xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision d987d777d6b8ce05f11cb1d90f1241bfecfc9af4)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/keyring.h"
18 #include "spdk/likely.h"
19 #include "spdk/nvme.h"
20 #include "spdk/nvme_ocssd.h"
21 #include "spdk/nvme_zns.h"
22 #include "spdk/opal.h"
23 #include "spdk/thread.h"
24 #include "spdk/trace.h"
25 #include "spdk/string.h"
26 #include "spdk/util.h"
27 #include "spdk/uuid.h"
28 
29 #include "spdk/bdev_module.h"
30 #include "spdk/log.h"
31 
32 #include "spdk_internal/usdt.h"
33 #include "spdk_internal/trace_defs.h"
34 
35 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
36 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
37 
38 #define NSID_STR_LEN 10
39 
40 #define SPDK_CONTROLLER_NAME_MAX 512
41 
42 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
43 
44 struct nvme_bdev_io {
45 	/** array of iovecs to transfer. */
46 	struct iovec *iovs;
47 
48 	/** Number of iovecs in iovs array. */
49 	int iovcnt;
50 
51 	/** Current iovec position. */
52 	int iovpos;
53 
54 	/** Offset in current iovec. */
55 	uint32_t iov_offset;
56 
57 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
58 	 *  being reset in a reset I/O.
59 	 */
60 	struct nvme_io_path *io_path;
61 
62 	/** array of iovecs to transfer. */
63 	struct iovec *fused_iovs;
64 
65 	/** Number of iovecs in iovs array. */
66 	int fused_iovcnt;
67 
68 	/** Current iovec position. */
69 	int fused_iovpos;
70 
71 	/** Offset in current iovec. */
72 	uint32_t fused_iov_offset;
73 
74 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
75 	struct spdk_nvme_cpl cpl;
76 
77 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
78 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
79 
80 	/** Keeps track if first of fused commands was submitted */
81 	bool first_fused_submitted;
82 
83 	/** Keeps track if first of fused commands was completed */
84 	bool first_fused_completed;
85 
86 	/** Temporary pointer to zone report buffer */
87 	struct spdk_nvme_zns_zone_report *zone_report_buf;
88 
89 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
90 	uint64_t handled_zones;
91 
92 	/** Expiration value in ticks to retry the current I/O. */
93 	uint64_t retry_ticks;
94 
95 	/* How many times the current I/O was retried. */
96 	int32_t retry_count;
97 
98 	/* Current tsc at submit time. */
99 	uint64_t submit_tsc;
100 
101 	/* Used to put nvme_bdev_io into the list */
102 	TAILQ_ENTRY(nvme_bdev_io) retry_link;
103 };
104 
105 struct nvme_probe_skip_entry {
106 	struct spdk_nvme_transport_id		trid;
107 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
108 };
109 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
110 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
111 			g_skipped_nvme_ctrlrs);
112 
113 #define BDEV_NVME_DEFAULT_DIGESTS (SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) | \
114 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) | \
115 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512))
116 
117 #define BDEV_NVME_DEFAULT_DHGROUPS (SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) | \
118 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) | \
119 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) | \
120 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) | \
121 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) | \
122 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192))
123 
124 static struct spdk_bdev_nvme_opts g_opts = {
125 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
126 	.timeout_us = 0,
127 	.timeout_admin_us = 0,
128 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
129 	.transport_retry_count = 4,
130 	.arbitration_burst = 0,
131 	.low_priority_weight = 0,
132 	.medium_priority_weight = 0,
133 	.high_priority_weight = 0,
134 	.nvme_adminq_poll_period_us = 10000ULL,
135 	.nvme_ioq_poll_period_us = 0,
136 	.io_queue_requests = 0,
137 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
138 	.bdev_retry_count = 3,
139 	.transport_ack_timeout = 0,
140 	.ctrlr_loss_timeout_sec = 0,
141 	.reconnect_delay_sec = 0,
142 	.fast_io_fail_timeout_sec = 0,
143 	.disable_auto_failback = false,
144 	.generate_uuids = false,
145 	.transport_tos = 0,
146 	.nvme_error_stat = false,
147 	.io_path_stat = false,
148 	.allow_accel_sequence = false,
149 	.dhchap_digests = BDEV_NVME_DEFAULT_DIGESTS,
150 	.dhchap_dhgroups = BDEV_NVME_DEFAULT_DHGROUPS,
151 };
152 
153 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
154 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
155 
156 static int g_hot_insert_nvme_controller_index = 0;
157 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
158 static bool g_nvme_hotplug_enabled = false;
159 struct spdk_thread *g_bdev_nvme_init_thread;
160 static struct spdk_poller *g_hotplug_poller;
161 static struct spdk_poller *g_hotplug_probe_poller;
162 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
163 
164 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
165 		struct nvme_async_probe_ctx *ctx);
166 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
167 		struct nvme_async_probe_ctx *ctx);
168 static int bdev_nvme_library_init(void);
169 static void bdev_nvme_library_fini(void);
170 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
171 				      struct spdk_bdev_io *bdev_io);
172 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
173 				     struct spdk_bdev_io *bdev_io);
174 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
175 			   void *md, uint64_t lba_count, uint64_t lba,
176 			   uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
177 			   struct spdk_accel_sequence *seq);
178 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
179 				 void *md, uint64_t lba_count, uint64_t lba);
180 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
181 			    void *md, uint64_t lba_count, uint64_t lba,
182 			    uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
183 			    struct spdk_accel_sequence *seq,
184 			    union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13);
185 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
186 				  void *md, uint64_t lba_count,
187 				  uint64_t zslba, uint32_t flags);
188 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
189 			      void *md, uint64_t lba_count, uint64_t lba,
190 			      uint32_t flags);
191 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
192 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
193 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
194 		uint32_t flags);
195 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
196 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
197 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
198 				     enum spdk_bdev_zone_action action);
199 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
200 				     struct nvme_bdev_io *bio,
201 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
202 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
203 				 void *buf, size_t nbytes);
204 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
205 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
206 static int bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
207 				     struct iovec *iov, int iovcnt, size_t nbytes,
208 				     void *md_buf, size_t md_len);
209 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
210 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
211 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
212 static int bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
213 static int bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
214 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
215 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
216 
217 static struct nvme_ns *nvme_ns_alloc(void);
218 static void nvme_ns_free(struct nvme_ns *ns);
219 
220 static int
221 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
222 {
223 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
224 }
225 
226 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
227 
228 struct spdk_nvme_qpair *
229 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
230 {
231 	struct nvme_ctrlr_channel *ctrlr_ch;
232 
233 	assert(ctrlr_io_ch != NULL);
234 
235 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
236 
237 	return ctrlr_ch->qpair->qpair;
238 }
239 
240 static int
241 bdev_nvme_get_ctx_size(void)
242 {
243 	return sizeof(struct nvme_bdev_io);
244 }
245 
246 static struct spdk_bdev_module nvme_if = {
247 	.name = "nvme",
248 	.async_fini = true,
249 	.module_init = bdev_nvme_library_init,
250 	.module_fini = bdev_nvme_library_fini,
251 	.config_json = bdev_nvme_config_json,
252 	.get_ctx_size = bdev_nvme_get_ctx_size,
253 
254 };
255 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
256 
257 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
258 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
259 bool g_bdev_nvme_module_finish;
260 
261 struct nvme_bdev_ctrlr *
262 nvme_bdev_ctrlr_get_by_name(const char *name)
263 {
264 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
265 
266 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
267 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
268 			break;
269 		}
270 	}
271 
272 	return nbdev_ctrlr;
273 }
274 
275 static struct nvme_ctrlr *
276 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
277 			  const struct spdk_nvme_transport_id *trid, const char *hostnqn)
278 {
279 	const struct spdk_nvme_ctrlr_opts *opts;
280 	struct nvme_ctrlr *nvme_ctrlr;
281 
282 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
283 		opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
284 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0 &&
285 		    strcmp(hostnqn, opts->hostnqn) == 0) {
286 			break;
287 		}
288 	}
289 
290 	return nvme_ctrlr;
291 }
292 
293 struct nvme_ctrlr *
294 nvme_bdev_ctrlr_get_ctrlr_by_id(struct nvme_bdev_ctrlr *nbdev_ctrlr,
295 				uint16_t cntlid)
296 {
297 	struct nvme_ctrlr *nvme_ctrlr;
298 	const struct spdk_nvme_ctrlr_data *cdata;
299 
300 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
301 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
302 		if (cdata->cntlid == cntlid) {
303 			break;
304 		}
305 	}
306 
307 	return nvme_ctrlr;
308 }
309 
310 static struct nvme_bdev *
311 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
312 {
313 	struct nvme_bdev *bdev;
314 
315 	pthread_mutex_lock(&g_bdev_nvme_mutex);
316 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
317 		if (bdev->nsid == nsid) {
318 			break;
319 		}
320 	}
321 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
322 
323 	return bdev;
324 }
325 
326 struct nvme_ns *
327 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
328 {
329 	struct nvme_ns ns;
330 
331 	assert(nsid > 0);
332 
333 	ns.id = nsid;
334 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
335 }
336 
337 struct nvme_ns *
338 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
339 {
340 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
341 }
342 
343 struct nvme_ns *
344 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
345 {
346 	if (ns == NULL) {
347 		return NULL;
348 	}
349 
350 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
351 }
352 
353 static struct nvme_ctrlr *
354 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid, const char *hostnqn)
355 {
356 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
357 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
358 
359 	pthread_mutex_lock(&g_bdev_nvme_mutex);
360 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
361 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid, hostnqn);
362 		if (nvme_ctrlr != NULL) {
363 			break;
364 		}
365 	}
366 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
367 
368 	return nvme_ctrlr;
369 }
370 
371 struct nvme_ctrlr *
372 nvme_ctrlr_get_by_name(const char *name)
373 {
374 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
375 	struct nvme_ctrlr *nvme_ctrlr = NULL;
376 
377 	if (name == NULL) {
378 		return NULL;
379 	}
380 
381 	pthread_mutex_lock(&g_bdev_nvme_mutex);
382 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
383 	if (nbdev_ctrlr != NULL) {
384 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
385 	}
386 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
387 
388 	return nvme_ctrlr;
389 }
390 
391 void
392 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
393 {
394 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
395 
396 	pthread_mutex_lock(&g_bdev_nvme_mutex);
397 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
398 		fn(nbdev_ctrlr, ctx);
399 	}
400 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
401 }
402 
403 void
404 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
405 {
406 	const char *trtype_str;
407 	const char *adrfam_str;
408 
409 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
410 	if (trtype_str) {
411 		spdk_json_write_named_string(w, "trtype", trtype_str);
412 	}
413 
414 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
415 	if (adrfam_str) {
416 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
417 	}
418 
419 	if (trid->traddr[0] != '\0') {
420 		spdk_json_write_named_string(w, "traddr", trid->traddr);
421 	}
422 
423 	if (trid->trsvcid[0] != '\0') {
424 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
425 	}
426 
427 	if (trid->subnqn[0] != '\0') {
428 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
429 	}
430 }
431 
432 static void
433 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
434 		       struct nvme_ctrlr *nvme_ctrlr)
435 {
436 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
437 	pthread_mutex_lock(&g_bdev_nvme_mutex);
438 
439 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
440 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
441 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
442 
443 		return;
444 	}
445 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
446 
447 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
448 
449 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
450 
451 	free(nbdev_ctrlr->name);
452 	free(nbdev_ctrlr);
453 }
454 
455 static void
456 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
457 {
458 	struct nvme_path_id *path_id, *tmp_path;
459 	struct nvme_ns *ns, *tmp_ns;
460 
461 	free(nvme_ctrlr->copied_ana_desc);
462 	spdk_free(nvme_ctrlr->ana_log_page);
463 
464 	if (nvme_ctrlr->opal_dev) {
465 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
466 		nvme_ctrlr->opal_dev = NULL;
467 	}
468 
469 	if (nvme_ctrlr->nbdev_ctrlr) {
470 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
471 	}
472 
473 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
474 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
475 		nvme_ns_free(ns);
476 	}
477 
478 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
479 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
480 		free(path_id);
481 	}
482 
483 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
484 	spdk_keyring_put_key(nvme_ctrlr->psk);
485 	spdk_keyring_put_key(nvme_ctrlr->dhchap_key);
486 	spdk_keyring_put_key(nvme_ctrlr->dhchap_ctrlr_key);
487 	free(nvme_ctrlr);
488 
489 	pthread_mutex_lock(&g_bdev_nvme_mutex);
490 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
491 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
492 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
493 		spdk_bdev_module_fini_done();
494 		return;
495 	}
496 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
497 }
498 
499 static int
500 nvme_detach_poller(void *arg)
501 {
502 	struct nvme_ctrlr *nvme_ctrlr = arg;
503 	int rc;
504 
505 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
506 	if (rc != -EAGAIN) {
507 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
508 		_nvme_ctrlr_delete(nvme_ctrlr);
509 	}
510 
511 	return SPDK_POLLER_BUSY;
512 }
513 
514 static void
515 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
516 {
517 	int rc;
518 
519 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
520 
521 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
522 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
523 
524 	/* If we got here, the reset/detach poller cannot be active */
525 	assert(nvme_ctrlr->reset_detach_poller == NULL);
526 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
527 					  nvme_ctrlr, 1000);
528 	if (nvme_ctrlr->reset_detach_poller == NULL) {
529 		SPDK_ERRLOG("Failed to register detach poller\n");
530 		goto error;
531 	}
532 
533 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
534 	if (rc != 0) {
535 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
536 		goto error;
537 	}
538 
539 	return;
540 error:
541 	/* We don't have a good way to handle errors here, so just do what we can and delete the
542 	 * controller without detaching the underlying NVMe device.
543 	 */
544 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
545 	_nvme_ctrlr_delete(nvme_ctrlr);
546 }
547 
548 static void
549 nvme_ctrlr_unregister_cb(void *io_device)
550 {
551 	struct nvme_ctrlr *nvme_ctrlr = io_device;
552 
553 	nvme_ctrlr_delete(nvme_ctrlr);
554 }
555 
556 static void
557 nvme_ctrlr_unregister(void *ctx)
558 {
559 	struct nvme_ctrlr *nvme_ctrlr = ctx;
560 
561 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
562 }
563 
564 static bool
565 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
566 {
567 	if (!nvme_ctrlr->destruct) {
568 		return false;
569 	}
570 
571 	if (nvme_ctrlr->ref > 0) {
572 		return false;
573 	}
574 
575 	if (nvme_ctrlr->resetting) {
576 		return false;
577 	}
578 
579 	if (nvme_ctrlr->ana_log_page_updating) {
580 		return false;
581 	}
582 
583 	if (nvme_ctrlr->io_path_cache_clearing) {
584 		return false;
585 	}
586 
587 	return true;
588 }
589 
590 static void
591 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
592 {
593 	pthread_mutex_lock(&nvme_ctrlr->mutex);
594 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
595 
596 	assert(nvme_ctrlr->ref > 0);
597 	nvme_ctrlr->ref--;
598 
599 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
600 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
601 		return;
602 	}
603 
604 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
605 
606 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
607 }
608 
609 static void
610 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch)
611 {
612 	nbdev_ch->current_io_path = NULL;
613 	nbdev_ch->rr_counter = 0;
614 }
615 
616 static struct nvme_io_path *
617 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
618 {
619 	struct nvme_io_path *io_path;
620 
621 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
622 		if (io_path->nvme_ns == nvme_ns) {
623 			break;
624 		}
625 	}
626 
627 	return io_path;
628 }
629 
630 static struct nvme_io_path *
631 nvme_io_path_alloc(void)
632 {
633 	struct nvme_io_path *io_path;
634 
635 	io_path = calloc(1, sizeof(*io_path));
636 	if (io_path == NULL) {
637 		SPDK_ERRLOG("Failed to alloc io_path.\n");
638 		return NULL;
639 	}
640 
641 	if (g_opts.io_path_stat) {
642 		io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
643 		if (io_path->stat == NULL) {
644 			free(io_path);
645 			SPDK_ERRLOG("Failed to alloc io_path stat.\n");
646 			return NULL;
647 		}
648 		spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
649 	}
650 
651 	return io_path;
652 }
653 
654 static void
655 nvme_io_path_free(struct nvme_io_path *io_path)
656 {
657 	free(io_path->stat);
658 	free(io_path);
659 }
660 
661 static int
662 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
663 {
664 	struct nvme_io_path *io_path;
665 	struct spdk_io_channel *ch;
666 	struct nvme_ctrlr_channel *ctrlr_ch;
667 	struct nvme_qpair *nvme_qpair;
668 
669 	io_path = nvme_io_path_alloc();
670 	if (io_path == NULL) {
671 		return -ENOMEM;
672 	}
673 
674 	io_path->nvme_ns = nvme_ns;
675 
676 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
677 	if (ch == NULL) {
678 		nvme_io_path_free(io_path);
679 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
680 		return -ENOMEM;
681 	}
682 
683 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
684 
685 	nvme_qpair = ctrlr_ch->qpair;
686 	assert(nvme_qpair != NULL);
687 
688 	io_path->qpair = nvme_qpair;
689 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
690 
691 	io_path->nbdev_ch = nbdev_ch;
692 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
693 
694 	bdev_nvme_clear_current_io_path(nbdev_ch);
695 
696 	return 0;
697 }
698 
699 static void
700 bdev_nvme_clear_retry_io_path(struct nvme_bdev_channel *nbdev_ch,
701 			      struct nvme_io_path *io_path)
702 {
703 	struct nvme_bdev_io *bio;
704 
705 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
706 		if (bio->io_path == io_path) {
707 			bio->io_path = NULL;
708 		}
709 	}
710 }
711 
712 static void
713 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
714 {
715 	struct spdk_io_channel *ch;
716 	struct nvme_qpair *nvme_qpair;
717 	struct nvme_ctrlr_channel *ctrlr_ch;
718 	struct nvme_bdev *nbdev;
719 
720 	nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch));
721 
722 	/* Add the statistics to nvme_ns before this path is destroyed. */
723 	pthread_mutex_lock(&nbdev->mutex);
724 	if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) {
725 		spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat);
726 	}
727 	pthread_mutex_unlock(&nbdev->mutex);
728 
729 	bdev_nvme_clear_current_io_path(nbdev_ch);
730 	bdev_nvme_clear_retry_io_path(nbdev_ch, io_path);
731 
732 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
733 	io_path->nbdev_ch = NULL;
734 
735 	nvme_qpair = io_path->qpair;
736 	assert(nvme_qpair != NULL);
737 
738 	ctrlr_ch = nvme_qpair->ctrlr_ch;
739 	assert(ctrlr_ch != NULL);
740 
741 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
742 	spdk_put_io_channel(ch);
743 
744 	/* After an io_path is removed, I/Os submitted to it may complete and update statistics
745 	 * of the io_path. To avoid heap-use-after-free error from this case, do not free the
746 	 * io_path here but free the io_path when the associated qpair is freed. It is ensured
747 	 * that all I/Os submitted to the io_path are completed when the associated qpair is freed.
748 	 */
749 }
750 
751 static void
752 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
753 {
754 	struct nvme_io_path *io_path, *tmp_io_path;
755 
756 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
757 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
758 	}
759 }
760 
761 static int
762 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
763 {
764 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
765 	struct nvme_bdev *nbdev = io_device;
766 	struct nvme_ns *nvme_ns;
767 	int rc;
768 
769 	STAILQ_INIT(&nbdev_ch->io_path_list);
770 	TAILQ_INIT(&nbdev_ch->retry_io_list);
771 
772 	pthread_mutex_lock(&nbdev->mutex);
773 
774 	nbdev_ch->mp_policy = nbdev->mp_policy;
775 	nbdev_ch->mp_selector = nbdev->mp_selector;
776 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
777 
778 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
779 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
780 		if (rc != 0) {
781 			pthread_mutex_unlock(&nbdev->mutex);
782 
783 			_bdev_nvme_delete_io_paths(nbdev_ch);
784 			return rc;
785 		}
786 	}
787 	pthread_mutex_unlock(&nbdev->mutex);
788 
789 	return 0;
790 }
791 
792 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
793  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
794  */
795 static inline void
796 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
797 			const struct spdk_nvme_cpl *cpl)
798 {
799 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
800 			  (uintptr_t)bdev_io);
801 	if (cpl) {
802 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
803 	} else {
804 		spdk_bdev_io_complete(bdev_io, status);
805 	}
806 }
807 
808 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
809 
810 static void
811 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
812 {
813 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
814 
815 	bdev_nvme_abort_retry_ios(nbdev_ch);
816 	_bdev_nvme_delete_io_paths(nbdev_ch);
817 }
818 
819 static inline bool
820 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
821 {
822 	switch (io_type) {
823 	case SPDK_BDEV_IO_TYPE_RESET:
824 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
825 	case SPDK_BDEV_IO_TYPE_ABORT:
826 		return true;
827 	default:
828 		break;
829 	}
830 
831 	return false;
832 }
833 
834 static inline bool
835 nvme_ns_is_active(struct nvme_ns *nvme_ns)
836 {
837 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
838 		return false;
839 	}
840 
841 	if (spdk_unlikely(nvme_ns->ns == NULL)) {
842 		return false;
843 	}
844 
845 	return true;
846 }
847 
848 static inline bool
849 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
850 {
851 	if (spdk_unlikely(!nvme_ns_is_active(nvme_ns))) {
852 		return false;
853 	}
854 
855 	switch (nvme_ns->ana_state) {
856 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
857 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
858 		return true;
859 	default:
860 		break;
861 	}
862 
863 	return false;
864 }
865 
866 static inline bool
867 nvme_qpair_is_connected(struct nvme_qpair *nvme_qpair)
868 {
869 	if (spdk_unlikely(nvme_qpair->qpair == NULL)) {
870 		return false;
871 	}
872 
873 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
874 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
875 		return false;
876 	}
877 
878 	if (spdk_unlikely(nvme_qpair->ctrlr_ch->reset_iter != NULL)) {
879 		return false;
880 	}
881 
882 	return true;
883 }
884 
885 static inline bool
886 nvme_io_path_is_available(struct nvme_io_path *io_path)
887 {
888 	if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
889 		return false;
890 	}
891 
892 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
893 		return false;
894 	}
895 
896 	return true;
897 }
898 
899 static inline bool
900 nvme_ctrlr_is_failed(struct nvme_ctrlr *nvme_ctrlr)
901 {
902 	if (nvme_ctrlr->destruct) {
903 		return true;
904 	}
905 
906 	if (nvme_ctrlr->fast_io_fail_timedout) {
907 		return true;
908 	}
909 
910 	if (nvme_ctrlr->resetting) {
911 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
912 			return false;
913 		} else {
914 			return true;
915 		}
916 	}
917 
918 	if (nvme_ctrlr->reconnect_is_delayed) {
919 		return false;
920 	}
921 
922 	if (nvme_ctrlr->disabled) {
923 		return true;
924 	}
925 
926 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
927 		return true;
928 	} else {
929 		return false;
930 	}
931 }
932 
933 static bool
934 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
935 {
936 	if (nvme_ctrlr->destruct) {
937 		return false;
938 	}
939 
940 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
941 		return false;
942 	}
943 
944 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
945 		return false;
946 	}
947 
948 	if (nvme_ctrlr->disabled) {
949 		return false;
950 	}
951 
952 	return true;
953 }
954 
955 /* Simulate circular linked list. */
956 static inline struct nvme_io_path *
957 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
958 {
959 	struct nvme_io_path *next_path;
960 
961 	if (prev_path != NULL) {
962 		next_path = STAILQ_NEXT(prev_path, stailq);
963 		if (next_path != NULL) {
964 			return next_path;
965 		}
966 	}
967 
968 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
969 }
970 
971 static struct nvme_io_path *
972 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
973 {
974 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
975 
976 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
977 
978 	io_path = start;
979 	do {
980 		if (spdk_likely(nvme_io_path_is_available(io_path))) {
981 			switch (io_path->nvme_ns->ana_state) {
982 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
983 				nbdev_ch->current_io_path = io_path;
984 				return io_path;
985 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
986 				if (non_optimized == NULL) {
987 					non_optimized = io_path;
988 				}
989 				break;
990 			default:
991 				assert(false);
992 				break;
993 			}
994 		}
995 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
996 	} while (io_path != start);
997 
998 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
999 		/* We come here only if there is no optimized path. Cache even non_optimized
1000 		 * path for load balance across multiple non_optimized paths.
1001 		 */
1002 		nbdev_ch->current_io_path = non_optimized;
1003 	}
1004 
1005 	return non_optimized;
1006 }
1007 
1008 static struct nvme_io_path *
1009 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch)
1010 {
1011 	struct nvme_io_path *io_path;
1012 	struct nvme_io_path *optimized = NULL, *non_optimized = NULL;
1013 	uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX;
1014 	uint32_t num_outstanding_reqs;
1015 
1016 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1017 		if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
1018 			/* The device is currently resetting. */
1019 			continue;
1020 		}
1021 
1022 		if (spdk_unlikely(!nvme_ns_is_active(io_path->nvme_ns))) {
1023 			continue;
1024 		}
1025 
1026 		num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair);
1027 		switch (io_path->nvme_ns->ana_state) {
1028 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
1029 			if (num_outstanding_reqs < opt_min_qd) {
1030 				opt_min_qd = num_outstanding_reqs;
1031 				optimized = io_path;
1032 			}
1033 			break;
1034 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1035 			if (num_outstanding_reqs < non_opt_min_qd) {
1036 				non_opt_min_qd = num_outstanding_reqs;
1037 				non_optimized = io_path;
1038 			}
1039 			break;
1040 		default:
1041 			break;
1042 		}
1043 	}
1044 
1045 	/* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */
1046 	if (optimized != NULL) {
1047 		return optimized;
1048 	}
1049 
1050 	return non_optimized;
1051 }
1052 
1053 static inline struct nvme_io_path *
1054 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1055 {
1056 	if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
1057 		if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) {
1058 			return nbdev_ch->current_io_path;
1059 		} else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1060 			if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) {
1061 				return nbdev_ch->current_io_path;
1062 			}
1063 			nbdev_ch->rr_counter = 0;
1064 		}
1065 	}
1066 
1067 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE ||
1068 	    nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1069 		return _bdev_nvme_find_io_path(nbdev_ch);
1070 	} else {
1071 		return _bdev_nvme_find_io_path_min_qd(nbdev_ch);
1072 	}
1073 }
1074 
1075 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
1076  * or false otherwise.
1077  *
1078  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
1079  * is likely to be non-accessible now but may become accessible.
