xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision f30fdcf100267bd386c5a5c4c38a9f20959fbff8)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/keyring.h"
18 #include "spdk/likely.h"
19 #include "spdk/nvme.h"
20 #include "spdk/nvme_ocssd.h"
21 #include "spdk/nvme_zns.h"
22 #include "spdk/opal.h"
23 #include "spdk/thread.h"
24 #include "spdk/trace.h"
25 #include "spdk/string.h"
26 #include "spdk/util.h"
27 #include "spdk/uuid.h"
28 
29 #include "spdk/bdev_module.h"
30 #include "spdk/log.h"
31 
32 #include "spdk_internal/usdt.h"
33 #include "spdk_internal/trace_defs.h"
34 
35 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
36 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
37 
38 #define NSID_STR_LEN 10
39 
40 #define SPDK_CONTROLLER_NAME_MAX 512
41 
42 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
43 
44 struct nvme_bdev_io {
45 	/** array of iovecs to transfer. */
46 	struct iovec *iovs;
47 
48 	/** Number of iovecs in iovs array. */
49 	int iovcnt;
50 
51 	/** Current iovec position. */
52 	int iovpos;
53 
54 	/** Offset in current iovec. */
55 	uint32_t iov_offset;
56 
57 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
58 	 *  being reset in a reset I/O.
59 	 */
60 	struct nvme_io_path *io_path;
61 
62 	/** array of iovecs to transfer. */
63 	struct iovec *fused_iovs;
64 
65 	/** Number of iovecs in iovs array. */
66 	int fused_iovcnt;
67 
68 	/** Current iovec position. */
69 	int fused_iovpos;
70 
71 	/** Offset in current iovec. */
72 	uint32_t fused_iov_offset;
73 
74 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
75 	struct spdk_nvme_cpl cpl;
76 
77 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
78 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
79 
80 	/** Keeps track if first of fused commands was submitted */
81 	bool first_fused_submitted;
82 
83 	/** Keeps track if first of fused commands was completed */
84 	bool first_fused_completed;
85 
86 	/** Temporary pointer to zone report buffer */
87 	struct spdk_nvme_zns_zone_report *zone_report_buf;
88 
89 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
90 	uint64_t handled_zones;
91 
92 	/** Expiration value in ticks to retry the current I/O. */
93 	uint64_t retry_ticks;
94 
95 	/* How many times the current I/O was retried. */
96 	int32_t retry_count;
97 
98 	/* Current tsc at submit time. */
99 	uint64_t submit_tsc;
100 
101 	/* Used to put nvme_bdev_io into the list */
102 	TAILQ_ENTRY(nvme_bdev_io) retry_link;
103 };
104 
105 struct nvme_probe_skip_entry {
106 	struct spdk_nvme_transport_id		trid;
107 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
108 };
109 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
110 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
111 			g_skipped_nvme_ctrlrs);
112 
113 static struct spdk_bdev_nvme_opts g_opts = {
114 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
115 	.timeout_us = 0,
116 	.timeout_admin_us = 0,
117 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
118 	.transport_retry_count = 4,
119 	.arbitration_burst = 0,
120 	.low_priority_weight = 0,
121 	.medium_priority_weight = 0,
122 	.high_priority_weight = 0,
123 	.nvme_adminq_poll_period_us = 10000ULL,
124 	.nvme_ioq_poll_period_us = 0,
125 	.io_queue_requests = 0,
126 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
127 	.bdev_retry_count = 3,
128 	.transport_ack_timeout = 0,
129 	.ctrlr_loss_timeout_sec = 0,
130 	.reconnect_delay_sec = 0,
131 	.fast_io_fail_timeout_sec = 0,
132 	.disable_auto_failback = false,
133 	.generate_uuids = false,
134 	.transport_tos = 0,
135 	.nvme_error_stat = false,
136 	.io_path_stat = false,
137 	.allow_accel_sequence = false,
138 };
139 
140 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
141 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
142 
143 static int g_hot_insert_nvme_controller_index = 0;
144 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
145 static bool g_nvme_hotplug_enabled = false;
146 struct spdk_thread *g_bdev_nvme_init_thread;
147 static struct spdk_poller *g_hotplug_poller;
148 static struct spdk_poller *g_hotplug_probe_poller;
149 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
150 
151 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
152 		struct nvme_async_probe_ctx *ctx);
153 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
154 		struct nvme_async_probe_ctx *ctx);
155 static int bdev_nvme_library_init(void);
156 static void bdev_nvme_library_fini(void);
157 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
158 				      struct spdk_bdev_io *bdev_io);
159 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
160 				     struct spdk_bdev_io *bdev_io);
161 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
162 			   void *md, uint64_t lba_count, uint64_t lba,
163 			   uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
164 			   struct spdk_accel_sequence *seq);
165 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
166 				 void *md, uint64_t lba_count, uint64_t lba);
167 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
168 			    void *md, uint64_t lba_count, uint64_t lba,
169 			    uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
170 			    struct spdk_accel_sequence *seq);
171 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
172 				  void *md, uint64_t lba_count,
173 				  uint64_t zslba, uint32_t flags);
174 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
175 			      void *md, uint64_t lba_count, uint64_t lba,
176 			      uint32_t flags);
177 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
178 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
179 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
180 		uint32_t flags);
181 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
182 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
183 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
184 				     enum spdk_bdev_zone_action action);
185 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
186 				     struct nvme_bdev_io *bio,
187 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
188 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
189 				 void *buf, size_t nbytes);
190 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
191 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
192 static int bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
193 				     struct iovec *iov, int iovcnt, size_t nbytes,
194 				     void *md_buf, size_t md_len);
195 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
196 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
197 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
198 static int bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
199 static int bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
200 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
201 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
202 
203 static struct nvme_ns *nvme_ns_alloc(void);
204 static void nvme_ns_free(struct nvme_ns *ns);
205 
206 static int
207 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
208 {
209 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
210 }
211 
212 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
213 
214 struct spdk_nvme_qpair *
215 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
216 {
217 	struct nvme_ctrlr_channel *ctrlr_ch;
218 
219 	assert(ctrlr_io_ch != NULL);
220 
221 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
222 
223 	return ctrlr_ch->qpair->qpair;
224 }
225 
226 static int
227 bdev_nvme_get_ctx_size(void)
228 {
229 	return sizeof(struct nvme_bdev_io);
230 }
231 
232 static struct spdk_bdev_module nvme_if = {
233 	.name = "nvme",
234 	.async_fini = true,
235 	.module_init = bdev_nvme_library_init,
236 	.module_fini = bdev_nvme_library_fini,
237 	.config_json = bdev_nvme_config_json,
238 	.get_ctx_size = bdev_nvme_get_ctx_size,
239 
240 };
241 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
242 
243 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
244 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
245 bool g_bdev_nvme_module_finish;
246 
247 struct nvme_bdev_ctrlr *
248 nvme_bdev_ctrlr_get_by_name(const char *name)
249 {
250 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
251 
252 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
253 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
254 			break;
255 		}
256 	}
257 
258 	return nbdev_ctrlr;
259 }
260 
261 static struct nvme_ctrlr *
262 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
263 			  const struct spdk_nvme_transport_id *trid)
264 {
265 	struct nvme_ctrlr *nvme_ctrlr;
266 
267 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
268 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0) {
269 			break;
270 		}
271 	}
272 
273 	return nvme_ctrlr;
274 }
275 
276 struct nvme_ctrlr *
277 nvme_bdev_ctrlr_get_ctrlr_by_id(struct nvme_bdev_ctrlr *nbdev_ctrlr,
278 				uint16_t cntlid)
279 {
280 	struct nvme_ctrlr *nvme_ctrlr;
281 	const struct spdk_nvme_ctrlr_data *cdata;
282 
283 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
284 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
285 		if (cdata->cntlid == cntlid) {
286 			break;
287 		}
288 	}
289 
290 	return nvme_ctrlr;
291 }
292 
293 static struct nvme_bdev *
294 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
295 {
296 	struct nvme_bdev *bdev;
297 
298 	pthread_mutex_lock(&g_bdev_nvme_mutex);
299 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
300 		if (bdev->nsid == nsid) {
301 			break;
302 		}
303 	}
304 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
305 
306 	return bdev;
307 }
308 
309 struct nvme_ns *
310 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
311 {
312 	struct nvme_ns ns;
313 
314 	assert(nsid > 0);
315 
316 	ns.id = nsid;
317 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
318 }
319 
320 struct nvme_ns *
321 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
322 {
323 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
324 }
325 
326 struct nvme_ns *
327 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
328 {
329 	if (ns == NULL) {
330 		return NULL;
331 	}
332 
333 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
334 }
335 
336 static struct nvme_ctrlr *
337 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid)
338 {
339 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
340 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
341 
342 	pthread_mutex_lock(&g_bdev_nvme_mutex);
343 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
344 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid);
345 		if (nvme_ctrlr != NULL) {
346 			break;
347 		}
348 	}
349 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
350 
351 	return nvme_ctrlr;
352 }
353 
354 struct nvme_ctrlr *
355 nvme_ctrlr_get_by_name(const char *name)
356 {
357 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
358 	struct nvme_ctrlr *nvme_ctrlr = NULL;
359 
360 	if (name == NULL) {
361 		return NULL;
362 	}
363 
364 	pthread_mutex_lock(&g_bdev_nvme_mutex);
365 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
366 	if (nbdev_ctrlr != NULL) {
367 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
368 	}
369 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
370 
371 	return nvme_ctrlr;
372 }
373 
374 void
375 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
376 {
377 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
378 
379 	pthread_mutex_lock(&g_bdev_nvme_mutex);
380 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
381 		fn(nbdev_ctrlr, ctx);
382 	}
383 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
384 }
385 
386 void
387 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
388 {
389 	const char *trtype_str;
390 	const char *adrfam_str;
391 
392 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
393 	if (trtype_str) {
394 		spdk_json_write_named_string(w, "trtype", trtype_str);
395 	}
396 
397 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
398 	if (adrfam_str) {
399 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
400 	}
401 
402 	if (trid->traddr[0] != '\0') {
403 		spdk_json_write_named_string(w, "traddr", trid->traddr);
404 	}
405 
406 	if (trid->trsvcid[0] != '\0') {
407 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
408 	}
409 
410 	if (trid->subnqn[0] != '\0') {
411 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
412 	}
413 }
414 
415 static void
416 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
417 		       struct nvme_ctrlr *nvme_ctrlr)
418 {
419 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
420 	pthread_mutex_lock(&g_bdev_nvme_mutex);
421 
422 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
423 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
424 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
425 
426 		return;
427 	}
428 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
429 
430 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
431 
432 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
433 
434 	free(nbdev_ctrlr->name);
435 	free(nbdev_ctrlr);
436 }
437 
438 static void
439 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
440 {
441 	struct nvme_path_id *path_id, *tmp_path;
442 	struct nvme_ns *ns, *tmp_ns;
443 
444 	free(nvme_ctrlr->copied_ana_desc);
445 	spdk_free(nvme_ctrlr->ana_log_page);
446 
447 	if (nvme_ctrlr->opal_dev) {
448 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
449 		nvme_ctrlr->opal_dev = NULL;
450 	}
451 
452 	if (nvme_ctrlr->nbdev_ctrlr) {
453 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
454 	}
455 
456 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
457 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
458 		nvme_ns_free(ns);
459 	}
460 
461 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
462 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
463 		free(path_id);
464 	}
465 
466 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
467 	spdk_keyring_put_key(nvme_ctrlr->psk);
468 	free(nvme_ctrlr);
469 
470 	pthread_mutex_lock(&g_bdev_nvme_mutex);
471 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
472 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
473 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
474 		spdk_bdev_module_fini_done();
475 		return;
476 	}
477 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
478 }
479 
480 static int
481 nvme_detach_poller(void *arg)
482 {
483 	struct nvme_ctrlr *nvme_ctrlr = arg;
484 	int rc;
485 
486 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
487 	if (rc != -EAGAIN) {
488 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
489 		_nvme_ctrlr_delete(nvme_ctrlr);
490 	}
491 
492 	return SPDK_POLLER_BUSY;
493 }
494 
495 static void
496 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
497 {
498 	int rc;
499 
500 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
501 
502 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
503 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
504 
505 	/* If we got here, the reset/detach poller cannot be active */
506 	assert(nvme_ctrlr->reset_detach_poller == NULL);
507 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
508 					  nvme_ctrlr, 1000);
509 	if (nvme_ctrlr->reset_detach_poller == NULL) {
510 		SPDK_ERRLOG("Failed to register detach poller\n");
511 		goto error;
512 	}
513 
514 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
515 	if (rc != 0) {
516 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
517 		goto error;
518 	}
519 
520 	return;
521 error:
522 	/* We don't have a good way to handle errors here, so just do what we can and delete the
523 	 * controller without detaching the underlying NVMe device.
524 	 */
525 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
526 	_nvme_ctrlr_delete(nvme_ctrlr);
527 }
528 
529 static void
530 nvme_ctrlr_unregister_cb(void *io_device)
531 {
532 	struct nvme_ctrlr *nvme_ctrlr = io_device;
533 
534 	nvme_ctrlr_delete(nvme_ctrlr);
535 }
536 
537 static void
538 nvme_ctrlr_unregister(void *ctx)
539 {
540 	struct nvme_ctrlr *nvme_ctrlr = ctx;
541 
542 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
543 }
544 
545 static bool
546 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
547 {
548 	if (!nvme_ctrlr->destruct) {
549 		return false;
550 	}
551 
552 	if (nvme_ctrlr->ref > 0) {
553 		return false;
554 	}
555 
556 	if (nvme_ctrlr->resetting) {
557 		return false;
558 	}
559 
560 	if (nvme_ctrlr->ana_log_page_updating) {
561 		return false;
562 	}
563 
564 	if (nvme_ctrlr->io_path_cache_clearing) {
565 		return false;
566 	}
567 
568 	return true;
569 }
570 
571 static void
572 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
573 {
574 	pthread_mutex_lock(&nvme_ctrlr->mutex);
575 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
576 
577 	assert(nvme_ctrlr->ref > 0);
578 	nvme_ctrlr->ref--;
579 
580 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
581 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
582 		return;
583 	}
584 
585 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
586 
587 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
588 }
589 
590 static void
591 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch)
592 {
593 	nbdev_ch->current_io_path = NULL;
594 	nbdev_ch->rr_counter = 0;
595 }
596 
597 static struct nvme_io_path *
598 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
599 {
600 	struct nvme_io_path *io_path;
601 
602 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
603 		if (io_path->nvme_ns == nvme_ns) {
604 			break;
605 		}
606 	}
607 
608 	return io_path;
609 }
610 
611 static struct nvme_io_path *
612 nvme_io_path_alloc(void)
613 {
614 	struct nvme_io_path *io_path;
615 
616 	io_path = calloc(1, sizeof(*io_path));
617 	if (io_path == NULL) {
618 		SPDK_ERRLOG("Failed to alloc io_path.\n");
619 		return NULL;
620 	}
621 
622 	if (g_opts.io_path_stat) {
623 		io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
624 		if (io_path->stat == NULL) {
625 			free(io_path);
626 			SPDK_ERRLOG("Failed to alloc io_path stat.\n");
627 			return NULL;
628 		}
629 		spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
630 	}
631 
632 	return io_path;
633 }
634 
635 static void
636 nvme_io_path_free(struct nvme_io_path *io_path)
637 {
638 	free(io_path->stat);
639 	free(io_path);
640 }
641 
642 static int
643 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
644 {
645 	struct nvme_io_path *io_path;
646 	struct spdk_io_channel *ch;
647 	struct nvme_ctrlr_channel *ctrlr_ch;
648 	struct nvme_qpair *nvme_qpair;
649 
650 	io_path = nvme_io_path_alloc();
651 	if (io_path == NULL) {
652 		return -ENOMEM;
653 	}
654 
655 	io_path->nvme_ns = nvme_ns;
656 
657 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
658 	if (ch == NULL) {
659 		nvme_io_path_free(io_path);
660 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
661 		return -ENOMEM;
662 	}
663 
664 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
665 
666 	nvme_qpair = ctrlr_ch->qpair;
667 	assert(nvme_qpair != NULL);
668 
669 	io_path->qpair = nvme_qpair;
670 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
671 
672 	io_path->nbdev_ch = nbdev_ch;
673 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
674 
675 	bdev_nvme_clear_current_io_path(nbdev_ch);
676 
677 	return 0;
678 }
679 
680 static void
681 bdev_nvme_clear_retry_io_path(struct nvme_bdev_channel *nbdev_ch,
682 			      struct nvme_io_path *io_path)
683 {
684 	struct nvme_bdev_io *bio;
685 
686 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
687 		if (bio->io_path == io_path) {
688 			bio->io_path = NULL;
689 		}
690 	}
691 }
692 
693 static void
694 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
695 {
696 	struct spdk_io_channel *ch;
697 	struct nvme_qpair *nvme_qpair;
698 	struct nvme_ctrlr_channel *ctrlr_ch;
699 	struct nvme_bdev *nbdev;
700 
701 	nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch));
702 
703 	/* Add the statistics to nvme_ns before this path is destroyed. */
704 	pthread_mutex_lock(&nbdev->mutex);
705 	if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) {
706 		spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat);
707 	}
708 	pthread_mutex_unlock(&nbdev->mutex);
709 
710 	bdev_nvme_clear_current_io_path(nbdev_ch);
711 	bdev_nvme_clear_retry_io_path(nbdev_ch, io_path);
712 
713 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
714 	io_path->nbdev_ch = NULL;
715 
716 	nvme_qpair = io_path->qpair;
717 	assert(nvme_qpair != NULL);
718 
719 	ctrlr_ch = nvme_qpair->ctrlr_ch;
720 	assert(ctrlr_ch != NULL);
721 
722 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
723 	spdk_put_io_channel(ch);
724 
725 	/* After an io_path is removed, I/Os submitted to it may complete and update statistics
726 	 * of the io_path. To avoid heap-use-after-free error from this case, do not free the
727 	 * io_path here but free the io_path when the associated qpair is freed. It is ensured
728 	 * that all I/Os submitted to the io_path are completed when the associated qpair is freed.
729 	 */
730 }
731 
732 static void
733 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
734 {
735 	struct nvme_io_path *io_path, *tmp_io_path;
736 
737 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
738 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
739 	}
740 }
741 
742 static int
743 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
744 {
745 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
746 	struct nvme_bdev *nbdev = io_device;
747 	struct nvme_ns *nvme_ns;
748 	int rc;
749 
750 	STAILQ_INIT(&nbdev_ch->io_path_list);
751 	TAILQ_INIT(&nbdev_ch->retry_io_list);
752 
753 	pthread_mutex_lock(&nbdev->mutex);
754 
755 	nbdev_ch->mp_policy = nbdev->mp_policy;
756 	nbdev_ch->mp_selector = nbdev->mp_selector;
757 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
758 
759 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
760 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
761 		if (rc != 0) {
762 			pthread_mutex_unlock(&nbdev->mutex);
763 
764 			_bdev_nvme_delete_io_paths(nbdev_ch);
765 			return rc;
766 		}
767 	}
768 	pthread_mutex_unlock(&nbdev->mutex);
769 
770 	return 0;
771 }
772 
773 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
774  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
775  */
776 static inline void
777 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
778 			const struct spdk_nvme_cpl *cpl)
779 {
780 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
781 			  (uintptr_t)bdev_io);
782 	if (cpl) {
783 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
784 	} else {
785 		spdk_bdev_io_complete(bdev_io, status);
786 	}
787 }
788 
789 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
790 
791 static void
792 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
793 {
794 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
795 
796 	bdev_nvme_abort_retry_ios(nbdev_ch);
797 	_bdev_nvme_delete_io_paths(nbdev_ch);
798 }
799 
800 static inline bool
801 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
802 {
803 	switch (io_type) {
804 	case SPDK_BDEV_IO_TYPE_RESET:
805 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
806 	case SPDK_BDEV_IO_TYPE_ABORT:
807 		return true;
808 	default:
809 		break;
810 	}
811 
812 	return false;
813 }
814 
815 static inline bool
816 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
817 {
818 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
819 		return false;
820 	}
821 
822 	switch (nvme_ns->ana_state) {
823 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
824 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
825 		return true;
826 	default:
827 		break;
828 	}
829 
830 	return false;
831 }
832 
833 static inline bool
834 nvme_qpair_is_connected(struct nvme_qpair *nvme_qpair)
835 {
836 	if (spdk_unlikely(nvme_qpair->qpair == NULL)) {
837 		return false;
838 	}
839 
840 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
841 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
842 		return false;
843 	}
844 
845 	if (spdk_unlikely(nvme_qpair->ctrlr_ch->reset_iter != NULL)) {
846 		return false;
847 	}
848 
849 	return true;
850 }
851 
852 static inline bool
853 nvme_io_path_is_available(struct nvme_io_path *io_path)
854 {
855 	if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
856 		return false;
857 	}
858 
859 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
860 		return false;
861 	}
862 
863 	return true;
864 }
865 
866 static inline bool
867 nvme_ctrlr_is_failed(struct nvme_ctrlr *nvme_ctrlr)
868 {
869 	if (nvme_ctrlr->destruct) {
870 		return true;
871 	}
872 
873 	if (nvme_ctrlr->fast_io_fail_timedout) {
874 		return true;
875 	}
876 
877 	if (nvme_ctrlr->resetting) {
878 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
879 			return false;
880 		} else {
881 			return true;
882 		}
883 	}
884 
885 	if (nvme_ctrlr->reconnect_is_delayed) {
886 		return false;
887 	}
888 
889 	if (nvme_ctrlr->disabled) {
890 		return true;
891 	}
892 
893 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
894 		return true;
895 	} else {
896 		return false;
897 	}
898 }
899 
900 static bool
901 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
902 {
903 	if (nvme_ctrlr->destruct) {
904 		return false;
905 	}
906 
907 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
908 		return false;
909 	}
910 
911 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
912 		return false;
913 	}
914 
915 	if (nvme_ctrlr->disabled) {
916 		return false;
917 	}
918 
919 	return true;
920 }
921 
922 /* Simulate circular linked list. */
923 static inline struct nvme_io_path *
924 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
925 {
926 	struct nvme_io_path *next_path;
927 
928 	if (prev_path != NULL) {
929 		next_path = STAILQ_NEXT(prev_path, stailq);
930 		if (next_path != NULL) {
931 			return next_path;
932 		}
933 	}
934 
935 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
936 }
937 
938 static struct nvme_io_path *
939 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
940 {
941 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
942 
943 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
944 
945 	io_path = start;
946 	do {
947 		if (spdk_likely(nvme_qpair_is_connected(io_path->qpair) &&
948 				!io_path->nvme_ns->ana_state_updating)) {
949 			switch (io_path->nvme_ns->ana_state) {
950 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
951 				nbdev_ch->current_io_path = io_path;
952 				return io_path;
953 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
954 				if (non_optimized == NULL) {
955 					non_optimized = io_path;
956 				}
957 				break;
958 			default:
959 				break;
960 			}
961 		}
962 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
963 	} while (io_path != start);
964 
965 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
966 		/* We come here only if there is no optimized path. Cache even non_optimized
967 		 * path for load balance across multiple non_optimized paths.
968 		 */
969 		nbdev_ch->current_io_path = non_optimized;
970 	}
971 
972 	return non_optimized;
973 }
974 
975 static struct nvme_io_path *
976 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch)
977 {
978 	struct nvme_io_path *io_path;
979 	struct nvme_io_path *optimized = NULL, *non_optimized = NULL;
980 	uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX;
981 	uint32_t num_outstanding_reqs;
982 
983 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
984 		if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
985 			/* The device is currently resetting. */
986 			continue;
987 		}
988 
989 		if (spdk_unlikely(io_path->nvme_ns->ana_state_updating)) {
990 			continue;
991 		}
992 
993 		num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair);
994 		switch (io_path->nvme_ns->ana_state) {
995 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
996 			if (num_outstanding_reqs < opt_min_qd) {
997 				opt_min_qd = num_outstanding_reqs;
998 				optimized = io_path;
999 			}
1000 			break;
1001 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1002 			if (num_outstanding_reqs < non_opt_min_qd) {
1003 				non_opt_min_qd = num_outstanding_reqs;
1004 				non_optimized = io_path;
1005 			}
1006 			break;
1007 		default:
1008 			break;
1009 		}
1010 	}
1011 
1012 	/* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */
1013 	if (optimized != NULL) {
1014 		return optimized;
1015 	}
1016 
1017 	return non_optimized;
1018 }
1019 
1020 static inline struct nvme_io_path *
1021 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1022 {
1023 	if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
1024 		if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) {
1025 			return nbdev_ch->current_io_path;
1026 		} else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1027 			if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) {
1028 				return nbdev_ch->current_io_path;
1029 			}
1030 			nbdev_ch->rr_counter = 0;
1031 		}
1032 	}
1033 
1034 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE ||
1035 	    nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1036 		return _bdev_nvme_find_io_path(nbdev_ch);
1037 	} else {
1038 		return _bdev_nvme_find_io_path_min_qd(nbdev_ch);
1039 	}
1040 }
1041 
1042 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
1043  * or false otherwise.
1044  *
1045  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
1046  * is likely to be non-accessible now but may become accessible.
