_adminq(void *arg); 1310 1311 static void 1312 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us) 1313 { 1314 spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller); 1315 1316 nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, 1317 nvme_ctrlr, new_period_us); 1318 } 1319 1320 static int 1321 bdev_nvme_poll_adminq(void *arg) 1322 { 1323 int32_t rc; 1324 struct nvme_ctrlr *nvme_ctrlr = arg; 1325 nvme_ctrlr_disconnected_cb disconnected_cb; 1326 1327 assert(nvme_ctrlr != NULL); 1328 1329 rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr); 1330 if (rc < 0) { 1331 disconnected_cb = nvme_ctrlr->disconnected_cb; 1332 nvme_ctrlr->disconnected_cb = NULL; 1333 1334 if (rc == -ENXIO && disconnected_cb != NULL) { 1335 bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 1336 g_opts.nvme_adminq_poll_period_us); 1337 disconnected_cb(nvme_ctrlr); 1338 } else { 1339 bdev_nvme_failover(nvme_ctrlr, false); 1340 } 1341 } else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) != 1342 SPDK_NVME_QPAIR_FAILURE_NONE) { 1343 bdev_nvme_clear_io_path_caches(nvme_ctrlr); 1344 } 1345 1346 return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY; 1347 } 1348 1349 static void 1350 _bdev_nvme_unregister_dev_cb(void *io_device) 1351 { 1352 struct nvme_bdev *nvme_disk = io_device; 1353 1354 free(nvme_disk->disk.name); 1355 free(nvme_disk); 1356 } 1357 1358 static int 1359 bdev_nvme_destruct(void *ctx) 1360 { 1361 struct nvme_bdev *nvme_disk = ctx; 1362 struct nvme_ns *nvme_ns, *tmp_nvme_ns; 1363 1364 SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid); 1365 1366 TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) { 1367 pthread_mutex_lock(&nvme_ns->ctrlr->mutex); 1368 1369 nvme_ns->bdev = NULL; 1370 1371 assert(nvme_ns->id > 0); 1372 1373 if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) { 1374 pthread_mutex_unlock(&nvme_ns->ctrlr->mutex); 1375 1376 nvme_ctrlr_release(nvme_ns->ctrlr); 1377 free(nvme_ns); 1378 } else { 1379 pthread_mutex_unlock(&nvme_ns->ctrlr->mutex); 1380 } 1381 } 1382 1383 pthread_mutex_lock(&g_bdev_nvme_mutex); 1384 TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq); 1385 pthread_mutex_unlock(&g_bdev_nvme_mutex); 1386 1387 spdk_io_device_unregister(nvme_disk, _bdev_nvme_unregister_dev_cb); 1388 1389 return 0; 1390 } 1391 1392 static int 1393 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair) 1394 { 1395 struct nvme_ctrlr *nvme_ctrlr; 1396 struct spdk_nvme_io_qpair_opts opts; 1397 struct spdk_nvme_qpair *qpair; 1398 int rc; 1399 1400 nvme_ctrlr = nvme_qpair->ctrlr; 1401 1402 spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts)); 1403 opts.delay_cmd_submit = g_opts.delay_cmd_submit; 1404 opts.create_only = true; 1405 opts.async_mode = true; 1406 opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests); 1407 g_opts.io_queue_requests = opts.io_queue_requests; 1408 1409 qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts)); 1410 if (qpair == NULL) { 1411 return -1; 1412 } 1413 1414 SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name, 1415 spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread)); 1416 1417 assert(nvme_qpair->group != NULL); 1418 1419 rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair); 1420 if (rc != 0) { 1421 SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n"); 1422 goto err; 1423 } 1424 1425 rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair); 1426 if (rc != 0) { 1427 SPDK_ERRLOG("Unable to connect I/O qpair.\n"); 1428 goto err; 1429 } 1430 1431 nvme_qpair->qpair = qpair; 1432 1433 if (!g_opts.disable_auto_failback) { 1434 _bdev_nvme_clear_io_path_cache(nvme_qpair); 1435 } 1436 1437 return 0; 1438 1439 err: 1440 spdk_nvme_ctrlr_free_io_qpair(qpair); 1441 1442 return rc; 1443 } 1444 1445 static void 1446 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i) 1447 { 1448 struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); 1449 struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch); 1450 enum spdk_bdev_io_status status = SPDK_BDEV_IO_STATUS_SUCCESS; 1451 struct spdk_bdev_io *bdev_io; 1452 1453 if (spdk_io_channel_iter_get_ctx(i) != NULL) { 1454 status = SPDK_BDEV_IO_STATUS_FAILED; 1455 } 1456 1457 while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) { 1458 bdev_io = TAILQ_FIRST(&ctrlr_ch->pending_resets); 1459 TAILQ_REMOVE(&ctrlr_ch->pending_resets, bdev_io, module_link); 1460 __bdev_nvme_io_complete(bdev_io, status, NULL); 1461 } 1462 1463 spdk_for_each_channel_continue(i, 0); 1464 } 1465 1466 static void 1467 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove) 1468 { 1469 struct nvme_path_id *path_id, *next_path; 1470 int rc __attribute__((unused)); 1471 1472 path_id = TAILQ_FIRST(&nvme_ctrlr->trids); 1473 assert(path_id); 1474 assert(path_id == nvme_ctrlr->active_path_id); 1475 next_path = TAILQ_NEXT(path_id, link); 1476 1477 path_id->is_failed = true; 1478 1479 if (next_path) { 1480 assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE); 1481 1482 SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr, 1483 path_id->trid.trsvcid, next_path->trid.traddr, next_path->trid.trsvcid); 1484 1485 spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr); 1486 nvme_ctrlr->active_path_id = next_path; 1487 rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid); 1488 assert(rc == 0); 1489 TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link); 1490 if (!remove) { 1491 /** Shuffle the old trid to the end of the list and use the new one. 1492 * Allows for round robin through multiple connections. 1493 */ 1494 TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link); 1495 } else { 1496 free(path_id); 1497 } 1498 } 1499 } 1500 1501 static bool 1502 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr) 1503 { 1504 int32_t elapsed; 1505 1506 if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 || 1507 nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) { 1508 return false; 1509 } 1510 1511 elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz(); 1512 if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) { 1513 return true; 1514 } else { 1515 return false; 1516 } 1517 } 1518 1519 static bool 1520 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr) 1521 { 1522 uint32_t elapsed; 1523 1524 if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) { 1525 return false; 1526 } 1527 1528 elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz(); 1529 if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) { 1530 return true; 1531 } else { 1532 return false; 1533 } 1534 } 1535 1536 static void bdev_nvme_reset_complete(struct nvme_ctrlr *nvme_ctrlr, bool success); 1537 1538 static void 1539 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn) 1540 { 1541 int rc; 1542 1543 rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr); 1544 if (rc != 0) { 1545 /* Disconnect fails if ctrlr is already resetting or removed. In this case, 1546 * fail the reset sequence immediately. 1547 */ 1548 bdev_nvme_reset_complete(nvme_ctrlr, false); 1549 return; 1550 } 1551 1552 /* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq. 1553 * Set callback here to execute the specified operation after ctrlr is really disconnected. 1554 */ 1555 assert(nvme_ctrlr->disconnected_cb == NULL); 1556 nvme_ctrlr->disconnected_cb = cb_fn; 1557 1558 /* During disconnection, reduce the period to poll adminq more often. */ 1559 bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0); 1560 } 1561 1562 enum bdev_nvme_op_after_reset { 1563 OP_NONE, 1564 OP_COMPLETE_PENDING_DESTRUCT, 1565 OP_DESTRUCT, 1566 OP_DELAYED_RECONNECT, 1567 }; 1568 1569 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset; 1570 1571 static _bdev_nvme_op_after_reset 1572 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success) 1573 { 1574 if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) { 1575 /* Complete pending destruct after reset completes. */ 1576 return OP_COMPLETE_PENDING_DESTRUCT; 1577 } else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) { 1578 nvme_ctrlr->reset_start_tsc = 0; 1579 return OP_NONE; 1580 } else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) { 1581 return OP_DESTRUCT; 1582 } else { 1583 if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) { 1584 nvme_ctrlr->fast_io_fail_timedout = true; 1585 } 1586 bdev_nvme_failover_trid(nvme_ctrlr, false); 1587 return OP_DELAYED_RECONNECT; 1588 } 1589 } 1590 1591 static int _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, bool hotplug); 1592 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr); 1593 1594 static int 1595 bdev_nvme_reconnect_delay_timer_expired(void *ctx) 1596 { 1597 struct nvme_ctrlr *nvme_ctrlr = ctx; 1598 1599 SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name); 1600 pthread_mutex_lock(&nvme_ctrlr->mutex); 1601 1602 spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer); 1603 1604 assert(nvme_ctrlr->reconnect_is_delayed == true); 1605 nvme_ctrlr->reconnect_is_delayed = false; 1606 1607 if (nvme_ctrlr->destruct) { 1608 pthread_mutex_unlock(&nvme_ctrlr->mutex); 1609 return SPDK_POLLER_BUSY; 1610 } 1611 1612 assert(nvme_ctrlr->resetting == false); 1613 nvme_ctrlr->resetting = true; 1614 1615 pthread_mutex_unlock(&nvme_ctrlr->mutex); 1616 1617 spdk_poller_resume(nvme_ctrlr->adminq_timer_poller); 1618 1619 bdev_nvme_reconnect_ctrlr(nvme_ctrlr); 1620 return SPDK_POLLER_BUSY; 1621 } 1622 1623 static void 1624 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr) 1625 { 1626 spdk_poller_pause(nvme_ctrlr->adminq_timer_poller); 1627 1628 assert(nvme_ctrlr->reconnect_is_delayed == false); 1629 nvme_ctrlr->reconnect_is_delayed = true; 1630 1631 assert(nvme_ctrlr->reconnect_delay_timer == NULL); 1632 nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired, 1633 nvme_ctrlr, 1634 nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC); 1635 } 1636 1637 static void 1638 _bdev_nvme_reset_complete(struct spdk_io_channel_iter *i, int status) 1639 { 1640 struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i); 1641 bool success = spdk_io_channel_iter_get_ctx(i) == NULL; 1642 struct nvme_path_id *path_id; 1643 bdev_nvme_reset_cb reset_cb_fn = nvme_ctrlr->reset_cb_fn; 1644 void *reset_cb_arg = nvme_ctrlr->reset_cb_arg; 1645 enum bdev_nvme_op_after_reset op_after_reset; 1646 1647 assert(nvme_ctrlr->thread == spdk_get_thread()); 1648 1649 nvme_ctrlr->reset_cb_fn = NULL; 1650 nvme_ctrlr->reset_cb_arg = NULL; 1651 1652 if (!success) { 1653 SPDK_ERRLOG("Resetting controller failed.\n"); 1654 } else { 1655 SPDK_NOTICELOG("Resetting controller successful.\n"); 1656 } 1657 1658 pthread_mutex_lock(&nvme_ctrlr->mutex); 1659 nvme_ctrlr->resetting = false; 1660 1661 path_id = TAILQ_FIRST(&nvme_ctrlr->trids); 1662 assert(path_id != NULL); 1663 assert(path_id == nvme_ctrlr->active_path_id); 1664 1665 path_id->is_failed = !success; 1666 1667 op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success); 1668 1669 pthread_mutex_unlock(&nvme_ctrlr->mutex); 1670 1671 if (reset_cb_fn) { 1672 reset_cb_fn(reset_cb_arg, success); 1673 } 1674 1675 switch (op_after_reset) { 1676 case OP_COMPLETE_PENDING_DESTRUCT: 1677 nvme_ctrlr_unregister(nvme_ctrlr); 1678 break; 1679 case OP_DESTRUCT: 1680 _bdev_nvme_delete(nvme_ctrlr, false); 1681 break; 1682 case OP_DELAYED_RECONNECT: 1683 nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer); 1684 break; 1685 default: 1686 break; 1687 } 1688 } 1689 1690 static void 1691 bdev_nvme_reset_complete(struct nvme_ctrlr *nvme_ctrlr, bool success) 1692 { 1693 /* Make sure we clear any pending resets before returning. */ 1694 spdk_for_each_channel(nvme_ctrlr, 1695 bdev_nvme_complete_pending_resets, 1696 success ? NULL : (void *)0x1, 1697 _bdev_nvme_reset_complete); 1698 } 1699 1700 static void 1701 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status) 1702 { 1703 struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i); 1704 1705 bdev_nvme_reset_complete(nvme_ctrlr, false); 1706 } 1707 1708 static void 1709 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i) 1710 { 1711 struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i); 1712 struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch); 1713 struct nvme_qpair *nvme_qpair; 1714 1715 nvme_qpair = ctrlr_ch->qpair; 1716 assert(nvme_qpair != NULL); 1717 1718 _bdev_nvme_clear_io_path_cache(nvme_qpair); 1719 1720 if (nvme_qpair->qpair != NULL) { 1721 spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair); 1722 1723 /* The current full reset sequence will move to the next 1724 * ctrlr_channel after the qpair is actually disconnected. 1725 */ 1726 assert(ctrlr_ch->reset_iter == NULL); 1727 ctrlr_ch->reset_iter = i; 1728 } else { 1729 spdk_for_each_channel_continue(i, 0); 1730 } 1731 } 1732 1733 static void 1734 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status) 1735 { 1736 struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i); 1737 1738 if (status == 0) { 1739 bdev_nvme_reset_complete(nvme_ctrlr, true); 1740 } else { 1741 /* Delete the added qpairs and quiesce ctrlr to make the states clean. */ 1742 spdk_for_each_channel(nvme_ctrlr, 1743 bdev_nvme_reset_destroy_qpair, 1744 NULL, 1745 bdev_nvme_reset_create_qpairs_failed); 1746 } 1747 } 1748 1749 static void 1750 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i) 1751 { 1752 struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); 1753 struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch); 1754 int rc; 1755 1756 rc = bdev_nvme_create_qpair(ctrlr_ch->qpair); 1757 1758 spdk_for_each_channel_continue(i, rc); 1759 } 1760 1761 static int 1762 bdev_nvme_reconnect_ctrlr_poll(void *arg) 1763 { 1764 struct nvme_ctrlr *nvme_ctrlr = arg; 1765 int rc = -ETIMEDOUT; 1766 1767 if (!bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) { 1768 rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr); 1769 if (rc == -EAGAIN) { 1770 return SPDK_POLLER_BUSY; 1771 } 1772 } 1773 1774 spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller); 1775 if (rc == 0) { 1776 /* Recreate all of the I/O queue pairs */ 1777 spdk_for_each_channel(nvme_ctrlr, 1778 bdev_nvme_reset_create_qpair, 1779 NULL, 1780 bdev_nvme_reset_create_qpairs_done); 1781 } else { 1782 bdev_nvme_reset_complete(nvme_ctrlr, false); 1783 } 1784 return SPDK_POLLER_BUSY; 1785 } 1786 1787 static void 1788 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr) 1789 { 1790 spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr); 1791 1792 SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name); 1793 assert(nvme_ctrlr->reset_detach_poller == NULL); 1794 nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll, 1795 nvme_ctrlr, 0); 1796 } 1797 1798 static void 1799 bdev_nvme_reset_ctrlr(struct spdk_io_channel_iter *i, int status) 1800 { 1801 struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i); 1802 1803 SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name); 1804 assert(status == 0); 1805 1806 if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) { 1807 bdev_nvme_reconnect_ctrlr(nvme_ctrlr); 1808 } else { 1809 nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr); 1810 } 1811 } 1812 1813 static void 1814 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr) 1815 { 1816 spdk_for_each_channel(nvme_ctrlr, 1817 bdev_nvme_reset_destroy_qpair, 1818 NULL, 1819 bdev_nvme_reset_ctrlr); 1820 } 1821 1822 static void 1823 _bdev_nvme_reset(void *ctx) 1824 { 1825 struct nvme_ctrlr *nvme_ctrlr = ctx; 1826 1827 assert(nvme_ctrlr->resetting == true); 1828 assert(nvme_ctrlr->thread == spdk_get_thread()); 1829 1830 if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) { 1831 nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs); 1832 } else { 1833 bdev_nvme_reset_destroy_qpairs(nvme_ctrlr); 1834 } 1835 } 1836 1837 static int 1838 bdev_nvme_reset(struct nvme_ctrlr *nvme_ctrlr) 1839 { 1840 pthread_mutex_lock(&nvme_ctrlr->mutex); 1841 if (nvme_ctrlr->destruct) { 1842 pthread_mutex_unlock(&nvme_ctrlr->mutex); 1843 return -ENXIO; 1844 } 1845 1846 if (nvme_ctrlr->resetting) { 1847 pthread_mutex_unlock(&nvme_ctrlr->mutex); 1848 SPDK_NOTICELOG("Unable to perform reset, already in progress.\n"); 1849 return -EBUSY; 1850 } 1851 1852 if (nvme_ctrlr->reconnect_is_delayed) { 1853 pthread_mutex_unlock(&nvme_ctrlr->mutex); 1854 SPDK_NOTICELOG("Reconnect is already scheduled.\n"); 1855 return -EBUSY; 1856 } 1857 1858 nvme_ctrlr->resetting = true; 1859 1860 assert(nvme_ctrlr->reset_start_tsc == 0); 1861 nvme_ctrlr->reset_start_tsc = spdk_get_ticks(); 1862 1863 pthread_mutex_unlock(&nvme_ctrlr->mutex); 1864 1865 spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset, nvme_ctrlr); 1866 return 0; 1867 } 1868 1869 int 1870 bdev_nvme_reset_rpc(struct nvme_ctrlr *nvme_ctrlr, bdev_nvme_reset_cb cb_fn, void *cb_arg) 1871 { 1872 int rc; 1873 1874 rc = bdev_nvme_reset(nvme_ctrlr); 1875 if (rc == 0) { 1876 nvme_ctrlr->reset_cb_fn = cb_fn; 1877 nvme_ctrlr->reset_cb_arg = cb_arg; 1878 } 1879 return rc; 1880 } 1881 1882 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio); 1883 1884 static void 1885 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio) 1886 { 1887 enum spdk_bdev_io_status io_status; 1888 1889 if (bio->cpl.cdw0 == 0) { 1890 io_status = SPDK_BDEV_IO_STATUS_SUCCESS; 1891 } else { 1892 io_status = SPDK_BDEV_IO_STATUS_FAILED; 1893 } 1894 1895 __bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL); 1896 } 1897 1898 static void 1899 _bdev_nvme_reset_io_continue(void *ctx) 1900 { 1901 struct nvme_bdev_io *bio = ctx; 1902 struct nvme_io_path *prev_io_path, *next_io_path; 1903 int rc; 1904 1905 prev_io_path = bio->io_path; 1906 bio->io_path = NULL; 1907 1908 if (bio->cpl.cdw0 != 0) { 1909 goto complete; 1910 } 1911 1912 next_io_path = STAILQ_NEXT(prev_io_path, stailq); 1913 if (next_io_path == NULL) { 1914 goto complete; 1915 } 1916 1917 rc = _bdev_nvme_reset_io(next_io_path, bio); 1918 if (rc == 0) { 1919 return; 1920 } 1921 1922 bio->cpl.cdw0 = 1; 1923 1924 complete: 1925 bdev_nvme_reset_io_complete(bio); 1926 } 1927 1928 static void 1929 bdev_nvme_reset_io_continue(void *cb_arg, bool success) 1930 { 1931 struct nvme_bdev_io *bio = cb_arg; 1932 1933 bio->cpl.cdw0 = !success; 1934 1935 spdk_thread_send_msg(bio->orig_thread, _bdev_nvme_reset_io_continue, bio); 1936 } 1937 1938 static int 1939 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio) 1940 { 1941 struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr; 1942 struct nvme_ctrlr_channel *ctrlr_ch; 1943 struct spdk_bdev_io *bdev_io; 1944 int rc; 1945 1946 rc = bdev_nvme_reset(nvme_ctrlr); 1947 if (rc == 0) { 1948 assert(bio->io_path == NULL); 1949 bio->io_path = io_path; 1950 1951 assert(nvme_ctrlr->reset_cb_fn == NULL); 1952 assert(nvme_ctrlr->reset_cb_arg == NULL); 1953 nvme_ctrlr->reset_cb_fn = bdev_nvme_reset_io_continue; 1954 nvme_ctrlr->reset_cb_arg = bio; 1955 } else if (rc == -EBUSY) { 1956 ctrlr_ch = io_path->qpair->ctrlr_ch; 1957 assert(ctrlr_ch != NULL); 1958 /* 1959 * Reset call is queued only if it is from the app framework. This is on purpose so that 1960 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the 1961 * upper level. If they are in the middle of a reset, we won't try to schedule another one. 1962 */ 1963 bdev_io = spdk_bdev_io_from_ctx(bio); 1964 TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bdev_io, module_link); 1965 } else { 1966 return rc; 1967 } 1968 1969 return 0; 1970 } 1971 1972 static void 1973 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio) 1974 { 1975 struct nvme_io_path *io_path; 1976 int rc; 1977 1978 bio->cpl.cdw0 = 0; 1979 bio->orig_thread = spdk_get_thread(); 1980 1981 /* Reset only the first nvme_ctrlr in the nvme_bdev_ctrlr for now. 1982 * 1983 * TODO: Reset all nvme_ctrlrs in the nvme_bdev_ctrlr sequentially. 1984 * This will be done in the following patches. 1985 */ 1986 io_path = STAILQ_FIRST(&nbdev_ch->io_path_list); 1987 assert(io_path != NULL); 1988 1989 rc = _bdev_nvme_reset_io(io_path, bio); 1990 if (rc != 0) { 1991 bio->cpl.cdw0 = 1; 1992 bdev_nvme_reset_io_complete(bio); 1993 } 1994 } 1995 1996 static int 1997 bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove) 1998 { 1999 pthread_mutex_lock(&nvme_ctrlr->mutex); 2000 if (nvme_ctrlr->destruct) { 2001 pthread_mutex_unlock(&nvme_ctrlr->mutex); 2002 /* Don't bother resetting if the controller is in the process of being destructed. */ 2003 return -ENXIO; 2004 } 2005 2006 if (nvme_ctrlr->resetting) { 2007 pthread_mutex_unlock(&nvme_ctrlr->mutex); 2008 SPDK_NOTICELOG("Unable to perform reset, already in progress.\n"); 2009 return -EBUSY; 2010 } 2011 2012 bdev_nvme_failover_trid(nvme_ctrlr, remove); 2013 2014 if (nvme_ctrlr->reconnect_is_delayed) { 2015 pthread_mutex_unlock(&nvme_ctrlr->mutex); 2016 SPDK_NOTICELOG("Reconnect is already scheduled.