xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision fecffda6ecf8853b82edccde429b68252f0a62c5)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "bdev_nvme.h"
10 
11 #include "spdk/accel.h"
12 #include "spdk/config.h"
13 #include "spdk/endian.h"
14 #include "spdk/bdev.h"
15 #include "spdk/json.h"
16 #include "spdk/likely.h"
17 #include "spdk/nvme.h"
18 #include "spdk/nvme_ocssd.h"
19 #include "spdk/nvme_zns.h"
20 #include "spdk/opal.h"
21 #include "spdk/thread.h"
22 #include "spdk/trace.h"
23 #include "spdk/string.h"
24 #include "spdk/util.h"
25 
26 #include "spdk/bdev_module.h"
27 #include "spdk/log.h"
28 
29 #include "spdk_internal/usdt.h"
30 #include "spdk_internal/trace_defs.h"
31 
32 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
33 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
34 
35 #define NSID_STR_LEN 10
36 
37 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
38 
39 struct nvme_bdev_io {
40 	/** array of iovecs to transfer. */
41 	struct iovec *iovs;
42 
43 	/** Number of iovecs in iovs array. */
44 	int iovcnt;
45 
46 	/** Current iovec position. */
47 	int iovpos;
48 
49 	/** Offset in current iovec. */
50 	uint32_t iov_offset;
51 
52 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
53 	 *  being reset in a reset I/O.
54 	 */
55 	struct nvme_io_path *io_path;
56 
57 	/** array of iovecs to transfer. */
58 	struct iovec *fused_iovs;
59 
60 	/** Number of iovecs in iovs array. */
61 	int fused_iovcnt;
62 
63 	/** Current iovec position. */
64 	int fused_iovpos;
65 
66 	/** Offset in current iovec. */
67 	uint32_t fused_iov_offset;
68 
69 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
70 	struct spdk_nvme_cpl cpl;
71 
72 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
73 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
74 
75 	/** Originating thread */
76 	struct spdk_thread *orig_thread;
77 
78 	/** Keeps track if first of fused commands was submitted */
79 	bool first_fused_submitted;
80 
81 	/** Keeps track if first of fused commands was completed */
82 	bool first_fused_completed;
83 
84 	/** Temporary pointer to zone report buffer */
85 	struct spdk_nvme_zns_zone_report *zone_report_buf;
86 
87 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
88 	uint64_t handled_zones;
89 
90 	/** Expiration value in ticks to retry the current I/O. */
91 	uint64_t retry_ticks;
92 
93 	/* How many times the current I/O was retried. */
94 	int32_t retry_count;
95 };
96 
97 struct nvme_probe_skip_entry {
98 	struct spdk_nvme_transport_id		trid;
99 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
100 };
101 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
102 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
103 			g_skipped_nvme_ctrlrs);
104 
105 static struct spdk_bdev_nvme_opts g_opts = {
106 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
107 	.timeout_us = 0,
108 	.timeout_admin_us = 0,
109 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
110 	.transport_retry_count = 4,
111 	.arbitration_burst = 0,
112 	.low_priority_weight = 0,
113 	.medium_priority_weight = 0,
114 	.high_priority_weight = 0,
115 	.nvme_adminq_poll_period_us = 10000ULL,
116 	.nvme_ioq_poll_period_us = 0,
117 	.io_queue_requests = 0,
118 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
119 	.bdev_retry_count = 3,
120 	.transport_ack_timeout = 0,
121 	.ctrlr_loss_timeout_sec = 0,
122 	.reconnect_delay_sec = 0,
123 	.fast_io_fail_timeout_sec = 0,
124 	.disable_auto_failback = false,
125 	.generate_uuids = false,
126 };
127 
128 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
129 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
130 
131 static int g_hot_insert_nvme_controller_index = 0;
132 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
133 static bool g_nvme_hotplug_enabled = false;
134 static struct spdk_thread *g_bdev_nvme_init_thread;
135 static struct spdk_poller *g_hotplug_poller;
136 static struct spdk_poller *g_hotplug_probe_poller;
137 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
138 
139 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
140 		struct nvme_async_probe_ctx *ctx);
141 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
142 		struct nvme_async_probe_ctx *ctx);
143 static int bdev_nvme_library_init(void);
144 static void bdev_nvme_library_fini(void);
145 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
146 				     struct spdk_bdev_io *bdev_io);
147 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
148 			   void *md, uint64_t lba_count, uint64_t lba,
149 			   uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts);
150 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
151 				 void *md, uint64_t lba_count, uint64_t lba);
152 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
153 			    void *md, uint64_t lba_count, uint64_t lba,
154 			    uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts);
155 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
156 				  void *md, uint64_t lba_count,
157 				  uint64_t zslba, uint32_t flags);
158 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
159 			      void *md, uint64_t lba_count, uint64_t lba,
160 			      uint32_t flags);
161 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
162 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
163 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
164 		uint32_t flags);
165 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
166 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
167 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
168 				     enum spdk_bdev_zone_action action);
169 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
170 				     struct nvme_bdev_io *bio,
171 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
172 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
173 				 void *buf, size_t nbytes);
174 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
175 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
176 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
177 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
178 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
179 static int bdev_nvme_reset(struct nvme_ctrlr *nvme_ctrlr);
180 static int bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove);
181 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
182 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
183 
184 static int
185 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
186 {
187 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
188 }
189 
190 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
191 
192 struct spdk_nvme_qpair *
193 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
194 {
195 	struct nvme_ctrlr_channel *ctrlr_ch;
196 
197 	assert(ctrlr_io_ch != NULL);
198 
199 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
200 
201 	return ctrlr_ch->qpair->qpair;
202 }
203 
204 static int
205 bdev_nvme_get_ctx_size(void)
206 {
207 	return sizeof(struct nvme_bdev_io);
208 }
209 
210 static struct spdk_bdev_module nvme_if = {
211 	.name = "nvme",
212 	.async_fini = true,
213 	.module_init = bdev_nvme_library_init,
214 	.module_fini = bdev_nvme_library_fini,
215 	.config_json = bdev_nvme_config_json,
216 	.get_ctx_size = bdev_nvme_get_ctx_size,
217 
218 };
219 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
220 
221 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
222 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
223 bool g_bdev_nvme_module_finish;
224 
225 struct nvme_bdev_ctrlr *
226 nvme_bdev_ctrlr_get_by_name(const char *name)
227 {
228 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
229 
230 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
231 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
232 			break;
233 		}
234 	}
235 
236 	return nbdev_ctrlr;
237 }
238 
239 static struct nvme_ctrlr *
240 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
241 			  const struct spdk_nvme_transport_id *trid)
242 {
243 	struct nvme_ctrlr *nvme_ctrlr;
244 
245 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
246 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0) {
247 			break;
248 		}
249 	}
250 
251 	return nvme_ctrlr;
252 }
253 
254 static struct nvme_bdev *
255 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
256 {
257 	struct nvme_bdev *bdev;
258 
259 	pthread_mutex_lock(&g_bdev_nvme_mutex);
260 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
261 		if (bdev->nsid == nsid) {
262 			break;
263 		}
264 	}
265 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
266 
267 	return bdev;
268 }
269 
270 struct nvme_ns *
271 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
272 {
273 	struct nvme_ns ns;
274 
275 	assert(nsid > 0);
276 
277 	ns.id = nsid;
278 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
279 }
280 
281 struct nvme_ns *
282 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
283 {
284 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
285 }
286 
287 struct nvme_ns *
288 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
289 {
290 	if (ns == NULL) {
291 		return NULL;
292 	}
293 
294 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
295 }
296 
297 static struct nvme_ctrlr *
298 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid)
299 {
300 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
301 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
302 
303 	pthread_mutex_lock(&g_bdev_nvme_mutex);
304 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
305 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid);
306 		if (nvme_ctrlr != NULL) {
307 			break;
308 		}
309 	}
310 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
311 
312 	return nvme_ctrlr;
313 }
314 
315 struct nvme_ctrlr *
316 nvme_ctrlr_get_by_name(const char *name)
317 {
318 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
319 	struct nvme_ctrlr *nvme_ctrlr = NULL;
320 
321 	if (name == NULL) {
322 		return NULL;
323 	}
324 
325 	pthread_mutex_lock(&g_bdev_nvme_mutex);
326 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
327 	if (nbdev_ctrlr != NULL) {
328 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
329 	}
330 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
331 
332 	return nvme_ctrlr;
333 }
334 
335 void
336 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
337 {
338 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
339 
340 	pthread_mutex_lock(&g_bdev_nvme_mutex);
341 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
342 		fn(nbdev_ctrlr, ctx);
343 	}
344 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
345 }
346 
347 void
348 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
349 {
350 	const char *trtype_str;
351 	const char *adrfam_str;
352 
353 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
354 	if (trtype_str) {
355 		spdk_json_write_named_string(w, "trtype", trtype_str);
356 	}
357 
358 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
359 	if (adrfam_str) {
360 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
361 	}
362 
363 	if (trid->traddr[0] != '\0') {
364 		spdk_json_write_named_string(w, "traddr", trid->traddr);
365 	}
366 
367 	if (trid->trsvcid[0] != '\0') {
368 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
369 	}
370 
371 	if (trid->subnqn[0] != '\0') {
372 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
373 	}
374 }
375 
376 static void
377 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
378 		       struct nvme_ctrlr *nvme_ctrlr)
379 {
380 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
381 	pthread_mutex_lock(&g_bdev_nvme_mutex);
382 
383 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
384 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
385 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
386 
387 		return;
388 	}
389 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
390 
391 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
392 
393 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
394 
395 	free(nbdev_ctrlr->name);
396 	free(nbdev_ctrlr);
397 }
398 
399 static void
400 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
401 {
402 	struct nvme_path_id *path_id, *tmp_path;
403 	struct nvme_ns *ns, *tmp_ns;
404 
405 	free(nvme_ctrlr->copied_ana_desc);
406 	spdk_free(nvme_ctrlr->ana_log_page);
407 
408 	if (nvme_ctrlr->opal_dev) {
409 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
410 		nvme_ctrlr->opal_dev = NULL;
411 	}
412 
413 	if (nvme_ctrlr->nbdev_ctrlr) {
414 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
415 	}
416 
417 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
418 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
419 		free(ns);
420 	}
421 
422 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
423 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
424 		free(path_id);
425 	}
426 
427 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
428 
429 	free(nvme_ctrlr);
430 
431 	pthread_mutex_lock(&g_bdev_nvme_mutex);
432 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
433 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
434 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
435 		spdk_bdev_module_fini_done();
436 		return;
437 	}
438 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
439 }
440 
441 static int
442 nvme_detach_poller(void *arg)
443 {
444 	struct nvme_ctrlr *nvme_ctrlr = arg;
445 	int rc;
446 
447 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
448 	if (rc != -EAGAIN) {
449 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
450 		_nvme_ctrlr_delete(nvme_ctrlr);
451 	}
452 
453 	return SPDK_POLLER_BUSY;
454 }
455 
456 static void
457 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
458 {
459 	int rc;
460 
461 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
462 
463 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
464 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
465 
466 	/* If we got here, the reset/detach poller cannot be active */
467 	assert(nvme_ctrlr->reset_detach_poller == NULL);
468 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
469 					  nvme_ctrlr, 1000);
470 	if (nvme_ctrlr->reset_detach_poller == NULL) {
471 		SPDK_ERRLOG("Failed to register detach poller\n");
472 		goto error;
473 	}
474 
475 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
476 	if (rc != 0) {
477 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
478 		goto error;
479 	}
480 
481 	return;
482 error:
483 	/* We don't have a good way to handle errors here, so just do what we can and delete the
484 	 * controller without detaching the underlying NVMe device.
485 	 */
486 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
487 	_nvme_ctrlr_delete(nvme_ctrlr);
488 }
489 
490 static void
491 nvme_ctrlr_unregister_cb(void *io_device)
492 {
493 	struct nvme_ctrlr *nvme_ctrlr = io_device;
494 
495 	nvme_ctrlr_delete(nvme_ctrlr);
496 }
497 
498 static void
499 nvme_ctrlr_unregister(void *ctx)
500 {
501 	struct nvme_ctrlr *nvme_ctrlr = ctx;
502 
503 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
504 }
505 
506 static bool
507 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
508 {
509 	if (!nvme_ctrlr->destruct) {
510 		return false;
511 	}
512 
513 	if (nvme_ctrlr->ref > 0) {
514 		return false;
515 	}
516 
517 	if (nvme_ctrlr->resetting) {
518 		return false;
519 	}
520 
521 	if (nvme_ctrlr->ana_log_page_updating) {
522 		return false;
523 	}
524 
525 	if (nvme_ctrlr->io_path_cache_clearing) {
526 		return false;
527 	}
528 
529 	return true;
530 }
531 
532 static void
533 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
534 {
535 	pthread_mutex_lock(&nvme_ctrlr->mutex);
536 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
537 
538 	assert(nvme_ctrlr->ref > 0);
539 	nvme_ctrlr->ref--;
540 
541 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
542 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
543 		return;
544 	}
545 
546 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
547 
548 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
549 }
550 
551 static struct nvme_io_path *
552 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
553 {
554 	struct nvme_io_path *io_path;
555 
556 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
557 		if (io_path->nvme_ns == nvme_ns) {
558 			break;
559 		}
560 	}
561 
562 	return io_path;
563 }
564 
565 static int
566 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
567 {
568 	struct nvme_io_path *io_path;
569 	struct spdk_io_channel *ch;
570 	struct nvme_ctrlr_channel *ctrlr_ch;
571 	struct nvme_qpair *nvme_qpair;
572 
573 	io_path = calloc(1, sizeof(*io_path));
574 	if (io_path == NULL) {
575 		SPDK_ERRLOG("Failed to alloc io_path.\n");
576 		return -ENOMEM;
577 	}
578 
579 	io_path->nvme_ns = nvme_ns;
580 	io_path->io_outstanding = 0;
581 
582 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
583 	if (ch == NULL) {
584 		free(io_path);
585 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
586 		return -ENOMEM;
587 	}
588 
589 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
590 
591 	nvme_qpair = ctrlr_ch->qpair;
592 	assert(nvme_qpair != NULL);
593 
594 	io_path->qpair = nvme_qpair;
595 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
596 
597 	io_path->nbdev_ch = nbdev_ch;
598 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
599 
600 	nbdev_ch->current_io_path = NULL;
601 
602 	return 0;
603 }
604 
605 static void
606 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
607 {
608 	struct spdk_io_channel *ch;
609 	struct nvme_qpair *nvme_qpair;
610 	struct nvme_ctrlr_channel *ctrlr_ch;
611 
612 	assert(io_path->io_outstanding == 0);
613 	nbdev_ch->current_io_path = NULL;
614 
615 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
616 
617 	nvme_qpair = io_path->qpair;
618 	assert(nvme_qpair != NULL);
619 
620 	TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
621 
622 	ctrlr_ch = nvme_qpair->ctrlr_ch;
623 	assert(ctrlr_ch != NULL);
624 
625 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
626 	spdk_put_io_channel(ch);
627 
628 	free(io_path);
629 }
630 
631 static void
632 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
633 {
634 	struct nvme_io_path *io_path, *tmp_io_path;
635 
636 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
637 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
638 	}
639 }
640 
641 static int
642 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
643 {
644 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
645 	struct nvme_bdev *nbdev = io_device;
646 	struct nvme_ns *nvme_ns;
647 	int rc;
648 
649 	STAILQ_INIT(&nbdev_ch->io_path_list);
650 	TAILQ_INIT(&nbdev_ch->retry_io_list);
651 
652 	pthread_mutex_lock(&nbdev->mutex);
653 
654 	nbdev_ch->mp_policy = nbdev->mp_policy;
655 
656 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
657 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
658 		if (rc != 0) {
659 			pthread_mutex_unlock(&nbdev->mutex);
660 
661 			_bdev_nvme_delete_io_paths(nbdev_ch);
662 			return rc;
663 		}
664 	}
665 	pthread_mutex_unlock(&nbdev->mutex);
666 
667 	return 0;
668 }
669 
670 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
671  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
672  */
673 static inline void
674 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
675 			const struct spdk_nvme_cpl *cpl)
676 {
677 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
678 			  (uintptr_t)bdev_io);
679 	if (cpl) {
680 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
681 	} else {
682 		spdk_bdev_io_complete(bdev_io, status);
683 	}
684 }
685 
686 static void
687 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
688 {
689 	struct spdk_bdev_io *bdev_io, *tmp_io;
690 
691 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_io) {
692 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
693 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
694 	}
695 
696 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
697 }
698 
699 static void
700 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
701 {
702 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
703 
704 	bdev_nvme_abort_retry_ios(nbdev_ch);
705 	_bdev_nvme_delete_io_paths(nbdev_ch);
706 }
707 
708 static inline bool
709 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
710 {
711 	switch (io_type) {
712 	case SPDK_BDEV_IO_TYPE_RESET:
713 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
714 	case SPDK_BDEV_IO_TYPE_ABORT:
715 		return true;
716 	default:
717 		break;
718 	}
719 
720 	return false;
721 }
722 
723 static inline bool
724 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
725 {
726 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
727 		return false;
728 	}
729 
730 	switch (nvme_ns->ana_state) {
731 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
732 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
733 		return true;
734 	default:
735 		break;
736 	}
737 
738 	return false;
739 }
740 
741 static inline bool
742 nvme_io_path_is_connected(struct nvme_io_path *io_path)
743 {
744 	if (spdk_unlikely(io_path->qpair->qpair == NULL)) {
745 		return false;
746 	}
747 
748 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(io_path->qpair->qpair) !=
749 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
750 		return false;
751 	}
752 
753 	if (spdk_unlikely(io_path->qpair->ctrlr_ch->reset_iter != NULL)) {
754 		return false;
755 	}
756 
757 	if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(io_path->qpair->ctrlr->ctrlr) !=
758 	    SPDK_NVME_QPAIR_FAILURE_NONE) {
759 		return false;
760 	}
761 
762 	return true;
763 }
764 
765 static inline bool
766 nvme_io_path_is_available(struct nvme_io_path *io_path)
767 {
768 	if (spdk_unlikely(!nvme_io_path_is_connected(io_path))) {
769 		return false;
770 	}
771 
772 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
773 		return false;
774 	}
775 
776 	return true;
777 }
778 
779 static inline bool
780 nvme_io_path_is_failed(struct nvme_io_path *io_path)
781 {
782 	struct nvme_ctrlr *nvme_ctrlr;
783 
784 	nvme_ctrlr = io_path->qpair->ctrlr;
785 
786 	if (nvme_ctrlr->destruct) {
787 		return true;
788 	}
789 
790 	if (nvme_ctrlr->fast_io_fail_timedout) {
791 		return true;
792 	}
793 
794 	if (nvme_ctrlr->resetting) {
795 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
796 			return false;
797 		} else {
798 			return true;
799 		}
800 	}
801 
802 	if (nvme_ctrlr->reconnect_is_delayed) {
803 		return false;
804 	}
805 
806 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
807 		return true;
808 	} else {
809 		return false;
810 	}
811 }
812 
813 static bool
814 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
815 {
816 	if (nvme_ctrlr->destruct) {
817 		return false;
818 	}
819 
820 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
821 		return false;
822 	}
823 
824 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
825 		return false;
826 	}
827 
828 	return true;
829 }
830 
831 /* Simulate circular linked list. */
832 static inline struct nvme_io_path *
833 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
834 {
835 	struct nvme_io_path *next_path;
836 
837 	next_path = STAILQ_NEXT(prev_path, stailq);
838 	if (next_path != NULL) {
839 		return next_path;
840 	} else {
841 		return STAILQ_FIRST(&nbdev_ch->io_path_list);
842 	}
843 }
844 
845 static struct nvme_io_path *
846 bdev_nvme_find_next_io_path(struct nvme_bdev_channel *nbdev_ch,
847 			    struct nvme_io_path *prev)
848 {
849 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
850 
851 	start = nvme_io_path_get_next(nbdev_ch, prev);
852 
853 	io_path = start;
854 	do {
855 		if (spdk_likely(nvme_io_path_is_connected(io_path) &&
856 				!io_path->nvme_ns->ana_state_updating)) {
857 			switch (io_path->nvme_ns->ana_state) {
858 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
859 				nbdev_ch->current_io_path = io_path;
860 				return io_path;
861 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
862 				if (non_optimized == NULL) {
863 					non_optimized = io_path;
864 				}
865 				break;
866 			default:
867 				break;
868 			}
869 		}
870 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
871 	} while (io_path != start);
872 
873 	/* We come here only if there is no optimized path. Cache even non_optimized
874 	 * path for load balance across multiple non_optimized paths.
875 	 */
876 	nbdev_ch->current_io_path = non_optimized;
877 	return non_optimized;
878 }
879 
880 static struct nvme_io_path *
881 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
882 {
883 	struct nvme_io_path *io_path, *non_optimized = NULL;
884 
885 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
886 		if (spdk_unlikely(!nvme_io_path_is_connected(io_path))) {
887 			/* The device is currently resetting. */
888 			continue;
889 		}
890 
891 		if (spdk_unlikely(io_path->nvme_ns->ana_state_updating)) {
892 			continue;
893 		}
894 
895 		switch (io_path->nvme_ns->ana_state) {
896 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
897 			nbdev_ch->current_io_path = io_path;
898 			return io_path;
899 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
900 			if (non_optimized == NULL) {
901 				non_optimized = io_path;
902 			}
903 			break;
904 		default:
905 			break;
906 		}
907 	}
908 
909 	return non_optimized;
910 }
911 
912 static inline struct nvme_io_path *
913 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
914 {
915 	if (spdk_unlikely(nbdev_ch->current_io_path == NULL)) {
916 		return _bdev_nvme_find_io_path(nbdev_ch);
917 	}
918 
919 	if (spdk_likely(nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE)) {
920 		return nbdev_ch->current_io_path;
921 	} else {
922 		return bdev_nvme_find_next_io_path(nbdev_ch, nbdev_ch->current_io_path);
923 	}
924 }
925 
926 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
927  * or false otherwise.
928  *
929  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
930  * is likely to be non-accessible now but may become accessible.
