xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision f838343c7c429d0020b925f6f3f3486cc4f9a9e3)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/keyring.h"
18 #include "spdk/likely.h"
19 #include "spdk/nvme.h"
20 #include "spdk/nvme_ocssd.h"
21 #include "spdk/nvme_zns.h"
22 #include "spdk/opal.h"
23 #include "spdk/thread.h"
24 #include "spdk/trace.h"
25 #include "spdk/string.h"
26 #include "spdk/util.h"
27 #include "spdk/uuid.h"
28 
29 #include "spdk/bdev_module.h"
30 #include "spdk/log.h"
31 
32 #include "spdk_internal/usdt.h"
33 #include "spdk_internal/trace_defs.h"
34 
35 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
36 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
37 
38 #define NSID_STR_LEN 10
39 
40 #define SPDK_CONTROLLER_NAME_MAX 512
41 
42 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
43 
44 struct nvme_bdev_io {
45 	/** array of iovecs to transfer. */
46 	struct iovec *iovs;
47 
48 	/** Number of iovecs in iovs array. */
49 	int iovcnt;
50 
51 	/** Current iovec position. */
52 	int iovpos;
53 
54 	/** Offset in current iovec. */
55 	uint32_t iov_offset;
56 
57 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
58 	 *  being reset in a reset I/O.
59 	 */
60 	struct nvme_io_path *io_path;
61 
62 	/** array of iovecs to transfer. */
63 	struct iovec *fused_iovs;
64 
65 	/** Number of iovecs in iovs array. */
66 	int fused_iovcnt;
67 
68 	/** Current iovec position. */
69 	int fused_iovpos;
70 
71 	/** Offset in current iovec. */
72 	uint32_t fused_iov_offset;
73 
74 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
75 	struct spdk_nvme_cpl cpl;
76 
77 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
78 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
79 
80 	/** Keeps track if first of fused commands was submitted */
81 	bool first_fused_submitted;
82 
83 	/** Keeps track if first of fused commands was completed */
84 	bool first_fused_completed;
85 
86 	/** Temporary pointer to zone report buffer */
87 	struct spdk_nvme_zns_zone_report *zone_report_buf;
88 
89 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
90 	uint64_t handled_zones;
91 
92 	/** Expiration value in ticks to retry the current I/O. */
93 	uint64_t retry_ticks;
94 
95 	/* How many times the current I/O was retried. */
96 	int32_t retry_count;
97 
98 	/* Current tsc at submit time. */
99 	uint64_t submit_tsc;
100 };
101 
102 struct nvme_probe_skip_entry {
103 	struct spdk_nvme_transport_id		trid;
104 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
105 };
106 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
107 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
108 			g_skipped_nvme_ctrlrs);
109 
110 #define BDEV_NVME_DEFAULT_DIGESTS (SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) | \
111 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) | \
112 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512))
113 
114 #define BDEV_NVME_DEFAULT_DHGROUPS (SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) | \
115 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) | \
116 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) | \
117 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) | \
118 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) | \
119 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192))
120 
121 static struct spdk_bdev_nvme_opts g_opts = {
122 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
123 	.timeout_us = 0,
124 	.timeout_admin_us = 0,
125 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
126 	.transport_retry_count = 4,
127 	.arbitration_burst = 0,
128 	.low_priority_weight = 0,
129 	.medium_priority_weight = 0,
130 	.high_priority_weight = 0,
131 	.nvme_adminq_poll_period_us = 10000ULL,
132 	.nvme_ioq_poll_period_us = 0,
133 	.io_queue_requests = 0,
134 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
135 	.bdev_retry_count = 3,
136 	.transport_ack_timeout = 0,
137 	.ctrlr_loss_timeout_sec = 0,
138 	.reconnect_delay_sec = 0,
139 	.fast_io_fail_timeout_sec = 0,
140 	.disable_auto_failback = false,
141 	.generate_uuids = false,
142 	.transport_tos = 0,
143 	.nvme_error_stat = false,
144 	.io_path_stat = false,
145 	.allow_accel_sequence = false,
146 	.dhchap_digests = BDEV_NVME_DEFAULT_DIGESTS,
147 	.dhchap_dhgroups = BDEV_NVME_DEFAULT_DHGROUPS,
148 };
149 
150 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
151 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
152 
153 static int g_hot_insert_nvme_controller_index = 0;
154 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
155 static bool g_nvme_hotplug_enabled = false;
156 struct spdk_thread *g_bdev_nvme_init_thread;
157 static struct spdk_poller *g_hotplug_poller;
158 static struct spdk_poller *g_hotplug_probe_poller;
159 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
160 
161 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
162 		struct nvme_async_probe_ctx *ctx);
163 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
164 		struct nvme_async_probe_ctx *ctx);
165 static int bdev_nvme_library_init(void);
166 static void bdev_nvme_library_fini(void);
167 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
168 				      struct spdk_bdev_io *bdev_io);
169 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
170 				     struct spdk_bdev_io *bdev_io);
171 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
172 			   void *md, uint64_t lba_count, uint64_t lba,
173 			   uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
174 			   struct spdk_accel_sequence *seq);
175 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
176 				 void *md, uint64_t lba_count, uint64_t lba);
177 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
178 			    void *md, uint64_t lba_count, uint64_t lba,
179 			    uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
180 			    struct spdk_accel_sequence *seq,
181 			    union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13);
182 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
183 				  void *md, uint64_t lba_count,
184 				  uint64_t zslba, uint32_t flags);
185 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
186 			      void *md, uint64_t lba_count, uint64_t lba,
187 			      uint32_t flags);
188 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
189 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
190 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
191 		uint32_t flags);
192 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
193 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
194 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
195 				     enum spdk_bdev_zone_action action);
196 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
197 				     struct nvme_bdev_io *bio,
198 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
199 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
200 				 void *buf, size_t nbytes);
201 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
202 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
203 static int bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
204 				     struct iovec *iov, int iovcnt, size_t nbytes,
205 				     void *md_buf, size_t md_len);
206 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
207 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
208 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
209 static int bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
210 static int bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
211 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
212 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
213 
214 static struct nvme_ns *nvme_ns_alloc(void);
215 static void nvme_ns_free(struct nvme_ns *ns);
216 
217 static int
218 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
219 {
220 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
221 }
222 
223 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
224 
225 struct spdk_nvme_qpair *
226 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
227 {
228 	struct nvme_ctrlr_channel *ctrlr_ch;
229 
230 	assert(ctrlr_io_ch != NULL);
231 
232 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
233 
234 	return ctrlr_ch->qpair->qpair;
235 }
236 
237 static int
238 bdev_nvme_get_ctx_size(void)
239 {
240 	return sizeof(struct nvme_bdev_io);
241 }
242 
243 static struct spdk_bdev_module nvme_if = {
244 	.name = "nvme",
245 	.async_fini = true,
246 	.module_init = bdev_nvme_library_init,
247 	.module_fini = bdev_nvme_library_fini,
248 	.config_json = bdev_nvme_config_json,
249 	.get_ctx_size = bdev_nvme_get_ctx_size,
250 
251 };
252 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
253 
254 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
255 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
256 bool g_bdev_nvme_module_finish;
257 
258 struct nvme_bdev_ctrlr *
259 nvme_bdev_ctrlr_get_by_name(const char *name)
260 {
261 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
262 
263 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
264 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
265 			break;
266 		}
267 	}
268 
269 	return nbdev_ctrlr;
270 }
271 
272 static struct nvme_ctrlr *
273 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
274 			  const struct spdk_nvme_transport_id *trid)
275 {
276 	struct nvme_ctrlr *nvme_ctrlr;
277 
278 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
279 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0) {
280 			break;
281 		}
282 	}
283 
284 	return nvme_ctrlr;
285 }
286 
287 struct nvme_ctrlr *
288 nvme_bdev_ctrlr_get_ctrlr_by_id(struct nvme_bdev_ctrlr *nbdev_ctrlr,
289 				uint16_t cntlid)
290 {
291 	struct nvme_ctrlr *nvme_ctrlr;
292 	const struct spdk_nvme_ctrlr_data *cdata;
293 
294 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
295 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
296 		if (cdata->cntlid == cntlid) {
297 			break;
298 		}
299 	}
300 
301 	return nvme_ctrlr;
302 }
303 
304 static struct nvme_bdev *
305 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
306 {
307 	struct nvme_bdev *bdev;
308 
309 	pthread_mutex_lock(&g_bdev_nvme_mutex);
310 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
311 		if (bdev->nsid == nsid) {
312 			break;
313 		}
314 	}
315 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
316 
317 	return bdev;
318 }
319 
320 struct nvme_ns *
321 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
322 {
323 	struct nvme_ns ns;
324 
325 	assert(nsid > 0);
326 
327 	ns.id = nsid;
328 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
329 }
330 
331 struct nvme_ns *
332 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
333 {
334 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
335 }
336 
337 struct nvme_ns *
338 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
339 {
340 	if (ns == NULL) {
341 		return NULL;
342 	}
343 
344 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
345 }
346 
347 static struct nvme_ctrlr *
348 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid)
349 {
350 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
351 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
352 
353 	pthread_mutex_lock(&g_bdev_nvme_mutex);
354 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
355 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid);
356 		if (nvme_ctrlr != NULL) {
357 			break;
358 		}
359 	}
360 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
361 
362 	return nvme_ctrlr;
363 }
364 
365 struct nvme_ctrlr *
366 nvme_ctrlr_get_by_name(const char *name)
367 {
368 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
369 	struct nvme_ctrlr *nvme_ctrlr = NULL;
370 
371 	if (name == NULL) {
372 		return NULL;
373 	}
374 
375 	pthread_mutex_lock(&g_bdev_nvme_mutex);
376 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
377 	if (nbdev_ctrlr != NULL) {
378 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
379 	}
380 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
381 
382 	return nvme_ctrlr;
383 }
384 
385 void
386 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
387 {
388 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
389 
390 	pthread_mutex_lock(&g_bdev_nvme_mutex);
391 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
392 		fn(nbdev_ctrlr, ctx);
393 	}
394 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
395 }
396 
397 void
398 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
399 {
400 	const char *trtype_str;
401 	const char *adrfam_str;
402 
403 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
404 	if (trtype_str) {
405 		spdk_json_write_named_string(w, "trtype", trtype_str);
406 	}
407 
408 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
409 	if (adrfam_str) {
410 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
411 	}
412 
413 	if (trid->traddr[0] != '\0') {
414 		spdk_json_write_named_string(w, "traddr", trid->traddr);
415 	}
416 
417 	if (trid->trsvcid[0] != '\0') {
418 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
419 	}
420 
421 	if (trid->subnqn[0] != '\0') {
422 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
423 	}
424 }
425 
426 static void
427 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
428 		       struct nvme_ctrlr *nvme_ctrlr)
429 {
430 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
431 	pthread_mutex_lock(&g_bdev_nvme_mutex);
432 
433 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
434 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
435 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
436 
437 		return;
438 	}
439 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
440 
441 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
442 
443 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
444 
445 	free(nbdev_ctrlr->name);
446 	free(nbdev_ctrlr);
447 }
448 
449 static void
450 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
451 {
452 	struct nvme_path_id *path_id, *tmp_path;
453 	struct nvme_ns *ns, *tmp_ns;
454 
455 	free(nvme_ctrlr->copied_ana_desc);
456 	spdk_free(nvme_ctrlr->ana_log_page);
457 
458 	if (nvme_ctrlr->opal_dev) {
459 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
460 		nvme_ctrlr->opal_dev = NULL;
461 	}
462 
463 	if (nvme_ctrlr->nbdev_ctrlr) {
464 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
465 	}
466 
467 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
468 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
469 		nvme_ns_free(ns);
470 	}
471 
472 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
473 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
474 		free(path_id);
475 	}
476 
477 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
478 	spdk_keyring_put_key(nvme_ctrlr->psk);
479 	spdk_keyring_put_key(nvme_ctrlr->dhchap_key);
480 	spdk_keyring_put_key(nvme_ctrlr->dhchap_ctrlr_key);
481 	free(nvme_ctrlr);
482 
483 	pthread_mutex_lock(&g_bdev_nvme_mutex);
484 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
485 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
486 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
487 		spdk_bdev_module_fini_done();
488 		return;
489 	}
490 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
491 }
492 
493 static int
494 nvme_detach_poller(void *arg)
495 {
496 	struct nvme_ctrlr *nvme_ctrlr = arg;
497 	int rc;
498 
499 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
500 	if (rc != -EAGAIN) {
501 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
502 		_nvme_ctrlr_delete(nvme_ctrlr);
503 	}
504 
505 	return SPDK_POLLER_BUSY;
506 }
507 
508 static void
509 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
510 {
511 	int rc;
512 
513 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
514 
515 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
516 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
517 
518 	/* If we got here, the reset/detach poller cannot be active */
519 	assert(nvme_ctrlr->reset_detach_poller == NULL);
520 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
521 					  nvme_ctrlr, 1000);
522 	if (nvme_ctrlr->reset_detach_poller == NULL) {
523 		SPDK_ERRLOG("Failed to register detach poller\n");
524 		goto error;
525 	}
526 
527 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
528 	if (rc != 0) {
529 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
530 		goto error;
531 	}
532 
533 	return;
534 error:
535 	/* We don't have a good way to handle errors here, so just do what we can and delete the
536 	 * controller without detaching the underlying NVMe device.
537 	 */
538 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
539 	_nvme_ctrlr_delete(nvme_ctrlr);
540 }
541 
542 static void
543 nvme_ctrlr_unregister_cb(void *io_device)
544 {
545 	struct nvme_ctrlr *nvme_ctrlr = io_device;
546 
547 	nvme_ctrlr_delete(nvme_ctrlr);
548 }
549 
550 static void
551 nvme_ctrlr_unregister(void *ctx)
552 {
553 	struct nvme_ctrlr *nvme_ctrlr = ctx;
554 
555 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
556 }
557 
558 static bool
559 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
560 {
561 	if (!nvme_ctrlr->destruct) {
562 		return false;
563 	}
564 
565 	if (nvme_ctrlr->ref > 0) {
566 		return false;
567 	}
568 
569 	if (nvme_ctrlr->resetting) {
570 		return false;
571 	}
572 
573 	if (nvme_ctrlr->ana_log_page_updating) {
574 		return false;
575 	}
576 
577 	if (nvme_ctrlr->io_path_cache_clearing) {
578 		return false;
579 	}
580 
581 	return true;
582 }
583 
584 static void
585 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
586 {
587 	pthread_mutex_lock(&nvme_ctrlr->mutex);
588 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
589 
590 	assert(nvme_ctrlr->ref > 0);
591 	nvme_ctrlr->ref--;
592 
593 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
594 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
595 		return;
596 	}
597 
598 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
599 
600 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
601 }
602 
603 static void
604 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch)
605 {
606 	nbdev_ch->current_io_path = NULL;
607 	nbdev_ch->rr_counter = 0;
608 }
609 
610 static struct nvme_io_path *
611 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
612 {
613 	struct nvme_io_path *io_path;
614 
615 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
616 		if (io_path->nvme_ns == nvme_ns) {
617 			break;
618 		}
619 	}
620 
621 	return io_path;
622 }
623 
624 static struct nvme_io_path *
625 nvme_io_path_alloc(void)
626 {
627 	struct nvme_io_path *io_path;
628 
629 	io_path = calloc(1, sizeof(*io_path));
630 	if (io_path == NULL) {
631 		SPDK_ERRLOG("Failed to alloc io_path.\n");
632 		return NULL;
633 	}
634 
635 	if (g_opts.io_path_stat) {
636 		io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
637 		if (io_path->stat == NULL) {
638 			free(io_path);
639 			SPDK_ERRLOG("Failed to alloc io_path stat.\n");
640 			return NULL;
641 		}
642 		spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
643 	}
644 
645 	return io_path;
646 }
647 
648 static void
649 nvme_io_path_free(struct nvme_io_path *io_path)
650 {
651 	free(io_path->stat);
652 	free(io_path);
653 }
654 
655 static int
656 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
657 {
658 	struct nvme_io_path *io_path;
659 	struct spdk_io_channel *ch;
660 	struct nvme_ctrlr_channel *ctrlr_ch;
661 	struct nvme_qpair *nvme_qpair;
662 
663 	io_path = nvme_io_path_alloc();
664 	if (io_path == NULL) {
665 		return -ENOMEM;
666 	}
667 
668 	io_path->nvme_ns = nvme_ns;
669 
670 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
671 	if (ch == NULL) {
672 		nvme_io_path_free(io_path);
673 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
674 		return -ENOMEM;
675 	}
676 
677 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
678 
679 	nvme_qpair = ctrlr_ch->qpair;
680 	assert(nvme_qpair != NULL);
681 
682 	io_path->qpair = nvme_qpair;
683 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
684 
685 	io_path->nbdev_ch = nbdev_ch;
686 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
687 
688 	bdev_nvme_clear_current_io_path(nbdev_ch);
689 
690 	return 0;
691 }
692 
693 static void
694 bdev_nvme_clear_retry_io_path(struct nvme_bdev_channel *nbdev_ch,
695 			      struct nvme_io_path *io_path)
696 {
697 	struct spdk_bdev_io *bdev_io;
698 	struct nvme_bdev_io *bio;
699 
700 	TAILQ_FOREACH(bdev_io, &nbdev_ch->retry_io_list, module_link) {
701 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
702 		if (bio->io_path == io_path) {
703 			bio->io_path = NULL;
704 		}
705 	}
706 }
707 
708 static void
709 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
710 {
711 	struct spdk_io_channel *ch;
712 	struct nvme_qpair *nvme_qpair;
713 	struct nvme_ctrlr_channel *ctrlr_ch;
714 	struct nvme_bdev *nbdev;
715 
716 	nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch));
717 
718 	/* Add the statistics to nvme_ns before this path is destroyed. */
719 	pthread_mutex_lock(&nbdev->mutex);
720 	if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) {
721 		spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat);
722 	}
723 	pthread_mutex_unlock(&nbdev->mutex);
724 
725 	bdev_nvme_clear_current_io_path(nbdev_ch);
726 	bdev_nvme_clear_retry_io_path(nbdev_ch, io_path);
727 
728 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
729 	io_path->nbdev_ch = NULL;
730 
731 	nvme_qpair = io_path->qpair;
732 	assert(nvme_qpair != NULL);
733 
734 	ctrlr_ch = nvme_qpair->ctrlr_ch;
735 	assert(ctrlr_ch != NULL);
736 
737 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
738 	spdk_put_io_channel(ch);
739 
740 	/* After an io_path is removed, I/Os submitted to it may complete and update statistics
741 	 * of the io_path. To avoid heap-use-after-free error from this case, do not free the
742 	 * io_path here but free the io_path when the associated qpair is freed. It is ensured
743 	 * that all I/Os submitted to the io_path are completed when the associated qpair is freed.
744 	 */
745 }
746 
747 static void
748 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
749 {
750 	struct nvme_io_path *io_path, *tmp_io_path;
751 
752 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
753 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
754 	}
755 }
756 
757 static int
758 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
759 {
760 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
761 	struct nvme_bdev *nbdev = io_device;
762 	struct nvme_ns *nvme_ns;
763 	int rc;
764 
765 	STAILQ_INIT(&nbdev_ch->io_path_list);
766 	TAILQ_INIT(&nbdev_ch->retry_io_list);
767 
768 	pthread_mutex_lock(&nbdev->mutex);
769 
770 	nbdev_ch->mp_policy = nbdev->mp_policy;
771 	nbdev_ch->mp_selector = nbdev->mp_selector;
772 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
773 
774 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
775 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
776 		if (rc != 0) {
777 			pthread_mutex_unlock(&nbdev->mutex);
778 
779 			_bdev_nvme_delete_io_paths(nbdev_ch);
780 			return rc;
781 		}
782 	}
783 	pthread_mutex_unlock(&nbdev->mutex);
784 
785 	return 0;
786 }
787 
788 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
789  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
790  */
791 static inline void
792 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
793 			const struct spdk_nvme_cpl *cpl)
794 {
795 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
796 			  (uintptr_t)bdev_io);
797 	if (cpl) {
798 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
799 	} else {
800 		spdk_bdev_io_complete(bdev_io, status);
801 	}
802 }
803 
804 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
805 
806 static void
807 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
808 {
809 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
810 
811 	bdev_nvme_abort_retry_ios(nbdev_ch);
812 	_bdev_nvme_delete_io_paths(nbdev_ch);
813 }
814 
815 static inline bool
816 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
817 {
818 	switch (io_type) {
819 	case SPDK_BDEV_IO_TYPE_RESET:
820 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
821 	case SPDK_BDEV_IO_TYPE_ABORT:
822 		return true;
823 	default:
824 		break;
825 	}
826 
827 	return false;
828 }
829 
830 static inline bool
831 nvme_ns_is_active(struct nvme_ns *nvme_ns)
832 {
833 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
834 		return false;
835 	}
836 
837 	if (spdk_unlikely(nvme_ns->ns == NULL)) {
838 		return false;
839 	}
840 
841 	return true;
842 }
843 
844 static inline bool
845 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
846 {
847 	if (spdk_unlikely(!nvme_ns_is_active(nvme_ns))) {
848 		return false;
849 	}
850 
851 	switch (nvme_ns->ana_state) {
852 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
853 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
854 		return true;
855 	default:
856 		break;
857 	}
858 
859 	return false;
860 }
861 
862 static inline bool
863 nvme_qpair_is_connected(struct nvme_qpair *nvme_qpair)
864 {
865 	if (spdk_unlikely(nvme_qpair->qpair == NULL)) {
866 		return false;
867 	}
868 
869 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
870 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
871 		return false;
872 	}
873 
874 	if (spdk_unlikely(nvme_qpair->ctrlr_ch->reset_iter != NULL)) {
875 		return false;
876 	}
877 
878 	return true;
879 }
880 
881 static inline bool
882 nvme_io_path_is_available(struct nvme_io_path *io_path)
883 {
884 	if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
885 		return false;
886 	}
887 
888 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
889 		return false;
890 	}
891 
892 	return true;
893 }
894 
895 static inline bool
896 nvme_ctrlr_is_failed(struct nvme_ctrlr *nvme_ctrlr)
897 {
898 	if (nvme_ctrlr->destruct) {
899 		return true;
900 	}
901 
902 	if (nvme_ctrlr->fast_io_fail_timedout) {
903 		return true;
904 	}
905 
906 	if (nvme_ctrlr->resetting) {
907 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
908 			return false;
909 		} else {
910 			return true;
911 		}
912 	}
913 
914 	if (nvme_ctrlr->reconnect_is_delayed) {
915 		return false;
916 	}
917 
918 	if (nvme_ctrlr->disabled) {
919 		return true;
920 	}
921 
922 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
923 		return true;
924 	} else {
925 		return false;
926 	}
927 }
928 
929 static bool
930 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
931 {
932 	if (nvme_ctrlr->destruct) {
933 		return false;
934 	}
935 
936 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
937 		return false;
938 	}
939 
940 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
941 		return false;
942 	}
943 
944 	if (nvme_ctrlr->disabled) {
945 		return false;
946 	}
947 
948 	return true;
949 }
950 
951 /* Simulate circular linked list. */
952 static inline struct nvme_io_path *
953 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
954 {
955 	struct nvme_io_path *next_path;
956 
957 	if (prev_path != NULL) {
958 		next_path = STAILQ_NEXT(prev_path, stailq);
959 		if (next_path != NULL) {
960 			return next_path;
961 		}
962 	}
963 
964 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
965 }
966 
967 static struct nvme_io_path *
968 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
969 {
970 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
971 
972 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
973 
974 	io_path = start;
975 	do {
976 		if (spdk_likely(nvme_io_path_is_available(io_path))) {
977 			switch (io_path->nvme_ns->ana_state) {
978 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
979 				nbdev_ch->current_io_path = io_path;
980 				return io_path;
981 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
982 				if (non_optimized == NULL) {
983 					non_optimized = io_path;
984 				}
985 				break;
986 			default:
987 				assert(false);
988 				break;
989 			}
990 		}
991 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
992 	} while (io_path != start);
993 
994 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
995 		/* We come here only if there is no optimized path. Cache even non_optimized
996 		 * path for load balance across multiple non_optimized paths.
997 		 */
998 		nbdev_ch->current_io_path = non_optimized;
999 	}
1000 
1001 	return non_optimized;
1002 }
1003 
1004 static struct nvme_io_path *
1005 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch)
1006 {
1007 	struct nvme_io_path *io_path;
1008 	struct nvme_io_path *optimized = NULL, *non_optimized = NULL;
1009 	uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX;
1010 	uint32_t num_outstanding_reqs;
1011 
1012 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1013 		if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
1014 			/* The device is currently resetting. */
1015 			continue;
1016 		}
1017 
1018 		if (spdk_unlikely(!nvme_ns_is_active(io_path->nvme_ns))) {
1019 			continue;
1020 		}
1021 
1022 		num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair);
1023 		switch (io_path->nvme_ns->ana_state) {
1024 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
1025 			if (num_outstanding_reqs < opt_min_qd) {
1026 				opt_min_qd = num_outstanding_reqs;
1027 				optimized = io_path;
1028 			}
1029 			break;
1030 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1031 			if (num_outstanding_reqs < non_opt_min_qd) {
1032 				non_opt_min_qd = num_outstanding_reqs;
1033 				non_optimized = io_path;
1034 			}
1035 			break;
1036 		default:
1037 			break;
1038 		}
1039 	}
1040 
1041 	/* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */
1042 	if (optimized != NULL) {
1043 		return optimized;
1044 	}
1045 
1046 	return non_optimized;
1047 }
1048 
1049 static inline struct nvme_io_path *
1050 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1051 {
1052 	if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
1053 		if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) {
1054 			return nbdev_ch->current_io_path;
1055 		} else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1056 			if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) {
1057 				return nbdev_ch->current_io_path;
1058 			}
1059 			nbdev_ch->rr_counter = 0;
1060 		}
1061 	}
1062 
1063 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE ||
1064 	    nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1065 		return _bdev_nvme_find_io_path(nbdev_ch);
1066 	} else {
1067 		return _bdev_nvme_find_io_path_min_qd(nbdev_ch);
1068 	}
1069 }
1070 
1071 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
1072  * or false otherwise.
1073  *
1074  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
1075  * is likely to be non-accessible now but may become accessible.
