xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision e450b8e728dcbba26f855289561f873728aef374)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (c) Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "bdev_nvme.h"
10 
11 #include "spdk/accel_engine.h"
12 #include "spdk/config.h"
13 #include "spdk/endian.h"
14 #include "spdk/bdev.h"
15 #include "spdk/json.h"
16 #include "spdk/likely.h"
17 #include "spdk/nvme.h"
18 #include "spdk/nvme_ocssd.h"
19 #include "spdk/nvme_zns.h"
20 #include "spdk/opal.h"
21 #include "spdk/thread.h"
22 #include "spdk/string.h"
23 #include "spdk/util.h"
24 
25 #include "spdk/bdev_module.h"
26 #include "spdk/log.h"
27 
28 #include "spdk_internal/usdt.h"
29 
30 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
31 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
32 
33 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
34 
35 struct nvme_bdev_io {
36 	/** array of iovecs to transfer. */
37 	struct iovec *iovs;
38 
39 	/** Number of iovecs in iovs array. */
40 	int iovcnt;
41 
42 	/** Current iovec position. */
43 	int iovpos;
44 
45 	/** Offset in current iovec. */
46 	uint32_t iov_offset;
47 
48 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
49 	 *  being reset in a reset I/O.
50 	 */
51 	struct nvme_io_path *io_path;
52 
53 	/** array of iovecs to transfer. */
54 	struct iovec *fused_iovs;
55 
56 	/** Number of iovecs in iovs array. */
57 	int fused_iovcnt;
58 
59 	/** Current iovec position. */
60 	int fused_iovpos;
61 
62 	/** Offset in current iovec. */
63 	uint32_t fused_iov_offset;
64 
65 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
66 	struct spdk_nvme_cpl cpl;
67 
68 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
69 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
70 
71 	/** Originating thread */
72 	struct spdk_thread *orig_thread;
73 
74 	/** Keeps track if first of fused commands was submitted */
75 	bool first_fused_submitted;
76 
77 	/** Keeps track if first of fused commands was completed */
78 	bool first_fused_completed;
79 
80 	/** Temporary pointer to zone report buffer */
81 	struct spdk_nvme_zns_zone_report *zone_report_buf;
82 
83 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
84 	uint64_t handled_zones;
85 
86 	/** Expiration value in ticks to retry the current I/O. */
87 	uint64_t retry_ticks;
88 
89 	/* How many times the current I/O was retried. */
90 	int32_t retry_count;
91 };
92 
93 struct nvme_probe_skip_entry {
94 	struct spdk_nvme_transport_id		trid;
95 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
96 };
97 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
98 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
99 			g_skipped_nvme_ctrlrs);
100 
101 static struct spdk_bdev_nvme_opts g_opts = {
102 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
103 	.timeout_us = 0,
104 	.timeout_admin_us = 0,
105 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
106 	.transport_retry_count = 4,
107 	.arbitration_burst = 0,
108 	.low_priority_weight = 0,
109 	.medium_priority_weight = 0,
110 	.high_priority_weight = 0,
111 	.nvme_adminq_poll_period_us = 10000ULL,
112 	.nvme_ioq_poll_period_us = 0,
113 	.io_queue_requests = 0,
114 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
115 	.bdev_retry_count = 3,
116 	.transport_ack_timeout = 0,
117 	.ctrlr_loss_timeout_sec = 0,
118 	.reconnect_delay_sec = 0,
119 	.fast_io_fail_timeout_sec = 0,
120 	.disable_auto_failback = false,
121 };
122 
123 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
124 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
125 
126 static int g_hot_insert_nvme_controller_index = 0;
127 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
128 static bool g_nvme_hotplug_enabled = false;
129 static struct spdk_thread *g_bdev_nvme_init_thread;
130 static struct spdk_poller *g_hotplug_poller;
131 static struct spdk_poller *g_hotplug_probe_poller;
132 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
133 
134 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
135 		struct nvme_async_probe_ctx *ctx);
136 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
137 		struct nvme_async_probe_ctx *ctx);
138 static int bdev_nvme_library_init(void);
139 static void bdev_nvme_library_fini(void);
140 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
141 				     struct spdk_bdev_io *bdev_io);
142 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
143 			   void *md, uint64_t lba_count, uint64_t lba,
144 			   uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts);
145 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
146 				 void *md, uint64_t lba_count, uint64_t lba);
147 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
148 			    void *md, uint64_t lba_count, uint64_t lba,
149 			    uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts);
150 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
151 				  void *md, uint64_t lba_count,
152 				  uint64_t zslba, uint32_t flags);
153 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
154 			      void *md, uint64_t lba_count, uint64_t lba,
155 			      uint32_t flags);
156 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
157 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
158 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
159 		uint32_t flags);
160 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
161 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
162 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
163 				     enum spdk_bdev_zone_action action);
164 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
165 				     struct nvme_bdev_io *bio,
166 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
167 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
168 				 void *buf, size_t nbytes);
169 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
170 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
171 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
172 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
173 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
174 static int bdev_nvme_reset(struct nvme_ctrlr *nvme_ctrlr);
175 static int bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove);
176 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
177 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
178 
179 static int
180 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
181 {
182 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
183 }
184 
185 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
186 
187 struct spdk_nvme_qpair *
188 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
189 {
190 	struct nvme_ctrlr_channel *ctrlr_ch;
191 
192 	assert(ctrlr_io_ch != NULL);
193 
194 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
195 
196 	return ctrlr_ch->qpair->qpair;
197 }
198 
199 static int
200 bdev_nvme_get_ctx_size(void)
201 {
202 	return sizeof(struct nvme_bdev_io);
203 }
204 
205 static struct spdk_bdev_module nvme_if = {
206 	.name = "nvme",
207 	.async_fini = true,
208 	.module_init = bdev_nvme_library_init,
209 	.module_fini = bdev_nvme_library_fini,
210 	.config_json = bdev_nvme_config_json,
211 	.get_ctx_size = bdev_nvme_get_ctx_size,
212 
213 };
214 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
215 
216 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
217 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
218 bool g_bdev_nvme_module_finish;
219 
220 struct nvme_bdev_ctrlr *
221 nvme_bdev_ctrlr_get_by_name(const char *name)
222 {
223 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
224 
225 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
226 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
227 			break;
228 		}
229 	}
230 
231 	return nbdev_ctrlr;
232 }
233 
234 static struct nvme_ctrlr *
235 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
236 			  const struct spdk_nvme_transport_id *trid)
237 {
238 	struct nvme_ctrlr *nvme_ctrlr;
239 
240 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
241 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0) {
242 			break;
243 		}
244 	}
245 
246 	return nvme_ctrlr;
247 }
248 
249 static struct nvme_bdev *
250 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
251 {
252 	struct nvme_bdev *bdev;
253 
254 	pthread_mutex_lock(&g_bdev_nvme_mutex);
255 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
256 		if (bdev->nsid == nsid) {
257 			break;
258 		}
259 	}
260 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
261 
262 	return bdev;
263 }
264 
265 struct nvme_ns *
266 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
267 {
268 	struct nvme_ns ns;
269 
270 	assert(nsid > 0);
271 
272 	ns.id = nsid;
273 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
274 }
275 
276 struct nvme_ns *
277 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
278 {
279 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
280 }
281 
282 struct nvme_ns *
283 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
284 {
285 	if (ns == NULL) {
286 		return NULL;
287 	}
288 
289 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
290 }
291 
292 static struct nvme_ctrlr *
293 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid)
294 {
295 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
296 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
297 
298 	pthread_mutex_lock(&g_bdev_nvme_mutex);
299 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
300 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid);
301 		if (nvme_ctrlr != NULL) {
302 			break;
303 		}
304 	}
305 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
306 
307 	return nvme_ctrlr;
308 }
309 
310 struct nvme_ctrlr *
311 nvme_ctrlr_get_by_name(const char *name)
312 {
313 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
314 	struct nvme_ctrlr *nvme_ctrlr = NULL;
315 
316 	if (name == NULL) {
317 		return NULL;
318 	}
319 
320 	pthread_mutex_lock(&g_bdev_nvme_mutex);
321 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
322 	if (nbdev_ctrlr != NULL) {
323 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
324 	}
325 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
326 
327 	return nvme_ctrlr;
328 }
329 
330 void
331 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
332 {
333 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
334 
335 	pthread_mutex_lock(&g_bdev_nvme_mutex);
336 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
337 		fn(nbdev_ctrlr, ctx);
338 	}
339 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
340 }
341 
342 void
343 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
344 {
345 	const char *trtype_str;
346 	const char *adrfam_str;
347 
348 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
349 	if (trtype_str) {
350 		spdk_json_write_named_string(w, "trtype", trtype_str);
351 	}
352 
353 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
354 	if (adrfam_str) {
355 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
356 	}
357 
358 	if (trid->traddr[0] != '\0') {
359 		spdk_json_write_named_string(w, "traddr", trid->traddr);
360 	}
361 
362 	if (trid->trsvcid[0] != '\0') {
363 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
364 	}
365 
366 	if (trid->subnqn[0] != '\0') {
367 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
368 	}
369 }
370 
371 static void
372 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
373 		       struct nvme_ctrlr *nvme_ctrlr)
374 {
375 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
376 	pthread_mutex_lock(&g_bdev_nvme_mutex);
377 
378 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
379 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
380 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
381 
382 		return;
383 	}
384 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
385 
386 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
387 
388 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
389 
390 	free(nbdev_ctrlr->name);
391 	free(nbdev_ctrlr);
392 }
393 
394 static void
395 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
396 {
397 	struct nvme_path_id *path_id, *tmp_path;
398 	struct nvme_ns *ns, *tmp_ns;
399 
400 	free(nvme_ctrlr->copied_ana_desc);
401 	spdk_free(nvme_ctrlr->ana_log_page);
402 
403 	if (nvme_ctrlr->opal_dev) {
404 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
405 		nvme_ctrlr->opal_dev = NULL;
406 	}
407 
408 	if (nvme_ctrlr->nbdev_ctrlr) {
409 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
410 	}
411 
412 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
413 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
414 		free(ns);
415 	}
416 
417 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
418 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
419 		free(path_id);
420 	}
421 
422 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
423 
424 	free(nvme_ctrlr);
425 
426 	pthread_mutex_lock(&g_bdev_nvme_mutex);
427 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
428 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
429 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
430 		spdk_bdev_module_fini_done();
431 		return;
432 	}
433 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
434 }
435 
436 static int
437 nvme_detach_poller(void *arg)
438 {
439 	struct nvme_ctrlr *nvme_ctrlr = arg;
440 	int rc;
441 
442 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
443 	if (rc != -EAGAIN) {
444 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
445 		_nvme_ctrlr_delete(nvme_ctrlr);
446 	}
447 
448 	return SPDK_POLLER_BUSY;
449 }
450 
451 static void
452 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
453 {
454 	int rc;
455 
456 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
457 
458 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
459 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
460 
461 	/* If we got here, the reset/detach poller cannot be active */
462 	assert(nvme_ctrlr->reset_detach_poller == NULL);
463 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
464 					  nvme_ctrlr, 1000);
465 	if (nvme_ctrlr->reset_detach_poller == NULL) {
466 		SPDK_ERRLOG("Failed to register detach poller\n");
467 		goto error;
468 	}
469 
470 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
471 	if (rc != 0) {
472 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
473 		goto error;
474 	}
475 
476 	return;
477 error:
478 	/* We don't have a good way to handle errors here, so just do what we can and delete the
479 	 * controller without detaching the underlying NVMe device.
480 	 */
481 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
482 	_nvme_ctrlr_delete(nvme_ctrlr);
483 }
484 
485 static void
486 nvme_ctrlr_unregister_cb(void *io_device)
487 {
488 	struct nvme_ctrlr *nvme_ctrlr = io_device;
489 
490 	nvme_ctrlr_delete(nvme_ctrlr);
491 }
492 
493 static void
494 nvme_ctrlr_unregister(void *ctx)
495 {
496 	struct nvme_ctrlr *nvme_ctrlr = ctx;
497 
498 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
499 }
500 
501 static bool
502 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
503 {
504 	if (!nvme_ctrlr->destruct) {
505 		return false;
506 	}
507 
508 	if (nvme_ctrlr->ref > 0) {
509 		return false;
510 	}
511 
512 	if (nvme_ctrlr->resetting) {
513 		return false;
514 	}
515 
516 	if (nvme_ctrlr->ana_log_page_updating) {
517 		return false;
518 	}
519 
520 	return true;
521 }
522 
523 static void
524 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
525 {
526 	pthread_mutex_lock(&nvme_ctrlr->mutex);
527 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
528 
529 	assert(nvme_ctrlr->ref > 0);
530 	nvme_ctrlr->ref--;
531 
532 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
533 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
534 		return;
535 	}
536 
537 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
538 
539 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
540 }
541 
542 static struct nvme_io_path *
543 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
544 {
545 	struct nvme_io_path *io_path;
546 
547 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
548 		if (io_path->nvme_ns == nvme_ns) {
549 			break;
550 		}
551 	}
552 
553 	return io_path;
554 }
555 
556 static int
557 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
558 {
559 	struct nvme_io_path *io_path;
560 	struct spdk_io_channel *ch;
561 	struct nvme_ctrlr_channel *ctrlr_ch;
562 	struct nvme_qpair *nvme_qpair;
563 
564 	io_path = calloc(1, sizeof(*io_path));
565 	if (io_path == NULL) {
566 		SPDK_ERRLOG("Failed to alloc io_path.\n");
567 		return -ENOMEM;
568 	}
569 
570 	io_path->nvme_ns = nvme_ns;
571 
572 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
573 	if (ch == NULL) {
574 		free(io_path);
575 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
576 		return -ENOMEM;
577 	}
578 
579 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
580 
581 	nvme_qpair = ctrlr_ch->qpair;
582 	assert(nvme_qpair != NULL);
583 
584 	io_path->qpair = nvme_qpair;
585 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
586 
587 	io_path->nbdev_ch = nbdev_ch;
588 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
589 
590 	nbdev_ch->current_io_path = NULL;
591 
592 	return 0;
593 }
594 
595 static void
596 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
597 {
598 	struct spdk_io_channel *ch;
599 	struct nvme_qpair *nvme_qpair;
600 	struct nvme_ctrlr_channel *ctrlr_ch;
601 
602 	nbdev_ch->current_io_path = NULL;
603 
604 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
605 
606 	nvme_qpair = io_path->qpair;
607 	assert(nvme_qpair != NULL);
608 
609 	TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
610 
611 	ctrlr_ch = nvme_qpair->ctrlr_ch;
612 	assert(ctrlr_ch != NULL);
613 
614 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
615 	spdk_put_io_channel(ch);
616 
617 	free(io_path);
618 }
619 
620 static void
621 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
622 {
623 	struct nvme_io_path *io_path, *tmp_io_path;
624 
625 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
626 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
627 	}
628 }
629 
630 static int
631 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
632 {
633 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
634 	struct nvme_bdev *nbdev = io_device;
635 	struct nvme_ns *nvme_ns;
636 	int rc;
637 
638 	STAILQ_INIT(&nbdev_ch->io_path_list);
639 	TAILQ_INIT(&nbdev_ch->retry_io_list);
640 
641 	pthread_mutex_lock(&nbdev->mutex);
642 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
643 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
644 		if (rc != 0) {
645 			pthread_mutex_unlock(&nbdev->mutex);
646 
647 			_bdev_nvme_delete_io_paths(nbdev_ch);
648 			return rc;
649 		}
650 	}
651 	pthread_mutex_unlock(&nbdev->mutex);
652 
653 	return 0;
654 }
655 
656 static void
657 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
658 {
659 	struct spdk_bdev_io *bdev_io, *tmp_io;
660 
661 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_io) {
662 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
663 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED);
664 	}
665 
666 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
667 }
668 
669 static void
670 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
671 {
672 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
673 
674 	bdev_nvme_abort_retry_ios(nbdev_ch);
675 	_bdev_nvme_delete_io_paths(nbdev_ch);
676 }
677 
678 static inline bool
679 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
680 {
681 	switch (io_type) {
682 	case SPDK_BDEV_IO_TYPE_RESET:
683 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
684 	case SPDK_BDEV_IO_TYPE_ABORT:
685 		return true;
686 	default:
687 		break;
688 	}
689 
690 	return false;
691 }
692 
693 static inline bool
694 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
695 {
696 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
697 		return false;
698 	}
699 
700 	switch (nvme_ns->ana_state) {
701 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
702 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
703 		return true;
704 	default:
705 		break;
706 	}
707 
708 	return false;
709 }
710 
711 static inline bool
712 nvme_io_path_is_connected(struct nvme_io_path *io_path)
713 {
714 	if (spdk_unlikely(io_path->qpair->qpair == NULL)) {
715 		return false;
716 	}
717 
718 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(io_path->qpair->qpair) !=
719 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
720 		return false;
721 	}
722 
723 	if (spdk_unlikely(io_path->qpair->ctrlr_ch->reset_iter != NULL)) {
724 		return false;
725 	}
726 
727 	if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(io_path->qpair->ctrlr->ctrlr) !=
728 	    SPDK_NVME_QPAIR_FAILURE_NONE) {
729 		return false;
730 	}
731 
732 	return true;
733 }
734 
735 static inline bool
736 nvme_io_path_is_available(struct nvme_io_path *io_path)
737 {
738 	if (spdk_unlikely(!nvme_io_path_is_connected(io_path))) {
739 		return false;
740 	}
741 
742 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
743 		return false;
744 	}
745 
746 	return true;
747 }
748 
749 static inline bool
750 nvme_io_path_is_failed(struct nvme_io_path *io_path)
751 {
752 	struct nvme_ctrlr *nvme_ctrlr;
753 
754 	nvme_ctrlr = io_path->qpair->ctrlr;
755 
756 	if (nvme_ctrlr->destruct) {
757 		return true;
758 	}
759 
760 	if (nvme_ctrlr->fast_io_fail_timedout) {
761 		return true;
762 	}
763 
764 	if (nvme_ctrlr->resetting) {
765 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
766 			return false;
767 		} else {
768 			return true;
769 		}
770 	}
771 
772 	if (nvme_ctrlr->reconnect_is_delayed) {
773 		return false;
774 	}
775 
776 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
777 		return true;
778 	} else {
779 		return false;
780 	}
781 }
782 
783 static bool
784 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
785 {
786 	if (nvme_ctrlr->destruct) {
787 		return false;
788 	}
789 
790 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
791 		return false;
792 	}
793 
794 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
795 		return false;
796 	}
797 
798 	return true;
799 }
800 
801 /* Simulate circular linked list. */
802 static inline struct nvme_io_path *
803 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
804 {
805 	struct nvme_io_path *next_path;
806 
807 	next_path = STAILQ_NEXT(prev_path, stailq);
808 	if (next_path != NULL) {
809 		return next_path;
810 	} else {
811 		return STAILQ_FIRST(&nbdev_ch->io_path_list);
812 	}
813 }
814 
815 static struct nvme_io_path *
816 bdev_nvme_find_next_io_path(struct nvme_bdev_channel *nbdev_ch,
817 			    struct nvme_io_path *prev)
818 {
819 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
820 
821 	start = nvme_io_path_get_next(nbdev_ch, prev);
822 
823 	io_path = start;
824 	do {
825 		if (spdk_likely(nvme_io_path_is_connected(io_path) &&
826 				!io_path->nvme_ns->ana_state_updating)) {
827 			switch (io_path->nvme_ns->ana_state) {
828 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
829 				nbdev_ch->current_io_path = io_path;
830 				return io_path;
831 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
832 				if (non_optimized == NULL) {
833 					non_optimized = io_path;
834 				}
835 				break;
836 			default:
837 				break;
838 			}
839 		}
840 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
841 	} while (io_path != start);
842 
843 	/* We come here only if there is no optimized path. Cache even non_optimized
844 	 * path for load balance across multiple non_optimized paths.
845 	 */
846 	nbdev_ch->current_io_path = non_optimized;
847 	return non_optimized;
848 }
849 
850 static struct nvme_io_path *
851 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
852 {
853 	struct nvme_io_path *io_path, *non_optimized = NULL;
854 
855 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
856 		if (spdk_unlikely(!nvme_io_path_is_connected(io_path))) {
857 			/* The device is currently resetting. */
858 			continue;
859 		}
860 
861 		if (spdk_unlikely(io_path->nvme_ns->ana_state_updating)) {
862 			continue;
863 		}
864 
865 		switch (io_path->nvme_ns->ana_state) {
866 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
867 			nbdev_ch->current_io_path = io_path;
868 			return io_path;
869 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
870 			if (non_optimized == NULL) {
871 				non_optimized = io_path;
872 			}
873 			break;
874 		default:
875 			break;
876 		}
877 	}
878 
879 	return non_optimized;
880 }
881 
882 static inline struct nvme_io_path *
883 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
884 {
885 	if (spdk_unlikely(nbdev_ch->current_io_path == NULL)) {
886 		return _bdev_nvme_find_io_path(nbdev_ch);
887 	}
888 
889 	if (spdk_likely(nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE)) {
890 		return nbdev_ch->current_io_path;
891 	} else {
892 		return bdev_nvme_find_next_io_path(nbdev_ch, nbdev_ch->current_io_path);
893 	}
894 }
895 
896 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
897  * or false otherwise.
898  *
899  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
900  * is likely to be non-accessible now but may become accessible.