1080  *
1081  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
1082  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
1083  * when starting to reset it but it is set to failed when the reset failed. Hence, if
1084  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
1085  */
1086 static bool
1087 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
1088 {
1089 	struct nvme_io_path *io_path;
1090 
1091 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1092 		if (io_path->nvme_ns->ana_transition_timedout) {
1093 			continue;
1094 		}
1095 
1096 		if (nvme_qpair_is_connected(io_path->qpair) ||
1097 		    !nvme_ctrlr_is_failed(io_path->qpair->ctrlr)) {
1098 			return true;
1099 		}
1100 	}
1101 
1102 	return false;
1103 }
1104 
1105 static void
1106 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
1107 {
1108 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1109 	struct spdk_io_channel *ch;
1110 
1111 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
1112 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
1113 	} else {
1114 		ch = spdk_io_channel_from_ctx(nbdev_ch);
1115 		bdev_nvme_submit_request(ch, bdev_io);
1116 	}
1117 }
1118 
1119 static int
1120 bdev_nvme_retry_ios(void *arg)
1121 {
1122 	struct nvme_bdev_channel *nbdev_ch = arg;
1123 	struct nvme_bdev_io *bio, *tmp_bio;
1124 	uint64_t now, delay_us;
1125 
1126 	now = spdk_get_ticks();
1127 
1128 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1129 		if (bio->retry_ticks > now) {
1130 			break;
1131 		}
1132 
1133 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1134 
1135 		bdev_nvme_retry_io(nbdev_ch, spdk_bdev_io_from_ctx(bio));
1136 	}
1137 
1138 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1139 
1140 	bio = TAILQ_FIRST(&nbdev_ch->retry_io_list);
1141 	if (bio != NULL) {
1142 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
1143 
1144 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1145 					    delay_us);
1146 	}
1147 
1148 	return SPDK_POLLER_BUSY;
1149 }
1150 
1151 static void
1152 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1153 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1154 {
1155 	struct nvme_bdev_io *tmp_bio;
1156 
1157 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1158 
1159 	TAILQ_FOREACH_REVERSE(tmp_bio, &nbdev_ch->retry_io_list, retry_io_head, retry_link) {
1160 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1161 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bio, bio,
1162 					   retry_link);
1163 			return;
1164 		}
1165 	}
1166 
1167 	/* No earlier I/Os were found. This I/O must be the new head. */
1168 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bio, retry_link);
1169 
1170 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1171 
1172 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1173 				    delay_ms * 1000ULL);
1174 }
1175 
1176 static void
1177 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
1178 {
1179 	struct nvme_bdev_io *bio, *tmp_bio;
1180 
1181 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1182 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1183 		__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1184 	}
1185 
1186 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1187 }
1188 
1189 static int
1190 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1191 			 struct nvme_bdev_io *bio_to_abort)
1192 {
1193 	struct nvme_bdev_io *bio;
1194 
1195 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
1196 		if (bio == bio_to_abort) {
1197 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1198 			__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1199 			return 0;
1200 		}
1201 	}
1202 
1203 	return -ENOENT;
1204 }
1205 
1206 static void
1207 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1208 {
1209 	struct nvme_bdev *nbdev;
1210 	uint16_t sct, sc;
1211 
1212 	assert(spdk_nvme_cpl_is_error(cpl));
1213 
1214 	nbdev = bdev_io->bdev->ctxt;
1215 
1216 	if (nbdev->err_stat == NULL) {
1217 		return;
1218 	}
1219 
1220 	sct = cpl->status.sct;
1221 	sc = cpl->status.sc;
1222 
1223 	pthread_mutex_lock(&nbdev->mutex);
1224 
1225 	nbdev->err_stat->status_type[sct]++;
1226 	switch (sct) {
1227 	case SPDK_NVME_SCT_GENERIC:
1228 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1229 	case SPDK_NVME_SCT_MEDIA_ERROR:
1230 	case SPDK_NVME_SCT_PATH:
1231 		nbdev->err_stat->status[sct][sc]++;
1232 		break;
1233 	default:
1234 		break;
1235 	}
1236 
1237 	pthread_mutex_unlock(&nbdev->mutex);
1238 }
1239 
1240 static inline void
1241 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio)
1242 {
1243 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1244 	uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
1245 	uint32_t blocklen = bdev_io->bdev->blocklen;
1246 	struct spdk_bdev_io_stat *stat;
1247 	uint64_t tsc_diff;
1248 
1249 	if (bio->io_path->stat == NULL) {
1250 		return;
1251 	}
1252 
1253 	tsc_diff = spdk_get_ticks() - bio->submit_tsc;
1254 	stat = bio->io_path->stat;
1255 
1256 	switch (bdev_io->type) {
1257 	case SPDK_BDEV_IO_TYPE_READ:
1258 		stat->bytes_read += num_blocks * blocklen;
1259 		stat->num_read_ops++;
1260 		stat->read_latency_ticks += tsc_diff;
1261 		if (stat->max_read_latency_ticks < tsc_diff) {
1262 			stat->max_read_latency_ticks = tsc_diff;
1263 		}
1264 		if (stat->min_read_latency_ticks > tsc_diff) {
1265 			stat->min_read_latency_ticks = tsc_diff;
1266 		}
1267 		break;
1268 	case SPDK_BDEV_IO_TYPE_WRITE:
1269 		stat->bytes_written += num_blocks * blocklen;
1270 		stat->num_write_ops++;
1271 		stat->write_latency_ticks += tsc_diff;
1272 		if (stat->max_write_latency_ticks < tsc_diff) {
1273 			stat->max_write_latency_ticks = tsc_diff;
1274 		}
1275 		if (stat->min_write_latency_ticks > tsc_diff) {
1276 			stat->min_write_latency_ticks = tsc_diff;
1277 		}
1278 		break;
1279 	case SPDK_BDEV_IO_TYPE_UNMAP:
1280 		stat->bytes_unmapped += num_blocks * blocklen;
1281 		stat->num_unmap_ops++;
1282 		stat->unmap_latency_ticks += tsc_diff;
1283 		if (stat->max_unmap_latency_ticks < tsc_diff) {
1284 			stat->max_unmap_latency_ticks = tsc_diff;
1285 		}
1286 		if (stat->min_unmap_latency_ticks > tsc_diff) {
1287 			stat->min_unmap_latency_ticks = tsc_diff;
1288 		}
1289 		break;
1290 	case SPDK_BDEV_IO_TYPE_ZCOPY:
1291 		/* Track the data in the start phase only */
1292 		if (!bdev_io->u.bdev.zcopy.start) {
1293 			break;
1294 		}
1295 		if (bdev_io->u.bdev.zcopy.populate) {
1296 			stat->bytes_read += num_blocks * blocklen;
1297 			stat->num_read_ops++;
1298 			stat->read_latency_ticks += tsc_diff;
1299 			if (stat->max_read_latency_ticks < tsc_diff) {
1300 				stat->max_read_latency_ticks = tsc_diff;
1301 			}
1302 			if (stat->min_read_latency_ticks > tsc_diff) {
1303 				stat->min_read_latency_ticks = tsc_diff;
1304 			}
1305 		} else {
1306 			stat->bytes_written += num_blocks * blocklen;
1307 			stat->num_write_ops++;
1308 			stat->write_latency_ticks += tsc_diff;
1309 			if (stat->max_write_latency_ticks < tsc_diff) {
1310 				stat->max_write_latency_ticks = tsc_diff;
1311 			}
1312 			if (stat->min_write_latency_ticks > tsc_diff) {
1313 				stat->min_write_latency_ticks = tsc_diff;
1314 			}
1315 		}
1316 		break;
1317 	case SPDK_BDEV_IO_TYPE_COPY:
1318 		stat->bytes_copied += num_blocks * blocklen;
1319 		stat->num_copy_ops++;
1320 		stat->copy_latency_ticks += tsc_diff;
1321 		if (stat->max_copy_latency_ticks < tsc_diff) {
1322 			stat->max_copy_latency_ticks = tsc_diff;
1323 		}
1324 		if (stat->min_copy_latency_ticks > tsc_diff) {
1325 			stat->min_copy_latency_ticks = tsc_diff;
1326 		}
1327 		break;
1328 	default:
1329 		break;
1330 	}
1331 }
1332 
1333 static bool
1334 bdev_nvme_check_retry_io(struct nvme_bdev_io *bio,
1335 			 const struct spdk_nvme_cpl *cpl,
1336 			 struct nvme_bdev_channel *nbdev_ch,
1337 			 uint64_t *_delay_ms)
1338 {
1339 	struct nvme_io_path *io_path = bio->io_path;
1340 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1341 	const struct spdk_nvme_ctrlr_data *cdata;
1342 
1343 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1344 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1345 	    !nvme_io_path_is_available(io_path) ||
1346 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1347 		bdev_nvme_clear_current_io_path(nbdev_ch);
1348 		bio->io_path = NULL;
1349 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1350 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1351 				io_path->nvme_ns->ana_state_updating = true;
1352 			}
1353 		}
1354 		if (!any_io_path_may_become_available(nbdev_ch)) {
1355 			return false;
1356 		}
1357 		*_delay_ms = 0;
1358 	} else {
1359 		bio->retry_count++;
1360 
1361 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1362 
1363 		if (cpl->status.crd != 0) {
1364 			*_delay_ms = cdata->crdt[cpl->status.crd] * 100;
1365 		} else {
1366 			*_delay_ms = 0;
1367 		}
1368 	}
1369 
1370 	return true;
1371 }
1372 
1373 static inline void
1374 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1375 				  const struct spdk_nvme_cpl *cpl)
1376 {
1377 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1378 	struct nvme_bdev_channel *nbdev_ch;
1379 	uint64_t delay_ms;
1380 
1381 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1382 
1383 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1384 		bdev_nvme_update_io_path_stat(bio);
1385 		goto complete;
1386 	}
1387 
1388 	/* Update error counts before deciding if retry is needed.
1389 	 * Hence, error counts may be more than the number of I/O errors.
1390 	 */
1391 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1392 
1393 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1394 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1395 		goto complete;
1396 	}
1397 
1398 	/* At this point we don't know whether the sequence was successfully executed or not, so we
1399 	 * cannot retry the IO */
1400 	if (bdev_io->u.bdev.accel_sequence != NULL) {
1401 		goto complete;
1402 	}
1403 
1404 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1405 
1406 	if (bdev_nvme_check_retry_io(bio, cpl, nbdev_ch, &delay_ms)) {
1407 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1408 		return;
1409 	}
1410 
1411 complete:
1412 	bio->retry_count = 0;
1413 	bio->submit_tsc = 0;
1414 	bdev_io->u.bdev.accel_sequence = NULL;
1415 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1416 }
1417 
1418 static inline void
1419 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1420 {
1421 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1422 	struct nvme_bdev_channel *nbdev_ch;
1423 	enum spdk_bdev_io_status io_status;
1424 
1425 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1426 
1427 	switch (rc) {
1428 	case 0:
1429 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1430 		break;
1431 	case -ENOMEM:
1432 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1433 		break;
1434 	case -ENXIO:
1435 		if (g_opts.bdev_retry_count == -1 || bio->retry_count < g_opts.bdev_retry_count) {
1436 			nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1437 
1438 			bdev_nvme_clear_current_io_path(nbdev_ch);
1439 			bio->io_path = NULL;
1440 
1441 			if (any_io_path_may_become_available(nbdev_ch)) {
1442 				bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1443 				return;
1444 			}
1445 		}
1446 
1447 	/* fallthrough */
1448 	default:
1449 		spdk_accel_sequence_abort(bdev_io->u.bdev.accel_sequence);
1450 		bdev_io->u.bdev.accel_sequence = NULL;
1451 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1452 		break;
1453 	}
1454 
1455 	bio->retry_count = 0;
1456 	bio->submit_tsc = 0;
1457 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1458 }
1459 
1460 static inline void
1461 bdev_nvme_admin_complete(struct nvme_bdev_io *bio, int rc)
1462 {
1463 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1464 	enum spdk_bdev_io_status io_status;
1465 
1466 	switch (rc) {
1467 	case 0:
1468 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1469 		break;
1470 	case -ENOMEM:
1471 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1472 		break;
1473 	case -ENXIO:
1474 	/* fallthrough */
1475 	default:
1476 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1477 		break;
1478 	}
1479 
1480 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1481 }
1482 
1483 static void
1484 bdev_nvme_clear_io_path_caches_done(struct spdk_io_channel_iter *i, int status)
1485 {
1486 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1487 
1488 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1489 
1490 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1491 	nvme_ctrlr->io_path_cache_clearing = false;
1492 
1493 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1494 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1495 		return;
1496 	}
1497 
1498 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1499 
1500 	nvme_ctrlr_unregister(nvme_ctrlr);
1501 }
1502 
1503 static void
1504 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1505 {
1506 	struct nvme_io_path *io_path;
1507 
1508 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1509 		if (io_path->nbdev_ch == NULL) {
1510 			continue;
1511 		}
1512 		bdev_nvme_clear_current_io_path(io_path->nbdev_ch);
1513 	}
1514 }
1515 
1516 static void
1517 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
1518 {
1519 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1520 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1521 
1522 	assert(ctrlr_ch->qpair != NULL);
1523 
1524 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1525 
1526 	spdk_for_each_channel_continue(i, 0);
1527 }
1528 
1529 static void
1530 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1531 {
1532 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1533 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1534 	    nvme_ctrlr->io_path_cache_clearing) {
1535 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1536 		return;
1537 	}
1538 
1539 	nvme_ctrlr->io_path_cache_clearing = true;
1540 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1541 
1542 	spdk_for_each_channel(nvme_ctrlr,
1543 			      bdev_nvme_clear_io_path_cache,
1544 			      NULL,
1545 			      bdev_nvme_clear_io_path_caches_done);
1546 }
1547 
1548 static struct nvme_qpair *
1549 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1550 {
1551 	struct nvme_qpair *nvme_qpair;
1552 
1553 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1554 		if (nvme_qpair->qpair == qpair) {
1555 			break;
1556 		}
1557 	}
1558 
1559 	return nvme_qpair;
1560 }
1561 
1562 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1563 
1564 static void
1565 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1566 {
1567 	struct nvme_poll_group *group = poll_group_ctx;
1568 	struct nvme_qpair *nvme_qpair;
1569 	struct nvme_ctrlr_channel *ctrlr_ch;
1570 	int status;
1571 
1572 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1573 	if (nvme_qpair == NULL) {
1574 		return;
1575 	}
1576 
1577 	if (nvme_qpair->qpair != NULL) {
1578 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1579 		nvme_qpair->qpair = NULL;
1580 	}
1581 
1582 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1583 
1584 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1585 
1586 	if (ctrlr_ch != NULL) {
1587 		if (ctrlr_ch->reset_iter != NULL) {
1588 			/* We are in a full reset sequence. */
1589 			if (ctrlr_ch->connect_poller != NULL) {
1590 				/* qpair was failed to connect. Abort the reset sequence. */
1591 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was failed to connect. abort the reset ctrlr sequence.\n",
1592 					      qpair);
1593 				spdk_poller_unregister(&ctrlr_ch->connect_poller);
1594 				status = -1;
1595 			} else {
1596 				/* qpair was completed to disconnect. Just move to the next ctrlr_channel. */
1597 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1598 					      qpair);
1599 				status = 0;
1600 			}
1601 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, status);
1602 			ctrlr_ch->reset_iter = NULL;
1603 		} else {
1604 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1605 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1606 			bdev_nvme_failover_ctrlr(nvme_qpair->ctrlr);
1607 		}
1608 	} else {
1609 		/* In this case, ctrlr_channel is already deleted. */
1610 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1611 		nvme_qpair_delete(nvme_qpair);
1612 	}
1613 }
1614 
1615 static void
1616 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1617 {
1618 	struct nvme_qpair *nvme_qpair;
1619 
1620 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1621 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1622 			continue;
1623 		}
1624 
1625 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1626 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1627 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1628 		}
1629 	}
1630 }
1631 
1632 static int
1633 bdev_nvme_poll(void *arg)
1634 {
1635 	struct nvme_poll_group *group = arg;
1636 	int64_t num_completions;
1637 
1638 	if (group->collect_spin_stat && group->start_ticks == 0) {
1639 		group->start_ticks = spdk_get_ticks();
1640 	}
1641 
1642 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1643 			  bdev_nvme_disconnected_qpair_cb);
1644 	if (group->collect_spin_stat) {
1645 		if (num_completions > 0) {
1646 			if (group->end_ticks != 0) {
1647 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1648 				group->end_ticks = 0;
1649 			}
1650 			group->start_ticks = 0;
1651 		} else {
1652 			group->end_ticks = spdk_get_ticks();
1653 		}
1654 	}
1655 
1656 	if (spdk_unlikely(num_completions < 0)) {
1657 		bdev_nvme_check_io_qpairs(group);
1658 	}
1659 
1660 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1661 }
1662 
1663 static int bdev_nvme_poll_adminq(void *arg);
1664 
1665 static void
1666 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1667 {
1668 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1669 
1670 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1671 					  nvme_ctrlr, new_period_us);
1672 }
1673 
1674 static int
1675 bdev_nvme_poll_adminq(void *arg)
1676 {
1677 	int32_t rc;
1678 	struct nvme_ctrlr *nvme_ctrlr = arg;
1679 	nvme_ctrlr_disconnected_cb disconnected_cb;
1680 
1681 	assert(nvme_ctrlr != NULL);
1682 
1683 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1684 	if (rc < 0) {
1685 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1686 		nvme_ctrlr->disconnected_cb = NULL;
1687 
1688 		if (disconnected_cb != NULL) {
1689 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1690 							    g_opts.nvme_adminq_poll_period_us);
1691 			disconnected_cb(nvme_ctrlr);
1692 		} else {
1693 			bdev_nvme_failover_ctrlr(nvme_ctrlr);
1694 		}
1695 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1696 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1697 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1698 	}
1699 
1700 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1701 }
1702 
1703 static void
1704 nvme_bdev_free(void *io_device)
1705 {
1706 	struct nvme_bdev *nvme_disk = io_device;
1707 
1708 	pthread_mutex_destroy(&nvme_disk->mutex);
1709 	free(nvme_disk->disk.name);
1710 	free(nvme_disk->err_stat);
1711 	free(nvme_disk);
1712 }
1713 
1714 static int
1715 bdev_nvme_destruct(void *ctx)
1716 {
1717 	struct nvme_bdev *nvme_disk = ctx;
1718 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1719 
1720 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1721 
1722 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1723 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1724 
1725 		nvme_ns->bdev = NULL;
1726 
1727 		assert(nvme_ns->id > 0);
1728 
1729 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1730 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1731 
1732 			nvme_ctrlr_release(nvme_ns->ctrlr);
1733 			nvme_ns_free(nvme_ns);
1734 		} else {
1735 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1736 		}
1737 	}
1738 
1739 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1740 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1741 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1742 
1743 	spdk_io_device_unregister(nvme_disk, nvme_bdev_free);
1744 
1745 	return 0;
1746 }
1747 
1748 static int
1749 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1750 {
1751 	struct nvme_ctrlr *nvme_ctrlr;
1752 	struct spdk_nvme_io_qpair_opts opts;
1753 	struct spdk_nvme_qpair *qpair;
1754 	int rc;
1755 
1756 	nvme_ctrlr = nvme_qpair->ctrlr;
1757 
1758 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1759 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1760 	opts.create_only = true;
1761 	opts.async_mode = true;
1762 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1763 	g_opts.io_queue_requests = opts.io_queue_requests;
1764 
1765 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1766 	if (qpair == NULL) {
1767 		return -1;
1768 	}
1769 
1770 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1771 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1772 
1773 	assert(nvme_qpair->group != NULL);
1774 
1775 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1776 	if (rc != 0) {
1777 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1778 		goto err;
1779 	}
1780 
1781 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1782 	if (rc != 0) {
1783 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1784 		goto err;
1785 	}
1786 
1787 	nvme_qpair->qpair = qpair;
1788 
1789 	if (!g_opts.disable_auto_failback) {
1790 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1791 	}
1792 
1793 	return 0;
1794 
1795 err:
1796 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1797 
1798 	return rc;
1799 }
1800 
1801 static void bdev_nvme_reset_io_continue(void *cb_arg, int rc);
1802 
1803 static void
1804 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
1805 {
1806 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1807 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1808 	int rc = 0;
1809 	struct nvme_bdev_io *bio;
1810 
1811 	if (spdk_io_channel_iter_get_ctx(i) != NULL) {
1812 		rc = -1;
1813 	}
1814 
1815 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1816 		bio = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1817 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bio, retry_link);
1818 
1819 		bdev_nvme_reset_io_continue(bio, rc);
1820 	}
1821 
1822 	spdk_for_each_channel_continue(i, 0);
1823 }
1824 
1825 /* This function marks the current trid as failed by storing the current ticks
1826  * and then sets the next trid to the active trid within a controller if exists.
1827  *
1828  * The purpose of the boolean return value is to request the caller to disconnect
1829  * the current trid now to try connecting the next trid.
1830  */
1831 static bool
1832 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove, bool start)
1833 {
1834 	struct nvme_path_id *path_id, *next_path;
1835 	int rc __attribute__((unused));
1836 
1837 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1838 	assert(path_id);
1839 	assert(path_id == nvme_ctrlr->active_path_id);
1840 	next_path = TAILQ_NEXT(path_id, link);
1841 
1842 	/* Update the last failed time. It means the trid is failed if its last
1843 	 * failed time is non-zero.
1844 	 */
1845 	path_id->last_failed_tsc = spdk_get_ticks();
1846 
1847 	if (next_path == NULL) {
1848 		/* There is no alternate trid within a controller. */
1849 		return false;
1850 	}
1851 
1852 	if (!start && nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1853 		/* Connect is not retried in a controller reset sequence. Connecting
1854 		 * the next trid will be done by the next bdev_nvme_failover_ctrlr() call.
1855 		 */
1856 		return false;
1857 	}
1858 
1859 	assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1860 
1861 	SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1862 		       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1863 
1864 	spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1865 	nvme_ctrlr->active_path_id = next_path;
1866 	rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1867 	assert(rc == 0);
1868 	TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1869 	if (!remove) {
1870 		/** Shuffle the old trid to the end of the list and use the new one.
1871 		 * Allows for round robin through multiple connections.
1872 		 */
1873 		TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
1874 	} else {
1875 		free(path_id);
1876 	}
1877 
1878 	if (start || next_path->last_failed_tsc == 0) {
1879 		/* bdev_nvme_failover_ctrlr() is just called or the next trid is not failed
1880 		 * or used yet. Try the next trid now.
1881 		 */
1882 		return true;
1883 	}
1884 
1885 	if (spdk_get_ticks() > next_path->last_failed_tsc + spdk_get_ticks_hz() *
1886 	    nvme_ctrlr->opts.reconnect_delay_sec) {
1887 		/* Enough backoff passed since the next trid failed. Try the next trid now. */
1888 		return true;
1889 	}
1890 
1891 	/* The next trid will be tried after reconnect_delay_sec seconds. */
1892 	return false;
1893 }
1894 
1895 static bool
1896 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
1897 {
1898 	int32_t elapsed;
1899 
1900 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
1901 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
1902 		return false;
1903 	}
1904 
1905 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1906 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
1907 		return true;
1908 	} else {
1909 		return false;
1910 	}
1911 }
1912 
1913 static bool
1914 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
1915 {
1916 	uint32_t elapsed;
1917 
1918 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
1919 		return false;
1920 	}
1921 
1922 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1923 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
1924 		return true;
1925 	} else {
1926 		return false;
1927 	}
1928 }
1929 
1930 static void bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
1931 
1932 static void
1933 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
1934 {
1935 	int rc;
1936 
1937 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
1938 	if (rc != 0) {
1939 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
1940 		 * fail the reset sequence immediately.
1941 		 */
1942 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
1943 		return;
1944 	}
1945 
1946 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
1947 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
1948 	 */
1949 	assert(nvme_ctrlr->disconnected_cb == NULL);
1950 	nvme_ctrlr->disconnected_cb = cb_fn;
1951 
1952 	/* During disconnection, reduce the period to poll adminq more often. */
1953 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
1954 }
1955 
1956 enum bdev_nvme_op_after_reset {
1957 	OP_NONE,
1958 	OP_COMPLETE_PENDING_DESTRUCT,
1959 	OP_DESTRUCT,
1960 	OP_DELAYED_RECONNECT,
1961 	OP_FAILOVER,
1962 };
1963 
1964 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
1965 
1966 static _bdev_nvme_op_after_reset
1967 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
1968 {
1969 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1970 		/* Complete pending destruct after reset completes. */
1971 		return OP_COMPLETE_PENDING_DESTRUCT;
1972 	} else if (nvme_ctrlr->pending_failover) {
1973 		nvme_ctrlr->pending_failover = false;
1974 		nvme_ctrlr->reset_start_tsc = 0;
1975 		return OP_FAILOVER;
1976 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1977 		nvme_ctrlr->reset_start_tsc = 0;
1978 		return OP_NONE;
1979 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1980 		return OP_DESTRUCT;
1981 	} else {
1982 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
1983 			nvme_ctrlr->fast_io_fail_timedout = true;
1984 		}
1985 		return OP_DELAYED_RECONNECT;
1986 	}
1987 }
1988 
1989 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
1990 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
1991 
1992 static int
1993 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
1994 {
1995 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1996 
1997 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
1998 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1999 
2000 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2001 
2002 	if (!nvme_ctrlr->reconnect_is_delayed) {
2003 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2004 		return SPDK_POLLER_BUSY;
2005 	}
2006 
2007 	nvme_ctrlr->reconnect_is_delayed = false;
2008 
2009 	if (nvme_ctrlr->destruct) {
2010 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2011 		return SPDK_POLLER_BUSY;
2012 	}
2013 
2014 	assert(nvme_ctrlr->resetting == false);
2015 	nvme_ctrlr->resetting = true;
2016 
2017 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2018 
2019 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2020 
2021 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2022 	return SPDK_POLLER_BUSY;
2023 }
2024 
2025 static void
2026 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
2027 {
2028 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2029 
2030 	assert(nvme_ctrlr->reconnect_is_delayed == false);
2031 	nvme_ctrlr->reconnect_is_delayed = true;
2032 
2033 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
2034 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
2035 					    nvme_ctrlr,
2036 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
2037 }
2038 
2039 static void remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr);
2040 
2041 static void
2042 _bdev_nvme_reset_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2043 {
2044 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2045 	bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
2046 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2047 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2048 	enum bdev_nvme_op_after_reset op_after_reset;
2049 
2050 	assert(nvme_ctrlr->thread == spdk_get_thread());
2051 
2052 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2053 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2054 
2055 	if (!success) {
2056 		SPDK_ERRLOG("Resetting controller failed.\n");
2057 	} else {
2058 		SPDK_NOTICELOG("Resetting controller successful.\n");
2059 	}
2060 
2061 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2062 	nvme_ctrlr->resetting = false;
2063 	nvme_ctrlr->dont_retry = false;
2064 	nvme_ctrlr->in_failover = false;
2065 
2066 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
2067 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2068 
2069 	/* Delay callbacks when the next operation is a failover. */
2070 	if (ctrlr_op_cb_fn && op_after_reset != OP_FAILOVER) {
2071 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, success ? 0 : -1);
2072 	}
2073 
2074 	switch (op_after_reset) {
2075 	case OP_COMPLETE_PENDING_DESTRUCT:
2076 		nvme_ctrlr_unregister(nvme_ctrlr);
2077 		break;
2078 	case OP_DESTRUCT:
2079 		bdev_nvme_delete_ctrlr(nvme_ctrlr, false);
2080 		remove_discovery_entry(nvme_ctrlr);
2081 		break;
2082 	case OP_DELAYED_RECONNECT:
2083 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
2084 		break;
2085 	case OP_FAILOVER:
2086 		nvme_ctrlr->ctrlr_op_cb_fn = ctrlr_op_cb_fn;
2087 		nvme_ctrlr->ctrlr_op_cb_arg = ctrlr_op_cb_arg;
2088 		bdev_nvme_failover_ctrlr(nvme_ctrlr);
2089 		break;
2090 	default:
2091 		break;
2092 	}
2093 }
2094 
2095 static void
2096 bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
2097 {
2098 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2099 	if (!success) {
2100 		/* Connecting the active trid failed. Set the next alternate trid to the
2101 		 * active trid if it exists.
2102 		 */
2103 		if (bdev_nvme_failover_trid(nvme_ctrlr, false, false)) {
2104 			/* The next alternate trid exists and is ready to try. Try it now. */
2105 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
2106 
2107 			nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2108 			return;
2109 		}
2110 
2111 		/* We came here if there is no alternate trid or if the next trid exists but
2112 		 * is not ready to try. We will try the active trid after reconnect_delay_sec
2113 		 * seconds if it is non-zero or at the next reset call otherwise.
2114 		 */
2115 	} else {
2116 		/* Connecting the active trid succeeded. Clear the last failed time because it
2117 		 * means the trid is failed if its last failed time is non-zero.
2118 		 */
2119 		nvme_ctrlr->active_path_id->last_failed_tsc = 0;
2120 	}
2121 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2122 
2123 	/* Make sure we clear any pending resets before returning. */
2124 	spdk_for_each_channel(nvme_ctrlr,
2125 			      bdev_nvme_complete_pending_resets,
2126 			      success ? NULL : (void *)0x1,
2127 			      _bdev_nvme_reset_ctrlr_complete);
2128 }
2129 
2130 static void
2131 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
2132 {
2133 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2134 
2135 	bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2136 }
2137 
2138 static void
2139 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
2140 {
2141 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
2142 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
2143 	struct nvme_qpair *nvme_qpair;
2144 
2145 	nvme_qpair = ctrlr_ch->qpair;
2146 	assert(nvme_qpair != NULL);
2147 
2148 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2149 
2150 	if (nvme_qpair->qpair != NULL) {
2151 		if (nvme_qpair->ctrlr->dont_retry) {
2152 			spdk_nvme_qpair_set_abort_dnr(nvme_qpair->qpair, true);
2153 		}
2154 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2155 
2156 		/* The current full reset sequence will move to the next
2157 		 * ctrlr_channel after the qpair is actually disconnected.
2158 		 */
2159 		assert(ctrlr_ch->reset_iter == NULL);
2160 		ctrlr_ch->reset_iter = i;
2161 	} else {
2162 		spdk_for_each_channel_continue(i, 0);
2163 	}
2164 }
2165 
2166 static void
2167 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
2168 {
2169 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2170 
2171 	if (status == 0) {
2172 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, true);
2173 	} else {
2174 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
2175 		spdk_for_each_channel(nvme_ctrlr,
2176 				      bdev_nvme_reset_destroy_qpair,
2177 				      NULL,
2178 				      bdev_nvme_reset_create_qpairs_failed);
2179 	}
2180 }
2181 
2182 static int
2183 bdev_nvme_reset_check_qpair_connected(void *ctx)
2184 {
2185 	struct nvme_ctrlr_channel *ctrlr_ch = ctx;
2186 
2187 	if (ctrlr_ch->reset_iter == NULL) {
2188 		/* qpair was already failed to connect and the reset sequence is being aborted. */
2189 		assert(ctrlr_ch->connect_poller == NULL);
2190 		assert(ctrlr_ch->qpair->qpair == NULL);
2191 		return SPDK_POLLER_BUSY;
2192 	}
2193 
2194 	assert(ctrlr_ch->qpair->qpair != NULL);
2195 
2196 	if (!spdk_nvme_qpair_is_connected(ctrlr_ch->qpair->qpair)) {
2197 		return SPDK_POLLER_BUSY;
2198 	}
2199 
2200 	spdk_poller_unregister(&ctrlr_ch->connect_poller);
2201 
2202 	/* qpair was completed to connect. Move to the next ctrlr_channel */
2203 	spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2204 	ctrlr_ch->reset_iter = NULL;
2205 
2206 	if (!g_opts.disable_auto_failback) {
2207 		_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
2208 	}
2209 
2210 	return SPDK_POLLER_BUSY;
2211 }
2212 
2213 static void
2214 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
2215 {
2216 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2217 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
2218 	int rc;
2219 
2220 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
2221 	if (rc == 0) {
2222 		ctrlr_ch->connect_poller = SPDK_POLLER_REGISTER(bdev_nvme_reset_check_qpair_connected,
2223 					   ctrlr_ch, 0);
2224 
2225 		/* The current full reset sequence will move to the next
2226 		 * ctrlr_channel after the qpair is actually connected.
2227 		 */
2228 		assert(ctrlr_ch->reset_iter == NULL);
2229 		ctrlr_ch->reset_iter = i;
2230 	} else {
2231 		spdk_for_each_channel_continue(i, rc);
2232 	}
2233 }
2234 
2235 static void
2236 nvme_ctrlr_check_namespaces(struct nvme_ctrlr *nvme_ctrlr)
2237 {
2238 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
2239 	struct nvme_ns *nvme_ns;
2240 
2241 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
2242 	     nvme_ns != NULL;
2243 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
2244 		if (!spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
2245 			SPDK_DEBUGLOG(bdev_nvme, "NSID %u was removed during reset.\n", nvme_ns->id);
2246 			/* NS can be added again. Just nullify nvme_ns->ns. */
2247 			nvme_ns->ns = NULL;
2248 		}
2249 	}
2250 }
2251 
2252 
2253 static int
2254 bdev_nvme_reconnect_ctrlr_poll(void *arg)
2255 {
2256 	struct nvme_ctrlr *nvme_ctrlr = arg;
2257 	int rc = -ETIMEDOUT;
2258 
2259 	if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2260 		/* Mark the ctrlr as failed. The next call to
2261 		 * spdk_nvme_ctrlr_reconnect_poll_async() will then
2262 		 * do the necessary cleanup and return failure.