\n"); 2017 2018 /* We rely on the next reconnect for the failover. */ 2019 return 0; 2020 } 2021 2022 nvme_ctrlr->resetting = true; 2023 2024 assert(nvme_ctrlr->reset_start_tsc == 0); 2025 nvme_ctrlr->reset_start_tsc = spdk_get_ticks(); 2026 2027 pthread_mutex_unlock(&nvme_ctrlr->mutex); 2028 2029 spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset, nvme_ctrlr); 2030 return 0; 2031 } 2032 2033 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, 2034 uint64_t num_blocks); 2035 2036 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, 2037 uint64_t num_blocks); 2038 2039 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, 2040 uint64_t src_offset_blocks, 2041 uint64_t num_blocks); 2042 2043 static void 2044 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io, 2045 bool success) 2046 { 2047 struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx; 2048 struct spdk_bdev *bdev = bdev_io->bdev; 2049 int ret; 2050 2051 if (!success) { 2052 ret = -EINVAL; 2053 goto exit; 2054 } 2055 2056 if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) { 2057 ret = -ENXIO; 2058 goto exit; 2059 } 2060 2061 ret = bdev_nvme_readv(bio, 2062 bdev_io->u.bdev.iovs, 2063 bdev_io->u.bdev.iovcnt, 2064 bdev_io->u.bdev.md_buf, 2065 bdev_io->u.bdev.num_blocks, 2066 bdev_io->u.bdev.offset_blocks, 2067 bdev->dif_check_flags, 2068 bdev_io->u.bdev.ext_opts); 2069 2070 exit: 2071 if (spdk_likely(ret == 0)) { 2072 bio->io_path->io_outstanding++; 2073 } else { 2074 bdev_nvme_io_complete(bio, ret); 2075 } 2076 } 2077 2078 static void 2079 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io) 2080 { 2081 struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch); 2082 struct spdk_bdev *bdev = bdev_io->bdev; 2083 struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx; 2084 struct nvme_bdev_io *nbdev_io_to_abort; 2085 int rc = 0; 2086 2087 spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io); 2088 nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch); 2089 if (spdk_unlikely(!nbdev_io->io_path)) { 2090 if (!bdev_nvme_io_type_is_admin(bdev_io->type)) { 2091 rc = -ENXIO; 2092 goto exit; 2093 } 2094 2095 /* Admin commands do not use the optimal I/O path. 2096 * Simply fall through even if it is not found. 2097 */ 2098 } 2099 2100 switch (bdev_io->type) { 2101 case SPDK_BDEV_IO_TYPE_READ: 2102 if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) { 2103 rc = bdev_nvme_readv(nbdev_io, 2104 bdev_io->u.bdev.iovs, 2105 bdev_io->u.bdev.iovcnt, 2106 bdev_io->u.bdev.md_buf, 2107 bdev_io->u.bdev.num_blocks, 2108 bdev_io->u.bdev.offset_blocks, 2109 bdev->dif_check_flags, 2110 bdev_io->u.bdev.ext_opts); 2111 } else { 2112 spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb, 2113 bdev_io->u.bdev.num_blocks * bdev->blocklen); 2114 return; 2115 } 2116 break; 2117 case SPDK_BDEV_IO_TYPE_WRITE: 2118 rc = bdev_nvme_writev(nbdev_io, 2119 bdev_io->u.bdev.iovs, 2120 bdev_io->u.bdev.iovcnt, 2121 bdev_io->u.bdev.md_buf, 2122 bdev_io->u.bdev.num_blocks, 2123 bdev_io->u.bdev.offset_blocks, 2124 bdev->dif_check_flags, 2125 bdev_io->u.bdev.ext_opts); 2126 break; 2127 case SPDK_BDEV_IO_TYPE_COMPARE: 2128 rc = bdev_nvme_comparev(nbdev_io, 2129 bdev_io->u.bdev.iovs, 2130 bdev_io->u.bdev.iovcnt, 2131 bdev_io->u.bdev.md_buf, 2132 bdev_io->u.bdev.num_blocks, 2133 bdev_io->u.bdev.offset_blocks, 2134 bdev->dif_check_flags); 2135 break; 2136 case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE: 2137 rc = bdev_nvme_comparev_and_writev(nbdev_io, 2138 bdev_io->u.bdev.iovs, 2139 bdev_io->u.bdev.iovcnt, 2140 bdev_io->u.bdev.fused_iovs, 2141 bdev_io->u.bdev.fused_iovcnt, 2142 bdev_io->u.bdev.md_buf, 2143 bdev_io->u.bdev.num_blocks, 2144 bdev_io->u.bdev.offset_blocks, 2145 bdev->dif_check_flags); 2146 break; 2147 case SPDK_BDEV_IO_TYPE_UNMAP: 2148 rc = bdev_nvme_unmap(nbdev_io, 2149 bdev_io->u.bdev.offset_blocks, 2150 bdev_io->u.bdev.num_blocks); 2151 break; 2152 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: 2153 rc = bdev_nvme_write_zeroes(nbdev_io, 2154 bdev_io->u.bdev.offset_blocks, 2155 bdev_io->u.bdev.num_blocks); 2156 break; 2157 case SPDK_BDEV_IO_TYPE_RESET: 2158 nbdev_io->io_path = NULL; 2159 bdev_nvme_reset_io(nbdev_ch, nbdev_io); 2160 return; 2161 case SPDK_BDEV_IO_TYPE_FLUSH: 2162 bdev_nvme_io_complete(nbdev_io, 0); 2163 return; 2164 case SPDK_BDEV_IO_TYPE_ZONE_APPEND: 2165 rc = bdev_nvme_zone_appendv(nbdev_io, 2166 bdev_io->u.bdev.iovs, 2167 bdev_io->u.bdev.iovcnt, 2168 bdev_io->u.bdev.md_buf, 2169 bdev_io->u.bdev.num_blocks, 2170 bdev_io->u.bdev.offset_blocks, 2171 bdev->dif_check_flags); 2172 break; 2173 case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO: 2174 rc = bdev_nvme_get_zone_info(nbdev_io, 2175 bdev_io->u.zone_mgmt.zone_id, 2176 bdev_io->u.zone_mgmt.num_zones, 2177 bdev_io->u.zone_mgmt.buf); 2178 break; 2179 case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT: 2180 rc = bdev_nvme_zone_management(nbdev_io, 2181 bdev_io->u.zone_mgmt.zone_id, 2182 bdev_io->u.zone_mgmt.zone_action); 2183 break; 2184 case SPDK_BDEV_IO_TYPE_NVME_ADMIN: 2185 nbdev_io->io_path = NULL; 2186 bdev_nvme_admin_passthru(nbdev_ch, 2187 nbdev_io, 2188 &bdev_io->u.nvme_passthru.cmd, 2189 bdev_io->u.nvme_passthru.buf, 2190 bdev_io->u.nvme_passthru.nbytes); 2191 return; 2192 case SPDK_BDEV_IO_TYPE_NVME_IO: 2193 rc = bdev_nvme_io_passthru(nbdev_io, 2194 &bdev_io->u.nvme_passthru.cmd, 2195 bdev_io->u.nvme_passthru.buf, 2196 bdev_io->u.nvme_passthru.nbytes); 2197 break; 2198 case SPDK_BDEV_IO_TYPE_NVME_IO_MD: 2199 rc = bdev_nvme_io_passthru_md(nbdev_io, 2200 &bdev_io->u.nvme_passthru.cmd, 2201 bdev_io->u.nvme_passthru.buf, 2202 bdev_io->u.nvme_passthru.nbytes, 2203 bdev_io->u.nvme_passthru.md_buf, 2204 bdev_io->u.nvme_passthru.md_len); 2205 break; 2206 case SPDK_BDEV_IO_TYPE_ABORT: 2207 nbdev_io->io_path = NULL; 2208 nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx; 2209 bdev_nvme_abort(nbdev_ch, 2210 nbdev_io, 2211 nbdev_io_to_abort); 2212 return; 2213 case SPDK_BDEV_IO_TYPE_COPY: 2214 rc = bdev_nvme_copy(nbdev_io, 2215 bdev_io->u.bdev.offset_blocks, 2216 bdev_io->u.bdev.copy.src_offset_blocks, 2217 bdev_io->u.bdev.num_blocks); 2218 break; 2219 default: 2220 rc = -EINVAL; 2221 break; 2222 } 2223 2224 exit: 2225 if (spdk_likely(rc == 0)) { 2226 /* bdev io sent to a namespace gets counted. bdev io sent to a controller(i.e. RESET, 2227 * NVME_ADMIN,ABORT) doesn't get counted. FLUSH case is special which directly calls 2228 * bdev_nvme_io_complete(), it does not get counted. 2229 */ 2230 nbdev_io->io_path->io_outstanding++; 2231 } else { 2232 bdev_nvme_io_complete(nbdev_io, rc); 2233 } 2234 } 2235 2236 static bool 2237 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type) 2238 { 2239 struct nvme_bdev *nbdev = ctx; 2240 struct nvme_ns *nvme_ns; 2241 struct spdk_nvme_ns *ns; 2242 struct spdk_nvme_ctrlr *ctrlr; 2243 const struct spdk_nvme_ctrlr_data *cdata; 2244 2245 nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list); 2246 assert(nvme_ns != NULL); 2247 ns = nvme_ns->ns; 2248 ctrlr = spdk_nvme_ns_get_ctrlr(ns); 2249 2250 switch (io_type) { 2251 case SPDK_BDEV_IO_TYPE_READ: 2252 case SPDK_BDEV_IO_TYPE_WRITE: 2253 case SPDK_BDEV_IO_TYPE_RESET: 2254 case SPDK_BDEV_IO_TYPE_FLUSH: 2255 case SPDK_BDEV_IO_TYPE_NVME_ADMIN: 2256 case SPDK_BDEV_IO_TYPE_NVME_IO: 2257 case SPDK_BDEV_IO_TYPE_ABORT: 2258 return true; 2259 2260 case SPDK_BDEV_IO_TYPE_COMPARE: 2261 return spdk_nvme_ns_supports_compare(ns); 2262 2263 case SPDK_BDEV_IO_TYPE_NVME_IO_MD: 2264 return spdk_nvme_ns_get_md_size(ns) ? true : false; 2265 2266 case SPDK_BDEV_IO_TYPE_UNMAP: 2267 cdata = spdk_nvme_ctrlr_get_data(ctrlr); 2268 return cdata->oncs.dsm; 2269 2270 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: 2271 cdata = spdk_nvme_ctrlr_get_data(ctrlr); 2272 return cdata->oncs.write_zeroes; 2273 2274 case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE: 2275 if (spdk_nvme_ctrlr_get_flags(ctrlr) & 2276 SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) { 2277 return true; 2278 } 2279 return false; 2280 2281 case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO: 2282 case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT: 2283 return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS; 2284 2285 case SPDK_BDEV_IO_TYPE_ZONE_APPEND: 2286 return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS && 2287 spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED; 2288 2289 case SPDK_BDEV_IO_TYPE_COPY: 2290 cdata = spdk_nvme_ctrlr_get_data(ctrlr); 2291 return cdata->oncs.copy; 2292 2293 default: 2294 return false; 2295 } 2296 } 2297 2298 static int 2299 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch) 2300 { 2301 struct nvme_qpair *nvme_qpair; 2302 struct spdk_io_channel *pg_ch; 2303 int rc; 2304 2305 nvme_qpair = calloc(1, sizeof(*nvme_qpair)); 2306 if (!nvme_qpair) { 2307 SPDK_ERRLOG("Failed to alloc nvme_qpair.\n"); 2308 return -1; 2309 } 2310 2311 TAILQ_INIT(&nvme_qpair->io_path_list); 2312 2313 nvme_qpair->ctrlr = nvme_ctrlr; 2314 nvme_qpair->ctrlr_ch = ctrlr_ch; 2315 2316 pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs); 2317 if (!pg_ch) { 2318 free(nvme_qpair); 2319 return -1; 2320 } 2321 2322 nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch); 2323 2324 #ifdef SPDK_CONFIG_VTUNE 2325 nvme_qpair->group->collect_spin_stat = true; 2326 #else 2327 nvme_qpair->group->collect_spin_stat = false; 2328 #endif 2329 2330 rc = bdev_nvme_create_qpair(nvme_qpair); 2331 if (rc != 0) { 2332 /* nvme_ctrlr can't create IO qpair if connection is down. 2333 * 2334 * If reconnect_delay_sec is non-zero, creating IO qpair is retried 2335 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero, 2336 * submitted IO will be queued until IO qpair is successfully created. 2337 * 2338 * Hence, if both are satisfied, ignore the failure. 2339 */ 2340 if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) { 2341 spdk_put_io_channel(pg_ch); 2342 free(nvme_qpair); 2343 return rc; 2344 } 2345 } 2346 2347 TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq); 2348 2349 ctrlr_ch->qpair = nvme_qpair; 2350 2351 pthread_mutex_lock(&nvme_qpair->ctrlr->mutex); 2352 nvme_qpair->ctrlr->ref++; 2353 pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex); 2354 2355 return 0; 2356 } 2357 2358 static int 2359 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf) 2360 { 2361 struct nvme_ctrlr *nvme_ctrlr = io_device; 2362 struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf; 2363 2364 TAILQ_INIT(&ctrlr_ch->pending_resets); 2365 2366 return nvme_qpair_create(nvme_ctrlr, ctrlr_ch); 2367 } 2368 2369 static void 2370 nvme_qpair_delete(struct nvme_qpair *nvme_qpair) 2371 { 2372 assert(nvme_qpair->group != NULL); 2373 2374 TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq); 2375 2376 spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group)); 2377 2378 nvme_ctrlr_release(nvme_qpair->ctrlr); 2379 2380 free(nvme_qpair); 2381 } 2382 2383 static void 2384 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf) 2385 { 2386 struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf; 2387 struct nvme_qpair *nvme_qpair; 2388 2389 nvme_qpair = ctrlr_ch->qpair; 2390 assert(nvme_qpair != NULL); 2391 2392 _bdev_nvme_clear_io_path_cache(nvme_qpair); 2393 2394 if (nvme_qpair->qpair != NULL) { 2395 if (ctrlr_ch->reset_iter == NULL) { 2396 spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair); 2397 } else { 2398 /* Skip current ctrlr_channel in a full reset sequence because 2399 * it is being deleted now. The qpair is already being disconnected. 2400 * We do not have to restart disconnecting it. 2401 */ 2402 spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0); 2403 } 2404 2405 /* We cannot release a reference to the poll group now. 2406 * The qpair may be disconnected asynchronously later. 2407 * We need to poll it until it is actually disconnected. 2408 * Just detach the qpair from the deleting ctrlr_channel. 2409 */ 2410 nvme_qpair->ctrlr_ch = NULL; 2411 } else { 2412 assert(ctrlr_ch->reset_iter == NULL); 2413 2414 nvme_qpair_delete(nvme_qpair); 2415 } 2416 } 2417 2418 static void 2419 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov, 2420 uint32_t iov_cnt, uint32_t seed, 2421 spdk_nvme_accel_completion_cb cb_fn, void *cb_arg) 2422 { 2423 struct nvme_poll_group *group = ctx; 2424 int rc; 2425 2426 assert(group->accel_channel != NULL); 2427 assert(cb_fn != NULL); 2428 2429 rc = spdk_accel_submit_crc32cv(group->accel_channel, dst, iov, iov_cnt, seed, cb_fn, cb_arg); 2430 if (rc) { 2431 /* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */ 2432 if (rc == -ENOMEM || rc == -EINVAL) { 2433 cb_fn(cb_arg, rc); 2434 } 2435 SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov); 2436 } 2437 } 2438 2439 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = { 2440 .table_size = sizeof(struct spdk_nvme_accel_fn_table), 2441 .submit_accel_crc32c = bdev_nvme_submit_accel_crc32c, 2442 }; 2443 2444 static int 2445 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf) 2446 { 2447 struct nvme_poll_group *group = ctx_buf; 2448 2449 TAILQ_INIT(&group->qpair_list); 2450 2451 group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table); 2452 if (group->group == NULL) { 2453 return -1; 2454 } 2455 2456 group->accel_channel = spdk_accel_get_io_channel(); 2457 if (!group->accel_channel) { 2458 spdk_nvme_poll_group_destroy(group->group); 2459 SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n", 2460 group); 2461 return -1; 2462 } 2463 2464 group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us); 2465 2466 if (group->poller == NULL) { 2467 spdk_put_io_channel(group->accel_channel); 2468 spdk_nvme_poll_group_destroy(group->group); 2469 return -1; 2470 } 2471 2472 return 0; 2473 } 2474 2475 static void 2476 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf) 2477 { 2478 struct nvme_poll_group *group = ctx_buf; 2479 2480 assert(TAILQ_EMPTY(&group->qpair_list)); 2481 2482 if (group->accel_channel) { 2483 spdk_put_io_channel(group->accel_channel); 2484 } 2485 2486 spdk_poller_unregister(&group->poller); 2487 if (spdk_nvme_poll_group_destroy(group->group)) { 2488 SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n"); 2489 assert(false); 2490 } 2491 } 2492 2493 static struct spdk_io_channel * 2494 bdev_nvme_get_io_channel(void *ctx) 2495 { 2496 struct nvme_bdev *nvme_bdev = ctx; 2497 2498 return spdk_get_io_channel(nvme_bdev); 2499 } 2500 2501 static void * 2502 bdev_nvme_get_module_ctx(void *ctx) 2503 { 2504 struct nvme_bdev *nvme_bdev = ctx; 2505 struct nvme_ns *nvme_ns; 2506 2507 if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) { 2508 return NULL; 2509 } 2510 2511 nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list); 2512 if (!nvme_ns) { 2513 return NULL; 2514 } 2515 2516 return nvme_ns->ns; 2517 } 2518 2519 static const char * 2520 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state) 2521 { 2522 switch (ana_state) { 2523 case SPDK_NVME_ANA_OPTIMIZED_STATE: 2524 return "optimized"; 2525 case SPDK_NVME_ANA_NON_OPTIMIZED_STATE: 2526 return "non_optimized"; 2527 case SPDK_NVME_ANA_INACCESSIBLE_STATE: 2528 return "inaccessible"; 2529 case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE: 2530 return "persistent_loss"; 2531 case SPDK_NVME_ANA_CHANGE_STATE: 2532 return "change"; 2533 default: 2534 return NULL; 2535 } 2536 } 2537 2538 static int 2539 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size) 2540 { 2541 struct spdk_memory_domain **_domains = NULL; 2542 struct nvme_bdev *nbdev = ctx; 2543 struct nvme_ns *nvme_ns; 2544 int i = 0, _array_size = array_size; 2545 int rc = 0; 2546 2547 TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) { 2548 if (domains && array_size >= i) { 2549 _domains = &domains[i]; 2550 } else { 2551 _domains = NULL; 2552 } 2553 rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size); 2554 if (rc > 0) { 2555 i += rc; 2556 if (_array_size >= rc) { 2557 _array_size -= rc; 2558 } else { 2559 _array_size = 0; 2560 } 2561 } else if (rc < 0) { 2562 return rc; 2563 } 2564 } 2565 2566 return i; 2567 } 2568 2569 static const char * 2570 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr) 2571 { 2572 if (nvme_ctrlr->destruct) { 2573 return "deleting"; 2574 } else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) { 2575 return "failed"; 2576 } else if (nvme_ctrlr->resetting) { 2577 return "resetting"; 2578 } else if (nvme_ctrlr->reconnect_is_delayed > 0) { 2579 return "reconnect_is_delayed"; 2580 } else { 2581 return "enabled"; 2582 } 2583 } 2584 2585 void 2586 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr) 2587 { 2588 struct spdk_nvme_transport_id *trid; 2589 const struct spdk_nvme_ctrlr_opts *opts; 2590 const struct spdk_nvme_ctrlr_data *cdata; 2591 2592 spdk_json_write_object_begin(w); 2593 2594 spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr)); 2595 2596 #ifdef SPDK_CONFIG_NVME_CUSE 2597 size_t cuse_name_size = 128; 2598 char cuse_name[cuse_name_size]; 2599 2600 int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size); 2601 if (rc == 0) { 2602 spdk_json_write_named_string(w, "cuse_device", cuse_name); 2603 } 2604 #endif 2605 trid = &nvme_ctrlr->active_path_id->trid; 2606 spdk_json_write_named_object_begin(w, "trid"); 2607 nvme_bdev_dump_trid_json(trid, w); 2608 spdk_json_write_object_end(w); 2609 2610 cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr); 2611 spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid); 2612 2613 opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr); 2614 spdk_json_write_named_object_begin(w, "host"); 2615 spdk_json_write_named_string(w, "nqn", opts->hostnqn); 2616 spdk_json_write_named_string(w, "addr", opts->src_addr); 2617 spdk_json_write_named_string(w, "svcid", opts->src_svcid); 2618 spdk_json_write_object_end(w); 2619 2620 spdk_json_write_object_end(w); 2621 } 2622 2623 static void 2624 nvme_namespace_info_json(struct spdk_json_write_ctx *w, 2625 struct nvme_ns *nvme_ns) 2626 { 2627 struct spdk_nvme_ns *ns; 2628 struct spdk_nvme_ctrlr *ctrlr; 2629 const struct spdk_nvme_ctrlr_data *cdata; 2630 const struct spdk_nvme_transport_id *trid; 2631 union spdk_nvme_vs_register vs; 2632 const struct spdk_nvme_ns_data *nsdata; 2633 char buf[128]; 2634 2635 ns = nvme_ns->ns; 2636 ctrlr = spdk_nvme_ns_get_ctrlr(ns); 2637 2638 cdata = spdk_nvme_ctrlr_get_data(ctrlr); 2639 trid = spdk_nvme_ctrlr_get_transport_id(ctrlr); 2640 vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr); 2641 2642 spdk_json_write_object_begin(w); 2643 2644 if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) { 2645 spdk_json_write_named_string(w, "pci_address", trid->traddr); 2646 } 2647 2648 spdk_json_write_named_object_begin(w, "trid"); 2649 2650 nvme_bdev_dump_trid_json(trid, w); 2651 2652 spdk_json_write_object_end(w); 2653 2654 #ifdef SPDK_CONFIG_NVME_CUSE 2655 size_t cuse_name_size = 128; 2656 char cuse_name[cuse_name_size]; 2657 2658 int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns), 2659 cuse_name, &cuse_name_size); 2660 if (rc == 0) { 2661 spdk_json_write_named_string(w, "cuse_device", cuse_name); 2662 } 2663 #endif 2664 2665 spdk_json_write_named_object_begin(w, "ctrlr_data"); 2666 2667 spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid); 2668 2669 spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid); 2670 2671 snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn); 2672 spdk_str_trim(buf); 2673 spdk_json_write_named_string(w, "model_number", buf); 2674 2675 snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn); 2676 spdk_str_trim(buf); 2677 spdk_json_write_named_string(w, "serial_number", buf); 2678 2679 snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr); 2680 spdk_str_trim(buf); 2681 spdk_json_write_named_string(w, "firmware_revision", buf); 2682 2683 if (cdata->subnqn[0] != '\0') { 2684 spdk_json_write_named_string(w, "subnqn", cdata->subnqn); 2685 } 2686 2687 spdk_json_write_named_object_begin(w, "oacs"); 2688 2689 spdk_json_write_named_uint32(w, "security", cdata->oacs.security); 2690 spdk_json_write_named_uint32(w, "format", cdata->oacs.format); 2691 spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware); 2692 spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage); 2693 2694 spdk_json_write_object_end(w); 2695 2696 spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr); 2697 spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting); 2698 2699 spdk_json_write_object_end(w); 2700 2701 spdk_json_write_named_object_begin(w, "vs"); 2702 2703 spdk_json_write_name(w, "nvme_version"); 2704 if (vs.bits.ter) { 2705 spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter); 2706 } else { 2707 spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr); 2708 } 2709 2710 spdk_json_write_object_end(w); 2711 2712 nsdata = spdk_nvme_ns_get_data(ns); 2713 2714 spdk_json_write_named_object_begin(w, "ns_data"); 2715 2716 spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns)); 2717 2718 if (cdata->cmic.ana_reporting) { 2719 spdk_json_write_named_string(w, "ana_state", 2720 _nvme_ana_state_str(nvme_ns->ana_state)); 2721 } 2722 2723 spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share); 2724 2725 spdk_json_write_object_end(w); 2726 2727 if (cdata->oacs.security) { 2728 spdk_json_write_named_object_begin(w, "security"); 2729 2730 spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal); 2731 2732 spdk_json_write_object_end(w); 2733 } 2734 2735 spdk_json_write_object_end(w); 2736 } 2737 2738 