1076  *
1077  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
1078  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
1079  * when starting to reset it but it is set to failed when the reset failed. Hence, if
1080  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
1081  */
1082 static bool
1083 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
1084 {
1085 	struct nvme_io_path *io_path;
1086 
1087 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1088 		if (io_path->nvme_ns->ana_transition_timedout) {
1089 			continue;
1090 		}
1091 
1092 		if (nvme_qpair_is_connected(io_path->qpair) ||
1093 		    !nvme_ctrlr_is_failed(io_path->qpair->ctrlr)) {
1094 			return true;
1095 		}
1096 	}
1097 
1098 	return false;
1099 }
1100 
1101 static void
1102 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
1103 {
1104 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1105 	struct spdk_io_channel *ch;
1106 
1107 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
1108 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
1109 	} else {
1110 		ch = spdk_io_channel_from_ctx(nbdev_ch);
1111 		bdev_nvme_submit_request(ch, bdev_io);
1112 	}
1113 }
1114 
1115 static int
1116 bdev_nvme_retry_ios(void *arg)
1117 {
1118 	struct nvme_bdev_channel *nbdev_ch = arg;
1119 	struct spdk_bdev_io *bdev_io, *tmp_bdev_io;
1120 	struct nvme_bdev_io *bio;
1121 	uint64_t now, delay_us;
1122 
1123 	now = spdk_get_ticks();
1124 
1125 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_bdev_io) {
1126 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1127 		if (bio->retry_ticks > now) {
1128 			break;
1129 		}
1130 
1131 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
1132 
1133 		bdev_nvme_retry_io(nbdev_ch, bdev_io);
1134 	}
1135 
1136 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1137 
1138 	bdev_io = TAILQ_FIRST(&nbdev_ch->retry_io_list);
1139 	if (bdev_io != NULL) {
1140 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1141 
1142 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
1143 
1144 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1145 					    delay_us);
1146 	}
1147 
1148 	return SPDK_POLLER_BUSY;
1149 }
1150 
1151 static void
1152 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1153 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1154 {
1155 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1156 	struct spdk_bdev_io *tmp_bdev_io;
1157 	struct nvme_bdev_io *tmp_bio;
1158 
1159 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1160 
1161 	TAILQ_FOREACH_REVERSE(tmp_bdev_io, &nbdev_ch->retry_io_list, retry_io_head, module_link) {
1162 		tmp_bio = (struct nvme_bdev_io *)tmp_bdev_io->driver_ctx;
1163 
1164 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1165 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bdev_io, bdev_io,
1166 					   module_link);
1167 			return;
1168 		}
1169 	}
1170 
1171 	/* No earlier I/Os were found. This I/O must be the new head. */
1172 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bdev_io, module_link);
1173 
1174 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1175 
1176 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1177 				    delay_ms * 1000ULL);
1178 }
1179 
1180 static void
1181 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
1182 {
1183 	struct spdk_bdev_io *bdev_io, *tmp_io;
1184 
1185 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_io) {
1186 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
1187 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1188 	}
1189 
1190 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1191 }
1192 
1193 static int
1194 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1195 			 struct nvme_bdev_io *bio_to_abort)
1196 {
1197 	struct spdk_bdev_io *bdev_io_to_abort;
1198 
1199 	TAILQ_FOREACH(bdev_io_to_abort, &nbdev_ch->retry_io_list, module_link) {
1200 		if ((struct nvme_bdev_io *)bdev_io_to_abort->driver_ctx == bio_to_abort) {
1201 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io_to_abort, module_link);
1202 			__bdev_nvme_io_complete(bdev_io_to_abort, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1203 			return 0;
1204 		}
1205 	}
1206 
1207 	return -ENOENT;
1208 }
1209 
1210 static void
1211 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1212 {
1213 	struct nvme_bdev *nbdev;
1214 	uint16_t sct, sc;
1215 
1216 	assert(spdk_nvme_cpl_is_error(cpl));
1217 
1218 	nbdev = bdev_io->bdev->ctxt;
1219 
1220 	if (nbdev->err_stat == NULL) {
1221 		return;
1222 	}
1223 
1224 	sct = cpl->status.sct;
1225 	sc = cpl->status.sc;
1226 
1227 	pthread_mutex_lock(&nbdev->mutex);
1228 
1229 	nbdev->err_stat->status_type[sct]++;
1230 	switch (sct) {
1231 	case SPDK_NVME_SCT_GENERIC:
1232 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1233 	case SPDK_NVME_SCT_MEDIA_ERROR:
1234 	case SPDK_NVME_SCT_PATH:
1235 		nbdev->err_stat->status[sct][sc]++;
1236 		break;
1237 	default:
1238 		break;
1239 	}
1240 
1241 	pthread_mutex_unlock(&nbdev->mutex);
1242 }
1243 
1244 static inline void
1245 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio)
1246 {
1247 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1248 	uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
1249 	uint32_t blocklen = bdev_io->bdev->blocklen;
1250 	struct spdk_bdev_io_stat *stat;
1251 	uint64_t tsc_diff;
1252 
1253 	if (bio->io_path->stat == NULL) {
1254 		return;
1255 	}
1256 
1257 	tsc_diff = spdk_get_ticks() - bio->submit_tsc;
1258 	stat = bio->io_path->stat;
1259 
1260 	switch (bdev_io->type) {
1261 	case SPDK_BDEV_IO_TYPE_READ:
1262 		stat->bytes_read += num_blocks * blocklen;
1263 		stat->num_read_ops++;
1264 		stat->read_latency_ticks += tsc_diff;
1265 		if (stat->max_read_latency_ticks < tsc_diff) {
1266 			stat->max_read_latency_ticks = tsc_diff;
1267 		}
1268 		if (stat->min_read_latency_ticks > tsc_diff) {
1269 			stat->min_read_latency_ticks = tsc_diff;
1270 		}
1271 		break;
1272 	case SPDK_BDEV_IO_TYPE_WRITE:
1273 		stat->bytes_written += num_blocks * blocklen;
1274 		stat->num_write_ops++;
1275 		stat->write_latency_ticks += tsc_diff;
1276 		if (stat->max_write_latency_ticks < tsc_diff) {
1277 			stat->max_write_latency_ticks = tsc_diff;
1278 		}
1279 		if (stat->min_write_latency_ticks > tsc_diff) {
1280 			stat->min_write_latency_ticks = tsc_diff;
1281 		}
1282 		break;
1283 	case SPDK_BDEV_IO_TYPE_UNMAP:
1284 		stat->bytes_unmapped += num_blocks * blocklen;
1285 		stat->num_unmap_ops++;
1286 		stat->unmap_latency_ticks += tsc_diff;
1287 		if (stat->max_unmap_latency_ticks < tsc_diff) {
1288 			stat->max_unmap_latency_ticks = tsc_diff;
1289 		}
1290 		if (stat->min_unmap_latency_ticks > tsc_diff) {
1291 			stat->min_unmap_latency_ticks = tsc_diff;
1292 		}
1293 		break;
1294 	case SPDK_BDEV_IO_TYPE_ZCOPY:
1295 		/* Track the data in the start phase only */
1296 		if (!bdev_io->u.bdev.zcopy.start) {
1297 			break;
1298 		}
1299 		if (bdev_io->u.bdev.zcopy.populate) {
1300 			stat->bytes_read += num_blocks * blocklen;
1301 			stat->num_read_ops++;
1302 			stat->read_latency_ticks += tsc_diff;
1303 			if (stat->max_read_latency_ticks < tsc_diff) {
1304 				stat->max_read_latency_ticks = tsc_diff;
1305 			}
1306 			if (stat->min_read_latency_ticks > tsc_diff) {
1307 				stat->min_read_latency_ticks = tsc_diff;
1308 			}
1309 		} else {
1310 			stat->bytes_written += num_blocks * blocklen;
1311 			stat->num_write_ops++;
1312 			stat->write_latency_ticks += tsc_diff;
1313 			if (stat->max_write_latency_ticks < tsc_diff) {
1314 				stat->max_write_latency_ticks = tsc_diff;
1315 			}
1316 			if (stat->min_write_latency_ticks > tsc_diff) {
1317 				stat->min_write_latency_ticks = tsc_diff;
1318 			}
1319 		}
1320 		break;
1321 	case SPDK_BDEV_IO_TYPE_COPY:
1322 		stat->bytes_copied += num_blocks * blocklen;
1323 		stat->num_copy_ops++;
1324 		stat->copy_latency_ticks += tsc_diff;
1325 		if (stat->max_copy_latency_ticks < tsc_diff) {
1326 			stat->max_copy_latency_ticks = tsc_diff;
1327 		}
1328 		if (stat->min_copy_latency_ticks > tsc_diff) {
1329 			stat->min_copy_latency_ticks = tsc_diff;
1330 		}
1331 		break;
1332 	default:
1333 		break;
1334 	}
1335 }
1336 
1337 static bool
1338 bdev_nvme_check_retry_io(struct nvme_bdev_io *bio,
1339 			 const struct spdk_nvme_cpl *cpl,
1340 			 struct nvme_bdev_channel *nbdev_ch,
1341 			 uint64_t *_delay_ms)
1342 {
1343 	struct nvme_io_path *io_path = bio->io_path;
1344 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1345 	const struct spdk_nvme_ctrlr_data *cdata;
1346 
1347 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1348 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1349 	    !nvme_io_path_is_available(io_path) ||
1350 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1351 		bdev_nvme_clear_current_io_path(nbdev_ch);
1352 		bio->io_path = NULL;
1353 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1354 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1355 				io_path->nvme_ns->ana_state_updating = true;
1356 			}
1357 		}
1358 		if (!any_io_path_may_become_available(nbdev_ch)) {
1359 			return false;
1360 		}
1361 		*_delay_ms = 0;
1362 	} else {
1363 		bio->retry_count++;
1364 
1365 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1366 
1367 		if (cpl->status.crd != 0) {
1368 			*_delay_ms = cdata->crdt[cpl->status.crd] * 100;
1369 		} else {
1370 			*_delay_ms = 0;
1371 		}
1372 	}
1373 
1374 	return true;
1375 }
1376 
1377 static inline void
1378 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1379 				  const struct spdk_nvme_cpl *cpl)
1380 {
1381 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1382 	struct nvme_bdev_channel *nbdev_ch;
1383 	uint64_t delay_ms;
1384 
1385 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1386 
1387 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1388 		bdev_nvme_update_io_path_stat(bio);
1389 		goto complete;
1390 	}
1391 
1392 	/* Update error counts before deciding if retry is needed.
1393 	 * Hence, error counts may be more than the number of I/O errors.
1394 	 */
1395 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1396 
1397 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1398 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1399 		goto complete;
1400 	}
1401 
1402 	/* At this point we don't know whether the sequence was successfully executed or not, so we
1403 	 * cannot retry the IO */
1404 	if (bdev_io->u.bdev.accel_sequence != NULL) {
1405 		goto complete;
1406 	}
1407 
1408 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1409 
1410 	if (bdev_nvme_check_retry_io(bio, cpl, nbdev_ch, &delay_ms)) {
1411 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1412 		return;
1413 	}
1414 
1415 complete:
1416 	bio->retry_count = 0;
1417 	bio->submit_tsc = 0;
1418 	bdev_io->u.bdev.accel_sequence = NULL;
1419 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1420 }
1421 
1422 static inline void
1423 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1424 {
1425 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1426 	struct nvme_bdev_channel *nbdev_ch;
1427 	enum spdk_bdev_io_status io_status;
1428 
1429 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1430 
1431 	switch (rc) {
1432 	case 0:
1433 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1434 		break;
1435 	case -ENOMEM:
1436 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1437 		break;
1438 	case -ENXIO:
1439 		if (g_opts.bdev_retry_count == -1 || bio->retry_count < g_opts.bdev_retry_count) {
1440 			nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1441 
1442 			bdev_nvme_clear_current_io_path(nbdev_ch);
1443 			bio->io_path = NULL;
1444 
1445 			if (any_io_path_may_become_available(nbdev_ch)) {
1446 				bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1447 				return;
1448 			}
1449 		}
1450 
1451 	/* fallthrough */
1452 	default:
1453 		spdk_accel_sequence_abort(bdev_io->u.bdev.accel_sequence);
1454 		bdev_io->u.bdev.accel_sequence = NULL;
1455 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1456 		break;
1457 	}
1458 
1459 	bio->retry_count = 0;
1460 	bio->submit_tsc = 0;
1461 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1462 }
1463 
1464 static inline void
1465 bdev_nvme_admin_complete(struct nvme_bdev_io *bio, int rc)
1466 {
1467 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1468 	enum spdk_bdev_io_status io_status;
1469 
1470 	switch (rc) {
1471 	case 0:
1472 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1473 		break;
1474 	case -ENOMEM:
1475 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1476 		break;
1477 	case -ENXIO:
1478 	/* fallthrough */
1479 	default:
1480 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1481 		break;
1482 	}
1483 
1484 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1485 }
1486 
1487 static void
1488 bdev_nvme_clear_io_path_caches_done(struct spdk_io_channel_iter *i, int status)
1489 {
1490 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1491 
1492 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1493 
1494 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1495 	nvme_ctrlr->io_path_cache_clearing = false;
1496 
1497 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1498 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1499 		return;
1500 	}
1501 
1502 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1503 
1504 	nvme_ctrlr_unregister(nvme_ctrlr);
1505 }
1506 
1507 static void
1508 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1509 {
1510 	struct nvme_io_path *io_path;
1511 
1512 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1513 		if (io_path->nbdev_ch == NULL) {
1514 			continue;
1515 		}
1516 		bdev_nvme_clear_current_io_path(io_path->nbdev_ch);
1517 	}
1518 }
1519 
1520 static void
1521 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
1522 {
1523 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1524 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1525 
1526 	assert(ctrlr_ch->qpair != NULL);
1527 
1528 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1529 
1530 	spdk_for_each_channel_continue(i, 0);
1531 }
1532 
1533 static void
1534 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1535 {
1536 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1537 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1538 	    nvme_ctrlr->io_path_cache_clearing) {
1539 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1540 		return;
1541 	}
1542 
1543 	nvme_ctrlr->io_path_cache_clearing = true;
1544 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1545 
1546 	spdk_for_each_channel(nvme_ctrlr,
1547 			      bdev_nvme_clear_io_path_cache,
1548 			      NULL,
1549 			      bdev_nvme_clear_io_path_caches_done);
1550 }
1551 
1552 static struct nvme_qpair *
1553 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1554 {
1555 	struct nvme_qpair *nvme_qpair;
1556 
1557 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1558 		if (nvme_qpair->qpair == qpair) {
1559 			break;
1560 		}
1561 	}
1562 
1563 	return nvme_qpair;
1564 }
1565 
1566 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1567 
1568 static void
1569 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1570 {
1571 	struct nvme_poll_group *group = poll_group_ctx;
1572 	struct nvme_qpair *nvme_qpair;
1573 	struct nvme_ctrlr_channel *ctrlr_ch;
1574 	int status;
1575 
1576 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1577 	if (nvme_qpair == NULL) {
1578 		return;
1579 	}
1580 
1581 	if (nvme_qpair->qpair != NULL) {
1582 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1583 		nvme_qpair->qpair = NULL;
1584 	}
1585 
1586 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1587 
1588 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1589 
1590 	if (ctrlr_ch != NULL) {
1591 		if (ctrlr_ch->reset_iter != NULL) {
1592 			/* We are in a full reset sequence. */
1593 			if (ctrlr_ch->connect_poller != NULL) {
1594 				/* qpair was failed to connect. Abort the reset sequence. */
1595 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was failed to connect. abort the reset ctrlr sequence.\n",
1596 					      qpair);
1597 				spdk_poller_unregister(&ctrlr_ch->connect_poller);
1598 				status = -1;
1599 			} else {
1600 				/* qpair was completed to disconnect. Just move to the next ctrlr_channel. */
1601 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1602 					      qpair);
1603 				status = 0;
1604 			}
1605 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, status);
1606 			ctrlr_ch->reset_iter = NULL;
1607 		} else {
1608 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1609 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1610 			bdev_nvme_failover_ctrlr(nvme_qpair->ctrlr);
1611 		}
1612 	} else {
1613 		/* In this case, ctrlr_channel is already deleted. */
1614 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1615 		nvme_qpair_delete(nvme_qpair);
1616 	}
1617 }
1618 
1619 static void
1620 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1621 {
1622 	struct nvme_qpair *nvme_qpair;
1623 
1624 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1625 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1626 			continue;
1627 		}
1628 
1629 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1630 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1631 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1632 		}
1633 	}
1634 }
1635 
1636 static int
1637 bdev_nvme_poll(void *arg)
1638 {
1639 	struct nvme_poll_group *group = arg;
1640 	int64_t num_completions;
1641 
1642 	if (group->collect_spin_stat && group->start_ticks == 0) {
1643 		group->start_ticks = spdk_get_ticks();
1644 	}
1645 
1646 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1647 			  bdev_nvme_disconnected_qpair_cb);
1648 	if (group->collect_spin_stat) {
1649 		if (num_completions > 0) {
1650 			if (group->end_ticks != 0) {
1651 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1652 				group->end_ticks = 0;
1653 			}
1654 			group->start_ticks = 0;
1655 		} else {
1656 			group->end_ticks = spdk_get_ticks();
1657 		}
1658 	}
1659 
1660 	if (spdk_unlikely(num_completions < 0)) {
1661 		bdev_nvme_check_io_qpairs(group);
1662 	}
1663 
1664 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1665 }
1666 
1667 static int bdev_nvme_poll_adminq(void *arg);
1668 
1669 static void
1670 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1671 {
1672 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1673 
1674 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1675 					  nvme_ctrlr, new_period_us);
1676 }
1677 
1678 static int
1679 bdev_nvme_poll_adminq(void *arg)
1680 {
1681 	int32_t rc;
1682 	struct nvme_ctrlr *nvme_ctrlr = arg;
1683 	nvme_ctrlr_disconnected_cb disconnected_cb;
1684 
1685 	assert(nvme_ctrlr != NULL);
1686 
1687 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1688 	if (rc < 0) {
1689 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1690 		nvme_ctrlr->disconnected_cb = NULL;
1691 
1692 		if (disconnected_cb != NULL) {
1693 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1694 							    g_opts.nvme_adminq_poll_period_us);
1695 			disconnected_cb(nvme_ctrlr);
1696 		} else {
1697 			bdev_nvme_failover_ctrlr(nvme_ctrlr);
1698 		}
1699 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1700 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1701 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1702 	}
1703 
1704 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1705 }
1706 
1707 static void
1708 nvme_bdev_free(void *io_device)
1709 {
1710 	struct nvme_bdev *nvme_disk = io_device;
1711 
1712 	pthread_mutex_destroy(&nvme_disk->mutex);
1713 	free(nvme_disk->disk.name);
1714 	free(nvme_disk->err_stat);
1715 	free(nvme_disk);
1716 }
1717 
1718 static int
1719 bdev_nvme_destruct(void *ctx)
1720 {
1721 	struct nvme_bdev *nvme_disk = ctx;
1722 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1723 
1724 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1725 
1726 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1727 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1728 
1729 		nvme_ns->bdev = NULL;
1730 
1731 		assert(nvme_ns->id > 0);
1732 
1733 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1734 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1735 
1736 			nvme_ctrlr_release(nvme_ns->ctrlr);
1737 			nvme_ns_free(nvme_ns);
1738 		} else {
1739 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1740 		}
1741 	}
1742 
1743 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1744 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1745 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1746 
1747 	spdk_io_device_unregister(nvme_disk, nvme_bdev_free);
1748 
1749 	return 0;
1750 }
1751 
1752 static int
1753 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1754 {
1755 	struct nvme_ctrlr *nvme_ctrlr;
1756 	struct spdk_nvme_io_qpair_opts opts;
1757 	struct spdk_nvme_qpair *qpair;
1758 	int rc;
1759 
1760 	nvme_ctrlr = nvme_qpair->ctrlr;
1761 
1762 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1763 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1764 	opts.create_only = true;
1765 	opts.async_mode = true;
1766 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1767 	g_opts.io_queue_requests = opts.io_queue_requests;
1768 
1769 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1770 	if (qpair == NULL) {
1771 		return -1;
1772 	}
1773 
1774 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1775 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1776 
1777 	assert(nvme_qpair->group != NULL);
1778 
1779 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1780 	if (rc != 0) {
1781 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1782 		goto err;
1783 	}
1784 
1785 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1786 	if (rc != 0) {
1787 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1788 		goto err;
1789 	}
1790 
1791 	nvme_qpair->qpair = qpair;
1792 
1793 	if (!g_opts.disable_auto_failback) {
1794 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1795 	}
1796 
1797 	return 0;
1798 
1799 err:
1800 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1801 
1802 	return rc;
1803 }
1804 
1805 static void bdev_nvme_reset_io_continue(void *cb_arg, int rc);
1806 
1807 static void
1808 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
1809 {
1810 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1811 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1812 	int rc = 0;
1813 	struct spdk_bdev_io *bdev_io;
1814 	struct nvme_bdev_io *bio;
1815 
1816 	if (spdk_io_channel_iter_get_ctx(i) != NULL) {
1817 		rc = -1;
1818 	}
1819 
1820 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1821 		bdev_io = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1822 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bdev_io, module_link);
1823 
1824 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1825 		bdev_nvme_reset_io_continue(bio, rc);
1826 	}
1827 
1828 	spdk_for_each_channel_continue(i, 0);
1829 }
1830 
1831 /* This function marks the current trid as failed by storing the current ticks
1832  * and then sets the next trid to the active trid within a controller if exists.
1833  *
1834  * The purpose of the boolean return value is to request the caller to disconnect
1835  * the current trid now to try connecting the next trid.
1836  */
1837 static bool
1838 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove, bool start)
1839 {
1840 	struct nvme_path_id *path_id, *next_path;
1841 	int rc __attribute__((unused));
1842 
1843 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1844 	assert(path_id);
1845 	assert(path_id == nvme_ctrlr->active_path_id);
1846 	next_path = TAILQ_NEXT(path_id, link);
1847 
1848 	/* Update the last failed time. It means the trid is failed if its last
1849 	 * failed time is non-zero.
1850 	 */
1851 	path_id->last_failed_tsc = spdk_get_ticks();
1852 
1853 	if (next_path == NULL) {
1854 		/* There is no alternate trid within a controller. */
1855 		return false;
1856 	}
1857 
1858 	if (!start && nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1859 		/* Connect is not retried in a controller reset sequence. Connecting
1860 		 * the next trid will be done by the next bdev_nvme_failover_ctrlr() call.
1861 		 */
1862 		return false;
1863 	}
1864 
1865 	assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1866 
1867 	SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1868 		       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1869 
1870 	spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1871 	nvme_ctrlr->active_path_id = next_path;
1872 	rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1873 	assert(rc == 0);
1874 	TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1875 	if (!remove) {
1876 		/** Shuffle the old trid to the end of the list and use the new one.
1877 		 * Allows for round robin through multiple connections.
1878 		 */
1879 		TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
1880 	} else {
1881 		free(path_id);
1882 	}
1883 
1884 	if (start || next_path->last_failed_tsc == 0) {
1885 		/* bdev_nvme_failover_ctrlr() is just called or the next trid is not failed
1886 		 * or used yet. Try the next trid now.
1887 		 */
1888 		return true;
1889 	}
1890 
1891 	if (spdk_get_ticks() > next_path->last_failed_tsc + spdk_get_ticks_hz() *
1892 	    nvme_ctrlr->opts.reconnect_delay_sec) {
1893 		/* Enough backoff passed since the next trid failed. Try the next trid now. */
1894 		return true;
1895 	}
1896 
1897 	/* The next trid will be tried after reconnect_delay_sec seconds. */
1898 	return false;
1899 }
1900 
1901 static bool
1902 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
1903 {
1904 	int32_t elapsed;
1905 
1906 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
1907 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
1908 		return false;
1909 	}
1910 
1911 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1912 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
1913 		return true;
1914 	} else {
1915 		return false;
1916 	}
1917 }
1918 
1919 static bool
1920 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
1921 {
1922 	uint32_t elapsed;
1923 
1924 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
1925 		return false;
1926 	}
1927 
1928 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1929 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
1930 		return true;
1931 	} else {
1932 		return false;
1933 	}
1934 }
1935 
1936 static void bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
1937 
1938 static void
1939 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
1940 {
1941 	int rc;
1942 
1943 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
1944 	if (rc != 0) {
1945 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
1946 		 * fail the reset sequence immediately.
1947 		 */
1948 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
1949 		return;
1950 	}
1951 
1952 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
1953 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
1954 	 */
1955 	assert(nvme_ctrlr->disconnected_cb == NULL);
1956 	nvme_ctrlr->disconnected_cb = cb_fn;
1957 
1958 	/* During disconnection, reduce the period to poll adminq more often. */
1959 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
1960 }
1961 
1962 enum bdev_nvme_op_after_reset {
1963 	OP_NONE,
1964 	OP_COMPLETE_PENDING_DESTRUCT,
1965 	OP_DESTRUCT,
1966 	OP_DELAYED_RECONNECT,
1967 	OP_FAILOVER,
1968 };
1969 
1970 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
1971 
1972 static _bdev_nvme_op_after_reset
1973 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
1974 {
1975 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1976 		/* Complete pending destruct after reset completes. */
1977 		return OP_COMPLETE_PENDING_DESTRUCT;
1978 	} else if (nvme_ctrlr->pending_failover) {
1979 		nvme_ctrlr->pending_failover = false;
1980 		nvme_ctrlr->reset_start_tsc = 0;
1981 		return OP_FAILOVER;
1982 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1983 		nvme_ctrlr->reset_start_tsc = 0;
1984 		return OP_NONE;
1985 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1986 		return OP_DESTRUCT;
1987 	} else {
1988 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
1989 			nvme_ctrlr->fast_io_fail_timedout = true;
1990 		}
1991 		return OP_DELAYED_RECONNECT;
1992 	}
1993 }
1994 
1995 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
1996 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
1997 
1998 static int
1999 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
2000 {
2001 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2002 
2003 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
2004 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2005 
2006 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2007 
2008 	if (!nvme_ctrlr->reconnect_is_delayed) {
2009 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2010 		return SPDK_POLLER_BUSY;
2011 	}
2012 
2013 	nvme_ctrlr->reconnect_is_delayed = false;
2014 
2015 	if (nvme_ctrlr->destruct) {
2016 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2017 		return SPDK_POLLER_BUSY;
2018 	}
2019 
2020 	assert(nvme_ctrlr->resetting == false);
2021 	nvme_ctrlr->resetting = true;
2022 
2023 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2024 
2025 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2026 
2027 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2028 	return SPDK_POLLER_BUSY;
2029 }
2030 
2031 static void
2032 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
2033 {
2034 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2035 
2036 	assert(nvme_ctrlr->reconnect_is_delayed == false);
2037 	nvme_ctrlr->reconnect_is_delayed = true;
2038 
2039 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
2040 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
2041 					    nvme_ctrlr,
2042 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
2043 }
2044 
2045 static void remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr);
2046 
2047 static void
2048 _bdev_nvme_reset_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2049 {
2050 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2051 	bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
2052 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2053 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2054 	enum bdev_nvme_op_after_reset op_after_reset;
2055 
2056 	assert(nvme_ctrlr->thread == spdk_get_thread());
2057 
2058 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2059 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2060 
2061 	if (!success) {
2062 		SPDK_ERRLOG("Resetting controller failed.\n");
2063 	} else {
2064 		SPDK_NOTICELOG("Resetting controller successful.\n");
2065 	}
2066 
2067 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2068 	nvme_ctrlr->resetting = false;
2069 	nvme_ctrlr->dont_retry = false;
2070 	nvme_ctrlr->in_failover = false;
2071 
2072 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
2073 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2074 
2075 	/* Delay callbacks when the next operation is a failover. */
2076 	if (ctrlr_op_cb_fn && op_after_reset != OP_FAILOVER) {
2077 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, success ? 0 : -1);
2078 	}
2079 
2080 	switch (op_after_reset) {
2081 	case OP_COMPLETE_PENDING_DESTRUCT:
2082 		nvme_ctrlr_unregister(nvme_ctrlr);
2083 		break;
2084 	case OP_DESTRUCT:
2085 		bdev_nvme_delete_ctrlr(nvme_ctrlr, false);
2086 		remove_discovery_entry(nvme_ctrlr);
2087 		break;
2088 	case OP_DELAYED_RECONNECT:
2089 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
2090 		break;
2091 	case OP_FAILOVER:
2092 		nvme_ctrlr->ctrlr_op_cb_fn = ctrlr_op_cb_fn;
2093 		nvme_ctrlr->ctrlr_op_cb_arg = ctrlr_op_cb_arg;
2094 		bdev_nvme_failover_ctrlr(nvme_ctrlr);
2095 		break;
2096 	default:
2097 		break;
2098 	}
2099 }
2100 
2101 static void
2102 bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
2103 {
2104 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2105 	if (!success) {
2106 		/* Connecting the active trid failed. Set the next alternate trid to the
2107 		 * active trid if it exists.
2108 		 */
2109 		if (bdev_nvme_failover_trid(nvme_ctrlr, false, false)) {
2110 			/* The next alternate trid exists and is ready to try. Try it now. */
2111 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
2112 
2113 			nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2114 			return;
2115 		}
2116 
2117 		/* We came here if there is no alternate trid or if the next trid exists but
2118 		 * is not ready to try. We will try the active trid after reconnect_delay_sec
2119 		 * seconds if it is non-zero or at the next reset call otherwise.
2120 		 */
2121 	} else {
2122 		/* Connecting the active trid succeeded. Clear the last failed time because it
2123 		 * means the trid is failed if its last failed time is non-zero.
2124 		 */
2125 		nvme_ctrlr->active_path_id->last_failed_tsc = 0;
2126 	}
2127 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2128 
2129 	/* Make sure we clear any pending resets before returning. */
2130 	spdk_for_each_channel(nvme_ctrlr,
2131 			      bdev_nvme_complete_pending_resets,
2132 			      success ? NULL : (void *)0x1,
2133 			      _bdev_nvme_reset_ctrlr_complete);
2134 }
2135 
2136 static void
2137 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
2138 {
2139 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2140 
2141 	bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2142 }
2143 
2144 static void
2145 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
2146 {
2147 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
2148 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
2149 	struct nvme_qpair *nvme_qpair;
2150 
2151 	nvme_qpair = ctrlr_ch->qpair;
2152 	assert(nvme_qpair != NULL);
2153 
2154 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2155 
2156 	if (nvme_qpair->qpair != NULL) {
2157 		if (nvme_qpair->ctrlr->dont_retry) {
2158 			spdk_nvme_qpair_set_abort_dnr(nvme_qpair->qpair, true);
2159 		}
2160 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2161 
2162 		/* The current full reset sequence will move to the next
2163 		 * ctrlr_channel after the qpair is actually disconnected.
2164 		 */
2165 		assert(ctrlr_ch->reset_iter == NULL);
2166 		ctrlr_ch->reset_iter = i;
2167 	} else {
2168 		spdk_for_each_channel_continue(i, 0);
2169 	}
2170 }
2171 
2172 static void
2173 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
2174 {
2175 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2176 
2177 	if (status == 0) {
2178 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, true);
2179 	} else {
2180 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
2181 		spdk_for_each_channel(nvme_ctrlr,
2182 				      bdev_nvme_reset_destroy_qpair,
2183 				      NULL,
2184 				      bdev_nvme_reset_create_qpairs_failed);
2185 	}
2186 }
2187 
2188 static int
2189 bdev_nvme_reset_check_qpair_connected(void *ctx)
2190 {
2191 	struct nvme_ctrlr_channel *ctrlr_ch = ctx;
2192 
2193 	if (ctrlr_ch->reset_iter == NULL) {
2194 		/* qpair was already failed to connect and the reset sequence is being aborted. */
2195 		assert(ctrlr_ch->connect_poller == NULL);
2196 		assert(ctrlr_ch->qpair->qpair == NULL);
2197 		return SPDK_POLLER_BUSY;
2198 	}
2199 
2200 	assert(ctrlr_ch->qpair->qpair != NULL);
2201 
2202 	if (!spdk_nvme_qpair_is_connected(ctrlr_ch->qpair->qpair)) {
2203 		return SPDK_POLLER_BUSY;
2204 	}
2205 
2206 	spdk_poller_unregister(&ctrlr_ch->connect_poller);
2207 
2208 	/* qpair was completed to connect. Move to the next ctrlr_channel */
2209 	spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2210 	ctrlr_ch->reset_iter = NULL;
2211 
2212 	if (!g_opts.disable_auto_failback) {
2213 		_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
2214 	}
2215 
2216 	return SPDK_POLLER_BUSY;
2217 }
2218 
2219 static void
2220 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
2221 {
2222 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2223 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
2224 	int rc;
2225 
2226 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
2227 	if (rc == 0) {
2228 		ctrlr_ch->connect_poller = SPDK_POLLER_REGISTER(bdev_nvme_reset_check_qpair_connected,
2229 					   ctrlr_ch, 0);
2230 
2231 		/* The current full reset sequence will move to the next
2232 		 * ctrlr_channel after the qpair is actually connected.
2233 		 */
2234 		assert(ctrlr_ch->reset_iter == NULL);
2235 		ctrlr_ch->reset_iter = i;
2236 	} else {
2237 		spdk_for_each_channel_continue(i, rc);
2238 	}
2239 }
2240 
2241 static void
2242 nvme_ctrlr_check_namespaces(struct nvme_ctrlr *nvme_ctrlr)
2243 {
2244 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
2245 	struct nvme_ns *nvme_ns;
2246 
2247 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
2248 	     nvme_ns != NULL;
2249 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
2250 		if (!spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
2251 			SPDK_DEBUGLOG(bdev_nvme, "NSID %u was removed during reset.\n", nvme_ns->id);
2252 			/* NS can be added again. Just nullify nvme_ns->ns. */
2253 			nvme_ns->ns = NULL;
2254 		}
2255 	}
2256 }
2257 
2258 
2259 static int
2260 bdev_nvme_reconnect_ctrlr_poll(void *arg)
2261 {
2262 	struct nvme_ctrlr *nvme_ctrlr = arg;
2263 	int rc = -ETIMEDOUT;
2264 
2265 	if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2266 		/* Mark the ctrlr as failed. The next call to
2267 		 * spdk_nvme_ctrlr_reconnect_poll_async() will then
2268 		 * do the necessary cleanup and return failure.