931  *
932  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
933  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
934  * when starting to reset it but it is set to failed when the reset failed. Hence, if
935  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
936  */
937 static bool
938 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
939 {
940 	struct nvme_io_path *io_path;
941 
942 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
943 		if (io_path->nvme_ns->ana_transition_timedout) {
944 			continue;
945 		}
946 
947 		if (nvme_io_path_is_connected(io_path) ||
948 		    !nvme_io_path_is_failed(io_path)) {
949 			return true;
950 		}
951 	}
952 
953 	return false;
954 }
955 
956 static int
957 bdev_nvme_retry_ios(void *arg)
958 {
959 	struct nvme_bdev_channel *nbdev_ch = arg;
960 	struct spdk_io_channel *ch = spdk_io_channel_from_ctx(nbdev_ch);
961 	struct spdk_bdev_io *bdev_io, *tmp_bdev_io;
962 	struct nvme_bdev_io *bio;
963 	uint64_t now, delay_us;
964 
965 	now = spdk_get_ticks();
966 
967 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_bdev_io) {
968 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
969 		if (bio->retry_ticks > now) {
970 			break;
971 		}
972 
973 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
974 
975 		bdev_nvme_submit_request(ch, bdev_io);
976 	}
977 
978 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
979 
980 	bdev_io = TAILQ_FIRST(&nbdev_ch->retry_io_list);
981 	if (bdev_io != NULL) {
982 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
983 
984 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
985 
986 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
987 					    delay_us);
988 	}
989 
990 	return SPDK_POLLER_BUSY;
991 }
992 
993 static void
994 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
995 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
996 {
997 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
998 	struct spdk_bdev_io *tmp_bdev_io;
999 	struct nvme_bdev_io *tmp_bio;
1000 
1001 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1002 
1003 	TAILQ_FOREACH_REVERSE(tmp_bdev_io, &nbdev_ch->retry_io_list, retry_io_head, module_link) {
1004 		tmp_bio = (struct nvme_bdev_io *)tmp_bdev_io->driver_ctx;
1005 
1006 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1007 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bdev_io, bdev_io,
1008 					   module_link);
1009 			return;
1010 		}
1011 	}
1012 
1013 	/* No earlier I/Os were found. This I/O must be the new head. */
1014 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bdev_io, module_link);
1015 
1016 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1017 
1018 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1019 				    delay_ms * 1000ULL);
1020 }
1021 
1022 static inline void
1023 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1024 				  const struct spdk_nvme_cpl *cpl)
1025 {
1026 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1027 	struct nvme_bdev_channel *nbdev_ch;
1028 	struct nvme_ctrlr *nvme_ctrlr;
1029 	const struct spdk_nvme_ctrlr_data *cdata;
1030 	uint64_t delay_ms;
1031 
1032 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1033 
1034 	assert(bio->io_path != NULL);
1035 	assert(bio->io_path->io_outstanding > 0);
1036 	bio->io_path->io_outstanding--;
1037 
1038 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1039 		goto complete;
1040 	}
1041 
1042 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1043 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1044 		goto complete;
1045 	}
1046 
1047 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1048 
1049 	nvme_ctrlr = bio->io_path->qpair->ctrlr;
1050 
1051 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1052 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1053 	    !nvme_io_path_is_available(bio->io_path) ||
1054 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1055 		nbdev_ch->current_io_path = NULL;
1056 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1057 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1058 				bio->io_path->nvme_ns->ana_state_updating = true;
1059 			}
1060 		}
1061 		delay_ms = 0;
1062 	} else {
1063 		bio->retry_count++;
1064 
1065 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1066 
1067 		if (cpl->status.crd != 0) {
1068 			delay_ms = cdata->crdt[cpl->status.crd] * 100;
1069 		} else {
1070 			delay_ms = 0;
1071 		}
1072 	}
1073 
1074 	if (any_io_path_may_become_available(nbdev_ch)) {
1075 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1076 		return;
1077 	}
1078 
1079 complete:
1080 	bio->retry_count = 0;
1081 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1082 }
1083 
1084 static inline void
1085 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1086 {
1087 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1088 	struct nvme_bdev_channel *nbdev_ch;
1089 	enum spdk_bdev_io_status io_status;
1090 
1091 	switch (rc) {
1092 	case 0:
1093 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1094 		break;
1095 	case -ENOMEM:
1096 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1097 		break;
1098 	case -ENXIO:
1099 		nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1100 
1101 		nbdev_ch->current_io_path = NULL;
1102 
1103 		if (any_io_path_may_become_available(nbdev_ch)) {
1104 			bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1105 			return;
1106 		}
1107 
1108 	/* fallthrough */
1109 	default:
1110 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1111 		break;
1112 	}
1113 
1114 	bio->retry_count = 0;
1115 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1116 }
1117 
1118 static inline void
1119 bdev_nvme_admin_passthru_complete(struct nvme_bdev_io *bio, int rc)
1120 {
1121 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1122 	enum spdk_bdev_io_status io_status;
1123 
1124 	switch (rc) {
1125 	case 0:
1126 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1127 		break;
1128 	case -ENOMEM:
1129 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1130 		break;
1131 	case -ENXIO:
1132 	/* fallthrough */
1133 	default:
1134 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1135 		break;
1136 	}
1137 
1138 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1139 }
1140 
1141 static void
1142 bdev_nvme_clear_io_path_caches_done(struct spdk_io_channel_iter *i, int status)
1143 {
1144 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1145 
1146 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1147 
1148 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1149 	nvme_ctrlr->io_path_cache_clearing = false;
1150 
1151 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1152 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1153 		return;
1154 	}
1155 
1156 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1157 
1158 	nvme_ctrlr_unregister(nvme_ctrlr);
1159 }
1160 
1161 static void
1162 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1163 {
1164 	struct nvme_io_path *io_path;
1165 
1166 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1167 		io_path->nbdev_ch->current_io_path = NULL;
1168 	}
1169 }
1170 
1171 static void
1172 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
1173 {
1174 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1175 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1176 
1177 	assert(ctrlr_ch->qpair != NULL);
1178 
1179 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1180 
1181 	spdk_for_each_channel_continue(i, 0);
1182 }
1183 
1184 static void
1185 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1186 {
1187 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1188 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1189 	    nvme_ctrlr->io_path_cache_clearing) {
1190 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1191 		return;
1192 	}
1193 
1194 	nvme_ctrlr->io_path_cache_clearing = true;
1195 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1196 
1197 	spdk_for_each_channel(nvme_ctrlr,
1198 			      bdev_nvme_clear_io_path_cache,
1199 			      NULL,
1200 			      bdev_nvme_clear_io_path_caches_done);
1201 }
1202 
1203 static struct nvme_qpair *
1204 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1205 {
1206 	struct nvme_qpair *nvme_qpair;
1207 
1208 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1209 		if (nvme_qpair->qpair == qpair) {
1210 			break;
1211 		}
1212 	}
1213 
1214 	return nvme_qpair;
1215 }
1216 
1217 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1218 
1219 static void
1220 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1221 {
1222 	struct nvme_poll_group *group = poll_group_ctx;
1223 	struct nvme_qpair *nvme_qpair;
1224 	struct nvme_ctrlr_channel *ctrlr_ch;
1225 
1226 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1227 	if (nvme_qpair == NULL) {
1228 		return;
1229 	}
1230 
1231 	if (nvme_qpair->qpair != NULL) {
1232 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1233 		nvme_qpair->qpair = NULL;
1234 	}
1235 
1236 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1237 
1238 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1239 
1240 	if (ctrlr_ch != NULL) {
1241 		if (ctrlr_ch->reset_iter != NULL) {
1242 			/* If we are already in a full reset sequence, we do not have
1243 			 * to restart it. Just move to the next ctrlr_channel.
1244 			 */
1245 			SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1246 				      qpair);
1247 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
1248 			ctrlr_ch->reset_iter = NULL;
1249 		} else {
1250 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1251 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1252 			bdev_nvme_failover(nvme_qpair->ctrlr, false);
1253 		}
1254 	} else {
1255 		/* In this case, ctrlr_channel is already deleted. */
1256 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1257 		nvme_qpair_delete(nvme_qpair);
1258 	}
1259 }
1260 
1261 static void
1262 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1263 {
1264 	struct nvme_qpair *nvme_qpair;
1265 
1266 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1267 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1268 			continue;
1269 		}
1270 
1271 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1272 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1273 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1274 		}
1275 	}
1276 }
1277 
1278 static int
1279 bdev_nvme_poll(void *arg)
1280 {
1281 	struct nvme_poll_group *group = arg;
1282 	int64_t num_completions;
1283 
1284 	if (group->collect_spin_stat && group->start_ticks == 0) {
1285 		group->start_ticks = spdk_get_ticks();
1286 	}
1287 
1288 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1289 			  bdev_nvme_disconnected_qpair_cb);
1290 	if (group->collect_spin_stat) {
1291 		if (num_completions > 0) {
1292 			if (group->end_ticks != 0) {
1293 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1294 				group->end_ticks = 0;
1295 			}
1296 			group->start_ticks = 0;
1297 		} else {
1298 			group->end_ticks = spdk_get_ticks();
1299 		}
1300 	}
1301 
1302 	if (spdk_unlikely(num_completions < 0)) {
1303 		bdev_nvme_check_io_qpairs(group);
1304 	}
1305 
1306 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1307 }
1308 
1309 static int bdev_nvme_poll_adminq(void *arg);
1310 
1311 static void
1312 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1313 {
1314 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1315 
1316 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1317 					  nvme_ctrlr, new_period_us);
1318 }
1319 
1320 static int
1321 bdev_nvme_poll_adminq(void *arg)
1322 {
1323 	int32_t rc;
1324 	struct nvme_ctrlr *nvme_ctrlr = arg;
1325 	nvme_ctrlr_disconnected_cb disconnected_cb;
1326 
1327 	assert(nvme_ctrlr != NULL);
1328 
1329 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1330 	if (rc < 0) {
1331 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1332 		nvme_ctrlr->disconnected_cb = NULL;
1333 
1334 		if (rc == -ENXIO && disconnected_cb != NULL) {
1335 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1336 							    g_opts.nvme_adminq_poll_period_us);
1337 			disconnected_cb(nvme_ctrlr);
1338 		} else {
1339 			bdev_nvme_failover(nvme_ctrlr, false);
1340 		}
1341 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1342 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1343 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1344 	}
1345 
1346 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1347 }
1348 
1349 static void
1350 _bdev_nvme_unregister_dev_cb(void *io_device)
1351 {
1352 	struct nvme_bdev *nvme_disk = io_device;
1353 
1354 	free(nvme_disk->disk.name);
1355 	free(nvme_disk);
1356 }
1357 
1358 static int
1359 bdev_nvme_destruct(void *ctx)
1360 {
1361 	struct nvme_bdev *nvme_disk = ctx;
1362 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1363 
1364 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1365 
1366 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1367 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1368 
1369 		nvme_ns->bdev = NULL;
1370 
1371 		assert(nvme_ns->id > 0);
1372 
1373 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1374 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1375 
1376 			nvme_ctrlr_release(nvme_ns->ctrlr);
1377 			free(nvme_ns);
1378 		} else {
1379 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1380 		}
1381 	}
1382 
1383 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1384 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1385 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1386 
1387 	spdk_io_device_unregister(nvme_disk, _bdev_nvme_unregister_dev_cb);
1388 
1389 	return 0;
1390 }
1391 
1392 static int
1393 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1394 {
1395 	struct nvme_ctrlr *nvme_ctrlr;
1396 	struct spdk_nvme_io_qpair_opts opts;
1397 	struct spdk_nvme_qpair *qpair;
1398 	int rc;
1399 
1400 	nvme_ctrlr = nvme_qpair->ctrlr;
1401 
1402 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1403 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1404 	opts.create_only = true;
1405 	opts.async_mode = true;
1406 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1407 	g_opts.io_queue_requests = opts.io_queue_requests;
1408 
1409 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1410 	if (qpair == NULL) {
1411 		return -1;
1412 	}
1413 
1414 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1415 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1416 
1417 	assert(nvme_qpair->group != NULL);
1418 
1419 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1420 	if (rc != 0) {
1421 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1422 		goto err;
1423 	}
1424 
1425 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1426 	if (rc != 0) {
1427 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1428 		goto err;
1429 	}
1430 
1431 	nvme_qpair->qpair = qpair;
1432 
1433 	if (!g_opts.disable_auto_failback) {
1434 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1435 	}
1436 
1437 	return 0;
1438 
1439 err:
1440 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1441 
1442 	return rc;
1443 }
1444 
1445 static void
1446 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
1447 {
1448 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1449 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1450 	enum spdk_bdev_io_status status = SPDK_BDEV_IO_STATUS_SUCCESS;
1451 	struct spdk_bdev_io *bdev_io;
1452 
1453 	if (spdk_io_channel_iter_get_ctx(i) != NULL) {
1454 		status = SPDK_BDEV_IO_STATUS_FAILED;
1455 	}
1456 
1457 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1458 		bdev_io = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1459 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bdev_io, module_link);
1460 		__bdev_nvme_io_complete(bdev_io, status, NULL);
1461 	}
1462 
1463 	spdk_for_each_channel_continue(i, 0);
1464 }
1465 
1466 static void
1467 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove)
1468 {
1469 	struct nvme_path_id *path_id, *next_path;
1470 	int rc __attribute__((unused));
1471 
1472 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1473 	assert(path_id);
1474 	assert(path_id == nvme_ctrlr->active_path_id);
1475 	next_path = TAILQ_NEXT(path_id, link);
1476 
1477 	path_id->is_failed = true;
1478 
1479 	if (next_path) {
1480 		assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1481 
1482 		SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1483 			       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1484 
1485 		spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1486 		nvme_ctrlr->active_path_id = next_path;
1487 		rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1488 		assert(rc == 0);
1489 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1490 		if (!remove) {
1491 			/** Shuffle the old trid to the end of the list and use the new one.
1492 			 * Allows for round robin through multiple connections.
1493 			 */
1494 			TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
1495 		} else {
1496 			free(path_id);
1497 		}
1498 	}
1499 }
1500 
1501 static bool
1502 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
1503 {
1504 	int32_t elapsed;
1505 
1506 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
1507 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
1508 		return false;
1509 	}
1510 
1511 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1512 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
1513 		return true;
1514 	} else {
1515 		return false;
1516 	}
1517 }
1518 
1519 static bool
1520 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
1521 {
1522 	uint32_t elapsed;
1523 
1524 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
1525 		return false;
1526 	}
1527 
1528 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1529 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
1530 		return true;
1531 	} else {
1532 		return false;
1533 	}
1534 }
1535 
1536 static void bdev_nvme_reset_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
1537 
1538 static void
1539 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
1540 {
1541 	int rc;
1542 
1543 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
1544 	if (rc != 0) {
1545 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
1546 		 * fail the reset sequence immediately.
1547 		 */
1548 		bdev_nvme_reset_complete(nvme_ctrlr, false);
1549 		return;
1550 	}
1551 
1552 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
1553 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
1554 	 */
1555 	assert(nvme_ctrlr->disconnected_cb == NULL);
1556 	nvme_ctrlr->disconnected_cb = cb_fn;
1557 
1558 	/* During disconnection, reduce the period to poll adminq more often. */
1559 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
1560 }
1561 
1562 enum bdev_nvme_op_after_reset {
1563 	OP_NONE,
1564 	OP_COMPLETE_PENDING_DESTRUCT,
1565 	OP_DESTRUCT,
1566 	OP_DELAYED_RECONNECT,
1567 };
1568 
1569 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
1570 
1571 static _bdev_nvme_op_after_reset
1572 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
1573 {
1574 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1575 		/* Complete pending destruct after reset completes. */
1576 		return OP_COMPLETE_PENDING_DESTRUCT;
1577 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1578 		nvme_ctrlr->reset_start_tsc = 0;
1579 		return OP_NONE;
1580 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1581 		return OP_DESTRUCT;
1582 	} else {
1583 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
1584 			nvme_ctrlr->fast_io_fail_timedout = true;
1585 		}
1586 		bdev_nvme_failover_trid(nvme_ctrlr, false);
1587 		return OP_DELAYED_RECONNECT;
1588 	}
1589 }
1590 
1591 static int _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
1592 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
1593 
1594 static int
1595 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
1596 {
1597 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1598 
1599 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
1600 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1601 
1602 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
1603 
1604 	assert(nvme_ctrlr->reconnect_is_delayed == true);
1605 	nvme_ctrlr->reconnect_is_delayed = false;
1606 
1607 	if (nvme_ctrlr->destruct) {
1608 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1609 		return SPDK_POLLER_BUSY;
1610 	}
1611 
1612 	assert(nvme_ctrlr->resetting == false);
1613 	nvme_ctrlr->resetting = true;
1614 
1615 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1616 
1617 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
1618 
1619 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
1620 	return SPDK_POLLER_BUSY;
1621 }
1622 
1623 static void
1624 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
1625 {
1626 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
1627 
1628 	assert(nvme_ctrlr->reconnect_is_delayed == false);
1629 	nvme_ctrlr->reconnect_is_delayed = true;
1630 
1631 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
1632 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
1633 					    nvme_ctrlr,
1634 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
1635 }
1636 
1637 static void
1638 _bdev_nvme_reset_complete(struct spdk_io_channel_iter *i, int status)
1639 {
1640 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1641 	bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
1642 	struct nvme_path_id *path_id;
1643 	bdev_nvme_reset_cb reset_cb_fn = nvme_ctrlr->reset_cb_fn;
1644 	void *reset_cb_arg = nvme_ctrlr->reset_cb_arg;
1645 	enum bdev_nvme_op_after_reset op_after_reset;
1646 
1647 	assert(nvme_ctrlr->thread == spdk_get_thread());
1648 
1649 	nvme_ctrlr->reset_cb_fn = NULL;
1650 	nvme_ctrlr->reset_cb_arg = NULL;
1651 
1652 	if (!success) {
1653 		SPDK_ERRLOG("Resetting controller failed.\n");
1654 	} else {
1655 		SPDK_NOTICELOG("Resetting controller successful.\n");
1656 	}
1657 
1658 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1659 	nvme_ctrlr->resetting = false;
1660 
1661 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1662 	assert(path_id != NULL);
1663 	assert(path_id == nvme_ctrlr->active_path_id);
1664 
1665 	path_id->is_failed = !success;
1666 
1667 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
1668 
1669 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1670 
1671 	if (reset_cb_fn) {
1672 		reset_cb_fn(reset_cb_arg, success);
1673 	}
1674 
1675 	switch (op_after_reset) {
1676 	case OP_COMPLETE_PENDING_DESTRUCT:
1677 		nvme_ctrlr_unregister(nvme_ctrlr);
1678 		break;
1679 	case OP_DESTRUCT:
1680 		_bdev_nvme_delete(nvme_ctrlr, false);
1681 		break;
1682 	case OP_DELAYED_RECONNECT:
1683 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
1684 		break;
1685 	default:
1686 		break;
1687 	}
1688 }
1689 
1690 static void
1691 bdev_nvme_reset_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
1692 {
1693 	/* Make sure we clear any pending resets before returning. */
1694 	spdk_for_each_channel(nvme_ctrlr,
1695 			      bdev_nvme_complete_pending_resets,
1696 			      success ? NULL : (void *)0x1,
1697 			      _bdev_nvme_reset_complete);
1698 }
1699 
1700 static void
1701 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
1702 {
1703 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1704 
1705 	bdev_nvme_reset_complete(nvme_ctrlr, false);
1706 }
1707 
1708 static void
1709 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
1710 {
1711 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
1712 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
1713 	struct nvme_qpair *nvme_qpair;
1714 
1715 	nvme_qpair = ctrlr_ch->qpair;
1716 	assert(nvme_qpair != NULL);
1717 
1718 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1719 
1720 	if (nvme_qpair->qpair != NULL) {
1721 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
1722 
1723 		/* The current full reset sequence will move to the next
1724 		 * ctrlr_channel after the qpair is actually disconnected.
1725 		 */
1726 		assert(ctrlr_ch->reset_iter == NULL);
1727 		ctrlr_ch->reset_iter = i;
1728 	} else {
1729 		spdk_for_each_channel_continue(i, 0);
1730 	}
1731 }
1732 
1733 static void
1734 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
1735 {
1736 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1737 
1738 	if (status == 0) {
1739 		bdev_nvme_reset_complete(nvme_ctrlr, true);
1740 	} else {
1741 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
1742 		spdk_for_each_channel(nvme_ctrlr,
1743 				      bdev_nvme_reset_destroy_qpair,
1744 				      NULL,
1745 				      bdev_nvme_reset_create_qpairs_failed);
1746 	}
1747 }
1748 
1749 static void
1750 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
1751 {
1752 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1753 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1754 	int rc;
1755 
1756 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
1757 
1758 	spdk_for_each_channel_continue(i, rc);
1759 }
1760 
1761 static int
1762 bdev_nvme_reconnect_ctrlr_poll(void *arg)
1763 {
1764 	struct nvme_ctrlr *nvme_ctrlr = arg;
1765 	int rc = -ETIMEDOUT;
1766 
1767 	if (!bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1768 		rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
1769 		if (rc == -EAGAIN) {
1770 			return SPDK_POLLER_BUSY;
1771 		}
1772 	}
1773 
1774 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
1775 	if (rc == 0) {
1776 		/* Recreate all of the I/O queue pairs */
1777 		spdk_for_each_channel(nvme_ctrlr,
1778 				      bdev_nvme_reset_create_qpair,
1779 				      NULL,
1780 				      bdev_nvme_reset_create_qpairs_done);
1781 	} else {
1782 		bdev_nvme_reset_complete(nvme_ctrlr, false);
1783 	}
1784 	return SPDK_POLLER_BUSY;
1785 }
1786 
1787 static void
1788 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
1789 {
1790 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
1791 
1792 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
1793 	assert(nvme_ctrlr->reset_detach_poller == NULL);
1794 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
1795 					  nvme_ctrlr, 0);
1796 }
1797 
1798 static void
1799 bdev_nvme_reset_ctrlr(struct spdk_io_channel_iter *i, int status)
1800 {
1801 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1802 
1803 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
1804 	assert(status == 0);
1805 
1806 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
1807 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
1808 	} else {
1809 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
1810 	}
1811 }
1812 
1813 static void
1814 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
1815 {
1816 	spdk_for_each_channel(nvme_ctrlr,
1817 			      bdev_nvme_reset_destroy_qpair,
1818 			      NULL,
1819 			      bdev_nvme_reset_ctrlr);
1820 }
1821 
1822 static void
1823 _bdev_nvme_reset(void *ctx)
1824 {
1825 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1826 
1827 	assert(nvme_ctrlr->resetting == true);
1828 	assert(nvme_ctrlr->thread == spdk_get_thread());
1829 
1830 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
1831 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
1832 	} else {
1833 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
1834 	}
1835 }
1836 
1837 static int
1838 bdev_nvme_reset(struct nvme_ctrlr *nvme_ctrlr)
1839 {
1840 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1841 	if (nvme_ctrlr->destruct) {
1842 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1843 		return -ENXIO;
1844 	}
1845 
1846 	if (nvme_ctrlr->resetting) {
1847 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1848 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
1849 		return -EBUSY;
1850 	}
1851 
1852 	if (nvme_ctrlr->reconnect_is_delayed) {
1853 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1854 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
1855 		return -EBUSY;
1856 	}
1857 
1858 	nvme_ctrlr->resetting = true;
1859 
1860 	assert(nvme_ctrlr->reset_start_tsc == 0);
1861 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
1862 
1863 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1864 
1865 	spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset, nvme_ctrlr);
1866 	return 0;
1867 }
1868 
1869 int
1870 bdev_nvme_reset_rpc(struct nvme_ctrlr *nvme_ctrlr, bdev_nvme_reset_cb cb_fn, void *cb_arg)
1871 {
1872 	int rc;
1873 
1874 	rc = bdev_nvme_reset(nvme_ctrlr);
1875 	if (rc == 0) {
1876 		nvme_ctrlr->reset_cb_fn = cb_fn;
1877 		nvme_ctrlr->reset_cb_arg = cb_arg;
1878 	}
1879 	return rc;
1880 }
1881 
1882 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
1883 
1884 static void
1885 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
1886 {
1887 	enum spdk_bdev_io_status io_status;
1888 
1889 	if (bio->cpl.cdw0 == 0) {
1890 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1891 	} else {
1892 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1893 	}
1894 
1895 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
1896 }
1897 
1898 static void
1899 _bdev_nvme_reset_io_continue(void *ctx)
1900 {
1901 	struct nvme_bdev_io *bio = ctx;
1902 	struct nvme_io_path *prev_io_path, *next_io_path;
1903 	int rc;
1904 
1905 	prev_io_path = bio->io_path;
1906 	bio->io_path = NULL;
1907 
1908 	if (bio->cpl.cdw0 != 0) {
1909 		goto complete;
1910 	}
1911 
1912 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
1913 	if (next_io_path == NULL) {
1914 		goto complete;
1915 	}
1916 
1917 	rc = _bdev_nvme_reset_io(next_io_path, bio);
1918 	if (rc == 0) {
1919 		return;
1920 	}
1921 
1922 	bio->cpl.cdw0 = 1;
1923 
1924 complete:
1925 	bdev_nvme_reset_io_complete(bio);
1926 }
1927 
1928 static void
1929 bdev_nvme_reset_io_continue(void *cb_arg, bool success)
1930 {
1931 	struct nvme_bdev_io *bio = cb_arg;
1932 
1933 	bio->cpl.cdw0 = !success;
1934 
1935 	spdk_thread_send_msg(bio->orig_thread, _bdev_nvme_reset_io_continue, bio);
1936 }
1937 
1938 static int
1939 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
1940 {
1941 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1942 	struct nvme_ctrlr_channel *ctrlr_ch;
1943 	struct spdk_bdev_io *bdev_io;
1944 	int rc;
1945 
1946 	rc = bdev_nvme_reset(nvme_ctrlr);
1947 	if (rc == 0) {
1948 		assert(bio->io_path == NULL);
1949 		bio->io_path = io_path;
1950 
1951 		assert(nvme_ctrlr->reset_cb_fn == NULL);
1952 		assert(nvme_ctrlr->reset_cb_arg == NULL);
1953 		nvme_ctrlr->reset_cb_fn = bdev_nvme_reset_io_continue;
1954 		nvme_ctrlr->reset_cb_arg = bio;
1955 	} else if (rc == -EBUSY) {
1956 		ctrlr_ch = io_path->qpair->ctrlr_ch;
1957 		assert(ctrlr_ch != NULL);
1958 		/*
1959 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
1960 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
1961 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
1962 		 */
1963 		bdev_io = spdk_bdev_io_from_ctx(bio);
1964 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bdev_io, module_link);
1965 	} else {
1966 		return rc;
1967 	}
1968 
1969 	return 0;
1970 }
1971 
1972 static void
1973 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
1974 {
1975 	struct nvme_io_path *io_path;
1976 	int rc;
1977 
1978 	bio->cpl.cdw0 = 0;
1979 	bio->orig_thread = spdk_get_thread();
1980 
1981 	/* Reset only the first nvme_ctrlr in the nvme_bdev_ctrlr for now.
