xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision db8083d908563ff6f5fd97a519040dadbc7cbf8b)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (c) Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "bdev_nvme.h"
10 
11 #include "spdk/accel.h"
12 #include "spdk/config.h"
13 #include "spdk/endian.h"
14 #include "spdk/bdev.h"
15 #include "spdk/json.h"
16 #include "spdk/likely.h"
17 #include "spdk/nvme.h"
18 #include "spdk/nvme_ocssd.h"
19 #include "spdk/nvme_zns.h"
20 #include "spdk/opal.h"
21 #include "spdk/thread.h"
22 #include "spdk/trace.h"
23 #include "spdk/string.h"
24 #include "spdk/util.h"
25 
26 #include "spdk/bdev_module.h"
27 #include "spdk/log.h"
28 
29 #include "spdk_internal/usdt.h"
30 #include "spdk_internal/trace_defs.h"
31 
32 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
33 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
34 
35 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
36 
37 struct nvme_bdev_io {
38 	/** array of iovecs to transfer. */
39 	struct iovec *iovs;
40 
41 	/** Number of iovecs in iovs array. */
42 	int iovcnt;
43 
44 	/** Current iovec position. */
45 	int iovpos;
46 
47 	/** Offset in current iovec. */
48 	uint32_t iov_offset;
49 
50 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
51 	 *  being reset in a reset I/O.
52 	 */
53 	struct nvme_io_path *io_path;
54 
55 	/** array of iovecs to transfer. */
56 	struct iovec *fused_iovs;
57 
58 	/** Number of iovecs in iovs array. */
59 	int fused_iovcnt;
60 
61 	/** Current iovec position. */
62 	int fused_iovpos;
63 
64 	/** Offset in current iovec. */
65 	uint32_t fused_iov_offset;
66 
67 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
68 	struct spdk_nvme_cpl cpl;
69 
70 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
71 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
72 
73 	/** Originating thread */
74 	struct spdk_thread *orig_thread;
75 
76 	/** Keeps track if first of fused commands was submitted */
77 	bool first_fused_submitted;
78 
79 	/** Keeps track if first of fused commands was completed */
80 	bool first_fused_completed;
81 
82 	/** Temporary pointer to zone report buffer */
83 	struct spdk_nvme_zns_zone_report *zone_report_buf;
84 
85 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
86 	uint64_t handled_zones;
87 
88 	/** Expiration value in ticks to retry the current I/O. */
89 	uint64_t retry_ticks;
90 
91 	/* How many times the current I/O was retried. */
92 	int32_t retry_count;
93 };
94 
95 struct nvme_probe_skip_entry {
96 	struct spdk_nvme_transport_id		trid;
97 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
98 };
99 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
100 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
101 			g_skipped_nvme_ctrlrs);
102 
103 static struct spdk_bdev_nvme_opts g_opts = {
104 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
105 	.timeout_us = 0,
106 	.timeout_admin_us = 0,
107 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
108 	.transport_retry_count = 4,
109 	.arbitration_burst = 0,
110 	.low_priority_weight = 0,
111 	.medium_priority_weight = 0,
112 	.high_priority_weight = 0,
113 	.nvme_adminq_poll_period_us = 10000ULL,
114 	.nvme_ioq_poll_period_us = 0,
115 	.io_queue_requests = 0,
116 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
117 	.bdev_retry_count = 3,
118 	.transport_ack_timeout = 0,
119 	.ctrlr_loss_timeout_sec = 0,
120 	.reconnect_delay_sec = 0,
121 	.fast_io_fail_timeout_sec = 0,
122 	.disable_auto_failback = false,
123 };
124 
125 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
126 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
127 
128 static int g_hot_insert_nvme_controller_index = 0;
129 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
130 static bool g_nvme_hotplug_enabled = false;
131 static struct spdk_thread *g_bdev_nvme_init_thread;
132 static struct spdk_poller *g_hotplug_poller;
133 static struct spdk_poller *g_hotplug_probe_poller;
134 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
135 
136 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
137 		struct nvme_async_probe_ctx *ctx);
138 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
139 		struct nvme_async_probe_ctx *ctx);
140 static int bdev_nvme_library_init(void);
141 static void bdev_nvme_library_fini(void);
142 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
143 				     struct spdk_bdev_io *bdev_io);
144 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
145 			   void *md, uint64_t lba_count, uint64_t lba,
146 			   uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts);
147 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
148 				 void *md, uint64_t lba_count, uint64_t lba);
149 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
150 			    void *md, uint64_t lba_count, uint64_t lba,
151 			    uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts);
152 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
153 				  void *md, uint64_t lba_count,
154 				  uint64_t zslba, uint32_t flags);
155 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
156 			      void *md, uint64_t lba_count, uint64_t lba,
157 			      uint32_t flags);
158 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
159 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
160 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
161 		uint32_t flags);
162 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
163 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
164 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
165 				     enum spdk_bdev_zone_action action);
166 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
167 				     struct nvme_bdev_io *bio,
168 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
169 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
170 				 void *buf, size_t nbytes);
171 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
172 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
173 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
174 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
175 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
176 static int bdev_nvme_reset(struct nvme_ctrlr *nvme_ctrlr);
177 static int bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove);
178 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
179 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
180 
181 static int
182 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
183 {
184 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
185 }
186 
187 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
188 
189 struct spdk_nvme_qpair *
190 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
191 {
192 	struct nvme_ctrlr_channel *ctrlr_ch;
193 
194 	assert(ctrlr_io_ch != NULL);
195 
196 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
197 
198 	return ctrlr_ch->qpair->qpair;
199 }
200 
201 static int
202 bdev_nvme_get_ctx_size(void)
203 {
204 	return sizeof(struct nvme_bdev_io);
205 }
206 
207 static struct spdk_bdev_module nvme_if = {
208 	.name = "nvme",
209 	.async_fini = true,
210 	.module_init = bdev_nvme_library_init,
211 	.module_fini = bdev_nvme_library_fini,
212 	.config_json = bdev_nvme_config_json,
213 	.get_ctx_size = bdev_nvme_get_ctx_size,
214 
215 };
216 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
217 
218 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
219 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
220 bool g_bdev_nvme_module_finish;
221 
222 struct nvme_bdev_ctrlr *
223 nvme_bdev_ctrlr_get_by_name(const char *name)
224 {
225 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
226 
227 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
228 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
229 			break;
230 		}
231 	}
232 
233 	return nbdev_ctrlr;
234 }
235 
236 static struct nvme_ctrlr *
237 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
238 			  const struct spdk_nvme_transport_id *trid)
239 {
240 	struct nvme_ctrlr *nvme_ctrlr;
241 
242 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
243 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0) {
244 			break;
245 		}
246 	}
247 
248 	return nvme_ctrlr;
249 }
250 
251 static struct nvme_bdev *
252 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
253 {
254 	struct nvme_bdev *bdev;
255 
256 	pthread_mutex_lock(&g_bdev_nvme_mutex);
257 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
258 		if (bdev->nsid == nsid) {
259 			break;
260 		}
261 	}
262 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
263 
264 	return bdev;
265 }
266 
267 struct nvme_ns *
268 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
269 {
270 	struct nvme_ns ns;
271 
272 	assert(nsid > 0);
273 
274 	ns.id = nsid;
275 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
276 }
277 
278 struct nvme_ns *
279 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
280 {
281 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
282 }
283 
284 struct nvme_ns *
285 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
286 {
287 	if (ns == NULL) {
288 		return NULL;
289 	}
290 
291 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
292 }
293 
294 static struct nvme_ctrlr *
295 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid)
296 {
297 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
298 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
299 
300 	pthread_mutex_lock(&g_bdev_nvme_mutex);
301 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
302 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid);
303 		if (nvme_ctrlr != NULL) {
304 			break;
305 		}
306 	}
307 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
308 
309 	return nvme_ctrlr;
310 }
311 
312 struct nvme_ctrlr *
313 nvme_ctrlr_get_by_name(const char *name)
314 {
315 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
316 	struct nvme_ctrlr *nvme_ctrlr = NULL;
317 
318 	if (name == NULL) {
319 		return NULL;
320 	}
321 
322 	pthread_mutex_lock(&g_bdev_nvme_mutex);
323 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
324 	if (nbdev_ctrlr != NULL) {
325 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
326 	}
327 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
328 
329 	return nvme_ctrlr;
330 }
331 
332 void
333 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
334 {
335 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
336 
337 	pthread_mutex_lock(&g_bdev_nvme_mutex);
338 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
339 		fn(nbdev_ctrlr, ctx);
340 	}
341 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
342 }
343 
344 void
345 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
346 {
347 	const char *trtype_str;
348 	const char *adrfam_str;
349 
350 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
351 	if (trtype_str) {
352 		spdk_json_write_named_string(w, "trtype", trtype_str);
353 	}
354 
355 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
356 	if (adrfam_str) {
357 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
358 	}
359 
360 	if (trid->traddr[0] != '\0') {
361 		spdk_json_write_named_string(w, "traddr", trid->traddr);
362 	}
363 
364 	if (trid->trsvcid[0] != '\0') {
365 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
366 	}
367 
368 	if (trid->subnqn[0] != '\0') {
369 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
370 	}
371 }
372 
373 static void
374 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
375 		       struct nvme_ctrlr *nvme_ctrlr)
376 {
377 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
378 	pthread_mutex_lock(&g_bdev_nvme_mutex);
379 
380 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
381 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
382 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
383 
384 		return;
385 	}
386 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
387 
388 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
389 
390 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
391 
392 	free(nbdev_ctrlr->name);
393 	free(nbdev_ctrlr);
394 }
395 
396 static void
397 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
398 {
399 	struct nvme_path_id *path_id, *tmp_path;
400 	struct nvme_ns *ns, *tmp_ns;
401 
402 	free(nvme_ctrlr->copied_ana_desc);
403 	spdk_free(nvme_ctrlr->ana_log_page);
404 
405 	if (nvme_ctrlr->opal_dev) {
406 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
407 		nvme_ctrlr->opal_dev = NULL;
408 	}
409 
410 	if (nvme_ctrlr->nbdev_ctrlr) {
411 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
412 	}
413 
414 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
415 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
416 		free(ns);
417 	}
418 
419 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
420 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
421 		free(path_id);
422 	}
423 
424 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
425 
426 	free(nvme_ctrlr);
427 
428 	pthread_mutex_lock(&g_bdev_nvme_mutex);
429 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
430 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
431 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
432 		spdk_bdev_module_fini_done();
433 		return;
434 	}
435 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
436 }
437 
438 static int
439 nvme_detach_poller(void *arg)
440 {
441 	struct nvme_ctrlr *nvme_ctrlr = arg;
442 	int rc;
443 
444 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
445 	if (rc != -EAGAIN) {
446 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
447 		_nvme_ctrlr_delete(nvme_ctrlr);
448 	}
449 
450 	return SPDK_POLLER_BUSY;
451 }
452 
453 static void
454 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
455 {
456 	int rc;
457 
458 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
459 
460 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
461 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
462 
463 	/* If we got here, the reset/detach poller cannot be active */
464 	assert(nvme_ctrlr->reset_detach_poller == NULL);
465 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
466 					  nvme_ctrlr, 1000);
467 	if (nvme_ctrlr->reset_detach_poller == NULL) {
468 		SPDK_ERRLOG("Failed to register detach poller\n");
469 		goto error;
470 	}
471 
472 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
473 	if (rc != 0) {
474 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
475 		goto error;
476 	}
477 
478 	return;
479 error:
480 	/* We don't have a good way to handle errors here, so just do what we can and delete the
481 	 * controller without detaching the underlying NVMe device.
482 	 */
483 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
484 	_nvme_ctrlr_delete(nvme_ctrlr);
485 }
486 
487 static void
488 nvme_ctrlr_unregister_cb(void *io_device)
489 {
490 	struct nvme_ctrlr *nvme_ctrlr = io_device;
491 
492 	nvme_ctrlr_delete(nvme_ctrlr);
493 }
494 
495 static void
496 nvme_ctrlr_unregister(void *ctx)
497 {
498 	struct nvme_ctrlr *nvme_ctrlr = ctx;
499 
500 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
501 }
502 
503 static bool
504 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
505 {
506 	if (!nvme_ctrlr->destruct) {
507 		return false;
508 	}
509 
510 	if (nvme_ctrlr->ref > 0) {
511 		return false;
512 	}
513 
514 	if (nvme_ctrlr->resetting) {
515 		return false;
516 	}
517 
518 	if (nvme_ctrlr->ana_log_page_updating) {
519 		return false;
520 	}
521 
522 	if (nvme_ctrlr->io_path_cache_clearing) {
523 		return false;
524 	}
525 
526 	return true;
527 }
528 
529 static void
530 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
531 {
532 	pthread_mutex_lock(&nvme_ctrlr->mutex);
533 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
534 
535 	assert(nvme_ctrlr->ref > 0);
536 	nvme_ctrlr->ref--;
537 
538 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
539 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
540 		return;
541 	}
542 
543 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
544 
545 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
546 }
547 
548 static struct nvme_io_path *
549 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
550 {
551 	struct nvme_io_path *io_path;
552 
553 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
554 		if (io_path->nvme_ns == nvme_ns) {
555 			break;
556 		}
557 	}
558 
559 	return io_path;
560 }
561 
562 static int
563 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
564 {
565 	struct nvme_io_path *io_path;
566 	struct spdk_io_channel *ch;
567 	struct nvme_ctrlr_channel *ctrlr_ch;
568 	struct nvme_qpair *nvme_qpair;
569 
570 	io_path = calloc(1, sizeof(*io_path));
571 	if (io_path == NULL) {
572 		SPDK_ERRLOG("Failed to alloc io_path.\n");
573 		return -ENOMEM;
574 	}
575 
576 	io_path->nvme_ns = nvme_ns;
577 
578 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
579 	if (ch == NULL) {
580 		free(io_path);
581 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
582 		return -ENOMEM;
583 	}
584 
585 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
586 
587 	nvme_qpair = ctrlr_ch->qpair;
588 	assert(nvme_qpair != NULL);
589 
590 	io_path->qpair = nvme_qpair;
591 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
592 
593 	io_path->nbdev_ch = nbdev_ch;
594 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
595 
596 	nbdev_ch->current_io_path = NULL;
597 
598 	return 0;
599 }
600 
601 static void
602 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
603 {
604 	struct spdk_io_channel *ch;
605 	struct nvme_qpair *nvme_qpair;
606 	struct nvme_ctrlr_channel *ctrlr_ch;
607 
608 	nbdev_ch->current_io_path = NULL;
609 
610 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
611 
612 	nvme_qpair = io_path->qpair;
613 	assert(nvme_qpair != NULL);
614 
615 	TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
616 
617 	ctrlr_ch = nvme_qpair->ctrlr_ch;
618 	assert(ctrlr_ch != NULL);
619 
620 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
621 	spdk_put_io_channel(ch);
622 
623 	free(io_path);
624 }
625 
626 static void
627 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
628 {
629 	struct nvme_io_path *io_path, *tmp_io_path;
630 
631 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
632 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
633 	}
634 }
635 
636 static int
637 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
638 {
639 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
640 	struct nvme_bdev *nbdev = io_device;
641 	struct nvme_ns *nvme_ns;
642 	int rc;
643 
644 	STAILQ_INIT(&nbdev_ch->io_path_list);
645 	TAILQ_INIT(&nbdev_ch->retry_io_list);
646 
647 	pthread_mutex_lock(&nbdev->mutex);
648 
649 	nbdev_ch->mp_policy = nbdev->mp_policy;
650 
651 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
652 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
653 		if (rc != 0) {
654 			pthread_mutex_unlock(&nbdev->mutex);
655 
656 			_bdev_nvme_delete_io_paths(nbdev_ch);
657 			return rc;
658 		}
659 	}
660 	pthread_mutex_unlock(&nbdev->mutex);
661 
662 	return 0;
663 }
664 
665 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
666  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
667  */
668 static inline void
669 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
670 			const struct spdk_nvme_cpl *cpl)
671 {
672 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
673 			  (uintptr_t)bdev_io);
674 	if (cpl) {
675 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
676 	} else {
677 		spdk_bdev_io_complete(bdev_io, status);
678 	}
679 }
680 
681 static void
682 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
683 {
684 	struct spdk_bdev_io *bdev_io, *tmp_io;
685 
686 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_io) {
687 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
688 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
689 	}
690 
691 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
692 }
693 
694 static void
695 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
696 {
697 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
698 
699 	bdev_nvme_abort_retry_ios(nbdev_ch);
700 	_bdev_nvme_delete_io_paths(nbdev_ch);
701 }
702 
703 static inline bool
704 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
705 {
706 	switch (io_type) {
707 	case SPDK_BDEV_IO_TYPE_RESET:
708 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
709 	case SPDK_BDEV_IO_TYPE_ABORT:
710 		return true;
711 	default:
712 		break;
713 	}
714 
715 	return false;
716 }
717 
718 static inline bool
719 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
720 {
721 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
722 		return false;
723 	}
724 
725 	switch (nvme_ns->ana_state) {
726 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
727 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
728 		return true;
729 	default:
730 		break;
731 	}
732 
733 	return false;
734 }
735 
736 static inline bool
737 nvme_io_path_is_connected(struct nvme_io_path *io_path)
738 {
739 	if (spdk_unlikely(io_path->qpair->qpair == NULL)) {
740 		return false;
741 	}
742 
743 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(io_path->qpair->qpair) !=
744 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
745 		return false;
746 	}
747 
748 	if (spdk_unlikely(io_path->qpair->ctrlr_ch->reset_iter != NULL)) {
749 		return false;
750 	}
751 
752 	if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(io_path->qpair->ctrlr->ctrlr) !=
753 	    SPDK_NVME_QPAIR_FAILURE_NONE) {
754 		return false;
755 	}
756 
757 	return true;
758 }
759 
760 static inline bool
761 nvme_io_path_is_available(struct nvme_io_path *io_path)
762 {
763 	if (spdk_unlikely(!nvme_io_path_is_connected(io_path))) {
764 		return false;
765 	}
766 
767 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
768 		return false;
769 	}
770 
771 	return true;
772 }
773 
774 static inline bool
775 nvme_io_path_is_failed(struct nvme_io_path *io_path)
776 {
777 	struct nvme_ctrlr *nvme_ctrlr;
778 
779 	nvme_ctrlr = io_path->qpair->ctrlr;
780 
781 	if (nvme_ctrlr->destruct) {
782 		return true;
783 	}
784 
785 	if (nvme_ctrlr->fast_io_fail_timedout) {
786 		return true;
787 	}
788 
789 	if (nvme_ctrlr->resetting) {
790 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
791 			return false;
792 		} else {
793 			return true;
794 		}
795 	}
796 
797 	if (nvme_ctrlr->reconnect_is_delayed) {
798 		return false;
799 	}
800 
801 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
802 		return true;
803 	} else {
804 		return false;
805 	}
806 }
807 
808 static bool
809 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
810 {
811 	if (nvme_ctrlr->destruct) {
812 		return false;
813 	}
814 
815 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
816 		return false;
817 	}
818 
819 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
820 		return false;
821 	}
822 
823 	return true;
824 }
825 
826 /* Simulate circular linked list. */
827 static inline struct nvme_io_path *
828 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
829 {
830 	struct nvme_io_path *next_path;
831 
832 	next_path = STAILQ_NEXT(prev_path, stailq);
833 	if (next_path != NULL) {
834 		return next_path;
835 	} else {
836 		return STAILQ_FIRST(&nbdev_ch->io_path_list);
837 	}
838 }
839 
840 static struct nvme_io_path *
841 bdev_nvme_find_next_io_path(struct nvme_bdev_channel *nbdev_ch,
842 			    struct nvme_io_path *prev)
843 {
844 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
845 
846 	start = nvme_io_path_get_next(nbdev_ch, prev);
847 
848 	io_path = start;
849 	do {
850 		if (spdk_likely(nvme_io_path_is_connected(io_path) &&
851 				!io_path->nvme_ns->ana_state_updating)) {
852 			switch (io_path->nvme_ns->ana_state) {
853 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
854 				nbdev_ch->current_io_path = io_path;
855 				return io_path;
856 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
857 				if (non_optimized == NULL) {
858 					non_optimized = io_path;
859 				}
860 				break;
861 			default:
862 				break;
863 			}
864 		}
865 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
866 	} while (io_path != start);
867 
868 	/* We come here only if there is no optimized path. Cache even non_optimized
869 	 * path for load balance across multiple non_optimized paths.
870 	 */
871 	nbdev_ch->current_io_path = non_optimized;
872 	return non_optimized;
873 }
874 
875 static struct nvme_io_path *
876 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
877 {
878 	struct nvme_io_path *io_path, *non_optimized = NULL;
879 
880 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
881 		if (spdk_unlikely(!nvme_io_path_is_connected(io_path))) {
882 			/* The device is currently resetting. */
883 			continue;
884 		}
885 
886 		if (spdk_unlikely(io_path->nvme_ns->ana_state_updating)) {
887 			continue;
888 		}
889 
890 		switch (io_path->nvme_ns->ana_state) {
891 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
892 			nbdev_ch->current_io_path = io_path;
893 			return io_path;
894 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
895 			if (non_optimized == NULL) {
896 				non_optimized = io_path;
897 			}
898 			break;
899 		default:
900 			break;
901 		}
902 	}
903 
904 	return non_optimized;
905 }
906 
907 static inline struct nvme_io_path *
908 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
909 {
910 	if (spdk_unlikely(nbdev_ch->current_io_path == NULL)) {
911 		return _bdev_nvme_find_io_path(nbdev_ch);
912 	}
913 
914 	if (spdk_likely(nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE)) {
915 		return nbdev_ch->current_io_path;
916 	} else {
917 		return bdev_nvme_find_next_io_path(nbdev_ch, nbdev_ch->current_io_path);
918 	}
919 }
920 
921 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
922  * or false otherwise.
923  *
924  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
925  * is likely to be non-accessible now but may become accessible.