2269 		 */
2270 		spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
2271 	}
2272 
2273 	rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
2274 	if (rc == -EAGAIN) {
2275 		return SPDK_POLLER_BUSY;
2276 	}
2277 
2278 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
2279 	if (rc == 0) {
2280 		nvme_ctrlr_check_namespaces(nvme_ctrlr);
2281 
2282 		/* Recreate all of the I/O queue pairs */
2283 		spdk_for_each_channel(nvme_ctrlr,
2284 				      bdev_nvme_reset_create_qpair,
2285 				      NULL,
2286 				      bdev_nvme_reset_create_qpairs_done);
2287 	} else {
2288 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2289 	}
2290 	return SPDK_POLLER_BUSY;
2291 }
2292 
2293 static void
2294 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2295 {
2296 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
2297 
2298 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
2299 	assert(nvme_ctrlr->reset_detach_poller == NULL);
2300 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
2301 					  nvme_ctrlr, 0);
2302 }
2303 
2304 static void
2305 bdev_nvme_reset_destroy_qpair_done(struct spdk_io_channel_iter *i, int status)
2306 {
2307 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2308 
2309 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
2310 	assert(status == 0);
2311 
2312 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2313 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2314 	} else {
2315 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2316 	}
2317 }
2318 
2319 static void
2320 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2321 {
2322 	spdk_for_each_channel(nvme_ctrlr,
2323 			      bdev_nvme_reset_destroy_qpair,
2324 			      NULL,
2325 			      bdev_nvme_reset_destroy_qpair_done);
2326 }
2327 
2328 static void
2329 bdev_nvme_reconnect_ctrlr_now(void *ctx)
2330 {
2331 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2332 
2333 	assert(nvme_ctrlr->resetting == true);
2334 	assert(nvme_ctrlr->thread == spdk_get_thread());
2335 
2336 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2337 
2338 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2339 
2340 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2341 }
2342 
2343 static void
2344 _bdev_nvme_reset_ctrlr(void *ctx)
2345 {
2346 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2347 
2348 	assert(nvme_ctrlr->resetting == true);
2349 	assert(nvme_ctrlr->thread == spdk_get_thread());
2350 
2351 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2352 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
2353 	} else {
2354 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
2355 	}
2356 }
2357 
2358 static int
2359 bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2360 {
2361 	spdk_msg_fn msg_fn;
2362 
2363 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2364 	if (nvme_ctrlr->destruct) {
2365 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2366 		return -ENXIO;
2367 	}
2368 
2369 	if (nvme_ctrlr->resetting) {
2370 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2371 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
2372 		return -EBUSY;
2373 	}
2374 
2375 	if (nvme_ctrlr->disabled) {
2376 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2377 		SPDK_NOTICELOG("Unable to perform reset. Controller is disabled.\n");
2378 		return -EALREADY;
2379 	}
2380 
2381 	nvme_ctrlr->resetting = true;
2382 	nvme_ctrlr->dont_retry = true;
2383 
2384 	if (nvme_ctrlr->reconnect_is_delayed) {
2385 		SPDK_DEBUGLOG(bdev_nvme, "Reconnect is already scheduled.\n");
2386 		msg_fn = bdev_nvme_reconnect_ctrlr_now;
2387 		nvme_ctrlr->reconnect_is_delayed = false;
2388 	} else {
2389 		msg_fn = _bdev_nvme_reset_ctrlr;
2390 		assert(nvme_ctrlr->reset_start_tsc == 0);
2391 	}
2392 
2393 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2394 
2395 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2396 
2397 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2398 	return 0;
2399 }
2400 
2401 static int
2402 bdev_nvme_enable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2403 {
2404 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2405 	if (nvme_ctrlr->destruct) {
2406 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2407 		return -ENXIO;
2408 	}
2409 
2410 	if (nvme_ctrlr->resetting) {
2411 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2412 		return -EBUSY;
2413 	}
2414 
2415 	if (!nvme_ctrlr->disabled) {
2416 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2417 		return -EALREADY;
2418 	}
2419 
2420 	nvme_ctrlr->disabled = false;
2421 	nvme_ctrlr->resetting = true;
2422 
2423 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2424 
2425 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2426 
2427 	spdk_thread_send_msg(nvme_ctrlr->thread, bdev_nvme_reconnect_ctrlr_now, nvme_ctrlr);
2428 	return 0;
2429 }
2430 
2431 static void
2432 _bdev_nvme_disable_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2433 {
2434 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2435 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2436 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2437 	enum bdev_nvme_op_after_reset op_after_disable;
2438 
2439 	assert(nvme_ctrlr->thread == spdk_get_thread());
2440 
2441 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2442 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2443 
2444 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2445 
2446 	nvme_ctrlr->resetting = false;
2447 	nvme_ctrlr->dont_retry = false;
2448 
2449 	op_after_disable = bdev_nvme_check_op_after_reset(nvme_ctrlr, true);
2450 
2451 	nvme_ctrlr->disabled = true;
2452 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2453 
2454 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2455 
2456 	if (ctrlr_op_cb_fn) {
2457 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, 0);
2458 	}
2459 
2460 	switch (op_after_disable) {
2461 	case OP_COMPLETE_PENDING_DESTRUCT:
2462 		nvme_ctrlr_unregister(nvme_ctrlr);
2463 		break;
2464 	default:
2465 		break;
2466 	}
2467 
2468 }
2469 
2470 static void
2471 bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr)
2472 {
2473 	/* Make sure we clear any pending resets before returning. */
2474 	spdk_for_each_channel(nvme_ctrlr,
2475 			      bdev_nvme_complete_pending_resets,
2476 			      NULL,
2477 			      _bdev_nvme_disable_ctrlr_complete);
2478 }
2479 
2480 static void
2481 bdev_nvme_disable_destroy_qpairs_done(struct spdk_io_channel_iter *i, int status)
2482 {
2483 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2484 
2485 	assert(status == 0);
2486 
2487 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2488 		bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2489 	} else {
2490 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_ctrlr_complete);
2491 	}
2492 }
2493 
2494 static void
2495 bdev_nvme_disable_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2496 {
2497 	spdk_for_each_channel(nvme_ctrlr,
2498 			      bdev_nvme_reset_destroy_qpair,
2499 			      NULL,
2500 			      bdev_nvme_disable_destroy_qpairs_done);
2501 }
2502 
2503 static void
2504 _bdev_nvme_cancel_reconnect_and_disable_ctrlr(void *ctx)
2505 {
2506 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2507 
2508 	assert(nvme_ctrlr->resetting == true);
2509 	assert(nvme_ctrlr->thread == spdk_get_thread());
2510 
2511 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2512 
2513 	bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2514 }
2515 
2516 static void
2517 _bdev_nvme_disconnect_and_disable_ctrlr(void *ctx)
2518 {
2519 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2520 
2521 	assert(nvme_ctrlr->resetting == true);
2522 	assert(nvme_ctrlr->thread == spdk_get_thread());
2523 
2524 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2525 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_destroy_qpairs);
2526 	} else {
2527 		bdev_nvme_disable_destroy_qpairs(nvme_ctrlr);
2528 	}
2529 }
2530 
2531 static int
2532 bdev_nvme_disable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2533 {
2534 	spdk_msg_fn msg_fn;
2535 
2536 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2537 	if (nvme_ctrlr->destruct) {
2538 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2539 		return -ENXIO;
2540 	}
2541 
2542 	if (nvme_ctrlr->resetting) {
2543 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2544 		return -EBUSY;
2545 	}
2546 
2547 	if (nvme_ctrlr->disabled) {
2548 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2549 		return -EALREADY;
2550 	}
2551 
2552 	nvme_ctrlr->resetting = true;
2553 	nvme_ctrlr->dont_retry = true;
2554 
2555 	if (nvme_ctrlr->reconnect_is_delayed) {
2556 		msg_fn = _bdev_nvme_cancel_reconnect_and_disable_ctrlr;
2557 		nvme_ctrlr->reconnect_is_delayed = false;
2558 	} else {
2559 		msg_fn = _bdev_nvme_disconnect_and_disable_ctrlr;
2560 	}
2561 
2562 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2563 
2564 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2565 
2566 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2567 	return 0;
2568 }
2569 
2570 static int
2571 nvme_ctrlr_op(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2572 	      bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2573 {
2574 	int rc;
2575 
2576 	switch (op) {
2577 	case NVME_CTRLR_OP_RESET:
2578 		rc = bdev_nvme_reset_ctrlr(nvme_ctrlr);
2579 		break;
2580 	case NVME_CTRLR_OP_ENABLE:
2581 		rc = bdev_nvme_enable_ctrlr(nvme_ctrlr);
2582 		break;
2583 	case NVME_CTRLR_OP_DISABLE:
2584 		rc = bdev_nvme_disable_ctrlr(nvme_ctrlr);
2585 		break;
2586 	default:
2587 		rc = -EINVAL;
2588 		break;
2589 	}
2590 
2591 	if (rc == 0) {
2592 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
2593 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
2594 		nvme_ctrlr->ctrlr_op_cb_fn = cb_fn;
2595 		nvme_ctrlr->ctrlr_op_cb_arg = cb_arg;
2596 	}
2597 	return rc;
2598 }
2599 
2600 struct nvme_ctrlr_op_rpc_ctx {
2601 	struct nvme_ctrlr *nvme_ctrlr;
2602 	struct spdk_thread *orig_thread;
2603 	enum nvme_ctrlr_op op;
2604 	int rc;
2605 	bdev_nvme_ctrlr_op_cb cb_fn;
2606 	void *cb_arg;
2607 };
2608 
2609 static void
2610 _nvme_ctrlr_op_rpc_complete(void *_ctx)
2611 {
2612 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2613 
2614 	assert(ctx != NULL);
2615 	assert(ctx->cb_fn != NULL);
2616 
2617 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2618 
2619 	free(ctx);
2620 }
2621 
2622 static void
2623 nvme_ctrlr_op_rpc_complete(void *cb_arg, int rc)
2624 {
2625 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2626 
2627 	ctx->rc = rc;
2628 
2629 	spdk_thread_send_msg(ctx->orig_thread, _nvme_ctrlr_op_rpc_complete, ctx);
2630 }
2631 
2632 void
2633 nvme_ctrlr_op_rpc(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2634 		  bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2635 {
2636 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2637 	int rc;
2638 
2639 	assert(cb_fn != NULL);
2640 
2641 	ctx = calloc(1, sizeof(*ctx));
2642 	if (ctx == NULL) {
2643 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2644 		cb_fn(cb_arg, -ENOMEM);
2645 		return;
2646 	}
2647 
2648 	ctx->orig_thread = spdk_get_thread();
2649 	ctx->cb_fn = cb_fn;
2650 	ctx->cb_arg = cb_arg;
2651 
2652 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_ctrlr_op_rpc_complete, ctx);
2653 	if (rc == 0) {
2654 		return;
2655 	} else if (rc == -EALREADY) {
2656 		rc = 0;
2657 	}
2658 
2659 	nvme_ctrlr_op_rpc_complete(ctx, rc);
2660 }
2661 
2662 static void nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc);
2663 
2664 static void
2665 _nvme_bdev_ctrlr_op_rpc_continue(void *_ctx)
2666 {
2667 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2668 	struct nvme_ctrlr *prev_nvme_ctrlr, *next_nvme_ctrlr;
2669 	int rc;
2670 
2671 	prev_nvme_ctrlr = ctx->nvme_ctrlr;
2672 	ctx->nvme_ctrlr = NULL;
2673 
2674 	if (ctx->rc != 0) {
2675 		goto complete;
2676 	}
2677 
2678 	next_nvme_ctrlr = TAILQ_NEXT(prev_nvme_ctrlr, tailq);
2679 	if (next_nvme_ctrlr == NULL) {
2680 		goto complete;
2681 	}
2682 
2683 	rc = nvme_ctrlr_op(next_nvme_ctrlr, ctx->op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2684 	if (rc == 0) {
2685 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2686 		return;
2687 	} else if (rc == -EALREADY) {
2688 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2689 		rc = 0;
2690 	}
2691 
2692 	ctx->rc = rc;
2693 
2694 complete:
2695 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2696 	free(ctx);
2697 }
2698 
2699 static void
2700 nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc)
2701 {
2702 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2703 
2704 	ctx->rc = rc;
2705 
2706 	spdk_thread_send_msg(ctx->orig_thread, _nvme_bdev_ctrlr_op_rpc_continue, ctx);
2707 }
2708 
2709 void
2710 nvme_bdev_ctrlr_op_rpc(struct nvme_bdev_ctrlr *nbdev_ctrlr, enum nvme_ctrlr_op op,
2711 		       bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2712 {
2713 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2714 	struct nvme_ctrlr *nvme_ctrlr;
2715 	int rc;
2716 
2717 	assert(cb_fn != NULL);
2718 
2719 	ctx = calloc(1, sizeof(*ctx));
2720 	if (ctx == NULL) {
2721 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2722 		cb_fn(cb_arg, -ENOMEM);
2723 		return;
2724 	}
2725 
2726 	ctx->orig_thread = spdk_get_thread();
2727 	ctx->op = op;
2728 	ctx->cb_fn = cb_fn;
2729 	ctx->cb_arg = cb_arg;
2730 
2731 	nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
2732 	assert(nvme_ctrlr != NULL);
2733 
2734 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2735 	if (rc == 0) {
2736 		ctx->nvme_ctrlr = nvme_ctrlr;
2737 		return;
2738 	} else if (rc == -EALREADY) {
2739 		ctx->nvme_ctrlr = nvme_ctrlr;
2740 		rc = 0;
2741 	}
2742 
2743 	nvme_bdev_ctrlr_op_rpc_continue(ctx, rc);
2744 }
2745 
2746 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
2747 
2748 static void
2749 _bdev_nvme_reset_io_complete(struct spdk_io_channel_iter *i, int status)
2750 {
2751 	struct nvme_bdev_io *bio = spdk_io_channel_iter_get_ctx(i);
2752 	enum spdk_bdev_io_status io_status;
2753 
2754 	if (bio->cpl.cdw0 == 0) {
2755 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2756 	} else {
2757 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
2758 	}
2759 
2760 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
2761 }
2762 
2763 static void
2764 bdev_nvme_abort_bdev_channel(struct spdk_io_channel_iter *i)
2765 {
2766 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2767 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
2768 
2769 	bdev_nvme_abort_retry_ios(nbdev_ch);
2770 
2771 	spdk_for_each_channel_continue(i, 0);
2772 }
2773 
2774 static void
2775 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
2776 {
2777 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2778 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
2779 
2780 	/* Abort all queued I/Os for retry. */
2781 	spdk_for_each_channel(nbdev,
2782 			      bdev_nvme_abort_bdev_channel,
2783 			      bio,
2784 			      _bdev_nvme_reset_io_complete);
2785 }
2786 
2787 static void
2788 _bdev_nvme_reset_io_continue(void *ctx)
2789 {
2790 	struct nvme_bdev_io *bio = ctx;
2791 	struct nvme_io_path *prev_io_path, *next_io_path;
2792 	int rc;
2793 
2794 	prev_io_path = bio->io_path;
2795 	bio->io_path = NULL;
2796 
2797 	if (bio->cpl.cdw0 != 0) {
2798 		goto complete;
2799 	}
2800 
2801 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
2802 	if (next_io_path == NULL) {
2803 		goto complete;
2804 	}
2805 
2806 	rc = _bdev_nvme_reset_io(next_io_path, bio);
2807 	if (rc == 0) {
2808 		return;
2809 	}
2810 
2811 	bio->cpl.cdw0 = 1;
2812 
2813 complete:
2814 	bdev_nvme_reset_io_complete(bio);
2815 }
2816 
2817 static void
2818 bdev_nvme_reset_io_continue(void *cb_arg, int rc)
2819 {
2820 	struct nvme_bdev_io *bio = cb_arg;
2821 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2822 
2823 	bio->cpl.cdw0 = (rc == 0) ? 0 : 1;
2824 
2825 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_nvme_reset_io_continue, bio);
2826 }
2827 
2828 static int
2829 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
2830 {
2831 	struct nvme_ctrlr_channel *ctrlr_ch;
2832 	struct spdk_bdev_io *bdev_io;
2833 	int rc;
2834 
2835 	rc = nvme_ctrlr_op(io_path->qpair->ctrlr, NVME_CTRLR_OP_RESET,
2836 			   bdev_nvme_reset_io_continue, bio);
2837 	if (rc != 0 && rc != -EBUSY) {
2838 		return rc;
2839 	}
2840 
2841 	assert(bio->io_path == NULL);
2842 	bio->io_path = io_path;
2843 
2844 	if (rc == -EBUSY) {
2845 		ctrlr_ch = io_path->qpair->ctrlr_ch;
2846 		assert(ctrlr_ch != NULL);
2847 		/*
2848 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
2849 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
2850 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
2851 		 */
2852 		bdev_io = spdk_bdev_io_from_ctx(bio);
2853 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bdev_io, module_link);
2854 	}
2855 
2856 	return 0;
2857 }
2858 
2859 static void
2860 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
2861 {
2862 	struct nvme_io_path *io_path;
2863 	int rc;
2864 
2865 	bio->cpl.cdw0 = 0;
2866 
2867 	/* Reset all nvme_ctrlrs of a bdev controller sequentially. */
2868 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
2869 	assert(io_path != NULL);
2870 
2871 	rc = _bdev_nvme_reset_io(io_path, bio);
2872 	if (rc != 0) {
2873 		/* If the current nvme_ctrlr is disabled, skip it and move to the next nvme_ctrlr. */
2874 		rc = (rc == -EALREADY) ? 0 : rc;
2875 
2876 		bdev_nvme_reset_io_continue(bio, rc);
2877 	}
2878 }
2879 
2880 static int
2881 bdev_nvme_failover_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove)
2882 {
2883 	if (nvme_ctrlr->destruct) {
2884 		/* Don't bother resetting if the controller is in the process of being destructed. */
2885 		return -ENXIO;
2886 	}
2887 
2888 	if (nvme_ctrlr->resetting) {
2889 		if (!nvme_ctrlr->in_failover) {
2890 			SPDK_NOTICELOG("Reset is already in progress. Defer failover until reset completes.\n");
2891 
2892 			/* Defer failover until reset completes. */
2893 			nvme_ctrlr->pending_failover = true;
2894 			return -EINPROGRESS;
2895 		} else {
2896 			SPDK_NOTICELOG("Unable to perform failover, already in progress.\n");
2897 			return -EBUSY;
2898 		}
2899 	}
2900 
2901 	bdev_nvme_failover_trid(nvme_ctrlr, remove, true);
2902 
2903 	if (nvme_ctrlr->reconnect_is_delayed) {
2904 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
2905 
2906 		/* We rely on the next reconnect for the failover. */
2907 		return -EALREADY;
2908 	}
2909 
2910 	if (nvme_ctrlr->disabled) {
2911 		SPDK_NOTICELOG("Controller is disabled.\n");
2912 
2913 		/* We rely on the enablement for the failover. */
2914 		return -EALREADY;
2915 	}
2916 
2917 	nvme_ctrlr->resetting = true;
2918 	nvme_ctrlr->in_failover = true;
2919 
2920 	assert(nvme_ctrlr->reset_start_tsc == 0);
2921 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2922 
2923 	return 0;
2924 }
2925 
2926 static int
2927 bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2928 {
2929 	int rc;
2930 
2931 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2932 	rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, false);
2933 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2934 
2935 	if (rc == 0) {
2936 		spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset_ctrlr, nvme_ctrlr);
2937 	} else if (rc == -EALREADY) {
2938 		rc = 0;
2939 	}
2940 
2941 	return rc;
2942 }
2943 
2944 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2945 			   uint64_t num_blocks);
2946 
2947 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2948 				  uint64_t num_blocks);
2949 
2950 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
2951 			  uint64_t src_offset_blocks,
2952 			  uint64_t num_blocks);
2953 
2954 static void
2955 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
2956 		     bool success)
2957 {
2958 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2959 	int ret;
2960 
2961 	if (!success) {
2962 		ret = -EINVAL;
2963 		goto exit;
2964 	}
2965 
2966 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
2967 		ret = -ENXIO;
2968 		goto exit;
2969 	}
2970 
2971 	ret = bdev_nvme_readv(bio,
2972 			      bdev_io->u.bdev.iovs,
2973 			      bdev_io->u.bdev.iovcnt,
2974 			      bdev_io->u.bdev.md_buf,
2975 			      bdev_io->u.bdev.num_blocks,
2976 			      bdev_io->u.bdev.offset_blocks,
2977 			      bdev_io->u.bdev.dif_check_flags,
2978 			      bdev_io->u.bdev.memory_domain,
2979 			      bdev_io->u.bdev.memory_domain_ctx,
2980 			      bdev_io->u.bdev.accel_sequence);
2981 
2982 exit:
2983 	if (spdk_unlikely(ret != 0)) {
2984 		bdev_nvme_io_complete(bio, ret);
2985 	}
2986 }
2987 
2988 static inline void
2989 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
2990 {
2991 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2992 	struct spdk_bdev *bdev = bdev_io->bdev;
2993 	struct nvme_bdev_io *nbdev_io_to_abort;
2994 	int rc = 0;
2995 
2996 	switch (bdev_io->type) {
2997 	case SPDK_BDEV_IO_TYPE_READ:
2998 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
2999 
3000 			rc = bdev_nvme_readv(nbdev_io,
3001 					     bdev_io->u.bdev.iovs,
3002 					     bdev_io->u.bdev.iovcnt,
3003 					     bdev_io->u.bdev.md_buf,
3004 					     bdev_io->u.bdev.num_blocks,
3005 					     bdev_io->u.bdev.offset_blocks,
3006 					     bdev_io->u.bdev.dif_check_flags,
3007 					     bdev_io->u.bdev.memory_domain,
3008 					     bdev_io->u.bdev.memory_domain_ctx,
3009 					     bdev_io->u.bdev.accel_sequence);
3010 		} else {
3011 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
3012 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
3013 			rc = 0;
3014 		}
3015 		break;
3016 	case SPDK_BDEV_IO_TYPE_WRITE:
3017 		rc = bdev_nvme_writev(nbdev_io,
3018 				      bdev_io->u.bdev.iovs,
3019 				      bdev_io->u.bdev.iovcnt,
3020 				      bdev_io->u.bdev.md_buf,
3021 				      bdev_io->u.bdev.num_blocks,
3022 				      bdev_io->u.bdev.offset_blocks,
3023 				      bdev_io->u.bdev.dif_check_flags,
3024 				      bdev_io->u.bdev.memory_domain,
3025 				      bdev_io->u.bdev.memory_domain_ctx,
3026 				      bdev_io->u.bdev.accel_sequence,
3027 				      bdev_io->u.bdev.nvme_cdw12,
3028 				      bdev_io->u.bdev.nvme_cdw13);
3029 		break;
3030 	case SPDK_BDEV_IO_TYPE_COMPARE:
3031 		rc = bdev_nvme_comparev(nbdev_io,
3032 					bdev_io->u.bdev.iovs,
3033 					bdev_io->u.bdev.iovcnt,
3034 					bdev_io->u.bdev.md_buf,
3035 					bdev_io->u.bdev.num_blocks,
3036 					bdev_io->u.bdev.offset_blocks,
3037 					bdev_io->u.bdev.dif_check_flags);
3038 		break;
3039 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3040 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
3041 						   bdev_io->u.bdev.iovs,
3042 						   bdev_io->u.bdev.iovcnt,
3043 						   bdev_io->u.bdev.fused_iovs,
3044 						   bdev_io->u.bdev.fused_iovcnt,
3045 						   bdev_io->u.bdev.md_buf,
3046 						   bdev_io->u.bdev.num_blocks,
3047 						   bdev_io->u.bdev.offset_blocks,
3048 						   bdev_io->u.bdev.dif_check_flags);
3049 		break;
3050 	case SPDK_BDEV_IO_TYPE_UNMAP:
3051 		rc = bdev_nvme_unmap(nbdev_io,
3052 				     bdev_io->u.bdev.offset_blocks,
3053 				     bdev_io->u.bdev.num_blocks);
3054 		break;
3055 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3056 		rc =  bdev_nvme_write_zeroes(nbdev_io,
3057 					     bdev_io->u.bdev.offset_blocks,
3058 					     bdev_io->u.bdev.num_blocks);
3059 		break;
3060 	case SPDK_BDEV_IO_TYPE_RESET:
3061 		nbdev_io->io_path = NULL;
3062 		bdev_nvme_reset_io(nbdev_ch, nbdev_io);
3063 		return;
3064 
3065 	case SPDK_BDEV_IO_TYPE_FLUSH:
3066 		bdev_nvme_io_complete(nbdev_io, 0);
3067 		return;
3068 
3069 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3070 		rc = bdev_nvme_zone_appendv(nbdev_io,
3071 					    bdev_io->u.bdev.iovs,
3072 					    bdev_io->u.bdev.iovcnt,
3073 					    bdev_io->u.bdev.md_buf,
3074 					    bdev_io->u.bdev.num_blocks,
3075 					    bdev_io->u.bdev.offset_blocks,
3076 					    bdev_io->u.bdev.dif_check_flags);
3077 		break;
3078 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3079 		rc = bdev_nvme_get_zone_info(nbdev_io,
3080 					     bdev_io->u.zone_mgmt.zone_id,
3081 					     bdev_io->u.zone_mgmt.num_zones,
3082 					     bdev_io->u.zone_mgmt.buf);
3083 		break;
3084 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3085 		rc = bdev_nvme_zone_management(nbdev_io,
3086 					       bdev_io->u.zone_mgmt.zone_id,
3087 					       bdev_io->u.zone_mgmt.zone_action);
3088 		break;
3089 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3090 		nbdev_io->io_path = NULL;
3091 		bdev_nvme_admin_passthru(nbdev_ch,
3092 					 nbdev_io,
3093 					 &bdev_io->u.nvme_passthru.cmd,
3094 					 bdev_io->u.nvme_passthru.buf,
3095 					 bdev_io->u.nvme_passthru.nbytes);
3096 		return;
3097 
3098 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3099 		rc = bdev_nvme_io_passthru(nbdev_io,
3100 					   &bdev_io->u.nvme_passthru.cmd,
3101 					   bdev_io->u.nvme_passthru.buf,
3102 					   bdev_io->u.nvme_passthru.nbytes);
3103 		break;
3104 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3105 		rc = bdev_nvme_io_passthru_md(nbdev_io,
3106 					      &bdev_io->u.nvme_passthru.cmd,
3107 					      bdev_io->u.nvme_passthru.buf,
3108 					      bdev_io->u.nvme_passthru.nbytes,
3109 					      bdev_io->u.nvme_passthru.md_buf,
3110 					      bdev_io->u.nvme_passthru.md_len);
3111 		break;
3112 	case SPDK_BDEV_IO_TYPE_NVME_IOV_MD:
3113 		rc = bdev_nvme_iov_passthru_md(nbdev_io,
3114 					       &bdev_io->u.nvme_passthru.cmd,
3115 					       bdev_io->u.nvme_passthru.iovs,
3116 					       bdev_io->u.nvme_passthru.iovcnt,
3117 					       bdev_io->u.nvme_passthru.nbytes,
3118 					       bdev_io->u.nvme_passthru.md_buf,
3119 					       bdev_io->u.nvme_passthru.md_len);
3120 		break;
3121 	case SPDK_BDEV_IO_TYPE_ABORT:
3122 		nbdev_io->io_path = NULL;
3123 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
3124 		bdev_nvme_abort(nbdev_ch,
3125 				nbdev_io,
3126 				nbdev_io_to_abort);
3127 		return;
3128 
3129 	case SPDK_BDEV_IO_TYPE_COPY:
3130 		rc = bdev_nvme_copy(nbdev_io,
3131 				    bdev_io->u.bdev.offset_blocks,
3132 				    bdev_io->u.bdev.copy.src_offset_blocks,
3133 				    bdev_io->u.bdev.num_blocks);
3134 		break;
3135 	default:
3136 		rc = -EINVAL;
3137 		break;
3138 	}
3139 
3140 	if (spdk_unlikely(rc != 0)) {
3141 		bdev_nvme_io_complete(nbdev_io, rc);
3142 	}
3143 }
3144 
3145 static void
3146 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
3147 {
3148 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3149 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3150 
3151 	if (spdk_likely(nbdev_io->submit_tsc == 0)) {
3152 		nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io);
3153 	} else {
3154 		/* There are cases where submit_tsc != 0, i.e. retry I/O.
3155 		 * We need to update submit_tsc here.
3156 		 */
3157 		nbdev_io->submit_tsc = spdk_get_ticks();
3158 	}
3159 
3160 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
3161 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
3162 	if (spdk_unlikely(!nbdev_io->io_path)) {
3163 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
3164 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
3165 			return;
3166 		}
3167 
3168 		/* Admin commands do not use the optimal I/O path.
3169 		 * Simply fall through even if it is not found.
3170 		 */
3171 	}
3172 
3173 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
3174 }
3175 
3176 static bool
3177 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
3178 {
3179 	struct nvme_bdev *nbdev = ctx;
3180 	struct nvme_ns *nvme_ns;
3181 	struct spdk_nvme_ns *ns;
3182 	struct spdk_nvme_ctrlr *ctrlr;
3183 	const struct spdk_nvme_ctrlr_data *cdata;
3184 
3185 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3186 	assert(nvme_ns != NULL);
3187 	ns = nvme_ns->ns;
3188 	if (ns == NULL) {
3189 		return false;
3190 	}
3191 
3192 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3193 
3194 	switch (io_type) {
3195 	case SPDK_BDEV_IO_TYPE_READ:
3196 	case SPDK_BDEV_IO_TYPE_WRITE:
3197 	case SPDK_BDEV_IO_TYPE_RESET:
3198 	case SPDK_BDEV_IO_TYPE_FLUSH:
3199 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3200 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3201 	case SPDK_BDEV_IO_TYPE_ABORT:
3202 		return true;
3203 
3204 	case SPDK_BDEV_IO_TYPE_COMPARE:
3205 		return spdk_nvme_ns_supports_compare(ns);
3206 
3207 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3208 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
3209 
3210 	case SPDK_BDEV_IO_TYPE_UNMAP:
3211 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3212 		return cdata->oncs.dsm;
3213 
3214 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3215 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3216 		return cdata->oncs.write_zeroes;
3217 
3218 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3219 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
3220 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
3221 			return true;
3222 		}
3223 		return false;
3224 
3225 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3226 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3227 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
3228 
3229 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3230 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
3231 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
3232 
3233 	case SPDK_BDEV_IO_TYPE_COPY:
3234 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3235 		return cdata->oncs.copy;
3236 
3237 	default:
3238 		return false;
3239 	}
3240 }
3241 
3242 static int
3243 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
3244 {
3245 	struct nvme_qpair *nvme_qpair;
3246 	struct spdk_io_channel *pg_ch;
3247 	int rc;
3248 
3249 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
3250 	if (!nvme_qpair) {
3251 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
3252 		return -1;
3253 	}
3254 
3255 	TAILQ_INIT(&nvme_qpair->io_path_list);
3256 
3257 	nvme_qpair->ctrlr = nvme_ctrlr;
3258 	nvme_qpair->ctrlr_ch = ctrlr_ch;
3259 
3260 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
3261 	if (!pg_ch) {
3262 		free(nvme_qpair);
3263 		return -1;
3264 	}
3265 
3266 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
3267 
3268 #ifdef SPDK_CONFIG_VTUNE
3269 	nvme_qpair->group->collect_spin_stat = true;
3270 #else
3271 	nvme_qpair->group->collect_spin_stat = false;
3272 #endif
3273 
3274 	if (!nvme_ctrlr->disabled) {
3275 		/* If a nvme_ctrlr is disabled, don't try to create qpair for it. Qpair will
3276 		 * be created when it's enabled.
3277 		 */
3278 		rc = bdev_nvme_create_qpair(nvme_qpair);
3279 		if (rc != 0) {
3280 			/* nvme_ctrlr can't create IO qpair if connection is down.
3281 			 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
3282 			 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
3283 			 * submitted IO will be queued until IO qpair is successfully created.