2263 		 */
2264 		spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
2265 	}
2266 
2267 	rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
2268 	if (rc == -EAGAIN) {
2269 		return SPDK_POLLER_BUSY;
2270 	}
2271 
2272 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
2273 	if (rc == 0) {
2274 		nvme_ctrlr_check_namespaces(nvme_ctrlr);
2275 
2276 		/* Recreate all of the I/O queue pairs */
2277 		spdk_for_each_channel(nvme_ctrlr,
2278 				      bdev_nvme_reset_create_qpair,
2279 				      NULL,
2280 				      bdev_nvme_reset_create_qpairs_done);
2281 	} else {
2282 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2283 	}
2284 	return SPDK_POLLER_BUSY;
2285 }
2286 
2287 static void
2288 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2289 {
2290 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
2291 
2292 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
2293 	assert(nvme_ctrlr->reset_detach_poller == NULL);
2294 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
2295 					  nvme_ctrlr, 0);
2296 }
2297 
2298 static void
2299 bdev_nvme_reset_destroy_qpair_done(struct spdk_io_channel_iter *i, int status)
2300 {
2301 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2302 
2303 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
2304 	assert(status == 0);
2305 
2306 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2307 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2308 	} else {
2309 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2310 	}
2311 }
2312 
2313 static void
2314 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2315 {
2316 	spdk_for_each_channel(nvme_ctrlr,
2317 			      bdev_nvme_reset_destroy_qpair,
2318 			      NULL,
2319 			      bdev_nvme_reset_destroy_qpair_done);
2320 }
2321 
2322 static void
2323 bdev_nvme_reconnect_ctrlr_now(void *ctx)
2324 {
2325 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2326 
2327 	assert(nvme_ctrlr->resetting == true);
2328 	assert(nvme_ctrlr->thread == spdk_get_thread());
2329 
2330 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2331 
2332 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2333 
2334 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2335 }
2336 
2337 static void
2338 _bdev_nvme_reset_ctrlr(void *ctx)
2339 {
2340 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2341 
2342 	assert(nvme_ctrlr->resetting == true);
2343 	assert(nvme_ctrlr->thread == spdk_get_thread());
2344 
2345 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2346 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
2347 	} else {
2348 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
2349 	}
2350 }
2351 
2352 static int
2353 bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2354 {
2355 	spdk_msg_fn msg_fn;
2356 
2357 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2358 	if (nvme_ctrlr->destruct) {
2359 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2360 		return -ENXIO;
2361 	}
2362 
2363 	if (nvme_ctrlr->resetting) {
2364 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2365 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
2366 		return -EBUSY;
2367 	}
2368 
2369 	if (nvme_ctrlr->disabled) {
2370 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2371 		SPDK_NOTICELOG("Unable to perform reset. Controller is disabled.\n");
2372 		return -EALREADY;
2373 	}
2374 
2375 	nvme_ctrlr->resetting = true;
2376 	nvme_ctrlr->dont_retry = true;
2377 
2378 	if (nvme_ctrlr->reconnect_is_delayed) {
2379 		SPDK_DEBUGLOG(bdev_nvme, "Reconnect is already scheduled.\n");
2380 		msg_fn = bdev_nvme_reconnect_ctrlr_now;
2381 		nvme_ctrlr->reconnect_is_delayed = false;
2382 	} else {
2383 		msg_fn = _bdev_nvme_reset_ctrlr;
2384 		assert(nvme_ctrlr->reset_start_tsc == 0);
2385 	}
2386 
2387 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2388 
2389 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2390 
2391 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2392 	return 0;
2393 }
2394 
2395 static int
2396 bdev_nvme_enable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2397 {
2398 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2399 	if (nvme_ctrlr->destruct) {
2400 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2401 		return -ENXIO;
2402 	}
2403 
2404 	if (nvme_ctrlr->resetting) {
2405 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2406 		return -EBUSY;
2407 	}
2408 
2409 	if (!nvme_ctrlr->disabled) {
2410 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2411 		return -EALREADY;
2412 	}
2413 
2414 	nvme_ctrlr->disabled = false;
2415 	nvme_ctrlr->resetting = true;
2416 
2417 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2418 
2419 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2420 
2421 	spdk_thread_send_msg(nvme_ctrlr->thread, bdev_nvme_reconnect_ctrlr_now, nvme_ctrlr);
2422 	return 0;
2423 }
2424 
2425 static void
2426 _bdev_nvme_disable_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2427 {
2428 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2429 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2430 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2431 	enum bdev_nvme_op_after_reset op_after_disable;
2432 
2433 	assert(nvme_ctrlr->thread == spdk_get_thread());
2434 
2435 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2436 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2437 
2438 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2439 
2440 	nvme_ctrlr->resetting = false;
2441 	nvme_ctrlr->dont_retry = false;
2442 
2443 	op_after_disable = bdev_nvme_check_op_after_reset(nvme_ctrlr, true);
2444 
2445 	nvme_ctrlr->disabled = true;
2446 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2447 
2448 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2449 
2450 	if (ctrlr_op_cb_fn) {
2451 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, 0);
2452 	}
2453 
2454 	switch (op_after_disable) {
2455 	case OP_COMPLETE_PENDING_DESTRUCT:
2456 		nvme_ctrlr_unregister(nvme_ctrlr);
2457 		break;
2458 	default:
2459 		break;
2460 	}
2461 
2462 }
2463 
2464 static void
2465 bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr)
2466 {
2467 	/* Make sure we clear any pending resets before returning. */
2468 	spdk_for_each_channel(nvme_ctrlr,
2469 			      bdev_nvme_complete_pending_resets,
2470 			      NULL,
2471 			      _bdev_nvme_disable_ctrlr_complete);
2472 }
2473 
2474 static void
2475 bdev_nvme_disable_destroy_qpairs_done(struct spdk_io_channel_iter *i, int status)
2476 {
2477 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2478 
2479 	assert(status == 0);
2480 
2481 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2482 		bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2483 	} else {
2484 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_ctrlr_complete);
2485 	}
2486 }
2487 
2488 static void
2489 bdev_nvme_disable_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2490 {
2491 	spdk_for_each_channel(nvme_ctrlr,
2492 			      bdev_nvme_reset_destroy_qpair,
2493 			      NULL,
2494 			      bdev_nvme_disable_destroy_qpairs_done);
2495 }
2496 
2497 static void
2498 _bdev_nvme_cancel_reconnect_and_disable_ctrlr(void *ctx)
2499 {
2500 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2501 
2502 	assert(nvme_ctrlr->resetting == true);
2503 	assert(nvme_ctrlr->thread == spdk_get_thread());
2504 
2505 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2506 
2507 	bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2508 }
2509 
2510 static void
2511 _bdev_nvme_disconnect_and_disable_ctrlr(void *ctx)
2512 {
2513 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2514 
2515 	assert(nvme_ctrlr->resetting == true);
2516 	assert(nvme_ctrlr->thread == spdk_get_thread());
2517 
2518 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2519 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_destroy_qpairs);
2520 	} else {
2521 		bdev_nvme_disable_destroy_qpairs(nvme_ctrlr);
2522 	}
2523 }
2524 
2525 static int
2526 bdev_nvme_disable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2527 {
2528 	spdk_msg_fn msg_fn;
2529 
2530 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2531 	if (nvme_ctrlr->destruct) {
2532 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2533 		return -ENXIO;
2534 	}
2535 
2536 	if (nvme_ctrlr->resetting) {
2537 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2538 		return -EBUSY;
2539 	}
2540 
2541 	if (nvme_ctrlr->disabled) {
2542 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2543 		return -EALREADY;
2544 	}
2545 
2546 	nvme_ctrlr->resetting = true;
2547 	nvme_ctrlr->dont_retry = true;
2548 
2549 	if (nvme_ctrlr->reconnect_is_delayed) {
2550 		msg_fn = _bdev_nvme_cancel_reconnect_and_disable_ctrlr;
2551 		nvme_ctrlr->reconnect_is_delayed = false;
2552 	} else {
2553 		msg_fn = _bdev_nvme_disconnect_and_disable_ctrlr;
2554 	}
2555 
2556 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2557 
2558 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2559 
2560 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2561 	return 0;
2562 }
2563 
2564 static int
2565 nvme_ctrlr_op(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2566 	      bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2567 {
2568 	int rc;
2569 
2570 	switch (op) {
2571 	case NVME_CTRLR_OP_RESET:
2572 		rc = bdev_nvme_reset_ctrlr(nvme_ctrlr);
2573 		break;
2574 	case NVME_CTRLR_OP_ENABLE:
2575 		rc = bdev_nvme_enable_ctrlr(nvme_ctrlr);
2576 		break;
2577 	case NVME_CTRLR_OP_DISABLE:
2578 		rc = bdev_nvme_disable_ctrlr(nvme_ctrlr);
2579 		break;
2580 	default:
2581 		rc = -EINVAL;
2582 		break;
2583 	}
2584 
2585 	if (rc == 0) {
2586 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
2587 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
2588 		nvme_ctrlr->ctrlr_op_cb_fn = cb_fn;
2589 		nvme_ctrlr->ctrlr_op_cb_arg = cb_arg;
2590 	}
2591 	return rc;
2592 }
2593 
2594 struct nvme_ctrlr_op_rpc_ctx {
2595 	struct nvme_ctrlr *nvme_ctrlr;
2596 	struct spdk_thread *orig_thread;
2597 	enum nvme_ctrlr_op op;
2598 	int rc;
2599 	bdev_nvme_ctrlr_op_cb cb_fn;
2600 	void *cb_arg;
2601 };
2602 
2603 static void
2604 _nvme_ctrlr_op_rpc_complete(void *_ctx)
2605 {
2606 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2607 
2608 	assert(ctx != NULL);
2609 	assert(ctx->cb_fn != NULL);
2610 
2611 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2612 
2613 	free(ctx);
2614 }
2615 
2616 static void
2617 nvme_ctrlr_op_rpc_complete(void *cb_arg, int rc)
2618 {
2619 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2620 
2621 	ctx->rc = rc;
2622 
2623 	spdk_thread_send_msg(ctx->orig_thread, _nvme_ctrlr_op_rpc_complete, ctx);
2624 }
2625 
2626 void
2627 nvme_ctrlr_op_rpc(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2628 		  bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2629 {
2630 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2631 	int rc;
2632 
2633 	assert(cb_fn != NULL);
2634 
2635 	ctx = calloc(1, sizeof(*ctx));
2636 	if (ctx == NULL) {
2637 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2638 		cb_fn(cb_arg, -ENOMEM);
2639 		return;
2640 	}
2641 
2642 	ctx->orig_thread = spdk_get_thread();
2643 	ctx->cb_fn = cb_fn;
2644 	ctx->cb_arg = cb_arg;
2645 
2646 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_ctrlr_op_rpc_complete, ctx);
2647 	if (rc == 0) {
2648 		return;
2649 	} else if (rc == -EALREADY) {
2650 		rc = 0;
2651 	}
2652 
2653 	nvme_ctrlr_op_rpc_complete(ctx, rc);
2654 }
2655 
2656 static void nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc);
2657 
2658 static void
2659 _nvme_bdev_ctrlr_op_rpc_continue(void *_ctx)
2660 {
2661 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2662 	struct nvme_ctrlr *prev_nvme_ctrlr, *next_nvme_ctrlr;
2663 	int rc;
2664 
2665 	prev_nvme_ctrlr = ctx->nvme_ctrlr;
2666 	ctx->nvme_ctrlr = NULL;
2667 
2668 	if (ctx->rc != 0) {
2669 		goto complete;
2670 	}
2671 
2672 	next_nvme_ctrlr = TAILQ_NEXT(prev_nvme_ctrlr, tailq);
2673 	if (next_nvme_ctrlr == NULL) {
2674 		goto complete;
2675 	}
2676 
2677 	rc = nvme_ctrlr_op(next_nvme_ctrlr, ctx->op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2678 	if (rc == 0) {
2679 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2680 		return;
2681 	} else if (rc == -EALREADY) {
2682 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2683 		rc = 0;
2684 	}
2685 
2686 	ctx->rc = rc;
2687 
2688 complete:
2689 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2690 	free(ctx);
2691 }
2692 
2693 static void
2694 nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc)
2695 {
2696 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2697 
2698 	ctx->rc = rc;
2699 
2700 	spdk_thread_send_msg(ctx->orig_thread, _nvme_bdev_ctrlr_op_rpc_continue, ctx);
2701 }
2702 
2703 void
2704 nvme_bdev_ctrlr_op_rpc(struct nvme_bdev_ctrlr *nbdev_ctrlr, enum nvme_ctrlr_op op,
2705 		       bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2706 {
2707 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2708 	struct nvme_ctrlr *nvme_ctrlr;
2709 	int rc;
2710 
2711 	assert(cb_fn != NULL);
2712 
2713 	ctx = calloc(1, sizeof(*ctx));
2714 	if (ctx == NULL) {
2715 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2716 		cb_fn(cb_arg, -ENOMEM);
2717 		return;
2718 	}
2719 
2720 	ctx->orig_thread = spdk_get_thread();
2721 	ctx->op = op;
2722 	ctx->cb_fn = cb_fn;
2723 	ctx->cb_arg = cb_arg;
2724 
2725 	nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
2726 	assert(nvme_ctrlr != NULL);
2727 
2728 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2729 	if (rc == 0) {
2730 		ctx->nvme_ctrlr = nvme_ctrlr;
2731 		return;
2732 	} else if (rc == -EALREADY) {
2733 		ctx->nvme_ctrlr = nvme_ctrlr;
2734 		rc = 0;
2735 	}
2736 
2737 	nvme_bdev_ctrlr_op_rpc_continue(ctx, rc);
2738 }
2739 
2740 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
2741 
2742 static void
2743 _bdev_nvme_reset_io_complete(struct spdk_io_channel_iter *i, int status)
2744 {
2745 	struct nvme_bdev_io *bio = spdk_io_channel_iter_get_ctx(i);
2746 	enum spdk_bdev_io_status io_status;
2747 
2748 	if (bio->cpl.cdw0 == 0) {
2749 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2750 	} else {
2751 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
2752 	}
2753 
2754 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
2755 }
2756 
2757 static void
2758 bdev_nvme_abort_bdev_channel(struct spdk_io_channel_iter *i)
2759 {
2760 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2761 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
2762 
2763 	bdev_nvme_abort_retry_ios(nbdev_ch);
2764 
2765 	spdk_for_each_channel_continue(i, 0);
2766 }
2767 
2768 static void
2769 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
2770 {
2771 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2772 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
2773 
2774 	/* Abort all queued I/Os for retry. */
2775 	spdk_for_each_channel(nbdev,
2776 			      bdev_nvme_abort_bdev_channel,
2777 			      bio,
2778 			      _bdev_nvme_reset_io_complete);
2779 }
2780 
2781 static void
2782 _bdev_nvme_reset_io_continue(void *ctx)
2783 {
2784 	struct nvme_bdev_io *bio = ctx;
2785 	struct nvme_io_path *prev_io_path, *next_io_path;
2786 	int rc;
2787 
2788 	prev_io_path = bio->io_path;
2789 	bio->io_path = NULL;
2790 
2791 	if (bio->cpl.cdw0 != 0) {
2792 		goto complete;
2793 	}
2794 
2795 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
2796 	if (next_io_path == NULL) {
2797 		goto complete;
2798 	}
2799 
2800 	rc = _bdev_nvme_reset_io(next_io_path, bio);
2801 	if (rc == 0) {
2802 		return;
2803 	}
2804 
2805 	bio->cpl.cdw0 = 1;
2806 
2807 complete:
2808 	bdev_nvme_reset_io_complete(bio);
2809 }
2810 
2811 static void
2812 bdev_nvme_reset_io_continue(void *cb_arg, int rc)
2813 {
2814 	struct nvme_bdev_io *bio = cb_arg;
2815 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2816 
2817 	bio->cpl.cdw0 = (rc == 0) ? 0 : 1;
2818 
2819 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_nvme_reset_io_continue, bio);
2820 }
2821 
2822 static int
2823 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
2824 {
2825 	struct nvme_ctrlr_channel *ctrlr_ch;
2826 	int rc;
2827 
2828 	rc = nvme_ctrlr_op(io_path->qpair->ctrlr, NVME_CTRLR_OP_RESET,
2829 			   bdev_nvme_reset_io_continue, bio);
2830 	if (rc != 0 && rc != -EBUSY) {
2831 		return rc;
2832 	}
2833 
2834 	assert(bio->io_path == NULL);
2835 	bio->io_path = io_path;
2836 
2837 	if (rc == -EBUSY) {
2838 		ctrlr_ch = io_path->qpair->ctrlr_ch;
2839 		assert(ctrlr_ch != NULL);
2840 		/*
2841 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
2842 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
2843 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
2844 		 */
2845 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bio, retry_link);
2846 	}
2847 
2848 	return 0;
2849 }
2850 
2851 static void
2852 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
2853 {
2854 	struct nvme_io_path *io_path;
2855 	int rc;
2856 
2857 	bio->cpl.cdw0 = 0;
2858 
2859 	/* Reset all nvme_ctrlrs of a bdev controller sequentially. */
2860 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
2861 	assert(io_path != NULL);
2862 
2863 	rc = _bdev_nvme_reset_io(io_path, bio);
2864 	if (rc != 0) {
2865 		/* If the current nvme_ctrlr is disabled, skip it and move to the next nvme_ctrlr. */
2866 		rc = (rc == -EALREADY) ? 0 : rc;
2867 
2868 		bdev_nvme_reset_io_continue(bio, rc);
2869 	}
2870 }
2871 
2872 static int
2873 bdev_nvme_failover_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove)
2874 {
2875 	if (nvme_ctrlr->destruct) {
2876 		/* Don't bother resetting if the controller is in the process of being destructed. */
2877 		return -ENXIO;
2878 	}
2879 
2880 	if (nvme_ctrlr->resetting) {
2881 		if (!nvme_ctrlr->in_failover) {
2882 			SPDK_NOTICELOG("Reset is already in progress. Defer failover until reset completes.\n");
2883 
2884 			/* Defer failover until reset completes. */
2885 			nvme_ctrlr->pending_failover = true;
2886 			return -EINPROGRESS;
2887 		} else {
2888 			SPDK_NOTICELOG("Unable to perform failover, already in progress.\n");
2889 			return -EBUSY;
2890 		}
2891 	}
2892 
2893 	bdev_nvme_failover_trid(nvme_ctrlr, remove, true);
2894 
2895 	if (nvme_ctrlr->reconnect_is_delayed) {
2896 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
2897 
2898 		/* We rely on the next reconnect for the failover. */
2899 		return -EALREADY;
2900 	}
2901 
2902 	if (nvme_ctrlr->disabled) {
2903 		SPDK_NOTICELOG("Controller is disabled.\n");
2904 
2905 		/* We rely on the enablement for the failover. */
2906 		return -EALREADY;
2907 	}
2908 
2909 	nvme_ctrlr->resetting = true;
2910 	nvme_ctrlr->in_failover = true;
2911 
2912 	assert(nvme_ctrlr->reset_start_tsc == 0);
2913 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2914 
2915 	return 0;
2916 }
2917 
2918 static int
2919 bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2920 {
2921 	int rc;
2922 
2923 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2924 	rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, false);
2925 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2926 
2927 	if (rc == 0) {
2928 		spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset_ctrlr, nvme_ctrlr);
2929 	} else if (rc == -EALREADY) {
2930 		rc = 0;
2931 	}
2932 
2933 	return rc;
2934 }
2935 
2936 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2937 			   uint64_t num_blocks);
2938 
2939 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2940 				  uint64_t num_blocks);
2941 
2942 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
2943 			  uint64_t src_offset_blocks,
2944 			  uint64_t num_blocks);
2945 
2946 static void
2947 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
2948 		     bool success)
2949 {
2950 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2951 	int ret;
2952 
2953 	if (!success) {
2954 		ret = -EINVAL;
2955 		goto exit;
2956 	}
2957 
2958 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
2959 		ret = -ENXIO;
2960 		goto exit;
2961 	}
2962 
2963 	ret = bdev_nvme_readv(bio,
2964 			      bdev_io->u.bdev.iovs,
2965 			      bdev_io->u.bdev.iovcnt,
2966 			      bdev_io->u.bdev.md_buf,
2967 			      bdev_io->u.bdev.num_blocks,
2968 			      bdev_io->u.bdev.offset_blocks,
2969 			      bdev_io->u.bdev.dif_check_flags,
2970 			      bdev_io->u.bdev.memory_domain,
2971 			      bdev_io->u.bdev.memory_domain_ctx,
2972 			      bdev_io->u.bdev.accel_sequence);
2973 
2974 exit:
2975 	if (spdk_unlikely(ret != 0)) {
2976 		bdev_nvme_io_complete(bio, ret);
2977 	}
2978 }
2979 
2980 static inline void
2981 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
2982 {
2983 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2984 	struct spdk_bdev *bdev = bdev_io->bdev;
2985 	struct nvme_bdev_io *nbdev_io_to_abort;
2986 	int rc = 0;
2987 
2988 	switch (bdev_io->type) {
2989 	case SPDK_BDEV_IO_TYPE_READ:
2990 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
2991 
2992 			rc = bdev_nvme_readv(nbdev_io,
2993 					     bdev_io->u.bdev.iovs,
2994 					     bdev_io->u.bdev.iovcnt,
2995 					     bdev_io->u.bdev.md_buf,
2996 					     bdev_io->u.bdev.num_blocks,
2997 					     bdev_io->u.bdev.offset_blocks,
2998 					     bdev_io->u.bdev.dif_check_flags,
2999 					     bdev_io->u.bdev.memory_domain,
3000 					     bdev_io->u.bdev.memory_domain_ctx,
3001 					     bdev_io->u.bdev.accel_sequence);
3002 		} else {
3003 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
3004 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
3005 			rc = 0;
3006 		}
3007 		break;
3008 	case SPDK_BDEV_IO_TYPE_WRITE:
3009 		rc = bdev_nvme_writev(nbdev_io,
3010 				      bdev_io->u.bdev.iovs,
3011 				      bdev_io->u.bdev.iovcnt,
3012 				      bdev_io->u.bdev.md_buf,
3013 				      bdev_io->u.bdev.num_blocks,
3014 				      bdev_io->u.bdev.offset_blocks,
3015 				      bdev_io->u.bdev.dif_check_flags,
3016 				      bdev_io->u.bdev.memory_domain,
3017 				      bdev_io->u.bdev.memory_domain_ctx,
3018 				      bdev_io->u.bdev.accel_sequence,
3019 				      bdev_io->u.bdev.nvme_cdw12,
3020 				      bdev_io->u.bdev.nvme_cdw13);
3021 		break;
3022 	case SPDK_BDEV_IO_TYPE_COMPARE:
3023 		rc = bdev_nvme_comparev(nbdev_io,
3024 					bdev_io->u.bdev.iovs,
3025 					bdev_io->u.bdev.iovcnt,
3026 					bdev_io->u.bdev.md_buf,
3027 					bdev_io->u.bdev.num_blocks,
3028 					bdev_io->u.bdev.offset_blocks,
3029 					bdev_io->u.bdev.dif_check_flags);
3030 		break;
3031 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3032 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
3033 						   bdev_io->u.bdev.iovs,
3034 						   bdev_io->u.bdev.iovcnt,
3035 						   bdev_io->u.bdev.fused_iovs,
3036 						   bdev_io->u.bdev.fused_iovcnt,
3037 						   bdev_io->u.bdev.md_buf,
3038 						   bdev_io->u.bdev.num_blocks,
3039 						   bdev_io->u.bdev.offset_blocks,
3040 						   bdev_io->u.bdev.dif_check_flags);
3041 		break;
3042 	case SPDK_BDEV_IO_TYPE_UNMAP:
3043 		rc = bdev_nvme_unmap(nbdev_io,
3044 				     bdev_io->u.bdev.offset_blocks,
3045 				     bdev_io->u.bdev.num_blocks);
3046 		break;
3047 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3048 		rc =  bdev_nvme_write_zeroes(nbdev_io,
3049 					     bdev_io->u.bdev.offset_blocks,
3050 					     bdev_io->u.bdev.num_blocks);
3051 		break;
3052 	case SPDK_BDEV_IO_TYPE_RESET:
3053 		nbdev_io->io_path = NULL;
3054 		bdev_nvme_reset_io(nbdev_ch, nbdev_io);
3055 		return;
3056 
3057 	case SPDK_BDEV_IO_TYPE_FLUSH:
3058 		bdev_nvme_io_complete(nbdev_io, 0);
3059 		return;
3060 
3061 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3062 		rc = bdev_nvme_zone_appendv(nbdev_io,
3063 					    bdev_io->u.bdev.iovs,
3064 					    bdev_io->u.bdev.iovcnt,
3065 					    bdev_io->u.bdev.md_buf,
3066 					    bdev_io->u.bdev.num_blocks,
3067 					    bdev_io->u.bdev.offset_blocks,
3068 					    bdev_io->u.bdev.dif_check_flags);
3069 		break;
3070 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3071 		rc = bdev_nvme_get_zone_info(nbdev_io,
3072 					     bdev_io->u.zone_mgmt.zone_id,
3073 					     bdev_io->u.zone_mgmt.num_zones,
3074 					     bdev_io->u.zone_mgmt.buf);
3075 		break;
3076 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3077 		rc = bdev_nvme_zone_management(nbdev_io,
3078 					       bdev_io->u.zone_mgmt.zone_id,
3079 					       bdev_io->u.zone_mgmt.zone_action);
3080 		break;
3081 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3082 		nbdev_io->io_path = NULL;
3083 		bdev_nvme_admin_passthru(nbdev_ch,
3084 					 nbdev_io,
3085 					 &bdev_io->u.nvme_passthru.cmd,
3086 					 bdev_io->u.nvme_passthru.buf,
3087 					 bdev_io->u.nvme_passthru.nbytes);
3088 		return;
3089 
3090 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3091 		rc = bdev_nvme_io_passthru(nbdev_io,
3092 					   &bdev_io->u.nvme_passthru.cmd,
3093 					   bdev_io->u.nvme_passthru.buf,
3094 					   bdev_io->u.nvme_passthru.nbytes);
3095 		break;
3096 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3097 		rc = bdev_nvme_io_passthru_md(nbdev_io,
3098 					      &bdev_io->u.nvme_passthru.cmd,
3099 					      bdev_io->u.nvme_passthru.buf,
3100 					      bdev_io->u.nvme_passthru.nbytes,
3101 					      bdev_io->u.nvme_passthru.md_buf,
3102 					      bdev_io->u.nvme_passthru.md_len);
3103 		break;
3104 	case SPDK_BDEV_IO_TYPE_NVME_IOV_MD:
3105 		rc = bdev_nvme_iov_passthru_md(nbdev_io,
3106 					       &bdev_io->u.nvme_passthru.cmd,
3107 					       bdev_io->u.nvme_passthru.iovs,
3108 					       bdev_io->u.nvme_passthru.iovcnt,
3109 					       bdev_io->u.nvme_passthru.nbytes,
3110 					       bdev_io->u.nvme_passthru.md_buf,
3111 					       bdev_io->u.nvme_passthru.md_len);
3112 		break;
3113 	case SPDK_BDEV_IO_TYPE_ABORT:
3114 		nbdev_io->io_path = NULL;
3115 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
3116 		bdev_nvme_abort(nbdev_ch,
3117 				nbdev_io,
3118 				nbdev_io_to_abort);
3119 		return;
3120 
3121 	case SPDK_BDEV_IO_TYPE_COPY:
3122 		rc = bdev_nvme_copy(nbdev_io,
3123 				    bdev_io->u.bdev.offset_blocks,
3124 				    bdev_io->u.bdev.copy.src_offset_blocks,
3125 				    bdev_io->u.bdev.num_blocks);
3126 		break;
3127 	default:
3128 		rc = -EINVAL;
3129 		break;
3130 	}
3131 
3132 	if (spdk_unlikely(rc != 0)) {
3133 		bdev_nvme_io_complete(nbdev_io, rc);
3134 	}
3135 }
3136 
3137 static void
3138 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
3139 {
3140 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3141 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3142 
3143 	if (spdk_likely(nbdev_io->submit_tsc == 0)) {
3144 		nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io);
3145 	} else {
3146 		/* There are cases where submit_tsc != 0, i.e. retry I/O.
3147 		 * We need to update submit_tsc here.
3148 		 */
3149 		nbdev_io->submit_tsc = spdk_get_ticks();
3150 	}
3151 
3152 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
3153 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
3154 	if (spdk_unlikely(!nbdev_io->io_path)) {
3155 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
3156 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
3157 			return;
3158 		}
3159 
3160 		/* Admin commands do not use the optimal I/O path.
3161 		 * Simply fall through even if it is not found.
3162 		 */
3163 	}
3164 
3165 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
3166 }
3167 
3168 static bool
3169 bdev_nvme_is_supported_csi(enum spdk_nvme_csi csi)
3170 {
3171 	switch (csi) {
3172 	case SPDK_NVME_CSI_NVM:
3173 		return true;
3174 	case SPDK_NVME_CSI_ZNS:
3175 		return true;
3176 	default:
3177 		return false;
3178 	}
3179 }
3180 
3181 static bool
3182 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
3183 {
3184 	struct nvme_bdev *nbdev = ctx;
3185 	struct nvme_ns *nvme_ns;
3186 	struct spdk_nvme_ns *ns;
3187 	struct spdk_nvme_ctrlr *ctrlr;
3188 	const struct spdk_nvme_ctrlr_data *cdata;
3189 
3190 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3191 	assert(nvme_ns != NULL);
3192 	ns = nvme_ns->ns;
3193 	if (ns == NULL) {
3194 		return false;
3195 	}
3196 
3197 	if (!bdev_nvme_is_supported_csi(spdk_nvme_ns_get_csi(ns))) {
3198 		switch (io_type) {
3199 		case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3200 		case SPDK_BDEV_IO_TYPE_NVME_IO:
3201 			return true;
3202 
3203 		case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3204 			return spdk_nvme_ns_get_md_size(ns) ? true : false;
3205 
3206 		default:
3207 			return false;
3208 		}
3209 	}
3210 
3211 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3212 
3213 	switch (io_type) {
3214 	case SPDK_BDEV_IO_TYPE_READ:
3215 	case SPDK_BDEV_IO_TYPE_WRITE:
3216 	case SPDK_BDEV_IO_TYPE_RESET:
3217 	case SPDK_BDEV_IO_TYPE_FLUSH:
3218 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3219 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3220 	case SPDK_BDEV_IO_TYPE_ABORT:
3221 		return true;
3222 
3223 	case SPDK_BDEV_IO_TYPE_COMPARE:
3224 		return spdk_nvme_ns_supports_compare(ns);
3225 
3226 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3227 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
3228 
3229 	case SPDK_BDEV_IO_TYPE_UNMAP:
3230 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3231 		return cdata->oncs.dsm;
3232 
3233 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3234 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3235 		return cdata->oncs.write_zeroes;
3236 
3237 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3238 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
3239 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
3240 			return true;
3241 		}
3242 		return false;
3243 
3244 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3245 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3246 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
3247 
3248 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3249 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
3250 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
3251 
3252 	case SPDK_BDEV_IO_TYPE_COPY:
3253 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3254 		return cdata->oncs.copy;
3255 
3256 	default:
3257 		return false;
3258 	}
3259 }
3260 
3261 static int
3262 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
3263 {
3264 	struct nvme_qpair *nvme_qpair;
3265 	struct spdk_io_channel *pg_ch;
3266 	int rc;
3267 
3268 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
3269 	if (!nvme_qpair) {
3270 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
3271 		return -1;
3272 	}
3273 
3274 	TAILQ_INIT(&nvme_qpair->io_path_list);
3275 
3276 	nvme_qpair->ctrlr = nvme_ctrlr;
3277 	nvme_qpair->ctrlr_ch = ctrlr_ch;
3278 
3279 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
3280 	if (!pg_ch) {
3281 		free(nvme_qpair);
3282 		return -1;
3283 	}
3284 
3285 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
3286 
3287 #ifdef SPDK_CONFIG_VTUNE
3288 	nvme_qpair->group->collect_spin_stat = true;
3289 #else
3290 	nvme_qpair->group->collect_spin_stat = false;
3291 #endif
3292 
3293 	if (!nvme_ctrlr->disabled) {
3294 		/* If a nvme_ctrlr is disabled, don't try to create qpair for it. Qpair will
3295 		 * be created when it's enabled.
3296 		 */
3297 		rc = bdev_nvme_create_qpair(nvme_qpair);
3298 		if (rc != 0) {
3299 			/* nvme_ctrlr can't create IO qpair if connection is down.
3300 			 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
3301 			 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
3302 			 * submitted IO will be queued until IO qpair is successfully created.
3303 			 *
3304 			 * Hence, if both are satisfied, ignore the failure.