926  *
927  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
928  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
929  * when starting to reset it but it is set to failed when the reset failed. Hence, if
930  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
931  */
932 static bool
933 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
934 {
935 	struct nvme_io_path *io_path;
936 
937 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
938 		if (io_path->nvme_ns->ana_transition_timedout) {
939 			continue;
940 		}
941 
942 		if (nvme_io_path_is_connected(io_path) ||
943 		    !nvme_io_path_is_failed(io_path)) {
944 			return true;
945 		}
946 	}
947 
948 	return false;
949 }
950 
951 static int
952 bdev_nvme_retry_ios(void *arg)
953 {
954 	struct nvme_bdev_channel *nbdev_ch = arg;
955 	struct spdk_io_channel *ch = spdk_io_channel_from_ctx(nbdev_ch);
956 	struct spdk_bdev_io *bdev_io, *tmp_bdev_io;
957 	struct nvme_bdev_io *bio;
958 	uint64_t now, delay_us;
959 
960 	now = spdk_get_ticks();
961 
962 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_bdev_io) {
963 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
964 		if (bio->retry_ticks > now) {
965 			break;
966 		}
967 
968 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
969 
970 		bdev_nvme_submit_request(ch, bdev_io);
971 	}
972 
973 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
974 
975 	bdev_io = TAILQ_FIRST(&nbdev_ch->retry_io_list);
976 	if (bdev_io != NULL) {
977 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
978 
979 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
980 
981 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
982 					    delay_us);
983 	}
984 
985 	return SPDK_POLLER_BUSY;
986 }
987 
988 static void
989 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
990 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
991 {
992 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
993 	struct spdk_bdev_io *tmp_bdev_io;
994 	struct nvme_bdev_io *tmp_bio;
995 
996 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
997 
998 	TAILQ_FOREACH_REVERSE(tmp_bdev_io, &nbdev_ch->retry_io_list, retry_io_head, module_link) {
999 		tmp_bio = (struct nvme_bdev_io *)tmp_bdev_io->driver_ctx;
1000 
1001 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1002 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bdev_io, bdev_io,
1003 					   module_link);
1004 			return;
1005 		}
1006 	}
1007 
1008 	/* No earlier I/Os were found. This I/O must be the new head. */
1009 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bdev_io, module_link);
1010 
1011 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1012 
1013 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1014 				    delay_ms * 1000ULL);
1015 }
1016 
1017 static inline void
1018 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1019 				  const struct spdk_nvme_cpl *cpl)
1020 {
1021 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1022 	struct nvme_bdev_channel *nbdev_ch;
1023 	struct nvme_ctrlr *nvme_ctrlr;
1024 	const struct spdk_nvme_ctrlr_data *cdata;
1025 	uint64_t delay_ms;
1026 
1027 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1028 
1029 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1030 		goto complete;
1031 	}
1032 
1033 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1034 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1035 		goto complete;
1036 	}
1037 
1038 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1039 
1040 	assert(bio->io_path != NULL);
1041 	nvme_ctrlr = bio->io_path->qpair->ctrlr;
1042 
1043 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1044 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1045 	    !nvme_io_path_is_available(bio->io_path) ||
1046 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1047 		nbdev_ch->current_io_path = NULL;
1048 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1049 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1050 				bio->io_path->nvme_ns->ana_state_updating = true;
1051 			}
1052 		}
1053 		delay_ms = 0;
1054 	} else {
1055 		bio->retry_count++;
1056 
1057 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1058 
1059 		if (cpl->status.crd != 0) {
1060 			delay_ms = cdata->crdt[cpl->status.crd] * 100;
1061 		} else {
1062 			delay_ms = 0;
1063 		}
1064 	}
1065 
1066 	if (any_io_path_may_become_available(nbdev_ch)) {
1067 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1068 		return;
1069 	}
1070 
1071 complete:
1072 	bio->retry_count = 0;
1073 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1074 }
1075 
1076 static inline void
1077 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1078 {
1079 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1080 	struct nvme_bdev_channel *nbdev_ch;
1081 	enum spdk_bdev_io_status io_status;
1082 
1083 	switch (rc) {
1084 	case 0:
1085 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1086 		break;
1087 	case -ENOMEM:
1088 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1089 		break;
1090 	case -ENXIO:
1091 		nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1092 
1093 		nbdev_ch->current_io_path = NULL;
1094 
1095 		if (any_io_path_may_become_available(nbdev_ch)) {
1096 			bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1097 			return;
1098 		}
1099 
1100 	/* fallthrough */
1101 	default:
1102 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1103 		break;
1104 	}
1105 
1106 	bio->retry_count = 0;
1107 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1108 }
1109 
1110 static inline void
1111 bdev_nvme_admin_passthru_complete(struct nvme_bdev_io *bio, int rc)
1112 {
1113 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1114 	enum spdk_bdev_io_status io_status;
1115 
1116 	switch (rc) {
1117 	case 0:
1118 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1119 		break;
1120 	case -ENOMEM:
1121 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1122 		break;
1123 	case -ENXIO:
1124 	/* fallthrough */
1125 	default:
1126 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1127 		break;
1128 	}
1129 
1130 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1131 }
1132 
1133 static void
1134 bdev_nvme_clear_io_path_caches_done(struct spdk_io_channel_iter *i, int status)
1135 {
1136 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1137 
1138 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1139 
1140 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1141 	nvme_ctrlr->io_path_cache_clearing = false;
1142 
1143 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1144 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1145 		return;
1146 	}
1147 
1148 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1149 
1150 	nvme_ctrlr_unregister(nvme_ctrlr);
1151 }
1152 
1153 static void
1154 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1155 {
1156 	struct nvme_io_path *io_path;
1157 
1158 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1159 		io_path->nbdev_ch->current_io_path = NULL;
1160 	}
1161 }
1162 
1163 static void
1164 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
1165 {
1166 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1167 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1168 
1169 	assert(ctrlr_ch->qpair != NULL);
1170 
1171 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1172 
1173 	spdk_for_each_channel_continue(i, 0);
1174 }
1175 
1176 static void
1177 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1178 {
1179 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1180 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1181 	    nvme_ctrlr->io_path_cache_clearing) {
1182 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1183 		return;
1184 	}
1185 
1186 	nvme_ctrlr->io_path_cache_clearing = true;
1187 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1188 
1189 	spdk_for_each_channel(nvme_ctrlr,
1190 			      bdev_nvme_clear_io_path_cache,
1191 			      NULL,
1192 			      bdev_nvme_clear_io_path_caches_done);
1193 }
1194 
1195 static struct nvme_qpair *
1196 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1197 {
1198 	struct nvme_qpair *nvme_qpair;
1199 
1200 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1201 		if (nvme_qpair->qpair == qpair) {
1202 			break;
1203 		}
1204 	}
1205 
1206 	return nvme_qpair;
1207 }
1208 
1209 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1210 
1211 static void
1212 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1213 {
1214 	struct nvme_poll_group *group = poll_group_ctx;
1215 	struct nvme_qpair *nvme_qpair;
1216 	struct nvme_ctrlr_channel *ctrlr_ch;
1217 
1218 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1219 	if (nvme_qpair == NULL) {
1220 		return;
1221 	}
1222 
1223 	if (nvme_qpair->qpair != NULL) {
1224 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1225 		nvme_qpair->qpair = NULL;
1226 	}
1227 
1228 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1229 
1230 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1231 
1232 	if (ctrlr_ch != NULL) {
1233 		if (ctrlr_ch->reset_iter != NULL) {
1234 			/* If we are already in a full reset sequence, we do not have
1235 			 * to restart it. Just move to the next ctrlr_channel.
1236 			 */
1237 			SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1238 				      qpair);
1239 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
1240 			ctrlr_ch->reset_iter = NULL;
1241 		} else {
1242 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1243 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1244 			bdev_nvme_failover(nvme_qpair->ctrlr, false);
1245 		}
1246 	} else {
1247 		/* In this case, ctrlr_channel is already deleted. */
1248 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1249 		nvme_qpair_delete(nvme_qpair);
1250 	}
1251 }
1252 
1253 static void
1254 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1255 {
1256 	struct nvme_qpair *nvme_qpair;
1257 
1258 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1259 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1260 			continue;
1261 		}
1262 
1263 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1264 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1265 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1266 		}
1267 	}
1268 }
1269 
1270 static int
1271 bdev_nvme_poll(void *arg)
1272 {
1273 	struct nvme_poll_group *group = arg;
1274 	int64_t num_completions;
1275 
1276 	if (group->collect_spin_stat && group->start_ticks == 0) {
1277 		group->start_ticks = spdk_get_ticks();
1278 	}
1279 
1280 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1281 			  bdev_nvme_disconnected_qpair_cb);
1282 	if (group->collect_spin_stat) {
1283 		if (num_completions > 0) {
1284 			if (group->end_ticks != 0) {
1285 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1286 				group->end_ticks = 0;
1287 			}
1288 			group->start_ticks = 0;
1289 		} else {
1290 			group->end_ticks = spdk_get_ticks();
1291 		}
1292 	}
1293 
1294 	if (spdk_unlikely(num_completions < 0)) {
1295 		bdev_nvme_check_io_qpairs(group);
1296 	}
1297 
1298 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1299 }
1300 
1301 static int bdev_nvme_poll_adminq(void *arg);
1302 
1303 static void
1304 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1305 {
1306 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1307 
1308 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1309 					  nvme_ctrlr, new_period_us);
1310 }
1311 
1312 static int
1313 bdev_nvme_poll_adminq(void *arg)
1314 {
1315 	int32_t rc;
1316 	struct nvme_ctrlr *nvme_ctrlr = arg;
1317 	nvme_ctrlr_disconnected_cb disconnected_cb;
1318 
1319 	assert(nvme_ctrlr != NULL);
1320 
1321 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1322 	if (rc < 0) {
1323 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1324 		nvme_ctrlr->disconnected_cb = NULL;
1325 
1326 		if (rc == -ENXIO && disconnected_cb != NULL) {
1327 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1328 							    g_opts.nvme_adminq_poll_period_us);
1329 			disconnected_cb(nvme_ctrlr);
1330 		} else {
1331 			bdev_nvme_failover(nvme_ctrlr, false);
1332 		}
1333 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1334 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1335 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1336 	}
1337 
1338 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1339 }
1340 
1341 static void
1342 _bdev_nvme_unregister_dev_cb(void *io_device)
1343 {
1344 	struct nvme_bdev *nvme_disk = io_device;
1345 
1346 	free(nvme_disk->disk.name);
1347 	free(nvme_disk);
1348 }
1349 
1350 static int
1351 bdev_nvme_destruct(void *ctx)
1352 {
1353 	struct nvme_bdev *nvme_disk = ctx;
1354 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1355 
1356 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1357 
1358 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1359 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1360 
1361 		nvme_ns->bdev = NULL;
1362 
1363 		assert(nvme_ns->id > 0);
1364 
1365 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1366 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1367 
1368 			nvme_ctrlr_release(nvme_ns->ctrlr);
1369 			free(nvme_ns);
1370 		} else {
1371 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1372 		}
1373 	}
1374 
1375 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1376 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1377 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1378 
1379 	spdk_io_device_unregister(nvme_disk, _bdev_nvme_unregister_dev_cb);
1380 
1381 	return 0;
1382 }
1383 
1384 static int
1385 bdev_nvme_flush(struct nvme_bdev_io *bio, uint64_t offset, uint64_t nbytes)
1386 {
1387 	bdev_nvme_io_complete(bio, 0);
1388 
1389 	return 0;
1390 }
1391 
1392 static int
1393 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1394 {
1395 	struct nvme_ctrlr *nvme_ctrlr;
1396 	struct spdk_nvme_io_qpair_opts opts;
1397 	struct spdk_nvme_qpair *qpair;
1398 	int rc;
1399 
1400 	nvme_ctrlr = nvme_qpair->ctrlr;
1401 
1402 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1403 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1404 	opts.create_only = true;
1405 	opts.async_mode = true;
1406 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1407 	g_opts.io_queue_requests = opts.io_queue_requests;
1408 
1409 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1410 	if (qpair == NULL) {
1411 		return -1;
1412 	}
1413 
1414 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1415 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1416 
1417 	assert(nvme_qpair->group != NULL);
1418 
1419 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1420 	if (rc != 0) {
1421 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1422 		goto err;
1423 	}
1424 
1425 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1426 	if (rc != 0) {
1427 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1428 		goto err;
1429 	}
1430 
1431 	nvme_qpair->qpair = qpair;
1432 
1433 	if (!g_opts.disable_auto_failback) {
1434 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1435 	}
1436 
1437 	return 0;
1438 
1439 err:
1440 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1441 
1442 	return rc;
1443 }
1444 
1445 static void
1446 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
1447 {
1448 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1449 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1450 	enum spdk_bdev_io_status status = SPDK_BDEV_IO_STATUS_SUCCESS;
1451 	struct spdk_bdev_io *bdev_io;
1452 
1453 	if (spdk_io_channel_iter_get_ctx(i) != NULL) {
1454 		status = SPDK_BDEV_IO_STATUS_FAILED;
1455 	}
1456 
1457 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1458 		bdev_io = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1459 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bdev_io, module_link);
1460 		__bdev_nvme_io_complete(bdev_io, status, NULL);
1461 	}
1462 
1463 	spdk_for_each_channel_continue(i, 0);
1464 }
1465 
1466 static void
1467 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove)
1468 {
1469 	struct nvme_path_id *path_id, *next_path;
1470 	int rc __attribute__((unused));
1471 
1472 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1473 	assert(path_id);
1474 	assert(path_id == nvme_ctrlr->active_path_id);
1475 	next_path = TAILQ_NEXT(path_id, link);
1476 
1477 	path_id->is_failed = true;
1478 
1479 	if (next_path) {
1480 		assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1481 
1482 		SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1483 			       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1484 
1485 		spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1486 		nvme_ctrlr->active_path_id = next_path;
1487 		rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1488 		assert(rc == 0);
1489 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1490 		if (!remove) {
1491 			/** Shuffle the old trid to the end of the list and use the new one.
1492 			 * Allows for round robin through multiple connections.
1493 			 */
1494 			TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
1495 		} else {
1496 			free(path_id);
1497 		}
1498 	}
1499 }
1500 
1501 static bool
1502 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
1503 {
1504 	int32_t elapsed;
1505 
1506 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
1507 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
1508 		return false;
1509 	}
1510 
1511 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1512 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
1513 		return true;
1514 	} else {
1515 		return false;
1516 	}
1517 }
1518 
1519 static bool
1520 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
1521 {
1522 	uint32_t elapsed;
1523 
1524 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
1525 		return false;
1526 	}
1527 
1528 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1529 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
1530 		return true;
1531 	} else {
1532 		return false;
1533 	}
1534 }
1535 
1536 static void bdev_nvme_reset_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
1537 
1538 static void
1539 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
1540 {
1541 	int rc;
1542 
1543 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
1544 	if (rc != 0) {
1545 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
1546 		 * fail the reset sequence immediately.
1547 		 */
1548 		bdev_nvme_reset_complete(nvme_ctrlr, false);
1549 		return;
1550 	}
1551 
1552 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
1553 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
1554 	 */
1555 	assert(nvme_ctrlr->disconnected_cb == NULL);
1556 	nvme_ctrlr->disconnected_cb = cb_fn;
1557 
1558 	/* During disconnection, reduce the period to poll adminq more often. */
1559 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
1560 }
1561 
1562 enum bdev_nvme_op_after_reset {
1563 	OP_NONE,
1564 	OP_COMPLETE_PENDING_DESTRUCT,
1565 	OP_DESTRUCT,
1566 	OP_DELAYED_RECONNECT,
1567 };
1568 
1569 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
1570 
1571 static _bdev_nvme_op_after_reset
1572 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
1573 {
1574 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1575 		/* Complete pending destruct after reset completes. */
1576 		return OP_COMPLETE_PENDING_DESTRUCT;
1577 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1578 		nvme_ctrlr->reset_start_tsc = 0;
1579 		return OP_NONE;
1580 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1581 		return OP_DESTRUCT;
1582 	} else {
1583 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
1584 			nvme_ctrlr->fast_io_fail_timedout = true;
1585 		}
1586 		bdev_nvme_failover_trid(nvme_ctrlr, false);
1587 		return OP_DELAYED_RECONNECT;
1588 	}
1589 }
1590 
1591 static int _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
1592 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
1593 
1594 static int
1595 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
1596 {
1597 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1598 
1599 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
1600 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1601 
1602 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
1603 
1604 	assert(nvme_ctrlr->reconnect_is_delayed == true);
1605 	nvme_ctrlr->reconnect_is_delayed = false;
1606 
1607 	if (nvme_ctrlr->destruct) {
1608 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1609 		return SPDK_POLLER_BUSY;
1610 	}
1611 
1612 	assert(nvme_ctrlr->resetting == false);
1613 	nvme_ctrlr->resetting = true;
1614 
1615 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1616 
1617 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
1618 
1619 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
1620 	return SPDK_POLLER_BUSY;
1621 }
1622 
1623 static void
1624 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
1625 {
1626 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
1627 
1628 	assert(nvme_ctrlr->reconnect_is_delayed == false);
1629 	nvme_ctrlr->reconnect_is_delayed = true;
1630 
1631 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
1632 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
1633 					    nvme_ctrlr,
1634 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
1635 }
1636 
1637 static void
1638 _bdev_nvme_reset_complete(struct spdk_io_channel_iter *i, int status)
1639 {
1640 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1641 	bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
1642 	struct nvme_path_id *path_id;
1643 	bdev_nvme_reset_cb reset_cb_fn = nvme_ctrlr->reset_cb_fn;
1644 	void *reset_cb_arg = nvme_ctrlr->reset_cb_arg;
1645 	enum bdev_nvme_op_after_reset op_after_reset;
1646 
1647 	assert(nvme_ctrlr->thread == spdk_get_thread());
1648 
1649 	nvme_ctrlr->reset_cb_fn = NULL;
1650 	nvme_ctrlr->reset_cb_arg = NULL;
1651 
1652 	if (!success) {
1653 		SPDK_ERRLOG("Resetting controller failed.\n");
1654 	} else {
1655 		SPDK_NOTICELOG("Resetting controller successful.\n");
1656 	}
1657 
1658 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1659 	nvme_ctrlr->resetting = false;
1660 
1661 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1662 	assert(path_id != NULL);
1663 	assert(path_id == nvme_ctrlr->active_path_id);
1664 
1665 	path_id->is_failed = !success;
1666 
1667 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
1668 
1669 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1670 
1671 	if (reset_cb_fn) {
1672 		reset_cb_fn(reset_cb_arg, success);
1673 	}
1674 
1675 	switch (op_after_reset) {
1676 	case OP_COMPLETE_PENDING_DESTRUCT:
1677 		nvme_ctrlr_unregister(nvme_ctrlr);
1678 		break;
1679 	case OP_DESTRUCT:
1680 		_bdev_nvme_delete(nvme_ctrlr, false);
1681 		break;
1682 	case OP_DELAYED_RECONNECT:
1683 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
1684 		break;
1685 	default:
1686 		break;
1687 	}
1688 }
1689 
1690 static void
1691 bdev_nvme_reset_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
1692 {
1693 	/* Make sure we clear any pending resets before returning. */
1694 	spdk_for_each_channel(nvme_ctrlr,
1695 			      bdev_nvme_complete_pending_resets,
1696 			      success ? NULL : (void *)0x1,
1697 			      _bdev_nvme_reset_complete);
1698 }
1699 
1700 static void
1701 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
1702 {
1703 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1704 
1705 	bdev_nvme_reset_complete(nvme_ctrlr, false);
1706 }
1707 
1708 static void
1709 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
1710 {
1711 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
1712 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
1713 	struct nvme_qpair *nvme_qpair;
1714 
1715 	nvme_qpair = ctrlr_ch->qpair;
1716 	assert(nvme_qpair != NULL);
1717 
1718 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1719 
1720 	if (nvme_qpair->qpair != NULL) {
1721 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
1722 
1723 		/* The current full reset sequence will move to the next
1724 		 * ctrlr_channel after the qpair is actually disconnected.