1047  *
1048  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
1049  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
1050  * when starting to reset it but it is set to failed when the reset failed. Hence, if
1051  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
1052  */
1053 static bool
1054 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
1055 {
1056 	struct nvme_io_path *io_path;
1057 
1058 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1059 		if (io_path->nvme_ns->ana_transition_timedout) {
1060 			continue;
1061 		}
1062 
1063 		if (nvme_qpair_is_connected(io_path->qpair) ||
1064 		    !nvme_ctrlr_is_failed(io_path->qpair->ctrlr)) {
1065 			return true;
1066 		}
1067 	}
1068 
1069 	return false;
1070 }
1071 
1072 static void
1073 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
1074 {
1075 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1076 	struct spdk_io_channel *ch;
1077 
1078 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
1079 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
1080 	} else {
1081 		ch = spdk_io_channel_from_ctx(nbdev_ch);
1082 		bdev_nvme_submit_request(ch, bdev_io);
1083 	}
1084 }
1085 
1086 static int
1087 bdev_nvme_retry_ios(void *arg)
1088 {
1089 	struct nvme_bdev_channel *nbdev_ch = arg;
1090 	struct nvme_bdev_io *bio, *tmp_bio;
1091 	uint64_t now, delay_us;
1092 
1093 	now = spdk_get_ticks();
1094 
1095 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1096 		if (bio->retry_ticks > now) {
1097 			break;
1098 		}
1099 
1100 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1101 
1102 		bdev_nvme_retry_io(nbdev_ch, spdk_bdev_io_from_ctx(bio));
1103 	}
1104 
1105 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1106 
1107 	bio = TAILQ_FIRST(&nbdev_ch->retry_io_list);
1108 	if (bio != NULL) {
1109 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
1110 
1111 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1112 					    delay_us);
1113 	}
1114 
1115 	return SPDK_POLLER_BUSY;
1116 }
1117 
1118 static void
1119 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1120 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1121 {
1122 	struct nvme_bdev_io *tmp_bio;
1123 
1124 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1125 
1126 	TAILQ_FOREACH_REVERSE(tmp_bio, &nbdev_ch->retry_io_list, retry_io_head, retry_link) {
1127 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1128 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bio, bio,
1129 					   retry_link);
1130 			return;
1131 		}
1132 	}
1133 
1134 	/* No earlier I/Os were found. This I/O must be the new head. */
1135 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bio, retry_link);
1136 
1137 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1138 
1139 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1140 				    delay_ms * 1000ULL);
1141 }
1142 
1143 static void
1144 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
1145 {
1146 	struct nvme_bdev_io *bio, *tmp_bio;
1147 
1148 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1149 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1150 		__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1151 	}
1152 
1153 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1154 }
1155 
1156 static int
1157 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1158 			 struct nvme_bdev_io *bio_to_abort)
1159 {
1160 	struct nvme_bdev_io *bio;
1161 
1162 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
1163 		if (bio == bio_to_abort) {
1164 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1165 			__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1166 			return 0;
1167 		}
1168 	}
1169 
1170 	return -ENOENT;
1171 }
1172 
1173 static void
1174 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1175 {
1176 	struct nvme_bdev *nbdev;
1177 	uint16_t sct, sc;
1178 
1179 	assert(spdk_nvme_cpl_is_error(cpl));
1180 
1181 	nbdev = bdev_io->bdev->ctxt;
1182 
1183 	if (nbdev->err_stat == NULL) {
1184 		return;
1185 	}
1186 
1187 	sct = cpl->status.sct;
1188 	sc = cpl->status.sc;
1189 
1190 	pthread_mutex_lock(&nbdev->mutex);
1191 
1192 	nbdev->err_stat->status_type[sct]++;
1193 	switch (sct) {
1194 	case SPDK_NVME_SCT_GENERIC:
1195 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1196 	case SPDK_NVME_SCT_MEDIA_ERROR:
1197 	case SPDK_NVME_SCT_PATH:
1198 		nbdev->err_stat->status[sct][sc]++;
1199 		break;
1200 	default:
1201 		break;
1202 	}
1203 
1204 	pthread_mutex_unlock(&nbdev->mutex);
1205 }
1206 
1207 static inline void
1208 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio)
1209 {
1210 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1211 	uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
1212 	uint32_t blocklen = bdev_io->bdev->blocklen;
1213 	struct spdk_bdev_io_stat *stat;
1214 	uint64_t tsc_diff;
1215 
1216 	if (bio->io_path->stat == NULL) {
1217 		return;
1218 	}
1219 
1220 	tsc_diff = spdk_get_ticks() - bio->submit_tsc;
1221 	stat = bio->io_path->stat;
1222 
1223 	switch (bdev_io->type) {
1224 	case SPDK_BDEV_IO_TYPE_READ:
1225 		stat->bytes_read += num_blocks * blocklen;
1226 		stat->num_read_ops++;
1227 		stat->read_latency_ticks += tsc_diff;
1228 		if (stat->max_read_latency_ticks < tsc_diff) {
1229 			stat->max_read_latency_ticks = tsc_diff;
1230 		}
1231 		if (stat->min_read_latency_ticks > tsc_diff) {
1232 			stat->min_read_latency_ticks = tsc_diff;
1233 		}
1234 		break;
1235 	case SPDK_BDEV_IO_TYPE_WRITE:
1236 		stat->bytes_written += num_blocks * blocklen;
1237 		stat->num_write_ops++;
1238 		stat->write_latency_ticks += tsc_diff;
1239 		if (stat->max_write_latency_ticks < tsc_diff) {
1240 			stat->max_write_latency_ticks = tsc_diff;
1241 		}
1242 		if (stat->min_write_latency_ticks > tsc_diff) {
1243 			stat->min_write_latency_ticks = tsc_diff;
1244 		}
1245 		break;
1246 	case SPDK_BDEV_IO_TYPE_UNMAP:
1247 		stat->bytes_unmapped += num_blocks * blocklen;
1248 		stat->num_unmap_ops++;
1249 		stat->unmap_latency_ticks += tsc_diff;
1250 		if (stat->max_unmap_latency_ticks < tsc_diff) {
1251 			stat->max_unmap_latency_ticks = tsc_diff;
1252 		}
1253 		if (stat->min_unmap_latency_ticks > tsc_diff) {
1254 			stat->min_unmap_latency_ticks = tsc_diff;
1255 		}
1256 		break;
1257 	case SPDK_BDEV_IO_TYPE_ZCOPY:
1258 		/* Track the data in the start phase only */
1259 		if (!bdev_io->u.bdev.zcopy.start) {
1260 			break;
1261 		}
1262 		if (bdev_io->u.bdev.zcopy.populate) {
1263 			stat->bytes_read += num_blocks * blocklen;
1264 			stat->num_read_ops++;
1265 			stat->read_latency_ticks += tsc_diff;
1266 			if (stat->max_read_latency_ticks < tsc_diff) {
1267 				stat->max_read_latency_ticks = tsc_diff;
1268 			}
1269 			if (stat->min_read_latency_ticks > tsc_diff) {
1270 				stat->min_read_latency_ticks = tsc_diff;
1271 			}
1272 		} else {
1273 			stat->bytes_written += num_blocks * blocklen;
1274 			stat->num_write_ops++;
1275 			stat->write_latency_ticks += tsc_diff;
1276 			if (stat->max_write_latency_ticks < tsc_diff) {
1277 				stat->max_write_latency_ticks = tsc_diff;
1278 			}
1279 			if (stat->min_write_latency_ticks > tsc_diff) {
1280 				stat->min_write_latency_ticks = tsc_diff;
1281 			}
1282 		}
1283 		break;
1284 	case SPDK_BDEV_IO_TYPE_COPY:
1285 		stat->bytes_copied += num_blocks * blocklen;
1286 		stat->num_copy_ops++;
1287 		stat->copy_latency_ticks += tsc_diff;
1288 		if (stat->max_copy_latency_ticks < tsc_diff) {
1289 			stat->max_copy_latency_ticks = tsc_diff;
1290 		}
1291 		if (stat->min_copy_latency_ticks > tsc_diff) {
1292 			stat->min_copy_latency_ticks = tsc_diff;
1293 		}
1294 		break;
1295 	default:
1296 		break;
1297 	}
1298 }
1299 
1300 static bool
1301 bdev_nvme_check_retry_io(struct nvme_bdev_io *bio,
1302 			 const struct spdk_nvme_cpl *cpl,
1303 			 struct nvme_bdev_channel *nbdev_ch,
1304 			 uint64_t *_delay_ms)
1305 {
1306 	struct nvme_io_path *io_path = bio->io_path;
1307 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1308 	const struct spdk_nvme_ctrlr_data *cdata;
1309 
1310 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1311 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1312 	    !nvme_io_path_is_available(io_path) ||
1313 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1314 		bdev_nvme_clear_current_io_path(nbdev_ch);
1315 		bio->io_path = NULL;
1316 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1317 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1318 				io_path->nvme_ns->ana_state_updating = true;
1319 			}
1320 		}
1321 		if (!any_io_path_may_become_available(nbdev_ch)) {
1322 			return false;
1323 		}
1324 		*_delay_ms = 0;
1325 	} else {
1326 		bio->retry_count++;
1327 
1328 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1329 
1330 		if (cpl->status.crd != 0) {
1331 			*_delay_ms = cdata->crdt[cpl->status.crd] * 100;
1332 		} else {
1333 			*_delay_ms = 0;
1334 		}
1335 	}
1336 
1337 	return true;
1338 }
1339 
1340 static inline void
1341 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1342 				  const struct spdk_nvme_cpl *cpl)
1343 {
1344 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1345 	struct nvme_bdev_channel *nbdev_ch;
1346 	uint64_t delay_ms;
1347 
1348 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1349 
1350 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1351 		bdev_nvme_update_io_path_stat(bio);
1352 		goto complete;
1353 	}
1354 
1355 	/* Update error counts before deciding if retry is needed.
1356 	 * Hence, error counts may be more than the number of I/O errors.
1357 	 */
1358 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1359 
1360 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1361 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1362 		goto complete;
1363 	}
1364 
1365 	/* At this point we don't know whether the sequence was successfully executed or not, so we
1366 	 * cannot retry the IO */
1367 	if (bdev_io->u.bdev.accel_sequence != NULL) {
1368 		goto complete;
1369 	}
1370 
1371 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1372 
1373 	if (bdev_nvme_check_retry_io(bio, cpl, nbdev_ch, &delay_ms)) {
1374 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1375 		return;
1376 	}
1377 
1378 complete:
1379 	bio->retry_count = 0;
1380 	bio->submit_tsc = 0;
1381 	bdev_io->u.bdev.accel_sequence = NULL;
1382 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1383 }
1384 
1385 static inline void
1386 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1387 {
1388 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1389 	struct nvme_bdev_channel *nbdev_ch;
1390 	enum spdk_bdev_io_status io_status;
1391 
1392 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1393 
1394 	switch (rc) {
1395 	case 0:
1396 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1397 		break;
1398 	case -ENOMEM:
1399 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1400 		break;
1401 	case -ENXIO:
1402 		if (g_opts.bdev_retry_count == -1 || bio->retry_count < g_opts.bdev_retry_count) {
1403 			nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1404 
1405 			bdev_nvme_clear_current_io_path(nbdev_ch);
1406 			bio->io_path = NULL;
1407 
1408 			if (any_io_path_may_become_available(nbdev_ch)) {
1409 				bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1410 				return;
1411 			}
1412 		}
1413 
1414 	/* fallthrough */
1415 	default:
1416 		spdk_accel_sequence_abort(bdev_io->u.bdev.accel_sequence);
1417 		bdev_io->u.bdev.accel_sequence = NULL;
1418 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1419 		break;
1420 	}
1421 
1422 	bio->retry_count = 0;
1423 	bio->submit_tsc = 0;
1424 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1425 }
1426 
1427 static inline void
1428 bdev_nvme_admin_complete(struct nvme_bdev_io *bio, int rc)
1429 {
1430 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1431 	enum spdk_bdev_io_status io_status;
1432 
1433 	switch (rc) {
1434 	case 0:
1435 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1436 		break;
1437 	case -ENOMEM:
1438 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1439 		break;
1440 	case -ENXIO:
1441 	/* fallthrough */
1442 	default:
1443 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1444 		break;
1445 	}
1446 
1447 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1448 }
1449 
1450 static void
1451 bdev_nvme_clear_io_path_caches_done(struct spdk_io_channel_iter *i, int status)
1452 {
1453 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1454 
1455 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1456 
1457 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1458 	nvme_ctrlr->io_path_cache_clearing = false;
1459 
1460 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1461 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1462 		return;
1463 	}
1464 
1465 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1466 
1467 	nvme_ctrlr_unregister(nvme_ctrlr);
1468 }
1469 
1470 static void
1471 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1472 {
1473 	struct nvme_io_path *io_path;
1474 
1475 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1476 		if (io_path->nbdev_ch == NULL) {
1477 			continue;
1478 		}
1479 		bdev_nvme_clear_current_io_path(io_path->nbdev_ch);
1480 	}
1481 }
1482 
1483 static void
1484 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
1485 {
1486 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1487 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1488 
1489 	assert(ctrlr_ch->qpair != NULL);
1490 
1491 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1492 
1493 	spdk_for_each_channel_continue(i, 0);
1494 }
1495 
1496 static void
1497 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1498 {
1499 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1500 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1501 	    nvme_ctrlr->io_path_cache_clearing) {
1502 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1503 		return;
1504 	}
1505 
1506 	nvme_ctrlr->io_path_cache_clearing = true;
1507 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1508 
1509 	spdk_for_each_channel(nvme_ctrlr,
1510 			      bdev_nvme_clear_io_path_cache,
1511 			      NULL,
1512 			      bdev_nvme_clear_io_path_caches_done);
1513 }
1514 
1515 static struct nvme_qpair *
1516 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1517 {
1518 	struct nvme_qpair *nvme_qpair;
1519 
1520 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1521 		if (nvme_qpair->qpair == qpair) {
1522 			break;
1523 		}
1524 	}
1525 
1526 	return nvme_qpair;
1527 }
1528 
1529 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1530 
1531 static void
1532 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1533 {
1534 	struct nvme_poll_group *group = poll_group_ctx;
1535 	struct nvme_qpair *nvme_qpair;
1536 	struct nvme_ctrlr_channel *ctrlr_ch;
1537 	int status;
1538 
1539 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1540 	if (nvme_qpair == NULL) {
1541 		return;
1542 	}
1543 
1544 	if (nvme_qpair->qpair != NULL) {
1545 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1546 		nvme_qpair->qpair = NULL;
1547 	}
1548 
1549 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1550 
1551 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1552 
1553 	if (ctrlr_ch != NULL) {
1554 		if (ctrlr_ch->reset_iter != NULL) {
1555 			/* We are in a full reset sequence. */
1556 			if (ctrlr_ch->connect_poller != NULL) {
1557 				/* qpair was failed to connect. Abort the reset sequence. */
1558 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was failed to connect. abort the reset ctrlr sequence.\n",
1559 					      qpair);
1560 				spdk_poller_unregister(&ctrlr_ch->connect_poller);
1561 				status = -1;
1562 			} else {
1563 				/* qpair was completed to disconnect. Just move to the next ctrlr_channel. */
1564 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1565 					      qpair);
1566 				status = 0;
1567 			}
1568 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, status);
1569 			ctrlr_ch->reset_iter = NULL;
1570 		} else {
1571 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1572 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1573 			bdev_nvme_failover_ctrlr(nvme_qpair->ctrlr);
1574 		}
1575 	} else {
1576 		/* In this case, ctrlr_channel is already deleted. */
1577 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1578 		nvme_qpair_delete(nvme_qpair);
1579 	}
1580 }
1581 
1582 static void
1583 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1584 {
1585 	struct nvme_qpair *nvme_qpair;
1586 
1587 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1588 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1589 			continue;
1590 		}
1591 
1592 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1593 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1594 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1595 		}
1596 	}
1597 }
1598 
1599 static int
1600 bdev_nvme_poll(void *arg)
1601 {
1602 	struct nvme_poll_group *group = arg;
1603 	int64_t num_completions;
1604 
1605 	if (group->collect_spin_stat && group->start_ticks == 0) {
1606 		group->start_ticks = spdk_get_ticks();
1607 	}
1608 
1609 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1610 			  bdev_nvme_disconnected_qpair_cb);
1611 	if (group->collect_spin_stat) {
1612 		if (num_completions > 0) {
1613 			if (group->end_ticks != 0) {
1614 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1615 				group->end_ticks = 0;
1616 			}
1617 			group->start_ticks = 0;
1618 		} else {
1619 			group->end_ticks = spdk_get_ticks();
1620 		}
1621 	}
1622 
1623 	if (spdk_unlikely(num_completions < 0)) {
1624 		bdev_nvme_check_io_qpairs(group);
1625 	}
1626 
1627 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1628 }
1629 
1630 static int bdev_nvme_poll_adminq(void *arg);
1631 
1632 static void
1633 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1634 {
1635 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1636 
1637 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1638 					  nvme_ctrlr, new_period_us);
1639 }
1640 
1641 static int
1642 bdev_nvme_poll_adminq(void *arg)
1643 {
1644 	int32_t rc;
1645 	struct nvme_ctrlr *nvme_ctrlr = arg;
1646 	nvme_ctrlr_disconnected_cb disconnected_cb;
1647 
1648 	assert(nvme_ctrlr != NULL);
1649 
1650 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1651 	if (rc < 0) {
1652 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1653 		nvme_ctrlr->disconnected_cb = NULL;
1654 
1655 		if (disconnected_cb != NULL) {
1656 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1657 							    g_opts.nvme_adminq_poll_period_us);
1658 			disconnected_cb(nvme_ctrlr);
1659 		} else {
1660 			bdev_nvme_failover_ctrlr(nvme_ctrlr);
1661 		}
1662 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1663 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1664 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1665 	}
1666 
1667 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1668 }
1669 
1670 static void
1671 nvme_bdev_free(void *io_device)
1672 {
1673 	struct nvme_bdev *nvme_disk = io_device;
1674 
1675 	pthread_mutex_destroy(&nvme_disk->mutex);
1676 	free(nvme_disk->disk.name);
1677 	free(nvme_disk->err_stat);
1678 	free(nvme_disk);
1679 }
1680 
1681 static int
1682 bdev_nvme_destruct(void *ctx)
1683 {
1684 	struct nvme_bdev *nvme_disk = ctx;
1685 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1686 
1687 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1688 
1689 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1690 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1691 
1692 		nvme_ns->bdev = NULL;
1693 
1694 		assert(nvme_ns->id > 0);
1695 
1696 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1697 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1698 
1699 			nvme_ctrlr_release(nvme_ns->ctrlr);
1700 			nvme_ns_free(nvme_ns);
1701 		} else {
1702 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1703 		}
1704 	}
1705 
1706 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1707 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1708 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1709 
1710 	spdk_io_device_unregister(nvme_disk, nvme_bdev_free);
1711 
1712 	return 0;
1713 }
1714 
1715 static int
1716 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1717 {
1718 	struct nvme_ctrlr *nvme_ctrlr;
1719 	struct spdk_nvme_io_qpair_opts opts;
1720 	struct spdk_nvme_qpair *qpair;
1721 	int rc;
1722 
1723 	nvme_ctrlr = nvme_qpair->ctrlr;
1724 
1725 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1726 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1727 	opts.create_only = true;
1728 	opts.async_mode = true;
1729 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1730 	g_opts.io_queue_requests = opts.io_queue_requests;
1731 
1732 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1733 	if (qpair == NULL) {
1734 		return -1;
1735 	}
1736 
1737 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1738 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1739 
1740 	assert(nvme_qpair->group != NULL);
1741 
1742 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1743 	if (rc != 0) {
1744 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1745 		goto err;
1746 	}
1747 
1748 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1749 	if (rc != 0) {
1750 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1751 		goto err;
1752 	}
1753 
1754 	nvme_qpair->qpair = qpair;
1755 
1756 	if (!g_opts.disable_auto_failback) {
1757 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1758 	}
1759 
1760 	return 0;
1761 
1762 err:
1763 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1764 
1765 	return rc;
1766 }
1767 
1768 static void
1769 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
1770 {
1771 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1772 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1773 	enum spdk_bdev_io_status status = SPDK_BDEV_IO_STATUS_SUCCESS;
1774 	struct nvme_bdev_io *bio;
1775 
1776 	if (spdk_io_channel_iter_get_ctx(i) != NULL) {
1777 		status = SPDK_BDEV_IO_STATUS_FAILED;
1778 	}
1779 
1780 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1781 		bio = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1782 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bio, retry_link);
1783 		__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), status, NULL);
1784 	}
1785 
1786 	spdk_for_each_channel_continue(i, 0);
1787 }
1788 
1789 /* This function marks the current trid as failed by storing the current ticks
1790  * and then sets the next trid to the active trid within a controller if exists.
1791  *
1792  * The purpose of the boolean return value is to request the caller to disconnect
1793  * the current trid now to try connecting the next trid.
1794  */
1795 static bool
1796 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove, bool start)
1797 {
1798 	struct nvme_path_id *path_id, *next_path;
1799 	int rc __attribute__((unused));
1800 
1801 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1802 	assert(path_id);
1803 	assert(path_id == nvme_ctrlr->active_path_id);
1804 	next_path = TAILQ_NEXT(path_id, link);
1805 
1806 	/* Update the last failed time. It means the trid is failed if its last
1807 	 * failed time is non-zero.
1808 	 */
1809 	path_id->last_failed_tsc = spdk_get_ticks();
1810 
1811 	if (next_path == NULL) {
1812 		/* There is no alternate trid within a controller. */
1813 		return false;
1814 	}
1815 
1816 	if (!start && nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1817 		/* Connect is not retried in a controller reset sequence. Connecting
1818 		 * the next trid will be done by the next bdev_nvme_failover_ctrlr() call.
1819 		 */
1820 		return false;
1821 	}
1822 
1823 	assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1824 
1825 	SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1826 		       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1827 
1828 	spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1829 	nvme_ctrlr->active_path_id = next_path;
1830 	rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1831 	assert(rc == 0);
1832 	TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1833 	if (!remove) {
1834 		/** Shuffle the old trid to the end of the list and use the new one.
1835 		 * Allows for round robin through multiple connections.
1836 		 */
1837 		TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
1838 	} else {
1839 		free(path_id);
1840 	}
1841 
1842 	if (start || next_path->last_failed_tsc == 0) {
1843 		/* bdev_nvme_failover_ctrlr() is just called or the next trid is not failed
1844 		 * or used yet. Try the next trid now.
1845 		 */
1846 		return true;
1847 	}
1848 
1849 	if (spdk_get_ticks() > next_path->last_failed_tsc + spdk_get_ticks_hz() *
1850 	    nvme_ctrlr->opts.reconnect_delay_sec) {
1851 		/* Enough backoff passed since the next trid failed. Try the next trid now. */
1852 		return true;
1853 	}
1854 
1855 	/* The next trid will be tried after reconnect_delay_sec seconds. */
1856 	return false;
1857 }
1858 
1859 static bool
1860 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
1861 {
1862 	int32_t elapsed;
1863 
1864 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
1865 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
1866 		return false;
1867 	}
1868 
1869 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1870 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
1871 		return true;
1872 	} else {
1873 		return false;
1874 	}
1875 }
1876 
1877 static bool
1878 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
1879 {
1880 	uint32_t elapsed;
1881 
1882 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
1883 		return false;
1884 	}
1885 
1886 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1887 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
1888 		return true;
1889 	} else {
1890 		return false;
1891 	}
1892 }
1893 
1894 static void bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
1895 
1896 static void
1897 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
1898 {
1899 	int rc;
1900 
1901 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
1902 	if (rc != 0) {
1903 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
1904 		 * fail the reset sequence immediately.
1905 		 */
1906 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
1907 		return;
1908 	}
1909 
1910 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
1911 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
1912 	 */
1913 	assert(nvme_ctrlr->disconnected_cb == NULL);
1914 	nvme_ctrlr->disconnected_cb = cb_fn;
1915 
1916 	/* During disconnection, reduce the period to poll adminq more often. */
1917 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
1918 }
1919 
1920 enum bdev_nvme_op_after_reset {
1921 	OP_NONE,
1922 	OP_COMPLETE_PENDING_DESTRUCT,
1923 	OP_DESTRUCT,
1924 	OP_DELAYED_RECONNECT,
1925 	OP_FAILOVER,
1926 };
1927 
1928 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
1929 
1930 static _bdev_nvme_op_after_reset
1931 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
1932 {
1933 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1934 		/* Complete pending destruct after reset completes. */
1935 		return OP_COMPLETE_PENDING_DESTRUCT;
1936 	} else if (nvme_ctrlr->pending_failover) {
1937 		nvme_ctrlr->pending_failover = false;
1938 		nvme_ctrlr->reset_start_tsc = 0;
1939 		return OP_FAILOVER;
1940 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1941 		nvme_ctrlr->reset_start_tsc = 0;
1942 		return OP_NONE;
1943 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1944 		return OP_DESTRUCT;
1945 	} else {
1946 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
1947 			nvme_ctrlr->fast_io_fail_timedout = true;
1948 		}
1949 		return OP_DELAYED_RECONNECT;
1950 	}
1951 }
1952 
1953 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
1954 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
1955 
1956 static int
1957 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
1958 {
1959 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1960 
1961 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
1962 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1963 
1964 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
1965 
1966 	if (!nvme_ctrlr->reconnect_is_delayed) {
1967 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1968 		return SPDK_POLLER_BUSY;
1969 	}
1970 
1971 	nvme_ctrlr->reconnect_is_delayed = false;
1972 
1973 	if (nvme_ctrlr->destruct) {
1974 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1975 		return SPDK_POLLER_BUSY;
1976 	}
1977 
1978 	assert(nvme_ctrlr->resetting == false);
1979 	nvme_ctrlr->resetting = true;
1980 
1981 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1982 
1983 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
1984 
1985 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
1986 	return SPDK_POLLER_BUSY;
1987 }
1988 
1989 static void
1990 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
1991 {
1992 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
1993 
1994 	assert(nvme_ctrlr->reconnect_is_delayed == false);
1995 	nvme_ctrlr->reconnect_is_delayed = true;
1996 
1997 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
1998 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
1999 					    nvme_ctrlr,
2000 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
2001 }
2002 
2003 static void remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr);
2004 
2005 static void
2006 _bdev_nvme_reset_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2007 {
2008 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2009 	bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
2010 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2011 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2012 	enum bdev_nvme_op_after_reset op_after_reset;
2013 
2014 	assert(nvme_ctrlr->thread == spdk_get_thread());
2015 
2016 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2017 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2018 
2019 	if (!success) {
2020 		SPDK_ERRLOG("Resetting controller failed.\n");
2021 	} else {
2022 		SPDK_NOTICELOG("Resetting controller successful.\n");
2023 	}
2024 
2025 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2026 	nvme_ctrlr->resetting = false;
2027 	nvme_ctrlr->dont_retry = false;
2028 	nvme_ctrlr->in_failover = false;
2029 
2030 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
2031 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2032 
2033 	/* Delay callbacks when the next operation is a failover. */
2034 	if (ctrlr_op_cb_fn && op_after_reset != OP_FAILOVER) {
2035 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, success ? 0 : -1);
2036 	}
2037 
2038 	switch (op_after_reset) {
2039 	case OP_COMPLETE_PENDING_DESTRUCT:
2040 		nvme_ctrlr_unregister(nvme_ctrlr);
2041 		break;
2042 	case OP_DESTRUCT:
2043 		bdev_nvme_delete_ctrlr(nvme_ctrlr, false);
2044 		remove_discovery_entry(nvme_ctrlr);
2045 		break;
2046 	case OP_DELAYED_RECONNECT:
2047 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
2048 		break;
2049 	case OP_FAILOVER:
2050 		nvme_ctrlr->ctrlr_op_cb_fn = ctrlr_op_cb_fn;
2051 		nvme_ctrlr->ctrlr_op_cb_arg = ctrlr_op_cb_arg;
2052 		bdev_nvme_failover_ctrlr(nvme_ctrlr);
2053 		break;
2054 	default:
2055 		break;
2056 	}
2057 }
2058 
2059 static void
2060 bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
2061 {
2062 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2063 	if (!success) {
2064 		/* Connecting the active trid failed. Set the next alternate trid to the
2065 		 * active trid if it exists.
2066 		 */
2067 		if (bdev_nvme_failover_trid(nvme_ctrlr, false, false)) {
2068 			/* The next alternate trid exists and is ready to try. Try it now. */
2069 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
2070 
2071 			nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2072 			return;
2073 		}
2074 
2075 		/* We came here if there is no alternate trid or if the next trid exists but
2076 		 * is not ready to try. We will try the active trid after reconnect_delay_sec
2077 		 * seconds if it is non-zero or at the next reset call otherwise.
2078 		 */
2079 	} else {
2080 		/* Connecting the active trid succeeded. Clear the last failed time because it
2081 		 * means the trid is failed if its last failed time is non-zero.
2082 		 */
2083 		nvme_ctrlr->active_path_id->last_failed_tsc = 0;
2084 	}
2085 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2086 
2087 	/* Make sure we clear any pending resets before returning. */
2088 	spdk_for_each_channel(nvme_ctrlr,
2089 			      bdev_nvme_complete_pending_resets,
2090 			      success ? NULL : (void *)0x1,
2091 			      _bdev_nvme_reset_ctrlr_complete);
2092 }
2093 
2094 static void
2095 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
2096 {
2097 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2098 
2099 	bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2100 }
2101 
2102 static void
2103 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
2104 {
2105 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
2106 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
2107 	struct nvme_qpair *nvme_qpair;
2108 
2109 	nvme_qpair = ctrlr_ch->qpair;
2110 	assert(nvme_qpair != NULL);
2111 
2112 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2113 
2114 	if (nvme_qpair->qpair != NULL) {
2115 		if (nvme_qpair->ctrlr->dont_retry) {
2116 			spdk_nvme_qpair_set_abort_dnr(nvme_qpair->qpair, true);
2117 		}
2118 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2119 
2120 		/* The current full reset sequence will move to the next
2121 		 * ctrlr_channel after the qpair is actually disconnected.
2122 		 */
2123 		assert(ctrlr_ch->reset_iter == NULL);
2124 		ctrlr_ch->reset_iter = i;
2125 	} else {
2126 		spdk_for_each_channel_continue(i, 0);
2127 	}
2128 }
2129 
2130 static void
2131 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
2132 {
2133 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2134 
2135 	if (status == 0) {
2136 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, true);
2137 	} else {
2138 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
2139 		spdk_for_each_channel(nvme_ctrlr,
2140 				      bdev_nvme_reset_destroy_qpair,
2141 				      NULL,
2142 				      bdev_nvme_reset_create_qpairs_failed);
2143 	}
2144 }
2145 
2146 static int
2147 bdev_nvme_reset_check_qpair_connected(void *ctx)
2148 {
2149 	struct nvme_ctrlr_channel *ctrlr_ch = ctx;
2150 
2151 	if (ctrlr_ch->reset_iter == NULL) {
2152 		/* qpair was already failed to connect and the reset sequence is being aborted. */
2153 		assert(ctrlr_ch->connect_poller == NULL);
2154 		assert(ctrlr_ch->qpair->qpair == NULL);
2155 		return SPDK_POLLER_BUSY;
2156 	}
2157 
2158 	assert(ctrlr_ch->qpair->qpair != NULL);
2159 
2160 	if (!spdk_nvme_qpair_is_connected(ctrlr_ch->qpair->qpair)) {
2161 		return SPDK_POLLER_BUSY;
2162 	}
2163 
2164 	spdk_poller_unregister(&ctrlr_ch->connect_poller);
2165 
2166 	/* qpair was completed to connect. Move to the next ctrlr_channel */
2167 	spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2168 	ctrlr_ch->reset_iter = NULL;
2169 
2170 	if (!g_opts.disable_auto_failback) {
2171 		_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
2172 	}
2173 
2174 	return SPDK_POLLER_BUSY;
2175 }
2176 
2177 static void
2178 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
2179 {
2180 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2181 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
2182 	int rc;
2183 
2184 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
2185 	if (rc == 0) {
2186 		ctrlr_ch->connect_poller = SPDK_POLLER_REGISTER(bdev_nvme_reset_check_qpair_connected,
2187 					   ctrlr_ch, 0);
2188 
2189 		/* The current full reset sequence will move to the next
2190 		 * ctrlr_channel after the qpair is actually connected.