901  *
902  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
903  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
904  * when starting to reset it but it is set to failed when the reset failed. Hence, if
905  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
906  */
907 static bool
908 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
909 {
910 	struct nvme_io_path *io_path;
911 
912 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
913 		if (io_path->nvme_ns->ana_transition_timedout) {
914 			continue;
915 		}
916 
917 		if (nvme_io_path_is_connected(io_path) ||
918 		    !nvme_io_path_is_failed(io_path)) {
919 			return true;
920 		}
921 	}
922 
923 	return false;
924 }
925 
926 static bool
927 any_ctrlr_may_become_available(struct nvme_bdev_channel *nbdev_ch)
928 {
929 	struct nvme_io_path *io_path;
930 
931 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
932 		if (!nvme_io_path_is_failed(io_path)) {
933 			return true;
934 		}
935 	}
936 
937 	return false;
938 }
939 
940 static int
941 bdev_nvme_retry_ios(void *arg)
942 {
943 	struct nvme_bdev_channel *nbdev_ch = arg;
944 	struct spdk_io_channel *ch = spdk_io_channel_from_ctx(nbdev_ch);
945 	struct spdk_bdev_io *bdev_io, *tmp_bdev_io;
946 	struct nvme_bdev_io *bio;
947 	uint64_t now, delay_us;
948 
949 	now = spdk_get_ticks();
950 
951 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_bdev_io) {
952 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
953 		if (bio->retry_ticks > now) {
954 			break;
955 		}
956 
957 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
958 
959 		bdev_nvme_submit_request(ch, bdev_io);
960 	}
961 
962 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
963 
964 	bdev_io = TAILQ_FIRST(&nbdev_ch->retry_io_list);
965 	if (bdev_io != NULL) {
966 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
967 
968 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
969 
970 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
971 					    delay_us);
972 	}
973 
974 	return SPDK_POLLER_BUSY;
975 }
976 
977 static void
978 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
979 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
980 {
981 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
982 	struct spdk_bdev_io *tmp_bdev_io;
983 	struct nvme_bdev_io *tmp_bio;
984 
985 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
986 
987 	TAILQ_FOREACH_REVERSE(tmp_bdev_io, &nbdev_ch->retry_io_list, retry_io_head, module_link) {
988 		tmp_bio = (struct nvme_bdev_io *)tmp_bdev_io->driver_ctx;
989 
990 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
991 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bdev_io, bdev_io,
992 					   module_link);
993 			return;
994 		}
995 	}
996 
997 	/* No earlier I/Os were found. This I/O must be the new head. */
998 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bdev_io, module_link);
999 
1000 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1001 
1002 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1003 				    delay_ms * 1000ULL);
1004 }
1005 
1006 static inline void
1007 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1008 				  const struct spdk_nvme_cpl *cpl)
1009 {
1010 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1011 	struct nvme_bdev_channel *nbdev_ch;
1012 	struct nvme_ctrlr *nvme_ctrlr;
1013 	const struct spdk_nvme_ctrlr_data *cdata;
1014 	uint64_t delay_ms;
1015 
1016 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1017 
1018 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1019 		goto complete;
1020 	}
1021 
1022 	if (cpl->status.dnr != 0 || (g_opts.bdev_retry_count != -1 &&
1023 				     bio->retry_count >= g_opts.bdev_retry_count)) {
1024 		goto complete;
1025 	}
1026 
1027 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1028 
1029 	assert(bio->io_path != NULL);
1030 	nvme_ctrlr = bio->io_path->qpair->ctrlr;
1031 
1032 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1033 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1034 	    !nvme_io_path_is_available(bio->io_path) ||
1035 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1036 		nbdev_ch->current_io_path = NULL;
1037 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1038 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1039 				bio->io_path->nvme_ns->ana_state_updating = true;
1040 			}
1041 		}
1042 		delay_ms = 0;
1043 	} else if (spdk_nvme_cpl_is_aborted_by_request(cpl)) {
1044 		goto complete;
1045 	} else {
1046 		bio->retry_count++;
1047 
1048 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1049 
1050 		if (cpl->status.crd != 0) {
1051 			delay_ms = cdata->crdt[cpl->status.crd] * 100;
1052 		} else {
1053 			delay_ms = 0;
1054 		}
1055 	}
1056 
1057 	if (any_io_path_may_become_available(nbdev_ch)) {
1058 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1059 		return;
1060 	}
1061 
1062 complete:
1063 	bio->retry_count = 0;
1064 	spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
1065 }
1066 
1067 static inline void
1068 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1069 {
1070 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1071 	struct nvme_bdev_channel *nbdev_ch;
1072 	enum spdk_bdev_io_status io_status;
1073 
1074 	switch (rc) {
1075 	case 0:
1076 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1077 		break;
1078 	case -ENOMEM:
1079 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1080 		break;
1081 	case -ENXIO:
1082 		nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1083 
1084 		nbdev_ch->current_io_path = NULL;
1085 
1086 		if (any_io_path_may_become_available(nbdev_ch)) {
1087 			bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1088 			return;
1089 		}
1090 
1091 	/* fallthrough */
1092 	default:
1093 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1094 		break;
1095 	}
1096 
1097 	bio->retry_count = 0;
1098 	spdk_bdev_io_complete(bdev_io, io_status);
1099 }
1100 
1101 static inline void
1102 bdev_nvme_admin_passthru_complete(struct nvme_bdev_io *bio, int rc)
1103 {
1104 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1105 	struct nvme_bdev_channel *nbdev_ch;
1106 	enum spdk_bdev_io_status io_status;
1107 
1108 	switch (rc) {
1109 	case 0:
1110 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1111 		break;
1112 	case -ENOMEM:
1113 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1114 		break;
1115 	case -ENXIO:
1116 		nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1117 
1118 		if (any_ctrlr_may_become_available(nbdev_ch)) {
1119 			bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1120 			return;
1121 		}
1122 
1123 	/* fallthrough */
1124 	default:
1125 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1126 		break;
1127 	}
1128 
1129 	bio->retry_count = 0;
1130 	spdk_bdev_io_complete(bdev_io, io_status);
1131 }
1132 
1133 static void
1134 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1135 {
1136 	struct nvme_io_path *io_path;
1137 
1138 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1139 		io_path->nbdev_ch->current_io_path = NULL;
1140 	}
1141 }
1142 
1143 static void
1144 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
1145 {
1146 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1147 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1148 
1149 	assert(ctrlr_ch->qpair != NULL);
1150 
1151 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1152 
1153 	spdk_for_each_channel_continue(i, 0);
1154 }
1155 
1156 static void
1157 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr,
1158 			       spdk_channel_for_each_cpl cpl)
1159 {
1160 	spdk_for_each_channel(nvme_ctrlr,
1161 			      bdev_nvme_clear_io_path_cache,
1162 			      NULL,
1163 			      cpl);
1164 }
1165 
1166 static struct nvme_qpair *
1167 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1168 {
1169 	struct nvme_qpair *nvme_qpair;
1170 
1171 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1172 		if (nvme_qpair->qpair == qpair) {
1173 			break;
1174 		}
1175 	}
1176 
1177 	return nvme_qpair;
1178 }
1179 
1180 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1181 
1182 static void
1183 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1184 {
1185 	struct nvme_poll_group *group = poll_group_ctx;
1186 	struct nvme_qpair *nvme_qpair;
1187 	struct nvme_ctrlr_channel *ctrlr_ch;
1188 
1189 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1190 	if (nvme_qpair == NULL) {
1191 		return;
1192 	}
1193 
1194 	if (nvme_qpair->qpair != NULL) {
1195 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1196 		nvme_qpair->qpair = NULL;
1197 	}
1198 
1199 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1200 
1201 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1202 
1203 	if (ctrlr_ch != NULL) {
1204 		if (ctrlr_ch->reset_iter != NULL) {
1205 			/* If we are already in a full reset sequence, we do not have
1206 			 * to restart it. Just move to the next ctrlr_channel.
1207 			 */
1208 			SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1209 				      qpair);
1210 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
1211 			ctrlr_ch->reset_iter = NULL;
1212 		} else {
1213 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1214 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1215 			bdev_nvme_failover(nvme_qpair->ctrlr, false);
1216 		}
1217 	} else {
1218 		/* In this case, ctrlr_channel is already deleted. */
1219 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1220 		nvme_qpair_delete(nvme_qpair);
1221 	}
1222 }
1223 
1224 static void
1225 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1226 {
1227 	struct nvme_qpair *nvme_qpair;
1228 
1229 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1230 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1231 			continue;
1232 		}
1233 
1234 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1235 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1236 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1237 		}
1238 	}
1239 }
1240 
1241 static int
1242 bdev_nvme_poll(void *arg)
1243 {
1244 	struct nvme_poll_group *group = arg;
1245 	int64_t num_completions;
1246 
1247 	if (group->collect_spin_stat && group->start_ticks == 0) {
1248 		group->start_ticks = spdk_get_ticks();
1249 	}
1250 
1251 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1252 			  bdev_nvme_disconnected_qpair_cb);
1253 	if (group->collect_spin_stat) {
1254 		if (num_completions > 0) {
1255 			if (group->end_ticks != 0) {
1256 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1257 				group->end_ticks = 0;
1258 			}
1259 			group->start_ticks = 0;
1260 		} else {
1261 			group->end_ticks = spdk_get_ticks();
1262 		}
1263 	}
1264 
1265 	if (spdk_unlikely(num_completions < 0)) {
1266 		bdev_nvme_check_io_qpairs(group);
1267 	}
1268 
1269 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1270 }
1271 
1272 static int bdev_nvme_poll_adminq(void *arg);
1273 
1274 static void
1275 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1276 {
1277 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1278 
1279 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1280 					  nvme_ctrlr, new_period_us);
1281 }
1282 
1283 static int
1284 bdev_nvme_poll_adminq(void *arg)
1285 {
1286 	int32_t rc;
1287 	struct nvme_ctrlr *nvme_ctrlr = arg;
1288 	nvme_ctrlr_disconnected_cb disconnected_cb;
1289 
1290 	assert(nvme_ctrlr != NULL);
1291 
1292 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1293 	if (rc < 0) {
1294 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1295 		nvme_ctrlr->disconnected_cb = NULL;
1296 
1297 		if (rc == -ENXIO && disconnected_cb != NULL) {
1298 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1299 							    g_opts.nvme_adminq_poll_period_us);
1300 			disconnected_cb(nvme_ctrlr);
1301 		} else {
1302 			bdev_nvme_failover(nvme_ctrlr, false);
1303 		}
1304 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1305 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1306 		bdev_nvme_clear_io_path_caches(nvme_ctrlr, NULL);
1307 	}
1308 
1309 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1310 }
1311 
1312 static void
1313 _bdev_nvme_unregister_dev_cb(void *io_device)
1314 {
1315 	struct nvme_bdev *nvme_disk = io_device;
1316 
1317 	free(nvme_disk->disk.name);
1318 	free(nvme_disk);
1319 }
1320 
1321 static int
1322 bdev_nvme_destruct(void *ctx)
1323 {
1324 	struct nvme_bdev *nvme_disk = ctx;
1325 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1326 
1327 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1328 
1329 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1330 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1331 
1332 		nvme_ns->bdev = NULL;
1333 
1334 		assert(nvme_ns->id > 0);
1335 
1336 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1337 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1338 
1339 			nvme_ctrlr_release(nvme_ns->ctrlr);
1340 			free(nvme_ns);
1341 		} else {
1342 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1343 		}
1344 	}
1345 
1346 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1347 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1348 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1349 
1350 	spdk_io_device_unregister(nvme_disk, _bdev_nvme_unregister_dev_cb);
1351 
1352 	return 0;
1353 }
1354 
1355 static int
1356 bdev_nvme_flush(struct nvme_bdev_io *bio, uint64_t offset, uint64_t nbytes)
1357 {
1358 	bdev_nvme_io_complete(bio, 0);
1359 
1360 	return 0;
1361 }
1362 
1363 static int
1364 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1365 {
1366 	struct nvme_ctrlr *nvme_ctrlr;
1367 	struct spdk_nvme_io_qpair_opts opts;
1368 	struct spdk_nvme_qpair *qpair;
1369 	int rc;
1370 
1371 	nvme_ctrlr = nvme_qpair->ctrlr;
1372 
1373 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1374 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1375 	opts.create_only = true;
1376 	opts.async_mode = true;
1377 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1378 	g_opts.io_queue_requests = opts.io_queue_requests;
1379 
1380 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1381 	if (qpair == NULL) {
1382 		return -1;
1383 	}
1384 
1385 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1386 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1387 
1388 	assert(nvme_qpair->group != NULL);
1389 
1390 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1391 	if (rc != 0) {
1392 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1393 		goto err;
1394 	}
1395 
1396 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1397 	if (rc != 0) {
1398 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1399 		goto err;
1400 	}
1401 
1402 	nvme_qpair->qpair = qpair;
1403 
1404 	if (!g_opts.disable_auto_failback) {
1405 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1406 	}
1407 
1408 	return 0;
1409 
1410 err:
1411 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1412 
1413 	return rc;
1414 }
1415 
1416 static void
1417 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
1418 {
1419 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1420 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1421 	enum spdk_bdev_io_status status = SPDK_BDEV_IO_STATUS_SUCCESS;
1422 	struct spdk_bdev_io *bdev_io;
1423 
1424 	if (spdk_io_channel_iter_get_ctx(i) != NULL) {
1425 		status = SPDK_BDEV_IO_STATUS_FAILED;
1426 	}
1427 
1428 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1429 		bdev_io = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1430 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bdev_io, module_link);
1431 		spdk_bdev_io_complete(bdev_io, status);
1432 	}
1433 
1434 	spdk_for_each_channel_continue(i, 0);
1435 }
1436 
1437 static void
1438 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove)
1439 {
1440 	struct nvme_path_id *path_id, *next_path;
1441 	int rc __attribute__((unused));
1442 
1443 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1444 	assert(path_id);
1445 	assert(path_id == nvme_ctrlr->active_path_id);
1446 	next_path = TAILQ_NEXT(path_id, link);
1447 
1448 	path_id->is_failed = true;
1449 
1450 	if (next_path) {
1451 		assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1452 
1453 		SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1454 			       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1455 
1456 		spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1457 		nvme_ctrlr->active_path_id = next_path;
1458 		rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1459 		assert(rc == 0);
1460 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1461 		if (!remove) {
1462 			/** Shuffle the old trid to the end of the list and use the new one.
1463 			 * Allows for round robin through multiple connections.
1464 			 */
1465 			TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
1466 		} else {
1467 			free(path_id);
1468 		}
1469 	}
1470 }
1471 
1472 static bool
1473 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
1474 {
1475 	int32_t elapsed;
1476 
1477 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
1478 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
1479 		return false;
1480 	}
1481 
1482 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1483 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
1484 		return true;
1485 	} else {
1486 		return false;
1487 	}
1488 }
1489 
1490 static bool
1491 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
1492 {
1493 	uint32_t elapsed;
1494 
1495 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
1496 		return false;
1497 	}
1498 
1499 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1500 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
1501 		return true;
1502 	} else {
1503 		return false;
1504 	}
1505 }
1506 
1507 static void
1508 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
1509 {
1510 	int rc __attribute__((unused));
1511 
1512 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
1513 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
1514 	 */
1515 	assert(nvme_ctrlr->disconnected_cb == NULL);
1516 	nvme_ctrlr->disconnected_cb = cb_fn;
1517 
1518 	/* Disconnect fails if ctrlr is already resetting or removed. Both cases are
1519 	 * not possible. Reset is controlled and the callback to hot remove is called
1520 	 * when ctrlr is hot removed.
1521 	 */
1522 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
1523 	assert(rc == 0);
1524 
1525 	/* During disconnection, reduce the period to poll adminq more often. */
1526 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
1527 }
1528 
1529 enum bdev_nvme_op_after_reset {
1530 	OP_NONE,
1531 	OP_COMPLETE_PENDING_DESTRUCT,
1532 	OP_DESTRUCT,
1533 	OP_DELAYED_RECONNECT,
1534 };
1535 
1536 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
1537 
1538 static _bdev_nvme_op_after_reset
1539 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
1540 {
1541 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1542 		/* Complete pending destruct after reset completes. */
1543 		return OP_COMPLETE_PENDING_DESTRUCT;
1544 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1545 		nvme_ctrlr->reset_start_tsc = 0;
1546 		return OP_NONE;
1547 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1548 		return OP_DESTRUCT;
1549 	} else {
1550 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
1551 			nvme_ctrlr->fast_io_fail_timedout = true;
1552 		}
1553 		bdev_nvme_failover_trid(nvme_ctrlr, false);
1554 		return OP_DELAYED_RECONNECT;
1555 	}
1556 }
1557 
1558 static int _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
1559 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
1560 
1561 static int
1562 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
1563 {
1564 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1565 
1566 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
1567 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1568 
1569 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
1570 
1571 	assert(nvme_ctrlr->reconnect_is_delayed == true);
1572 	nvme_ctrlr->reconnect_is_delayed = false;
1573 
1574 	if (nvme_ctrlr->destruct) {
1575 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1576 		return SPDK_POLLER_BUSY;
1577 	}
1578 
1579 	assert(nvme_ctrlr->resetting == false);
1580 	nvme_ctrlr->resetting = true;
1581 
1582 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1583 
1584 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
1585 
1586 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
1587 	return SPDK_POLLER_BUSY;
1588 }
1589 
1590 static void
1591 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
1592 {
1593 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
1594 
1595 	assert(nvme_ctrlr->reconnect_is_delayed == false);
1596 	nvme_ctrlr->reconnect_is_delayed = true;
1597 
1598 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
1599 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
1600 					    nvme_ctrlr,
1601 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
1602 }
1603 
1604 static void
1605 _bdev_nvme_reset_complete(struct spdk_io_channel_iter *i, int status)
1606 {
1607 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1608 	bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
1609 	struct nvme_path_id *path_id;
1610 	bdev_nvme_reset_cb reset_cb_fn = nvme_ctrlr->reset_cb_fn;
1611 	void *reset_cb_arg = nvme_ctrlr->reset_cb_arg;
1612 	enum bdev_nvme_op_after_reset op_after_reset;
1613 
1614 	assert(nvme_ctrlr->thread == spdk_get_thread());
1615 
1616 	nvme_ctrlr->reset_cb_fn = NULL;
1617 	nvme_ctrlr->reset_cb_arg = NULL;
1618 
1619 	if (!success) {
1620 		SPDK_ERRLOG("Resetting controller failed.\n");
1621 	} else {
1622 		SPDK_NOTICELOG("Resetting controller successful.\n");
1623 	}
1624 
1625 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1626 	nvme_ctrlr->resetting = false;
1627 
1628 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1629 	assert(path_id != NULL);
1630 	assert(path_id == nvme_ctrlr->active_path_id);
1631 
1632 	path_id->is_failed = !success;
1633 
1634 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
1635 
1636 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1637 
1638 	if (reset_cb_fn) {
1639 		reset_cb_fn(reset_cb_arg, success);
1640 	}
1641 
1642 	switch (op_after_reset) {
1643 	case OP_COMPLETE_PENDING_DESTRUCT:
1644 		nvme_ctrlr_unregister(nvme_ctrlr);
1645 		break;
1646 	case OP_DESTRUCT:
1647 		_bdev_nvme_delete(nvme_ctrlr, false);
1648 		break;
1649 	case OP_DELAYED_RECONNECT:
1650 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
1651 		break;
1652 	default:
1653 		break;
1654 	}
1655 }
1656 
1657 static void
1658 bdev_nvme_reset_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
1659 {
1660 	/* Make sure we clear any pending resets before returning. */
1661 	spdk_for_each_channel(nvme_ctrlr,
1662 			      bdev_nvme_complete_pending_resets,
1663 			      success ? NULL : (void *)0x1,
1664 			      _bdev_nvme_reset_complete);
1665 }
1666 
1667 static void
1668 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
1669 {
1670 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1671 
1672 	bdev_nvme_reset_complete(nvme_ctrlr, false);
1673 }
1674 
1675 static void
1676 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
1677 {
1678 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
1679 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
1680 	struct nvme_qpair *nvme_qpair;
1681 
1682 	nvme_qpair = ctrlr_ch->qpair;
1683 	assert(nvme_qpair != NULL);
1684 
1685 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1686 
1687 	if (nvme_qpair->qpair != NULL) {
1688 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
1689 
1690 		/* The current full reset sequence will move to the next
1691 		 * ctrlr_channel after the qpair is actually disconnected.
1692 		 */
1693 		assert(ctrlr_ch->reset_iter == NULL);
1694 		ctrlr_ch->reset_iter = i;
1695 	} else {
1696 		spdk_for_each_channel_continue(i, 0);
1697 	}
1698 }
1699 
1700 static void
1701 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
1702 {
1703 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1704 
1705 	if (status == 0) {
1706 		bdev_nvme_reset_complete(nvme_ctrlr, true);
1707 	} else {
1708 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
1709 		spdk_for_each_channel(nvme_ctrlr,
1710 				      bdev_nvme_reset_destroy_qpair,
1711 				      NULL,
1712 				      bdev_nvme_reset_create_qpairs_failed);
1713 	}
1714 }
1715 
1716 static void
1717 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
1718 {
1719 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1720 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1721 	int rc;
1722 
1723 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
1724 
1725 	spdk_for_each_channel_continue(i, rc);
1726 }
1727 
1728 static int
1729 bdev_nvme_reconnect_ctrlr_poll(void *arg)
1730 {
1731 	struct nvme_ctrlr *nvme_ctrlr = arg;
1732 	int rc = -ETIMEDOUT;
1733 
1734 	if (!bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1735 		rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
1736 		if (rc == -EAGAIN) {
1737 			return SPDK_POLLER_BUSY;
1738 		}
1739 	}
1740 
1741 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
1742 	if (rc == 0) {
1743 		/* Recreate all of the I/O queue pairs */
1744 		spdk_for_each_channel(nvme_ctrlr,
1745 				      bdev_nvme_reset_create_qpair,
1746 				      NULL,
1747 				      bdev_nvme_reset_create_qpairs_done);
1748 	} else {
1749 		bdev_nvme_reset_complete(nvme_ctrlr, false);
1750 	}
1751 	return SPDK_POLLER_BUSY;
1752 }
1753 
1754 static void
1755 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
1756 {
1757 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
1758 
1759 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
1760 	assert(nvme_ctrlr->reset_detach_poller == NULL);
1761 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
1762 					  nvme_ctrlr, 0);
1763 }
1764 
1765 static void
1766 bdev_nvme_reset_ctrlr(struct spdk_io_channel_iter *i, int status)
1767 {
1768 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1769 
1770 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
1771 	assert(status == 0);
1772 
1773 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
1774 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
1775 	} else {
1776 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
1777 	}
1778 }
1779 
1780 static void
1781 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
1782 {
1783 	spdk_for_each_channel(nvme_ctrlr,
1784 			      bdev_nvme_reset_destroy_qpair,
1785 			      NULL,
1786 			      bdev_nvme_reset_ctrlr);
1787 }
1788 
1789 static void
1790 _bdev_nvme_reset(void *ctx)
1791 {
1792 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1793 
1794 	assert(nvme_ctrlr->resetting == true);
1795 	assert(nvme_ctrlr->thread == spdk_get_thread());
1796 
1797 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
1798 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
1799 	} else {
1800 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
1801 	}
1802 }
1803 
1804 static int
1805 bdev_nvme_reset(struct nvme_ctrlr *nvme_ctrlr)
1806 {
1807 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1808 	if (nvme_ctrlr->destruct) {
1809 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1810 		return -ENXIO;
1811 	}
1812 
1813 	if (nvme_ctrlr->resetting) {
1814 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1815 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
1816 		return -EBUSY;
1817 	}
1818 
1819 	if (nvme_ctrlr->reconnect_is_delayed) {
1820 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1821 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
1822 		return -EBUSY;
1823 	}
1824 
1825 	nvme_ctrlr->resetting = true;
1826 
1827 	assert(nvme_ctrlr->reset_start_tsc == 0);
1828 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
1829 
1830 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1831 
1832 	spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset, nvme_ctrlr);
1833 	return 0;
1834 }
1835 
1836 int
1837 bdev_nvme_reset_rpc(struct nvme_ctrlr *nvme_ctrlr, bdev_nvme_reset_cb cb_fn, void *cb_arg)
1838 {
1839 	int rc;
1840 
1841 	rc = bdev_nvme_reset(nvme_ctrlr);
1842 	if (rc == 0) {
1843 		nvme_ctrlr->reset_cb_fn = cb_fn;
1844 		nvme_ctrlr->reset_cb_arg = cb_arg;
1845 	}
1846 	return rc;
1847 }
1848 
1849 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
1850 
1851 static void
1852 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
1853 {
1854 	enum spdk_bdev_io_status io_status;
1855 
1856 	if (bio->cpl.cdw0 == 0) {
1857 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1858 	} else {
1859 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1860 	}
1861 
1862 	spdk_bdev_io_complete(spdk_bdev_io_from_ctx(bio), io_status);
1863 }
1864 
1865 static void
1866 _bdev_nvme_reset_io_continue(void *ctx)
1867 {
1868 	struct nvme_bdev_io *bio = ctx;
1869 	struct nvme_io_path *prev_io_path, *next_io_path;
1870 	int rc;
1871 
1872 	prev_io_path = bio->io_path;
1873 	bio->io_path = NULL;
1874 
1875 	if (bio->cpl.cdw0 != 0) {
1876 		goto complete;
1877 	}
1878 
1879 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
1880 	if (next_io_path == NULL) {
1881 		goto complete;
1882 	}
1883 
1884 	rc = _bdev_nvme_reset_io(next_io_path, bio);
1885 	if (rc == 0) {
1886 		return;
1887 	}
1888 
1889 	bio->cpl.cdw0 = 1;
1890 
1891 complete:
1892 	bdev_nvme_reset_io_complete(bio);
1893 }
1894 
1895 static void
1896 bdev_nvme_reset_io_continue(void *cb_arg, bool success)
1897 {
1898 	struct nvme_bdev_io *bio = cb_arg;
1899 
1900 	bio->cpl.cdw0 = !success;
1901 
1902 	spdk_thread_send_msg(bio->orig_thread, _bdev_nvme_reset_io_continue, bio);
1903 }
1904 
1905 static int
1906 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
1907 {
1908 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1909 	struct nvme_ctrlr_channel *ctrlr_ch;
1910 	struct spdk_bdev_io *bdev_io;
1911 	int rc;
1912 
1913 	rc = bdev_nvme_reset(nvme_ctrlr);
1914 	if (rc == 0) {
1915 		assert(bio->io_path == NULL);
1916 		bio->io_path = io_path;
1917 
1918 		assert(nvme_ctrlr->reset_cb_fn == NULL);
1919 		assert(nvme_ctrlr->reset_cb_arg == NULL);
1920 		nvme_ctrlr->reset_cb_fn = bdev_nvme_reset_io_continue;
1921 		nvme_ctrlr->reset_cb_arg = bio;
1922 	} else if (rc == -EBUSY) {
1923 		ctrlr_ch = io_path->qpair->ctrlr_ch;
1924 		assert(ctrlr_ch != NULL);
1925 		/*
1926 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
1927 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
1928 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
1929 		 */
1930 		bdev_io = spdk_bdev_io_from_ctx(bio);
1931 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bdev_io, module_link);
1932 	} else {
1933 		return rc;
1934 	}
1935 
1936 	return 0;
1937 }
1938 
1939 static void
1940 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
1941 {
1942 	struct nvme_io_path *io_path;
1943 	int rc;
1944 
1945 	bio->cpl.cdw0 = 0;
1946 	bio->orig_thread = spdk_get_thread();
1947 
1948 	/* Reset only the first nvme_ctrlr in the nvme_bdev_ctrlr for now.
