xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision d8e2f663ab87e1a36c021fbd63559980b6954a13)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/likely.h"
18 #include "spdk/nvme.h"
19 #include "spdk/nvme_ocssd.h"
20 #include "spdk/nvme_zns.h"
21 #include "spdk/opal.h"
22 #include "spdk/thread.h"
23 #include "spdk/trace.h"
24 #include "spdk/string.h"
25 #include "spdk/util.h"
26 #include "spdk/uuid.h"
27 
28 #include "spdk/bdev_module.h"
29 #include "spdk/log.h"
30 
31 #include "spdk_internal/usdt.h"
32 #include "spdk_internal/trace_defs.h"
33 
34 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
35 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
36 
37 #define NSID_STR_LEN 10
38 
39 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
40 
41 struct nvme_bdev_io {
42 	/** array of iovecs to transfer. */
43 	struct iovec *iovs;
44 
45 	/** Number of iovecs in iovs array. */
46 	int iovcnt;
47 
48 	/** Current iovec position. */
49 	int iovpos;
50 
51 	/** Offset in current iovec. */
52 	uint32_t iov_offset;
53 
54 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
55 	 *  being reset in a reset I/O.
56 	 */
57 	struct nvme_io_path *io_path;
58 
59 	/** array of iovecs to transfer. */
60 	struct iovec *fused_iovs;
61 
62 	/** Number of iovecs in iovs array. */
63 	int fused_iovcnt;
64 
65 	/** Current iovec position. */
66 	int fused_iovpos;
67 
68 	/** Offset in current iovec. */
69 	uint32_t fused_iov_offset;
70 
71 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
72 	struct spdk_nvme_cpl cpl;
73 
74 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
75 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
76 
77 	/** Keeps track if first of fused commands was submitted */
78 	bool first_fused_submitted;
79 
80 	/** Keeps track if first of fused commands was completed */
81 	bool first_fused_completed;
82 
83 	/** Temporary pointer to zone report buffer */
84 	struct spdk_nvme_zns_zone_report *zone_report_buf;
85 
86 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
87 	uint64_t handled_zones;
88 
89 	/** Expiration value in ticks to retry the current I/O. */
90 	uint64_t retry_ticks;
91 
92 	/* How many times the current I/O was retried. */
93 	int32_t retry_count;
94 
95 	/* Current tsc at submit time. */
96 	uint64_t submit_tsc;
97 };
98 
99 struct nvme_probe_skip_entry {
100 	struct spdk_nvme_transport_id		trid;
101 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
102 };
103 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
104 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
105 			g_skipped_nvme_ctrlrs);
106 
107 static struct spdk_bdev_nvme_opts g_opts = {
108 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
109 	.timeout_us = 0,
110 	.timeout_admin_us = 0,
111 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
112 	.transport_retry_count = 4,
113 	.arbitration_burst = 0,
114 	.low_priority_weight = 0,
115 	.medium_priority_weight = 0,
116 	.high_priority_weight = 0,
117 	.nvme_adminq_poll_period_us = 10000ULL,
118 	.nvme_ioq_poll_period_us = 0,
119 	.io_queue_requests = 0,
120 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
121 	.bdev_retry_count = 3,
122 	.transport_ack_timeout = 0,
123 	.ctrlr_loss_timeout_sec = 0,
124 	.reconnect_delay_sec = 0,
125 	.fast_io_fail_timeout_sec = 0,
126 	.disable_auto_failback = false,
127 	.generate_uuids = false,
128 	.transport_tos = 0,
129 	.nvme_error_stat = false,
130 	.io_path_stat = false,
131 	.allow_accel_sequence = false,
132 };
133 
134 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
135 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
136 
137 static int g_hot_insert_nvme_controller_index = 0;
138 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
139 static bool g_nvme_hotplug_enabled = false;
140 struct spdk_thread *g_bdev_nvme_init_thread;
141 static struct spdk_poller *g_hotplug_poller;
142 static struct spdk_poller *g_hotplug_probe_poller;
143 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
144 
145 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
146 		struct nvme_async_probe_ctx *ctx);
147 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
148 		struct nvme_async_probe_ctx *ctx);
149 static int bdev_nvme_library_init(void);
150 static void bdev_nvme_library_fini(void);
151 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
152 				      struct spdk_bdev_io *bdev_io);
153 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
154 				     struct spdk_bdev_io *bdev_io);
155 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
156 			   void *md, uint64_t lba_count, uint64_t lba,
157 			   uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
158 			   struct spdk_accel_sequence *seq);
159 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
160 				 void *md, uint64_t lba_count, uint64_t lba);
161 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
162 			    void *md, uint64_t lba_count, uint64_t lba,
163 			    uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
164 			    struct spdk_accel_sequence *seq);
165 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
166 				  void *md, uint64_t lba_count,