2191 		 */
2192 		assert(ctrlr_ch->reset_iter == NULL);
2193 		ctrlr_ch->reset_iter = i;
2194 	} else {
2195 		spdk_for_each_channel_continue(i, rc);
2196 	}
2197 }
2198 
2199 static int
2200 bdev_nvme_reconnect_ctrlr_poll(void *arg)
2201 {
2202 	struct nvme_ctrlr *nvme_ctrlr = arg;
2203 	int rc = -ETIMEDOUT;
2204 
2205 	if (!bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2206 		rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
2207 		if (rc == -EAGAIN) {
2208 			return SPDK_POLLER_BUSY;
2209 		}
2210 	}
2211 
2212 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
2213 	if (rc == 0) {
2214 		/* Recreate all of the I/O queue pairs */
2215 		spdk_for_each_channel(nvme_ctrlr,
2216 				      bdev_nvme_reset_create_qpair,
2217 				      NULL,
2218 				      bdev_nvme_reset_create_qpairs_done);
2219 	} else {
2220 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2221 	}
2222 	return SPDK_POLLER_BUSY;
2223 }
2224 
2225 static void
2226 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2227 {
2228 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
2229 
2230 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
2231 	assert(nvme_ctrlr->reset_detach_poller == NULL);
2232 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
2233 					  nvme_ctrlr, 0);
2234 }
2235 
2236 static void
2237 bdev_nvme_reset_destroy_qpair_done(struct spdk_io_channel_iter *i, int status)
2238 {
2239 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2240 
2241 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
2242 	assert(status == 0);
2243 
2244 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2245 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2246 	} else {
2247 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2248 	}
2249 }
2250 
2251 static void
2252 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2253 {
2254 	spdk_for_each_channel(nvme_ctrlr,
2255 			      bdev_nvme_reset_destroy_qpair,
2256 			      NULL,
2257 			      bdev_nvme_reset_destroy_qpair_done);
2258 }
2259 
2260 static void
2261 bdev_nvme_reconnect_ctrlr_now(void *ctx)
2262 {
2263 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2264 
2265 	assert(nvme_ctrlr->resetting == true);
2266 	assert(nvme_ctrlr->thread == spdk_get_thread());
2267 
2268 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2269 
2270 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2271 
2272 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2273 }
2274 
2275 static void
2276 _bdev_nvme_reset_ctrlr(void *ctx)
2277 {
2278 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2279 
2280 	assert(nvme_ctrlr->resetting == true);
2281 	assert(nvme_ctrlr->thread == spdk_get_thread());
2282 
2283 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2284 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
2285 	} else {
2286 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
2287 	}
2288 }
2289 
2290 static int
2291 bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2292 {
2293 	spdk_msg_fn msg_fn;
2294 
2295 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2296 	if (nvme_ctrlr->destruct) {
2297 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2298 		return -ENXIO;
2299 	}
2300 
2301 	if (nvme_ctrlr->resetting) {
2302 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2303 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
2304 		return -EBUSY;
2305 	}
2306 
2307 	if (nvme_ctrlr->disabled) {
2308 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2309 		SPDK_NOTICELOG("Unable to perform reset. Controller is disabled.\n");
2310 		return -EALREADY;
2311 	}
2312 
2313 	nvme_ctrlr->resetting = true;
2314 	nvme_ctrlr->dont_retry = true;
2315 
2316 	if (nvme_ctrlr->reconnect_is_delayed) {
2317 		SPDK_DEBUGLOG(bdev_nvme, "Reconnect is already scheduled.\n");
2318 		msg_fn = bdev_nvme_reconnect_ctrlr_now;
2319 		nvme_ctrlr->reconnect_is_delayed = false;
2320 	} else {
2321 		msg_fn = _bdev_nvme_reset_ctrlr;
2322 		assert(nvme_ctrlr->reset_start_tsc == 0);
2323 	}
2324 
2325 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2326 
2327 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2328 
2329 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2330 	return 0;
2331 }
2332 
2333 static int
2334 bdev_nvme_enable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2335 {
2336 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2337 	if (nvme_ctrlr->destruct) {
2338 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2339 		return -ENXIO;
2340 	}
2341 
2342 	if (nvme_ctrlr->resetting) {
2343 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2344 		return -EBUSY;
2345 	}
2346 
2347 	if (!nvme_ctrlr->disabled) {
2348 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2349 		return -EALREADY;
2350 	}
2351 
2352 	nvme_ctrlr->disabled = false;
2353 	nvme_ctrlr->resetting = true;
2354 
2355 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2356 
2357 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2358 
2359 	spdk_thread_send_msg(nvme_ctrlr->thread, bdev_nvme_reconnect_ctrlr_now, nvme_ctrlr);
2360 	return 0;
2361 }
2362 
2363 static void
2364 _bdev_nvme_disable_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2365 {
2366 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2367 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2368 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2369 	enum bdev_nvme_op_after_reset op_after_disable;
2370 
2371 	assert(nvme_ctrlr->thread == spdk_get_thread());
2372 
2373 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2374 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2375 
2376 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2377 
2378 	nvme_ctrlr->resetting = false;
2379 	nvme_ctrlr->dont_retry = false;
2380 
2381 	op_after_disable = bdev_nvme_check_op_after_reset(nvme_ctrlr, true);
2382 
2383 	nvme_ctrlr->disabled = true;
2384 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2385 
2386 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2387 
2388 	if (ctrlr_op_cb_fn) {
2389 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, 0);
2390 	}
2391 
2392 	switch (op_after_disable) {
2393 	case OP_COMPLETE_PENDING_DESTRUCT:
2394 		nvme_ctrlr_unregister(nvme_ctrlr);
2395 		break;
2396 	default:
2397 		break;
2398 	}
2399 
2400 }
2401 
2402 static void
2403 bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr)
2404 {
2405 	/* Make sure we clear any pending resets before returning. */
2406 	spdk_for_each_channel(nvme_ctrlr,
2407 			      bdev_nvme_complete_pending_resets,
2408 			      NULL,
2409 			      _bdev_nvme_disable_ctrlr_complete);
2410 }
2411 
2412 static void
2413 bdev_nvme_disable_destroy_qpairs_done(struct spdk_io_channel_iter *i, int status)
2414 {
2415 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2416 
2417 	assert(status == 0);
2418 
2419 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2420 		bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2421 	} else {
2422 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_ctrlr_complete);
2423 	}
2424 }
2425 
2426 static void
2427 bdev_nvme_disable_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2428 {
2429 	spdk_for_each_channel(nvme_ctrlr,
2430 			      bdev_nvme_reset_destroy_qpair,
2431 			      NULL,
2432 			      bdev_nvme_disable_destroy_qpairs_done);
2433 }
2434 
2435 static void
2436 _bdev_nvme_cancel_reconnect_and_disable_ctrlr(void *ctx)
2437 {
2438 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2439 
2440 	assert(nvme_ctrlr->resetting == true);
2441 	assert(nvme_ctrlr->thread == spdk_get_thread());
2442 
2443 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2444 
2445 	bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2446 }
2447 
2448 static void
2449 _bdev_nvme_disconnect_and_disable_ctrlr(void *ctx)
2450 {
2451 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2452 
2453 	assert(nvme_ctrlr->resetting == true);
2454 	assert(nvme_ctrlr->thread == spdk_get_thread());
2455 
2456 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2457 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_destroy_qpairs);
2458 	} else {
2459 		bdev_nvme_disable_destroy_qpairs(nvme_ctrlr);
2460 	}
2461 }
2462 
2463 static int
2464 bdev_nvme_disable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2465 {
2466 	spdk_msg_fn msg_fn;
2467 
2468 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2469 	if (nvme_ctrlr->destruct) {
2470 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2471 		return -ENXIO;
2472 	}
2473 
2474 	if (nvme_ctrlr->resetting) {
2475 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2476 		return -EBUSY;
2477 	}
2478 
2479 	if (nvme_ctrlr->disabled) {
2480 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2481 		return -EALREADY;
2482 	}
2483 
2484 	nvme_ctrlr->resetting = true;
2485 	nvme_ctrlr->dont_retry = true;
2486 
2487 	if (nvme_ctrlr->reconnect_is_delayed) {
2488 		msg_fn = _bdev_nvme_cancel_reconnect_and_disable_ctrlr;
2489 		nvme_ctrlr->reconnect_is_delayed = false;
2490 	} else {
2491 		msg_fn = _bdev_nvme_disconnect_and_disable_ctrlr;
2492 	}
2493 
2494 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2495 
2496 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2497 
2498 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2499 	return 0;
2500 }
2501 
2502 static int
2503 nvme_ctrlr_op(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2504 	      bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2505 {
2506 	int rc;
2507 
2508 	switch (op) {
2509 	case NVME_CTRLR_OP_RESET:
2510 		rc = bdev_nvme_reset_ctrlr(nvme_ctrlr);
2511 		break;
2512 	case NVME_CTRLR_OP_ENABLE:
2513 		rc = bdev_nvme_enable_ctrlr(nvme_ctrlr);
2514 		break;
2515 	case NVME_CTRLR_OP_DISABLE:
2516 		rc = bdev_nvme_disable_ctrlr(nvme_ctrlr);
2517 		break;
2518 	default:
2519 		rc = -EINVAL;
2520 		break;
2521 	}
2522 
2523 	if (rc == 0) {
2524 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
2525 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
2526 		nvme_ctrlr->ctrlr_op_cb_fn = cb_fn;
2527 		nvme_ctrlr->ctrlr_op_cb_arg = cb_arg;
2528 	}
2529 	return rc;
2530 }
2531 
2532 struct nvme_ctrlr_op_rpc_ctx {
2533 	struct nvme_ctrlr *nvme_ctrlr;
2534 	struct spdk_thread *orig_thread;
2535 	enum nvme_ctrlr_op op;
2536 	int rc;
2537 	bdev_nvme_ctrlr_op_cb cb_fn;
2538 	void *cb_arg;
2539 };
2540 
2541 static void
2542 _nvme_ctrlr_op_rpc_complete(void *_ctx)
2543 {
2544 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2545 
2546 	assert(ctx != NULL);
2547 	assert(ctx->cb_fn != NULL);
2548 
2549 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2550 
2551 	free(ctx);
2552 }
2553 
2554 static void
2555 nvme_ctrlr_op_rpc_complete(void *cb_arg, int rc)
2556 {
2557 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2558 
2559 	ctx->rc = rc;
2560 
2561 	spdk_thread_send_msg(ctx->orig_thread, _nvme_ctrlr_op_rpc_complete, ctx);
2562 }
2563 
2564 void
2565 nvme_ctrlr_op_rpc(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2566 		  bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2567 {
2568 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2569 	int rc;
2570 
2571 	assert(cb_fn != NULL);
2572 
2573 	ctx = calloc(1, sizeof(*ctx));
2574 	if (ctx == NULL) {
2575 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2576 		cb_fn(cb_arg, -ENOMEM);
2577 		return;
2578 	}
2579 
2580 	ctx->orig_thread = spdk_get_thread();
2581 	ctx->cb_fn = cb_fn;
2582 	ctx->cb_arg = cb_arg;
2583 
2584 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_ctrlr_op_rpc_complete, ctx);
2585 	if (rc == 0) {
2586 		return;
2587 	} else if (rc == -EALREADY) {
2588 		rc = 0;
2589 	}
2590 
2591 	nvme_ctrlr_op_rpc_complete(ctx, rc);
2592 }
2593 
2594 static void nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc);
2595 
2596 static void
2597 _nvme_bdev_ctrlr_op_rpc_continue(void *_ctx)
2598 {
2599 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2600 	struct nvme_ctrlr *prev_nvme_ctrlr, *next_nvme_ctrlr;
2601 	int rc;
2602 
2603 	prev_nvme_ctrlr = ctx->nvme_ctrlr;
2604 	ctx->nvme_ctrlr = NULL;
2605 
2606 	if (ctx->rc != 0) {
2607 		goto complete;
2608 	}
2609 
2610 	next_nvme_ctrlr = TAILQ_NEXT(prev_nvme_ctrlr, tailq);
2611 	if (next_nvme_ctrlr == NULL) {
2612 		goto complete;
2613 	}
2614 
2615 	rc = nvme_ctrlr_op(next_nvme_ctrlr, ctx->op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2616 	if (rc == 0) {
2617 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2618 		return;
2619 	} else if (rc == -EALREADY) {
2620 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2621 		rc = 0;
2622 	}
2623 
2624 	ctx->rc = rc;
2625 
2626 complete:
2627 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2628 	free(ctx);
2629 }
2630 
2631 static void
2632 nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc)
2633 {
2634 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2635 
2636 	ctx->rc = rc;
2637 
2638 	spdk_thread_send_msg(ctx->orig_thread, _nvme_bdev_ctrlr_op_rpc_continue, ctx);
2639 }
2640 
2641 void
2642 nvme_bdev_ctrlr_op_rpc(struct nvme_bdev_ctrlr *nbdev_ctrlr, enum nvme_ctrlr_op op,
2643 		       bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2644 {
2645 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2646 	struct nvme_ctrlr *nvme_ctrlr;
2647 	int rc;
2648 
2649 	assert(cb_fn != NULL);
2650 
2651 	ctx = calloc(1, sizeof(*ctx));
2652 	if (ctx == NULL) {
2653 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2654 		cb_fn(cb_arg, -ENOMEM);
2655 		return;
2656 	}
2657 
2658 	ctx->orig_thread = spdk_get_thread();
2659 	ctx->op = op;
2660 	ctx->cb_fn = cb_fn;
2661 	ctx->cb_arg = cb_arg;
2662 
2663 	nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
2664 	assert(nvme_ctrlr != NULL);
2665 
2666 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2667 	if (rc == 0) {
2668 		ctx->nvme_ctrlr = nvme_ctrlr;
2669 		return;
2670 	} else if (rc == -EALREADY) {
2671 		ctx->nvme_ctrlr = nvme_ctrlr;
2672 		rc = 0;
2673 	}
2674 
2675 	nvme_bdev_ctrlr_op_rpc_continue(ctx, rc);
2676 }
2677 
2678 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
2679 
2680 static void
2681 _bdev_nvme_reset_io_complete(struct spdk_io_channel_iter *i, int status)
2682 {
2683 	struct nvme_bdev_io *bio = spdk_io_channel_iter_get_ctx(i);
2684 	enum spdk_bdev_io_status io_status;
2685 
2686 	if (bio->cpl.cdw0 == 0) {
2687 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2688 	} else {
2689 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
2690 	}
2691 
2692 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
2693 }
2694 
2695 static void
2696 bdev_nvme_abort_bdev_channel(struct spdk_io_channel_iter *i)
2697 {
2698 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2699 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
2700 
2701 	bdev_nvme_abort_retry_ios(nbdev_ch);
2702 
2703 	spdk_for_each_channel_continue(i, 0);
2704 }
2705 
2706 static void
2707 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
2708 {
2709 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2710 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
2711 
2712 	/* Abort all queued I/Os for retry. */
2713 	spdk_for_each_channel(nbdev,
2714 			      bdev_nvme_abort_bdev_channel,
2715 			      bio,
2716 			      _bdev_nvme_reset_io_complete);
2717 }
2718 
2719 static void
2720 _bdev_nvme_reset_io_continue(void *ctx)
2721 {
2722 	struct nvme_bdev_io *bio = ctx;
2723 	struct nvme_io_path *prev_io_path, *next_io_path;
2724 	int rc;
2725 
2726 	prev_io_path = bio->io_path;
2727 	bio->io_path = NULL;
2728 
2729 	if (bio->cpl.cdw0 != 0) {
2730 		goto complete;
2731 	}
2732 
2733 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
2734 	if (next_io_path == NULL) {
2735 		goto complete;
2736 	}
2737 
2738 	rc = _bdev_nvme_reset_io(next_io_path, bio);
2739 	if (rc == 0) {
2740 		return;
2741 	}
2742 
2743 	bio->cpl.cdw0 = 1;
2744 
2745 complete:
2746 	bdev_nvme_reset_io_complete(bio);
2747 }
2748 
2749 static void
2750 bdev_nvme_reset_io_continue(void *cb_arg, int rc)
2751 {
2752 	struct nvme_bdev_io *bio = cb_arg;
2753 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2754 
2755 	bio->cpl.cdw0 = (rc == 0) ? 0 : 1;
2756 
2757 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_nvme_reset_io_continue, bio);
2758 }
2759 
2760 static int
2761 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
2762 {
2763 	struct nvme_ctrlr_channel *ctrlr_ch;
2764 	int rc;
2765 
2766 	rc = nvme_ctrlr_op(io_path->qpair->ctrlr, NVME_CTRLR_OP_RESET,
2767 			   bdev_nvme_reset_io_continue, bio);
2768 	if (rc == 0) {
2769 		assert(bio->io_path == NULL);
2770 		bio->io_path = io_path;
2771 	} else if (rc == -EBUSY) {
2772 		ctrlr_ch = io_path->qpair->ctrlr_ch;
2773 		assert(ctrlr_ch != NULL);
2774 		/*
2775 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
2776 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
2777 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
2778 		 */
2779 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bio, retry_link);
2780 		rc = 0;
2781 	}
2782 
2783 	return rc;
2784 }
2785 
2786 static void
2787 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
2788 {
2789 	struct nvme_io_path *io_path;
2790 	int rc;
2791 
2792 	bio->cpl.cdw0 = 0;
2793 
2794 	/* Reset all nvme_ctrlrs of a bdev controller sequentially. */
2795 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
2796 	assert(io_path != NULL);
2797 
2798 	rc = _bdev_nvme_reset_io(io_path, bio);
2799 	if (rc != 0) {
2800 		/* If the current nvme_ctrlr is disabled, skip it and move to the next nvme_ctrlr. */
2801 		bdev_nvme_reset_io_continue(bio, rc == -EALREADY);
2802 	}
2803 }
2804 
2805 static int
2806 bdev_nvme_failover_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove)
2807 {
2808 	if (nvme_ctrlr->destruct) {
2809 		/* Don't bother resetting if the controller is in the process of being destructed. */
2810 		return -ENXIO;
2811 	}
2812 
2813 	if (nvme_ctrlr->resetting) {
2814 		if (!nvme_ctrlr->in_failover) {
2815 			SPDK_NOTICELOG("Reset is already in progress. Defer failover until reset completes.\n");
2816 
2817 			/* Defer failover until reset completes. */
2818 			nvme_ctrlr->pending_failover = true;
2819 			return -EINPROGRESS;
2820 		} else {
2821 			SPDK_NOTICELOG("Unable to perform failover, already in progress.\n");
2822 			return -EBUSY;
2823 		}
2824 	}
2825 
2826 	bdev_nvme_failover_trid(nvme_ctrlr, remove, true);
2827 
2828 	if (nvme_ctrlr->reconnect_is_delayed) {
2829 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
2830 
2831 		/* We rely on the next reconnect for the failover. */
2832 		return -EALREADY;
2833 	}
2834 
2835 	if (nvme_ctrlr->disabled) {
2836 		SPDK_NOTICELOG("Controller is disabled.\n");
2837 
2838 		/* We rely on the enablement for the failover. */
2839 		return -EALREADY;
2840 	}
2841 
2842 	nvme_ctrlr->resetting = true;
2843 	nvme_ctrlr->in_failover = true;
2844 
2845 	assert(nvme_ctrlr->reset_start_tsc == 0);
2846 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2847 
2848 	return 0;
2849 }
2850 
2851 static int
2852 bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2853 {
2854 	int rc;
2855 
2856 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2857 	rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, false);
2858 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2859 
2860 	if (rc == 0) {
2861 		spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset_ctrlr, nvme_ctrlr);
2862 	} else if (rc == -EALREADY) {
2863 		rc = 0;
2864 	}
2865 
2866 	return rc;
2867 }
2868 
2869 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2870 			   uint64_t num_blocks);
2871 
2872 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2873 				  uint64_t num_blocks);
2874 
2875 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
2876 			  uint64_t src_offset_blocks,
2877 			  uint64_t num_blocks);
2878 
2879 static void
2880 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
2881 		     bool success)
2882 {
2883 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2884 	int ret;
2885 
2886 	if (!success) {
2887 		ret = -EINVAL;
2888 		goto exit;
2889 	}
2890 
2891 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
2892 		ret = -ENXIO;
2893 		goto exit;
2894 	}
2895 
2896 	ret = bdev_nvme_readv(bio,
2897 			      bdev_io->u.bdev.iovs,
2898 			      bdev_io->u.bdev.iovcnt,
2899 			      bdev_io->u.bdev.md_buf,
2900 			      bdev_io->u.bdev.num_blocks,
2901 			      bdev_io->u.bdev.offset_blocks,
2902 			      bdev_io->u.bdev.dif_check_flags,
2903 			      bdev_io->u.bdev.memory_domain,
2904 			      bdev_io->u.bdev.memory_domain_ctx,
2905 			      bdev_io->u.bdev.accel_sequence);
2906 
2907 exit:
2908 	if (spdk_unlikely(ret != 0)) {
2909 		bdev_nvme_io_complete(bio, ret);
2910 	}
2911 }
2912 
2913 static inline void
2914 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
2915 {
2916 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2917 	struct spdk_bdev *bdev = bdev_io->bdev;
2918 	struct nvme_bdev_io *nbdev_io_to_abort;
2919 	int rc = 0;
2920 
2921 	switch (bdev_io->type) {
2922 	case SPDK_BDEV_IO_TYPE_READ:
2923 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
2924 
2925 			rc = bdev_nvme_readv(nbdev_io,
2926 					     bdev_io->u.bdev.iovs,
2927 					     bdev_io->u.bdev.iovcnt,
2928 					     bdev_io->u.bdev.md_buf,
2929 					     bdev_io->u.bdev.num_blocks,
2930 					     bdev_io->u.bdev.offset_blocks,
2931 					     bdev_io->u.bdev.dif_check_flags,
2932 					     bdev_io->u.bdev.memory_domain,
2933 					     bdev_io->u.bdev.memory_domain_ctx,
2934 					     bdev_io->u.bdev.accel_sequence);
2935 		} else {
2936 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
2937 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
2938 			rc = 0;
2939 		}
2940 		break;
2941 	case SPDK_BDEV_IO_TYPE_WRITE:
2942 		rc = bdev_nvme_writev(nbdev_io,
2943 				      bdev_io->u.bdev.iovs,
2944 				      bdev_io->u.bdev.iovcnt,
2945 				      bdev_io->u.bdev.md_buf,
2946 				      bdev_io->u.bdev.num_blocks,
2947 				      bdev_io->u.bdev.offset_blocks,
2948 				      bdev_io->u.bdev.dif_check_flags,
2949 				      bdev_io->u.bdev.memory_domain,
2950 				      bdev_io->u.bdev.memory_domain_ctx,
2951 				      bdev_io->u.bdev.accel_sequence);
2952 		break;
2953 	case SPDK_BDEV_IO_TYPE_COMPARE:
2954 		rc = bdev_nvme_comparev(nbdev_io,
2955 					bdev_io->u.bdev.iovs,
2956 					bdev_io->u.bdev.iovcnt,
2957 					bdev_io->u.bdev.md_buf,
2958 					bdev_io->u.bdev.num_blocks,
2959 					bdev_io->u.bdev.offset_blocks,
2960 					bdev_io->u.bdev.dif_check_flags);
2961 		break;
2962 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
2963 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
2964 						   bdev_io->u.bdev.iovs,
2965 						   bdev_io->u.bdev.iovcnt,
2966 						   bdev_io->u.bdev.fused_iovs,
2967 						   bdev_io->u.bdev.fused_iovcnt,
2968 						   bdev_io->u.bdev.md_buf,
2969 						   bdev_io->u.bdev.num_blocks,
2970 						   bdev_io->u.bdev.offset_blocks,
2971 						   bdev_io->u.bdev.dif_check_flags);
2972 		break;
2973 	case SPDK_BDEV_IO_TYPE_UNMAP:
2974 		rc = bdev_nvme_unmap(nbdev_io,
2975 				     bdev_io->u.bdev.offset_blocks,
2976 				     bdev_io->u.bdev.num_blocks);
2977 		break;
2978 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
2979 		rc =  bdev_nvme_write_zeroes(nbdev_io,
2980 					     bdev_io->u.bdev.offset_blocks,
2981 					     bdev_io->u.bdev.num_blocks);
2982 		break;
2983 	case SPDK_BDEV_IO_TYPE_RESET:
2984 		nbdev_io->io_path = NULL;
2985 		bdev_nvme_reset_io(nbdev_ch, nbdev_io);
2986 		return;
2987 
2988 	case SPDK_BDEV_IO_TYPE_FLUSH:
2989 		bdev_nvme_io_complete(nbdev_io, 0);
2990 		return;
2991 
2992 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
2993 		rc = bdev_nvme_zone_appendv(nbdev_io,
2994 					    bdev_io->u.bdev.iovs,
2995 					    bdev_io->u.bdev.iovcnt,
2996 					    bdev_io->u.bdev.md_buf,
2997 					    bdev_io->u.bdev.num_blocks,
2998 					    bdev_io->u.bdev.offset_blocks,
2999 					    bdev_io->u.bdev.dif_check_flags);
3000 		break;
3001 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3002 		rc = bdev_nvme_get_zone_info(nbdev_io,
3003 					     bdev_io->u.zone_mgmt.zone_id,
3004 					     bdev_io->u.zone_mgmt.num_zones,
3005 					     bdev_io->u.zone_mgmt.buf);
3006 		break;
3007 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3008 		rc = bdev_nvme_zone_management(nbdev_io,
3009 					       bdev_io->u.zone_mgmt.zone_id,
3010 					       bdev_io->u.zone_mgmt.zone_action);
3011 		break;
3012 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3013 		nbdev_io->io_path = NULL;
3014 		bdev_nvme_admin_passthru(nbdev_ch,
3015 					 nbdev_io,
3016 					 &bdev_io->u.nvme_passthru.cmd,
3017 					 bdev_io->u.nvme_passthru.buf,
3018 					 bdev_io->u.nvme_passthru.nbytes);
3019 		return;
3020 
3021 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3022 		rc = bdev_nvme_io_passthru(nbdev_io,
3023 					   &bdev_io->u.nvme_passthru.cmd,
3024 					   bdev_io->u.nvme_passthru.buf,
3025 					   bdev_io->u.nvme_passthru.nbytes);
3026 		break;
3027 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3028 		rc = bdev_nvme_io_passthru_md(nbdev_io,
3029 					      &bdev_io->u.nvme_passthru.cmd,
3030 					      bdev_io->u.nvme_passthru.buf,
3031 					      bdev_io->u.nvme_passthru.nbytes,
3032 					      bdev_io->u.nvme_passthru.md_buf,
3033 					      bdev_io->u.nvme_passthru.md_len);
3034 		break;
3035 	case SPDK_BDEV_IO_TYPE_NVME_IOV_MD:
3036 		rc = bdev_nvme_iov_passthru_md(nbdev_io,
3037 					       &bdev_io->u.nvme_passthru.cmd,
3038 					       bdev_io->u.nvme_passthru.iovs,
3039 					       bdev_io->u.nvme_passthru.iovcnt,
3040 					       bdev_io->u.nvme_passthru.nbytes,
3041 					       bdev_io->u.nvme_passthru.md_buf,
3042 					       bdev_io->u.nvme_passthru.md_len);
3043 		break;
3044 	case SPDK_BDEV_IO_TYPE_ABORT:
3045 		nbdev_io->io_path = NULL;
3046 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
3047 		bdev_nvme_abort(nbdev_ch,
3048 				nbdev_io,
3049 				nbdev_io_to_abort);
3050 		return;
3051 
3052 	case SPDK_BDEV_IO_TYPE_COPY:
3053 		rc = bdev_nvme_copy(nbdev_io,
3054 				    bdev_io->u.bdev.offset_blocks,
3055 				    bdev_io->u.bdev.copy.src_offset_blocks,
3056 				    bdev_io->u.bdev.num_blocks);
3057 		break;
3058 	default:
3059 		rc = -EINVAL;
3060 		break;
3061 	}
3062 
3063 	if (spdk_unlikely(rc != 0)) {
3064 		bdev_nvme_io_complete(nbdev_io, rc);
3065 	}
3066 }
3067 
3068 static void
3069 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
3070 {
3071 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3072 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3073 
3074 	if (spdk_likely(nbdev_io->submit_tsc == 0)) {
3075 		nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io);
3076 	} else {
3077 		/* There are cases where submit_tsc != 0, i.e. retry I/O.
3078 		 * We need to update submit_tsc here.
3079 		 */
3080 		nbdev_io->submit_tsc = spdk_get_ticks();
3081 	}
3082 
3083 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
3084 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
3085 	if (spdk_unlikely(!nbdev_io->io_path)) {
3086 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
3087 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
3088 			return;
3089 		}
3090 
3091 		/* Admin commands do not use the optimal I/O path.
3092 		 * Simply fall through even if it is not found.
3093 		 */
3094 	}
3095 
3096 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
3097 }
3098 
3099 static bool
3100 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
3101 {
3102 	struct nvme_bdev *nbdev = ctx;
3103 	struct nvme_ns *nvme_ns;
3104 	struct spdk_nvme_ns *ns;
3105 	struct spdk_nvme_ctrlr *ctrlr;
3106 	const struct spdk_nvme_ctrlr_data *cdata;
3107 
3108 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3109 	assert(nvme_ns != NULL);
3110 	ns = nvme_ns->ns;
3111 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3112 
3113 	switch (io_type) {
3114 	case SPDK_BDEV_IO_TYPE_READ:
3115 	case SPDK_BDEV_IO_TYPE_WRITE:
3116 	case SPDK_BDEV_IO_TYPE_RESET:
3117 	case SPDK_BDEV_IO_TYPE_FLUSH:
3118 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3119 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3120 	case SPDK_BDEV_IO_TYPE_ABORT:
3121 		return true;
3122 
3123 	case SPDK_BDEV_IO_TYPE_COMPARE:
3124 		return spdk_nvme_ns_supports_compare(ns);
3125 
3126 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3127 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
3128 
3129 	case SPDK_BDEV_IO_TYPE_UNMAP:
3130 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3131 		return cdata->oncs.dsm;
3132 
3133 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3134 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3135 		return cdata->oncs.write_zeroes;
3136 
3137 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3138 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
3139 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
3140 			return true;
3141 		}
3142 		return false;
3143 
3144 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3145 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3146 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
3147 
3148 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3149 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
3150 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
3151 
3152 	case SPDK_BDEV_IO_TYPE_COPY:
3153 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3154 		return cdata->oncs.copy;
3155 
3156 	default:
3157 		return false;
3158 	}
3159 }
3160 
3161 static int
3162 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
3163 {
3164 	struct nvme_qpair *nvme_qpair;
3165 	struct spdk_io_channel *pg_ch;
3166 	int rc;
3167 
3168 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
3169 	if (!nvme_qpair) {
3170 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
3171 		return -1;
3172 	}
3173 
3174 	TAILQ_INIT(&nvme_qpair->io_path_list);
3175 
3176 	nvme_qpair->ctrlr = nvme_ctrlr;
3177 	nvme_qpair->ctrlr_ch = ctrlr_ch;
3178 
3179 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
3180 	if (!pg_ch) {
3181 		free(nvme_qpair);
3182 		return -1;
3183 	}
3184 
3185 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
3186 
3187 #ifdef SPDK_CONFIG_VTUNE
3188 	nvme_qpair->group->collect_spin_stat = true;
3189 #else
3190 	nvme_qpair->group->collect_spin_stat = false;
3191 #endif
3192 
3193 	if (!nvme_ctrlr->disabled) {
3194 		/* If a nvme_ctrlr is disabled, don't try to create qpair for it. Qpair will
3195 		 * be created when it's enabled.