1982 	 *
1983 	 * TODO: Reset all nvme_ctrlrs in the nvme_bdev_ctrlr sequentially.
1984 	 * This will be done in the following patches.
1985 	 */
1986 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
1987 	assert(io_path != NULL);
1988 
1989 	rc = _bdev_nvme_reset_io(io_path, bio);
1990 	if (rc != 0) {
1991 		bio->cpl.cdw0 = 1;
1992 		bdev_nvme_reset_io_complete(bio);
1993 	}
1994 }
1995 
1996 static int
1997 bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove)
1998 {
1999 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2000 	if (nvme_ctrlr->destruct) {
2001 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2002 		/* Don't bother resetting if the controller is in the process of being destructed. */
2003 		return -ENXIO;
2004 	}
2005 
2006 	if (nvme_ctrlr->resetting) {
2007 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2008 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
2009 		return -EBUSY;
2010 	}
2011 
2012 	bdev_nvme_failover_trid(nvme_ctrlr, remove);
2013 
2014 	if (nvme_ctrlr->reconnect_is_delayed) {
2015 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2016 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
2017 
2018 		/* We rely on the next reconnect for the failover. */
2019 		return 0;
2020 	}
2021 
2022 	nvme_ctrlr->resetting = true;
2023 
2024 	assert(nvme_ctrlr->reset_start_tsc == 0);
2025 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2026 
2027 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2028 
2029 	spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset, nvme_ctrlr);
2030 	return 0;
2031 }
2032 
2033 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2034 			   uint64_t num_blocks);
2035 
2036 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2037 				  uint64_t num_blocks);
2038 
2039 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
2040 			  uint64_t src_offset_blocks,
2041 			  uint64_t num_blocks);
2042 
2043 static void
2044 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
2045 		     bool success)
2046 {
2047 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2048 	struct spdk_bdev *bdev = bdev_io->bdev;
2049 	int ret;
2050 
2051 	if (!success) {
2052 		ret = -EINVAL;
2053 		goto exit;
2054 	}
2055 
2056 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
2057 		ret = -ENXIO;
2058 		goto exit;
2059 	}
2060 
2061 	ret = bdev_nvme_readv(bio,
2062 			      bdev_io->u.bdev.iovs,
2063 			      bdev_io->u.bdev.iovcnt,
2064 			      bdev_io->u.bdev.md_buf,
2065 			      bdev_io->u.bdev.num_blocks,
2066 			      bdev_io->u.bdev.offset_blocks,
2067 			      bdev->dif_check_flags,
2068 			      bdev_io->u.bdev.ext_opts);
2069 
2070 exit:
2071 	if (spdk_likely(ret == 0)) {
2072 		bio->io_path->io_outstanding++;
2073 	} else {
2074 		bdev_nvme_io_complete(bio, ret);
2075 	}
2076 }
2077 
2078 static void
2079 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
2080 {
2081 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
2082 	struct spdk_bdev *bdev = bdev_io->bdev;
2083 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2084 	struct nvme_bdev_io *nbdev_io_to_abort;
2085 	int rc = 0;
2086 
2087 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
2088 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
2089 	if (spdk_unlikely(!nbdev_io->io_path)) {
2090 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
2091 			rc = -ENXIO;
2092 			goto exit;
2093 		}
2094 
2095 		/* Admin commands do not use the optimal I/O path.
2096 		 * Simply fall through even if it is not found.
2097 		 */
2098 	}
2099 
2100 	switch (bdev_io->type) {
2101 	case SPDK_BDEV_IO_TYPE_READ:
2102 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
2103 			rc = bdev_nvme_readv(nbdev_io,
2104 					     bdev_io->u.bdev.iovs,
2105 					     bdev_io->u.bdev.iovcnt,
2106 					     bdev_io->u.bdev.md_buf,
2107 					     bdev_io->u.bdev.num_blocks,
2108 					     bdev_io->u.bdev.offset_blocks,
2109 					     bdev->dif_check_flags,
2110 					     bdev_io->u.bdev.ext_opts);
2111 		} else {
2112 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
2113 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
2114 			return;
2115 		}
2116 		break;
2117 	case SPDK_BDEV_IO_TYPE_WRITE:
2118 		rc = bdev_nvme_writev(nbdev_io,
2119 				      bdev_io->u.bdev.iovs,
2120 				      bdev_io->u.bdev.iovcnt,
2121 				      bdev_io->u.bdev.md_buf,
2122 				      bdev_io->u.bdev.num_blocks,
2123 				      bdev_io->u.bdev.offset_blocks,
2124 				      bdev->dif_check_flags,
2125 				      bdev_io->u.bdev.ext_opts);
2126 		break;
2127 	case SPDK_BDEV_IO_TYPE_COMPARE:
2128 		rc = bdev_nvme_comparev(nbdev_io,
2129 					bdev_io->u.bdev.iovs,
2130 					bdev_io->u.bdev.iovcnt,
2131 					bdev_io->u.bdev.md_buf,
2132 					bdev_io->u.bdev.num_blocks,
2133 					bdev_io->u.bdev.offset_blocks,
2134 					bdev->dif_check_flags);
2135 		break;
2136 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
2137 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
2138 						   bdev_io->u.bdev.iovs,
2139 						   bdev_io->u.bdev.iovcnt,
2140 						   bdev_io->u.bdev.fused_iovs,
2141 						   bdev_io->u.bdev.fused_iovcnt,
2142 						   bdev_io->u.bdev.md_buf,
2143 						   bdev_io->u.bdev.num_blocks,
2144 						   bdev_io->u.bdev.offset_blocks,
2145 						   bdev->dif_check_flags);
2146 		break;
2147 	case SPDK_BDEV_IO_TYPE_UNMAP:
2148 		rc = bdev_nvme_unmap(nbdev_io,
2149 				     bdev_io->u.bdev.offset_blocks,
2150 				     bdev_io->u.bdev.num_blocks);
2151 		break;
2152 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
2153 		rc =  bdev_nvme_write_zeroes(nbdev_io,
2154 					     bdev_io->u.bdev.offset_blocks,
2155 					     bdev_io->u.bdev.num_blocks);
2156 		break;
2157 	case SPDK_BDEV_IO_TYPE_RESET:
2158 		nbdev_io->io_path = NULL;
2159 		bdev_nvme_reset_io(nbdev_ch, nbdev_io);
2160 		return;
2161 	case SPDK_BDEV_IO_TYPE_FLUSH:
2162 		bdev_nvme_io_complete(nbdev_io, 0);
2163 		return;
2164 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
2165 		rc = bdev_nvme_zone_appendv(nbdev_io,
2166 					    bdev_io->u.bdev.iovs,
2167 					    bdev_io->u.bdev.iovcnt,
2168 					    bdev_io->u.bdev.md_buf,
2169 					    bdev_io->u.bdev.num_blocks,
2170 					    bdev_io->u.bdev.offset_blocks,
2171 					    bdev->dif_check_flags);
2172 		break;
2173 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
2174 		rc = bdev_nvme_get_zone_info(nbdev_io,
2175 					     bdev_io->u.zone_mgmt.zone_id,
2176 					     bdev_io->u.zone_mgmt.num_zones,
2177 					     bdev_io->u.zone_mgmt.buf);
2178 		break;
2179 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
2180 		rc = bdev_nvme_zone_management(nbdev_io,
2181 					       bdev_io->u.zone_mgmt.zone_id,
2182 					       bdev_io->u.zone_mgmt.zone_action);
2183 		break;
2184 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
2185 		nbdev_io->io_path = NULL;
2186 		bdev_nvme_admin_passthru(nbdev_ch,
2187 					 nbdev_io,
2188 					 &bdev_io->u.nvme_passthru.cmd,
2189 					 bdev_io->u.nvme_passthru.buf,
2190 					 bdev_io->u.nvme_passthru.nbytes);
2191 		return;
2192 	case SPDK_BDEV_IO_TYPE_NVME_IO:
2193 		rc = bdev_nvme_io_passthru(nbdev_io,
2194 					   &bdev_io->u.nvme_passthru.cmd,
2195 					   bdev_io->u.nvme_passthru.buf,
2196 					   bdev_io->u.nvme_passthru.nbytes);
2197 		break;
2198 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
2199 		rc = bdev_nvme_io_passthru_md(nbdev_io,
2200 					      &bdev_io->u.nvme_passthru.cmd,
2201 					      bdev_io->u.nvme_passthru.buf,
2202 					      bdev_io->u.nvme_passthru.nbytes,
2203 					      bdev_io->u.nvme_passthru.md_buf,
2204 					      bdev_io->u.nvme_passthru.md_len);
2205 		break;
2206 	case SPDK_BDEV_IO_TYPE_ABORT:
2207 		nbdev_io->io_path = NULL;
2208 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
2209 		bdev_nvme_abort(nbdev_ch,
2210 				nbdev_io,
2211 				nbdev_io_to_abort);
2212 		return;
2213 	case SPDK_BDEV_IO_TYPE_COPY:
2214 		rc = bdev_nvme_copy(nbdev_io,
2215 				    bdev_io->u.bdev.offset_blocks,
2216 				    bdev_io->u.bdev.copy.src_offset_blocks,
2217 				    bdev_io->u.bdev.num_blocks);
2218 		break;
2219 	default:
2220 		rc = -EINVAL;
2221 		break;
2222 	}
2223 
2224 exit:
2225 	if (spdk_likely(rc == 0)) {
2226 		/* bdev io sent to a namespace gets counted. bdev io sent to a controller(i.e. RESET,
2227 		 * NVME_ADMIN,ABORT) doesn't get counted. FLUSH case is special which directly calls
2228 		 * bdev_nvme_io_complete(), it does not get counted.
2229 		 */
2230 		nbdev_io->io_path->io_outstanding++;
2231 	} else {
2232 		bdev_nvme_io_complete(nbdev_io, rc);
2233 	}
2234 }
2235 
2236 static bool
2237 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
2238 {
2239 	struct nvme_bdev *nbdev = ctx;
2240 	struct nvme_ns *nvme_ns;
2241 	struct spdk_nvme_ns *ns;
2242 	struct spdk_nvme_ctrlr *ctrlr;
2243 	const struct spdk_nvme_ctrlr_data *cdata;
2244 
2245 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
2246 	assert(nvme_ns != NULL);
2247 	ns = nvme_ns->ns;
2248 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
2249 
2250 	switch (io_type) {
2251 	case SPDK_BDEV_IO_TYPE_READ:
2252 	case SPDK_BDEV_IO_TYPE_WRITE:
2253 	case SPDK_BDEV_IO_TYPE_RESET:
2254 	case SPDK_BDEV_IO_TYPE_FLUSH:
2255 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
2256 	case SPDK_BDEV_IO_TYPE_NVME_IO:
2257 	case SPDK_BDEV_IO_TYPE_ABORT:
2258 		return true;
2259 
2260 	case SPDK_BDEV_IO_TYPE_COMPARE:
2261 		return spdk_nvme_ns_supports_compare(ns);
2262 
2263 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
2264 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
2265 
2266 	case SPDK_BDEV_IO_TYPE_UNMAP:
2267 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2268 		return cdata->oncs.dsm;
2269 
2270 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
2271 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2272 		return cdata->oncs.write_zeroes;
2273 
2274 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
2275 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
2276 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
2277 			return true;
2278 		}
2279 		return false;
2280 
2281 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
2282 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
2283 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
2284 
2285 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
2286 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
2287 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
2288 
2289 	case SPDK_BDEV_IO_TYPE_COPY:
2290 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2291 		return cdata->oncs.copy;
2292 
2293 	default:
2294 		return false;
2295 	}
2296 }
2297 
2298 static int
2299 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
2300 {
2301 	struct nvme_qpair *nvme_qpair;
2302 	struct spdk_io_channel *pg_ch;
2303 	int rc;
2304 
2305 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
2306 	if (!nvme_qpair) {
2307 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
2308 		return -1;
2309 	}
2310 
2311 	TAILQ_INIT(&nvme_qpair->io_path_list);
2312 
2313 	nvme_qpair->ctrlr = nvme_ctrlr;
2314 	nvme_qpair->ctrlr_ch = ctrlr_ch;
2315 
2316 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
2317 	if (!pg_ch) {
2318 		free(nvme_qpair);
2319 		return -1;
2320 	}
2321 
2322 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
2323 
2324 #ifdef SPDK_CONFIG_VTUNE
2325 	nvme_qpair->group->collect_spin_stat = true;
2326 #else
2327 	nvme_qpair->group->collect_spin_stat = false;
2328 #endif
2329 
2330 	rc = bdev_nvme_create_qpair(nvme_qpair);
2331 	if (rc != 0) {
2332 		/* nvme_ctrlr can't create IO qpair if connection is down.
2333 		 *
2334 		 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
2335 		 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
2336 		 * submitted IO will be queued until IO qpair is successfully created.
2337 		 *
2338 		 * Hence, if both are satisfied, ignore the failure.
2339 		 */
2340 		if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
2341 			spdk_put_io_channel(pg_ch);
2342 			free(nvme_qpair);
2343 			return rc;
2344 		}
2345 	}
2346 
2347 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
2348 
2349 	ctrlr_ch->qpair = nvme_qpair;
2350 
2351 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
2352 	nvme_qpair->ctrlr->ref++;
2353 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
2354 
2355 	return 0;
2356 }
2357 
2358 static int
2359 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
2360 {
2361 	struct nvme_ctrlr *nvme_ctrlr = io_device;
2362 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
2363 
2364 	TAILQ_INIT(&ctrlr_ch->pending_resets);
2365 
2366 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
2367 }
2368 
2369 static void
2370 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
2371 {
2372 	assert(nvme_qpair->group != NULL);
2373 
2374 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
2375 
2376 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
2377 
2378 	nvme_ctrlr_release(nvme_qpair->ctrlr);
2379 
2380 	free(nvme_qpair);
2381 }
2382 
2383 static void
2384 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
2385 {
2386 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
2387 	struct nvme_qpair *nvme_qpair;
2388 
2389 	nvme_qpair = ctrlr_ch->qpair;
2390 	assert(nvme_qpair != NULL);
2391 
2392 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2393 
2394 	if (nvme_qpair->qpair != NULL) {
2395 		if (ctrlr_ch->reset_iter == NULL) {
2396 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2397 		} else {
2398 			/* Skip current ctrlr_channel in a full reset sequence because
2399 			 * it is being deleted now. The qpair is already being disconnected.
2400 			 * We do not have to restart disconnecting it.
2401 			 */
2402 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2403 		}
2404 
2405 		/* We cannot release a reference to the poll group now.
2406 		 * The qpair may be disconnected asynchronously later.
2407 		 * We need to poll it until it is actually disconnected.
2408 		 * Just detach the qpair from the deleting ctrlr_channel.