1725 		 */
1726 		assert(ctrlr_ch->reset_iter == NULL);
1727 		ctrlr_ch->reset_iter = i;
1728 	} else {
1729 		spdk_for_each_channel_continue(i, 0);
1730 	}
1731 }
1732 
1733 static void
1734 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
1735 {
1736 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1737 
1738 	if (status == 0) {
1739 		bdev_nvme_reset_complete(nvme_ctrlr, true);
1740 	} else {
1741 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
1742 		spdk_for_each_channel(nvme_ctrlr,
1743 				      bdev_nvme_reset_destroy_qpair,
1744 				      NULL,
1745 				      bdev_nvme_reset_create_qpairs_failed);
1746 	}
1747 }
1748 
1749 static void
1750 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
1751 {
1752 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1753 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1754 	int rc;
1755 
1756 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
1757 
1758 	spdk_for_each_channel_continue(i, rc);
1759 }
1760 
1761 static int
1762 bdev_nvme_reconnect_ctrlr_poll(void *arg)
1763 {
1764 	struct nvme_ctrlr *nvme_ctrlr = arg;
1765 	int rc = -ETIMEDOUT;
1766 
1767 	if (!bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1768 		rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
1769 		if (rc == -EAGAIN) {
1770 			return SPDK_POLLER_BUSY;
1771 		}
1772 	}
1773 
1774 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
1775 	if (rc == 0) {
1776 		/* Recreate all of the I/O queue pairs */
1777 		spdk_for_each_channel(nvme_ctrlr,
1778 				      bdev_nvme_reset_create_qpair,
1779 				      NULL,
1780 				      bdev_nvme_reset_create_qpairs_done);
1781 	} else {
1782 		bdev_nvme_reset_complete(nvme_ctrlr, false);
1783 	}
1784 	return SPDK_POLLER_BUSY;
1785 }
1786 
1787 static void
1788 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
1789 {
1790 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
1791 
1792 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
1793 	assert(nvme_ctrlr->reset_detach_poller == NULL);
1794 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
1795 					  nvme_ctrlr, 0);
1796 }
1797 
1798 static void
1799 bdev_nvme_reset_ctrlr(struct spdk_io_channel_iter *i, int status)
1800 {
1801 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1802 
1803 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
1804 	assert(status == 0);
1805 
1806 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
1807 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
1808 	} else {
1809 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
1810 	}
1811 }
1812 
1813 static void
1814 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
1815 {
1816 	spdk_for_each_channel(nvme_ctrlr,
1817 			      bdev_nvme_reset_destroy_qpair,
1818 			      NULL,
1819 			      bdev_nvme_reset_ctrlr);
1820 }
1821 
1822 static void
1823 _bdev_nvme_reset(void *ctx)
1824 {
1825 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1826 
1827 	assert(nvme_ctrlr->resetting == true);
1828 	assert(nvme_ctrlr->thread == spdk_get_thread());
1829 
1830 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
1831 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
1832 	} else {
1833 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
1834 	}
1835 }
1836 
1837 static int
1838 bdev_nvme_reset(struct nvme_ctrlr *nvme_ctrlr)
1839 {
1840 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1841 	if (nvme_ctrlr->destruct) {
1842 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1843 		return -ENXIO;
1844 	}
1845 
1846 	if (nvme_ctrlr->resetting) {
1847 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1848 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
1849 		return -EBUSY;
1850 	}
1851 
1852 	if (nvme_ctrlr->reconnect_is_delayed) {
1853 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1854 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
1855 		return -EBUSY;
1856 	}
1857 
1858 	nvme_ctrlr->resetting = true;
1859 
1860 	assert(nvme_ctrlr->reset_start_tsc == 0);
1861 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
1862 
1863 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1864 
1865 	spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset, nvme_ctrlr);
1866 	return 0;
1867 }
1868 
1869 int
1870 bdev_nvme_reset_rpc(struct nvme_ctrlr *nvme_ctrlr, bdev_nvme_reset_cb cb_fn, void *cb_arg)
1871 {
1872 	int rc;
1873 
1874 	rc = bdev_nvme_reset(nvme_ctrlr);
1875 	if (rc == 0) {
1876 		nvme_ctrlr->reset_cb_fn = cb_fn;
1877 		nvme_ctrlr->reset_cb_arg = cb_arg;
1878 	}
1879 	return rc;
1880 }
1881 
1882 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
1883 
1884 static void
1885 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
1886 {
1887 	enum spdk_bdev_io_status io_status;
1888 
1889 	if (bio->cpl.cdw0 == 0) {
1890 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1891 	} else {
1892 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1893 	}
1894 
1895 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
1896 }
1897 
1898 static void
1899 _bdev_nvme_reset_io_continue(void *ctx)
1900 {
1901 	struct nvme_bdev_io *bio = ctx;
1902 	struct nvme_io_path *prev_io_path, *next_io_path;
1903 	int rc;
1904 
1905 	prev_io_path = bio->io_path;
1906 	bio->io_path = NULL;
1907 
1908 	if (bio->cpl.cdw0 != 0) {
1909 		goto complete;
1910 	}
1911 
1912 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
1913 	if (next_io_path == NULL) {
1914 		goto complete;
1915 	}
1916 
1917 	rc = _bdev_nvme_reset_io(next_io_path, bio);
1918 	if (rc == 0) {
1919 		return;
1920 	}
1921 
1922 	bio->cpl.cdw0 = 1;
1923 
1924 complete:
1925 	bdev_nvme_reset_io_complete(bio);
1926 }
1927 
1928 static void
1929 bdev_nvme_reset_io_continue(void *cb_arg, bool success)
1930 {
1931 	struct nvme_bdev_io *bio = cb_arg;
1932 
1933 	bio->cpl.cdw0 = !success;
1934 
1935 	spdk_thread_send_msg(bio->orig_thread, _bdev_nvme_reset_io_continue, bio);
1936 }
1937 
1938 static int
1939 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
1940 {
1941 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1942 	struct nvme_ctrlr_channel *ctrlr_ch;
1943 	struct spdk_bdev_io *bdev_io;
1944 	int rc;
1945 
1946 	rc = bdev_nvme_reset(nvme_ctrlr);
1947 	if (rc == 0) {
1948 		assert(bio->io_path == NULL);
1949 		bio->io_path = io_path;
1950 
1951 		assert(nvme_ctrlr->reset_cb_fn == NULL);
1952 		assert(nvme_ctrlr->reset_cb_arg == NULL);
1953 		nvme_ctrlr->reset_cb_fn = bdev_nvme_reset_io_continue;
1954 		nvme_ctrlr->reset_cb_arg = bio;
1955 	} else if (rc == -EBUSY) {
1956 		ctrlr_ch = io_path->qpair->ctrlr_ch;
1957 		assert(ctrlr_ch != NULL);
1958 		/*
1959 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
1960 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
1961 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
1962 		 */
1963 		bdev_io = spdk_bdev_io_from_ctx(bio);
1964 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bdev_io, module_link);
1965 	} else {
1966 		return rc;
1967 	}
1968 
1969 	return 0;
1970 }
1971 
1972 static void
1973 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
1974 {
1975 	struct nvme_io_path *io_path;
1976 	int rc;
1977 
1978 	bio->cpl.cdw0 = 0;
1979 	bio->orig_thread = spdk_get_thread();
1980 
1981 	/* Reset only the first nvme_ctrlr in the nvme_bdev_ctrlr for now.
1982 	 *
1983 	 * TODO: Reset all nvme_ctrlrs in the nvme_bdev_ctrlr sequentially.
1984 	 * This will be done in the following patches.
1985 	 */
1986 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
1987 	assert(io_path != NULL);
1988 
1989 	rc = _bdev_nvme_reset_io(io_path, bio);
1990 	if (rc != 0) {
1991 		bio->cpl.cdw0 = 1;
1992 		bdev_nvme_reset_io_complete(bio);
1993 	}
1994 }
1995 
1996 static int
1997 bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove)
1998 {
1999 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2000 	if (nvme_ctrlr->destruct) {
2001 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2002 		/* Don't bother resetting if the controller is in the process of being destructed. */
2003 		return -ENXIO;
2004 	}
2005 
2006 	if (nvme_ctrlr->resetting) {
2007 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2008 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
2009 		return -EBUSY;
2010 	}
2011 
2012 	bdev_nvme_failover_trid(nvme_ctrlr, remove);
2013 
2014 	if (nvme_ctrlr->reconnect_is_delayed) {
2015 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2016 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
2017 
2018 		/* We rely on the next reconnect for the failover. */
2019 		return 0;
2020 	}
2021 
2022 	nvme_ctrlr->resetting = true;
2023 
2024 	assert(nvme_ctrlr->reset_start_tsc == 0);
2025 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2026 
2027 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2028 
2029 	spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset, nvme_ctrlr);
2030 	return 0;
2031 }
2032 
2033 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2034 			   uint64_t num_blocks);
2035 
2036 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2037 				  uint64_t num_blocks);
2038 
2039 static void
2040 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
2041 		     bool success)
2042 {
2043 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2044 	struct spdk_bdev *bdev = bdev_io->bdev;
2045 	int ret;
2046 
2047 	if (!success) {
2048 		ret = -EINVAL;
2049 		goto exit;
2050 	}
2051 
2052 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
2053 		ret = -ENXIO;
2054 		goto exit;
2055 	}
2056 
2057 	ret = bdev_nvme_readv(bio,
2058 			      bdev_io->u.bdev.iovs,
2059 			      bdev_io->u.bdev.iovcnt,
2060 			      bdev_io->u.bdev.md_buf,
2061 			      bdev_io->u.bdev.num_blocks,
2062 			      bdev_io->u.bdev.offset_blocks,
2063 			      bdev->dif_check_flags,
2064 			      bdev_io->u.bdev.ext_opts);
2065 
2066 exit:
2067 	if (spdk_unlikely(ret != 0)) {
2068 		bdev_nvme_io_complete(bio, ret);
2069 	}
2070 }
2071 
2072 static void
2073 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
2074 {
2075 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
2076 	struct spdk_bdev *bdev = bdev_io->bdev;
2077 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2078 	struct nvme_bdev_io *nbdev_io_to_abort;
2079 	int rc = 0;
2080 
2081 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
2082 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
2083 	if (spdk_unlikely(!nbdev_io->io_path)) {
2084 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
2085 			rc = -ENXIO;
2086 			goto exit;
2087 		}
2088 
2089 		/* Admin commands do not use the optimal I/O path.
2090 		 * Simply fall through even if it is not found.
2091 		 */
2092 	}
2093 
2094 	switch (bdev_io->type) {
2095 	case SPDK_BDEV_IO_TYPE_READ:
2096 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
2097 			rc = bdev_nvme_readv(nbdev_io,
2098 					     bdev_io->u.bdev.iovs,
2099 					     bdev_io->u.bdev.iovcnt,
2100 					     bdev_io->u.bdev.md_buf,
2101 					     bdev_io->u.bdev.num_blocks,
2102 					     bdev_io->u.bdev.offset_blocks,
2103 					     bdev->dif_check_flags,
2104 					     bdev_io->u.bdev.ext_opts);
2105 		} else {
2106 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
2107 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
2108 			rc = 0;
2109 		}
2110 		break;
2111 	case SPDK_BDEV_IO_TYPE_WRITE:
2112 		rc = bdev_nvme_writev(nbdev_io,
2113 				      bdev_io->u.bdev.iovs,
2114 				      bdev_io->u.bdev.iovcnt,
2115 				      bdev_io->u.bdev.md_buf,
2116 				      bdev_io->u.bdev.num_blocks,
2117 				      bdev_io->u.bdev.offset_blocks,
2118 				      bdev->dif_check_flags,
2119 				      bdev_io->u.bdev.ext_opts);
2120 		break;
2121 	case SPDK_BDEV_IO_TYPE_COMPARE:
2122 		rc = bdev_nvme_comparev(nbdev_io,
2123 					bdev_io->u.bdev.iovs,
2124 					bdev_io->u.bdev.iovcnt,
2125 					bdev_io->u.bdev.md_buf,
2126 					bdev_io->u.bdev.num_blocks,
2127 					bdev_io->u.bdev.offset_blocks,
2128 					bdev->dif_check_flags);
2129 		break;
2130 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
2131 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
2132 						   bdev_io->u.bdev.iovs,
2133 						   bdev_io->u.bdev.iovcnt,
2134 						   bdev_io->u.bdev.fused_iovs,
2135 						   bdev_io->u.bdev.fused_iovcnt,
2136 						   bdev_io->u.bdev.md_buf,
2137 						   bdev_io->u.bdev.num_blocks,
2138 						   bdev_io->u.bdev.offset_blocks,
2139 						   bdev->dif_check_flags);
2140 		break;
2141 	case SPDK_BDEV_IO_TYPE_UNMAP:
2142 		rc = bdev_nvme_unmap(nbdev_io,
2143 				     bdev_io->u.bdev.offset_blocks,
2144 				     bdev_io->u.bdev.num_blocks);
2145 		break;
2146 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
2147 		rc =  bdev_nvme_write_zeroes(nbdev_io,
2148 					     bdev_io->u.bdev.offset_blocks,
2149 					     bdev_io->u.bdev.num_blocks);
2150 		break;
2151 	case SPDK_BDEV_IO_TYPE_RESET:
2152 		nbdev_io->io_path = NULL;
2153 		bdev_nvme_reset_io(nbdev_ch, nbdev_io);
2154 		break;
2155 	case SPDK_BDEV_IO_TYPE_FLUSH:
2156 		rc = bdev_nvme_flush(nbdev_io,
2157 				     bdev_io->u.bdev.offset_blocks,
2158 				     bdev_io->u.bdev.num_blocks);
2159 		break;
2160 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
2161 		rc = bdev_nvme_zone_appendv(nbdev_io,
2162 					    bdev_io->u.bdev.iovs,
2163 					    bdev_io->u.bdev.iovcnt,
2164 					    bdev_io->u.bdev.md_buf,
2165 					    bdev_io->u.bdev.num_blocks,
2166 					    bdev_io->u.bdev.offset_blocks,
2167 					    bdev->dif_check_flags);
2168 		break;
2169 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
2170 		rc = bdev_nvme_get_zone_info(nbdev_io,
2171 					     bdev_io->u.zone_mgmt.zone_id,
2172 					     bdev_io->u.zone_mgmt.num_zones,
2173 					     bdev_io->u.zone_mgmt.buf);
2174 		break;
2175 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
2176 		rc = bdev_nvme_zone_management(nbdev_io,
2177 					       bdev_io->u.zone_mgmt.zone_id,
2178 					       bdev_io->u.zone_mgmt.zone_action);
2179 		break;
2180 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
2181 		nbdev_io->io_path = NULL;
2182 		bdev_nvme_admin_passthru(nbdev_ch,
2183 					 nbdev_io,
2184 					 &bdev_io->u.nvme_passthru.cmd,
2185 					 bdev_io->u.nvme_passthru.buf,
2186 					 bdev_io->u.nvme_passthru.nbytes);
2187 		break;
2188 	case SPDK_BDEV_IO_TYPE_NVME_IO:
2189 		rc = bdev_nvme_io_passthru(nbdev_io,
2190 					   &bdev_io->u.nvme_passthru.cmd,
2191 					   bdev_io->u.nvme_passthru.buf,
2192 					   bdev_io->u.nvme_passthru.nbytes);
2193 		break;
2194 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
2195 		rc = bdev_nvme_io_passthru_md(nbdev_io,
2196 					      &bdev_io->u.nvme_passthru.cmd,
2197 					      bdev_io->u.nvme_passthru.buf,
2198 					      bdev_io->u.nvme_passthru.nbytes,
2199 					      bdev_io->u.nvme_passthru.md_buf,
2200 					      bdev_io->u.nvme_passthru.md_len);
2201 		break;
2202 	case SPDK_BDEV_IO_TYPE_ABORT:
2203 		nbdev_io->io_path = NULL;
2204 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
2205 		bdev_nvme_abort(nbdev_ch,
2206 				nbdev_io,
2207 				nbdev_io_to_abort);
2208 		break;
2209 	default:
2210 		rc = -EINVAL;
2211 		break;
2212 	}
2213 
2214 exit:
2215 	if (spdk_unlikely(rc != 0)) {
2216 		bdev_nvme_io_complete(nbdev_io, rc);
2217 	}
2218 }
2219 
2220 static bool
2221 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
2222 {
2223 	struct nvme_bdev *nbdev = ctx;
2224 	struct nvme_ns *nvme_ns;
2225 	struct spdk_nvme_ns *ns;
2226 	struct spdk_nvme_ctrlr *ctrlr;
2227 	const struct spdk_nvme_ctrlr_data *cdata;
2228 
2229 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
2230 	assert(nvme_ns != NULL);
2231 	ns = nvme_ns->ns;
2232 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
2233 
2234 	switch (io_type) {
2235 	case SPDK_BDEV_IO_TYPE_READ:
2236 	case SPDK_BDEV_IO_TYPE_WRITE:
2237 	case SPDK_BDEV_IO_TYPE_RESET:
2238 	case SPDK_BDEV_IO_TYPE_FLUSH:
2239 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
2240 	case SPDK_BDEV_IO_TYPE_NVME_IO:
2241 	case SPDK_BDEV_IO_TYPE_ABORT:
2242 		return true;
2243 
2244 	case SPDK_BDEV_IO_TYPE_COMPARE:
2245 		return spdk_nvme_ns_supports_compare(ns);
2246 
2247 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
2248 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
2249 
2250 	case SPDK_BDEV_IO_TYPE_UNMAP:
2251 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2252 		return cdata->oncs.dsm;
2253 
2254 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
2255 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2256 		return cdata->oncs.write_zeroes;
2257 
2258 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
2259 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
2260 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
2261 			return true;
2262 		}
2263 		return false;
2264 
2265 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
2266 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
2267 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
2268 
2269 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
2270 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
2271 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
2272 
2273 	default:
2274 		return false;
2275 	}
2276 }
2277 
2278 static int
2279 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
2280 {
2281 	struct nvme_qpair *nvme_qpair;
2282 	struct spdk_io_channel *pg_ch;
2283 	int rc;
2284 
2285 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
2286 	if (!nvme_qpair) {
2287 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
2288 		return -1;
2289 	}
2290 
2291 	TAILQ_INIT(&nvme_qpair->io_path_list);
2292 
2293 	nvme_qpair->ctrlr = nvme_ctrlr;
2294 	nvme_qpair->ctrlr_ch = ctrlr_ch;
2295 
2296 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
2297 	if (!pg_ch) {
2298 		free(nvme_qpair);
2299 		return -1;
2300 	}
2301 
2302 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
2303 
2304 #ifdef SPDK_CONFIG_VTUNE
2305 	nvme_qpair->group->collect_spin_stat = true;
2306 #else
2307 	nvme_qpair->group->collect_spin_stat = false;
2308 #endif
2309 
2310 	rc = bdev_nvme_create_qpair(nvme_qpair);
2311 	if (rc != 0) {
2312 		/* nvme_ctrlr can't create IO qpair if connection is down.
2313 		 *
2314 		 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
2315 		 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
2316 		 * submitted IO will be queued until IO qpair is successfully created.
2317 		 *
2318 		 * Hence, if both are satisfied, ignore the failure.
2319 		 */
2320 		if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
2321 			spdk_put_io_channel(pg_ch);
2322 			free(nvme_qpair);
2323 			return rc;
2324 		}
2325 	}
2326 
2327 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
2328 
2329 	ctrlr_ch->qpair = nvme_qpair;
2330 
2331 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
2332 	nvme_qpair->ctrlr->ref++;
2333 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
2334 
2335 	return 0;
2336 }
2337 
2338 static int
2339 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
2340 {
2341 	struct nvme_ctrlr *nvme_ctrlr = io_device;
2342 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
2343 
2344 	TAILQ_INIT(&ctrlr_ch->pending_resets);
2345 
2346 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
2347 }
2348 
2349 static void
2350 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
2351 {
2352 	assert(nvme_qpair->group != NULL);
2353 
2354 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
2355 
2356 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
2357 
2358 	nvme_ctrlr_release(nvme_qpair->ctrlr);
2359 
2360 	free(nvme_qpair);
2361 }
2362 
2363 static void
2364 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
2365 {
2366 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
2367 	struct nvme_qpair *nvme_qpair;
2368 
2369 	nvme_qpair = ctrlr_ch->qpair;
2370 	assert(nvme_qpair != NULL);
2371 
2372 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2373 
2374 	if (nvme_qpair->qpair != NULL) {
2375 		if (ctrlr_ch->reset_iter == NULL) {
2376 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2377 		} else {
2378 			/* Skip current ctrlr_channel in a full reset sequence because
2379 			 * it is being deleted now. The qpair is already being disconnected.
2380 			 * We do not have to restart disconnecting it.
2381 			 */
2382 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2383 		}
2384 
2385 		/* We cannot release a reference to the poll group now.
2386 		 * The qpair may be disconnected asynchronously later.
2387 		 * We need to poll it until it is actually disconnected.
2388 		 * Just detach the qpair from the deleting ctrlr_channel.