1949 	 *
1950 	 * TODO: Reset all nvme_ctrlrs in the nvme_bdev_ctrlr sequentially.
1951 	 * This will be done in the following patches.
1952 	 */
1953 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
1954 	assert(io_path != NULL);
1955 
1956 	rc = _bdev_nvme_reset_io(io_path, bio);
1957 	if (rc != 0) {
1958 		bio->cpl.cdw0 = 1;
1959 		bdev_nvme_reset_io_complete(bio);
1960 	}
1961 }
1962 
1963 static int
1964 bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove)
1965 {
1966 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1967 	if (nvme_ctrlr->destruct) {
1968 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1969 		/* Don't bother resetting if the controller is in the process of being destructed. */
1970 		return -ENXIO;
1971 	}
1972 
1973 	if (nvme_ctrlr->resetting) {
1974 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1975 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
1976 		return -EBUSY;
1977 	}
1978 
1979 	bdev_nvme_failover_trid(nvme_ctrlr, remove);
1980 
1981 	if (nvme_ctrlr->reconnect_is_delayed) {
1982 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1983 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
1984 
1985 		/* We rely on the next reconnect for the failover. */
1986 		return 0;
1987 	}
1988 
1989 	nvme_ctrlr->resetting = true;
1990 
1991 	assert(nvme_ctrlr->reset_start_tsc == 0);
1992 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
1993 
1994 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1995 
1996 	spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset, nvme_ctrlr);
1997 	return 0;
1998 }
1999 
2000 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2001 			   uint64_t num_blocks);
2002 
2003 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2004 				  uint64_t num_blocks);
2005 
2006 static void
2007 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
2008 		     bool success)
2009 {
2010 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2011 	struct spdk_bdev *bdev = bdev_io->bdev;
2012 	int ret;
2013 
2014 	if (!success) {
2015 		ret = -EINVAL;
2016 		goto exit;
2017 	}
2018 
2019 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
2020 		ret = -ENXIO;
2021 		goto exit;
2022 	}
2023 
2024 	ret = bdev_nvme_readv(bio,
2025 			      bdev_io->u.bdev.iovs,
2026 			      bdev_io->u.bdev.iovcnt,
2027 			      bdev_io->u.bdev.md_buf,
2028 			      bdev_io->u.bdev.num_blocks,
2029 			      bdev_io->u.bdev.offset_blocks,
2030 			      bdev->dif_check_flags,
2031 			      bdev_io->u.bdev.ext_opts);
2032 
2033 exit:
2034 	if (spdk_unlikely(ret != 0)) {
2035 		bdev_nvme_io_complete(bio, ret);
2036 	}
2037 }
2038 
2039 static void
2040 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
2041 {
2042 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
2043 	struct spdk_bdev *bdev = bdev_io->bdev;
2044 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2045 	struct nvme_bdev_io *nbdev_io_to_abort;
2046 	int rc = 0;
2047 
2048 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
2049 	if (spdk_unlikely(!nbdev_io->io_path)) {
2050 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
2051 			rc = -ENXIO;
2052 			goto exit;
2053 		}
2054 
2055 		/* Admin commands do not use the optimal I/O path.
2056 		 * Simply fall through even if it is not found.
2057 		 */
2058 	}
2059 
2060 	switch (bdev_io->type) {
2061 	case SPDK_BDEV_IO_TYPE_READ:
2062 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
2063 			rc = bdev_nvme_readv(nbdev_io,
2064 					     bdev_io->u.bdev.iovs,
2065 					     bdev_io->u.bdev.iovcnt,
2066 					     bdev_io->u.bdev.md_buf,
2067 					     bdev_io->u.bdev.num_blocks,
2068 					     bdev_io->u.bdev.offset_blocks,
2069 					     bdev->dif_check_flags,
2070 					     bdev_io->u.bdev.ext_opts);
2071 		} else {
2072 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
2073 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
2074 			rc = 0;
2075 		}
2076 		break;
2077 	case SPDK_BDEV_IO_TYPE_WRITE:
2078 		rc = bdev_nvme_writev(nbdev_io,
2079 				      bdev_io->u.bdev.iovs,
2080 				      bdev_io->u.bdev.iovcnt,
2081 				      bdev_io->u.bdev.md_buf,
2082 				      bdev_io->u.bdev.num_blocks,
2083 				      bdev_io->u.bdev.offset_blocks,
2084 				      bdev->dif_check_flags,
2085 				      bdev_io->u.bdev.ext_opts);
2086 		break;
2087 	case SPDK_BDEV_IO_TYPE_COMPARE:
2088 		rc = bdev_nvme_comparev(nbdev_io,
2089 					bdev_io->u.bdev.iovs,
2090 					bdev_io->u.bdev.iovcnt,
2091 					bdev_io->u.bdev.md_buf,
2092 					bdev_io->u.bdev.num_blocks,
2093 					bdev_io->u.bdev.offset_blocks,
2094 					bdev->dif_check_flags);
2095 		break;
2096 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
2097 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
2098 						   bdev_io->u.bdev.iovs,
2099 						   bdev_io->u.bdev.iovcnt,
2100 						   bdev_io->u.bdev.fused_iovs,
2101 						   bdev_io->u.bdev.fused_iovcnt,
2102 						   bdev_io->u.bdev.md_buf,
2103 						   bdev_io->u.bdev.num_blocks,
2104 						   bdev_io->u.bdev.offset_blocks,
2105 						   bdev->dif_check_flags);
2106 		break;
2107 	case SPDK_BDEV_IO_TYPE_UNMAP:
2108 		rc = bdev_nvme_unmap(nbdev_io,
2109 				     bdev_io->u.bdev.offset_blocks,
2110 				     bdev_io->u.bdev.num_blocks);
2111 		break;
2112 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
2113 		rc =  bdev_nvme_write_zeroes(nbdev_io,
2114 					     bdev_io->u.bdev.offset_blocks,
2115 					     bdev_io->u.bdev.num_blocks);
2116 		break;
2117 	case SPDK_BDEV_IO_TYPE_RESET:
2118 		nbdev_io->io_path = NULL;
2119 		bdev_nvme_reset_io(nbdev_ch, nbdev_io);
2120 		break;
2121 	case SPDK_BDEV_IO_TYPE_FLUSH:
2122 		rc = bdev_nvme_flush(nbdev_io,
2123 				     bdev_io->u.bdev.offset_blocks,
2124 				     bdev_io->u.bdev.num_blocks);
2125 		break;
2126 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
2127 		rc = bdev_nvme_zone_appendv(nbdev_io,
2128 					    bdev_io->u.bdev.iovs,
2129 					    bdev_io->u.bdev.iovcnt,
2130 					    bdev_io->u.bdev.md_buf,
2131 					    bdev_io->u.bdev.num_blocks,
2132 					    bdev_io->u.bdev.offset_blocks,
2133 					    bdev->dif_check_flags);
2134 		break;
2135 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
2136 		rc = bdev_nvme_get_zone_info(nbdev_io,
2137 					     bdev_io->u.zone_mgmt.zone_id,
2138 					     bdev_io->u.zone_mgmt.num_zones,
2139 					     bdev_io->u.zone_mgmt.buf);
2140 		break;
2141 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
2142 		rc = bdev_nvme_zone_management(nbdev_io,
2143 					       bdev_io->u.zone_mgmt.zone_id,
2144 					       bdev_io->u.zone_mgmt.zone_action);
2145 		break;
2146 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
2147 		nbdev_io->io_path = NULL;
2148 		bdev_nvme_admin_passthru(nbdev_ch,
2149 					 nbdev_io,
2150 					 &bdev_io->u.nvme_passthru.cmd,
2151 					 bdev_io->u.nvme_passthru.buf,
2152 					 bdev_io->u.nvme_passthru.nbytes);
2153 		break;
2154 	case SPDK_BDEV_IO_TYPE_NVME_IO:
2155 		rc = bdev_nvme_io_passthru(nbdev_io,
2156 					   &bdev_io->u.nvme_passthru.cmd,
2157 					   bdev_io->u.nvme_passthru.buf,
2158 					   bdev_io->u.nvme_passthru.nbytes);
2159 		break;
2160 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
2161 		rc = bdev_nvme_io_passthru_md(nbdev_io,
2162 					      &bdev_io->u.nvme_passthru.cmd,
2163 					      bdev_io->u.nvme_passthru.buf,
2164 					      bdev_io->u.nvme_passthru.nbytes,
2165 					      bdev_io->u.nvme_passthru.md_buf,
2166 					      bdev_io->u.nvme_passthru.md_len);
2167 		break;
2168 	case SPDK_BDEV_IO_TYPE_ABORT:
2169 		nbdev_io->io_path = NULL;
2170 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
2171 		bdev_nvme_abort(nbdev_ch,
2172 				nbdev_io,
2173 				nbdev_io_to_abort);
2174 		break;
2175 	default:
2176 		rc = -EINVAL;
2177 		break;
2178 	}
2179 
2180 exit:
2181 	if (spdk_unlikely(rc != 0)) {
2182 		bdev_nvme_io_complete(nbdev_io, rc);
2183 	}
2184 }
2185 
2186 static bool
2187 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
2188 {
2189 	struct nvme_bdev *nbdev = ctx;
2190 	struct nvme_ns *nvme_ns;
2191 	struct spdk_nvme_ns *ns;
2192 	struct spdk_nvme_ctrlr *ctrlr;
2193 	const struct spdk_nvme_ctrlr_data *cdata;
2194 
2195 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
2196 	assert(nvme_ns != NULL);
2197 	ns = nvme_ns->ns;
2198 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
2199 
2200 	switch (io_type) {
2201 	case SPDK_BDEV_IO_TYPE_READ:
2202 	case SPDK_BDEV_IO_TYPE_WRITE:
2203 	case SPDK_BDEV_IO_TYPE_RESET:
2204 	case SPDK_BDEV_IO_TYPE_FLUSH:
2205 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
2206 	case SPDK_BDEV_IO_TYPE_NVME_IO:
2207 	case SPDK_BDEV_IO_TYPE_ABORT:
2208 		return true;
2209 
2210 	case SPDK_BDEV_IO_TYPE_COMPARE:
2211 		return spdk_nvme_ns_supports_compare(ns);
2212 
2213 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
2214 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
2215 
2216 	case SPDK_BDEV_IO_TYPE_UNMAP:
2217 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2218 		return cdata->oncs.dsm;
2219 
2220 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
2221 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2222 		return cdata->oncs.write_zeroes;
2223 
2224 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
2225 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
2226 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
2227 			return true;
2228 		}
2229 		return false;
2230 
2231 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
2232 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
2233 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
2234 
2235 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
2236 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
2237 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
2238 
2239 	default:
2240 		return false;
2241 	}
2242 }
2243 
2244 static int
2245 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
2246 {
2247 	struct nvme_qpair *nvme_qpair;
2248 	struct spdk_io_channel *pg_ch;
2249 	int rc;
2250 
2251 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
2252 	if (!nvme_qpair) {
2253 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
2254 		return -1;
2255 	}
2256 
2257 	TAILQ_INIT(&nvme_qpair->io_path_list);
2258 
2259 	nvme_qpair->ctrlr = nvme_ctrlr;
2260 	nvme_qpair->ctrlr_ch = ctrlr_ch;
2261 
2262 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
2263 	if (!pg_ch) {
2264 		free(nvme_qpair);
2265 		return -1;
2266 	}
2267 
2268 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
2269 
2270 #ifdef SPDK_CONFIG_VTUNE
2271 	nvme_qpair->group->collect_spin_stat = true;
2272 #else
2273 	nvme_qpair->group->collect_spin_stat = false;
2274 #endif
2275 
2276 	rc = bdev_nvme_create_qpair(nvme_qpair);
2277 	if (rc != 0) {
2278 		/* nvme_ctrlr can't create IO qpair if connection is down. If nvme_ctrlr is
2279 		 * being reset or scheduled to reconnect later, ignore this failure.
2280 		 * Then IO qpair will be created later when reconnect completes.
2281 		 * If the user submits IO requests in the meantime, they will be queued and
2282 		 * resubmitted later */
2283 		if (!nvme_ctrlr->resetting && !nvme_ctrlr->reconnect_is_delayed) {
2284 			spdk_put_io_channel(pg_ch);
2285 			free(nvme_qpair);
2286 			return rc;
2287 		}
2288 	}
2289 
2290 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
2291 
2292 	ctrlr_ch->qpair = nvme_qpair;
2293 
2294 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
2295 	nvme_qpair->ctrlr->ref++;
2296 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
2297 
2298 	return 0;
2299 }
2300 
2301 static int
2302 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
2303 {
2304 	struct nvme_ctrlr *nvme_ctrlr = io_device;
2305 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
2306 
2307 	TAILQ_INIT(&ctrlr_ch->pending_resets);
2308 
2309 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
2310 }
2311 
2312 static void
2313 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
2314 {
2315 	assert(nvme_qpair->group != NULL);
2316 
2317 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
2318 
2319 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
2320 
2321 	nvme_ctrlr_release(nvme_qpair->ctrlr);
2322 
2323 	free(nvme_qpair);
2324 }
2325 
2326 static void
2327 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
2328 {
2329 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
2330 	struct nvme_qpair *nvme_qpair;
2331 
2332 	nvme_qpair = ctrlr_ch->qpair;
2333 	assert(nvme_qpair != NULL);
2334 
2335 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2336 
2337 	if (nvme_qpair->qpair != NULL) {
2338 		if (ctrlr_ch->reset_iter == NULL) {
2339 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2340 		} else {
2341 			/* Skip current ctrlr_channel in a full reset sequence because
2342 			 * it is being deleted now. The qpair is already being disconnected.
2343 			 * We do not have to restart disconnecting it.
2344 			 */
2345 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2346 		}
2347 
2348 		/* We cannot release a reference to the poll group now.
2349 		 * The qpair may be disconnected asynchronously later.
2350 		 * We need to poll it until it is actually disconnected.
2351 		 * Just detach the qpair from the deleting ctrlr_channel.