2409 		 */
2410 		nvme_qpair->ctrlr_ch = NULL;
2411 	} else {
2412 		assert(ctrlr_ch->reset_iter == NULL);
2413 
2414 		nvme_qpair_delete(nvme_qpair);
2415 	}
2416 }
2417 
2418 static void
2419 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
2420 			      uint32_t iov_cnt, uint32_t seed,
2421 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
2422 {
2423 	struct nvme_poll_group *group = ctx;
2424 	int rc;
2425 
2426 	assert(group->accel_channel != NULL);
2427 	assert(cb_fn != NULL);
2428 
2429 	rc = spdk_accel_submit_crc32cv(group->accel_channel, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
2430 	if (rc) {
2431 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
2432 		if (rc == -ENOMEM || rc == -EINVAL) {
2433 			cb_fn(cb_arg, rc);
2434 		}
2435 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
2436 	}
2437 }
2438 
2439 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
2440 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
2441 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
2442 };
2443 
2444 static int
2445 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
2446 {
2447 	struct nvme_poll_group *group = ctx_buf;
2448 
2449 	TAILQ_INIT(&group->qpair_list);
2450 
2451 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
2452 	if (group->group == NULL) {
2453 		return -1;
2454 	}
2455 
2456 	group->accel_channel = spdk_accel_get_io_channel();
2457 	if (!group->accel_channel) {
2458 		spdk_nvme_poll_group_destroy(group->group);
2459 		SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
2460 			    group);
2461 		return -1;
2462 	}
2463 
2464 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
2465 
2466 	if (group->poller == NULL) {
2467 		spdk_put_io_channel(group->accel_channel);
2468 		spdk_nvme_poll_group_destroy(group->group);
2469 		return -1;
2470 	}
2471 
2472 	return 0;
2473 }
2474 
2475 static void
2476 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
2477 {
2478 	struct nvme_poll_group *group = ctx_buf;
2479 
2480 	assert(TAILQ_EMPTY(&group->qpair_list));
2481 
2482 	if (group->accel_channel) {
2483 		spdk_put_io_channel(group->accel_channel);
2484 	}
2485 
2486 	spdk_poller_unregister(&group->poller);
2487 	if (spdk_nvme_poll_group_destroy(group->group)) {
2488 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
2489 		assert(false);
2490 	}
2491 }
2492 
2493 static struct spdk_io_channel *
2494 bdev_nvme_get_io_channel(void *ctx)
2495 {
2496 	struct nvme_bdev *nvme_bdev = ctx;
2497 
2498 	return spdk_get_io_channel(nvme_bdev);
2499 }
2500 
2501 static void *
2502 bdev_nvme_get_module_ctx(void *ctx)
2503 {
2504 	struct nvme_bdev *nvme_bdev = ctx;
2505 	struct nvme_ns *nvme_ns;
2506 
2507 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
2508 		return NULL;
2509 	}
2510 
2511 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
2512 	if (!nvme_ns) {
2513 		return NULL;
2514 	}
2515 
2516 	return nvme_ns->ns;
2517 }
2518 
2519 static const char *
2520 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
2521 {
2522 	switch (ana_state) {
2523 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
2524 		return "optimized";
2525 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
2526 		return "non_optimized";
2527 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
2528 		return "inaccessible";
2529 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
2530 		return "persistent_loss";
2531 	case SPDK_NVME_ANA_CHANGE_STATE:
2532 		return "change";
2533 	default:
2534 		return NULL;
2535 	}
2536 }
2537 
2538 static int
2539 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
2540 {
2541 	struct spdk_memory_domain **_domains = NULL;
2542 	struct nvme_bdev *nbdev = ctx;
2543 	struct nvme_ns *nvme_ns;
2544 	int i = 0, _array_size = array_size;
2545 	int rc = 0;
2546 
2547 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
2548 		if (domains && array_size >= i) {
2549 			_domains = &domains[i];
2550 		} else {
2551 			_domains = NULL;
2552 		}
2553 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
2554 		if (rc > 0) {
2555 			i += rc;
2556 			if (_array_size >= rc) {
2557 				_array_size -= rc;
2558 			} else {
2559 				_array_size = 0;
2560 			}
2561 		} else if (rc < 0) {
2562 			return rc;
2563 		}
2564 	}
2565 
2566 	return i;
2567 }
2568 
2569 static const char *
2570 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
2571 {
2572 	if (nvme_ctrlr->destruct) {
2573 		return "deleting";
2574 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
2575 		return "failed";
2576 	} else if (nvme_ctrlr->resetting) {
2577 		return "resetting";
2578 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
2579 		return "reconnect_is_delayed";
2580 	} else {
2581 		return "enabled";
2582 	}
2583 }
2584 
2585 void
2586 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
2587 {
2588 	struct spdk_nvme_transport_id *trid;
2589 	const struct spdk_nvme_ctrlr_opts *opts;
2590 	const struct spdk_nvme_ctrlr_data *cdata;
2591 
2592 	spdk_json_write_object_begin(w);
2593 
2594 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
2595 
2596 #ifdef SPDK_CONFIG_NVME_CUSE
2597 	size_t cuse_name_size = 128;
2598 	char cuse_name[cuse_name_size];
2599 
2600 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
2601 	if (rc == 0) {
2602 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
2603 	}
2604 #endif
2605 	trid = &nvme_ctrlr->active_path_id->trid;
2606 	spdk_json_write_named_object_begin(w, "trid");
2607 	nvme_bdev_dump_trid_json(trid, w);
2608 	spdk_json_write_object_end(w);
2609 
2610 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
2611 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
2612 
2613 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
2614 	spdk_json_write_named_object_begin(w, "host");
2615 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
2616 	spdk_json_write_named_string(w, "addr", opts->src_addr);
2617 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
2618 	spdk_json_write_object_end(w);
2619 
2620 	spdk_json_write_object_end(w);
2621 }
2622 
2623 static void
2624 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
2625 			 struct nvme_ns *nvme_ns)
2626 {
2627 	struct spdk_nvme_ns *ns;
2628 	struct spdk_nvme_ctrlr *ctrlr;
2629 	const struct spdk_nvme_ctrlr_data *cdata;
2630 	const struct spdk_nvme_transport_id *trid;
2631 	union spdk_nvme_vs_register vs;
2632 	const struct spdk_nvme_ns_data *nsdata;
2633 	char buf[128];
2634 
2635 	ns = nvme_ns->ns;
2636 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
2637 
2638 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2639 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
2640 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
2641 
2642 	spdk_json_write_object_begin(w);
2643 
2644 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
2645 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
2646 	}
2647 
2648 	spdk_json_write_named_object_begin(w, "trid");
2649 
2650 	nvme_bdev_dump_trid_json(trid, w);
2651 
2652 	spdk_json_write_object_end(w);
2653 
2654 #ifdef SPDK_CONFIG_NVME_CUSE
2655 	size_t cuse_name_size = 128;
2656 	char cuse_name[cuse_name_size];
2657 
2658 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
2659 					    cuse_name, &cuse_name_size);
2660 	if (rc == 0) {
2661 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
2662 	}
2663 #endif
2664 
2665 	spdk_json_write_named_object_begin(w, "ctrlr_data");
2666 
2667 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
2668 
2669 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
2670 
2671 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
2672 	spdk_str_trim(buf);
2673 	spdk_json_write_named_string(w, "model_number", buf);
2674 
2675 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
2676 	spdk_str_trim(buf);
2677 	spdk_json_write_named_string(w, "serial_number", buf);
2678 
2679 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
2680 	spdk_str_trim(buf);
2681 	spdk_json_write_named_string(w, "firmware_revision", buf);
2682 
2683 	if (cdata->subnqn[0] != '\0') {
2684 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
2685 	}
2686 
2687 	spdk_json_write_named_object_begin(w, "oacs");
2688 
2689 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
2690 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
2691 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
2692 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
2693 
2694 	spdk_json_write_object_end(w);
2695 
2696 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
2697 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
2698 
2699 	spdk_json_write_object_end(w);
2700 
2701 	spdk_json_write_named_object_begin(w, "vs");
2702 
2703 	spdk_json_write_name(w, "nvme_version");
2704 	if (vs.bits.ter) {
2705 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
2706 	} else {
2707 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
2708 	}
2709 
2710 	spdk_json_write_object_end(w);
2711 
2712 	nsdata = spdk_nvme_ns_get_data(ns);
2713 
2714 	spdk_json_write_named_object_begin(w, "ns_data");
2715 
2716 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
2717 
2718 	if (cdata->cmic.ana_reporting) {
2719 		spdk_json_write_named_string(w, "ana_state",
2720 					     _nvme_ana_state_str(nvme_ns->ana_state));
2721 	}
2722 
2723 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
2724 
2725 	spdk_json_write_object_end(w);
2726 
2727 	if (cdata->oacs.security) {
2728 		spdk_json_write_named_object_begin(w, "security");
2729 
2730 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
2731 
2732 		spdk_json_write_object_end(w);
2733 	}
2734 
2735 	spdk_json_write_object_end(w);
2736 }
2737 
2738 static const char *
2739 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
2740 {
2741 	switch (nbdev->mp_policy) {
2742 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
2743 		return "active_passive";
2744 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
2745 		return "active_active";
2746 	default:
2747 		assert(false);
2748 		return "invalid";
2749 	}
2750 }
2751 
2752 static int
2753 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
2754 {
2755 	struct nvme_bdev *nvme_bdev = ctx;
2756 	struct nvme_ns *nvme_ns;
2757 
2758 	pthread_mutex_lock(&nvme_bdev->mutex);
2759 	spdk_json_write_named_array_begin(w, "nvme");
2760 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
2761 		nvme_namespace_info_json(w, nvme_ns);
2762 	}
2763 	spdk_json_write_array_end(w);
2764 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
2765 	pthread_mutex_unlock(&nvme_bdev->mutex);
2766 
2767 	return 0;
2768 }
2769 
2770 static void
2771 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
2772 {
2773 	/* No config per bdev needed */
2774 }
2775 
2776 static uint64_t
2777 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
2778 {
2779 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
2780 	struct nvme_io_path *io_path;
2781 	struct nvme_poll_group *group;
2782 	uint64_t spin_time = 0;
2783 
2784 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
2785 		group = io_path->qpair->group;
2786 
2787 		if (!group || !group->collect_spin_stat) {
2788 			continue;
2789 		}
2790 
2791 		if (group->end_ticks != 0) {
2792 			group->spin_ticks += (group->end_ticks - group->start_ticks);
2793 			group->end_ticks = 0;
2794 		}
2795 
2796 		spin_time += group->spin_ticks;
2797 		group->start_ticks = 0;
2798 		group->spin_ticks = 0;
2799 	}
2800 
2801 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
2802 }
2803 
2804 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
2805 	.destruct		= bdev_nvme_destruct,
2806 	.submit_request		= bdev_nvme_submit_request,
2807 	.io_type_supported	= bdev_nvme_io_type_supported,
2808 	.get_io_channel		= bdev_nvme_get_io_channel,
2809 	.dump_info_json		= bdev_nvme_dump_info_json,
2810 	.write_config_json	= bdev_nvme_write_config_json,
2811 	.get_spin_time		= bdev_nvme_get_spin_time,
2812 	.get_module_ctx		= bdev_nvme_get_module_ctx,
2813 	.get_memory_domains	= bdev_nvme_get_memory_domains,
2814 };
2815 
2816 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
2817 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
2818 
2819 static int
2820 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
2821 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
2822 {
2823 	struct spdk_nvme_ana_group_descriptor *copied_desc;
2824 	uint8_t *orig_desc;
2825 	uint32_t i, desc_size, copy_len;
2826 	int rc = 0;
2827 
2828 	if (nvme_ctrlr->ana_log_page == NULL) {
2829 		return -EINVAL;
2830 	}
2831 
2832 	copied_desc = nvme_ctrlr->copied_ana_desc;
2833 
2834 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
2835 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
2836 
2837 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
2838 		memcpy(copied_desc, orig_desc, copy_len);
2839 
2840 		rc = cb_fn(copied_desc, cb_arg);
2841 		if (rc != 0) {
2842 			break;
2843 		}
2844 
2845 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
2846 			    copied_desc->num_of_nsid * sizeof(uint32_t);
2847 		orig_desc += desc_size;
2848 		copy_len -= desc_size;
2849 	}
2850 
2851 	return rc;
2852 }
2853 
2854 static int
2855 nvme_ns_ana_transition_timedout(void *ctx)
2856 {
2857 	struct nvme_ns *nvme_ns = ctx;
2858 
2859 	spdk_poller_unregister(&nvme_ns->anatt_timer);
2860 	nvme_ns->ana_transition_timedout = true;
2861 
2862 	return SPDK_POLLER_BUSY;
2863 }
2864 
2865 static void
2866 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
2867 		       const struct spdk_nvme_ana_group_descriptor *desc)
2868 {
2869 	const struct spdk_nvme_ctrlr_data *cdata;
2870 
2871 	nvme_ns->ana_group_id = desc->ana_group_id;
2872 	nvme_ns->ana_state = desc->ana_state;
2873 	nvme_ns->ana_state_updating = false;
2874 
2875 	switch (nvme_ns->ana_state) {
2876 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
2877 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
2878 		nvme_ns->ana_transition_timedout = false;
2879 		spdk_poller_unregister(&nvme_ns->anatt_timer);
2880 		break;
2881 
2882 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
2883 	case SPDK_NVME_ANA_CHANGE_STATE:
2884 		if (nvme_ns->anatt_timer != NULL) {
2885 			break;
2886 		}
2887 
2888 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
2889 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
2890 				       nvme_ns,
2891 				       cdata->anatt * SPDK_SEC_TO_USEC);
2892 		break;
2893 	default:
2894 		break;
2895 	}
2896 }
2897 
2898 static int
2899 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
2900 {
2901 	struct nvme_ns *nvme_ns = cb_arg;
2902 	uint32_t i;
2903 
2904 	for (i = 0; i < desc->num_of_nsid; i++) {
2905 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
2906 			continue;
2907 		}
2908 
2909 		_nvme_ns_set_ana_state(nvme_ns, desc);
2910 		return 1;
2911 	}
2912 
2913 	return 0;
2914 }
2915 
2916 static void
2917 merge_nsid_sn_strings(const char *sn, char *nsid, int8_t *out)
2918 {
2919 	int i = 0, j = 0;
2920 	int sn_len = strlen(sn), nsid_len = strlen(nsid);
2921 
2922 	for (i = 0; i < nsid_len; i++) {
2923 		out[i] = nsid[i];
2924 	}
2925 
2926 	/* Since last few characters are more likely to be unique,
2927 	 * even among the devices from the same manufacturer,
2928 	 * we use serial number in reverse. We also skip the
2929 	 * terminating character of serial number string. */
2930 	for (j = sn_len - 1; j >= 0; j--) {
2931 		if (i == SPDK_UUID_STRING_LEN - 1) {
2932 			break;
2933 		}
2934 
2935 		/* There may be a lot of spaces in serial number string
2936 		 * and they will generate equally large number of the
2937 		 * same character, so just skip them. */
2938 		if (sn[j] == ' ') {
2939 			continue;
2940 		}
2941 
2942 		out[i] = sn[j];
2943 		i++;
2944 	}
2945 }
2946 
2947 /* Dictionary of characters for UUID generation. */
2948 static char dict[17] = "0123456789abcdef";
2949 
2950 static struct spdk_uuid
2951 nvme_generate_uuid(const char *sn, uint32_t nsid)
2952 {
2953 	struct spdk_uuid new_uuid;
2954 	char buf[SPDK_UUID_STRING_LEN] = {'\0'}, merged_str[SPDK_UUID_STRING_LEN] = {'\0'};
2955 	char nsid_str[NSID_STR_LEN] = {'\0'}, tmp;
2956 	uint64_t i = 0, j = 0, rem, dict_size = strlen(dict);
2957 	int rc;
2958 
2959 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
2960 
2961 	snprintf(nsid_str, NSID_STR_LEN, "%" PRIu32, nsid);
2962 
2963 	merge_nsid_sn_strings(sn, nsid_str, merged_str);
2964 
2965 	while (i < SPDK_UUID_STRING_LEN) {
2966 		/* If 'j' is equal to indexes, where '-' should be placed,
2967 		 * insert this character and continue the loop without
2968 		 * increasing 'i'. */
2969 		if ((j == 8 || j == 13 || j == 18 || j == 23)) {
2970 			buf[j] = '-';
2971 			j++;
2972 
2973 			/* Break, if we ran out of characters in
2974 			 * serial number and namespace ID string. */
2975 			if (j == strlen(merged_str)) {
2976 				break;
2977 			}
2978 			continue;
2979 		}
2980 
2981 		/* Change character in shuffled string to lower case. */
2982 		tmp = tolower(merged_str[i]);
2983 
2984 		if (isxdigit(tmp)) {
2985 			/* If character can be represented by a hex
2986 			 * value as is, copy it to the result buffer. */
2987 			buf[j] = tmp;
2988 		} else {
2989 			/* Otherwise get its code and divide it
2990 			 * by the number of elements in dictionary.
2991 			 * The remainder will be the index of dictionary
2992 			 * character to replace tmp value with. */
2993 			rem = tmp % dict_size;
2994 			buf[j] = dict[rem];
2995 		}
2996 
2997 		i++;
2998 		j++;
2999 
3000 		/* Break, if we ran out of characters in
3001 		 * serial number and namespace ID string. */
3002 		if (j == strlen(merged_str)) {
3003 			break;
3004 		}
3005 	}
3006 
3007 	/* If there are not enough values to fill UUID,
3008 	 * the rest is taken from dictionary characters. */
3009 	i = 0;
3010 	while (j < SPDK_UUID_STRING_LEN - 1) {
3011 		if ((j == 8 || j == 13 || j == 18 || j == 23)) {
3012 			buf[j] = '-';
3013 			j++;
3014 			continue;
3015 		}
3016 		buf[j] = dict[i % dict_size];
3017 		i++;
3018 		j++;
3019 	}
3020 
3021 	rc = spdk_uuid_parse(&new_uuid, buf);
3022 	if (rc != 0) {
3023 		SPDK_ERRLOG("Unexpected spdk_uuid_parse failure on %s.\n", buf);
3024 		assert(false);
3025 	}
3026 
3027 	return new_uuid;
3028 }
3029 
3030 static int
3031 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
3032 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
3033 		 uint32_t prchk_flags, void *ctx)
3034 {
3035 	const struct spdk_uuid		*uuid;
3036 	const uint8_t *nguid;
3037 	const struct spdk_nvme_ctrlr_data *cdata;
3038 	const struct spdk_nvme_ns_data	*nsdata;
3039 	const struct spdk_nvme_ctrlr_opts *opts;
3040 	enum spdk_nvme_csi		csi;
3041 	uint32_t atomic_bs, phys_bs, bs;
3042 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
3043 
3044 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3045 	csi = spdk_nvme_ns_get_csi(ns);
3046 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
3047 
3048 	switch (csi) {
3049 	case SPDK_NVME_CSI_NVM:
3050 		disk->product_name = "NVMe disk";
3051 		break;
3052 	case SPDK_NVME_CSI_ZNS:
3053 		disk->product_name = "NVMe ZNS disk";
3054 		disk->zoned = true;
3055 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
3056 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
3057 					     spdk_nvme_ns_get_extended_sector_size(ns);
3058 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
3059 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
3060 		break;
3061 	default:
3062 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
3063 		return -ENOTSUP;
3064 	}
3065 
3066 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
3067 	if (!disk->name) {
3068 		return -ENOMEM;
3069 	}
3070 
3071 	disk->write_cache = 0;
3072 	if (cdata->vwc.present) {
3073 		/* Enable if the Volatile Write Cache exists */
3074 		disk->write_cache = 1;
3075 	}
3076 	if (cdata->oncs.write_zeroes) {
3077 		disk->max_write_zeroes = UINT16_MAX + 1;
3078 	}
3079 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
3080 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
3081 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
3082 	/* NVMe driver will split one request into multiple requests
3083 	 * based on MDTS and stripe boundary, the bdev layer will use
3084 	 * max_segment_size and max_num_segments to split one big IO
3085 	 * into multiple requests, then small request can't run out
3086 	 * of NVMe internal requests data structure.
3087 	 */
3088 	if (opts && opts->io_queue_requests) {
3089 		disk->max_num_segments = opts->io_queue_requests / 2;
3090 	}
3091 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
3092 
3093 	nguid = spdk_nvme_ns_get_nguid(ns);
3094 	if (!nguid) {
3095 		uuid = spdk_nvme_ns_get_uuid(ns);
3096 		if (uuid) {
3097 			disk->uuid = *uuid;
3098 		} else if (g_opts.generate_uuids) {
3099 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
3100 			disk->uuid = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns));
3101 		}
3102 	} else {
3103 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
3104 	}
3105 
3106 	nsdata = spdk_nvme_ns_get_data(ns);
3107 	bs = spdk_nvme_ns_get_sector_size(ns);
3108 	atomic_bs = bs;
3109 	phys_bs = bs;
3110 	if (nsdata->nabo == 0) {
3111 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
3112 			atomic_bs = bs * (1 + nsdata->nawupf);
3113 		} else {
3114 			atomic_bs = bs * (1 + cdata->awupf);
3115 		}
3116 	}
3117 	if (nsdata->nsfeat.optperf) {
3118 		phys_bs = bs * (1 + nsdata->npwg);
3119 	}
3120 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
3121 
3122 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
3123 	if (disk->md_len != 0) {
3124 		disk->md_interleave = nsdata->flbas.extended;
3125 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
3126 		if (disk->dif_type != SPDK_DIF_DISABLE) {
3127 			disk->dif_is_head_of_md = nsdata->dps.md_start;
3128 			disk->dif_check_flags = prchk_flags;
3129 		}
3130 	}
3131 
3132 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
3133 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
3134 		disk->acwu = 0;
3135 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
3136 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
3137 	} else {
3138 		disk->acwu = cdata->acwu + 1; /* 0-based */
3139 	}
3140 
3141 	if (cdata->oncs.copy) {
3142 		/* For now bdev interface allows only single segment copy */
3143 		disk->max_copy = nsdata->mssrl;
3144 	}
3145 
3146 	disk->ctxt = ctx;
3147 	disk->fn_table = &nvmelib_fn_table;
3148 	disk->module = &nvme_if;
3149 
3150 	return 0;
3151 }
3152 
3153 static int
3154 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
3155 {
3156 	struct nvme_bdev *bdev;
3157 	int rc;
3158 
3159 	bdev = calloc(1, sizeof(*bdev));
3160 	if (!bdev) {
3161 		SPDK_ERRLOG("bdev calloc() failed\n");
3162 		return -ENOMEM;
3163 	}
3164 
3165 	rc = pthread_mutex_init(&bdev->mutex, NULL);
3166 	if (rc != 0) {
3167 		free(bdev);
3168 		return rc;
3169 	}
3170 
3171 	bdev->ref = 1;
3172 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
3173 	TAILQ_INIT(&bdev->nvme_ns_list);
3174 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
3175 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
3176 
3177 	rc = nvme_disk_create(&bdev->disk, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
3178 			      nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev);
3179 	if (rc != 0) {
3180 		SPDK_ERRLOG("Failed to create NVMe disk\n");
3181 		pthread_mutex_destroy(&bdev->mutex);
3182 		free(bdev);
3183 		return rc;
3184 	}
3185 
3186 	spdk_io_device_register(bdev,
3187 				bdev_nvme_create_bdev_channel_cb,
3188 				bdev_nvme_destroy_bdev_channel_cb,
3189 				sizeof(struct nvme_bdev_channel),
3190 				bdev->disk.name);
3191 
3192 	rc = spdk_bdev_register(&bdev->disk);
3193 	if (rc != 0) {
3194 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
3195 		spdk_io_device_unregister(bdev, NULL);
3196 		pthread_mutex_destroy(&bdev->mutex);
3197 		free(bdev->disk.name);
3198 		free(bdev);
3199 		return rc;
3200 	}
3201 
3202 	nvme_ns->bdev = bdev;
3203 	bdev->nsid = nvme_ns->id;
3204 
3205 	bdev->nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
3206 	TAILQ_INSERT_TAIL(&nvme_ctrlr->nbdev_ctrlr->bdevs, bdev, tailq);
3207 
3208 	return 0;
3209 }
3210 
3211 static bool
3212 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
3213 {
3214 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
3215 	const struct spdk_uuid *uuid1, *uuid2;
3216 
3217 	nsdata1 = spdk_nvme_ns_get_data(ns1);
3218 	nsdata2 = spdk_nvme_ns_get_data(ns2);
3219 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
3220 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
3221 
3222 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
3223 	       nsdata1->eui64 == nsdata2->eui64 &&
3224 	       ((uuid1 == NULL && uuid2 == NULL) ||
3225 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
3226 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
3227 }
3228 
3229 static bool
3230 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
3231 		 struct spdk_nvme_ctrlr_opts *opts)
3232 {
3233 	struct nvme_probe_skip_entry *entry;
3234 
3235 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
3236 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
3237 			return false;
3238 		}
3239 	}
3240 
3241 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
3242 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
3243 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
3244 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
3245 	opts->disable_read_ana_log_page = true;
3246 
3247 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
3248 
3249 	return true;
3250 }
3251 
3252 static void
3253 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
3254 {
3255 	struct nvme_ctrlr *nvme_ctrlr = ctx;
3256 
3257 	if (spdk_nvme_cpl_is_error(cpl)) {
3258 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
3259 			     cpl->status.sct);
3260 		bdev_nvme_reset(nvme_ctrlr);
3261 	} else if (cpl->cdw0 & 0x1) {
3262 		SPDK_WARNLOG("Specified command could not be aborted.\n");
3263 		bdev_nvme_reset(nvme_ctrlr);
3264 	}
3265 }
3266 
3267 static void
3268 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
3269 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
3270 {
3271 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
3272 	union spdk_nvme_csts_register csts;
3273 	int rc;
3274 
3275 	assert(nvme_ctrlr->ctrlr == ctrlr);
3276 
3277 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
3278 
3279 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
3280 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
3281 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
3282 	 * completion recursively.
3283 	 */
3284 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
3285 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
3286 		if (csts.bits.cfs) {
3287 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
3288 			bdev_nvme_reset(nvme_ctrlr);
3289 			return;
3290 		}
3291 	}
3292 
3293 	switch (g_opts.action_on_timeout) {
3294 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
3295 		if (qpair) {
3296 			/* Don't send abort to ctrlr when ctrlr is not available. */
3297 			pthread_mutex_lock(&nvme_ctrlr->mutex);
3298 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
3299 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
3300 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
3301 				return;
3302 			}
3303 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
3304 
3305 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
3306 						       nvme_abort_cpl, nvme_ctrlr);
3307 			if (rc == 0) {
3308 				return;
3309 			}
3310 
3311 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
3312 		}
3313 
3314 	/* FALLTHROUGH */
3315 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
3316 		bdev_nvme_reset(nvme_ctrlr);
3317 		break;
3318 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
3319 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
3320 		break;
3321 	default:
3322 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
3323 		break;
3324 	}
3325 }
3326 
3327 static void
3328 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
3329 {
3330 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
3331 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
3332 
3333 	if (rc == 0) {
3334 		nvme_ns->probe_ctx = NULL;
3335 		pthread_mutex_lock(&nvme_ctrlr->mutex);
3336 		nvme_ctrlr->ref++;
3337 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3338 	} else {
3339 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
3340 		free(nvme_ns);
3341 	}
3342 
3343 	if (ctx) {
3344 		ctx->populates_in_progress--;
3345 		if (ctx->populates_in_progress == 0) {
3346 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
3347 		}
3348 	}
3349 }
3350 
3351 static void
3352 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
3353 {
3354 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3355 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3356 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3357 	int rc;
3358 
3359 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
3360 	if (rc != 0) {
3361 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
3362 	}
3363 
3364 	spdk_for_each_channel_continue(i, rc);
3365 }
3366 
3367 static void
3368 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
3369 {
3370 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3371 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3372 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3373 	struct nvme_io_path *io_path;
3374 
3375 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
3376 	if (io_path != NULL) {
3377 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
3378 	}
3379 
3380 	spdk_for_each_channel_continue(i, 0);
3381 }
3382 
3383 static void
3384 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
3385 {
3386 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3387 
3388 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
3389 }
3390 
3391 static void
3392 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
3393 {
3394 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3395 	struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
3396 
3397 	if (status == 0) {
3398 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
3399 	} else {
3400 		/* Delete the added io_paths and fail populating the namespace. */
3401 		spdk_for_each_channel(bdev,
3402 				      bdev_nvme_delete_io_path,
3403 				      nvme_ns,
3404 				      bdev_nvme_add_io_path_failed);
3405 	}
3406 }
3407 
3408 static int
3409 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
3410 {
3411 	struct nvme_ns *tmp_ns;
3412 	const struct spdk_nvme_ns_data *nsdata;
3413 
3414 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
3415 	if (!nsdata->nmic.can_share) {
3416 		SPDK_ERRLOG("Namespace cannot be shared.\n");
3417 		return -EINVAL;
3418 	}
3419 
3420 	pthread_mutex_lock(&bdev->mutex);
3421 
3422 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
3423 	assert(tmp_ns != NULL);
3424 
3425 	if (!bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
3426 		pthread_mutex_unlock(&bdev->mutex);
3427 		SPDK_ERRLOG("Namespaces are not identical.\n");
3428 		return -EINVAL;
3429 	}
3430 
3431 	bdev->ref++;
3432 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
3433 	nvme_ns->bdev = bdev;
3434 
3435 	pthread_mutex_unlock(&bdev->mutex);
3436 
3437 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
3438 	spdk_for_each_channel(bdev,
3439 			      bdev_nvme_add_io_path,
3440 			      nvme_ns,
3441 			      bdev_nvme_add_io_path_done);
3442 
3443 	return 0;
3444 }
3445 
3446 static void
3447 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
3448 {
3449 	struct spdk_nvme_ns	*ns;
3450 	struct nvme_bdev	*bdev;
3451 	int			rc = 0;
3452 
3453 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
3454 	if (!ns) {
3455 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
3456 		rc = -EINVAL;
3457 		goto done;
3458 	}
3459 
3460 	nvme_ns->ns = ns;
3461 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
3462 
3463 	if (nvme_ctrlr->ana_log_page != NULL) {
3464 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
3465 	}
3466 
3467 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
3468 	if (bdev == NULL) {
3469 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
3470 	} else {
3471 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
3472 		if (rc == 0) {
3473 			return;
3474 		}
3475 	}
3476 done:
3477 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
3478 }
3479 
3480 static void
3481 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
3482 {
3483 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
3484 
3485 	assert(nvme_ctrlr != NULL);
3486 
3487 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3488 
3489 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
3490 
3491 	if (nvme_ns->bdev != NULL) {
3492 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3493 		return;
3494 	}
3495 
3496 	free(nvme_ns);
3497 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3498 
3499 	nvme_ctrlr_release(nvme_ctrlr);
3500 }
3501 
3502 static void
3503 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
3504 {
3505 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3506 
3507 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
3508 }
3509 
3510 static void
3511 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
3512 {
3513 	struct nvme_bdev *bdev;
3514 
3515 	spdk_poller_unregister(&nvme_ns->anatt_timer);
3516 
3517 	bdev = nvme_ns->bdev;
3518 	if (bdev != NULL) {
3519 		pthread_mutex_lock(&bdev->mutex);
3520 
3521 		assert(bdev->ref > 0);
3522 		bdev->ref--;
3523 		if (bdev->ref == 0) {
3524 			pthread_mutex_unlock(&bdev->mutex);
3525 
3526 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
3527 		} else {
3528 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
3529 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
3530 			 * and clear nvme_ns->bdev here.