2389 		 */
2390 		nvme_qpair->ctrlr_ch = NULL;
2391 	} else {
2392 		assert(ctrlr_ch->reset_iter == NULL);
2393 
2394 		nvme_qpair_delete(nvme_qpair);
2395 	}
2396 }
2397 
2398 static void
2399 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
2400 			      uint32_t iov_cnt, uint32_t seed,
2401 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
2402 {
2403 	struct nvme_poll_group *group = ctx;
2404 	int rc;
2405 
2406 	assert(group->accel_channel != NULL);
2407 	assert(cb_fn != NULL);
2408 
2409 	rc = spdk_accel_submit_crc32cv(group->accel_channel, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
2410 	if (rc) {
2411 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
2412 		if (rc == -ENOMEM || rc == -EINVAL) {
2413 			cb_fn(cb_arg, rc);
2414 		}
2415 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
2416 	}
2417 }
2418 
2419 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
2420 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
2421 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
2422 };
2423 
2424 static int
2425 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
2426 {
2427 	struct nvme_poll_group *group = ctx_buf;
2428 
2429 	TAILQ_INIT(&group->qpair_list);
2430 
2431 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
2432 	if (group->group == NULL) {
2433 		return -1;
2434 	}
2435 
2436 	group->accel_channel = spdk_accel_get_io_channel();
2437 	if (!group->accel_channel) {
2438 		spdk_nvme_poll_group_destroy(group->group);
2439 		SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
2440 			    group);
2441 		return -1;
2442 	}
2443 
2444 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
2445 
2446 	if (group->poller == NULL) {
2447 		spdk_put_io_channel(group->accel_channel);
2448 		spdk_nvme_poll_group_destroy(group->group);
2449 		return -1;
2450 	}
2451 
2452 	return 0;
2453 }
2454 
2455 static void
2456 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
2457 {
2458 	struct nvme_poll_group *group = ctx_buf;
2459 
2460 	assert(TAILQ_EMPTY(&group->qpair_list));
2461 
2462 	if (group->accel_channel) {
2463 		spdk_put_io_channel(group->accel_channel);
2464 	}
2465 
2466 	spdk_poller_unregister(&group->poller);
2467 	if (spdk_nvme_poll_group_destroy(group->group)) {
2468 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
2469 		assert(false);
2470 	}
2471 }
2472 
2473 static struct spdk_io_channel *
2474 bdev_nvme_get_io_channel(void *ctx)
2475 {
2476 	struct nvme_bdev *nvme_bdev = ctx;
2477 
2478 	return spdk_get_io_channel(nvme_bdev);
2479 }
2480 
2481 static void *
2482 bdev_nvme_get_module_ctx(void *ctx)
2483 {
2484 	struct nvme_bdev *nvme_bdev = ctx;
2485 	struct nvme_ns *nvme_ns;
2486 
2487 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
2488 		return NULL;
2489 	}
2490 
2491 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
2492 	if (!nvme_ns) {
2493 		return NULL;
2494 	}
2495 
2496 	return nvme_ns->ns;
2497 }
2498 
2499 static const char *
2500 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
2501 {
2502 	switch (ana_state) {
2503 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
2504 		return "optimized";
2505 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
2506 		return "non_optimized";
2507 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
2508 		return "inaccessible";
2509 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
2510 		return "persistent_loss";
2511 	case SPDK_NVME_ANA_CHANGE_STATE:
2512 		return "change";
2513 	default:
2514 		return NULL;
2515 	}
2516 }
2517 
2518 static int
2519 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
2520 {
2521 	struct nvme_bdev *nbdev = ctx;
2522 	struct nvme_ns *nvme_ns;
2523 
2524 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
2525 	assert(nvme_ns != NULL);
2526 
2527 	return spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, domains, array_size);
2528 }
2529 
2530 static const char *
2531 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
2532 {
2533 	if (nvme_ctrlr->destruct) {
2534 		return "deleting";
2535 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
2536 		return "failed";
2537 	} else if (nvme_ctrlr->resetting) {
2538 		return "resetting";
2539 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
2540 		return "reconnect_is_delayed";
2541 	} else {
2542 		return "enabled";
2543 	}
2544 }
2545 
2546 void
2547 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
2548 {
2549 	struct spdk_nvme_transport_id *trid;
2550 	const struct spdk_nvme_ctrlr_opts *opts;
2551 	const struct spdk_nvme_ctrlr_data *cdata;
2552 
2553 	spdk_json_write_object_begin(w);
2554 
2555 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
2556 
2557 #ifdef SPDK_CONFIG_NVME_CUSE
2558 	size_t cuse_name_size = 128;
2559 	char cuse_name[cuse_name_size];
2560 
2561 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
2562 	if (rc == 0) {
2563 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
2564 	}
2565 #endif
2566 	trid = &nvme_ctrlr->active_path_id->trid;
2567 	spdk_json_write_named_object_begin(w, "trid");
2568 	nvme_bdev_dump_trid_json(trid, w);
2569 	spdk_json_write_object_end(w);
2570 
2571 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
2572 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
2573 
2574 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
2575 	spdk_json_write_named_object_begin(w, "host");
2576 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
2577 	spdk_json_write_named_string(w, "addr", opts->src_addr);
2578 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
2579 	spdk_json_write_object_end(w);
2580 
2581 	spdk_json_write_object_end(w);
2582 }
2583 
2584 static void
2585 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
2586 			 struct nvme_ns *nvme_ns)
2587 {
2588 	struct spdk_nvme_ns *ns;
2589 	struct spdk_nvme_ctrlr *ctrlr;
2590 	const struct spdk_nvme_ctrlr_data *cdata;
2591 	const struct spdk_nvme_transport_id *trid;
2592 	union spdk_nvme_vs_register vs;
2593 	const struct spdk_nvme_ns_data *nsdata;
2594 	char buf[128];
2595 
2596 	ns = nvme_ns->ns;
2597 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
2598 
2599 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2600 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
2601 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
2602 
2603 	spdk_json_write_object_begin(w);
2604 
2605 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
2606 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
2607 	}
2608 
2609 	spdk_json_write_named_object_begin(w, "trid");
2610 
2611 	nvme_bdev_dump_trid_json(trid, w);
2612 
2613 	spdk_json_write_object_end(w);
2614 
2615 #ifdef SPDK_CONFIG_NVME_CUSE
2616 	size_t cuse_name_size = 128;
2617 	char cuse_name[cuse_name_size];
2618 
2619 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
2620 					    cuse_name, &cuse_name_size);
2621 	if (rc == 0) {
2622 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
2623 	}
2624 #endif
2625 
2626 	spdk_json_write_named_object_begin(w, "ctrlr_data");
2627 
2628 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
2629 
2630 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
2631 
2632 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
2633 	spdk_str_trim(buf);
2634 	spdk_json_write_named_string(w, "model_number", buf);
2635 
2636 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
2637 	spdk_str_trim(buf);
2638 	spdk_json_write_named_string(w, "serial_number", buf);
2639 
2640 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
2641 	spdk_str_trim(buf);
2642 	spdk_json_write_named_string(w, "firmware_revision", buf);
2643 
2644 	if (cdata->subnqn[0] != '\0') {
2645 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
2646 	}
2647 
2648 	spdk_json_write_named_object_begin(w, "oacs");
2649 
2650 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
2651 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
2652 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
2653 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
2654 
2655 	spdk_json_write_object_end(w);
2656 
2657 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
2658 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
2659 
2660 	spdk_json_write_object_end(w);
2661 
2662 	spdk_json_write_named_object_begin(w, "vs");
2663 
2664 	spdk_json_write_name(w, "nvme_version");
2665 	if (vs.bits.ter) {
2666 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
2667 	} else {
2668 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
2669 	}
2670 
2671 	spdk_json_write_object_end(w);
2672 
2673 	nsdata = spdk_nvme_ns_get_data(ns);
2674 
2675 	spdk_json_write_named_object_begin(w, "ns_data");
2676 
2677 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
2678 
2679 	if (cdata->cmic.ana_reporting) {
2680 		spdk_json_write_named_string(w, "ana_state",
2681 					     _nvme_ana_state_str(nvme_ns->ana_state));
2682 	}
2683 
2684 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
2685 
2686 	spdk_json_write_object_end(w);
2687 
2688 	if (cdata->oacs.security) {
2689 		spdk_json_write_named_object_begin(w, "security");
2690 
2691 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
2692 
2693 		spdk_json_write_object_end(w);
2694 	}
2695 
2696 	spdk_json_write_object_end(w);
2697 }
2698 
2699 static const char *
2700 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
2701 {
2702 	switch (nbdev->mp_policy) {
2703 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
2704 		return "active_passive";
2705 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
2706 		return "active_active";
2707 	default:
2708 		assert(false);
2709 		return "invalid";
2710 	}
2711 }
2712 
2713 static int
2714 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
2715 {
2716 	struct nvme_bdev *nvme_bdev = ctx;
2717 	struct nvme_ns *nvme_ns;
2718 
2719 	pthread_mutex_lock(&nvme_bdev->mutex);
2720 	spdk_json_write_named_array_begin(w, "nvme");
2721 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
2722 		nvme_namespace_info_json(w, nvme_ns);
2723 	}
2724 	spdk_json_write_array_end(w);
2725 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
2726 	pthread_mutex_unlock(&nvme_bdev->mutex);
2727 
2728 	return 0;
2729 }
2730 
2731 static void
2732 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
2733 {
2734 	/* No config per bdev needed */
2735 }
2736 
2737 static uint64_t
2738 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
2739 {
2740 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
2741 	struct nvme_io_path *io_path;
2742 	struct nvme_poll_group *group;
2743 	uint64_t spin_time = 0;
2744 
2745 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
2746 		group = io_path->qpair->group;
2747 
2748 		if (!group || !group->collect_spin_stat) {
2749 			continue;
2750 		}
2751 
2752 		if (group->end_ticks != 0) {
2753 			group->spin_ticks += (group->end_ticks - group->start_ticks);
2754 			group->end_ticks = 0;
2755 		}
2756 
2757 		spin_time += group->spin_ticks;
2758 		group->start_ticks = 0;
2759 		group->spin_ticks = 0;
2760 	}
2761 
2762 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
2763 }
2764 
2765 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
2766 	.destruct		= bdev_nvme_destruct,
2767 	.submit_request		= bdev_nvme_submit_request,
2768 	.io_type_supported	= bdev_nvme_io_type_supported,
2769 	.get_io_channel		= bdev_nvme_get_io_channel,
2770 	.dump_info_json		= bdev_nvme_dump_info_json,
2771 	.write_config_json	= bdev_nvme_write_config_json,
2772 	.get_spin_time		= bdev_nvme_get_spin_time,
2773 	.get_module_ctx		= bdev_nvme_get_module_ctx,
2774 	.get_memory_domains	= bdev_nvme_get_memory_domains,
2775 };
2776 
2777 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
2778 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
2779 
2780 static int
2781 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
2782 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
2783 {
2784 	struct spdk_nvme_ana_group_descriptor *copied_desc;
2785 	uint8_t *orig_desc;
2786 	uint32_t i, desc_size, copy_len;
2787 	int rc = 0;
2788 
2789 	if (nvme_ctrlr->ana_log_page == NULL) {
2790 		return -EINVAL;
2791 	}
2792 
2793 	copied_desc = nvme_ctrlr->copied_ana_desc;
2794 
2795 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
2796 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
2797 
2798 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
2799 		memcpy(copied_desc, orig_desc, copy_len);
2800 
2801 		rc = cb_fn(copied_desc, cb_arg);
2802 		if (rc != 0) {
2803 			break;
2804 		}
2805 
2806 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
2807 			    copied_desc->num_of_nsid * sizeof(uint32_t);
2808 		orig_desc += desc_size;
2809 		copy_len -= desc_size;
2810 	}
2811 
2812 	return rc;
2813 }
2814 
2815 static int
2816 nvme_ns_ana_transition_timedout(void *ctx)
2817 {
2818 	struct nvme_ns *nvme_ns = ctx;
2819 
2820 	spdk_poller_unregister(&nvme_ns->anatt_timer);
2821 	nvme_ns->ana_transition_timedout = true;
2822 
2823 	return SPDK_POLLER_BUSY;
2824 }
2825 
2826 static void
2827 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
2828 		       const struct spdk_nvme_ana_group_descriptor *desc)
2829 {
2830 	const struct spdk_nvme_ctrlr_data *cdata;
2831 
2832 	nvme_ns->ana_group_id = desc->ana_group_id;
2833 	nvme_ns->ana_state = desc->ana_state;
2834 	nvme_ns->ana_state_updating = false;
2835 
2836 	switch (nvme_ns->ana_state) {
2837 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
2838 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
2839 		nvme_ns->ana_transition_timedout = false;
2840 		spdk_poller_unregister(&nvme_ns->anatt_timer);
2841 		break;
2842 
2843 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
2844 	case SPDK_NVME_ANA_CHANGE_STATE:
2845 		if (nvme_ns->anatt_timer != NULL) {
2846 			break;
2847 		}
2848 
2849 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
2850 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
2851 				       nvme_ns,
2852 				       cdata->anatt * SPDK_SEC_TO_USEC);
2853 		break;
2854 	default:
2855 		break;
2856 	}
2857 }
2858 
2859 static int
2860 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
2861 {
2862 	struct nvme_ns *nvme_ns = cb_arg;
2863 	uint32_t i;
2864 
2865 	for (i = 0; i < desc->num_of_nsid; i++) {
2866 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
2867 			continue;
2868 		}
2869 
2870 		_nvme_ns_set_ana_state(nvme_ns, desc);
2871 		return 1;
2872 	}
2873 
2874 	return 0;
2875 }
2876 
2877 static int
2878 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
2879 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
2880 		 uint32_t prchk_flags, void *ctx)
2881 {
2882 	const struct spdk_uuid		*uuid;
2883 	const uint8_t *nguid;
2884 	const struct spdk_nvme_ctrlr_data *cdata;
2885 	const struct spdk_nvme_ns_data	*nsdata;
2886 	const struct spdk_nvme_ctrlr_opts *opts;
2887 	enum spdk_nvme_csi		csi;
2888 	uint32_t atomic_bs, phys_bs, bs;
2889 
2890 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2891 	csi = spdk_nvme_ns_get_csi(ns);
2892 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
2893 
2894 	switch (csi) {
2895 	case SPDK_NVME_CSI_NVM:
2896 		disk->product_name = "NVMe disk";
2897 		break;
2898 	case SPDK_NVME_CSI_ZNS:
2899 		disk->product_name = "NVMe ZNS disk";
2900 		disk->zoned = true;
2901 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
2902 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
2903 					     spdk_nvme_ns_get_extended_sector_size(ns);
2904 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
2905 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
2906 		break;
2907 	default:
2908 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
2909 		return -ENOTSUP;
2910 	}
2911 
2912 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
2913 	if (!disk->name) {
2914 		return -ENOMEM;
2915 	}
2916 
2917 	disk->write_cache = 0;
2918 	if (cdata->vwc.present) {
2919 		/* Enable if the Volatile Write Cache exists */
2920 		disk->write_cache = 1;
2921 	}
2922 	if (cdata->oncs.write_zeroes) {
2923 		disk->max_write_zeroes = UINT16_MAX + 1;
2924 	}
2925 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
2926 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
2927 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
2928 	/* NVMe driver will split one request into multiple requests
2929 	 * based on MDTS and stripe boundary, the bdev layer will use
2930 	 * max_segment_size and max_num_segments to split one big IO
2931 	 * into multiple requests, then small request can't run out
2932 	 * of NVMe internal requests data structure.
2933 	 */
2934 	if (opts && opts->io_queue_requests) {
2935 		disk->max_num_segments = opts->io_queue_requests / 2;
2936 	}
2937 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
2938 
2939 	nguid = spdk_nvme_ns_get_nguid(ns);
2940 	if (!nguid) {
2941 		uuid = spdk_nvme_ns_get_uuid(ns);
2942 		if (uuid) {
2943 			disk->uuid = *uuid;
2944 		}
2945 	} else {
2946 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
2947 	}
2948 
2949 	nsdata = spdk_nvme_ns_get_data(ns);
2950 	bs = spdk_nvme_ns_get_sector_size(ns);
2951 	atomic_bs = bs;
2952 	phys_bs = bs;
2953 	if (nsdata->nabo == 0) {
2954 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
2955 			atomic_bs = bs * (1 + nsdata->nawupf);
2956 		} else {
2957 			atomic_bs = bs * (1 + cdata->awupf);
2958 		}
2959 	}
2960 	if (nsdata->nsfeat.optperf) {
2961 		phys_bs = bs * (1 + nsdata->npwg);
2962 	}
2963 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
2964 
2965 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
2966 	if (disk->md_len != 0) {
2967 		disk->md_interleave = nsdata->flbas.extended;
2968 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
2969 		if (disk->dif_type != SPDK_DIF_DISABLE) {
2970 			disk->dif_is_head_of_md = nsdata->dps.md_start;
2971 			disk->dif_check_flags = prchk_flags;
2972 		}
2973 	}
2974 
2975 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
2976 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
2977 		disk->acwu = 0;
2978 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
2979 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
2980 	} else {
2981 		disk->acwu = cdata->acwu + 1; /* 0-based */
2982 	}
2983 
2984 	disk->ctxt = ctx;
2985 	disk->fn_table = &nvmelib_fn_table;
2986 	disk->module = &nvme_if;
2987 
2988 	return 0;
2989 }
2990 
2991 static int
2992 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
2993 {
2994 	struct nvme_bdev *bdev;
2995 	int rc;
2996 
2997 	bdev = calloc(1, sizeof(*bdev));
2998 	if (!bdev) {
2999 		SPDK_ERRLOG("bdev calloc() failed\n");
3000 		return -ENOMEM;
3001 	}
3002 
3003 	rc = pthread_mutex_init(&bdev->mutex, NULL);
3004 	if (rc != 0) {
3005 		free(bdev);
3006 		return rc;
3007 	}
3008 
3009 	bdev->ref = 1;
3010 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
3011 	TAILQ_INIT(&bdev->nvme_ns_list);
3012 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
3013 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
3014 
3015 	rc = nvme_disk_create(&bdev->disk, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
3016 			      nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev);
3017 	if (rc != 0) {
3018 		SPDK_ERRLOG("Failed to create NVMe disk\n");
3019 		pthread_mutex_destroy(&bdev->mutex);
3020 		free(bdev);
3021 		return rc;
3022 	}
3023 
3024 	spdk_io_device_register(bdev,
3025 				bdev_nvme_create_bdev_channel_cb,
3026 				bdev_nvme_destroy_bdev_channel_cb,
3027 				sizeof(struct nvme_bdev_channel),
3028 				bdev->disk.name);
3029 
3030 	rc = spdk_bdev_register(&bdev->disk);
3031 	if (rc != 0) {
3032 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
3033 		spdk_io_device_unregister(bdev, NULL);
3034 		pthread_mutex_destroy(&bdev->mutex);
3035 		free(bdev->disk.name);
3036 		free(bdev);
3037 		return rc;
3038 	}
3039 
3040 	nvme_ns->bdev = bdev;
3041 	bdev->nsid = nvme_ns->id;
3042 
3043 	bdev->nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
3044 	TAILQ_INSERT_TAIL(&nvme_ctrlr->nbdev_ctrlr->bdevs, bdev, tailq);
3045 
3046 	return 0;
3047 }
3048 
3049 static bool
3050 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
3051 {
3052 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
3053 	const struct spdk_uuid *uuid1, *uuid2;
3054 
3055 	nsdata1 = spdk_nvme_ns_get_data(ns1);
3056 	nsdata2 = spdk_nvme_ns_get_data(ns2);
3057 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
3058 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
3059 
3060 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
3061 	       nsdata1->eui64 == nsdata2->eui64 &&
3062 	       ((uuid1 == NULL && uuid2 == NULL) ||
3063 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
3064 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
3065 }
3066 
3067 static bool
3068 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
3069 		 struct spdk_nvme_ctrlr_opts *opts)
3070 {
3071 	struct nvme_probe_skip_entry *entry;
3072 
3073 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
3074 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
3075 			return false;
3076 		}
3077 	}
3078 
3079 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
3080 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
3081 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
3082 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
3083 	opts->disable_read_ana_log_page = true;
3084 
3085 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
3086 
3087 	return true;
3088 }
3089 
3090 static void
3091 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
3092 {
3093 	struct nvme_ctrlr *nvme_ctrlr = ctx;
3094 
3095 	if (spdk_nvme_cpl_is_error(cpl)) {
3096 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
3097 			     cpl->status.sct);
3098 		bdev_nvme_reset(nvme_ctrlr);
3099 	} else if (cpl->cdw0 & 0x1) {
3100 		SPDK_WARNLOG("Specified command could not be aborted.\n");
3101 		bdev_nvme_reset(nvme_ctrlr);
3102 	}
3103 }
3104 
3105 static void
3106 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
3107 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
3108 {
3109 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
3110 	union spdk_nvme_csts_register csts;
3111 	int rc;
3112 
3113 	assert(nvme_ctrlr->ctrlr == ctrlr);
3114 
3115 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
3116 
3117 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
3118 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
3119 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
3120 	 * completion recursively.
3121 	 */
3122 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
3123 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
3124 		if (csts.bits.cfs) {
3125 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
3126 			bdev_nvme_reset(nvme_ctrlr);
3127 			return;
3128 		}
3129 	}
3130 
3131 	switch (g_opts.action_on_timeout) {
3132 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
3133 		if (qpair) {
3134 			/* Don't send abort to ctrlr when ctrlr is not available. */
3135 			pthread_mutex_lock(&nvme_ctrlr->mutex);
3136 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
3137 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
3138 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
3139 				return;
3140 			}
3141 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
3142 
3143 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
3144 						       nvme_abort_cpl, nvme_ctrlr);
3145 			if (rc == 0) {
3146 				return;
3147 			}
3148 
3149 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
3150 		}
3151 
3152 	/* FALLTHROUGH */
3153 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
3154 		bdev_nvme_reset(nvme_ctrlr);
3155 		break;
3156 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
3157 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
3158 		break;
3159 	default:
3160 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
3161 		break;
3162 	}
3163 }
3164 
3165 static void
3166 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
3167 {
3168 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
3169 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
3170 
3171 	if (rc == 0) {
3172 		nvme_ns->probe_ctx = NULL;
3173 		pthread_mutex_lock(&nvme_ctrlr->mutex);
3174 		nvme_ctrlr->ref++;
3175 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3176 	} else {
3177 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
3178 		free(nvme_ns);
3179 	}
3180 
3181 	if (ctx) {
3182 		ctx->populates_in_progress--;
3183 		if (ctx->populates_in_progress == 0) {
3184 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
3185 		}
3186 	}
3187 }
3188 
3189 static void
3190 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
3191 {
3192 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3193 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3194 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3195 	int rc;
3196 
3197 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
3198 	if (rc != 0) {
3199 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
3200 	}
3201 
3202 	spdk_for_each_channel_continue(i, rc);
3203 }
3204 
3205 static void
3206 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
3207 {
3208 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3209 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3210 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3211 	struct nvme_io_path *io_path;
3212 
3213 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
3214 	if (io_path != NULL) {
3215 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
3216 	}
3217 
3218 	spdk_for_each_channel_continue(i, 0);
3219 }
3220 
3221 static void
3222 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
3223 {
3224 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3225 
3226 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
3227 }
3228 
3229 static void
3230 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
3231 {
3232 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3233 	struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
3234 
3235 	if (status == 0) {
3236 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
3237 	} else {
3238 		/* Delete the added io_paths and fail populating the namespace. */
3239 		spdk_for_each_channel(bdev,
3240 				      bdev_nvme_delete_io_path,
3241 				      nvme_ns,
3242 				      bdev_nvme_add_io_path_failed);
3243 	}
3244 }
3245 
3246 static int
3247 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
3248 {
3249 	struct nvme_ns *tmp_ns;
3250 	const struct spdk_nvme_ns_data *nsdata;
3251 
3252 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
3253 	if (!nsdata->nmic.can_share) {
3254 		SPDK_ERRLOG("Namespace cannot be shared.\n");
3255 		return -EINVAL;
3256 	}
3257 
3258 	pthread_mutex_lock(&bdev->mutex);
3259 
3260 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
3261 	assert(tmp_ns != NULL);
3262 
3263 	if (!bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
3264 		pthread_mutex_unlock(&bdev->mutex);
3265 		SPDK_ERRLOG("Namespaces are not identical.\n");
3266 		return -EINVAL;
3267 	}
3268 
3269 	bdev->ref++;
3270 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
3271 	nvme_ns->bdev = bdev;
3272 
3273 	pthread_mutex_unlock(&bdev->mutex);
3274 
3275 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
3276 	spdk_for_each_channel(bdev,
3277 			      bdev_nvme_add_io_path,
3278 			      nvme_ns,
3279 			      bdev_nvme_add_io_path_done);
3280 
3281 	return 0;
3282 }
3283 
3284 static void
3285 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
3286 {
3287 	struct spdk_nvme_ns	*ns;
3288 	struct nvme_bdev	*bdev;
3289 	int			rc = 0;
3290 
3291 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
3292 	if (!ns) {
3293 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
3294 		rc = -EINVAL;
3295 		goto done;
3296 	}
3297 
3298 	nvme_ns->ns = ns;
3299 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
3300 
3301 	if (nvme_ctrlr->ana_log_page != NULL) {
3302 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
3303 	}
3304 
3305 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
3306 	if (bdev == NULL) {
3307 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
3308 	} else {
3309 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
3310 		if (rc == 0) {
3311 			return;
3312 		}
3313 	}
3314 done:
3315 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
3316 }
3317 
3318 static void
3319 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
3320 {
3321 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
3322 
3323 	assert(nvme_ctrlr != NULL);
3324 
3325 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3326 
3327 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
3328 
3329 	if (nvme_ns->bdev != NULL) {
3330 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3331 		return;
3332 	}
3333 
3334 	free(nvme_ns);
3335 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3336 
3337 	nvme_ctrlr_release(nvme_ctrlr);
3338 }
3339 
3340 static void
3341 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
3342 {
3343 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3344 
3345 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
3346 }
3347 
3348 static void
3349 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
3350 {
3351 	struct nvme_bdev *bdev;
3352 
3353 	spdk_poller_unregister(&nvme_ns->anatt_timer);
3354 
3355 	bdev = nvme_ns->bdev;
3356 	if (bdev != NULL) {
3357 		pthread_mutex_lock(&bdev->mutex);
3358 
3359 		assert(bdev->ref > 0);
3360 		bdev->ref--;
3361 		if (bdev->ref == 0) {
3362 			pthread_mutex_unlock(&bdev->mutex);
3363 
3364 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
3365 		} else {
3366 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
3367 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
3368 			 * and clear nvme_ns->bdev here.
3369 			 */
3370 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
3371 			nvme_ns->bdev = NULL;
3372 
3373 			pthread_mutex_unlock(&bdev->mutex);
3374 
3375 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
3376 			 * we call depopulate_namespace_done() to avoid use-after-free.