167 				  uint64_t zslba, uint32_t flags);
168 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
169 			      void *md, uint64_t lba_count, uint64_t lba,
170 			      uint32_t flags);
171 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
172 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
173 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
174 		uint32_t flags);
175 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
176 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
177 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
178 				     enum spdk_bdev_zone_action action);
179 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
180 				     struct nvme_bdev_io *bio,
181 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
182 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
183 				 void *buf, size_t nbytes);
184 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
185 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
186 static int bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
187 				     struct iovec *iov, int iovcnt, size_t nbytes,
188 				     void *md_buf, size_t md_len);
189 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
190 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
191 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
192 static int bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
193 static int bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
194 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
195 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
196 
197 static struct nvme_ns *nvme_ns_alloc(void);
198 static void nvme_ns_free(struct nvme_ns *ns);
199 
200 static int
201 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
202 {
203 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
204 }
205 
206 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
207 
208 struct spdk_nvme_qpair *
209 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
210 {
211 	struct nvme_ctrlr_channel *ctrlr_ch;
212 
213 	assert(ctrlr_io_ch != NULL);
214 
215 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
216 
217 	return ctrlr_ch->qpair->qpair;
218 }
219 
220 static int
221 bdev_nvme_get_ctx_size(void)
222 {
223 	return sizeof(struct nvme_bdev_io);
224 }
225 
226 static struct spdk_bdev_module nvme_if = {
227 	.name = "nvme",
228 	.async_fini = true,
229 	.module_init = bdev_nvme_library_init,
230 	.module_fini = bdev_nvme_library_fini,
231 	.config_json = bdev_nvme_config_json,
232 	.get_ctx_size = bdev_nvme_get_ctx_size,
233 
234 };
235 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
236 
237 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
238 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
239 bool g_bdev_nvme_module_finish;
240 
241 struct nvme_bdev_ctrlr *
242 nvme_bdev_ctrlr_get_by_name(const char *name)
243 {
244 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
245 
246 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
247 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
248 			break;
249 		}
250 	}
251 
252 	return nbdev_ctrlr;
253 }
254 
255 static struct nvme_ctrlr *
256 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
257 			  const struct spdk_nvme_transport_id *trid)
258 {
259 	struct nvme_ctrlr *nvme_ctrlr;
260 
261 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
262 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0) {
263 			break;
264 		}
265 	}
266 
267 	return nvme_ctrlr;
268 }
269 
270 struct nvme_ctrlr *
271 nvme_bdev_ctrlr_get_ctrlr_by_id(struct nvme_bdev_ctrlr *nbdev_ctrlr,
272 				uint16_t cntlid)
273 {
274 	struct nvme_ctrlr *nvme_ctrlr;
275 	const struct spdk_nvme_ctrlr_data *cdata;
276 
277 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
278 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
279 		if (cdata->cntlid == cntlid) {
280 			break;
281 		}
282 	}
283 
284 	return nvme_ctrlr;
285 }
286 
287 static struct nvme_bdev *
288 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
289 {
290 	struct nvme_bdev *bdev;
291 
292 	pthread_mutex_lock(&g_bdev_nvme_mutex);
293 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
294 		if (bdev->nsid == nsid) {
295 			break;
296 		}
297 	}
298 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
299 
300 	return bdev;
301 }
302 
303 struct nvme_ns *
304 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
305 {
306 	struct nvme_ns ns;
307 
308 	assert(nsid > 0);
309 
310 	ns.id = nsid;
311 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
312 }
313 
314 struct nvme_ns *
315 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
316 {
317 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
318 }
319 
320 struct nvme_ns *
321 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
322 {
323 	if (ns == NULL) {
324 		return NULL;
325 	}
326 
327 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
328 }
329 
330 static struct nvme_ctrlr *
331 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid)
332 {
333 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
334 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
335 
336 	pthread_mutex_lock(&g_bdev_nvme_mutex);