3196 		 */
3197 		rc = bdev_nvme_create_qpair(nvme_qpair);
3198 		if (rc != 0) {
3199 			/* nvme_ctrlr can't create IO qpair if connection is down.
3200 			 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
3201 			 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
3202 			 * submitted IO will be queued until IO qpair is successfully created.
3203 			 *
3204 			 * Hence, if both are satisfied, ignore the failure.
3205 			 */
3206 			if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
3207 				spdk_put_io_channel(pg_ch);
3208 				free(nvme_qpair);
3209 				return rc;
3210 			}
3211 		}
3212 	}
3213 
3214 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3215 
3216 	ctrlr_ch->qpair = nvme_qpair;
3217 
3218 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
3219 	nvme_qpair->ctrlr->ref++;
3220 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
3221 
3222 	return 0;
3223 }
3224 
3225 static int
3226 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3227 {
3228 	struct nvme_ctrlr *nvme_ctrlr = io_device;
3229 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3230 
3231 	TAILQ_INIT(&ctrlr_ch->pending_resets);
3232 
3233 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
3234 }
3235 
3236 static void
3237 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
3238 {
3239 	struct nvme_io_path *io_path, *next;
3240 
3241 	assert(nvme_qpair->group != NULL);
3242 
3243 	TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) {
3244 		TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
3245 		nvme_io_path_free(io_path);
3246 	}
3247 
3248 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3249 
3250 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
3251 
3252 	nvme_ctrlr_release(nvme_qpair->ctrlr);
3253 
3254 	free(nvme_qpair);
3255 }
3256 
3257 static void
3258 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3259 {
3260 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3261 	struct nvme_qpair *nvme_qpair;
3262 
3263 	nvme_qpair = ctrlr_ch->qpair;
3264 	assert(nvme_qpair != NULL);
3265 
3266 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
3267 
3268 	if (nvme_qpair->qpair != NULL) {
3269 		if (ctrlr_ch->reset_iter == NULL) {
3270 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
3271 		} else {
3272 			/* Skip current ctrlr_channel in a full reset sequence because
3273 			 * it is being deleted now. The qpair is already being disconnected.
3274 			 * We do not have to restart disconnecting it.
3275 			 */
3276 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
3277 		}
3278 
3279 		/* We cannot release a reference to the poll group now.
3280 		 * The qpair may be disconnected asynchronously later.
3281 		 * We need to poll it until it is actually disconnected.
3282 		 * Just detach the qpair from the deleting ctrlr_channel.
3283 		 */
3284 		nvme_qpair->ctrlr_ch = NULL;
3285 	} else {
3286 		assert(ctrlr_ch->reset_iter == NULL);
3287 
3288 		nvme_qpair_delete(nvme_qpair);
3289 	}
3290 }
3291 
3292 static inline struct spdk_io_channel *
3293 bdev_nvme_get_accel_channel(struct nvme_poll_group *group)
3294 {
3295 	if (spdk_unlikely(!group->accel_channel)) {
3296 		group->accel_channel = spdk_accel_get_io_channel();
3297 		if (!group->accel_channel) {
3298 			SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
3299 				    group);
3300 			return NULL;
3301 		}
3302 	}
3303 
3304 	return group->accel_channel;
3305 }
3306 
3307 static void
3308 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
3309 			      uint32_t iov_cnt, uint32_t seed,
3310 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3311 {
3312 	struct spdk_io_channel *accel_ch;
3313 	struct nvme_poll_group *group = ctx;
3314 	int rc;
3315 
3316 	assert(cb_fn != NULL);
3317 
3318 	accel_ch = bdev_nvme_get_accel_channel(group);
3319 	if (spdk_unlikely(accel_ch == NULL)) {
3320 		cb_fn(cb_arg, -ENOMEM);
3321 		return;
3322 	}
3323 
3324 	rc = spdk_accel_submit_crc32cv(accel_ch, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
3325 	if (rc) {
3326 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
3327 		if (rc == -ENOMEM || rc == -EINVAL) {
3328 			cb_fn(cb_arg, rc);
3329 		}
3330 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
3331 	}
3332 }
3333 
3334 static void
3335 bdev_nvme_finish_sequence(void *seq, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3336 {
3337 	spdk_accel_sequence_finish(seq, cb_fn, cb_arg);
3338 }
3339 
3340 static void
3341 bdev_nvme_abort_sequence(void *seq)
3342 {
3343 	spdk_accel_sequence_abort(seq);
3344 }
3345 
3346 static void
3347 bdev_nvme_reverse_sequence(void *seq)
3348 {
3349 	spdk_accel_sequence_reverse(seq);
3350 }
3351 
3352 static int
3353 bdev_nvme_append_crc32c(void *ctx, void **seq, uint32_t *dst, struct iovec *iovs, uint32_t iovcnt,
3354 			struct spdk_memory_domain *domain, void *domain_ctx, uint32_t seed,
3355 			spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3356 {
3357 	struct spdk_io_channel *ch;
3358 	struct nvme_poll_group *group = ctx;
3359 
3360 	ch = bdev_nvme_get_accel_channel(group);
3361 	if (spdk_unlikely(ch == NULL)) {
3362 		return -ENOMEM;
3363 	}
3364 
3365 	return spdk_accel_append_crc32c((struct spdk_accel_sequence **)seq, ch, dst, iovs, iovcnt,
3366 					domain, domain_ctx, seed, cb_fn, cb_arg);
3367 }
3368 
3369 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
3370 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
3371 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
3372 	.append_crc32c		= bdev_nvme_append_crc32c,
3373 	.finish_sequence	= bdev_nvme_finish_sequence,
3374 	.reverse_sequence	= bdev_nvme_reverse_sequence,
3375 	.abort_sequence		= bdev_nvme_abort_sequence,
3376 };
3377 
3378 static int
3379 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
3380 {
3381 	struct nvme_poll_group *group = ctx_buf;
3382 
3383 	TAILQ_INIT(&group->qpair_list);
3384 
3385 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
3386 	if (group->group == NULL) {
3387 		return -1;
3388 	}
3389 
3390 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
3391 
3392 	if (group->poller == NULL) {
3393 		spdk_nvme_poll_group_destroy(group->group);
3394 		return -1;
3395 	}
3396 
3397 	return 0;
3398 }
3399 
3400 static void
3401 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
3402 {
3403 	struct nvme_poll_group *group = ctx_buf;
3404 
3405 	assert(TAILQ_EMPTY(&group->qpair_list));
3406 
3407 	if (group->accel_channel) {
3408 		spdk_put_io_channel(group->accel_channel);
3409 	}
3410 
3411 	spdk_poller_unregister(&group->poller);
3412 	if (spdk_nvme_poll_group_destroy(group->group)) {
3413 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
3414 		assert(false);
3415 	}
3416 }
3417 
3418 static struct spdk_io_channel *
3419 bdev_nvme_get_io_channel(void *ctx)
3420 {
3421 	struct nvme_bdev *nvme_bdev = ctx;
3422 
3423 	return spdk_get_io_channel(nvme_bdev);
3424 }
3425 
3426 static void *
3427 bdev_nvme_get_module_ctx(void *ctx)
3428 {
3429 	struct nvme_bdev *nvme_bdev = ctx;
3430 	struct nvme_ns *nvme_ns;
3431 
3432 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
3433 		return NULL;
3434 	}
3435 
3436 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
3437 	if (!nvme_ns) {
3438 		return NULL;
3439 	}
3440 
3441 	return nvme_ns->ns;
3442 }
3443 
3444 static const char *
3445 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
3446 {
3447 	switch (ana_state) {
3448 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3449 		return "optimized";
3450 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3451 		return "non_optimized";
3452 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3453 		return "inaccessible";
3454 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
3455 		return "persistent_loss";
3456 	case SPDK_NVME_ANA_CHANGE_STATE:
3457 		return "change";
3458 	default:
3459 		return NULL;
3460 	}
3461 }
3462 
3463 static int
3464 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
3465 {
3466 	struct spdk_memory_domain **_domains = NULL;
3467 	struct nvme_bdev *nbdev = ctx;
3468 	struct nvme_ns *nvme_ns;
3469 	int i = 0, _array_size = array_size;
3470 	int rc = 0;
3471 
3472 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3473 		if (domains && array_size >= i) {
3474 			_domains = &domains[i];
3475 		} else {
3476 			_domains = NULL;
3477 		}
3478 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
3479 		if (rc > 0) {
3480 			i += rc;
3481 			if (_array_size >= rc) {
3482 				_array_size -= rc;
3483 			} else {
3484 				_array_size = 0;
3485 			}
3486 		} else if (rc < 0) {
3487 			return rc;
3488 		}
3489 	}
3490 
3491 	return i;
3492 }
3493 
3494 static const char *
3495 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
3496 {
3497 	if (nvme_ctrlr->destruct) {
3498 		return "deleting";
3499 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
3500 		return "failed";
3501 	} else if (nvme_ctrlr->resetting) {
3502 		return "resetting";
3503 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
3504 		return "reconnect_is_delayed";
3505 	} else if (nvme_ctrlr->disabled) {
3506 		return "disabled";
3507 	} else {
3508 		return "enabled";
3509 	}
3510 }
3511 
3512 void
3513 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
3514 {
3515 	struct spdk_nvme_transport_id *trid;
3516 	const struct spdk_nvme_ctrlr_opts *opts;
3517 	const struct spdk_nvme_ctrlr_data *cdata;
3518 	struct nvme_path_id *path_id;
3519 
3520 	spdk_json_write_object_begin(w);
3521 
3522 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
3523 
3524 #ifdef SPDK_CONFIG_NVME_CUSE
3525 	size_t cuse_name_size = 128;
3526 	char cuse_name[cuse_name_size];
3527 
3528 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
3529 	if (rc == 0) {
3530 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3531 	}
3532 #endif
3533 	trid = &nvme_ctrlr->active_path_id->trid;
3534 	spdk_json_write_named_object_begin(w, "trid");
3535 	nvme_bdev_dump_trid_json(trid, w);
3536 	spdk_json_write_object_end(w);
3537 
3538 	path_id = TAILQ_NEXT(nvme_ctrlr->active_path_id, link);
3539 	if (path_id != NULL) {
3540 		spdk_json_write_named_array_begin(w, "alternate_trids");
3541 		do {
3542 			trid = &path_id->trid;
3543 			spdk_json_write_object_begin(w);
3544 			nvme_bdev_dump_trid_json(trid, w);
3545 			spdk_json_write_object_end(w);
3546 
3547 			path_id = TAILQ_NEXT(path_id, link);
3548 		} while (path_id != NULL);
3549 		spdk_json_write_array_end(w);
3550 	}
3551 
3552 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
3553 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3554 
3555 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
3556 	spdk_json_write_named_object_begin(w, "host");
3557 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
3558 	spdk_json_write_named_string(w, "addr", opts->src_addr);
3559 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
3560 	spdk_json_write_object_end(w);
3561 
3562 	spdk_json_write_object_end(w);
3563 }
3564 
3565 static void
3566 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
3567 			 struct nvme_ns *nvme_ns)
3568 {
3569 	struct spdk_nvme_ns *ns;
3570 	struct spdk_nvme_ctrlr *ctrlr;
3571 	const struct spdk_nvme_ctrlr_data *cdata;
3572 	const struct spdk_nvme_transport_id *trid;
3573 	union spdk_nvme_vs_register vs;
3574 	const struct spdk_nvme_ns_data *nsdata;
3575 	char buf[128];
3576 
3577 	ns = nvme_ns->ns;
3578 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3579 
3580 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3581 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
3582 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
3583 
3584 	spdk_json_write_object_begin(w);
3585 
3586 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
3587 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
3588 	}
3589 
3590 	spdk_json_write_named_object_begin(w, "trid");
3591 
3592 	nvme_bdev_dump_trid_json(trid, w);
3593 
3594 	spdk_json_write_object_end(w);
3595 
3596 #ifdef SPDK_CONFIG_NVME_CUSE
3597 	size_t cuse_name_size = 128;
3598 	char cuse_name[cuse_name_size];
3599 
3600 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
3601 					    cuse_name, &cuse_name_size);
3602 	if (rc == 0) {
3603 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3604 	}
3605 #endif
3606 
3607 	spdk_json_write_named_object_begin(w, "ctrlr_data");
3608 
3609 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3610 
3611 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
3612 
3613 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
3614 	spdk_str_trim(buf);
3615 	spdk_json_write_named_string(w, "model_number", buf);
3616 
3617 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
3618 	spdk_str_trim(buf);
3619 	spdk_json_write_named_string(w, "serial_number", buf);
3620 
3621 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
3622 	spdk_str_trim(buf);
3623 	spdk_json_write_named_string(w, "firmware_revision", buf);
3624 
3625 	if (cdata->subnqn[0] != '\0') {
3626 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
3627 	}
3628 
3629 	spdk_json_write_named_object_begin(w, "oacs");
3630 
3631 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
3632 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
3633 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
3634 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
3635 
3636 	spdk_json_write_object_end(w);
3637 
3638 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
3639 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
3640 
3641 	spdk_json_write_object_end(w);
3642 
3643 	spdk_json_write_named_object_begin(w, "vs");
3644 
3645 	spdk_json_write_name(w, "nvme_version");
3646 	if (vs.bits.ter) {
3647 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
3648 	} else {
3649 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
3650 	}
3651 
3652 	spdk_json_write_object_end(w);
3653 
3654 	nsdata = spdk_nvme_ns_get_data(ns);
3655 
3656 	spdk_json_write_named_object_begin(w, "ns_data");
3657 
3658 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
3659 
3660 	if (cdata->cmic.ana_reporting) {
3661 		spdk_json_write_named_string(w, "ana_state",
3662 					     _nvme_ana_state_str(nvme_ns->ana_state));
3663 	}
3664 
3665 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
3666 
3667 	spdk_json_write_object_end(w);
3668 
3669 	if (cdata->oacs.security) {
3670 		spdk_json_write_named_object_begin(w, "security");
3671 
3672 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
3673 
3674 		spdk_json_write_object_end(w);
3675 	}
3676 
3677 	spdk_json_write_object_end(w);
3678 }
3679 
3680 static const char *
3681 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
3682 {
3683 	switch (nbdev->mp_policy) {
3684 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
3685 		return "active_passive";
3686 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
3687 		return "active_active";
3688 	default:
3689 		assert(false);
3690 		return "invalid";
3691 	}
3692 }
3693 
3694 static int
3695 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
3696 {
3697 	struct nvme_bdev *nvme_bdev = ctx;
3698 	struct nvme_ns *nvme_ns;
3699 
3700 	pthread_mutex_lock(&nvme_bdev->mutex);
3701 	spdk_json_write_named_array_begin(w, "nvme");
3702 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
3703 		nvme_namespace_info_json(w, nvme_ns);
3704 	}
3705 	spdk_json_write_array_end(w);
3706 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
3707 	pthread_mutex_unlock(&nvme_bdev->mutex);
3708 
3709 	return 0;
3710 }
3711 
3712 static void
3713 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
3714 {
3715 	/* No config per bdev needed */
3716 }
3717 
3718 static uint64_t
3719 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
3720 {
3721 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3722 	struct nvme_io_path *io_path;
3723 	struct nvme_poll_group *group;
3724 	uint64_t spin_time = 0;
3725 
3726 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3727 		group = io_path->qpair->group;
3728 
3729 		if (!group || !group->collect_spin_stat) {
3730 			continue;
3731 		}
3732 
3733 		if (group->end_ticks != 0) {
3734 			group->spin_ticks += (group->end_ticks - group->start_ticks);
3735 			group->end_ticks = 0;
3736 		}
3737 
3738 		spin_time += group->spin_ticks;
3739 		group->start_ticks = 0;
3740 		group->spin_ticks = 0;
3741 	}
3742 
3743 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
3744 }
3745 
3746 static void
3747 bdev_nvme_reset_device_stat(void *ctx)
3748 {
3749 	struct nvme_bdev *nbdev = ctx;
3750 
3751 	if (nbdev->err_stat != NULL) {
3752 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
3753 	}
3754 }
3755 
3756 /* JSON string should be lowercases and underscore delimited string. */
3757 static void
3758 bdev_nvme_format_nvme_status(char *dst, const char *src)
3759 {
3760 	char tmp[256];
3761 
3762 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
3763 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
3764 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
3765 	spdk_strlwr(dst);
3766 }
3767 
3768 static void
3769 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
3770 {
3771 	struct nvme_bdev *nbdev = ctx;
3772 	struct spdk_nvme_status status = {};
3773 	uint16_t sct, sc;
3774 	char status_json[256];
3775 	const char *status_str;
3776 
3777 	if (nbdev->err_stat == NULL) {
3778 		return;
3779 	}
3780 
3781 	spdk_json_write_named_object_begin(w, "nvme_error");
3782 
3783 	spdk_json_write_named_object_begin(w, "status_type");
3784 	for (sct = 0; sct < 8; sct++) {
3785 		if (nbdev->err_stat->status_type[sct] == 0) {
3786 			continue;
3787 		}
3788 		status.sct = sct;
3789 
3790 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
3791 		assert(status_str != NULL);
3792 		bdev_nvme_format_nvme_status(status_json, status_str);
3793 
3794 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
3795 	}
3796 	spdk_json_write_object_end(w);
3797 
3798 	spdk_json_write_named_object_begin(w, "status_code");
3799 	for (sct = 0; sct < 4; sct++) {
3800 		status.sct = sct;
3801 		for (sc = 0; sc < 256; sc++) {
3802 			if (nbdev->err_stat->status[sct][sc] == 0) {
3803 				continue;
3804 			}
3805 			status.sc = sc;
3806 
3807 			status_str = spdk_nvme_cpl_get_status_string(&status);
3808 			assert(status_str != NULL);
3809 			bdev_nvme_format_nvme_status(status_json, status_str);
3810 
3811 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
3812 		}
3813 	}
3814 	spdk_json_write_object_end(w);
3815 
3816 	spdk_json_write_object_end(w);
3817 }
3818 
3819 static bool
3820 bdev_nvme_accel_sequence_supported(void *ctx, enum spdk_bdev_io_type type)
3821 {
3822 	struct nvme_bdev *nbdev = ctx;
3823 	struct spdk_nvme_ctrlr *ctrlr;
3824 
3825 	if (!g_opts.allow_accel_sequence) {
3826 		return false;
3827 	}
3828 
3829 	switch (type) {
3830 	case SPDK_BDEV_IO_TYPE_WRITE:
3831 	case SPDK_BDEV_IO_TYPE_READ:
3832 		break;
3833 	default:
3834 		return false;
3835 	}
3836 
3837 	ctrlr = bdev_nvme_get_ctrlr(&nbdev->disk);
3838 	assert(ctrlr != NULL);
3839 
3840 	return spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ACCEL_SEQUENCE_SUPPORTED;
3841 }
3842 
3843 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
3844 	.destruct			= bdev_nvme_destruct,
3845 	.submit_request			= bdev_nvme_submit_request,
3846 	.io_type_supported		= bdev_nvme_io_type_supported,
3847 	.get_io_channel			= bdev_nvme_get_io_channel,
3848 	.dump_info_json			= bdev_nvme_dump_info_json,
3849 	.write_config_json		= bdev_nvme_write_config_json,
3850 	.get_spin_time			= bdev_nvme_get_spin_time,
3851 	.get_module_ctx			= bdev_nvme_get_module_ctx,
3852 	.get_memory_domains		= bdev_nvme_get_memory_domains,
3853 	.accel_sequence_supported	= bdev_nvme_accel_sequence_supported,
3854 	.reset_device_stat		= bdev_nvme_reset_device_stat,
3855 	.dump_device_stat_json		= bdev_nvme_dump_device_stat_json,
3856 };
3857 
3858 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
3859 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
3860 
3861 static int
3862 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
3863 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
3864 {
3865 	struct spdk_nvme_ana_group_descriptor *copied_desc;
3866 	uint8_t *orig_desc;
3867 	uint32_t i, desc_size, copy_len;
3868 	int rc = 0;
3869 
3870 	if (nvme_ctrlr->ana_log_page == NULL) {
3871 		return -EINVAL;
3872 	}
3873 
3874 	copied_desc = nvme_ctrlr->copied_ana_desc;
3875 
3876 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
3877 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
3878 
3879 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
3880 		memcpy(copied_desc, orig_desc, copy_len);
3881 
3882 		rc = cb_fn(copied_desc, cb_arg);
3883 		if (rc != 0) {
3884 			break;
3885 		}
3886 
3887 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
3888 			    copied_desc->num_of_nsid * sizeof(uint32_t);
3889 		orig_desc += desc_size;
3890 		copy_len -= desc_size;
3891 	}
3892 
3893 	return rc;
3894 }
3895 
3896 static int
3897 nvme_ns_ana_transition_timedout(void *ctx)
3898 {
3899 	struct nvme_ns *nvme_ns = ctx;
3900 
3901 	spdk_poller_unregister(&nvme_ns->anatt_timer);
3902 	nvme_ns->ana_transition_timedout = true;
3903 
3904 	return SPDK_POLLER_BUSY;
3905 }
3906 
3907 static void
3908 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
3909 		       const struct spdk_nvme_ana_group_descriptor *desc)
3910 {
3911 	const struct spdk_nvme_ctrlr_data *cdata;
3912 
3913 	nvme_ns->ana_group_id = desc->ana_group_id;
3914 	nvme_ns->ana_state = desc->ana_state;
3915 	nvme_ns->ana_state_updating = false;
3916 
3917 	switch (nvme_ns->ana_state) {
3918 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3919 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3920 		nvme_ns->ana_transition_timedout = false;
3921 		spdk_poller_unregister(&nvme_ns->anatt_timer);
3922 		break;
3923 
3924 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3925 	case SPDK_NVME_ANA_CHANGE_STATE:
3926 		if (nvme_ns->anatt_timer != NULL) {
3927 			break;
3928 		}
3929 
3930 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
3931 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
3932 				       nvme_ns,
3933 				       cdata->anatt * SPDK_SEC_TO_USEC);
3934 		break;
3935 	default:
3936 		break;
3937 	}
3938 }
3939 
3940 static int
3941 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
3942 {
3943 	struct nvme_ns *nvme_ns = cb_arg;
3944 	uint32_t i;
3945 
3946 	for (i = 0; i < desc->num_of_nsid; i++) {
3947 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
3948 			continue;
3949 		}
3950 
3951 		_nvme_ns_set_ana_state(nvme_ns, desc);
3952 		return 1;
3953 	}
3954 
3955 	return 0;
3956 }
3957 
3958 static struct spdk_uuid
3959 nvme_generate_uuid(const char *sn, uint32_t nsid)
3960 {
3961 	struct spdk_uuid new_uuid, namespace_uuid;
3962 	char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'};
3963 	/* This namespace UUID was generated using uuid_generate() method. */
3964 	const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"};
3965 	int size;
3966 
3967 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
3968 
3969 	spdk_uuid_set_null(&new_uuid);
3970 	spdk_uuid_set_null(&namespace_uuid);
3971 
3972 	size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid);
3973 	assert(size > 0 && (unsigned long)size < sizeof(merged_str));
3974 
3975 	spdk_uuid_parse(&namespace_uuid, namespace_str);
3976 
3977 	spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size);
3978 
3979 	return new_uuid;
3980 }
3981 
3982 static int
3983 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
3984 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
3985 		 uint32_t prchk_flags, void *ctx)
3986 {
3987 	const struct spdk_uuid		*uuid;
3988 	const uint8_t *nguid;
3989 	const struct spdk_nvme_ctrlr_data *cdata;
3990 	const struct spdk_nvme_ns_data	*nsdata;
3991 	const struct spdk_nvme_ctrlr_opts *opts;
3992 	enum spdk_nvme_csi		csi;
3993 	uint32_t atomic_bs, phys_bs, bs;
3994 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
3995 
3996 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3997 	csi = spdk_nvme_ns_get_csi(ns);
3998 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
3999 
4000 	switch (csi) {
4001 	case SPDK_NVME_CSI_NVM:
4002 		disk->product_name = "NVMe disk";
4003 		break;
4004 	case SPDK_NVME_CSI_ZNS:
4005 		disk->product_name = "NVMe ZNS disk";
4006 		disk->zoned = true;
4007 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
4008 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
4009 					     spdk_nvme_ns_get_extended_sector_size(ns);
4010 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
4011 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
4012 		break;
4013 	default:
4014 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
4015 		return -ENOTSUP;
4016 	}
4017 
4018 	nguid = spdk_nvme_ns_get_nguid(ns);
4019 	if (!nguid) {
4020 		uuid = spdk_nvme_ns_get_uuid(ns);
4021 		if (uuid) {
4022 			disk->uuid = *uuid;
4023 		} else if (g_opts.generate_uuids) {
4024 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
4025 			disk->uuid = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns));
4026 		}
4027 	} else {
4028 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
4029 	}
4030 
4031 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
4032 	if (!disk->name) {
4033 		return -ENOMEM;
4034 	}
4035 
4036 	disk->write_cache = 0;
4037 	if (cdata->vwc.present) {
4038 		/* Enable if the Volatile Write Cache exists */
4039 		disk->write_cache = 1;
4040 	}
4041 	if (cdata->oncs.write_zeroes) {
4042 		disk->max_write_zeroes = UINT16_MAX + 1;
4043 	}
4044 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
4045 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
4046 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
4047 	/* NVMe driver will split one request into multiple requests
4048 	 * based on MDTS and stripe boundary, the bdev layer will use
4049 	 * max_segment_size and max_num_segments to split one big IO
4050 	 * into multiple requests, then small request can't run out
4051 	 * of NVMe internal requests data structure.
4052 	 */
4053 	if (opts && opts->io_queue_requests) {
4054 		disk->max_num_segments = opts->io_queue_requests / 2;
4055 	}
4056 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4057 		/* The nvme driver will try to split I/O that have too many
4058 		 * SGEs, but it doesn't work if that last SGE doesn't end on
4059 		 * an aggregate total that is block aligned. The bdev layer has
4060 		 * a more robust splitting framework, so use that instead for
4061 		 * this case. (See issue #3269.)
4062 		 */
4063 		uint16_t max_sges = spdk_nvme_ctrlr_get_max_sges(ctrlr);
4064 
4065 		if (disk->max_num_segments == 0) {
4066 			disk->max_num_segments = max_sges;
4067 		} else {
4068 			disk->max_num_segments = spdk_min(disk->max_num_segments, max_sges);
4069 		}
4070 	}
4071 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
4072 
4073 	nsdata = spdk_nvme_ns_get_data(ns);
4074 	bs = spdk_nvme_ns_get_sector_size(ns);
4075 	atomic_bs = bs;
4076 	phys_bs = bs;
4077 	if (nsdata->nabo == 0) {
4078 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
4079 			atomic_bs = bs * (1 + nsdata->nawupf);
4080 		} else {
4081 			atomic_bs = bs * (1 + cdata->awupf);
4082 		}
4083 	}
4084 	if (nsdata->nsfeat.optperf) {
4085 		phys_bs = bs * (1 + nsdata->npwg);
4086 	}
4087 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
4088 
4089 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
4090 	if (disk->md_len != 0) {
4091 		disk->md_interleave = nsdata->flbas.extended;
4092 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
4093 		if (disk->dif_type != SPDK_DIF_DISABLE) {
4094 			disk->dif_is_head_of_md = nsdata->dps.md_start;
4095 			disk->dif_check_flags = prchk_flags;
4096 		}
4097 	}
4098 
4099 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
4100 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
4101 		disk->acwu = 0;
4102 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
4103 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
4104 	} else {
4105 		disk->acwu = cdata->acwu + 1; /* 0-based */
4106 	}
4107 
4108 	if (cdata->oncs.copy) {
4109 		/* For now bdev interface allows only single segment copy */
4110 		disk->max_copy = nsdata->mssrl;
4111 	}
4112 
4113 	disk->ctxt = ctx;
4114 	disk->fn_table = &nvmelib_fn_table;
4115 	disk->module = &nvme_if;
4116 
4117 	return 0;
4118 }
4119 
4120 static struct nvme_bdev *
4121 nvme_bdev_alloc(void)
4122 {
4123 	struct nvme_bdev *bdev;
4124 	int rc;
4125 
4126 	bdev = calloc(1, sizeof(*bdev));
4127 	if (!bdev) {
4128 		SPDK_ERRLOG("bdev calloc() failed\n");
4129 		return NULL;
4130 	}
4131 
4132 	if (g_opts.nvme_error_stat) {
4133 		bdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
4134 		if (!bdev->err_stat) {
4135 			SPDK_ERRLOG("err_stat calloc() failed\n");
4136 			free(bdev);
4137 			return NULL;
4138 		}
4139 	}
4140 
4141 	rc = pthread_mutex_init(&bdev->mutex, NULL);
4142 	if (rc != 0) {
4143 		free(bdev->err_stat);
4144 		free(bdev);
4145 		return NULL;
4146 	}
4147 
4148 	bdev->ref = 1;
4149 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
4150 	bdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN;
4151 	bdev->rr_min_io = UINT32_MAX;
4152 	TAILQ_INIT(&bdev->nvme_ns_list);
4153 
4154 	return bdev;
4155 }
4156 
4157 static int
4158 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4159 {
4160 	struct nvme_bdev *bdev;
4161 	struct nvme_bdev_ctrlr *nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
4162 	int rc;
4163 
4164 	bdev = nvme_bdev_alloc();
4165 	if (bdev == NULL) {
4166 		SPDK_ERRLOG("Failed to allocate NVMe bdev\n");
4167 		return -ENOMEM;
4168 	}
4169 
4170 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
4171 
4172 	rc = nvme_disk_create(&bdev->disk, nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
4173 			      nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev);
4174 	if (rc != 0) {
4175 		SPDK_ERRLOG("Failed to create NVMe disk\n");
4176 		nvme_bdev_free(bdev);
4177 		return rc;
4178 	}
4179 
4180 	spdk_io_device_register(bdev,
4181 				bdev_nvme_create_bdev_channel_cb,
4182 				bdev_nvme_destroy_bdev_channel_cb,
4183 				sizeof(struct nvme_bdev_channel),
4184 				bdev->disk.name);
4185 
4186 	nvme_ns->bdev = bdev;
4187 	bdev->nsid = nvme_ns->id;
4188 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4189 
4190 	bdev->nbdev_ctrlr = nbdev_ctrlr;
4191 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->bdevs, bdev, tailq);
4192 
4193 	rc = spdk_bdev_register(&bdev->disk);
4194 	if (rc != 0) {
4195 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
4196 		spdk_io_device_unregister(bdev, NULL);
4197 		nvme_ns->bdev = NULL;
4198 		TAILQ_REMOVE(&nbdev_ctrlr->bdevs, bdev, tailq);
4199 		nvme_bdev_free(bdev);
4200 		return rc;
4201 	}
4202 
4203 	return 0;
4204 }
4205 
4206 static bool
4207 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
4208 {
4209 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
4210 	const struct spdk_uuid *uuid1, *uuid2;
4211 
4212 	nsdata1 = spdk_nvme_ns_get_data(ns1);
4213 	nsdata2 = spdk_nvme_ns_get_data(ns2);
4214 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
4215 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
4216 
4217 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
4218 	       nsdata1->eui64 == nsdata2->eui64 &&
4219 	       ((uuid1 == NULL && uuid2 == NULL) ||
4220 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
4221 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
4222 }
4223 
4224 static bool
4225 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4226 		 struct spdk_nvme_ctrlr_opts *opts)
4227 {
4228 	struct nvme_probe_skip_entry *entry;
4229 
4230 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
4231 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4232 			return false;
4233 		}
4234 	}
4235 
4236 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
4237 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
4238 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
4239 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
4240 	opts->disable_read_ana_log_page = true;
4241 
4242 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
4243 
4244 	return true;
4245 }
4246 
4247 static void
4248 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
4249 {
4250 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4251 
4252 	if (spdk_nvme_cpl_is_error(cpl)) {
4253 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
4254 			     cpl->status.sct);
4255 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4256 	} else if (cpl->cdw0 & 0x1) {
4257 		SPDK_WARNLOG("Specified command could not be aborted.\n");
4258 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4259 	}
4260 }
4261 
4262 static void
4263 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
4264 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
4265 {
4266 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4267 	union spdk_nvme_csts_register csts;
4268 	int rc;
4269 
4270 	assert(nvme_ctrlr->ctrlr == ctrlr);
4271 
4272 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
4273 
4274 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
4275 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
4276 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
4277 	 * completion recursively.