3377 			 */
3378 			spdk_for_each_channel(bdev,
3379 					      bdev_nvme_delete_io_path,
3380 					      nvme_ns,
3381 					      bdev_nvme_delete_io_path_done);
3382 			return;
3383 		}
3384 	}
3385 
3386 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
3387 }
3388 
3389 static void
3390 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
3391 			       struct nvme_async_probe_ctx *ctx)
3392 {
3393 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
3394 	struct nvme_ns	*nvme_ns, *next;
3395 	struct spdk_nvme_ns	*ns;
3396 	struct nvme_bdev	*bdev;
3397 	uint32_t		nsid;
3398 	int			rc;
3399 	uint64_t		num_sectors;
3400 
3401 	if (ctx) {
3402 		/* Initialize this count to 1 to handle the populate functions
3403 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
3404 		 */
3405 		ctx->populates_in_progress = 1;
3406 	}
3407 
3408 	/* First loop over our existing namespaces and see if they have been
3409 	 * removed. */
3410 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
3411 	while (nvme_ns != NULL) {
3412 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
3413 
3414 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
3415 			/* NS is still there but attributes may have changed */
3416 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
3417 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
3418 			bdev = nvme_ns->bdev;
3419 			assert(bdev != NULL);
3420 			if (bdev->disk.blockcnt != num_sectors) {
3421 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
3422 					       nvme_ns->id,
3423 					       bdev->disk.name,
3424 					       bdev->disk.blockcnt,
3425 					       num_sectors);
3426 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
3427 				if (rc != 0) {
3428 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
3429 						    bdev->disk.name, rc);
3430 				}
3431 			}
3432 		} else {
3433 			/* Namespace was removed */
3434 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
3435 		}
3436 
3437 		nvme_ns = next;
3438 	}
3439 
3440 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
3441 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
3442 	while (nsid != 0) {
3443 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
3444 
3445 		if (nvme_ns == NULL) {
3446 			/* Found a new one */
3447 			nvme_ns = calloc(1, sizeof(struct nvme_ns));
3448 			if (nvme_ns == NULL) {
3449 				SPDK_ERRLOG("Failed to allocate namespace\n");
3450 				/* This just fails to attach the namespace. It may work on a future attempt. */
3451 				continue;
3452 			}
3453 
3454 			nvme_ns->id = nsid;
3455 			nvme_ns->ctrlr = nvme_ctrlr;
3456 
3457 			nvme_ns->bdev = NULL;
3458 
3459 			if (ctx) {
3460 				ctx->populates_in_progress++;
3461 			}
3462 			nvme_ns->probe_ctx = ctx;
3463 
3464 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
3465 
3466 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
3467 		}
3468 
3469 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
3470 	}
3471 
3472 	if (ctx) {
3473 		/* Decrement this count now that the loop is over to account
3474 		 * for the one we started with.  If the count is then 0, we
3475 		 * know any populate_namespace functions completed immediately,
3476 		 * so we'll kick the callback here.
3477 		 */
3478 		ctx->populates_in_progress--;
3479 		if (ctx->populates_in_progress == 0) {
3480 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
3481 		}
3482 	}
3483 
3484 }
3485 
3486 static void
3487 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
3488 {
3489 	struct nvme_ns *nvme_ns, *tmp;
3490 
3491 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
3492 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
3493 	}
3494 }
3495 
3496 static uint32_t
3497 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
3498 {
3499 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
3500 	const struct spdk_nvme_ctrlr_data *cdata;
3501 	uint32_t nsid, ns_count = 0;
3502 
3503 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3504 
3505 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
3506 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
3507 		ns_count++;
3508 	}
3509 
3510 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
3511 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
3512 	       sizeof(uint32_t);
3513 }
3514 
3515 static int
3516 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
3517 			  void *cb_arg)
3518 {
3519 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
3520 	struct nvme_ns *nvme_ns;
3521 	uint32_t i, nsid;
3522 
3523 	for (i = 0; i < desc->num_of_nsid; i++) {
3524 		nsid = desc->nsid[i];
3525 		if (nsid == 0) {
3526 			continue;
3527 		}
3528 
3529 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
3530 
3531 		assert(nvme_ns != NULL);
3532 		if (nvme_ns == NULL) {
3533 			/* Target told us that an inactive namespace had an ANA change */
3534 			continue;
3535 		}
3536 
3537 		_nvme_ns_set_ana_state(nvme_ns, desc);
3538 	}
3539 
3540 	return 0;
3541 }
3542 
3543 static void
3544 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
3545 {
3546 	struct nvme_ns *nvme_ns;
3547 
3548 	spdk_free(nvme_ctrlr->ana_log_page);
3549 	nvme_ctrlr->ana_log_page = NULL;
3550 
3551 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
3552 	     nvme_ns != NULL;
3553 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
3554 		nvme_ns->ana_state_updating = false;
3555 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
3556 	}
3557 }
3558 
3559 static void
3560 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
3561 {
3562 	struct nvme_ctrlr *nvme_ctrlr = ctx;
3563 
3564 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
3565 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
3566 					     nvme_ctrlr);
3567 	} else {
3568 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
3569 	}
3570 
3571 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3572 
3573 	assert(nvme_ctrlr->ana_log_page_updating == true);
3574 	nvme_ctrlr->ana_log_page_updating = false;
3575 
3576 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
3577 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3578 
3579 		nvme_ctrlr_unregister(nvme_ctrlr);
3580 	} else {
3581 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3582 
3583 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
3584 	}
3585 }
3586 
3587 static int
3588 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
3589 {
3590 	uint32_t ana_log_page_size;
3591 	int rc;
3592 
3593 	if (nvme_ctrlr->ana_log_page == NULL) {
3594 		return -EINVAL;
3595 	}
3596 
3597 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
3598 
3599 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
3600 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
3601 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
3602 		return -EINVAL;
3603 	}
3604 
3605 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3606 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
3607 	    nvme_ctrlr->ana_log_page_updating) {
3608 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3609 		return -EBUSY;
3610 	}
3611 
3612 	nvme_ctrlr->ana_log_page_updating = true;
3613 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3614 
3615 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
3616 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
3617 					      SPDK_NVME_GLOBAL_NS_TAG,
3618 					      nvme_ctrlr->ana_log_page,
3619 					      ana_log_page_size, 0,
3620 					      nvme_ctrlr_read_ana_log_page_done,
3621 					      nvme_ctrlr);
3622 	if (rc != 0) {
3623 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
3624 	}
3625 
3626 	return rc;
3627 }
3628 
3629 static void
3630 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
3631 {
3632 }
3633 
3634 struct bdev_nvme_set_preferred_path_ctx {
3635 	struct spdk_bdev_desc *desc;
3636 	struct nvme_ns *nvme_ns;
3637 	bdev_nvme_set_preferred_path_cb cb_fn;
3638 	void *cb_arg;
3639 };
3640 
3641 static void
3642 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
3643 {
3644 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
3645 
3646 	assert(ctx != NULL);
3647 	assert(ctx->desc != NULL);
3648 	assert(ctx->cb_fn != NULL);
3649 
3650 	spdk_bdev_close(ctx->desc);
3651 
3652 	ctx->cb_fn(ctx->cb_arg, status);
3653 
3654 	free(ctx);
3655 }
3656 
3657 static void
3658 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
3659 {
3660 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
3661 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3662 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3663 	struct nvme_io_path *io_path, *prev;
3664 
3665 	prev = NULL;
3666 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3667 		if (io_path->nvme_ns == ctx->nvme_ns) {
3668 			break;
3669 		}
3670 		prev = io_path;
3671 	}
3672 
3673 	if (io_path != NULL) {
3674 		if (prev != NULL) {
3675 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
3676 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
3677 		}
3678 
3679 		/* We can set io_path to nbdev_ch->current_io_path directly here.
3680 		 * However, it needs to be conditional. To simplify the code,
3681 		 * just clear nbdev_ch->current_io_path and let find_io_path()
3682 		 * fill it.
3683 		 *
3684 		 * Automatic failback may be disabled. Hence even if the io_path is
3685 		 * already at the head, clear nbdev_ch->current_io_path.
3686 		 */
3687 		nbdev_ch->current_io_path = NULL;
3688 	}
3689 
3690 	spdk_for_each_channel_continue(i, 0);
3691 }
3692 
3693 static struct nvme_ns *
3694 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
3695 {
3696 	struct nvme_ns *nvme_ns, *prev;
3697 	const struct spdk_nvme_ctrlr_data *cdata;
3698 
3699 	prev = NULL;
3700 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3701 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
3702 
3703 		if (cdata->cntlid == cntlid) {
3704 			break;
3705 		}
3706 		prev = nvme_ns;
3707 	}
3708 
3709 	if (nvme_ns != NULL && prev != NULL) {
3710 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
3711 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
3712 	}
3713 
3714 	return nvme_ns;
3715 }
3716 
3717 /* This function supports only multipath mode. There is only a single I/O path
3718  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
3719  * head of the I/O path list for each NVMe bdev channel.
3720  *
3721  * NVMe bdev channel may be acquired after completing this function. move the
3722  * matched namespace to the head of the namespace list for the NVMe bdev too.
3723  */
3724 void
3725 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
3726 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
3727 {
3728 	struct bdev_nvme_set_preferred_path_ctx *ctx;
3729 	struct spdk_bdev *bdev;
3730 	struct nvme_bdev *nbdev;
3731 	int rc = 0;
3732 
3733 	assert(cb_fn != NULL);
3734 
3735 	ctx = calloc(1, sizeof(*ctx));
3736 	if (ctx == NULL) {
3737 		SPDK_ERRLOG("Failed to alloc context.\n");
3738 		rc = -ENOMEM;
3739 		goto err_alloc;
3740 	}
3741 
3742 	ctx->cb_fn = cb_fn;
3743 	ctx->cb_arg = cb_arg;
3744 
3745 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
3746 	if (rc != 0) {
3747 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
3748 		goto err_open;
3749 	}
3750 
3751 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
3752 
3753 	if (bdev->module != &nvme_if) {
3754 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
3755 		rc = -ENODEV;
3756 		goto err_bdev;
3757 	}
3758 
3759 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
3760 
3761 	pthread_mutex_lock(&nbdev->mutex);
3762 
3763 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
3764 	if (ctx->nvme_ns == NULL) {
3765 		pthread_mutex_unlock(&nbdev->mutex);
3766 
3767 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
3768 		rc = -ENODEV;
3769 		goto err_bdev;
3770 	}
3771 
3772 	pthread_mutex_unlock(&nbdev->mutex);
3773 
3774 	spdk_for_each_channel(nbdev,
3775 			      _bdev_nvme_set_preferred_path,
3776 			      ctx,
3777 			      bdev_nvme_set_preferred_path_done);
3778 	return;
3779 
3780 err_bdev:
3781 	spdk_bdev_close(ctx->desc);
3782 err_open:
3783 	free(ctx);
3784 err_alloc:
3785 	cb_fn(cb_arg, rc);
3786 }
3787 
3788 struct bdev_nvme_set_multipath_policy_ctx {
3789 	struct spdk_bdev_desc *desc;
3790 	bdev_nvme_set_multipath_policy_cb cb_fn;
3791 	void *cb_arg;
3792 };
3793 
3794 static void
3795 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
3796 {
3797 	struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
3798 
3799 	assert(ctx != NULL);
3800 	assert(ctx->desc != NULL);
3801 	assert(ctx->cb_fn != NULL);
3802 
3803 	spdk_bdev_close(ctx->desc);
3804 
3805 	ctx->cb_fn(ctx->cb_arg, status);
3806 
3807 	free(ctx);
3808 }
3809 
3810 static void
3811 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
3812 {
3813 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3814 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3815 	struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
3816 
3817 	nbdev_ch->mp_policy = nbdev->mp_policy;
3818 	nbdev_ch->current_io_path = NULL;
3819 
3820 	spdk_for_each_channel_continue(i, 0);
3821 }
3822 
3823 void
3824 bdev_nvme_set_multipath_policy(const char *name, enum bdev_nvme_multipath_policy policy,
3825 			       bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
3826 {
3827 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
3828 	struct spdk_bdev *bdev;
3829 	struct nvme_bdev *nbdev;
3830 	int rc;
3831 
3832 	assert(cb_fn != NULL);
3833 
3834 	ctx = calloc(1, sizeof(*ctx));
3835 	if (ctx == NULL) {
3836 		SPDK_ERRLOG("Failed to alloc context.\n");
3837 		rc = -ENOMEM;
3838 		goto err_alloc;
3839 	}
3840 
3841 	ctx->cb_fn = cb_fn;
3842 	ctx->cb_arg = cb_arg;
3843 
3844 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
3845 	if (rc != 0) {
3846 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
3847 		rc = -ENODEV;
3848 		goto err_open;
3849 	}
3850 
3851 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
3852 	if (bdev->module != &nvme_if) {
3853 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
3854 		rc = -ENODEV;
3855 		goto err_module;
3856 	}
3857 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
3858 
3859 	pthread_mutex_lock(&nbdev->mutex);
3860 	nbdev->mp_policy = policy;
3861 	pthread_mutex_unlock(&nbdev->mutex);
3862 
3863 	spdk_for_each_channel(nbdev,
3864 			      _bdev_nvme_set_multipath_policy,
3865 			      ctx,
3866 			      bdev_nvme_set_multipath_policy_done);
3867 	return;
3868 
3869 err_module:
3870 	spdk_bdev_close(ctx->desc);
3871 err_open:
3872 	free(ctx);
3873 err_alloc:
3874 	cb_fn(cb_arg, rc);
3875 }
3876 
3877 static void
3878 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
3879 {
3880 	struct nvme_ctrlr *nvme_ctrlr		= arg;
3881 	union spdk_nvme_async_event_completion	event;
3882 
3883 	if (spdk_nvme_cpl_is_error(cpl)) {
3884 		SPDK_WARNLOG("AER request execute failed\n");
3885 		return;
3886 	}
3887 
3888 	event.raw = cpl->cdw0;
3889 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3890 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
3891 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
3892 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3893 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
3894 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
3895 	}
3896 }
3897 
3898 static void
3899 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, size_t count, int rc)
3900 {
3901 	if (ctx->cb_fn) {
3902 		ctx->cb_fn(ctx->cb_ctx, count, rc);
3903 	}
3904 
3905 	ctx->namespaces_populated = true;
3906 	if (ctx->probe_done) {
3907 		/* The probe was already completed, so we need to free the context
3908 		 * here.  This can happen for cases like OCSSD, where we need to
3909 		 * send additional commands to the SSD after attach.
3910 		 */
3911 		free(ctx);
3912 	}
3913 }
3914 
3915 static void
3916 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
3917 		       struct nvme_async_probe_ctx *ctx)
3918 {
3919 	spdk_io_device_register(nvme_ctrlr,
3920 				bdev_nvme_create_ctrlr_channel_cb,
3921 				bdev_nvme_destroy_ctrlr_channel_cb,
3922 				sizeof(struct nvme_ctrlr_channel),
3923 				nvme_ctrlr->nbdev_ctrlr->name);
3924 
3925 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
3926 }
3927 
3928 static void
3929 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
3930 {
3931 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
3932 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
3933 
3934 	nvme_ctrlr->probe_ctx = NULL;
3935 
3936 	if (spdk_nvme_cpl_is_error(cpl)) {
3937 		nvme_ctrlr_delete(nvme_ctrlr);
3938 
3939 		if (ctx != NULL) {
3940 			populate_namespaces_cb(ctx, 0, -1);
3941 		}
3942 		return;
3943 	}
3944 
3945 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
3946 }
3947 
3948 static int
3949 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
3950 			     struct nvme_async_probe_ctx *ctx)
3951 {
3952 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
3953 	const struct spdk_nvme_ctrlr_data *cdata;
3954 	uint32_t ana_log_page_size;
3955 
3956 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3957 
3958 	/* Set buffer size enough to include maximum number of allowed namespaces. */
3959 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
3960 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
3961 			    sizeof(uint32_t);
3962 
3963 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
3964 						SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
3965 	if (nvme_ctrlr->ana_log_page == NULL) {
3966 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
3967 		return -ENXIO;
3968 	}
3969 
3970 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
3971 	 * Hence copy each descriptor to a temporary area when parsing it.
3972 	 *
3973 	 * Allocate a buffer whose size is as large as ANA log page buffer because
3974 	 * we do not know the size of a descriptor until actually reading it.
3975 	 */
3976 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
3977 	if (nvme_ctrlr->copied_ana_desc == NULL) {
3978 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
3979 		return -ENOMEM;
3980 	}
3981 
3982 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
3983 
3984 	nvme_ctrlr->probe_ctx = ctx;
3985 
3986 	/* Then, set the read size only to include the current active namespaces. */
3987 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
3988 
3989 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
3990 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
3991 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
3992 		return -EINVAL;
3993 	}
3994 
3995 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
3996 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
3997 						SPDK_NVME_GLOBAL_NS_TAG,
3998 						nvme_ctrlr->ana_log_page,
3999 						ana_log_page_size, 0,
4000 						nvme_ctrlr_init_ana_log_page_done,
4001 						nvme_ctrlr);
4002 }
4003 
4004 /* hostnqn and subnqn were already verified before attaching a controller.
4005  * Hence check only the multipath capability and cntlid here.
4006  */
4007 static bool
4008 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
4009 {
4010 	struct nvme_ctrlr *tmp;
4011 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
4012 
4013 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4014 
4015 	if (!cdata->cmic.multi_ctrlr) {
4016 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
4017 		return false;
4018 	}
4019 
4020 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
4021 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
4022 
4023 		if (!tmp_cdata->cmic.multi_ctrlr) {
4024 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
4025 			return false;
4026 		}
4027 		if (cdata->cntlid == tmp_cdata->cntlid) {
4028 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
4029 			return false;
4030 		}
4031 	}
4032 
4033 	return true;
4034 }
4035 
4036 static int
4037 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
4038 {
4039 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
4040 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4041 	int rc = 0;
4042 
4043 	pthread_mutex_lock(&g_bdev_nvme_mutex);
4044 
4045 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
4046 	if (nbdev_ctrlr != NULL) {
4047 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
4048 			rc = -EINVAL;
4049 			goto exit;
4050 		}
4051 	} else {
4052 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
4053 		if (nbdev_ctrlr == NULL) {
4054 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
4055 			rc = -ENOMEM;
4056 			goto exit;
4057 		}
4058 		nbdev_ctrlr->name = strdup(name);
4059 		if (nbdev_ctrlr->name == NULL) {
4060 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
4061 			free(nbdev_ctrlr);
4062 			goto exit;
4063 		}
4064 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
4065 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
4066 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
4067 	}
4068 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
4069 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
4070 exit:
4071 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
4072 	return rc;
4073 }
4074 
4075 static int
4076 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
4077 		  const char *name,
4078 		  const struct spdk_nvme_transport_id *trid,
4079 		  struct nvme_async_probe_ctx *ctx)
4080 {
4081 	struct nvme_ctrlr *nvme_ctrlr;
4082 	struct nvme_path_id *path_id;
4083 	const struct spdk_nvme_ctrlr_data *cdata;
4084 	int rc;
4085 
4086 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
4087 	if (nvme_ctrlr == NULL) {
4088 		SPDK_ERRLOG("Failed to allocate device struct\n");
4089 		return -ENOMEM;
4090 	}
4091 
4092 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
4093 	if (rc != 0) {
4094 		free(nvme_ctrlr);
4095 		return rc;
4096 	}
4097 
4098 	TAILQ_INIT(&nvme_ctrlr->trids);
4099 
4100 	RB_INIT(&nvme_ctrlr->namespaces);
4101 
4102 	path_id = calloc(1, sizeof(*path_id));
4103 	if (path_id == NULL) {
4104 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
4105 		rc = -ENOMEM;
4106 		goto err;
4107 	}
4108 
4109 	path_id->trid = *trid;
4110 	if (ctx != NULL) {
4111 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
4112 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
4113 	}
4114 	nvme_ctrlr->active_path_id = path_id;
4115 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
4116 
4117 	nvme_ctrlr->thread = spdk_get_thread();
4118 	nvme_ctrlr->ctrlr = ctrlr;
4119 	nvme_ctrlr->ref = 1;
4120 
4121 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
4122 		SPDK_ERRLOG("OCSSDs are not supported");
4123 		rc = -ENOTSUP;
4124 		goto err;
4125 	}
4126 
4127 	if (ctx != NULL) {
4128 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
4129 	} else {
4130 		bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
4131 	}
4132 
4133 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
4134 					  g_opts.nvme_adminq_poll_period_us);
4135 
4136 	if (g_opts.timeout_us > 0) {
4137 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
4138 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
4139 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
4140 					  g_opts.timeout_us : g_opts.timeout_admin_us;
4141 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
4142 				adm_timeout_us, timeout_cb, nvme_ctrlr);
4143 	}
4144 
4145 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
4146 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
4147 
4148 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
4149 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
4150 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
4151 	}
4152 
4153 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
4154 	if (rc != 0) {
4155 		goto err;
4156 	}
4157 
4158 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4159 
4160 	if (cdata->cmic.ana_reporting) {
4161 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
4162 		if (rc == 0) {
4163 			return 0;
4164 		}
4165 	} else {
4166 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
4167 		return 0;
4168 	}
4169 
4170 err:
4171 	nvme_ctrlr_delete(nvme_ctrlr);
4172 	return rc;
4173 }
4174 
4175 void
4176 bdev_nvme_get_default_ctrlr_opts(struct nvme_ctrlr_opts *opts)
4177 {
4178 	opts->prchk_flags = 0;
4179 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
4180 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
4181 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
4182 }
4183 
4184 static void
4185 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4186 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
4187 {
4188 	char *name;
4189 
4190 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
4191 	if (!name) {
4192 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
4193 		return;
4194 	}
4195 
4196 	SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
4197 
4198 	nvme_ctrlr_create(ctrlr, name, trid, NULL);
4199 
4200 	free(name);
4201 }
4202 
4203 static void
4204 _nvme_ctrlr_destruct(void *ctx)
4205 {
4206 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4207 
4208 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
4209 	nvme_ctrlr_release(nvme_ctrlr);
4210 }
4211 
4212 static int
4213 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
4214 {
4215 	struct nvme_probe_skip_entry *entry;
4216 
4217 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4218 
4219 	/* The controller's destruction was already started */
4220 	if (nvme_ctrlr->destruct) {
4221 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4222 		return 0;
4223 	}
4224 
4225 	if (!hotplug &&
4226 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
4227 		entry = calloc(1, sizeof(*entry));
4228 		if (!entry) {
4229 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4230 			return -ENOMEM;
4231 		}
4232 		entry->trid = nvme_ctrlr->active_path_id->trid;
4233 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
4234 	}
4235 
4236 	nvme_ctrlr->destruct = true;
4237 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4238 
4239 	_nvme_ctrlr_destruct(nvme_ctrlr);
4240 
4241 	return 0;
4242 }
4243 
4244 static void
4245 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
4246 {
4247 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
4248 
4249 	_bdev_nvme_delete(nvme_ctrlr, true);
4250 }
4251 
4252 static int
4253 bdev_nvme_hotplug_probe(void *arg)
4254 {
4255 	if (g_hotplug_probe_ctx == NULL) {
4256 		spdk_poller_unregister(&g_hotplug_probe_poller);
4257 		return SPDK_POLLER_IDLE;
4258 	}
4259 
4260 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
4261 		g_hotplug_probe_ctx = NULL;
4262 		spdk_poller_unregister(&g_hotplug_probe_poller);
4263 	}
4264 
4265 	return SPDK_POLLER_BUSY;
4266 }
4267 
4268 static int
4269 bdev_nvme_hotplug(void *arg)
4270 {
4271 	struct spdk_nvme_transport_id trid_pcie;
4272 
4273 	if (g_hotplug_probe_ctx) {
4274 		return SPDK_POLLER_BUSY;
4275 	}
4276 
4277 	memset(&trid_pcie, 0, sizeof(trid_pcie));
4278 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
4279 
4280 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
4281 			      hotplug_probe_cb, attach_cb, NULL);
4282 
4283 	if (g_hotplug_probe_ctx) {
4284 		assert(g_hotplug_probe_poller == NULL);
4285 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
4286 	}
4287 
4288 	return SPDK_POLLER_BUSY;
4289 }
4290 
4291 void
4292 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
4293 {
4294 	*opts = g_opts;
4295 }
4296 
4297 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
4298 		uint32_t reconnect_delay_sec,
4299 		uint32_t fast_io_fail_timeout_sec);
4300 
4301 static int
4302 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
4303 {
4304 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
4305 		/* Can't set timeout_admin_us without also setting timeout_us */
4306 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
4307 		return -EINVAL;
4308 	}
4309 
4310 	if (opts->bdev_retry_count < -1) {
4311 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
4312 		return -EINVAL;
4313 	}
4314 
4315 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
4316 			opts->reconnect_delay_sec,
4317 			opts->fast_io_fail_timeout_sec)) {
4318 		return -EINVAL;
4319 	}
4320 
4321 	return 0;
4322 }
4323 
4324 int
4325 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
4326 {
4327 	int ret = bdev_nvme_validate_opts(opts);
4328 	if (ret) {
4329 		SPDK_WARNLOG("Failed to set nvme opts.\n");
4330 		return ret;
4331 	}
4332 
4333 	if (g_bdev_nvme_init_thread != NULL) {
4334 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
4335 			return -EPERM;
4336 		}
4337 	}
4338 
4339 	g_opts = *opts;
4340 
4341 	return 0;
4342 }
4343 
4344 struct set_nvme_hotplug_ctx {
4345 	uint64_t period_us;
4346 	bool enabled;
4347 	spdk_msg_fn fn;
4348 	void *fn_ctx;
4349 };
4350 
4351 static void
4352 set_nvme_hotplug_period_cb(void *_ctx)
4353 {
4354 	struct set_nvme_hotplug_ctx *ctx = _ctx;
4355 
4356 	spdk_poller_unregister(&g_hotplug_poller);
4357 	if (ctx->enabled) {
4358 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
4359 	}
4360 
4361 	g_nvme_hotplug_poll_period_us = ctx->period_us;
4362 	g_nvme_hotplug_enabled = ctx->enabled;
4363 	if (ctx->fn) {
4364 		ctx->fn(ctx->fn_ctx);
4365 	}
4366 
4367 	free(ctx);
4368 }
4369 
4370 int
4371 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
4372 {
4373 	struct set_nvme_hotplug_ctx *ctx;
4374 
4375 	if (enabled == true && !spdk_process_is_primary()) {
4376 		return -EPERM;
4377 	}
4378 
4379 	ctx = calloc(1, sizeof(*ctx));
4380 	if (ctx == NULL) {
4381 		return -ENOMEM;
4382 	}
4383 
4384 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
4385 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
4386 	ctx->enabled = enabled;
4387 	ctx->fn = cb;
4388 	ctx->fn_ctx = cb_ctx;
4389 
4390 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
4391 	return 0;
4392 }
4393 
4394 static void
4395 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
4396 				    struct nvme_async_probe_ctx *ctx)
4397 {
4398 	struct nvme_ns	*nvme_ns;
4399 	struct nvme_bdev	*nvme_bdev;
4400 	size_t			j;
4401 
4402 	assert(nvme_ctrlr != NULL);
4403 
4404 	if (ctx->names == NULL) {
4405 		populate_namespaces_cb(ctx, 0, 0);
4406 		return;
4407 	}
4408 
4409 	/*
4410 	 * Report the new bdevs that were created in this call.