337 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
338 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid);
339 		if (nvme_ctrlr != NULL) {
340 			break;
341 		}
342 	}
343 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
344 
345 	return nvme_ctrlr;
346 }
347 
348 struct nvme_ctrlr *
349 nvme_ctrlr_get_by_name(const char *name)
350 {
351 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
352 	struct nvme_ctrlr *nvme_ctrlr = NULL;
353 
354 	if (name == NULL) {
355 		return NULL;
356 	}
357 
358 	pthread_mutex_lock(&g_bdev_nvme_mutex);
359 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
360 	if (nbdev_ctrlr != NULL) {
361 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
362 	}
363 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
364 
365 	return nvme_ctrlr;
366 }
367 
368 void
369 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
370 {
371 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
372 
373 	pthread_mutex_lock(&g_bdev_nvme_mutex);
374 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
375 		fn(nbdev_ctrlr, ctx);
376 	}
377 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
378 }
379 
380 void
381 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
382 {
383 	const char *trtype_str;
384 	const char *adrfam_str;
385 
386 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
387 	if (trtype_str) {
388 		spdk_json_write_named_string(w, "trtype", trtype_str);
389 	}
390 
391 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
392 	if (adrfam_str) {
393 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
394 	}
395 
396 	if (trid->traddr[0] != '\0') {
397 		spdk_json_write_named_string(w, "traddr", trid->traddr);
398 	}
399 
400 	if (trid->trsvcid[0] != '\0') {
401 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
402 	}
403 
404 	if (trid->subnqn[0] != '\0') {
405 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
406 	}
407 }
408 
409 static void
410 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
411 		       struct nvme_ctrlr *nvme_ctrlr)
412 {
413 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
414 	pthread_mutex_lock(&g_bdev_nvme_mutex);
415 
416 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
417 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
418 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
419 
420 		return;
421 	}
422 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
423 
424 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
425 
426 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
427 
428 	free(nbdev_ctrlr->name);
429 	free(nbdev_ctrlr);
430 }
431 
432 static void
433 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
434 {
435 	struct nvme_path_id *path_id, *tmp_path;
436 	struct nvme_ns *ns, *tmp_ns;
437 
438 	free(nvme_ctrlr->copied_ana_desc);
439 	spdk_free(nvme_ctrlr->ana_log_page);
440 
441 	if (nvme_ctrlr->opal_dev) {
442 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
443 		nvme_ctrlr->opal_dev = NULL;
444 	}
445 
446 	if (nvme_ctrlr->nbdev_ctrlr) {
447 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
448 	}
449 
450 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
451 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
452 		nvme_ns_free(ns);
453 	}
454 
455 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
456 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
457 		free(path_id);
458 	}
459 
460 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
461 
462 	free(nvme_ctrlr);
463 
464 	pthread_mutex_lock(&g_bdev_nvme_mutex);
465 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
466 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
467 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
468 		spdk_bdev_module_fini_done();
469 		return;
470 	}
471 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
472 }
473 
474 static int
475 nvme_detach_poller(void *arg)
476 {
477 	struct nvme_ctrlr *nvme_ctrlr = arg;
478 	int rc;
479 
480 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
481 	if (rc != -EAGAIN) {
482 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
483 		_nvme_ctrlr_delete(nvme_ctrlr);
484 	}
485 
486 	return SPDK_POLLER_BUSY;
487 }
488 
489 static void
490 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
491 {
492 	int rc;
493 
494 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
495 
496 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
497 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
498 
499 	/* If we got here, the reset/detach poller cannot be active */
500 	assert(nvme_ctrlr->reset_detach_poller == NULL);
501 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
502 					  nvme_ctrlr, 1000);
503 	if (nvme_ctrlr->reset_detach_poller == NULL) {
504 		SPDK_ERRLOG("Failed to register detach poller\n");
505 		goto error;
506 	}
507 
508 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
509 	if (rc != 0) {
510 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
511 		goto error;
512 	}
513 
514 	return;
515 error:
516 	/* We don't have a good way to handle errors here, so just do what we can and delete the
517 	 * controller without detaching the underlying NVMe device.