static const char * 2739 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev) 2740 { 2741 switch (nbdev->mp_policy) { 2742 case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE: 2743 return "active_passive"; 2744 case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE: 2745 return "active_active"; 2746 default: 2747 assert(false); 2748 return "invalid"; 2749 } 2750 } 2751 2752 static int 2753 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w) 2754 { 2755 struct nvme_bdev *nvme_bdev = ctx; 2756 struct nvme_ns *nvme_ns; 2757 2758 pthread_mutex_lock(&nvme_bdev->mutex); 2759 spdk_json_write_named_array_begin(w, "nvme"); 2760 TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) { 2761 nvme_namespace_info_json(w, nvme_ns); 2762 } 2763 spdk_json_write_array_end(w); 2764 spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev)); 2765 pthread_mutex_unlock(&nvme_bdev->mutex); 2766 2767 return 0; 2768 } 2769 2770 static void 2771 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w) 2772 { 2773 /* No config per bdev needed */ 2774 } 2775 2776 static uint64_t 2777 bdev_nvme_get_spin_time(struct spdk_io_channel *ch) 2778 { 2779 struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch); 2780 struct nvme_io_path *io_path; 2781 struct nvme_poll_group *group; 2782 uint64_t spin_time = 0; 2783 2784 STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) { 2785 group = io_path->qpair->group; 2786 2787 if (!group || !group->collect_spin_stat) { 2788 continue; 2789 } 2790 2791 if (group->end_ticks != 0) { 2792 group->spin_ticks += (group->end_ticks - group->start_ticks); 2793 group->end_ticks = 0; 2794 } 2795 2796 spin_time += group->spin_ticks; 2797 group->start_ticks = 0; 2798 group->spin_ticks = 0; 2799 } 2800 2801 return (spin_time * 1000000ULL) / spdk_get_ticks_hz(); 2802 } 2803 2804 static const struct spdk_bdev_fn_table nvmelib_fn_table = { 2805 .destruct = bdev_nvme_destruct, 2806 .submit_request = bdev_nvme_submit_request, 2807 .io_type_supported = bdev_nvme_io_type_supported, 2808 .get_io_channel = bdev_nvme_get_io_channel, 2809 .dump_info_json = bdev_nvme_dump_info_json, 2810 .write_config_json = bdev_nvme_write_config_json, 2811 .get_spin_time = bdev_nvme_get_spin_time, 2812 .get_module_ctx = bdev_nvme_get_module_ctx, 2813 .get_memory_domains = bdev_nvme_get_memory_domains, 2814 }; 2815 2816 typedef int (*bdev_nvme_parse_ana_log_page_cb)( 2817 const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg); 2818 2819 static int 2820 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr, 2821 bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg) 2822 { 2823 struct spdk_nvme_ana_group_descriptor *copied_desc; 2824 uint8_t *orig_desc; 2825 uint32_t i, desc_size, copy_len; 2826 int rc = 0; 2827 2828 if (nvme_ctrlr->ana_log_page == NULL) { 2829 return -EINVAL; 2830 } 2831 2832 copied_desc = nvme_ctrlr->copied_ana_desc; 2833 2834 orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page); 2835 copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page); 2836 2837 for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) { 2838 memcpy(copied_desc, orig_desc, copy_len); 2839 2840 rc = cb_fn(copied_desc, cb_arg); 2841 if (rc != 0) { 2842 break; 2843 } 2844 2845 desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) + 2846 copied_desc->num_of_nsid * sizeof(uint32_t); 2847 orig_desc += desc_size; 2848 copy_len -= desc_size; 2849 } 2850 2851 return rc; 2852 } 2853 2854 static int 2855 nvme_ns_ana_transition_timedout(void *ctx) 2856 { 2857 struct nvme_ns *nvme_ns = ctx; 2858 2859 spdk_poller_unregister(&nvme_ns->anatt_timer); 2860 nvme_ns->ana_transition_timedout = true; 2861 2862 return SPDK_POLLER_BUSY; 2863 } 2864 2865 static void 2866 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns, 2867 const struct spdk_nvme_ana_group_descriptor *desc) 2868 { 2869 const struct spdk_nvme_ctrlr_data *cdata; 2870 2871 nvme_ns->ana_group_id = desc->ana_group_id; 2872 nvme_ns->ana_state = desc->ana_state; 2873 nvme_ns->ana_state_updating = false; 2874 2875 switch (nvme_ns->ana_state) { 2876 case SPDK_NVME_ANA_OPTIMIZED_STATE: 2877 case SPDK_NVME_ANA_NON_OPTIMIZED_STATE: 2878 nvme_ns->ana_transition_timedout = false; 2879 spdk_poller_unregister(&nvme_ns->anatt_timer); 2880 break; 2881 2882 case SPDK_NVME_ANA_INACCESSIBLE_STATE: 2883 case SPDK_NVME_ANA_CHANGE_STATE: 2884 if (nvme_ns->anatt_timer != NULL) { 2885 break; 2886 } 2887 2888 cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr); 2889 nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout, 2890 nvme_ns, 2891 cdata->anatt * SPDK_SEC_TO_USEC); 2892 break; 2893 default: 2894 break; 2895 } 2896 } 2897 2898 static int 2899 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg) 2900 { 2901 struct nvme_ns *nvme_ns = cb_arg; 2902 uint32_t i; 2903 2904 for (i = 0; i < desc->num_of_nsid; i++) { 2905 if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) { 2906 continue; 2907 } 2908 2909 _nvme_ns_set_ana_state(nvme_ns, desc); 2910 return 1; 2911 } 2912 2913 return 0; 2914 } 2915 2916 static void 2917 merge_nsid_sn_strings(const char *sn, char *nsid, int8_t *out) 2918 { 2919 int i = 0, j = 0; 2920 int sn_len = strlen(sn), nsid_len = strlen(nsid); 2921 2922 for (i = 0; i < nsid_len; i++) { 2923 out[i] = nsid[i]; 2924 } 2925 2926 /* Since last few characters are more likely to be unique, 2927 * even among the devices from the same manufacturer, 2928 * we use serial number in reverse. We also skip the 2929 * terminating character of serial number string. */ 2930 for (j = sn_len - 1; j >= 0; j--) { 2931 if (i == SPDK_UUID_STRING_LEN - 1) { 2932 break; 2933 } 2934 2935 /* There may be a lot of spaces in serial number string 2936 * and they will generate equally large number of the 2937 * same character, so just skip them. */ 2938 if (sn[j] == ' ') { 2939 continue; 2940 } 2941 2942 out[i] = sn[j]; 2943 i++; 2944 } 2945 } 2946 2947 /* Dictionary of characters for UUID generation. */ 2948 static char dict[17] = "0123456789abcdef"; 2949 2950 static struct spdk_uuid 2951 nvme_generate_uuid(const char *sn, uint32_t nsid) 2952 { 2953 struct spdk_uuid new_uuid; 2954 char buf[SPDK_UUID_STRING_LEN] = {'\0'}, merged_str[SPDK_UUID_STRING_LEN] = {'\0'}; 2955 char nsid_str[NSID_STR_LEN] = {'\0'}, tmp; 2956 uint64_t i = 0, j = 0, rem, dict_size = strlen(dict); 2957 int rc; 2958 2959 assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN); 2960 2961 snprintf(nsid_str, NSID_STR_LEN, "%" PRIu32, nsid); 2962 2963 merge_nsid_sn_strings(sn, nsid_str, merged_str); 2964 2965 while (i < SPDK_UUID_STRING_LEN) { 2966 /* If 'j' is equal to indexes, where '-' should be placed, 2967 * insert this character and continue the loop without 2968 * increasing 'i'. */ 2969 if ((j == 8 || j == 13 || j == 18 || j == 23)) { 2970 buf[j] = '-'; 2971 j++; 2972 2973 /* Break, if we ran out of characters in 2974 * serial number and namespace ID string. */ 2975 if (j == strlen(merged_str)) { 2976 break; 2977 } 2978 continue; 2979 } 2980 2981 /* Change character in shuffled string to lower case. */ 2982 tmp = tolower(merged_str[i]); 2983 2984 if (isxdigit(tmp)) { 2985 /* If character can be represented by a hex 2986 * value as is, copy it to the result buffer. */ 2987 buf[j] = tmp; 2988 } else { 2989 /* Otherwise get its code and divide it 2990 * by the number of elements in dictionary. 2991 * The remainder will be the index of dictionary 2992 * character to replace tmp value with. */ 2993 rem = tmp % dict_size; 2994 buf[j] = dict[rem]; 2995 } 2996 2997 i++; 2998 j++; 2999 3000 /* Break, if we ran out of characters in 3001 * serial number and namespace ID string. */ 3002 if (j == strlen(merged_str)) { 3003 break; 3004 } 3005 } 3006 3007 /* If there are not enough values to fill UUID, 3008 * the rest is taken from dictionary characters. */ 3009 i = 0; 3010 while (j < SPDK_UUID_STRING_LEN - 1) { 3011 if ((j == 8 || j == 13 || j == 18 || j == 23)) { 3012 buf[j] = '-'; 3013 j++; 3014 continue; 3015 } 3016 buf[j] = dict[i % dict_size]; 3017 i++; 3018 j++; 3019 } 3020 3021 rc = spdk_uuid_parse(&new_uuid, buf); 3022 if (rc != 0) { 3023 SPDK_ERRLOG("Unexpected spdk_uuid_parse failure on %s.\n", buf); 3024 assert(false); 3025 } 3026 3027 return new_uuid; 3028 } 3029 3030 static int 3031 nvme_disk_create(struct spdk_bdev *disk, const char *base_name, 3032 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns, 3033 uint32_t prchk_flags, void *ctx) 3034 { 3035 const struct spdk_uuid *uuid; 3036 const uint8_t *nguid; 3037 const struct spdk_nvme_ctrlr_data *cdata; 3038 const struct spdk_nvme_ns_data *nsdata; 3039 const struct spdk_nvme_ctrlr_opts *opts; 3040 enum spdk_nvme_csi csi; 3041 uint32_t atomic_bs, phys_bs, bs; 3042 char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'}; 3043 3044 cdata = spdk_nvme_ctrlr_get_data(ctrlr); 3045 csi = spdk_nvme_ns_get_csi(ns); 3046 opts = spdk_nvme_ctrlr_get_opts(ctrlr); 3047 3048 switch (csi) { 3049 case SPDK_NVME_CSI_NVM: 3050 disk->product_name = "NVMe disk"; 3051 break; 3052 case SPDK_NVME_CSI_ZNS: 3053 disk->product_name = "NVMe ZNS disk"; 3054 disk->zoned = true; 3055 disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns); 3056 disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) / 3057 spdk_nvme_ns_get_extended_sector_size(ns); 3058 disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns); 3059 disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns); 3060 break; 3061 default: 3062 SPDK_ERRLOG("unsupported CSI: %u\n", csi); 3063 return -ENOTSUP; 3064 } 3065 3066 disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns)); 3067 if (!disk->name) { 3068 return -ENOMEM; 3069 } 3070 3071 disk->write_cache = 0; 3072 if (cdata->vwc.present) { 3073 /* Enable if the Volatile Write Cache exists */ 3074 disk->write_cache = 1; 3075 } 3076 if (cdata->oncs.write_zeroes) { 3077 disk->max_write_zeroes = UINT16_MAX + 1; 3078 } 3079 disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns); 3080 disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns); 3081 disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr); 3082 /* NVMe driver will split one request into multiple requests 3083 * based on MDTS and stripe boundary, the bdev layer will use 3084 * max_segment_size and max_num_segments to split one big IO 3085 * into multiple requests, then small request can't run out 3086 * of NVMe internal requests data structure. 3087 */ 3088 if (opts && opts->io_queue_requests) { 3089 disk->max_num_segments = opts->io_queue_requests / 2; 3090 } 3091 disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns); 3092 3093 nguid = spdk_nvme_ns_get_nguid(ns); 3094 if (!nguid) { 3095 uuid = spdk_nvme_ns_get_uuid(ns); 3096 if (uuid) { 3097 disk->uuid = *uuid; 3098 } else if (g_opts.generate_uuids) { 3099 spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0'); 3100 disk->uuid = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns)); 3101 } 3102 } else { 3103 memcpy(&disk->uuid, nguid, sizeof(disk->uuid)); 3104 } 3105 3106 nsdata = spdk_nvme_ns_get_data(ns); 3107 bs = spdk_nvme_ns_get_sector_size(ns); 3108 atomic_bs = bs; 3109 phys_bs = bs; 3110 if (nsdata->nabo == 0) { 3111 if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) { 3112 atomic_bs = bs * (1 + nsdata->nawupf); 3113 } else { 3114 atomic_bs = bs * (1 + cdata->awupf); 3115 } 3116 } 3117 if (nsdata->nsfeat.optperf) { 3118 phys_bs = bs * (1 + nsdata->npwg); 3119 } 3120 disk->phys_blocklen = spdk_min(phys_bs, atomic_bs); 3121 3122 disk->md_len = spdk_nvme_ns_get_md_size(ns); 3123 if (disk->md_len != 0) { 3124 disk->md_interleave = nsdata->flbas.extended; 3125 disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns); 3126 if (disk->dif_type != SPDK_DIF_DISABLE) { 3127 disk->dif_is_head_of_md = nsdata->dps.md_start; 3128 disk->dif_check_flags = prchk_flags; 3129 } 3130 } 3131 3132 if (!(spdk_nvme_ctrlr_get_flags(ctrlr) & 3133 SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) { 3134 disk->acwu = 0; 3135 } else if (nsdata->nsfeat.ns_atomic_write_unit) { 3136 disk->acwu = nsdata->nacwu + 1; /* 0-based */ 3137 } else { 3138 disk->acwu = cdata->acwu + 1; /* 0-based */ 3139 } 3140 3141 if (cdata->oncs.copy) { 3142 /* For now bdev interface allows only single segment copy */ 3143 disk->max_copy = nsdata->mssrl; 3144 } 3145 3146 disk->ctxt = ctx; 3147 disk->fn_table = &nvmelib_fn_table; 3148 disk->module = &nvme_if; 3149 3150 return 0; 3151 } 3152 3153 static int 3154 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns) 3155 { 3156 struct nvme_bdev *bdev; 3157 int rc; 3158 3159 bdev = calloc(1, sizeof(*bdev)); 3160 if (!bdev) { 3161 SPDK_ERRLOG("bdev calloc() failed\n"); 3162 return -ENOMEM; 3163 } 3164 3165 rc = pthread_mutex_init(&bdev->mutex, NULL); 3166 if (rc != 0) { 3167 free(bdev); 3168 return rc; 3169 } 3170 3171 bdev->ref = 1; 3172 bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE; 3173 TAILQ_INIT(&bdev->nvme_ns_list); 3174 TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq); 3175 bdev->opal = nvme_ctrlr->opal_dev != NULL; 3176 3177 rc = nvme_disk_create(&bdev->disk, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ctrlr, 3178 nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev); 3179 if (rc != 0) { 3180 SPDK_ERRLOG("Failed to create NVMe disk\n"); 3181 pthread_mutex_destroy(&bdev->mutex); 3182 free(bdev); 3183 return rc; 3184 } 3185 3186 spdk_io_device_register(bdev, 3187 bdev_nvme_create_bdev_channel_cb, 3188 bdev_nvme_destroy_bdev_channel_cb, 3189 sizeof(struct nvme_bdev_channel), 3190 bdev->disk.name); 3191 3192 rc = spdk_bdev_register(&bdev->disk); 3193 if (rc != 0) { 3194 SPDK_ERRLOG("spdk_bdev_register() failed\n"); 3195 spdk_io_device_unregister(bdev, NULL); 3196 pthread_mutex_destroy(&bdev->mutex); 3197 free(bdev->disk.name); 3198 free(bdev); 3199 return rc; 3200 } 3201 3202 nvme_ns->bdev = bdev; 3203 bdev->nsid = nvme_ns->id; 3204 3205 bdev->nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr; 3206 TAILQ_INSERT_TAIL(&nvme_ctrlr->nbdev_ctrlr->bdevs, bdev, tailq); 3207 3208 return 0; 3209 } 3210 3211 static bool 3212 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2) 3213 { 3214 const struct spdk_nvme_ns_data *nsdata1, *nsdata2; 3215 const struct spdk_uuid *uuid1, *uuid2; 3216 3217 nsdata1 = spdk_nvme_ns_get_data(ns1); 3218 nsdata2 = spdk_nvme_ns_get_data(ns2); 3219 uuid1 = spdk_nvme_ns_get_uuid(ns1); 3220 uuid2 = spdk_nvme_ns_get_uuid(ns2); 3221 3222 return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 && 3223 nsdata1->eui64 == nsdata2->eui64 && 3224 ((uuid1 == NULL && uuid2 == NULL) || 3225 (uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) && 3226 spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2); 3227 } 3228 3229 static bool 3230 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, 3231 struct spdk_nvme_ctrlr_opts *opts) 3232 { 3233 struct nvme_probe_skip_entry *entry; 3234 3235 TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) { 3236 if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) { 3237 return false; 3238 } 3239 } 3240 3241 opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst; 3242 opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight; 3243 opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight; 3244 opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight; 3245 opts->disable_read_ana_log_page = true; 3246 3247 SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr); 3248 3249 return true; 3250 } 3251 3252 static void 3253 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl) 3254 { 3255 struct nvme_ctrlr *nvme_ctrlr = ctx; 3256 3257 if (spdk_nvme_cpl_is_error(cpl)) { 3258 SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc, 3259 cpl->status.sct); 3260 bdev_nvme_reset(nvme_ctrlr); 3261 } else if (cpl->cdw0 & 0x1) { 3262 SPDK_WARNLOG("Specified command could not be aborted.\n"); 3263 bdev_nvme_reset(nvme_ctrlr); 3264 } 3265 } 3266 3267 static void 3268 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr, 3269 struct spdk_nvme_qpair *qpair, uint16_t cid) 3270 { 3271 struct nvme_ctrlr *nvme_ctrlr = cb_arg; 3272 union spdk_nvme_csts_register csts; 3273 int rc; 3274 3275 assert(nvme_ctrlr->ctrlr == ctrlr); 3276 3277 SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid); 3278 3279 /* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O 3280 * queue. (Note: qpair == NULL when there's an admin cmd timeout.) Otherwise we 3281 * would submit another fabrics cmd on the admin queue to read CSTS and check for its 3282 * completion recursively. 3283 */ 3284 if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) { 3285 csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr); 3286 if (csts.bits.cfs) { 3287 SPDK_ERRLOG("Controller Fatal Status, reset required\n"); 3288 bdev_nvme_reset(nvme_ctrlr); 3289 return; 3290 } 3291 } 3292 3293 switch (g_opts.action_on_timeout) { 3294 case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT: 3295 if (qpair) { 3296 /* Don't send abort to ctrlr when ctrlr is not available. */ 3297 pthread_mutex_lock(&nvme_ctrlr->mutex); 3298 if (!nvme_ctrlr_is_available(nvme_ctrlr)) { 3299 pthread_mutex_unlock(&nvme_ctrlr->mutex); 3300 SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n"); 3301 return; 3302 } 3303 pthread_mutex_unlock(&nvme_ctrlr->mutex); 3304 3305 rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid, 3306 nvme_abort_cpl, nvme_ctrlr); 3307 if (rc == 0) { 3308 return; 3309 } 3310 3311 SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc); 3312 } 3313 3314 /* FALLTHROUGH */ 3315 case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET: 3316 bdev_nvme_reset(nvme_ctrlr); 3317 break; 3318 case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE: 3319 SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n"); 3320 break; 3321 default: 3322 SPDK_ERRLOG("An invalid timeout action value is found.\n"); 3323 break; 3324 } 3325 } 3326 3327 static void 3328 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc) 3329 { 3330 struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr; 3331 struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx; 3332 3333 if (rc == 0) { 3334 nvme_ns->probe_ctx = NULL; 3335 pthread_mutex_lock(&nvme_ctrlr->mutex); 3336 nvme_ctrlr->ref++; 3337 pthread_mutex_unlock(&nvme_ctrlr->mutex); 3338 } else { 3339 RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns); 3340 free(nvme_ns); 3341 } 3342 3343 if (ctx) { 3344 ctx->populates_in_progress--; 3345 if (ctx->populates_in_progress == 0) { 3346 nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx); 3347 } 3348 } 3349 } 3350 3351 static void 3352 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i) 3353 { 3354 struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); 3355 struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch); 3356 struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i); 3357 int rc; 3358 3359 rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns); 3360 if (rc != 0) { 3361 SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n"); 3362 } 3363 3364 spdk_for_each_channel_continue(i, rc); 3365 } 3366 3367 static void 3368 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i) 3369 { 3370 struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); 3371 struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch); 3372 struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i); 3373 struct nvme_io_path *io_path; 3374 3375 io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns); 3376 if (io_path != NULL) { 3377 _bdev_nvme_delete_io_path(nbdev_ch, io_path); 3378 } 3379 3380 spdk_for_each_channel_continue(i, 0); 3381 } 3382 3383 static void 3384 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status) 3385 { 3386 struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i); 3387 3388 nvme_ctrlr_populate_namespace_done(nvme_ns, -1); 3389 } 3390 3391 static void 3392 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status) 3393 { 3394 struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i); 3395 struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i); 3396 3397 if (status == 0) { 3398 nvme_ctrlr_populate_namespace_done(nvme_ns, 0); 3399 } else { 3400 /* Delete the added io_paths and fail populating the namespace. */ 3401 spdk_for_each_channel(bdev, 3402 bdev_nvme_delete_io_path, 3403 nvme_ns, 3404 bdev_nvme_add_io_path_failed); 3405 } 3406 } 3407 3408 static int 3409 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns) 3410 { 3411 struct nvme_ns *tmp_ns; 3412 const struct spdk_nvme_ns_data *nsdata; 3413 3414 nsdata = spdk_nvme_ns_get_data(nvme_ns->ns); 3415 if (!nsdata->nmic.can_share) { 3416 SPDK_ERRLOG("Namespace cannot be shared.\n"); 3417 return -EINVAL; 3418 } 3419 3420 pthread_mutex_lock(&bdev->mutex); 3421 3422 tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list); 3423 assert(tmp_ns != NULL); 3424 3425 if (!bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) { 3426 pthread_mutex_unlock(&bdev->mutex); 3427 SPDK_ERRLOG("Namespaces are not identical.