3531 			 */
3532 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
3533 			nvme_ns->bdev = NULL;
3534 
3535 			pthread_mutex_unlock(&bdev->mutex);
3536 
3537 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
3538 			 * we call depopulate_namespace_done() to avoid use-after-free.
3539 			 */
3540 			spdk_for_each_channel(bdev,
3541 					      bdev_nvme_delete_io_path,
3542 					      nvme_ns,
3543 					      bdev_nvme_delete_io_path_done);
3544 			return;
3545 		}
3546 	}
3547 
3548 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
3549 }
3550 
3551 static void
3552 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
3553 			       struct nvme_async_probe_ctx *ctx)
3554 {
3555 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
3556 	struct nvme_ns	*nvme_ns, *next;
3557 	struct spdk_nvme_ns	*ns;
3558 	struct nvme_bdev	*bdev;
3559 	uint32_t		nsid;
3560 	int			rc;
3561 	uint64_t		num_sectors;
3562 
3563 	if (ctx) {
3564 		/* Initialize this count to 1 to handle the populate functions
3565 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
3566 		 */
3567 		ctx->populates_in_progress = 1;
3568 	}
3569 
3570 	/* First loop over our existing namespaces and see if they have been
3571 	 * removed. */
3572 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
3573 	while (nvme_ns != NULL) {
3574 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
3575 
3576 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
3577 			/* NS is still there but attributes may have changed */
3578 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
3579 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
3580 			bdev = nvme_ns->bdev;
3581 			assert(bdev != NULL);
3582 			if (bdev->disk.blockcnt != num_sectors) {
3583 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
3584 					       nvme_ns->id,
3585 					       bdev->disk.name,
3586 					       bdev->disk.blockcnt,
3587 					       num_sectors);
3588 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
3589 				if (rc != 0) {
3590 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
3591 						    bdev->disk.name, rc);
3592 				}
3593 			}
3594 		} else {
3595 			/* Namespace was removed */
3596 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
3597 		}
3598 
3599 		nvme_ns = next;
3600 	}
3601 
3602 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
3603 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
3604 	while (nsid != 0) {
3605 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
3606 
3607 		if (nvme_ns == NULL) {
3608 			/* Found a new one */
3609 			nvme_ns = calloc(1, sizeof(struct nvme_ns));
3610 			if (nvme_ns == NULL) {
3611 				SPDK_ERRLOG("Failed to allocate namespace\n");
3612 				/* This just fails to attach the namespace. It may work on a future attempt. */
3613 				continue;
3614 			}
3615 
3616 			nvme_ns->id = nsid;
3617 			nvme_ns->ctrlr = nvme_ctrlr;
3618 
3619 			nvme_ns->bdev = NULL;
3620 
3621 			if (ctx) {
3622 				ctx->populates_in_progress++;
3623 			}
3624 			nvme_ns->probe_ctx = ctx;
3625 
3626 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
3627 
3628 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
3629 		}
3630 
3631 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
3632 	}
3633 
3634 	if (ctx) {
3635 		/* Decrement this count now that the loop is over to account
3636 		 * for the one we started with.  If the count is then 0, we
3637 		 * know any populate_namespace functions completed immediately,
3638 		 * so we'll kick the callback here.
3639 		 */
3640 		ctx->populates_in_progress--;
3641 		if (ctx->populates_in_progress == 0) {
3642 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
3643 		}
3644 	}
3645 
3646 }
3647 
3648 static void
3649 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
3650 {
3651 	struct nvme_ns *nvme_ns, *tmp;
3652 
3653 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
3654 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
3655 	}
3656 }
3657 
3658 static uint32_t
3659 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
3660 {
3661 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
3662 	const struct spdk_nvme_ctrlr_data *cdata;
3663 	uint32_t nsid, ns_count = 0;
3664 
3665 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3666 
3667 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
3668 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
3669 		ns_count++;
3670 	}
3671 
3672 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
3673 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
3674 	       sizeof(uint32_t);
3675 }
3676 
3677 static int
3678 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
3679 			  void *cb_arg)
3680 {
3681 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
3682 	struct nvme_ns *nvme_ns;
3683 	uint32_t i, nsid;
3684 
3685 	for (i = 0; i < desc->num_of_nsid; i++) {
3686 		nsid = desc->nsid[i];
3687 		if (nsid == 0) {
3688 			continue;
3689 		}
3690 
3691 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
3692 
3693 		assert(nvme_ns != NULL);
3694 		if (nvme_ns == NULL) {
3695 			/* Target told us that an inactive namespace had an ANA change */
3696 			continue;
3697 		}
3698 
3699 		_nvme_ns_set_ana_state(nvme_ns, desc);
3700 	}
3701 
3702 	return 0;
3703 }
3704 
3705 static void
3706 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
3707 {
3708 	struct nvme_ns *nvme_ns;
3709 
3710 	spdk_free(nvme_ctrlr->ana_log_page);
3711 	nvme_ctrlr->ana_log_page = NULL;
3712 
3713 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
3714 	     nvme_ns != NULL;
3715 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
3716 		nvme_ns->ana_state_updating = false;
3717 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
3718 	}
3719 }
3720 
3721 static void
3722 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
3723 {
3724 	struct nvme_ctrlr *nvme_ctrlr = ctx;
3725 
3726 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
3727 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
3728 					     nvme_ctrlr);
3729 	} else {
3730 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
3731 	}
3732 
3733 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3734 
3735 	assert(nvme_ctrlr->ana_log_page_updating == true);
3736 	nvme_ctrlr->ana_log_page_updating = false;
3737 
3738 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
3739 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3740 
3741 		nvme_ctrlr_unregister(nvme_ctrlr);
3742 	} else {
3743 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3744 
3745 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
3746 	}
3747 }
3748 
3749 static int
3750 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
3751 {
3752 	uint32_t ana_log_page_size;
3753 	int rc;
3754 
3755 	if (nvme_ctrlr->ana_log_page == NULL) {
3756 		return -EINVAL;
3757 	}
3758 
3759 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
3760 
3761 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
3762 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
3763 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
3764 		return -EINVAL;
3765 	}
3766 
3767 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3768 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
3769 	    nvme_ctrlr->ana_log_page_updating) {
3770 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3771 		return -EBUSY;
3772 	}
3773 
3774 	nvme_ctrlr->ana_log_page_updating = true;
3775 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3776 
3777 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
3778 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
3779 					      SPDK_NVME_GLOBAL_NS_TAG,
3780 					      nvme_ctrlr->ana_log_page,
3781 					      ana_log_page_size, 0,
3782 					      nvme_ctrlr_read_ana_log_page_done,
3783 					      nvme_ctrlr);
3784 	if (rc != 0) {
3785 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
3786 	}
3787 
3788 	return rc;
3789 }
3790 
3791 static void
3792 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
3793 {
3794 }
3795 
3796 struct bdev_nvme_set_preferred_path_ctx {
3797 	struct spdk_bdev_desc *desc;
3798 	struct nvme_ns *nvme_ns;
3799 	bdev_nvme_set_preferred_path_cb cb_fn;
3800 	void *cb_arg;
3801 };
3802 
3803 static void
3804 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
3805 {
3806 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
3807 
3808 	assert(ctx != NULL);
3809 	assert(ctx->desc != NULL);
3810 	assert(ctx->cb_fn != NULL);
3811 
3812 	spdk_bdev_close(ctx->desc);
3813 
3814 	ctx->cb_fn(ctx->cb_arg, status);
3815 
3816 	free(ctx);
3817 }
3818 
3819 static void
3820 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
3821 {
3822 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
3823 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3824 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3825 	struct nvme_io_path *io_path, *prev;
3826 
3827 	prev = NULL;
3828 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3829 		if (io_path->nvme_ns == ctx->nvme_ns) {
3830 			break;
3831 		}
3832 		prev = io_path;
3833 	}
3834 
3835 	if (io_path != NULL) {
3836 		if (prev != NULL) {
3837 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
3838 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
3839 		}
3840 
3841 		/* We can set io_path to nbdev_ch->current_io_path directly here.
3842 		 * However, it needs to be conditional. To simplify the code,
3843 		 * just clear nbdev_ch->current_io_path and let find_io_path()
3844 		 * fill it.
3845 		 *
3846 		 * Automatic failback may be disabled. Hence even if the io_path is
3847 		 * already at the head, clear nbdev_ch->current_io_path.
3848 		 */
3849 		nbdev_ch->current_io_path = NULL;
3850 	}
3851 
3852 	spdk_for_each_channel_continue(i, 0);
3853 }
3854 
3855 static struct nvme_ns *
3856 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
3857 {
3858 	struct nvme_ns *nvme_ns, *prev;
3859 	const struct spdk_nvme_ctrlr_data *cdata;
3860 
3861 	prev = NULL;
3862 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3863 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
3864 
3865 		if (cdata->cntlid == cntlid) {
3866 			break;
3867 		}
3868 		prev = nvme_ns;
3869 	}
3870 
3871 	if (nvme_ns != NULL && prev != NULL) {
3872 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
3873 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
3874 	}
3875 
3876 	return nvme_ns;
3877 }
3878 
3879 /* This function supports only multipath mode. There is only a single I/O path
3880  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
3881  * head of the I/O path list for each NVMe bdev channel.
3882  *
3883  * NVMe bdev channel may be acquired after completing this function. move the
3884  * matched namespace to the head of the namespace list for the NVMe bdev too.
3885  */
3886 void
3887 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
3888 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
3889 {
3890 	struct bdev_nvme_set_preferred_path_ctx *ctx;
3891 	struct spdk_bdev *bdev;
3892 	struct nvme_bdev *nbdev;
3893 	int rc = 0;
3894 
3895 	assert(cb_fn != NULL);
3896 
3897 	ctx = calloc(1, sizeof(*ctx));
3898 	if (ctx == NULL) {
3899 		SPDK_ERRLOG("Failed to alloc context.\n");
3900 		rc = -ENOMEM;
3901 		goto err_alloc;
3902 	}
3903 
3904 	ctx->cb_fn = cb_fn;
3905 	ctx->cb_arg = cb_arg;
3906 
3907 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
3908 	if (rc != 0) {
3909 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
3910 		goto err_open;
3911 	}
3912 
3913 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
3914 
3915 	if (bdev->module != &nvme_if) {
3916 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
3917 		rc = -ENODEV;
3918 		goto err_bdev;
3919 	}
3920 
3921 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
3922 
3923 	pthread_mutex_lock(&nbdev->mutex);
3924 
3925 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
3926 	if (ctx->nvme_ns == NULL) {
3927 		pthread_mutex_unlock(&nbdev->mutex);
3928 
3929 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
3930 		rc = -ENODEV;
3931 		goto err_bdev;
3932 	}
3933 
3934 	pthread_mutex_unlock(&nbdev->mutex);
3935 
3936 	spdk_for_each_channel(nbdev,
3937 			      _bdev_nvme_set_preferred_path,
3938 			      ctx,
3939 			      bdev_nvme_set_preferred_path_done);
3940 	return;
3941 
3942 err_bdev:
3943 	spdk_bdev_close(ctx->desc);
3944 err_open:
3945 	free(ctx);
3946 err_alloc:
3947 	cb_fn(cb_arg, rc);
3948 }
3949 
3950 struct bdev_nvme_set_multipath_policy_ctx {
3951 	struct spdk_bdev_desc *desc;
3952 	bdev_nvme_set_multipath_policy_cb cb_fn;
3953 	void *cb_arg;
3954 };
3955 
3956 static void
3957 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
3958 {
3959 	struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
3960 
3961 	assert(ctx != NULL);
3962 	assert(ctx->desc != NULL);
3963 	assert(ctx->cb_fn != NULL);
3964 
3965 	spdk_bdev_close(ctx->desc);
3966 
3967 	ctx->cb_fn(ctx->cb_arg, status);
3968 
3969 	free(ctx);
3970 }
3971 
3972 static void
3973 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
3974 {
3975 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3976 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3977 	struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
3978 
3979 	nbdev_ch->mp_policy = nbdev->mp_policy;
3980 	nbdev_ch->current_io_path = NULL;
3981 
3982 	spdk_for_each_channel_continue(i, 0);
3983 }
3984 
3985 void
3986 bdev_nvme_set_multipath_policy(const char *name, enum bdev_nvme_multipath_policy policy,
3987 			       bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
3988 {
3989 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
3990 	struct spdk_bdev *bdev;
3991 	struct nvme_bdev *nbdev;
3992 	int rc;
3993 
3994 	assert(cb_fn != NULL);
3995 
3996 	ctx = calloc(1, sizeof(*ctx));
3997 	if (ctx == NULL) {
3998 		SPDK_ERRLOG("Failed to alloc context.\n");
3999 		rc = -ENOMEM;
4000 		goto err_alloc;
4001 	}
4002 
4003 	ctx->cb_fn = cb_fn;
4004 	ctx->cb_arg = cb_arg;
4005 
4006 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
4007 	if (rc != 0) {
4008 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
4009 		rc = -ENODEV;
4010 		goto err_open;
4011 	}
4012 
4013 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
4014 	if (bdev->module != &nvme_if) {
4015 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
4016 		rc = -ENODEV;
4017 		goto err_module;
4018 	}
4019 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
4020 
4021 	pthread_mutex_lock(&nbdev->mutex);
4022 	nbdev->mp_policy = policy;
4023 	pthread_mutex_unlock(&nbdev->mutex);
4024 
4025 	spdk_for_each_channel(nbdev,
4026 			      _bdev_nvme_set_multipath_policy,
4027 			      ctx,
4028 			      bdev_nvme_set_multipath_policy_done);
4029 	return;
4030 
4031 err_module:
4032 	spdk_bdev_close(ctx->desc);
4033 err_open:
4034 	free(ctx);
4035 err_alloc:
4036 	cb_fn(cb_arg, rc);
4037 }
4038 
4039 static void
4040 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
4041 {
4042 	struct nvme_ctrlr *nvme_ctrlr		= arg;
4043 	union spdk_nvme_async_event_completion	event;
4044 
4045 	if (spdk_nvme_cpl_is_error(cpl)) {
4046 		SPDK_WARNLOG("AER request execute failed\n");
4047 		return;
4048 	}
4049 
4050 	event.raw = cpl->cdw0;
4051 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
4052 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
4053 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
4054 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
4055 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
4056 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
4057 	}
4058 }
4059 
4060 static void
4061 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, size_t count, int rc)
4062 {
4063 	if (ctx->cb_fn) {
4064 		ctx->cb_fn(ctx->cb_ctx, count, rc);
4065 	}
4066 
4067 	ctx->namespaces_populated = true;
4068 	if (ctx->probe_done) {
4069 		/* The probe was already completed, so we need to free the context
4070 		 * here.  This can happen for cases like OCSSD, where we need to
4071 		 * send additional commands to the SSD after attach.
4072 		 */
4073 		free(ctx);
4074 	}
4075 }
4076 
4077 static void
4078 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
4079 		       struct nvme_async_probe_ctx *ctx)
4080 {
4081 	spdk_io_device_register(nvme_ctrlr,
4082 				bdev_nvme_create_ctrlr_channel_cb,
4083 				bdev_nvme_destroy_ctrlr_channel_cb,
4084 				sizeof(struct nvme_ctrlr_channel),
4085 				nvme_ctrlr->nbdev_ctrlr->name);
4086 
4087 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
4088 }
4089 
4090 static void
4091 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
4092 {
4093 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
4094 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
4095 
4096 	nvme_ctrlr->probe_ctx = NULL;
4097 
4098 	if (spdk_nvme_cpl_is_error(cpl)) {
4099 		nvme_ctrlr_delete(nvme_ctrlr);
4100 
4101 		if (ctx != NULL) {
4102 			populate_namespaces_cb(ctx, 0, -1);
4103 		}
4104 		return;
4105 	}
4106 
4107 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
4108 }
4109 
4110 static int
4111 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
4112 			     struct nvme_async_probe_ctx *ctx)
4113 {
4114 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4115 	const struct spdk_nvme_ctrlr_data *cdata;
4116 	uint32_t ana_log_page_size;
4117 
4118 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4119 
4120 	/* Set buffer size enough to include maximum number of allowed namespaces. */
4121 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
4122 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
4123 			    sizeof(uint32_t);
4124 
4125 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
4126 						SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
4127 	if (nvme_ctrlr->ana_log_page == NULL) {
4128 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
4129 		return -ENXIO;
4130 	}
4131 
4132 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
4133 	 * Hence copy each descriptor to a temporary area when parsing it.
4134 	 *
4135 	 * Allocate a buffer whose size is as large as ANA log page buffer because
4136 	 * we do not know the size of a descriptor until actually reading it.
4137 	 */
4138 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
4139 	if (nvme_ctrlr->copied_ana_desc == NULL) {
4140 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
4141 		return -ENOMEM;
4142 	}
4143 
4144 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
4145 
4146 	nvme_ctrlr->probe_ctx = ctx;
4147 
4148 	/* Then, set the read size only to include the current active namespaces. */
4149 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
4150 
4151 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
4152 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
4153 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
4154 		return -EINVAL;
4155 	}
4156 
4157 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
4158 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
4159 						SPDK_NVME_GLOBAL_NS_TAG,
4160 						nvme_ctrlr->ana_log_page,
4161 						ana_log_page_size, 0,
4162 						nvme_ctrlr_init_ana_log_page_done,
4163 						nvme_ctrlr);
4164 }
4165 
4166 /* hostnqn and subnqn were already verified before attaching a controller.
4167  * Hence check only the multipath capability and cntlid here.