2352 		 */
2353 		nvme_qpair->ctrlr_ch = NULL;
2354 	} else {
2355 		assert(ctrlr_ch->reset_iter == NULL);
2356 
2357 		nvme_qpair_delete(nvme_qpair);
2358 	}
2359 }
2360 
2361 static void
2362 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
2363 			      uint32_t iov_cnt, uint32_t seed,
2364 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
2365 {
2366 	struct nvme_poll_group *group = ctx;
2367 	int rc;
2368 
2369 	assert(group->accel_channel != NULL);
2370 	assert(cb_fn != NULL);
2371 
2372 	rc = spdk_accel_submit_crc32cv(group->accel_channel, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
2373 	if (rc) {
2374 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
2375 		if (rc == -ENOMEM || rc == -EINVAL) {
2376 			cb_fn(cb_arg, rc);
2377 		}
2378 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
2379 	}
2380 }
2381 
2382 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
2383 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
2384 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
2385 };
2386 
2387 static int
2388 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
2389 {
2390 	struct nvme_poll_group *group = ctx_buf;
2391 
2392 	TAILQ_INIT(&group->qpair_list);
2393 
2394 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
2395 	if (group->group == NULL) {
2396 		return -1;
2397 	}
2398 
2399 	group->accel_channel = spdk_accel_engine_get_io_channel();
2400 	if (!group->accel_channel) {
2401 		spdk_nvme_poll_group_destroy(group->group);
2402 		SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
2403 			    group);
2404 		return -1;
2405 	}
2406 
2407 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
2408 
2409 	if (group->poller == NULL) {
2410 		spdk_put_io_channel(group->accel_channel);
2411 		spdk_nvme_poll_group_destroy(group->group);
2412 		return -1;
2413 	}
2414 
2415 	return 0;
2416 }
2417 
2418 static void
2419 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
2420 {
2421 	struct nvme_poll_group *group = ctx_buf;
2422 
2423 	assert(TAILQ_EMPTY(&group->qpair_list));
2424 
2425 	if (group->accel_channel) {
2426 		spdk_put_io_channel(group->accel_channel);
2427 	}
2428 
2429 	spdk_poller_unregister(&group->poller);
2430 	if (spdk_nvme_poll_group_destroy(group->group)) {
2431 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
2432 		assert(false);
2433 	}
2434 }
2435 
2436 static struct spdk_io_channel *
2437 bdev_nvme_get_io_channel(void *ctx)
2438 {
2439 	struct nvme_bdev *nvme_bdev = ctx;
2440 
2441 	return spdk_get_io_channel(nvme_bdev);
2442 }
2443 
2444 static void *
2445 bdev_nvme_get_module_ctx(void *ctx)
2446 {
2447 	struct nvme_bdev *nvme_bdev = ctx;
2448 	struct nvme_ns *nvme_ns;
2449 
2450 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
2451 		return NULL;
2452 	}
2453 
2454 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
2455 	if (!nvme_ns) {
2456 		return NULL;
2457 	}
2458 
2459 	return nvme_ns->ns;
2460 }
2461 
2462 static const char *
2463 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
2464 {
2465 	switch (ana_state) {
2466 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
2467 		return "optimized";
2468 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
2469 		return "non_optimized";
2470 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
2471 		return "inaccessible";
2472 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
2473 		return "persistent_loss";
2474 	case SPDK_NVME_ANA_CHANGE_STATE:
2475 		return "change";
2476 	default:
2477 		return NULL;
2478 	}
2479 }
2480 
2481 static int
2482 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
2483 {
2484 	struct nvme_bdev *nbdev = ctx;
2485 	struct nvme_ns *nvme_ns;
2486 
2487 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
2488 	assert(nvme_ns != NULL);
2489 
2490 	return spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, domains, array_size);
2491 }
2492 
2493 static const char *
2494 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
2495 {
2496 	if (nvme_ctrlr->destruct) {
2497 		return "deleting";
2498 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
2499 		return "failed";
2500 	} else if (nvme_ctrlr->resetting) {
2501 		return "resetting";
2502 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
2503 		return "reconnect_is_delayed";
2504 	} else {
2505 		return "enabled";
2506 	}
2507 }
2508 
2509 void
2510 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
2511 {
2512 	struct spdk_nvme_transport_id *trid;
2513 	const struct spdk_nvme_ctrlr_opts *opts;
2514 	const struct spdk_nvme_ctrlr_data *cdata;
2515 
2516 	spdk_json_write_object_begin(w);
2517 
2518 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
2519 
2520 #ifdef SPDK_CONFIG_NVME_CUSE
2521 	size_t cuse_name_size = 128;
2522 	char cuse_name[cuse_name_size];
2523 
2524 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
2525 	if (rc == 0) {
2526 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
2527 	}
2528 #endif
2529 	trid = &nvme_ctrlr->active_path_id->trid;
2530 	spdk_json_write_named_object_begin(w, "trid");
2531 	nvme_bdev_dump_trid_json(trid, w);
2532 	spdk_json_write_object_end(w);
2533 
2534 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
2535 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
2536 
2537 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
2538 	spdk_json_write_named_object_begin(w, "host");
2539 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
2540 	spdk_json_write_named_string(w, "addr", opts->src_addr);
2541 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
2542 	spdk_json_write_object_end(w);
2543 
2544 	spdk_json_write_object_end(w);
2545 }
2546 
2547 static void
2548 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
2549 			 struct nvme_ns *nvme_ns)
2550 {
2551 	struct spdk_nvme_ns *ns;
2552 	struct spdk_nvme_ctrlr *ctrlr;
2553 	const struct spdk_nvme_ctrlr_data *cdata;
2554 	const struct spdk_nvme_transport_id *trid;
2555 	union spdk_nvme_vs_register vs;
2556 	const struct spdk_nvme_ns_data *nsdata;
2557 	char buf[128];
2558 
2559 	ns = nvme_ns->ns;
2560 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
2561 
2562 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2563 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
2564 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
2565 
2566 	spdk_json_write_object_begin(w);
2567 
2568 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
2569 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
2570 	}
2571 
2572 	spdk_json_write_named_object_begin(w, "trid");
2573 
2574 	nvme_bdev_dump_trid_json(trid, w);
2575 
2576 	spdk_json_write_object_end(w);
2577 
2578 #ifdef SPDK_CONFIG_NVME_CUSE
2579 	size_t cuse_name_size = 128;
2580 	char cuse_name[cuse_name_size];
2581 
2582 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
2583 					    cuse_name, &cuse_name_size);
2584 	if (rc == 0) {
2585 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
2586 	}
2587 #endif
2588 
2589 	spdk_json_write_named_object_begin(w, "ctrlr_data");
2590 
2591 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
2592 
2593 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
2594 
2595 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
2596 	spdk_str_trim(buf);
2597 	spdk_json_write_named_string(w, "model_number", buf);
2598 
2599 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
2600 	spdk_str_trim(buf);
2601 	spdk_json_write_named_string(w, "serial_number", buf);
2602 
2603 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
2604 	spdk_str_trim(buf);
2605 	spdk_json_write_named_string(w, "firmware_revision", buf);
2606 
2607 	if (cdata->subnqn[0] != '\0') {
2608 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
2609 	}
2610 
2611 	spdk_json_write_named_object_begin(w, "oacs");
2612 
2613 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
2614 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
2615 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
2616 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
2617 
2618 	spdk_json_write_object_end(w);
2619 
2620 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
2621 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
2622 
2623 	spdk_json_write_object_end(w);
2624 
2625 	spdk_json_write_named_object_begin(w, "vs");
2626 
2627 	spdk_json_write_name(w, "nvme_version");
2628 	if (vs.bits.ter) {
2629 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
2630 	} else {
2631 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
2632 	}
2633 
2634 	spdk_json_write_object_end(w);
2635 
2636 	nsdata = spdk_nvme_ns_get_data(ns);
2637 
2638 	spdk_json_write_named_object_begin(w, "ns_data");
2639 
2640 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
2641 
2642 	if (cdata->cmic.ana_reporting) {
2643 		spdk_json_write_named_string(w, "ana_state",
2644 					     _nvme_ana_state_str(nvme_ns->ana_state));
2645 	}
2646 
2647 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
2648 
2649 	spdk_json_write_object_end(w);
2650 
2651 	if (cdata->oacs.security) {
2652 		spdk_json_write_named_object_begin(w, "security");
2653 
2654 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
2655 
2656 		spdk_json_write_object_end(w);
2657 	}
2658 
2659 	spdk_json_write_object_end(w);
2660 }
2661 
2662 static const char *
2663 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
2664 {
2665 	switch (nbdev->mp_policy) {
2666 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
2667 		return "active_passive";
2668 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
2669 		return "active_active";
2670 	default:
2671 		assert(false);
2672 		return "invalid";
2673 	}
2674 }
2675 
2676 static int
2677 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
2678 {
2679 	struct nvme_bdev *nvme_bdev = ctx;
2680 	struct nvme_ns *nvme_ns;
2681 
2682 	pthread_mutex_lock(&nvme_bdev->mutex);
2683 	spdk_json_write_named_array_begin(w, "nvme");
2684 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
2685 		nvme_namespace_info_json(w, nvme_ns);
2686 	}
2687 	spdk_json_write_array_end(w);
2688 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
2689 	pthread_mutex_unlock(&nvme_bdev->mutex);
2690 
2691 	return 0;
2692 }
2693 
2694 static void
2695 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
2696 {
2697 	/* No config per bdev needed */
2698 }
2699 
2700 static uint64_t
2701 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
2702 {
2703 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
2704 	struct nvme_io_path *io_path;
2705 	struct nvme_poll_group *group;
2706 	uint64_t spin_time = 0;
2707 
2708 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
2709 		group = io_path->qpair->group;
2710 
2711 		if (!group || !group->collect_spin_stat) {
2712 			continue;
2713 		}
2714 
2715 		if (group->end_ticks != 0) {
2716 			group->spin_ticks += (group->end_ticks - group->start_ticks);
2717 			group->end_ticks = 0;
2718 		}
2719 
2720 		spin_time += group->spin_ticks;
2721 		group->start_ticks = 0;
2722 		group->spin_ticks = 0;
2723 	}
2724 
2725 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
2726 }
2727 
2728 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
2729 	.destruct		= bdev_nvme_destruct,
2730 	.submit_request		= bdev_nvme_submit_request,
2731 	.io_type_supported	= bdev_nvme_io_type_supported,
2732 	.get_io_channel		= bdev_nvme_get_io_channel,
2733 	.dump_info_json		= bdev_nvme_dump_info_json,
2734 	.write_config_json	= bdev_nvme_write_config_json,
2735 	.get_spin_time		= bdev_nvme_get_spin_time,
2736 	.get_module_ctx		= bdev_nvme_get_module_ctx,
2737 	.get_memory_domains	= bdev_nvme_get_memory_domains,
2738 };
2739 
2740 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
2741 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
2742 
2743 static int
2744 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
2745 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
2746 {
2747 	struct spdk_nvme_ana_group_descriptor *copied_desc;
2748 	uint8_t *orig_desc;
2749 	uint32_t i, desc_size, copy_len;
2750 	int rc = 0;
2751 
2752 	if (nvme_ctrlr->ana_log_page == NULL) {
2753 		return -EINVAL;
2754 	}
2755 
2756 	copied_desc = nvme_ctrlr->copied_ana_desc;
2757 
2758 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
2759 	copy_len = nvme_ctrlr->ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
2760 
2761 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
2762 		memcpy(copied_desc, orig_desc, copy_len);
2763 
2764 		rc = cb_fn(copied_desc, cb_arg);
2765 		if (rc != 0) {
2766 			break;
2767 		}
2768 
2769 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
2770 			    copied_desc->num_of_nsid * sizeof(uint32_t);
2771 		orig_desc += desc_size;
2772 		copy_len -= desc_size;
2773 	}
2774 
2775 	return rc;
2776 }
2777 
2778 static int
2779 nvme_ns_ana_transition_timedout(void *ctx)
2780 {
2781 	struct nvme_ns *nvme_ns = ctx;
2782 
2783 	spdk_poller_unregister(&nvme_ns->anatt_timer);
2784 	nvme_ns->ana_transition_timedout = true;
2785 
2786 	return SPDK_POLLER_BUSY;
2787 }
2788 
2789 static void
2790 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
2791 		       const struct spdk_nvme_ana_group_descriptor *desc)
2792 {
2793 	const struct spdk_nvme_ctrlr_data *cdata;
2794 
2795 	nvme_ns->ana_group_id = desc->ana_group_id;
2796 	nvme_ns->ana_state = desc->ana_state;
2797 	nvme_ns->ana_state_updating = false;
2798 
2799 	switch (nvme_ns->ana_state) {
2800 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
2801 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
2802 		nvme_ns->ana_transition_timedout = false;
2803 		spdk_poller_unregister(&nvme_ns->anatt_timer);
2804 		break;
2805 
2806 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
2807 	case SPDK_NVME_ANA_CHANGE_STATE:
2808 		if (nvme_ns->anatt_timer != NULL) {
2809 			break;
2810 		}
2811 
2812 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
2813 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
2814 				       nvme_ns,
2815 				       cdata->anatt * SPDK_SEC_TO_USEC);
2816 		break;
2817 	default:
2818 		break;
2819 	}
2820 }
2821 
2822 static int
2823 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
2824 {
2825 	struct nvme_ns *nvme_ns = cb_arg;
2826 	uint32_t i;
2827 
2828 	for (i = 0; i < desc->num_of_nsid; i++) {
2829 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
2830 			continue;
2831 		}
2832 
2833 		_nvme_ns_set_ana_state(nvme_ns, desc);
2834 		return 1;
2835 	}
2836 
2837 	return 0;
2838 }
2839 
2840 static int
2841 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
2842 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
2843 		 uint32_t prchk_flags, void *ctx)
2844 {
2845 	const struct spdk_uuid		*uuid;
2846 	const uint8_t *nguid;
2847 	const struct spdk_nvme_ctrlr_data *cdata;
2848 	const struct spdk_nvme_ns_data	*nsdata;
2849 	const struct spdk_nvme_ctrlr_opts *opts;
2850 	enum spdk_nvme_csi		csi;
2851 	uint32_t atomic_bs, phys_bs, bs;
2852 
2853 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2854 	csi = spdk_nvme_ns_get_csi(ns);
2855 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
2856 
2857 	switch (csi) {
2858 	case SPDK_NVME_CSI_NVM:
2859 		disk->product_name = "NVMe disk";
2860 		break;
2861 	case SPDK_NVME_CSI_ZNS:
2862 		disk->product_name = "NVMe ZNS disk";
2863 		disk->zoned = true;
2864 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
2865 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
2866 					     spdk_nvme_ns_get_extended_sector_size(ns);
2867 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
2868 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
2869 		break;
2870 	default:
2871 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
2872 		return -ENOTSUP;
2873 	}
2874 
2875 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
2876 	if (!disk->name) {
2877 		return -ENOMEM;
2878 	}
2879 
2880 	disk->write_cache = 0;
2881 	if (cdata->vwc.present) {
2882 		/* Enable if the Volatile Write Cache exists */
2883 		disk->write_cache = 1;
2884 	}
2885 	if (cdata->oncs.write_zeroes) {
2886 		disk->max_write_zeroes = UINT16_MAX + 1;
2887 	}
2888 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
2889 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
2890 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
2891 	/* NVMe driver will split one request into multiple requests
2892 	 * based on MDTS and stripe boundary, the bdev layer will use
2893 	 * max_segment_size and max_num_segments to split one big IO
2894 	 * into multiple requests, then small request can't run out
2895 	 * of NVMe internal requests data structure.
2896 	 */
2897 	if (opts && opts->io_queue_requests) {
2898 		disk->max_num_segments = opts->io_queue_requests / 2;
2899 	}
2900 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
2901 
2902 	nguid = spdk_nvme_ns_get_nguid(ns);
2903 	if (!nguid) {
2904 		uuid = spdk_nvme_ns_get_uuid(ns);
2905 		if (uuid) {
2906 			disk->uuid = *uuid;
2907 		}
2908 	} else {
2909 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
2910 	}
2911 
2912 	nsdata = spdk_nvme_ns_get_data(ns);
2913 	bs = spdk_nvme_ns_get_sector_size(ns);
2914 	atomic_bs = bs;
2915 	phys_bs = bs;
2916 	if (nsdata->nabo == 0) {
2917 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
2918 			atomic_bs = bs * (1 + nsdata->nawupf);
2919 		} else {
2920 			atomic_bs = bs * (1 + cdata->awupf);
2921 		}
2922 	}
2923 	if (nsdata->nsfeat.optperf) {
2924 		phys_bs = bs * (1 + nsdata->npwg);
2925 	}
2926 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
2927 
2928 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
2929 	if (disk->md_len != 0) {
2930 		disk->md_interleave = nsdata->flbas.extended;
2931 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
2932 		if (disk->dif_type != SPDK_DIF_DISABLE) {
2933 			disk->dif_is_head_of_md = nsdata->dps.md_start;
2934 			disk->dif_check_flags = prchk_flags;
2935 		}
2936 	}
2937 
2938 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
2939 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
2940 		disk->acwu = 0;
2941 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
2942 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
2943 	} else {
2944 		disk->acwu = cdata->acwu + 1; /* 0-based */
2945 	}
2946 
2947 	disk->ctxt = ctx;
2948 	disk->fn_table = &nvmelib_fn_table;
2949 	disk->module = &nvme_if;
2950 
2951 	return 0;
2952 }
2953 
2954 static int
2955 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
2956 {
2957 	struct nvme_bdev *bdev;
2958 	int rc;
2959 
2960 	bdev = calloc(1, sizeof(*bdev));
2961 	if (!bdev) {
2962 		SPDK_ERRLOG("bdev calloc() failed\n");
2963 		return -ENOMEM;
2964 	}
2965 
2966 	rc = pthread_mutex_init(&bdev->mutex, NULL);
2967 	if (rc != 0) {
2968 		free(bdev);
2969 		return rc;
2970 	}
2971 
2972 	bdev->ref = 1;
2973 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
2974 	TAILQ_INIT(&bdev->nvme_ns_list);
2975 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
2976 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
2977 
2978 	rc = nvme_disk_create(&bdev->disk, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
2979 			      nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev);
2980 	if (rc != 0) {
2981 		SPDK_ERRLOG("Failed to create NVMe disk\n");
2982 		pthread_mutex_destroy(&bdev->mutex);
2983 		free(bdev);
2984 		return rc;
2985 	}
2986 
2987 	spdk_io_device_register(bdev,
2988 				bdev_nvme_create_bdev_channel_cb,
2989 				bdev_nvme_destroy_bdev_channel_cb,
2990 				sizeof(struct nvme_bdev_channel),
2991 				bdev->disk.name);
2992 
2993 	rc = spdk_bdev_register(&bdev->disk);
2994 	if (rc != 0) {
2995 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
2996 		spdk_io_device_unregister(bdev, NULL);
2997 		pthread_mutex_destroy(&bdev->mutex);
2998 		free(bdev->disk.name);
2999 		free(bdev);
3000 		return rc;
3001 	}
3002 
3003 	nvme_ns->bdev = bdev;
3004 	bdev->nsid = nvme_ns->id;
3005 
3006 	bdev->nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
3007 	TAILQ_INSERT_TAIL(&nvme_ctrlr->nbdev_ctrlr->bdevs, bdev, tailq);
3008 
3009 	return 0;
3010 }
3011 
3012 static bool
3013 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
3014 {
3015 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
3016 	const struct spdk_uuid *uuid1, *uuid2;
3017 
3018 	nsdata1 = spdk_nvme_ns_get_data(ns1);
3019 	nsdata2 = spdk_nvme_ns_get_data(ns2);
3020 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
3021 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
3022 
3023 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
3024 	       nsdata1->eui64 == nsdata2->eui64 &&
3025 	       ((uuid1 == NULL && uuid2 == NULL) ||
3026 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
3027 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
3028 }
3029 
3030 static bool
3031 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
3032 		 struct spdk_nvme_ctrlr_opts *opts)
3033 {
3034 	struct nvme_probe_skip_entry *entry;
3035 
3036 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
3037 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
3038 			return false;
3039 		}
3040 	}
3041 
3042 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
3043 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
3044 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
3045 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
3046 	opts->disable_read_ana_log_page = true;
3047 
3048 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
3049 
3050 	return true;
3051 }
3052 
3053 static void
3054 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
3055 {
3056 	struct nvme_ctrlr *nvme_ctrlr = ctx;
3057 
3058 	if (spdk_nvme_cpl_is_error(cpl)) {
3059 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
3060 			     cpl->status.sct);
3061 		bdev_nvme_reset(nvme_ctrlr);
3062 	} else if (cpl->cdw0 & 0x1) {
3063 		SPDK_WARNLOG("Specified command could not be aborted.\n");
3064 		bdev_nvme_reset(nvme_ctrlr);
3065 	}
3066 }
3067 
3068 static void
3069 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
3070 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
3071 {
3072 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
3073 	union spdk_nvme_csts_register csts;
3074 	int rc;
3075 
3076 	assert(nvme_ctrlr->ctrlr == ctrlr);
3077 
3078 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
3079 
3080 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
3081 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
3082 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
3083 	 * completion recursively.
3084 	 */
3085 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
3086 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
3087 		if (csts.bits.cfs) {
3088 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
3089 			bdev_nvme_reset(nvme_ctrlr);
3090 			return;
3091 		}
3092 	}
3093 
3094 	switch (g_opts.action_on_timeout) {
3095 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
3096 		if (qpair) {
3097 			/* Don't send abort to ctrlr when ctrlr is not available. */
3098 			pthread_mutex_lock(&nvme_ctrlr->mutex);
3099 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
3100 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
3101 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
3102 				return;
3103 			}
3104 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
3105 
3106 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
3107 						       nvme_abort_cpl, nvme_ctrlr);
3108 			if (rc == 0) {
3109 				return;
3110 			}
3111 
3112 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
3113 		}
3114 
3115 	/* FALLTHROUGH */
3116 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
3117 		bdev_nvme_reset(nvme_ctrlr);
3118 		break;
3119 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
3120 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
3121 		break;
3122 	default:
3123 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
3124 		break;
3125 	}
3126 }
3127 
3128 static void
3129 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
3130 {
3131 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
3132 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
3133 
3134 	if (rc == 0) {
3135 		nvme_ns->probe_ctx = NULL;
3136 		pthread_mutex_lock(&nvme_ctrlr->mutex);
3137 		nvme_ctrlr->ref++;
3138 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3139 	} else {
3140 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
3141 		free(nvme_ns);
3142 	}
3143 
3144 	if (ctx) {
3145 		ctx->populates_in_progress--;
3146 		if (ctx->populates_in_progress == 0) {
3147 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
3148 		}
3149 	}
3150 }
3151 
3152 static void
3153 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
3154 {
3155 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3156 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3157 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3158 	int rc;
3159 
3160 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
3161 	if (rc != 0) {
3162 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
3163 	}
3164 
3165 	spdk_for_each_channel_continue(i, rc);
3166 }
3167 
3168 static void
3169 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
3170 {
3171 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3172 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3173 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3174 	struct nvme_io_path *io_path;
3175 
3176 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
3177 	if (io_path != NULL) {
3178 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
3179 	}
3180 
3181 	spdk_for_each_channel_continue(i, 0);
3182 }
3183 
3184 static void
3185 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
3186 {
3187 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3188 
3189 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
3190 }
3191 
3192 static void
3193 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
3194 {
3195 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3196 	struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
3197 
3198 	if (status == 0) {
3199 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
3200 	} else {
3201 		/* Delete the added io_paths and fail populating the namespace. */
3202 		spdk_for_each_channel(bdev,
3203 				      bdev_nvme_delete_io_path,
3204 				      nvme_ns,
3205 				      bdev_nvme_add_io_path_failed);
3206 	}
3207 }
3208 
3209 static int
3210 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
3211 {
3212 	struct nvme_ns *tmp_ns;
3213 	const struct spdk_nvme_ns_data *nsdata;
3214 
3215 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
3216 	if (!nsdata->nmic.can_share) {
3217 		SPDK_ERRLOG("Namespace cannot be shared.\n");
3218 		return -EINVAL;
3219 	}
3220 
3221 	pthread_mutex_lock(&bdev->mutex);
3222 
3223 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
3224 	assert(tmp_ns != NULL);
3225 
3226 	if (!bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
3227 		pthread_mutex_unlock(&bdev->mutex);
3228 		SPDK_ERRLOG("Namespaces are not identical.\n");
3229 		return -EINVAL;
3230 	}
3231 
3232 	bdev->ref++;
3233 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
3234 	nvme_ns->bdev = bdev;
3235 
3236 	pthread_mutex_unlock(&bdev->mutex);
3237 
3238 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
3239 	spdk_for_each_channel(bdev,
3240 			      bdev_nvme_add_io_path,
3241 			      nvme_ns,
3242 			      bdev_nvme_add_io_path_done);
3243 
3244 	return 0;
3245 }
3246 
3247 static void
3248 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
3249 {
3250 	struct spdk_nvme_ns	*ns;
3251 	struct nvme_bdev	*bdev;
3252 	int			rc = 0;
3253 
3254 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
3255 	if (!ns) {
3256 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
3257 		rc = -EINVAL;
3258 		goto done;
3259 	}
3260 
3261 	nvme_ns->ns = ns;
3262 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
3263 
3264 	if (nvme_ctrlr->ana_log_page != NULL) {
3265 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
3266 	}
3267 
3268 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
3269 	if (bdev == NULL) {
3270 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
3271 	} else {
3272 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
3273 		if (rc == 0) {
3274 			return;
3275 		}
3276 	}
3277 done:
3278 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
3279 }
3280 
3281 static void
3282 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
3283 {
3284 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
3285 
3286 	assert(nvme_ctrlr != NULL);
3287 
3288 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3289 
3290 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
3291 
3292 	if (nvme_ns->bdev != NULL) {
3293 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3294 		return;
3295 	}
3296 
3297 	free(nvme_ns);
3298 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3299 
3300 	nvme_ctrlr_release(nvme_ctrlr);
3301 }
3302 
3303 static void
3304 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
3305 {
3306 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3307 
3308 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
3309 }
3310 
3311 static void
3312 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
3313 {
3314 	struct nvme_bdev *bdev;
3315 
3316 	spdk_poller_unregister(&nvme_ns->anatt_timer);
3317 
3318 	bdev = nvme_ns->bdev;
3319 	if (bdev != NULL) {
3320 		pthread_mutex_lock(&bdev->mutex);
3321 
3322 		assert(bdev->ref > 0);
3323 		bdev->ref--;
3324 		if (bdev->ref == 0) {
3325 			pthread_mutex_unlock(&bdev->mutex);
3326 
3327 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
3328 		} else {
3329 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
3330 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
3331 			 * and clear nvme_ns->bdev here.
3332 			 */
3333 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
3334 			nvme_ns->bdev = NULL;
3335 
3336 			pthread_mutex_unlock(&bdev->mutex);
3337 
3338 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
3339 			 * we call depopulate_namespace_done() to avoid use-after-free.