3305 			 */
3306 			if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
3307 				spdk_put_io_channel(pg_ch);
3308 				free(nvme_qpair);
3309 				return rc;
3310 			}
3311 		}
3312 	}
3313 
3314 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3315 
3316 	ctrlr_ch->qpair = nvme_qpair;
3317 
3318 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
3319 	nvme_qpair->ctrlr->ref++;
3320 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
3321 
3322 	return 0;
3323 }
3324 
3325 static int
3326 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3327 {
3328 	struct nvme_ctrlr *nvme_ctrlr = io_device;
3329 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3330 
3331 	TAILQ_INIT(&ctrlr_ch->pending_resets);
3332 
3333 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
3334 }
3335 
3336 static void
3337 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
3338 {
3339 	struct nvme_io_path *io_path, *next;
3340 
3341 	assert(nvme_qpair->group != NULL);
3342 
3343 	TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) {
3344 		TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
3345 		nvme_io_path_free(io_path);
3346 	}
3347 
3348 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3349 
3350 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
3351 
3352 	nvme_ctrlr_release(nvme_qpair->ctrlr);
3353 
3354 	free(nvme_qpair);
3355 }
3356 
3357 static void
3358 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3359 {
3360 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3361 	struct nvme_qpair *nvme_qpair;
3362 
3363 	nvme_qpair = ctrlr_ch->qpair;
3364 	assert(nvme_qpair != NULL);
3365 
3366 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
3367 
3368 	if (nvme_qpair->qpair != NULL) {
3369 		if (ctrlr_ch->reset_iter == NULL) {
3370 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
3371 		} else {
3372 			/* Skip current ctrlr_channel in a full reset sequence because
3373 			 * it is being deleted now. The qpair is already being disconnected.
3374 			 * We do not have to restart disconnecting it.
3375 			 */
3376 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
3377 		}
3378 
3379 		/* We cannot release a reference to the poll group now.
3380 		 * The qpair may be disconnected asynchronously later.
3381 		 * We need to poll it until it is actually disconnected.
3382 		 * Just detach the qpair from the deleting ctrlr_channel.
3383 		 */
3384 		nvme_qpair->ctrlr_ch = NULL;
3385 	} else {
3386 		assert(ctrlr_ch->reset_iter == NULL);
3387 
3388 		nvme_qpair_delete(nvme_qpair);
3389 	}
3390 }
3391 
3392 static inline struct spdk_io_channel *
3393 bdev_nvme_get_accel_channel(struct nvme_poll_group *group)
3394 {
3395 	if (spdk_unlikely(!group->accel_channel)) {
3396 		group->accel_channel = spdk_accel_get_io_channel();
3397 		if (!group->accel_channel) {
3398 			SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
3399 				    group);
3400 			return NULL;
3401 		}
3402 	}
3403 
3404 	return group->accel_channel;
3405 }
3406 
3407 static void
3408 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
3409 			      uint32_t iov_cnt, uint32_t seed,
3410 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3411 {
3412 	struct spdk_io_channel *accel_ch;
3413 	struct nvme_poll_group *group = ctx;
3414 	int rc;
3415 
3416 	assert(cb_fn != NULL);
3417 
3418 	accel_ch = bdev_nvme_get_accel_channel(group);
3419 	if (spdk_unlikely(accel_ch == NULL)) {
3420 		cb_fn(cb_arg, -ENOMEM);
3421 		return;
3422 	}
3423 
3424 	rc = spdk_accel_submit_crc32cv(accel_ch, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
3425 	if (rc) {
3426 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
3427 		if (rc == -ENOMEM || rc == -EINVAL) {
3428 			cb_fn(cb_arg, rc);
3429 		}
3430 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
3431 	}
3432 }
3433 
3434 static void
3435 bdev_nvme_finish_sequence(void *seq, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3436 {
3437 	spdk_accel_sequence_finish(seq, cb_fn, cb_arg);
3438 }
3439 
3440 static void
3441 bdev_nvme_abort_sequence(void *seq)
3442 {
3443 	spdk_accel_sequence_abort(seq);
3444 }
3445 
3446 static void
3447 bdev_nvme_reverse_sequence(void *seq)
3448 {
3449 	spdk_accel_sequence_reverse(seq);
3450 }
3451 
3452 static int
3453 bdev_nvme_append_crc32c(void *ctx, void **seq, uint32_t *dst, struct iovec *iovs, uint32_t iovcnt,
3454 			struct spdk_memory_domain *domain, void *domain_ctx, uint32_t seed,
3455 			spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3456 {
3457 	struct spdk_io_channel *ch;
3458 	struct nvme_poll_group *group = ctx;
3459 
3460 	ch = bdev_nvme_get_accel_channel(group);
3461 	if (spdk_unlikely(ch == NULL)) {
3462 		return -ENOMEM;
3463 	}
3464 
3465 	return spdk_accel_append_crc32c((struct spdk_accel_sequence **)seq, ch, dst, iovs, iovcnt,
3466 					domain, domain_ctx, seed, cb_fn, cb_arg);
3467 }
3468 
3469 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
3470 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
3471 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
3472 	.append_crc32c		= bdev_nvme_append_crc32c,
3473 	.finish_sequence	= bdev_nvme_finish_sequence,
3474 	.reverse_sequence	= bdev_nvme_reverse_sequence,
3475 	.abort_sequence		= bdev_nvme_abort_sequence,
3476 };
3477 
3478 static int
3479 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
3480 {
3481 	struct nvme_poll_group *group = ctx_buf;
3482 
3483 	TAILQ_INIT(&group->qpair_list);
3484 
3485 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
3486 	if (group->group == NULL) {
3487 		return -1;
3488 	}
3489 
3490 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
3491 
3492 	if (group->poller == NULL) {
3493 		spdk_nvme_poll_group_destroy(group->group);
3494 		return -1;
3495 	}
3496 
3497 	return 0;
3498 }
3499 
3500 static void
3501 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
3502 {
3503 	struct nvme_poll_group *group = ctx_buf;
3504 
3505 	assert(TAILQ_EMPTY(&group->qpair_list));
3506 
3507 	if (group->accel_channel) {
3508 		spdk_put_io_channel(group->accel_channel);
3509 	}
3510 
3511 	spdk_poller_unregister(&group->poller);
3512 	if (spdk_nvme_poll_group_destroy(group->group)) {
3513 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
3514 		assert(false);
3515 	}
3516 }
3517 
3518 static struct spdk_io_channel *
3519 bdev_nvme_get_io_channel(void *ctx)
3520 {
3521 	struct nvme_bdev *nvme_bdev = ctx;
3522 
3523 	return spdk_get_io_channel(nvme_bdev);
3524 }
3525 
3526 static void *
3527 bdev_nvme_get_module_ctx(void *ctx)
3528 {
3529 	struct nvme_bdev *nvme_bdev = ctx;
3530 	struct nvme_ns *nvme_ns;
3531 
3532 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
3533 		return NULL;
3534 	}
3535 
3536 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
3537 	if (!nvme_ns) {
3538 		return NULL;
3539 	}
3540 
3541 	return nvme_ns->ns;
3542 }
3543 
3544 static const char *
3545 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
3546 {
3547 	switch (ana_state) {
3548 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3549 		return "optimized";
3550 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3551 		return "non_optimized";
3552 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3553 		return "inaccessible";
3554 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
3555 		return "persistent_loss";
3556 	case SPDK_NVME_ANA_CHANGE_STATE:
3557 		return "change";
3558 	default:
3559 		return NULL;
3560 	}
3561 }
3562 
3563 static int
3564 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
3565 {
3566 	struct spdk_memory_domain **_domains = NULL;
3567 	struct nvme_bdev *nbdev = ctx;
3568 	struct nvme_ns *nvme_ns;
3569 	int i = 0, _array_size = array_size;
3570 	int rc = 0;
3571 
3572 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3573 		if (domains && array_size >= i) {
3574 			_domains = &domains[i];
3575 		} else {
3576 			_domains = NULL;
3577 		}
3578 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
3579 		if (rc > 0) {
3580 			i += rc;
3581 			if (_array_size >= rc) {
3582 				_array_size -= rc;
3583 			} else {
3584 				_array_size = 0;
3585 			}
3586 		} else if (rc < 0) {
3587 			return rc;
3588 		}
3589 	}
3590 
3591 	return i;
3592 }
3593 
3594 static const char *
3595 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
3596 {
3597 	if (nvme_ctrlr->destruct) {
3598 		return "deleting";
3599 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
3600 		return "failed";
3601 	} else if (nvme_ctrlr->resetting) {
3602 		return "resetting";
3603 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
3604 		return "reconnect_is_delayed";
3605 	} else if (nvme_ctrlr->disabled) {
3606 		return "disabled";
3607 	} else {
3608 		return "enabled";
3609 	}
3610 }
3611 
3612 void
3613 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
3614 {
3615 	struct spdk_nvme_transport_id *trid;
3616 	const struct spdk_nvme_ctrlr_opts *opts;
3617 	const struct spdk_nvme_ctrlr_data *cdata;
3618 	struct nvme_path_id *path_id;
3619 	int32_t numa_id;
3620 
3621 	spdk_json_write_object_begin(w);
3622 
3623 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
3624 
3625 #ifdef SPDK_CONFIG_NVME_CUSE
3626 	size_t cuse_name_size = 128;
3627 	char cuse_name[cuse_name_size];
3628 
3629 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
3630 	if (rc == 0) {
3631 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3632 	}
3633 #endif
3634 	trid = &nvme_ctrlr->active_path_id->trid;
3635 	spdk_json_write_named_object_begin(w, "trid");
3636 	nvme_bdev_dump_trid_json(trid, w);
3637 	spdk_json_write_object_end(w);
3638 
3639 	path_id = TAILQ_NEXT(nvme_ctrlr->active_path_id, link);
3640 	if (path_id != NULL) {
3641 		spdk_json_write_named_array_begin(w, "alternate_trids");
3642 		do {
3643 			trid = &path_id->trid;
3644 			spdk_json_write_object_begin(w);
3645 			nvme_bdev_dump_trid_json(trid, w);
3646 			spdk_json_write_object_end(w);
3647 
3648 			path_id = TAILQ_NEXT(path_id, link);
3649 		} while (path_id != NULL);
3650 		spdk_json_write_array_end(w);
3651 	}
3652 
3653 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
3654 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3655 
3656 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
3657 	spdk_json_write_named_object_begin(w, "host");
3658 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
3659 	spdk_json_write_named_string(w, "addr", opts->src_addr);
3660 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
3661 	spdk_json_write_object_end(w);
3662 
3663 	numa_id = spdk_nvme_ctrlr_get_numa_id(nvme_ctrlr->ctrlr);
3664 	if (numa_id != SPDK_ENV_NUMA_ID_ANY) {
3665 		spdk_json_write_named_uint32(w, "numa_id", numa_id);
3666 	}
3667 	spdk_json_write_object_end(w);
3668 }
3669 
3670 static void
3671 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
3672 			 struct nvme_ns *nvme_ns)
3673 {
3674 	struct spdk_nvme_ns *ns;
3675 	struct spdk_nvme_ctrlr *ctrlr;
3676 	const struct spdk_nvme_ctrlr_data *cdata;
3677 	const struct spdk_nvme_transport_id *trid;
3678 	union spdk_nvme_vs_register vs;
3679 	const struct spdk_nvme_ns_data *nsdata;
3680 	char buf[128];
3681 
3682 	ns = nvme_ns->ns;
3683 	if (ns == NULL) {
3684 		return;
3685 	}
3686 
3687 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3688 
3689 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3690 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
3691 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
3692 
3693 	spdk_json_write_object_begin(w);
3694 
3695 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
3696 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
3697 	}
3698 
3699 	spdk_json_write_named_object_begin(w, "trid");
3700 
3701 	nvme_bdev_dump_trid_json(trid, w);
3702 
3703 	spdk_json_write_object_end(w);
3704 
3705 #ifdef SPDK_CONFIG_NVME_CUSE
3706 	size_t cuse_name_size = 128;
3707 	char cuse_name[cuse_name_size];
3708 
3709 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
3710 					    cuse_name, &cuse_name_size);
3711 	if (rc == 0) {
3712 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3713 	}
3714 #endif
3715 
3716 	spdk_json_write_named_object_begin(w, "ctrlr_data");
3717 
3718 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3719 
3720 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
3721 
3722 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
3723 	spdk_str_trim(buf);
3724 	spdk_json_write_named_string(w, "model_number", buf);
3725 
3726 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
3727 	spdk_str_trim(buf);
3728 	spdk_json_write_named_string(w, "serial_number", buf);
3729 
3730 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
3731 	spdk_str_trim(buf);
3732 	spdk_json_write_named_string(w, "firmware_revision", buf);
3733 
3734 	if (cdata->subnqn[0] != '\0') {
3735 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
3736 	}
3737 
3738 	spdk_json_write_named_object_begin(w, "oacs");
3739 
3740 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
3741 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
3742 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
3743 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
3744 
3745 	spdk_json_write_object_end(w);
3746 
3747 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
3748 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
3749 
3750 	spdk_json_write_object_end(w);
3751 
3752 	spdk_json_write_named_object_begin(w, "vs");
3753 
3754 	spdk_json_write_name(w, "nvme_version");
3755 	if (vs.bits.ter) {
3756 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
3757 	} else {
3758 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
3759 	}
3760 
3761 	spdk_json_write_object_end(w);
3762 
3763 	nsdata = spdk_nvme_ns_get_data(ns);
3764 
3765 	spdk_json_write_named_object_begin(w, "ns_data");
3766 
3767 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
3768 
3769 	if (cdata->cmic.ana_reporting) {
3770 		spdk_json_write_named_string(w, "ana_state",
3771 					     _nvme_ana_state_str(nvme_ns->ana_state));
3772 	}
3773 
3774 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
3775 
3776 	spdk_json_write_object_end(w);
3777 
3778 	if (cdata->oacs.security) {
3779 		spdk_json_write_named_object_begin(w, "security");
3780 
3781 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
3782 
3783 		spdk_json_write_object_end(w);
3784 	}
3785 
3786 	spdk_json_write_object_end(w);
3787 }
3788 
3789 static const char *
3790 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
3791 {
3792 	switch (nbdev->mp_policy) {
3793 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
3794 		return "active_passive";
3795 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
3796 		return "active_active";
3797 	default:
3798 		assert(false);
3799 		return "invalid";
3800 	}
3801 }
3802 
3803 static const char *
3804 nvme_bdev_get_mp_selector_str(struct nvme_bdev *nbdev)
3805 {
3806 	switch (nbdev->mp_selector) {
3807 	case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
3808 		return "round_robin";
3809 	case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
3810 		return "queue_depth";
3811 	default:
3812 		assert(false);
3813 		return "invalid";
3814 	}
3815 }
3816 
3817 static int
3818 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
3819 {
3820 	struct nvme_bdev *nvme_bdev = ctx;
3821 	struct nvme_ns *nvme_ns;
3822 
3823 	pthread_mutex_lock(&nvme_bdev->mutex);
3824 	spdk_json_write_named_array_begin(w, "nvme");
3825 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
3826 		nvme_namespace_info_json(w, nvme_ns);
3827 	}
3828 	spdk_json_write_array_end(w);
3829 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
3830 	if (nvme_bdev->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
3831 		spdk_json_write_named_string(w, "selector", nvme_bdev_get_mp_selector_str(nvme_bdev));
3832 		if (nvme_bdev->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
3833 			spdk_json_write_named_uint32(w, "rr_min_io", nvme_bdev->rr_min_io);
3834 		}
3835 	}
3836 	pthread_mutex_unlock(&nvme_bdev->mutex);
3837 
3838 	return 0;
3839 }
3840 
3841 static void
3842 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
3843 {
3844 	/* No config per bdev needed */
3845 }
3846 
3847 static uint64_t
3848 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
3849 {
3850 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3851 	struct nvme_io_path *io_path;
3852 	struct nvme_poll_group *group;
3853 	uint64_t spin_time = 0;
3854 
3855 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3856 		group = io_path->qpair->group;
3857 
3858 		if (!group || !group->collect_spin_stat) {
3859 			continue;
3860 		}
3861 
3862 		if (group->end_ticks != 0) {
3863 			group->spin_ticks += (group->end_ticks - group->start_ticks);
3864 			group->end_ticks = 0;
3865 		}
3866 
3867 		spin_time += group->spin_ticks;
3868 		group->start_ticks = 0;
3869 		group->spin_ticks = 0;
3870 	}
3871 
3872 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
3873 }
3874 
3875 static void
3876 bdev_nvme_reset_device_stat(void *ctx)
3877 {
3878 	struct nvme_bdev *nbdev = ctx;
3879 
3880 	if (nbdev->err_stat != NULL) {
3881 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
3882 	}
3883 }
3884 
3885 /* JSON string should be lowercases and underscore delimited string. */
3886 static void
3887 bdev_nvme_format_nvme_status(char *dst, const char *src)
3888 {
3889 	char tmp[256];
3890 
3891 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
3892 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
3893 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
3894 	spdk_strlwr(dst);
3895 }
3896 
3897 static void
3898 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
3899 {
3900 	struct nvme_bdev *nbdev = ctx;
3901 	struct spdk_nvme_status status = {};
3902 	uint16_t sct, sc;
3903 	char status_json[256];
3904 	const char *status_str;
3905 
3906 	if (nbdev->err_stat == NULL) {
3907 		return;
3908 	}
3909 
3910 	spdk_json_write_named_object_begin(w, "nvme_error");
3911 
3912 	spdk_json_write_named_object_begin(w, "status_type");
3913 	for (sct = 0; sct < 8; sct++) {
3914 		if (nbdev->err_stat->status_type[sct] == 0) {
3915 			continue;
3916 		}
3917 		status.sct = sct;
3918 
3919 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
3920 		assert(status_str != NULL);
3921 		bdev_nvme_format_nvme_status(status_json, status_str);
3922 
3923 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
3924 	}
3925 	spdk_json_write_object_end(w);
3926 
3927 	spdk_json_write_named_object_begin(w, "status_code");
3928 	for (sct = 0; sct < 4; sct++) {
3929 		status.sct = sct;
3930 		for (sc = 0; sc < 256; sc++) {
3931 			if (nbdev->err_stat->status[sct][sc] == 0) {
3932 				continue;
3933 			}
3934 			status.sc = sc;
3935 
3936 			status_str = spdk_nvme_cpl_get_status_string(&status);
3937 			assert(status_str != NULL);
3938 			bdev_nvme_format_nvme_status(status_json, status_str);
3939 
3940 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
3941 		}
3942 	}
3943 	spdk_json_write_object_end(w);
3944 
3945 	spdk_json_write_object_end(w);
3946 }
3947 
3948 static bool
3949 bdev_nvme_accel_sequence_supported(void *ctx, enum spdk_bdev_io_type type)
3950 {
3951 	struct nvme_bdev *nbdev = ctx;
3952 	struct spdk_nvme_ctrlr *ctrlr;
3953 
3954 	if (!g_opts.allow_accel_sequence) {
3955 		return false;
3956 	}
3957 
3958 	switch (type) {
3959 	case SPDK_BDEV_IO_TYPE_WRITE:
3960 	case SPDK_BDEV_IO_TYPE_READ:
3961 		break;
3962 	default:
3963 		return false;
3964 	}
3965 
3966 	ctrlr = bdev_nvme_get_ctrlr(&nbdev->disk);
3967 	assert(ctrlr != NULL);
3968 
3969 	return spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ACCEL_SEQUENCE_SUPPORTED;
3970 }
3971 
3972 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
3973 	.destruct			= bdev_nvme_destruct,
3974 	.submit_request			= bdev_nvme_submit_request,
3975 	.io_type_supported		= bdev_nvme_io_type_supported,
3976 	.get_io_channel			= bdev_nvme_get_io_channel,
3977 	.dump_info_json			= bdev_nvme_dump_info_json,
3978 	.write_config_json		= bdev_nvme_write_config_json,
3979 	.get_spin_time			= bdev_nvme_get_spin_time,
3980 	.get_module_ctx			= bdev_nvme_get_module_ctx,
3981 	.get_memory_domains		= bdev_nvme_get_memory_domains,
3982 	.accel_sequence_supported	= bdev_nvme_accel_sequence_supported,
3983 	.reset_device_stat		= bdev_nvme_reset_device_stat,
3984 	.dump_device_stat_json		= bdev_nvme_dump_device_stat_json,
3985 };
3986 
3987 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
3988 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
3989 
3990 static int
3991 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
3992 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
3993 {
3994 	struct spdk_nvme_ana_group_descriptor *copied_desc;
3995 	uint8_t *orig_desc;
3996 	uint32_t i, desc_size, copy_len;
3997 	int rc = 0;
3998 
3999 	if (nvme_ctrlr->ana_log_page == NULL) {
4000 		return -EINVAL;
4001 	}
4002 
4003 	copied_desc = nvme_ctrlr->copied_ana_desc;
4004 
4005 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
4006 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
4007 
4008 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
4009 		memcpy(copied_desc, orig_desc, copy_len);
4010 
4011 		rc = cb_fn(copied_desc, cb_arg);
4012 		if (rc != 0) {
4013 			break;
4014 		}
4015 
4016 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
4017 			    copied_desc->num_of_nsid * sizeof(uint32_t);
4018 		orig_desc += desc_size;
4019 		copy_len -= desc_size;
4020 	}
4021 
4022 	return rc;
4023 }
4024 
4025 static int
4026 nvme_ns_ana_transition_timedout(void *ctx)
4027 {
4028 	struct nvme_ns *nvme_ns = ctx;
4029 
4030 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4031 	nvme_ns->ana_transition_timedout = true;
4032 
4033 	return SPDK_POLLER_BUSY;
4034 }
4035 
4036 static void
4037 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
4038 		       const struct spdk_nvme_ana_group_descriptor *desc)
4039 {
4040 	const struct spdk_nvme_ctrlr_data *cdata;
4041 
4042 	nvme_ns->ana_group_id = desc->ana_group_id;
4043 	nvme_ns->ana_state = desc->ana_state;
4044 	nvme_ns->ana_state_updating = false;
4045 
4046 	switch (nvme_ns->ana_state) {
4047 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
4048 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
4049 		nvme_ns->ana_transition_timedout = false;
4050 		spdk_poller_unregister(&nvme_ns->anatt_timer);
4051 		break;
4052 
4053 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
4054 	case SPDK_NVME_ANA_CHANGE_STATE:
4055 		if (nvme_ns->anatt_timer != NULL) {
4056 			break;
4057 		}
4058 
4059 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4060 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
4061 				       nvme_ns,
4062 				       cdata->anatt * SPDK_SEC_TO_USEC);
4063 		break;
4064 	default:
4065 		break;
4066 	}
4067 }
4068 
4069 static int
4070 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
4071 {
4072 	struct nvme_ns *nvme_ns = cb_arg;
4073 	uint32_t i;
4074 
4075 	assert(nvme_ns->ns != NULL);
4076 
4077 	for (i = 0; i < desc->num_of_nsid; i++) {
4078 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
4079 			continue;
4080 		}
4081 
4082 		_nvme_ns_set_ana_state(nvme_ns, desc);
4083 		return 1;
4084 	}
4085 
4086 	return 0;
4087 }
4088 
4089 static int
4090 nvme_generate_uuid(const char *sn, uint32_t nsid, struct spdk_uuid *uuid)
4091 {
4092 	int rc = 0;
4093 	struct spdk_uuid new_uuid, namespace_uuid;
4094 	char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'};
4095 	/* This namespace UUID was generated using uuid_generate() method. */
4096 	const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"};
4097 	int size;
4098 
4099 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
4100 
4101 	spdk_uuid_set_null(&new_uuid);
4102 	spdk_uuid_set_null(&namespace_uuid);
4103 
4104 	size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid);
4105 	if (size <= 0 || (unsigned long)size >= sizeof(merged_str)) {
4106 		return -EINVAL;
4107 	}
4108 
4109 	spdk_uuid_parse(&namespace_uuid, namespace_str);
4110 
4111 	rc = spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size);
4112 	if (rc == 0) {
4113 		memcpy(uuid, &new_uuid, sizeof(struct spdk_uuid));
4114 	}
4115 
4116 	return rc;
4117 }
4118 
4119 static int
4120 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
4121 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
4122 		 struct spdk_bdev_nvme_ctrlr_opts *bdev_opts, void *ctx)
4123 {
4124 	const struct spdk_uuid		*uuid;
4125 	const uint8_t *nguid;
4126 	const struct spdk_nvme_ctrlr_data *cdata;
4127 	const struct spdk_nvme_ns_data	*nsdata;
4128 	const struct spdk_nvme_ctrlr_opts *opts;
4129 	enum spdk_nvme_csi		csi;
4130 	uint32_t atomic_bs, phys_bs, bs;
4131 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
4132 	int rc;
4133 
4134 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4135 	csi = spdk_nvme_ns_get_csi(ns);
4136 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
4137 
4138 	switch (csi) {
4139 	case SPDK_NVME_CSI_NVM:
4140 		disk->product_name = "NVMe disk";
4141 		break;
4142 	case SPDK_NVME_CSI_ZNS:
4143 		disk->product_name = "NVMe ZNS disk";
4144 		disk->zoned = true;
4145 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
4146 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
4147 					     spdk_nvme_ns_get_extended_sector_size(ns);
4148 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
4149 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
4150 		break;
4151 	default:
4152 		if (bdev_opts->allow_unrecognized_csi) {
4153 			disk->product_name = "NVMe Passthrough disk";
4154 			break;
4155 		}
4156 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
4157 		return -ENOTSUP;
4158 	}
4159 
4160 	nguid = spdk_nvme_ns_get_nguid(ns);
4161 	if (!nguid) {
4162 		uuid = spdk_nvme_ns_get_uuid(ns);
4163 		if (uuid) {
4164 			disk->uuid = *uuid;
4165 		} else if (g_opts.generate_uuids) {
4166 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
4167 			rc = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns), &disk->uuid);
4168 			if (rc < 0) {
4169 				SPDK_ERRLOG("UUID generation failed (%s)\n", spdk_strerror(-rc));
4170 				return rc;
4171 			}
4172 		}
4173 	} else {
4174 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
4175 	}
4176 
4177 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
4178 	if (!disk->name) {
4179 		return -ENOMEM;
4180 	}
4181 
4182 	disk->write_cache = 0;
4183 	if (cdata->vwc.present) {
4184 		/* Enable if the Volatile Write Cache exists */
4185 		disk->write_cache = 1;
4186 	}
4187 	if (cdata->oncs.write_zeroes) {
4188 		disk->max_write_zeroes = UINT16_MAX + 1;
4189 	}
4190 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
4191 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
4192 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
4193 	disk->ctratt.raw = cdata->ctratt.raw;
4194 	/* NVMe driver will split one request into multiple requests
4195 	 * based on MDTS and stripe boundary, the bdev layer will use
4196 	 * max_segment_size and max_num_segments to split one big IO
4197 	 * into multiple requests, then small request can't run out
4198 	 * of NVMe internal requests data structure.
4199 	 */
4200 	if (opts && opts->io_queue_requests) {
4201 		disk->max_num_segments = opts->io_queue_requests / 2;
4202 	}
4203 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4204 		/* The nvme driver will try to split I/O that have too many
4205 		 * SGEs, but it doesn't work if that last SGE doesn't end on
4206 		 * an aggregate total that is block aligned. The bdev layer has
4207 		 * a more robust splitting framework, so use that instead for
4208 		 * this case. (See issue #3269.)
4209 		 */
4210 		uint16_t max_sges = spdk_nvme_ctrlr_get_max_sges(ctrlr);
4211 
4212 		if (disk->max_num_segments == 0) {
4213 			disk->max_num_segments = max_sges;
4214 		} else {
4215 			disk->max_num_segments = spdk_min(disk->max_num_segments, max_sges);
4216 		}
4217 	}
4218 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
4219 
4220 	nsdata = spdk_nvme_ns_get_data(ns);
4221 	bs = spdk_nvme_ns_get_sector_size(ns);
4222 	atomic_bs = bs;
4223 	phys_bs = bs;
4224 	if (nsdata->nabo == 0) {
4225 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
4226 			atomic_bs = bs * (1 + nsdata->nawupf);
4227 		} else {
4228 			atomic_bs = bs * (1 + cdata->awupf);
4229 		}
4230 	}
4231 	if (nsdata->nsfeat.optperf) {
4232 		phys_bs = bs * (1 + nsdata->npwg);
4233 	}
4234 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
4235 
4236 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
4237 	if (disk->md_len != 0) {
4238 		disk->md_interleave = nsdata->flbas.extended;
4239 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
4240 		if (disk->dif_type != SPDK_DIF_DISABLE) {
4241 			disk->dif_is_head_of_md = nsdata->dps.md_start;
4242 			disk->dif_check_flags = bdev_opts->prchk_flags;
4243 			disk->dif_pi_format = (enum spdk_dif_pi_format)spdk_nvme_ns_get_pi_format(ns);
4244 		}
4245 	}
4246 
4247 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
4248 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
4249 		disk->acwu = 0;
4250 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
4251 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
4252 	} else {
4253 		disk->acwu = cdata->acwu + 1; /* 0-based */
4254 	}
4255 
4256 	if (cdata->oncs.copy) {
4257 		/* For now bdev interface allows only single segment copy */
4258 		disk->max_copy = nsdata->mssrl;
4259 	}
4260 
4261 	disk->ctxt = ctx;
4262 	disk->fn_table = &nvmelib_fn_table;
4263 	disk->module = &nvme_if;
4264 
4265 	disk->numa.id_valid = 1;
4266 	disk->numa.id = spdk_nvme_ctrlr_get_numa_id(ctrlr);
4267 
4268 	return 0;
4269 }
4270 
4271 static struct nvme_bdev *
4272 nvme_bdev_alloc(void)
4273 {
4274 	struct nvme_bdev *bdev;
4275 	int rc;
4276 
4277 	bdev = calloc(1, sizeof(*bdev));
4278 	if (!bdev) {
4279 		SPDK_ERRLOG("bdev calloc() failed\n");
4280 		return NULL;
4281 	}
4282 
4283 	if (g_opts.nvme_error_stat) {
4284 		bdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
4285 		if (!bdev->err_stat) {
4286 			SPDK_ERRLOG("err_stat calloc() failed\n");
4287 			free(bdev);
4288 			return NULL;
4289 		}
4290 	}
4291 
4292 	rc = pthread_mutex_init(&bdev->mutex, NULL);
4293 	if (rc != 0) {
4294 		free(bdev->err_stat);
4295 		free(bdev);
4296 		return NULL;
4297 	}
4298 
4299 	bdev->ref = 1;
4300 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
4301 	bdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN;
4302 	bdev->rr_min_io = UINT32_MAX;
4303 	TAILQ_INIT(&bdev->nvme_ns_list);
4304 
4305 	return bdev;
4306 }
4307 
4308 static int
4309 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4310 {
4311 	struct nvme_bdev *bdev;
4312 	struct nvme_bdev_ctrlr *nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
4313 	int rc;
4314 
4315 	bdev = nvme_bdev_alloc();
4316 	if (bdev == NULL) {
4317 		SPDK_ERRLOG("Failed to allocate NVMe bdev\n");
4318 		return -ENOMEM;
4319 	}
4320 
4321 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
4322 
4323 	rc = nvme_disk_create(&bdev->disk, nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
4324 			      nvme_ns->ns, &nvme_ctrlr->opts, bdev);
4325 	if (rc != 0) {
4326 		SPDK_ERRLOG("Failed to create NVMe disk\n");
4327 		nvme_bdev_free(bdev);
4328 		return rc;
4329 	}
4330 
4331 	spdk_io_device_register(bdev,
4332 				bdev_nvme_create_bdev_channel_cb,
4333 				bdev_nvme_destroy_bdev_channel_cb,
4334 				sizeof(struct nvme_bdev_channel),
4335 				bdev->disk.name);
4336 
4337 	nvme_ns->bdev = bdev;
4338 	bdev->nsid = nvme_ns->id;
4339 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4340 
4341 	bdev->nbdev_ctrlr = nbdev_ctrlr;
4342 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->bdevs, bdev, tailq);
4343 
4344 	rc = spdk_bdev_register(&bdev->disk);
4345 	if (rc != 0) {
4346 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
4347 		spdk_io_device_unregister(bdev, NULL);
4348 		nvme_ns->bdev = NULL;
4349 		TAILQ_REMOVE(&nbdev_ctrlr->bdevs, bdev, tailq);
4350 		nvme_bdev_free(bdev);
4351 		return rc;
4352 	}
4353 
4354 	return 0;
4355 }
4356 
4357 static bool
4358 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
4359 {
4360 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
4361 	const struct spdk_uuid *uuid1, *uuid2;
4362 
4363 	nsdata1 = spdk_nvme_ns_get_data(ns1);
4364 	nsdata2 = spdk_nvme_ns_get_data(ns2);
4365 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
4366 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
4367 
4368 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
4369 	       nsdata1->eui64 == nsdata2->eui64 &&
4370 	       ((uuid1 == NULL && uuid2 == NULL) ||
4371 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
4372 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
4373 }
4374 
4375 static bool
4376 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4377 		 struct spdk_nvme_ctrlr_opts *opts)
4378 {
4379 	struct nvme_probe_skip_entry *entry;
4380 
4381 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
4382 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4383 			return false;
4384 		}
4385 	}
4386 
4387 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
4388 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
4389 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
4390 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
4391 	opts->disable_read_ana_log_page = true;
4392 
4393 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
4394 
4395 	return true;
4396 }
4397 
4398 static void
4399 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
4400 {
4401 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4402 
4403 	if (spdk_nvme_cpl_is_error(cpl)) {
4404 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
4405 			     cpl->status.sct);
4406 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4407 	} else if (cpl->cdw0 & 0x1) {
4408 		SPDK_WARNLOG("Specified command could not be aborted.\n");
4409 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4410 	}
4411 }
4412 
4413 static void
4414 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
4415 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
4416 {
4417 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4418 	union spdk_nvme_csts_register csts;
4419 	int rc;
4420 
4421 	assert(nvme_ctrlr->ctrlr == ctrlr);
4422 
4423 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
4424 
4425 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
4426 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
4427 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
4428 	 * completion recursively.