4168  */
4169 static bool
4170 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
4171 {
4172 	struct nvme_ctrlr *tmp;
4173 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
4174 
4175 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4176 
4177 	if (!cdata->cmic.multi_ctrlr) {
4178 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
4179 		return false;
4180 	}
4181 
4182 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
4183 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
4184 
4185 		if (!tmp_cdata->cmic.multi_ctrlr) {
4186 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
4187 			return false;
4188 		}
4189 		if (cdata->cntlid == tmp_cdata->cntlid) {
4190 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
4191 			return false;
4192 		}
4193 	}
4194 
4195 	return true;
4196 }
4197 
4198 static int
4199 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
4200 {
4201 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
4202 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4203 	int rc = 0;
4204 
4205 	pthread_mutex_lock(&g_bdev_nvme_mutex);
4206 
4207 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
4208 	if (nbdev_ctrlr != NULL) {
4209 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
4210 			rc = -EINVAL;
4211 			goto exit;
4212 		}
4213 	} else {
4214 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
4215 		if (nbdev_ctrlr == NULL) {
4216 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
4217 			rc = -ENOMEM;
4218 			goto exit;
4219 		}
4220 		nbdev_ctrlr->name = strdup(name);
4221 		if (nbdev_ctrlr->name == NULL) {
4222 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
4223 			free(nbdev_ctrlr);
4224 			goto exit;
4225 		}
4226 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
4227 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
4228 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
4229 	}
4230 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
4231 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
4232 exit:
4233 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
4234 	return rc;
4235 }
4236 
4237 static int
4238 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
4239 		  const char *name,
4240 		  const struct spdk_nvme_transport_id *trid,
4241 		  struct nvme_async_probe_ctx *ctx)
4242 {
4243 	struct nvme_ctrlr *nvme_ctrlr;
4244 	struct nvme_path_id *path_id;
4245 	const struct spdk_nvme_ctrlr_data *cdata;
4246 	int rc;
4247 
4248 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
4249 	if (nvme_ctrlr == NULL) {
4250 		SPDK_ERRLOG("Failed to allocate device struct\n");
4251 		return -ENOMEM;
4252 	}
4253 
4254 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
4255 	if (rc != 0) {
4256 		free(nvme_ctrlr);
4257 		return rc;
4258 	}
4259 
4260 	TAILQ_INIT(&nvme_ctrlr->trids);
4261 
4262 	RB_INIT(&nvme_ctrlr->namespaces);
4263 
4264 	path_id = calloc(1, sizeof(*path_id));
4265 	if (path_id == NULL) {
4266 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
4267 		rc = -ENOMEM;
4268 		goto err;
4269 	}
4270 
4271 	path_id->trid = *trid;
4272 	if (ctx != NULL) {
4273 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
4274 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
4275 	}
4276 	nvme_ctrlr->active_path_id = path_id;
4277 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
4278 
4279 	nvme_ctrlr->thread = spdk_get_thread();
4280 	nvme_ctrlr->ctrlr = ctrlr;
4281 	nvme_ctrlr->ref = 1;
4282 
4283 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
4284 		SPDK_ERRLOG("OCSSDs are not supported");
4285 		rc = -ENOTSUP;
4286 		goto err;
4287 	}
4288 
4289 	if (ctx != NULL) {
4290 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
4291 	} else {
4292 		bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
4293 	}
4294 
4295 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
4296 					  g_opts.nvme_adminq_poll_period_us);
4297 
4298 	if (g_opts.timeout_us > 0) {
4299 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
4300 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
4301 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
4302 					  g_opts.timeout_us : g_opts.timeout_admin_us;
4303 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
4304 				adm_timeout_us, timeout_cb, nvme_ctrlr);
4305 	}
4306 
4307 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
4308 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
4309 
4310 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
4311 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
4312 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
4313 	}
4314 
4315 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
4316 	if (rc != 0) {
4317 		goto err;
4318 	}
4319 
4320 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4321 
4322 	if (cdata->cmic.ana_reporting) {
4323 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
4324 		if (rc == 0) {
4325 			return 0;
4326 		}
4327 	} else {
4328 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
4329 		return 0;
4330 	}
4331 
4332 err:
4333 	nvme_ctrlr_delete(nvme_ctrlr);
4334 	return rc;
4335 }
4336 
4337 void
4338 bdev_nvme_get_default_ctrlr_opts(struct nvme_ctrlr_opts *opts)
4339 {
4340 	opts->prchk_flags = 0;
4341 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
4342 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
4343 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
4344 }
4345 
4346 static void
4347 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4348 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
4349 {
4350 	char *name;
4351 
4352 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
4353 	if (!name) {
4354 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
4355 		return;
4356 	}
4357 
4358 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
4359 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
4360 	} else {
4361 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
4362 	}
4363 
4364 	free(name);
4365 }
4366 
4367 static void
4368 _nvme_ctrlr_destruct(void *ctx)
4369 {
4370 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4371 
4372 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
4373 	nvme_ctrlr_release(nvme_ctrlr);
4374 }
4375 
4376 static int
4377 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
4378 {
4379 	struct nvme_probe_skip_entry *entry;
4380 
4381 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4382 
4383 	/* The controller's destruction was already started */
4384 	if (nvme_ctrlr->destruct) {
4385 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4386 		return 0;
4387 	}
4388 
4389 	if (!hotplug &&
4390 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
4391 		entry = calloc(1, sizeof(*entry));
4392 		if (!entry) {
4393 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4394 			return -ENOMEM;
4395 		}
4396 		entry->trid = nvme_ctrlr->active_path_id->trid;
4397 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
4398 	}
4399 
4400 	nvme_ctrlr->destruct = true;
4401 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4402 
4403 	_nvme_ctrlr_destruct(nvme_ctrlr);
4404 
4405 	return 0;
4406 }
4407 
4408 static void
4409 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
4410 {
4411 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
4412 
4413 	_bdev_nvme_delete(nvme_ctrlr, true);
4414 }
4415 
4416 static int
4417 bdev_nvme_hotplug_probe(void *arg)
4418 {
4419 	if (g_hotplug_probe_ctx == NULL) {
4420 		spdk_poller_unregister(&g_hotplug_probe_poller);
4421 		return SPDK_POLLER_IDLE;
4422 	}
4423 
4424 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
4425 		g_hotplug_probe_ctx = NULL;
4426 		spdk_poller_unregister(&g_hotplug_probe_poller);
4427 	}
4428 
4429 	return SPDK_POLLER_BUSY;
4430 }
4431 
4432 static int
4433 bdev_nvme_hotplug(void *arg)
4434 {
4435 	struct spdk_nvme_transport_id trid_pcie;
4436 
4437 	if (g_hotplug_probe_ctx) {
4438 		return SPDK_POLLER_BUSY;
4439 	}
4440 
4441 	memset(&trid_pcie, 0, sizeof(trid_pcie));
4442 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
4443 
4444 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
4445 			      hotplug_probe_cb, attach_cb, NULL);
4446 
4447 	if (g_hotplug_probe_ctx) {
4448 		assert(g_hotplug_probe_poller == NULL);
4449 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
4450 	}
4451 
4452 	return SPDK_POLLER_BUSY;
4453 }
4454 
4455 void
4456 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
4457 {
4458 	*opts = g_opts;
4459 }
4460 
4461 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
4462 		uint32_t reconnect_delay_sec,
4463 		uint32_t fast_io_fail_timeout_sec);
4464 
4465 static int
4466 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
4467 {
4468 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
4469 		/* Can't set timeout_admin_us without also setting timeout_us */
4470 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
4471 		return -EINVAL;
4472 	}
4473 
4474 	if (opts->bdev_retry_count < -1) {
4475 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
4476 		return -EINVAL;
4477 	}
4478 
4479 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
4480 			opts->reconnect_delay_sec,
4481 			opts->fast_io_fail_timeout_sec)) {
4482 		return -EINVAL;
4483 	}
4484 
4485 	return 0;
4486 }
4487 
4488 int
4489 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
4490 {
4491 	int ret = bdev_nvme_validate_opts(opts);
4492 	if (ret) {
4493 		SPDK_WARNLOG("Failed to set nvme opts.\n");
4494 		return ret;
4495 	}
4496 
4497 	if (g_bdev_nvme_init_thread != NULL) {
4498 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
4499 			return -EPERM;
4500 		}
4501 	}
4502 
4503 	g_opts = *opts;
4504 
4505 	return 0;
4506 }
4507 
4508 struct set_nvme_hotplug_ctx {
4509 	uint64_t period_us;
4510 	bool enabled;
4511 	spdk_msg_fn fn;
4512 	void *fn_ctx;
4513 };
4514 
4515 static void
4516 set_nvme_hotplug_period_cb(void *_ctx)
4517 {
4518 	struct set_nvme_hotplug_ctx *ctx = _ctx;
4519 
4520 	spdk_poller_unregister(&g_hotplug_poller);
4521 	if (ctx->enabled) {
4522 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
4523 	}
4524 
4525 	g_nvme_hotplug_poll_period_us = ctx->period_us;
4526 	g_nvme_hotplug_enabled = ctx->enabled;
4527 	if (ctx->fn) {
4528 		ctx->fn(ctx->fn_ctx);
4529 	}
4530 
4531 	free(ctx);
4532 }
4533 
4534 int
4535 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
4536 {
4537 	struct set_nvme_hotplug_ctx *ctx;
4538 
4539 	if (enabled == true && !spdk_process_is_primary()) {
4540 		return -EPERM;
4541 	}
4542 
4543 	ctx = calloc(1, sizeof(*ctx));
4544 	if (ctx == NULL) {
4545 		return -ENOMEM;
4546 	}
4547 
4548 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
4549 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
4550 	ctx->enabled = enabled;
4551 	ctx->fn = cb;
4552 	ctx->fn_ctx = cb_ctx;
4553 
4554 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
4555 	return 0;
4556 }
4557 
4558 static void
4559 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
4560 				    struct nvme_async_probe_ctx *ctx)
4561 {
4562 	struct nvme_ns	*nvme_ns;
4563 	struct nvme_bdev	*nvme_bdev;
4564 	size_t			j;
4565 
4566 	assert(nvme_ctrlr != NULL);
4567 
4568 	if (ctx->names == NULL) {
4569 		populate_namespaces_cb(ctx, 0, 0);
4570 		return;
4571 	}
4572 
4573 	/*
4574 	 * Report the new bdevs that were created in this call.
4575 	 * There can be more than one bdev per NVMe controller.
4576 	 */
4577 	j = 0;
4578 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4579 	while (nvme_ns != NULL) {
4580 		nvme_bdev = nvme_ns->bdev;
4581 		if (j < ctx->count) {
4582 			ctx->names[j] = nvme_bdev->disk.name;
4583 			j++;
4584 		} else {
4585 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
4586 				    ctx->count);
4587 			populate_namespaces_cb(ctx, 0, -ERANGE);
4588 			return;
4589 		}
4590 
4591 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4592 	}
4593 
4594 	populate_namespaces_cb(ctx, j, 0);
4595 }
4596 
4597 static int
4598 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
4599 			       struct spdk_nvme_ctrlr *new_ctrlr,
4600 			       struct spdk_nvme_transport_id *trid)
4601 {
4602 	struct nvme_path_id *tmp_trid;
4603 
4604 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
4605 		SPDK_ERRLOG("PCIe failover is not supported.\n");
4606 		return -ENOTSUP;
4607 	}
4608 
4609 	/* Currently we only support failover to the same transport type. */
4610 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
4611 		SPDK_WARNLOG("Failover from trtype: %s to a different trtype: %s is not supported currently\n",
4612 			     spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
4613 			     spdk_nvme_transport_id_trtype_str(trid->trtype));
4614 		return -EINVAL;
4615 	}
4616 
4617 
4618 	/* Currently we only support failover to the same NQN. */
4619 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
4620 		SPDK_WARNLOG("Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
4621 			     nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
4622 		return -EINVAL;
4623 	}
4624 
4625 	/* Skip all the other checks if we've already registered this path. */
4626 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
4627 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
4628 			SPDK_WARNLOG("This path (traddr: %s subnqn: %s) is already registered\n", trid->traddr,
4629 				     trid->subnqn);
4630 			return -EEXIST;
4631 		}
4632 	}
4633 
4634 	return 0;
4635 }
4636 
4637 static int
4638 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
4639 				    struct spdk_nvme_ctrlr *new_ctrlr)
4640 {
4641 	struct nvme_ns *nvme_ns;
4642 	struct spdk_nvme_ns *new_ns;
4643 
4644 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4645 	while (nvme_ns != NULL) {
4646 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
4647 		assert(new_ns != NULL);
4648 
4649 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
4650 			return -EINVAL;
4651 		}
4652 
4653 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4654 	}
4655 
4656 	return 0;
4657 }
4658 
4659 static int
4660 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
4661 			      struct spdk_nvme_transport_id *trid)
4662 {
4663 	struct nvme_path_id *new_trid, *tmp_trid;
4664 
4665 	new_trid = calloc(1, sizeof(*new_trid));
4666 	if (new_trid == NULL) {
4667 		return -ENOMEM;
4668 	}
4669 	new_trid->trid = *trid;
4670 	new_trid->is_failed = false;
4671 
4672 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
4673 		if (tmp_trid->is_failed && tmp_trid != nvme_ctrlr->active_path_id) {
4674 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
4675 			return 0;
4676 		}
4677 	}
4678 
4679 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
4680 	return 0;
4681 }
4682 
4683 /* This is the case that a secondary path is added to an existing
4684  * nvme_ctrlr for failover. After checking if it can access the same
4685  * namespaces as the primary path, it is disconnected until failover occurs.
4686  */
4687 static int
4688 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
4689 			     struct spdk_nvme_ctrlr *new_ctrlr,
4690 			     struct spdk_nvme_transport_id *trid)
4691 {
4692 	int rc;
4693 
4694 	assert(nvme_ctrlr != NULL);
4695 
4696 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4697 
4698 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
4699 	if (rc != 0) {
4700 		goto exit;
4701 	}
4702 
4703 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
4704 	if (rc != 0) {
4705 		goto exit;
4706 	}
4707 
4708 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
4709 
4710 exit:
4711 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4712 
4713 	spdk_nvme_detach(new_ctrlr);
4714 
4715 	return rc;
4716 }
4717 
4718 static void
4719 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4720 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
4721 {
4722 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
4723 	struct nvme_async_probe_ctx *ctx;
4724 	int rc;
4725 
4726 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
4727 	ctx->ctrlr_attached = true;
4728 
4729 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
4730 	if (rc != 0) {
4731 		populate_namespaces_cb(ctx, 0, rc);
4732 	}
4733 }
4734 
4735 static void
4736 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4737 			struct spdk_nvme_ctrlr *ctrlr,
4738 			const struct spdk_nvme_ctrlr_opts *opts)
4739 {
4740 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
4741 	struct nvme_ctrlr *nvme_ctrlr;
4742 	struct nvme_async_probe_ctx *ctx;
4743 	int rc;
4744 
4745 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
4746 	ctx->ctrlr_attached = true;
4747 
4748 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
4749 	if (nvme_ctrlr) {
4750 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
4751 	} else {
4752 		rc = -ENODEV;
4753 	}
4754 
4755 	populate_namespaces_cb(ctx, 0, rc);
4756 }
4757 
4758 static int
4759 bdev_nvme_async_poll(void *arg)
4760 {
4761 	struct nvme_async_probe_ctx	*ctx = arg;
4762 	int				rc;
4763 
4764 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
4765 	if (spdk_unlikely(rc != -EAGAIN)) {
4766 		ctx->probe_done = true;
4767 		spdk_poller_unregister(&ctx->poller);
4768 		if (!ctx->ctrlr_attached) {
4769 			/* The probe is done, but no controller was attached.
4770 			 * That means we had a failure, so report -EIO back to
4771 			 * the caller (usually the RPC). populate_namespaces_cb()
4772 			 * will take care of freeing the nvme_async_probe_ctx.
4773 			 */
4774 			populate_namespaces_cb(ctx, 0, -EIO);
4775 		} else if (ctx->namespaces_populated) {
4776 			/* The namespaces for the attached controller were all
4777 			 * populated and the response was already sent to the
4778 			 * caller (usually the RPC).  So free the context here.
4779 			 */
4780 			free(ctx);
4781 		}
4782 	}
4783 
4784 	return SPDK_POLLER_BUSY;
4785 }
4786 
4787 static bool
4788 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
4789 		uint32_t reconnect_delay_sec,
4790 		uint32_t fast_io_fail_timeout_sec)
4791 {
4792 	if (ctrlr_loss_timeout_sec < -1) {
4793 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
4794 		return false;
4795 	} else if (ctrlr_loss_timeout_sec == -1) {
4796 		if (reconnect_delay_sec == 0) {
4797 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
4798 			return false;
4799 		} else if (fast_io_fail_timeout_sec != 0 &&
4800 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
4801 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
4802 			return false;
4803 		}
4804 	} else if (ctrlr_loss_timeout_sec != 0) {
4805 		if (reconnect_delay_sec == 0) {
4806 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
4807 			return false;
4808 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
4809 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
4810 			return false;
4811 		} else if (fast_io_fail_timeout_sec != 0) {
4812 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
4813 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
4814 				return false;
4815 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
4816 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
4817 				return false;
4818 			}
4819 		}
4820 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
4821 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
4822 		return false;
4823 	}
4824 
4825 	return true;
4826 }
4827 
4828 int
4829 bdev_nvme_create(struct spdk_nvme_transport_id *trid,
4830 		 const char *base_name,
4831 		 const char **names,
4832 		 uint32_t count,
4833 		 spdk_bdev_create_nvme_fn cb_fn,
4834 		 void *cb_ctx,
4835 		 struct spdk_nvme_ctrlr_opts *drv_opts,
4836 		 struct nvme_ctrlr_opts *bdev_opts,
4837 		 bool multipath)
4838 {
4839 	struct nvme_probe_skip_entry	*entry, *tmp;
4840 	struct nvme_async_probe_ctx	*ctx;
4841 	spdk_nvme_attach_cb attach_cb;
4842 
4843 	/* TODO expand this check to include both the host and target TRIDs.
4844 	 * Only if both are the same should we fail.
4845 	 */
4846 	if (nvme_ctrlr_get(trid) != NULL) {
4847 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
4848 		return -EEXIST;
4849 	}
4850 
4851 	if (bdev_opts != NULL &&
4852 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
4853 			    bdev_opts->reconnect_delay_sec,
4854 			    bdev_opts->fast_io_fail_timeout_sec)) {
4855 		return -EINVAL;
4856 	}
4857 
4858 	ctx = calloc(1, sizeof(*ctx));
4859 	if (!ctx) {
4860 		return -ENOMEM;
4861 	}
4862 	ctx->base_name = base_name;
4863 	ctx->names = names;
4864 	ctx->count = count;
4865 	ctx->cb_fn = cb_fn;
4866 	ctx->cb_ctx = cb_ctx;
4867 	ctx->trid = *trid;
4868 
4869 	if (bdev_opts) {
4870 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
4871 	} else {
4872 		bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
4873 	}
4874 
4875 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
4876 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
4877 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4878 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
4879 				free(entry);
4880 				break;
4881 			}
4882 		}
4883 	}
4884 
4885 	if (drv_opts) {
4886 		memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
4887 	} else {
4888 		spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->drv_opts, sizeof(ctx->drv_opts));
4889 	}
4890 
4891 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
4892 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
4893 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
4894 	ctx->drv_opts.disable_read_ana_log_page = true;
4895 
4896 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
4897 		attach_cb = connect_attach_cb;
4898 	} else {
4899 		attach_cb = connect_set_failover_cb;
4900 	}
4901 
4902 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
4903 	if (ctx->probe_ctx == NULL) {
4904 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
4905 		free(ctx);
4906 		return -ENODEV;
4907 	}
4908 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
4909 
4910 	return 0;
4911 }
4912 
4913 int
4914 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id)
4915 {
4916 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
4917 	struct nvme_ctrlr	*nvme_ctrlr, *tmp_nvme_ctrlr;
4918 	struct nvme_path_id	*p, *t;
4919 	int			rc = -ENXIO;
4920 
4921 	if (name == NULL || path_id == NULL) {
4922 		return -EINVAL;
4923 	}
4924 
4925 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
4926 	if (nbdev_ctrlr == NULL) {
4927 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
4928 		return -ENODEV;
4929 	}
4930 
4931 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
4932 		TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
4933 			if (path_id->trid.trtype != 0) {
4934 				if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
4935 					if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
4936 						continue;
4937 					}
4938 				} else {
4939 					if (path_id->trid.trtype != p->trid.trtype) {
4940 						continue;
4941 					}
4942 				}
4943 			}
4944 
4945 			if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
4946 				if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
4947 					continue;
4948 				}
4949 			}
4950 
4951 			if (path_id->trid.adrfam != 0) {
4952 				if (path_id->trid.adrfam != p->trid.adrfam) {
4953 					continue;
4954 				}
4955 			}
4956 
4957 			if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
4958 				if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
4959 					continue;
4960 				}
4961 			}
4962 
4963 			if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
4964 				if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
4965 					continue;
4966 				}
4967 			}
4968 
4969 			if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
4970 				if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
4971 					continue;
4972 				}
4973 			}
4974 
4975 			if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
4976 				if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
4977 					continue;
4978 				}
4979 			}
4980 
4981 			/* If we made it here, then this path is a match! Now we need to remove it. */
4982 			if (p == nvme_ctrlr->active_path_id) {
4983 				/* This is the active path in use right now. The active path is always the first in the list. */
4984 
4985 				if (!TAILQ_NEXT(p, link)) {
4986 					/* The current path is the only path. */
4987 					rc = _bdev_nvme_delete(nvme_ctrlr, false);
4988 				} else {
4989 					/* There is an alternative path. */
4990 					rc = bdev_nvme_failover(nvme_ctrlr, true);
4991 				}
4992 			} else {
4993 				/* We are not using the specified path. */
4994 				TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
4995 				free(p);
4996 				rc = 0;
4997 			}
4998 
4999 			if (rc < 0 && rc != -ENXIO) {
5000 				return rc;
5001 			}
5002 
5003 
5004 		}
5005 	}
5006 
5007 	/* All nvme_ctrlrs were deleted or no nvme_ctrlr which had the trid was found. */
5008 	return rc;
5009 }
5010 
5011 #define DISCOVERY_INFOLOG(ctx, format, ...) \
5012 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
5013 
5014 #define DISCOVERY_ERRLOG(ctx, format, ...) \
5015 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
5016 
5017 struct discovery_entry_ctx {
5018 	char						name[128];
5019 	struct spdk_nvme_transport_id			trid;
5020 	struct spdk_nvme_ctrlr_opts			drv_opts;
5021 	struct spdk_nvmf_discovery_log_page_entry	entry;
5022 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
5023 	struct discovery_ctx				*ctx;
5024 };
5025 
5026 struct discovery_ctx {
5027 	char					*name;
5028 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
5029 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
5030 	void					*cb_ctx;
5031 	struct spdk_nvme_probe_ctx		*probe_ctx;
5032 	struct spdk_nvme_detach_ctx		*detach_ctx;
5033 	struct spdk_nvme_ctrlr			*ctrlr;
5034 	struct spdk_nvme_transport_id		trid;
5035 	struct discovery_entry_ctx		*entry_ctx_in_use;
5036 	struct spdk_poller			*poller;
5037 	struct spdk_nvme_ctrlr_opts		drv_opts;
5038 	struct nvme_ctrlr_opts			bdev_opts;
5039 	struct spdk_nvmf_discovery_log_page	*log_page;
5040 	TAILQ_ENTRY(discovery_ctx)		tailq;
5041 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
5042 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
5043 	int					rc;
5044 	bool					wait_for_attach;
5045 	uint64_t				timeout_ticks;
5046 	/* Denotes that the discovery service is being started. We're waiting
5047 	 * for the initial connection to the discovery controller to be
5048 	 * established and attach discovered NVM ctrlrs.
5049 	 */
5050 	bool					initializing;
5051 	/* Denotes if a discovery is currently in progress for this context.
5052 	 * That includes connecting to newly discovered subsystems.  Used to
5053 	 * ensure we do not start a new discovery until an existing one is
5054 	 * complete.
5055 	 */
5056 	bool					in_progress;
5057 
5058 	/* Denotes if another discovery is needed after the one in progress
5059 	 * completes.  Set when we receive an AER completion while a discovery
5060 	 * is already in progress.
5061 	 */
5062 	bool					pending;
5063 
5064 	/* Signal to the discovery context poller that it should stop the
5065 	 * discovery service, including detaching from the current discovery
5066 	 * controller.
5067 	 */
5068 	bool					stop;
5069 
5070 	struct spdk_thread			*calling_thread;
5071 	uint32_t				index;
5072 	uint32_t				attach_in_progress;
5073 	char					*hostnqn;
5074 };
5075 
5076 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
5077 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
5078 
5079 static void get_discovery_log_page(struct discovery_ctx *ctx);
5080 
5081 static void
5082 free_discovery_ctx(struct discovery_ctx *ctx)
5083 {
5084 	free(ctx->log_page);
5085 	free(ctx->hostnqn);
5086 	free(ctx->name);
5087 	free(ctx);
5088 }
5089 
5090 static void
5091 discovery_complete(struct discovery_ctx *ctx)
5092 {
5093 	ctx->initializing = false;
5094 	ctx->in_progress = false;
5095 	if (ctx->pending) {
5096 		ctx->pending = false;
5097 		get_discovery_log_page(ctx);
5098 	}
5099 }
5100 
5101 static void
5102 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
5103 			       struct spdk_nvmf_discovery_log_page_entry *entry)
5104 {
5105 	char *space;
5106 
5107 	trid->trtype = entry->trtype;
5108 	trid->adrfam = entry->adrfam;
5109 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
5110 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
5111 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn));
5112 
5113 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
5114 	 * But the log page entries typically pad them with spaces, not zeroes.
5115 	 * So add a NULL terminator to each of these fields at the appropriate
5116 	 * location.