518 	 */
519 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
520 	_nvme_ctrlr_delete(nvme_ctrlr);
521 }
522 
523 static void
524 nvme_ctrlr_unregister_cb(void *io_device)
525 {
526 	struct nvme_ctrlr *nvme_ctrlr = io_device;
527 
528 	nvme_ctrlr_delete(nvme_ctrlr);
529 }
530 
531 static void
532 nvme_ctrlr_unregister(void *ctx)
533 {
534 	struct nvme_ctrlr *nvme_ctrlr = ctx;
535 
536 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
537 }
538 
539 static bool
540 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
541 {
542 	if (!nvme_ctrlr->destruct) {
543 		return false;
544 	}
545 
546 	if (nvme_ctrlr->ref > 0) {
547 		return false;
548 	}
549 
550 	if (nvme_ctrlr->resetting) {
551 		return false;
552 	}
553 
554 	if (nvme_ctrlr->ana_log_page_updating) {
555 		return false;
556 	}
557 
558 	if (nvme_ctrlr->io_path_cache_clearing) {
559 		return false;
560 	}
561 
562 	return true;
563 }
564 
565 static void
566 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
567 {
568 	pthread_mutex_lock(&nvme_ctrlr->mutex);
569 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
570 
571 	assert(nvme_ctrlr->ref > 0);
572 	nvme_ctrlr->ref--;
573 
574 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
575 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
576 		return;
577 	}
578 
579 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
580 
581 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
582 }
583 
584 static void
585 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch)
586 {
587 	nbdev_ch->current_io_path = NULL;
588 	nbdev_ch->rr_counter = 0;
589 }
590 
591 static struct nvme_io_path *
592 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
593 {
594 	struct nvme_io_path *io_path;
595 
596 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
597 		if (io_path->nvme_ns == nvme_ns) {
598 			break;
599 		}
600 	}
601 
602 	return io_path;
603 }
604 
605 static struct nvme_io_path *
606 nvme_io_path_alloc(void)
607 {
608 	struct nvme_io_path *io_path;
609 
610 	io_path = calloc(1, sizeof(*io_path));
611 	if (io_path == NULL) {
612 		SPDK_ERRLOG("Failed to alloc io_path.\n");
613 		return NULL;
614 	}
615 
616 	if (g_opts.io_path_stat) {
617 		io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
618 		if (io_path->stat == NULL) {
619 			free(io_path);
620 			SPDK_ERRLOG("Failed to alloc io_path stat.\n");
621 			return NULL;
622 		}
623 		spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
624 	}
625 
626 	return io_path;
627 }
628 
629 static void
630 nvme_io_path_free(struct nvme_io_path *io_path)
631 {
632 	free(io_path->stat);
633 	free(io_path);
634 }
635 
636 static int
637 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
638 {
639 	struct nvme_io_path *io_path;
640 	struct spdk_io_channel *ch;
641 	struct nvme_ctrlr_channel *ctrlr_ch;
642 	struct nvme_qpair *nvme_qpair;
643 
644 	io_path = nvme_io_path_alloc();
645 	if (io_path == NULL) {
646 		return -ENOMEM;
647 	}
648 
649 	io_path->nvme_ns = nvme_ns;
650 
651 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
652 	if (ch == NULL) {
653 		nvme_io_path_free(io_path);
654 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
655 		return -ENOMEM;
656 	}
657 
658 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
659 
660 	nvme_qpair = ctrlr_ch->qpair;
661 	assert(nvme_qpair != NULL);
662 
663 	io_path->qpair = nvme_qpair;
664 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
665 
666 	io_path->nbdev_ch = nbdev_ch;
667 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
668 
669 	bdev_nvme_clear_current_io_path(nbdev_ch);
670 
671 	return 0;
672 }
673 
674 static void
675 bdev_nvme_clear_retry_io_path(struct nvme_bdev_channel *nbdev_ch,
676 			      struct nvme_io_path *io_path)
677 {
678 	struct spdk_bdev_io *bdev_io;
679 	struct nvme_bdev_io *bio;
680 
681 	TAILQ_FOREACH(bdev_io, &nbdev_ch->retry_io_list, module_link) {
682 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
683 		if (bio->io_path == io_path) {
684 			bio->io_path = NULL;
685 		}
686 	}
687 }
688 
689 static void
690 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
691 {
692 	struct spdk_io_channel *ch;
693 	struct nvme_qpair *nvme_qpair;
694 	struct nvme_ctrlr_channel *ctrlr_ch;
695 	struct nvme_bdev *nbdev;
696 
697 	nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch));
698 
699 	/* Add the statistics to nvme_ns before this path is destroyed. */
700 	pthread_mutex_lock(&nbdev->mutex);
701 	if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) {
702 		spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat);
703 	}
704 	pthread_mutex_unlock(&nbdev->mutex);
705 
706 	bdev_nvme_clear_current_io_path(nbdev_ch);
707 	bdev_nvme_clear_retry_io_path(nbdev_ch, io_path);
708 
709 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
710 	io_path->nbdev_ch = NULL;
711 
712 	nvme_qpair = io_path->qpair;
713 	assert(nvme_qpair != NULL);
714 
715 	ctrlr_ch = nvme_qpair->ctrlr_ch;
716 	assert(ctrlr_ch != NULL);
717 
718 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
719 	spdk_put_io_channel(ch);
720 
721 	/* After an io_path is removed, I/Os submitted to it may complete and update statistics
722 	 * of the io_path. To avoid heap-use-after-free error from this case, do not free the
723 	 * io_path here but free the io_path when the associated qpair is freed. It is ensured
724 	 * that all I/Os submitted to the io_path are completed when the associated qpair is freed.