4429 	 */
4430 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
4431 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
4432 		if (csts.bits.cfs) {
4433 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
4434 			bdev_nvme_reset_ctrlr(nvme_ctrlr);
4435 			return;
4436 		}
4437 	}
4438 
4439 	switch (g_opts.action_on_timeout) {
4440 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
4441 		if (qpair) {
4442 			/* Don't send abort to ctrlr when ctrlr is not available. */
4443 			pthread_mutex_lock(&nvme_ctrlr->mutex);
4444 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
4445 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
4446 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
4447 				return;
4448 			}
4449 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4450 
4451 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
4452 						       nvme_abort_cpl, nvme_ctrlr);
4453 			if (rc == 0) {
4454 				return;
4455 			}
4456 
4457 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
4458 		}
4459 
4460 	/* FALLTHROUGH */
4461 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
4462 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4463 		break;
4464 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
4465 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
4466 		break;
4467 	default:
4468 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
4469 		break;
4470 	}
4471 }
4472 
4473 static struct nvme_ns *
4474 nvme_ns_alloc(void)
4475 {
4476 	struct nvme_ns *nvme_ns;
4477 
4478 	nvme_ns = calloc(1, sizeof(struct nvme_ns));
4479 	if (nvme_ns == NULL) {
4480 		return NULL;
4481 	}
4482 
4483 	if (g_opts.io_path_stat) {
4484 		nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
4485 		if (nvme_ns->stat == NULL) {
4486 			free(nvme_ns);
4487 			return NULL;
4488 		}
4489 		spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
4490 	}
4491 
4492 	return nvme_ns;
4493 }
4494 
4495 static void
4496 nvme_ns_free(struct nvme_ns *nvme_ns)
4497 {
4498 	free(nvme_ns->stat);
4499 	free(nvme_ns);
4500 }
4501 
4502 static void
4503 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
4504 {
4505 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4506 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
4507 
4508 	if (rc == 0) {
4509 		nvme_ns->probe_ctx = NULL;
4510 		pthread_mutex_lock(&nvme_ctrlr->mutex);
4511 		nvme_ctrlr->ref++;
4512 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4513 	} else {
4514 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4515 		nvme_ns_free(nvme_ns);
4516 	}
4517 
4518 	if (ctx) {
4519 		ctx->populates_in_progress--;
4520 		if (ctx->populates_in_progress == 0) {
4521 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4522 		}
4523 	}
4524 }
4525 
4526 static void
4527 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
4528 {
4529 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4530 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4531 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4532 	int rc;
4533 
4534 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
4535 	if (rc != 0) {
4536 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
4537 	}
4538 
4539 	spdk_for_each_channel_continue(i, rc);
4540 }
4541 
4542 static void
4543 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
4544 {
4545 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4546 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4547 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4548 	struct nvme_io_path *io_path;
4549 
4550 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
4551 	if (io_path != NULL) {
4552 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
4553 	}
4554 
4555 	spdk_for_each_channel_continue(i, 0);
4556 }
4557 
4558 static void
4559 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
4560 {
4561 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4562 
4563 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
4564 }
4565 
4566 static void
4567 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
4568 {
4569 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4570 	struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
4571 
4572 	if (status == 0) {
4573 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
4574 	} else {
4575 		/* Delete the added io_paths and fail populating the namespace. */
4576 		spdk_for_each_channel(bdev,
4577 				      bdev_nvme_delete_io_path,
4578 				      nvme_ns,
4579 				      bdev_nvme_add_io_path_failed);
4580 	}
4581 }
4582 
4583 static int
4584 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
4585 {
4586 	struct nvme_ns *tmp_ns;
4587 	const struct spdk_nvme_ns_data *nsdata;
4588 
4589 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
4590 	if (!nsdata->nmic.can_share) {
4591 		SPDK_ERRLOG("Namespace cannot be shared.\n");
4592 		return -EINVAL;
4593 	}
4594 
4595 	pthread_mutex_lock(&bdev->mutex);
4596 
4597 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
4598 	assert(tmp_ns != NULL);
4599 
4600 	if (tmp_ns->ns != NULL && !bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
4601 		pthread_mutex_unlock(&bdev->mutex);
4602 		SPDK_ERRLOG("Namespaces are not identical.\n");
4603 		return -EINVAL;
4604 	}
4605 
4606 	bdev->ref++;
4607 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4608 	nvme_ns->bdev = bdev;
4609 
4610 	pthread_mutex_unlock(&bdev->mutex);
4611 
4612 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
4613 	spdk_for_each_channel(bdev,
4614 			      bdev_nvme_add_io_path,
4615 			      nvme_ns,
4616 			      bdev_nvme_add_io_path_done);
4617 
4618 	return 0;
4619 }
4620 
4621 static void
4622 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4623 {
4624 	struct spdk_nvme_ns	*ns;
4625 	struct nvme_bdev	*bdev;
4626 	int			rc = 0;
4627 
4628 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
4629 	if (!ns) {
4630 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
4631 		rc = -EINVAL;
4632 		goto done;
4633 	}
4634 
4635 	nvme_ns->ns = ns;
4636 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4637 
4638 	if (nvme_ctrlr->ana_log_page != NULL) {
4639 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
4640 	}
4641 
4642 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
4643 	if (bdev == NULL) {
4644 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
4645 	} else {
4646 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
4647 		if (rc == 0) {
4648 			return;
4649 		}
4650 	}
4651 done:
4652 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
4653 }
4654 
4655 static void
4656 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
4657 {
4658 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4659 
4660 	assert(nvme_ctrlr != NULL);
4661 
4662 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4663 
4664 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4665 
4666 	if (nvme_ns->bdev != NULL) {
4667 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4668 		return;
4669 	}
4670 
4671 	nvme_ns_free(nvme_ns);
4672 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4673 
4674 	nvme_ctrlr_release(nvme_ctrlr);
4675 }
4676 
4677 static void
4678 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
4679 {
4680 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4681 
4682 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4683 }
4684 
4685 static void
4686 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4687 {
4688 	struct nvme_bdev *bdev;
4689 
4690 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4691 
4692 	bdev = nvme_ns->bdev;
4693 	if (bdev != NULL) {
4694 		pthread_mutex_lock(&bdev->mutex);
4695 
4696 		assert(bdev->ref > 0);
4697 		bdev->ref--;
4698 		if (bdev->ref == 0) {
4699 			pthread_mutex_unlock(&bdev->mutex);
4700 
4701 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
4702 		} else {
4703 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
4704 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
4705 			 * and clear nvme_ns->bdev here.
4706 			 */
4707 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
4708 			nvme_ns->bdev = NULL;
4709 
4710 			pthread_mutex_unlock(&bdev->mutex);
4711 
4712 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
4713 			 * we call depopulate_namespace_done() to avoid use-after-free.
4714 			 */
4715 			spdk_for_each_channel(bdev,
4716 					      bdev_nvme_delete_io_path,
4717 					      nvme_ns,
4718 					      bdev_nvme_delete_io_path_done);
4719 			return;
4720 		}
4721 	}
4722 
4723 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4724 }
4725 
4726 static void
4727 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
4728 			       struct nvme_async_probe_ctx *ctx)
4729 {
4730 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
4731 	struct nvme_ns	*nvme_ns, *next;
4732 	struct spdk_nvme_ns	*ns;
4733 	struct nvme_bdev	*bdev;
4734 	uint32_t		nsid;
4735 	int			rc;
4736 	uint64_t		num_sectors;
4737 
4738 	if (ctx) {
4739 		/* Initialize this count to 1 to handle the populate functions
4740 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
4741 		 */
4742 		ctx->populates_in_progress = 1;
4743 	}
4744 
4745 	/* First loop over our existing namespaces and see if they have been
4746 	 * removed. */
4747 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4748 	while (nvme_ns != NULL) {
4749 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4750 
4751 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
4752 			/* NS is still there or added again. Its attributes may have changed. */
4753 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
4754 			if (nvme_ns->ns != ns) {
4755 				assert(nvme_ns->ns == NULL);
4756 				nvme_ns->ns = ns;
4757 				SPDK_DEBUGLOG(bdev_nvme, "NSID %u was added\n", nvme_ns->id);
4758 			}
4759 
4760 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
4761 			bdev = nvme_ns->bdev;
4762 			assert(bdev != NULL);
4763 			if (bdev->disk.blockcnt != num_sectors) {
4764 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
4765 					       nvme_ns->id,
4766 					       bdev->disk.name,
4767 					       bdev->disk.blockcnt,
4768 					       num_sectors);
4769 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
4770 				if (rc != 0) {
4771 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
4772 						    bdev->disk.name, rc);
4773 				}
4774 			}
4775 		} else {
4776 			/* Namespace was removed */
4777 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4778 		}
4779 
4780 		nvme_ns = next;
4781 	}
4782 
4783 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
4784 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4785 	while (nsid != 0) {
4786 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4787 
4788 		if (nvme_ns == NULL) {
4789 			/* Found a new one */
4790 			nvme_ns = nvme_ns_alloc();
4791 			if (nvme_ns == NULL) {
4792 				SPDK_ERRLOG("Failed to allocate namespace\n");
4793 				/* This just fails to attach the namespace. It may work on a future attempt. */
4794 				continue;
4795 			}
4796 
4797 			nvme_ns->id = nsid;
4798 			nvme_ns->ctrlr = nvme_ctrlr;
4799 
4800 			nvme_ns->bdev = NULL;
4801 
4802 			if (ctx) {
4803 				ctx->populates_in_progress++;
4804 			}
4805 			nvme_ns->probe_ctx = ctx;
4806 
4807 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4808 
4809 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
4810 		}
4811 
4812 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
4813 	}
4814 
4815 	if (ctx) {
4816 		/* Decrement this count now that the loop is over to account
4817 		 * for the one we started with.  If the count is then 0, we
4818 		 * know any populate_namespace functions completed immediately,
4819 		 * so we'll kick the callback here.
4820 		 */
4821 		ctx->populates_in_progress--;
4822 		if (ctx->populates_in_progress == 0) {
4823 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4824 		}
4825 	}
4826 
4827 }
4828 
4829 static void
4830 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
4831 {
4832 	struct nvme_ns *nvme_ns, *tmp;
4833 
4834 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
4835 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4836 	}
4837 }
4838 
4839 static uint32_t
4840 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
4841 {
4842 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4843 	const struct spdk_nvme_ctrlr_data *cdata;
4844 	uint32_t nsid, ns_count = 0;
4845 
4846 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4847 
4848 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4849 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
4850 		ns_count++;
4851 	}
4852 
4853 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
4854 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
4855 	       sizeof(uint32_t);
4856 }
4857 
4858 static int
4859 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
4860 			  void *cb_arg)
4861 {
4862 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4863 	struct nvme_ns *nvme_ns;
4864 	uint32_t i, nsid;
4865 
4866 	for (i = 0; i < desc->num_of_nsid; i++) {
4867 		nsid = desc->nsid[i];
4868 		if (nsid == 0) {
4869 			continue;
4870 		}
4871 
4872 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4873 
4874 		if (nvme_ns == NULL) {
4875 			/* Target told us that an inactive namespace had an ANA change */
4876 			continue;
4877 		}
4878 
4879 		_nvme_ns_set_ana_state(nvme_ns, desc);
4880 	}
4881 
4882 	return 0;
4883 }
4884 
4885 static void
4886 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4887 {
4888 	struct nvme_ns *nvme_ns;
4889 
4890 	spdk_free(nvme_ctrlr->ana_log_page);
4891 	nvme_ctrlr->ana_log_page = NULL;
4892 
4893 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4894 	     nvme_ns != NULL;
4895 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
4896 		nvme_ns->ana_state_updating = false;
4897 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4898 	}
4899 }
4900 
4901 static void
4902 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
4903 {
4904 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4905 
4906 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
4907 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
4908 					     nvme_ctrlr);
4909 	} else {
4910 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
4911 	}
4912 
4913 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4914 
4915 	assert(nvme_ctrlr->ana_log_page_updating == true);
4916 	nvme_ctrlr->ana_log_page_updating = false;
4917 
4918 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
4919 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4920 
4921 		nvme_ctrlr_unregister(nvme_ctrlr);
4922 	} else {
4923 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4924 
4925 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
4926 	}
4927 }
4928 
4929 static int
4930 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4931 {
4932 	uint32_t ana_log_page_size;
4933 	int rc;
4934 
4935 	if (nvme_ctrlr->ana_log_page == NULL) {
4936 		return -EINVAL;
4937 	}
4938 
4939 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
4940 
4941 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
4942 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
4943 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
4944 		return -EINVAL;
4945 	}
4946 
4947 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4948 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
4949 	    nvme_ctrlr->ana_log_page_updating) {
4950 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4951 		return -EBUSY;
4952 	}
4953 
4954 	nvme_ctrlr->ana_log_page_updating = true;
4955 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4956 
4957 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
4958 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
4959 					      SPDK_NVME_GLOBAL_NS_TAG,
4960 					      nvme_ctrlr->ana_log_page,
4961 					      ana_log_page_size, 0,
4962 					      nvme_ctrlr_read_ana_log_page_done,
4963 					      nvme_ctrlr);
4964 	if (rc != 0) {
4965 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
4966 	}
4967 
4968 	return rc;
4969 }
4970 
4971 static void
4972 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
4973 {
4974 }
4975 
4976 struct bdev_nvme_set_preferred_path_ctx {
4977 	struct spdk_bdev_desc *desc;
4978 	struct nvme_ns *nvme_ns;
4979 	bdev_nvme_set_preferred_path_cb cb_fn;
4980 	void *cb_arg;
4981 };
4982 
4983 static void
4984 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
4985 {
4986 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4987 
4988 	assert(ctx != NULL);
4989 	assert(ctx->desc != NULL);
4990 	assert(ctx->cb_fn != NULL);
4991 
4992 	spdk_bdev_close(ctx->desc);
4993 
4994 	ctx->cb_fn(ctx->cb_arg, status);
4995 
4996 	free(ctx);
4997 }
4998 
4999 static void
5000 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
5001 {
5002 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
5003 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
5004 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
5005 	struct nvme_io_path *io_path, *prev;
5006 
5007 	prev = NULL;
5008 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
5009 		if (io_path->nvme_ns == ctx->nvme_ns) {
5010 			break;
5011 		}
5012 		prev = io_path;
5013 	}
5014 
5015 	if (io_path != NULL) {
5016 		if (prev != NULL) {
5017 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
5018 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
5019 		}
5020 
5021 		/* We can set io_path to nbdev_ch->current_io_path directly here.
5022 		 * However, it needs to be conditional. To simplify the code,
5023 		 * just clear nbdev_ch->current_io_path and let find_io_path()
5024 		 * fill it.
5025 		 *
5026 		 * Automatic failback may be disabled. Hence even if the io_path is
5027 		 * already at the head, clear nbdev_ch->current_io_path.
5028 		 */
5029 		bdev_nvme_clear_current_io_path(nbdev_ch);
5030 	}
5031 
5032 	spdk_for_each_channel_continue(i, 0);
5033 }
5034 
5035 static struct nvme_ns *
5036 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
5037 {
5038 	struct nvme_ns *nvme_ns, *prev;
5039 	const struct spdk_nvme_ctrlr_data *cdata;
5040 
5041 	prev = NULL;
5042 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
5043 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
5044 
5045 		if (cdata->cntlid == cntlid) {
5046 			break;
5047 		}
5048 		prev = nvme_ns;
5049 	}
5050 
5051 	if (nvme_ns != NULL && prev != NULL) {
5052 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
5053 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
5054 	}
5055 
5056 	return nvme_ns;
5057 }
5058 
5059 /* This function supports only multipath mode. There is only a single I/O path
5060  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
5061  * head of the I/O path list for each NVMe bdev channel.
5062  *
5063  * NVMe bdev channel may be acquired after completing this function. move the
5064  * matched namespace to the head of the namespace list for the NVMe bdev too.
5065  */
5066 void
5067 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
5068 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
5069 {
5070 	struct bdev_nvme_set_preferred_path_ctx *ctx;
5071 	struct spdk_bdev *bdev;
5072 	struct nvme_bdev *nbdev;
5073 	int rc = 0;
5074 
5075 	assert(cb_fn != NULL);
5076 
5077 	ctx = calloc(1, sizeof(*ctx));
5078 	if (ctx == NULL) {
5079 		SPDK_ERRLOG("Failed to alloc context.\n");
5080 		rc = -ENOMEM;
5081 		goto err_alloc;
5082 	}
5083 
5084 	ctx->cb_fn = cb_fn;
5085 	ctx->cb_arg = cb_arg;
5086 
5087 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5088 	if (rc != 0) {
5089 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5090 		goto err_open;
5091 	}
5092 
5093 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5094 
5095 	if (bdev->module != &nvme_if) {
5096 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5097 		rc = -ENODEV;
5098 		goto err_bdev;
5099 	}
5100 
5101 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5102 
5103 	pthread_mutex_lock(&nbdev->mutex);
5104 
5105 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
5106 	if (ctx->nvme_ns == NULL) {
5107 		pthread_mutex_unlock(&nbdev->mutex);
5108 
5109 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
5110 		rc = -ENODEV;
5111 		goto err_bdev;
5112 	}
5113 
5114 	pthread_mutex_unlock(&nbdev->mutex);
5115 
5116 	spdk_for_each_channel(nbdev,
5117 			      _bdev_nvme_set_preferred_path,
5118 			      ctx,
5119 			      bdev_nvme_set_preferred_path_done);
5120 	return;
5121 
5122 err_bdev:
5123 	spdk_bdev_close(ctx->desc);
5124 err_open:
5125 	free(ctx);
5126 err_alloc:
5127 	cb_fn(cb_arg, rc);
5128 }
5129 
5130 struct bdev_nvme_set_multipath_policy_ctx {
5131 	struct spdk_bdev_desc *desc;
5132 	spdk_bdev_nvme_set_multipath_policy_cb cb_fn;
5133 	void *cb_arg;
5134 };
5135 
5136 static void
5137 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
5138 {
5139 	struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
5140 
5141 	assert(ctx != NULL);
5142 	assert(ctx->desc != NULL);
5143 	assert(ctx->cb_fn != NULL);
5144 
5145 	spdk_bdev_close(ctx->desc);
5146 
5147 	ctx->cb_fn(ctx->cb_arg, status);
5148 
5149 	free(ctx);
5150 }
5151 
5152 static void
5153 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
5154 {
5155 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
5156 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
5157 	struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
5158 
5159 	nbdev_ch->mp_policy = nbdev->mp_policy;
5160 	nbdev_ch->mp_selector = nbdev->mp_selector;
5161 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
5162 	bdev_nvme_clear_current_io_path(nbdev_ch);
5163 
5164 	spdk_for_each_channel_continue(i, 0);
5165 }
5166 
5167 void
5168 spdk_bdev_nvme_set_multipath_policy(const char *name, enum spdk_bdev_nvme_multipath_policy policy,
5169 				    enum spdk_bdev_nvme_multipath_selector selector, uint32_t rr_min_io,
5170 				    spdk_bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
5171 {
5172 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
5173 	struct spdk_bdev *bdev;
5174 	struct nvme_bdev *nbdev;
5175 	int rc;
5176 
5177 	assert(cb_fn != NULL);
5178 
5179 	switch (policy) {
5180 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
5181 		break;
5182 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
5183 		switch (selector) {
5184 		case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
5185 			if (rr_min_io == UINT32_MAX) {
5186 				rr_min_io = 1;
5187 			} else if (rr_min_io == 0) {
5188 				rc = -EINVAL;
5189 				goto exit;
5190 			}
5191 			break;
5192 		case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
5193 			break;
5194 		default:
5195 			rc = -EINVAL;
5196 			goto exit;
5197 		}
5198 		break;
5199 	default:
5200 		rc = -EINVAL;
5201 		goto exit;
5202 	}
5203 
5204 	ctx = calloc(1, sizeof(*ctx));
5205 	if (ctx == NULL) {
5206 		SPDK_ERRLOG("Failed to alloc context.\n");
5207 		rc = -ENOMEM;
5208 		goto exit;
5209 	}
5210 
5211 	ctx->cb_fn = cb_fn;
5212 	ctx->cb_arg = cb_arg;
5213 
5214 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5215 	if (rc != 0) {
5216 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5217 		rc = -ENODEV;
5218 		goto err_open;
5219 	}
5220 
5221 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5222 	if (bdev->module != &nvme_if) {
5223 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5224 		rc = -ENODEV;
5225 		goto err_module;
5226 	}
5227 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5228 
5229 	pthread_mutex_lock(&nbdev->mutex);
5230 	nbdev->mp_policy = policy;
5231 	nbdev->mp_selector = selector;
5232 	nbdev->rr_min_io = rr_min_io;
5233 	pthread_mutex_unlock(&nbdev->mutex);
5234 
5235 	spdk_for_each_channel(nbdev,
5236 			      _bdev_nvme_set_multipath_policy,
5237 			      ctx,
5238 			      bdev_nvme_set_multipath_policy_done);
5239 	return;
5240 
5241 err_module:
5242 	spdk_bdev_close(ctx->desc);
5243 err_open:
5244 	free(ctx);
5245 exit:
5246 	cb_fn(cb_arg, rc);
5247 }
5248 
5249 static void
5250 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5251 {
5252 	struct nvme_ctrlr *nvme_ctrlr		= arg;
5253 	union spdk_nvme_async_event_completion	event;
5254 
5255 	if (spdk_nvme_cpl_is_error(cpl)) {
5256 		SPDK_WARNLOG("AER request execute failed\n");
5257 		return;
5258 	}
5259 
5260 	event.raw = cpl->cdw0;
5261 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5262 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
5263 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
5264 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5265 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
5266 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
5267 	}
5268 }
5269 
5270 static void
5271 free_nvme_async_probe_ctx(struct nvme_async_probe_ctx *ctx)
5272 {
5273 	spdk_keyring_put_key(ctx->drv_opts.tls_psk);
5274 	spdk_keyring_put_key(ctx->drv_opts.dhchap_key);
5275 	spdk_keyring_put_key(ctx->drv_opts.dhchap_ctrlr_key);
5276 	free(ctx);
5277 }
5278 
5279 static void
5280 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, int rc)
5281 {
5282 	if (ctx->cb_fn) {
5283 		ctx->cb_fn(ctx->cb_ctx, ctx->reported_bdevs, rc);
5284 	}
5285 
5286 	ctx->namespaces_populated = true;
5287 	if (ctx->probe_done) {
5288 		/* The probe was already completed, so we need to free the context
5289 		 * here.  This can happen for cases like OCSSD, where we need to
5290 		 * send additional commands to the SSD after attach.
5291 		 */
5292 		free_nvme_async_probe_ctx(ctx);
5293 	}
5294 }
5295 
5296 static int
5297 bdev_nvme_remove_poller(void *ctx)
5298 {
5299 	struct spdk_nvme_transport_id trid_pcie;
5300 
5301 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5302 		spdk_poller_unregister(&g_hotplug_poller);
5303 		return SPDK_POLLER_IDLE;
5304 	}
5305 
5306 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5307 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5308 
5309 	if (spdk_nvme_scan_attached(&trid_pcie)) {
5310 		SPDK_ERRLOG_RATELIMIT("spdk_nvme_scan_attached() failed\n");
5311 	}
5312 
5313 	return SPDK_POLLER_BUSY;
5314 }
5315 
5316 static void
5317 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
5318 		       struct nvme_async_probe_ctx *ctx)
5319 {
5320 	spdk_io_device_register(nvme_ctrlr,
5321 				bdev_nvme_create_ctrlr_channel_cb,
5322 				bdev_nvme_destroy_ctrlr_channel_cb,
5323 				sizeof(struct nvme_ctrlr_channel),
5324 				nvme_ctrlr->nbdev_ctrlr->name);
5325 
5326 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
5327 
5328 	if (g_hotplug_poller == NULL) {
5329 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_remove_poller, NULL,
5330 							NVME_HOTPLUG_POLL_PERIOD_DEFAULT);
5331 	}
5332 }
5333 
5334 static void
5335 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
5336 {
5337 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
5338 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
5339 
5340 	nvme_ctrlr->probe_ctx = NULL;
5341 
5342 	if (spdk_nvme_cpl_is_error(cpl)) {
5343 		nvme_ctrlr_delete(nvme_ctrlr);
5344 
5345 		if (ctx != NULL) {
5346 			ctx->reported_bdevs = 0;
5347 			populate_namespaces_cb(ctx, -1);
5348 		}
5349 		return;
5350 	}
5351 
5352 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5353 }
5354 
5355 static int
5356 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
5357 			     struct nvme_async_probe_ctx *ctx)
5358 {
5359 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5360 	const struct spdk_nvme_ctrlr_data *cdata;
5361 	uint32_t ana_log_page_size;
5362 
5363 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5364 
5365 	/* Set buffer size enough to include maximum number of allowed namespaces. */
5366 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5367 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
5368 			    sizeof(uint32_t);
5369 
5370 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
5371 						SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
5372 	if (nvme_ctrlr->ana_log_page == NULL) {
5373 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
5374 		return -ENXIO;
5375 	}
5376 
5377 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
5378 	 * Hence copy each descriptor to a temporary area when parsing it.
5379 	 *
5380 	 * Allocate a buffer whose size is as large as ANA log page buffer because
5381 	 * we do not know the size of a descriptor until actually reading it.
5382 	 */
5383 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
5384 	if (nvme_ctrlr->copied_ana_desc == NULL) {
5385 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
5386 		return -ENOMEM;
5387 	}
5388 
5389 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
5390 
5391 	nvme_ctrlr->probe_ctx = ctx;
5392 
5393 	/* Then, set the read size only to include the current active namespaces. */
5394 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5395 
5396 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5397 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5398 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5399 		return -EINVAL;
5400 	}
5401 
5402 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
5403 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5404 						SPDK_NVME_GLOBAL_NS_TAG,
5405 						nvme_ctrlr->ana_log_page,
5406 						ana_log_page_size, 0,
5407 						nvme_ctrlr_init_ana_log_page_done,
5408 						nvme_ctrlr);
5409 }
5410 
5411 /* hostnqn and subnqn were already verified before attaching a controller.
5412  * Hence check only the multipath capability and cntlid here.