3284 			 *
3285 			 * Hence, if both are satisfied, ignore the failure.
3286 			 */
3287 			if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
3288 				spdk_put_io_channel(pg_ch);
3289 				free(nvme_qpair);
3290 				return rc;
3291 			}
3292 		}
3293 	}
3294 
3295 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3296 
3297 	ctrlr_ch->qpair = nvme_qpair;
3298 
3299 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
3300 	nvme_qpair->ctrlr->ref++;
3301 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
3302 
3303 	return 0;
3304 }
3305 
3306 static int
3307 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3308 {
3309 	struct nvme_ctrlr *nvme_ctrlr = io_device;
3310 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3311 
3312 	TAILQ_INIT(&ctrlr_ch->pending_resets);
3313 
3314 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
3315 }
3316 
3317 static void
3318 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
3319 {
3320 	struct nvme_io_path *io_path, *next;
3321 
3322 	assert(nvme_qpair->group != NULL);
3323 
3324 	TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) {
3325 		TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
3326 		nvme_io_path_free(io_path);
3327 	}
3328 
3329 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3330 
3331 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
3332 
3333 	nvme_ctrlr_release(nvme_qpair->ctrlr);
3334 
3335 	free(nvme_qpair);
3336 }
3337 
3338 static void
3339 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3340 {
3341 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3342 	struct nvme_qpair *nvme_qpair;
3343 
3344 	nvme_qpair = ctrlr_ch->qpair;
3345 	assert(nvme_qpair != NULL);
3346 
3347 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
3348 
3349 	if (nvme_qpair->qpair != NULL) {
3350 		if (ctrlr_ch->reset_iter == NULL) {
3351 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
3352 		} else {
3353 			/* Skip current ctrlr_channel in a full reset sequence because
3354 			 * it is being deleted now. The qpair is already being disconnected.
3355 			 * We do not have to restart disconnecting it.
3356 			 */
3357 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
3358 		}
3359 
3360 		/* We cannot release a reference to the poll group now.
3361 		 * The qpair may be disconnected asynchronously later.
3362 		 * We need to poll it until it is actually disconnected.
3363 		 * Just detach the qpair from the deleting ctrlr_channel.
3364 		 */
3365 		nvme_qpair->ctrlr_ch = NULL;
3366 	} else {
3367 		assert(ctrlr_ch->reset_iter == NULL);
3368 
3369 		nvme_qpair_delete(nvme_qpair);
3370 	}
3371 }
3372 
3373 static inline struct spdk_io_channel *
3374 bdev_nvme_get_accel_channel(struct nvme_poll_group *group)
3375 {
3376 	if (spdk_unlikely(!group->accel_channel)) {
3377 		group->accel_channel = spdk_accel_get_io_channel();
3378 		if (!group->accel_channel) {
3379 			SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
3380 				    group);
3381 			return NULL;
3382 		}
3383 	}
3384 
3385 	return group->accel_channel;
3386 }
3387 
3388 static void
3389 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
3390 			      uint32_t iov_cnt, uint32_t seed,
3391 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3392 {
3393 	struct spdk_io_channel *accel_ch;
3394 	struct nvme_poll_group *group = ctx;
3395 	int rc;
3396 
3397 	assert(cb_fn != NULL);
3398 
3399 	accel_ch = bdev_nvme_get_accel_channel(group);
3400 	if (spdk_unlikely(accel_ch == NULL)) {
3401 		cb_fn(cb_arg, -ENOMEM);
3402 		return;
3403 	}
3404 
3405 	rc = spdk_accel_submit_crc32cv(accel_ch, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
3406 	if (rc) {
3407 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
3408 		if (rc == -ENOMEM || rc == -EINVAL) {
3409 			cb_fn(cb_arg, rc);
3410 		}
3411 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
3412 	}
3413 }
3414 
3415 static void
3416 bdev_nvme_finish_sequence(void *seq, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3417 {
3418 	spdk_accel_sequence_finish(seq, cb_fn, cb_arg);
3419 }
3420 
3421 static void
3422 bdev_nvme_abort_sequence(void *seq)
3423 {
3424 	spdk_accel_sequence_abort(seq);
3425 }
3426 
3427 static void
3428 bdev_nvme_reverse_sequence(void *seq)
3429 {
3430 	spdk_accel_sequence_reverse(seq);
3431 }
3432 
3433 static int
3434 bdev_nvme_append_crc32c(void *ctx, void **seq, uint32_t *dst, struct iovec *iovs, uint32_t iovcnt,
3435 			struct spdk_memory_domain *domain, void *domain_ctx, uint32_t seed,
3436 			spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3437 {
3438 	struct spdk_io_channel *ch;
3439 	struct nvme_poll_group *group = ctx;
3440 
3441 	ch = bdev_nvme_get_accel_channel(group);
3442 	if (spdk_unlikely(ch == NULL)) {
3443 		return -ENOMEM;
3444 	}
3445 
3446 	return spdk_accel_append_crc32c((struct spdk_accel_sequence **)seq, ch, dst, iovs, iovcnt,
3447 					domain, domain_ctx, seed, cb_fn, cb_arg);
3448 }
3449 
3450 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
3451 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
3452 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
3453 	.append_crc32c		= bdev_nvme_append_crc32c,
3454 	.finish_sequence	= bdev_nvme_finish_sequence,
3455 	.reverse_sequence	= bdev_nvme_reverse_sequence,
3456 	.abort_sequence		= bdev_nvme_abort_sequence,
3457 };
3458 
3459 static int
3460 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
3461 {
3462 	struct nvme_poll_group *group = ctx_buf;
3463 
3464 	TAILQ_INIT(&group->qpair_list);
3465 
3466 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
3467 	if (group->group == NULL) {
3468 		return -1;
3469 	}
3470 
3471 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
3472 
3473 	if (group->poller == NULL) {
3474 		spdk_nvme_poll_group_destroy(group->group);
3475 		return -1;
3476 	}
3477 
3478 	return 0;
3479 }
3480 
3481 static void
3482 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
3483 {
3484 	struct nvme_poll_group *group = ctx_buf;
3485 
3486 	assert(TAILQ_EMPTY(&group->qpair_list));
3487 
3488 	if (group->accel_channel) {
3489 		spdk_put_io_channel(group->accel_channel);
3490 	}
3491 
3492 	spdk_poller_unregister(&group->poller);
3493 	if (spdk_nvme_poll_group_destroy(group->group)) {
3494 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
3495 		assert(false);
3496 	}
3497 }
3498 
3499 static struct spdk_io_channel *
3500 bdev_nvme_get_io_channel(void *ctx)
3501 {
3502 	struct nvme_bdev *nvme_bdev = ctx;
3503 
3504 	return spdk_get_io_channel(nvme_bdev);
3505 }
3506 
3507 static void *
3508 bdev_nvme_get_module_ctx(void *ctx)
3509 {
3510 	struct nvme_bdev *nvme_bdev = ctx;
3511 	struct nvme_ns *nvme_ns;
3512 
3513 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
3514 		return NULL;
3515 	}
3516 
3517 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
3518 	if (!nvme_ns) {
3519 		return NULL;
3520 	}
3521 
3522 	return nvme_ns->ns;
3523 }
3524 
3525 static const char *
3526 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
3527 {
3528 	switch (ana_state) {
3529 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3530 		return "optimized";
3531 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3532 		return "non_optimized";
3533 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3534 		return "inaccessible";
3535 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
3536 		return "persistent_loss";
3537 	case SPDK_NVME_ANA_CHANGE_STATE:
3538 		return "change";
3539 	default:
3540 		return NULL;
3541 	}
3542 }
3543 
3544 static int
3545 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
3546 {
3547 	struct spdk_memory_domain **_domains = NULL;
3548 	struct nvme_bdev *nbdev = ctx;
3549 	struct nvme_ns *nvme_ns;
3550 	int i = 0, _array_size = array_size;
3551 	int rc = 0;
3552 
3553 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3554 		if (domains && array_size >= i) {
3555 			_domains = &domains[i];
3556 		} else {
3557 			_domains = NULL;
3558 		}
3559 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
3560 		if (rc > 0) {
3561 			i += rc;
3562 			if (_array_size >= rc) {
3563 				_array_size -= rc;
3564 			} else {
3565 				_array_size = 0;
3566 			}
3567 		} else if (rc < 0) {
3568 			return rc;
3569 		}
3570 	}
3571 
3572 	return i;
3573 }
3574 
3575 static const char *
3576 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
3577 {
3578 	if (nvme_ctrlr->destruct) {
3579 		return "deleting";
3580 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
3581 		return "failed";
3582 	} else if (nvme_ctrlr->resetting) {
3583 		return "resetting";
3584 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
3585 		return "reconnect_is_delayed";
3586 	} else if (nvme_ctrlr->disabled) {
3587 		return "disabled";
3588 	} else {
3589 		return "enabled";
3590 	}
3591 }
3592 
3593 void
3594 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
3595 {
3596 	struct spdk_nvme_transport_id *trid;
3597 	const struct spdk_nvme_ctrlr_opts *opts;
3598 	const struct spdk_nvme_ctrlr_data *cdata;
3599 	struct nvme_path_id *path_id;
3600 
3601 	spdk_json_write_object_begin(w);
3602 
3603 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
3604 
3605 #ifdef SPDK_CONFIG_NVME_CUSE
3606 	size_t cuse_name_size = 128;
3607 	char cuse_name[cuse_name_size];
3608 
3609 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
3610 	if (rc == 0) {
3611 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3612 	}
3613 #endif
3614 	trid = &nvme_ctrlr->active_path_id->trid;
3615 	spdk_json_write_named_object_begin(w, "trid");
3616 	nvme_bdev_dump_trid_json(trid, w);
3617 	spdk_json_write_object_end(w);
3618 
3619 	path_id = TAILQ_NEXT(nvme_ctrlr->active_path_id, link);
3620 	if (path_id != NULL) {
3621 		spdk_json_write_named_array_begin(w, "alternate_trids");
3622 		do {
3623 			trid = &path_id->trid;
3624 			spdk_json_write_object_begin(w);
3625 			nvme_bdev_dump_trid_json(trid, w);
3626 			spdk_json_write_object_end(w);
3627 
3628 			path_id = TAILQ_NEXT(path_id, link);
3629 		} while (path_id != NULL);
3630 		spdk_json_write_array_end(w);
3631 	}
3632 
3633 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
3634 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3635 
3636 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
3637 	spdk_json_write_named_object_begin(w, "host");
3638 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
3639 	spdk_json_write_named_string(w, "addr", opts->src_addr);
3640 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
3641 	spdk_json_write_object_end(w);
3642 
3643 	spdk_json_write_object_end(w);
3644 }
3645 
3646 static void
3647 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
3648 			 struct nvme_ns *nvme_ns)
3649 {
3650 	struct spdk_nvme_ns *ns;
3651 	struct spdk_nvme_ctrlr *ctrlr;
3652 	const struct spdk_nvme_ctrlr_data *cdata;
3653 	const struct spdk_nvme_transport_id *trid;
3654 	union spdk_nvme_vs_register vs;
3655 	const struct spdk_nvme_ns_data *nsdata;
3656 	char buf[128];
3657 
3658 	ns = nvme_ns->ns;
3659 	if (ns == NULL) {
3660 		return;
3661 	}
3662 
3663 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3664 
3665 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3666 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
3667 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
3668 
3669 	spdk_json_write_object_begin(w);
3670 
3671 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
3672 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
3673 	}
3674 
3675 	spdk_json_write_named_object_begin(w, "trid");
3676 
3677 	nvme_bdev_dump_trid_json(trid, w);
3678 
3679 	spdk_json_write_object_end(w);
3680 
3681 #ifdef SPDK_CONFIG_NVME_CUSE
3682 	size_t cuse_name_size = 128;
3683 	char cuse_name[cuse_name_size];
3684 
3685 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
3686 					    cuse_name, &cuse_name_size);
3687 	if (rc == 0) {
3688 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3689 	}
3690 #endif
3691 
3692 	spdk_json_write_named_object_begin(w, "ctrlr_data");
3693 
3694 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3695 
3696 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
3697 
3698 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
3699 	spdk_str_trim(buf);
3700 	spdk_json_write_named_string(w, "model_number", buf);
3701 
3702 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
3703 	spdk_str_trim(buf);
3704 	spdk_json_write_named_string(w, "serial_number", buf);
3705 
3706 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
3707 	spdk_str_trim(buf);
3708 	spdk_json_write_named_string(w, "firmware_revision", buf);
3709 
3710 	if (cdata->subnqn[0] != '\0') {
3711 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
3712 	}
3713 
3714 	spdk_json_write_named_object_begin(w, "oacs");
3715 
3716 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
3717 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
3718 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
3719 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
3720 
3721 	spdk_json_write_object_end(w);
3722 
3723 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
3724 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
3725 
3726 	spdk_json_write_object_end(w);
3727 
3728 	spdk_json_write_named_object_begin(w, "vs");
3729 
3730 	spdk_json_write_name(w, "nvme_version");
3731 	if (vs.bits.ter) {
3732 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
3733 	} else {
3734 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
3735 	}
3736 
3737 	spdk_json_write_object_end(w);
3738 
3739 	nsdata = spdk_nvme_ns_get_data(ns);
3740 
3741 	spdk_json_write_named_object_begin(w, "ns_data");
3742 
3743 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
3744 
3745 	if (cdata->cmic.ana_reporting) {
3746 		spdk_json_write_named_string(w, "ana_state",
3747 					     _nvme_ana_state_str(nvme_ns->ana_state));
3748 	}
3749 
3750 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
3751 
3752 	spdk_json_write_object_end(w);
3753 
3754 	if (cdata->oacs.security) {
3755 		spdk_json_write_named_object_begin(w, "security");
3756 
3757 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
3758 
3759 		spdk_json_write_object_end(w);
3760 	}
3761 
3762 	spdk_json_write_object_end(w);
3763 }
3764 
3765 static const char *
3766 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
3767 {
3768 	switch (nbdev->mp_policy) {
3769 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
3770 		return "active_passive";
3771 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
3772 		return "active_active";
3773 	default:
3774 		assert(false);
3775 		return "invalid";
3776 	}
3777 }
3778 
3779 static const char *
3780 nvme_bdev_get_mp_selector_str(struct nvme_bdev *nbdev)
3781 {
3782 	switch (nbdev->mp_selector) {
3783 	case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
3784 		return "round_robin";
3785 	case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
3786 		return "queue_depth";
3787 	default:
3788 		assert(false);
3789 		return "invalid";
3790 	}
3791 }
3792 
3793 static int
3794 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
3795 {
3796 	struct nvme_bdev *nvme_bdev = ctx;
3797 	struct nvme_ns *nvme_ns;
3798 
3799 	pthread_mutex_lock(&nvme_bdev->mutex);
3800 	spdk_json_write_named_array_begin(w, "nvme");
3801 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
3802 		nvme_namespace_info_json(w, nvme_ns);
3803 	}
3804 	spdk_json_write_array_end(w);
3805 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
3806 	if (nvme_bdev->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
3807 		spdk_json_write_named_string(w, "selector", nvme_bdev_get_mp_selector_str(nvme_bdev));
3808 		if (nvme_bdev->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
3809 			spdk_json_write_named_uint32(w, "rr_min_io", nvme_bdev->rr_min_io);
3810 		}
3811 	}
3812 	pthread_mutex_unlock(&nvme_bdev->mutex);
3813 
3814 	return 0;
3815 }
3816 
3817 static void
3818 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
3819 {
3820 	/* No config per bdev needed */
3821 }
3822 
3823 static uint64_t
3824 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
3825 {
3826 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3827 	struct nvme_io_path *io_path;
3828 	struct nvme_poll_group *group;
3829 	uint64_t spin_time = 0;
3830 
3831 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3832 		group = io_path->qpair->group;
3833 
3834 		if (!group || !group->collect_spin_stat) {
3835 			continue;
3836 		}
3837 
3838 		if (group->end_ticks != 0) {
3839 			group->spin_ticks += (group->end_ticks - group->start_ticks);
3840 			group->end_ticks = 0;
3841 		}
3842 
3843 		spin_time += group->spin_ticks;
3844 		group->start_ticks = 0;
3845 		group->spin_ticks = 0;
3846 	}
3847 
3848 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
3849 }
3850 
3851 static void
3852 bdev_nvme_reset_device_stat(void *ctx)
3853 {
3854 	struct nvme_bdev *nbdev = ctx;
3855 
3856 	if (nbdev->err_stat != NULL) {
3857 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
3858 	}
3859 }
3860 
3861 /* JSON string should be lowercases and underscore delimited string. */
3862 static void
3863 bdev_nvme_format_nvme_status(char *dst, const char *src)
3864 {
3865 	char tmp[256];
3866 
3867 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
3868 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
3869 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
3870 	spdk_strlwr(dst);
3871 }
3872 
3873 static void
3874 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
3875 {
3876 	struct nvme_bdev *nbdev = ctx;
3877 	struct spdk_nvme_status status = {};
3878 	uint16_t sct, sc;
3879 	char status_json[256];
3880 	const char *status_str;
3881 
3882 	if (nbdev->err_stat == NULL) {
3883 		return;
3884 	}
3885 
3886 	spdk_json_write_named_object_begin(w, "nvme_error");
3887 
3888 	spdk_json_write_named_object_begin(w, "status_type");
3889 	for (sct = 0; sct < 8; sct++) {
3890 		if (nbdev->err_stat->status_type[sct] == 0) {
3891 			continue;
3892 		}
3893 		status.sct = sct;
3894 
3895 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
3896 		assert(status_str != NULL);
3897 		bdev_nvme_format_nvme_status(status_json, status_str);
3898 
3899 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
3900 	}
3901 	spdk_json_write_object_end(w);
3902 
3903 	spdk_json_write_named_object_begin(w, "status_code");
3904 	for (sct = 0; sct < 4; sct++) {
3905 		status.sct = sct;
3906 		for (sc = 0; sc < 256; sc++) {
3907 			if (nbdev->err_stat->status[sct][sc] == 0) {
3908 				continue;
3909 			}
3910 			status.sc = sc;
3911 
3912 			status_str = spdk_nvme_cpl_get_status_string(&status);
3913 			assert(status_str != NULL);
3914 			bdev_nvme_format_nvme_status(status_json, status_str);
3915 
3916 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
3917 		}
3918 	}
3919 	spdk_json_write_object_end(w);
3920 
3921 	spdk_json_write_object_end(w);
3922 }
3923 
3924 static bool
3925 bdev_nvme_accel_sequence_supported(void *ctx, enum spdk_bdev_io_type type)
3926 {
3927 	struct nvme_bdev *nbdev = ctx;
3928 	struct spdk_nvme_ctrlr *ctrlr;
3929 
3930 	if (!g_opts.allow_accel_sequence) {
3931 		return false;
3932 	}
3933 
3934 	switch (type) {
3935 	case SPDK_BDEV_IO_TYPE_WRITE:
3936 	case SPDK_BDEV_IO_TYPE_READ:
3937 		break;
3938 	default:
3939 		return false;
3940 	}
3941 
3942 	ctrlr = bdev_nvme_get_ctrlr(&nbdev->disk);
3943 	assert(ctrlr != NULL);
3944 
3945 	return spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ACCEL_SEQUENCE_SUPPORTED;
3946 }
3947 
3948 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
3949 	.destruct			= bdev_nvme_destruct,
3950 	.submit_request			= bdev_nvme_submit_request,
3951 	.io_type_supported		= bdev_nvme_io_type_supported,
3952 	.get_io_channel			= bdev_nvme_get_io_channel,
3953 	.dump_info_json			= bdev_nvme_dump_info_json,
3954 	.write_config_json		= bdev_nvme_write_config_json,
3955 	.get_spin_time			= bdev_nvme_get_spin_time,
3956 	.get_module_ctx			= bdev_nvme_get_module_ctx,
3957 	.get_memory_domains		= bdev_nvme_get_memory_domains,
3958 	.accel_sequence_supported	= bdev_nvme_accel_sequence_supported,
3959 	.reset_device_stat		= bdev_nvme_reset_device_stat,
3960 	.dump_device_stat_json		= bdev_nvme_dump_device_stat_json,
3961 };
3962 
3963 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
3964 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
3965 
3966 static int
3967 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
3968 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
3969 {
3970 	struct spdk_nvme_ana_group_descriptor *copied_desc;
3971 	uint8_t *orig_desc;
3972 	uint32_t i, desc_size, copy_len;
3973 	int rc = 0;
3974 
3975 	if (nvme_ctrlr->ana_log_page == NULL) {
3976 		return -EINVAL;
3977 	}
3978 
3979 	copied_desc = nvme_ctrlr->copied_ana_desc;
3980 
3981 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
3982 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
3983 
3984 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
3985 		memcpy(copied_desc, orig_desc, copy_len);
3986 
3987 		rc = cb_fn(copied_desc, cb_arg);
3988 		if (rc != 0) {
3989 			break;
3990 		}
3991 
3992 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
3993 			    copied_desc->num_of_nsid * sizeof(uint32_t);
3994 		orig_desc += desc_size;
3995 		copy_len -= desc_size;
3996 	}
3997 
3998 	return rc;
3999 }
4000 
4001 static int
4002 nvme_ns_ana_transition_timedout(void *ctx)
4003 {
4004 	struct nvme_ns *nvme_ns = ctx;
4005 
4006 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4007 	nvme_ns->ana_transition_timedout = true;
4008 
4009 	return SPDK_POLLER_BUSY;
4010 }
4011 
4012 static void
4013 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
4014 		       const struct spdk_nvme_ana_group_descriptor *desc)
4015 {
4016 	const struct spdk_nvme_ctrlr_data *cdata;
4017 
4018 	nvme_ns->ana_group_id = desc->ana_group_id;
4019 	nvme_ns->ana_state = desc->ana_state;
4020 	nvme_ns->ana_state_updating = false;
4021 
4022 	switch (nvme_ns->ana_state) {
4023 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
4024 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
4025 		nvme_ns->ana_transition_timedout = false;
4026 		spdk_poller_unregister(&nvme_ns->anatt_timer);
4027 		break;
4028 
4029 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
4030 	case SPDK_NVME_ANA_CHANGE_STATE:
4031 		if (nvme_ns->anatt_timer != NULL) {
4032 			break;
4033 		}
4034 
4035 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4036 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
4037 				       nvme_ns,
4038 				       cdata->anatt * SPDK_SEC_TO_USEC);
4039 		break;
4040 	default:
4041 		break;
4042 	}
4043 }
4044 
4045 static int
4046 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
4047 {
4048 	struct nvme_ns *nvme_ns = cb_arg;
4049 	uint32_t i;
4050 
4051 	assert(nvme_ns->ns != NULL);
4052 
4053 	for (i = 0; i < desc->num_of_nsid; i++) {
4054 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
4055 			continue;
4056 		}
4057 
4058 		_nvme_ns_set_ana_state(nvme_ns, desc);
4059 		return 1;
4060 	}
4061 
4062 	return 0;
4063 }
4064 
4065 static int
4066 nvme_generate_uuid(const char *sn, uint32_t nsid, struct spdk_uuid *uuid)
4067 {
4068 	int rc = 0;
4069 	struct spdk_uuid new_uuid, namespace_uuid;
4070 	char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'};
4071 	/* This namespace UUID was generated using uuid_generate() method. */
4072 	const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"};
4073 	int size;
4074 
4075 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
4076 
4077 	spdk_uuid_set_null(&new_uuid);
4078 	spdk_uuid_set_null(&namespace_uuid);
4079 
4080 	size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid);
4081 	if (size <= 0 || (unsigned long)size >= sizeof(merged_str)) {
4082 		return -EINVAL;
4083 	}
4084 
4085 	spdk_uuid_parse(&namespace_uuid, namespace_str);
4086 
4087 	rc = spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size);
4088 	if (rc == 0) {
4089 		memcpy(uuid, &new_uuid, sizeof(struct spdk_uuid));
4090 	}
4091 
4092 	return rc;
4093 }
4094 
4095 static int
4096 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
4097 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
4098 		 uint32_t prchk_flags, void *ctx)
4099 {
4100 	const struct spdk_uuid		*uuid;
4101 	const uint8_t *nguid;
4102 	const struct spdk_nvme_ctrlr_data *cdata;
4103 	const struct spdk_nvme_ns_data	*nsdata;
4104 	const struct spdk_nvme_ctrlr_opts *opts;
4105 	enum spdk_nvme_csi		csi;
4106 	uint32_t atomic_bs, phys_bs, bs;
4107 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
4108 	int rc;
4109 
4110 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4111 	csi = spdk_nvme_ns_get_csi(ns);
4112 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
4113 
4114 	switch (csi) {
4115 	case SPDK_NVME_CSI_NVM:
4116 		disk->product_name = "NVMe disk";
4117 		break;
4118 	case SPDK_NVME_CSI_ZNS:
4119 		disk->product_name = "NVMe ZNS disk";
4120 		disk->zoned = true;
4121 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
4122 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
4123 					     spdk_nvme_ns_get_extended_sector_size(ns);
4124 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
4125 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
4126 		break;
4127 	default:
4128 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
4129 		return -ENOTSUP;
4130 	}
4131 
4132 	nguid = spdk_nvme_ns_get_nguid(ns);
4133 	if (!nguid) {
4134 		uuid = spdk_nvme_ns_get_uuid(ns);
4135 		if (uuid) {
4136 			disk->uuid = *uuid;
4137 		} else if (g_opts.generate_uuids) {
4138 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
4139 			rc = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns), &disk->uuid);
4140 			if (rc < 0) {
4141 				SPDK_ERRLOG("UUID generation failed (%s)\n", spdk_strerror(-rc));
4142 				return rc;
4143 			}
4144 		}
4145 	} else {
4146 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
4147 	}
4148 
4149 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
4150 	if (!disk->name) {
4151 		return -ENOMEM;
4152 	}
4153 
4154 	disk->write_cache = 0;
4155 	if (cdata->vwc.present) {
4156 		/* Enable if the Volatile Write Cache exists */
4157 		disk->write_cache = 1;
4158 	}
4159 	if (cdata->oncs.write_zeroes) {
4160 		disk->max_write_zeroes = UINT16_MAX + 1;
4161 	}
4162 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
4163 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
4164 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
4165 	disk->ctratt.raw = cdata->ctratt.raw;
4166 	/* NVMe driver will split one request into multiple requests
4167 	 * based on MDTS and stripe boundary, the bdev layer will use
4168 	 * max_segment_size and max_num_segments to split one big IO
4169 	 * into multiple requests, then small request can't run out
4170 	 * of NVMe internal requests data structure.
4171 	 */
4172 	if (opts && opts->io_queue_requests) {
4173 		disk->max_num_segments = opts->io_queue_requests / 2;
4174 	}
4175 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4176 		/* The nvme driver will try to split I/O that have too many
4177 		 * SGEs, but it doesn't work if that last SGE doesn't end on
4178 		 * an aggregate total that is block aligned. The bdev layer has
4179 		 * a more robust splitting framework, so use that instead for
4180 		 * this case. (See issue #3269.)
4181 		 */
4182 		uint16_t max_sges = spdk_nvme_ctrlr_get_max_sges(ctrlr);
4183 
4184 		if (disk->max_num_segments == 0) {
4185 			disk->max_num_segments = max_sges;
4186 		} else {
4187 			disk->max_num_segments = spdk_min(disk->max_num_segments, max_sges);
4188 		}
4189 	}
4190 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
4191 
4192 	nsdata = spdk_nvme_ns_get_data(ns);
4193 	bs = spdk_nvme_ns_get_sector_size(ns);
4194 	atomic_bs = bs;
4195 	phys_bs = bs;
4196 	if (nsdata->nabo == 0) {
4197 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
4198 			atomic_bs = bs * (1 + nsdata->nawupf);
4199 		} else {
4200 			atomic_bs = bs * (1 + cdata->awupf);
4201 		}
4202 	}
4203 	if (nsdata->nsfeat.optperf) {
4204 		phys_bs = bs * (1 + nsdata->npwg);
4205 	}
4206 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
4207 
4208 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
4209 	if (disk->md_len != 0) {
4210 		disk->md_interleave = nsdata->flbas.extended;
4211 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
4212 		if (disk->dif_type != SPDK_DIF_DISABLE) {
4213 			disk->dif_is_head_of_md = nsdata->dps.md_start;
4214 			disk->dif_check_flags = prchk_flags;
4215 		}
4216 	}
4217 
4218 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
4219 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
4220 		disk->acwu = 0;
4221 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
4222 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
4223 	} else {
4224 		disk->acwu = cdata->acwu + 1; /* 0-based */
4225 	}
4226 
4227 	if (cdata->oncs.copy) {
4228 		/* For now bdev interface allows only single segment copy */
4229 		disk->max_copy = nsdata->mssrl;
4230 	}
4231 
4232 	disk->ctxt = ctx;
4233 	disk->fn_table = &nvmelib_fn_table;
4234 	disk->module = &nvme_if;
4235 
4236 	return 0;
4237 }
4238 
4239 static struct nvme_bdev *
4240 nvme_bdev_alloc(void)
4241 {
4242 	struct nvme_bdev *bdev;
4243 	int rc;
4244 
4245 	bdev = calloc(1, sizeof(*bdev));
4246 	if (!bdev) {
4247 		SPDK_ERRLOG("bdev calloc() failed\n");
4248 		return NULL;
4249 	}
4250 
4251 	if (g_opts.nvme_error_stat) {
4252 		bdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
4253 		if (!bdev->err_stat) {
4254 			SPDK_ERRLOG("err_stat calloc() failed\n");
4255 			free(bdev);
4256 			return NULL;
4257 		}
4258 	}
4259 
4260 	rc = pthread_mutex_init(&bdev->mutex, NULL);
4261 	if (rc != 0) {
4262 		free(bdev->err_stat);
4263 		free(bdev);
4264 		return NULL;
4265 	}
4266 
4267 	bdev->ref = 1;
4268 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
4269 	bdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN;
4270 	bdev->rr_min_io = UINT32_MAX;
4271 	TAILQ_INIT(&bdev->nvme_ns_list);
4272 
4273 	return bdev;
4274 }
4275 
4276 static int
4277 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4278 {
4279 	struct nvme_bdev *bdev;
4280 	struct nvme_bdev_ctrlr *nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
4281 	int rc;
4282 
4283 	bdev = nvme_bdev_alloc();
4284 	if (bdev == NULL) {
4285 		SPDK_ERRLOG("Failed to allocate NVMe bdev\n");
4286 		return -ENOMEM;
4287 	}
4288 
4289 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
4290 
4291 	rc = nvme_disk_create(&bdev->disk, nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
4292 			      nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev);
4293 	if (rc != 0) {
4294 		SPDK_ERRLOG("Failed to create NVMe disk\n");
4295 		nvme_bdev_free(bdev);
4296 		return rc;
4297 	}
4298 
4299 	spdk_io_device_register(bdev,
4300 				bdev_nvme_create_bdev_channel_cb,
4301 				bdev_nvme_destroy_bdev_channel_cb,
4302 				sizeof(struct nvme_bdev_channel),
4303 				bdev->disk.name);
4304 
4305 	nvme_ns->bdev = bdev;
4306 	bdev->nsid = nvme_ns->id;
4307 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4308 
4309 	bdev->nbdev_ctrlr = nbdev_ctrlr;
4310 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->bdevs, bdev, tailq);
4311 
4312 	rc = spdk_bdev_register(&bdev->disk);
4313 	if (rc != 0) {
4314 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
4315 		spdk_io_device_unregister(bdev, NULL);
4316 		nvme_ns->bdev = NULL;
4317 		TAILQ_REMOVE(&nbdev_ctrlr->bdevs, bdev, tailq);
4318 		nvme_bdev_free(bdev);
4319 		return rc;
4320 	}
4321 
4322 	return 0;
4323 }
4324 
4325 static bool
4326 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
4327 {
4328 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
4329 	const struct spdk_uuid *uuid1, *uuid2;
4330 
4331 	nsdata1 = spdk_nvme_ns_get_data(ns1);
4332 	nsdata2 = spdk_nvme_ns_get_data(ns2);
4333 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
4334 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
4335 
4336 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
4337 	       nsdata1->eui64 == nsdata2->eui64 &&
4338 	       ((uuid1 == NULL && uuid2 == NULL) ||
4339 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
4340 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
4341 }
4342 
4343 static bool
4344 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4345 		 struct spdk_nvme_ctrlr_opts *opts)
4346 {
4347 	struct nvme_probe_skip_entry *entry;
4348 
4349 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
4350 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4351 			return false;
4352 		}
4353 	}
4354 
4355 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
4356 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
4357 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
4358 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
4359 	opts->disable_read_ana_log_page = true;
4360 
4361 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
4362 
4363 	return true;
4364 }
4365 
4366 static void
4367 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
4368 {
4369 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4370 
4371 	if (spdk_nvme_cpl_is_error(cpl)) {
4372 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
4373 			     cpl->status.sct);
4374 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4375 	} else if (cpl->cdw0 & 0x1) {
4376 		SPDK_WARNLOG("Specified command could not be aborted.\n");
4377 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4378 	}
4379 }
4380 
4381 static void
4382 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
4383 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
4384 {
4385 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4386 	union spdk_nvme_csts_register csts;
4387 	int rc;
4388 
4389 	assert(nvme_ctrlr->ctrlr == ctrlr);
4390 
4391 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
4392 
4393 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
4394 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
4395 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
4396 	 * completion recursively.