3340 			 */
3341 			spdk_for_each_channel(bdev,
3342 					      bdev_nvme_delete_io_path,
3343 					      nvme_ns,
3344 					      bdev_nvme_delete_io_path_done);
3345 			return;
3346 		}
3347 	}
3348 
3349 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
3350 }
3351 
3352 static void
3353 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
3354 			       struct nvme_async_probe_ctx *ctx)
3355 {
3356 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
3357 	struct nvme_ns	*nvme_ns, *next;
3358 	struct spdk_nvme_ns	*ns;
3359 	struct nvme_bdev	*bdev;
3360 	uint32_t		nsid;
3361 	int			rc;
3362 	uint64_t		num_sectors;
3363 
3364 	if (ctx) {
3365 		/* Initialize this count to 1 to handle the populate functions
3366 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
3367 		 */
3368 		ctx->populates_in_progress = 1;
3369 	}
3370 
3371 	/* First loop over our existing namespaces and see if they have been
3372 	 * removed. */
3373 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
3374 	while (nvme_ns != NULL) {
3375 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
3376 
3377 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
3378 			/* NS is still there but attributes may have changed */
3379 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
3380 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
3381 			bdev = nvme_ns->bdev;
3382 			assert(bdev != NULL);
3383 			if (bdev->disk.blockcnt != num_sectors) {
3384 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
3385 					       nvme_ns->id,
3386 					       bdev->disk.name,
3387 					       bdev->disk.blockcnt,
3388 					       num_sectors);
3389 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
3390 				if (rc != 0) {
3391 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
3392 						    bdev->disk.name, rc);
3393 				}
3394 			}
3395 		} else {
3396 			/* Namespace was removed */
3397 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
3398 		}
3399 
3400 		nvme_ns = next;
3401 	}
3402 
3403 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
3404 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
3405 	while (nsid != 0) {
3406 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
3407 
3408 		if (nvme_ns == NULL) {
3409 			/* Found a new one */
3410 			nvme_ns = calloc(1, sizeof(struct nvme_ns));
3411 			if (nvme_ns == NULL) {
3412 				SPDK_ERRLOG("Failed to allocate namespace\n");
3413 				/* This just fails to attach the namespace. It may work on a future attempt. */
3414 				continue;
3415 			}
3416 
3417 			nvme_ns->id = nsid;
3418 			nvme_ns->ctrlr = nvme_ctrlr;
3419 
3420 			nvme_ns->bdev = NULL;
3421 
3422 			if (ctx) {
3423 				ctx->populates_in_progress++;
3424 			}
3425 			nvme_ns->probe_ctx = ctx;
3426 
3427 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
3428 
3429 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
3430 		}
3431 
3432 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
3433 	}
3434 
3435 	if (ctx) {
3436 		/* Decrement this count now that the loop is over to account
3437 		 * for the one we started with.  If the count is then 0, we
3438 		 * know any populate_namespace functions completed immediately,
3439 		 * so we'll kick the callback here.
3440 		 */
3441 		ctx->populates_in_progress--;
3442 		if (ctx->populates_in_progress == 0) {
3443 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
3444 		}
3445 	}
3446 
3447 }
3448 
3449 static void
3450 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
3451 {
3452 	struct nvme_ns *nvme_ns, *tmp;
3453 
3454 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
3455 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
3456 	}
3457 }
3458 
3459 static int
3460 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
3461 			  void *cb_arg)
3462 {
3463 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
3464 	struct nvme_ns *nvme_ns;
3465 	uint32_t i, nsid;
3466 
3467 	for (i = 0; i < desc->num_of_nsid; i++) {
3468 		nsid = desc->nsid[i];
3469 		if (nsid == 0) {
3470 			continue;
3471 		}
3472 
3473 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
3474 
3475 		assert(nvme_ns != NULL);
3476 		if (nvme_ns == NULL) {
3477 			/* Target told us that an inactive namespace had an ANA change */
3478 			continue;
3479 		}
3480 
3481 		_nvme_ns_set_ana_state(nvme_ns, desc);
3482 	}
3483 
3484 	return 0;
3485 }
3486 
3487 static void
3488 _nvme_ctrlr_read_ana_log_page_done(struct spdk_io_channel_iter *i, int status)
3489 {
3490 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
3491 
3492 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3493 
3494 	assert(nvme_ctrlr->ana_log_page_updating == true);
3495 	nvme_ctrlr->ana_log_page_updating = false;
3496 
3497 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
3498 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3499 		return;
3500 	}
3501 
3502 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3503 
3504 	nvme_ctrlr_unregister(nvme_ctrlr);
3505 }
3506 
3507 static void
3508 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
3509 {
3510 	struct nvme_ns *nvme_ns;
3511 
3512 	spdk_free(nvme_ctrlr->ana_log_page);
3513 	nvme_ctrlr->ana_log_page = NULL;
3514 
3515 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
3516 	     nvme_ns != NULL;
3517 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
3518 		nvme_ns->ana_state_updating = false;
3519 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
3520 	}
3521 }
3522 
3523 static void
3524 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
3525 {
3526 	struct nvme_ctrlr *nvme_ctrlr = ctx;
3527 
3528 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
3529 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
3530 					     nvme_ctrlr);
3531 	} else {
3532 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
3533 	}
3534 
3535 	bdev_nvme_clear_io_path_caches(nvme_ctrlr, _nvme_ctrlr_read_ana_log_page_done);
3536 }
3537 
3538 static int
3539 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
3540 {
3541 	int rc;
3542 
3543 	if (nvme_ctrlr->ana_log_page == NULL) {
3544 		return -EINVAL;
3545 	}
3546 
3547 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3548 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
3549 	    nvme_ctrlr->ana_log_page_updating) {
3550 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3551 		return -EBUSY;
3552 	}
3553 
3554 	nvme_ctrlr->ana_log_page_updating = true;
3555 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3556 
3557 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
3558 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
3559 					      SPDK_NVME_GLOBAL_NS_TAG,
3560 					      nvme_ctrlr->ana_log_page,
3561 					      nvme_ctrlr->ana_log_page_size, 0,
3562 					      nvme_ctrlr_read_ana_log_page_done,
3563 					      nvme_ctrlr);
3564 	if (rc != 0) {
3565 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
3566 	}
3567 
3568 	return rc;
3569 }
3570 
3571 static void
3572 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
3573 {
3574 }
3575 
3576 struct bdev_nvme_set_preferred_path_ctx {
3577 	struct spdk_bdev_desc *desc;
3578 	struct nvme_ns *nvme_ns;
3579 	bdev_nvme_set_preferred_path_cb cb_fn;
3580 	void *cb_arg;
3581 };
3582 
3583 static void
3584 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
3585 {
3586 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
3587 
3588 	assert(ctx != NULL);
3589 	assert(ctx->desc != NULL);
3590 	assert(ctx->cb_fn != NULL);
3591 
3592 	spdk_bdev_close(ctx->desc);
3593 
3594 	ctx->cb_fn(ctx->cb_arg, status);
3595 
3596 	free(ctx);
3597 }
3598 
3599 static void
3600 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
3601 {
3602 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
3603 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3604 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3605 	struct nvme_io_path *io_path, *prev;
3606 
3607 	prev = NULL;
3608 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3609 		if (io_path->nvme_ns == ctx->nvme_ns) {
3610 			break;
3611 		}
3612 		prev = io_path;
3613 	}
3614 
3615 	if (io_path != NULL) {
3616 		if (prev != NULL) {
3617 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
3618 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
3619 		}
3620 
3621 		/* We can set io_path to nbdev_ch->current_io_path directly here.
3622 		 * However, it needs to be conditional. To simplify the code,
3623 		 * just clear nbdev_ch->current_io_path and let find_io_path()
3624 		 * fill it.
3625 		 *
3626 		 * Automatic failback may be disabled. Hence even if the io_path is
3627 		 * already at the head, clear nbdev_ch->current_io_path.
3628 		 */
3629 		nbdev_ch->current_io_path = NULL;
3630 	}
3631 
3632 	spdk_for_each_channel_continue(i, 0);
3633 }
3634 
3635 static struct nvme_ns *
3636 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
3637 {
3638 	struct nvme_ns *nvme_ns, *prev;
3639 	const struct spdk_nvme_ctrlr_data *cdata;
3640 
3641 	prev = NULL;
3642 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3643 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
3644 
3645 		if (cdata->cntlid == cntlid) {
3646 			break;
3647 		}
3648 		prev = nvme_ns;
3649 	}
3650 
3651 	if (nvme_ns != NULL && prev != NULL) {
3652 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
3653 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
3654 	}
3655 
3656 	return nvme_ns;
3657 }
3658 
3659 /* This function supports only multipath mode. There is only a single I/O path
3660  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
3661  * head of the I/O path list for each NVMe bdev channel.
3662  *
3663  * NVMe bdev channel may be acquired after completing this function. move the
3664  * matched namespace to the head of the namespace list for the NVMe bdev too.
3665  */
3666 void
3667 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
3668 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
3669 {
3670 	struct bdev_nvme_set_preferred_path_ctx *ctx;
3671 	struct spdk_bdev *bdev;
3672 	struct nvme_bdev *nbdev;
3673 	int rc = 0;
3674 
3675 	assert(cb_fn != NULL);
3676 
3677 	ctx = calloc(1, sizeof(*ctx));
3678 	if (ctx == NULL) {
3679 		SPDK_ERRLOG("Failed to alloc context.\n");
3680 		rc = -ENOMEM;
3681 		goto err_alloc;
3682 	}
3683 
3684 	ctx->cb_fn = cb_fn;
3685 	ctx->cb_arg = cb_arg;
3686 
3687 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
3688 	if (rc != 0) {
3689 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
3690 		goto err_open;
3691 	}
3692 
3693 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
3694 
3695 	if (bdev->module != &nvme_if) {
3696 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
3697 		rc = -ENODEV;
3698 		goto err_bdev;
3699 	}
3700 
3701 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
3702 
3703 	pthread_mutex_lock(&nbdev->mutex);
3704 
3705 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
3706 	if (ctx->nvme_ns == NULL) {
3707 		pthread_mutex_unlock(&nbdev->mutex);
3708 
3709 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
3710 		rc = -ENODEV;
3711 		goto err_bdev;
3712 	}
3713 
3714 	pthread_mutex_unlock(&nbdev->mutex);
3715 
3716 	spdk_for_each_channel(nbdev,
3717 			      _bdev_nvme_set_preferred_path,
3718 			      ctx,
3719 			      bdev_nvme_set_preferred_path_done);
3720 	return;
3721 
3722 err_bdev:
3723 	spdk_bdev_close(ctx->desc);
3724 err_open:
3725 	free(ctx);
3726 err_alloc:
3727 	cb_fn(cb_arg, rc);
3728 }
3729 
3730 struct bdev_nvme_set_multipath_policy_ctx {
3731 	struct spdk_bdev_desc *desc;
3732 	bdev_nvme_set_multipath_policy_cb cb_fn;
3733 	void *cb_arg;
3734 };
3735 
3736 static void
3737 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
3738 {
3739 	struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
3740 
3741 	assert(ctx != NULL);
3742 	assert(ctx->desc != NULL);
3743 	assert(ctx->cb_fn != NULL);
3744 
3745 	spdk_bdev_close(ctx->desc);
3746 
3747 	ctx->cb_fn(ctx->cb_arg, status);
3748 
3749 	free(ctx);
3750 }
3751 
3752 static void
3753 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
3754 {
3755 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3756 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3757 	struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
3758 
3759 	nbdev_ch->mp_policy = nbdev->mp_policy;
3760 	nbdev_ch->current_io_path = NULL;
3761 
3762 	spdk_for_each_channel_continue(i, 0);
3763 }
3764 
3765 void
3766 bdev_nvme_set_multipath_policy(const char *name, enum bdev_nvme_multipath_policy policy,
3767 			       bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
3768 {
3769 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
3770 	struct spdk_bdev *bdev;
3771 	struct nvme_bdev *nbdev;
3772 	int rc;
3773 
3774 	assert(cb_fn != NULL);
3775 
3776 	ctx = calloc(1, sizeof(*ctx));
3777 	if (ctx == NULL) {
3778 		SPDK_ERRLOG("Failed to alloc context.\n");
3779 		rc = -ENOMEM;
3780 		goto err_alloc;
3781 	}
3782 
3783 	ctx->cb_fn = cb_fn;
3784 	ctx->cb_arg = cb_arg;
3785 
3786 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
3787 	if (rc != 0) {
3788 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
3789 		rc = -ENODEV;
3790 		goto err_open;
3791 	}
3792 
3793 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
3794 	if (bdev->module != &nvme_if) {
3795 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
3796 		rc = -ENODEV;
3797 		goto err_module;
3798 	}
3799 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
3800 
3801 	pthread_mutex_lock(&nbdev->mutex);
3802 	nbdev->mp_policy = policy;
3803 	pthread_mutex_unlock(&nbdev->mutex);
3804 
3805 	spdk_for_each_channel(nbdev,
3806 			      _bdev_nvme_set_multipath_policy,
3807 			      ctx,
3808 			      bdev_nvme_set_multipath_policy_done);
3809 	return;
3810 
3811 err_module:
3812 	spdk_bdev_close(ctx->desc);
3813 err_open:
3814 	free(ctx);
3815 err_alloc:
3816 	cb_fn(cb_arg, rc);
3817 }
3818 
3819 static void
3820 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
3821 {
3822 	struct nvme_ctrlr *nvme_ctrlr		= arg;
3823 	union spdk_nvme_async_event_completion	event;
3824 
3825 	if (spdk_nvme_cpl_is_error(cpl)) {
3826 		SPDK_WARNLOG("AER request execute failed");
3827 		return;
3828 	}
3829 
3830 	event.raw = cpl->cdw0;
3831 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3832 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
3833 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
3834 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3835 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
3836 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
3837 	}
3838 }
3839 
3840 static void
3841 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, size_t count, int rc)
3842 {
3843 	if (ctx->cb_fn) {
3844 		ctx->cb_fn(ctx->cb_ctx, count, rc);
3845 	}
3846 
3847 	ctx->namespaces_populated = true;
3848 	if (ctx->probe_done) {
3849 		/* The probe was already completed, so we need to free the context
3850 		 * here.  This can happen for cases like OCSSD, where we need to
3851 		 * send additional commands to the SSD after attach.
3852 		 */
3853 		free(ctx);
3854 	}
3855 }
3856 
3857 static void
3858 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
3859 		       struct nvme_async_probe_ctx *ctx)
3860 {
3861 	spdk_io_device_register(nvme_ctrlr,
3862 				bdev_nvme_create_ctrlr_channel_cb,
3863 				bdev_nvme_destroy_ctrlr_channel_cb,
3864 				sizeof(struct nvme_ctrlr_channel),
3865 				nvme_ctrlr->nbdev_ctrlr->name);
3866 
3867 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
3868 }
3869 
3870 static void
3871 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
3872 {
3873 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
3874 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
3875 
3876 	nvme_ctrlr->probe_ctx = NULL;
3877 
3878 	if (spdk_nvme_cpl_is_error(cpl)) {
3879 		nvme_ctrlr_delete(nvme_ctrlr);
3880 
3881 		if (ctx != NULL) {
3882 			populate_namespaces_cb(ctx, 0, -1);
3883 		}
3884 		return;
3885 	}
3886 
3887 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
3888 }
3889 
3890 static int
3891 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
3892 			     struct nvme_async_probe_ctx *ctx)
3893 {
3894 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
3895 	const struct spdk_nvme_ctrlr_data *cdata;
3896 	uint32_t ana_log_page_size;
3897 
3898 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3899 
3900 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
3901 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
3902 			    sizeof(uint32_t);
3903 
3904 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
3905 						SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
3906 	if (nvme_ctrlr->ana_log_page == NULL) {
3907 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
3908 		return -ENXIO;
3909 	}
3910 
3911 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
3912 	 * Hence copy each descriptor to a temporary area when parsing it.
3913 	 *
3914 	 * Allocate a buffer whose size is as large as ANA log page buffer because
3915 	 * we do not know the size of a descriptor until actually reading it.
3916 	 */
3917 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
3918 	if (nvme_ctrlr->copied_ana_desc == NULL) {
3919 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
3920 		return -ENOMEM;
3921 	}
3922 
3923 	nvme_ctrlr->ana_log_page_size = ana_log_page_size;
3924 
3925 	nvme_ctrlr->probe_ctx = ctx;
3926 
3927 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
3928 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
3929 						SPDK_NVME_GLOBAL_NS_TAG,
3930 						nvme_ctrlr->ana_log_page,
3931 						nvme_ctrlr->ana_log_page_size, 0,
3932 						nvme_ctrlr_init_ana_log_page_done,
3933 						nvme_ctrlr);
3934 }
3935 
3936 /* hostnqn and subnqn were already verified before attaching a controller.
3937  * Hence check only the multipath capability and cntlid here.
3938  */
3939 static bool
3940 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
3941 {
3942 	struct nvme_ctrlr *tmp;
3943 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
3944 
3945 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3946 
3947 	if (!cdata->cmic.multi_ctrlr) {
3948 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
3949 		return false;
3950 	}
3951 
3952 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
3953 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
3954 
3955 		if (!tmp_cdata->cmic.multi_ctrlr) {
3956 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
3957 			return false;
3958 		}
3959 		if (cdata->cntlid == tmp_cdata->cntlid) {
3960 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
3961 			return false;
3962 		}
3963 	}
3964 
3965 	return true;
3966 }
3967 
3968 static int
3969 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
3970 {
3971 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
3972 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
3973 	int rc = 0;
3974 
3975 	pthread_mutex_lock(&g_bdev_nvme_mutex);
3976 
3977 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
3978 	if (nbdev_ctrlr != NULL) {
3979 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
3980 			rc = -EINVAL;
3981 			goto exit;
3982 		}
3983 	} else {
3984 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
3985 		if (nbdev_ctrlr == NULL) {
3986 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
3987 			rc = -ENOMEM;
3988 			goto exit;
3989 		}
3990 		nbdev_ctrlr->name = strdup(name);
3991 		if (nbdev_ctrlr->name == NULL) {
3992 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
3993 			free(nbdev_ctrlr);
3994 			goto exit;
3995 		}
3996 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
3997 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
3998 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
3999 	}
4000 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
4001 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
4002 exit:
4003 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
4004 	return rc;
4005 }
4006 
4007 static int
4008 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
4009 		  const char *name,
4010 		  const struct spdk_nvme_transport_id *trid,
4011 		  struct nvme_async_probe_ctx *ctx)
4012 {
4013 	struct nvme_ctrlr *nvme_ctrlr;
4014 	struct nvme_path_id *path_id;
4015 	const struct spdk_nvme_ctrlr_data *cdata;
4016 	int rc;
4017 
4018 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
4019 	if (nvme_ctrlr == NULL) {
4020 		SPDK_ERRLOG("Failed to allocate device struct\n");
4021 		return -ENOMEM;
4022 	}
4023 
4024 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
4025 	if (rc != 0) {
4026 		free(nvme_ctrlr);
4027 		return rc;
4028 	}
4029 
4030 	TAILQ_INIT(&nvme_ctrlr->trids);
4031 
4032 	RB_INIT(&nvme_ctrlr->namespaces);
4033 
4034 	path_id = calloc(1, sizeof(*path_id));
4035 	if (path_id == NULL) {
4036 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
4037 		rc = -ENOMEM;
4038 		goto err;
4039 	}
4040 
4041 	path_id->trid = *trid;
4042 	if (ctx != NULL) {
4043 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
4044 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
4045 	}
4046 	nvme_ctrlr->active_path_id = path_id;
4047 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
4048 
4049 	nvme_ctrlr->thread = spdk_get_thread();
4050 	nvme_ctrlr->ctrlr = ctrlr;
4051 	nvme_ctrlr->ref = 1;
4052 
4053 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
4054 		SPDK_ERRLOG("OCSSDs are not supported");
4055 		rc = -ENOTSUP;
4056 		goto err;
4057 	}
4058 
4059 	if (ctx != NULL) {
4060 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
4061 	} else {
4062 		bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
4063 	}
4064 
4065 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
4066 					  g_opts.nvme_adminq_poll_period_us);
4067 
4068 	if (g_opts.timeout_us > 0) {
4069 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
4070 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
4071 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
4072 					  g_opts.timeout_us : g_opts.timeout_admin_us;
4073 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
4074 				adm_timeout_us, timeout_cb, nvme_ctrlr);
4075 	}
4076 
4077 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
4078 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
4079 
4080 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
4081 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
4082 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
4083 	}
4084 
4085 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
4086 	if (rc != 0) {
4087 		goto err;
4088 	}
4089 
4090 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4091 
4092 	if (cdata->cmic.ana_reporting) {
4093 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
4094 		if (rc == 0) {
4095 			return 0;
4096 		}
4097 	} else {
4098 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
4099 		return 0;
4100 	}
4101 
4102 err:
4103 	nvme_ctrlr_delete(nvme_ctrlr);
4104 	return rc;
4105 }
4106 
4107 void
4108 bdev_nvme_get_default_ctrlr_opts(struct nvme_ctrlr_opts *opts)
4109 {
4110 	opts->prchk_flags = 0;
4111 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
4112 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
4113 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
4114 }
4115 
4116 static void
4117 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4118 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
4119 {
4120 	char *name;
4121 
4122 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
4123 	if (!name) {
4124 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
4125 		return;
4126 	}
4127 
4128 	SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
4129 
4130 	nvme_ctrlr_create(ctrlr, name, trid, NULL);
4131 
4132 	free(name);
4133 }
4134 
4135 static void
4136 _nvme_ctrlr_destruct(void *ctx)
4137 {
4138 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4139 
4140 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
4141 	nvme_ctrlr_release(nvme_ctrlr);
4142 }
4143 
4144 static int
4145 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
4146 {
4147 	struct nvme_probe_skip_entry *entry;
4148 
4149 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4150 
4151 	/* The controller's destruction was already started */
4152 	if (nvme_ctrlr->destruct) {
4153 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4154 		return 0;
4155 	}
4156 
4157 	if (!hotplug &&
4158 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
4159 		entry = calloc(1, sizeof(*entry));
4160 		if (!entry) {
4161 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4162 			return -ENOMEM;
4163 		}
4164 		entry->trid = nvme_ctrlr->active_path_id->trid;
4165 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
4166 	}
4167 
4168 	nvme_ctrlr->destruct = true;
4169 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4170 
4171 	_nvme_ctrlr_destruct(nvme_ctrlr);
4172 
4173 	return 0;
4174 }
4175 
4176 static void
4177 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
4178 {
4179 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
4180 
4181 	_bdev_nvme_delete(nvme_ctrlr, true);
4182 }
4183 
4184 static int
4185 bdev_nvme_hotplug_probe(void *arg)
4186 {
4187 	if (g_hotplug_probe_ctx == NULL) {
4188 		spdk_poller_unregister(&g_hotplug_probe_poller);
4189 		return SPDK_POLLER_IDLE;
4190 	}
4191 
4192 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
4193 		g_hotplug_probe_ctx = NULL;
4194 		spdk_poller_unregister(&g_hotplug_probe_poller);
4195 	}
4196 
4197 	return SPDK_POLLER_BUSY;
4198 }
4199 
4200 static int
4201 bdev_nvme_hotplug(void *arg)
4202 {
4203 	struct spdk_nvme_transport_id trid_pcie;
4204 
4205 	if (g_hotplug_probe_ctx) {
4206 		return SPDK_POLLER_BUSY;
4207 	}
4208 
4209 	memset(&trid_pcie, 0, sizeof(trid_pcie));
4210 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
4211 
4212 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
4213 			      hotplug_probe_cb, attach_cb, NULL);
4214 
4215 	if (g_hotplug_probe_ctx) {
4216 		assert(g_hotplug_probe_poller == NULL);
4217 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
4218 	}
4219 
4220 	return SPDK_POLLER_BUSY;
4221 }
4222 
4223 void
4224 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
4225 {
4226 	*opts = g_opts;
4227 }
4228 
4229 static bool bdev_nvme_check_multipath_params(int32_t ctrlr_loss_timeout_sec,
4230 		uint32_t reconnect_delay_sec,
4231 		uint32_t fast_io_fail_timeout_sec);
4232 
4233 static int
4234 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
4235 {
4236 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
4237 		/* Can't set timeout_admin_us without also setting timeout_us */
4238 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
4239 		return -EINVAL;
4240 	}
4241 
4242 	if (opts->bdev_retry_count < -1) {
4243 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
4244 		return -EINVAL;
4245 	}
4246 
4247 	if (!bdev_nvme_check_multipath_params(opts->ctrlr_loss_timeout_sec,
4248 					      opts->reconnect_delay_sec,
4249 					      opts->fast_io_fail_timeout_sec)) {
4250 		return -EINVAL;
4251 	}
4252 
4253 	return 0;
4254 }
4255 
4256 int
4257 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
4258 {
4259 	int ret = bdev_nvme_validate_opts(opts);
4260 	if (ret) {
4261 		SPDK_WARNLOG("Failed to set nvme opts.\n");
4262 		return ret;
4263 	}
4264 
4265 	if (g_bdev_nvme_init_thread != NULL) {
4266 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
4267 			return -EPERM;
4268 		}
4269 	}
4270 
4271 	g_opts = *opts;
4272 
4273 	return 0;
4274 }
4275 
4276 struct set_nvme_hotplug_ctx {
4277 	uint64_t period_us;
4278 	bool enabled;
4279 	spdk_msg_fn fn;
4280 	void *fn_ctx;
4281 };
4282 
4283 static void
4284 set_nvme_hotplug_period_cb(void *_ctx)
4285 {
4286 	struct set_nvme_hotplug_ctx *ctx = _ctx;
4287 
4288 	spdk_poller_unregister(&g_hotplug_poller);
4289 	if (ctx->enabled) {
4290 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
4291 	}
4292 
4293 	g_nvme_hotplug_poll_period_us = ctx->period_us;
4294 	g_nvme_hotplug_enabled = ctx->enabled;
4295 	if (ctx->fn) {
4296 		ctx->fn(ctx->fn_ctx);
4297 	}
4298 
4299 	free(ctx);
4300 }
4301 
4302 int
4303 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
4304 {
4305 	struct set_nvme_hotplug_ctx *ctx;
4306 
4307 	if (enabled == true && !spdk_process_is_primary()) {
4308 		return -EPERM;
4309 	}
4310 
4311 	ctx = calloc(1, sizeof(*ctx));
4312 	if (ctx == NULL) {
4313 		return -ENOMEM;
4314 	}
4315 
4316 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
4317 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
4318 	ctx->enabled = enabled;
4319 	ctx->fn = cb;
4320 	ctx->fn_ctx = cb_ctx;
4321 
4322 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
4323 	return 0;
4324 }
4325 
4326 static void
4327 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
4328 				    struct nvme_async_probe_ctx *ctx)
4329 {
4330 	struct nvme_ns	*nvme_ns;
4331 	struct nvme_bdev	*nvme_bdev;
4332 	size_t			j;
4333 
4334 	assert(nvme_ctrlr != NULL);
4335 
4336 	if (ctx->names == NULL) {
4337 		populate_namespaces_cb(ctx, 0, 0);
4338 		return;
4339 	}
4340 
4341 	/*
4342 	 * Report the new bdevs that were created in this call.