\n"); 3428 return -EINVAL; 3429 } 3430 3431 bdev->ref++; 3432 TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq); 3433 nvme_ns->bdev = bdev; 3434 3435 pthread_mutex_unlock(&bdev->mutex); 3436 3437 /* Add nvme_io_path to nvme_bdev_channels dynamically. */ 3438 spdk_for_each_channel(bdev, 3439 bdev_nvme_add_io_path, 3440 nvme_ns, 3441 bdev_nvme_add_io_path_done); 3442 3443 return 0; 3444 } 3445 3446 static void 3447 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns) 3448 { 3449 struct spdk_nvme_ns *ns; 3450 struct nvme_bdev *bdev; 3451 int rc = 0; 3452 3453 ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id); 3454 if (!ns) { 3455 SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id); 3456 rc = -EINVAL; 3457 goto done; 3458 } 3459 3460 nvme_ns->ns = ns; 3461 nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE; 3462 3463 if (nvme_ctrlr->ana_log_page != NULL) { 3464 bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns); 3465 } 3466 3467 bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id); 3468 if (bdev == NULL) { 3469 rc = nvme_bdev_create(nvme_ctrlr, nvme_ns); 3470 } else { 3471 rc = nvme_bdev_add_ns(bdev, nvme_ns); 3472 if (rc == 0) { 3473 return; 3474 } 3475 } 3476 done: 3477 nvme_ctrlr_populate_namespace_done(nvme_ns, rc); 3478 } 3479 3480 static void 3481 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns) 3482 { 3483 struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr; 3484 3485 assert(nvme_ctrlr != NULL); 3486 3487 pthread_mutex_lock(&nvme_ctrlr->mutex); 3488 3489 RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns); 3490 3491 if (nvme_ns->bdev != NULL) { 3492 pthread_mutex_unlock(&nvme_ctrlr->mutex); 3493 return; 3494 } 3495 3496 free(nvme_ns); 3497 pthread_mutex_unlock(&nvme_ctrlr->mutex); 3498 3499 nvme_ctrlr_release(nvme_ctrlr); 3500 } 3501 3502 static void 3503 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status) 3504 { 3505 struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i); 3506 3507 nvme_ctrlr_depopulate_namespace_done(nvme_ns); 3508 } 3509 3510 static void 3511 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns) 3512 { 3513 struct nvme_bdev *bdev; 3514 3515 spdk_poller_unregister(&nvme_ns->anatt_timer); 3516 3517 bdev = nvme_ns->bdev; 3518 if (bdev != NULL) { 3519 pthread_mutex_lock(&bdev->mutex); 3520 3521 assert(bdev->ref > 0); 3522 bdev->ref--; 3523 if (bdev->ref == 0) { 3524 pthread_mutex_unlock(&bdev->mutex); 3525 3526 spdk_bdev_unregister(&bdev->disk, NULL, NULL); 3527 } else { 3528 /* spdk_bdev_unregister() is not called until the last nvme_ns is 3529 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list 3530 * and clear nvme_ns->bdev here. 3531 */ 3532 TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq); 3533 nvme_ns->bdev = NULL; 3534 3535 pthread_mutex_unlock(&bdev->mutex); 3536 3537 /* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that, 3538 * we call depopulate_namespace_done() to avoid use-after-free. 3539 */ 3540 spdk_for_each_channel(bdev, 3541 bdev_nvme_delete_io_path, 3542 nvme_ns, 3543 bdev_nvme_delete_io_path_done); 3544 return; 3545 } 3546 } 3547 3548 nvme_ctrlr_depopulate_namespace_done(nvme_ns); 3549 } 3550 3551 static void 3552 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr, 3553 struct nvme_async_probe_ctx *ctx) 3554 { 3555 struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr; 3556 struct nvme_ns *nvme_ns, *next; 3557 struct spdk_nvme_ns *ns; 3558 struct nvme_bdev *bdev; 3559 uint32_t nsid; 3560 int rc; 3561 uint64_t num_sectors; 3562 3563 if (ctx) { 3564 /* Initialize this count to 1 to handle the populate functions 3565 * calling nvme_ctrlr_populate_namespace_done() immediately. 3566 */ 3567 ctx->populates_in_progress = 1; 3568 } 3569 3570 /* First loop over our existing namespaces and see if they have been 3571 * removed. */ 3572 nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr); 3573 while (nvme_ns != NULL) { 3574 next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns); 3575 3576 if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) { 3577 /* NS is still there but attributes may have changed */ 3578 ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id); 3579 num_sectors = spdk_nvme_ns_get_num_sectors(ns); 3580 bdev = nvme_ns->bdev; 3581 assert(bdev != NULL); 3582 if (bdev->disk.blockcnt != num_sectors) { 3583 SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n", 3584 nvme_ns->id, 3585 bdev->disk.name, 3586 bdev->disk.blockcnt, 3587 num_sectors); 3588 rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors); 3589 if (rc != 0) { 3590 SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n", 3591 bdev->disk.name, rc); 3592 } 3593 } 3594 } else { 3595 /* Namespace was removed */ 3596 nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns); 3597 } 3598 3599 nvme_ns = next; 3600 } 3601 3602 /* Loop through all of the namespaces at the nvme level and see if any of them are new */ 3603 nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr); 3604 while (nsid != 0) { 3605 nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid); 3606 3607 if (nvme_ns == NULL) { 3608 /* Found a new one */ 3609 nvme_ns = calloc(1, sizeof(struct nvme_ns)); 3610 if (nvme_ns == NULL) { 3611 SPDK_ERRLOG("Failed to allocate namespace\n"); 3612 /* This just fails to attach the namespace. It may work on a future attempt. */ 3613 continue; 3614 } 3615 3616 nvme_ns->id = nsid; 3617 nvme_ns->ctrlr = nvme_ctrlr; 3618 3619 nvme_ns->bdev = NULL; 3620 3621 if (ctx) { 3622 ctx->populates_in_progress++; 3623 } 3624 nvme_ns->probe_ctx = ctx; 3625 3626 RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns); 3627 3628 nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns); 3629 } 3630 3631 nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid); 3632 } 3633 3634 if (ctx) { 3635 /* Decrement this count now that the loop is over to account 3636 * for the one we started with. If the count is then 0, we 3637 * know any populate_namespace functions completed immediately, 3638 * so we'll kick the callback here. 3639 */ 3640 ctx->populates_in_progress--; 3641 if (ctx->populates_in_progress == 0) { 3642 nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx); 3643 } 3644 } 3645 3646 } 3647 3648 static void 3649 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr) 3650 { 3651 struct nvme_ns *nvme_ns, *tmp; 3652 3653 RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) { 3654 nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns); 3655 } 3656 } 3657 3658 static uint32_t 3659 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr) 3660 { 3661 struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr; 3662 const struct spdk_nvme_ctrlr_data *cdata; 3663 uint32_t nsid, ns_count = 0; 3664 3665 cdata = spdk_nvme_ctrlr_get_data(ctrlr); 3666 3667 for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr); 3668 nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) { 3669 ns_count++; 3670 } 3671 3672 return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid * 3673 sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count * 3674 sizeof(uint32_t); 3675 } 3676 3677 static int 3678 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc, 3679 void *cb_arg) 3680 { 3681 struct nvme_ctrlr *nvme_ctrlr = cb_arg; 3682 struct nvme_ns *nvme_ns; 3683 uint32_t i, nsid; 3684 3685 for (i = 0; i < desc->num_of_nsid; i++) { 3686 nsid = desc->nsid[i]; 3687 if (nsid == 0) { 3688 continue; 3689 } 3690 3691 nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid); 3692 3693 assert(nvme_ns != NULL); 3694 if (nvme_ns == NULL) { 3695 /* Target told us that an inactive namespace had an ANA change */ 3696 continue; 3697 } 3698 3699 _nvme_ns_set_ana_state(nvme_ns, desc); 3700 } 3701 3702 return 0; 3703 } 3704 3705 static void 3706 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr) 3707 { 3708 struct nvme_ns *nvme_ns; 3709 3710 spdk_free(nvme_ctrlr->ana_log_page); 3711 nvme_ctrlr->ana_log_page = NULL; 3712 3713 for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr); 3714 nvme_ns != NULL; 3715 nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) { 3716 nvme_ns->ana_state_updating = false; 3717 nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE; 3718 } 3719 } 3720 3721 static void 3722 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl) 3723 { 3724 struct nvme_ctrlr *nvme_ctrlr = ctx; 3725 3726 if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) { 3727 bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states, 3728 nvme_ctrlr); 3729 } else { 3730 bdev_nvme_disable_read_ana_log_page(nvme_ctrlr); 3731 } 3732 3733 pthread_mutex_lock(&nvme_ctrlr->mutex); 3734 3735 assert(nvme_ctrlr->ana_log_page_updating == true); 3736 nvme_ctrlr->ana_log_page_updating = false; 3737 3738 if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) { 3739 pthread_mutex_unlock(&nvme_ctrlr->mutex); 3740 3741 nvme_ctrlr_unregister(nvme_ctrlr); 3742 } else { 3743 pthread_mutex_unlock(&nvme_ctrlr->mutex); 3744 3745 bdev_nvme_clear_io_path_caches(nvme_ctrlr); 3746 } 3747 } 3748 3749 static int 3750 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr) 3751 { 3752 uint32_t ana_log_page_size; 3753 int rc; 3754 3755 if (nvme_ctrlr->ana_log_page == NULL) { 3756 return -EINVAL; 3757 } 3758 3759 ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr); 3760 3761 if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) { 3762 SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n", 3763 ana_log_page_size, nvme_ctrlr->max_ana_log_page_size); 3764 return -EINVAL; 3765 } 3766 3767 pthread_mutex_lock(&nvme_ctrlr->mutex); 3768 if (!nvme_ctrlr_is_available(nvme_ctrlr) || 3769 nvme_ctrlr->ana_log_page_updating) { 3770 pthread_mutex_unlock(&nvme_ctrlr->mutex); 3771 return -EBUSY; 3772 } 3773 3774 nvme_ctrlr->ana_log_page_updating = true; 3775 pthread_mutex_unlock(&nvme_ctrlr->mutex); 3776 3777 rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr, 3778 SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS, 3779 SPDK_NVME_GLOBAL_NS_TAG, 3780 nvme_ctrlr->ana_log_page, 3781 ana_log_page_size, 0, 3782 nvme_ctrlr_read_ana_log_page_done, 3783 nvme_ctrlr); 3784 if (rc != 0) { 3785 nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL); 3786 } 3787 3788 return rc; 3789 } 3790 3791 static void 3792 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx) 3793 { 3794 } 3795 3796 struct bdev_nvme_set_preferred_path_ctx { 3797 struct spdk_bdev_desc *desc; 3798 struct nvme_ns *nvme_ns; 3799 bdev_nvme_set_preferred_path_cb cb_fn; 3800 void *cb_arg; 3801 }; 3802 3803 static void 3804 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status) 3805 { 3806 struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 3807 3808 assert(ctx != NULL); 3809 assert(ctx->desc != NULL); 3810 assert(ctx->cb_fn != NULL); 3811 3812 spdk_bdev_close(ctx->desc); 3813 3814 ctx->cb_fn(ctx->cb_arg, status); 3815 3816 free(ctx); 3817 } 3818 3819 static void 3820 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i) 3821 { 3822 struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 3823 struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); 3824 struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch); 3825 struct nvme_io_path *io_path, *prev; 3826 3827 prev = NULL; 3828 STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) { 3829 if (io_path->nvme_ns == ctx->nvme_ns) { 3830 break; 3831 } 3832 prev = io_path; 3833 } 3834 3835 if (io_path != NULL) { 3836 if (prev != NULL) { 3837 STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq); 3838 STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq); 3839 } 3840 3841 /* We can set io_path to nbdev_ch->current_io_path directly here. 3842 * However, it needs to be conditional. To simplify the code, 3843 * just clear nbdev_ch->current_io_path and let find_io_path() 3844 * fill it. 3845 * 3846 * Automatic failback may be disabled. Hence even if the io_path is 3847 * already at the head, clear nbdev_ch->current_io_path. 3848 */ 3849 nbdev_ch->current_io_path = NULL; 3850 } 3851 3852 spdk_for_each_channel_continue(i, 0); 3853 } 3854 3855 static struct nvme_ns * 3856 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid) 3857 { 3858 struct nvme_ns *nvme_ns, *prev; 3859 const struct spdk_nvme_ctrlr_data *cdata; 3860 3861 prev = NULL; 3862 TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) { 3863 cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr); 3864 3865 if (cdata->cntlid == cntlid) { 3866 break; 3867 } 3868 prev = nvme_ns; 3869 } 3870 3871 if (nvme_ns != NULL && prev != NULL) { 3872 TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq); 3873 TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq); 3874 } 3875 3876 return nvme_ns; 3877 } 3878 3879 /* This function supports only multipath mode. There is only a single I/O path 3880 * for each NVMe-oF controller. Hence, just move the matched I/O path to the 3881 * head of the I/O path list for each NVMe bdev channel. 3882 * 3883 * NVMe bdev channel may be acquired after completing this function. move the 3884 * matched namespace to the head of the namespace list for the NVMe bdev too. 3885 */ 3886 void 3887 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid, 3888 bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg) 3889 { 3890 struct bdev_nvme_set_preferred_path_ctx *ctx; 3891 struct spdk_bdev *bdev; 3892 struct nvme_bdev *nbdev; 3893 int rc = 0; 3894 3895 assert(cb_fn != NULL); 3896 3897 ctx = calloc(1, sizeof(*ctx)); 3898 if (ctx == NULL) { 3899 SPDK_ERRLOG("Failed to alloc context.\n"); 3900 rc = -ENOMEM; 3901 goto err_alloc; 3902 } 3903 3904 ctx->cb_fn = cb_fn; 3905 ctx->cb_arg = cb_arg; 3906 3907 rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc); 3908 if (rc != 0) { 3909 SPDK_ERRLOG("Failed to open bdev %s.\n", name); 3910 goto err_open; 3911 } 3912 3913 bdev = spdk_bdev_desc_get_bdev(ctx->desc); 3914 3915 if (bdev->module != &nvme_if) { 3916 SPDK_ERRLOG("bdev %s is not registered in this module.\n", name); 3917 rc = -ENODEV; 3918 goto err_bdev; 3919 } 3920 3921 nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk); 3922 3923 pthread_mutex_lock(&nbdev->mutex); 3924 3925 ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid); 3926 if (ctx->nvme_ns == NULL) { 3927 pthread_mutex_unlock(&nbdev->mutex); 3928 3929 SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid); 3930 rc = -ENODEV; 3931 goto err_bdev; 3932 } 3933 3934 pthread_mutex_unlock(&nbdev->mutex); 3935 3936 spdk_for_each_channel(nbdev, 3937 _bdev_nvme_set_preferred_path, 3938 ctx, 3939 bdev_nvme_set_preferred_path_done); 3940 return; 3941 3942 err_bdev: 3943 spdk_bdev_close(ctx->desc); 3944 err_open: 3945 free(ctx); 3946 err_alloc: 3947 cb_fn(cb_arg, rc); 3948 } 3949 3950 struct bdev_nvme_set_multipath_policy_ctx { 3951 struct spdk_bdev_desc *desc; 3952 bdev_nvme_set_multipath_policy_cb cb_fn; 3953 void *cb_arg; 3954 }; 3955 3956 static void 3957 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status) 3958 { 3959 struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 3960 3961 assert(ctx != NULL); 3962 assert(ctx->desc != NULL); 3963 assert(ctx->cb_fn != NULL); 3964 3965 spdk_bdev_close(ctx->desc); 3966 3967 ctx->cb_fn(ctx->cb_arg, status); 3968 3969 free(ctx); 3970 } 3971 3972 static void 3973 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i) 3974 { 3975 struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); 3976 struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch); 3977 struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch); 3978 3979 nbdev_ch->mp_policy = nbdev->mp_policy; 3980 nbdev_ch->current_io_path = NULL; 3981 3982 spdk_for_each_channel_continue(i, 0); 3983 } 3984 3985 void 3986 bdev_nvme_set_multipath_policy(const char *name, enum bdev_nvme_multipath_policy policy, 3987 bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg) 3988 { 3989 struct bdev_nvme_set_multipath_policy_ctx *ctx; 3990 struct spdk_bdev *bdev; 3991 struct nvme_bdev *nbdev; 3992 int rc; 3993 3994 assert(cb_fn != NULL); 3995 3996 ctx = calloc(1, sizeof(*ctx)); 3997 if (ctx == NULL) { 3998 SPDK_ERRLOG("Failed to alloc context.\n"); 3999 rc = -ENOMEM; 4000 goto err_alloc; 4001 } 4002 4003 ctx->cb_fn = cb_fn; 4004 ctx->cb_arg = cb_arg; 4005 4006 rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc); 4007 if (rc != 0) { 4008 SPDK_ERRLOG("Failed to open bdev %s.\n", name); 4009 rc = -ENODEV; 4010 goto err_open; 4011 } 4012 4013 bdev = spdk_bdev_desc_get_bdev(ctx->desc); 4014 if (bdev->module != &nvme_if) { 4015 SPDK_ERRLOG("bdev %s is not registered in this module.\n", name); 4016 rc = -ENODEV; 4017 goto err_module; 4018 } 4019 nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk); 4020 4021 pthread_mutex_lock(&nbdev->mutex); 4022 nbdev->mp_policy = policy; 4023 pthread_mutex_unlock(&nbdev->mutex); 4024 4025 spdk_for_each_channel(nbdev, 4026 _bdev_nvme_set_multipath_policy, 4027 ctx, 4028 bdev_nvme_set_multipath_policy_done); 4029 return; 4030 4031 err_module: 4032 spdk_bdev_close(ctx->desc); 4033 err_open: 4034 free(ctx); 4035 err_alloc: 4036 cb_fn(cb_arg, rc); 4037 } 4038 4039 static void 4040 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl) 4041 { 4042 struct nvme_ctrlr *nvme_ctrlr = arg; 4043 union spdk_nvme_async_event_completion event; 4044 4045 if (spdk_nvme_cpl_is_error(cpl)) { 4046 SPDK_WARNLOG("AER request execute failed\n"); 4047 return; 4048 } 4049 4050 event.raw = cpl->cdw0; 4051 if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) && 4052 (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) { 4053 nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL); 4054 } else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) && 4055 (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) { 4056 nvme_ctrlr_read_ana_log_page(nvme_ctrlr); 4057 } 4058 } 4059 4060 static void 4061 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, size_t count, int rc) 4062 { 4063 if (ctx->cb_fn) { 4064 ctx->cb_fn(ctx->cb_ctx, count, rc); 4065 } 4066 4067 ctx->namespaces_populated = true; 4068 if (ctx->probe_done) { 4069 /* The probe was already completed, so we need to free the context 4070 * here. This can happen for cases like OCSSD, where we need to 4071 * send additional commands to the SSD after attach. 4072 */ 4073 free(ctx); 4074 } 4075 } 4076 4077 static void 4078 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr, 4079 struct nvme_async_probe_ctx *ctx) 4080 { 4081 spdk_io_device_register(nvme_ctrlr, 4082 bdev_nvme_create_ctrlr_channel_cb, 4083 bdev_nvme_destroy_ctrlr_channel_cb, 4084 sizeof(struct nvme_ctrlr_channel), 4085 nvme_ctrlr->nbdev_ctrlr->name); 4086 4087 nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx); 4088 } 4089 4090 static void 4091 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl) 4092 { 4093 struct nvme_ctrlr *nvme_ctrlr = _ctx; 4094 struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx; 4095 4096 nvme_ctrlr->probe_ctx = NULL; 4097 4098 if (spdk_nvme_cpl_is_error(cpl)) { 4099 nvme_ctrlr_delete(nvme_ctrlr); 4100 4101 if (ctx != NULL) { 4102 populate_namespaces_cb(ctx, 0, -1); 4103 } 4104 return; 4105 } 4106 4107 nvme_ctrlr_create_done(nvme_ctrlr, ctx); 4108 } 4109 4110 static int 4111 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr, 4112 struct nvme_async_probe_ctx *ctx) 4113 { 4114 struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr; 4115 const struct spdk_nvme_ctrlr_data *cdata; 4116 uint32_t ana_log_page_size; 4117 4118 cdata = spdk_nvme_ctrlr_get_data(ctrlr); 4119 4120 /* Set buffer size enough to include maximum number of allowed namespaces. */ 4121 ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid * 4122 sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan * 4123 sizeof(uint32_t); 4124 4125 nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL, 4126 SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); 4127 if (nvme_ctrlr->ana_log_page == NULL) { 4128 SPDK_ERRLOG("could not allocate ANA log page buffer\n"); 4129 return -ENXIO; 4130 } 4131 4132 /* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned. 4133 * Hence copy each descriptor to a temporary area when parsing it. 4134 * 4135 * Allocate a buffer whose size is as large as ANA log page buffer because 4136 * we do not know the size of a descriptor until actually reading it. 4137 */ 4138 nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size); 4139 if (nvme_ctrlr->copied_ana_desc == NULL) { 4140 SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n"); 4141 return -ENOMEM; 4142 } 4143 4144 nvme_ctrlr->max_ana_log_page_size = ana_log_page_size; 4145 4146 nvme_ctrlr->probe_ctx = ctx; 4147 4148 /* Then, set the read size only to include the current active namespaces. */ 4149 ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr); 4150 4151 if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) { 4152 SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n", 4153 ana_log_page_size, nvme_ctrlr->max_ana_log_page_size); 4154 return -EINVAL; 4155 } 4156 4157 return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, 4158 SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS, 4159 SPDK_NVME_GLOBAL_NS_TAG, 4160 nvme_ctrlr->ana_log_page, 4161 ana_log_page_size, 0, 4162 nvme_ctrlr_init_ana_log_page_done, 4163 nvme_ctrlr); 4164 } 4165 4166 /* hostnqn and subnqn were already verified before attaching a controller. 