4278 	 */
4279 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
4280 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
4281 		if (csts.bits.cfs) {
4282 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
4283 			bdev_nvme_reset_ctrlr(nvme_ctrlr);
4284 			return;
4285 		}
4286 	}
4287 
4288 	switch (g_opts.action_on_timeout) {
4289 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
4290 		if (qpair) {
4291 			/* Don't send abort to ctrlr when ctrlr is not available. */
4292 			pthread_mutex_lock(&nvme_ctrlr->mutex);
4293 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
4294 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
4295 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
4296 				return;
4297 			}
4298 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4299 
4300 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
4301 						       nvme_abort_cpl, nvme_ctrlr);
4302 			if (rc == 0) {
4303 				return;
4304 			}
4305 
4306 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
4307 		}
4308 
4309 	/* FALLTHROUGH */
4310 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
4311 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4312 		break;
4313 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
4314 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
4315 		break;
4316 	default:
4317 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
4318 		break;
4319 	}
4320 }
4321 
4322 static struct nvme_ns *
4323 nvme_ns_alloc(void)
4324 {
4325 	struct nvme_ns *nvme_ns;
4326 
4327 	nvme_ns = calloc(1, sizeof(struct nvme_ns));
4328 	if (nvme_ns == NULL) {
4329 		return NULL;
4330 	}
4331 
4332 	if (g_opts.io_path_stat) {
4333 		nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
4334 		if (nvme_ns->stat == NULL) {
4335 			free(nvme_ns);
4336 			return NULL;
4337 		}
4338 		spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
4339 	}
4340 
4341 	return nvme_ns;
4342 }
4343 
4344 static void
4345 nvme_ns_free(struct nvme_ns *nvme_ns)
4346 {
4347 	free(nvme_ns->stat);
4348 	free(nvme_ns);
4349 }
4350 
4351 static void
4352 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
4353 {
4354 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4355 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
4356 
4357 	if (rc == 0) {
4358 		nvme_ns->probe_ctx = NULL;
4359 		pthread_mutex_lock(&nvme_ctrlr->mutex);
4360 		nvme_ctrlr->ref++;
4361 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4362 	} else {
4363 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4364 		nvme_ns_free(nvme_ns);
4365 	}
4366 
4367 	if (ctx) {
4368 		ctx->populates_in_progress--;
4369 		if (ctx->populates_in_progress == 0) {
4370 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4371 		}
4372 	}
4373 }
4374 
4375 static void
4376 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
4377 {
4378 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4379 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4380 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4381 	int rc;
4382 
4383 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
4384 	if (rc != 0) {
4385 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
4386 	}
4387 
4388 	spdk_for_each_channel_continue(i, rc);
4389 }
4390 
4391 static void
4392 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
4393 {
4394 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4395 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4396 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4397 	struct nvme_io_path *io_path;
4398 
4399 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
4400 	if (io_path != NULL) {
4401 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
4402 	}
4403 
4404 	spdk_for_each_channel_continue(i, 0);
4405 }
4406 
4407 static void
4408 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
4409 {
4410 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4411 
4412 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
4413 }
4414 
4415 static void
4416 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
4417 {
4418 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4419 	struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
4420 
4421 	if (status == 0) {
4422 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
4423 	} else {
4424 		/* Delete the added io_paths and fail populating the namespace. */
4425 		spdk_for_each_channel(bdev,
4426 				      bdev_nvme_delete_io_path,
4427 				      nvme_ns,
4428 				      bdev_nvme_add_io_path_failed);
4429 	}
4430 }
4431 
4432 static int
4433 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
4434 {
4435 	struct nvme_ns *tmp_ns;
4436 	const struct spdk_nvme_ns_data *nsdata;
4437 
4438 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
4439 	if (!nsdata->nmic.can_share) {
4440 		SPDK_ERRLOG("Namespace cannot be shared.\n");
4441 		return -EINVAL;
4442 	}
4443 
4444 	pthread_mutex_lock(&bdev->mutex);
4445 
4446 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
4447 	assert(tmp_ns != NULL);
4448 
4449 	if (!bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
4450 		pthread_mutex_unlock(&bdev->mutex);
4451 		SPDK_ERRLOG("Namespaces are not identical.\n");
4452 		return -EINVAL;
4453 	}
4454 
4455 	bdev->ref++;
4456 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4457 	nvme_ns->bdev = bdev;
4458 
4459 	pthread_mutex_unlock(&bdev->mutex);
4460 
4461 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
4462 	spdk_for_each_channel(bdev,
4463 			      bdev_nvme_add_io_path,
4464 			      nvme_ns,
4465 			      bdev_nvme_add_io_path_done);
4466 
4467 	return 0;
4468 }
4469 
4470 static void
4471 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4472 {
4473 	struct spdk_nvme_ns	*ns;
4474 	struct nvme_bdev	*bdev;
4475 	int			rc = 0;
4476 
4477 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
4478 	if (!ns) {
4479 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
4480 		rc = -EINVAL;
4481 		goto done;
4482 	}
4483 
4484 	nvme_ns->ns = ns;
4485 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4486 
4487 	if (nvme_ctrlr->ana_log_page != NULL) {
4488 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
4489 	}
4490 
4491 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
4492 	if (bdev == NULL) {
4493 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
4494 	} else {
4495 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
4496 		if (rc == 0) {
4497 			return;
4498 		}
4499 	}
4500 done:
4501 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
4502 }
4503 
4504 static void
4505 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
4506 {
4507 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4508 
4509 	assert(nvme_ctrlr != NULL);
4510 
4511 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4512 
4513 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4514 
4515 	if (nvme_ns->bdev != NULL) {
4516 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4517 		return;
4518 	}
4519 
4520 	nvme_ns_free(nvme_ns);
4521 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4522 
4523 	nvme_ctrlr_release(nvme_ctrlr);
4524 }
4525 
4526 static void
4527 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
4528 {
4529 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4530 
4531 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4532 }
4533 
4534 static void
4535 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4536 {
4537 	struct nvme_bdev *bdev;
4538 
4539 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4540 
4541 	bdev = nvme_ns->bdev;
4542 	if (bdev != NULL) {
4543 		pthread_mutex_lock(&bdev->mutex);
4544 
4545 		assert(bdev->ref > 0);
4546 		bdev->ref--;
4547 		if (bdev->ref == 0) {
4548 			pthread_mutex_unlock(&bdev->mutex);
4549 
4550 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
4551 		} else {
4552 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
4553 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
4554 			 * and clear nvme_ns->bdev here.
4555 			 */
4556 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
4557 			nvme_ns->bdev = NULL;
4558 
4559 			pthread_mutex_unlock(&bdev->mutex);
4560 
4561 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
4562 			 * we call depopulate_namespace_done() to avoid use-after-free.
4563 			 */
4564 			spdk_for_each_channel(bdev,
4565 					      bdev_nvme_delete_io_path,
4566 					      nvme_ns,
4567 					      bdev_nvme_delete_io_path_done);
4568 			return;
4569 		}
4570 	}
4571 
4572 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4573 }
4574 
4575 static void
4576 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
4577 			       struct nvme_async_probe_ctx *ctx)
4578 {
4579 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
4580 	struct nvme_ns	*nvme_ns, *next;
4581 	struct spdk_nvme_ns	*ns;
4582 	struct nvme_bdev	*bdev;
4583 	uint32_t		nsid;
4584 	int			rc;
4585 	uint64_t		num_sectors;
4586 
4587 	if (ctx) {
4588 		/* Initialize this count to 1 to handle the populate functions
4589 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
4590 		 */
4591 		ctx->populates_in_progress = 1;
4592 	}
4593 
4594 	/* First loop over our existing namespaces and see if they have been
4595 	 * removed. */
4596 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4597 	while (nvme_ns != NULL) {
4598 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4599 
4600 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
4601 			/* NS is still there but attributes may have changed */
4602 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
4603 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
4604 			bdev = nvme_ns->bdev;
4605 			assert(bdev != NULL);
4606 			if (bdev->disk.blockcnt != num_sectors) {
4607 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
4608 					       nvme_ns->id,
4609 					       bdev->disk.name,
4610 					       bdev->disk.blockcnt,
4611 					       num_sectors);
4612 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
4613 				if (rc != 0) {
4614 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
4615 						    bdev->disk.name, rc);
4616 				}
4617 			}
4618 		} else {
4619 			/* Namespace was removed */
4620 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4621 		}
4622 
4623 		nvme_ns = next;
4624 	}
4625 
4626 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
4627 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4628 	while (nsid != 0) {
4629 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4630 
4631 		if (nvme_ns == NULL) {
4632 			/* Found a new one */
4633 			nvme_ns = nvme_ns_alloc();
4634 			if (nvme_ns == NULL) {
4635 				SPDK_ERRLOG("Failed to allocate namespace\n");
4636 				/* This just fails to attach the namespace. It may work on a future attempt. */
4637 				continue;
4638 			}
4639 
4640 			nvme_ns->id = nsid;
4641 			nvme_ns->ctrlr = nvme_ctrlr;
4642 
4643 			nvme_ns->bdev = NULL;
4644 
4645 			if (ctx) {
4646 				ctx->populates_in_progress++;
4647 			}
4648 			nvme_ns->probe_ctx = ctx;
4649 
4650 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4651 
4652 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
4653 		}
4654 
4655 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
4656 	}
4657 
4658 	if (ctx) {
4659 		/* Decrement this count now that the loop is over to account
4660 		 * for the one we started with.  If the count is then 0, we
4661 		 * know any populate_namespace functions completed immediately,
4662 		 * so we'll kick the callback here.
4663 		 */
4664 		ctx->populates_in_progress--;
4665 		if (ctx->populates_in_progress == 0) {
4666 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4667 		}
4668 	}
4669 
4670 }
4671 
4672 static void
4673 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
4674 {
4675 	struct nvme_ns *nvme_ns, *tmp;
4676 
4677 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
4678 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4679 	}
4680 }
4681 
4682 static uint32_t
4683 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
4684 {
4685 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4686 	const struct spdk_nvme_ctrlr_data *cdata;
4687 	uint32_t nsid, ns_count = 0;
4688 
4689 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4690 
4691 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4692 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
4693 		ns_count++;
4694 	}
4695 
4696 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
4697 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
4698 	       sizeof(uint32_t);
4699 }
4700 
4701 static int
4702 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
4703 			  void *cb_arg)
4704 {
4705 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4706 	struct nvme_ns *nvme_ns;
4707 	uint32_t i, nsid;
4708 
4709 	for (i = 0; i < desc->num_of_nsid; i++) {
4710 		nsid = desc->nsid[i];
4711 		if (nsid == 0) {
4712 			continue;
4713 		}
4714 
4715 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4716 
4717 		assert(nvme_ns != NULL);
4718 		if (nvme_ns == NULL) {
4719 			/* Target told us that an inactive namespace had an ANA change */
4720 			continue;
4721 		}
4722 
4723 		_nvme_ns_set_ana_state(nvme_ns, desc);
4724 	}
4725 
4726 	return 0;
4727 }
4728 
4729 static void
4730 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4731 {
4732 	struct nvme_ns *nvme_ns;
4733 
4734 	spdk_free(nvme_ctrlr->ana_log_page);
4735 	nvme_ctrlr->ana_log_page = NULL;
4736 
4737 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4738 	     nvme_ns != NULL;
4739 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
4740 		nvme_ns->ana_state_updating = false;
4741 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4742 	}
4743 }
4744 
4745 static void
4746 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
4747 {
4748 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4749 
4750 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
4751 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
4752 					     nvme_ctrlr);
4753 	} else {
4754 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
4755 	}
4756 
4757 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4758 
4759 	assert(nvme_ctrlr->ana_log_page_updating == true);
4760 	nvme_ctrlr->ana_log_page_updating = false;
4761 
4762 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
4763 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4764 
4765 		nvme_ctrlr_unregister(nvme_ctrlr);
4766 	} else {
4767 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4768 
4769 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
4770 	}
4771 }
4772 
4773 static int
4774 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4775 {
4776 	uint32_t ana_log_page_size;
4777 	int rc;
4778 
4779 	if (nvme_ctrlr->ana_log_page == NULL) {
4780 		return -EINVAL;
4781 	}
4782 
4783 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
4784 
4785 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
4786 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
4787 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
4788 		return -EINVAL;
4789 	}
4790 
4791 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4792 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
4793 	    nvme_ctrlr->ana_log_page_updating) {
4794 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4795 		return -EBUSY;
4796 	}
4797 
4798 	nvme_ctrlr->ana_log_page_updating = true;
4799 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4800 
4801 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
4802 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
4803 					      SPDK_NVME_GLOBAL_NS_TAG,
4804 					      nvme_ctrlr->ana_log_page,
4805 					      ana_log_page_size, 0,
4806 					      nvme_ctrlr_read_ana_log_page_done,
4807 					      nvme_ctrlr);
4808 	if (rc != 0) {
4809 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
4810 	}
4811 
4812 	return rc;
4813 }
4814 
4815 static void
4816 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
4817 {
4818 }
4819 
4820 struct bdev_nvme_set_preferred_path_ctx {
4821 	struct spdk_bdev_desc *desc;
4822 	struct nvme_ns *nvme_ns;
4823 	bdev_nvme_set_preferred_path_cb cb_fn;
4824 	void *cb_arg;
4825 };
4826 
4827 static void
4828 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
4829 {
4830 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4831 
4832 	assert(ctx != NULL);
4833 	assert(ctx->desc != NULL);
4834 	assert(ctx->cb_fn != NULL);
4835 
4836 	spdk_bdev_close(ctx->desc);
4837 
4838 	ctx->cb_fn(ctx->cb_arg, status);
4839 
4840 	free(ctx);
4841 }
4842 
4843 static void
4844 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
4845 {
4846 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4847 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4848 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4849 	struct nvme_io_path *io_path, *prev;
4850 
4851 	prev = NULL;
4852 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
4853 		if (io_path->nvme_ns == ctx->nvme_ns) {
4854 			break;
4855 		}
4856 		prev = io_path;
4857 	}
4858 
4859 	if (io_path != NULL) {
4860 		if (prev != NULL) {
4861 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
4862 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
4863 		}
4864 
4865 		/* We can set io_path to nbdev_ch->current_io_path directly here.
4866 		 * However, it needs to be conditional. To simplify the code,
4867 		 * just clear nbdev_ch->current_io_path and let find_io_path()
4868 		 * fill it.
4869 		 *
4870 		 * Automatic failback may be disabled. Hence even if the io_path is
4871 		 * already at the head, clear nbdev_ch->current_io_path.
4872 		 */
4873 		bdev_nvme_clear_current_io_path(nbdev_ch);
4874 	}
4875 
4876 	spdk_for_each_channel_continue(i, 0);
4877 }
4878 
4879 static struct nvme_ns *
4880 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
4881 {
4882 	struct nvme_ns *nvme_ns, *prev;
4883 	const struct spdk_nvme_ctrlr_data *cdata;
4884 
4885 	prev = NULL;
4886 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
4887 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4888 
4889 		if (cdata->cntlid == cntlid) {
4890 			break;
4891 		}
4892 		prev = nvme_ns;
4893 	}
4894 
4895 	if (nvme_ns != NULL && prev != NULL) {
4896 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
4897 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
4898 	}
4899 
4900 	return nvme_ns;
4901 }
4902 
4903 /* This function supports only multipath mode. There is only a single I/O path
4904  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
4905  * head of the I/O path list for each NVMe bdev channel.
4906  *
4907  * NVMe bdev channel may be acquired after completing this function. move the
4908  * matched namespace to the head of the namespace list for the NVMe bdev too.
4909  */
4910 void
4911 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
4912 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
4913 {
4914 	struct bdev_nvme_set_preferred_path_ctx *ctx;
4915 	struct spdk_bdev *bdev;
4916 	struct nvme_bdev *nbdev;
4917 	int rc = 0;
4918 
4919 	assert(cb_fn != NULL);
4920 
4921 	ctx = calloc(1, sizeof(*ctx));
4922 	if (ctx == NULL) {
4923 		SPDK_ERRLOG("Failed to alloc context.\n");
4924 		rc = -ENOMEM;
4925 		goto err_alloc;
4926 	}
4927 
4928 	ctx->cb_fn = cb_fn;
4929 	ctx->cb_arg = cb_arg;
4930 
4931 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
4932 	if (rc != 0) {
4933 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
4934 		goto err_open;
4935 	}
4936 
4937 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
4938 
4939 	if (bdev->module != &nvme_if) {
4940 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
4941 		rc = -ENODEV;
4942 		goto err_bdev;
4943 	}
4944 
4945 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
4946 
4947 	pthread_mutex_lock(&nbdev->mutex);
4948 
4949 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
4950 	if (ctx->nvme_ns == NULL) {
4951 		pthread_mutex_unlock(&nbdev->mutex);
4952 
4953 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
4954 		rc = -ENODEV;
4955 		goto err_bdev;
4956 	}
4957 
4958 	pthread_mutex_unlock(&nbdev->mutex);
4959 
4960 	spdk_for_each_channel(nbdev,
4961 			      _bdev_nvme_set_preferred_path,
4962 			      ctx,
4963 			      bdev_nvme_set_preferred_path_done);
4964 	return;
4965 
4966 err_bdev:
4967 	spdk_bdev_close(ctx->desc);
4968 err_open:
4969 	free(ctx);
4970 err_alloc:
4971 	cb_fn(cb_arg, rc);
4972 }
4973 
4974 struct bdev_nvme_set_multipath_policy_ctx {
4975 	struct spdk_bdev_desc *desc;
4976 	bdev_nvme_set_multipath_policy_cb cb_fn;
4977 	void *cb_arg;
4978 };
4979 
4980 static void
4981 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
4982 {
4983 	struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4984 
4985 	assert(ctx != NULL);
4986 	assert(ctx->desc != NULL);
4987 	assert(ctx->cb_fn != NULL);
4988 
4989 	spdk_bdev_close(ctx->desc);
4990 
4991 	ctx->cb_fn(ctx->cb_arg, status);
4992 
4993 	free(ctx);
4994 }
4995 
4996 static void
4997 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
4998 {
4999 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
5000 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
5001 	struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
5002 
5003 	nbdev_ch->mp_policy = nbdev->mp_policy;
5004 	nbdev_ch->mp_selector = nbdev->mp_selector;
5005 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
5006 	bdev_nvme_clear_current_io_path(nbdev_ch);
5007 
5008 	spdk_for_each_channel_continue(i, 0);
5009 }
5010 
5011 void
5012 bdev_nvme_set_multipath_policy(const char *name, enum bdev_nvme_multipath_policy policy,
5013 			       enum bdev_nvme_multipath_selector selector, uint32_t rr_min_io,
5014 			       bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
5015 {
5016 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
5017 	struct spdk_bdev *bdev;
5018 	struct nvme_bdev *nbdev;
5019 	int rc;
5020 
5021 	assert(cb_fn != NULL);
5022 
5023 	if (policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE && selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
5024 		if (rr_min_io == UINT32_MAX) {
5025 			rr_min_io = 1;
5026 		} else if (rr_min_io == 0) {
5027 			rc = -EINVAL;
5028 			goto exit;
5029 		}
5030 	} else if (rr_min_io != UINT32_MAX) {
5031 		rc = -EINVAL;
5032 		goto exit;
5033 	}
5034 
5035 	ctx = calloc(1, sizeof(*ctx));
5036 	if (ctx == NULL) {
5037 		SPDK_ERRLOG("Failed to alloc context.\n");
5038 		rc = -ENOMEM;
5039 		goto exit;
5040 	}
5041 
5042 	ctx->cb_fn = cb_fn;
5043 	ctx->cb_arg = cb_arg;
5044 
5045 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5046 	if (rc != 0) {
5047 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5048 		rc = -ENODEV;
5049 		goto err_open;
5050 	}
5051 
5052 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5053 	if (bdev->module != &nvme_if) {
5054 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5055 		rc = -ENODEV;
5056 		goto err_module;
5057 	}
5058 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5059 
5060 	pthread_mutex_lock(&nbdev->mutex);
5061 	nbdev->mp_policy = policy;
5062 	nbdev->mp_selector = selector;
5063 	nbdev->rr_min_io = rr_min_io;
5064 	pthread_mutex_unlock(&nbdev->mutex);
5065 
5066 	spdk_for_each_channel(nbdev,
5067 			      _bdev_nvme_set_multipath_policy,
5068 			      ctx,
5069 			      bdev_nvme_set_multipath_policy_done);
5070 	return;
5071 
5072 err_module:
5073 	spdk_bdev_close(ctx->desc);
5074 err_open:
5075 	free(ctx);
5076 exit:
5077 	cb_fn(cb_arg, rc);
5078 }
5079 
5080 static void
5081 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5082 {
5083 	struct nvme_ctrlr *nvme_ctrlr		= arg;
5084 	union spdk_nvme_async_event_completion	event;
5085 
5086 	if (spdk_nvme_cpl_is_error(cpl)) {
5087 		SPDK_WARNLOG("AER request execute failed\n");
5088 		return;
5089 	}
5090 
5091 	event.raw = cpl->cdw0;
5092 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5093 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
5094 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
5095 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5096 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
5097 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
5098 	}
5099 }
5100 
5101 static void
5102 free_nvme_async_probe_ctx(struct nvme_async_probe_ctx *ctx)
5103 {
5104 	spdk_keyring_put_key(ctx->drv_opts.tls_psk);
5105 	free(ctx);
5106 }
5107 
5108 static void
5109 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, int rc)
5110 {
5111 	if (ctx->cb_fn) {
5112 		ctx->cb_fn(ctx->cb_ctx, ctx->reported_bdevs, rc);
5113 	}
5114 
5115 	ctx->namespaces_populated = true;
5116 	if (ctx->probe_done) {
5117 		/* The probe was already completed, so we need to free the context
5118 		 * here.  This can happen for cases like OCSSD, where we need to
5119 		 * send additional commands to the SSD after attach.
5120 		 */
5121 		free_nvme_async_probe_ctx(ctx);
5122 	}
5123 }
5124 
5125 static void
5126 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
5127 		       struct nvme_async_probe_ctx *ctx)
5128 {
5129 	spdk_io_device_register(nvme_ctrlr,
5130 				bdev_nvme_create_ctrlr_channel_cb,
5131 				bdev_nvme_destroy_ctrlr_channel_cb,
5132 				sizeof(struct nvme_ctrlr_channel),
5133 				nvme_ctrlr->nbdev_ctrlr->name);
5134 
5135 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
5136 }
5137 
5138 static void
5139 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
5140 {
5141 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
5142 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
5143 
5144 	nvme_ctrlr->probe_ctx = NULL;
5145 
5146 	if (spdk_nvme_cpl_is_error(cpl)) {
5147 		nvme_ctrlr_delete(nvme_ctrlr);
5148 
5149 		if (ctx != NULL) {
5150 			ctx->reported_bdevs = 0;
5151 			populate_namespaces_cb(ctx, -1);
5152 		}
5153 		return;
5154 	}
5155 
5156 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5157 }
5158 
5159 static int
5160 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
5161 			     struct nvme_async_probe_ctx *ctx)
5162 {
5163 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5164 	const struct spdk_nvme_ctrlr_data *cdata;
5165 	uint32_t ana_log_page_size;
5166 
5167 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5168 
5169 	/* Set buffer size enough to include maximum number of allowed namespaces. */
5170 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5171 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
5172 			    sizeof(uint32_t);
5173 
5174 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
5175 						SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
5176 	if (nvme_ctrlr->ana_log_page == NULL) {
5177 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
5178 		return -ENXIO;
5179 	}
5180 
5181 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
5182 	 * Hence copy each descriptor to a temporary area when parsing it.
5183 	 *
5184 	 * Allocate a buffer whose size is as large as ANA log page buffer because
5185 	 * we do not know the size of a descriptor until actually reading it.
5186 	 */
5187 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
5188 	if (nvme_ctrlr->copied_ana_desc == NULL) {
5189 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
5190 		return -ENOMEM;
5191 	}
5192 
5193 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
5194 
5195 	nvme_ctrlr->probe_ctx = ctx;
5196 
5197 	/* Then, set the read size only to include the current active namespaces. */
5198 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5199 
5200 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5201 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5202 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5203 		return -EINVAL;
5204 	}
5205 
5206 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
5207 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5208 						SPDK_NVME_GLOBAL_NS_TAG,
5209 						nvme_ctrlr->ana_log_page,
5210 						ana_log_page_size, 0,
5211 						nvme_ctrlr_init_ana_log_page_done,
5212 						nvme_ctrlr);
5213 }
5214 
5215 /* hostnqn and subnqn were already verified before attaching a controller.
5216  * Hence check only the multipath capability and cntlid here.