5413  */
5414 static bool
5415 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
5416 {
5417 	struct nvme_ctrlr *tmp;
5418 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
5419 
5420 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5421 
5422 	if (!cdata->cmic.multi_ctrlr) {
5423 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5424 		return false;
5425 	}
5426 
5427 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
5428 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
5429 
5430 		if (!tmp_cdata->cmic.multi_ctrlr) {
5431 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5432 			return false;
5433 		}
5434 		if (cdata->cntlid == tmp_cdata->cntlid) {
5435 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
5436 			return false;
5437 		}
5438 	}
5439 
5440 	return true;
5441 }
5442 
5443 static int
5444 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
5445 {
5446 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5447 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5448 	int rc = 0;
5449 
5450 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5451 
5452 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5453 	if (nbdev_ctrlr != NULL) {
5454 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
5455 			rc = -EINVAL;
5456 			goto exit;
5457 		}
5458 	} else {
5459 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
5460 		if (nbdev_ctrlr == NULL) {
5461 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
5462 			rc = -ENOMEM;
5463 			goto exit;
5464 		}
5465 		nbdev_ctrlr->name = strdup(name);
5466 		if (nbdev_ctrlr->name == NULL) {
5467 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
5468 			free(nbdev_ctrlr);
5469 			goto exit;
5470 		}
5471 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
5472 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
5473 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
5474 	}
5475 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
5476 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
5477 exit:
5478 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5479 	return rc;
5480 }
5481 
5482 static int
5483 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
5484 		  const char *name,
5485 		  const struct spdk_nvme_transport_id *trid,
5486 		  struct nvme_async_probe_ctx *ctx)
5487 {
5488 	struct nvme_ctrlr *nvme_ctrlr;
5489 	struct nvme_path_id *path_id;
5490 	const struct spdk_nvme_ctrlr_data *cdata;
5491 	int rc;
5492 
5493 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
5494 	if (nvme_ctrlr == NULL) {
5495 		SPDK_ERRLOG("Failed to allocate device struct\n");
5496 		return -ENOMEM;
5497 	}
5498 
5499 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
5500 	if (rc != 0) {
5501 		free(nvme_ctrlr);
5502 		return rc;
5503 	}
5504 
5505 	TAILQ_INIT(&nvme_ctrlr->trids);
5506 	RB_INIT(&nvme_ctrlr->namespaces);
5507 
5508 	/* Get another reference to the key, so the first one can be released from probe_ctx */
5509 	if (ctx != NULL) {
5510 		if (ctx->drv_opts.tls_psk != NULL) {
5511 			nvme_ctrlr->psk = spdk_keyring_get_key(
5512 						  spdk_key_get_name(ctx->drv_opts.tls_psk));
5513 			if (nvme_ctrlr->psk == NULL) {
5514 				/* Could only happen if the key was removed in the meantime */
5515 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5516 					    spdk_key_get_name(ctx->drv_opts.tls_psk));
5517 				rc = -ENOKEY;
5518 				goto err;
5519 			}
5520 		}
5521 
5522 		if (ctx->drv_opts.dhchap_key != NULL) {
5523 			nvme_ctrlr->dhchap_key = spdk_keyring_get_key(
5524 							 spdk_key_get_name(ctx->drv_opts.dhchap_key));
5525 			if (nvme_ctrlr->dhchap_key == NULL) {
5526 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5527 					    spdk_key_get_name(ctx->drv_opts.dhchap_key));
5528 				rc = -ENOKEY;
5529 				goto err;
5530 			}
5531 		}
5532 
5533 		if (ctx->drv_opts.dhchap_ctrlr_key != NULL) {
5534 			nvme_ctrlr->dhchap_ctrlr_key =
5535 				spdk_keyring_get_key(
5536 					spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5537 			if (nvme_ctrlr->dhchap_ctrlr_key == NULL) {
5538 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5539 					    spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5540 				rc = -ENOKEY;
5541 				goto err;
5542 			}
5543 		}
5544 	}
5545 
5546 	path_id = calloc(1, sizeof(*path_id));
5547 	if (path_id == NULL) {
5548 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
5549 		rc = -ENOMEM;
5550 		goto err;
5551 	}
5552 
5553 	path_id->trid = *trid;
5554 	if (ctx != NULL) {
5555 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
5556 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
5557 	}
5558 	nvme_ctrlr->active_path_id = path_id;
5559 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
5560 
5561 	nvme_ctrlr->thread = spdk_get_thread();
5562 	nvme_ctrlr->ctrlr = ctrlr;
5563 	nvme_ctrlr->ref = 1;
5564 
5565 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
5566 		SPDK_ERRLOG("OCSSDs are not supported");
5567 		rc = -ENOTSUP;
5568 		goto err;
5569 	}
5570 
5571 	if (ctx != NULL) {
5572 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
5573 	} else {
5574 		spdk_bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
5575 	}
5576 
5577 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
5578 					  g_opts.nvme_adminq_poll_period_us);
5579 
5580 	if (g_opts.timeout_us > 0) {
5581 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
5582 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
5583 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
5584 					  g_opts.timeout_us : g_opts.timeout_admin_us;
5585 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
5586 				adm_timeout_us, timeout_cb, nvme_ctrlr);
5587 	}
5588 
5589 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
5590 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
5591 
5592 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
5593 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
5594 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
5595 	}
5596 
5597 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
5598 	if (rc != 0) {
5599 		goto err;
5600 	}
5601 
5602 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5603 
5604 	if (cdata->cmic.ana_reporting) {
5605 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
5606 		if (rc == 0) {
5607 			return 0;
5608 		}
5609 	} else {
5610 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5611 		return 0;
5612 	}
5613 
5614 err:
5615 	nvme_ctrlr_delete(nvme_ctrlr);
5616 	return rc;
5617 }
5618 
5619 void
5620 spdk_bdev_nvme_get_default_ctrlr_opts(struct spdk_bdev_nvme_ctrlr_opts *opts)
5621 {
5622 	opts->prchk_flags = 0;
5623 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
5624 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
5625 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
5626 }
5627 
5628 static void
5629 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5630 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
5631 {
5632 	char *name;
5633 
5634 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
5635 	if (!name) {
5636 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
5637 		return;
5638 	}
5639 
5640 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
5641 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
5642 	} else {
5643 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
5644 	}
5645 
5646 	free(name);
5647 }
5648 
5649 static void
5650 _nvme_ctrlr_destruct(void *ctx)
5651 {
5652 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5653 
5654 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
5655 	nvme_ctrlr_release(nvme_ctrlr);
5656 }
5657 
5658 static int
5659 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5660 {
5661 	struct nvme_probe_skip_entry *entry;
5662 
5663 	/* The controller's destruction was already started */
5664 	if (nvme_ctrlr->destruct) {
5665 		return -EALREADY;
5666 	}
5667 
5668 	if (!hotplug &&
5669 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
5670 		entry = calloc(1, sizeof(*entry));
5671 		if (!entry) {
5672 			return -ENOMEM;
5673 		}
5674 		entry->trid = nvme_ctrlr->active_path_id->trid;
5675 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
5676 	}
5677 
5678 	nvme_ctrlr->destruct = true;
5679 	return 0;
5680 }
5681 
5682 static int
5683 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5684 {
5685 	int rc;
5686 
5687 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5688 	rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug);
5689 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5690 
5691 	if (rc == 0) {
5692 		_nvme_ctrlr_destruct(nvme_ctrlr);
5693 	} else if (rc == -EALREADY) {
5694 		rc = 0;
5695 	}
5696 
5697 	return rc;
5698 }
5699 
5700 static void
5701 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
5702 {
5703 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
5704 
5705 	bdev_nvme_delete_ctrlr(nvme_ctrlr, true);
5706 }
5707 
5708 static int
5709 bdev_nvme_hotplug_probe(void *arg)
5710 {
5711 	if (g_hotplug_probe_ctx == NULL) {
5712 		spdk_poller_unregister(&g_hotplug_probe_poller);
5713 		return SPDK_POLLER_IDLE;
5714 	}
5715 
5716 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
5717 		g_hotplug_probe_ctx = NULL;
5718 		spdk_poller_unregister(&g_hotplug_probe_poller);
5719 	}
5720 
5721 	return SPDK_POLLER_BUSY;
5722 }
5723 
5724 static int
5725 bdev_nvme_hotplug(void *arg)
5726 {
5727 	struct spdk_nvme_transport_id trid_pcie;
5728 
5729 	if (g_hotplug_probe_ctx) {
5730 		return SPDK_POLLER_BUSY;
5731 	}
5732 
5733 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5734 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5735 
5736 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
5737 			      hotplug_probe_cb, attach_cb, NULL);
5738 
5739 	if (g_hotplug_probe_ctx) {
5740 		assert(g_hotplug_probe_poller == NULL);
5741 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
5742 	}
5743 
5744 	return SPDK_POLLER_BUSY;
5745 }
5746 
5747 void
5748 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
5749 {
5750 	*opts = g_opts;
5751 }
5752 
5753 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5754 		uint32_t reconnect_delay_sec,
5755 		uint32_t fast_io_fail_timeout_sec);
5756 
5757 static int
5758 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
5759 {
5760 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
5761 		/* Can't set timeout_admin_us without also setting timeout_us */
5762 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
5763 		return -EINVAL;
5764 	}
5765 
5766 	if (opts->bdev_retry_count < -1) {
5767 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
5768 		return -EINVAL;
5769 	}
5770 
5771 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
5772 			opts->reconnect_delay_sec,
5773 			opts->fast_io_fail_timeout_sec)) {
5774 		return -EINVAL;
5775 	}
5776 
5777 	return 0;
5778 }
5779 
5780 int
5781 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
5782 {
5783 	int ret;
5784 
5785 	ret = bdev_nvme_validate_opts(opts);
5786 	if (ret) {
5787 		SPDK_WARNLOG("Failed to set nvme opts.\n");
5788 		return ret;
5789 	}
5790 
5791 	if (g_bdev_nvme_init_thread != NULL) {
5792 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5793 			return -EPERM;
5794 		}
5795 	}
5796 
5797 	if (opts->rdma_srq_size != 0 ||
5798 	    opts->rdma_max_cq_size != 0 ||
5799 	    opts->rdma_cm_event_timeout_ms != 0) {
5800 		struct spdk_nvme_transport_opts drv_opts;
5801 
5802 		spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
5803 		if (opts->rdma_srq_size != 0) {
5804 			drv_opts.rdma_srq_size = opts->rdma_srq_size;
5805 		}
5806 		if (opts->rdma_max_cq_size != 0) {
5807 			drv_opts.rdma_max_cq_size = opts->rdma_max_cq_size;
5808 		}
5809 		if (opts->rdma_cm_event_timeout_ms != 0) {
5810 			drv_opts.rdma_cm_event_timeout_ms = opts->rdma_cm_event_timeout_ms;
5811 		}
5812 
5813 		ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
5814 		if (ret) {
5815 			SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
5816 			return ret;
5817 		}
5818 	}
5819 
5820 	g_opts = *opts;
5821 
5822 	return 0;
5823 }
5824 
5825 struct set_nvme_hotplug_ctx {
5826 	uint64_t period_us;
5827 	bool enabled;
5828 	spdk_msg_fn fn;
5829 	void *fn_ctx;
5830 };
5831 
5832 static void
5833 set_nvme_hotplug_period_cb(void *_ctx)
5834 {
5835 	struct set_nvme_hotplug_ctx *ctx = _ctx;
5836 
5837 	spdk_poller_unregister(&g_hotplug_poller);
5838 	if (ctx->enabled) {
5839 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
5840 	} else {
5841 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_remove_poller, NULL,
5842 							NVME_HOTPLUG_POLL_PERIOD_DEFAULT);
5843 	}
5844 
5845 	g_nvme_hotplug_poll_period_us = ctx->period_us;
5846 	g_nvme_hotplug_enabled = ctx->enabled;
5847 	if (ctx->fn) {
5848 		ctx->fn(ctx->fn_ctx);
5849 	}
5850 
5851 	free(ctx);
5852 }
5853 
5854 int
5855 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
5856 {
5857 	struct set_nvme_hotplug_ctx *ctx;
5858 
5859 	if (enabled == true && !spdk_process_is_primary()) {
5860 		return -EPERM;
5861 	}
5862 
5863 	ctx = calloc(1, sizeof(*ctx));
5864 	if (ctx == NULL) {
5865 		return -ENOMEM;
5866 	}
5867 
5868 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
5869 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
5870 	ctx->enabled = enabled;
5871 	ctx->fn = cb;
5872 	ctx->fn_ctx = cb_ctx;
5873 
5874 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
5875 	return 0;
5876 }
5877 
5878 static void
5879 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
5880 				    struct nvme_async_probe_ctx *ctx)
5881 {
5882 	struct nvme_ns	*nvme_ns;
5883 	struct nvme_bdev	*nvme_bdev;
5884 	size_t			j;
5885 
5886 	assert(nvme_ctrlr != NULL);
5887 
5888 	if (ctx->names == NULL) {
5889 		ctx->reported_bdevs = 0;
5890 		populate_namespaces_cb(ctx, 0);
5891 		return;
5892 	}
5893 
5894 	/*
5895 	 * Report the new bdevs that were created in this call.
5896 	 * There can be more than one bdev per NVMe controller.
5897 	 */
5898 	j = 0;
5899 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5900 	while (nvme_ns != NULL) {
5901 		nvme_bdev = nvme_ns->bdev;
5902 		if (j < ctx->max_bdevs) {
5903 			ctx->names[j] = nvme_bdev->disk.name;
5904 			j++;
5905 		} else {
5906 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
5907 				    ctx->max_bdevs);
5908 			ctx->reported_bdevs = 0;
5909 			populate_namespaces_cb(ctx, -ERANGE);
5910 			return;
5911 		}
5912 
5913 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5914 	}
5915 
5916 	ctx->reported_bdevs = j;
5917 	populate_namespaces_cb(ctx, 0);
5918 }
5919 
5920 static int
5921 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5922 			       struct spdk_nvme_ctrlr *new_ctrlr,
5923 			       struct spdk_nvme_transport_id *trid)
5924 {
5925 	struct nvme_path_id *tmp_trid;
5926 
5927 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5928 		SPDK_ERRLOG("PCIe failover is not supported.\n");
5929 		return -ENOTSUP;
5930 	}
5931 
5932 	/* Currently we only support failover to the same transport type. */
5933 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
5934 		SPDK_WARNLOG("Failover from trtype: %s to a different trtype: %s is not supported currently\n",
5935 			     spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
5936 			     spdk_nvme_transport_id_trtype_str(trid->trtype));
5937 		return -EINVAL;
5938 	}
5939 
5940 
5941 	/* Currently we only support failover to the same NQN. */
5942 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
5943 		SPDK_WARNLOG("Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
5944 			     nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
5945 		return -EINVAL;
5946 	}
5947 
5948 	/* Skip all the other checks if we've already registered this path. */
5949 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
5950 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
5951 			SPDK_WARNLOG("This path (traddr: %s subnqn: %s) is already registered\n", trid->traddr,
5952 				     trid->subnqn);
5953 			return -EALREADY;
5954 		}
5955 	}
5956 
5957 	return 0;
5958 }
5959 
5960 static int
5961 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
5962 				    struct spdk_nvme_ctrlr *new_ctrlr)
5963 {
5964 	struct nvme_ns *nvme_ns;
5965 	struct spdk_nvme_ns *new_ns;
5966 
5967 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5968 	while (nvme_ns != NULL) {
5969 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
5970 		assert(new_ns != NULL);
5971 
5972 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
5973 			return -EINVAL;
5974 		}
5975 
5976 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5977 	}
5978 
5979 	return 0;
5980 }
5981 
5982 static int
5983 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5984 			      struct spdk_nvme_transport_id *trid)
5985 {
5986 	struct nvme_path_id *active_id, *new_trid, *tmp_trid;
5987 
5988 	new_trid = calloc(1, sizeof(*new_trid));
5989 	if (new_trid == NULL) {
5990 		return -ENOMEM;
5991 	}
5992 	new_trid->trid = *trid;
5993 
5994 	active_id = nvme_ctrlr->active_path_id;
5995 	assert(active_id != NULL);
5996 	assert(active_id == TAILQ_FIRST(&nvme_ctrlr->trids));
5997 
5998 	/* Skip the active trid not to replace it until it is failed. */
5999 	tmp_trid = TAILQ_NEXT(active_id, link);
6000 	if (tmp_trid == NULL) {
6001 		goto add_tail;
6002 	}
6003 
6004 	/* It means the trid is faled if its last failed time is non-zero.
6005 	 * Insert the new alternate trid before any failed trid.
6006 	 */
6007 	TAILQ_FOREACH_FROM(tmp_trid, &nvme_ctrlr->trids, link) {
6008 		if (tmp_trid->last_failed_tsc != 0) {
6009 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
6010 			return 0;
6011 		}
6012 	}
6013 
6014 add_tail:
6015 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
6016 	return 0;
6017 }
6018 
6019 /* This is the case that a secondary path is added to an existing
6020  * nvme_ctrlr for failover. After checking if it can access the same
6021  * namespaces as the primary path, it is disconnected until failover occurs.
6022  */
6023 static int
6024 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
6025 			     struct spdk_nvme_ctrlr *new_ctrlr,
6026 			     struct spdk_nvme_transport_id *trid)
6027 {
6028 	int rc;
6029 
6030 	assert(nvme_ctrlr != NULL);
6031 
6032 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6033 
6034 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
6035 	if (rc != 0) {
6036 		goto exit;
6037 	}
6038 
6039 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
6040 	if (rc != 0) {
6041 		goto exit;
6042 	}
6043 
6044 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
6045 
6046 exit:
6047 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6048 
6049 	spdk_nvme_detach(new_ctrlr);
6050 
6051 	return rc;
6052 }
6053 
6054 static void
6055 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6056 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
6057 {
6058 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6059 	struct nvme_async_probe_ctx *ctx;
6060 	int rc;
6061 
6062 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
6063 	ctx->ctrlr_attached = true;
6064 
6065 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
6066 	if (rc != 0) {
6067 		ctx->reported_bdevs = 0;
6068 		populate_namespaces_cb(ctx, rc);
6069 	}
6070 }
6071 
6072 static void
6073 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6074 			struct spdk_nvme_ctrlr *ctrlr,
6075 			const struct spdk_nvme_ctrlr_opts *opts)
6076 {
6077 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6078 	struct nvme_ctrlr *nvme_ctrlr;
6079 	struct nvme_async_probe_ctx *ctx;
6080 	int rc;
6081 
6082 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
6083 	ctx->ctrlr_attached = true;
6084 
6085 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
6086 	if (nvme_ctrlr) {
6087 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
6088 	} else {
6089 		rc = -ENODEV;
6090 	}
6091 
6092 	ctx->reported_bdevs = 0;
6093 	populate_namespaces_cb(ctx, rc);
6094 }
6095 
6096 static int
6097 bdev_nvme_async_poll(void *arg)
6098 {
6099 	struct nvme_async_probe_ctx	*ctx = arg;
6100 	int				rc;
6101 
6102 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
6103 	if (spdk_unlikely(rc != -EAGAIN)) {
6104 		ctx->probe_done = true;
6105 		spdk_poller_unregister(&ctx->poller);
6106 		if (!ctx->ctrlr_attached) {
6107 			/* The probe is done, but no controller was attached.
6108 			 * That means we had a failure, so report -EIO back to
6109 			 * the caller (usually the RPC). populate_namespaces_cb()
6110 			 * will take care of freeing the nvme_async_probe_ctx.
6111 			 */
6112 			ctx->reported_bdevs = 0;
6113 			populate_namespaces_cb(ctx, -EIO);
6114 		} else if (ctx->namespaces_populated) {
6115 			/* The namespaces for the attached controller were all
6116 			 * populated and the response was already sent to the
6117 			 * caller (usually the RPC).  So free the context here.
6118 			 */
6119 			free_nvme_async_probe_ctx(ctx);
6120 		}
6121 	}
6122 
6123 	return SPDK_POLLER_BUSY;
6124 }
6125 
6126 static bool
6127 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
6128 		uint32_t reconnect_delay_sec,
6129 		uint32_t fast_io_fail_timeout_sec)
6130 {
6131 	if (ctrlr_loss_timeout_sec < -1) {
6132 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
6133 		return false;
6134 	} else if (ctrlr_loss_timeout_sec == -1) {
6135 		if (reconnect_delay_sec == 0) {
6136 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6137 			return false;
6138 		} else if (fast_io_fail_timeout_sec != 0 &&
6139 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
6140 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
6141 			return false;
6142 		}
6143 	} else if (ctrlr_loss_timeout_sec != 0) {
6144 		if (reconnect_delay_sec == 0) {
6145 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6146 			return false;
6147 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6148 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
6149 			return false;
6150 		} else if (fast_io_fail_timeout_sec != 0) {
6151 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
6152 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
6153 				return false;
6154 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6155 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
6156 				return false;
6157 			}
6158 		}
6159 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
6160 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
6161 		return false;
6162 	}
6163 
6164 	return true;
6165 }
6166 
6167 static int
6168 bdev_nvme_load_psk(const char *fname, char *buf, size_t bufsz)
6169 {
6170 	FILE *psk_file;
6171 	struct stat statbuf;
6172 	int rc;
6173 #define TCP_PSK_INVALID_PERMISSIONS 0177
6174 
6175 	if (stat(fname, &statbuf) != 0) {
6176 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
6177 		return -EACCES;
6178 	}
6179 
6180 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
6181 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
6182 		return -EPERM;
6183 	}
6184 	if ((size_t)statbuf.st_size >= bufsz) {
6185 		SPDK_ERRLOG("Invalid PSK: too long\n");
6186 		return -EINVAL;
6187 	}
6188 	psk_file = fopen(fname, "r");
6189 	if (psk_file == NULL) {
6190 		SPDK_ERRLOG("Could not open PSK file\n");
6191 		return -EINVAL;
6192 	}
6193 
6194 	memset(buf, 0, bufsz);
6195 	rc = fread(buf, 1, statbuf.st_size, psk_file);
6196 	if (rc != statbuf.st_size) {
6197 		SPDK_ERRLOG("Failed to read PSK\n");
6198 		fclose(psk_file);
6199 		return -EINVAL;
6200 	}
6201 
6202 	fclose(psk_file);
6203 	return 0;
6204 }
6205 
6206 int
6207 spdk_bdev_nvme_create(struct spdk_nvme_transport_id *trid,
6208 		      const char *base_name,
6209 		      const char **names,
6210 		      uint32_t count,
6211 		      spdk_bdev_nvme_create_cb cb_fn,
6212 		      void *cb_ctx,
6213 		      struct spdk_nvme_ctrlr_opts *drv_opts,
6214 		      struct spdk_bdev_nvme_ctrlr_opts *bdev_opts,
6215 		      bool multipath)
6216 {
6217 	struct nvme_probe_skip_entry *entry, *tmp;
6218 	struct nvme_async_probe_ctx *ctx;
6219 	spdk_nvme_attach_cb attach_cb;
6220 	int rc, len;
6221 
6222 	/* TODO expand this check to include both the host and target TRIDs.
6223 	 * Only if both are the same should we fail.
6224 	 */
6225 	if (nvme_ctrlr_get(trid, drv_opts->hostnqn) != NULL) {
6226 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s, hostnqn: %s) "
6227 			    "already exists.\n", trid->traddr, drv_opts->hostnqn);
6228 		return -EEXIST;
6229 	}
6230 
6231 	len = strnlen(base_name, SPDK_CONTROLLER_NAME_MAX);
6232 
6233 	if (len == 0 || len == SPDK_CONTROLLER_NAME_MAX) {
6234 		SPDK_ERRLOG("controller name must be between 1 and %d characters\n", SPDK_CONTROLLER_NAME_MAX - 1);
6235 		return -EINVAL;
6236 	}
6237 
6238 	if (bdev_opts != NULL &&
6239 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
6240 			    bdev_opts->reconnect_delay_sec,
6241 			    bdev_opts->fast_io_fail_timeout_sec)) {
6242 		return -EINVAL;
6243 	}
6244 
6245 	ctx = calloc(1, sizeof(*ctx));
6246 	if (!ctx) {
6247 		return -ENOMEM;
6248 	}
6249 	ctx->base_name = base_name;
6250 	ctx->names = names;
6251 	ctx->max_bdevs = count;
6252 	ctx->cb_fn = cb_fn;
6253 	ctx->cb_ctx = cb_ctx;
6254 	ctx->trid = *trid;
6255 
6256 	if (bdev_opts) {
6257 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6258 	} else {
6259 		spdk_bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
6260 	}
6261 
6262 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6263 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
6264 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
6265 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
6266 				free(entry);
6267 				break;
6268 			}
6269 		}
6270 	}
6271 
6272 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6273 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
6274 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
6275 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
6276 	ctx->drv_opts.disable_read_ana_log_page = true;
6277 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
6278 
6279 	if (ctx->bdev_opts.psk[0] != '\0') {
6280 		/* Try to use the keyring first */
6281 		ctx->drv_opts.tls_psk = spdk_keyring_get_key(ctx->bdev_opts.psk);
6282 		if (ctx->drv_opts.tls_psk == NULL) {
6283 			rc = bdev_nvme_load_psk(ctx->bdev_opts.psk,
6284 						ctx->drv_opts.psk, sizeof(ctx->drv_opts.psk));
6285 			if (rc != 0) {
6286 				SPDK_ERRLOG("Could not load PSK from %s\n", ctx->bdev_opts.psk);
6287 				free_nvme_async_probe_ctx(ctx);
6288 				return rc;
6289 			}
6290 		}
6291 	}
6292 
6293 	if (ctx->bdev_opts.dhchap_key != NULL) {
6294 		ctx->drv_opts.dhchap_key = spdk_keyring_get_key(ctx->bdev_opts.dhchap_key);
6295 		if (ctx->drv_opts.dhchap_key == NULL) {
6296 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP key: %s\n",
6297 				    ctx->bdev_opts.dhchap_key);
6298 			free_nvme_async_probe_ctx(ctx);
6299 			return -ENOKEY;
6300 		}
6301 
6302 		ctx->drv_opts.dhchap_digests = g_opts.dhchap_digests;
6303 		ctx->drv_opts.dhchap_dhgroups = g_opts.dhchap_dhgroups;
6304 	}
6305 	if (ctx->bdev_opts.dhchap_ctrlr_key != NULL) {
6306 		ctx->drv_opts.dhchap_ctrlr_key =
6307 			spdk_keyring_get_key(ctx->bdev_opts.dhchap_ctrlr_key);
6308 		if (ctx->drv_opts.dhchap_ctrlr_key == NULL) {
6309 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP controller key: %s\n",
6310 				    ctx->bdev_opts.dhchap_ctrlr_key);
6311 			free_nvme_async_probe_ctx(ctx);
6312 			return -ENOKEY;
6313 		}
6314 	}
6315 
6316 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
6317 		attach_cb = connect_attach_cb;
6318 	} else {
6319 		attach_cb = connect_set_failover_cb;
6320 	}
6321 
6322 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
6323 	if (ctx->probe_ctx == NULL) {
6324 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
6325 		free_nvme_async_probe_ctx(ctx);
6326 		return -ENODEV;
6327 	}
6328 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
6329 
6330 	return 0;
6331 }
6332 
6333 struct bdev_nvme_delete_ctx {
6334 	char                        *name;
6335 	struct nvme_path_id         path_id;
6336 	bdev_nvme_delete_done_fn    delete_done;
6337 	void                        *delete_done_ctx;
6338 	uint64_t                    timeout_ticks;
6339 	struct spdk_poller          *poller;
6340 };
6341 
6342 static void
6343 free_bdev_nvme_delete_ctx(struct bdev_nvme_delete_ctx *ctx)
6344 {
6345 	if (ctx != NULL) {
6346 		free(ctx->name);
6347 		free(ctx);
6348 	}
6349 }
6350 
6351 static bool
6352 nvme_path_id_compare(struct nvme_path_id *p, const struct nvme_path_id *path_id)
6353 {
6354 	if (path_id->trid.trtype != 0) {
6355 		if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
6356 			if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
6357 				return false;
6358 			}
6359 		} else {
6360 			if (path_id->trid.trtype != p->trid.trtype) {
6361 				return false;
6362 			}
6363 		}
6364 	}
6365 
6366 	if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
6367 		if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
6368 			return false;
6369 		}
6370 	}
6371 
6372 	if (path_id->trid.adrfam != 0) {
6373 		if (path_id->trid.adrfam != p->trid.adrfam) {
6374 			return false;
6375 		}
6376 	}
6377 
6378 	if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
6379 		if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
6380 			return false;
6381 		}
6382 	}
6383 
6384 	if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
6385 		if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
6386 			return false;
6387 		}
6388 	}
6389 
6390 	if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
6391 		if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
6392 			return false;
6393 		}
6394 	}
6395 
6396 	if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
6397 		if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
6398 			return false;
6399 		}
6400 	}
6401 
6402 	return true;
6403 }
6404 
6405 static bool
6406 nvme_path_id_exists(const char *name, const struct nvme_path_id *path_id)
6407 {
6408 	struct nvme_bdev_ctrlr  *nbdev_ctrlr;
6409 	struct nvme_ctrlr       *ctrlr;
6410 	struct nvme_path_id     *p;
6411 
6412 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6413 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6414 	if (!nbdev_ctrlr) {
6415 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6416 		return false;
6417 	}
6418 
6419 	TAILQ_FOREACH(ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6420 		pthread_mutex_lock(&ctrlr->mutex);
6421 		TAILQ_FOREACH(p, &ctrlr->trids, link) {
6422 			if (nvme_path_id_compare(p, path_id)) {
6423 				pthread_mutex_unlock(&ctrlr->mutex);
6424 				pthread_mutex_unlock(&g_bdev_nvme_mutex);
6425 				return true;
6426 			}
6427 		}
6428 		pthread_mutex_unlock(&ctrlr->mutex);
6429 	}
6430 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6431 
6432 	return false;
6433 }
6434 
6435 static int
6436 bdev_nvme_delete_complete_poll(void *arg)
6437 {
6438 	struct bdev_nvme_delete_ctx     *ctx = arg;
6439 	int                             rc = 0;
6440 
6441 	if (nvme_path_id_exists(ctx->name, &ctx->path_id)) {
6442 		if (ctx->timeout_ticks > spdk_get_ticks()) {
6443 			return SPDK_POLLER_BUSY;
6444 		}
6445 
6446 		SPDK_ERRLOG("NVMe path '%s' still exists after delete\n", ctx->name);
6447 		rc = -ETIMEDOUT;
6448 	}
6449 
6450 	spdk_poller_unregister(&ctx->poller);
6451 
6452 	ctx->delete_done(ctx->delete_done_ctx, rc);
6453 	free_bdev_nvme_delete_ctx(ctx);
6454 
6455 	return SPDK_POLLER_BUSY;
6456 }
6457 
6458 static int
6459 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id)
6460 {
6461 	struct nvme_path_id	*p, *t;
6462 	spdk_msg_fn		msg_fn;
6463 	int			rc = -ENXIO;
6464 
6465 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6466 
6467 	TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
6468 		if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) {
6469 			break;
6470 		}
6471 
6472 		if (!nvme_path_id_compare(p, path_id)) {
6473 			continue;
6474 		}
6475 
6476 		/* We are not using the specified path. */
6477 		TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
6478 		free(p);
6479 		rc = 0;
6480 	}
6481 
6482 	if (p == NULL || !nvme_path_id_compare(p, path_id)) {
6483 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
6484 		return rc;
6485 	}
6486 
6487 	/* If we made it here, then this path is a match! Now we need to remove it. */
6488 
6489 	/* This is the active path in use right now. The active path is always the first in the list. */
6490 	assert(p == nvme_ctrlr->active_path_id);
6491 
6492 	if (!TAILQ_NEXT(p, link)) {
6493 		/* The current path is the only path. */
6494 		msg_fn = _nvme_ctrlr_destruct;
6495 		rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false);
6496 	} else {
6497 		/* There is an alternative path. */
6498 		msg_fn = _bdev_nvme_reset_ctrlr;
6499 		rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, true);
6500 	}
6501 
6502 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6503 
6504 	if (rc == 0) {
6505 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
6506 	} else if (rc == -EALREADY) {
6507 		rc = 0;
6508 	}
6509 
6510 	return rc;
6511 }
6512 
6513 int
6514 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id,
6515 		 bdev_nvme_delete_done_fn delete_done, void *delete_done_ctx)
6516 {
6517 	struct nvme_bdev_ctrlr		*nbdev_ctrlr;
6518 	struct nvme_ctrlr		*nvme_ctrlr, *tmp_nvme_ctrlr;
6519 	struct bdev_nvme_delete_ctx     *ctx = NULL;
6520 	int				rc = -ENXIO, _rc;
6521 
6522 	if (name == NULL || path_id == NULL) {
6523 		rc = -EINVAL;
6524 		goto exit;
6525 	}
6526 
6527 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6528 
6529 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6530 	if (nbdev_ctrlr == NULL) {
6531 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6532 
6533 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
6534 		rc = -ENODEV;
6535 		goto exit;
6536 	}
6537 
6538 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
6539 		_rc = _bdev_nvme_delete(nvme_ctrlr, path_id);
6540 		if (_rc < 0 && _rc != -ENXIO) {
6541 			pthread_mutex_unlock(&g_bdev_nvme_mutex);
6542 			rc = _rc;
6543 			goto exit;
6544 		} else if (_rc == 0) {
6545 			/* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr
6546 			 * was deleted successfully. To remember the successful deletion,
6547 			 * overwrite rc only if _rc is zero.