4167 * Hence check only the multipath capability and cntlid here. 4168 */ 4169 static bool 4170 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr) 4171 { 4172 struct nvme_ctrlr *tmp; 4173 const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata; 4174 4175 cdata = spdk_nvme_ctrlr_get_data(ctrlr); 4176 4177 if (!cdata->cmic.multi_ctrlr) { 4178 SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid); 4179 return false; 4180 } 4181 4182 TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) { 4183 tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr); 4184 4185 if (!tmp_cdata->cmic.multi_ctrlr) { 4186 SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid); 4187 return false; 4188 } 4189 if (cdata->cntlid == tmp_cdata->cntlid) { 4190 SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid); 4191 return false; 4192 } 4193 } 4194 4195 return true; 4196 } 4197 4198 static int 4199 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr) 4200 { 4201 struct nvme_bdev_ctrlr *nbdev_ctrlr; 4202 struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr; 4203 int rc = 0; 4204 4205 pthread_mutex_lock(&g_bdev_nvme_mutex); 4206 4207 nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name); 4208 if (nbdev_ctrlr != NULL) { 4209 if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) { 4210 rc = -EINVAL; 4211 goto exit; 4212 } 4213 } else { 4214 nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr)); 4215 if (nbdev_ctrlr == NULL) { 4216 SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n"); 4217 rc = -ENOMEM; 4218 goto exit; 4219 } 4220 nbdev_ctrlr->name = strdup(name); 4221 if (nbdev_ctrlr->name == NULL) { 4222 SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n"); 4223 free(nbdev_ctrlr); 4224 goto exit; 4225 } 4226 TAILQ_INIT(&nbdev_ctrlr->ctrlrs); 4227 TAILQ_INIT(&nbdev_ctrlr->bdevs); 4228 TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq); 4229 } 4230 nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr; 4231 TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq); 4232 exit: 4233 pthread_mutex_unlock(&g_bdev_nvme_mutex); 4234 return rc; 4235 } 4236 4237 static int 4238 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr, 4239 const char *name, 4240 const struct spdk_nvme_transport_id *trid, 4241 struct nvme_async_probe_ctx *ctx) 4242 { 4243 struct nvme_ctrlr *nvme_ctrlr; 4244 struct nvme_path_id *path_id; 4245 const struct spdk_nvme_ctrlr_data *cdata; 4246 int rc; 4247 4248 nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr)); 4249 if (nvme_ctrlr == NULL) { 4250 SPDK_ERRLOG("Failed to allocate device struct\n"); 4251 return -ENOMEM; 4252 } 4253 4254 rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL); 4255 if (rc != 0) { 4256 free(nvme_ctrlr); 4257 return rc; 4258 } 4259 4260 TAILQ_INIT(&nvme_ctrlr->trids); 4261 4262 RB_INIT(&nvme_ctrlr->namespaces); 4263 4264 path_id = calloc(1, sizeof(*path_id)); 4265 if (path_id == NULL) { 4266 SPDK_ERRLOG("Failed to allocate trid entry pointer\n"); 4267 rc = -ENOMEM; 4268 goto err; 4269 } 4270 4271 path_id->trid = *trid; 4272 if (ctx != NULL) { 4273 memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr)); 4274 memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid)); 4275 } 4276 nvme_ctrlr->active_path_id = path_id; 4277 TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link); 4278 4279 nvme_ctrlr->thread = spdk_get_thread(); 4280 nvme_ctrlr->ctrlr = ctrlr; 4281 nvme_ctrlr->ref = 1; 4282 4283 if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) { 4284 SPDK_ERRLOG("OCSSDs are not supported"); 4285 rc = -ENOTSUP; 4286 goto err; 4287 } 4288 4289 if (ctx != NULL) { 4290 memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts)); 4291 } else { 4292 bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts); 4293 } 4294 4295 nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr, 4296 g_opts.nvme_adminq_poll_period_us); 4297 4298 if (g_opts.timeout_us > 0) { 4299 /* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */ 4300 /* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */ 4301 uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ? 4302 g_opts.timeout_us : g_opts.timeout_admin_us; 4303 spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us, 4304 adm_timeout_us, timeout_cb, nvme_ctrlr); 4305 } 4306 4307 spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr); 4308 spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr); 4309 4310 if (spdk_nvme_ctrlr_get_flags(ctrlr) & 4311 SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) { 4312 nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr); 4313 } 4314 4315 rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr); 4316 if (rc != 0) { 4317 goto err; 4318 } 4319 4320 cdata = spdk_nvme_ctrlr_get_data(ctrlr); 4321 4322 if (cdata->cmic.ana_reporting) { 4323 rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx); 4324 if (rc == 0) { 4325 return 0; 4326 } 4327 } else { 4328 nvme_ctrlr_create_done(nvme_ctrlr, ctx); 4329 return 0; 4330 } 4331 4332 err: 4333 nvme_ctrlr_delete(nvme_ctrlr); 4334 return rc; 4335 } 4336 4337 void 4338 bdev_nvme_get_default_ctrlr_opts(struct nvme_ctrlr_opts *opts) 4339 { 4340 opts->prchk_flags = 0; 4341 opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec; 4342 opts->reconnect_delay_sec = g_opts.reconnect_delay_sec; 4343 opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec; 4344 } 4345 4346 static void 4347 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, 4348 struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts) 4349 { 4350 char *name; 4351 4352 name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++); 4353 if (!name) { 4354 SPDK_ERRLOG("Failed to assign name to NVMe device\n"); 4355 return; 4356 } 4357 4358 if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) { 4359 SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name); 4360 } else { 4361 SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name); 4362 } 4363 4364 free(name); 4365 } 4366 4367 static void 4368 _nvme_ctrlr_destruct(void *ctx) 4369 { 4370 struct nvme_ctrlr *nvme_ctrlr = ctx; 4371 4372 nvme_ctrlr_depopulate_namespaces(nvme_ctrlr); 4373 nvme_ctrlr_release(nvme_ctrlr); 4374 } 4375 4376 static int 4377 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, bool hotplug) 4378 { 4379 struct nvme_probe_skip_entry *entry; 4380 4381 pthread_mutex_lock(&nvme_ctrlr->mutex); 4382 4383 /* The controller's destruction was already started */ 4384 if (nvme_ctrlr->destruct) { 4385 pthread_mutex_unlock(&nvme_ctrlr->mutex); 4386 return 0; 4387 } 4388 4389 if (!hotplug && 4390 nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) { 4391 entry = calloc(1, sizeof(*entry)); 4392 if (!entry) { 4393 pthread_mutex_unlock(&nvme_ctrlr->mutex); 4394 return -ENOMEM; 4395 } 4396 entry->trid = nvme_ctrlr->active_path_id->trid; 4397 TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq); 4398 } 4399 4400 nvme_ctrlr->destruct = true; 4401 pthread_mutex_unlock(&nvme_ctrlr->mutex); 4402 4403 _nvme_ctrlr_destruct(nvme_ctrlr); 4404 4405 return 0; 4406 } 4407 4408 static void 4409 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr) 4410 { 4411 struct nvme_ctrlr *nvme_ctrlr = cb_ctx; 4412 4413 _bdev_nvme_delete(nvme_ctrlr, true); 4414 } 4415 4416 static int 4417 bdev_nvme_hotplug_probe(void *arg) 4418 { 4419 if (g_hotplug_probe_ctx == NULL) { 4420 spdk_poller_unregister(&g_hotplug_probe_poller); 4421 return SPDK_POLLER_IDLE; 4422 } 4423 4424 if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) { 4425 g_hotplug_probe_ctx = NULL; 4426 spdk_poller_unregister(&g_hotplug_probe_poller); 4427 } 4428 4429 return SPDK_POLLER_BUSY; 4430 } 4431 4432 static int 4433 bdev_nvme_hotplug(void *arg) 4434 { 4435 struct spdk_nvme_transport_id trid_pcie; 4436 4437 if (g_hotplug_probe_ctx) { 4438 return SPDK_POLLER_BUSY; 4439 } 4440 4441 memset(&trid_pcie, 0, sizeof(trid_pcie)); 4442 spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE); 4443 4444 g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL, 4445 hotplug_probe_cb, attach_cb, NULL); 4446 4447 if (g_hotplug_probe_ctx) { 4448 assert(g_hotplug_probe_poller == NULL); 4449 g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000); 4450 } 4451 4452 return SPDK_POLLER_BUSY; 4453 } 4454 4455 void 4456 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts) 4457 { 4458 *opts = g_opts; 4459 } 4460 4461 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec, 4462 uint32_t reconnect_delay_sec, 4463 uint32_t fast_io_fail_timeout_sec); 4464 4465 static int 4466 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts) 4467 { 4468 if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) { 4469 /* Can't set timeout_admin_us without also setting timeout_us */ 4470 SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n"); 4471 return -EINVAL; 4472 } 4473 4474 if (opts->bdev_retry_count < -1) { 4475 SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n"); 4476 return -EINVAL; 4477 } 4478 4479 if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec, 4480 opts->reconnect_delay_sec, 4481 opts->fast_io_fail_timeout_sec)) { 4482 return -EINVAL; 4483 } 4484 4485 return 0; 4486 } 4487 4488 int 4489 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts) 4490 { 4491 int ret = bdev_nvme_validate_opts(opts); 4492 if (ret) { 4493 SPDK_WARNLOG("Failed to set nvme opts.\n"); 4494 return ret; 4495 } 4496 4497 if (g_bdev_nvme_init_thread != NULL) { 4498 if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) { 4499 return -EPERM; 4500 } 4501 } 4502 4503 g_opts = *opts; 4504 4505 return 0; 4506 } 4507 4508 struct set_nvme_hotplug_ctx { 4509 uint64_t period_us; 4510 bool enabled; 4511 spdk_msg_fn fn; 4512 void *fn_ctx; 4513 }; 4514 4515 static void 4516 set_nvme_hotplug_period_cb(void *_ctx) 4517 { 4518 struct set_nvme_hotplug_ctx *ctx = _ctx; 4519 4520 spdk_poller_unregister(&g_hotplug_poller); 4521 if (ctx->enabled) { 4522 g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us); 4523 } 4524 4525 g_nvme_hotplug_poll_period_us = ctx->period_us; 4526 g_nvme_hotplug_enabled = ctx->enabled; 4527 if (ctx->fn) { 4528 ctx->fn(ctx->fn_ctx); 4529 } 4530 4531 free(ctx); 4532 } 4533 4534 int 4535 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx) 4536 { 4537 struct set_nvme_hotplug_ctx *ctx; 4538 4539 if (enabled == true && !spdk_process_is_primary()) { 4540 return -EPERM; 4541 } 4542 4543 ctx = calloc(1, sizeof(*ctx)); 4544 if (ctx == NULL) { 4545 return -ENOMEM; 4546 } 4547 4548 period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us; 4549 ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX); 4550 ctx->enabled = enabled; 4551 ctx->fn = cb; 4552 ctx->fn_ctx = cb_ctx; 4553 4554 spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx); 4555 return 0; 4556 } 4557 4558 static void 4559 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr, 4560 struct nvme_async_probe_ctx *ctx) 4561 { 4562 struct nvme_ns *nvme_ns; 4563 struct nvme_bdev *nvme_bdev; 4564 size_t j; 4565 4566 assert(nvme_ctrlr != NULL); 4567 4568 if (ctx->names == NULL) { 4569 populate_namespaces_cb(ctx, 0, 0); 4570 return; 4571 } 4572 4573 /* 4574 * Report the new bdevs that were created in this call. 4575 * There can be more than one bdev per NVMe controller. 4576 */ 4577 j = 0; 4578 nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr); 4579 while (nvme_ns != NULL) { 4580 nvme_bdev = nvme_ns->bdev; 4581 if (j < ctx->count) { 4582 ctx->names[j] = nvme_bdev->disk.name; 4583 j++; 4584 } else { 4585 SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n", 4586 ctx->count); 4587 populate_namespaces_cb(ctx, 0, -ERANGE); 4588 return; 4589 } 4590 4591 nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns); 4592 } 4593 4594 populate_namespaces_cb(ctx, j, 0); 4595 } 4596 4597 static int 4598 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr, 4599 struct spdk_nvme_ctrlr *new_ctrlr, 4600 struct spdk_nvme_transport_id *trid) 4601 { 4602 struct nvme_path_id *tmp_trid; 4603 4604 if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) { 4605 SPDK_ERRLOG("PCIe failover is not supported.\n"); 4606 return -ENOTSUP; 4607 } 4608 4609 /* Currently we only support failover to the same transport type. */ 4610 if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) { 4611 SPDK_WARNLOG("Failover from trtype: %s to a different trtype: %s is not supported currently\n", 4612 spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype), 4613 spdk_nvme_transport_id_trtype_str(trid->trtype)); 4614 return -EINVAL; 4615 } 4616 4617 4618 /* Currently we only support failover to the same NQN. */ 4619 if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) { 4620 SPDK_WARNLOG("Failover from subnqn: %s to a different subnqn: %s is not supported currently\n", 4621 nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn); 4622 return -EINVAL; 4623 } 4624 4625 /* Skip all the other checks if we've already registered this path. */ 4626 TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) { 4627 if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) { 4628 SPDK_WARNLOG("This path (traddr: %s subnqn: %s) is already registered\n", trid->traddr, 4629 trid->subnqn); 4630 return -EEXIST; 4631 } 4632 } 4633 4634 return 0; 4635 } 4636 4637 static int 4638 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr, 4639 struct spdk_nvme_ctrlr *new_ctrlr) 4640 { 4641 struct nvme_ns *nvme_ns; 4642 struct spdk_nvme_ns *new_ns; 4643 4644 nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr); 4645 while (nvme_ns != NULL) { 4646 new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id); 4647 assert(new_ns != NULL); 4648 4649 if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) { 4650 return -EINVAL; 4651 } 4652 4653 nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns); 4654 } 4655 4656 return 0; 4657 } 4658 4659 static int 4660 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr, 4661 struct spdk_nvme_transport_id *trid) 4662 { 4663 struct nvme_path_id *new_trid, *tmp_trid; 4664 4665 new_trid = calloc(1, sizeof(*new_trid)); 4666 if (new_trid == NULL) { 4667 return -ENOMEM; 4668 } 4669 new_trid->trid = *trid; 4670 new_trid->is_failed = false; 4671 4672 TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) { 4673 if (tmp_trid->is_failed && tmp_trid != nvme_ctrlr->active_path_id) { 4674 TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link); 4675 return 0; 4676 } 4677 } 4678 4679 TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link); 4680 return 0; 4681 } 4682 4683 /* This is the case that a secondary path is added to an existing 4684 * nvme_ctrlr for failover. After checking if it can access the same 4685 * namespaces as the primary path, it is disconnected until failover occurs. 4686 */ 4687 static int 4688 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr, 4689 struct spdk_nvme_ctrlr *new_ctrlr, 4690 struct spdk_nvme_transport_id *trid) 4691 { 4692 int rc; 4693 4694 assert(nvme_ctrlr != NULL); 4695 4696 pthread_mutex_lock(&nvme_ctrlr->mutex); 4697 4698 rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid); 4699 if (rc != 0) { 4700 goto exit; 4701 } 4702 4703 rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr); 4704 if (rc != 0) { 4705 goto exit; 4706 } 4707 4708 rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid); 4709 4710 exit: 4711 pthread_mutex_unlock(&nvme_ctrlr->mutex); 4712 4713 spdk_nvme_detach(new_ctrlr); 4714 4715 return rc; 4716 } 4717 4718 static void 4719 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, 4720 struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) 4721 { 4722 struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx; 4723 struct nvme_async_probe_ctx *ctx; 4724 int rc; 4725 4726 ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts); 4727 ctx->ctrlr_attached = true; 4728 4729 rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx); 4730 if (rc != 0) { 4731 populate_namespaces_cb(ctx, 0, rc); 4732 } 4733 } 4734 4735 static void 4736 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, 4737 struct spdk_nvme_ctrlr *ctrlr, 4738 const struct spdk_nvme_ctrlr_opts *opts) 4739 { 4740 struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx; 4741 struct nvme_ctrlr *nvme_ctrlr; 4742 struct nvme_async_probe_ctx *ctx; 4743 int rc; 4744 4745 ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts); 4746 ctx->ctrlr_attached = true; 4747 4748 nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name); 4749 if (nvme_ctrlr) { 4750 rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid); 4751 } else { 4752 rc = -ENODEV; 4753 } 4754 4755 populate_namespaces_cb(ctx, 0, rc); 4756 } 4757 4758 static int 4759 bdev_nvme_async_poll(void *arg) 4760 { 4761 struct nvme_async_probe_ctx *ctx = arg; 4762 int rc; 4763 4764 rc = spdk_nvme_probe_poll_async(ctx->probe_ctx); 4765 if (spdk_unlikely(rc != -EAGAIN)) { 4766 ctx->probe_done = true; 4767 spdk_poller_unregister(&ctx->poller); 4768 if (!ctx->ctrlr_attached) { 4769 /* The probe is done, but no controller was attached. 4770 * That means we had a failure, so report -EIO back to 4771 * the caller (usually the RPC). populate_namespaces_cb() 4772 * will take care of freeing the nvme_async_probe_ctx. 4773 */ 4774 populate_namespaces_cb(ctx, 0, -EIO); 4775 } else if (ctx->namespaces_populated) { 4776 /* The namespaces for the attached controller were all 4777 * populated and the response was already sent to the 4778 * caller (usually the RPC). So free the context here. 4779 */ 4780 free(ctx); 4781 } 4782 } 4783 4784 return SPDK_POLLER_BUSY; 4785 } 4786 4787 static bool 4788 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec, 4789 uint32_t reconnect_delay_sec, 4790 uint32_t fast_io_fail_timeout_sec) 4791 { 4792 if (ctrlr_loss_timeout_sec < -1) { 4793 SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n"); 4794 return false; 4795 } else if (ctrlr_loss_timeout_sec == -1) { 4796 if (reconnect_delay_sec == 0) { 4797 SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n"); 4798 return false; 4799 } else if (fast_io_fail_timeout_sec != 0 && 4800 fast_io_fail_timeout_sec < reconnect_delay_sec) { 4801 SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n"); 4802 return false; 4803 } 4804 } else if (ctrlr_loss_timeout_sec != 0) { 4805 if (reconnect_delay_sec == 0) { 4806 SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n"); 4807 return false; 4808 } else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) { 4809 SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n"); 4810 return false; 4811 } else if (fast_io_fail_timeout_sec != 0) { 4812 if (fast_io_fail_timeout_sec < reconnect_delay_sec) { 4813 SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n"); 4814 return false; 4815 } else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) { 4816 SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n"); 4817 return false; 4818 } 4819 } 4820 } else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) { 4821 SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n"); 4822 return false; 4823 } 4824 4825 return true; 4826 } 4827 4828 int 4829 bdev_nvme_create(struct spdk_nvme_transport_id *trid, 4830 const char *base_name, 4831 const char **names, 4832 uint32_t count, 4833 spdk_bdev_create_nvme_fn cb_fn, 4834 void *cb_ctx, 4835 struct spdk_nvme_ctrlr_opts *drv_opts, 4836 struct nvme_ctrlr_opts *bdev_opts, 4837 bool multipath) 4838 { 4839 struct nvme_probe_skip_entry *entry, *tmp; 4840 struct nvme_async_probe_ctx *ctx; 4841 spdk_nvme_attach_cb attach_cb; 4842 4843 /* TODO expand this check to include both the host and target TRIDs. 4844 * Only if both are the same should we fail. 4845 */ 4846 if (nvme_ctrlr_get(trid) != NULL) { 4847 SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr); 4848 return -EEXIST; 4849 } 4850 4851 if (bdev_opts != NULL && 4852 !