5217  */
5218 static bool
5219 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
5220 {
5221 	struct nvme_ctrlr *tmp;
5222 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
5223 
5224 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5225 
5226 	if (!cdata->cmic.multi_ctrlr) {
5227 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5228 		return false;
5229 	}
5230 
5231 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
5232 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
5233 
5234 		if (!tmp_cdata->cmic.multi_ctrlr) {
5235 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5236 			return false;
5237 		}
5238 		if (cdata->cntlid == tmp_cdata->cntlid) {
5239 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
5240 			return false;
5241 		}
5242 	}
5243 
5244 	return true;
5245 }
5246 
5247 static int
5248 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
5249 {
5250 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5251 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5252 	int rc = 0;
5253 
5254 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5255 
5256 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5257 	if (nbdev_ctrlr != NULL) {
5258 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
5259 			rc = -EINVAL;
5260 			goto exit;
5261 		}
5262 	} else {
5263 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
5264 		if (nbdev_ctrlr == NULL) {
5265 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
5266 			rc = -ENOMEM;
5267 			goto exit;
5268 		}
5269 		nbdev_ctrlr->name = strdup(name);
5270 		if (nbdev_ctrlr->name == NULL) {
5271 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
5272 			free(nbdev_ctrlr);
5273 			goto exit;
5274 		}
5275 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
5276 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
5277 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
5278 	}
5279 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
5280 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
5281 exit:
5282 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5283 	return rc;
5284 }
5285 
5286 static int
5287 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
5288 		  const char *name,
5289 		  const struct spdk_nvme_transport_id *trid,
5290 		  struct nvme_async_probe_ctx *ctx)
5291 {
5292 	struct nvme_ctrlr *nvme_ctrlr;
5293 	struct nvme_path_id *path_id;
5294 	const struct spdk_nvme_ctrlr_data *cdata;
5295 	int rc;
5296 
5297 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
5298 	if (nvme_ctrlr == NULL) {
5299 		SPDK_ERRLOG("Failed to allocate device struct\n");
5300 		return -ENOMEM;
5301 	}
5302 
5303 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
5304 	if (rc != 0) {
5305 		free(nvme_ctrlr);
5306 		return rc;
5307 	}
5308 
5309 	TAILQ_INIT(&nvme_ctrlr->trids);
5310 	RB_INIT(&nvme_ctrlr->namespaces);
5311 
5312 	/* Get another reference to the key, so the first one can be released from probe_ctx */
5313 	if (ctx != NULL && ctx->drv_opts.tls_psk != NULL) {
5314 		nvme_ctrlr->psk = spdk_keyring_get_key(spdk_key_get_name(ctx->drv_opts.tls_psk));
5315 		if (nvme_ctrlr->psk == NULL) {
5316 			/* Could only happen if the key was removed in the meantime */
5317 			SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5318 				    spdk_key_get_name(ctx->drv_opts.tls_psk));
5319 			rc = -ENOKEY;
5320 			goto err;
5321 		}
5322 	}
5323 
5324 	path_id = calloc(1, sizeof(*path_id));
5325 	if (path_id == NULL) {
5326 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
5327 		rc = -ENOMEM;
5328 		goto err;
5329 	}
5330 
5331 	path_id->trid = *trid;
5332 	if (ctx != NULL) {
5333 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
5334 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
5335 	}
5336 	nvme_ctrlr->active_path_id = path_id;
5337 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
5338 
5339 	nvme_ctrlr->thread = spdk_get_thread();
5340 	nvme_ctrlr->ctrlr = ctrlr;
5341 	nvme_ctrlr->ref = 1;
5342 
5343 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
5344 		SPDK_ERRLOG("OCSSDs are not supported");
5345 		rc = -ENOTSUP;
5346 		goto err;
5347 	}
5348 
5349 	if (ctx != NULL) {
5350 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
5351 	} else {
5352 		bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
5353 	}
5354 
5355 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
5356 					  g_opts.nvme_adminq_poll_period_us);
5357 
5358 	if (g_opts.timeout_us > 0) {
5359 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
5360 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
5361 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
5362 					  g_opts.timeout_us : g_opts.timeout_admin_us;
5363 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
5364 				adm_timeout_us, timeout_cb, nvme_ctrlr);
5365 	}
5366 
5367 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
5368 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
5369 
5370 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
5371 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
5372 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
5373 	}
5374 
5375 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
5376 	if (rc != 0) {
5377 		goto err;
5378 	}
5379 
5380 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5381 
5382 	if (cdata->cmic.ana_reporting) {
5383 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
5384 		if (rc == 0) {
5385 			return 0;
5386 		}
5387 	} else {
5388 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5389 		return 0;
5390 	}
5391 
5392 err:
5393 	nvme_ctrlr_delete(nvme_ctrlr);
5394 	return rc;
5395 }
5396 
5397 void
5398 bdev_nvme_get_default_ctrlr_opts(struct nvme_ctrlr_opts *opts)
5399 {
5400 	opts->prchk_flags = 0;
5401 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
5402 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
5403 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
5404 }
5405 
5406 static void
5407 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5408 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
5409 {
5410 	char *name;
5411 
5412 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
5413 	if (!name) {
5414 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
5415 		return;
5416 	}
5417 
5418 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
5419 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
5420 	} else {
5421 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
5422 	}
5423 
5424 	free(name);
5425 }
5426 
5427 static void
5428 _nvme_ctrlr_destruct(void *ctx)
5429 {
5430 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5431 
5432 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
5433 	nvme_ctrlr_release(nvme_ctrlr);
5434 }
5435 
5436 static int
5437 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5438 {
5439 	struct nvme_probe_skip_entry *entry;
5440 
5441 	/* The controller's destruction was already started */
5442 	if (nvme_ctrlr->destruct) {
5443 		return -EALREADY;
5444 	}
5445 
5446 	if (!hotplug &&
5447 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
5448 		entry = calloc(1, sizeof(*entry));
5449 		if (!entry) {
5450 			return -ENOMEM;
5451 		}
5452 		entry->trid = nvme_ctrlr->active_path_id->trid;
5453 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
5454 	}
5455 
5456 	nvme_ctrlr->destruct = true;
5457 	return 0;
5458 }
5459 
5460 static int
5461 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5462 {
5463 	int rc;
5464 
5465 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5466 	rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug);
5467 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5468 
5469 	if (rc == 0) {
5470 		_nvme_ctrlr_destruct(nvme_ctrlr);
5471 	} else if (rc == -EALREADY) {
5472 		rc = 0;
5473 	}
5474 
5475 	return rc;
5476 }
5477 
5478 static void
5479 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
5480 {
5481 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
5482 
5483 	bdev_nvme_delete_ctrlr(nvme_ctrlr, true);
5484 }
5485 
5486 static int
5487 bdev_nvme_hotplug_probe(void *arg)
5488 {
5489 	if (g_hotplug_probe_ctx == NULL) {
5490 		spdk_poller_unregister(&g_hotplug_probe_poller);
5491 		return SPDK_POLLER_IDLE;
5492 	}
5493 
5494 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
5495 		g_hotplug_probe_ctx = NULL;
5496 		spdk_poller_unregister(&g_hotplug_probe_poller);
5497 	}
5498 
5499 	return SPDK_POLLER_BUSY;
5500 }
5501 
5502 static int
5503 bdev_nvme_hotplug(void *arg)
5504 {
5505 	struct spdk_nvme_transport_id trid_pcie;
5506 
5507 	if (g_hotplug_probe_ctx) {
5508 		return SPDK_POLLER_BUSY;
5509 	}
5510 
5511 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5512 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5513 
5514 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
5515 			      hotplug_probe_cb, attach_cb, NULL);
5516 
5517 	if (g_hotplug_probe_ctx) {
5518 		assert(g_hotplug_probe_poller == NULL);
5519 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
5520 	}
5521 
5522 	return SPDK_POLLER_BUSY;
5523 }
5524 
5525 void
5526 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
5527 {
5528 	*opts = g_opts;
5529 }
5530 
5531 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5532 		uint32_t reconnect_delay_sec,
5533 		uint32_t fast_io_fail_timeout_sec);
5534 
5535 static int
5536 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
5537 {
5538 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
5539 		/* Can't set timeout_admin_us without also setting timeout_us */
5540 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
5541 		return -EINVAL;
5542 	}
5543 
5544 	if (opts->bdev_retry_count < -1) {
5545 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
5546 		return -EINVAL;
5547 	}
5548 
5549 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
5550 			opts->reconnect_delay_sec,
5551 			opts->fast_io_fail_timeout_sec)) {
5552 		return -EINVAL;
5553 	}
5554 
5555 	return 0;
5556 }
5557 
5558 int
5559 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
5560 {
5561 	int ret;
5562 
5563 	ret = bdev_nvme_validate_opts(opts);
5564 	if (ret) {
5565 		SPDK_WARNLOG("Failed to set nvme opts.\n");
5566 		return ret;
5567 	}
5568 
5569 	if (g_bdev_nvme_init_thread != NULL) {
5570 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5571 			return -EPERM;
5572 		}
5573 	}
5574 
5575 	if (opts->rdma_srq_size != 0 ||
5576 	    opts->rdma_max_cq_size != 0 ||
5577 	    opts->rdma_cm_event_timeout_ms != 0) {
5578 		struct spdk_nvme_transport_opts drv_opts;
5579 
5580 		spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
5581 		if (opts->rdma_srq_size != 0) {
5582 			drv_opts.rdma_srq_size = opts->rdma_srq_size;
5583 		}
5584 		if (opts->rdma_max_cq_size != 0) {
5585 			drv_opts.rdma_max_cq_size = opts->rdma_max_cq_size;
5586 		}
5587 		if (opts->rdma_cm_event_timeout_ms != 0) {
5588 			drv_opts.rdma_cm_event_timeout_ms = opts->rdma_cm_event_timeout_ms;
5589 		}
5590 
5591 		ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
5592 		if (ret) {
5593 			SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
5594 			return ret;
5595 		}
5596 	}
5597 
5598 	g_opts = *opts;
5599 
5600 	return 0;
5601 }
5602 
5603 struct set_nvme_hotplug_ctx {
5604 	uint64_t period_us;
5605 	bool enabled;
5606 	spdk_msg_fn fn;
5607 	void *fn_ctx;
5608 };
5609 
5610 static void
5611 set_nvme_hotplug_period_cb(void *_ctx)
5612 {
5613 	struct set_nvme_hotplug_ctx *ctx = _ctx;
5614 
5615 	spdk_poller_unregister(&g_hotplug_poller);
5616 	if (ctx->enabled) {
5617 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
5618 	}
5619 
5620 	g_nvme_hotplug_poll_period_us = ctx->period_us;
5621 	g_nvme_hotplug_enabled = ctx->enabled;
5622 	if (ctx->fn) {
5623 		ctx->fn(ctx->fn_ctx);
5624 	}
5625 
5626 	free(ctx);
5627 }
5628 
5629 int
5630 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
5631 {
5632 	struct set_nvme_hotplug_ctx *ctx;
5633 
5634 	if (enabled == true && !spdk_process_is_primary()) {
5635 		return -EPERM;
5636 	}
5637 
5638 	ctx = calloc(1, sizeof(*ctx));
5639 	if (ctx == NULL) {
5640 		return -ENOMEM;
5641 	}
5642 
5643 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
5644 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
5645 	ctx->enabled = enabled;
5646 	ctx->fn = cb;
5647 	ctx->fn_ctx = cb_ctx;
5648 
5649 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
5650 	return 0;
5651 }
5652 
5653 static void
5654 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
5655 				    struct nvme_async_probe_ctx *ctx)
5656 {
5657 	struct nvme_ns	*nvme_ns;
5658 	struct nvme_bdev	*nvme_bdev;
5659 	size_t			j;
5660 
5661 	assert(nvme_ctrlr != NULL);
5662 
5663 	if (ctx->names == NULL) {
5664 		ctx->reported_bdevs = 0;
5665 		populate_namespaces_cb(ctx, 0);
5666 		return;
5667 	}
5668 
5669 	/*
5670 	 * Report the new bdevs that were created in this call.
5671 	 * There can be more than one bdev per NVMe controller.
5672 	 */
5673 	j = 0;
5674 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5675 	while (nvme_ns != NULL) {
5676 		nvme_bdev = nvme_ns->bdev;
5677 		if (j < ctx->max_bdevs) {
5678 			ctx->names[j] = nvme_bdev->disk.name;
5679 			j++;
5680 		} else {
5681 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
5682 				    ctx->max_bdevs);
5683 			ctx->reported_bdevs = 0;
5684 			populate_namespaces_cb(ctx, -ERANGE);
5685 			return;
5686 		}
5687 
5688 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5689 	}
5690 
5691 	ctx->reported_bdevs = j;
5692 	populate_namespaces_cb(ctx, 0);
5693 }
5694 
5695 static int
5696 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5697 			       struct spdk_nvme_ctrlr *new_ctrlr,
5698 			       struct spdk_nvme_transport_id *trid)
5699 {
5700 	struct nvme_path_id *tmp_trid;
5701 
5702 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5703 		SPDK_ERRLOG("PCIe failover is not supported.\n");
5704 		return -ENOTSUP;
5705 	}
5706 
5707 	/* Currently we only support failover to the same transport type. */
5708 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
5709 		SPDK_WARNLOG("Failover from trtype: %s to a different trtype: %s is not supported currently\n",
5710 			     spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
5711 			     spdk_nvme_transport_id_trtype_str(trid->trtype));
5712 		return -EINVAL;
5713 	}
5714 
5715 
5716 	/* Currently we only support failover to the same NQN. */
5717 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
5718 		SPDK_WARNLOG("Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
5719 			     nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
5720 		return -EINVAL;
5721 	}
5722 
5723 	/* Skip all the other checks if we've already registered this path. */
5724 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
5725 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
5726 			SPDK_WARNLOG("This path (traddr: %s subnqn: %s) is already registered\n", trid->traddr,
5727 				     trid->subnqn);
5728 			return -EEXIST;
5729 		}
5730 	}
5731 
5732 	return 0;
5733 }
5734 
5735 static int
5736 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
5737 				    struct spdk_nvme_ctrlr *new_ctrlr)
5738 {
5739 	struct nvme_ns *nvme_ns;
5740 	struct spdk_nvme_ns *new_ns;
5741 
5742 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5743 	while (nvme_ns != NULL) {
5744 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
5745 		assert(new_ns != NULL);
5746 
5747 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
5748 			return -EINVAL;
5749 		}
5750 
5751 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5752 	}
5753 
5754 	return 0;
5755 }
5756 
5757 static int
5758 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5759 			      struct spdk_nvme_transport_id *trid)
5760 {
5761 	struct nvme_path_id *active_id, *new_trid, *tmp_trid;
5762 
5763 	new_trid = calloc(1, sizeof(*new_trid));
5764 	if (new_trid == NULL) {
5765 		return -ENOMEM;
5766 	}
5767 	new_trid->trid = *trid;
5768 
5769 	active_id = nvme_ctrlr->active_path_id;
5770 	assert(active_id != NULL);
5771 	assert(active_id == TAILQ_FIRST(&nvme_ctrlr->trids));
5772 
5773 	/* Skip the active trid not to replace it until it is failed. */
5774 	tmp_trid = TAILQ_NEXT(active_id, link);
5775 	if (tmp_trid == NULL) {
5776 		goto add_tail;
5777 	}
5778 
5779 	/* It means the trid is faled if its last failed time is non-zero.
5780 	 * Insert the new alternate trid before any failed trid.
5781 	 */
5782 	TAILQ_FOREACH_FROM(tmp_trid, &nvme_ctrlr->trids, link) {
5783 		if (tmp_trid->last_failed_tsc != 0) {
5784 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
5785 			return 0;
5786 		}
5787 	}
5788 
5789 add_tail:
5790 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
5791 	return 0;
5792 }
5793 
5794 /* This is the case that a secondary path is added to an existing
5795  * nvme_ctrlr for failover. After checking if it can access the same
5796  * namespaces as the primary path, it is disconnected until failover occurs.
5797  */
5798 static int
5799 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5800 			     struct spdk_nvme_ctrlr *new_ctrlr,
5801 			     struct spdk_nvme_transport_id *trid)
5802 {
5803 	int rc;
5804 
5805 	assert(nvme_ctrlr != NULL);
5806 
5807 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5808 
5809 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
5810 	if (rc != 0) {
5811 		goto exit;
5812 	}
5813 
5814 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
5815 	if (rc != 0) {
5816 		goto exit;
5817 	}
5818 
5819 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
5820 
5821 exit:
5822 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5823 
5824 	spdk_nvme_detach(new_ctrlr);
5825 
5826 	return rc;
5827 }
5828 
5829 static void
5830 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5831 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
5832 {
5833 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5834 	struct nvme_async_probe_ctx *ctx;
5835 	int rc;
5836 
5837 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
5838 	ctx->ctrlr_attached = true;
5839 
5840 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
5841 	if (rc != 0) {
5842 		ctx->reported_bdevs = 0;
5843 		populate_namespaces_cb(ctx, rc);
5844 	}
5845 }
5846 
5847 static void
5848 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5849 			struct spdk_nvme_ctrlr *ctrlr,
5850 			const struct spdk_nvme_ctrlr_opts *opts)
5851 {
5852 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5853 	struct nvme_ctrlr *nvme_ctrlr;
5854 	struct nvme_async_probe_ctx *ctx;
5855 	int rc;
5856 
5857 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
5858 	ctx->ctrlr_attached = true;
5859 
5860 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
5861 	if (nvme_ctrlr) {
5862 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
5863 	} else {
5864 		rc = -ENODEV;
5865 	}
5866 
5867 	ctx->reported_bdevs = 0;
5868 	populate_namespaces_cb(ctx, rc);
5869 }
5870 
5871 static int
5872 bdev_nvme_async_poll(void *arg)
5873 {
5874 	struct nvme_async_probe_ctx	*ctx = arg;
5875 	int				rc;
5876 
5877 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
5878 	if (spdk_unlikely(rc != -EAGAIN)) {
5879 		ctx->probe_done = true;
5880 		spdk_poller_unregister(&ctx->poller);
5881 		if (!ctx->ctrlr_attached) {
5882 			/* The probe is done, but no controller was attached.
5883 			 * That means we had a failure, so report -EIO back to
5884 			 * the caller (usually the RPC). populate_namespaces_cb()
5885 			 * will take care of freeing the nvme_async_probe_ctx.
5886 			 */
5887 			ctx->reported_bdevs = 0;
5888 			populate_namespaces_cb(ctx, -EIO);
5889 		} else if (ctx->namespaces_populated) {
5890 			/* The namespaces for the attached controller were all
5891 			 * populated and the response was already sent to the
5892 			 * caller (usually the RPC).  So free the context here.
5893 			 */
5894 			free_nvme_async_probe_ctx(ctx);
5895 		}
5896 	}
5897 
5898 	return SPDK_POLLER_BUSY;
5899 }
5900 
5901 static bool
5902 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5903 		uint32_t reconnect_delay_sec,
5904 		uint32_t fast_io_fail_timeout_sec)
5905 {
5906 	if (ctrlr_loss_timeout_sec < -1) {
5907 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
5908 		return false;
5909 	} else if (ctrlr_loss_timeout_sec == -1) {
5910 		if (reconnect_delay_sec == 0) {
5911 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
5912 			return false;
5913 		} else if (fast_io_fail_timeout_sec != 0 &&
5914 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
5915 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
5916 			return false;
5917 		}
5918 	} else if (ctrlr_loss_timeout_sec != 0) {
5919 		if (reconnect_delay_sec == 0) {
5920 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
5921 			return false;
5922 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
5923 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
5924 			return false;
5925 		} else if (fast_io_fail_timeout_sec != 0) {
5926 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
5927 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
5928 				return false;
5929 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
5930 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
5931 				return false;
5932 			}
5933 		}
5934 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
5935 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
5936 		return false;
5937 	}
5938 
5939 	return true;
5940 }
5941 
5942 static int
5943 bdev_nvme_load_psk(const char *fname, char *buf, size_t bufsz)
5944 {
5945 	FILE *psk_file;
5946 	struct stat statbuf;
5947 	int rc;
5948 #define TCP_PSK_INVALID_PERMISSIONS 0177
5949 
5950 	if (stat(fname, &statbuf) != 0) {
5951 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
5952 		return -EACCES;
5953 	}
5954 
5955 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
5956 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
5957 		return -EPERM;
5958 	}
5959 	if ((size_t)statbuf.st_size >= bufsz) {
5960 		SPDK_ERRLOG("Invalid PSK: too long\n");
5961 		return -EINVAL;
5962 	}
5963 	psk_file = fopen(fname, "r");
5964 	if (psk_file == NULL) {
5965 		SPDK_ERRLOG("Could not open PSK file\n");
5966 		return -EINVAL;
5967 	}
5968 
5969 	memset(buf, 0, bufsz);
5970 	rc = fread(buf, 1, statbuf.st_size, psk_file);
5971 	if (rc != statbuf.st_size) {
5972 		SPDK_ERRLOG("Failed to read PSK\n");
5973 		fclose(psk_file);
5974 		return -EINVAL;
5975 	}
5976 
5977 	fclose(psk_file);
5978 	return 0;
5979 }
5980 
5981 int
5982 bdev_nvme_create(struct spdk_nvme_transport_id *trid,
5983 		 const char *base_name,
5984 		 const char **names,
5985 		 uint32_t count,
5986 		 spdk_bdev_create_nvme_fn cb_fn,
5987 		 void *cb_ctx,
5988 		 struct spdk_nvme_ctrlr_opts *drv_opts,
5989 		 struct nvme_ctrlr_opts *bdev_opts,
5990 		 bool multipath)
5991 {
5992 	struct nvme_probe_skip_entry *entry, *tmp;
5993 	struct nvme_async_probe_ctx *ctx;
5994 	spdk_nvme_attach_cb attach_cb;
5995 	int rc, len;
5996 
5997 	/* TODO expand this check to include both the host and target TRIDs.
5998 	 * Only if both are the same should we fail.
5999 	 */
6000 	if (nvme_ctrlr_get(trid) != NULL) {
6001 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
6002 		return -EEXIST;
6003 	}
6004 
6005 	len = strnlen(base_name, SPDK_CONTROLLER_NAME_MAX);
6006 
6007 	if (len == 0 || len == SPDK_CONTROLLER_NAME_MAX) {
6008 		SPDK_ERRLOG("controller name must be between 1 and %d characters\n", SPDK_CONTROLLER_NAME_MAX - 1);
6009 		return -EINVAL;
6010 	}
6011 
6012 	if (bdev_opts != NULL &&
6013 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
6014 			    bdev_opts->reconnect_delay_sec,
6015 			    bdev_opts->fast_io_fail_timeout_sec)) {
6016 		return -EINVAL;
6017 	}
6018 
6019 	ctx = calloc(1, sizeof(*ctx));
6020 	if (!ctx) {
6021 		return -ENOMEM;
6022 	}
6023 	ctx->base_name = base_name;
6024 	ctx->names = names;
6025 	ctx->max_bdevs = count;
6026 	ctx->cb_fn = cb_fn;
6027 	ctx->cb_ctx = cb_ctx;
6028 	ctx->trid = *trid;
6029 
6030 	if (bdev_opts) {
6031 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6032 	} else {
6033 		bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
6034 	}
6035 
6036 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6037 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
6038 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
6039 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
6040 				free(entry);
6041 				break;
6042 			}
6043 		}
6044 	}
6045 
6046 	if (drv_opts) {
6047 		memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6048 	} else {
6049 		spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->drv_opts, sizeof(ctx->drv_opts));
6050 	}
6051 
6052 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
6053 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
6054 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
6055 	ctx->drv_opts.disable_read_ana_log_page = true;
6056 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
6057 
6058 	if (ctx->bdev_opts.psk[0] != '\0') {
6059 		/* Try to use the keyring first */
6060 		ctx->drv_opts.tls_psk = spdk_keyring_get_key(ctx->bdev_opts.psk);
6061 		if (ctx->drv_opts.tls_psk == NULL) {
6062 			rc = bdev_nvme_load_psk(ctx->bdev_opts.psk,
6063 						ctx->drv_opts.psk, sizeof(ctx->drv_opts.psk));
6064 			if (rc != 0) {
6065 				SPDK_ERRLOG("Could not load PSK from %s\n", ctx->bdev_opts.psk);
6066 				free_nvme_async_probe_ctx(ctx);
6067 				return rc;
6068 			}
6069 		}
6070 	}
6071 
6072 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
6073 		attach_cb = connect_attach_cb;
6074 	} else {
6075 		attach_cb = connect_set_failover_cb;
6076 	}
6077 
6078 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
6079 	if (ctx->probe_ctx == NULL) {
6080 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
6081 		free_nvme_async_probe_ctx(ctx);
6082 		return -ENODEV;
6083 	}
6084 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
6085 
6086 	return 0;
6087 }
6088 
6089 struct bdev_nvme_delete_ctx {
6090 	char                        *name;
6091 	struct nvme_path_id         path_id;
6092 	bdev_nvme_delete_done_fn    delete_done;
6093 	void                        *delete_done_ctx;
6094 	uint64_t                    timeout_ticks;
6095 	struct spdk_poller          *poller;
6096 };
6097 
6098 static void
6099 free_bdev_nvme_delete_ctx(struct bdev_nvme_delete_ctx *ctx)
6100 {
6101 	if (ctx != NULL) {
6102 		free(ctx->name);
6103 		free(ctx);
6104 	}
6105 }
6106 
6107 static bool
6108 nvme_path_id_compare(struct nvme_path_id *p, const struct nvme_path_id *path_id)
6109 {
6110 	if (path_id->trid.trtype != 0) {
6111 		if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
6112 			if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
6113 				return false;
6114 			}
6115 		} else {
6116 			if (path_id->trid.trtype != p->trid.trtype) {
6117 				return false;
6118 			}
6119 		}
6120 	}
6121 
6122 	if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
6123 		if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
6124 			return false;
6125 		}
6126 	}
6127 
6128 	if (path_id->trid.adrfam != 0) {
6129 		if (path_id->trid.adrfam != p->trid.adrfam) {
6130 			return false;
6131 		}
6132 	}
6133 
6134 	if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
6135 		if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
6136 			return false;
6137 		}
6138 	}
6139 
6140 	if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
6141 		if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
6142 			return false;
6143 		}
6144 	}
6145 
6146 	if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
6147 		if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
6148 			return false;
6149 		}
6150 	}
6151 
6152 	if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
6153 		if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
6154 			return false;
6155 		}
6156 	}
6157 
6158 	return true;
6159 }
6160 
6161 static bool
6162 nvme_path_id_exists(const char *name, const struct nvme_path_id *path_id)
6163 {
6164 	struct nvme_bdev_ctrlr  *nbdev_ctrlr;
6165 	struct nvme_ctrlr       *ctrlr;
6166 	struct nvme_path_id     *p;
6167 
6168 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6169 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6170 	if (!nbdev_ctrlr) {
6171 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6172 		return false;
6173 	}
6174 
6175 	TAILQ_FOREACH(ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6176 		pthread_mutex_lock(&ctrlr->mutex);
6177 		TAILQ_FOREACH(p, &ctrlr->trids, link) {
6178 			if (nvme_path_id_compare(p, path_id)) {
6179 				pthread_mutex_unlock(&ctrlr->mutex);
6180 				pthread_mutex_unlock(&g_bdev_nvme_mutex);
6181 				return true;
6182 			}
6183 		}
6184 		pthread_mutex_unlock(&ctrlr->mutex);
6185 	}
6186 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6187 
6188 	return false;
6189 }
6190 
6191 static int
6192 bdev_nvme_delete_complete_poll(void *arg)
6193 {
6194 	struct bdev_nvme_delete_ctx     *ctx = arg;
6195 	int                             rc = 0;
6196 
6197 	if (nvme_path_id_exists(ctx->name, &ctx->path_id)) {
6198 		if (ctx->timeout_ticks > spdk_get_ticks()) {
6199 			return SPDK_POLLER_BUSY;
6200 		}
6201 
6202 		SPDK_ERRLOG("NVMe path '%s' still exists after delete\n", ctx->name);
6203 		rc = -ETIMEDOUT;
6204 	}
6205 
6206 	spdk_poller_unregister(&ctx->poller);
6207 
6208 	ctx->delete_done(ctx->delete_done_ctx, rc);
6209 	free_bdev_nvme_delete_ctx(ctx);
6210 
6211 	return SPDK_POLLER_BUSY;
6212 }
6213 
6214 static int
6215 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id)
6216 {
6217 	struct nvme_path_id	*p, *t;
6218 	spdk_msg_fn		msg_fn;
6219 	int			rc = -ENXIO;
6220 
6221 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6222 
6223 	TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
6224 		if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) {
6225 			break;
6226 		}
6227 
6228 		if (!nvme_path_id_compare(p, path_id)) {
6229 			continue;
6230 		}
6231 
6232 		/* We are not using the specified path. */
6233 		TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
6234 		free(p);
6235 		rc = 0;
6236 	}
6237 
6238 	if (p == NULL || !nvme_path_id_compare(p, path_id)) {
6239 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
6240 		return rc;
6241 	}
6242 
6243 	/* If we made it here, then this path is a match! Now we need to remove it. */
6244 
6245 	/* This is the active path in use right now. The active path is always the first in the list. */
6246 	assert(p == nvme_ctrlr->active_path_id);
6247 
6248 	if (!TAILQ_NEXT(p, link)) {
6249 		/* The current path is the only path. */
6250 		msg_fn = _nvme_ctrlr_destruct;
6251 		rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false);
6252 	} else {
6253 		/* There is an alternative path. */
6254 		msg_fn = _bdev_nvme_reset_ctrlr;
6255 		rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, true);
6256 	}
6257 
6258 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6259 
6260 	if (rc == 0) {
6261 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
6262 	} else if (rc == -EALREADY) {
6263 		rc = 0;
6264 	}
6265 
6266 	return rc;
6267 }
6268 
6269 int
6270 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id,
6271 		 bdev_nvme_delete_done_fn delete_done, void *delete_done_ctx)
6272 {
6273 	struct nvme_bdev_ctrlr		*nbdev_ctrlr;
6274 	struct nvme_ctrlr		*nvme_ctrlr, *tmp_nvme_ctrlr;
6275 	struct bdev_nvme_delete_ctx     *ctx = NULL;
6276 	int				rc = -ENXIO, _rc;
6277 
6278 	if (name == NULL || path_id == NULL) {
6279 		rc = -EINVAL;
6280 		goto exit;
6281 	}
6282 
6283 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6284 
6285 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6286 	if (nbdev_ctrlr == NULL) {
6287 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6288 
6289 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
6290 		rc = -ENODEV;
6291 		goto exit;
6292 	}
6293 
6294 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
6295 		_rc = _bdev_nvme_delete(nvme_ctrlr, path_id);
6296 		if (_rc < 0 && _rc != -ENXIO) {
6297 			pthread_mutex_unlock(&g_bdev_nvme_mutex);
6298 			rc = _rc;
6299 			goto exit;
6300 		} else if (_rc == 0) {
6301 			/* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr
6302 			 * was deleted successfully. To remember the successful deletion,
6303 			 * overwrite rc only if _rc is zero.