6548 			 */
6549 			rc = 0;
6550 		}
6551 	}
6552 
6553 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6554 
6555 	if (rc != 0 || delete_done == NULL) {
6556 		goto exit;
6557 	}
6558 
6559 	ctx = calloc(1, sizeof(*ctx));
6560 	if (ctx == NULL) {
6561 		SPDK_ERRLOG("Failed to allocate context for bdev_nvme_delete\n");
6562 		rc = -ENOMEM;
6563 		goto exit;
6564 	}
6565 
6566 	ctx->name = strdup(name);
6567 	if (ctx->name == NULL) {
6568 		SPDK_ERRLOG("Failed to copy controller name for deletion\n");
6569 		rc = -ENOMEM;
6570 		goto exit;
6571 	}
6572 
6573 	ctx->delete_done = delete_done;
6574 	ctx->delete_done_ctx = delete_done_ctx;
6575 	ctx->path_id = *path_id;
6576 	ctx->timeout_ticks = spdk_get_ticks() + 10 * spdk_get_ticks_hz();
6577 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_delete_complete_poll, ctx, 1000);
6578 	if (ctx->poller == NULL) {
6579 		SPDK_ERRLOG("Failed to register bdev_nvme_delete poller\n");
6580 		rc = -ENOMEM;
6581 		goto exit;
6582 	}
6583 
6584 exit:
6585 	if (rc != 0) {
6586 		free_bdev_nvme_delete_ctx(ctx);
6587 	}
6588 
6589 	return rc;
6590 }
6591 
6592 #define DISCOVERY_INFOLOG(ctx, format, ...) \
6593 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6594 
6595 #define DISCOVERY_ERRLOG(ctx, format, ...) \
6596 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6597 
6598 struct discovery_entry_ctx {
6599 	char						name[128];
6600 	struct spdk_nvme_transport_id			trid;
6601 	struct spdk_nvme_ctrlr_opts			drv_opts;
6602 	struct spdk_nvmf_discovery_log_page_entry	entry;
6603 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
6604 	struct discovery_ctx				*ctx;
6605 };
6606 
6607 struct discovery_ctx {
6608 	char					*name;
6609 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
6610 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
6611 	void					*cb_ctx;
6612 	struct spdk_nvme_probe_ctx		*probe_ctx;
6613 	struct spdk_nvme_detach_ctx		*detach_ctx;
6614 	struct spdk_nvme_ctrlr			*ctrlr;
6615 	struct spdk_nvme_transport_id		trid;
6616 	struct discovery_entry_ctx		*entry_ctx_in_use;
6617 	struct spdk_poller			*poller;
6618 	struct spdk_nvme_ctrlr_opts		drv_opts;
6619 	struct spdk_bdev_nvme_ctrlr_opts	bdev_opts;
6620 	struct spdk_nvmf_discovery_log_page	*log_page;
6621 	TAILQ_ENTRY(discovery_ctx)		tailq;
6622 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
6623 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
6624 	int					rc;
6625 	bool					wait_for_attach;
6626 	uint64_t				timeout_ticks;
6627 	/* Denotes that the discovery service is being started. We're waiting
6628 	 * for the initial connection to the discovery controller to be
6629 	 * established and attach discovered NVM ctrlrs.
6630 	 */
6631 	bool					initializing;
6632 	/* Denotes if a discovery is currently in progress for this context.
6633 	 * That includes connecting to newly discovered subsystems.  Used to
6634 	 * ensure we do not start a new discovery until an existing one is
6635 	 * complete.
6636 	 */
6637 	bool					in_progress;
6638 
6639 	/* Denotes if another discovery is needed after the one in progress
6640 	 * completes.  Set when we receive an AER completion while a discovery
6641 	 * is already in progress.
6642 	 */
6643 	bool					pending;
6644 
6645 	/* Signal to the discovery context poller that it should stop the
6646 	 * discovery service, including detaching from the current discovery
6647 	 * controller.
6648 	 */
6649 	bool					stop;
6650 
6651 	struct spdk_thread			*calling_thread;
6652 	uint32_t				index;
6653 	uint32_t				attach_in_progress;
6654 	char					*hostnqn;
6655 
6656 	/* Denotes if the discovery service was started by the mdns discovery.
6657 	 */
6658 	bool					from_mdns_discovery_service;
6659 };
6660 
6661 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
6662 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
6663 
6664 static void get_discovery_log_page(struct discovery_ctx *ctx);
6665 
6666 static void
6667 free_discovery_ctx(struct discovery_ctx *ctx)
6668 {
6669 	free(ctx->log_page);
6670 	free(ctx->hostnqn);
6671 	free(ctx->name);
6672 	free(ctx);
6673 }
6674 
6675 static void
6676 discovery_complete(struct discovery_ctx *ctx)
6677 {
6678 	ctx->initializing = false;
6679 	ctx->in_progress = false;
6680 	if (ctx->pending) {
6681 		ctx->pending = false;
6682 		get_discovery_log_page(ctx);
6683 	}
6684 }
6685 
6686 static void
6687 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
6688 			       struct spdk_nvmf_discovery_log_page_entry *entry)
6689 {
6690 	char *space;
6691 
6692 	trid->trtype = entry->trtype;
6693 	trid->adrfam = entry->adrfam;
6694 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
6695 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
6696 	/* Because the source buffer (entry->subnqn) is longer than trid->subnqn, and
6697 	 * before call to this function trid->subnqn is zeroed out, we need
6698 	 * to copy sizeof(trid->subnqn) minus one byte to make sure the last character
6699 	 * remains 0. Then we can shorten the string (replace ' ' with 0) if required
6700 	 */
6701 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn) - 1);
6702 
6703 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
6704 	 * But the log page entries typically pad them with spaces, not zeroes.
6705 	 * So add a NULL terminator to each of these fields at the appropriate
6706 	 * location.
6707 	 */
6708 	space = strchr(trid->traddr, ' ');
6709 	if (space) {
6710 		*space = 0;
6711 	}
6712 	space = strchr(trid->trsvcid, ' ');
6713 	if (space) {
6714 		*space = 0;
6715 	}
6716 	space = strchr(trid->subnqn, ' ');
6717 	if (space) {
6718 		*space = 0;
6719 	}
6720 }
6721 
6722 static void
6723 _stop_discovery(void *_ctx)
6724 {
6725 	struct discovery_ctx *ctx = _ctx;
6726 
6727 	if (ctx->attach_in_progress > 0) {
6728 		spdk_thread_send_msg(spdk_get_thread(), _stop_discovery, ctx);
6729 		return;
6730 	}
6731 
6732 	ctx->stop = true;
6733 
6734 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
6735 		struct discovery_entry_ctx *entry_ctx;
6736 		struct nvme_path_id path = {};
6737 
6738 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
6739 		path.trid = entry_ctx->trid;
6740 		bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6741 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6742 		free(entry_ctx);
6743 	}
6744 
6745 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
6746 		struct discovery_entry_ctx *entry_ctx;
6747 
6748 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6749 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6750 		free(entry_ctx);
6751 	}
6752 
6753 	free(ctx->entry_ctx_in_use);
6754 	ctx->entry_ctx_in_use = NULL;
6755 }
6756 
6757 static void
6758 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6759 {
6760 	ctx->stop_cb_fn = cb_fn;
6761 	ctx->cb_ctx = cb_ctx;
6762 
6763 	if (ctx->attach_in_progress > 0) {
6764 		DISCOVERY_INFOLOG(ctx, "stopping discovery with attach_in_progress: %"PRIu32"\n",
6765 				  ctx->attach_in_progress);
6766 	}
6767 
6768 	_stop_discovery(ctx);
6769 }
6770 
6771 static void
6772 remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr)
6773 {
6774 	struct discovery_ctx *d_ctx;
6775 	struct nvme_path_id *path_id;
6776 	struct spdk_nvme_transport_id trid = {};
6777 	struct discovery_entry_ctx *entry_ctx, *tmp;
6778 
6779 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
6780 
6781 	TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6782 		TAILQ_FOREACH_SAFE(entry_ctx, &d_ctx->nvm_entry_ctxs, tailq, tmp) {
6783 			build_trid_from_log_page_entry(&trid, &entry_ctx->entry);
6784 			if (spdk_nvme_transport_id_compare(&trid, &path_id->trid) != 0) {
6785 				continue;
6786 			}
6787 
6788 			TAILQ_REMOVE(&d_ctx->nvm_entry_ctxs, entry_ctx, tailq);
6789 			free(entry_ctx);
6790 			DISCOVERY_INFOLOG(d_ctx, "Remove discovery entry: %s:%s:%s\n",
6791 					  trid.subnqn, trid.traddr, trid.trsvcid);
6792 
6793 			/* Fail discovery ctrlr to force reattach attempt */
6794 			spdk_nvme_ctrlr_fail(d_ctx->ctrlr);
6795 		}
6796 	}
6797 }
6798 
6799 static void
6800 discovery_remove_controllers(struct discovery_ctx *ctx)
6801 {
6802 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
6803 	struct discovery_entry_ctx *entry_ctx, *tmp;
6804 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6805 	struct spdk_nvme_transport_id old_trid = {};
6806 	uint64_t numrec, i;
6807 	bool found;
6808 
6809 	numrec = from_le64(&log_page->numrec);
6810 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
6811 		found = false;
6812 		old_entry = &entry_ctx->entry;
6813 		build_trid_from_log_page_entry(&old_trid, old_entry);
6814 		for (i = 0; i < numrec; i++) {
6815 			new_entry = &log_page->entries[i];
6816 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
6817 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
6818 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6819 				found = true;
6820 				break;
6821 			}
6822 		}
6823 		if (!found) {
6824 			struct nvme_path_id path = {};
6825 
6826 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
6827 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6828 
6829 			path.trid = entry_ctx->trid;
6830 			bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6831 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6832 			free(entry_ctx);
6833 		}
6834 	}
6835 	free(log_page);
6836 	ctx->log_page = NULL;
6837 	discovery_complete(ctx);
6838 }
6839 
6840 static void
6841 complete_discovery_start(struct discovery_ctx *ctx, int status)
6842 {
6843 	ctx->timeout_ticks = 0;
6844 	ctx->rc = status;
6845 	if (ctx->start_cb_fn) {
6846 		ctx->start_cb_fn(ctx->cb_ctx, status);
6847 		ctx->start_cb_fn = NULL;
6848 		ctx->cb_ctx = NULL;
6849 	}
6850 }
6851 
6852 static void
6853 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
6854 {
6855 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
6856 	struct discovery_ctx *ctx = entry_ctx->ctx;
6857 
6858 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
6859 	ctx->attach_in_progress--;
6860 	if (ctx->attach_in_progress == 0) {
6861 		complete_discovery_start(ctx, ctx->rc);
6862 		if (ctx->initializing && ctx->rc != 0) {
6863 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
6864 			stop_discovery(ctx, NULL, ctx->cb_ctx);
6865 		} else {
6866 			discovery_remove_controllers(ctx);
6867 		}
6868 	}
6869 }
6870 
6871 static struct discovery_entry_ctx *
6872 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
6873 {
6874 	struct discovery_entry_ctx *new_ctx;
6875 
6876 	new_ctx = calloc(1, sizeof(*new_ctx));
6877 	if (new_ctx == NULL) {
6878 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6879 		return NULL;
6880 	}
6881 
6882 	new_ctx->ctx = ctx;
6883 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
6884 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6885 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6886 	return new_ctx;
6887 }
6888 
6889 static void
6890 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
6891 		      struct spdk_nvmf_discovery_log_page *log_page)
6892 {
6893 	struct discovery_ctx *ctx = cb_arg;
6894 	struct discovery_entry_ctx *entry_ctx, *tmp;
6895 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6896 	uint64_t numrec, i;
6897 	bool found;
6898 
6899 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
6900 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6901 		return;
6902 	}
6903 
6904 	ctx->log_page = log_page;
6905 	assert(ctx->attach_in_progress == 0);
6906 	numrec = from_le64(&log_page->numrec);
6907 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
6908 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6909 		free(entry_ctx);
6910 	}
6911 	for (i = 0; i < numrec; i++) {
6912 		found = false;
6913 		new_entry = &log_page->entries[i];
6914 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY_CURRENT ||
6915 		    new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
6916 			struct discovery_entry_ctx *new_ctx;
6917 			struct spdk_nvme_transport_id trid = {};
6918 
6919 			build_trid_from_log_page_entry(&trid, new_entry);
6920 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
6921 			if (new_ctx == NULL) {
6922 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6923 				break;
6924 			}
6925 
6926 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
6927 			continue;
6928 		}
6929 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
6930 			old_entry = &entry_ctx->entry;
6931 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
6932 				found = true;
6933 				break;
6934 			}
6935 		}
6936 		if (!found) {
6937 			struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx;
6938 			struct discovery_ctx *d_ctx;
6939 
6940 			TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6941 				TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) {
6942 					if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
6943 						    sizeof(new_entry->subnqn))) {
6944 						break;
6945 					}
6946 				}
6947 				if (subnqn_ctx) {
6948 					break;
6949 				}
6950 			}
6951 
6952 			new_ctx = calloc(1, sizeof(*new_ctx));
6953 			if (new_ctx == NULL) {
6954 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6955 				break;
6956 			}
6957 
6958 			new_ctx->ctx = ctx;
6959 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
6960 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
6961 			if (subnqn_ctx) {
6962 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
6963 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
6964 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6965 						  new_ctx->name);
6966 			} else {
6967 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
6968 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
6969 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6970 						  new_ctx->name);
6971 			}
6972 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6973 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6974 			rc = spdk_bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
6975 						   discovery_attach_controller_done, new_ctx,
6976 						   &new_ctx->drv_opts, &ctx->bdev_opts, true);
6977 			if (rc == 0) {
6978 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
6979 				ctx->attach_in_progress++;
6980 			} else {
6981 				DISCOVERY_ERRLOG(ctx, "spdk_bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
6982 			}
6983 		}
6984 	}
6985 
6986 	if (ctx->attach_in_progress == 0) {
6987 		discovery_remove_controllers(ctx);
6988 	}
6989 }
6990 
6991 static void
6992 get_discovery_log_page(struct discovery_ctx *ctx)
6993 {
6994 	int rc;
6995 
6996 	assert(ctx->in_progress == false);
6997 	ctx->in_progress = true;
6998 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
6999 	if (rc != 0) {
7000 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
7001 	}
7002 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
7003 }
7004 
7005 static void
7006 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
7007 {
7008 	struct discovery_ctx *ctx = arg;
7009 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
7010 
7011 	if (spdk_nvme_cpl_is_error(cpl)) {
7012 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
7013 		return;
7014 	}
7015 
7016 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
7017 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
7018 		return;
7019 	}
7020 
7021 	DISCOVERY_INFOLOG(ctx, "got aer\n");
7022 	if (ctx->in_progress) {
7023 		ctx->pending = true;
7024 		return;
7025 	}
7026 
7027 	get_discovery_log_page(ctx);
7028 }
7029 
7030 static void
7031 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
7032 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
7033 {
7034 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
7035 	struct discovery_ctx *ctx;
7036 
7037 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
7038 
7039 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
7040 	ctx->probe_ctx = NULL;
7041 	ctx->ctrlr = ctrlr;
7042 
7043 	if (ctx->rc != 0) {
7044 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
7045 				 ctx->rc);
7046 		return;
7047 	}
7048 
7049 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
7050 }
7051 
7052 static int
7053 discovery_poller(void *arg)
7054 {
7055 	struct discovery_ctx *ctx = arg;
7056 	struct spdk_nvme_transport_id *trid;
7057 	int rc;
7058 
7059 	if (ctx->detach_ctx) {
7060 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
7061 		if (rc != -EAGAIN) {
7062 			ctx->detach_ctx = NULL;
7063 			ctx->ctrlr = NULL;
7064 		}
7065 	} else if (ctx->stop) {
7066 		if (ctx->ctrlr != NULL) {
7067 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7068 			if (rc == 0) {
7069 				return SPDK_POLLER_BUSY;
7070 			}
7071 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7072 		}
7073 		spdk_poller_unregister(&ctx->poller);
7074 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7075 		assert(ctx->start_cb_fn == NULL);
7076 		if (ctx->stop_cb_fn != NULL) {
7077 			ctx->stop_cb_fn(ctx->cb_ctx);
7078 		}
7079 		free_discovery_ctx(ctx);
7080 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
7081 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7082 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7083 			assert(ctx->initializing);
7084 			spdk_poller_unregister(&ctx->poller);
7085 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7086 			complete_discovery_start(ctx, -ETIMEDOUT);
7087 			stop_discovery(ctx, NULL, NULL);
7088 			free_discovery_ctx(ctx);
7089 			return SPDK_POLLER_BUSY;
7090 		}
7091 
7092 		assert(ctx->entry_ctx_in_use == NULL);
7093 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
7094 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7095 		trid = &ctx->entry_ctx_in_use->trid;
7096 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
7097 		if (ctx->probe_ctx) {
7098 			spdk_poller_unregister(&ctx->poller);
7099 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
7100 		} else {
7101 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
7102 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7103 			ctx->entry_ctx_in_use = NULL;
7104 		}
7105 	} else if (ctx->probe_ctx) {
7106 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7107 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7108 			complete_discovery_start(ctx, -ETIMEDOUT);
7109 			return SPDK_POLLER_BUSY;
7110 		}
7111 
7112 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
7113 		if (rc != -EAGAIN) {
7114 			if (ctx->rc != 0) {
7115 				assert(ctx->initializing);
7116 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7117 			} else {
7118 				assert(rc == 0);
7119 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
7120 				ctx->rc = rc;
7121 				get_discovery_log_page(ctx);
7122 			}
7123 		}
7124 	} else {
7125 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7126 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
7127 			complete_discovery_start(ctx, -ETIMEDOUT);
7128 			/* We need to wait until all NVM ctrlrs are attached before we stop the
7129 			 * discovery service to make sure we don't detach a ctrlr that is still
7130 			 * being attached.
7131 			 */
7132 			if (ctx->attach_in_progress == 0) {
7133 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7134 				return SPDK_POLLER_BUSY;
7135 			}
7136 		}
7137 
7138 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
7139 		if (rc < 0) {
7140 			spdk_poller_unregister(&ctx->poller);
7141 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7142 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7143 			ctx->entry_ctx_in_use = NULL;
7144 
7145 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7146 			if (rc != 0) {
7147 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7148 				ctx->ctrlr = NULL;
7149 			}
7150 		}
7151 	}
7152 
7153 	return SPDK_POLLER_BUSY;
7154 }
7155 
7156 static void
7157 start_discovery_poller(void *arg)
7158 {
7159 	struct discovery_ctx *ctx = arg;
7160 
7161 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
7162 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7163 }
7164 
7165 int
7166 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
7167 			  const char *base_name,
7168 			  struct spdk_nvme_ctrlr_opts *drv_opts,
7169 			  struct spdk_bdev_nvme_ctrlr_opts *bdev_opts,
7170 			  uint64_t attach_timeout,
7171 			  bool from_mdns,
7172 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
7173 {
7174 	struct discovery_ctx *ctx;
7175 	struct discovery_entry_ctx *discovery_entry_ctx;
7176 
7177 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
7178 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7179 		if (strcmp(ctx->name, base_name) == 0) {
7180 			return -EEXIST;
7181 		}
7182 
7183 		if (ctx->entry_ctx_in_use != NULL) {
7184 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
7185 				return -EEXIST;
7186 			}
7187 		}
7188 
7189 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
7190 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
7191 				return -EEXIST;
7192 			}
7193 		}
7194 	}
7195 
7196 	ctx = calloc(1, sizeof(*ctx));
7197 	if (ctx == NULL) {
7198 		return -ENOMEM;
7199 	}
7200 
7201 	ctx->name = strdup(base_name);
7202 	if (ctx->name == NULL) {
7203 		free_discovery_ctx(ctx);
7204 		return -ENOMEM;
7205 	}
7206 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
7207 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
7208 	ctx->from_mdns_discovery_service = from_mdns;
7209 	ctx->bdev_opts.from_discovery_service = true;
7210 	ctx->calling_thread = spdk_get_thread();
7211 	ctx->start_cb_fn = cb_fn;
7212 	ctx->cb_ctx = cb_ctx;
7213 	ctx->initializing = true;
7214 	if (ctx->start_cb_fn) {
7215 		/* We can use this when dumping json to denote if this RPC parameter
7216 		 * was specified or not.
7217 		 */
7218 		ctx->wait_for_attach = true;
7219 	}
7220 	if (attach_timeout != 0) {
7221 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
7222 				     spdk_get_ticks_hz() / 1000ull;
7223 	}
7224 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
7225 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
7226 	memcpy(&ctx->trid, trid, sizeof(*trid));
7227 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
7228 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
7229 	if (ctx->hostnqn == NULL) {
7230 		free_discovery_ctx(ctx);
7231 		return -ENOMEM;
7232 	}
7233 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
7234 	if (discovery_entry_ctx == NULL) {
7235 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7236 		free_discovery_ctx(ctx);
7237 		return -ENOMEM;
7238 	}
7239 
7240 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
7241 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
7242 	return 0;
7243 }
7244 
7245 int
7246 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
7247 {
7248 	struct discovery_ctx *ctx;
7249 
7250 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7251 		if (strcmp(name, ctx->name) == 0) {
7252 			if (ctx->stop) {
7253 				return -EALREADY;
7254 			}
7255 			/* If we're still starting the discovery service and ->rc is non-zero, we're
7256 			 * going to stop it as soon as we can
7257 			 */
7258 			if (ctx->initializing && ctx->rc != 0) {
7259 				return -EALREADY;
7260 			}
7261 			stop_discovery(ctx, cb_fn, cb_ctx);
7262 			return 0;
7263 		}
7264 	}
7265 
7266 	return -ENOENT;
7267 }
7268 
7269 static int
7270 bdev_nvme_library_init(void)
7271 {
7272 	g_bdev_nvme_init_thread = spdk_get_thread();
7273 
7274 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
7275 				bdev_nvme_destroy_poll_group_cb,
7276 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
7277 
7278 	return 0;
7279 }
7280 
7281 static void
7282 bdev_nvme_fini_destruct_ctrlrs(void)
7283 {
7284 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
7285 	struct nvme_ctrlr *nvme_ctrlr;
7286 
7287 	pthread_mutex_lock(&g_bdev_nvme_mutex);
7288 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
7289 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
7290 			pthread_mutex_lock(&nvme_ctrlr->mutex);
7291 			if (nvme_ctrlr->destruct) {
7292 				/* This controller's destruction was already started
7293 				 * before the application started shutting down
7294 				 */
7295 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
7296 				continue;
7297 			}
7298 			nvme_ctrlr->destruct = true;
7299 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
7300 
7301 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
7302 					     nvme_ctrlr);
7303 		}
7304 	}
7305 
7306 	g_bdev_nvme_module_finish = true;
7307 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
7308 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
7309 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
7310 		spdk_bdev_module_fini_done();
7311 		return;
7312 	}
7313 
7314 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
7315 }
7316 
7317 static void
7318 check_discovery_fini(void *arg)
7319 {
7320 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7321 		bdev_nvme_fini_destruct_ctrlrs();
7322 	}
7323 }
7324 
7325 static void
7326 bdev_nvme_library_fini(void)
7327 {
7328 	struct nvme_probe_skip_entry *entry, *entry_tmp;
7329 	struct discovery_ctx *ctx;
7330 
7331 	spdk_poller_unregister(&g_hotplug_poller);
7332 	free(g_hotplug_probe_ctx);
7333 	g_hotplug_probe_ctx = NULL;
7334 
7335 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
7336 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
7337 		free(entry);
7338 	}
7339 
7340 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
7341 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7342 		bdev_nvme_fini_destruct_ctrlrs();
7343 	} else {
7344 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7345 			stop_discovery(ctx, check_discovery_fini, NULL);
7346 		}
7347 	}
7348 }
7349 
7350 static void
7351 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
7352 {
7353 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7354 	struct spdk_bdev *bdev = bdev_io->bdev;
7355 	struct spdk_dif_ctx dif_ctx;
7356 	struct spdk_dif_error err_blk = {};
7357 	int rc;
7358 	struct spdk_dif_ctx_init_ext_opts dif_opts;
7359 
7360 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
7361 	dif_opts.dif_pi_format = bdev->dif_pi_format;
7362 	rc = spdk_dif_ctx_init(&dif_ctx,
7363 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
7364 			       bdev->dif_is_head_of_md, bdev->dif_type,
7365 			       bdev_io->u.bdev.dif_check_flags,
7366 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0, &dif_opts);
7367 	if (rc != 0) {
7368 		SPDK_ERRLOG("Initialization of DIF context failed\n");
7369 		return;
7370 	}
7371 
7372 	if (bdev->md_interleave) {
7373 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7374 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7375 	} else {
7376 		struct iovec md_iov = {
7377 			.iov_base	= bdev_io->u.bdev.md_buf,
7378 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
7379 		};
7380 
7381 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7382 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7383 	}
7384 
7385 	if (rc != 0) {
7386 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
7387 			    err_blk.err_type, err_blk.err_offset);
7388 	} else {
7389 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
7390 	}
7391 }
7392 
7393 static void
7394 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7395 {
7396 	struct nvme_bdev_io *bio = ref;
7397 
7398 	if (spdk_nvme_cpl_is_success(cpl)) {
7399 		/* Run PI verification for read data buffer. */
7400 		bdev_nvme_verify_pi_error(bio);
7401 	}
7402 
7403 	/* Return original completion status */
7404 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7405 }
7406 
7407 static void
7408 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7409 {
7410 	struct nvme_bdev_io *bio = ref;
7411 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7412 	int ret;
7413 
7414 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7415 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
7416 			    cpl->status.sct, cpl->status.sc);
7417 
7418 		/* Save completion status to use after verifying PI error. */
7419 		bio->cpl = *cpl;
7420 
7421 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
7422 			/* Read without PI checking to verify PI error. */
7423 			ret = bdev_nvme_no_pi_readv(bio,
7424 						    bdev_io->u.bdev.iovs,
7425 						    bdev_io->u.bdev.iovcnt,
7426 						    bdev_io->u.bdev.md_buf,
7427 						    bdev_io->u.bdev.num_blocks,
7428 						    bdev_io->u.bdev.offset_blocks);
7429 			if (ret == 0) {
7430 				return;
7431 			}
7432 		}
7433 	}
7434 
7435 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7436 }
7437 
7438 static void
7439 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7440 {
7441 	struct nvme_bdev_io *bio = ref;
7442 
7443 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7444 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
7445 			    cpl->status.sct, cpl->status.sc);
7446 		/* Run PI verification for write data buffer if PI error is detected. */
7447 		bdev_nvme_verify_pi_error(bio);
7448 	}
7449 
7450 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7451 }
7452 
7453 static void
7454 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7455 {
7456 	struct nvme_bdev_io *bio = ref;
7457 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7458 
7459 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
7460 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
7461 	 */
7462 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
7463 
7464 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7465 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
7466 			    cpl->status.sct, cpl->status.sc);
7467 		/* Run PI verification for zone append data buffer if PI error is detected. */
7468 		bdev_nvme_verify_pi_error(bio);
7469 	}
7470 
7471 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7472 }
7473 
7474 static void
7475 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7476 {
7477 	struct nvme_bdev_io *bio = ref;
7478 
7479 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7480 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
7481 			    cpl->status.sct, cpl->status.sc);
7482 		/* Run PI verification for compare data buffer if PI error is detected. */
7483 		bdev_nvme_verify_pi_error(bio);
7484 	}
7485 
7486 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7487 }
7488 
7489 static void
7490 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7491 {
7492 	struct nvme_bdev_io *bio = ref;
7493 
7494 	/* Compare operation completion */
7495 	if (!bio->first_fused_completed) {
7496 		/* Save compare result for write callback */
7497 		bio->cpl = *cpl;
7498 		bio->first_fused_completed = true;
7499 		return;
7500 	}
7501 
7502 	/* Write operation completion */
7503 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
7504 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
7505 		 * complete the IO with the compare operation's status.