4343 	 * There can be more than one bdev per NVMe controller.
4344 	 */
4345 	j = 0;
4346 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4347 	while (nvme_ns != NULL) {
4348 		nvme_bdev = nvme_ns->bdev;
4349 		if (j < ctx->count) {
4350 			ctx->names[j] = nvme_bdev->disk.name;
4351 			j++;
4352 		} else {
4353 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
4354 				    ctx->count);
4355 			populate_namespaces_cb(ctx, 0, -ERANGE);
4356 			return;
4357 		}
4358 
4359 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4360 	}
4361 
4362 	populate_namespaces_cb(ctx, j, 0);
4363 }
4364 
4365 static int
4366 bdev_nvme_compare_trids(struct nvme_ctrlr *nvme_ctrlr,
4367 			struct spdk_nvme_ctrlr *new_ctrlr,
4368 			struct spdk_nvme_transport_id *trid)
4369 {
4370 	struct nvme_path_id *tmp_trid;
4371 
4372 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
4373 		SPDK_ERRLOG("PCIe failover is not supported.\n");
4374 		return -ENOTSUP;
4375 	}
4376 
4377 	/* Currently we only support failover to the same transport type. */
4378 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
4379 		return -EINVAL;
4380 	}
4381 
4382 	/* Currently we only support failover to the same NQN. */
4383 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
4384 		return -EINVAL;
4385 	}
4386 
4387 	/* Skip all the other checks if we've already registered this path. */
4388 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
4389 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
4390 			return -EEXIST;
4391 		}
4392 	}
4393 
4394 	return 0;
4395 }
4396 
4397 static int
4398 bdev_nvme_compare_namespaces(struct nvme_ctrlr *nvme_ctrlr,
4399 			     struct spdk_nvme_ctrlr *new_ctrlr)
4400 {
4401 	struct nvme_ns *nvme_ns;
4402 	struct spdk_nvme_ns *new_ns;
4403 
4404 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4405 	while (nvme_ns != NULL) {
4406 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
4407 		assert(new_ns != NULL);
4408 
4409 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
4410 			return -EINVAL;
4411 		}
4412 
4413 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4414 	}
4415 
4416 	return 0;
4417 }
4418 
4419 static int
4420 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
4421 			      struct spdk_nvme_transport_id *trid)
4422 {
4423 	struct nvme_path_id *new_trid, *tmp_trid;
4424 
4425 	new_trid = calloc(1, sizeof(*new_trid));
4426 	if (new_trid == NULL) {
4427 		return -ENOMEM;
4428 	}
4429 	new_trid->trid = *trid;
4430 	new_trid->is_failed = false;
4431 
4432 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
4433 		if (tmp_trid->is_failed && tmp_trid != nvme_ctrlr->active_path_id) {
4434 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
4435 			return 0;
4436 		}
4437 	}
4438 
4439 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
4440 	return 0;
4441 }
4442 
4443 /* This is the case that a secondary path is added to an existing
4444  * nvme_ctrlr for failover. After checking if it can access the same
4445  * namespaces as the primary path, it is disconnected until failover occurs.
4446  */
4447 static int
4448 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
4449 			     struct spdk_nvme_ctrlr *new_ctrlr,
4450 			     struct spdk_nvme_transport_id *trid)
4451 {
4452 	int rc;
4453 
4454 	assert(nvme_ctrlr != NULL);
4455 
4456 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4457 
4458 	rc = bdev_nvme_compare_trids(nvme_ctrlr, new_ctrlr, trid);
4459 	if (rc != 0) {
4460 		goto exit;
4461 	}
4462 
4463 	rc = bdev_nvme_compare_namespaces(nvme_ctrlr, new_ctrlr);
4464 	if (rc != 0) {
4465 		goto exit;
4466 	}
4467 
4468 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
4469 
4470 exit:
4471 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4472 
4473 	spdk_nvme_detach(new_ctrlr);
4474 
4475 	return rc;
4476 }
4477 
4478 static void
4479 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4480 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
4481 {
4482 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
4483 	struct nvme_async_probe_ctx *ctx;
4484 	int rc;
4485 
4486 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
4487 	ctx->ctrlr_attached = true;
4488 
4489 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
4490 	if (rc != 0) {
4491 		populate_namespaces_cb(ctx, 0, rc);
4492 	}
4493 }
4494 
4495 static void
4496 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4497 			struct spdk_nvme_ctrlr *ctrlr,
4498 			const struct spdk_nvme_ctrlr_opts *opts)
4499 {
4500 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
4501 	struct nvme_ctrlr *nvme_ctrlr;
4502 	struct nvme_async_probe_ctx *ctx;
4503 	int rc;
4504 
4505 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
4506 	ctx->ctrlr_attached = true;
4507 
4508 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
4509 	if (nvme_ctrlr) {
4510 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
4511 	} else {
4512 		rc = -ENODEV;
4513 	}
4514 
4515 	populate_namespaces_cb(ctx, 0, rc);
4516 }
4517 
4518 static int
4519 bdev_nvme_async_poll(void *arg)
4520 {
4521 	struct nvme_async_probe_ctx	*ctx = arg;
4522 	int				rc;
4523 
4524 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
4525 	if (spdk_unlikely(rc != -EAGAIN)) {
4526 		ctx->probe_done = true;
4527 		spdk_poller_unregister(&ctx->poller);
4528 		if (!ctx->ctrlr_attached) {
4529 			/* The probe is done, but no controller was attached.
4530 			 * That means we had a failure, so report -EIO back to
4531 			 * the caller (usually the RPC). populate_namespaces_cb()
4532 			 * will take care of freeing the nvme_async_probe_ctx.
4533 			 */
4534 			populate_namespaces_cb(ctx, 0, -EIO);
4535 		} else if (ctx->namespaces_populated) {
4536 			/* The namespaces for the attached controller were all
4537 			 * populated and the response was already sent to the
4538 			 * caller (usually the RPC).  So free the context here.
4539 			 */
4540 			free(ctx);
4541 		}
4542 	}
4543 
4544 	return SPDK_POLLER_BUSY;
4545 }
4546 
4547 static bool
4548 bdev_nvme_check_multipath_params(int32_t ctrlr_loss_timeout_sec,
4549 				 uint32_t reconnect_delay_sec,
4550 				 uint32_t fast_io_fail_timeout_sec)
4551 {
4552 	if (ctrlr_loss_timeout_sec < -1) {
4553 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
4554 		return false;
4555 	} else if (ctrlr_loss_timeout_sec == -1) {
4556 		if (reconnect_delay_sec == 0) {
4557 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
4558 			return false;
4559 		} else if (fast_io_fail_timeout_sec != 0 &&
4560 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
4561 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
4562 			return false;
4563 		}
4564 	} else if (ctrlr_loss_timeout_sec != 0) {
4565 		if (reconnect_delay_sec == 0) {
4566 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
4567 			return false;
4568 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
4569 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
4570 			return false;
4571 		} else if (fast_io_fail_timeout_sec != 0) {
4572 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
4573 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
4574 				return false;
4575 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
4576 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
4577 				return false;
4578 			}
4579 		}
4580 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
4581 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
4582 		return false;
4583 	}
4584 
4585 	return true;
4586 }
4587 
4588 int
4589 bdev_nvme_create(struct spdk_nvme_transport_id *trid,
4590 		 const char *base_name,
4591 		 const char **names,
4592 		 uint32_t count,
4593 		 spdk_bdev_create_nvme_fn cb_fn,
4594 		 void *cb_ctx,
4595 		 struct spdk_nvme_ctrlr_opts *drv_opts,
4596 		 struct nvme_ctrlr_opts *bdev_opts,
4597 		 bool multipath)
4598 {
4599 	struct nvme_probe_skip_entry	*entry, *tmp;
4600 	struct nvme_async_probe_ctx	*ctx;
4601 	spdk_nvme_attach_cb attach_cb;
4602 
4603 	/* TODO expand this check to include both the host and target TRIDs.
4604 	 * Only if both are the same should we fail.
4605 	 */
4606 	if (nvme_ctrlr_get(trid) != NULL) {
4607 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
4608 		return -EEXIST;
4609 	}
4610 
4611 	if (bdev_opts != NULL &&
4612 	    !bdev_nvme_check_multipath_params(bdev_opts->ctrlr_loss_timeout_sec,
4613 					      bdev_opts->reconnect_delay_sec,
4614 					      bdev_opts->fast_io_fail_timeout_sec)) {
4615 		return -EINVAL;
4616 	}
4617 
4618 	ctx = calloc(1, sizeof(*ctx));
4619 	if (!ctx) {
4620 		return -ENOMEM;
4621 	}
4622 	ctx->base_name = base_name;
4623 	ctx->names = names;
4624 	ctx->count = count;
4625 	ctx->cb_fn = cb_fn;
4626 	ctx->cb_ctx = cb_ctx;
4627 	ctx->trid = *trid;
4628 
4629 	if (bdev_opts) {
4630 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
4631 	} else {
4632 		bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
4633 	}
4634 
4635 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
4636 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
4637 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4638 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
4639 				free(entry);
4640 				break;
4641 			}
4642 		}
4643 	}
4644 
4645 	if (drv_opts) {
4646 		memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
4647 	} else {
4648 		spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->drv_opts, sizeof(ctx->drv_opts));
4649 	}
4650 
4651 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
4652 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
4653 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
4654 	ctx->drv_opts.disable_read_ana_log_page = true;
4655 
4656 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
4657 		attach_cb = connect_attach_cb;
4658 	} else {
4659 		attach_cb = connect_set_failover_cb;
4660 	}
4661 
4662 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
4663 	if (ctx->probe_ctx == NULL) {
4664 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
4665 		free(ctx);
4666 		return -ENODEV;
4667 	}
4668 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
4669 
4670 	return 0;
4671 }
4672 
4673 int
4674 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id)
4675 {
4676 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
4677 	struct nvme_ctrlr	*nvme_ctrlr, *tmp_nvme_ctrlr;
4678 	struct nvme_path_id	*p, *t;
4679 	int			rc = -ENXIO;
4680 
4681 	if (name == NULL || path_id == NULL) {
4682 		return -EINVAL;
4683 	}
4684 
4685 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
4686 	if (nbdev_ctrlr == NULL) {
4687 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
4688 		return -ENODEV;
4689 	}
4690 
4691 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
4692 		TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
4693 			if (path_id->trid.trtype != 0) {
4694 				if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
4695 					if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
4696 						continue;
4697 					}
4698 				} else {
4699 					if (path_id->trid.trtype != p->trid.trtype) {
4700 						continue;
4701 					}
4702 				}
4703 			}
4704 
4705 			if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
4706 				if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
4707 					continue;
4708 				}
4709 			}
4710 
4711 			if (path_id->trid.adrfam != 0) {
4712 				if (path_id->trid.adrfam != p->trid.adrfam) {
4713 					continue;
4714 				}
4715 			}
4716 
4717 			if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
4718 				if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
4719 					continue;
4720 				}
4721 			}
4722 
4723 			if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
4724 				if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
4725 					continue;
4726 				}
4727 			}
4728 
4729 			if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
4730 				if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
4731 					continue;
4732 				}
4733 			}
4734 
4735 			if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
4736 				if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
4737 					continue;
4738 				}
4739 			}
4740 
4741 			/* If we made it here, then this path is a match! Now we need to remove it. */
4742 			if (p == nvme_ctrlr->active_path_id) {
4743 				/* This is the active path in use right now. The active path is always the first in the list. */
4744 
4745 				if (!TAILQ_NEXT(p, link)) {
4746 					/* The current path is the only path. */
4747 					rc = _bdev_nvme_delete(nvme_ctrlr, false);
4748 				} else {
4749 					/* There is an alternative path. */
4750 					rc = bdev_nvme_failover(nvme_ctrlr, true);
4751 				}
4752 			} else {
4753 				/* We are not using the specified path. */
4754 				TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
4755 				free(p);
4756 				rc = 0;
4757 			}
4758 
4759 			if (rc < 0 && rc != -ENXIO) {
4760 				return rc;
4761 			}
4762 
4763 
4764 		}
4765 	}
4766 
4767 	/* All nvme_ctrlrs were deleted or no nvme_ctrlr which had the trid was found. */
4768 	return rc;
4769 }
4770 
4771 #define DISCOVERY_INFOLOG(ctx, format, ...) \
4772 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
4773 
4774 #define DISCOVERY_ERRLOG(ctx, format, ...) \
4775 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
4776 
4777 struct discovery_entry_ctx {
4778 	char						name[128];
4779 	struct spdk_nvme_transport_id			trid;
4780 	struct spdk_nvme_ctrlr_opts			drv_opts;
4781 	struct spdk_nvmf_discovery_log_page_entry	entry;
4782 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
4783 	struct discovery_ctx				*ctx;
4784 };
4785 
4786 struct discovery_ctx {
4787 	char					*name;
4788 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
4789 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
4790 	void					*cb_ctx;
4791 	struct spdk_nvme_probe_ctx		*probe_ctx;
4792 	struct spdk_nvme_detach_ctx		*detach_ctx;
4793 	struct spdk_nvme_ctrlr			*ctrlr;
4794 	struct spdk_nvme_transport_id		trid;
4795 	struct discovery_entry_ctx		*entry_ctx_in_use;
4796 	struct spdk_poller			*poller;
4797 	struct spdk_nvme_ctrlr_opts		drv_opts;
4798 	struct nvme_ctrlr_opts			bdev_opts;
4799 	struct spdk_nvmf_discovery_log_page	*log_page;
4800 	TAILQ_ENTRY(discovery_ctx)		tailq;
4801 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
4802 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
4803 	int					rc;
4804 	bool					wait_for_attach;
4805 	uint64_t				timeout_ticks;
4806 	/* Denotes that the discovery service is being started. We're waiting
4807 	 * for the initial connection to the discovery controller to be
4808 	 * established and attach discovered NVM ctrlrs.
4809 	 */
4810 	bool					initializing;
4811 	/* Denotes if a discovery is currently in progress for this context.
4812 	 * That includes connecting to newly discovered subsystems.  Used to
4813 	 * ensure we do not start a new discovery until an existing one is
4814 	 * complete.
4815 	 */
4816 	bool					in_progress;
4817 
4818 	/* Denotes if another discovery is needed after the one in progress
4819 	 * completes.  Set when we receive an AER completion while a discovery
4820 	 * is already in progress.
4821 	 */
4822 	bool					pending;
4823 
4824 	/* Signal to the discovery context poller that it should stop the
4825 	 * discovery service, including detaching from the current discovery
4826 	 * controller.
4827 	 */
4828 	bool					stop;
4829 
4830 	struct spdk_thread			*calling_thread;
4831 	uint32_t				index;
4832 	uint32_t				attach_in_progress;
4833 	char					*hostnqn;
4834 };
4835 
4836 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
4837 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
4838 
4839 static void get_discovery_log_page(struct discovery_ctx *ctx);
4840 
4841 static void
4842 free_discovery_ctx(struct discovery_ctx *ctx)
4843 {
4844 	free(ctx->log_page);
4845 	free(ctx->hostnqn);
4846 	free(ctx->name);
4847 	free(ctx);
4848 }
4849 
4850 static void
4851 discovery_complete(struct discovery_ctx *ctx)
4852 {
4853 	ctx->initializing = false;
4854 	ctx->in_progress = false;
4855 	if (ctx->pending) {
4856 		ctx->pending = false;
4857 		get_discovery_log_page(ctx);
4858 	}
4859 }
4860 
4861 static void
4862 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
4863 			       struct spdk_nvmf_discovery_log_page_entry *entry)
4864 {
4865 	char *space;
4866 
4867 	trid->trtype = entry->trtype;
4868 	trid->adrfam = entry->adrfam;
4869 	memcpy(trid->traddr, entry->traddr, sizeof(trid->traddr));
4870 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(trid->trsvcid));
4871 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn));
4872 
4873 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
4874 	 * But the log page entries typically pad them with spaces, not zeroes.
4875 	 * So add a NULL terminator to each of these fields at the appropriate
4876 	 * location.