725 	 */
726 }
727 
728 static void
729 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
730 {
731 	struct nvme_io_path *io_path, *tmp_io_path;
732 
733 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
734 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
735 	}
736 }
737 
738 static int
739 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
740 {
741 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
742 	struct nvme_bdev *nbdev = io_device;
743 	struct nvme_ns *nvme_ns;
744 	int rc;
745 
746 	STAILQ_INIT(&nbdev_ch->io_path_list);
747 	TAILQ_INIT(&nbdev_ch->retry_io_list);
748 
749 	pthread_mutex_lock(&nbdev->mutex);
750 
751 	nbdev_ch->mp_policy = nbdev->mp_policy;
752 	nbdev_ch->mp_selector = nbdev->mp_selector;
753 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
754 
755 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
756 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
757 		if (rc != 0) {
758 			pthread_mutex_unlock(&nbdev->mutex);
759 
760 			_bdev_nvme_delete_io_paths(nbdev_ch);
761 			return rc;
762 		}
763 	}
764 	pthread_mutex_unlock(&nbdev->mutex);
765 
766 	return 0;
767 }
768 
769 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
770  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
771  */
772 static inline void
773 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
774 			const struct spdk_nvme_cpl *cpl)
775 {
776 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
777 			  (uintptr_t)bdev_io);
778 	if (cpl) {
779 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
780 	} else {
781 		spdk_bdev_io_complete(bdev_io, status);
782 	}
783 }
784 
785 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
786 
787 static void
788 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
789 {
790 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
791 
792 	bdev_nvme_abort_retry_ios(nbdev_ch);
793 	_bdev_nvme_delete_io_paths(nbdev_ch);
794 }
795 
796 static inline bool
797 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
798 {
799 	switch (io_type) {
800 	case SPDK_BDEV_IO_TYPE_RESET:
801 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
802 	case SPDK_BDEV_IO_TYPE_ABORT:
803 		return true;
804 	default:
805 		break;
806 	}
807 
808 	return false;
809 }
810 
811 static inline bool
812 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
813 {
814 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
815 		return false;
816 	}
817 
818 	switch (nvme_ns->ana_state) {
819 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
820 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
821 		return true;
822 	default:
823 		break;
824 	}
825 
826 	return false;
827 }
828 
829 static inline bool
830 nvme_qpair_is_connected(struct nvme_qpair *nvme_qpair)
831 {
832 	if (spdk_unlikely(nvme_qpair->qpair == NULL)) {
833 		return false;
834 	}
835 
836 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
837 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
838 		return false;
839 	}
840 
841 	if (spdk_unlikely(nvme_qpair->ctrlr_ch->reset_iter != NULL)) {
842 		return false;
843 	}
844 
845 	return true;
846 }
847 
848 static inline bool
849 nvme_io_path_is_available(struct nvme_io_path *io_path)
850 {
851 	if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
852 		return false;
853 	}
854 
855 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
856 		return false;
857 	}
858 
859 	return true;
860 }
861 
862 static inline bool
863 nvme_ctrlr_is_failed(struct nvme_ctrlr *nvme_ctrlr)
864 {
865 	if (nvme_ctrlr->destruct) {
866 		return true;
867 	}
868 
869 	if (nvme_ctrlr->fast_io_fail_timedout) {
870 		return true;
871 	}
872 
873 	if (nvme_ctrlr->resetting) {
874 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
875 			return false;
876 		} else {
877 			return true;
878 		}
879 	}
880 
881 	if (nvme_ctrlr->reconnect_is_delayed) {
882 		return false;
883 	}
884 
885 	if (nvme_ctrlr->disabled) {
886 		return true;
887 	}
888 
889 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
890 		return true;
891 	} else {
892 		return false;
893 	}
894 }
895 
896 static bool
897 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
898 {
899 	if (nvme_ctrlr->destruct) {
900 		return false;
901 	}
902 
903 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
904 		return false;
905 	}