4411 	 * There can be more than one bdev per NVMe controller.
4412 	 */
4413 	j = 0;
4414 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4415 	while (nvme_ns != NULL) {
4416 		nvme_bdev = nvme_ns->bdev;
4417 		if (j < ctx->count) {
4418 			ctx->names[j] = nvme_bdev->disk.name;
4419 			j++;
4420 		} else {
4421 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
4422 				    ctx->count);
4423 			populate_namespaces_cb(ctx, 0, -ERANGE);
4424 			return;
4425 		}
4426 
4427 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4428 	}
4429 
4430 	populate_namespaces_cb(ctx, j, 0);
4431 }
4432 
4433 static int
4434 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
4435 			       struct spdk_nvme_ctrlr *new_ctrlr,
4436 			       struct spdk_nvme_transport_id *trid)
4437 {
4438 	struct nvme_path_id *tmp_trid;
4439 
4440 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
4441 		SPDK_ERRLOG("PCIe failover is not supported.\n");
4442 		return -ENOTSUP;
4443 	}
4444 
4445 	/* Currently we only support failover to the same transport type. */
4446 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
4447 		SPDK_WARNLOG("Failover from trtype: %s to a different trtype: %s is not supported currently\n",
4448 			     spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
4449 			     spdk_nvme_transport_id_trtype_str(trid->trtype));
4450 		return -EINVAL;
4451 	}
4452 
4453 
4454 	/* Currently we only support failover to the same NQN. */
4455 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
4456 		SPDK_WARNLOG("Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
4457 			     nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
4458 		return -EINVAL;
4459 	}
4460 
4461 	/* Skip all the other checks if we've already registered this path. */
4462 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
4463 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
4464 			SPDK_WARNLOG("This path (traddr: %s subnqn: %s) is already registered\n", trid->traddr,
4465 				     trid->subnqn);
4466 			return -EEXIST;
4467 		}
4468 	}
4469 
4470 	return 0;
4471 }
4472 
4473 static int
4474 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
4475 				    struct spdk_nvme_ctrlr *new_ctrlr)
4476 {
4477 	struct nvme_ns *nvme_ns;
4478 	struct spdk_nvme_ns *new_ns;
4479 
4480 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4481 	while (nvme_ns != NULL) {
4482 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
4483 		assert(new_ns != NULL);
4484 
4485 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
4486 			return -EINVAL;
4487 		}
4488 
4489 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4490 	}
4491 
4492 	return 0;
4493 }
4494 
4495 static int
4496 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
4497 			      struct spdk_nvme_transport_id *trid)
4498 {
4499 	struct nvme_path_id *new_trid, *tmp_trid;
4500 
4501 	new_trid = calloc(1, sizeof(*new_trid));
4502 	if (new_trid == NULL) {
4503 		return -ENOMEM;
4504 	}
4505 	new_trid->trid = *trid;
4506 	new_trid->is_failed = false;
4507 
4508 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
4509 		if (tmp_trid->is_failed && tmp_trid != nvme_ctrlr->active_path_id) {
4510 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
4511 			return 0;
4512 		}
4513 	}
4514 
4515 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
4516 	return 0;
4517 }
4518 
4519 /* This is the case that a secondary path is added to an existing
4520  * nvme_ctrlr for failover. After checking if it can access the same
4521  * namespaces as the primary path, it is disconnected until failover occurs.
4522  */
4523 static int
4524 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
4525 			     struct spdk_nvme_ctrlr *new_ctrlr,
4526 			     struct spdk_nvme_transport_id *trid)
4527 {
4528 	int rc;
4529 
4530 	assert(nvme_ctrlr != NULL);
4531 
4532 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4533 
4534 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
4535 	if (rc != 0) {
4536 		goto exit;
4537 	}
4538 
4539 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
4540 	if (rc != 0) {
4541 		goto exit;
4542 	}
4543 
4544 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
4545 
4546 exit:
4547 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4548 
4549 	spdk_nvme_detach(new_ctrlr);
4550 
4551 	return rc;
4552 }
4553 
4554 static void
4555 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4556 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
4557 {
4558 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
4559 	struct nvme_async_probe_ctx *ctx;
4560 	int rc;
4561 
4562 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
4563 	ctx->ctrlr_attached = true;
4564 
4565 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
4566 	if (rc != 0) {
4567 		populate_namespaces_cb(ctx, 0, rc);
4568 	}
4569 }
4570 
4571 static void
4572 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4573 			struct spdk_nvme_ctrlr *ctrlr,
4574 			const struct spdk_nvme_ctrlr_opts *opts)
4575 {
4576 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
4577 	struct nvme_ctrlr *nvme_ctrlr;
4578 	struct nvme_async_probe_ctx *ctx;
4579 	int rc;
4580 
4581 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
4582 	ctx->ctrlr_attached = true;
4583 
4584 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
4585 	if (nvme_ctrlr) {
4586 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
4587 	} else {
4588 		rc = -ENODEV;
4589 	}
4590 
4591 	populate_namespaces_cb(ctx, 0, rc);
4592 }
4593 
4594 static int
4595 bdev_nvme_async_poll(void *arg)
4596 {
4597 	struct nvme_async_probe_ctx	*ctx = arg;
4598 	int				rc;
4599 
4600 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
4601 	if (spdk_unlikely(rc != -EAGAIN)) {
4602 		ctx->probe_done = true;
4603 		spdk_poller_unregister(&ctx->poller);
4604 		if (!ctx->ctrlr_attached) {
4605 			/* The probe is done, but no controller was attached.
4606 			 * That means we had a failure, so report -EIO back to
4607 			 * the caller (usually the RPC). populate_namespaces_cb()
4608 			 * will take care of freeing the nvme_async_probe_ctx.
4609 			 */
4610 			populate_namespaces_cb(ctx, 0, -EIO);
4611 		} else if (ctx->namespaces_populated) {
4612 			/* The namespaces for the attached controller were all
4613 			 * populated and the response was already sent to the
4614 			 * caller (usually the RPC).  So free the context here.
4615 			 */
4616 			free(ctx);
4617 		}
4618 	}
4619 
4620 	return SPDK_POLLER_BUSY;
4621 }
4622 
4623 static bool
4624 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
4625 		uint32_t reconnect_delay_sec,
4626 		uint32_t fast_io_fail_timeout_sec)
4627 {
4628 	if (ctrlr_loss_timeout_sec < -1) {
4629 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
4630 		return false;
4631 	} else if (ctrlr_loss_timeout_sec == -1) {
4632 		if (reconnect_delay_sec == 0) {
4633 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
4634 			return false;
4635 		} else if (fast_io_fail_timeout_sec != 0 &&
4636 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
4637 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
4638 			return false;
4639 		}
4640 	} else if (ctrlr_loss_timeout_sec != 0) {
4641 		if (reconnect_delay_sec == 0) {
4642 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
4643 			return false;
4644 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
4645 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
4646 			return false;
4647 		} else if (fast_io_fail_timeout_sec != 0) {
4648 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
4649 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
4650 				return false;
4651 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
4652 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
4653 				return false;
4654 			}
4655 		}
4656 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
4657 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
4658 		return false;
4659 	}
4660 
4661 	return true;
4662 }
4663 
4664 int
4665 bdev_nvme_create(struct spdk_nvme_transport_id *trid,
4666 		 const char *base_name,
4667 		 const char **names,
4668 		 uint32_t count,
4669 		 spdk_bdev_create_nvme_fn cb_fn,
4670 		 void *cb_ctx,
4671 		 struct spdk_nvme_ctrlr_opts *drv_opts,
4672 		 struct nvme_ctrlr_opts *bdev_opts,
4673 		 bool multipath)
4674 {
4675 	struct nvme_probe_skip_entry	*entry, *tmp;
4676 	struct nvme_async_probe_ctx	*ctx;
4677 	spdk_nvme_attach_cb attach_cb;
4678 
4679 	/* TODO expand this check to include both the host and target TRIDs.
4680 	 * Only if both are the same should we fail.
4681 	 */
4682 	if (nvme_ctrlr_get(trid) != NULL) {
4683 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
4684 		return -EEXIST;
4685 	}
4686 
4687 	if (bdev_opts != NULL &&
4688 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
4689 			    bdev_opts->reconnect_delay_sec,
4690 			    bdev_opts->fast_io_fail_timeout_sec)) {
4691 		return -EINVAL;
4692 	}
4693 
4694 	ctx = calloc(1, sizeof(*ctx));
4695 	if (!ctx) {
4696 		return -ENOMEM;
4697 	}
4698 	ctx->base_name = base_name;
4699 	ctx->names = names;
4700 	ctx->count = count;
4701 	ctx->cb_fn = cb_fn;
4702 	ctx->cb_ctx = cb_ctx;
4703 	ctx->trid = *trid;
4704 
4705 	if (bdev_opts) {
4706 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
4707 	} else {
4708 		bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
4709 	}
4710 
4711 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
4712 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
4713 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4714 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
4715 				free(entry);
4716 				break;
4717 			}
4718 		}
4719 	}
4720 
4721 	if (drv_opts) {
4722 		memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
4723 	} else {
4724 		spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->drv_opts, sizeof(ctx->drv_opts));
4725 	}
4726 
4727 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
4728 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
4729 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
4730 	ctx->drv_opts.disable_read_ana_log_page = true;
4731 
4732 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
4733 		attach_cb = connect_attach_cb;
4734 	} else {
4735 		attach_cb = connect_set_failover_cb;
4736 	}
4737 
4738 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
4739 	if (ctx->probe_ctx == NULL) {
4740 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
4741 		free(ctx);
4742 		return -ENODEV;
4743 	}
4744 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
4745 
4746 	return 0;
4747 }
4748 
4749 int
4750 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id)
4751 {
4752 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
4753 	struct nvme_ctrlr	*nvme_ctrlr, *tmp_nvme_ctrlr;
4754 	struct nvme_path_id	*p, *t;
4755 	int			rc = -ENXIO;
4756 
4757 	if (name == NULL || path_id == NULL) {
4758 		return -EINVAL;
4759 	}
4760 
4761 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
4762 	if (nbdev_ctrlr == NULL) {
4763 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
4764 		return -ENODEV;
4765 	}
4766 
4767 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
4768 		TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
4769 			if (path_id->trid.trtype != 0) {
4770 				if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
4771 					if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
4772 						continue;
4773 					}
4774 				} else {
4775 					if (path_id->trid.trtype != p->trid.trtype) {
4776 						continue;
4777 					}
4778 				}
4779 			}
4780 
4781 			if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
4782 				if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
4783 					continue;
4784 				}
4785 			}
4786 
4787 			if (path_id->trid.adrfam != 0) {
4788 				if (path_id->trid.adrfam != p->trid.adrfam) {
4789 					continue;
4790 				}
4791 			}
4792 
4793 			if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
4794 				if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
4795 					continue;
4796 				}
4797 			}
4798 
4799 			if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
4800 				if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
4801 					continue;
4802 				}
4803 			}
4804 
4805 			if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
4806 				if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
4807 					continue;
4808 				}
4809 			}
4810 
4811 			if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
4812 				if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
4813 					continue;
4814 				}
4815 			}
4816 
4817 			/* If we made it here, then this path is a match! Now we need to remove it. */
4818 			if (p == nvme_ctrlr->active_path_id) {
4819 				/* This is the active path in use right now. The active path is always the first in the list. */
4820 
4821 				if (!TAILQ_NEXT(p, link)) {
4822 					/* The current path is the only path. */
4823 					rc = _bdev_nvme_delete(nvme_ctrlr, false);
4824 				} else {
4825 					/* There is an alternative path. */
4826 					rc = bdev_nvme_failover(nvme_ctrlr, true);
4827 				}
4828 			} else {
4829 				/* We are not using the specified path. */
4830 				TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
4831 				free(p);
4832 				rc = 0;
4833 			}
4834 
4835 			if (rc < 0 && rc != -ENXIO) {
4836 				return rc;
4837 			}
4838 
4839 
4840 		}
4841 	}
4842 
4843 	/* All nvme_ctrlrs were deleted or no nvme_ctrlr which had the trid was found. */
4844 	return rc;
4845 }
4846 
4847 #define DISCOVERY_INFOLOG(ctx, format, ...) \
4848 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
4849 
4850 #define DISCOVERY_ERRLOG(ctx, format, ...) \
4851 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
4852 
4853 struct discovery_entry_ctx {
4854 	char						name[128];
4855 	struct spdk_nvme_transport_id			trid;
4856 	struct spdk_nvme_ctrlr_opts			drv_opts;
4857 	struct spdk_nvmf_discovery_log_page_entry	entry;
4858 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
4859 	struct discovery_ctx				*ctx;
4860 };
4861 
4862 struct discovery_ctx {
4863 	char					*name;
4864 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
4865 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
4866 	void					*cb_ctx;
4867 	struct spdk_nvme_probe_ctx		*probe_ctx;
4868 	struct spdk_nvme_detach_ctx		*detach_ctx;
4869 	struct spdk_nvme_ctrlr			*ctrlr;
4870 	struct spdk_nvme_transport_id		trid;
4871 	struct discovery_entry_ctx		*entry_ctx_in_use;
4872 	struct spdk_poller			*poller;
4873 	struct spdk_nvme_ctrlr_opts		drv_opts;
4874 	struct nvme_ctrlr_opts			bdev_opts;
4875 	struct spdk_nvmf_discovery_log_page	*log_page;
4876 	TAILQ_ENTRY(discovery_ctx)		tailq;
4877 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
4878 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
4879 	int					rc;
4880 	bool					wait_for_attach;
4881 	uint64_t				timeout_ticks;
4882 	/* Denotes that the discovery service is being started. We're waiting
4883 	 * for the initial connection to the discovery controller to be
4884 	 * established and attach discovered NVM ctrlrs.
4885 	 */
4886 	bool					initializing;
4887 	/* Denotes if a discovery is currently in progress for this context.
4888 	 * That includes connecting to newly discovered subsystems.  Used to
4889 	 * ensure we do not start a new discovery until an existing one is
4890 	 * complete.
4891 	 */
4892 	bool					in_progress;
4893 
4894 	/* Denotes if another discovery is needed after the one in progress
4895 	 * completes.  Set when we receive an AER completion while a discovery
4896 	 * is already in progress.
4897 	 */
4898 	bool					pending;
4899 
4900 	/* Signal to the discovery context poller that it should stop the
4901 	 * discovery service, including detaching from the current discovery
4902 	 * controller.
4903 	 */
4904 	bool					stop;
4905 
4906 	struct spdk_thread			*calling_thread;
4907 	uint32_t				index;
4908 	uint32_t				attach_in_progress;
4909 	char					*hostnqn;
4910 };
4911 
4912 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
4913 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
4914 
4915 static void get_discovery_log_page(struct discovery_ctx *ctx);
4916 
4917 static void
4918 free_discovery_ctx(struct discovery_ctx *ctx)
4919 {
4920 	free(ctx->log_page);
4921 	free(ctx->hostnqn);
4922 	free(ctx->name);
4923 	free(ctx);
4924 }
4925 
4926 static void
4927 discovery_complete(struct discovery_ctx *ctx)
4928 {
4929 	ctx->initializing = false;
4930 	ctx->in_progress = false;
4931 	if (ctx->pending) {
4932 		ctx->pending = false;
4933 		get_discovery_log_page(ctx);
4934 	}
4935 }
4936 
4937 static void
4938 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
4939 			       struct spdk_nvmf_discovery_log_page_entry *entry)
4940 {
4941 	char *space;
4942 
4943 	trid->trtype = entry->trtype;
4944 	trid->adrfam = entry->adrfam;
4945 	memcpy(trid->traddr, entry->traddr, sizeof(trid->traddr));
4946 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(trid->trsvcid));
4947 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn));
4948 
4949 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
4950 	 * But the log page entries typically pad them with spaces, not zeroes.
4951 	 * So add a NULL terminator to each of these fields at the appropriate
4952 	 * location.