6304 			 */
6305 			rc = 0;
6306 		}
6307 	}
6308 
6309 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6310 
6311 	if (rc != 0 || delete_done == NULL) {
6312 		goto exit;
6313 	}
6314 
6315 	ctx = calloc(1, sizeof(*ctx));
6316 	if (ctx == NULL) {
6317 		SPDK_ERRLOG("Failed to allocate context for bdev_nvme_delete\n");
6318 		rc = -ENOMEM;
6319 		goto exit;
6320 	}
6321 
6322 	ctx->name = strdup(name);
6323 	if (ctx->name == NULL) {
6324 		SPDK_ERRLOG("Failed to copy controller name for deletion\n");
6325 		rc = -ENOMEM;
6326 		goto exit;
6327 	}
6328 
6329 	ctx->delete_done = delete_done;
6330 	ctx->delete_done_ctx = delete_done_ctx;
6331 	ctx->path_id = *path_id;
6332 	ctx->timeout_ticks = spdk_get_ticks() + 10 * spdk_get_ticks_hz();
6333 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_delete_complete_poll, ctx, 1000);
6334 	if (ctx->poller == NULL) {
6335 		SPDK_ERRLOG("Failed to register bdev_nvme_delete poller\n");
6336 		rc = -ENOMEM;
6337 		goto exit;
6338 	}
6339 
6340 exit:
6341 	if (rc != 0) {
6342 		free_bdev_nvme_delete_ctx(ctx);
6343 	}
6344 
6345 	return rc;
6346 }
6347 
6348 #define DISCOVERY_INFOLOG(ctx, format, ...) \
6349 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6350 
6351 #define DISCOVERY_ERRLOG(ctx, format, ...) \
6352 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6353 
6354 struct discovery_entry_ctx {
6355 	char						name[128];
6356 	struct spdk_nvme_transport_id			trid;
6357 	struct spdk_nvme_ctrlr_opts			drv_opts;
6358 	struct spdk_nvmf_discovery_log_page_entry	entry;
6359 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
6360 	struct discovery_ctx				*ctx;
6361 };
6362 
6363 struct discovery_ctx {
6364 	char					*name;
6365 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
6366 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
6367 	void					*cb_ctx;
6368 	struct spdk_nvme_probe_ctx		*probe_ctx;
6369 	struct spdk_nvme_detach_ctx		*detach_ctx;
6370 	struct spdk_nvme_ctrlr			*ctrlr;
6371 	struct spdk_nvme_transport_id		trid;
6372 	struct discovery_entry_ctx		*entry_ctx_in_use;
6373 	struct spdk_poller			*poller;
6374 	struct spdk_nvme_ctrlr_opts		drv_opts;
6375 	struct nvme_ctrlr_opts			bdev_opts;
6376 	struct spdk_nvmf_discovery_log_page	*log_page;
6377 	TAILQ_ENTRY(discovery_ctx)		tailq;
6378 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
6379 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
6380 	int					rc;
6381 	bool					wait_for_attach;
6382 	uint64_t				timeout_ticks;
6383 	/* Denotes that the discovery service is being started. We're waiting
6384 	 * for the initial connection to the discovery controller to be
6385 	 * established and attach discovered NVM ctrlrs.
6386 	 */
6387 	bool					initializing;
6388 	/* Denotes if a discovery is currently in progress for this context.
6389 	 * That includes connecting to newly discovered subsystems.  Used to
6390 	 * ensure we do not start a new discovery until an existing one is
6391 	 * complete.
6392 	 */
6393 	bool					in_progress;
6394 
6395 	/* Denotes if another discovery is needed after the one in progress
6396 	 * completes.  Set when we receive an AER completion while a discovery
6397 	 * is already in progress.
6398 	 */
6399 	bool					pending;
6400 
6401 	/* Signal to the discovery context poller that it should stop the
6402 	 * discovery service, including detaching from the current discovery
6403 	 * controller.
6404 	 */
6405 	bool					stop;
6406 
6407 	struct spdk_thread			*calling_thread;
6408 	uint32_t				index;
6409 	uint32_t				attach_in_progress;
6410 	char					*hostnqn;
6411 
6412 	/* Denotes if the discovery service was started by the mdns discovery.
6413 	 */
6414 	bool					from_mdns_discovery_service;
6415 };
6416 
6417 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
6418 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
6419 
6420 static void get_discovery_log_page(struct discovery_ctx *ctx);
6421 
6422 static void
6423 free_discovery_ctx(struct discovery_ctx *ctx)
6424 {
6425 	free(ctx->log_page);
6426 	free(ctx->hostnqn);
6427 	free(ctx->name);
6428 	free(ctx);
6429 }
6430 
6431 static void
6432 discovery_complete(struct discovery_ctx *ctx)
6433 {
6434 	ctx->initializing = false;
6435 	ctx->in_progress = false;
6436 	if (ctx->pending) {
6437 		ctx->pending = false;
6438 		get_discovery_log_page(ctx);
6439 	}
6440 }
6441 
6442 static void
6443 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
6444 			       struct spdk_nvmf_discovery_log_page_entry *entry)
6445 {
6446 	char *space;
6447 
6448 	trid->trtype = entry->trtype;
6449 	trid->adrfam = entry->adrfam;
6450 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
6451 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
6452 	/* Because the source buffer (entry->subnqn) is longer than trid->subnqn, and
6453 	 * before call to this function trid->subnqn is zeroed out, we need
6454 	 * to copy sizeof(trid->subnqn) minus one byte to make sure the last character
6455 	 * remains 0. Then we can shorten the string (replace ' ' with 0) if required
6456 	 */
6457 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn) - 1);
6458 
6459 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
6460 	 * But the log page entries typically pad them with spaces, not zeroes.
6461 	 * So add a NULL terminator to each of these fields at the appropriate
6462 	 * location.
6463 	 */
6464 	space = strchr(trid->traddr, ' ');
6465 	if (space) {
6466 		*space = 0;
6467 	}
6468 	space = strchr(trid->trsvcid, ' ');
6469 	if (space) {
6470 		*space = 0;
6471 	}
6472 	space = strchr(trid->subnqn, ' ');
6473 	if (space) {
6474 		*space = 0;
6475 	}
6476 }
6477 
6478 static void
6479 _stop_discovery(void *_ctx)
6480 {
6481 	struct discovery_ctx *ctx = _ctx;
6482 
6483 	if (ctx->attach_in_progress > 0) {
6484 		spdk_thread_send_msg(spdk_get_thread(), _stop_discovery, ctx);
6485 		return;
6486 	}
6487 
6488 	ctx->stop = true;
6489 
6490 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
6491 		struct discovery_entry_ctx *entry_ctx;
6492 		struct nvme_path_id path = {};
6493 
6494 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
6495 		path.trid = entry_ctx->trid;
6496 		bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6497 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6498 		free(entry_ctx);
6499 	}
6500 
6501 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
6502 		struct discovery_entry_ctx *entry_ctx;
6503 
6504 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6505 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6506 		free(entry_ctx);
6507 	}
6508 
6509 	free(ctx->entry_ctx_in_use);
6510 	ctx->entry_ctx_in_use = NULL;
6511 }
6512 
6513 static void
6514 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6515 {
6516 	ctx->stop_cb_fn = cb_fn;
6517 	ctx->cb_ctx = cb_ctx;
6518 
6519 	if (ctx->attach_in_progress > 0) {
6520 		DISCOVERY_INFOLOG(ctx, "stopping discovery with attach_in_progress: %"PRIu32"\n",
6521 				  ctx->attach_in_progress);
6522 	}
6523 
6524 	_stop_discovery(ctx);
6525 }
6526 
6527 static void
6528 remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr)
6529 {
6530 	struct discovery_ctx *d_ctx;
6531 	struct nvme_path_id *path_id;
6532 	struct spdk_nvme_transport_id trid = {};
6533 	struct discovery_entry_ctx *entry_ctx, *tmp;
6534 
6535 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
6536 
6537 	TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6538 		TAILQ_FOREACH_SAFE(entry_ctx, &d_ctx->nvm_entry_ctxs, tailq, tmp) {
6539 			build_trid_from_log_page_entry(&trid, &entry_ctx->entry);
6540 			if (spdk_nvme_transport_id_compare(&trid, &path_id->trid) != 0) {
6541 				continue;
6542 			}
6543 
6544 			TAILQ_REMOVE(&d_ctx->nvm_entry_ctxs, entry_ctx, tailq);
6545 			free(entry_ctx);
6546 			DISCOVERY_INFOLOG(d_ctx, "Remove discovery entry: %s:%s:%s\n",
6547 					  trid.subnqn, trid.traddr, trid.trsvcid);
6548 
6549 			/* Fail discovery ctrlr to force reattach attempt */
6550 			spdk_nvme_ctrlr_fail(d_ctx->ctrlr);
6551 		}
6552 	}
6553 }
6554 
6555 static void
6556 discovery_remove_controllers(struct discovery_ctx *ctx)
6557 {
6558 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
6559 	struct discovery_entry_ctx *entry_ctx, *tmp;
6560 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6561 	struct spdk_nvme_transport_id old_trid = {};
6562 	uint64_t numrec, i;
6563 	bool found;
6564 
6565 	numrec = from_le64(&log_page->numrec);
6566 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
6567 		found = false;
6568 		old_entry = &entry_ctx->entry;
6569 		build_trid_from_log_page_entry(&old_trid, old_entry);
6570 		for (i = 0; i < numrec; i++) {
6571 			new_entry = &log_page->entries[i];
6572 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
6573 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
6574 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6575 				found = true;
6576 				break;
6577 			}
6578 		}
6579 		if (!found) {
6580 			struct nvme_path_id path = {};
6581 
6582 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
6583 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6584 
6585 			path.trid = entry_ctx->trid;
6586 			bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6587 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6588 			free(entry_ctx);
6589 		}
6590 	}
6591 	free(log_page);
6592 	ctx->log_page = NULL;
6593 	discovery_complete(ctx);
6594 }
6595 
6596 static void
6597 complete_discovery_start(struct discovery_ctx *ctx, int status)
6598 {
6599 	ctx->timeout_ticks = 0;
6600 	ctx->rc = status;
6601 	if (ctx->start_cb_fn) {
6602 		ctx->start_cb_fn(ctx->cb_ctx, status);
6603 		ctx->start_cb_fn = NULL;
6604 		ctx->cb_ctx = NULL;
6605 	}
6606 }
6607 
6608 static void
6609 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
6610 {
6611 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
6612 	struct discovery_ctx *ctx = entry_ctx->ctx;
6613 
6614 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
6615 	ctx->attach_in_progress--;
6616 	if (ctx->attach_in_progress == 0) {
6617 		complete_discovery_start(ctx, ctx->rc);
6618 		if (ctx->initializing && ctx->rc != 0) {
6619 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
6620 			stop_discovery(ctx, NULL, ctx->cb_ctx);
6621 		} else {
6622 			discovery_remove_controllers(ctx);
6623 		}
6624 	}
6625 }
6626 
6627 static struct discovery_entry_ctx *
6628 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
6629 {
6630 	struct discovery_entry_ctx *new_ctx;
6631 
6632 	new_ctx = calloc(1, sizeof(*new_ctx));
6633 	if (new_ctx == NULL) {
6634 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6635 		return NULL;
6636 	}
6637 
6638 	new_ctx->ctx = ctx;
6639 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
6640 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6641 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6642 	return new_ctx;
6643 }
6644 
6645 static void
6646 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
6647 		      struct spdk_nvmf_discovery_log_page *log_page)
6648 {
6649 	struct discovery_ctx *ctx = cb_arg;
6650 	struct discovery_entry_ctx *entry_ctx, *tmp;
6651 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6652 	uint64_t numrec, i;
6653 	bool found;
6654 
6655 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
6656 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6657 		return;
6658 	}
6659 
6660 	ctx->log_page = log_page;
6661 	assert(ctx->attach_in_progress == 0);
6662 	numrec = from_le64(&log_page->numrec);
6663 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
6664 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6665 		free(entry_ctx);
6666 	}
6667 	for (i = 0; i < numrec; i++) {
6668 		found = false;
6669 		new_entry = &log_page->entries[i];
6670 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY_CURRENT ||
6671 		    new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
6672 			struct discovery_entry_ctx *new_ctx;
6673 			struct spdk_nvme_transport_id trid = {};
6674 
6675 			build_trid_from_log_page_entry(&trid, new_entry);
6676 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
6677 			if (new_ctx == NULL) {
6678 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6679 				break;
6680 			}
6681 
6682 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
6683 			continue;
6684 		}
6685 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
6686 			old_entry = &entry_ctx->entry;
6687 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
6688 				found = true;
6689 				break;
6690 			}
6691 		}
6692 		if (!found) {
6693 			struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx;
6694 			struct discovery_ctx *d_ctx;
6695 
6696 			TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6697 				TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) {
6698 					if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
6699 						    sizeof(new_entry->subnqn))) {
6700 						break;
6701 					}
6702 				}
6703 				if (subnqn_ctx) {
6704 					break;
6705 				}
6706 			}
6707 
6708 			new_ctx = calloc(1, sizeof(*new_ctx));
6709 			if (new_ctx == NULL) {
6710 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6711 				break;
6712 			}
6713 
6714 			new_ctx->ctx = ctx;
6715 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
6716 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
6717 			if (subnqn_ctx) {
6718 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
6719 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
6720 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6721 						  new_ctx->name);
6722 			} else {
6723 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
6724 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
6725 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6726 						  new_ctx->name);
6727 			}
6728 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6729 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6730 			rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
6731 					      discovery_attach_controller_done, new_ctx,
6732 					      &new_ctx->drv_opts, &ctx->bdev_opts, true);
6733 			if (rc == 0) {
6734 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
6735 				ctx->attach_in_progress++;
6736 			} else {
6737 				DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
6738 			}
6739 		}
6740 	}
6741 
6742 	if (ctx->attach_in_progress == 0) {
6743 		discovery_remove_controllers(ctx);
6744 	}
6745 }
6746 
6747 static void
6748 get_discovery_log_page(struct discovery_ctx *ctx)
6749 {
6750 	int rc;
6751 
6752 	assert(ctx->in_progress == false);
6753 	ctx->in_progress = true;
6754 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
6755 	if (rc != 0) {
6756 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6757 	}
6758 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
6759 }
6760 
6761 static void
6762 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
6763 {
6764 	struct discovery_ctx *ctx = arg;
6765 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
6766 
6767 	if (spdk_nvme_cpl_is_error(cpl)) {
6768 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
6769 		return;
6770 	}
6771 
6772 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
6773 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
6774 		return;
6775 	}
6776 
6777 	DISCOVERY_INFOLOG(ctx, "got aer\n");
6778 	if (ctx->in_progress) {
6779 		ctx->pending = true;
6780 		return;
6781 	}
6782 
6783 	get_discovery_log_page(ctx);
6784 }
6785 
6786 static void
6787 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6788 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
6789 {
6790 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6791 	struct discovery_ctx *ctx;
6792 
6793 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
6794 
6795 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
6796 	ctx->probe_ctx = NULL;
6797 	ctx->ctrlr = ctrlr;
6798 
6799 	if (ctx->rc != 0) {
6800 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
6801 				 ctx->rc);
6802 		return;
6803 	}
6804 
6805 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
6806 }
6807 
6808 static int
6809 discovery_poller(void *arg)
6810 {
6811 	struct discovery_ctx *ctx = arg;
6812 	struct spdk_nvme_transport_id *trid;
6813 	int rc;
6814 
6815 	if (ctx->detach_ctx) {
6816 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
6817 		if (rc != -EAGAIN) {
6818 			ctx->detach_ctx = NULL;
6819 			ctx->ctrlr = NULL;
6820 		}
6821 	} else if (ctx->stop) {
6822 		if (ctx->ctrlr != NULL) {
6823 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
6824 			if (rc == 0) {
6825 				return SPDK_POLLER_BUSY;
6826 			}
6827 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
6828 		}
6829 		spdk_poller_unregister(&ctx->poller);
6830 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
6831 		assert(ctx->start_cb_fn == NULL);
6832 		if (ctx->stop_cb_fn != NULL) {
6833 			ctx->stop_cb_fn(ctx->cb_ctx);
6834 		}
6835 		free_discovery_ctx(ctx);
6836 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
6837 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6838 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
6839 			assert(ctx->initializing);
6840 			spdk_poller_unregister(&ctx->poller);
6841 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
6842 			complete_discovery_start(ctx, -ETIMEDOUT);
6843 			stop_discovery(ctx, NULL, NULL);
6844 			free_discovery_ctx(ctx);
6845 			return SPDK_POLLER_BUSY;
6846 		}
6847 
6848 		assert(ctx->entry_ctx_in_use == NULL);
6849 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6850 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6851 		trid = &ctx->entry_ctx_in_use->trid;
6852 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
6853 		if (ctx->probe_ctx) {
6854 			spdk_poller_unregister(&ctx->poller);
6855 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
6856 		} else {
6857 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
6858 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6859 			ctx->entry_ctx_in_use = NULL;
6860 		}
6861 	} else if (ctx->probe_ctx) {
6862 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6863 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
6864 			complete_discovery_start(ctx, -ETIMEDOUT);
6865 			return SPDK_POLLER_BUSY;
6866 		}
6867 
6868 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
6869 		if (rc != -EAGAIN) {
6870 			if (ctx->rc != 0) {
6871 				assert(ctx->initializing);
6872 				stop_discovery(ctx, NULL, ctx->cb_ctx);
6873 			} else {
6874 				assert(rc == 0);
6875 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
6876 				ctx->rc = rc;
6877 				get_discovery_log_page(ctx);
6878 			}
6879 		}
6880 	} else {
6881 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6882 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
6883 			complete_discovery_start(ctx, -ETIMEDOUT);
6884 			/* We need to wait until all NVM ctrlrs are attached before we stop the
6885 			 * discovery service to make sure we don't detach a ctrlr that is still
6886 			 * being attached.
6887 			 */
6888 			if (ctx->attach_in_progress == 0) {
6889 				stop_discovery(ctx, NULL, ctx->cb_ctx);
6890 				return SPDK_POLLER_BUSY;
6891 			}
6892 		}
6893 
6894 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
6895 		if (rc < 0) {
6896 			spdk_poller_unregister(&ctx->poller);
6897 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
6898 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6899 			ctx->entry_ctx_in_use = NULL;
6900 
6901 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
6902 			if (rc != 0) {
6903 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
6904 				ctx->ctrlr = NULL;
6905 			}
6906 		}
6907 	}
6908 
6909 	return SPDK_POLLER_BUSY;
6910 }
6911 
6912 static void
6913 start_discovery_poller(void *arg)
6914 {
6915 	struct discovery_ctx *ctx = arg;
6916 
6917 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
6918 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
6919 }
6920 
6921 int
6922 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
6923 			  const char *base_name,
6924 			  struct spdk_nvme_ctrlr_opts *drv_opts,
6925 			  struct nvme_ctrlr_opts *bdev_opts,
6926 			  uint64_t attach_timeout,
6927 			  bool from_mdns,
6928 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
6929 {
6930 	struct discovery_ctx *ctx;
6931 	struct discovery_entry_ctx *discovery_entry_ctx;
6932 
6933 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
6934 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6935 		if (strcmp(ctx->name, base_name) == 0) {
6936 			return -EEXIST;
6937 		}
6938 
6939 		if (ctx->entry_ctx_in_use != NULL) {
6940 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
6941 				return -EEXIST;
6942 			}
6943 		}
6944 
6945 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
6946 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
6947 				return -EEXIST;
6948 			}
6949 		}
6950 	}
6951 
6952 	ctx = calloc(1, sizeof(*ctx));
6953 	if (ctx == NULL) {
6954 		return -ENOMEM;
6955 	}
6956 
6957 	ctx->name = strdup(base_name);
6958 	if (ctx->name == NULL) {
6959 		free_discovery_ctx(ctx);
6960 		return -ENOMEM;
6961 	}
6962 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6963 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6964 	ctx->from_mdns_discovery_service = from_mdns;
6965 	ctx->bdev_opts.from_discovery_service = true;
6966 	ctx->calling_thread = spdk_get_thread();
6967 	ctx->start_cb_fn = cb_fn;
6968 	ctx->cb_ctx = cb_ctx;
6969 	ctx->initializing = true;
6970 	if (ctx->start_cb_fn) {
6971 		/* We can use this when dumping json to denote if this RPC parameter
6972 		 * was specified or not.
6973 		 */
6974 		ctx->wait_for_attach = true;
6975 	}
6976 	if (attach_timeout != 0) {
6977 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
6978 				     spdk_get_ticks_hz() / 1000ull;
6979 	}
6980 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
6981 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
6982 	memcpy(&ctx->trid, trid, sizeof(*trid));
6983 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
6984 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
6985 	if (ctx->hostnqn == NULL) {
6986 		free_discovery_ctx(ctx);
6987 		return -ENOMEM;
6988 	}
6989 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
6990 	if (discovery_entry_ctx == NULL) {
6991 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6992 		free_discovery_ctx(ctx);
6993 		return -ENOMEM;
6994 	}
6995 
6996 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
6997 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
6998 	return 0;
6999 }
7000 
7001 int
7002 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
7003 {
7004 	struct discovery_ctx *ctx;
7005 
7006 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7007 		if (strcmp(name, ctx->name) == 0) {
7008 			if (ctx->stop) {
7009 				return -EALREADY;
7010 			}
7011 			/* If we're still starting the discovery service and ->rc is non-zero, we're
7012 			 * going to stop it as soon as we can
7013 			 */
7014 			if (ctx->initializing && ctx->rc != 0) {
7015 				return -EALREADY;
7016 			}
7017 			stop_discovery(ctx, cb_fn, cb_ctx);
7018 			return 0;
7019 		}
7020 	}
7021 
7022 	return -ENOENT;
7023 }
7024 
7025 static int
7026 bdev_nvme_library_init(void)
7027 {
7028 	g_bdev_nvme_init_thread = spdk_get_thread();
7029 
7030 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
7031 				bdev_nvme_destroy_poll_group_cb,
7032 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
7033 
7034 	return 0;
7035 }
7036 
7037 static void
7038 bdev_nvme_fini_destruct_ctrlrs(void)
7039 {
7040 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
7041 	struct nvme_ctrlr *nvme_ctrlr;
7042 
7043 	pthread_mutex_lock(&g_bdev_nvme_mutex);
7044 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
7045 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
7046 			pthread_mutex_lock(&nvme_ctrlr->mutex);
7047 			if (nvme_ctrlr->destruct) {
7048 				/* This controller's destruction was already started
7049 				 * before the application started shutting down
7050 				 */
7051 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
7052 				continue;
7053 			}
7054 			nvme_ctrlr->destruct = true;
7055 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
7056 
7057 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
7058 					     nvme_ctrlr);
7059 		}
7060 	}
7061 
7062 	g_bdev_nvme_module_finish = true;
7063 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
7064 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
7065 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
7066 		spdk_bdev_module_fini_done();
7067 		return;
7068 	}
7069 
7070 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
7071 }
7072 
7073 static void
7074 check_discovery_fini(void *arg)
7075 {
7076 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7077 		bdev_nvme_fini_destruct_ctrlrs();
7078 	}
7079 }
7080 
7081 static void
7082 bdev_nvme_library_fini(void)
7083 {
7084 	struct nvme_probe_skip_entry *entry, *entry_tmp;
7085 	struct discovery_ctx *ctx;
7086 
7087 	spdk_poller_unregister(&g_hotplug_poller);
7088 	free(g_hotplug_probe_ctx);
7089 	g_hotplug_probe_ctx = NULL;
7090 
7091 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
7092 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
7093 		free(entry);
7094 	}
7095 
7096 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
7097 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7098 		bdev_nvme_fini_destruct_ctrlrs();
7099 	} else {
7100 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7101 			stop_discovery(ctx, check_discovery_fini, NULL);
7102 		}
7103 	}
7104 }
7105 
7106 static void
7107 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
7108 {
7109 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7110 	struct spdk_bdev *bdev = bdev_io->bdev;
7111 	struct spdk_dif_ctx dif_ctx;
7112 	struct spdk_dif_error err_blk = {};
7113 	int rc;
7114 	struct spdk_dif_ctx_init_ext_opts dif_opts;
7115 
7116 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
7117 	dif_opts.dif_pi_format = SPDK_DIF_PI_FORMAT_16;
7118 	rc = spdk_dif_ctx_init(&dif_ctx,
7119 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
7120 			       bdev->dif_is_head_of_md, bdev->dif_type,
7121 			       bdev_io->u.bdev.dif_check_flags,
7122 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0, &dif_opts);
7123 	if (rc != 0) {
7124 		SPDK_ERRLOG("Initialization of DIF context failed\n");
7125 		return;
7126 	}
7127 
7128 	if (bdev->md_interleave) {
7129 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7130 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7131 	} else {
7132 		struct iovec md_iov = {
7133 			.iov_base	= bdev_io->u.bdev.md_buf,
7134 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
7135 		};
7136 
7137 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7138 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7139 	}
7140 
7141 	if (rc != 0) {
7142 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
7143 			    err_blk.err_type, err_blk.err_offset);
7144 	} else {
7145 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
7146 	}
7147 }
7148 
7149 static void
7150 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7151 {
7152 	struct nvme_bdev_io *bio = ref;
7153 
7154 	if (spdk_nvme_cpl_is_success(cpl)) {
7155 		/* Run PI verification for read data buffer. */
7156 		bdev_nvme_verify_pi_error(bio);
7157 	}
7158 
7159 	/* Return original completion status */
7160 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7161 }
7162 
7163 static void
7164 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7165 {
7166 	struct nvme_bdev_io *bio = ref;
7167 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7168 	int ret;
7169 
7170 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7171 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
7172 			    cpl->status.sct, cpl->status.sc);
7173 
7174 		/* Save completion status to use after verifying PI error. */
7175 		bio->cpl = *cpl;
7176 
7177 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
7178 			/* Read without PI checking to verify PI error. */
7179 			ret = bdev_nvme_no_pi_readv(bio,
7180 						    bdev_io->u.bdev.iovs,
7181 						    bdev_io->u.bdev.iovcnt,
7182 						    bdev_io->u.bdev.md_buf,
7183 						    bdev_io->u.bdev.num_blocks,
7184 						    bdev_io->u.bdev.offset_blocks);
7185 			if (ret == 0) {
7186 				return;
7187 			}
7188 		}
7189 	}
7190 
7191 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7192 }
7193 
7194 static void
7195 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7196 {
7197 	struct nvme_bdev_io *bio = ref;
7198 
7199 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7200 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
7201 			    cpl->status.sct, cpl->status.sc);
7202 		/* Run PI verification for write data buffer if PI error is detected. */
7203 		bdev_nvme_verify_pi_error(bio);
7204 	}
7205 
7206 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7207 }
7208 
7209 static void
7210 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7211 {
7212 	struct nvme_bdev_io *bio = ref;
7213 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7214 
7215 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
7216 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
7217 	 */
7218 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
7219 
7220 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7221 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
7222 			    cpl->status.sct, cpl->status.sc);
7223 		/* Run PI verification for zone append data buffer if PI error is detected. */
7224 		bdev_nvme_verify_pi_error(bio);
7225 	}
7226 
7227 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7228 }
7229 
7230 static void
7231 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7232 {
7233 	struct nvme_bdev_io *bio = ref;
7234 
7235 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7236 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
7237 			    cpl->status.sct, cpl->status.sc);
7238 		/* Run PI verification for compare data buffer if PI error is detected. */
7239 		bdev_nvme_verify_pi_error(bio);
7240 	}
7241 
7242 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7243 }
7244 
7245 static void
7246 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7247 {
7248 	struct nvme_bdev_io *bio = ref;
7249 
7250 	/* Compare operation completion */
7251 	if (!bio->first_fused_completed) {
7252 		/* Save compare result for write callback */
7253 		bio->cpl = *cpl;
7254 		bio->first_fused_completed = true;
7255 		return;
7256 	}
7257 
7258 	/* Write operation completion */
7259 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
7260 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
7261 		 * complete the IO with the compare operation's status.