4397 	 */
4398 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
4399 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
4400 		if (csts.bits.cfs) {
4401 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
4402 			bdev_nvme_reset_ctrlr(nvme_ctrlr);
4403 			return;
4404 		}
4405 	}
4406 
4407 	switch (g_opts.action_on_timeout) {
4408 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
4409 		if (qpair) {
4410 			/* Don't send abort to ctrlr when ctrlr is not available. */
4411 			pthread_mutex_lock(&nvme_ctrlr->mutex);
4412 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
4413 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
4414 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
4415 				return;
4416 			}
4417 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4418 
4419 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
4420 						       nvme_abort_cpl, nvme_ctrlr);
4421 			if (rc == 0) {
4422 				return;
4423 			}
4424 
4425 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
4426 		}
4427 
4428 	/* FALLTHROUGH */
4429 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
4430 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4431 		break;
4432 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
4433 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
4434 		break;
4435 	default:
4436 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
4437 		break;
4438 	}
4439 }
4440 
4441 static struct nvme_ns *
4442 nvme_ns_alloc(void)
4443 {
4444 	struct nvme_ns *nvme_ns;
4445 
4446 	nvme_ns = calloc(1, sizeof(struct nvme_ns));
4447 	if (nvme_ns == NULL) {
4448 		return NULL;
4449 	}
4450 
4451 	if (g_opts.io_path_stat) {
4452 		nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
4453 		if (nvme_ns->stat == NULL) {
4454 			free(nvme_ns);
4455 			return NULL;
4456 		}
4457 		spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
4458 	}
4459 
4460 	return nvme_ns;
4461 }
4462 
4463 static void
4464 nvme_ns_free(struct nvme_ns *nvme_ns)
4465 {
4466 	free(nvme_ns->stat);
4467 	free(nvme_ns);
4468 }
4469 
4470 static void
4471 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
4472 {
4473 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4474 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
4475 
4476 	if (rc == 0) {
4477 		nvme_ns->probe_ctx = NULL;
4478 		pthread_mutex_lock(&nvme_ctrlr->mutex);
4479 		nvme_ctrlr->ref++;
4480 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4481 	} else {
4482 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4483 		nvme_ns_free(nvme_ns);
4484 	}
4485 
4486 	if (ctx) {
4487 		ctx->populates_in_progress--;
4488 		if (ctx->populates_in_progress == 0) {
4489 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4490 		}
4491 	}
4492 }
4493 
4494 static void
4495 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
4496 {
4497 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4498 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4499 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4500 	int rc;
4501 
4502 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
4503 	if (rc != 0) {
4504 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
4505 	}
4506 
4507 	spdk_for_each_channel_continue(i, rc);
4508 }
4509 
4510 static void
4511 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
4512 {
4513 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4514 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4515 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4516 	struct nvme_io_path *io_path;
4517 
4518 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
4519 	if (io_path != NULL) {
4520 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
4521 	}
4522 
4523 	spdk_for_each_channel_continue(i, 0);
4524 }
4525 
4526 static void
4527 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
4528 {
4529 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4530 
4531 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
4532 }
4533 
4534 static void
4535 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
4536 {
4537 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4538 	struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
4539 
4540 	if (status == 0) {
4541 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
4542 	} else {
4543 		/* Delete the added io_paths and fail populating the namespace. */
4544 		spdk_for_each_channel(bdev,
4545 				      bdev_nvme_delete_io_path,
4546 				      nvme_ns,
4547 				      bdev_nvme_add_io_path_failed);
4548 	}
4549 }
4550 
4551 static int
4552 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
4553 {
4554 	struct nvme_ns *tmp_ns;
4555 	const struct spdk_nvme_ns_data *nsdata;
4556 
4557 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
4558 	if (!nsdata->nmic.can_share) {
4559 		SPDK_ERRLOG("Namespace cannot be shared.\n");
4560 		return -EINVAL;
4561 	}
4562 
4563 	pthread_mutex_lock(&bdev->mutex);
4564 
4565 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
4566 	assert(tmp_ns != NULL);
4567 
4568 	if (tmp_ns->ns != NULL && !bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
4569 		pthread_mutex_unlock(&bdev->mutex);
4570 		SPDK_ERRLOG("Namespaces are not identical.\n");
4571 		return -EINVAL;
4572 	}
4573 
4574 	bdev->ref++;
4575 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4576 	nvme_ns->bdev = bdev;
4577 
4578 	pthread_mutex_unlock(&bdev->mutex);
4579 
4580 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
4581 	spdk_for_each_channel(bdev,
4582 			      bdev_nvme_add_io_path,
4583 			      nvme_ns,
4584 			      bdev_nvme_add_io_path_done);
4585 
4586 	return 0;
4587 }
4588 
4589 static void
4590 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4591 {
4592 	struct spdk_nvme_ns	*ns;
4593 	struct nvme_bdev	*bdev;
4594 	int			rc = 0;
4595 
4596 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
4597 	if (!ns) {
4598 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
4599 		rc = -EINVAL;
4600 		goto done;
4601 	}
4602 
4603 	nvme_ns->ns = ns;
4604 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4605 
4606 	if (nvme_ctrlr->ana_log_page != NULL) {
4607 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
4608 	}
4609 
4610 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
4611 	if (bdev == NULL) {
4612 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
4613 	} else {
4614 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
4615 		if (rc == 0) {
4616 			return;
4617 		}
4618 	}
4619 done:
4620 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
4621 }
4622 
4623 static void
4624 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
4625 {
4626 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4627 
4628 	assert(nvme_ctrlr != NULL);
4629 
4630 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4631 
4632 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4633 
4634 	if (nvme_ns->bdev != NULL) {
4635 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4636 		return;
4637 	}
4638 
4639 	nvme_ns_free(nvme_ns);
4640 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4641 
4642 	nvme_ctrlr_release(nvme_ctrlr);
4643 }
4644 
4645 static void
4646 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
4647 {
4648 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4649 
4650 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4651 }
4652 
4653 static void
4654 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4655 {
4656 	struct nvme_bdev *bdev;
4657 
4658 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4659 
4660 	bdev = nvme_ns->bdev;
4661 	if (bdev != NULL) {
4662 		pthread_mutex_lock(&bdev->mutex);
4663 
4664 		assert(bdev->ref > 0);
4665 		bdev->ref--;
4666 		if (bdev->ref == 0) {
4667 			pthread_mutex_unlock(&bdev->mutex);
4668 
4669 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
4670 		} else {
4671 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
4672 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
4673 			 * and clear nvme_ns->bdev here.
4674 			 */
4675 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
4676 			nvme_ns->bdev = NULL;
4677 
4678 			pthread_mutex_unlock(&bdev->mutex);
4679 
4680 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
4681 			 * we call depopulate_namespace_done() to avoid use-after-free.
4682 			 */
4683 			spdk_for_each_channel(bdev,
4684 					      bdev_nvme_delete_io_path,
4685 					      nvme_ns,
4686 					      bdev_nvme_delete_io_path_done);
4687 			return;
4688 		}
4689 	}
4690 
4691 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4692 }
4693 
4694 static void
4695 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
4696 			       struct nvme_async_probe_ctx *ctx)
4697 {
4698 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
4699 	struct nvme_ns	*nvme_ns, *next;
4700 	struct spdk_nvme_ns	*ns;
4701 	struct nvme_bdev	*bdev;
4702 	uint32_t		nsid;
4703 	int			rc;
4704 	uint64_t		num_sectors;
4705 
4706 	if (ctx) {
4707 		/* Initialize this count to 1 to handle the populate functions
4708 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
4709 		 */
4710 		ctx->populates_in_progress = 1;
4711 	}
4712 
4713 	/* First loop over our existing namespaces and see if they have been
4714 	 * removed. */
4715 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4716 	while (nvme_ns != NULL) {
4717 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4718 
4719 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
4720 			/* NS is still there or added again. Its attributes may have changed. */
4721 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
4722 			if (nvme_ns->ns != ns) {
4723 				assert(nvme_ns->ns == NULL);
4724 				nvme_ns->ns = ns;
4725 				SPDK_DEBUGLOG(bdev_nvme, "NSID %u was added\n", nvme_ns->id);
4726 			}
4727 
4728 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
4729 			bdev = nvme_ns->bdev;
4730 			assert(bdev != NULL);
4731 			if (bdev->disk.blockcnt != num_sectors) {
4732 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
4733 					       nvme_ns->id,
4734 					       bdev->disk.name,
4735 					       bdev->disk.blockcnt,
4736 					       num_sectors);
4737 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
4738 				if (rc != 0) {
4739 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
4740 						    bdev->disk.name, rc);
4741 				}
4742 			}
4743 		} else {
4744 			/* Namespace was removed */
4745 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4746 		}
4747 
4748 		nvme_ns = next;
4749 	}
4750 
4751 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
4752 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4753 	while (nsid != 0) {
4754 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4755 
4756 		if (nvme_ns == NULL) {
4757 			/* Found a new one */
4758 			nvme_ns = nvme_ns_alloc();
4759 			if (nvme_ns == NULL) {
4760 				SPDK_ERRLOG("Failed to allocate namespace\n");
4761 				/* This just fails to attach the namespace. It may work on a future attempt. */
4762 				continue;
4763 			}
4764 
4765 			nvme_ns->id = nsid;
4766 			nvme_ns->ctrlr = nvme_ctrlr;
4767 
4768 			nvme_ns->bdev = NULL;
4769 
4770 			if (ctx) {
4771 				ctx->populates_in_progress++;
4772 			}
4773 			nvme_ns->probe_ctx = ctx;
4774 
4775 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4776 
4777 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
4778 		}
4779 
4780 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
4781 	}
4782 
4783 	if (ctx) {
4784 		/* Decrement this count now that the loop is over to account
4785 		 * for the one we started with.  If the count is then 0, we
4786 		 * know any populate_namespace functions completed immediately,
4787 		 * so we'll kick the callback here.
4788 		 */
4789 		ctx->populates_in_progress--;
4790 		if (ctx->populates_in_progress == 0) {
4791 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4792 		}
4793 	}
4794 
4795 }
4796 
4797 static void
4798 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
4799 {
4800 	struct nvme_ns *nvme_ns, *tmp;
4801 
4802 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
4803 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4804 	}
4805 }
4806 
4807 static uint32_t
4808 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
4809 {
4810 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4811 	const struct spdk_nvme_ctrlr_data *cdata;
4812 	uint32_t nsid, ns_count = 0;
4813 
4814 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4815 
4816 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4817 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
4818 		ns_count++;
4819 	}
4820 
4821 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
4822 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
4823 	       sizeof(uint32_t);
4824 }
4825 
4826 static int
4827 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
4828 			  void *cb_arg)
4829 {
4830 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4831 	struct nvme_ns *nvme_ns;
4832 	uint32_t i, nsid;
4833 
4834 	for (i = 0; i < desc->num_of_nsid; i++) {
4835 		nsid = desc->nsid[i];
4836 		if (nsid == 0) {
4837 			continue;
4838 		}
4839 
4840 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4841 
4842 		assert(nvme_ns != NULL);
4843 		if (nvme_ns == NULL) {
4844 			/* Target told us that an inactive namespace had an ANA change */
4845 			continue;
4846 		}
4847 
4848 		_nvme_ns_set_ana_state(nvme_ns, desc);
4849 	}
4850 
4851 	return 0;
4852 }
4853 
4854 static void
4855 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4856 {
4857 	struct nvme_ns *nvme_ns;
4858 
4859 	spdk_free(nvme_ctrlr->ana_log_page);
4860 	nvme_ctrlr->ana_log_page = NULL;
4861 
4862 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4863 	     nvme_ns != NULL;
4864 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
4865 		nvme_ns->ana_state_updating = false;
4866 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4867 	}
4868 }
4869 
4870 static void
4871 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
4872 {
4873 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4874 
4875 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
4876 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
4877 					     nvme_ctrlr);
4878 	} else {
4879 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
4880 	}
4881 
4882 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4883 
4884 	assert(nvme_ctrlr->ana_log_page_updating == true);
4885 	nvme_ctrlr->ana_log_page_updating = false;
4886 
4887 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
4888 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4889 
4890 		nvme_ctrlr_unregister(nvme_ctrlr);
4891 	} else {
4892 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4893 
4894 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
4895 	}
4896 }
4897 
4898 static int
4899 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4900 {
4901 	uint32_t ana_log_page_size;
4902 	int rc;
4903 
4904 	if (nvme_ctrlr->ana_log_page == NULL) {
4905 		return -EINVAL;
4906 	}
4907 
4908 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
4909 
4910 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
4911 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
4912 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
4913 		return -EINVAL;
4914 	}
4915 
4916 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4917 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
4918 	    nvme_ctrlr->ana_log_page_updating) {
4919 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4920 		return -EBUSY;
4921 	}
4922 
4923 	nvme_ctrlr->ana_log_page_updating = true;
4924 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4925 
4926 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
4927 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
4928 					      SPDK_NVME_GLOBAL_NS_TAG,
4929 					      nvme_ctrlr->ana_log_page,
4930 					      ana_log_page_size, 0,
4931 					      nvme_ctrlr_read_ana_log_page_done,
4932 					      nvme_ctrlr);
4933 	if (rc != 0) {
4934 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
4935 	}
4936 
4937 	return rc;
4938 }
4939 
4940 static void
4941 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
4942 {
4943 }
4944 
4945 struct bdev_nvme_set_preferred_path_ctx {
4946 	struct spdk_bdev_desc *desc;
4947 	struct nvme_ns *nvme_ns;
4948 	bdev_nvme_set_preferred_path_cb cb_fn;
4949 	void *cb_arg;
4950 };
4951 
4952 static void
4953 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
4954 {
4955 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4956 
4957 	assert(ctx != NULL);
4958 	assert(ctx->desc != NULL);
4959 	assert(ctx->cb_fn != NULL);
4960 
4961 	spdk_bdev_close(ctx->desc);
4962 
4963 	ctx->cb_fn(ctx->cb_arg, status);
4964 
4965 	free(ctx);
4966 }
4967 
4968 static void
4969 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
4970 {
4971 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4972 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4973 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4974 	struct nvme_io_path *io_path, *prev;
4975 
4976 	prev = NULL;
4977 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
4978 		if (io_path->nvme_ns == ctx->nvme_ns) {
4979 			break;
4980 		}
4981 		prev = io_path;
4982 	}
4983 
4984 	if (io_path != NULL) {
4985 		if (prev != NULL) {
4986 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
4987 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
4988 		}
4989 
4990 		/* We can set io_path to nbdev_ch->current_io_path directly here.
4991 		 * However, it needs to be conditional. To simplify the code,
4992 		 * just clear nbdev_ch->current_io_path and let find_io_path()
4993 		 * fill it.
4994 		 *
4995 		 * Automatic failback may be disabled. Hence even if the io_path is
4996 		 * already at the head, clear nbdev_ch->current_io_path.
4997 		 */
4998 		bdev_nvme_clear_current_io_path(nbdev_ch);
4999 	}
5000 
5001 	spdk_for_each_channel_continue(i, 0);
5002 }
5003 
5004 static struct nvme_ns *
5005 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
5006 {
5007 	struct nvme_ns *nvme_ns, *prev;
5008 	const struct spdk_nvme_ctrlr_data *cdata;
5009 
5010 	prev = NULL;
5011 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
5012 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
5013 
5014 		if (cdata->cntlid == cntlid) {
5015 			break;
5016 		}
5017 		prev = nvme_ns;
5018 	}
5019 
5020 	if (nvme_ns != NULL && prev != NULL) {
5021 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
5022 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
5023 	}
5024 
5025 	return nvme_ns;
5026 }
5027 
5028 /* This function supports only multipath mode. There is only a single I/O path
5029  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
5030  * head of the I/O path list for each NVMe bdev channel.
5031  *
5032  * NVMe bdev channel may be acquired after completing this function. move the
5033  * matched namespace to the head of the namespace list for the NVMe bdev too.
5034  */
5035 void
5036 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
5037 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
5038 {
5039 	struct bdev_nvme_set_preferred_path_ctx *ctx;
5040 	struct spdk_bdev *bdev;
5041 	struct nvme_bdev *nbdev;
5042 	int rc = 0;
5043 
5044 	assert(cb_fn != NULL);
5045 
5046 	ctx = calloc(1, sizeof(*ctx));
5047 	if (ctx == NULL) {
5048 		SPDK_ERRLOG("Failed to alloc context.\n");
5049 		rc = -ENOMEM;
5050 		goto err_alloc;
5051 	}
5052 
5053 	ctx->cb_fn = cb_fn;
5054 	ctx->cb_arg = cb_arg;
5055 
5056 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5057 	if (rc != 0) {
5058 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5059 		goto err_open;
5060 	}
5061 
5062 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5063 
5064 	if (bdev->module != &nvme_if) {
5065 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5066 		rc = -ENODEV;
5067 		goto err_bdev;
5068 	}
5069 
5070 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5071 
5072 	pthread_mutex_lock(&nbdev->mutex);
5073 
5074 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
5075 	if (ctx->nvme_ns == NULL) {
5076 		pthread_mutex_unlock(&nbdev->mutex);
5077 
5078 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
5079 		rc = -ENODEV;
5080 		goto err_bdev;
5081 	}
5082 
5083 	pthread_mutex_unlock(&nbdev->mutex);
5084 
5085 	spdk_for_each_channel(nbdev,
5086 			      _bdev_nvme_set_preferred_path,
5087 			      ctx,
5088 			      bdev_nvme_set_preferred_path_done);
5089 	return;
5090 
5091 err_bdev:
5092 	spdk_bdev_close(ctx->desc);
5093 err_open:
5094 	free(ctx);
5095 err_alloc:
5096 	cb_fn(cb_arg, rc);
5097 }
5098 
5099 struct bdev_nvme_set_multipath_policy_ctx {
5100 	struct spdk_bdev_desc *desc;
5101 	bdev_nvme_set_multipath_policy_cb cb_fn;
5102 	void *cb_arg;
5103 };
5104 
5105 static void
5106 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
5107 {
5108 	struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
5109 
5110 	assert(ctx != NULL);
5111 	assert(ctx->desc != NULL);
5112 	assert(ctx->cb_fn != NULL);
5113 
5114 	spdk_bdev_close(ctx->desc);
5115 
5116 	ctx->cb_fn(ctx->cb_arg, status);
5117 
5118 	free(ctx);
5119 }
5120 
5121 static void
5122 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
5123 {
5124 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
5125 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
5126 	struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
5127 
5128 	nbdev_ch->mp_policy = nbdev->mp_policy;
5129 	nbdev_ch->mp_selector = nbdev->mp_selector;
5130 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
5131 	bdev_nvme_clear_current_io_path(nbdev_ch);
5132 
5133 	spdk_for_each_channel_continue(i, 0);
5134 }
5135 
5136 void
5137 bdev_nvme_set_multipath_policy(const char *name, enum bdev_nvme_multipath_policy policy,
5138 			       enum bdev_nvme_multipath_selector selector, uint32_t rr_min_io,
5139 			       bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
5140 {
5141 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
5142 	struct spdk_bdev *bdev;
5143 	struct nvme_bdev *nbdev;
5144 	int rc;
5145 
5146 	assert(cb_fn != NULL);
5147 
5148 	switch (policy) {
5149 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
5150 		break;
5151 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
5152 		switch (selector) {
5153 		case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
5154 			if (rr_min_io == UINT32_MAX) {
5155 				rr_min_io = 1;
5156 			} else if (rr_min_io == 0) {
5157 				rc = -EINVAL;
5158 				goto exit;
5159 			}
5160 			break;
5161 		case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
5162 			break;
5163 		default:
5164 			rc = -EINVAL;
5165 			goto exit;
5166 		}
5167 		break;
5168 	default:
5169 		rc = -EINVAL;
5170 		goto exit;
5171 	}
5172 
5173 	ctx = calloc(1, sizeof(*ctx));
5174 	if (ctx == NULL) {
5175 		SPDK_ERRLOG("Failed to alloc context.\n");
5176 		rc = -ENOMEM;
5177 		goto exit;
5178 	}
5179 
5180 	ctx->cb_fn = cb_fn;
5181 	ctx->cb_arg = cb_arg;
5182 
5183 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5184 	if (rc != 0) {
5185 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5186 		rc = -ENODEV;
5187 		goto err_open;
5188 	}
5189 
5190 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5191 	if (bdev->module != &nvme_if) {
5192 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5193 		rc = -ENODEV;
5194 		goto err_module;
5195 	}
5196 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5197 
5198 	pthread_mutex_lock(&nbdev->mutex);
5199 	nbdev->mp_policy = policy;
5200 	nbdev->mp_selector = selector;
5201 	nbdev->rr_min_io = rr_min_io;
5202 	pthread_mutex_unlock(&nbdev->mutex);
5203 
5204 	spdk_for_each_channel(nbdev,
5205 			      _bdev_nvme_set_multipath_policy,
5206 			      ctx,
5207 			      bdev_nvme_set_multipath_policy_done);
5208 	return;
5209 
5210 err_module:
5211 	spdk_bdev_close(ctx->desc);
5212 err_open:
5213 	free(ctx);
5214 exit:
5215 	cb_fn(cb_arg, rc);
5216 }
5217 
5218 static void
5219 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5220 {
5221 	struct nvme_ctrlr *nvme_ctrlr		= arg;
5222 	union spdk_nvme_async_event_completion	event;
5223 
5224 	if (spdk_nvme_cpl_is_error(cpl)) {
5225 		SPDK_WARNLOG("AER request execute failed\n");
5226 		return;
5227 	}
5228 
5229 	event.raw = cpl->cdw0;
5230 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5231 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
5232 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
5233 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5234 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
5235 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
5236 	}
5237 }
5238 
5239 static void
5240 free_nvme_async_probe_ctx(struct nvme_async_probe_ctx *ctx)
5241 {
5242 	spdk_keyring_put_key(ctx->drv_opts.tls_psk);
5243 	spdk_keyring_put_key(ctx->drv_opts.dhchap_key);
5244 	spdk_keyring_put_key(ctx->drv_opts.dhchap_ctrlr_key);
5245 	free(ctx);
5246 }
5247 
5248 static void
5249 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, int rc)
5250 {
5251 	if (ctx->cb_fn) {
5252 		ctx->cb_fn(ctx->cb_ctx, ctx->reported_bdevs, rc);
5253 	}
5254 
5255 	ctx->namespaces_populated = true;
5256 	if (ctx->probe_done) {
5257 		/* The probe was already completed, so we need to free the context
5258 		 * here.  This can happen for cases like OCSSD, where we need to
5259 		 * send additional commands to the SSD after attach.
5260 		 */
5261 		free_nvme_async_probe_ctx(ctx);
5262 	}
5263 }
5264 
5265 static void
5266 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
5267 		       struct nvme_async_probe_ctx *ctx)
5268 {
5269 	spdk_io_device_register(nvme_ctrlr,
5270 				bdev_nvme_create_ctrlr_channel_cb,
5271 				bdev_nvme_destroy_ctrlr_channel_cb,
5272 				sizeof(struct nvme_ctrlr_channel),
5273 				nvme_ctrlr->nbdev_ctrlr->name);
5274 
5275 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
5276 }
5277 
5278 static void
5279 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
5280 {
5281 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
5282 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
5283 
5284 	nvme_ctrlr->probe_ctx = NULL;
5285 
5286 	if (spdk_nvme_cpl_is_error(cpl)) {
5287 		nvme_ctrlr_delete(nvme_ctrlr);
5288 
5289 		if (ctx != NULL) {
5290 			ctx->reported_bdevs = 0;
5291 			populate_namespaces_cb(ctx, -1);
5292 		}
5293 		return;
5294 	}
5295 
5296 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5297 }
5298 
5299 static int
5300 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
5301 			     struct nvme_async_probe_ctx *ctx)
5302 {
5303 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5304 	const struct spdk_nvme_ctrlr_data *cdata;
5305 	uint32_t ana_log_page_size;
5306 
5307 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5308 
5309 	/* Set buffer size enough to include maximum number of allowed namespaces. */
5310 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5311 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
5312 			    sizeof(uint32_t);
5313 
5314 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
5315 						SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
5316 	if (nvme_ctrlr->ana_log_page == NULL) {
5317 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
5318 		return -ENXIO;
5319 	}
5320 
5321 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
5322 	 * Hence copy each descriptor to a temporary area when parsing it.
5323 	 *
5324 	 * Allocate a buffer whose size is as large as ANA log page buffer because
5325 	 * we do not know the size of a descriptor until actually reading it.
5326 	 */
5327 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
5328 	if (nvme_ctrlr->copied_ana_desc == NULL) {
5329 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
5330 		return -ENOMEM;
5331 	}
5332 
5333 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
5334 
5335 	nvme_ctrlr->probe_ctx = ctx;
5336 
5337 	/* Then, set the read size only to include the current active namespaces. */
5338 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5339 
5340 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5341 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5342 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5343 		return -EINVAL;
5344 	}
5345 
5346 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
5347 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5348 						SPDK_NVME_GLOBAL_NS_TAG,
5349 						nvme_ctrlr->ana_log_page,
5350 						ana_log_page_size, 0,
5351 						nvme_ctrlr_init_ana_log_page_done,
5352 						nvme_ctrlr);
5353 }
5354 
5355 /* hostnqn and subnqn were already verified before attaching a controller.
5356  * Hence check only the multipath capability and cntlid here.