5117 	 */
5118 	space = strchr(trid->traddr, ' ');
5119 	if (space) {
5120 		*space = 0;
5121 	}
5122 	space = strchr(trid->trsvcid, ' ');
5123 	if (space) {
5124 		*space = 0;
5125 	}
5126 	space = strchr(trid->subnqn, ' ');
5127 	if (space) {
5128 		*space = 0;
5129 	}
5130 }
5131 
5132 static void
5133 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
5134 {
5135 	ctx->stop = true;
5136 	ctx->stop_cb_fn = cb_fn;
5137 	ctx->cb_ctx = cb_ctx;
5138 
5139 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
5140 		struct discovery_entry_ctx *entry_ctx;
5141 		struct nvme_path_id path = {};
5142 
5143 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
5144 		path.trid = entry_ctx->trid;
5145 		bdev_nvme_delete(entry_ctx->name, &path);
5146 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
5147 		free(entry_ctx);
5148 	}
5149 
5150 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
5151 		struct discovery_entry_ctx *entry_ctx;
5152 
5153 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
5154 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
5155 		free(entry_ctx);
5156 	}
5157 
5158 	free(ctx->entry_ctx_in_use);
5159 	ctx->entry_ctx_in_use = NULL;
5160 }
5161 
5162 static void
5163 discovery_remove_controllers(struct discovery_ctx *ctx)
5164 {
5165 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
5166 	struct discovery_entry_ctx *entry_ctx, *tmp;
5167 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
5168 	struct spdk_nvme_transport_id old_trid;
5169 	uint64_t numrec, i;
5170 	bool found;
5171 
5172 	numrec = from_le64(&log_page->numrec);
5173 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
5174 		found = false;
5175 		old_entry = &entry_ctx->entry;
5176 		build_trid_from_log_page_entry(&old_trid, old_entry);
5177 		for (i = 0; i < numrec; i++) {
5178 			new_entry = &log_page->entries[i];
5179 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
5180 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
5181 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
5182 				found = true;
5183 				break;
5184 			}
5185 		}
5186 		if (!found) {
5187 			struct nvme_path_id path = {};
5188 
5189 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
5190 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
5191 
5192 			path.trid = entry_ctx->trid;
5193 			bdev_nvme_delete(entry_ctx->name, &path);
5194 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
5195 			free(entry_ctx);
5196 		}
5197 	}
5198 	free(log_page);
5199 	ctx->log_page = NULL;
5200 	discovery_complete(ctx);
5201 }
5202 
5203 static void
5204 complete_discovery_start(struct discovery_ctx *ctx, int status)
5205 {
5206 	ctx->timeout_ticks = 0;
5207 	ctx->rc = status;
5208 	if (ctx->start_cb_fn) {
5209 		ctx->start_cb_fn(ctx->cb_ctx, status);
5210 		ctx->start_cb_fn = NULL;
5211 		ctx->cb_ctx = NULL;
5212 	}
5213 }
5214 
5215 static void
5216 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
5217 {
5218 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
5219 	struct discovery_ctx *ctx = entry_ctx->ctx;
5220 
5221 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
5222 	ctx->attach_in_progress--;
5223 	if (ctx->attach_in_progress == 0) {
5224 		complete_discovery_start(ctx, ctx->rc);
5225 		if (ctx->initializing && ctx->rc != 0) {
5226 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
5227 			stop_discovery(ctx, NULL, ctx->cb_ctx);
5228 		} else {
5229 			discovery_remove_controllers(ctx);
5230 		}
5231 	}
5232 }
5233 
5234 static struct discovery_entry_ctx *
5235 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
5236 {
5237 	struct discovery_entry_ctx *new_ctx;
5238 
5239 	new_ctx = calloc(1, sizeof(*new_ctx));
5240 	if (new_ctx == NULL) {
5241 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
5242 		return NULL;
5243 	}
5244 
5245 	new_ctx->ctx = ctx;
5246 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
5247 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
5248 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
5249 	return new_ctx;
5250 }
5251 
5252 static void
5253 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
5254 		      struct spdk_nvmf_discovery_log_page *log_page)
5255 {
5256 	struct discovery_ctx *ctx = cb_arg;
5257 	struct discovery_entry_ctx *entry_ctx, *tmp;
5258 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
5259 	uint64_t numrec, i;
5260 	bool found;
5261 
5262 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
5263 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
5264 		return;
5265 	}
5266 
5267 	ctx->log_page = log_page;
5268 	assert(ctx->attach_in_progress == 0);
5269 	numrec = from_le64(&log_page->numrec);
5270 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
5271 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
5272 		free(entry_ctx);
5273 	}
5274 	for (i = 0; i < numrec; i++) {
5275 		found = false;
5276 		new_entry = &log_page->entries[i];
5277 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
5278 			struct discovery_entry_ctx *new_ctx;
5279 			struct spdk_nvme_transport_id trid = {};
5280 
5281 			build_trid_from_log_page_entry(&trid, new_entry);
5282 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
5283 			if (new_ctx == NULL) {
5284 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
5285 				break;
5286 			}
5287 
5288 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
5289 			continue;
5290 		}
5291 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
5292 			old_entry = &entry_ctx->entry;
5293 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
5294 				found = true;
5295 				break;
5296 			}
5297 		}
5298 		if (!found) {
5299 			struct discovery_entry_ctx *subnqn_ctx, *new_ctx;
5300 
5301 			TAILQ_FOREACH(subnqn_ctx, &ctx->nvm_entry_ctxs, tailq) {
5302 				if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
5303 					    sizeof(new_entry->subnqn))) {
5304 					break;
5305 				}
5306 			}
5307 
5308 			new_ctx = calloc(1, sizeof(*new_ctx));
5309 			if (new_ctx == NULL) {
5310 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
5311 				break;
5312 			}
5313 
5314 			new_ctx->ctx = ctx;
5315 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
5316 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
5317 			if (subnqn_ctx) {
5318 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
5319 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
5320 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
5321 						  new_ctx->name);
5322 			} else {
5323 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
5324 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
5325 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
5326 						  new_ctx->name);
5327 			}
5328 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
5329 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
5330 			rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
5331 					      discovery_attach_controller_done, new_ctx,
5332 					      &new_ctx->drv_opts, &ctx->bdev_opts, true);
5333 			if (rc == 0) {
5334 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
5335 				ctx->attach_in_progress++;
5336 			} else {
5337 				DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
5338 			}
5339 		}
5340 	}
5341 
5342 	if (ctx->attach_in_progress == 0) {
5343 		discovery_remove_controllers(ctx);
5344 	}
5345 }
5346 
5347 static void
5348 get_discovery_log_page(struct discovery_ctx *ctx)
5349 {
5350 	int rc;
5351 
5352 	assert(ctx->in_progress == false);
5353 	ctx->in_progress = true;
5354 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
5355 	if (rc != 0) {
5356 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
5357 	}
5358 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
5359 }
5360 
5361 static void
5362 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5363 {
5364 	struct discovery_ctx *ctx = arg;
5365 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
5366 
5367 	if (spdk_nvme_cpl_is_error(cpl)) {
5368 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
5369 		return;
5370 	}
5371 
5372 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
5373 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
5374 		return;
5375 	}
5376 
5377 	DISCOVERY_INFOLOG(ctx, "got aer\n");
5378 	if (ctx->in_progress) {
5379 		ctx->pending = true;
5380 		return;
5381 	}
5382 
5383 	get_discovery_log_page(ctx);
5384 }
5385 
5386 static void
5387 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5388 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
5389 {
5390 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5391 	struct discovery_ctx *ctx;
5392 
5393 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
5394 
5395 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
5396 	ctx->probe_ctx = NULL;
5397 	ctx->ctrlr = ctrlr;
5398 
5399 	if (ctx->rc != 0) {
5400 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
5401 				 ctx->rc);
5402 		return;
5403 	}
5404 
5405 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
5406 }
5407 
5408 static int
5409 discovery_poller(void *arg)
5410 {
5411 	struct discovery_ctx *ctx = arg;
5412 	struct spdk_nvme_transport_id *trid;
5413 	int rc;
5414 
5415 	if (ctx->detach_ctx) {
5416 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
5417 		if (rc != -EAGAIN) {
5418 			ctx->detach_ctx = NULL;
5419 			ctx->ctrlr = NULL;
5420 		}
5421 	} else if (ctx->stop) {
5422 		if (ctx->ctrlr != NULL) {
5423 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
5424 			if (rc == 0) {
5425 				return SPDK_POLLER_BUSY;
5426 			}
5427 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
5428 		}
5429 		spdk_poller_unregister(&ctx->poller);
5430 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
5431 		assert(ctx->start_cb_fn == NULL);
5432 		if (ctx->stop_cb_fn != NULL) {
5433 			ctx->stop_cb_fn(ctx->cb_ctx);
5434 		}
5435 		free_discovery_ctx(ctx);
5436 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
5437 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
5438 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
5439 			assert(ctx->initializing);
5440 			spdk_poller_unregister(&ctx->poller);
5441 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
5442 			complete_discovery_start(ctx, -ETIMEDOUT);
5443 			stop_discovery(ctx, NULL, NULL);
5444 			free_discovery_ctx(ctx);
5445 			return SPDK_POLLER_BUSY;
5446 		}
5447 
5448 		assert(ctx->entry_ctx_in_use == NULL);
5449 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
5450 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
5451 		trid = &ctx->entry_ctx_in_use->trid;
5452 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
5453 		if (ctx->probe_ctx) {
5454 			spdk_poller_unregister(&ctx->poller);
5455 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
5456 		} else {
5457 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
5458 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
5459 			ctx->entry_ctx_in_use = NULL;
5460 		}
5461 	} else if (ctx->probe_ctx) {
5462 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
5463 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
5464 			complete_discovery_start(ctx, -ETIMEDOUT);
5465 			return SPDK_POLLER_BUSY;
5466 		}
5467 
5468 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
5469 		if (rc != -EAGAIN) {
5470 			if (ctx->rc != 0) {
5471 				assert(ctx->initializing);
5472 				stop_discovery(ctx, NULL, ctx->cb_ctx);
5473 			} else {
5474 				assert(rc == 0);
5475 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
5476 				ctx->rc = rc;
5477 				get_discovery_log_page(ctx);
5478 			}
5479 		}
5480 	} else {
5481 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
5482 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
5483 			complete_discovery_start(ctx, -ETIMEDOUT);
5484 			/* We need to wait until all NVM ctrlrs are attached before we stop the
5485 			 * discovery service to make sure we don't detach a ctrlr that is still
5486 			 * being attached.
5487 			 */
5488 			if (ctx->attach_in_progress == 0) {
5489 				stop_discovery(ctx, NULL, ctx->cb_ctx);
5490 				return SPDK_POLLER_BUSY;
5491 			}
5492 		}
5493 
5494 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
5495 		if (rc < 0) {
5496 			spdk_poller_unregister(&ctx->poller);
5497 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
5498 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
5499 			ctx->entry_ctx_in_use = NULL;
5500 
5501 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
5502 			if (rc != 0) {
5503 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
5504 				ctx->ctrlr = NULL;
5505 			}
5506 		}
5507 	}
5508 
5509 	return SPDK_POLLER_BUSY;
5510 }
5511 
5512 static void
5513 start_discovery_poller(void *arg)
5514 {
5515 	struct discovery_ctx *ctx = arg;
5516 
5517 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
5518 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
5519 }
5520 
5521 int
5522 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
5523 			  const char *base_name,
5524 			  struct spdk_nvme_ctrlr_opts *drv_opts,
5525 			  struct nvme_ctrlr_opts *bdev_opts,
5526 			  uint64_t attach_timeout,
5527 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
5528 {
5529 	struct discovery_ctx *ctx;
5530 	struct discovery_entry_ctx *discovery_entry_ctx;
5531 
5532 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
5533 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
5534 		if (strcmp(ctx->name, base_name) == 0) {
5535 			return -EEXIST;
5536 		}
5537 
5538 		if (ctx->entry_ctx_in_use != NULL) {
5539 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
5540 				return -EEXIST;
5541 			}
5542 		}
5543 
5544 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
5545 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
5546 				return -EEXIST;
5547 			}
5548 		}
5549 	}
5550 
5551 	ctx = calloc(1, sizeof(*ctx));
5552 	if (ctx == NULL) {
5553 		return -ENOMEM;
5554 	}
5555 
5556 	ctx->name = strdup(base_name);
5557 	if (ctx->name == NULL) {
5558 		free_discovery_ctx(ctx);
5559 		return -ENOMEM;
5560 	}
5561 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
5562 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
5563 	ctx->bdev_opts.from_discovery_service = true;
5564 	ctx->calling_thread = spdk_get_thread();
5565 	ctx->start_cb_fn = cb_fn;
5566 	ctx->cb_ctx = cb_ctx;
5567 	ctx->initializing = true;
5568 	if (ctx->start_cb_fn) {
5569 		/* We can use this when dumping json to denote if this RPC parameter
5570 		 * was specified or not.
5571 		 */
5572 		ctx->wait_for_attach = true;
5573 	}
5574 	if (attach_timeout != 0) {
5575 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
5576 				     spdk_get_ticks_hz() / 1000ull;
5577 	}
5578 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
5579 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
5580 	memcpy(&ctx->trid, trid, sizeof(*trid));
5581 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
5582 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
5583 	if (ctx->hostnqn == NULL) {
5584 		free_discovery_ctx(ctx);
5585 		return -ENOMEM;
5586 	}
5587 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
5588 	if (discovery_entry_ctx == NULL) {
5589 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
5590 		free_discovery_ctx(ctx);
5591 		return -ENOMEM;
5592 	}
5593 
5594 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
5595 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
5596 	return 0;
5597 }
5598 
5599 int
5600 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
5601 {
5602 	struct discovery_ctx *ctx;
5603 
5604 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
5605 		if (strcmp(name, ctx->name) == 0) {
5606 			if (ctx->stop) {
5607 				return -EALREADY;
5608 			}
5609 			/* If we're still starting the discovery service and ->rc is non-zero, we're
5610 			 * going to stop it as soon as we can
5611 			 */
5612 			if (ctx->initializing && ctx->rc != 0) {
5613 				return -EALREADY;
5614 			}
5615 			stop_discovery(ctx, cb_fn, cb_ctx);
5616 			return 0;
5617 		}
5618 	}
5619 
5620 	return -ENOENT;
5621 }
5622 
5623 static int
5624 bdev_nvme_library_init(void)
5625 {
5626 	g_bdev_nvme_init_thread = spdk_get_thread();
5627 
5628 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
5629 				bdev_nvme_destroy_poll_group_cb,
5630 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
5631 
5632 	return 0;
5633 }
5634 
5635 static void
5636 bdev_nvme_fini_destruct_ctrlrs(void)
5637 {
5638 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5639 	struct nvme_ctrlr *nvme_ctrlr;
5640 
5641 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5642 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
5643 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
5644 			pthread_mutex_lock(&nvme_ctrlr->mutex);
5645 			if (nvme_ctrlr->destruct) {
5646 				/* This controller's destruction was already started
5647 				 * before the application started shutting down
5648 				 */
5649 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
5650 				continue;
5651 			}
5652 			nvme_ctrlr->destruct = true;
5653 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
5654 
5655 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
5656 					     nvme_ctrlr);
5657 		}
5658 	}
5659 
5660 	g_bdev_nvme_module_finish = true;
5661 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5662 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
5663 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
5664 		spdk_bdev_module_fini_done();
5665 		return;
5666 	}
5667 
5668 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5669 }
5670 
5671 static void
5672 check_discovery_fini(void *arg)
5673 {
5674 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
5675 		bdev_nvme_fini_destruct_ctrlrs();
5676 	}
5677 }
5678 
5679 static void
5680 bdev_nvme_library_fini(void)
5681 {
5682 	struct nvme_probe_skip_entry *entry, *entry_tmp;
5683 	struct discovery_ctx *ctx;
5684 
5685 	spdk_poller_unregister(&g_hotplug_poller);
5686 	free(g_hotplug_probe_ctx);
5687 	g_hotplug_probe_ctx = NULL;
5688 
5689 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
5690 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
5691 		free(entry);
5692 	}
5693 
5694 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
5695 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
5696 		bdev_nvme_fini_destruct_ctrlrs();
5697 	} else {
5698 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
5699 			stop_discovery(ctx, check_discovery_fini, NULL);
5700 		}
5701 	}
5702 }
5703 
5704 static void
5705 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
5706 {
5707 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5708 	struct spdk_bdev *bdev = bdev_io->bdev;
5709 	struct spdk_dif_ctx dif_ctx;
5710 	struct spdk_dif_error err_blk = {};
5711 	int rc;
5712 
5713 	rc = spdk_dif_ctx_init(&dif_ctx,
5714 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
5715 			       bdev->dif_is_head_of_md, bdev->dif_type, bdev->dif_check_flags,
5716 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0);
5717 	if (rc != 0) {
5718 		SPDK_ERRLOG("Initialization of DIF context failed\n");
5719 		return;
5720 	}
5721 
5722 	if (bdev->md_interleave) {
5723 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
5724 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
5725 	} else {
5726 		struct iovec md_iov = {
5727 			.iov_base	= bdev_io->u.bdev.md_buf,
5728 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
5729 		};
5730 
5731 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
5732 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
5733 	}
5734 
5735 	if (rc != 0) {
5736 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
5737 			    err_blk.err_type, err_blk.err_offset);
5738 	} else {
5739 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
5740 	}
5741 }
5742 
5743 static void
5744 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
5745 {
5746 	struct nvme_bdev_io *bio = ref;
5747 
5748 	if (spdk_nvme_cpl_is_success(cpl)) {
5749 		/* Run PI verification for read data buffer. */
5750 		bdev_nvme_verify_pi_error(bio);
5751 	}
5752 
5753 	/* Return original completion status */
5754 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
5755 }
5756 
5757 static void
5758 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
5759 {
5760 	struct nvme_bdev_io *bio = ref;
5761 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5762 	int ret;
5763 
5764 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
5765 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
5766 			    cpl->status.sct, cpl->status.sc);
5767 
5768 		/* Save completion status to use after verifying PI error. */
5769 		bio->cpl = *cpl;
5770 
5771 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
5772 			/* Read without PI checking to verify PI error. */
5773 			ret = bdev_nvme_no_pi_readv(bio,
5774 						    bdev_io->u.bdev.iovs,
5775 						    bdev_io->u.bdev.iovcnt,
5776 						    bdev_io->u.bdev.md_buf,
5777 						    bdev_io->u.bdev.num_blocks,
5778 						    bdev_io->u.bdev.offset_blocks);
5779 			if (ret == 0) {
5780 				return;
5781 			}
5782 		}
5783 	}
5784 
5785 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5786 }
5787 
5788 static void
5789 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
5790 {
5791 	struct nvme_bdev_io *bio = ref;
5792 
5793 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
5794 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
5795 			    cpl->status.sct, cpl->status.sc);
5796 		/* Run PI verification for write data buffer if PI error is detected. */
5797 		bdev_nvme_verify_pi_error(bio);
5798 	}
5799 
5800 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5801 }
5802 
5803 static void
5804 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
5805 {
5806 	struct nvme_bdev_io *bio = ref;
5807 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5808 
5809 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
5810 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
5811 	 */
5812 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
5813 
5814 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
5815 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
5816 			    cpl->status.sct, cpl->status.sc);
5817 		/* Run PI verification for zone append data buffer if PI error is detected. */
5818 		bdev_nvme_verify_pi_error(bio);
5819 	}
5820 
5821 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5822 }
5823 
5824 static void
5825 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
5826 {
5827 	struct nvme_bdev_io *bio = ref;
5828 
5829 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
5830 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
5831 			    cpl->status.sct, cpl->status.sc);
5832 		/* Run PI verification for compare data buffer if PI error is detected. */
5833 		bdev_nvme_verify_pi_error(bio);
5834 	}
5835 
5836 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5837 }
5838 
5839 static void
5840 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
5841 {
5842 	struct nvme_bdev_io *bio = ref;
5843 
5844 	/* Compare operation completion */
5845 	if (!bio->first_fused_completed) {
5846 		/* Save compare result for write callback */
5847 		bio->cpl = *cpl;
5848 		bio->first_fused_completed = true;
5849 		return;
5850 	}
5851 
5852 	/* Write operation completion */
5853 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
5854 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
5855 		 * complete the IO with the compare operation's status.