4877 	 */
4878 	space = strchr(trid->traddr, ' ');
4879 	if (space) {
4880 		*space = 0;
4881 	}
4882 	space = strchr(trid->trsvcid, ' ');
4883 	if (space) {
4884 		*space = 0;
4885 	}
4886 	space = strchr(trid->subnqn, ' ');
4887 	if (space) {
4888 		*space = 0;
4889 	}
4890 }
4891 
4892 static void
4893 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
4894 {
4895 	ctx->stop = true;
4896 	ctx->stop_cb_fn = cb_fn;
4897 	ctx->cb_ctx = cb_ctx;
4898 
4899 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
4900 		struct discovery_entry_ctx *entry_ctx;
4901 		struct nvme_path_id path = {};
4902 
4903 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
4904 		path.trid = entry_ctx->trid;
4905 		bdev_nvme_delete(entry_ctx->name, &path);
4906 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
4907 		free(entry_ctx);
4908 	}
4909 
4910 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
4911 		struct discovery_entry_ctx *entry_ctx;
4912 
4913 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
4914 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
4915 		free(entry_ctx);
4916 	}
4917 
4918 	free(ctx->entry_ctx_in_use);
4919 	ctx->entry_ctx_in_use = NULL;
4920 }
4921 
4922 static void
4923 discovery_remove_controllers(struct discovery_ctx *ctx)
4924 {
4925 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
4926 	struct discovery_entry_ctx *entry_ctx, *tmp;
4927 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
4928 	struct spdk_nvme_transport_id old_trid;
4929 	uint64_t numrec, i;
4930 	bool found;
4931 
4932 	numrec = from_le64(&log_page->numrec);
4933 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
4934 		found = false;
4935 		old_entry = &entry_ctx->entry;
4936 		build_trid_from_log_page_entry(&old_trid, old_entry);
4937 		for (i = 0; i < numrec; i++) {
4938 			new_entry = &log_page->entries[i];
4939 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
4940 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
4941 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
4942 				found = true;
4943 				break;
4944 			}
4945 		}
4946 		if (!found) {
4947 			struct nvme_path_id path = {};
4948 
4949 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
4950 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
4951 
4952 			path.trid = entry_ctx->trid;
4953 			bdev_nvme_delete(entry_ctx->name, &path);
4954 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
4955 			free(entry_ctx);
4956 		}
4957 	}
4958 	free(log_page);
4959 	ctx->log_page = NULL;
4960 	discovery_complete(ctx);
4961 }
4962 
4963 static void
4964 complete_discovery_start(struct discovery_ctx *ctx, int status)
4965 {
4966 	ctx->timeout_ticks = 0;
4967 	ctx->rc = status;
4968 	if (ctx->start_cb_fn) {
4969 		ctx->start_cb_fn(ctx->cb_ctx, status);
4970 		ctx->start_cb_fn = NULL;
4971 		ctx->cb_ctx = NULL;
4972 	}
4973 }
4974 
4975 static void
4976 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
4977 {
4978 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
4979 	struct discovery_ctx *ctx = entry_ctx->ctx;
4980 
4981 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
4982 	ctx->attach_in_progress--;
4983 	if (ctx->attach_in_progress == 0) {
4984 		complete_discovery_start(ctx, ctx->rc);
4985 		if (ctx->initializing && ctx->rc != 0) {
4986 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
4987 			stop_discovery(ctx, NULL, ctx->cb_ctx);
4988 		} else {
4989 			discovery_remove_controllers(ctx);
4990 		}
4991 	}
4992 }
4993 
4994 static struct discovery_entry_ctx *
4995 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
4996 {
4997 	struct discovery_entry_ctx *new_ctx;
4998 
4999 	new_ctx = calloc(1, sizeof(*new_ctx));
5000 	if (new_ctx == NULL) {
5001 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
5002 		return NULL;
5003 	}
5004 
5005 	new_ctx->ctx = ctx;
5006 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
5007 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
5008 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
5009 	return new_ctx;
5010 }
5011 
5012 static void
5013 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
5014 		      struct spdk_nvmf_discovery_log_page *log_page)
5015 {
5016 	struct discovery_ctx *ctx = cb_arg;
5017 	struct discovery_entry_ctx *entry_ctx, *tmp;
5018 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
5019 	uint64_t numrec, i;
5020 	bool found;
5021 
5022 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
5023 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
5024 		return;
5025 	}
5026 
5027 	ctx->log_page = log_page;
5028 	assert(ctx->attach_in_progress == 0);
5029 	numrec = from_le64(&log_page->numrec);
5030 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
5031 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
5032 		free(entry_ctx);
5033 	}
5034 	for (i = 0; i < numrec; i++) {
5035 		found = false;
5036 		new_entry = &log_page->entries[i];
5037 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
5038 			struct discovery_entry_ctx *new_ctx;
5039 			struct spdk_nvme_transport_id trid = {};
5040 
5041 			build_trid_from_log_page_entry(&trid, new_entry);
5042 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
5043 			if (new_ctx == NULL) {
5044 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
5045 				break;
5046 			}
5047 
5048 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
5049 			continue;
5050 		}
5051 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
5052 			old_entry = &entry_ctx->entry;
5053 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
5054 				found = true;
5055 				break;
5056 			}
5057 		}
5058 		if (!found) {
5059 			struct discovery_entry_ctx *subnqn_ctx, *new_ctx;
5060 
5061 			TAILQ_FOREACH(subnqn_ctx, &ctx->nvm_entry_ctxs, tailq) {
5062 				if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
5063 					    sizeof(new_entry->subnqn))) {
5064 					break;
5065 				}
5066 			}
5067 
5068 			new_ctx = calloc(1, sizeof(*new_ctx));
5069 			if (new_ctx == NULL) {
5070 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
5071 				break;
5072 			}
5073 
5074 			new_ctx->ctx = ctx;
5075 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
5076 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
5077 			if (subnqn_ctx) {
5078 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
5079 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
5080 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
5081 						  new_ctx->name);
5082 			} else {
5083 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
5084 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
5085 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
5086 						  new_ctx->name);
5087 			}
5088 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
5089 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
5090 			rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
5091 					      discovery_attach_controller_done, new_ctx,
5092 					      &new_ctx->drv_opts, &ctx->bdev_opts, true);
5093 			if (rc == 0) {
5094 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
5095 				ctx->attach_in_progress++;
5096 			} else {
5097 				DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
5098 			}
5099 		}
5100 	}
5101 
5102 	if (ctx->attach_in_progress == 0) {
5103 		discovery_remove_controllers(ctx);
5104 	}
5105 }
5106 
5107 static void
5108 get_discovery_log_page(struct discovery_ctx *ctx)
5109 {
5110 	int rc;
5111 
5112 	assert(ctx->in_progress == false);
5113 	ctx->in_progress = true;
5114 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
5115 	if (rc != 0) {
5116 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
5117 	}
5118 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
5119 }
5120 
5121 static void
5122 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5123 {
5124 	struct discovery_ctx *ctx = arg;
5125 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
5126 
5127 	if (spdk_nvme_cpl_is_error(cpl)) {
5128 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
5129 		return;
5130 	}
5131 
5132 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
5133 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
5134 		return;
5135 	}
5136 
5137 	DISCOVERY_INFOLOG(ctx, "got aer\n");
5138 	if (ctx->in_progress) {
5139 		ctx->pending = true;
5140 		return;
5141 	}
5142 
5143 	get_discovery_log_page(ctx);
5144 }
5145 
5146 static void
5147 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5148 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
5149 {
5150 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5151 	struct discovery_ctx *ctx;
5152 
5153 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
5154 
5155 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
5156 	ctx->probe_ctx = NULL;
5157 	ctx->ctrlr = ctrlr;
5158 
5159 	if (ctx->rc != 0) {
5160 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
5161 				 ctx->rc);
5162 		return;
5163 	}
5164 
5165 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
5166 }
5167 
5168 static int
5169 discovery_poller(void *arg)
5170 {
5171 	struct discovery_ctx *ctx = arg;
5172 	struct spdk_nvme_transport_id *trid;
5173 	int rc;
5174 
5175 	if (ctx->detach_ctx) {
5176 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
5177 		if (rc != -EAGAIN) {
5178 			ctx->detach_ctx = NULL;
5179 			ctx->ctrlr = NULL;
5180 		}
5181 	} else if (ctx->stop) {
5182 		if (ctx->ctrlr != NULL) {
5183 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
5184 			if (rc == 0) {
5185 				return SPDK_POLLER_BUSY;
5186 			}
5187 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
5188 		}
5189 		spdk_poller_unregister(&ctx->poller);
5190 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
5191 		assert(ctx->start_cb_fn == NULL);
5192 		if (ctx->stop_cb_fn != NULL) {
5193 			ctx->stop_cb_fn(ctx->cb_ctx);
5194 		}
5195 		free_discovery_ctx(ctx);
5196 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
5197 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
5198 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
5199 			assert(ctx->initializing);
5200 			spdk_poller_unregister(&ctx->poller);
5201 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
5202 			complete_discovery_start(ctx, -ETIMEDOUT);
5203 			stop_discovery(ctx, NULL, NULL);
5204 			free_discovery_ctx(ctx);
5205 			return SPDK_POLLER_BUSY;
5206 		}
5207 
5208 		assert(ctx->entry_ctx_in_use == NULL);
5209 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
5210 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
5211 		trid = &ctx->entry_ctx_in_use->trid;
5212 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
5213 		if (ctx->probe_ctx) {
5214 			spdk_poller_unregister(&ctx->poller);
5215 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
5216 		} else {
5217 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
5218 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
5219 			ctx->entry_ctx_in_use = NULL;
5220 		}
5221 	} else if (ctx->probe_ctx) {
5222 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
5223 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
5224 			complete_discovery_start(ctx, -ETIMEDOUT);
5225 			return SPDK_POLLER_BUSY;
5226 		}
5227 
5228 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
5229 		if (rc != -EAGAIN) {
5230 			if (ctx->rc != 0) {
5231 				assert(ctx->initializing);
5232 				stop_discovery(ctx, NULL, ctx->cb_ctx);
5233 			} else {
5234 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
5235 				ctx->rc = rc;
5236 				if (rc == 0) {
5237 					get_discovery_log_page(ctx);
5238 				}
5239 			}
5240 		}
5241 	} else {
5242 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
5243 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
5244 			complete_discovery_start(ctx, -ETIMEDOUT);
5245 			/* We need to wait until all NVM ctrlrs are attached before we stop the
5246 			 * discovery service to make sure we don't detach a ctrlr that is still
5247 			 * being attached.
5248 			 */
5249 			if (ctx->attach_in_progress == 0) {
5250 				stop_discovery(ctx, NULL, ctx->cb_ctx);
5251 				return SPDK_POLLER_BUSY;
5252 			}
5253 		}
5254 
5255 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
5256 		if (rc < 0) {
5257 			spdk_poller_unregister(&ctx->poller);
5258 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
5259 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
5260 			ctx->entry_ctx_in_use = NULL;
5261 
5262 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
5263 			if (rc != 0) {
5264 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
5265 				ctx->ctrlr = NULL;
5266 			}
5267 		}
5268 	}
5269 
5270 	return SPDK_POLLER_BUSY;
5271 }
5272 
5273 static void
5274 start_discovery_poller(void *arg)
5275 {
5276 	struct discovery_ctx *ctx = arg;
5277 
5278 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
5279 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
5280 }
5281 
5282 int
5283 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
5284 			  const char *base_name,
5285 			  struct spdk_nvme_ctrlr_opts *drv_opts,
5286 			  struct nvme_ctrlr_opts *bdev_opts,
5287 			  uint64_t attach_timeout,
5288 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
5289 {
5290 	struct discovery_ctx *ctx;
5291 	struct discovery_entry_ctx *discovery_entry_ctx;
5292 
5293 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
5294 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
5295 		if (strcmp(ctx->name, base_name) == 0) {
5296 			return -EEXIST;
5297 		}
5298 
5299 		if (ctx->entry_ctx_in_use != NULL) {
5300 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
5301 				return -EEXIST;
5302 			}
5303 		}
5304 
5305 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
5306 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
5307 				return -EEXIST;
5308 			}
5309 		}
5310 	}
5311 
5312 	ctx = calloc(1, sizeof(*ctx));
5313 	if (ctx == NULL) {
5314 		return -ENOMEM;
5315 	}
5316 
5317 	ctx->name = strdup(base_name);
5318 	if (ctx->name == NULL) {
5319 		free_discovery_ctx(ctx);
5320 		return -ENOMEM;
5321 	}
5322 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
5323 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
5324 	ctx->bdev_opts.from_discovery_service = true;
5325 	ctx->calling_thread = spdk_get_thread();
5326 	ctx->start_cb_fn = cb_fn;
5327 	ctx->cb_ctx = cb_ctx;
5328 	ctx->initializing = true;
5329 	if (ctx->start_cb_fn) {
5330 		/* We can use this when dumping json to denote if this RPC parameter
5331 		 * was specified or not.
5332 		 */
5333 		ctx->wait_for_attach = true;
5334 	}
5335 	if (attach_timeout != 0) {
5336 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
5337 				     spdk_get_ticks_hz() / 1000ull;
5338 	}
5339 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
5340 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
5341 	memcpy(&ctx->trid, trid, sizeof(*trid));
5342 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
5343 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
5344 	if (ctx->hostnqn == NULL) {
5345 		free_discovery_ctx(ctx);
5346 		return -ENOMEM;
5347 	}
5348 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
5349 	if (discovery_entry_ctx == NULL) {
5350 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
5351 		free_discovery_ctx(ctx);
5352 		return -ENOMEM;
5353 	}
5354 
5355 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
5356 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
5357 	return 0;
5358 }
5359 
5360 int
5361 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
5362 {
5363 	struct discovery_ctx *ctx;
5364 
5365 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
5366 		if (strcmp(name, ctx->name) == 0) {
5367 			if (ctx->stop) {
5368 				return -EALREADY;
5369 			}
5370 			/* If we're still starting the discovery service and ->rc is non-zero, we're
5371 			 * going to stop it as soon as we can
5372 			 */
5373 			if (ctx->initializing && ctx->rc != 0) {
5374 				return -EALREADY;
5375 			}
5376 			stop_discovery(ctx, cb_fn, cb_ctx);
5377 			return 0;
5378 		}
5379 	}
5380 
5381 	return -ENOENT;
5382 }
5383 
5384 static int
5385 bdev_nvme_library_init(void)
5386 {
5387 	g_bdev_nvme_init_thread = spdk_get_thread();
5388 
5389 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
5390 				bdev_nvme_destroy_poll_group_cb,
5391 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
5392 
5393 	return 0;
5394 }
5395 
5396 static void
5397 bdev_nvme_fini_destruct_ctrlrs(void)
5398 {
5399 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5400 	struct nvme_ctrlr *nvme_ctrlr;
5401 
5402 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5403 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
5404 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
5405 			pthread_mutex_lock(&nvme_ctrlr->mutex);
5406 			if (nvme_ctrlr->destruct) {
5407 				/* This controller's destruction was already started
5408 				 * before the application started shutting down
5409 				 */
5410 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
5411 				continue;
5412 			}
5413 			nvme_ctrlr->destruct = true;
5414 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
5415 
5416 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
5417 					     nvme_ctrlr);
5418 		}
5419 	}
5420 
5421 	g_bdev_nvme_module_finish = true;
5422 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5423 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
5424 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
5425 		spdk_bdev_module_fini_done();
5426 		return;
5427 	}
5428 
5429 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5430 }
5431 
5432 static void
5433 check_discovery_fini(void *arg)
5434 {
5435 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
5436 		bdev_nvme_fini_destruct_ctrlrs();
5437 	}
5438 }
5439 
5440 static void
5441 bdev_nvme_library_fini(void)
5442 {
5443 	struct nvme_probe_skip_entry *entry, *entry_tmp;
5444 	struct discovery_ctx *ctx;
5445 
5446 	spdk_poller_unregister(&g_hotplug_poller);
5447 	free(g_hotplug_probe_ctx);
5448 	g_hotplug_probe_ctx = NULL;
5449 
5450 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
5451 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
5452 		free(entry);
5453 	}
5454 
5455 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
5456 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
5457 		bdev_nvme_fini_destruct_ctrlrs();
5458 	} else {
5459 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
5460 			stop_discovery(ctx, check_discovery_fini, NULL);
5461 		}
5462 	}
5463 }
5464 
5465 static void
5466 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
5467 {
5468 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5469 	struct spdk_bdev *bdev = bdev_io->bdev;
5470 	struct spdk_dif_ctx dif_ctx;
5471 	struct spdk_dif_error err_blk = {};
5472 	int rc;
5473 
5474 	rc = spdk_dif_ctx_init(&dif_ctx,
5475 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
5476 			       bdev->dif_is_head_of_md, bdev->dif_type, bdev->dif_check_flags,
5477 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0);
5478 	if (rc != 0) {
5479 		SPDK_ERRLOG("Initialization of DIF context failed\n");
5480 		return;
5481 	}
5482 
5483 	if (bdev->md_interleave) {
5484 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
5485 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
5486 	} else {
5487 		struct iovec md_iov = {
5488 			.iov_base	= bdev_io->u.bdev.md_buf,
5489 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
5490 		};
5491 
5492 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
5493 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
5494 	}
5495 
5496 	if (rc != 0) {
5497 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
5498 			    err_blk.err_type, err_blk.err_offset);
5499 	} else {
5500 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
5501 	}
5502 }
5503 
5504 static void
5505 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
5506 {
5507 	struct nvme_bdev_io *bio = ref;
5508 
5509 	if (spdk_nvme_cpl_is_success(cpl)) {
5510 		/* Run PI verification for read data buffer. */
5511 		bdev_nvme_verify_pi_error(bio);
5512 	}
5513 
5514 	/* Return original completion status */
5515 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
5516 }
5517 
5518 static void
5519 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
5520 {
5521 	struct nvme_bdev_io *bio = ref;
5522 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5523 	int ret;
5524 
5525 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
5526 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
5527 			    cpl->status.sct, cpl->status.sc);
5528 
5529 		/* Save completion status to use after verifying PI error. */
5530 		bio->cpl = *cpl;
5531 
5532 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
5533 			/* Read without PI checking to verify PI error. */
5534 			ret = bdev_nvme_no_pi_readv(bio,
5535 						    bdev_io->u.bdev.iovs,
5536 						    bdev_io->u.bdev.iovcnt,
5537 						    bdev_io->u.bdev.md_buf,
5538 						    bdev_io->u.bdev.num_blocks,
5539 						    bdev_io->u.bdev.offset_blocks);
5540 			if (ret == 0) {
5541 				return;
5542 			}
5543 		}
5544 	}
5545 
5546 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5547 }
5548 
5549 static void
5550 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
5551 {
5552 	struct nvme_bdev_io *bio = ref;
5553 
5554 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
5555 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
5556 			    cpl->status.sct, cpl->status.sc);
5557 		/* Run PI verification for write data buffer if PI error is detected. */
5558 		bdev_nvme_verify_pi_error(bio);
5559 	}
5560 
5561 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5562 }
5563 
5564 static void
5565 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
5566 {
5567 	struct nvme_bdev_io *bio = ref;
5568 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5569 
5570 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
5571 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
5572 	 */
5573 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
5574 
5575 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
5576 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
5577 			    cpl->status.sct, cpl->status.sc);
5578 		/* Run PI verification for zone append data buffer if PI error is detected. */
5579 		bdev_nvme_verify_pi_error(bio);
5580 	}
5581 
5582 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5583 }
5584 
5585 static void
5586 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
5587 {
5588 	struct nvme_bdev_io *bio = ref;
5589 
5590 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
5591 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
5592 			    cpl->status.sct, cpl->status.sc);
5593 		/* Run PI verification for compare data buffer if PI error is detected. */
5594 		bdev_nvme_verify_pi_error(bio);
5595 	}
5596 
5597 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5598 }
5599 
5600 static void
5601 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
5602 {
5603 	struct nvme_bdev_io *bio = ref;
5604 
5605 	/* Compare operation completion */
5606 	if (!bio->first_fused_completed) {
5607 		/* Save compare result for write callback */
5608 		bio->cpl = *cpl;
5609 		bio->first_fused_completed = true;
5610 		return;
5611 	}
5612 
5613 	/* Write operation completion */
5614 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
5615 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
5616 		 * complete the IO with the compare operation's status.