5357  */
5358 static bool
5359 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
5360 {
5361 	struct nvme_ctrlr *tmp;
5362 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
5363 
5364 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5365 
5366 	if (!cdata->cmic.multi_ctrlr) {
5367 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5368 		return false;
5369 	}
5370 
5371 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
5372 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
5373 
5374 		if (!tmp_cdata->cmic.multi_ctrlr) {
5375 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5376 			return false;
5377 		}
5378 		if (cdata->cntlid == tmp_cdata->cntlid) {
5379 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
5380 			return false;
5381 		}
5382 	}
5383 
5384 	return true;
5385 }
5386 
5387 static int
5388 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
5389 {
5390 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5391 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5392 	int rc = 0;
5393 
5394 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5395 
5396 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5397 	if (nbdev_ctrlr != NULL) {
5398 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
5399 			rc = -EINVAL;
5400 			goto exit;
5401 		}
5402 	} else {
5403 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
5404 		if (nbdev_ctrlr == NULL) {
5405 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
5406 			rc = -ENOMEM;
5407 			goto exit;
5408 		}
5409 		nbdev_ctrlr->name = strdup(name);
5410 		if (nbdev_ctrlr->name == NULL) {
5411 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
5412 			free(nbdev_ctrlr);
5413 			goto exit;
5414 		}
5415 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
5416 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
5417 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
5418 	}
5419 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
5420 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
5421 exit:
5422 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5423 	return rc;
5424 }
5425 
5426 static int
5427 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
5428 		  const char *name,
5429 		  const struct spdk_nvme_transport_id *trid,
5430 		  struct nvme_async_probe_ctx *ctx)
5431 {
5432 	struct nvme_ctrlr *nvme_ctrlr;
5433 	struct nvme_path_id *path_id;
5434 	const struct spdk_nvme_ctrlr_data *cdata;
5435 	int rc;
5436 
5437 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
5438 	if (nvme_ctrlr == NULL) {
5439 		SPDK_ERRLOG("Failed to allocate device struct\n");
5440 		return -ENOMEM;
5441 	}
5442 
5443 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
5444 	if (rc != 0) {
5445 		free(nvme_ctrlr);
5446 		return rc;
5447 	}
5448 
5449 	TAILQ_INIT(&nvme_ctrlr->trids);
5450 	RB_INIT(&nvme_ctrlr->namespaces);
5451 
5452 	/* Get another reference to the key, so the first one can be released from probe_ctx */
5453 	if (ctx != NULL) {
5454 		if (ctx->drv_opts.tls_psk != NULL) {
5455 			nvme_ctrlr->psk = spdk_keyring_get_key(
5456 						  spdk_key_get_name(ctx->drv_opts.tls_psk));
5457 			if (nvme_ctrlr->psk == NULL) {
5458 				/* Could only happen if the key was removed in the meantime */
5459 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5460 					    spdk_key_get_name(ctx->drv_opts.tls_psk));
5461 				rc = -ENOKEY;
5462 				goto err;
5463 			}
5464 		}
5465 
5466 		if (ctx->drv_opts.dhchap_key != NULL) {
5467 			nvme_ctrlr->dhchap_key = spdk_keyring_get_key(
5468 							 spdk_key_get_name(ctx->drv_opts.dhchap_key));
5469 			if (nvme_ctrlr->dhchap_key == NULL) {
5470 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5471 					    spdk_key_get_name(ctx->drv_opts.dhchap_key));
5472 				rc = -ENOKEY;
5473 				goto err;
5474 			}
5475 		}
5476 
5477 		if (ctx->drv_opts.dhchap_ctrlr_key != NULL) {
5478 			nvme_ctrlr->dhchap_ctrlr_key =
5479 				spdk_keyring_get_key(
5480 					spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5481 			if (nvme_ctrlr->dhchap_ctrlr_key == NULL) {
5482 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5483 					    spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5484 				rc = -ENOKEY;
5485 				goto err;
5486 			}
5487 		}
5488 	}
5489 
5490 	path_id = calloc(1, sizeof(*path_id));
5491 	if (path_id == NULL) {
5492 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
5493 		rc = -ENOMEM;
5494 		goto err;
5495 	}
5496 
5497 	path_id->trid = *trid;
5498 	if (ctx != NULL) {
5499 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
5500 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
5501 	}
5502 	nvme_ctrlr->active_path_id = path_id;
5503 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
5504 
5505 	nvme_ctrlr->thread = spdk_get_thread();
5506 	nvme_ctrlr->ctrlr = ctrlr;
5507 	nvme_ctrlr->ref = 1;
5508 
5509 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
5510 		SPDK_ERRLOG("OCSSDs are not supported");
5511 		rc = -ENOTSUP;
5512 		goto err;
5513 	}
5514 
5515 	if (ctx != NULL) {
5516 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
5517 	} else {
5518 		bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
5519 	}
5520 
5521 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
5522 					  g_opts.nvme_adminq_poll_period_us);
5523 
5524 	if (g_opts.timeout_us > 0) {
5525 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
5526 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
5527 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
5528 					  g_opts.timeout_us : g_opts.timeout_admin_us;
5529 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
5530 				adm_timeout_us, timeout_cb, nvme_ctrlr);
5531 	}
5532 
5533 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
5534 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
5535 
5536 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
5537 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
5538 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
5539 	}
5540 
5541 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
5542 	if (rc != 0) {
5543 		goto err;
5544 	}
5545 
5546 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5547 
5548 	if (cdata->cmic.ana_reporting) {
5549 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
5550 		if (rc == 0) {
5551 			return 0;
5552 		}
5553 	} else {
5554 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5555 		return 0;
5556 	}
5557 
5558 err:
5559 	nvme_ctrlr_delete(nvme_ctrlr);
5560 	return rc;
5561 }
5562 
5563 void
5564 bdev_nvme_get_default_ctrlr_opts(struct nvme_ctrlr_opts *opts)
5565 {
5566 	opts->prchk_flags = 0;
5567 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
5568 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
5569 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
5570 }
5571 
5572 static void
5573 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5574 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
5575 {
5576 	char *name;
5577 
5578 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
5579 	if (!name) {
5580 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
5581 		return;
5582 	}
5583 
5584 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
5585 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
5586 	} else {
5587 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
5588 	}
5589 
5590 	free(name);
5591 }
5592 
5593 static void
5594 _nvme_ctrlr_destruct(void *ctx)
5595 {
5596 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5597 
5598 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
5599 	nvme_ctrlr_release(nvme_ctrlr);
5600 }
5601 
5602 static int
5603 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5604 {
5605 	struct nvme_probe_skip_entry *entry;
5606 
5607 	/* The controller's destruction was already started */
5608 	if (nvme_ctrlr->destruct) {
5609 		return -EALREADY;
5610 	}
5611 
5612 	if (!hotplug &&
5613 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
5614 		entry = calloc(1, sizeof(*entry));
5615 		if (!entry) {
5616 			return -ENOMEM;
5617 		}
5618 		entry->trid = nvme_ctrlr->active_path_id->trid;
5619 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
5620 	}
5621 
5622 	nvme_ctrlr->destruct = true;
5623 	return 0;
5624 }
5625 
5626 static int
5627 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5628 {
5629 	int rc;
5630 
5631 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5632 	rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug);
5633 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5634 
5635 	if (rc == 0) {
5636 		_nvme_ctrlr_destruct(nvme_ctrlr);
5637 	} else if (rc == -EALREADY) {
5638 		rc = 0;
5639 	}
5640 
5641 	return rc;
5642 }
5643 
5644 static void
5645 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
5646 {
5647 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
5648 
5649 	bdev_nvme_delete_ctrlr(nvme_ctrlr, true);
5650 }
5651 
5652 static int
5653 bdev_nvme_hotplug_probe(void *arg)
5654 {
5655 	if (g_hotplug_probe_ctx == NULL) {
5656 		spdk_poller_unregister(&g_hotplug_probe_poller);
5657 		return SPDK_POLLER_IDLE;
5658 	}
5659 
5660 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
5661 		g_hotplug_probe_ctx = NULL;
5662 		spdk_poller_unregister(&g_hotplug_probe_poller);
5663 	}
5664 
5665 	return SPDK_POLLER_BUSY;
5666 }
5667 
5668 static int
5669 bdev_nvme_hotplug(void *arg)
5670 {
5671 	struct spdk_nvme_transport_id trid_pcie;
5672 
5673 	if (g_hotplug_probe_ctx) {
5674 		return SPDK_POLLER_BUSY;
5675 	}
5676 
5677 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5678 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5679 
5680 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
5681 			      hotplug_probe_cb, attach_cb, NULL);
5682 
5683 	if (g_hotplug_probe_ctx) {
5684 		assert(g_hotplug_probe_poller == NULL);
5685 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
5686 	}
5687 
5688 	return SPDK_POLLER_BUSY;
5689 }
5690 
5691 void
5692 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
5693 {
5694 	*opts = g_opts;
5695 }
5696 
5697 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5698 		uint32_t reconnect_delay_sec,
5699 		uint32_t fast_io_fail_timeout_sec);
5700 
5701 static int
5702 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
5703 {
5704 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
5705 		/* Can't set timeout_admin_us without also setting timeout_us */
5706 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
5707 		return -EINVAL;
5708 	}
5709 
5710 	if (opts->bdev_retry_count < -1) {
5711 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
5712 		return -EINVAL;
5713 	}
5714 
5715 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
5716 			opts->reconnect_delay_sec,
5717 			opts->fast_io_fail_timeout_sec)) {
5718 		return -EINVAL;
5719 	}
5720 
5721 	return 0;
5722 }
5723 
5724 int
5725 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
5726 {
5727 	int ret;
5728 
5729 	ret = bdev_nvme_validate_opts(opts);
5730 	if (ret) {
5731 		SPDK_WARNLOG("Failed to set nvme opts.\n");
5732 		return ret;
5733 	}
5734 
5735 	if (g_bdev_nvme_init_thread != NULL) {
5736 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5737 			return -EPERM;
5738 		}
5739 	}
5740 
5741 	if (opts->rdma_srq_size != 0 ||
5742 	    opts->rdma_max_cq_size != 0 ||
5743 	    opts->rdma_cm_event_timeout_ms != 0) {
5744 		struct spdk_nvme_transport_opts drv_opts;
5745 
5746 		spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
5747 		if (opts->rdma_srq_size != 0) {
5748 			drv_opts.rdma_srq_size = opts->rdma_srq_size;
5749 		}
5750 		if (opts->rdma_max_cq_size != 0) {
5751 			drv_opts.rdma_max_cq_size = opts->rdma_max_cq_size;
5752 		}
5753 		if (opts->rdma_cm_event_timeout_ms != 0) {
5754 			drv_opts.rdma_cm_event_timeout_ms = opts->rdma_cm_event_timeout_ms;
5755 		}
5756 
5757 		ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
5758 		if (ret) {
5759 			SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
5760 			return ret;
5761 		}
5762 	}
5763 
5764 	g_opts = *opts;
5765 
5766 	return 0;
5767 }
5768 
5769 struct set_nvme_hotplug_ctx {
5770 	uint64_t period_us;
5771 	bool enabled;
5772 	spdk_msg_fn fn;
5773 	void *fn_ctx;
5774 };
5775 
5776 static void
5777 set_nvme_hotplug_period_cb(void *_ctx)
5778 {
5779 	struct set_nvme_hotplug_ctx *ctx = _ctx;
5780 
5781 	spdk_poller_unregister(&g_hotplug_poller);
5782 	if (ctx->enabled) {
5783 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
5784 	}
5785 
5786 	g_nvme_hotplug_poll_period_us = ctx->period_us;
5787 	g_nvme_hotplug_enabled = ctx->enabled;
5788 	if (ctx->fn) {
5789 		ctx->fn(ctx->fn_ctx);
5790 	}
5791 
5792 	free(ctx);
5793 }
5794 
5795 int
5796 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
5797 {
5798 	struct set_nvme_hotplug_ctx *ctx;
5799 
5800 	if (enabled == true && !spdk_process_is_primary()) {
5801 		return -EPERM;
5802 	}
5803 
5804 	ctx = calloc(1, sizeof(*ctx));
5805 	if (ctx == NULL) {
5806 		return -ENOMEM;
5807 	}
5808 
5809 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
5810 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
5811 	ctx->enabled = enabled;
5812 	ctx->fn = cb;
5813 	ctx->fn_ctx = cb_ctx;
5814 
5815 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
5816 	return 0;
5817 }
5818 
5819 static void
5820 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
5821 				    struct nvme_async_probe_ctx *ctx)
5822 {
5823 	struct nvme_ns	*nvme_ns;
5824 	struct nvme_bdev	*nvme_bdev;
5825 	size_t			j;
5826 
5827 	assert(nvme_ctrlr != NULL);
5828 
5829 	if (ctx->names == NULL) {
5830 		ctx->reported_bdevs = 0;
5831 		populate_namespaces_cb(ctx, 0);
5832 		return;
5833 	}
5834 
5835 	/*
5836 	 * Report the new bdevs that were created in this call.
5837 	 * There can be more than one bdev per NVMe controller.
5838 	 */
5839 	j = 0;
5840 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5841 	while (nvme_ns != NULL) {
5842 		nvme_bdev = nvme_ns->bdev;
5843 		if (j < ctx->max_bdevs) {
5844 			ctx->names[j] = nvme_bdev->disk.name;
5845 			j++;
5846 		} else {
5847 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
5848 				    ctx->max_bdevs);
5849 			ctx->reported_bdevs = 0;
5850 			populate_namespaces_cb(ctx, -ERANGE);
5851 			return;
5852 		}
5853 
5854 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5855 	}
5856 
5857 	ctx->reported_bdevs = j;
5858 	populate_namespaces_cb(ctx, 0);
5859 }
5860 
5861 static int
5862 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5863 			       struct spdk_nvme_ctrlr *new_ctrlr,
5864 			       struct spdk_nvme_transport_id *trid)
5865 {
5866 	struct nvme_path_id *tmp_trid;
5867 
5868 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5869 		SPDK_ERRLOG("PCIe failover is not supported.\n");
5870 		return -ENOTSUP;
5871 	}
5872 
5873 	/* Currently we only support failover to the same transport type. */
5874 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
5875 		SPDK_WARNLOG("Failover from trtype: %s to a different trtype: %s is not supported currently\n",
5876 			     spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
5877 			     spdk_nvme_transport_id_trtype_str(trid->trtype));
5878 		return -EINVAL;
5879 	}
5880 
5881 
5882 	/* Currently we only support failover to the same NQN. */
5883 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
5884 		SPDK_WARNLOG("Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
5885 			     nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
5886 		return -EINVAL;
5887 	}
5888 
5889 	/* Skip all the other checks if we've already registered this path. */
5890 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
5891 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
5892 			SPDK_WARNLOG("This path (traddr: %s subnqn: %s) is already registered\n", trid->traddr,
5893 				     trid->subnqn);
5894 			return -EALREADY;
5895 		}
5896 	}
5897 
5898 	return 0;
5899 }
5900 
5901 static int
5902 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
5903 				    struct spdk_nvme_ctrlr *new_ctrlr)
5904 {
5905 	struct nvme_ns *nvme_ns;
5906 	struct spdk_nvme_ns *new_ns;
5907 
5908 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5909 	while (nvme_ns != NULL) {
5910 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
5911 		assert(new_ns != NULL);
5912 
5913 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
5914 			return -EINVAL;
5915 		}
5916 
5917 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5918 	}
5919 
5920 	return 0;
5921 }
5922 
5923 static int
5924 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5925 			      struct spdk_nvme_transport_id *trid)
5926 {
5927 	struct nvme_path_id *active_id, *new_trid, *tmp_trid;
5928 
5929 	new_trid = calloc(1, sizeof(*new_trid));
5930 	if (new_trid == NULL) {
5931 		return -ENOMEM;
5932 	}
5933 	new_trid->trid = *trid;
5934 
5935 	active_id = nvme_ctrlr->active_path_id;
5936 	assert(active_id != NULL);
5937 	assert(active_id == TAILQ_FIRST(&nvme_ctrlr->trids));
5938 
5939 	/* Skip the active trid not to replace it until it is failed. */
5940 	tmp_trid = TAILQ_NEXT(active_id, link);
5941 	if (tmp_trid == NULL) {
5942 		goto add_tail;
5943 	}
5944 
5945 	/* It means the trid is faled if its last failed time is non-zero.
5946 	 * Insert the new alternate trid before any failed trid.
5947 	 */
5948 	TAILQ_FOREACH_FROM(tmp_trid, &nvme_ctrlr->trids, link) {
5949 		if (tmp_trid->last_failed_tsc != 0) {
5950 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
5951 			return 0;
5952 		}
5953 	}
5954 
5955 add_tail:
5956 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
5957 	return 0;
5958 }
5959 
5960 /* This is the case that a secondary path is added to an existing
5961  * nvme_ctrlr for failover. After checking if it can access the same
5962  * namespaces as the primary path, it is disconnected until failover occurs.
5963  */
5964 static int
5965 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5966 			     struct spdk_nvme_ctrlr *new_ctrlr,
5967 			     struct spdk_nvme_transport_id *trid)
5968 {
5969 	int rc;
5970 
5971 	assert(nvme_ctrlr != NULL);
5972 
5973 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5974 
5975 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
5976 	if (rc != 0) {
5977 		goto exit;
5978 	}
5979 
5980 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
5981 	if (rc != 0) {
5982 		goto exit;
5983 	}
5984 
5985 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
5986 
5987 exit:
5988 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5989 
5990 	spdk_nvme_detach(new_ctrlr);
5991 
5992 	return rc;
5993 }
5994 
5995 static void
5996 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5997 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
5998 {
5999 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6000 	struct nvme_async_probe_ctx *ctx;
6001 	int rc;
6002 
6003 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
6004 	ctx->ctrlr_attached = true;
6005 
6006 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
6007 	if (rc != 0) {
6008 		ctx->reported_bdevs = 0;
6009 		populate_namespaces_cb(ctx, rc);
6010 	}
6011 }
6012 
6013 static void
6014 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6015 			struct spdk_nvme_ctrlr *ctrlr,
6016 			const struct spdk_nvme_ctrlr_opts *opts)
6017 {
6018 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6019 	struct nvme_ctrlr *nvme_ctrlr;
6020 	struct nvme_async_probe_ctx *ctx;
6021 	int rc;
6022 
6023 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
6024 	ctx->ctrlr_attached = true;
6025 
6026 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
6027 	if (nvme_ctrlr) {
6028 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
6029 	} else {
6030 		rc = -ENODEV;
6031 	}
6032 
6033 	ctx->reported_bdevs = 0;
6034 	populate_namespaces_cb(ctx, rc);
6035 }
6036 
6037 static int
6038 bdev_nvme_async_poll(void *arg)
6039 {
6040 	struct nvme_async_probe_ctx	*ctx = arg;
6041 	int				rc;
6042 
6043 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
6044 	if (spdk_unlikely(rc != -EAGAIN)) {
6045 		ctx->probe_done = true;
6046 		spdk_poller_unregister(&ctx->poller);
6047 		if (!ctx->ctrlr_attached) {
6048 			/* The probe is done, but no controller was attached.
6049 			 * That means we had a failure, so report -EIO back to
6050 			 * the caller (usually the RPC). populate_namespaces_cb()
6051 			 * will take care of freeing the nvme_async_probe_ctx.
6052 			 */
6053 			ctx->reported_bdevs = 0;
6054 			populate_namespaces_cb(ctx, -EIO);
6055 		} else if (ctx->namespaces_populated) {
6056 			/* The namespaces for the attached controller were all
6057 			 * populated and the response was already sent to the
6058 			 * caller (usually the RPC).  So free the context here.
6059 			 */
6060 			free_nvme_async_probe_ctx(ctx);
6061 		}
6062 	}
6063 
6064 	return SPDK_POLLER_BUSY;
6065 }
6066 
6067 static bool
6068 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
6069 		uint32_t reconnect_delay_sec,
6070 		uint32_t fast_io_fail_timeout_sec)
6071 {
6072 	if (ctrlr_loss_timeout_sec < -1) {
6073 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
6074 		return false;
6075 	} else if (ctrlr_loss_timeout_sec == -1) {
6076 		if (reconnect_delay_sec == 0) {
6077 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6078 			return false;
6079 		} else if (fast_io_fail_timeout_sec != 0 &&
6080 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
6081 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
6082 			return false;
6083 		}
6084 	} else if (ctrlr_loss_timeout_sec != 0) {
6085 		if (reconnect_delay_sec == 0) {
6086 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6087 			return false;
6088 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6089 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
6090 			return false;
6091 		} else if (fast_io_fail_timeout_sec != 0) {
6092 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
6093 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
6094 				return false;
6095 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6096 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
6097 				return false;
6098 			}
6099 		}
6100 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
6101 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
6102 		return false;
6103 	}
6104 
6105 	return true;
6106 }
6107 
6108 static int
6109 bdev_nvme_load_psk(const char *fname, char *buf, size_t bufsz)
6110 {
6111 	FILE *psk_file;
6112 	struct stat statbuf;
6113 	int rc;
6114 #define TCP_PSK_INVALID_PERMISSIONS 0177
6115 
6116 	if (stat(fname, &statbuf) != 0) {
6117 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
6118 		return -EACCES;
6119 	}
6120 
6121 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
6122 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
6123 		return -EPERM;
6124 	}
6125 	if ((size_t)statbuf.st_size >= bufsz) {
6126 		SPDK_ERRLOG("Invalid PSK: too long\n");
6127 		return -EINVAL;
6128 	}
6129 	psk_file = fopen(fname, "r");
6130 	if (psk_file == NULL) {
6131 		SPDK_ERRLOG("Could not open PSK file\n");
6132 		return -EINVAL;
6133 	}
6134 
6135 	memset(buf, 0, bufsz);
6136 	rc = fread(buf, 1, statbuf.st_size, psk_file);
6137 	if (rc != statbuf.st_size) {
6138 		SPDK_ERRLOG("Failed to read PSK\n");
6139 		fclose(psk_file);
6140 		return -EINVAL;
6141 	}
6142 
6143 	fclose(psk_file);
6144 	return 0;
6145 }
6146 
6147 int
6148 bdev_nvme_create(struct spdk_nvme_transport_id *trid,
6149 		 const char *base_name,
6150 		 const char **names,
6151 		 uint32_t count,
6152 		 spdk_bdev_create_nvme_fn cb_fn,
6153 		 void *cb_ctx,
6154 		 struct spdk_nvme_ctrlr_opts *drv_opts,
6155 		 struct nvme_ctrlr_opts *bdev_opts,
6156 		 bool multipath)
6157 {
6158 	struct nvme_probe_skip_entry *entry, *tmp;
6159 	struct nvme_async_probe_ctx *ctx;
6160 	spdk_nvme_attach_cb attach_cb;
6161 	int rc, len;
6162 
6163 	/* TODO expand this check to include both the host and target TRIDs.
6164 	 * Only if both are the same should we fail.
6165 	 */
6166 	if (nvme_ctrlr_get(trid) != NULL) {
6167 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
6168 		return -EEXIST;
6169 	}
6170 
6171 	len = strnlen(base_name, SPDK_CONTROLLER_NAME_MAX);
6172 
6173 	if (len == 0 || len == SPDK_CONTROLLER_NAME_MAX) {
6174 		SPDK_ERRLOG("controller name must be between 1 and %d characters\n", SPDK_CONTROLLER_NAME_MAX - 1);
6175 		return -EINVAL;
6176 	}
6177 
6178 	if (bdev_opts != NULL &&
6179 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
6180 			    bdev_opts->reconnect_delay_sec,
6181 			    bdev_opts->fast_io_fail_timeout_sec)) {
6182 		return -EINVAL;
6183 	}
6184 
6185 	ctx = calloc(1, sizeof(*ctx));
6186 	if (!ctx) {
6187 		return -ENOMEM;
6188 	}
6189 	ctx->base_name = base_name;
6190 	ctx->names = names;
6191 	ctx->max_bdevs = count;
6192 	ctx->cb_fn = cb_fn;
6193 	ctx->cb_ctx = cb_ctx;
6194 	ctx->trid = *trid;
6195 
6196 	if (bdev_opts) {
6197 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6198 	} else {
6199 		bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
6200 	}
6201 
6202 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6203 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
6204 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
6205 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
6206 				free(entry);
6207 				break;
6208 			}
6209 		}
6210 	}
6211 
6212 	if (drv_opts) {
6213 		memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6214 	} else {
6215 		spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->drv_opts, sizeof(ctx->drv_opts));
6216 	}
6217 
6218 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
6219 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
6220 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
6221 	ctx->drv_opts.disable_read_ana_log_page = true;
6222 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
6223 
6224 	if (ctx->bdev_opts.psk[0] != '\0') {
6225 		/* Try to use the keyring first */
6226 		ctx->drv_opts.tls_psk = spdk_keyring_get_key(ctx->bdev_opts.psk);
6227 		if (ctx->drv_opts.tls_psk == NULL) {
6228 			rc = bdev_nvme_load_psk(ctx->bdev_opts.psk,
6229 						ctx->drv_opts.psk, sizeof(ctx->drv_opts.psk));
6230 			if (rc != 0) {
6231 				SPDK_ERRLOG("Could not load PSK from %s\n", ctx->bdev_opts.psk);
6232 				free_nvme_async_probe_ctx(ctx);
6233 				return rc;
6234 			}
6235 		}
6236 	}
6237 
6238 	if (ctx->bdev_opts.dhchap_key != NULL) {
6239 		ctx->drv_opts.dhchap_key = spdk_keyring_get_key(ctx->bdev_opts.dhchap_key);
6240 		if (ctx->drv_opts.dhchap_key == NULL) {
6241 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP key: %s\n",
6242 				    ctx->bdev_opts.dhchap_key);
6243 			free_nvme_async_probe_ctx(ctx);
6244 			return -ENOKEY;
6245 		}
6246 
6247 		ctx->drv_opts.dhchap_digests = g_opts.dhchap_digests;
6248 		ctx->drv_opts.dhchap_dhgroups = g_opts.dhchap_dhgroups;
6249 	}
6250 	if (ctx->bdev_opts.dhchap_ctrlr_key != NULL) {
6251 		ctx->drv_opts.dhchap_ctrlr_key =
6252 			spdk_keyring_get_key(ctx->bdev_opts.dhchap_ctrlr_key);
6253 		if (ctx->drv_opts.dhchap_ctrlr_key == NULL) {
6254 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP controller key: %s\n",
6255 				    ctx->bdev_opts.dhchap_ctrlr_key);
6256 			free_nvme_async_probe_ctx(ctx);
6257 			return -ENOKEY;
6258 		}
6259 	}
6260 
6261 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
6262 		attach_cb = connect_attach_cb;
6263 	} else {
6264 		attach_cb = connect_set_failover_cb;
6265 	}
6266 
6267 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
6268 	if (ctx->probe_ctx == NULL) {
6269 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
6270 		free_nvme_async_probe_ctx(ctx);
6271 		return -ENODEV;
6272 	}
6273 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
6274 
6275 	return 0;
6276 }
6277 
6278 struct bdev_nvme_delete_ctx {
6279 	char                        *name;
6280 	struct nvme_path_id         path_id;
6281 	bdev_nvme_delete_done_fn    delete_done;
6282 	void                        *delete_done_ctx;
6283 	uint64_t                    timeout_ticks;
6284 	struct spdk_poller          *poller;
6285 };
6286 
6287 static void
6288 free_bdev_nvme_delete_ctx(struct bdev_nvme_delete_ctx *ctx)
6289 {
6290 	if (ctx != NULL) {
6291 		free(ctx->name);
6292 		free(ctx);
6293 	}
6294 }
6295 
6296 static bool
6297 nvme_path_id_compare(struct nvme_path_id *p, const struct nvme_path_id *path_id)
6298 {
6299 	if (path_id->trid.trtype != 0) {
6300 		if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
6301 			if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
6302 				return false;
6303 			}
6304 		} else {
6305 			if (path_id->trid.trtype != p->trid.trtype) {
6306 				return false;
6307 			}
6308 		}
6309 	}
6310 
6311 	if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
6312 		if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
6313 			return false;
6314 		}
6315 	}
6316 
6317 	if (path_id->trid.adrfam != 0) {
6318 		if (path_id->trid.adrfam != p->trid.adrfam) {
6319 			return false;
6320 		}
6321 	}
6322 
6323 	if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
6324 		if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
6325 			return false;
6326 		}
6327 	}
6328 
6329 	if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
6330 		if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
6331 			return false;
6332 		}
6333 	}
6334 
6335 	if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
6336 		if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
6337 			return false;
6338 		}
6339 	}
6340 
6341 	if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
6342 		if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
6343 			return false;
6344 		}
6345 	}
6346 
6347 	return true;
6348 }
6349 
6350 static bool
6351 nvme_path_id_exists(const char *name, const struct nvme_path_id *path_id)
6352 {
6353 	struct nvme_bdev_ctrlr  *nbdev_ctrlr;
6354 	struct nvme_ctrlr       *ctrlr;
6355 	struct nvme_path_id     *p;
6356 
6357 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6358 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6359 	if (!nbdev_ctrlr) {
6360 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6361 		return false;
6362 	}
6363 
6364 	TAILQ_FOREACH(ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6365 		pthread_mutex_lock(&ctrlr->mutex);
6366 		TAILQ_FOREACH(p, &ctrlr->trids, link) {
6367 			if (nvme_path_id_compare(p, path_id)) {
6368 				pthread_mutex_unlock(&ctrlr->mutex);
6369 				pthread_mutex_unlock(&g_bdev_nvme_mutex);
6370 				return true;
6371 			}
6372 		}
6373 		pthread_mutex_unlock(&ctrlr->mutex);
6374 	}
6375 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6376 
6377 	return false;
6378 }
6379 
6380 static int
6381 bdev_nvme_delete_complete_poll(void *arg)
6382 {
6383 	struct bdev_nvme_delete_ctx     *ctx = arg;
6384 	int                             rc = 0;
6385 
6386 	if (nvme_path_id_exists(ctx->name, &ctx->path_id)) {
6387 		if (ctx->timeout_ticks > spdk_get_ticks()) {
6388 			return SPDK_POLLER_BUSY;
6389 		}
6390 
6391 		SPDK_ERRLOG("NVMe path '%s' still exists after delete\n", ctx->name);
6392 		rc = -ETIMEDOUT;
6393 	}
6394 
6395 	spdk_poller_unregister(&ctx->poller);
6396 
6397 	ctx->delete_done(ctx->delete_done_ctx, rc);
6398 	free_bdev_nvme_delete_ctx(ctx);
6399 
6400 	return SPDK_POLLER_BUSY;
6401 }
6402 
6403 static int
6404 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id)
6405 {
6406 	struct nvme_path_id	*p, *t;
6407 	spdk_msg_fn		msg_fn;
6408 	int			rc = -ENXIO;
6409 
6410 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6411 
6412 	TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
6413 		if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) {
6414 			break;
6415 		}
6416 
6417 		if (!nvme_path_id_compare(p, path_id)) {
6418 			continue;
6419 		}
6420 
6421 		/* We are not using the specified path. */
6422 		TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
6423 		free(p);
6424 		rc = 0;
6425 	}
6426 
6427 	if (p == NULL || !nvme_path_id_compare(p, path_id)) {
6428 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
6429 		return rc;
6430 	}
6431 
6432 	/* If we made it here, then this path is a match! Now we need to remove it. */
6433 
6434 	/* This is the active path in use right now. The active path is always the first in the list. */
6435 	assert(p == nvme_ctrlr->active_path_id);
6436 
6437 	if (!TAILQ_NEXT(p, link)) {
6438 		/* The current path is the only path. */
6439 		msg_fn = _nvme_ctrlr_destruct;
6440 		rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false);
6441 	} else {
6442 		/* There is an alternative path. */
6443 		msg_fn = _bdev_nvme_reset_ctrlr;
6444 		rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, true);
6445 	}
6446 
6447 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6448 
6449 	if (rc == 0) {
6450 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
6451 	} else if (rc == -EALREADY) {
6452 		rc = 0;
6453 	}
6454 
6455 	return rc;
6456 }
6457 
6458 int
6459 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id,
6460 		 bdev_nvme_delete_done_fn delete_done, void *delete_done_ctx)
6461 {
6462 	struct nvme_bdev_ctrlr		*nbdev_ctrlr;
6463 	struct nvme_ctrlr		*nvme_ctrlr, *tmp_nvme_ctrlr;
6464 	struct bdev_nvme_delete_ctx     *ctx = NULL;
6465 	int				rc = -ENXIO, _rc;
6466 
6467 	if (name == NULL || path_id == NULL) {
6468 		rc = -EINVAL;
6469 		goto exit;
6470 	}
6471 
6472 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6473 
6474 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6475 	if (nbdev_ctrlr == NULL) {
6476 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6477 
6478 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
6479 		rc = -ENODEV;
6480 		goto exit;
6481 	}
6482 
6483 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
6484 		_rc = _bdev_nvme_delete(nvme_ctrlr, path_id);
6485 		if (_rc < 0 && _rc != -ENXIO) {
6486 			pthread_mutex_unlock(&g_bdev_nvme_mutex);
6487 			rc = _rc;
6488 			goto exit;
6489 		} else if (_rc == 0) {
6490 			/* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr
6491 			 * was deleted successfully. To remember the successful deletion,
6492 			 * overwrite rc only if _rc is zero.