7506 		 */
7507 		if (!spdk_nvme_cpl_is_error(cpl)) {
7508 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
7509 		}
7510 
7511 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7512 	} else {
7513 		bdev_nvme_io_complete_nvme_status(bio, cpl);
7514 	}
7515 }
7516 
7517 static void
7518 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
7519 {
7520 	struct nvme_bdev_io *bio = ref;
7521 
7522 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7523 }
7524 
7525 static int
7526 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
7527 {
7528 	switch (desc->zt) {
7529 	case SPDK_NVME_ZONE_TYPE_SEQWR:
7530 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
7531 		break;
7532 	default:
7533 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
7534 		return -EIO;
7535 	}
7536 
7537 	switch (desc->zs) {
7538 	case SPDK_NVME_ZONE_STATE_EMPTY:
7539 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
7540 		break;
7541 	case SPDK_NVME_ZONE_STATE_IOPEN:
7542 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
7543 		break;
7544 	case SPDK_NVME_ZONE_STATE_EOPEN:
7545 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
7546 		break;
7547 	case SPDK_NVME_ZONE_STATE_CLOSED:
7548 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
7549 		break;
7550 	case SPDK_NVME_ZONE_STATE_RONLY:
7551 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
7552 		break;
7553 	case SPDK_NVME_ZONE_STATE_FULL:
7554 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
7555 		break;
7556 	case SPDK_NVME_ZONE_STATE_OFFLINE:
7557 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
7558 		break;
7559 	default:
7560 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
7561 		return -EIO;
7562 	}
7563 
7564 	info->zone_id = desc->zslba;
7565 	info->write_pointer = desc->wp;
7566 	info->capacity = desc->zcap;
7567 
7568 	return 0;
7569 }
7570 
7571 static void
7572 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
7573 {
7574 	struct nvme_bdev_io *bio = ref;
7575 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7576 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
7577 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
7578 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
7579 	uint64_t max_zones_per_buf, i;
7580 	uint32_t zone_report_bufsize;
7581 	struct spdk_nvme_ns *ns;
7582 	struct spdk_nvme_qpair *qpair;
7583 	int ret;
7584 
7585 	if (spdk_nvme_cpl_is_error(cpl)) {
7586 		goto out_complete_io_nvme_cpl;
7587 	}
7588 
7589 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
7590 		ret = -ENXIO;
7591 		goto out_complete_io_ret;
7592 	}
7593 
7594 	ns = bio->io_path->nvme_ns->ns;
7595 	qpair = bio->io_path->qpair->qpair;
7596 
7597 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7598 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
7599 			    sizeof(bio->zone_report_buf->descs[0]);
7600 
7601 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
7602 		ret = -EINVAL;
7603 		goto out_complete_io_ret;
7604 	}
7605 
7606 	if (!bio->zone_report_buf->nr_zones) {
7607 		ret = -EINVAL;
7608 		goto out_complete_io_ret;
7609 	}
7610 
7611 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
7612 		ret = fill_zone_from_report(&info[bio->handled_zones],
7613 					    &bio->zone_report_buf->descs[i]);
7614 		if (ret) {
7615 			goto out_complete_io_ret;
7616 		}
7617 		bio->handled_zones++;
7618 	}
7619 
7620 	if (bio->handled_zones < zones_to_copy) {
7621 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7622 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
7623 
7624 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
7625 		ret = spdk_nvme_zns_report_zones(ns, qpair,
7626 						 bio->zone_report_buf, zone_report_bufsize,
7627 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
7628 						 bdev_nvme_get_zone_info_done, bio);
7629 		if (!ret) {
7630 			return;
7631 		} else {
7632 			goto out_complete_io_ret;
7633 		}
7634 	}
7635 
7636 out_complete_io_nvme_cpl:
7637 	free(bio->zone_report_buf);
7638 	bio->zone_report_buf = NULL;
7639 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7640 	return;
7641 
7642 out_complete_io_ret:
7643 	free(bio->zone_report_buf);
7644 	bio->zone_report_buf = NULL;
7645 	bdev_nvme_io_complete(bio, ret);
7646 }
7647 
7648 static void
7649 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
7650 {
7651 	struct nvme_bdev_io *bio = ref;
7652 
7653 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7654 }
7655 
7656 static void
7657 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
7658 {
7659 	struct nvme_bdev_io *bio = ctx;
7660 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7661 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
7662 
7663 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
7664 
7665 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
7666 }
7667 
7668 static void
7669 bdev_nvme_abort_complete(void *ctx)
7670 {
7671 	struct nvme_bdev_io *bio = ctx;
7672 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7673 
7674 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
7675 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
7676 	} else {
7677 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
7678 	}
7679 }
7680 
7681 static void
7682 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
7683 {
7684 	struct nvme_bdev_io *bio = ref;
7685 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7686 
7687 	bio->cpl = *cpl;
7688 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_nvme_abort_complete, bio);
7689 }
7690 
7691 static void
7692 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
7693 {
7694 	struct nvme_bdev_io *bio = ref;
7695 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7696 
7697 	bio->cpl = *cpl;
7698 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
7699 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
7700 }
7701 
7702 static void
7703 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
7704 {
7705 	struct nvme_bdev_io *bio = ref;
7706 	struct iovec *iov;
7707 
7708 	bio->iov_offset = sgl_offset;
7709 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
7710 		iov = &bio->iovs[bio->iovpos];
7711 		if (bio->iov_offset < iov->iov_len) {
7712 			break;
7713 		}
7714 
7715 		bio->iov_offset -= iov->iov_len;
7716 	}
7717 }
7718 
7719 static int
7720 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
7721 {
7722 	struct nvme_bdev_io *bio = ref;
7723 	struct iovec *iov;
7724 
7725 	assert(bio->iovpos < bio->iovcnt);
7726 
7727 	iov = &bio->iovs[bio->iovpos];
7728 
7729 	*address = iov->iov_base;
7730 	*length = iov->iov_len;
7731 
7732 	if (bio->iov_offset) {
7733 		assert(bio->iov_offset <= iov->iov_len);
7734 		*address += bio->iov_offset;
7735 		*length -= bio->iov_offset;
7736 	}
7737 
7738 	bio->iov_offset += *length;
7739 	if (bio->iov_offset == iov->iov_len) {
7740 		bio->iovpos++;
7741 		bio->iov_offset = 0;
7742 	}
7743 
7744 	return 0;
7745 }
7746 
7747 static void
7748 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
7749 {
7750 	struct nvme_bdev_io *bio = ref;
7751 	struct iovec *iov;
7752 
7753 	bio->fused_iov_offset = sgl_offset;
7754 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
7755 		iov = &bio->fused_iovs[bio->fused_iovpos];
7756 		if (bio->fused_iov_offset < iov->iov_len) {
7757 			break;
7758 		}
7759 
7760 		bio->fused_iov_offset -= iov->iov_len;
7761 	}
7762 }
7763 
7764 static int
7765 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
7766 {
7767 	struct nvme_bdev_io *bio = ref;
7768 	struct iovec *iov;
7769 
7770 	assert(bio->fused_iovpos < bio->fused_iovcnt);
7771 
7772 	iov = &bio->fused_iovs[bio->fused_iovpos];
7773 
7774 	*address = iov->iov_base;
7775 	*length = iov->iov_len;
7776 
7777 	if (bio->fused_iov_offset) {
7778 		assert(bio->fused_iov_offset <= iov->iov_len);
7779 		*address += bio->fused_iov_offset;
7780 		*length -= bio->fused_iov_offset;
7781 	}
7782 
7783 	bio->fused_iov_offset += *length;
7784 	if (bio->fused_iov_offset == iov->iov_len) {
7785 		bio->fused_iovpos++;
7786 		bio->fused_iov_offset = 0;
7787 	}
7788 
7789 	return 0;
7790 }
7791 
7792 static int
7793 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7794 		      void *md, uint64_t lba_count, uint64_t lba)
7795 {
7796 	int rc;
7797 
7798 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
7799 		      lba_count, lba);
7800 
7801 	bio->iovs = iov;
7802 	bio->iovcnt = iovcnt;
7803 	bio->iovpos = 0;
7804 	bio->iov_offset = 0;
7805 
7806 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
7807 					    bio->io_path->qpair->qpair,
7808 					    lba, lba_count,
7809 					    bdev_nvme_no_pi_readv_done, bio, 0,
7810 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7811 					    md, 0, 0);
7812 
7813 	if (rc != 0 && rc != -ENOMEM) {
7814 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
7815 	}
7816 	return rc;
7817 }
7818 
7819 static int
7820 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7821 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7822 		struct spdk_memory_domain *domain, void *domain_ctx,
7823 		struct spdk_accel_sequence *seq)
7824 {
7825 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7826 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7827 	int rc;
7828 
7829 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7830 		      lba_count, lba);
7831 
7832 	bio->iovs = iov;
7833 	bio->iovcnt = iovcnt;
7834 	bio->iovpos = 0;
7835 	bio->iov_offset = 0;
7836 
7837 	if (domain != NULL || seq != NULL) {
7838 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7839 		bio->ext_opts.memory_domain = domain;
7840 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7841 		bio->ext_opts.io_flags = flags;
7842 		bio->ext_opts.metadata = md;
7843 		bio->ext_opts.accel_sequence = seq;
7844 
7845 		if (iovcnt == 1) {
7846 			rc = spdk_nvme_ns_cmd_read_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_readv_done,
7847 						       bio, &bio->ext_opts);
7848 		} else {
7849 			rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
7850 							bdev_nvme_readv_done, bio,
7851 							bdev_nvme_queued_reset_sgl,
7852 							bdev_nvme_queued_next_sge,
7853 							&bio->ext_opts);
7854 		}
7855 	} else if (iovcnt == 1) {
7856 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base,
7857 						   md, lba, lba_count, bdev_nvme_readv_done,
7858 						   bio, flags, 0, 0);
7859 	} else {
7860 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
7861 						    bdev_nvme_readv_done, bio, flags,
7862 						    bdev_nvme_queued_reset_sgl,
7863 						    bdev_nvme_queued_next_sge, md, 0, 0);
7864 	}
7865 
7866 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7867 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
7868 	}
7869 	return rc;
7870 }
7871 
7872 static int
7873 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7874 		 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7875 		 struct spdk_memory_domain *domain, void *domain_ctx,
7876 		 struct spdk_accel_sequence *seq,
7877 		 union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13)
7878 {
7879 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7880 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7881 	int rc;
7882 
7883 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7884 		      lba_count, lba);
7885 
7886 	bio->iovs = iov;
7887 	bio->iovcnt = iovcnt;
7888 	bio->iovpos = 0;
7889 	bio->iov_offset = 0;
7890 
7891 	if (domain != NULL || seq != NULL) {
7892 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7893 		bio->ext_opts.memory_domain = domain;
7894 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7895 		bio->ext_opts.io_flags = flags | SPDK_NVME_IO_FLAGS_DIRECTIVE(cdw12.write.dtype);
7896 		bio->ext_opts.cdw13 = cdw13.raw;
7897 		bio->ext_opts.metadata = md;
7898 		bio->ext_opts.accel_sequence = seq;
7899 
7900 		if (iovcnt == 1) {
7901 			rc = spdk_nvme_ns_cmd_write_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_writev_done,
7902 							bio, &bio->ext_opts);
7903 		} else {
7904 			rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
7905 							 bdev_nvme_writev_done, bio,
7906 							 bdev_nvme_queued_reset_sgl,
7907 							 bdev_nvme_queued_next_sge,
7908 							 &bio->ext_opts);
7909 		}
7910 	} else if (iovcnt == 1) {
7911 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base,
7912 						    md, lba, lba_count, bdev_nvme_writev_done,
7913 						    bio, flags, 0, 0);
7914 	} else {
7915 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7916 						     bdev_nvme_writev_done, bio, flags,
7917 						     bdev_nvme_queued_reset_sgl,
7918 						     bdev_nvme_queued_next_sge, md, 0, 0);
7919 	}
7920 
7921 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7922 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
7923 	}
7924 	return rc;
7925 }
7926 
7927 static int
7928 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7929 		       void *md, uint64_t lba_count, uint64_t zslba,
7930 		       uint32_t flags)
7931 {
7932 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7933 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7934 	int rc;
7935 
7936 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
7937 		      lba_count, zslba);
7938 
7939 	bio->iovs = iov;
7940 	bio->iovcnt = iovcnt;
7941 	bio->iovpos = 0;
7942 	bio->iov_offset = 0;
7943 
7944 	if (iovcnt == 1) {
7945 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
7946 						       lba_count,
7947 						       bdev_nvme_zone_appendv_done, bio,
7948 						       flags,
7949 						       0, 0);
7950 	} else {
7951 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
7952 							bdev_nvme_zone_appendv_done, bio, flags,
7953 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7954 							md, 0, 0);
7955 	}
7956 
7957 	if (rc != 0 && rc != -ENOMEM) {
7958 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
7959 	}
7960 	return rc;
7961 }
7962 
7963 static int
7964 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7965 		   void *md, uint64_t lba_count, uint64_t lba,
7966 		   uint32_t flags)
7967 {
7968 	int rc;
7969 
7970 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7971 		      lba_count, lba);
7972 
7973 	bio->iovs = iov;
7974 	bio->iovcnt = iovcnt;
7975 	bio->iovpos = 0;
7976 	bio->iov_offset = 0;
7977 
7978 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
7979 					       bio->io_path->qpair->qpair,
7980 					       lba, lba_count,
7981 					       bdev_nvme_comparev_done, bio, flags,
7982 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7983 					       md, 0, 0);
7984 
7985 	if (rc != 0 && rc != -ENOMEM) {
7986 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
7987 	}
7988 	return rc;
7989 }
7990 
7991 static int
7992 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
7993 			      struct iovec *write_iov, int write_iovcnt,
7994 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
7995 {
7996 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7997 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7998 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7999 	int rc;
8000 
8001 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
8002 		      lba_count, lba);
8003 
8004 	bio->iovs = cmp_iov;
8005 	bio->iovcnt = cmp_iovcnt;
8006 	bio->iovpos = 0;
8007 	bio->iov_offset = 0;
8008 	bio->fused_iovs = write_iov;
8009 	bio->fused_iovcnt = write_iovcnt;
8010 	bio->fused_iovpos = 0;
8011 	bio->fused_iov_offset = 0;
8012 
8013 	if (bdev_io->num_retries == 0) {
8014 		bio->first_fused_submitted = false;
8015 		bio->first_fused_completed = false;
8016 	}
8017 
8018 	if (!bio->first_fused_submitted) {
8019 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
8020 		memset(&bio->cpl, 0, sizeof(bio->cpl));
8021 
8022 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
8023 						       bdev_nvme_comparev_and_writev_done, bio, flags,
8024 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
8025 		if (rc == 0) {
8026 			bio->first_fused_submitted = true;
8027 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
8028 		} else {
8029 			if (rc != -ENOMEM) {
8030 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
8031 			}
8032 			return rc;
8033 		}
8034 	}
8035 
8036 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
8037 
8038 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
8039 					     bdev_nvme_comparev_and_writev_done, bio, flags,
8040 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
8041 	if (rc != 0 && rc != -ENOMEM) {
8042 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
8043 		rc = 0;
8044 	}
8045 
8046 	return rc;
8047 }
8048 
8049 static int
8050 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
8051 {
8052 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
8053 	struct spdk_nvme_dsm_range *range;
8054 	uint64_t offset, remaining;
8055 	uint64_t num_ranges_u64;
8056 	uint16_t num_ranges;
8057 	int rc;
8058 
8059 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
8060 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8061 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
8062 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
8063 		return -EINVAL;
8064 	}
8065 	num_ranges = (uint16_t)num_ranges_u64;
8066 
8067 	offset = offset_blocks;
8068 	remaining = num_blocks;
8069 	range = &dsm_ranges[0];
8070 
8071 	/* Fill max-size ranges until the remaining blocks fit into one range */
8072 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
8073 		range->attributes.raw = 0;
8074 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8075 		range->starting_lba = offset;
8076 
8077 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8078 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8079 		range++;
8080 	}
8081 
8082 	/* Final range describes the remaining blocks */
8083 	range->attributes.raw = 0;
8084 	range->length = remaining;
8085 	range->starting_lba = offset;
8086 
8087 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
8088 			bio->io_path->qpair->qpair,
8089 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
8090 			dsm_ranges, num_ranges,
8091 			bdev_nvme_queued_done, bio);
8092 
8093 	return rc;
8094 }
8095 
8096 static int
8097 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
8098 {
8099 	if (num_blocks > UINT16_MAX + 1) {
8100 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
8101 		return -EINVAL;
8102 	}
8103 
8104 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
8105 					     bio->io_path->qpair->qpair,
8106 					     offset_blocks, num_blocks,
8107 					     bdev_nvme_queued_done, bio,
8108 					     0);
8109 }
8110 
8111 static int
8112 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
8113 			struct spdk_bdev_zone_info *info)
8114 {
8115 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8116 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8117 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
8118 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
8119 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
8120 
8121 	if (zone_id % zone_size != 0) {
8122 		return -EINVAL;
8123 	}
8124 
8125 	if (num_zones > total_zones || !num_zones) {
8126 		return -EINVAL;
8127 	}
8128 
8129 	assert(!bio->zone_report_buf);
8130 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
8131 	if (!bio->zone_report_buf) {
8132 		return -ENOMEM;
8133 	}
8134 
8135 	bio->handled_zones = 0;
8136 
8137 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
8138 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
8139 					  bdev_nvme_get_zone_info_done, bio);
8140 }
8141 
8142 static int
8143 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
8144 			  enum spdk_bdev_zone_action action)
8145 {
8146 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8147 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8148 
8149 	switch (action) {
8150 	case SPDK_BDEV_ZONE_CLOSE:
8151 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
8152 						bdev_nvme_zone_management_done, bio);
8153 	case SPDK_BDEV_ZONE_FINISH:
8154 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
8155 						 bdev_nvme_zone_management_done, bio);
8156 	case SPDK_BDEV_ZONE_OPEN:
8157 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
8158 					       bdev_nvme_zone_management_done, bio);
8159 	case SPDK_BDEV_ZONE_RESET:
8160 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
8161 						bdev_nvme_zone_management_done, bio);
8162 	case SPDK_BDEV_ZONE_OFFLINE:
8163 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
8164 						  bdev_nvme_zone_management_done, bio);
8165 	default:
8166 		return -EINVAL;
8167 	}
8168 }
8169 
8170 static void
8171 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8172 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
8173 {
8174 	struct nvme_io_path *io_path;
8175 	struct nvme_ctrlr *nvme_ctrlr;
8176 	uint32_t max_xfer_size;
8177 	int rc = -ENXIO;
8178 
8179 	/* Choose the first ctrlr which is not failed. */
8180 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8181 		nvme_ctrlr = io_path->qpair->ctrlr;
8182 
8183 		/* We should skip any unavailable nvme_ctrlr rather than checking
8184 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
8185 		 */
8186 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
8187 			continue;
8188 		}
8189 
8190 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
8191 
8192 		if (nbytes > max_xfer_size) {
8193 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8194 			rc = -EINVAL;
8195 			goto err;
8196 		}
8197 
8198 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
8199 						   bdev_nvme_admin_passthru_done, bio);
8200 		if (rc == 0) {
8201 			return;
8202 		}
8203 	}
8204 
8205 err:
8206 	bdev_nvme_admin_complete(bio, rc);
8207 }
8208 
8209 static int
8210 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8211 		      void *buf, size_t nbytes)
8212 {
8213 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8214 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8215 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8216 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8217 
8218 	if (nbytes > max_xfer_size) {
8219 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8220 		return -EINVAL;
8221 	}
8222 
8223 	/*
8224 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8225 	 * so fill it out automatically.
8226 	 */
8227 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8228 
8229 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
8230 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
8231 }
8232 
8233 static int
8234 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8235 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
8236 {
8237 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8238 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8239 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8240 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8241 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8242 
8243 	if (nbytes > max_xfer_size) {
8244 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8245 		return -EINVAL;
8246 	}
8247 
8248 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8249 		SPDK_ERRLOG("invalid meta data buffer size\n");
8250 		return -EINVAL;
8251 	}
8252 
8253 	/*
8254 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8255 	 * so fill it out automatically.
8256 	 */
8257 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8258 
8259 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
8260 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
8261 }
8262 
8263 static int
8264 bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio,
8265 			  struct spdk_nvme_cmd *cmd, struct iovec *iov, int iovcnt,
8266 			  size_t nbytes, void *md_buf, size_t md_len)
8267 {
8268 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8269 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8270 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8271 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8272 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8273 
8274 	bio->iovs = iov;
8275 	bio->iovcnt = iovcnt;
8276 	bio->iovpos = 0;
8277 	bio->iov_offset = 0;
8278 
8279 	if (nbytes > max_xfer_size) {
8280 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8281 		return -EINVAL;
8282 	}
8283 
8284 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8285 		SPDK_ERRLOG("invalid meta data buffer size\n");
8286 		return -EINVAL;
8287 	}
8288 
8289 	/*
8290 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands
8291 	 * require a nsid, so fill it out automatically.
8292 	 */
8293 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8294 
8295 	return spdk_nvme_ctrlr_cmd_iov_raw_with_md(
8296 		       ctrlr, qpair, cmd, (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio,
8297 		       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge);
8298 }
8299 
8300 static void
8301 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8302 		struct nvme_bdev_io *bio_to_abort)
8303 {
8304 	struct nvme_io_path *io_path;
8305 	int rc = 0;
8306 
8307 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
8308 	if (rc == 0) {
8309 		bdev_nvme_admin_complete(bio, 0);
8310 		return;
8311 	}
8312 
8313 	io_path = bio_to_abort->io_path;
8314 	if (io_path != NULL) {
8315 		rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8316 						   io_path->qpair->qpair,
8317 						   bio_to_abort,
8318 						   bdev_nvme_abort_done, bio);
8319 	} else {
8320 		STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8321 			rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8322 							   NULL,
8323 							   bio_to_abort,
8324 							   bdev_nvme_abort_done, bio);
8325 
8326 			if (rc != -ENOENT) {
8327 				break;
8328 			}
8329 		}
8330 	}
8331 
8332 	if (rc != 0) {
8333 		/* If no command was found or there was any error, complete the abort
8334 		 * request with failure.
8335 		 */
8336 		bdev_nvme_admin_complete(bio, rc);
8337 	}
8338 }
8339 
8340 static int
8341 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
8342 	       uint64_t num_blocks)
8343 {
8344 	struct spdk_nvme_scc_source_range range = {
8345 		.slba = src_offset_blocks,
8346 		.nlb = num_blocks - 1
8347 	};
8348 
8349 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
8350 				     bio->io_path->qpair->qpair,
8351 				     &range, 1, dst_offset_blocks,
8352 				     bdev_nvme_queued_done, bio);
8353 }
8354 
8355 static void
8356 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
8357 {
8358 	const char *action;
8359 	uint32_t i;
8360 
8361 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
8362 		action = "reset";
8363 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
8364 		action = "abort";
8365 	} else {
8366 		action = "none";
8367 	}
8368 
8369 	spdk_json_write_object_begin(w);
8370 
8371 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
8372 
8373 	spdk_json_write_named_object_begin(w, "params");
8374 	spdk_json_write_named_string(w, "action_on_timeout", action);
8375 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
8376 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
8377 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
8378 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
8379 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
8380 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
8381 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
8382 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
8383 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
8384 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
8385 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
8386 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
8387 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
8388 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
8389 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
8390 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
8391 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
8392 	spdk_json_write_named_bool(w, "disable_auto_failback", g_opts.disable_auto_failback);
8393 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
8394 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
8395 	spdk_json_write_named_bool(w, "nvme_error_stat", g_opts.nvme_error_stat);
8396 	spdk_json_write_named_uint32(w, "rdma_srq_size", g_opts.rdma_srq_size);
8397 	spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat);
8398 	spdk_json_write_named_bool(w, "allow_accel_sequence", g_opts.allow_accel_sequence);
8399 	spdk_json_write_named_uint32(w, "rdma_max_cq_size", g_opts.rdma_max_cq_size);
8400 	spdk_json_write_named_uint16(w, "rdma_cm_event_timeout_ms", g_opts.rdma_cm_event_timeout_ms);
8401 	spdk_json_write_named_array_begin(w, "dhchap_digests");
8402 	for (i = 0; i < 32; ++i) {
8403 		if (g_opts.dhchap_digests & SPDK_BIT(i)) {
8404 			spdk_json_write_string(w, spdk_nvme_dhchap_get_digest_name(i));
8405 		}
8406 	}
8407 	spdk_json_write_array_end(w);
8408 	spdk_json_write_named_array_begin(w, "dhchap_dhgroups");
8409 	for (i = 0; i < 32; ++i) {
8410 		if (g_opts.dhchap_dhgroups & SPDK_BIT(i)) {
8411 			spdk_json_write_string(w, spdk_nvme_dhchap_get_dhgroup_name(i));
8412 		}
8413 	}
8414 
8415 	spdk_json_write_array_end(w);
8416 	spdk_json_write_object_end(w);
8417 
8418 	spdk_json_write_object_end(w);
8419 }
8420 
8421 static void
8422 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
8423 {
8424 	struct spdk_nvme_transport_id trid;
8425 
8426 	spdk_json_write_object_begin(w);
8427 
8428 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
8429 
8430 	spdk_json_write_named_object_begin(w, "params");
8431 	spdk_json_write_named_string(w, "name", ctx->name);
8432 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
8433 
8434 	trid = ctx->trid;
8435 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
8436 	nvme_bdev_dump_trid_json(&trid, w);
8437 
8438 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
8439 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
8440 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
8441 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8442 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
8443 	spdk_json_write_object_end(w);
8444 
8445 	spdk_json_write_object_end(w);
8446 }
8447 
8448 #ifdef SPDK_CONFIG_NVME_CUSE
8449 static void
8450 nvme_ctrlr_cuse_config_json(struct spdk_json_write_ctx *w,
8451 			    struct nvme_ctrlr *nvme_ctrlr)
8452 {
8453 	size_t cuse_name_size = 128;
8454 	char cuse_name[cuse_name_size];
8455 
8456 	if (spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr,
8457 					  cuse_name, &cuse_name_size) != 0) {
8458 		return;
8459 	}
8460 
8461 	spdk_json_write_object_begin(w);
8462 
8463 	spdk_json_write_named_string(w, "method", "bdev_nvme_cuse_register");
8464 
8465 	spdk_json_write_named_object_begin(w, "params");
8466 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8467 	spdk_json_write_object_end(w);
8468 
8469 	spdk_json_write_object_end(w);
8470 }
8471 #endif
8472 
8473 static void
8474 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
8475 		       struct nvme_ctrlr *nvme_ctrlr)
8476 {
8477 	struct spdk_nvme_transport_id	*trid;
8478 	const struct spdk_nvme_ctrlr_opts *opts;
8479 
8480 	if (nvme_ctrlr->opts.from_discovery_service) {
8481 		/* Do not emit an RPC for this - it will be implicitly
8482 		 * covered by a separate bdev_nvme_start_discovery or
8483 		 * bdev_nvme_start_mdns_discovery RPC.
8484 		 */
8485 		return;
8486 	}
8487 
8488 	trid = &nvme_ctrlr->active_path_id->trid;
8489 
8490 	spdk_json_write_object_begin(w);
8491 
8492 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
8493 
8494 	spdk_json_write_named_object_begin(w, "params");
8495 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8496 	nvme_bdev_dump_trid_json(trid, w);
8497 	spdk_json_write_named_bool(w, "prchk_reftag",
8498 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
8499 	spdk_json_write_named_bool(w, "prchk_guard",
8500 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
8501 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
8502 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
8503 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8504 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
8505 	if (nvme_ctrlr->psk != NULL) {
8506 		spdk_json_write_named_string(w, "psk", spdk_key_get_name(nvme_ctrlr->psk));
8507 	} else if (nvme_ctrlr->opts.psk[0] != '\0') {
8508 		spdk_json_write_named_string(w, "psk", nvme_ctrlr->opts.psk);
8509 	}
8510 
8511 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
8512 	spdk_json_write_named_string(w, "hostnqn", opts->hostnqn);
8513 	spdk_json_write_named_bool(w, "hdgst", opts->header_digest);
8514 	spdk_json_write_named_bool(w, "ddgst", opts->data_digest);
8515 	if (opts->src_addr[0] != '\0') {
8516 		spdk_json_write_named_string(w, "hostaddr", opts->src_addr);
8517 	}
8518 	if (opts->src_svcid[0] != '\0') {
8519 		spdk_json_write_named_string(w, "hostsvcid", opts->src_svcid);
8520 	}
8521 
8522 	spdk_json_write_object_end(w);
8523 
8524 	spdk_json_write_object_end(w);
8525 }
8526 
8527 static void
8528 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
8529 {
8530 	spdk_json_write_object_begin(w);
8531 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
8532 
8533 	spdk_json_write_named_object_begin(w, "params");
8534 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
8535 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
8536 	spdk_json_write_object_end(w);
8537 
8538 	spdk_json_write_object_end(w);
8539 }
8540 
8541 static int
8542 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
8543 {
8544 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
8545 	struct nvme_ctrlr	*nvme_ctrlr;
8546 	struct discovery_ctx	*ctx;
8547 
8548 	bdev_nvme_opts_config_json(w);
8549 
8550 	pthread_mutex_lock(&g_bdev_nvme_mutex);
8551 
8552 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
8553 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
8554 			nvme_ctrlr_config_json(w, nvme_ctrlr);
8555 
8556 #ifdef SPDK_CONFIG_NVME_CUSE
8557 			nvme_ctrlr_cuse_config_json(w, nvme_ctrlr);
8558 #endif
8559 		}
8560 	}
8561 
8562 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8563 		if (!ctx->from_mdns_discovery_service) {
8564 			bdev_nvme_discovery_config_json(w, ctx);
8565 		}
8566 	}
8567 
8568 	bdev_nvme_mdns_discovery_config_json(w);
8569 
8570 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
8571 	 * before enabling hotplug poller.
8572 	 */
8573 	bdev_nvme_hotplug_config_json(w);
8574 
8575 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
8576 	return 0;
8577 }
8578 
8579 struct spdk_nvme_ctrlr *
8580 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
8581 {
8582 	struct nvme_bdev *nbdev;
8583 	struct nvme_ns *nvme_ns;
8584 
8585 	if (!bdev || bdev->module != &nvme_if) {
8586 		return NULL;
8587 	}
8588 
8589 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
8590 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
8591 	assert(nvme_ns != NULL);
8592 
8593 	return nvme_ns->ctrlr->ctrlr;
8594 }
8595 
8596 static bool
8597 nvme_io_path_is_current(struct nvme_io_path *io_path)
8598 {
8599 	const struct nvme_bdev_channel *nbdev_ch;
8600 	bool current;
8601 
8602 	if (!nvme_io_path_is_available(io_path)) {
8603 		return false;
8604 	}
8605 
8606 	nbdev_ch = io_path->nbdev_ch;
8607 	if (nbdev_ch == NULL) {
8608 		current = false;
8609 	} else if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
8610 		struct nvme_io_path *optimized_io_path = NULL;
8611 
8612 		STAILQ_FOREACH(optimized_io_path, &nbdev_ch->io_path_list, stailq) {
8613 			if (optimized_io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) {
8614 				break;
8615 			}
8616 		}
8617 
8618 		/* A non-optimized path is only current if there are no optimized paths. */
8619 		current = (io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) ||
8620 			  (optimized_io_path == NULL);
8621 	} else {
8622 		if (nbdev_ch->current_io_path) {
8623 			current = (io_path == nbdev_ch->current_io_path);
8624 		} else {
8625 			struct nvme_io_path *first_path;
8626 
8627 			/* We arrived here as there are no optimized paths for active-passive
8628 			 * mode. Check if this io_path is the first one available on the list.
8629 			 */
8630 			current = false;
8631 			STAILQ_FOREACH(first_path, &nbdev_ch->io_path_list, stailq) {
8632 				if (nvme_io_path_is_available(first_path)) {
8633 					current = (io_path == first_path);
8634 					break;
8635 				}
8636 			}
8637 		}
8638 	}
8639 
8640 	return current;
8641 }
8642 
8643 void
8644 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
8645 {
8646 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
8647 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
8648 	const struct spdk_nvme_ctrlr_data *cdata;
8649 	const struct spdk_nvme_transport_id *trid;
8650 	const char *adrfam_str;
8651 
8652 	spdk_json_write_object_begin(w);
8653 
8654 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
8655 
8656 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
8657 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
8658 
8659 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
8660 	spdk_json_write_named_bool(w, "current", nvme_io_path_is_current(io_path));
8661 	spdk_json_write_named_bool(w, "connected", nvme_qpair_is_connected(io_path->qpair));
8662 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
8663 
8664 	spdk_json_write_named_object_begin(w, "transport");
8665 	spdk_json_write_named_string(w, "trtype", trid->trstring);
8666 	spdk_json_write_named_string(w, "traddr", trid->traddr);
8667 	if (trid->trsvcid[0] != '\0') {
8668 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
8669 	}
8670 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
8671 	if (adrfam_str) {
8672 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
8673 	}
8674 	spdk_json_write_object_end(w);
8675 
8676 	spdk_json_write_object_end(w);
8677 }
8678 
8679 void
8680 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
8681 {
8682 	struct discovery_ctx *ctx;
8683 	struct discovery_entry_ctx *entry_ctx;
8684 
8685 	spdk_json_write_array_begin(w);
8686 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8687 		spdk_json_write_object_begin(w);
8688 		spdk_json_write_named_string(w, "name", ctx->name);
8689 
8690 		spdk_json_write_named_object_begin(w, "trid");
8691 		nvme_bdev_dump_trid_json(&ctx->trid, w);
8692 		spdk_json_write_object_end(w);
8693 
8694 		spdk_json_write_named_array_begin(w, "referrals");
8695 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
8696 			spdk_json_write_object_begin(w);
8697 			spdk_json_write_named_object_begin(w, "trid");
8698 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
8699 			spdk_json_write_object_end(w);
8700 			spdk_json_write_object_end(w);
8701 		}
8702 		spdk_json_write_array_end(w);
8703 
8704 		spdk_json_write_object_end(w);
8705 	}
8706 	spdk_json_write_array_end(w);
8707 }
8708 
8709 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
8710 
8711 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
8712 {
8713 	struct spdk_trace_tpoint_opts opts[] = {
8714 		{
8715 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
8716 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 1,
8717 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8718 		},
8719 		{
8720 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
8721 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 0,
8722 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8723 		}
8724 	};
8725 
8726 
8727 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
8728 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
8729 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8730 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8731 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8732 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8733 }
8734