7262 		 */
7263 		if (!spdk_nvme_cpl_is_error(cpl)) {
7264 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
7265 		}
7266 
7267 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7268 	} else {
7269 		bdev_nvme_io_complete_nvme_status(bio, cpl);
7270 	}
7271 }
7272 
7273 static void
7274 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
7275 {
7276 	struct nvme_bdev_io *bio = ref;
7277 
7278 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7279 }
7280 
7281 static int
7282 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
7283 {
7284 	switch (desc->zt) {
7285 	case SPDK_NVME_ZONE_TYPE_SEQWR:
7286 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
7287 		break;
7288 	default:
7289 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
7290 		return -EIO;
7291 	}
7292 
7293 	switch (desc->zs) {
7294 	case SPDK_NVME_ZONE_STATE_EMPTY:
7295 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
7296 		break;
7297 	case SPDK_NVME_ZONE_STATE_IOPEN:
7298 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
7299 		break;
7300 	case SPDK_NVME_ZONE_STATE_EOPEN:
7301 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
7302 		break;
7303 	case SPDK_NVME_ZONE_STATE_CLOSED:
7304 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
7305 		break;
7306 	case SPDK_NVME_ZONE_STATE_RONLY:
7307 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
7308 		break;
7309 	case SPDK_NVME_ZONE_STATE_FULL:
7310 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
7311 		break;
7312 	case SPDK_NVME_ZONE_STATE_OFFLINE:
7313 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
7314 		break;
7315 	default:
7316 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
7317 		return -EIO;
7318 	}
7319 
7320 	info->zone_id = desc->zslba;
7321 	info->write_pointer = desc->wp;
7322 	info->capacity = desc->zcap;
7323 
7324 	return 0;
7325 }
7326 
7327 static void
7328 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
7329 {
7330 	struct nvme_bdev_io *bio = ref;
7331 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7332 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
7333 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
7334 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
7335 	uint64_t max_zones_per_buf, i;
7336 	uint32_t zone_report_bufsize;
7337 	struct spdk_nvme_ns *ns;
7338 	struct spdk_nvme_qpair *qpair;
7339 	int ret;
7340 
7341 	if (spdk_nvme_cpl_is_error(cpl)) {
7342 		goto out_complete_io_nvme_cpl;
7343 	}
7344 
7345 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
7346 		ret = -ENXIO;
7347 		goto out_complete_io_ret;
7348 	}
7349 
7350 	ns = bio->io_path->nvme_ns->ns;
7351 	qpair = bio->io_path->qpair->qpair;
7352 
7353 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7354 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
7355 			    sizeof(bio->zone_report_buf->descs[0]);
7356 
7357 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
7358 		ret = -EINVAL;
7359 		goto out_complete_io_ret;
7360 	}
7361 
7362 	if (!bio->zone_report_buf->nr_zones) {
7363 		ret = -EINVAL;
7364 		goto out_complete_io_ret;
7365 	}
7366 
7367 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
7368 		ret = fill_zone_from_report(&info[bio->handled_zones],
7369 					    &bio->zone_report_buf->descs[i]);
7370 		if (ret) {
7371 			goto out_complete_io_ret;
7372 		}
7373 		bio->handled_zones++;
7374 	}
7375 
7376 	if (bio->handled_zones < zones_to_copy) {
7377 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7378 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
7379 
7380 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
7381 		ret = spdk_nvme_zns_report_zones(ns, qpair,
7382 						 bio->zone_report_buf, zone_report_bufsize,
7383 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
7384 						 bdev_nvme_get_zone_info_done, bio);
7385 		if (!ret) {
7386 			return;
7387 		} else {
7388 			goto out_complete_io_ret;
7389 		}
7390 	}
7391 
7392 out_complete_io_nvme_cpl:
7393 	free(bio->zone_report_buf);
7394 	bio->zone_report_buf = NULL;
7395 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7396 	return;
7397 
7398 out_complete_io_ret:
7399 	free(bio->zone_report_buf);
7400 	bio->zone_report_buf = NULL;
7401 	bdev_nvme_io_complete(bio, ret);
7402 }
7403 
7404 static void
7405 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
7406 {
7407 	struct nvme_bdev_io *bio = ref;
7408 
7409 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7410 }
7411 
7412 static void
7413 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
7414 {
7415 	struct nvme_bdev_io *bio = ctx;
7416 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7417 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
7418 
7419 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
7420 
7421 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
7422 }
7423 
7424 static void
7425 bdev_nvme_abort_complete(void *ctx)
7426 {
7427 	struct nvme_bdev_io *bio = ctx;
7428 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7429 
7430 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
7431 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
7432 	} else {
7433 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
7434 	}
7435 }
7436 
7437 static void
7438 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
7439 {
7440 	struct nvme_bdev_io *bio = ref;
7441 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7442 
7443 	bio->cpl = *cpl;
7444 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_nvme_abort_complete, bio);
7445 }
7446 
7447 static void
7448 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
7449 {
7450 	struct nvme_bdev_io *bio = ref;
7451 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7452 
7453 	bio->cpl = *cpl;
7454 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
7455 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
7456 }
7457 
7458 static void
7459 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
7460 {
7461 	struct nvme_bdev_io *bio = ref;
7462 	struct iovec *iov;
7463 
7464 	bio->iov_offset = sgl_offset;
7465 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
7466 		iov = &bio->iovs[bio->iovpos];
7467 		if (bio->iov_offset < iov->iov_len) {
7468 			break;
7469 		}
7470 
7471 		bio->iov_offset -= iov->iov_len;
7472 	}
7473 }
7474 
7475 static int
7476 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
7477 {
7478 	struct nvme_bdev_io *bio = ref;
7479 	struct iovec *iov;
7480 
7481 	assert(bio->iovpos < bio->iovcnt);
7482 
7483 	iov = &bio->iovs[bio->iovpos];
7484 
7485 	*address = iov->iov_base;
7486 	*length = iov->iov_len;
7487 
7488 	if (bio->iov_offset) {
7489 		assert(bio->iov_offset <= iov->iov_len);
7490 		*address += bio->iov_offset;
7491 		*length -= bio->iov_offset;
7492 	}
7493 
7494 	bio->iov_offset += *length;
7495 	if (bio->iov_offset == iov->iov_len) {
7496 		bio->iovpos++;
7497 		bio->iov_offset = 0;
7498 	}
7499 
7500 	return 0;
7501 }
7502 
7503 static void
7504 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
7505 {
7506 	struct nvme_bdev_io *bio = ref;
7507 	struct iovec *iov;
7508 
7509 	bio->fused_iov_offset = sgl_offset;
7510 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
7511 		iov = &bio->fused_iovs[bio->fused_iovpos];
7512 		if (bio->fused_iov_offset < iov->iov_len) {
7513 			break;
7514 		}
7515 
7516 		bio->fused_iov_offset -= iov->iov_len;
7517 	}
7518 }
7519 
7520 static int
7521 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
7522 {
7523 	struct nvme_bdev_io *bio = ref;
7524 	struct iovec *iov;
7525 
7526 	assert(bio->fused_iovpos < bio->fused_iovcnt);
7527 
7528 	iov = &bio->fused_iovs[bio->fused_iovpos];
7529 
7530 	*address = iov->iov_base;
7531 	*length = iov->iov_len;
7532 
7533 	if (bio->fused_iov_offset) {
7534 		assert(bio->fused_iov_offset <= iov->iov_len);
7535 		*address += bio->fused_iov_offset;
7536 		*length -= bio->fused_iov_offset;
7537 	}
7538 
7539 	bio->fused_iov_offset += *length;
7540 	if (bio->fused_iov_offset == iov->iov_len) {
7541 		bio->fused_iovpos++;
7542 		bio->fused_iov_offset = 0;
7543 	}
7544 
7545 	return 0;
7546 }
7547 
7548 static int
7549 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7550 		      void *md, uint64_t lba_count, uint64_t lba)
7551 {
7552 	int rc;
7553 
7554 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
7555 		      lba_count, lba);
7556 
7557 	bio->iovs = iov;
7558 	bio->iovcnt = iovcnt;
7559 	bio->iovpos = 0;
7560 	bio->iov_offset = 0;
7561 
7562 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
7563 					    bio->io_path->qpair->qpair,
7564 					    lba, lba_count,
7565 					    bdev_nvme_no_pi_readv_done, bio, 0,
7566 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7567 					    md, 0, 0);
7568 
7569 	if (rc != 0 && rc != -ENOMEM) {
7570 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
7571 	}
7572 	return rc;
7573 }
7574 
7575 static int
7576 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7577 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7578 		struct spdk_memory_domain *domain, void *domain_ctx,
7579 		struct spdk_accel_sequence *seq)
7580 {
7581 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7582 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7583 	int rc;
7584 
7585 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7586 		      lba_count, lba);
7587 
7588 	bio->iovs = iov;
7589 	bio->iovcnt = iovcnt;
7590 	bio->iovpos = 0;
7591 	bio->iov_offset = 0;
7592 
7593 	if (domain != NULL || seq != NULL) {
7594 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7595 		bio->ext_opts.memory_domain = domain;
7596 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7597 		bio->ext_opts.io_flags = flags;
7598 		bio->ext_opts.metadata = md;
7599 		bio->ext_opts.accel_sequence = seq;
7600 
7601 		if (iovcnt == 1) {
7602 			rc = spdk_nvme_ns_cmd_read_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_readv_done,
7603 						       bio, &bio->ext_opts);
7604 		} else {
7605 			rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
7606 							bdev_nvme_readv_done, bio,
7607 							bdev_nvme_queued_reset_sgl,
7608 							bdev_nvme_queued_next_sge,
7609 							&bio->ext_opts);
7610 		}
7611 	} else if (iovcnt == 1) {
7612 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base,
7613 						   md, lba, lba_count, bdev_nvme_readv_done,
7614 						   bio, flags, 0, 0);
7615 	} else {
7616 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
7617 						    bdev_nvme_readv_done, bio, flags,
7618 						    bdev_nvme_queued_reset_sgl,
7619 						    bdev_nvme_queued_next_sge, md, 0, 0);
7620 	}
7621 
7622 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7623 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
7624 	}
7625 	return rc;
7626 }
7627 
7628 static int
7629 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7630 		 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7631 		 struct spdk_memory_domain *domain, void *domain_ctx,
7632 		 struct spdk_accel_sequence *seq)
7633 {
7634 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7635 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7636 	int rc;
7637 
7638 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7639 		      lba_count, lba);
7640 
7641 	bio->iovs = iov;
7642 	bio->iovcnt = iovcnt;
7643 	bio->iovpos = 0;
7644 	bio->iov_offset = 0;
7645 
7646 	if (domain != NULL || seq != NULL) {
7647 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7648 		bio->ext_opts.memory_domain = domain;
7649 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7650 		bio->ext_opts.io_flags = flags;
7651 		bio->ext_opts.metadata = md;
7652 		bio->ext_opts.accel_sequence = seq;
7653 
7654 		if (iovcnt == 1) {
7655 			rc = spdk_nvme_ns_cmd_write_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_writev_done,
7656 							bio, &bio->ext_opts);
7657 		} else {
7658 			rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
7659 							 bdev_nvme_writev_done, bio,
7660 							 bdev_nvme_queued_reset_sgl,
7661 							 bdev_nvme_queued_next_sge,
7662 							 &bio->ext_opts);
7663 		}
7664 	} else if (iovcnt == 1) {
7665 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base,
7666 						    md, lba, lba_count, bdev_nvme_writev_done,
7667 						    bio, flags, 0, 0);
7668 	} else {
7669 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7670 						     bdev_nvme_writev_done, bio, flags,
7671 						     bdev_nvme_queued_reset_sgl,
7672 						     bdev_nvme_queued_next_sge, md, 0, 0);
7673 	}
7674 
7675 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7676 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
7677 	}
7678 	return rc;
7679 }
7680 
7681 static int
7682 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7683 		       void *md, uint64_t lba_count, uint64_t zslba,
7684 		       uint32_t flags)
7685 {
7686 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7687 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7688 	int rc;
7689 
7690 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
7691 		      lba_count, zslba);
7692 
7693 	bio->iovs = iov;
7694 	bio->iovcnt = iovcnt;
7695 	bio->iovpos = 0;
7696 	bio->iov_offset = 0;
7697 
7698 	if (iovcnt == 1) {
7699 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
7700 						       lba_count,
7701 						       bdev_nvme_zone_appendv_done, bio,
7702 						       flags,
7703 						       0, 0);
7704 	} else {
7705 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
7706 							bdev_nvme_zone_appendv_done, bio, flags,
7707 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7708 							md, 0, 0);
7709 	}
7710 
7711 	if (rc != 0 && rc != -ENOMEM) {
7712 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
7713 	}
7714 	return rc;
7715 }
7716 
7717 static int
7718 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7719 		   void *md, uint64_t lba_count, uint64_t lba,
7720 		   uint32_t flags)
7721 {
7722 	int rc;
7723 
7724 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7725 		      lba_count, lba);
7726 
7727 	bio->iovs = iov;
7728 	bio->iovcnt = iovcnt;
7729 	bio->iovpos = 0;
7730 	bio->iov_offset = 0;
7731 
7732 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
7733 					       bio->io_path->qpair->qpair,
7734 					       lba, lba_count,
7735 					       bdev_nvme_comparev_done, bio, flags,
7736 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7737 					       md, 0, 0);
7738 
7739 	if (rc != 0 && rc != -ENOMEM) {
7740 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
7741 	}
7742 	return rc;
7743 }
7744 
7745 static int
7746 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
7747 			      struct iovec *write_iov, int write_iovcnt,
7748 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
7749 {
7750 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7751 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7752 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7753 	int rc;
7754 
7755 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7756 		      lba_count, lba);
7757 
7758 	bio->iovs = cmp_iov;
7759 	bio->iovcnt = cmp_iovcnt;
7760 	bio->iovpos = 0;
7761 	bio->iov_offset = 0;
7762 	bio->fused_iovs = write_iov;
7763 	bio->fused_iovcnt = write_iovcnt;
7764 	bio->fused_iovpos = 0;
7765 	bio->fused_iov_offset = 0;
7766 
7767 	if (bdev_io->num_retries == 0) {
7768 		bio->first_fused_submitted = false;
7769 		bio->first_fused_completed = false;
7770 	}
7771 
7772 	if (!bio->first_fused_submitted) {
7773 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7774 		memset(&bio->cpl, 0, sizeof(bio->cpl));
7775 
7776 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
7777 						       bdev_nvme_comparev_and_writev_done, bio, flags,
7778 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
7779 		if (rc == 0) {
7780 			bio->first_fused_submitted = true;
7781 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7782 		} else {
7783 			if (rc != -ENOMEM) {
7784 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
7785 			}
7786 			return rc;
7787 		}
7788 	}
7789 
7790 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
7791 
7792 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7793 					     bdev_nvme_comparev_and_writev_done, bio, flags,
7794 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
7795 	if (rc != 0 && rc != -ENOMEM) {
7796 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
7797 		rc = 0;
7798 	}
7799 
7800 	return rc;
7801 }
7802 
7803 static int
7804 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
7805 {
7806 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
7807 	struct spdk_nvme_dsm_range *range;
7808 	uint64_t offset, remaining;
7809 	uint64_t num_ranges_u64;
7810 	uint16_t num_ranges;
7811 	int rc;
7812 
7813 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
7814 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7815 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
7816 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
7817 		return -EINVAL;
7818 	}
7819 	num_ranges = (uint16_t)num_ranges_u64;
7820 
7821 	offset = offset_blocks;
7822 	remaining = num_blocks;
7823 	range = &dsm_ranges[0];
7824 
7825 	/* Fill max-size ranges until the remaining blocks fit into one range */
7826 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
7827 		range->attributes.raw = 0;
7828 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7829 		range->starting_lba = offset;
7830 
7831 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7832 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7833 		range++;
7834 	}
7835 
7836 	/* Final range describes the remaining blocks */
7837 	range->attributes.raw = 0;
7838 	range->length = remaining;
7839 	range->starting_lba = offset;
7840 
7841 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
7842 			bio->io_path->qpair->qpair,
7843 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
7844 			dsm_ranges, num_ranges,
7845 			bdev_nvme_queued_done, bio);
7846 
7847 	return rc;
7848 }
7849 
7850 static int
7851 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
7852 {
7853 	if (num_blocks > UINT16_MAX + 1) {
7854 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
7855 		return -EINVAL;
7856 	}
7857 
7858 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
7859 					     bio->io_path->qpair->qpair,
7860 					     offset_blocks, num_blocks,
7861 					     bdev_nvme_queued_done, bio,
7862 					     0);
7863 }
7864 
7865 static int
7866 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
7867 			struct spdk_bdev_zone_info *info)
7868 {
7869 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7870 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7871 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7872 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7873 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
7874 
7875 	if (zone_id % zone_size != 0) {
7876 		return -EINVAL;
7877 	}
7878 
7879 	if (num_zones > total_zones || !num_zones) {
7880 		return -EINVAL;
7881 	}
7882 
7883 	assert(!bio->zone_report_buf);
7884 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
7885 	if (!bio->zone_report_buf) {
7886 		return -ENOMEM;
7887 	}
7888 
7889 	bio->handled_zones = 0;
7890 
7891 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
7892 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
7893 					  bdev_nvme_get_zone_info_done, bio);
7894 }
7895 
7896 static int
7897 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
7898 			  enum spdk_bdev_zone_action action)
7899 {
7900 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7901 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7902 
7903 	switch (action) {
7904 	case SPDK_BDEV_ZONE_CLOSE:
7905 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
7906 						bdev_nvme_zone_management_done, bio);
7907 	case SPDK_BDEV_ZONE_FINISH:
7908 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
7909 						 bdev_nvme_zone_management_done, bio);
7910 	case SPDK_BDEV_ZONE_OPEN:
7911 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
7912 					       bdev_nvme_zone_management_done, bio);
7913 	case SPDK_BDEV_ZONE_RESET:
7914 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
7915 						bdev_nvme_zone_management_done, bio);
7916 	case SPDK_BDEV_ZONE_OFFLINE:
7917 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
7918 						  bdev_nvme_zone_management_done, bio);
7919 	default:
7920 		return -EINVAL;
7921 	}
7922 }
7923 
7924 static void
7925 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
7926 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
7927 {
7928 	struct nvme_io_path *io_path;
7929 	struct nvme_ctrlr *nvme_ctrlr;
7930 	uint32_t max_xfer_size;
7931 	int rc = -ENXIO;
7932 
7933 	/* Choose the first ctrlr which is not failed. */
7934 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
7935 		nvme_ctrlr = io_path->qpair->ctrlr;
7936 
7937 		/* We should skip any unavailable nvme_ctrlr rather than checking
7938 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
7939 		 */
7940 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
7941 			continue;
7942 		}
7943 
7944 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
7945 
7946 		if (nbytes > max_xfer_size) {
7947 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7948 			rc = -EINVAL;
7949 			goto err;
7950 		}
7951 
7952 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
7953 						   bdev_nvme_admin_passthru_done, bio);
7954 		if (rc == 0) {
7955 			return;
7956 		}
7957 	}
7958 
7959 err:
7960 	bdev_nvme_admin_complete(bio, rc);
7961 }
7962 
7963 static int
7964 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
7965 		      void *buf, size_t nbytes)
7966 {
7967 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7968 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7969 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
7970 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
7971 
7972 	if (nbytes > max_xfer_size) {
7973 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7974 		return -EINVAL;
7975 	}
7976 
7977 	/*
7978 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
7979 	 * so fill it out automatically.
7980 	 */
7981 	cmd->nsid = spdk_nvme_ns_get_id(ns);
7982 
7983 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
7984 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
7985 }
7986 
7987 static int
7988 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
7989 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
7990 {
7991 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7992 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7993 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
7994 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
7995 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
7996 
7997 	if (nbytes > max_xfer_size) {
7998 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7999 		return -EINVAL;
8000 	}
8001 
8002 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8003 		SPDK_ERRLOG("invalid meta data buffer size\n");
8004 		return -EINVAL;
8005 	}
8006 
8007 	/*
8008 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8009 	 * so fill it out automatically.
8010 	 */
8011 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8012 
8013 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
8014 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
8015 }
8016 
8017 static int
8018 bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio,
8019 			  struct spdk_nvme_cmd *cmd, struct iovec *iov, int iovcnt,
8020 			  size_t nbytes, void *md_buf, size_t md_len)
8021 {
8022 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8023 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8024 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8025 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8026 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8027 
8028 	bio->iovs = iov;
8029 	bio->iovcnt = iovcnt;
8030 	bio->iovpos = 0;
8031 	bio->iov_offset = 0;
8032 
8033 	if (nbytes > max_xfer_size) {
8034 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8035 		return -EINVAL;
8036 	}
8037 
8038 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8039 		SPDK_ERRLOG("invalid meta data buffer size\n");
8040 		return -EINVAL;
8041 	}
8042 
8043 	/*
8044 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands
8045 	 * require a nsid, so fill it out automatically.
8046 	 */
8047 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8048 
8049 	return spdk_nvme_ctrlr_cmd_iov_raw_with_md(
8050 		       ctrlr, qpair, cmd, (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio,
8051 		       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge);
8052 }
8053 
8054 static void
8055 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8056 		struct nvme_bdev_io *bio_to_abort)
8057 {
8058 	struct nvme_io_path *io_path;
8059 	int rc = 0;
8060 
8061 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
8062 	if (rc == 0) {
8063 		bdev_nvme_admin_complete(bio, 0);
8064 		return;
8065 	}
8066 
8067 	io_path = bio_to_abort->io_path;
8068 	if (io_path != NULL) {
8069 		rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8070 						   io_path->qpair->qpair,
8071 						   bio_to_abort,
8072 						   bdev_nvme_abort_done, bio);
8073 	} else {
8074 		STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8075 			rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8076 							   NULL,
8077 							   bio_to_abort,
8078 							   bdev_nvme_abort_done, bio);
8079 
8080 			if (rc != -ENOENT) {
8081 				break;
8082 			}
8083 		}
8084 	}
8085 
8086 	if (rc != 0) {
8087 		/* If no command was found or there was any error, complete the abort
8088 		 * request with failure.
8089 		 */
8090 		bdev_nvme_admin_complete(bio, rc);
8091 	}
8092 }
8093 
8094 static int
8095 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
8096 	       uint64_t num_blocks)
8097 {
8098 	struct spdk_nvme_scc_source_range range = {
8099 		.slba = src_offset_blocks,
8100 		.nlb = num_blocks - 1
8101 	};
8102 
8103 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
8104 				     bio->io_path->qpair->qpair,
8105 				     &range, 1, dst_offset_blocks,
8106 				     bdev_nvme_queued_done, bio);
8107 }
8108 
8109 static void
8110 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
8111 {
8112 	const char	*action;
8113 
8114 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
8115 		action = "reset";
8116 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
8117 		action = "abort";
8118 	} else {
8119 		action = "none";
8120 	}
8121 
8122 	spdk_json_write_object_begin(w);
8123 
8124 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
8125 
8126 	spdk_json_write_named_object_begin(w, "params");
8127 	spdk_json_write_named_string(w, "action_on_timeout", action);
8128 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
8129 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
8130 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
8131 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
8132 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
8133 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
8134 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
8135 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
8136 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
8137 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
8138 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
8139 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
8140 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
8141 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
8142 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
8143 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
8144 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
8145 	spdk_json_write_named_bool(w, "disable_auto_failback", g_opts.disable_auto_failback);
8146 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
8147 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
8148 	spdk_json_write_named_bool(w, "nvme_error_stat", g_opts.nvme_error_stat);
8149 	spdk_json_write_named_uint32(w, "rdma_srq_size", g_opts.rdma_srq_size);
8150 	spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat);
8151 	spdk_json_write_named_bool(w, "allow_accel_sequence", g_opts.allow_accel_sequence);
8152 	spdk_json_write_named_uint32(w, "rdma_max_cq_size", g_opts.rdma_max_cq_size);
8153 	spdk_json_write_named_uint16(w, "rdma_cm_event_timeout_ms", g_opts.rdma_cm_event_timeout_ms);
8154 	spdk_json_write_object_end(w);
8155 
8156 	spdk_json_write_object_end(w);
8157 }
8158 
8159 static void
8160 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
8161 {
8162 	struct spdk_nvme_transport_id trid;
8163 
8164 	spdk_json_write_object_begin(w);
8165 
8166 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
8167 
8168 	spdk_json_write_named_object_begin(w, "params");
8169 	spdk_json_write_named_string(w, "name", ctx->name);
8170 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
8171 
8172 	trid = ctx->trid;
8173 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
8174 	nvme_bdev_dump_trid_json(&trid, w);
8175 
8176 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
8177 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
8178 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
8179 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8180 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
8181 	spdk_json_write_object_end(w);
8182 
8183 	spdk_json_write_object_end(w);
8184 }
8185 
8186 #ifdef SPDK_CONFIG_NVME_CUSE
8187 static void
8188 nvme_ctrlr_cuse_config_json(struct spdk_json_write_ctx *w,
8189 			    struct nvme_ctrlr *nvme_ctrlr)
8190 {
8191 	size_t cuse_name_size = 128;
8192 	char cuse_name[cuse_name_size];
8193 
8194 	if (spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr,
8195 					  cuse_name, &cuse_name_size) != 0) {
8196 		return;
8197 	}
8198 
8199 	spdk_json_write_object_begin(w);
8200 
8201 	spdk_json_write_named_string(w, "method", "bdev_nvme_cuse_register");
8202 
8203 	spdk_json_write_named_object_begin(w, "params");
8204 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8205 	spdk_json_write_object_end(w);
8206 
8207 	spdk_json_write_object_end(w);
8208 }
8209 #endif
8210 
8211 static void
8212 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
8213 		       struct nvme_ctrlr *nvme_ctrlr)
8214 {
8215 	struct spdk_nvme_transport_id	*trid;
8216 	const struct spdk_nvme_ctrlr_opts *opts;
8217 
8218 	if (nvme_ctrlr->opts.from_discovery_service) {
8219 		/* Do not emit an RPC for this - it will be implicitly
8220 		 * covered by a separate bdev_nvme_start_discovery or
8221 		 * bdev_nvme_start_mdns_discovery RPC.
8222 		 */
8223 		return;
8224 	}
8225 
8226 	trid = &nvme_ctrlr->active_path_id->trid;
8227 
8228 	spdk_json_write_object_begin(w);
8229 
8230 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
8231 
8232 	spdk_json_write_named_object_begin(w, "params");
8233 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8234 	nvme_bdev_dump_trid_json(trid, w);
8235 	spdk_json_write_named_bool(w, "prchk_reftag",
8236 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
8237 	spdk_json_write_named_bool(w, "prchk_guard",
8238 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
8239 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
8240 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
8241 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8242 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
8243 	if (nvme_ctrlr->psk != NULL) {
8244 		spdk_json_write_named_string(w, "psk", spdk_key_get_name(nvme_ctrlr->psk));
8245 	} else if (nvme_ctrlr->opts.psk[0] != '\0') {
8246 		spdk_json_write_named_string(w, "psk", nvme_ctrlr->opts.psk);
8247 	}
8248 
8249 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
8250 	spdk_json_write_named_string(w, "hostnqn", opts->hostnqn);
8251 	spdk_json_write_named_bool(w, "hdgst", opts->header_digest);
8252 	spdk_json_write_named_bool(w, "ddgst", opts->data_digest);
8253 	if (opts->src_addr[0] != '\0') {
8254 		spdk_json_write_named_string(w, "hostaddr", opts->src_addr);
8255 	}
8256 	if (opts->src_svcid[0] != '\0') {
8257 		spdk_json_write_named_string(w, "hostsvcid", opts->src_svcid);
8258 	}
8259 
8260 	spdk_json_write_object_end(w);
8261 
8262 	spdk_json_write_object_end(w);
8263 }
8264 
8265 static void
8266 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
8267 {
8268 	spdk_json_write_object_begin(w);
8269 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
8270 
8271 	spdk_json_write_named_object_begin(w, "params");
8272 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
8273 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
8274 	spdk_json_write_object_end(w);
8275 
8276 	spdk_json_write_object_end(w);
8277 }
8278 
8279 static int
8280 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
8281 {
8282 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
8283 	struct nvme_ctrlr	*nvme_ctrlr;
8284 	struct discovery_ctx	*ctx;
8285 
8286 	bdev_nvme_opts_config_json(w);
8287 
8288 	pthread_mutex_lock(&g_bdev_nvme_mutex);
8289 
8290 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
8291 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
8292 			nvme_ctrlr_config_json(w, nvme_ctrlr);
8293 
8294 #ifdef SPDK_CONFIG_NVME_CUSE
8295 			nvme_ctrlr_cuse_config_json(w, nvme_ctrlr);
8296 #endif
8297 		}
8298 	}
8299 
8300 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8301 		if (!ctx->from_mdns_discovery_service) {
8302 			bdev_nvme_discovery_config_json(w, ctx);
8303 		}
8304 	}
8305 
8306 	bdev_nvme_mdns_discovery_config_json(w);
8307 
8308 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
8309 	 * before enabling hotplug poller.
8310 	 */
8311 	bdev_nvme_hotplug_config_json(w);
8312 
8313 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
8314 	return 0;
8315 }
8316 
8317 struct spdk_nvme_ctrlr *
8318 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
8319 {
8320 	struct nvme_bdev *nbdev;
8321 	struct nvme_ns *nvme_ns;
8322 
8323 	if (!bdev || bdev->module != &nvme_if) {
8324 		return NULL;
8325 	}
8326 
8327 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
8328 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
8329 	assert(nvme_ns != NULL);
8330 
8331 	return nvme_ns->ctrlr->ctrlr;
8332 }
8333 
8334 void
8335 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
8336 {
8337 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
8338 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
8339 	const struct spdk_nvme_ctrlr_data *cdata;
8340 	const struct spdk_nvme_transport_id *trid;
8341 	const char *adrfam_str;
8342 
8343 	spdk_json_write_object_begin(w);
8344 
8345 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
8346 
8347 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
8348 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
8349 
8350 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
8351 	spdk_json_write_named_bool(w, "current", io_path->nbdev_ch != NULL &&
8352 				   io_path == io_path->nbdev_ch->current_io_path);
8353 	spdk_json_write_named_bool(w, "connected", nvme_qpair_is_connected(io_path->qpair));
8354 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
8355 
8356 	spdk_json_write_named_object_begin(w, "transport");
8357 	spdk_json_write_named_string(w, "trtype", trid->trstring);
8358 	spdk_json_write_named_string(w, "traddr", trid->traddr);
8359 	if (trid->trsvcid[0] != '\0') {
8360 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
8361 	}
8362 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
8363 	if (adrfam_str) {
8364 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
8365 	}
8366 	spdk_json_write_object_end(w);
8367 
8368 	spdk_json_write_object_end(w);
8369 }
8370 
8371 void
8372 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
8373 {
8374 	struct discovery_ctx *ctx;
8375 	struct discovery_entry_ctx *entry_ctx;
8376 
8377 	spdk_json_write_array_begin(w);
8378 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8379 		spdk_json_write_object_begin(w);
8380 		spdk_json_write_named_string(w, "name", ctx->name);
8381 
8382 		spdk_json_write_named_object_begin(w, "trid");
8383 		nvme_bdev_dump_trid_json(&ctx->trid, w);
8384 		spdk_json_write_object_end(w);
8385 
8386 		spdk_json_write_named_array_begin(w, "referrals");
8387 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
8388 			spdk_json_write_object_begin(w);
8389 			spdk_json_write_named_object_begin(w, "trid");
8390 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
8391 			spdk_json_write_object_end(w);
8392 			spdk_json_write_object_end(w);
8393 		}
8394 		spdk_json_write_array_end(w);
8395 
8396 		spdk_json_write_object_end(w);
8397 	}
8398 	spdk_json_write_array_end(w);
8399 }
8400 
8401 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
8402 
8403 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
8404 {
8405 	struct spdk_trace_tpoint_opts opts[] = {
8406 		{
8407 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
8408 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 1,
8409 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8410 		},
8411 		{
8412 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
8413 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 0,
8414 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8415 		}
8416 	};
8417 
8418 
8419 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
8420 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
8421 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8422 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8423 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8424 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8425 }
8426