5617 		 */
5618 		if (!spdk_nvme_cpl_is_error(cpl)) {
5619 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
5620 		}
5621 
5622 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
5623 	} else {
5624 		bdev_nvme_io_complete_nvme_status(bio, cpl);
5625 	}
5626 }
5627 
5628 static void
5629 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
5630 {
5631 	struct nvme_bdev_io *bio = ref;
5632 
5633 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5634 }
5635 
5636 static int
5637 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
5638 {
5639 	switch (desc->zs) {
5640 	case SPDK_NVME_ZONE_STATE_EMPTY:
5641 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
5642 		break;
5643 	case SPDK_NVME_ZONE_STATE_IOPEN:
5644 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
5645 		break;
5646 	case SPDK_NVME_ZONE_STATE_EOPEN:
5647 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
5648 		break;
5649 	case SPDK_NVME_ZONE_STATE_CLOSED:
5650 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
5651 		break;
5652 	case SPDK_NVME_ZONE_STATE_RONLY:
5653 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
5654 		break;
5655 	case SPDK_NVME_ZONE_STATE_FULL:
5656 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
5657 		break;
5658 	case SPDK_NVME_ZONE_STATE_OFFLINE:
5659 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
5660 		break;
5661 	default:
5662 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
5663 		return -EIO;
5664 	}
5665 
5666 	info->zone_id = desc->zslba;
5667 	info->write_pointer = desc->wp;
5668 	info->capacity = desc->zcap;
5669 
5670 	return 0;
5671 }
5672 
5673 static void
5674 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
5675 {
5676 	struct nvme_bdev_io *bio = ref;
5677 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5678 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
5679 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
5680 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
5681 	uint64_t max_zones_per_buf, i;
5682 	uint32_t zone_report_bufsize;
5683 	struct spdk_nvme_ns *ns;
5684 	struct spdk_nvme_qpair *qpair;
5685 	int ret;
5686 
5687 	if (spdk_nvme_cpl_is_error(cpl)) {
5688 		goto out_complete_io_nvme_cpl;
5689 	}
5690 
5691 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
5692 		ret = -ENXIO;
5693 		goto out_complete_io_ret;
5694 	}
5695 
5696 	ns = bio->io_path->nvme_ns->ns;
5697 	qpair = bio->io_path->qpair->qpair;
5698 
5699 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
5700 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
5701 			    sizeof(bio->zone_report_buf->descs[0]);
5702 
5703 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
5704 		ret = -EINVAL;
5705 		goto out_complete_io_ret;
5706 	}
5707 
5708 	if (!bio->zone_report_buf->nr_zones) {
5709 		ret = -EINVAL;
5710 		goto out_complete_io_ret;
5711 	}
5712 
5713 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
5714 		ret = fill_zone_from_report(&info[bio->handled_zones],
5715 					    &bio->zone_report_buf->descs[i]);
5716 		if (ret) {
5717 			goto out_complete_io_ret;
5718 		}
5719 		bio->handled_zones++;
5720 	}
5721 
5722 	if (bio->handled_zones < zones_to_copy) {
5723 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
5724 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
5725 
5726 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
5727 		ret = spdk_nvme_zns_report_zones(ns, qpair,
5728 						 bio->zone_report_buf, zone_report_bufsize,
5729 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
5730 						 bdev_nvme_get_zone_info_done, bio);
5731 		if (!ret) {
5732 			return;
5733 		} else {
5734 			goto out_complete_io_ret;
5735 		}
5736 	}
5737 
5738 out_complete_io_nvme_cpl:
5739 	free(bio->zone_report_buf);
5740 	bio->zone_report_buf = NULL;
5741 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5742 	return;
5743 
5744 out_complete_io_ret:
5745 	free(bio->zone_report_buf);
5746 	bio->zone_report_buf = NULL;
5747 	bdev_nvme_io_complete(bio, ret);
5748 }
5749 
5750 static void
5751 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
5752 {
5753 	struct nvme_bdev_io *bio = ref;
5754 
5755 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5756 }
5757 
5758 static void
5759 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
5760 {
5761 	struct nvme_bdev_io *bio = ctx;
5762 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5763 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
5764 	struct nvme_bdev_channel *nbdev_ch;
5765 	struct nvme_ctrlr *nvme_ctrlr;
5766 	const struct spdk_nvme_ctrlr_data *cdata;
5767 	uint64_t delay_ms;
5768 
5769 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
5770 
5771 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
5772 		goto complete;
5773 	}
5774 
5775 	if (cpl->status.dnr != 0 || (g_opts.bdev_retry_count != -1 &&
5776 				     bio->retry_count >= g_opts.bdev_retry_count)) {
5777 		goto complete;
5778 	}
5779 
5780 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
5781 	nvme_ctrlr = bio->io_path->qpair->ctrlr;
5782 
5783 	if (spdk_nvme_cpl_is_path_error(cpl) ||
5784 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
5785 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
5786 		delay_ms = 0;
5787 	} else if (spdk_nvme_cpl_is_aborted_by_request(cpl)) {
5788 		goto complete;
5789 	} else {
5790 		bio->retry_count++;
5791 
5792 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
5793 
5794 		if (cpl->status.crd != 0) {
5795 			delay_ms = cdata->crdt[cpl->status.crd] * 100;
5796 		} else {
5797 			delay_ms = 0;
5798 		}
5799 	}
5800 
5801 	if (any_ctrlr_may_become_available(nbdev_ch)) {
5802 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
5803 		return;
5804 	}
5805 
5806 complete:
5807 	bio->retry_count = 0;
5808 	spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
5809 }
5810 
5811 static void
5812 bdev_nvme_abort_complete(void *ctx)
5813 {
5814 	struct nvme_bdev_io *bio = ctx;
5815 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5816 
5817 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
5818 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
5819 	} else {
5820 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
5821 	}
5822 }
5823 
5824 static void
5825 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
5826 {
5827 	struct nvme_bdev_io *bio = ref;
5828 
5829 	bio->cpl = *cpl;
5830 	spdk_thread_send_msg(bio->orig_thread, bdev_nvme_abort_complete, bio);
5831 }
5832 
5833 static void
5834 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
5835 {
5836 	struct nvme_bdev_io *bio = ref;
5837 
5838 	bio->cpl = *cpl;
5839 	spdk_thread_send_msg(bio->orig_thread,
5840 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
5841 }
5842 
5843 static void
5844 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
5845 {
5846 	struct nvme_bdev_io *bio = ref;
5847 	struct iovec *iov;
5848 
5849 	bio->iov_offset = sgl_offset;
5850 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
5851 		iov = &bio->iovs[bio->iovpos];
5852 		if (bio->iov_offset < iov->iov_len) {
5853 			break;
5854 		}
5855 
5856 		bio->iov_offset -= iov->iov_len;
5857 	}
5858 }
5859 
5860 static int
5861 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
5862 {
5863 	struct nvme_bdev_io *bio = ref;
5864 	struct iovec *iov;
5865 
5866 	assert(bio->iovpos < bio->iovcnt);
5867 
5868 	iov = &bio->iovs[bio->iovpos];
5869 
5870 	*address = iov->iov_base;
5871 	*length = iov->iov_len;
5872 
5873 	if (bio->iov_offset) {
5874 		assert(bio->iov_offset <= iov->iov_len);
5875 		*address += bio->iov_offset;
5876 		*length -= bio->iov_offset;
5877 	}
5878 
5879 	bio->iov_offset += *length;
5880 	if (bio->iov_offset == iov->iov_len) {
5881 		bio->iovpos++;
5882 		bio->iov_offset = 0;
5883 	}
5884 
5885 	return 0;
5886 }
5887 
5888 static void
5889 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
5890 {
5891 	struct nvme_bdev_io *bio = ref;
5892 	struct iovec *iov;
5893 
5894 	bio->fused_iov_offset = sgl_offset;
5895 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
5896 		iov = &bio->fused_iovs[bio->fused_iovpos];
5897 		if (bio->fused_iov_offset < iov->iov_len) {
5898 			break;
5899 		}
5900 
5901 		bio->fused_iov_offset -= iov->iov_len;
5902 	}
5903 }
5904 
5905 static int
5906 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
5907 {
5908 	struct nvme_bdev_io *bio = ref;
5909 	struct iovec *iov;
5910 
5911 	assert(bio->fused_iovpos < bio->fused_iovcnt);
5912 
5913 	iov = &bio->fused_iovs[bio->fused_iovpos];
5914 
5915 	*address = iov->iov_base;
5916 	*length = iov->iov_len;
5917 
5918 	if (bio->fused_iov_offset) {
5919 		assert(bio->fused_iov_offset <= iov->iov_len);
5920 		*address += bio->fused_iov_offset;
5921 		*length -= bio->fused_iov_offset;
5922 	}
5923 
5924 	bio->fused_iov_offset += *length;
5925 	if (bio->fused_iov_offset == iov->iov_len) {
5926 		bio->fused_iovpos++;
5927 		bio->fused_iov_offset = 0;
5928 	}
5929 
5930 	return 0;
5931 }
5932 
5933 static int
5934 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
5935 		      void *md, uint64_t lba_count, uint64_t lba)
5936 {
5937 	int rc;
5938 
5939 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
5940 		      lba_count, lba);
5941 
5942 	bio->iovs = iov;
5943 	bio->iovcnt = iovcnt;
5944 	bio->iovpos = 0;
5945 	bio->iov_offset = 0;
5946 
5947 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
5948 					    bio->io_path->qpair->qpair,
5949 					    lba, lba_count,
5950 					    bdev_nvme_no_pi_readv_done, bio, 0,
5951 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
5952 					    md, 0, 0);
5953 
5954 	if (rc != 0 && rc != -ENOMEM) {
5955 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
5956 	}
5957 	return rc;
5958 }
5959 
5960 static int
5961 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
5962 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
5963 		struct spdk_bdev_ext_io_opts *ext_opts)
5964 {
5965 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
5966 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
5967 	int rc;
5968 
5969 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
5970 		      lba_count, lba);
5971 
5972 	bio->iovs = iov;
5973 	bio->iovcnt = iovcnt;
5974 	bio->iovpos = 0;
5975 	bio->iov_offset = 0;
5976 
5977 	if (ext_opts) {
5978 		bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts);
5979 		bio->ext_opts.memory_domain = ext_opts->memory_domain;
5980 		bio->ext_opts.memory_domain_ctx = ext_opts->memory_domain_ctx;
5981 		bio->ext_opts.io_flags = flags;
5982 		bio->ext_opts.metadata = md;
5983 
5984 		rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
5985 						bdev_nvme_readv_done, bio,
5986 						bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
5987 						&bio->ext_opts);
5988 	} else if (iovcnt == 1) {
5989 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base, md, lba,
5990 						   lba_count,
5991 						   bdev_nvme_readv_done, bio,
5992 						   flags,
5993 						   0, 0);
5994 	} else {
5995 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
5996 						    bdev_nvme_readv_done, bio, flags,
5997 						    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
5998 						    md, 0, 0);
5999 	}
6000 
6001 	if (rc != 0 && rc != -ENOMEM) {
6002 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
6003 	}
6004 	return rc;
6005 }
6006 
6007 static int
6008 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6009 		 void *md, uint64_t lba_count, uint64_t lba,
6010 		 uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts)
6011 {
6012 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6013 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6014 	int rc;
6015 
6016 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
6017 		      lba_count, lba);
6018 
6019 	bio->iovs = iov;
6020 	bio->iovcnt = iovcnt;
6021 	bio->iovpos = 0;
6022 	bio->iov_offset = 0;
6023 
6024 	if (ext_opts) {
6025 		bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts);
6026 		bio->ext_opts.memory_domain = ext_opts->memory_domain;
6027 		bio->ext_opts.memory_domain_ctx = ext_opts->memory_domain_ctx;
6028 		bio->ext_opts.io_flags = flags;
6029 		bio->ext_opts.metadata = md;
6030 
6031 		rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
6032 						 bdev_nvme_writev_done, bio,
6033 						 bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6034 						 &bio->ext_opts);
6035 	} else if (iovcnt == 1) {
6036 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base, md, lba,
6037 						    lba_count,
6038 						    bdev_nvme_writev_done, bio,
6039 						    flags,
6040 						    0, 0);
6041 	} else {
6042 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
6043 						     bdev_nvme_writev_done, bio, flags,
6044 						     bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6045 						     md, 0, 0);
6046 	}
6047 
6048 	if (rc != 0 && rc != -ENOMEM) {
6049 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
6050 	}
6051 	return rc;
6052 }
6053 
6054 static int
6055 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6056 		       void *md, uint64_t lba_count, uint64_t zslba,
6057 		       uint32_t flags)
6058 {
6059 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6060 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6061 	int rc;
6062 
6063 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
6064 		      lba_count, zslba);
6065 
6066 	bio->iovs = iov;
6067 	bio->iovcnt = iovcnt;
6068 	bio->iovpos = 0;
6069 	bio->iov_offset = 0;
6070 
6071 	if (iovcnt == 1) {
6072 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
6073 						       lba_count,
6074 						       bdev_nvme_zone_appendv_done, bio,
6075 						       flags,
6076 						       0, 0);
6077 	} else {
6078 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
6079 							bdev_nvme_zone_appendv_done, bio, flags,
6080 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6081 							md, 0, 0);
6082 	}
6083 
6084 	if (rc != 0 && rc != -ENOMEM) {
6085 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
6086 	}
6087 	return rc;
6088 }
6089 
6090 static int
6091 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6092 		   void *md, uint64_t lba_count, uint64_t lba,
6093 		   uint32_t flags)
6094 {
6095 	int rc;
6096 
6097 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
6098 		      lba_count, lba);
6099 
6100 	bio->iovs = iov;
6101 	bio->iovcnt = iovcnt;
6102 	bio->iovpos = 0;
6103 	bio->iov_offset = 0;
6104 
6105 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
6106 					       bio->io_path->qpair->qpair,
6107 					       lba, lba_count,
6108 					       bdev_nvme_comparev_done, bio, flags,
6109 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6110 					       md, 0, 0);
6111 
6112 	if (rc != 0 && rc != -ENOMEM) {
6113 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
6114 	}
6115 	return rc;
6116 }
6117 
6118 static int
6119 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
6120 			      struct iovec *write_iov, int write_iovcnt,
6121 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
6122 {
6123 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6124 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6125 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6126 	int rc;
6127 
6128 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
6129 		      lba_count, lba);
6130 
6131 	bio->iovs = cmp_iov;
6132 	bio->iovcnt = cmp_iovcnt;
6133 	bio->iovpos = 0;
6134 	bio->iov_offset = 0;
6135 	bio->fused_iovs = write_iov;
6136 	bio->fused_iovcnt = write_iovcnt;
6137 	bio->fused_iovpos = 0;
6138 	bio->fused_iov_offset = 0;
6139 
6140 	if (bdev_io->num_retries == 0) {
6141 		bio->first_fused_submitted = false;
6142 		bio->first_fused_completed = false;
6143 	}
6144 
6145 	if (!bio->first_fused_submitted) {
6146 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
6147 		memset(&bio->cpl, 0, sizeof(bio->cpl));
6148 
6149 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
6150 						       bdev_nvme_comparev_and_writev_done, bio, flags,
6151 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
6152 		if (rc == 0) {
6153 			bio->first_fused_submitted = true;
6154 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
6155 		} else {
6156 			if (rc != -ENOMEM) {
6157 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
6158 			}
6159 			return rc;
6160 		}
6161 	}
6162 
6163 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
6164 
6165 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
6166 					     bdev_nvme_comparev_and_writev_done, bio, flags,
6167 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
6168 	if (rc != 0 && rc != -ENOMEM) {
6169 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
6170 		rc = 0;
6171 	}
6172 
6173 	return rc;
6174 }
6175 
6176 static int
6177 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
6178 {
6179 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
6180 	struct spdk_nvme_dsm_range *range;
6181 	uint64_t offset, remaining;
6182 	uint64_t num_ranges_u64;
6183 	uint16_t num_ranges;
6184 	int rc;
6185 
6186 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
6187 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6188 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
6189 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
6190 		return -EINVAL;
6191 	}
6192 	num_ranges = (uint16_t)num_ranges_u64;
6193 
6194 	offset = offset_blocks;
6195 	remaining = num_blocks;
6196 	range = &dsm_ranges[0];
6197 
6198 	/* Fill max-size ranges until the remaining blocks fit into one range */
6199 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
6200 		range->attributes.raw = 0;
6201 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6202 		range->starting_lba = offset;
6203 
6204 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6205 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6206 		range++;
6207 	}
6208 
6209 	/* Final range describes the remaining blocks */
6210 	range->attributes.raw = 0;
6211 	range->length = remaining;
6212 	range->starting_lba = offset;
6213 
6214 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
6215 			bio->io_path->qpair->qpair,
6216 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
6217 			dsm_ranges, num_ranges,
6218 			bdev_nvme_queued_done, bio);
6219 
6220 	return rc;
6221 }
6222 
6223 static int
6224 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
6225 {
6226 	if (num_blocks > UINT16_MAX + 1) {
6227 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
6228 		return -EINVAL;
6229 	}
6230 
6231 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
6232 					     bio->io_path->qpair->qpair,
6233 					     offset_blocks, num_blocks,
6234 					     bdev_nvme_queued_done, bio,
6235 					     0);
6236 }
6237 
6238 static int
6239 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
6240 			struct spdk_bdev_zone_info *info)
6241 {
6242 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6243 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6244 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
6245 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
6246 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
6247 
6248 	if (zone_id % zone_size != 0) {
6249 		return -EINVAL;
6250 	}
6251 
6252 	if (num_zones > total_zones || !num_zones) {
6253 		return -EINVAL;
6254 	}
6255 
6256 	assert(!bio->zone_report_buf);
6257 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
6258 	if (!bio->zone_report_buf) {
6259 		return -ENOMEM;
6260 	}
6261 
6262 	bio->handled_zones = 0;
6263 
6264 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
6265 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
6266 					  bdev_nvme_get_zone_info_done, bio);
6267 }
6268 
6269 static int
6270 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
6271 			  enum spdk_bdev_zone_action action)
6272 {
6273 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6274 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6275 
6276 	switch (action) {
6277 	case SPDK_BDEV_ZONE_CLOSE:
6278 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
6279 						bdev_nvme_zone_management_done, bio);
6280 	case SPDK_BDEV_ZONE_FINISH:
6281 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
6282 						 bdev_nvme_zone_management_done, bio);
6283 	case SPDK_BDEV_ZONE_OPEN:
6284 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
6285 					       bdev_nvme_zone_management_done, bio);
6286 	case SPDK_BDEV_ZONE_RESET:
6287 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
6288 						bdev_nvme_zone_management_done, bio);
6289 	case SPDK_BDEV_ZONE_OFFLINE:
6290 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
6291 						  bdev_nvme_zone_management_done, bio);
6292 	default:
6293 		return -EINVAL;
6294 	}
6295 }
6296 
6297 static void
6298 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
6299 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
6300 {
6301 	struct nvme_io_path *io_path;
6302 	struct nvme_ctrlr *nvme_ctrlr;
6303 	uint32_t max_xfer_size;
6304 	int rc = -ENXIO;
6305 
6306 	/* Choose the first ctrlr which is not failed. */
6307 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
6308 		nvme_ctrlr = io_path->qpair->ctrlr;
6309 
6310 		/* We should skip any unavailable nvme_ctrlr rather than checking
6311 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
6312 		 */
6313 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
6314 			continue;
6315 		}
6316 
6317 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
6318 
6319 		if (nbytes > max_xfer_size) {
6320 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
6321 			rc = -EINVAL;
6322 			goto err;
6323 		}
6324 
6325 		bio->io_path = io_path;
6326 		bio->orig_thread = spdk_get_thread();
6327 
6328 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
6329 						   bdev_nvme_admin_passthru_done, bio);
6330 		if (rc == 0) {
6331 			return;
6332 		}
6333 	}
6334 
6335 err:
6336 	bdev_nvme_admin_passthru_complete(bio, rc);
6337 }
6338 
6339 static int
6340 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
6341 		      void *buf, size_t nbytes)
6342 {
6343 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6344 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6345 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
6346 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
6347 
6348 	if (nbytes > max_xfer_size) {
6349 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
6350 		return -EINVAL;
6351 	}
6352 
6353 	/*
6354 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
6355 	 * so fill it out automatically.
6356 	 */
6357 	cmd->nsid = spdk_nvme_ns_get_id(ns);
6358 
6359 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
6360 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
6361 }
6362 
6363 static int
6364 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
6365 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
6366 {
6367 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6368 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6369 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
6370 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
6371 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
6372 
6373 	if (nbytes > max_xfer_size) {
6374 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
6375 		return -EINVAL;
6376 	}
6377 
6378 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
6379 		SPDK_ERRLOG("invalid meta data buffer size\n");
6380 		return -EINVAL;
6381 	}
6382 
6383 	/*
6384 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
6385 	 * so fill it out automatically.
6386 	 */
6387 	cmd->nsid = spdk_nvme_ns_get_id(ns);
6388 
6389 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
6390 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
6391 }
6392 
6393 static void
6394 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
6395 		struct nvme_bdev_io *bio_to_abort)
6396 {
6397 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6398 	struct spdk_bdev_io *bdev_io_to_abort;
6399 	struct nvme_io_path *io_path;
6400 	struct nvme_ctrlr *nvme_ctrlr;
6401 	int rc = 0;
6402 
6403 	bio->orig_thread = spdk_get_thread();
6404 
6405 	/* Traverse the retry_io_list first. */
6406 	TAILQ_FOREACH(bdev_io_to_abort, &nbdev_ch->retry_io_list, module_link) {
6407 		if ((struct nvme_bdev_io *)bdev_io_to_abort->driver_ctx == bio_to_abort) {
6408 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io_to_abort, module_link);
6409 			spdk_bdev_io_complete(bdev_io_to_abort, SPDK_BDEV_IO_STATUS_ABORTED);
6410 
6411 			spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
6412 			return;
6413 		}
6414 	}
6415 
6416 	/* Even admin commands, they were submitted to only nvme_ctrlrs which were
6417 	 * on any io_path. So traverse the io_path list for not only I/O commands
6418 	 * but also admin commands.
6419 	 */
6420 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
6421 		nvme_ctrlr = io_path->qpair->ctrlr;
6422 
6423 		rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ctrlr->ctrlr,
6424 						   io_path->qpair->qpair,
6425 						   bio_to_abort,
6426 						   bdev_nvme_abort_done, bio);
6427 		if (rc == -ENOENT) {
6428 			/* If no command was found in I/O qpair, the target command may be
6429 			 * admin command.
6430 			 */
6431 			rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ctrlr->ctrlr,
6432 							   NULL,
6433 							   bio_to_abort,
6434 							   bdev_nvme_abort_done, bio);
6435 		}
6436 
6437 		if (rc != -ENOENT) {
6438 			break;
6439 		}
6440 	}
6441 
6442 	if (rc != 0) {
6443 		/* If no command was found or there was any error, complete the abort
6444 		 * request with failure.
6445 		 */
6446 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
6447 	}
6448 }
6449 
6450 static void
6451 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
6452 {
6453 	const char	*action;
6454 
6455 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
6456 		action = "reset";
6457 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
6458 		action = "abort";
6459 	} else {
6460 		action = "none";
6461 	}
6462 
6463 	spdk_json_write_object_begin(w);
6464 
6465 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
6466 
6467 	spdk_json_write_named_object_begin(w, "params");
6468 	spdk_json_write_named_string(w, "action_on_timeout", action);
6469 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
6470 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
6471 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
6472 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
6473 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
6474 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
6475 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
6476 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
6477 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
6478 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
6479 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
6480 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
6481 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
6482 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
6483 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
6484 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
6485 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
6486 	spdk_json_write_object_end(w);
6487 
6488 	spdk_json_write_object_end(w);
6489 }
6490 
6491 static void
6492 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
6493 {
6494 	struct spdk_nvme_transport_id trid;
6495 
6496 	spdk_json_write_object_begin(w);
6497 
6498 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
6499 
6500 	spdk_json_write_named_object_begin(w, "params");
6501 	spdk_json_write_named_string(w, "name", ctx->name);
6502 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
6503 
6504 	trid = ctx->trid;
6505 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
6506 	nvme_bdev_dump_trid_json(&trid, w);
6507 
6508 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
6509 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
6510 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
6511 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
6512 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
6513 	spdk_json_write_object_end(w);
6514 
6515 	spdk_json_write_object_end(w);
6516 }
6517 
6518 static void
6519 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
6520 		       struct nvme_ctrlr *nvme_ctrlr)
6521 {
6522 	struct spdk_nvme_transport_id	*trid;
6523 
6524 	if (nvme_ctrlr->opts.from_discovery_service) {
6525 		/* Do not emit an RPC for this - it will be implicitly
6526 		 * covered by a separate bdev_nvme_start_discovery RPC.
6527 		 */
6528 		return;
6529 	}
6530 
6531 	trid = &nvme_ctrlr->active_path_id->trid;
6532 
6533 	spdk_json_write_object_begin(w);
6534 
6535 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
6536 
6537 	spdk_json_write_named_object_begin(w, "params");
6538 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
6539 	nvme_bdev_dump_trid_json(trid, w);
6540 	spdk_json_write_named_bool(w, "prchk_reftag",
6541 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
6542 	spdk_json_write_named_bool(w, "prchk_guard",
6543 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
6544 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
6545 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
6546 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
6547 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
6548 
6549 	spdk_json_write_object_end(w);
6550 
6551 	spdk_json_write_object_end(w);
6552 }
6553 
6554 static void
6555 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
6556 {
6557 	spdk_json_write_object_begin(w);
6558 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
6559 
6560 	spdk_json_write_named_object_begin(w, "params");
6561 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
6562 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
6563 	spdk_json_write_object_end(w);
6564 
6565 	spdk_json_write_object_end(w);
6566 }
6567 
6568 static int
6569 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
6570 {
6571 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
6572 	struct nvme_ctrlr	*nvme_ctrlr;
6573 	struct discovery_ctx	*ctx;
6574 
6575 	bdev_nvme_opts_config_json(w);
6576 
6577 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6578 
6579 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
6580 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6581 			nvme_ctrlr_config_json(w, nvme_ctrlr);
6582 		}
6583 	}
6584 
6585 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6586 		bdev_nvme_discovery_config_json(w, ctx);
6587 	}
6588 
6589 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
6590 	 * before enabling hotplug poller.
6591 	 */
6592 	bdev_nvme_hotplug_config_json(w);
6593 
6594 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6595 	return 0;
6596 }
6597 
6598 struct spdk_nvme_ctrlr *
6599 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
6600 {
6601 	struct nvme_bdev *nbdev;
6602 	struct nvme_ns *nvme_ns;
6603 
6604 	if (!bdev || bdev->module != &nvme_if) {
6605 		return NULL;
6606 	}
6607 
6608 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
6609 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
6610 	assert(nvme_ns != NULL);
6611 
6612 	return nvme_ns->ctrlr->ctrlr;
6613 }
6614 
6615 void
6616 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
6617 {
6618 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
6619 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
6620 	const struct spdk_nvme_ctrlr_data *cdata;
6621 
6622 	spdk_json_write_object_begin(w);
6623 
6624 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
6625 
6626 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
6627 
6628 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
6629 
6630 	spdk_json_write_named_bool(w, "current", io_path == io_path->nbdev_ch->current_io_path);
6631 
6632 	spdk_json_write_named_bool(w, "connected", nvme_io_path_is_connected(io_path));
6633 
6634 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
6635 
6636 	spdk_json_write_object_end(w);
6637 }
6638 
6639 void
6640 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
6641 {
6642 	struct discovery_ctx *ctx;
6643 	struct discovery_entry_ctx *entry_ctx;
6644 
6645 	spdk_json_write_array_begin(w);
6646 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6647 		spdk_json_write_object_begin(w);
6648 		spdk_json_write_named_string(w, "name", ctx->name);
6649 
6650 		spdk_json_write_named_object_begin(w, "trid");
6651 		nvme_bdev_dump_trid_json(&ctx->trid, w);
6652 		spdk_json_write_object_end(w);
6653 
6654 		spdk_json_write_named_array_begin(w, "referrals");
6655 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
6656 			spdk_json_write_object_begin(w);
6657 			spdk_json_write_named_object_begin(w, "trid");
6658 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
6659 			spdk_json_write_object_end(w);
6660 			spdk_json_write_object_end(w);
6661 		}
6662 		spdk_json_write_array_end(w);
6663 
6664 		spdk_json_write_object_end(w);
6665 	}
6666 	spdk_json_write_array_end(w);
6667 }
6668 
6669 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
6670