4953 	 */
4954 	space = strchr(trid->traddr, ' ');
4955 	if (space) {
4956 		*space = 0;
4957 	}
4958 	space = strchr(trid->trsvcid, ' ');
4959 	if (space) {
4960 		*space = 0;
4961 	}
4962 	space = strchr(trid->subnqn, ' ');
4963 	if (space) {
4964 		*space = 0;
4965 	}
4966 }
4967 
4968 static void
4969 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
4970 {
4971 	ctx->stop = true;
4972 	ctx->stop_cb_fn = cb_fn;
4973 	ctx->cb_ctx = cb_ctx;
4974 
4975 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
4976 		struct discovery_entry_ctx *entry_ctx;
4977 		struct nvme_path_id path = {};
4978 
4979 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
4980 		path.trid = entry_ctx->trid;
4981 		bdev_nvme_delete(entry_ctx->name, &path);
4982 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
4983 		free(entry_ctx);
4984 	}
4985 
4986 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
4987 		struct discovery_entry_ctx *entry_ctx;
4988 
4989 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
4990 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
4991 		free(entry_ctx);
4992 	}
4993 
4994 	free(ctx->entry_ctx_in_use);
4995 	ctx->entry_ctx_in_use = NULL;
4996 }
4997 
4998 static void
4999 discovery_remove_controllers(struct discovery_ctx *ctx)
5000 {
5001 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
5002 	struct discovery_entry_ctx *entry_ctx, *tmp;
5003 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
5004 	struct spdk_nvme_transport_id old_trid;
5005 	uint64_t numrec, i;
5006 	bool found;
5007 
5008 	numrec = from_le64(&log_page->numrec);
5009 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
5010 		found = false;
5011 		old_entry = &entry_ctx->entry;
5012 		build_trid_from_log_page_entry(&old_trid, old_entry);
5013 		for (i = 0; i < numrec; i++) {
5014 			new_entry = &log_page->entries[i];
5015 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
5016 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
5017 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
5018 				found = true;
5019 				break;
5020 			}
5021 		}
5022 		if (!found) {
5023 			struct nvme_path_id path = {};
5024 
5025 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
5026 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
5027 
5028 			path.trid = entry_ctx->trid;
5029 			bdev_nvme_delete(entry_ctx->name, &path);
5030 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
5031 			free(entry_ctx);
5032 		}
5033 	}
5034 	free(log_page);
5035 	ctx->log_page = NULL;
5036 	discovery_complete(ctx);
5037 }
5038 
5039 static void
5040 complete_discovery_start(struct discovery_ctx *ctx, int status)
5041 {
5042 	ctx->timeout_ticks = 0;
5043 	ctx->rc = status;
5044 	if (ctx->start_cb_fn) {
5045 		ctx->start_cb_fn(ctx->cb_ctx, status);
5046 		ctx->start_cb_fn = NULL;
5047 		ctx->cb_ctx = NULL;
5048 	}
5049 }
5050 
5051 static void
5052 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
5053 {
5054 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
5055 	struct discovery_ctx *ctx = entry_ctx->ctx;
5056 
5057 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
5058 	ctx->attach_in_progress--;
5059 	if (ctx->attach_in_progress == 0) {
5060 		complete_discovery_start(ctx, ctx->rc);
5061 		if (ctx->initializing && ctx->rc != 0) {
5062 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
5063 			stop_discovery(ctx, NULL, ctx->cb_ctx);
5064 		} else {
5065 			discovery_remove_controllers(ctx);
5066 		}
5067 	}
5068 }
5069 
5070 static struct discovery_entry_ctx *
5071 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
5072 {
5073 	struct discovery_entry_ctx *new_ctx;
5074 
5075 	new_ctx = calloc(1, sizeof(*new_ctx));
5076 	if (new_ctx == NULL) {
5077 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
5078 		return NULL;
5079 	}
5080 
5081 	new_ctx->ctx = ctx;
5082 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
5083 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
5084 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
5085 	return new_ctx;
5086 }
5087 
5088 static void
5089 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
5090 		      struct spdk_nvmf_discovery_log_page *log_page)
5091 {
5092 	struct discovery_ctx *ctx = cb_arg;
5093 	struct discovery_entry_ctx *entry_ctx, *tmp;
5094 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
5095 	uint64_t numrec, i;
5096 	bool found;
5097 
5098 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
5099 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
5100 		return;
5101 	}
5102 
5103 	ctx->log_page = log_page;
5104 	assert(ctx->attach_in_progress == 0);
5105 	numrec = from_le64(&log_page->numrec);
5106 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
5107 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
5108 		free(entry_ctx);
5109 	}
5110 	for (i = 0; i < numrec; i++) {
5111 		found = false;
5112 		new_entry = &log_page->entries[i];
5113 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
5114 			struct discovery_entry_ctx *new_ctx;
5115 			struct spdk_nvme_transport_id trid = {};
5116 
5117 			build_trid_from_log_page_entry(&trid, new_entry);
5118 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
5119 			if (new_ctx == NULL) {
5120 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
5121 				break;
5122 			}
5123 
5124 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
5125 			continue;
5126 		}
5127 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
5128 			old_entry = &entry_ctx->entry;
5129 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
5130 				found = true;
5131 				break;
5132 			}
5133 		}
5134 		if (!found) {
5135 			struct discovery_entry_ctx *subnqn_ctx, *new_ctx;
5136 
5137 			TAILQ_FOREACH(subnqn_ctx, &ctx->nvm_entry_ctxs, tailq) {
5138 				if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
5139 					    sizeof(new_entry->subnqn))) {
5140 					break;
5141 				}
5142 			}
5143 
5144 			new_ctx = calloc(1, sizeof(*new_ctx));
5145 			if (new_ctx == NULL) {
5146 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
5147 				break;
5148 			}
5149 
5150 			new_ctx->ctx = ctx;
5151 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
5152 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
5153 			if (subnqn_ctx) {
5154 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
5155 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
5156 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
5157 						  new_ctx->name);
5158 			} else {
5159 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
5160 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
5161 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
5162 						  new_ctx->name);
5163 			}
5164 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
5165 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
5166 			rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
5167 					      discovery_attach_controller_done, new_ctx,
5168 					      &new_ctx->drv_opts, &ctx->bdev_opts, true);
5169 			if (rc == 0) {
5170 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
5171 				ctx->attach_in_progress++;
5172 			} else {
5173 				DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
5174 			}
5175 		}
5176 	}
5177 
5178 	if (ctx->attach_in_progress == 0) {
5179 		discovery_remove_controllers(ctx);
5180 	}
5181 }
5182 
5183 static void
5184 get_discovery_log_page(struct discovery_ctx *ctx)
5185 {
5186 	int rc;
5187 
5188 	assert(ctx->in_progress == false);
5189 	ctx->in_progress = true;
5190 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
5191 	if (rc != 0) {
5192 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
5193 	}
5194 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
5195 }
5196 
5197 static void
5198 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5199 {
5200 	struct discovery_ctx *ctx = arg;
5201 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
5202 
5203 	if (spdk_nvme_cpl_is_error(cpl)) {
5204 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
5205 		return;
5206 	}
5207 
5208 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
5209 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
5210 		return;
5211 	}
5212 
5213 	DISCOVERY_INFOLOG(ctx, "got aer\n");
5214 	if (ctx->in_progress) {
5215 		ctx->pending = true;
5216 		return;
5217 	}
5218 
5219 	get_discovery_log_page(ctx);
5220 }
5221 
5222 static void
5223 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5224 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
5225 {
5226 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5227 	struct discovery_ctx *ctx;
5228 
5229 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
5230 
5231 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
5232 	ctx->probe_ctx = NULL;
5233 	ctx->ctrlr = ctrlr;
5234 
5235 	if (ctx->rc != 0) {
5236 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
5237 				 ctx->rc);
5238 		return;
5239 	}
5240 
5241 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
5242 }
5243 
5244 static int
5245 discovery_poller(void *arg)
5246 {
5247 	struct discovery_ctx *ctx = arg;
5248 	struct spdk_nvme_transport_id *trid;
5249 	int rc;
5250 
5251 	if (ctx->detach_ctx) {
5252 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
5253 		if (rc != -EAGAIN) {
5254 			ctx->detach_ctx = NULL;
5255 			ctx->ctrlr = NULL;
5256 		}
5257 	} else if (ctx->stop) {
5258 		if (ctx->ctrlr != NULL) {
5259 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
5260 			if (rc == 0) {
5261 				return SPDK_POLLER_BUSY;
5262 			}
5263 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
5264 		}
5265 		spdk_poller_unregister(&ctx->poller);
5266 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
5267 		assert(ctx->start_cb_fn == NULL);
5268 		if (ctx->stop_cb_fn != NULL) {
5269 			ctx->stop_cb_fn(ctx->cb_ctx);
5270 		}
5271 		free_discovery_ctx(ctx);
5272 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
5273 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
5274 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
5275 			assert(ctx->initializing);
5276 			spdk_poller_unregister(&ctx->poller);
5277 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
5278 			complete_discovery_start(ctx, -ETIMEDOUT);
5279 			stop_discovery(ctx, NULL, NULL);
5280 			free_discovery_ctx(ctx);
5281 			return SPDK_POLLER_BUSY;
5282 		}
5283 
5284 		assert(ctx->entry_ctx_in_use == NULL);
5285 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
5286 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
5287 		trid = &ctx->entry_ctx_in_use->trid;
5288 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
5289 		if (ctx->probe_ctx) {
5290 			spdk_poller_unregister(&ctx->poller);
5291 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
5292 		} else {
5293 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
5294 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
5295 			ctx->entry_ctx_in_use = NULL;
5296 		}
5297 	} else if (ctx->probe_ctx) {
5298 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
5299 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
5300 			complete_discovery_start(ctx, -ETIMEDOUT);
5301 			return SPDK_POLLER_BUSY;
5302 		}
5303 
5304 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
5305 		if (rc != -EAGAIN) {
5306 			if (ctx->rc != 0) {
5307 				assert(ctx->initializing);
5308 				stop_discovery(ctx, NULL, ctx->cb_ctx);
5309 			} else {
5310 				assert(rc == 0);
5311 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
5312 				ctx->rc = rc;
5313 				get_discovery_log_page(ctx);
5314 			}
5315 		}
5316 	} else {
5317 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
5318 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
5319 			complete_discovery_start(ctx, -ETIMEDOUT);
5320 			/* We need to wait until all NVM ctrlrs are attached before we stop the
5321 			 * discovery service to make sure we don't detach a ctrlr that is still
5322 			 * being attached.
5323 			 */
5324 			if (ctx->attach_in_progress == 0) {
5325 				stop_discovery(ctx, NULL, ctx->cb_ctx);
5326 				return SPDK_POLLER_BUSY;
5327 			}
5328 		}
5329 
5330 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
5331 		if (rc < 0) {
5332 			spdk_poller_unregister(&ctx->poller);
5333 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
5334 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
5335 			ctx->entry_ctx_in_use = NULL;
5336 
5337 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
5338 			if (rc != 0) {
5339 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
5340 				ctx->ctrlr = NULL;
5341 			}
5342 		}
5343 	}
5344 
5345 	return SPDK_POLLER_BUSY;
5346 }
5347 
5348 static void
5349 start_discovery_poller(void *arg)
5350 {
5351 	struct discovery_ctx *ctx = arg;
5352 
5353 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
5354 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
5355 }
5356 
5357 int
5358 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
5359 			  const char *base_name,
5360 			  struct spdk_nvme_ctrlr_opts *drv_opts,
5361 			  struct nvme_ctrlr_opts *bdev_opts,
5362 			  uint64_t attach_timeout,
5363 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
5364 {
5365 	struct discovery_ctx *ctx;
5366 	struct discovery_entry_ctx *discovery_entry_ctx;
5367 
5368 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
5369 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
5370 		if (strcmp(ctx->name, base_name) == 0) {
5371 			return -EEXIST;
5372 		}
5373 
5374 		if (ctx->entry_ctx_in_use != NULL) {
5375 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
5376 				return -EEXIST;
5377 			}
5378 		}
5379 
5380 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
5381 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
5382 				return -EEXIST;
5383 			}
5384 		}
5385 	}
5386 
5387 	ctx = calloc(1, sizeof(*ctx));
5388 	if (ctx == NULL) {
5389 		return -ENOMEM;
5390 	}
5391 
5392 	ctx->name = strdup(base_name);
5393 	if (ctx->name == NULL) {
5394 		free_discovery_ctx(ctx);
5395 		return -ENOMEM;
5396 	}
5397 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
5398 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
5399 	ctx->bdev_opts.from_discovery_service = true;
5400 	ctx->calling_thread = spdk_get_thread();
5401 	ctx->start_cb_fn = cb_fn;
5402 	ctx->cb_ctx = cb_ctx;
5403 	ctx->initializing = true;
5404 	if (ctx->start_cb_fn) {
5405 		/* We can use this when dumping json to denote if this RPC parameter
5406 		 * was specified or not.
5407 		 */
5408 		ctx->wait_for_attach = true;
5409 	}
5410 	if (attach_timeout != 0) {
5411 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
5412 				     spdk_get_ticks_hz() / 1000ull;
5413 	}
5414 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
5415 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
5416 	memcpy(&ctx->trid, trid, sizeof(*trid));
5417 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
5418 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
5419 	if (ctx->hostnqn == NULL) {
5420 		free_discovery_ctx(ctx);
5421 		return -ENOMEM;
5422 	}
5423 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
5424 	if (discovery_entry_ctx == NULL) {
5425 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
5426 		free_discovery_ctx(ctx);
5427 		return -ENOMEM;
5428 	}
5429 
5430 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
5431 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
5432 	return 0;
5433 }
5434 
5435 int
5436 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
5437 {
5438 	struct discovery_ctx *ctx;
5439 
5440 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
5441 		if (strcmp(name, ctx->name) == 0) {
5442 			if (ctx->stop) {
5443 				return -EALREADY;
5444 			}
5445 			/* If we're still starting the discovery service and ->rc is non-zero, we're
5446 			 * going to stop it as soon as we can
5447 			 */
5448 			if (ctx->initializing && ctx->rc != 0) {
5449 				return -EALREADY;
5450 			}
5451 			stop_discovery(ctx, cb_fn, cb_ctx);
5452 			return 0;
5453 		}
5454 	}
5455 
5456 	return -ENOENT;
5457 }
5458 
5459 static int
5460 bdev_nvme_library_init(void)
5461 {
5462 	g_bdev_nvme_init_thread = spdk_get_thread();
5463 
5464 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
5465 				bdev_nvme_destroy_poll_group_cb,
5466 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
5467 
5468 	return 0;
5469 }
5470 
5471 static void
5472 bdev_nvme_fini_destruct_ctrlrs(void)
5473 {
5474 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5475 	struct nvme_ctrlr *nvme_ctrlr;
5476 
5477 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5478 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
5479 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
5480 			pthread_mutex_lock(&nvme_ctrlr->mutex);
5481 			if (nvme_ctrlr->destruct) {
5482 				/* This controller's destruction was already started
5483 				 * before the application started shutting down
5484 				 */
5485 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
5486 				continue;
5487 			}
5488 			nvme_ctrlr->destruct = true;
5489 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
5490 
5491 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
5492 					     nvme_ctrlr);
5493 		}
5494 	}
5495 
5496 	g_bdev_nvme_module_finish = true;
5497 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5498 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
5499 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
5500 		spdk_bdev_module_fini_done();
5501 		return;
5502 	}
5503 
5504 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5505 }
5506 
5507 static void
5508 check_discovery_fini(void *arg)
5509 {
5510 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
5511 		bdev_nvme_fini_destruct_ctrlrs();
5512 	}
5513 }
5514 
5515 static void
5516 bdev_nvme_library_fini(void)
5517 {
5518 	struct nvme_probe_skip_entry *entry, *entry_tmp;
5519 	struct discovery_ctx *ctx;
5520 
5521 	spdk_poller_unregister(&g_hotplug_poller);
5522 	free(g_hotplug_probe_ctx);
5523 	g_hotplug_probe_ctx = NULL;
5524 
5525 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
5526 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
5527 		free(entry);
5528 	}
5529 
5530 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
5531 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
5532 		bdev_nvme_fini_destruct_ctrlrs();
5533 	} else {
5534 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
5535 			stop_discovery(ctx, check_discovery_fini, NULL);
5536 		}
5537 	}
5538 }
5539 
5540 static void
5541 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
5542 {
5543 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5544 	struct spdk_bdev *bdev = bdev_io->bdev;
5545 	struct spdk_dif_ctx dif_ctx;
5546 	struct spdk_dif_error err_blk = {};
5547 	int rc;
5548 
5549 	rc = spdk_dif_ctx_init(&dif_ctx,
5550 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
5551 			       bdev->dif_is_head_of_md, bdev->dif_type, bdev->dif_check_flags,
5552 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0);
5553 	if (rc != 0) {
5554 		SPDK_ERRLOG("Initialization of DIF context failed\n");
5555 		return;
5556 	}
5557 
5558 	if (bdev->md_interleave) {
5559 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
5560 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
5561 	} else {
5562 		struct iovec md_iov = {
5563 			.iov_base	= bdev_io->u.bdev.md_buf,
5564 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
5565 		};
5566 
5567 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
5568 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
5569 	}
5570 
5571 	if (rc != 0) {
5572 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
5573 			    err_blk.err_type, err_blk.err_offset);
5574 	} else {
5575 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
5576 	}
5577 }
5578 
5579 static void
5580 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
5581 {
5582 	struct nvme_bdev_io *bio = ref;
5583 
5584 	if (spdk_nvme_cpl_is_success(cpl)) {
5585 		/* Run PI verification for read data buffer. */
5586 		bdev_nvme_verify_pi_error(bio);
5587 	}
5588 
5589 	/* Return original completion status */
5590 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
5591 }
5592 
5593 static void
5594 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
5595 {
5596 	struct nvme_bdev_io *bio = ref;
5597 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5598 	int ret;
5599 
5600 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
5601 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
5602 			    cpl->status.sct, cpl->status.sc);
5603 
5604 		/* Save completion status to use after verifying PI error. */
5605 		bio->cpl = *cpl;
5606 
5607 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
5608 			/* Read without PI checking to verify PI error. */
5609 			ret = bdev_nvme_no_pi_readv(bio,
5610 						    bdev_io->u.bdev.iovs,
5611 						    bdev_io->u.bdev.iovcnt,
5612 						    bdev_io->u.bdev.md_buf,
5613 						    bdev_io->u.bdev.num_blocks,
5614 						    bdev_io->u.bdev.offset_blocks);
5615 			if (ret == 0) {
5616 				return;
5617 			}
5618 		}
5619 	}
5620 
5621 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5622 }
5623 
5624 static void
5625 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
5626 {
5627 	struct nvme_bdev_io *bio = ref;
5628 
5629 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
5630 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
5631 			    cpl->status.sct, cpl->status.sc);
5632 		/* Run PI verification for write data buffer if PI error is detected. */
5633 		bdev_nvme_verify_pi_error(bio);
5634 	}
5635 
5636 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5637 }
5638 
5639 static void
5640 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
5641 {
5642 	struct nvme_bdev_io *bio = ref;
5643 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5644 
5645 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
5646 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
5647 	 */
5648 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
5649 
5650 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
5651 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
5652 			    cpl->status.sct, cpl->status.sc);
5653 		/* Run PI verification for zone append data buffer if PI error is detected. */
5654 		bdev_nvme_verify_pi_error(bio);
5655 	}
5656 
5657 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5658 }
5659 
5660 static void
5661 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
5662 {
5663 	struct nvme_bdev_io *bio = ref;
5664 
5665 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
5666 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
5667 			    cpl->status.sct, cpl->status.sc);
5668 		/* Run PI verification for compare data buffer if PI error is detected. */
5669 		bdev_nvme_verify_pi_error(bio);
5670 	}
5671 
5672 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5673 }
5674 
5675 static void
5676 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
5677 {
5678 	struct nvme_bdev_io *bio = ref;
5679 
5680 	/* Compare operation completion */
5681 	if (!bio->first_fused_completed) {
5682 		/* Save compare result for write callback */
5683 		bio->cpl = *cpl;
5684 		bio->first_fused_completed = true;
5685 		return;
5686 	}
5687 
5688 	/* Write operation completion */
5689 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
5690 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
5691 		 * complete the IO with the compare operation's status.