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec, 4853 bdev_opts->reconnect_delay_sec, 4854 bdev_opts->fast_io_fail_timeout_sec)) { 4855 return -EINVAL; 4856 } 4857 4858 ctx = calloc(1, sizeof(*ctx)); 4859 if (!ctx) { 4860 return -ENOMEM; 4861 } 4862 ctx->base_name = base_name; 4863 ctx->names = names; 4864 ctx->count = count; 4865 ctx->cb_fn = cb_fn; 4866 ctx->cb_ctx = cb_ctx; 4867 ctx->trid = *trid; 4868 4869 if (bdev_opts) { 4870 memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts)); 4871 } else { 4872 bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts); 4873 } 4874 4875 if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) { 4876 TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) { 4877 if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) { 4878 TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq); 4879 free(entry); 4880 break; 4881 } 4882 } 4883 } 4884 4885 if (drv_opts) { 4886 memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts)); 4887 } else { 4888 spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->drv_opts, sizeof(ctx->drv_opts)); 4889 } 4890 4891 ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count; 4892 ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout; 4893 ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms; 4894 ctx->drv_opts.disable_read_ana_log_page = true; 4895 4896 if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) { 4897 attach_cb = connect_attach_cb; 4898 } else { 4899 attach_cb = connect_set_failover_cb; 4900 } 4901 4902 ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb); 4903 if (ctx->probe_ctx == NULL) { 4904 SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr); 4905 free(ctx); 4906 return -ENODEV; 4907 } 4908 ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000); 4909 4910 return 0; 4911 } 4912 4913 int 4914 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id) 4915 { 4916 struct nvme_bdev_ctrlr *nbdev_ctrlr; 4917 struct nvme_ctrlr *nvme_ctrlr, *tmp_nvme_ctrlr; 4918 struct nvme_path_id *p, *t; 4919 int rc = -ENXIO; 4920 4921 if (name == NULL || path_id == NULL) { 4922 return -EINVAL; 4923 } 4924 4925 nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name); 4926 if (nbdev_ctrlr == NULL) { 4927 SPDK_ERRLOG("Failed to find NVMe bdev controller\n"); 4928 return -ENODEV; 4929 } 4930 4931 TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) { 4932 TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) { 4933 if (path_id->trid.trtype != 0) { 4934 if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) { 4935 if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) { 4936 continue; 4937 } 4938 } else { 4939 if (path_id->trid.trtype != p->trid.trtype) { 4940 continue; 4941 } 4942 } 4943 } 4944 4945 if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) { 4946 if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) { 4947 continue; 4948 } 4949 } 4950 4951 if (path_id->trid.adrfam != 0) { 4952 if (path_id->trid.adrfam != p->trid.adrfam) { 4953 continue; 4954 } 4955 } 4956 4957 if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) { 4958 if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) { 4959 continue; 4960 } 4961 } 4962 4963 if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) { 4964 if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) { 4965 continue; 4966 } 4967 } 4968 4969 if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) { 4970 if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) { 4971 continue; 4972 } 4973 } 4974 4975 if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) { 4976 if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) { 4977 continue; 4978 } 4979 } 4980 4981 /* If we made it here, then this path is a match! Now we need to remove it. */ 4982 if (p == nvme_ctrlr->active_path_id) { 4983 /* This is the active path in use right now. The active path is always the first in the list. */ 4984 4985 if (!TAILQ_NEXT(p, link)) { 4986 /* The current path is the only path. */ 4987 rc = _bdev_nvme_delete(nvme_ctrlr, false); 4988 } else { 4989 /* There is an alternative path. */ 4990 rc = bdev_nvme_failover(nvme_ctrlr, true); 4991 } 4992 } else { 4993 /* We are not using the specified path. */ 4994 TAILQ_REMOVE(&nvme_ctrlr->trids, p, link); 4995 free(p); 4996 rc = 0; 4997 } 4998 4999 if (rc < 0 && rc != -ENXIO) { 5000 return rc; 5001 } 5002 5003 5004 } 5005 } 5006 5007 /* All nvme_ctrlrs were deleted or no nvme_ctrlr which had the trid was found. */ 5008 return rc; 5009 } 5010 5011 #define DISCOVERY_INFOLOG(ctx, format, ...) \ 5012 SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__); 5013 5014 #define DISCOVERY_ERRLOG(ctx, format, ...) \ 5015 SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__); 5016 5017 struct discovery_entry_ctx { 5018 char name[128]; 5019 struct spdk_nvme_transport_id trid; 5020 struct spdk_nvme_ctrlr_opts drv_opts; 5021 struct spdk_nvmf_discovery_log_page_entry entry; 5022 TAILQ_ENTRY(discovery_entry_ctx) tailq; 5023 struct discovery_ctx *ctx; 5024 }; 5025 5026 struct discovery_ctx { 5027 char *name; 5028 spdk_bdev_nvme_start_discovery_fn start_cb_fn; 5029 spdk_bdev_nvme_stop_discovery_fn stop_cb_fn; 5030 void *cb_ctx; 5031 struct spdk_nvme_probe_ctx *probe_ctx; 5032 struct spdk_nvme_detach_ctx *detach_ctx; 5033 struct spdk_nvme_ctrlr *ctrlr; 5034 struct spdk_nvme_transport_id trid; 5035 struct discovery_entry_ctx *entry_ctx_in_use; 5036 struct spdk_poller *poller; 5037 struct spdk_nvme_ctrlr_opts drv_opts; 5038 struct nvme_ctrlr_opts bdev_opts; 5039 struct spdk_nvmf_discovery_log_page *log_page; 5040 TAILQ_ENTRY(discovery_ctx) tailq; 5041 TAILQ_HEAD(, discovery_entry_ctx) nvm_entry_ctxs; 5042 TAILQ_HEAD(, discovery_entry_ctx) discovery_entry_ctxs; 5043 int rc; 5044 bool wait_for_attach; 5045 uint64_t timeout_ticks; 5046 /* Denotes that the discovery service is being started. We're waiting 5047 * for the initial connection to the discovery controller to be 5048 * established and attach discovered NVM ctrlrs. 5049 */ 5050 bool initializing; 5051 /* Denotes if a discovery is currently in progress for this context. 5052 * That includes connecting to newly discovered subsystems. Used to 5053 * ensure we do not start a new discovery until an existing one is 5054 * complete. 5055 */ 5056 bool in_progress; 5057 5058 /* Denotes if another discovery is needed after the one in progress 5059 * completes. Set when we receive an AER completion while a discovery 5060 * is already in progress. 5061 */ 5062 bool pending; 5063 5064 /* Signal to the discovery context poller that it should stop the 5065 * discovery service, including detaching from the current discovery 5066 * controller. 5067 */ 5068 bool stop; 5069 5070 struct spdk_thread *calling_thread; 5071 uint32_t index; 5072 uint32_t attach_in_progress; 5073 char *hostnqn; 5074 }; 5075 5076 TAILQ_HEAD(discovery_ctxs, discovery_ctx); 5077 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs); 5078 5079 static void get_discovery_log_page(struct discovery_ctx *ctx); 5080 5081 static void 5082 free_discovery_ctx(struct discovery_ctx *ctx) 5083 { 5084 free(ctx->log_page); 5085 free(ctx->hostnqn); 5086 free(ctx->name); 5087 free(ctx); 5088 } 5089 5090 static void 5091 discovery_complete(struct discovery_ctx *ctx) 5092 { 5093 ctx->initializing = false; 5094 ctx->in_progress = false; 5095 if (ctx->pending) { 5096 ctx->pending = false; 5097 get_discovery_log_page(ctx); 5098 } 5099 } 5100 5101 static void 5102 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid, 5103 struct spdk_nvmf_discovery_log_page_entry *entry) 5104 { 5105 char *space; 5106 5107 trid->trtype = entry->trtype; 5108 trid->adrfam = entry->adrfam; 5109 memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr)); 5110 memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid)); 5111 memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn)); 5112 5113 /* We want the traddr, trsvcid and subnqn fields to be NULL-terminated. 5114 * But the log page entries typically pad them with spaces, not zeroes. 5115 * So add a NULL terminator to each of these fields at the appropriate 5116 * location. 5117 */ 5118 space = strchr(trid->traddr, ' '); 5119 if (space) { 5120 *space = 0; 5121 } 5122 space = strchr(trid->trsvcid, ' '); 5123 if (space) { 5124 *space = 0; 5125 } 5126 space = strchr(trid->subnqn, ' '); 5127 if (space) { 5128 *space = 0; 5129 } 5130 } 5131 5132 static void 5133 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx) 5134 { 5135 ctx->stop = true; 5136 ctx->stop_cb_fn = cb_fn; 5137 ctx->cb_ctx = cb_ctx; 5138 5139 while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) { 5140 struct discovery_entry_ctx *entry_ctx; 5141 struct nvme_path_id path = {}; 5142 5143 entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs); 5144 path.trid = entry_ctx->trid; 5145 bdev_nvme_delete(entry_ctx->name, &path); 5146 TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq); 5147 free(entry_ctx); 5148 } 5149 5150 while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) { 5151 struct discovery_entry_ctx *entry_ctx; 5152 5153 entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs); 5154 TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq); 5155 free(entry_ctx); 5156 } 5157 5158 free(ctx->entry_ctx_in_use); 5159 ctx->entry_ctx_in_use = NULL; 5160 } 5161 5162 static void 5163 discovery_remove_controllers(struct discovery_ctx *ctx) 5164 { 5165 struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page; 5166 struct discovery_entry_ctx *entry_ctx, *tmp; 5167 struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry; 5168 struct spdk_nvme_transport_id old_trid; 5169 uint64_t numrec, i; 5170 bool found; 5171 5172 numrec = from_le64(&log_page->numrec); 5173 TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) { 5174 found = false; 5175 old_entry = &entry_ctx->entry; 5176 build_trid_from_log_page_entry(&old_trid, old_entry); 5177 for (i = 0; i < numrec; i++) { 5178 new_entry = &log_page->entries[i]; 5179 if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) { 5180 DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n", 5181 old_trid.subnqn, old_trid.traddr, old_trid.trsvcid); 5182 found = true; 5183 break; 5184 } 5185 } 5186 if (!found) { 5187 struct nvme_path_id path = {}; 5188 5189 DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n", 5190 old_trid.subnqn, old_trid.traddr, old_trid.trsvcid); 5191 5192 path.trid = entry_ctx->trid; 5193 bdev_nvme_delete(entry_ctx->name, &path); 5194 TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq); 5195 free(entry_ctx); 5196 } 5197 } 5198 free(log_page); 5199 ctx->log_page = NULL; 5200 discovery_complete(ctx); 5201 } 5202 5203 static void 5204 complete_discovery_start(struct discovery_ctx *ctx, int status) 5205 { 5206 ctx->timeout_ticks = 0; 5207 ctx->rc = status; 5208 if (ctx->start_cb_fn) { 5209 ctx->start_cb_fn(ctx->cb_ctx, status); 5210 ctx->start_cb_fn = NULL; 5211 ctx->cb_ctx = NULL; 5212 } 5213 } 5214 5215 static void 5216 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc) 5217 { 5218 struct discovery_entry_ctx *entry_ctx = cb_ctx; 5219 struct discovery_ctx *ctx = entry_ctx->ctx; 5220 5221 DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name); 5222 ctx->attach_in_progress--; 5223 if (ctx->attach_in_progress == 0) { 5224 complete_discovery_start(ctx, ctx->rc); 5225 if (ctx->initializing && ctx->rc != 0) { 5226 DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc); 5227 stop_discovery(ctx, NULL, ctx->cb_ctx); 5228 } else { 5229 discovery_remove_controllers(ctx); 5230 } 5231 } 5232 } 5233 5234 static struct discovery_entry_ctx * 5235 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid) 5236 { 5237 struct discovery_entry_ctx *new_ctx; 5238 5239 new_ctx = calloc(1, sizeof(*new_ctx)); 5240 if (new_ctx == NULL) { 5241 DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n"); 5242 return NULL; 5243 } 5244 5245 new_ctx->ctx = ctx; 5246 memcpy(&new_ctx->trid, trid, sizeof(*trid)); 5247 spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts)); 5248 snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn); 5249 return new_ctx; 5250 } 5251 5252 static void 5253 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl, 5254 struct spdk_nvmf_discovery_log_page *log_page) 5255 { 5256 struct discovery_ctx *ctx = cb_arg; 5257 struct discovery_entry_ctx *entry_ctx, *tmp; 5258 struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry; 5259 uint64_t numrec, i; 5260 bool found; 5261 5262 if (rc || spdk_nvme_cpl_is_error(cpl)) { 5263 DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n"); 5264 return; 5265 } 5266 5267 ctx->log_page = log_page; 5268 assert(ctx->attach_in_progress == 0); 5269 numrec = from_le64(&log_page->numrec); 5270 TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) { 5271 TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq); 5272 free(entry_ctx); 5273 } 5274 for (i = 0; i < numrec; i++) { 5275 found = false; 5276 new_entry = &log_page->entries[i]; 5277 if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) { 5278 struct discovery_entry_ctx *new_ctx; 5279 struct spdk_nvme_transport_id trid = {}; 5280 5281 build_trid_from_log_page_entry(&trid, new_entry); 5282 new_ctx = create_discovery_entry_ctx(ctx, &trid); 5283 if (new_ctx == NULL) { 5284 DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n"); 5285 break; 5286 } 5287 5288 TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq); 5289 continue; 5290 } 5291 TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) { 5292 old_entry = &entry_ctx->entry; 5293 if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) { 5294 found = true; 5295 break; 5296 } 5297 } 5298 if (!found) { 5299 struct discovery_entry_ctx *subnqn_ctx, *new_ctx; 5300 5301 TAILQ_FOREACH(subnqn_ctx, &ctx->nvm_entry_ctxs, tailq) { 5302 if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn, 5303 sizeof(new_entry->subnqn))) { 5304 break; 5305 } 5306 } 5307 5308 new_ctx = calloc(1, sizeof(*new_ctx)); 5309 if (new_ctx == NULL) { 5310 DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n"); 5311 break; 5312 } 5313 5314 new_ctx->ctx = ctx; 5315 memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry)); 5316 build_trid_from_log_page_entry(&new_ctx->trid, new_entry); 5317 if (subnqn_ctx) { 5318 snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name); 5319 DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n", 5320 new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid, 5321 new_ctx->name); 5322 } else { 5323 snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++); 5324 DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n", 5325 new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid, 5326 new_ctx->name); 5327 } 5328 spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts)); 5329 snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn); 5330 rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0, 5331 discovery_attach_controller_done, new_ctx, 5332 &new_ctx->drv_opts, &ctx->bdev_opts, true); 5333 if (rc == 0) { 5334 TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq); 5335 ctx->attach_in_progress++; 5336 } else { 5337 DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc)); 5338 } 5339 } 5340 } 5341 5342 if (ctx->attach_in_progress == 0) { 5343 discovery_remove_controllers(ctx); 5344 } 5345 } 5346 5347 static void 5348 get_discovery_log_page(struct discovery_ctx *ctx) 5349 { 5350 int rc; 5351 5352 assert(ctx->in_progress == false); 5353 ctx->in_progress = true; 5354 rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx); 5355 if (rc != 0) { 5356 DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n"); 5357 } 5358 DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n"); 5359 } 5360 5361 static void 5362 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl) 5363 { 5364 struct discovery_ctx *ctx = arg; 5365 uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16; 5366 5367 if (spdk_nvme_cpl_is_error(cpl)) { 5368 DISCOVERY_ERRLOG(ctx, "aer failed\n"); 5369 return; 5370 } 5371 5372 if (log_page_id != SPDK_NVME_LOG_DISCOVERY) { 5373 DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id); 5374 return; 5375 } 5376 5377 DISCOVERY_INFOLOG(ctx, "got aer\n"); 5378 if (ctx->in_progress) { 5379 ctx->pending = true; 5380 return; 5381 } 5382 5383 get_discovery_log_page(ctx); 5384 } 5385 5386 static void 5387 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, 5388 struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) 5389 { 5390 struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx; 5391 struct discovery_ctx *ctx; 5392 5393 ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts); 5394 5395 DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n"); 5396 ctx->probe_ctx = NULL; 5397 ctx->ctrlr = ctrlr; 5398 5399 if (ctx->rc != 0) { 5400 DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n", 5401 ctx->rc); 5402 return; 5403 } 5404 5405 spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx); 5406 } 5407 5408 static int 5409 discovery_poller(void *arg) 5410 { 5411 struct discovery_ctx *ctx = arg; 5412 struct spdk_nvme_transport_id *trid; 5413 int rc; 5414 5415 if (ctx->detach_ctx) { 5416 rc = spdk_nvme_detach_poll_async(ctx->detach_ctx); 5417 if (rc != -EAGAIN) { 5418 ctx->detach_ctx = NULL; 5419 ctx->ctrlr = NULL; 5420 } 5421 } else if (ctx->stop) { 5422 if (ctx->ctrlr != NULL) { 5423 rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx); 5424 if (rc == 0) { 5425 return SPDK_POLLER_BUSY; 5426 } 5427 DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n"); 5428 } 5429 spdk_poller_unregister(&ctx->poller); 5430 TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq); 5431 assert(ctx->start_cb_fn == NULL); 5432 if (ctx->stop_cb_fn != NULL) { 5433 ctx->stop_cb_fn(ctx->cb_ctx); 5434 } 5435 free_discovery_ctx(ctx); 5436 } else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) { 5437 if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) { 5438 DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n"); 5439 assert(ctx->initializing); 5440 spdk_poller_unregister(&ctx->poller); 5441 TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq); 5442 complete_discovery_start(ctx, -ETIMEDOUT); 5443 stop_discovery(ctx, NULL, NULL); 5444 free_discovery_ctx(ctx); 5445 return SPDK_POLLER_BUSY; 5446 } 5447 5448 assert(ctx->entry_ctx_in_use == NULL); 5449 ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs); 5450 TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq); 5451 trid = &ctx->entry_ctx_in_use->trid; 5452 ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb); 5453 if (ctx->probe_ctx) { 5454 spdk_poller_unregister(&ctx->poller); 5455 ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000); 5456 } else { 5457 DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n"); 5458 TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq); 5459 ctx->entry_ctx_in_use = NULL; 5460 } 5461 } else if (ctx->probe_ctx) { 5462 if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) { 5463 DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n"); 5464 complete_discovery_start(ctx, -ETIMEDOUT); 5465 return SPDK_POLLER_BUSY; 5466 } 5467 5468 rc = spdk_nvme_probe_poll_async(ctx->probe_ctx); 5469 if (rc != -EAGAIN) { 5470 if (ctx->rc != 0) { 5471 assert(ctx->initializing); 5472 stop_discovery(ctx, NULL, ctx->cb_ctx); 5473 } else { 5474 assert(rc == 0); 5475 DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n"); 5476 ctx->rc = rc; 5477 get_discovery_log_page(ctx); 5478 } 5479 } 5480 } else { 5481 if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) { 5482 DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n"); 5483 complete_discovery_start(ctx, -ETIMEDOUT); 5484 /* We need to wait until all NVM ctrlrs are attached before we stop the 5485 * discovery service to make sure we don't detach a ctrlr that is still 5486 * being attached. 