6493 			 */
6494 			rc = 0;
6495 		}
6496 	}
6497 
6498 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6499 
6500 	if (rc != 0 || delete_done == NULL) {
6501 		goto exit;
6502 	}
6503 
6504 	ctx = calloc(1, sizeof(*ctx));
6505 	if (ctx == NULL) {
6506 		SPDK_ERRLOG("Failed to allocate context for bdev_nvme_delete\n");
6507 		rc = -ENOMEM;
6508 		goto exit;
6509 	}
6510 
6511 	ctx->name = strdup(name);
6512 	if (ctx->name == NULL) {
6513 		SPDK_ERRLOG("Failed to copy controller name for deletion\n");
6514 		rc = -ENOMEM;
6515 		goto exit;
6516 	}
6517 
6518 	ctx->delete_done = delete_done;
6519 	ctx->delete_done_ctx = delete_done_ctx;
6520 	ctx->path_id = *path_id;
6521 	ctx->timeout_ticks = spdk_get_ticks() + 10 * spdk_get_ticks_hz();
6522 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_delete_complete_poll, ctx, 1000);
6523 	if (ctx->poller == NULL) {
6524 		SPDK_ERRLOG("Failed to register bdev_nvme_delete poller\n");
6525 		rc = -ENOMEM;
6526 		goto exit;
6527 	}
6528 
6529 exit:
6530 	if (rc != 0) {
6531 		free_bdev_nvme_delete_ctx(ctx);
6532 	}
6533 
6534 	return rc;
6535 }
6536 
6537 #define DISCOVERY_INFOLOG(ctx, format, ...) \
6538 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6539 
6540 #define DISCOVERY_ERRLOG(ctx, format, ...) \
6541 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6542 
6543 struct discovery_entry_ctx {
6544 	char						name[128];
6545 	struct spdk_nvme_transport_id			trid;
6546 	struct spdk_nvme_ctrlr_opts			drv_opts;
6547 	struct spdk_nvmf_discovery_log_page_entry	entry;
6548 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
6549 	struct discovery_ctx				*ctx;
6550 };
6551 
6552 struct discovery_ctx {
6553 	char					*name;
6554 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
6555 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
6556 	void					*cb_ctx;
6557 	struct spdk_nvme_probe_ctx		*probe_ctx;
6558 	struct spdk_nvme_detach_ctx		*detach_ctx;
6559 	struct spdk_nvme_ctrlr			*ctrlr;
6560 	struct spdk_nvme_transport_id		trid;
6561 	struct discovery_entry_ctx		*entry_ctx_in_use;
6562 	struct spdk_poller			*poller;
6563 	struct spdk_nvme_ctrlr_opts		drv_opts;
6564 	struct nvme_ctrlr_opts			bdev_opts;
6565 	struct spdk_nvmf_discovery_log_page	*log_page;
6566 	TAILQ_ENTRY(discovery_ctx)		tailq;
6567 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
6568 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
6569 	int					rc;
6570 	bool					wait_for_attach;
6571 	uint64_t				timeout_ticks;
6572 	/* Denotes that the discovery service is being started. We're waiting
6573 	 * for the initial connection to the discovery controller to be
6574 	 * established and attach discovered NVM ctrlrs.
6575 	 */
6576 	bool					initializing;
6577 	/* Denotes if a discovery is currently in progress for this context.
6578 	 * That includes connecting to newly discovered subsystems.  Used to
6579 	 * ensure we do not start a new discovery until an existing one is
6580 	 * complete.
6581 	 */
6582 	bool					in_progress;
6583 
6584 	/* Denotes if another discovery is needed after the one in progress
6585 	 * completes.  Set when we receive an AER completion while a discovery
6586 	 * is already in progress.
6587 	 */
6588 	bool					pending;
6589 
6590 	/* Signal to the discovery context poller that it should stop the
6591 	 * discovery service, including detaching from the current discovery
6592 	 * controller.
6593 	 */
6594 	bool					stop;
6595 
6596 	struct spdk_thread			*calling_thread;
6597 	uint32_t				index;
6598 	uint32_t				attach_in_progress;
6599 	char					*hostnqn;
6600 
6601 	/* Denotes if the discovery service was started by the mdns discovery.
6602 	 */
6603 	bool					from_mdns_discovery_service;
6604 };
6605 
6606 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
6607 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
6608 
6609 static void get_discovery_log_page(struct discovery_ctx *ctx);
6610 
6611 static void
6612 free_discovery_ctx(struct discovery_ctx *ctx)
6613 {
6614 	free(ctx->log_page);
6615 	free(ctx->hostnqn);
6616 	free(ctx->name);
6617 	free(ctx);
6618 }
6619 
6620 static void
6621 discovery_complete(struct discovery_ctx *ctx)
6622 {
6623 	ctx->initializing = false;
6624 	ctx->in_progress = false;
6625 	if (ctx->pending) {
6626 		ctx->pending = false;
6627 		get_discovery_log_page(ctx);
6628 	}
6629 }
6630 
6631 static void
6632 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
6633 			       struct spdk_nvmf_discovery_log_page_entry *entry)
6634 {
6635 	char *space;
6636 
6637 	trid->trtype = entry->trtype;
6638 	trid->adrfam = entry->adrfam;
6639 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
6640 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
6641 	/* Because the source buffer (entry->subnqn) is longer than trid->subnqn, and
6642 	 * before call to this function trid->subnqn is zeroed out, we need
6643 	 * to copy sizeof(trid->subnqn) minus one byte to make sure the last character
6644 	 * remains 0. Then we can shorten the string (replace ' ' with 0) if required
6645 	 */
6646 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn) - 1);
6647 
6648 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
6649 	 * But the log page entries typically pad them with spaces, not zeroes.
6650 	 * So add a NULL terminator to each of these fields at the appropriate
6651 	 * location.
6652 	 */
6653 	space = strchr(trid->traddr, ' ');
6654 	if (space) {
6655 		*space = 0;
6656 	}
6657 	space = strchr(trid->trsvcid, ' ');
6658 	if (space) {
6659 		*space = 0;
6660 	}
6661 	space = strchr(trid->subnqn, ' ');
6662 	if (space) {
6663 		*space = 0;
6664 	}
6665 }
6666 
6667 static void
6668 _stop_discovery(void *_ctx)
6669 {
6670 	struct discovery_ctx *ctx = _ctx;
6671 
6672 	if (ctx->attach_in_progress > 0) {
6673 		spdk_thread_send_msg(spdk_get_thread(), _stop_discovery, ctx);
6674 		return;
6675 	}
6676 
6677 	ctx->stop = true;
6678 
6679 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
6680 		struct discovery_entry_ctx *entry_ctx;
6681 		struct nvme_path_id path = {};
6682 
6683 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
6684 		path.trid = entry_ctx->trid;
6685 		bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6686 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6687 		free(entry_ctx);
6688 	}
6689 
6690 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
6691 		struct discovery_entry_ctx *entry_ctx;
6692 
6693 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6694 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6695 		free(entry_ctx);
6696 	}
6697 
6698 	free(ctx->entry_ctx_in_use);
6699 	ctx->entry_ctx_in_use = NULL;
6700 }
6701 
6702 static void
6703 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6704 {
6705 	ctx->stop_cb_fn = cb_fn;
6706 	ctx->cb_ctx = cb_ctx;
6707 
6708 	if (ctx->attach_in_progress > 0) {
6709 		DISCOVERY_INFOLOG(ctx, "stopping discovery with attach_in_progress: %"PRIu32"\n",
6710 				  ctx->attach_in_progress);
6711 	}
6712 
6713 	_stop_discovery(ctx);
6714 }
6715 
6716 static void
6717 remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr)
6718 {
6719 	struct discovery_ctx *d_ctx;
6720 	struct nvme_path_id *path_id;
6721 	struct spdk_nvme_transport_id trid = {};
6722 	struct discovery_entry_ctx *entry_ctx, *tmp;
6723 
6724 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
6725 
6726 	TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6727 		TAILQ_FOREACH_SAFE(entry_ctx, &d_ctx->nvm_entry_ctxs, tailq, tmp) {
6728 			build_trid_from_log_page_entry(&trid, &entry_ctx->entry);
6729 			if (spdk_nvme_transport_id_compare(&trid, &path_id->trid) != 0) {
6730 				continue;
6731 			}
6732 
6733 			TAILQ_REMOVE(&d_ctx->nvm_entry_ctxs, entry_ctx, tailq);
6734 			free(entry_ctx);
6735 			DISCOVERY_INFOLOG(d_ctx, "Remove discovery entry: %s:%s:%s\n",
6736 					  trid.subnqn, trid.traddr, trid.trsvcid);
6737 
6738 			/* Fail discovery ctrlr to force reattach attempt */
6739 			spdk_nvme_ctrlr_fail(d_ctx->ctrlr);
6740 		}
6741 	}
6742 }
6743 
6744 static void
6745 discovery_remove_controllers(struct discovery_ctx *ctx)
6746 {
6747 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
6748 	struct discovery_entry_ctx *entry_ctx, *tmp;
6749 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6750 	struct spdk_nvme_transport_id old_trid = {};
6751 	uint64_t numrec, i;
6752 	bool found;
6753 
6754 	numrec = from_le64(&log_page->numrec);
6755 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
6756 		found = false;
6757 		old_entry = &entry_ctx->entry;
6758 		build_trid_from_log_page_entry(&old_trid, old_entry);
6759 		for (i = 0; i < numrec; i++) {
6760 			new_entry = &log_page->entries[i];
6761 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
6762 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
6763 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6764 				found = true;
6765 				break;
6766 			}
6767 		}
6768 		if (!found) {
6769 			struct nvme_path_id path = {};
6770 
6771 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
6772 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6773 
6774 			path.trid = entry_ctx->trid;
6775 			bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6776 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6777 			free(entry_ctx);
6778 		}
6779 	}
6780 	free(log_page);
6781 	ctx->log_page = NULL;
6782 	discovery_complete(ctx);
6783 }
6784 
6785 static void
6786 complete_discovery_start(struct discovery_ctx *ctx, int status)
6787 {
6788 	ctx->timeout_ticks = 0;
6789 	ctx->rc = status;
6790 	if (ctx->start_cb_fn) {
6791 		ctx->start_cb_fn(ctx->cb_ctx, status);
6792 		ctx->start_cb_fn = NULL;
6793 		ctx->cb_ctx = NULL;
6794 	}
6795 }
6796 
6797 static void
6798 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
6799 {
6800 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
6801 	struct discovery_ctx *ctx = entry_ctx->ctx;
6802 
6803 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
6804 	ctx->attach_in_progress--;
6805 	if (ctx->attach_in_progress == 0) {
6806 		complete_discovery_start(ctx, ctx->rc);
6807 		if (ctx->initializing && ctx->rc != 0) {
6808 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
6809 			stop_discovery(ctx, NULL, ctx->cb_ctx);
6810 		} else {
6811 			discovery_remove_controllers(ctx);
6812 		}
6813 	}
6814 }
6815 
6816 static struct discovery_entry_ctx *
6817 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
6818 {
6819 	struct discovery_entry_ctx *new_ctx;
6820 
6821 	new_ctx = calloc(1, sizeof(*new_ctx));
6822 	if (new_ctx == NULL) {
6823 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6824 		return NULL;
6825 	}
6826 
6827 	new_ctx->ctx = ctx;
6828 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
6829 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6830 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6831 	return new_ctx;
6832 }
6833 
6834 static void
6835 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
6836 		      struct spdk_nvmf_discovery_log_page *log_page)
6837 {
6838 	struct discovery_ctx *ctx = cb_arg;
6839 	struct discovery_entry_ctx *entry_ctx, *tmp;
6840 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6841 	uint64_t numrec, i;
6842 	bool found;
6843 
6844 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
6845 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6846 		return;
6847 	}
6848 
6849 	ctx->log_page = log_page;
6850 	assert(ctx->attach_in_progress == 0);
6851 	numrec = from_le64(&log_page->numrec);
6852 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
6853 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6854 		free(entry_ctx);
6855 	}
6856 	for (i = 0; i < numrec; i++) {
6857 		found = false;
6858 		new_entry = &log_page->entries[i];
6859 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY_CURRENT ||
6860 		    new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
6861 			struct discovery_entry_ctx *new_ctx;
6862 			struct spdk_nvme_transport_id trid = {};
6863 
6864 			build_trid_from_log_page_entry(&trid, new_entry);
6865 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
6866 			if (new_ctx == NULL) {
6867 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6868 				break;
6869 			}
6870 
6871 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
6872 			continue;
6873 		}
6874 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
6875 			old_entry = &entry_ctx->entry;
6876 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
6877 				found = true;
6878 				break;
6879 			}
6880 		}
6881 		if (!found) {
6882 			struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx;
6883 			struct discovery_ctx *d_ctx;
6884 
6885 			TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6886 				TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) {
6887 					if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
6888 						    sizeof(new_entry->subnqn))) {
6889 						break;
6890 					}
6891 				}
6892 				if (subnqn_ctx) {
6893 					break;
6894 				}
6895 			}
6896 
6897 			new_ctx = calloc(1, sizeof(*new_ctx));
6898 			if (new_ctx == NULL) {
6899 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6900 				break;
6901 			}
6902 
6903 			new_ctx->ctx = ctx;
6904 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
6905 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
6906 			if (subnqn_ctx) {
6907 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
6908 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
6909 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6910 						  new_ctx->name);
6911 			} else {
6912 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
6913 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
6914 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6915 						  new_ctx->name);
6916 			}
6917 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6918 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6919 			rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
6920 					      discovery_attach_controller_done, new_ctx,
6921 					      &new_ctx->drv_opts, &ctx->bdev_opts, true);
6922 			if (rc == 0) {
6923 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
6924 				ctx->attach_in_progress++;
6925 			} else {
6926 				DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
6927 			}
6928 		}
6929 	}
6930 
6931 	if (ctx->attach_in_progress == 0) {
6932 		discovery_remove_controllers(ctx);
6933 	}
6934 }
6935 
6936 static void
6937 get_discovery_log_page(struct discovery_ctx *ctx)
6938 {
6939 	int rc;
6940 
6941 	assert(ctx->in_progress == false);
6942 	ctx->in_progress = true;
6943 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
6944 	if (rc != 0) {
6945 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6946 	}
6947 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
6948 }
6949 
6950 static void
6951 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
6952 {
6953 	struct discovery_ctx *ctx = arg;
6954 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
6955 
6956 	if (spdk_nvme_cpl_is_error(cpl)) {
6957 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
6958 		return;
6959 	}
6960 
6961 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
6962 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
6963 		return;
6964 	}
6965 
6966 	DISCOVERY_INFOLOG(ctx, "got aer\n");
6967 	if (ctx->in_progress) {
6968 		ctx->pending = true;
6969 		return;
6970 	}
6971 
6972 	get_discovery_log_page(ctx);
6973 }
6974 
6975 static void
6976 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6977 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
6978 {
6979 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6980 	struct discovery_ctx *ctx;
6981 
6982 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
6983 
6984 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
6985 	ctx->probe_ctx = NULL;
6986 	ctx->ctrlr = ctrlr;
6987 
6988 	if (ctx->rc != 0) {
6989 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
6990 				 ctx->rc);
6991 		return;
6992 	}
6993 
6994 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
6995 }
6996 
6997 static int
6998 discovery_poller(void *arg)
6999 {
7000 	struct discovery_ctx *ctx = arg;
7001 	struct spdk_nvme_transport_id *trid;
7002 	int rc;
7003 
7004 	if (ctx->detach_ctx) {
7005 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
7006 		if (rc != -EAGAIN) {
7007 			ctx->detach_ctx = NULL;
7008 			ctx->ctrlr = NULL;
7009 		}
7010 	} else if (ctx->stop) {
7011 		if (ctx->ctrlr != NULL) {
7012 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7013 			if (rc == 0) {
7014 				return SPDK_POLLER_BUSY;
7015 			}
7016 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7017 		}
7018 		spdk_poller_unregister(&ctx->poller);
7019 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7020 		assert(ctx->start_cb_fn == NULL);
7021 		if (ctx->stop_cb_fn != NULL) {
7022 			ctx->stop_cb_fn(ctx->cb_ctx);
7023 		}
7024 		free_discovery_ctx(ctx);
7025 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
7026 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7027 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7028 			assert(ctx->initializing);
7029 			spdk_poller_unregister(&ctx->poller);
7030 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7031 			complete_discovery_start(ctx, -ETIMEDOUT);
7032 			stop_discovery(ctx, NULL, NULL);
7033 			free_discovery_ctx(ctx);
7034 			return SPDK_POLLER_BUSY;
7035 		}
7036 
7037 		assert(ctx->entry_ctx_in_use == NULL);
7038 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
7039 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7040 		trid = &ctx->entry_ctx_in_use->trid;
7041 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
7042 		if (ctx->probe_ctx) {
7043 			spdk_poller_unregister(&ctx->poller);
7044 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
7045 		} else {
7046 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
7047 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7048 			ctx->entry_ctx_in_use = NULL;
7049 		}
7050 	} else if (ctx->probe_ctx) {
7051 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7052 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7053 			complete_discovery_start(ctx, -ETIMEDOUT);
7054 			return SPDK_POLLER_BUSY;
7055 		}
7056 
7057 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
7058 		if (rc != -EAGAIN) {
7059 			if (ctx->rc != 0) {
7060 				assert(ctx->initializing);
7061 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7062 			} else {
7063 				assert(rc == 0);
7064 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
7065 				ctx->rc = rc;
7066 				get_discovery_log_page(ctx);
7067 			}
7068 		}
7069 	} else {
7070 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7071 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
7072 			complete_discovery_start(ctx, -ETIMEDOUT);
7073 			/* We need to wait until all NVM ctrlrs are attached before we stop the
7074 			 * discovery service to make sure we don't detach a ctrlr that is still
7075 			 * being attached.
7076 			 */
7077 			if (ctx->attach_in_progress == 0) {
7078 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7079 				return SPDK_POLLER_BUSY;
7080 			}
7081 		}
7082 
7083 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
7084 		if (rc < 0) {
7085 			spdk_poller_unregister(&ctx->poller);
7086 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7087 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7088 			ctx->entry_ctx_in_use = NULL;
7089 
7090 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7091 			if (rc != 0) {
7092 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7093 				ctx->ctrlr = NULL;
7094 			}
7095 		}
7096 	}
7097 
7098 	return SPDK_POLLER_BUSY;
7099 }
7100 
7101 static void
7102 start_discovery_poller(void *arg)
7103 {
7104 	struct discovery_ctx *ctx = arg;
7105 
7106 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
7107 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7108 }
7109 
7110 int
7111 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
7112 			  const char *base_name,
7113 			  struct spdk_nvme_ctrlr_opts *drv_opts,
7114 			  struct nvme_ctrlr_opts *bdev_opts,
7115 			  uint64_t attach_timeout,
7116 			  bool from_mdns,
7117 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
7118 {
7119 	struct discovery_ctx *ctx;
7120 	struct discovery_entry_ctx *discovery_entry_ctx;
7121 
7122 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
7123 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7124 		if (strcmp(ctx->name, base_name) == 0) {
7125 			return -EEXIST;
7126 		}
7127 
7128 		if (ctx->entry_ctx_in_use != NULL) {
7129 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
7130 				return -EEXIST;
7131 			}
7132 		}
7133 
7134 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
7135 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
7136 				return -EEXIST;
7137 			}
7138 		}
7139 	}
7140 
7141 	ctx = calloc(1, sizeof(*ctx));
7142 	if (ctx == NULL) {
7143 		return -ENOMEM;
7144 	}
7145 
7146 	ctx->name = strdup(base_name);
7147 	if (ctx->name == NULL) {
7148 		free_discovery_ctx(ctx);
7149 		return -ENOMEM;
7150 	}
7151 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
7152 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
7153 	ctx->from_mdns_discovery_service = from_mdns;
7154 	ctx->bdev_opts.from_discovery_service = true;
7155 	ctx->calling_thread = spdk_get_thread();
7156 	ctx->start_cb_fn = cb_fn;
7157 	ctx->cb_ctx = cb_ctx;
7158 	ctx->initializing = true;
7159 	if (ctx->start_cb_fn) {
7160 		/* We can use this when dumping json to denote if this RPC parameter
7161 		 * was specified or not.
7162 		 */
7163 		ctx->wait_for_attach = true;
7164 	}
7165 	if (attach_timeout != 0) {
7166 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
7167 				     spdk_get_ticks_hz() / 1000ull;
7168 	}
7169 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
7170 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
7171 	memcpy(&ctx->trid, trid, sizeof(*trid));
7172 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
7173 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
7174 	if (ctx->hostnqn == NULL) {
7175 		free_discovery_ctx(ctx);
7176 		return -ENOMEM;
7177 	}
7178 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
7179 	if (discovery_entry_ctx == NULL) {
7180 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7181 		free_discovery_ctx(ctx);
7182 		return -ENOMEM;
7183 	}
7184 
7185 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
7186 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
7187 	return 0;
7188 }
7189 
7190 int
7191 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
7192 {
7193 	struct discovery_ctx *ctx;
7194 
7195 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7196 		if (strcmp(name, ctx->name) == 0) {
7197 			if (ctx->stop) {
7198 				return -EALREADY;
7199 			}
7200 			/* If we're still starting the discovery service and ->rc is non-zero, we're
7201 			 * going to stop it as soon as we can
7202 			 */
7203 			if (ctx->initializing && ctx->rc != 0) {
7204 				return -EALREADY;
7205 			}
7206 			stop_discovery(ctx, cb_fn, cb_ctx);
7207 			return 0;
7208 		}
7209 	}
7210 
7211 	return -ENOENT;
7212 }
7213 
7214 static int
7215 bdev_nvme_library_init(void)
7216 {
7217 	g_bdev_nvme_init_thread = spdk_get_thread();
7218 
7219 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
7220 				bdev_nvme_destroy_poll_group_cb,
7221 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
7222 
7223 	return 0;
7224 }
7225 
7226 static void
7227 bdev_nvme_fini_destruct_ctrlrs(void)
7228 {
7229 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
7230 	struct nvme_ctrlr *nvme_ctrlr;
7231 
7232 	pthread_mutex_lock(&g_bdev_nvme_mutex);
7233 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
7234 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
7235 			pthread_mutex_lock(&nvme_ctrlr->mutex);
7236 			if (nvme_ctrlr->destruct) {
7237 				/* This controller's destruction was already started
7238 				 * before the application started shutting down
7239 				 */
7240 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
7241 				continue;
7242 			}
7243 			nvme_ctrlr->destruct = true;
7244 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
7245 
7246 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
7247 					     nvme_ctrlr);
7248 		}
7249 	}
7250 
7251 	g_bdev_nvme_module_finish = true;
7252 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
7253 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
7254 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
7255 		spdk_bdev_module_fini_done();
7256 		return;
7257 	}
7258 
7259 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
7260 }
7261 
7262 static void
7263 check_discovery_fini(void *arg)
7264 {
7265 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7266 		bdev_nvme_fini_destruct_ctrlrs();
7267 	}
7268 }
7269 
7270 static void
7271 bdev_nvme_library_fini(void)
7272 {
7273 	struct nvme_probe_skip_entry *entry, *entry_tmp;
7274 	struct discovery_ctx *ctx;
7275 
7276 	spdk_poller_unregister(&g_hotplug_poller);
7277 	free(g_hotplug_probe_ctx);
7278 	g_hotplug_probe_ctx = NULL;
7279 
7280 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
7281 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
7282 		free(entry);
7283 	}
7284 
7285 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
7286 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7287 		bdev_nvme_fini_destruct_ctrlrs();
7288 	} else {
7289 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7290 			stop_discovery(ctx, check_discovery_fini, NULL);
7291 		}
7292 	}
7293 }
7294 
7295 static void
7296 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
7297 {
7298 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7299 	struct spdk_bdev *bdev = bdev_io->bdev;
7300 	struct spdk_dif_ctx dif_ctx;
7301 	struct spdk_dif_error err_blk = {};
7302 	int rc;
7303 	struct spdk_dif_ctx_init_ext_opts dif_opts;
7304 
7305 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
7306 	dif_opts.dif_pi_format = SPDK_DIF_PI_FORMAT_16;
7307 	rc = spdk_dif_ctx_init(&dif_ctx,
7308 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
7309 			       bdev->dif_is_head_of_md, bdev->dif_type,
7310 			       bdev_io->u.bdev.dif_check_flags,
7311 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0, &dif_opts);
7312 	if (rc != 0) {
7313 		SPDK_ERRLOG("Initialization of DIF context failed\n");
7314 		return;
7315 	}
7316 
7317 	if (bdev->md_interleave) {
7318 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7319 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7320 	} else {
7321 		struct iovec md_iov = {
7322 			.iov_base	= bdev_io->u.bdev.md_buf,
7323 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
7324 		};
7325 
7326 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7327 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7328 	}
7329 
7330 	if (rc != 0) {
7331 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
7332 			    err_blk.err_type, err_blk.err_offset);
7333 	} else {
7334 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
7335 	}
7336 }
7337 
7338 static void
7339 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7340 {
7341 	struct nvme_bdev_io *bio = ref;
7342 
7343 	if (spdk_nvme_cpl_is_success(cpl)) {
7344 		/* Run PI verification for read data buffer. */
7345 		bdev_nvme_verify_pi_error(bio);
7346 	}
7347 
7348 	/* Return original completion status */
7349 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7350 }
7351 
7352 static void
7353 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7354 {
7355 	struct nvme_bdev_io *bio = ref;
7356 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7357 	int ret;
7358 
7359 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7360 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
7361 			    cpl->status.sct, cpl->status.sc);
7362 
7363 		/* Save completion status to use after verifying PI error. */
7364 		bio->cpl = *cpl;
7365 
7366 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
7367 			/* Read without PI checking to verify PI error. */
7368 			ret = bdev_nvme_no_pi_readv(bio,
7369 						    bdev_io->u.bdev.iovs,
7370 						    bdev_io->u.bdev.iovcnt,
7371 						    bdev_io->u.bdev.md_buf,
7372 						    bdev_io->u.bdev.num_blocks,
7373 						    bdev_io->u.bdev.offset_blocks);
7374 			if (ret == 0) {
7375 				return;
7376 			}
7377 		}
7378 	}
7379 
7380 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7381 }
7382 
7383 static void
7384 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7385 {
7386 	struct nvme_bdev_io *bio = ref;
7387 
7388 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7389 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
7390 			    cpl->status.sct, cpl->status.sc);
7391 		/* Run PI verification for write data buffer if PI error is detected. */
7392 		bdev_nvme_verify_pi_error(bio);
7393 	}
7394 
7395 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7396 }
7397 
7398 static void
7399 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7400 {
7401 	struct nvme_bdev_io *bio = ref;
7402 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7403 
7404 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
7405 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
7406 	 */
7407 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
7408 
7409 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7410 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
7411 			    cpl->status.sct, cpl->status.sc);
7412 		/* Run PI verification for zone append data buffer if PI error is detected. */
7413 		bdev_nvme_verify_pi_error(bio);
7414 	}
7415 
7416 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7417 }
7418 
7419 static void
7420 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7421 {
7422 	struct nvme_bdev_io *bio = ref;
7423 
7424 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7425 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
7426 			    cpl->status.sct, cpl->status.sc);
7427 		/* Run PI verification for compare data buffer if PI error is detected. */
7428 		bdev_nvme_verify_pi_error(bio);
7429 	}
7430 
7431 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7432 }
7433 
7434 static void
7435 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7436 {
7437 	struct nvme_bdev_io *bio = ref;
7438 
7439 	/* Compare operation completion */
7440 	if (!bio->first_fused_completed) {
7441 		/* Save compare result for write callback */
7442 		bio->cpl = *cpl;
7443 		bio->first_fused_completed = true;
7444 		return;
7445 	}
7446 
7447 	/* Write operation completion */
7448 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
7449 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
7450 		 * complete the IO with the compare operation's status.