5692 		 */
5693 		if (!spdk_nvme_cpl_is_error(cpl)) {
5694 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
5695 		}
5696 
5697 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
5698 	} else {
5699 		bdev_nvme_io_complete_nvme_status(bio, cpl);
5700 	}
5701 }
5702 
5703 static void
5704 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
5705 {
5706 	struct nvme_bdev_io *bio = ref;
5707 
5708 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5709 }
5710 
5711 static int
5712 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
5713 {
5714 	switch (desc->zt) {
5715 	case SPDK_NVME_ZONE_TYPE_SEQWR:
5716 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
5717 		break;
5718 	default:
5719 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
5720 		return -EIO;
5721 	}
5722 
5723 	switch (desc->zs) {
5724 	case SPDK_NVME_ZONE_STATE_EMPTY:
5725 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
5726 		break;
5727 	case SPDK_NVME_ZONE_STATE_IOPEN:
5728 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
5729 		break;
5730 	case SPDK_NVME_ZONE_STATE_EOPEN:
5731 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
5732 		break;
5733 	case SPDK_NVME_ZONE_STATE_CLOSED:
5734 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
5735 		break;
5736 	case SPDK_NVME_ZONE_STATE_RONLY:
5737 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
5738 		break;
5739 	case SPDK_NVME_ZONE_STATE_FULL:
5740 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
5741 		break;
5742 	case SPDK_NVME_ZONE_STATE_OFFLINE:
5743 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
5744 		break;
5745 	default:
5746 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
5747 		return -EIO;
5748 	}
5749 
5750 	info->zone_id = desc->zslba;
5751 	info->write_pointer = desc->wp;
5752 	info->capacity = desc->zcap;
5753 
5754 	return 0;
5755 }
5756 
5757 static void
5758 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
5759 {
5760 	struct nvme_bdev_io *bio = ref;
5761 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5762 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
5763 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
5764 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
5765 	uint64_t max_zones_per_buf, i;
5766 	uint32_t zone_report_bufsize;
5767 	struct spdk_nvme_ns *ns;
5768 	struct spdk_nvme_qpair *qpair;
5769 	int ret;
5770 
5771 	if (spdk_nvme_cpl_is_error(cpl)) {
5772 		goto out_complete_io_nvme_cpl;
5773 	}
5774 
5775 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
5776 		ret = -ENXIO;
5777 		goto out_complete_io_ret;
5778 	}
5779 
5780 	ns = bio->io_path->nvme_ns->ns;
5781 	qpair = bio->io_path->qpair->qpair;
5782 
5783 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
5784 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
5785 			    sizeof(bio->zone_report_buf->descs[0]);
5786 
5787 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
5788 		ret = -EINVAL;
5789 		goto out_complete_io_ret;
5790 	}
5791 
5792 	if (!bio->zone_report_buf->nr_zones) {
5793 		ret = -EINVAL;
5794 		goto out_complete_io_ret;
5795 	}
5796 
5797 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
5798 		ret = fill_zone_from_report(&info[bio->handled_zones],
5799 					    &bio->zone_report_buf->descs[i]);
5800 		if (ret) {
5801 			goto out_complete_io_ret;
5802 		}
5803 		bio->handled_zones++;
5804 	}
5805 
5806 	if (bio->handled_zones < zones_to_copy) {
5807 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
5808 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
5809 
5810 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
5811 		ret = spdk_nvme_zns_report_zones(ns, qpair,
5812 						 bio->zone_report_buf, zone_report_bufsize,
5813 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
5814 						 bdev_nvme_get_zone_info_done, bio);
5815 		if (!ret) {
5816 			return;
5817 		} else {
5818 			goto out_complete_io_ret;
5819 		}
5820 	}
5821 
5822 out_complete_io_nvme_cpl:
5823 	free(bio->zone_report_buf);
5824 	bio->zone_report_buf = NULL;
5825 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5826 	return;
5827 
5828 out_complete_io_ret:
5829 	free(bio->zone_report_buf);
5830 	bio->zone_report_buf = NULL;
5831 	bdev_nvme_io_complete(bio, ret);
5832 }
5833 
5834 static void
5835 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
5836 {
5837 	struct nvme_bdev_io *bio = ref;
5838 
5839 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5840 }
5841 
5842 static void
5843 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
5844 {
5845 	struct nvme_bdev_io *bio = ctx;
5846 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5847 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
5848 
5849 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
5850 
5851 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
5852 }
5853 
5854 static void
5855 bdev_nvme_abort_complete(void *ctx)
5856 {
5857 	struct nvme_bdev_io *bio = ctx;
5858 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5859 
5860 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
5861 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
5862 	} else {
5863 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
5864 	}
5865 }
5866 
5867 static void
5868 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
5869 {
5870 	struct nvme_bdev_io *bio = ref;
5871 
5872 	bio->cpl = *cpl;
5873 	spdk_thread_send_msg(bio->orig_thread, bdev_nvme_abort_complete, bio);
5874 }
5875 
5876 static void
5877 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
5878 {
5879 	struct nvme_bdev_io *bio = ref;
5880 
5881 	bio->cpl = *cpl;
5882 	spdk_thread_send_msg(bio->orig_thread,
5883 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
5884 }
5885 
5886 static void
5887 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
5888 {
5889 	struct nvme_bdev_io *bio = ref;
5890 	struct iovec *iov;
5891 
5892 	bio->iov_offset = sgl_offset;
5893 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
5894 		iov = &bio->iovs[bio->iovpos];
5895 		if (bio->iov_offset < iov->iov_len) {
5896 			break;
5897 		}
5898 
5899 		bio->iov_offset -= iov->iov_len;
5900 	}
5901 }
5902 
5903 static int
5904 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
5905 {
5906 	struct nvme_bdev_io *bio = ref;
5907 	struct iovec *iov;
5908 
5909 	assert(bio->iovpos < bio->iovcnt);
5910 
5911 	iov = &bio->iovs[bio->iovpos];
5912 
5913 	*address = iov->iov_base;
5914 	*length = iov->iov_len;
5915 
5916 	if (bio->iov_offset) {
5917 		assert(bio->iov_offset <= iov->iov_len);
5918 		*address += bio->iov_offset;
5919 		*length -= bio->iov_offset;
5920 	}
5921 
5922 	bio->iov_offset += *length;
5923 	if (bio->iov_offset == iov->iov_len) {
5924 		bio->iovpos++;
5925 		bio->iov_offset = 0;
5926 	}
5927 
5928 	return 0;
5929 }
5930 
5931 static void
5932 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
5933 {
5934 	struct nvme_bdev_io *bio = ref;
5935 	struct iovec *iov;
5936 
5937 	bio->fused_iov_offset = sgl_offset;
5938 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
5939 		iov = &bio->fused_iovs[bio->fused_iovpos];
5940 		if (bio->fused_iov_offset < iov->iov_len) {
5941 			break;
5942 		}
5943 
5944 		bio->fused_iov_offset -= iov->iov_len;
5945 	}
5946 }
5947 
5948 static int
5949 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
5950 {
5951 	struct nvme_bdev_io *bio = ref;
5952 	struct iovec *iov;
5953 
5954 	assert(bio->fused_iovpos < bio->fused_iovcnt);
5955 
5956 	iov = &bio->fused_iovs[bio->fused_iovpos];
5957 
5958 	*address = iov->iov_base;
5959 	*length = iov->iov_len;
5960 
5961 	if (bio->fused_iov_offset) {
5962 		assert(bio->fused_iov_offset <= iov->iov_len);
5963 		*address += bio->fused_iov_offset;
5964 		*length -= bio->fused_iov_offset;
5965 	}
5966 
5967 	bio->fused_iov_offset += *length;
5968 	if (bio->fused_iov_offset == iov->iov_len) {
5969 		bio->fused_iovpos++;
5970 		bio->fused_iov_offset = 0;
5971 	}
5972 
5973 	return 0;
5974 }
5975 
5976 static int
5977 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
5978 		      void *md, uint64_t lba_count, uint64_t lba)
5979 {
5980 	int rc;
5981 
5982 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
5983 		      lba_count, lba);
5984 
5985 	bio->iovs = iov;
5986 	bio->iovcnt = iovcnt;
5987 	bio->iovpos = 0;
5988 	bio->iov_offset = 0;
5989 
5990 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
5991 					    bio->io_path->qpair->qpair,
5992 					    lba, lba_count,
5993 					    bdev_nvme_no_pi_readv_done, bio, 0,
5994 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
5995 					    md, 0, 0);
5996 
5997 	if (rc != 0 && rc != -ENOMEM) {
5998 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
5999 	}
6000 	return rc;
6001 }
6002 
6003 static int
6004 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6005 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
6006 		struct spdk_bdev_ext_io_opts *ext_opts)
6007 {
6008 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6009 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6010 	int rc;
6011 
6012 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
6013 		      lba_count, lba);
6014 
6015 	bio->iovs = iov;
6016 	bio->iovcnt = iovcnt;
6017 	bio->iovpos = 0;
6018 	bio->iov_offset = 0;
6019 
6020 	if (ext_opts) {
6021 		bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts);
6022 		bio->ext_opts.memory_domain = ext_opts->memory_domain;
6023 		bio->ext_opts.memory_domain_ctx = ext_opts->memory_domain_ctx;
6024 		bio->ext_opts.io_flags = flags;
6025 		bio->ext_opts.metadata = md;
6026 
6027 		rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
6028 						bdev_nvme_readv_done, bio,
6029 						bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6030 						&bio->ext_opts);
6031 	} else if (iovcnt == 1) {
6032 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base, md, lba,
6033 						   lba_count,
6034 						   bdev_nvme_readv_done, bio,
6035 						   flags,
6036 						   0, 0);
6037 	} else {
6038 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
6039 						    bdev_nvme_readv_done, bio, flags,
6040 						    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6041 						    md, 0, 0);
6042 	}
6043 
6044 	if (rc != 0 && rc != -ENOMEM) {
6045 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
6046 	}
6047 	return rc;
6048 }
6049 
6050 static int
6051 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6052 		 void *md, uint64_t lba_count, uint64_t lba,
6053 		 uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts)
6054 {
6055 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6056 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6057 	int rc;
6058 
6059 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
6060 		      lba_count, lba);
6061 
6062 	bio->iovs = iov;
6063 	bio->iovcnt = iovcnt;
6064 	bio->iovpos = 0;
6065 	bio->iov_offset = 0;
6066 
6067 	if (ext_opts) {
6068 		bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts);
6069 		bio->ext_opts.memory_domain = ext_opts->memory_domain;
6070 		bio->ext_opts.memory_domain_ctx = ext_opts->memory_domain_ctx;
6071 		bio->ext_opts.io_flags = flags;
6072 		bio->ext_opts.metadata = md;
6073 
6074 		rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
6075 						 bdev_nvme_writev_done, bio,
6076 						 bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6077 						 &bio->ext_opts);
6078 	} else if (iovcnt == 1) {
6079 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base, md, lba,
6080 						    lba_count,
6081 						    bdev_nvme_writev_done, bio,
6082 						    flags,
6083 						    0, 0);
6084 	} else {
6085 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
6086 						     bdev_nvme_writev_done, bio, flags,
6087 						     bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6088 						     md, 0, 0);
6089 	}
6090 
6091 	if (rc != 0 && rc != -ENOMEM) {
6092 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
6093 	}
6094 	return rc;
6095 }
6096 
6097 static int
6098 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6099 		       void *md, uint64_t lba_count, uint64_t zslba,
6100 		       uint32_t flags)
6101 {
6102 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6103 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6104 	int rc;
6105 
6106 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
6107 		      lba_count, zslba);
6108 
6109 	bio->iovs = iov;
6110 	bio->iovcnt = iovcnt;
6111 	bio->iovpos = 0;
6112 	bio->iov_offset = 0;
6113 
6114 	if (iovcnt == 1) {
6115 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
6116 						       lba_count,
6117 						       bdev_nvme_zone_appendv_done, bio,
6118 						       flags,
6119 						       0, 0);
6120 	} else {
6121 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
6122 							bdev_nvme_zone_appendv_done, bio, flags,
6123 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6124 							md, 0, 0);
6125 	}
6126 
6127 	if (rc != 0 && rc != -ENOMEM) {
6128 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
6129 	}
6130 	return rc;
6131 }
6132 
6133 static int
6134 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6135 		   void *md, uint64_t lba_count, uint64_t lba,
6136 		   uint32_t flags)
6137 {
6138 	int rc;
6139 
6140 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
6141 		      lba_count, lba);
6142 
6143 	bio->iovs = iov;
6144 	bio->iovcnt = iovcnt;
6145 	bio->iovpos = 0;
6146 	bio->iov_offset = 0;
6147 
6148 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
6149 					       bio->io_path->qpair->qpair,
6150 					       lba, lba_count,
6151 					       bdev_nvme_comparev_done, bio, flags,
6152 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6153 					       md, 0, 0);
6154 
6155 	if (rc != 0 && rc != -ENOMEM) {
6156 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
6157 	}
6158 	return rc;
6159 }
6160 
6161 static int
6162 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
6163 			      struct iovec *write_iov, int write_iovcnt,
6164 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
6165 {
6166 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6167 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6168 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6169 	int rc;
6170 
6171 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
6172 		      lba_count, lba);
6173 
6174 	bio->iovs = cmp_iov;
6175 	bio->iovcnt = cmp_iovcnt;
6176 	bio->iovpos = 0;
6177 	bio->iov_offset = 0;
6178 	bio->fused_iovs = write_iov;
6179 	bio->fused_iovcnt = write_iovcnt;
6180 	bio->fused_iovpos = 0;
6181 	bio->fused_iov_offset = 0;
6182 
6183 	if (bdev_io->num_retries == 0) {
6184 		bio->first_fused_submitted = false;
6185 		bio->first_fused_completed = false;
6186 	}
6187 
6188 	if (!bio->first_fused_submitted) {
6189 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
6190 		memset(&bio->cpl, 0, sizeof(bio->cpl));
6191 
6192 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
6193 						       bdev_nvme_comparev_and_writev_done, bio, flags,
6194 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
6195 		if (rc == 0) {
6196 			bio->first_fused_submitted = true;
6197 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
6198 		} else {
6199 			if (rc != -ENOMEM) {
6200 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
6201 			}
6202 			return rc;
6203 		}
6204 	}
6205 
6206 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
6207 
6208 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
6209 					     bdev_nvme_comparev_and_writev_done, bio, flags,
6210 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
6211 	if (rc != 0 && rc != -ENOMEM) {
6212 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
6213 		rc = 0;
6214 	}
6215 
6216 	return rc;
6217 }
6218 
6219 static int
6220 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
6221 {
6222 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
6223 	struct spdk_nvme_dsm_range *range;
6224 	uint64_t offset, remaining;
6225 	uint64_t num_ranges_u64;
6226 	uint16_t num_ranges;
6227 	int rc;
6228 
6229 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
6230 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6231 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
6232 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
6233 		return -EINVAL;
6234 	}
6235 	num_ranges = (uint16_t)num_ranges_u64;
6236 
6237 	offset = offset_blocks;
6238 	remaining = num_blocks;
6239 	range = &dsm_ranges[0];
6240 
6241 	/* Fill max-size ranges until the remaining blocks fit into one range */
6242 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
6243 		range->attributes.raw = 0;
6244 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6245 		range->starting_lba = offset;
6246 
6247 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6248 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6249 		range++;
6250 	}
6251 
6252 	/* Final range describes the remaining blocks */
6253 	range->attributes.raw = 0;
6254 	range->length = remaining;
6255 	range->starting_lba = offset;
6256 
6257 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
6258 			bio->io_path->qpair->qpair,
6259 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
6260 			dsm_ranges, num_ranges,
6261 			bdev_nvme_queued_done, bio);
6262 
6263 	return rc;
6264 }
6265 
6266 static int
6267 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
6268 {
6269 	if (num_blocks > UINT16_MAX + 1) {
6270 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
6271 		return -EINVAL;
6272 	}
6273 
6274 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
6275 					     bio->io_path->qpair->qpair,
6276 					     offset_blocks, num_blocks,
6277 					     bdev_nvme_queued_done, bio,
6278 					     0);
6279 }
6280 
6281 static int
6282 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
6283 			struct spdk_bdev_zone_info *info)
6284 {
6285 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6286 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6287 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
6288 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
6289 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
6290 
6291 	if (zone_id % zone_size != 0) {
6292 		return -EINVAL;
6293 	}
6294 
6295 	if (num_zones > total_zones || !num_zones) {
6296 		return -EINVAL;
6297 	}
6298 
6299 	assert(!bio->zone_report_buf);
6300 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
6301 	if (!bio->zone_report_buf) {
6302 		return -ENOMEM;
6303 	}
6304 
6305 	bio->handled_zones = 0;
6306 
6307 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
6308 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
6309 					  bdev_nvme_get_zone_info_done, bio);
6310 }
6311 
6312 static int
6313 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
6314 			  enum spdk_bdev_zone_action action)
6315 {
6316 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6317 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6318 
6319 	switch (action) {
6320 	case SPDK_BDEV_ZONE_CLOSE:
6321 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
6322 						bdev_nvme_zone_management_done, bio);
6323 	case SPDK_BDEV_ZONE_FINISH:
6324 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
6325 						 bdev_nvme_zone_management_done, bio);
6326 	case SPDK_BDEV_ZONE_OPEN:
6327 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
6328 					       bdev_nvme_zone_management_done, bio);
6329 	case SPDK_BDEV_ZONE_RESET:
6330 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
6331 						bdev_nvme_zone_management_done, bio);
6332 	case SPDK_BDEV_ZONE_OFFLINE:
6333 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
6334 						  bdev_nvme_zone_management_done, bio);
6335 	default:
6336 		return -EINVAL;
6337 	}
6338 }
6339 
6340 static void
6341 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
6342 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
6343 {
6344 	struct nvme_io_path *io_path;
6345 	struct nvme_ctrlr *nvme_ctrlr;
6346 	uint32_t max_xfer_size;
6347 	int rc = -ENXIO;
6348 
6349 	/* Choose the first ctrlr which is not failed. */
6350 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
6351 		nvme_ctrlr = io_path->qpair->ctrlr;
6352 
6353 		/* We should skip any unavailable nvme_ctrlr rather than checking
6354 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
6355 		 */
6356 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
6357 			continue;
6358 		}
6359 
6360 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
6361 
6362 		if (nbytes > max_xfer_size) {
6363 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
6364 			rc = -EINVAL;
6365 			goto err;
6366 		}
6367 
6368 		bio->io_path = io_path;
6369 		bio->orig_thread = spdk_get_thread();
6370 
6371 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
6372 						   bdev_nvme_admin_passthru_done, bio);
6373 		if (rc == 0) {
6374 			return;
6375 		}
6376 	}
6377 
6378 err:
6379 	bdev_nvme_admin_passthru_complete(bio, rc);
6380 }
6381 
6382 static int
6383 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
6384 		      void *buf, size_t nbytes)
6385 {
6386 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6387 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6388 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
6389 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
6390 
6391 	if (nbytes > max_xfer_size) {
6392 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
6393 		return -EINVAL;
6394 	}
6395 
6396 	/*
6397 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
6398 	 * so fill it out automatically.
6399 	 */
6400 	cmd->nsid = spdk_nvme_ns_get_id(ns);
6401 
6402 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
6403 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
6404 }
6405 
6406 static int
6407 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
6408 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
6409 {
6410 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6411 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6412 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
6413 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
6414 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
6415 
6416 	if (nbytes > max_xfer_size) {
6417 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
6418 		return -EINVAL;
6419 	}
6420 
6421 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
6422 		SPDK_ERRLOG("invalid meta data buffer size\n");
6423 		return -EINVAL;
6424 	}
6425 
6426 	/*
6427 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
6428 	 * so fill it out automatically.
6429 	 */
6430 	cmd->nsid = spdk_nvme_ns_get_id(ns);
6431 
6432 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
6433 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
6434 }
6435 
6436 static void
6437 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
6438 		struct nvme_bdev_io *bio_to_abort)
6439 {
6440 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6441 	struct spdk_bdev_io *bdev_io_to_abort;
6442 	struct nvme_io_path *io_path;
6443 	struct nvme_ctrlr *nvme_ctrlr;
6444 	int rc = 0;
6445 
6446 	bio->orig_thread = spdk_get_thread();
6447 
6448 	/* Traverse the retry_io_list first. */
6449 	TAILQ_FOREACH(bdev_io_to_abort, &nbdev_ch->retry_io_list, module_link) {
6450 		if ((struct nvme_bdev_io *)bdev_io_to_abort->driver_ctx == bio_to_abort) {
6451 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io_to_abort, module_link);
6452 			__bdev_nvme_io_complete(bdev_io_to_abort, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
6453 
6454 			__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
6455 			return;
6456 		}
6457 	}
6458 
6459 	/* Even admin commands, they were submitted to only nvme_ctrlrs which were
6460 	 * on any io_path. So traverse the io_path list for not only I/O commands
6461 	 * but also admin commands.
6462 	 */
6463 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
6464 		nvme_ctrlr = io_path->qpair->ctrlr;
6465 
6466 		rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ctrlr->ctrlr,
6467 						   io_path->qpair->qpair,
6468 						   bio_to_abort,
6469 						   bdev_nvme_abort_done, bio);
6470 		if (rc == -ENOENT) {
6471 			/* If no command was found in I/O qpair, the target command may be
6472 			 * admin command.
6473 			 */
6474 			rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ctrlr->ctrlr,
6475 							   NULL,
6476 							   bio_to_abort,
6477 							   bdev_nvme_abort_done, bio);
6478 		}
6479 
6480 		if (rc != -ENOENT) {
6481 			break;
6482 		}
6483 	}
6484 
6485 	if (rc != 0) {
6486 		/* If no command was found or there was any error, complete the abort
6487 		 * request with failure.
6488 		 */
6489 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
6490 	}
6491 }
6492 
6493 static void
6494 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
6495 {
6496 	const char	*action;
6497 
6498 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
6499 		action = "reset";
6500 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
6501 		action = "abort";
6502 	} else {
6503 		action = "none";
6504 	}
6505 
6506 	spdk_json_write_object_begin(w);
6507 
6508 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
6509 
6510 	spdk_json_write_named_object_begin(w, "params");
6511 	spdk_json_write_named_string(w, "action_on_timeout", action);
6512 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
6513 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
6514 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
6515 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
6516 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
6517 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
6518 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
6519 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
6520 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
6521 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
6522 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
6523 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
6524 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
6525 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
6526 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
6527 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
6528 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
6529 	spdk_json_write_object_end(w);
6530 
6531 	spdk_json_write_object_end(w);
6532 }
6533 
6534 static void
6535 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
6536 {
6537 	struct spdk_nvme_transport_id trid;
6538 
6539 	spdk_json_write_object_begin(w);
6540 
6541 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
6542 
6543 	spdk_json_write_named_object_begin(w, "params");
6544 	spdk_json_write_named_string(w, "name", ctx->name);
6545 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
6546 
6547 	trid = ctx->trid;
6548 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
6549 	nvme_bdev_dump_trid_json(&trid, w);
6550 
6551 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
6552 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
6553 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
6554 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
6555 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
6556 	spdk_json_write_object_end(w);
6557 
6558 	spdk_json_write_object_end(w);
6559 }
6560 
6561 static void
6562 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
6563 		       struct nvme_ctrlr *nvme_ctrlr)
6564 {
6565 	struct spdk_nvme_transport_id	*trid;
6566 
6567 	if (nvme_ctrlr->opts.from_discovery_service) {
6568 		/* Do not emit an RPC for this - it will be implicitly
6569 		 * covered by a separate bdev_nvme_start_discovery RPC.
6570 		 */
6571 		return;
6572 	}
6573 
6574 	trid = &nvme_ctrlr->active_path_id->trid;
6575 
6576 	spdk_json_write_object_begin(w);
6577 
6578 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
6579 
6580 	spdk_json_write_named_object_begin(w, "params");
6581 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
6582 	nvme_bdev_dump_trid_json(trid, w);
6583 	spdk_json_write_named_bool(w, "prchk_reftag",
6584 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
6585 	spdk_json_write_named_bool(w, "prchk_guard",
6586 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
6587 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
6588 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
6589 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
6590 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
6591 
6592 	spdk_json_write_object_end(w);
6593 
6594 	spdk_json_write_object_end(w);
6595 }
6596 
6597 static void
6598 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
6599 {
6600 	spdk_json_write_object_begin(w);
6601 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
6602 
6603 	spdk_json_write_named_object_begin(w, "params");
6604 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
6605 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
6606 	spdk_json_write_object_end(w);
6607 
6608 	spdk_json_write_object_end(w);
6609 }
6610 
6611 static int
6612 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
6613 {
6614 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
6615 	struct nvme_ctrlr	*nvme_ctrlr;
6616 	struct discovery_ctx	*ctx;
6617 
6618 	bdev_nvme_opts_config_json(w);
6619 
6620 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6621 
6622 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
6623 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6624 			nvme_ctrlr_config_json(w, nvme_ctrlr);
6625 		}
6626 	}
6627 
6628 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6629 		bdev_nvme_discovery_config_json(w, ctx);
6630 	}
6631 
6632 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
6633 	 * before enabling hotplug poller.
6634 	 */
6635 	bdev_nvme_hotplug_config_json(w);
6636 
6637 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6638 	return 0;
6639 }
6640 
6641 struct spdk_nvme_ctrlr *
6642 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
6643 {
6644 	struct nvme_bdev *nbdev;
6645 	struct nvme_ns *nvme_ns;
6646 
6647 	if (!bdev || bdev->module != &nvme_if) {
6648 		return NULL;
6649 	}
6650 
6651 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
6652 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
6653 	assert(nvme_ns != NULL);
6654 
6655 	return nvme_ns->ctrlr->ctrlr;
6656 }
6657 
6658 void
6659 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
6660 {
6661 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
6662 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
6663 	const struct spdk_nvme_ctrlr_data *cdata;
6664 	const struct spdk_nvme_transport_id *trid;
6665 	const char *adrfam_str;
6666 
6667 	spdk_json_write_object_begin(w);
6668 
6669 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
6670 
6671 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
6672 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
6673 
6674 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
6675 	spdk_json_write_named_bool(w, "current", io_path == io_path->nbdev_ch->current_io_path);
6676 	spdk_json_write_named_bool(w, "connected", nvme_io_path_is_connected(io_path));
6677 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
6678 
6679 	spdk_json_write_named_object_begin(w, "transport");
6680 	spdk_json_write_named_string(w, "trtype", trid->trstring);
6681 	spdk_json_write_named_string(w, "traddr", trid->traddr);
6682 	if (trid->trsvcid[0] != '\0') {
6683 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
6684 	}
6685 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
6686 	if (adrfam_str) {
6687 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
6688 	}
6689 	spdk_json_write_object_end(w);
6690 
6691 	spdk_json_write_object_end(w);
6692 }
6693 
6694 void
6695 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
6696 {
6697 	struct discovery_ctx *ctx;
6698 	struct discovery_entry_ctx *entry_ctx;
6699 
6700 	spdk_json_write_array_begin(w);
6701 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6702 		spdk_json_write_object_begin(w);
6703 		spdk_json_write_named_string(w, "name", ctx->name);
6704 
6705 		spdk_json_write_named_object_begin(w, "trid");
6706 		nvme_bdev_dump_trid_json(&ctx->trid, w);
6707 		spdk_json_write_object_end(w);
6708 
6709 		spdk_json_write_named_array_begin(w, "referrals");
6710 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
6711 			spdk_json_write_object_begin(w);
6712 			spdk_json_write_named_object_begin(w, "trid");
6713 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
6714 			spdk_json_write_object_end(w);
6715 			spdk_json_write_object_end(w);
6716 		}
6717 		spdk_json_write_array_end(w);
6718 
6719 		spdk_json_write_object_end(w);
6720 	}
6721 	spdk_json_write_array_end(w);
6722 }
6723 
6724 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
6725 
6726 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
6727 {
6728 	struct spdk_trace_tpoint_opts opts[] = {
6729 		{
6730 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
6731 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 1,
6732 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
6733 		},
6734 		{
6735 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
6736 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 0,
6737 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
6738 		}
6739 	};
6740 
6741 
6742 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
6743 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
6744 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
6745 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
6746 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
6747 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
6748 }
6749