5487 */ 5488 if (ctx->attach_in_progress == 0) { 5489 stop_discovery(ctx, NULL, ctx->cb_ctx); 5490 return SPDK_POLLER_BUSY; 5491 } 5492 } 5493 5494 rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr); 5495 if (rc < 0) { 5496 spdk_poller_unregister(&ctx->poller); 5497 ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000); 5498 TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq); 5499 ctx->entry_ctx_in_use = NULL; 5500 5501 rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx); 5502 if (rc != 0) { 5503 DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n"); 5504 ctx->ctrlr = NULL; 5505 } 5506 } 5507 } 5508 5509 return SPDK_POLLER_BUSY; 5510 } 5511 5512 static void 5513 start_discovery_poller(void *arg) 5514 { 5515 struct discovery_ctx *ctx = arg; 5516 5517 TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq); 5518 ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000); 5519 } 5520 5521 int 5522 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid, 5523 const char *base_name, 5524 struct spdk_nvme_ctrlr_opts *drv_opts, 5525 struct nvme_ctrlr_opts *bdev_opts, 5526 uint64_t attach_timeout, 5527 spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx) 5528 { 5529 struct discovery_ctx *ctx; 5530 struct discovery_entry_ctx *discovery_entry_ctx; 5531 5532 snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN); 5533 TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) { 5534 if (strcmp(ctx->name, base_name) == 0) { 5535 return -EEXIST; 5536 } 5537 5538 if (ctx->entry_ctx_in_use != NULL) { 5539 if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) { 5540 return -EEXIST; 5541 } 5542 } 5543 5544 TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) { 5545 if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) { 5546 return -EEXIST; 5547 } 5548 } 5549 } 5550 5551 ctx = calloc(1, sizeof(*ctx)); 5552 if (ctx == NULL) { 5553 return -ENOMEM; 5554 } 5555 5556 ctx->name = strdup(base_name); 5557 if (ctx->name == NULL) { 5558 free_discovery_ctx(ctx); 5559 return -ENOMEM; 5560 } 5561 memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts)); 5562 memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts)); 5563 ctx->bdev_opts.from_discovery_service = true; 5564 ctx->calling_thread = spdk_get_thread(); 5565 ctx->start_cb_fn = cb_fn; 5566 ctx->cb_ctx = cb_ctx; 5567 ctx->initializing = true; 5568 if (ctx->start_cb_fn) { 5569 /* We can use this when dumping json to denote if this RPC parameter 5570 * was specified or not. 5571 */ 5572 ctx->wait_for_attach = true; 5573 } 5574 if (attach_timeout != 0) { 5575 ctx->timeout_ticks = spdk_get_ticks() + attach_timeout * 5576 spdk_get_ticks_hz() / 1000ull; 5577 } 5578 TAILQ_INIT(&ctx->nvm_entry_ctxs); 5579 TAILQ_INIT(&ctx->discovery_entry_ctxs); 5580 memcpy(&ctx->trid, trid, sizeof(*trid)); 5581 /* Even if user did not specify hostnqn, we can still strdup("\0"); */ 5582 ctx->hostnqn = strdup(ctx->drv_opts.hostnqn); 5583 if (ctx->hostnqn == NULL) { 5584 free_discovery_ctx(ctx); 5585 return -ENOMEM; 5586 } 5587 discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid); 5588 if (discovery_entry_ctx == NULL) { 5589 DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n"); 5590 free_discovery_ctx(ctx); 5591 return -ENOMEM; 5592 } 5593 5594 TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq); 5595 spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx); 5596 return 0; 5597 } 5598 5599 int 5600 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx) 5601 { 5602 struct discovery_ctx *ctx; 5603 5604 TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) { 5605 if (strcmp(name, ctx->name) == 0) { 5606 if (ctx->stop) { 5607 return -EALREADY; 5608 } 5609 /* If we're still starting the discovery service and ->rc is non-zero, we're 5610 * going to stop it as soon as we can 5611 */ 5612 if (ctx->initializing && ctx->rc != 0) { 5613 return -EALREADY; 5614 } 5615 stop_discovery(ctx, cb_fn, cb_ctx); 5616 return 0; 5617 } 5618 } 5619 5620 return -ENOENT; 5621 } 5622 5623 static int 5624 bdev_nvme_library_init(void) 5625 { 5626 g_bdev_nvme_init_thread = spdk_get_thread(); 5627 5628 spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb, 5629 bdev_nvme_destroy_poll_group_cb, 5630 sizeof(struct nvme_poll_group), "nvme_poll_groups"); 5631 5632 return 0; 5633 } 5634 5635 static void 5636 bdev_nvme_fini_destruct_ctrlrs(void) 5637 { 5638 struct nvme_bdev_ctrlr *nbdev_ctrlr; 5639 struct nvme_ctrlr *nvme_ctrlr; 5640 5641 pthread_mutex_lock(&g_bdev_nvme_mutex); 5642 TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) { 5643 TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) { 5644 pthread_mutex_lock(&nvme_ctrlr->mutex); 5645 if (nvme_ctrlr->destruct) { 5646 /* This controller's destruction was already started 5647 * before the application started shutting down 5648 */ 5649 pthread_mutex_unlock(&nvme_ctrlr->mutex); 5650 continue; 5651 } 5652 nvme_ctrlr->destruct = true; 5653 pthread_mutex_unlock(&nvme_ctrlr->mutex); 5654 5655 spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct, 5656 nvme_ctrlr); 5657 } 5658 } 5659 5660 g_bdev_nvme_module_finish = true; 5661 if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) { 5662 pthread_mutex_unlock(&g_bdev_nvme_mutex); 5663 spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL); 5664 spdk_bdev_module_fini_done(); 5665 return; 5666 } 5667 5668 pthread_mutex_unlock(&g_bdev_nvme_mutex); 5669 } 5670 5671 static void 5672 check_discovery_fini(void *arg) 5673 { 5674 if (TAILQ_EMPTY(&g_discovery_ctxs)) { 5675 bdev_nvme_fini_destruct_ctrlrs(); 5676 } 5677 } 5678 5679 static void 5680 bdev_nvme_library_fini(void) 5681 { 5682 struct nvme_probe_skip_entry *entry, *entry_tmp; 5683 struct discovery_ctx *ctx; 5684 5685 spdk_poller_unregister(&g_hotplug_poller); 5686 free(g_hotplug_probe_ctx); 5687 g_hotplug_probe_ctx = NULL; 5688 5689 TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) { 5690 TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq); 5691 free(entry); 5692 } 5693 5694 assert(spdk_get_thread() == g_bdev_nvme_init_thread); 5695 if (TAILQ_EMPTY(&g_discovery_ctxs)) { 5696 bdev_nvme_fini_destruct_ctrlrs(); 5697 } else { 5698 TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) { 5699 stop_discovery(ctx, check_discovery_fini, NULL); 5700 } 5701 } 5702 } 5703 5704 static void 5705 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio) 5706 { 5707 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 5708 struct spdk_bdev *bdev = bdev_io->bdev; 5709 struct spdk_dif_ctx dif_ctx; 5710 struct spdk_dif_error err_blk = {}; 5711 int rc; 5712 5713 rc = spdk_dif_ctx_init(&dif_ctx, 5714 bdev->blocklen, bdev->md_len, bdev->md_interleave, 5715 bdev->dif_is_head_of_md, bdev->dif_type, bdev->dif_check_flags, 5716 bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0); 5717 if (rc != 0) { 5718 SPDK_ERRLOG("Initialization of DIF context failed\n"); 5719 return; 5720 } 5721 5722 if (bdev->md_interleave) { 5723 rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, 5724 bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk); 5725 } else { 5726 struct iovec md_iov = { 5727 .iov_base = bdev_io->u.bdev.md_buf, 5728 .iov_len = bdev_io->u.bdev.num_blocks * bdev->md_len, 5729 }; 5730 5731 rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, 5732 &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk); 5733 } 5734 5735 if (rc != 0) { 5736 SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", 5737 err_blk.err_type, err_blk.err_offset); 5738 } else { 5739 SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n"); 5740 } 5741 } 5742 5743 static void 5744 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl) 5745 { 5746 struct nvme_bdev_io *bio = ref; 5747 5748 if (spdk_nvme_cpl_is_success(cpl)) { 5749 /* Run PI verification for read data buffer. */ 5750 bdev_nvme_verify_pi_error(bio); 5751 } 5752 5753 /* Return original completion status */ 5754 bdev_nvme_io_complete_nvme_status(bio, &bio->cpl); 5755 } 5756 5757 static void 5758 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl) 5759 { 5760 struct nvme_bdev_io *bio = ref; 5761 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 5762 int ret; 5763 5764 if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) { 5765 SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n", 5766 cpl->status.sct, cpl->status.sc); 5767 5768 /* Save completion status to use after verifying PI error. */ 5769 bio->cpl = *cpl; 5770 5771 if (spdk_likely(nvme_io_path_is_available(bio->io_path))) { 5772 /* Read without PI checking to verify PI error. */ 5773 ret = bdev_nvme_no_pi_readv(bio, 5774 bdev_io->u.bdev.iovs, 5775 bdev_io->u.bdev.iovcnt, 5776 bdev_io->u.bdev.md_buf, 5777 bdev_io->u.bdev.num_blocks, 5778 bdev_io->u.bdev.offset_blocks); 5779 if (ret == 0) { 5780 return; 5781 } 5782 } 5783 } 5784 5785 bdev_nvme_io_complete_nvme_status(bio, cpl); 5786 } 5787 5788 static void 5789 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl) 5790 { 5791 struct nvme_bdev_io *bio = ref; 5792 5793 if (spdk_nvme_cpl_is_pi_error(cpl)) { 5794 SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n", 5795 cpl->status.sct, cpl->status.sc); 5796 /* Run PI verification for write data buffer if PI error is detected. */ 5797 bdev_nvme_verify_pi_error(bio); 5798 } 5799 5800 bdev_nvme_io_complete_nvme_status(bio, cpl); 5801 } 5802 5803 static void 5804 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl) 5805 { 5806 struct nvme_bdev_io *bio = ref; 5807 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 5808 5809 /* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks. 5810 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error(). 5811 */ 5812 bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0; 5813 5814 if (spdk_nvme_cpl_is_pi_error(cpl)) { 5815 SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n", 5816 cpl->status.sct, cpl->status.sc); 5817 /* Run PI verification for zone append data buffer if PI error is detected. */ 5818 bdev_nvme_verify_pi_error(bio); 5819 } 5820 5821 bdev_nvme_io_complete_nvme_status(bio, cpl); 5822 } 5823 5824 static void 5825 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl) 5826 { 5827 struct nvme_bdev_io *bio = ref; 5828 5829 if (spdk_nvme_cpl_is_pi_error(cpl)) { 5830 SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n", 5831 cpl->status.sct, cpl->status.sc); 5832 /* Run PI verification for compare data buffer if PI error is detected. */ 5833 bdev_nvme_verify_pi_error(bio); 5834 } 5835 5836 bdev_nvme_io_complete_nvme_status(bio, cpl); 5837 } 5838 5839 static void 5840 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl) 5841 { 5842 struct nvme_bdev_io *bio = ref; 5843 5844 /* Compare operation completion */ 5845 if (!bio->first_fused_completed) { 5846 /* Save compare result for write callback */ 5847 bio->cpl = *cpl; 5848 bio->first_fused_completed = true; 5849 return; 5850 } 5851 5852 /* Write operation completion */ 5853 if (spdk_nvme_cpl_is_error(&bio->cpl)) { 5854 /* If bio->cpl is already an error, it means the compare operation failed. In that case, 5855 * complete the IO with the compare operation's status. 5856 */ 5857 if (!spdk_nvme_cpl_is_error(cpl)) { 5858 SPDK_ERRLOG("Unexpected write success after compare failure.\n"); 5859 } 5860 5861 bdev_nvme_io_complete_nvme_status(bio, &bio->cpl); 5862 } else { 5863 bdev_nvme_io_complete_nvme_status(bio, cpl); 5864 } 5865 } 5866 5867 static void 5868 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl) 5869 { 5870 struct nvme_bdev_io *bio = ref; 5871 5872 bdev_nvme_io_complete_nvme_status(bio, cpl); 5873 } 5874 5875 static int 5876 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc) 5877 { 5878 switch (desc->zt) { 5879 case SPDK_NVME_ZONE_TYPE_SEQWR: 5880 info->type = SPDK_BDEV_ZONE_TYPE_SEQWR; 5881 break; 5882 default: 5883 SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt); 5884 return -EIO; 5885 } 5886 5887 switch (desc->zs) { 5888 case SPDK_NVME_ZONE_STATE_EMPTY: 5889 info->state = SPDK_BDEV_ZONE_STATE_EMPTY; 5890 break; 5891 case SPDK_NVME_ZONE_STATE_IOPEN: 5892 info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN; 5893 break; 5894 case SPDK_NVME_ZONE_STATE_EOPEN: 5895 info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN; 5896 break; 5897 case SPDK_NVME_ZONE_STATE_CLOSED: 5898 info->state = SPDK_BDEV_ZONE_STATE_CLOSED; 5899 break; 5900 case SPDK_NVME_ZONE_STATE_RONLY: 5901 info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY; 5902 break; 5903 case SPDK_NVME_ZONE_STATE_FULL: 5904 info->state = SPDK_BDEV_ZONE_STATE_FULL; 5905 break; 5906 case SPDK_NVME_ZONE_STATE_OFFLINE: 5907 info->state = SPDK_BDEV_ZONE_STATE_OFFLINE; 5908 break; 5909 default: 5910 SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs); 5911 return -EIO; 5912 } 5913 5914 info->zone_id = desc->zslba; 5915 info->write_pointer = desc->wp; 5916 info->capacity = desc->zcap; 5917 5918 return 0; 5919 } 5920 5921 static void 5922 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl) 5923 { 5924 struct nvme_bdev_io *bio = ref; 5925 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 5926 uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id; 5927 uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones; 5928 struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf; 5929 uint64_t max_zones_per_buf, i; 5930 uint32_t zone_report_bufsize; 5931 struct spdk_nvme_ns *ns; 5932 struct spdk_nvme_qpair *qpair; 5933 int ret; 5934 5935 if (spdk_nvme_cpl_is_error(cpl)) { 5936 goto out_complete_io_nvme_cpl; 5937 } 5938 5939 if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) { 5940 ret = -ENXIO; 5941 goto out_complete_io_ret; 5942 } 5943 5944 ns = bio->io_path->nvme_ns->ns; 5945 qpair = bio->io_path->qpair->qpair; 5946 5947 zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns); 5948 max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) / 5949 sizeof(bio->zone_report_buf->descs[0]); 5950 5951 if (bio->zone_report_buf->nr_zones > max_zones_per_buf) { 5952 ret = -EINVAL; 5953 goto out_complete_io_ret; 5954 } 5955 5956 if (!bio->zone_report_buf->nr_zones) { 5957 ret = -EINVAL; 5958 goto out_complete_io_ret; 5959 } 5960 5961 for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) { 5962 ret = fill_zone_from_report(&info[bio->handled_zones], 5963 &bio->zone_report_buf->descs[i]); 5964 if (ret) { 5965 goto out_complete_io_ret; 5966 } 5967 bio->handled_zones++; 5968 } 5969 5970 if (bio->handled_zones < zones_to_copy) { 5971 uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns); 5972 uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones); 5973 5974 memset(bio->zone_report_buf, 0, zone_report_bufsize); 5975 ret = spdk_nvme_zns_report_zones(ns, qpair, 5976 bio->zone_report_buf, zone_report_bufsize, 5977 slba, SPDK_NVME_ZRA_LIST_ALL, true, 5978 bdev_nvme_get_zone_info_done, bio); 5979 if (!ret) { 5980 return; 5981 } else { 5982 goto out_complete_io_ret; 5983 } 5984 } 5985 5986 out_complete_io_nvme_cpl: 5987 free(bio->zone_report_buf); 5988 bio->zone_report_buf = NULL; 5989 bdev_nvme_io_complete_nvme_status(bio, cpl); 5990 return; 5991 5992 out_complete_io_ret: 5993 free(bio->zone_report_buf); 5994 bio->zone_report_buf = NULL; 5995 bdev_nvme_io_complete(bio, ret); 5996 } 5997 5998 static void 5999 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl) 6000 { 6001 struct nvme_bdev_io *bio = ref; 6002 6003 bdev_nvme_io_complete_nvme_status(bio, cpl); 6004 } 6005 6006 static void 6007 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx) 6008 { 6009 struct nvme_bdev_io *bio = ctx; 6010 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 6011 const struct spdk_nvme_cpl *cpl = &bio->cpl; 6012 6013 assert(bdev_nvme_io_type_is_admin(bdev_io->type)); 6014 6015 __bdev_nvme_io_complete(bdev_io, 0, cpl); 6016 } 6017 6018 static void 6019 bdev_nvme_abort_complete(void *ctx) 6020 { 6021 struct nvme_bdev_io *bio = ctx; 6022 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 6023 6024 if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) { 6025 __bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL); 6026 } else { 6027 __bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL); 6028 } 6029 } 6030 6031 static void 6032 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl) 6033 { 6034 struct nvme_bdev_io *bio = ref; 6035 6036 bio->cpl = *cpl; 6037 spdk_thread_send_msg(bio->orig_thread, bdev_nvme_abort_complete, bio); 6038 } 6039 6040 static void 6041 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl) 6042 { 6043 struct nvme_bdev_io *bio = ref; 6044 6045 bio->cpl = *cpl; 6046 spdk_thread_send_msg(bio->orig_thread, 6047 bdev_nvme_admin_passthru_complete_nvme_status, bio); 6048 } 6049 6050 static void 6051 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset) 6052 { 6053 struct nvme_bdev_io *bio = ref; 6054 struct iovec *iov; 6055 6056 bio->iov_offset = sgl_offset; 6057 for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) { 6058 iov = &bio->iovs[bio->iovpos]; 6059 if (bio->iov_offset < iov->iov_len) { 6060 break; 6061 } 6062 6063 bio->iov_offset -= iov->iov_len; 6064 } 6065 } 6066 6067 static int 6068 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length) 6069 { 6070 struct nvme_bdev_io *bio = ref; 6071 struct iovec *iov; 6072 6073 assert(bio->iovpos < bio->iovcnt); 6074 6075 iov = &bio->iovs[bio->iovpos]; 6076 6077 *address = iov->iov_base; 6078 *length = iov->iov_len; 6079 6080 if (bio->iov_offset) { 6081 assert(bio->iov_offset <= iov->iov_len); 6082 *address += bio->iov_offset; 6083 *length -= bio->iov_offset; 6084 } 6085 6086 bio->iov_offset += *length; 6087 if (bio->iov_offset == iov->iov_len) { 6088 bio->iovpos++; 6089 bio->iov_offset = 0; 6090 } 6091 6092 return 0; 6093 } 6094 6095 static void 6096 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset) 6097 { 6098 struct nvme_bdev_io *bio = ref; 6099 struct iovec *iov; 6100 6101 bio->fused_iov_offset = sgl_offset; 6102 for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) { 6103 iov = &bio->fused_iovs[bio->fused_iovpos]; 6104 if (bio->fused_iov_offset < iov->iov_len) { 6105 break; 6106 } 6107 6108 bio->fused_iov_offset -= iov->iov_len; 6109 } 6110 } 6111 6112 static int 6113 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length) 6114 { 6115 struct nvme_bdev_io *bio = ref; 6116 struct iovec *iov; 6117 6118 assert(bio->fused_iovpos < bio->fused_iovcnt); 6119 6120 iov = &bio->fused_iovs[bio->fused_iovpos]; 6121 6122 *address = iov->iov_base; 6123 *length = iov->iov_len; 6124 6125 if (bio->fused_iov_offset) { 6126 assert(bio->fused_iov_offset <= iov->iov_len); 6127 *address += bio->fused_iov_offset; 6128 *length -= bio->fused_iov_offset; 6129 } 6130 6131 bio->fused_iov_offset += *length; 6132 if (bio->fused_iov_offset == iov->iov_len) { 6133 bio->fused_iovpos++; 6134 bio->fused_iov_offset = 0; 6135 } 6136 6137 return 0; 6138 } 6139 6140 static int 6141 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, 6142 void *md, uint64_t lba_count, uint64_t lba) 6143 { 6144 int rc; 6145 6146 SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n", 6147 lba_count, lba); 6148 6149 bio->iovs = iov; 6150 bio->iovcnt = iovcnt; 6151 bio->iovpos = 0; 6152 bio->iov_offset = 0; 6153 6154 rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns, 6155 bio->io_path->qpair->qpair, 6156 lba, lba_count, 6157 bdev_nvme_no_pi_readv_done, bio, 0, 6158 bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, 6159 md, 0, 0); 6160 6161 if (rc != 0 && rc != -ENOMEM) { 6162 SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc); 6163 } 6164 return rc; 6165 } 6166 6167 static int 6168 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, 6169 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags, 6170 struct spdk_bdev_ext_io_opts *ext_opts) 6171 { 6172 struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; 6173 struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair; 6174 int rc; 6175 6176 SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n", 6177 lba_count, lba); 6178 6179 bio->iovs = iov; 6180 bio->iovcnt = iovcnt; 6181 bio->iovpos = 0; 6182 bio->iov_offset = 0; 6183 6184 if (ext_opts) { 6185 bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts); 6186 bio->ext_opts.memory_domain = ext_opts->memory_domain; 6187 bio->ext_opts.memory_domain_ctx = ext_opts->memory_domain_ctx; 6188 bio->ext_opts.io_flags = flags; 6189 bio->ext_opts.metadata = md; 6190 6191 rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count, 6192 bdev_nvme_readv_done, bio, 6193 bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, 6194 &bio->ext_opts); 6195 } else if (iovcnt == 1) { 6196 rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base, md, lba, 6197 lba_count, 6198 bdev_nvme_readv_done, bio, 6199 flags, 6200 0, 0); 6201 } else { 6202 rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count, 6203 bdev_nvme_readv_done, bio, flags, 6204 bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, 6205 md, 0, 0); 6206 } 6207 6208 if (rc != 0 && rc != -ENOMEM) { 6209 SPDK_ERRLOG("readv failed: rc = %d\n", rc); 6210 } 6211 return rc; 6212 } 6213 6214 static int 6215 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, 6216 void *md, uint64_t lba_count, uint64_t lba, 6217 uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts) 6218 { 6219 struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; 6220 struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair; 6221 int rc; 6222 6223 SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n", 6224 lba_count, lba); 6225 6226 bio->iovs = iov; 6227 bio->iovcnt = iovcnt; 6228 bio->iovpos = 0; 6229 bio->iov_offset = 0; 6230 6231 if (ext_opts) { 6232 bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts); 6233 bio->ext_opts.memory_domain = ext_opts->memory_domain; 6234 bio->ext_opts.memory_domain_ctx = ext_opts->memory_domain_ctx; 6235 bio->ext_opts.io_flags = flags; 6236 bio->ext_opts.metadata = md; 6237 6238 rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count, 6239 bdev_nvme_writev_done, bio, 6240 bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, 6241 &bio->ext_opts); 6242 } else if (iovcnt == 1) { 6243 rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base, md, lba, 6244 lba_count, 6245 bdev_nvme_writev_done, bio, 6246 flags, 6247 0, 0); 6248 } else { 6249 rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count, 6250 bdev_nvme_writev_done, bio, flags, 6251 bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, 6252 md, 0, 0); 6253 } 6254 6255 if (rc != 0 && rc != -ENOMEM) { 6256 SPDK_ERRLOG("writev failed: rc = %d\n", rc); 6257 } 6258 return rc; 6259 } 6260 6261 static int 6262 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, 6263 void *md, uint64_t lba_count, uint64_t zslba, 6264 uint32_t flags) 6265 { 6266 struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; 6267 struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair; 6268 int rc; 6269 6270 SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n", 6271 lba_count, zslba); 6272 6273 bio->iovs = iov; 6274 bio->iovcnt = iovcnt; 6275 bio->iovpos = 0; 6276 bio->iov_offset = 0; 6277 6278 if (iovcnt == 1) { 6279 rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba, 6280 lba_count, 6281 bdev_nvme_zone_appendv_done, bio, 6282 flags, 6283 0, 0); 6284 } else { 6285 rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count, 6286 bdev_nvme_zone_appendv_done, bio, flags, 6287 bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, 6288 md, 0, 0); 6289 } 6290 6291 if (rc != 0 && rc != -ENOMEM) { 6292 SPDK_ERRLOG("zone append failed: rc = %d\n", rc); 6293 } 6294 return rc; 6295 } 6296 6297 static int 6298 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, 6299 void *md, uint64_t lba_count, uint64_t lba, 6300 uint32_t flags) 6301 { 6302 int rc; 6303 6304 SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n", 6305 lba_count, lba); 6306 6307 bio->iovs = iov; 6308 bio->iovcnt = iovcnt; 6309 bio->iovpos = 0; 6310 bio->iov_offset = 0; 6311 6312 rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns, 6313 bio->io_path->qpair->qpair, 6314 lba, lba_count, 6315 bdev_nvme_comparev_done, bio, flags, 6316 bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, 6317 md, 0, 0); 6318 6319 if (rc != 0 && rc != -ENOMEM) { 6320 SPDK_ERRLOG("comparev failed: rc = %d\n", rc); 6321 } 6322 return rc; 6323 } 6324 6325 static int 6326 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt, 6327 struct iovec *write_iov, int write_iovcnt, 6328 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags) 6329 { 6330 struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; 6331 struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair; 6332 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 6333 int rc; 6334 6335 SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n", 6336 lba_count, lba); 6337 6338 bio->iovs = cmp_iov; 6339 bio->iovcnt = cmp_iovcnt; 6340 bio->iovpos = 0; 6341 bio->iov_offset = 0; 6342 bio->fused_iovs = write_iov; 6343 bio->fused_iovcnt = write_iovcnt; 6344 bio->fused_iovpos = 0; 6345 bio->fused_iov_offset = 0; 6346 6347 if (bdev_io->num_retries == 0) { 6348 bio->first_fused_submitted = false; 6349 bio->first_fused_completed = false; 6350 } 6351 6352 if (!bio->first_fused_submitted) { 6353 flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST; 6354 memset(&bio->cpl, 0, sizeof(bio->cpl)); 6355 6356 rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count, 6357 bdev_nvme_comparev_and_writev_done, bio, flags, 6358 bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0); 6359 if (rc == 0) { 6360 bio->first_fused_submitted = true; 6361 flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST; 6362 } else { 6363 if (rc != -ENOMEM) { 6364 SPDK_ERRLOG("compare failed: rc = %d\n", rc); 6365 } 6366 return rc; 6367 } 6368 } 6369 6370 flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND; 6371 6372 rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count, 6373 bdev_nvme_comparev_and_writev_done, bio, flags, 6374 bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0); 6375 if (rc != 0 && rc != -ENOMEM) { 6376 SPDK_ERRLOG("write failed: rc = %d\n", rc); 6377 rc = 0; 6378 } 6379 6380 return rc; 6381 } 6382 6383 static int 6384 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks) 6385 { 6386 struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES]; 6387 struct spdk_nvme_dsm_range *range; 6388 uint64_t offset, remaining; 6389 uint64_t num_ranges_u64; 6390 uint16_t num_ranges; 6391 int rc; 6392 6393 num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) / 6394 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS; 6395 if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) { 6396 SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks); 6397 return -EINVAL; 6398 } 6399 num_ranges = (uint16_t)num_ranges_u64; 6400 6401 offset = offset_blocks; 6402 remaining = num_blocks; 6403 range = &dsm_ranges[0]; 6404 6405 /* Fill max-size ranges until the remaining blocks fit into one range */ 6406 while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) { 6407 range->attributes.raw = 0; 6408 range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS; 6409 range->starting_lba = offset; 6410 6411 offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS; 6412 remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS; 6413 range++; 6414 } 6415 6416 /* Final range describes the remaining blocks */ 6417 range->attributes.raw = 0; 6418 range->length = remaining; 6419 range->starting_lba = offset; 6420 6421 rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns, 6422 bio->io_path->qpair->qpair, 6423 SPDK_NVME_DSM_ATTR_DEALLOCATE, 6424 dsm_ranges, num_ranges, 6425 bdev_nvme_queued_done, bio); 6426 6427 return rc; 6428 } 6429 6430 static int 6431 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks) 6432 { 6433 if (num_blocks > UINT16_MAX + 1) { 6434 SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n"); 6435 return -EINVAL; 6436 } 6437 6438 return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns, 6439 bio->io_path->qpair->qpair, 6440 offset_blocks, num_blocks, 6441 bdev_nvme_queued_done, bio, 6442 0); 6443 } 6444 6445 static int 6446 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones, 6447 struct spdk_bdev_zone_info *info) 6448 { 6449 struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; 6450 struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair; 6451 uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns); 6452 uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns); 6453 uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns); 6454 6455 if (zone_id % zone_size != 0) { 6456 return -EINVAL; 6457 } 6458 6459 if (num_zones > total_zones || !num_zones) { 6460 return -EINVAL; 6461 } 6462 6463 assert(!bio->zone_report_buf); 6464 bio->zone_report_buf = calloc(1, zone_report_bufsize); 6465 if (!bio->zone_report_buf) { 6466 return -ENOMEM; 6467 } 6468 6469 bio->handled_zones = 0; 6470 6471 return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize, 6472 zone_id, SPDK_NVME_ZRA_LIST_ALL, true, 6473 bdev_nvme_get_zone_info_done, bio); 6474 } 6475 6476 static int 6477 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id, 6478 enum spdk_bdev_zone_action action) 6479 { 6480 struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; 6481 struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair; 6482 6483 switch (action) { 6484 case SPDK_BDEV_ZONE_CLOSE: 6485 return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false, 6486 bdev_nvme_zone_management_done, bio); 6487 case SPDK_BDEV_ZONE_FINISH: 6488 return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false, 6489 bdev_nvme_zone_management_done, bio); 6490 case SPDK_BDEV_ZONE_OPEN: 6491 return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false, 6492 bdev_nvme_zone_management_done, bio); 6493 case SPDK_BDEV_ZONE_RESET: 6494 return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false, 6495 bdev_nvme_zone_management_done, bio); 6496 case SPDK_BDEV_ZONE_OFFLINE: 6497 return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false, 6498 bdev_nvme_zone_management_done, bio); 6499 default: 6500 return -EINVAL; 6501 } 6502 } 6503 6504 static void 6505 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio, 6506 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes) 6507 { 6508 struct nvme_io_path *io_path; 6509 struct nvme_ctrlr *nvme_ctrlr; 6510 uint32_t max_xfer_size; 6511 int rc = -ENXIO; 6512 6513 /* Choose the first ctrlr which is not failed. */ 6514 STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) { 6515 nvme_ctrlr = io_path->qpair->ctrlr; 6516 6517 /* We should skip any unavailable nvme_ctrlr rather than checking 6518 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO. 6519 */ 6520 if (!nvme_ctrlr_is_available(nvme_ctrlr)) { 6521 continue; 6522 } 6523 6524 max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr); 6525 6526 if (nbytes > max_xfer_size) { 6527 SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size); 6528 rc = -EINVAL; 6529 goto err; 6530 } 6531 6532 bio->io_path = io_path; 6533 bio->orig_thread = spdk_get_thread(); 6534 6535 rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes, 6536 bdev_nvme_admin_passthru_done, bio); 6537 if (rc == 0) { 6538 return; 6539 } 6540 } 6541 6542 err: 6543 bdev_nvme_admin_passthru_complete(bio, rc); 6544 } 6545 6546 static int 6547 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd, 6548 void *buf, size_t nbytes) 6549 { 6550 struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; 6551 struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair; 6552 uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns); 6553 struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns); 6554 6555 if (nbytes > max_xfer_size) { 6556 SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size); 6557 return -EINVAL; 6558 } 6559 6560 /* 6561 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid, 6562 * so fill it out automatically. 6563 */ 6564 cmd->nsid = spdk_nvme_ns_get_id(ns); 6565 6566 return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf, 6567 (uint32_t)nbytes, bdev_nvme_queued_done, bio); 6568 } 6569 6570 static int 6571 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd, 6572 void *buf, size_t nbytes, void *md_buf, size_t md_len) 6573 { 6574 struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; 6575 struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair; 6576 size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns); 6577 uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns); 6578 struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns); 6579 6580 if (nbytes > max_xfer_size) { 6581 SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size); 6582 return -EINVAL; 6583 } 6584 6585 if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) { 6586 SPDK_ERRLOG("invalid meta data buffer size\n"); 6587 return -EINVAL; 6588 } 6589 6590 /* 6591 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid, 6592 * so fill it out automatically. 6593 */ 6594 cmd->nsid = spdk_nvme_ns_get_id(ns); 6595 6596 return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf, 6597 (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio); 6598 } 6599 6600 static void 6601 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio, 6602 struct nvme_bdev_io *bio_to_abort) 6603 { 6604 struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); 6605 struct spdk_bdev_io *bdev_io_to_abort; 6606 struct nvme_io_path *io_path; 6607 struct nvme_ctrlr *nvme_ctrlr; 6608 int rc = 0; 6609 6610 bio->orig_thread = spdk_get_thread(); 6611 6612 /* Traverse the retry_io_list first. */ 6613 TAILQ_FOREACH(bdev_io_to_abort, &nbdev_ch->retry_io_list, module_link) { 6614 if ((struct nvme_bdev_io *)bdev_io_to_abort->driver_ctx == bio_to_abort) { 6615 TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io_to_abort, module_link); 6616 __bdev_nvme_io_complete(bdev_io_to_abort, SPDK_BDEV_IO_STATUS_ABORTED, NULL); 6617 6618 __bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL); 6619 return; 6620 } 6621 } 6622 6623 /* Even admin commands, they were submitted to only nvme_ctrlrs which were 6624 * on any io_path. So traverse the io_path list for not only I/O commands 6625 * but also admin commands. 6626 */ 6627 STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) { 6628 nvme_ctrlr = io_path->qpair->ctrlr; 6629 6630 rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ctrlr->ctrlr, 6631 io_path->qpair->qpair, 6632 bio_to_abort, 6633 bdev_nvme_abort_done, bio); 6634 if (rc == -ENOENT) { 6635 /* If no command was found in I/O qpair, the target command may be 6636 * admin command. 6637 */ 6638 rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ctrlr->ctrlr, 6639 NULL, 6640 bio_to_abort, 6641 bdev_nvme_abort_done, bio); 6642 } 6643 6644 if (rc != -ENOENT) { 6645 break; 6646 } 6647 } 6648 6649 if (rc != 0) { 6650 /* If no command was found or there was any error, complete the abort 6651 * request with failure. 6652 */ 6653 __bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL); 6654 } 6655 } 6656 6657 static int 6658 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks, 6659 uint64_t num_blocks) 6660 { 6661 struct spdk_nvme_scc_source_range range = { 6662 .slba = src_offset_blocks, 6663 .nlb = num_blocks - 1 6664 }; 6665 6666 return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns, 6667 bio->io_path->qpair->qpair, 6668 &range, 1, dst_offset_blocks, 6669 bdev_nvme_queued_done, bio); 6670 } 6671 6672 static void 6673 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w) 6674 { 6675 const char *action; 6676 6677 if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) { 6678 action = "reset"; 6679 } else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) { 6680 action = "abort"; 6681 } else { 6682 action = "none"; 6683 } 6684 6685 spdk_json_write_object_begin(w); 6686 6687 spdk_json_write_named_string(w, "method", "bdev_nvme_set_options"); 6688 6689 spdk_json_write_named_object_begin(w, "params"); 6690 spdk_json_write_named_string(w, "action_on_timeout", action); 6691 spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us); 6692 spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us); 6693 spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms); 6694 spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count); 6695 spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst); 6696 spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight); 6697 spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight); 6698 spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight); 6699 spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us); 6700 spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us); 6701 spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests); 6702 spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit); 6703 spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count); 6704 spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout); 6705 spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec); 6706 spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec); 6707 spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec); 6708 spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids); 6709 spdk_json_write_object_end(w); 6710 6711 spdk_json_write_object_end(w); 6712 } 6713 6714 static void 6715 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx) 6716 { 6717 struct spdk_nvme_transport_id trid; 6718 6719 spdk_json_write_object_begin(w); 6720 6721 spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery"); 6722 6723 spdk_json_write_named_object_begin(w, "params"); 6724 spdk_json_write_named_string(w, "name", ctx->name); 6725 spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn); 6726 6727 trid = ctx->trid; 6728 memset(trid.subnqn, 0, sizeof(trid.subnqn)); 6729 nvme_bdev_dump_trid_json(&trid, w); 6730 6731 spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach); 6732 spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec); 6733 spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec); 6734 spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", 6735 ctx->bdev_opts.fast_io_fail_timeout_sec); 6736 spdk_json_write_object_end(w); 6737 6738 spdk_json_write_object_end(w); 6739 } 6740 6741 static void 6742 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w, 6743 struct nvme_ctrlr *nvme_ctrlr) 6744 { 6745 struct spdk_nvme_transport_id *trid; 6746 6747 if (nvme_ctrlr->opts.from_discovery_service) { 6748 /* Do not emit an RPC for this - it will be implicitly 6749 * covered by a separate bdev_nvme_start_discovery RPC. 6750 */ 6751 return; 6752 } 6753 6754 trid = &nvme_ctrlr->active_path_id->trid; 6755 6756 spdk_json_write_object_begin(w); 6757 6758 spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller"); 6759 6760 spdk_json_write_named_object_begin(w, "params"); 6761 spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name); 6762 nvme_bdev_dump_trid_json(trid, w); 6763 spdk_json_write_named_bool(w, "prchk_reftag", 6764 (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0); 6765 spdk_json_write_named_bool(w, "prchk_guard", 6766 (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0); 6767 spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec); 6768 spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec); 6769 spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", 6770 nvme_ctrlr->opts.fast_io_fail_timeout_sec); 6771 6772 spdk_json_write_object_end(w); 6773 6774 spdk_json_write_object_end(w); 6775 } 6776 6777 static void 6778 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w) 6779 { 6780 spdk_json_write_object_begin(w); 6781 spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug"); 6782 6783 spdk_json_write_named_object_begin(w, "params"); 6784 spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us); 6785 spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled); 6786 spdk_json_write_object_end(w); 6787 6788 spdk_json_write_object_end(w); 6789 } 6790 6791 static int 6792 bdev_nvme_config_json(struct spdk_json_write_ctx *w) 6793 { 6794 struct nvme_bdev_ctrlr *nbdev_ctrlr; 6795 struct nvme_ctrlr *nvme_ctrlr; 6796 struct discovery_ctx *ctx; 6797 6798 bdev_nvme_opts_config_json(w); 6799 6800 pthread_mutex_lock(&g_bdev_nvme_mutex); 6801 6802 TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) { 6803 TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) { 6804 nvme_ctrlr_config_json(w, nvme_ctrlr); 6805 } 6806 } 6807 6808 TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) { 6809 bdev_nvme_discovery_config_json(w, ctx); 6810 } 6811 6812 /* Dump as last parameter to give all NVMe bdevs chance to be constructed 6813 * before enabling hotplug poller. 6814 */ 6815 bdev_nvme_hotplug_config_json(w); 6816 6817 pthread_mutex_unlock(&g_bdev_nvme_mutex); 6818 return 0; 6819 } 6820 6821 struct spdk_nvme_ctrlr * 6822 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev) 6823 { 6824 struct nvme_bdev *nbdev; 6825 struct nvme_ns *nvme_ns; 6826 6827 if (!bdev || bdev->module != &nvme_if) { 6828 return NULL; 6829 } 6830 6831 nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk); 6832 nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list); 6833 assert(nvme_ns != NULL); 6834 6835 return nvme_ns->ctrlr->ctrlr; 6836 } 6837 6838 void 6839 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path) 6840 { 6841 struct nvme_ns *nvme_ns = io_path->nvme_ns; 6842 struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr; 6843 const struct spdk_nvme_ctrlr_data *cdata; 6844 const struct spdk_nvme_transport_id *trid; 6845 const char *adrfam_str; 6846 6847 spdk_json_write_object_begin(w); 6848 6849 spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name); 6850 6851 cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr); 6852 trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr); 6853 6854 spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid); 6855 spdk_json_write_named_bool(w, "current", io_path == io_path->nbdev_ch->current_io_path); 6856 spdk_json_write_named_bool(w, "connected", nvme_io_path_is_connected(io_path)); 6857 spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns)); 6858 6859 spdk_json_write_named_object_begin(w, "transport"); 6860 spdk_json_write_named_string(w, "trtype", trid->trstring); 6861 spdk_json_write_named_string(w, "traddr", trid->traddr); 6862 if (trid->trsvcid[0] != '\0') { 6863 spdk_json_write_named_string(w, "trsvcid", trid->trsvcid); 6864 } 6865 adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam); 6866 if (adrfam_str) { 6867 spdk_json_write_named_string(w, "adrfam", adrfam_str); 6868 } 6869 spdk_json_write_object_end(w); 6870 6871 spdk_json_write_object_end(w); 6872 } 6873 6874 void 6875 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w) 6876 { 6877 struct discovery_ctx *ctx; 6878 struct discovery_entry_ctx *entry_ctx; 6879 6880 spdk_json_write_array_begin(w); 6881 TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) { 6882 spdk_json_write_object_begin(w); 6883 spdk_json_write_named_string(w, "name", ctx->name); 6884 6885 spdk_json_write_named_object_begin(w, "trid"); 6886 nvme_bdev_dump_trid_json(&ctx->trid, w); 6887 spdk_json_write_object_end(w); 6888 6889 spdk_json_write_named_array_begin(w, "referrals"); 6890 TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) { 6891 spdk_json_write_object_begin(w); 6892 spdk_json_write_named_object_begin(w, "trid"); 6893 nvme_bdev_dump_trid_json(&entry_ctx->trid, w); 6894 spdk_json_write_object_end(w); 6895 spdk_json_write_object_end(w); 6896 } 6897 spdk_json_write_array_end(w); 6898 6899 spdk_json_write_object_end(w); 6900 } 6901 spdk_json_write_array_end(w); 6902 } 6903 6904 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme) 6905 6906 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME) 6907 { 6908 struct spdk_trace_tpoint_opts opts[] = { 6909 { 6910 "BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START, 6911 OWNER_NONE, OBJECT_BDEV_NVME_IO, 1, 6912 {{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }} 6913 }, 6914 { 6915 "BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE, 6916 OWNER_NONE, OBJECT_BDEV_NVME_IO, 0, 6917 {{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }} 6918 } 6919 }; 6920 6921 6922 spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N'); 6923 spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts)); 6924 spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0); 6925 spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0); 6926 spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0); 6927 spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0); 6928 } 6929