5856 		 */
5857 		if (!spdk_nvme_cpl_is_error(cpl)) {
5858 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
5859 		}
5860 
5861 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
5862 	} else {
5863 		bdev_nvme_io_complete_nvme_status(bio, cpl);
5864 	}
5865 }
5866 
5867 static void
5868 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
5869 {
5870 	struct nvme_bdev_io *bio = ref;
5871 
5872 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5873 }
5874 
5875 static int
5876 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
5877 {
5878 	switch (desc->zt) {
5879 	case SPDK_NVME_ZONE_TYPE_SEQWR:
5880 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
5881 		break;
5882 	default:
5883 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
5884 		return -EIO;
5885 	}
5886 
5887 	switch (desc->zs) {
5888 	case SPDK_NVME_ZONE_STATE_EMPTY:
5889 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
5890 		break;
5891 	case SPDK_NVME_ZONE_STATE_IOPEN:
5892 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
5893 		break;
5894 	case SPDK_NVME_ZONE_STATE_EOPEN:
5895 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
5896 		break;
5897 	case SPDK_NVME_ZONE_STATE_CLOSED:
5898 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
5899 		break;
5900 	case SPDK_NVME_ZONE_STATE_RONLY:
5901 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
5902 		break;
5903 	case SPDK_NVME_ZONE_STATE_FULL:
5904 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
5905 		break;
5906 	case SPDK_NVME_ZONE_STATE_OFFLINE:
5907 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
5908 		break;
5909 	default:
5910 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
5911 		return -EIO;
5912 	}
5913 
5914 	info->zone_id = desc->zslba;
5915 	info->write_pointer = desc->wp;
5916 	info->capacity = desc->zcap;
5917 
5918 	return 0;
5919 }
5920 
5921 static void
5922 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
5923 {
5924 	struct nvme_bdev_io *bio = ref;
5925 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5926 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
5927 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
5928 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
5929 	uint64_t max_zones_per_buf, i;
5930 	uint32_t zone_report_bufsize;
5931 	struct spdk_nvme_ns *ns;
5932 	struct spdk_nvme_qpair *qpair;
5933 	int ret;
5934 
5935 	if (spdk_nvme_cpl_is_error(cpl)) {
5936 		goto out_complete_io_nvme_cpl;
5937 	}
5938 
5939 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
5940 		ret = -ENXIO;
5941 		goto out_complete_io_ret;
5942 	}
5943 
5944 	ns = bio->io_path->nvme_ns->ns;
5945 	qpair = bio->io_path->qpair->qpair;
5946 
5947 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
5948 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
5949 			    sizeof(bio->zone_report_buf->descs[0]);
5950 
5951 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
5952 		ret = -EINVAL;
5953 		goto out_complete_io_ret;
5954 	}
5955 
5956 	if (!bio->zone_report_buf->nr_zones) {
5957 		ret = -EINVAL;
5958 		goto out_complete_io_ret;
5959 	}
5960 
5961 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
5962 		ret = fill_zone_from_report(&info[bio->handled_zones],
5963 					    &bio->zone_report_buf->descs[i]);
5964 		if (ret) {
5965 			goto out_complete_io_ret;
5966 		}
5967 		bio->handled_zones++;
5968 	}
5969 
5970 	if (bio->handled_zones < zones_to_copy) {
5971 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
5972 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
5973 
5974 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
5975 		ret = spdk_nvme_zns_report_zones(ns, qpair,
5976 						 bio->zone_report_buf, zone_report_bufsize,
5977 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
5978 						 bdev_nvme_get_zone_info_done, bio);
5979 		if (!ret) {
5980 			return;
5981 		} else {
5982 			goto out_complete_io_ret;
5983 		}
5984 	}
5985 
5986 out_complete_io_nvme_cpl:
5987 	free(bio->zone_report_buf);
5988 	bio->zone_report_buf = NULL;
5989 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5990 	return;
5991 
5992 out_complete_io_ret:
5993 	free(bio->zone_report_buf);
5994 	bio->zone_report_buf = NULL;
5995 	bdev_nvme_io_complete(bio, ret);
5996 }
5997 
5998 static void
5999 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
6000 {
6001 	struct nvme_bdev_io *bio = ref;
6002 
6003 	bdev_nvme_io_complete_nvme_status(bio, cpl);
6004 }
6005 
6006 static void
6007 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
6008 {
6009 	struct nvme_bdev_io *bio = ctx;
6010 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6011 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
6012 
6013 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
6014 
6015 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
6016 }
6017 
6018 static void
6019 bdev_nvme_abort_complete(void *ctx)
6020 {
6021 	struct nvme_bdev_io *bio = ctx;
6022 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6023 
6024 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
6025 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
6026 	} else {
6027 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
6028 	}
6029 }
6030 
6031 static void
6032 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
6033 {
6034 	struct nvme_bdev_io *bio = ref;
6035 
6036 	bio->cpl = *cpl;
6037 	spdk_thread_send_msg(bio->orig_thread, bdev_nvme_abort_complete, bio);
6038 }
6039 
6040 static void
6041 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
6042 {
6043 	struct nvme_bdev_io *bio = ref;
6044 
6045 	bio->cpl = *cpl;
6046 	spdk_thread_send_msg(bio->orig_thread,
6047 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
6048 }
6049 
6050 static void
6051 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
6052 {
6053 	struct nvme_bdev_io *bio = ref;
6054 	struct iovec *iov;
6055 
6056 	bio->iov_offset = sgl_offset;
6057 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
6058 		iov = &bio->iovs[bio->iovpos];
6059 		if (bio->iov_offset < iov->iov_len) {
6060 			break;
6061 		}
6062 
6063 		bio->iov_offset -= iov->iov_len;
6064 	}
6065 }
6066 
6067 static int
6068 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
6069 {
6070 	struct nvme_bdev_io *bio = ref;
6071 	struct iovec *iov;
6072 
6073 	assert(bio->iovpos < bio->iovcnt);
6074 
6075 	iov = &bio->iovs[bio->iovpos];
6076 
6077 	*address = iov->iov_base;
6078 	*length = iov->iov_len;
6079 
6080 	if (bio->iov_offset) {
6081 		assert(bio->iov_offset <= iov->iov_len);
6082 		*address += bio->iov_offset;
6083 		*length -= bio->iov_offset;
6084 	}
6085 
6086 	bio->iov_offset += *length;
6087 	if (bio->iov_offset == iov->iov_len) {
6088 		bio->iovpos++;
6089 		bio->iov_offset = 0;
6090 	}
6091 
6092 	return 0;
6093 }
6094 
6095 static void
6096 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
6097 {
6098 	struct nvme_bdev_io *bio = ref;
6099 	struct iovec *iov;
6100 
6101 	bio->fused_iov_offset = sgl_offset;
6102 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
6103 		iov = &bio->fused_iovs[bio->fused_iovpos];
6104 		if (bio->fused_iov_offset < iov->iov_len) {
6105 			break;
6106 		}
6107 
6108 		bio->fused_iov_offset -= iov->iov_len;
6109 	}
6110 }
6111 
6112 static int
6113 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
6114 {
6115 	struct nvme_bdev_io *bio = ref;
6116 	struct iovec *iov;
6117 
6118 	assert(bio->fused_iovpos < bio->fused_iovcnt);
6119 
6120 	iov = &bio->fused_iovs[bio->fused_iovpos];
6121 
6122 	*address = iov->iov_base;
6123 	*length = iov->iov_len;
6124 
6125 	if (bio->fused_iov_offset) {
6126 		assert(bio->fused_iov_offset <= iov->iov_len);
6127 		*address += bio->fused_iov_offset;
6128 		*length -= bio->fused_iov_offset;
6129 	}
6130 
6131 	bio->fused_iov_offset += *length;
6132 	if (bio->fused_iov_offset == iov->iov_len) {
6133 		bio->fused_iovpos++;
6134 		bio->fused_iov_offset = 0;
6135 	}
6136 
6137 	return 0;
6138 }
6139 
6140 static int
6141 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6142 		      void *md, uint64_t lba_count, uint64_t lba)
6143 {
6144 	int rc;
6145 
6146 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
6147 		      lba_count, lba);
6148 
6149 	bio->iovs = iov;
6150 	bio->iovcnt = iovcnt;
6151 	bio->iovpos = 0;
6152 	bio->iov_offset = 0;
6153 
6154 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
6155 					    bio->io_path->qpair->qpair,
6156 					    lba, lba_count,
6157 					    bdev_nvme_no_pi_readv_done, bio, 0,
6158 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6159 					    md, 0, 0);
6160 
6161 	if (rc != 0 && rc != -ENOMEM) {
6162 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
6163 	}
6164 	return rc;
6165 }
6166 
6167 static int
6168 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6169 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
6170 		struct spdk_bdev_ext_io_opts *ext_opts)
6171 {
6172 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6173 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6174 	int rc;
6175 
6176 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
6177 		      lba_count, lba);
6178 
6179 	bio->iovs = iov;
6180 	bio->iovcnt = iovcnt;
6181 	bio->iovpos = 0;
6182 	bio->iov_offset = 0;
6183 
6184 	if (ext_opts) {
6185 		bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts);
6186 		bio->ext_opts.memory_domain = ext_opts->memory_domain;
6187 		bio->ext_opts.memory_domain_ctx = ext_opts->memory_domain_ctx;
6188 		bio->ext_opts.io_flags = flags;
6189 		bio->ext_opts.metadata = md;
6190 
6191 		rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
6192 						bdev_nvme_readv_done, bio,
6193 						bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6194 						&bio->ext_opts);
6195 	} else if (iovcnt == 1) {
6196 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base, md, lba,
6197 						   lba_count,
6198 						   bdev_nvme_readv_done, bio,
6199 						   flags,
6200 						   0, 0);
6201 	} else {
6202 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
6203 						    bdev_nvme_readv_done, bio, flags,
6204 						    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6205 						    md, 0, 0);
6206 	}
6207 
6208 	if (rc != 0 && rc != -ENOMEM) {
6209 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
6210 	}
6211 	return rc;
6212 }
6213 
6214 static int
6215 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6216 		 void *md, uint64_t lba_count, uint64_t lba,
6217 		 uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts)
6218 {
6219 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6220 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6221 	int rc;
6222 
6223 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
6224 		      lba_count, lba);
6225 
6226 	bio->iovs = iov;
6227 	bio->iovcnt = iovcnt;
6228 	bio->iovpos = 0;
6229 	bio->iov_offset = 0;
6230 
6231 	if (ext_opts) {
6232 		bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts);
6233 		bio->ext_opts.memory_domain = ext_opts->memory_domain;
6234 		bio->ext_opts.memory_domain_ctx = ext_opts->memory_domain_ctx;
6235 		bio->ext_opts.io_flags = flags;
6236 		bio->ext_opts.metadata = md;
6237 
6238 		rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
6239 						 bdev_nvme_writev_done, bio,
6240 						 bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6241 						 &bio->ext_opts);
6242 	} else if (iovcnt == 1) {
6243 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base, md, lba,
6244 						    lba_count,
6245 						    bdev_nvme_writev_done, bio,
6246 						    flags,
6247 						    0, 0);
6248 	} else {
6249 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
6250 						     bdev_nvme_writev_done, bio, flags,
6251 						     bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6252 						     md, 0, 0);
6253 	}
6254 
6255 	if (rc != 0 && rc != -ENOMEM) {
6256 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
6257 	}
6258 	return rc;
6259 }
6260 
6261 static int
6262 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6263 		       void *md, uint64_t lba_count, uint64_t zslba,
6264 		       uint32_t flags)
6265 {
6266 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6267 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6268 	int rc;
6269 
6270 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
6271 		      lba_count, zslba);
6272 
6273 	bio->iovs = iov;
6274 	bio->iovcnt = iovcnt;
6275 	bio->iovpos = 0;
6276 	bio->iov_offset = 0;
6277 
6278 	if (iovcnt == 1) {
6279 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
6280 						       lba_count,
6281 						       bdev_nvme_zone_appendv_done, bio,
6282 						       flags,
6283 						       0, 0);
6284 	} else {
6285 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
6286 							bdev_nvme_zone_appendv_done, bio, flags,
6287 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6288 							md, 0, 0);
6289 	}
6290 
6291 	if (rc != 0 && rc != -ENOMEM) {
6292 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
6293 	}
6294 	return rc;
6295 }
6296 
6297 static int
6298 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6299 		   void *md, uint64_t lba_count, uint64_t lba,
6300 		   uint32_t flags)
6301 {
6302 	int rc;
6303 
6304 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
6305 		      lba_count, lba);
6306 
6307 	bio->iovs = iov;
6308 	bio->iovcnt = iovcnt;
6309 	bio->iovpos = 0;
6310 	bio->iov_offset = 0;
6311 
6312 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
6313 					       bio->io_path->qpair->qpair,
6314 					       lba, lba_count,
6315 					       bdev_nvme_comparev_done, bio, flags,
6316 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6317 					       md, 0, 0);
6318 
6319 	if (rc != 0 && rc != -ENOMEM) {
6320 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
6321 	}
6322 	return rc;
6323 }
6324 
6325 static int
6326 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
6327 			      struct iovec *write_iov, int write_iovcnt,
6328 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
6329 {
6330 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6331 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6332 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6333 	int rc;
6334 
6335 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
6336 		      lba_count, lba);
6337 
6338 	bio->iovs = cmp_iov;
6339 	bio->iovcnt = cmp_iovcnt;
6340 	bio->iovpos = 0;
6341 	bio->iov_offset = 0;
6342 	bio->fused_iovs = write_iov;
6343 	bio->fused_iovcnt = write_iovcnt;
6344 	bio->fused_iovpos = 0;
6345 	bio->fused_iov_offset = 0;
6346 
6347 	if (bdev_io->num_retries == 0) {
6348 		bio->first_fused_submitted = false;
6349 		bio->first_fused_completed = false;
6350 	}
6351 
6352 	if (!bio->first_fused_submitted) {
6353 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
6354 		memset(&bio->cpl, 0, sizeof(bio->cpl));
6355 
6356 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
6357 						       bdev_nvme_comparev_and_writev_done, bio, flags,
6358 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
6359 		if (rc == 0) {
6360 			bio->first_fused_submitted = true;
6361 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
6362 		} else {
6363 			if (rc != -ENOMEM) {
6364 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
6365 			}
6366 			return rc;
6367 		}
6368 	}
6369 
6370 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
6371 
6372 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
6373 					     bdev_nvme_comparev_and_writev_done, bio, flags,
6374 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
6375 	if (rc != 0 && rc != -ENOMEM) {
6376 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
6377 		rc = 0;
6378 	}
6379 
6380 	return rc;
6381 }
6382 
6383 static int
6384 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
6385 {
6386 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
6387 	struct spdk_nvme_dsm_range *range;
6388 	uint64_t offset, remaining;
6389 	uint64_t num_ranges_u64;
6390 	uint16_t num_ranges;
6391 	int rc;
6392 
6393 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
6394 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6395 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
6396 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
6397 		return -EINVAL;
6398 	}
6399 	num_ranges = (uint16_t)num_ranges_u64;
6400 
6401 	offset = offset_blocks;
6402 	remaining = num_blocks;
6403 	range = &dsm_ranges[0];
6404 
6405 	/* Fill max-size ranges until the remaining blocks fit into one range */
6406 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
6407 		range->attributes.raw = 0;
6408 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6409 		range->starting_lba = offset;
6410 
6411 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6412 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6413 		range++;
6414 	}
6415 
6416 	/* Final range describes the remaining blocks */
6417 	range->attributes.raw = 0;
6418 	range->length = remaining;
6419 	range->starting_lba = offset;
6420 
6421 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
6422 			bio->io_path->qpair->qpair,
6423 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
6424 			dsm_ranges, num_ranges,
6425 			bdev_nvme_queued_done, bio);
6426 
6427 	return rc;
6428 }
6429 
6430 static int
6431 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
6432 {
6433 	if (num_blocks > UINT16_MAX + 1) {
6434 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
6435 		return -EINVAL;
6436 	}
6437 
6438 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
6439 					     bio->io_path->qpair->qpair,
6440 					     offset_blocks, num_blocks,
6441 					     bdev_nvme_queued_done, bio,
6442 					     0);
6443 }
6444 
6445 static int
6446 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
6447 			struct spdk_bdev_zone_info *info)
6448 {
6449 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6450 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6451 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
6452 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
6453 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
6454 
6455 	if (zone_id % zone_size != 0) {
6456 		return -EINVAL;
6457 	}
6458 
6459 	if (num_zones > total_zones || !num_zones) {
6460 		return -EINVAL;
6461 	}
6462 
6463 	assert(!bio->zone_report_buf);
6464 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
6465 	if (!bio->zone_report_buf) {
6466 		return -ENOMEM;
6467 	}
6468 
6469 	bio->handled_zones = 0;
6470 
6471 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
6472 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
6473 					  bdev_nvme_get_zone_info_done, bio);
6474 }
6475 
6476 static int
6477 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
6478 			  enum spdk_bdev_zone_action action)
6479 {
6480 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6481 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6482 
6483 	switch (action) {
6484 	case SPDK_BDEV_ZONE_CLOSE:
6485 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
6486 						bdev_nvme_zone_management_done, bio);
6487 	case SPDK_BDEV_ZONE_FINISH:
6488 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
6489 						 bdev_nvme_zone_management_done, bio);
6490 	case SPDK_BDEV_ZONE_OPEN:
6491 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
6492 					       bdev_nvme_zone_management_done, bio);
6493 	case SPDK_BDEV_ZONE_RESET:
6494 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
6495 						bdev_nvme_zone_management_done, bio);
6496 	case SPDK_BDEV_ZONE_OFFLINE:
6497 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
6498 						  bdev_nvme_zone_management_done, bio);
6499 	default:
6500 		return -EINVAL;
6501 	}
6502 }
6503 
6504 static void
6505 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
6506 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
6507 {
6508 	struct nvme_io_path *io_path;
6509 	struct nvme_ctrlr *nvme_ctrlr;
6510 	uint32_t max_xfer_size;
6511 	int rc = -ENXIO;
6512 
6513 	/* Choose the first ctrlr which is not failed. */
6514 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
6515 		nvme_ctrlr = io_path->qpair->ctrlr;
6516 
6517 		/* We should skip any unavailable nvme_ctrlr rather than checking
6518 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
6519 		 */
6520 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
6521 			continue;
6522 		}
6523 
6524 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
6525 
6526 		if (nbytes > max_xfer_size) {
6527 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
6528 			rc = -EINVAL;
6529 			goto err;
6530 		}
6531 
6532 		bio->io_path = io_path;
6533 		bio->orig_thread = spdk_get_thread();
6534 
6535 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
6536 						   bdev_nvme_admin_passthru_done, bio);
6537 		if (rc == 0) {
6538 			return;
6539 		}
6540 	}
6541 
6542 err:
6543 	bdev_nvme_admin_passthru_complete(bio, rc);
6544 }
6545 
6546 static int
6547 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
6548 		      void *buf, size_t nbytes)
6549 {
6550 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6551 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6552 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
6553 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
6554 
6555 	if (nbytes > max_xfer_size) {
6556 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
6557 		return -EINVAL;
6558 	}
6559 
6560 	/*
6561 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
6562 	 * so fill it out automatically.
6563 	 */
6564 	cmd->nsid = spdk_nvme_ns_get_id(ns);
6565 
6566 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
6567 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
6568 }
6569 
6570 static int
6571 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
6572 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
6573 {
6574 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6575 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6576 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
6577 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
6578 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
6579 
6580 	if (nbytes > max_xfer_size) {
6581 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
6582 		return -EINVAL;
6583 	}
6584 
6585 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
6586 		SPDK_ERRLOG("invalid meta data buffer size\n");
6587 		return -EINVAL;
6588 	}
6589 
6590 	/*
6591 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
6592 	 * so fill it out automatically.
6593 	 */
6594 	cmd->nsid = spdk_nvme_ns_get_id(ns);
6595 
6596 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
6597 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
6598 }
6599 
6600 static void
6601 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
6602 		struct nvme_bdev_io *bio_to_abort)
6603 {
6604 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6605 	struct spdk_bdev_io *bdev_io_to_abort;
6606 	struct nvme_io_path *io_path;
6607 	struct nvme_ctrlr *nvme_ctrlr;
6608 	int rc = 0;
6609 
6610 	bio->orig_thread = spdk_get_thread();
6611 
6612 	/* Traverse the retry_io_list first. */
6613 	TAILQ_FOREACH(bdev_io_to_abort, &nbdev_ch->retry_io_list, module_link) {
6614 		if ((struct nvme_bdev_io *)bdev_io_to_abort->driver_ctx == bio_to_abort) {
6615 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io_to_abort, module_link);
6616 			__bdev_nvme_io_complete(bdev_io_to_abort, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
6617 
6618 			__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
6619 			return;
6620 		}
6621 	}
6622 
6623 	/* Even admin commands, they were submitted to only nvme_ctrlrs which were
6624 	 * on any io_path. So traverse the io_path list for not only I/O commands
6625 	 * but also admin commands.
6626 	 */
6627 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
6628 		nvme_ctrlr = io_path->qpair->ctrlr;
6629 
6630 		rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ctrlr->ctrlr,
6631 						   io_path->qpair->qpair,
6632 						   bio_to_abort,
6633 						   bdev_nvme_abort_done, bio);
6634 		if (rc == -ENOENT) {
6635 			/* If no command was found in I/O qpair, the target command may be
6636 			 * admin command.
6637 			 */
6638 			rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ctrlr->ctrlr,
6639 							   NULL,
6640 							   bio_to_abort,
6641 							   bdev_nvme_abort_done, bio);
6642 		}
6643 
6644 		if (rc != -ENOENT) {
6645 			break;
6646 		}
6647 	}
6648 
6649 	if (rc != 0) {
6650 		/* If no command was found or there was any error, complete the abort
6651 		 * request with failure.
6652 		 */
6653 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
6654 	}
6655 }
6656 
6657 static int
6658 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
6659 	       uint64_t num_blocks)
6660 {
6661 	struct spdk_nvme_scc_source_range range = {
6662 		.slba = src_offset_blocks,
6663 		.nlb = num_blocks - 1
6664 	};
6665 
6666 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
6667 				     bio->io_path->qpair->qpair,
6668 				     &range, 1, dst_offset_blocks,
6669 				     bdev_nvme_queued_done, bio);
6670 }
6671 
6672 static void
6673 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
6674 {
6675 	const char	*action;
6676 
6677 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
6678 		action = "reset";
6679 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
6680 		action = "abort";
6681 	} else {
6682 		action = "none";
6683 	}
6684 
6685 	spdk_json_write_object_begin(w);
6686 
6687 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
6688 
6689 	spdk_json_write_named_object_begin(w, "params");
6690 	spdk_json_write_named_string(w, "action_on_timeout", action);
6691 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
6692 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
6693 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
6694 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
6695 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
6696 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
6697 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
6698 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
6699 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
6700 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
6701 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
6702 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
6703 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
6704 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
6705 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
6706 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
6707 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
6708 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
6709 	spdk_json_write_object_end(w);
6710 
6711 	spdk_json_write_object_end(w);
6712 }
6713 
6714 static void
6715 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
6716 {
6717 	struct spdk_nvme_transport_id trid;
6718 
6719 	spdk_json_write_object_begin(w);
6720 
6721 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
6722 
6723 	spdk_json_write_named_object_begin(w, "params");
6724 	spdk_json_write_named_string(w, "name", ctx->name);
6725 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
6726 
6727 	trid = ctx->trid;
6728 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
6729 	nvme_bdev_dump_trid_json(&trid, w);
6730 
6731 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
6732 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
6733 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
6734 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
6735 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
6736 	spdk_json_write_object_end(w);
6737 
6738 	spdk_json_write_object_end(w);
6739 }
6740 
6741 static void
6742 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
6743 		       struct nvme_ctrlr *nvme_ctrlr)
6744 {
6745 	struct spdk_nvme_transport_id	*trid;
6746 
6747 	if (nvme_ctrlr->opts.from_discovery_service) {
6748 		/* Do not emit an RPC for this - it will be implicitly
6749 		 * covered by a separate bdev_nvme_start_discovery RPC.
6750 		 */
6751 		return;
6752 	}
6753 
6754 	trid = &nvme_ctrlr->active_path_id->trid;
6755 
6756 	spdk_json_write_object_begin(w);
6757 
6758 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
6759 
6760 	spdk_json_write_named_object_begin(w, "params");
6761 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
6762 	nvme_bdev_dump_trid_json(trid, w);
6763 	spdk_json_write_named_bool(w, "prchk_reftag",
6764 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
6765 	spdk_json_write_named_bool(w, "prchk_guard",
6766 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
6767 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
6768 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
6769 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
6770 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
6771 
6772 	spdk_json_write_object_end(w);
6773 
6774 	spdk_json_write_object_end(w);
6775 }
6776 
6777 static void
6778 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
6779 {
6780 	spdk_json_write_object_begin(w);
6781 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
6782 
6783 	spdk_json_write_named_object_begin(w, "params");
6784 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
6785 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
6786 	spdk_json_write_object_end(w);
6787 
6788 	spdk_json_write_object_end(w);
6789 }
6790 
6791 static int
6792 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
6793 {
6794 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
6795 	struct nvme_ctrlr	*nvme_ctrlr;
6796 	struct discovery_ctx	*ctx;
6797 
6798 	bdev_nvme_opts_config_json(w);
6799 
6800 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6801 
6802 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
6803 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6804 			nvme_ctrlr_config_json(w, nvme_ctrlr);
6805 		}
6806 	}
6807 
6808 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6809 		bdev_nvme_discovery_config_json(w, ctx);
6810 	}
6811 
6812 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
6813 	 * before enabling hotplug poller.
6814 	 */
6815 	bdev_nvme_hotplug_config_json(w);
6816 
6817 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6818 	return 0;
6819 }
6820 
6821 struct spdk_nvme_ctrlr *
6822 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
6823 {
6824 	struct nvme_bdev *nbdev;
6825 	struct nvme_ns *nvme_ns;
6826 
6827 	if (!bdev || bdev->module != &nvme_if) {
6828 		return NULL;
6829 	}
6830 
6831 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
6832 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
6833 	assert(nvme_ns != NULL);
6834 
6835 	return nvme_ns->ctrlr->ctrlr;
6836 }
6837 
6838 void
6839 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
6840 {
6841 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
6842 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
6843 	const struct spdk_nvme_ctrlr_data *cdata;
6844 	const struct spdk_nvme_transport_id *trid;
6845 	const char *adrfam_str;
6846 
6847 	spdk_json_write_object_begin(w);
6848 
6849 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
6850 
6851 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
6852 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
6853 
6854 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
6855 	spdk_json_write_named_bool(w, "current", io_path == io_path->nbdev_ch->current_io_path);
6856 	spdk_json_write_named_bool(w, "connected", nvme_io_path_is_connected(io_path));
6857 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
6858 
6859 	spdk_json_write_named_object_begin(w, "transport");
6860 	spdk_json_write_named_string(w, "trtype", trid->trstring);
6861 	spdk_json_write_named_string(w, "traddr", trid->traddr);
6862 	if (trid->trsvcid[0] != '\0') {
6863 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
6864 	}
6865 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
6866 	if (adrfam_str) {
6867 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
6868 	}
6869 	spdk_json_write_object_end(w);
6870 
6871 	spdk_json_write_object_end(w);
6872 }
6873 
6874 void
6875 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
6876 {
6877 	struct discovery_ctx *ctx;
6878 	struct discovery_entry_ctx *entry_ctx;
6879 
6880 	spdk_json_write_array_begin(w);
6881 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6882 		spdk_json_write_object_begin(w);
6883 		spdk_json_write_named_string(w, "name", ctx->name);
6884 
6885 		spdk_json_write_named_object_begin(w, "trid");
6886 		nvme_bdev_dump_trid_json(&ctx->trid, w);
6887 		spdk_json_write_object_end(w);
6888 
6889 		spdk_json_write_named_array_begin(w, "referrals");
6890 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
6891 			spdk_json_write_object_begin(w);
6892 			spdk_json_write_named_object_begin(w, "trid");
6893 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
6894 			spdk_json_write_object_end(w);
6895 			spdk_json_write_object_end(w);
6896 		}
6897 		spdk_json_write_array_end(w);
6898 
6899 		spdk_json_write_object_end(w);
6900 	}
6901 	spdk_json_write_array_end(w);
6902 }
6903 
6904 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
6905 
6906 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
6907 {
6908 	struct spdk_trace_tpoint_opts opts[] = {
6909 		{
6910 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
6911 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 1,
6912 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
6913 		},
6914 		{
6915 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
6916 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 0,
6917 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
6918 		}
6919 	};
6920 
6921 
6922 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
6923 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
6924 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
6925 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
6926 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
6927 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
6928 }
6929