7451 		 */
7452 		if (!spdk_nvme_cpl_is_error(cpl)) {
7453 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
7454 		}
7455 
7456 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7457 	} else {
7458 		bdev_nvme_io_complete_nvme_status(bio, cpl);
7459 	}
7460 }
7461 
7462 static void
7463 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
7464 {
7465 	struct nvme_bdev_io *bio = ref;
7466 
7467 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7468 }
7469 
7470 static int
7471 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
7472 {
7473 	switch (desc->zt) {
7474 	case SPDK_NVME_ZONE_TYPE_SEQWR:
7475 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
7476 		break;
7477 	default:
7478 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
7479 		return -EIO;
7480 	}
7481 
7482 	switch (desc->zs) {
7483 	case SPDK_NVME_ZONE_STATE_EMPTY:
7484 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
7485 		break;
7486 	case SPDK_NVME_ZONE_STATE_IOPEN:
7487 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
7488 		break;
7489 	case SPDK_NVME_ZONE_STATE_EOPEN:
7490 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
7491 		break;
7492 	case SPDK_NVME_ZONE_STATE_CLOSED:
7493 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
7494 		break;
7495 	case SPDK_NVME_ZONE_STATE_RONLY:
7496 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
7497 		break;
7498 	case SPDK_NVME_ZONE_STATE_FULL:
7499 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
7500 		break;
7501 	case SPDK_NVME_ZONE_STATE_OFFLINE:
7502 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
7503 		break;
7504 	default:
7505 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
7506 		return -EIO;
7507 	}
7508 
7509 	info->zone_id = desc->zslba;
7510 	info->write_pointer = desc->wp;
7511 	info->capacity = desc->zcap;
7512 
7513 	return 0;
7514 }
7515 
7516 static void
7517 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
7518 {
7519 	struct nvme_bdev_io *bio = ref;
7520 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7521 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
7522 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
7523 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
7524 	uint64_t max_zones_per_buf, i;
7525 	uint32_t zone_report_bufsize;
7526 	struct spdk_nvme_ns *ns;
7527 	struct spdk_nvme_qpair *qpair;
7528 	int ret;
7529 
7530 	if (spdk_nvme_cpl_is_error(cpl)) {
7531 		goto out_complete_io_nvme_cpl;
7532 	}
7533 
7534 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
7535 		ret = -ENXIO;
7536 		goto out_complete_io_ret;
7537 	}
7538 
7539 	ns = bio->io_path->nvme_ns->ns;
7540 	qpair = bio->io_path->qpair->qpair;
7541 
7542 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7543 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
7544 			    sizeof(bio->zone_report_buf->descs[0]);
7545 
7546 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
7547 		ret = -EINVAL;
7548 		goto out_complete_io_ret;
7549 	}
7550 
7551 	if (!bio->zone_report_buf->nr_zones) {
7552 		ret = -EINVAL;
7553 		goto out_complete_io_ret;
7554 	}
7555 
7556 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
7557 		ret = fill_zone_from_report(&info[bio->handled_zones],
7558 					    &bio->zone_report_buf->descs[i]);
7559 		if (ret) {
7560 			goto out_complete_io_ret;
7561 		}
7562 		bio->handled_zones++;
7563 	}
7564 
7565 	if (bio->handled_zones < zones_to_copy) {
7566 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7567 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
7568 
7569 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
7570 		ret = spdk_nvme_zns_report_zones(ns, qpair,
7571 						 bio->zone_report_buf, zone_report_bufsize,
7572 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
7573 						 bdev_nvme_get_zone_info_done, bio);
7574 		if (!ret) {
7575 			return;
7576 		} else {
7577 			goto out_complete_io_ret;
7578 		}
7579 	}
7580 
7581 out_complete_io_nvme_cpl:
7582 	free(bio->zone_report_buf);
7583 	bio->zone_report_buf = NULL;
7584 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7585 	return;
7586 
7587 out_complete_io_ret:
7588 	free(bio->zone_report_buf);
7589 	bio->zone_report_buf = NULL;
7590 	bdev_nvme_io_complete(bio, ret);
7591 }
7592 
7593 static void
7594 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
7595 {
7596 	struct nvme_bdev_io *bio = ref;
7597 
7598 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7599 }
7600 
7601 static void
7602 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
7603 {
7604 	struct nvme_bdev_io *bio = ctx;
7605 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7606 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
7607 
7608 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
7609 
7610 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
7611 }
7612 
7613 static void
7614 bdev_nvme_abort_complete(void *ctx)
7615 {
7616 	struct nvme_bdev_io *bio = ctx;
7617 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7618 
7619 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
7620 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
7621 	} else {
7622 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
7623 	}
7624 }
7625 
7626 static void
7627 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
7628 {
7629 	struct nvme_bdev_io *bio = ref;
7630 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7631 
7632 	bio->cpl = *cpl;
7633 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_nvme_abort_complete, bio);
7634 }
7635 
7636 static void
7637 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
7638 {
7639 	struct nvme_bdev_io *bio = ref;
7640 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7641 
7642 	bio->cpl = *cpl;
7643 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
7644 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
7645 }
7646 
7647 static void
7648 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
7649 {
7650 	struct nvme_bdev_io *bio = ref;
7651 	struct iovec *iov;
7652 
7653 	bio->iov_offset = sgl_offset;
7654 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
7655 		iov = &bio->iovs[bio->iovpos];
7656 		if (bio->iov_offset < iov->iov_len) {
7657 			break;
7658 		}
7659 
7660 		bio->iov_offset -= iov->iov_len;
7661 	}
7662 }
7663 
7664 static int
7665 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
7666 {
7667 	struct nvme_bdev_io *bio = ref;
7668 	struct iovec *iov;
7669 
7670 	assert(bio->iovpos < bio->iovcnt);
7671 
7672 	iov = &bio->iovs[bio->iovpos];
7673 
7674 	*address = iov->iov_base;
7675 	*length = iov->iov_len;
7676 
7677 	if (bio->iov_offset) {
7678 		assert(bio->iov_offset <= iov->iov_len);
7679 		*address += bio->iov_offset;
7680 		*length -= bio->iov_offset;
7681 	}
7682 
7683 	bio->iov_offset += *length;
7684 	if (bio->iov_offset == iov->iov_len) {
7685 		bio->iovpos++;
7686 		bio->iov_offset = 0;
7687 	}
7688 
7689 	return 0;
7690 }
7691 
7692 static void
7693 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
7694 {
7695 	struct nvme_bdev_io *bio = ref;
7696 	struct iovec *iov;
7697 
7698 	bio->fused_iov_offset = sgl_offset;
7699 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
7700 		iov = &bio->fused_iovs[bio->fused_iovpos];
7701 		if (bio->fused_iov_offset < iov->iov_len) {
7702 			break;
7703 		}
7704 
7705 		bio->fused_iov_offset -= iov->iov_len;
7706 	}
7707 }
7708 
7709 static int
7710 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
7711 {
7712 	struct nvme_bdev_io *bio = ref;
7713 	struct iovec *iov;
7714 
7715 	assert(bio->fused_iovpos < bio->fused_iovcnt);
7716 
7717 	iov = &bio->fused_iovs[bio->fused_iovpos];
7718 
7719 	*address = iov->iov_base;
7720 	*length = iov->iov_len;
7721 
7722 	if (bio->fused_iov_offset) {
7723 		assert(bio->fused_iov_offset <= iov->iov_len);
7724 		*address += bio->fused_iov_offset;
7725 		*length -= bio->fused_iov_offset;
7726 	}
7727 
7728 	bio->fused_iov_offset += *length;
7729 	if (bio->fused_iov_offset == iov->iov_len) {
7730 		bio->fused_iovpos++;
7731 		bio->fused_iov_offset = 0;
7732 	}
7733 
7734 	return 0;
7735 }
7736 
7737 static int
7738 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7739 		      void *md, uint64_t lba_count, uint64_t lba)
7740 {
7741 	int rc;
7742 
7743 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
7744 		      lba_count, lba);
7745 
7746 	bio->iovs = iov;
7747 	bio->iovcnt = iovcnt;
7748 	bio->iovpos = 0;
7749 	bio->iov_offset = 0;
7750 
7751 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
7752 					    bio->io_path->qpair->qpair,
7753 					    lba, lba_count,
7754 					    bdev_nvme_no_pi_readv_done, bio, 0,
7755 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7756 					    md, 0, 0);
7757 
7758 	if (rc != 0 && rc != -ENOMEM) {
7759 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
7760 	}
7761 	return rc;
7762 }
7763 
7764 static int
7765 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7766 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7767 		struct spdk_memory_domain *domain, void *domain_ctx,
7768 		struct spdk_accel_sequence *seq)
7769 {
7770 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7771 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7772 	int rc;
7773 
7774 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7775 		      lba_count, lba);
7776 
7777 	bio->iovs = iov;
7778 	bio->iovcnt = iovcnt;
7779 	bio->iovpos = 0;
7780 	bio->iov_offset = 0;
7781 
7782 	if (domain != NULL || seq != NULL) {
7783 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7784 		bio->ext_opts.memory_domain = domain;
7785 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7786 		bio->ext_opts.io_flags = flags;
7787 		bio->ext_opts.metadata = md;
7788 		bio->ext_opts.accel_sequence = seq;
7789 
7790 		if (iovcnt == 1) {
7791 			rc = spdk_nvme_ns_cmd_read_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_readv_done,
7792 						       bio, &bio->ext_opts);
7793 		} else {
7794 			rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
7795 							bdev_nvme_readv_done, bio,
7796 							bdev_nvme_queued_reset_sgl,
7797 							bdev_nvme_queued_next_sge,
7798 							&bio->ext_opts);
7799 		}
7800 	} else if (iovcnt == 1) {
7801 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base,
7802 						   md, lba, lba_count, bdev_nvme_readv_done,
7803 						   bio, flags, 0, 0);
7804 	} else {
7805 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
7806 						    bdev_nvme_readv_done, bio, flags,
7807 						    bdev_nvme_queued_reset_sgl,
7808 						    bdev_nvme_queued_next_sge, md, 0, 0);
7809 	}
7810 
7811 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7812 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
7813 	}
7814 	return rc;
7815 }
7816 
7817 static int
7818 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7819 		 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7820 		 struct spdk_memory_domain *domain, void *domain_ctx,
7821 		 struct spdk_accel_sequence *seq,
7822 		 union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13)
7823 {
7824 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7825 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7826 	int rc;
7827 
7828 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7829 		      lba_count, lba);
7830 
7831 	bio->iovs = iov;
7832 	bio->iovcnt = iovcnt;
7833 	bio->iovpos = 0;
7834 	bio->iov_offset = 0;
7835 
7836 	if (domain != NULL || seq != NULL) {
7837 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7838 		bio->ext_opts.memory_domain = domain;
7839 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7840 		bio->ext_opts.io_flags = flags | SPDK_NVME_IO_FLAGS_DIRECTIVE(cdw12.write.dtype);
7841 		bio->ext_opts.cdw13 = cdw13.raw;
7842 		bio->ext_opts.metadata = md;
7843 		bio->ext_opts.accel_sequence = seq;
7844 
7845 		if (iovcnt == 1) {
7846 			rc = spdk_nvme_ns_cmd_write_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_writev_done,
7847 							bio, &bio->ext_opts);
7848 		} else {
7849 			rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
7850 							 bdev_nvme_writev_done, bio,
7851 							 bdev_nvme_queued_reset_sgl,
7852 							 bdev_nvme_queued_next_sge,
7853 							 &bio->ext_opts);
7854 		}
7855 	} else if (iovcnt == 1) {
7856 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base,
7857 						    md, lba, lba_count, bdev_nvme_writev_done,
7858 						    bio, flags, 0, 0);
7859 	} else {
7860 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7861 						     bdev_nvme_writev_done, bio, flags,
7862 						     bdev_nvme_queued_reset_sgl,
7863 						     bdev_nvme_queued_next_sge, md, 0, 0);
7864 	}
7865 
7866 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7867 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
7868 	}
7869 	return rc;
7870 }
7871 
7872 static int
7873 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7874 		       void *md, uint64_t lba_count, uint64_t zslba,
7875 		       uint32_t flags)
7876 {
7877 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7878 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7879 	int rc;
7880 
7881 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
7882 		      lba_count, zslba);
7883 
7884 	bio->iovs = iov;
7885 	bio->iovcnt = iovcnt;
7886 	bio->iovpos = 0;
7887 	bio->iov_offset = 0;
7888 
7889 	if (iovcnt == 1) {
7890 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
7891 						       lba_count,
7892 						       bdev_nvme_zone_appendv_done, bio,
7893 						       flags,
7894 						       0, 0);
7895 	} else {
7896 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
7897 							bdev_nvme_zone_appendv_done, bio, flags,
7898 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7899 							md, 0, 0);
7900 	}
7901 
7902 	if (rc != 0 && rc != -ENOMEM) {
7903 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
7904 	}
7905 	return rc;
7906 }
7907 
7908 static int
7909 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7910 		   void *md, uint64_t lba_count, uint64_t lba,
7911 		   uint32_t flags)
7912 {
7913 	int rc;
7914 
7915 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7916 		      lba_count, lba);
7917 
7918 	bio->iovs = iov;
7919 	bio->iovcnt = iovcnt;
7920 	bio->iovpos = 0;
7921 	bio->iov_offset = 0;
7922 
7923 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
7924 					       bio->io_path->qpair->qpair,
7925 					       lba, lba_count,
7926 					       bdev_nvme_comparev_done, bio, flags,
7927 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7928 					       md, 0, 0);
7929 
7930 	if (rc != 0 && rc != -ENOMEM) {
7931 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
7932 	}
7933 	return rc;
7934 }
7935 
7936 static int
7937 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
7938 			      struct iovec *write_iov, int write_iovcnt,
7939 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
7940 {
7941 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7942 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7943 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7944 	int rc;
7945 
7946 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7947 		      lba_count, lba);
7948 
7949 	bio->iovs = cmp_iov;
7950 	bio->iovcnt = cmp_iovcnt;
7951 	bio->iovpos = 0;
7952 	bio->iov_offset = 0;
7953 	bio->fused_iovs = write_iov;
7954 	bio->fused_iovcnt = write_iovcnt;
7955 	bio->fused_iovpos = 0;
7956 	bio->fused_iov_offset = 0;
7957 
7958 	if (bdev_io->num_retries == 0) {
7959 		bio->first_fused_submitted = false;
7960 		bio->first_fused_completed = false;
7961 	}
7962 
7963 	if (!bio->first_fused_submitted) {
7964 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7965 		memset(&bio->cpl, 0, sizeof(bio->cpl));
7966 
7967 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
7968 						       bdev_nvme_comparev_and_writev_done, bio, flags,
7969 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
7970 		if (rc == 0) {
7971 			bio->first_fused_submitted = true;
7972 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7973 		} else {
7974 			if (rc != -ENOMEM) {
7975 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
7976 			}
7977 			return rc;
7978 		}
7979 	}
7980 
7981 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
7982 
7983 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7984 					     bdev_nvme_comparev_and_writev_done, bio, flags,
7985 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
7986 	if (rc != 0 && rc != -ENOMEM) {
7987 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
7988 		rc = 0;
7989 	}
7990 
7991 	return rc;
7992 }
7993 
7994 static int
7995 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
7996 {
7997 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
7998 	struct spdk_nvme_dsm_range *range;
7999 	uint64_t offset, remaining;
8000 	uint64_t num_ranges_u64;
8001 	uint16_t num_ranges;
8002 	int rc;
8003 
8004 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
8005 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8006 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
8007 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
8008 		return -EINVAL;
8009 	}
8010 	num_ranges = (uint16_t)num_ranges_u64;
8011 
8012 	offset = offset_blocks;
8013 	remaining = num_blocks;
8014 	range = &dsm_ranges[0];
8015 
8016 	/* Fill max-size ranges until the remaining blocks fit into one range */
8017 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
8018 		range->attributes.raw = 0;
8019 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8020 		range->starting_lba = offset;
8021 
8022 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8023 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8024 		range++;
8025 	}
8026 
8027 	/* Final range describes the remaining blocks */
8028 	range->attributes.raw = 0;
8029 	range->length = remaining;
8030 	range->starting_lba = offset;
8031 
8032 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
8033 			bio->io_path->qpair->qpair,
8034 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
8035 			dsm_ranges, num_ranges,
8036 			bdev_nvme_queued_done, bio);
8037 
8038 	return rc;
8039 }
8040 
8041 static int
8042 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
8043 {
8044 	if (num_blocks > UINT16_MAX + 1) {
8045 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
8046 		return -EINVAL;
8047 	}
8048 
8049 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
8050 					     bio->io_path->qpair->qpair,
8051 					     offset_blocks, num_blocks,
8052 					     bdev_nvme_queued_done, bio,
8053 					     0);
8054 }
8055 
8056 static int
8057 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
8058 			struct spdk_bdev_zone_info *info)
8059 {
8060 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8061 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8062 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
8063 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
8064 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
8065 
8066 	if (zone_id % zone_size != 0) {
8067 		return -EINVAL;
8068 	}
8069 
8070 	if (num_zones > total_zones || !num_zones) {
8071 		return -EINVAL;
8072 	}
8073 
8074 	assert(!bio->zone_report_buf);
8075 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
8076 	if (!bio->zone_report_buf) {
8077 		return -ENOMEM;
8078 	}
8079 
8080 	bio->handled_zones = 0;
8081 
8082 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
8083 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
8084 					  bdev_nvme_get_zone_info_done, bio);
8085 }
8086 
8087 static int
8088 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
8089 			  enum spdk_bdev_zone_action action)
8090 {
8091 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8092 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8093 
8094 	switch (action) {
8095 	case SPDK_BDEV_ZONE_CLOSE:
8096 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
8097 						bdev_nvme_zone_management_done, bio);
8098 	case SPDK_BDEV_ZONE_FINISH:
8099 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
8100 						 bdev_nvme_zone_management_done, bio);
8101 	case SPDK_BDEV_ZONE_OPEN:
8102 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
8103 					       bdev_nvme_zone_management_done, bio);
8104 	case SPDK_BDEV_ZONE_RESET:
8105 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
8106 						bdev_nvme_zone_management_done, bio);
8107 	case SPDK_BDEV_ZONE_OFFLINE:
8108 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
8109 						  bdev_nvme_zone_management_done, bio);
8110 	default:
8111 		return -EINVAL;
8112 	}
8113 }
8114 
8115 static void
8116 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8117 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
8118 {
8119 	struct nvme_io_path *io_path;
8120 	struct nvme_ctrlr *nvme_ctrlr;
8121 	uint32_t max_xfer_size;
8122 	int rc = -ENXIO;
8123 
8124 	/* Choose the first ctrlr which is not failed. */
8125 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8126 		nvme_ctrlr = io_path->qpair->ctrlr;
8127 
8128 		/* We should skip any unavailable nvme_ctrlr rather than checking
8129 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
8130 		 */
8131 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
8132 			continue;
8133 		}
8134 
8135 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
8136 
8137 		if (nbytes > max_xfer_size) {
8138 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8139 			rc = -EINVAL;
8140 			goto err;
8141 		}
8142 
8143 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
8144 						   bdev_nvme_admin_passthru_done, bio);
8145 		if (rc == 0) {
8146 			return;
8147 		}
8148 	}
8149 
8150 err:
8151 	bdev_nvme_admin_complete(bio, rc);
8152 }
8153 
8154 static int
8155 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8156 		      void *buf, size_t nbytes)
8157 {
8158 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8159 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8160 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8161 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8162 
8163 	if (nbytes > max_xfer_size) {
8164 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8165 		return -EINVAL;
8166 	}
8167 
8168 	/*
8169 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8170 	 * so fill it out automatically.
8171 	 */
8172 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8173 
8174 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
8175 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
8176 }
8177 
8178 static int
8179 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8180 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
8181 {
8182 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8183 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8184 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8185 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8186 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8187 
8188 	if (nbytes > max_xfer_size) {
8189 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8190 		return -EINVAL;
8191 	}
8192 
8193 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8194 		SPDK_ERRLOG("invalid meta data buffer size\n");
8195 		return -EINVAL;
8196 	}
8197 
8198 	/*
8199 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8200 	 * so fill it out automatically.
8201 	 */
8202 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8203 
8204 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
8205 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
8206 }
8207 
8208 static int
8209 bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio,
8210 			  struct spdk_nvme_cmd *cmd, struct iovec *iov, int iovcnt,
8211 			  size_t nbytes, void *md_buf, size_t md_len)
8212 {
8213 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8214 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8215 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8216 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8217 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8218 
8219 	bio->iovs = iov;
8220 	bio->iovcnt = iovcnt;
8221 	bio->iovpos = 0;
8222 	bio->iov_offset = 0;
8223 
8224 	if (nbytes > max_xfer_size) {
8225 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8226 		return -EINVAL;
8227 	}
8228 
8229 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8230 		SPDK_ERRLOG("invalid meta data buffer size\n");
8231 		return -EINVAL;
8232 	}
8233 
8234 	/*
8235 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands
8236 	 * require a nsid, so fill it out automatically.
8237 	 */
8238 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8239 
8240 	return spdk_nvme_ctrlr_cmd_iov_raw_with_md(
8241 		       ctrlr, qpair, cmd, (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio,
8242 		       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge);
8243 }
8244 
8245 static void
8246 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8247 		struct nvme_bdev_io *bio_to_abort)
8248 {
8249 	struct nvme_io_path *io_path;
8250 	int rc = 0;
8251 
8252 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
8253 	if (rc == 0) {
8254 		bdev_nvme_admin_complete(bio, 0);
8255 		return;
8256 	}
8257 
8258 	io_path = bio_to_abort->io_path;
8259 	if (io_path != NULL) {
8260 		rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8261 						   io_path->qpair->qpair,
8262 						   bio_to_abort,
8263 						   bdev_nvme_abort_done, bio);
8264 	} else {
8265 		STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8266 			rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8267 							   NULL,
8268 							   bio_to_abort,
8269 							   bdev_nvme_abort_done, bio);
8270 
8271 			if (rc != -ENOENT) {
8272 				break;
8273 			}
8274 		}
8275 	}
8276 
8277 	if (rc != 0) {
8278 		/* If no command was found or there was any error, complete the abort
8279 		 * request with failure.
8280 		 */
8281 		bdev_nvme_admin_complete(bio, rc);
8282 	}
8283 }
8284 
8285 static int
8286 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
8287 	       uint64_t num_blocks)
8288 {
8289 	struct spdk_nvme_scc_source_range range = {
8290 		.slba = src_offset_blocks,
8291 		.nlb = num_blocks - 1
8292 	};
8293 
8294 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
8295 				     bio->io_path->qpair->qpair,
8296 				     &range, 1, dst_offset_blocks,
8297 				     bdev_nvme_queued_done, bio);
8298 }
8299 
8300 static void
8301 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
8302 {
8303 	const char *action;
8304 	uint32_t i;
8305 
8306 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
8307 		action = "reset";
8308 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
8309 		action = "abort";
8310 	} else {
8311 		action = "none";
8312 	}
8313 
8314 	spdk_json_write_object_begin(w);
8315 
8316 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
8317 
8318 	spdk_json_write_named_object_begin(w, "params");
8319 	spdk_json_write_named_string(w, "action_on_timeout", action);
8320 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
8321 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
8322 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
8323 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
8324 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
8325 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
8326 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
8327 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
8328 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
8329 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
8330 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
8331 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
8332 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
8333 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
8334 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
8335 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
8336 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
8337 	spdk_json_write_named_bool(w, "disable_auto_failback", g_opts.disable_auto_failback);
8338 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
8339 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
8340 	spdk_json_write_named_bool(w, "nvme_error_stat", g_opts.nvme_error_stat);
8341 	spdk_json_write_named_uint32(w, "rdma_srq_size", g_opts.rdma_srq_size);
8342 	spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat);
8343 	spdk_json_write_named_bool(w, "allow_accel_sequence", g_opts.allow_accel_sequence);
8344 	spdk_json_write_named_uint32(w, "rdma_max_cq_size", g_opts.rdma_max_cq_size);
8345 	spdk_json_write_named_uint16(w, "rdma_cm_event_timeout_ms", g_opts.rdma_cm_event_timeout_ms);
8346 	spdk_json_write_named_array_begin(w, "dhchap_digests");
8347 	for (i = 0; i < 32; ++i) {
8348 		if (g_opts.dhchap_digests & SPDK_BIT(i)) {
8349 			spdk_json_write_string(w, spdk_nvme_dhchap_get_digest_name(i));
8350 		}
8351 	}
8352 	spdk_json_write_array_end(w);
8353 	spdk_json_write_named_array_begin(w, "dhchap_dhgroups");
8354 	for (i = 0; i < 32; ++i) {
8355 		if (g_opts.dhchap_dhgroups & SPDK_BIT(i)) {
8356 			spdk_json_write_string(w, spdk_nvme_dhchap_get_dhgroup_name(i));
8357 		}
8358 	}
8359 
8360 	spdk_json_write_array_end(w);
8361 	spdk_json_write_object_end(w);
8362 
8363 	spdk_json_write_object_end(w);
8364 }
8365 
8366 static void
8367 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
8368 {
8369 	struct spdk_nvme_transport_id trid;
8370 
8371 	spdk_json_write_object_begin(w);
8372 
8373 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
8374 
8375 	spdk_json_write_named_object_begin(w, "params");
8376 	spdk_json_write_named_string(w, "name", ctx->name);
8377 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
8378 
8379 	trid = ctx->trid;
8380 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
8381 	nvme_bdev_dump_trid_json(&trid, w);
8382 
8383 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
8384 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
8385 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
8386 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8387 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
8388 	spdk_json_write_object_end(w);
8389 
8390 	spdk_json_write_object_end(w);
8391 }
8392 
8393 #ifdef SPDK_CONFIG_NVME_CUSE
8394 static void
8395 nvme_ctrlr_cuse_config_json(struct spdk_json_write_ctx *w,
8396 			    struct nvme_ctrlr *nvme_ctrlr)
8397 {
8398 	size_t cuse_name_size = 128;
8399 	char cuse_name[cuse_name_size];
8400 
8401 	if (spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr,
8402 					  cuse_name, &cuse_name_size) != 0) {
8403 		return;
8404 	}
8405 
8406 	spdk_json_write_object_begin(w);
8407 
8408 	spdk_json_write_named_string(w, "method", "bdev_nvme_cuse_register");
8409 
8410 	spdk_json_write_named_object_begin(w, "params");
8411 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8412 	spdk_json_write_object_end(w);
8413 
8414 	spdk_json_write_object_end(w);
8415 }
8416 #endif
8417 
8418 static void
8419 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
8420 		       struct nvme_ctrlr *nvme_ctrlr)
8421 {
8422 	struct spdk_nvme_transport_id	*trid;
8423 	const struct spdk_nvme_ctrlr_opts *opts;
8424 
8425 	if (nvme_ctrlr->opts.from_discovery_service) {
8426 		/* Do not emit an RPC for this - it will be implicitly
8427 		 * covered by a separate bdev_nvme_start_discovery or
8428 		 * bdev_nvme_start_mdns_discovery RPC.
8429 		 */
8430 		return;
8431 	}
8432 
8433 	trid = &nvme_ctrlr->active_path_id->trid;
8434 
8435 	spdk_json_write_object_begin(w);
8436 
8437 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
8438 
8439 	spdk_json_write_named_object_begin(w, "params");
8440 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8441 	nvme_bdev_dump_trid_json(trid, w);
8442 	spdk_json_write_named_bool(w, "prchk_reftag",
8443 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
8444 	spdk_json_write_named_bool(w, "prchk_guard",
8445 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
8446 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
8447 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
8448 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8449 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
8450 	if (nvme_ctrlr->psk != NULL) {
8451 		spdk_json_write_named_string(w, "psk", spdk_key_get_name(nvme_ctrlr->psk));
8452 	} else if (nvme_ctrlr->opts.psk[0] != '\0') {
8453 		spdk_json_write_named_string(w, "psk", nvme_ctrlr->opts.psk);
8454 	}
8455 
8456 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
8457 	spdk_json_write_named_string(w, "hostnqn", opts->hostnqn);
8458 	spdk_json_write_named_bool(w, "hdgst", opts->header_digest);
8459 	spdk_json_write_named_bool(w, "ddgst", opts->data_digest);
8460 	if (opts->src_addr[0] != '\0') {
8461 		spdk_json_write_named_string(w, "hostaddr", opts->src_addr);
8462 	}
8463 	if (opts->src_svcid[0] != '\0') {
8464 		spdk_json_write_named_string(w, "hostsvcid", opts->src_svcid);
8465 	}
8466 
8467 	spdk_json_write_object_end(w);
8468 
8469 	spdk_json_write_object_end(w);
8470 }
8471 
8472 static void
8473 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
8474 {
8475 	spdk_json_write_object_begin(w);
8476 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
8477 
8478 	spdk_json_write_named_object_begin(w, "params");
8479 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
8480 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
8481 	spdk_json_write_object_end(w);
8482 
8483 	spdk_json_write_object_end(w);
8484 }
8485 
8486 static int
8487 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
8488 {
8489 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
8490 	struct nvme_ctrlr	*nvme_ctrlr;
8491 	struct discovery_ctx	*ctx;
8492 
8493 	bdev_nvme_opts_config_json(w);
8494 
8495 	pthread_mutex_lock(&g_bdev_nvme_mutex);
8496 
8497 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
8498 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
8499 			nvme_ctrlr_config_json(w, nvme_ctrlr);
8500 
8501 #ifdef SPDK_CONFIG_NVME_CUSE
8502 			nvme_ctrlr_cuse_config_json(w, nvme_ctrlr);
8503 #endif
8504 		}
8505 	}
8506 
8507 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8508 		if (!ctx->from_mdns_discovery_service) {
8509 			bdev_nvme_discovery_config_json(w, ctx);
8510 		}
8511 	}
8512 
8513 	bdev_nvme_mdns_discovery_config_json(w);
8514 
8515 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
8516 	 * before enabling hotplug poller.
8517 	 */
8518 	bdev_nvme_hotplug_config_json(w);
8519 
8520 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
8521 	return 0;
8522 }
8523 
8524 struct spdk_nvme_ctrlr *
8525 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
8526 {
8527 	struct nvme_bdev *nbdev;
8528 	struct nvme_ns *nvme_ns;
8529 
8530 	if (!bdev || bdev->module != &nvme_if) {
8531 		return NULL;
8532 	}
8533 
8534 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
8535 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
8536 	assert(nvme_ns != NULL);
8537 
8538 	return nvme_ns->ctrlr->ctrlr;
8539 }
8540 
8541 static bool
8542 nvme_io_path_is_current(struct nvme_io_path *io_path)
8543 {
8544 	const struct nvme_bdev_channel *nbdev_ch;
8545 	bool current;
8546 
8547 	if (!nvme_io_path_is_available(io_path)) {
8548 		return false;
8549 	}
8550 
8551 	nbdev_ch = io_path->nbdev_ch;
8552 	if (nbdev_ch == NULL) {
8553 		current = false;
8554 	} else if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
8555 		struct nvme_io_path *optimized_io_path = NULL;
8556 
8557 		STAILQ_FOREACH(optimized_io_path, &nbdev_ch->io_path_list, stailq) {
8558 			if (optimized_io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) {
8559 				break;
8560 			}
8561 		}
8562 
8563 		/* A non-optimized path is only current if there are no optimized paths. */
8564 		current = (io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) ||
8565 			  (optimized_io_path == NULL);
8566 	} else {
8567 		if (nbdev_ch->current_io_path) {
8568 			current = (io_path == nbdev_ch->current_io_path);
8569 		} else {
8570 			struct nvme_io_path *first_path;
8571 
8572 			/* We arrived here as there are no optimized paths for active-passive
8573 			 * mode. Check if this io_path is the first one available on the list.
8574 			 */
8575 			current = false;
8576 			STAILQ_FOREACH(first_path, &nbdev_ch->io_path_list, stailq) {
8577 				if (nvme_io_path_is_available(first_path)) {
8578 					current = (io_path == first_path);
8579 					break;
8580 				}
8581 			}
8582 		}
8583 	}
8584 
8585 	return current;
8586 }
8587 
8588 void
8589 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
8590 {
8591 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
8592 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
8593 	const struct spdk_nvme_ctrlr_data *cdata;
8594 	const struct spdk_nvme_transport_id *trid;
8595 	const char *adrfam_str;
8596 
8597 	spdk_json_write_object_begin(w);
8598 
8599 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
8600 
8601 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
8602 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
8603 
8604 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
8605 	spdk_json_write_named_bool(w, "current", nvme_io_path_is_current(io_path));
8606 	spdk_json_write_named_bool(w, "connected", nvme_qpair_is_connected(io_path->qpair));
8607 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
8608 
8609 	spdk_json_write_named_object_begin(w, "transport");
8610 	spdk_json_write_named_string(w, "trtype", trid->trstring);
8611 	spdk_json_write_named_string(w, "traddr", trid->traddr);
8612 	if (trid->trsvcid[0] != '\0') {
8613 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
8614 	}
8615 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
8616 	if (adrfam_str) {
8617 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
8618 	}
8619 	spdk_json_write_object_end(w);
8620 
8621 	spdk_json_write_object_end(w);
8622 }
8623 
8624 void
8625 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
8626 {
8627 	struct discovery_ctx *ctx;
8628 	struct discovery_entry_ctx *entry_ctx;
8629 
8630 	spdk_json_write_array_begin(w);
8631 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8632 		spdk_json_write_object_begin(w);
8633 		spdk_json_write_named_string(w, "name", ctx->name);
8634 
8635 		spdk_json_write_named_object_begin(w, "trid");
8636 		nvme_bdev_dump_trid_json(&ctx->trid, w);
8637 		spdk_json_write_object_end(w);
8638 
8639 		spdk_json_write_named_array_begin(w, "referrals");
8640 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
8641 			spdk_json_write_object_begin(w);
8642 			spdk_json_write_named_object_begin(w, "trid");
8643 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
8644 			spdk_json_write_object_end(w);
8645 			spdk_json_write_object_end(w);
8646 		}
8647 		spdk_json_write_array_end(w);
8648 
8649 		spdk_json_write_object_end(w);
8650 	}
8651 	spdk_json_write_array_end(w);
8652 }
8653 
8654 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
8655 
8656 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
8657 {
8658 	struct spdk_trace_tpoint_opts opts[] = {
8659 		{
8660 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
8661 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 1,
8662 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8663 		},
8664 		{
8665 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
8666 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 0,
8667 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8668 		}
8669 	};
8670 
8671 
8672 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
8673 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
8674 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8675 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8676 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8677 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8678 }
8679