906 
907 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
908 		return false;
909 	}
910 
911 	if (nvme_ctrlr->disabled) {
912 		return false;
913 	}
914 
915 	return true;
916 }
917 
918 /* Simulate circular linked list. */
919 static inline struct nvme_io_path *
920 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
921 {
922 	struct nvme_io_path *next_path;
923 
924 	if (prev_path != NULL) {
925 		next_path = STAILQ_NEXT(prev_path, stailq);
926 		if (next_path != NULL) {
927 			return next_path;
928 		}
929 	}
930 
931 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
932 }
933 
934 static struct nvme_io_path *
935 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
936 {
937 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
938 
939 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
940 
941 	io_path = start;
942 	do {
943 		if (spdk_likely(nvme_qpair_is_connected(io_path->qpair) &&
944 				!io_path->nvme_ns->ana_state_updating)) {
945 			switch (io_path->nvme_ns->ana_state) {
946 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
947 				nbdev_ch->current_io_path = io_path;
948 				return io_path;
949 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
950 				if (non_optimized == NULL) {
951 					non_optimized = io_path;
952 				}
953 				break;
954 			default:
955 				break;
956 			}
957 		}
958 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
959 	} while (io_path != start);
960 
961 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
962 		/* We come here only if there is no optimized path. Cache even non_optimized
963 		 * path for load balance across multiple non_optimized paths.
964 		 */
965 		nbdev_ch->current_io_path = non_optimized;
966 	}
967 
968 	return non_optimized;
969 }
970 
971 static struct nvme_io_path *
972 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch)
973 {
974 	struct nvme_io_path *io_path;
975 	struct nvme_io_path *optimized = NULL, *non_optimized = NULL;
976 	uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX;
977 	uint32_t num_outstanding_reqs;
978 
979 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
980 		if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
981 			/* The device is currently resetting. */
982 			continue;
983 		}
984 
985 		if (spdk_unlikely(io_path->nvme_ns->ana_state_updating)) {
986 			continue;
987 		}
988 
989 		num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair);
990 		switch (io_path->nvme_ns->ana_state) {
991 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
992 			if (num_outstanding_reqs < opt_min_qd) {
993 				opt_min_qd = num_outstanding_reqs;
994 				optimized = io_path;
995 			}
996 			break;
997 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
998 			if (num_outstanding_reqs < non_opt_min_qd) {
999 				non_opt_min_qd = num_outstanding_reqs;
1000 				non_optimized = io_path;
1001 			}
1002 			break;
1003 		default:
1004 			break;
1005 		}
1006 	}
1007 
1008 	/* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */
1009 	if (optimized != NULL) {
1010 		return optimized;
1011 	}
1012 
1013 	return non_optimized;
1014 }
1015 
1016 static inline struct nvme_io_path *
1017 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1018 {
1019 	if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
1020 		if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) {
1021 			return nbdev_ch->current_io_path;
1022 		} else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1023 			if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) {
1024 				return nbdev_ch->current_io_path;
1025 			}
1026 			nbdev_ch->rr_counter = 0;
1027 		}
1028 	}
1029 
1030 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE ||
1031 	    nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1032 		return _bdev_nvme_find_io_path(nbdev_ch);
1033 	} else {
1034 		return _bdev_nvme_find_io_path_min_qd(nbdev_ch);
1035 	}
1036 }
1037 
1038 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
1039  * or false otherwise.
1040  *
1041  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
1042  * is likely to be non-accessible now but may become accessible.
1043  *
1044  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
1045  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
1046  * when starting to reset it but it is set to failed when the reset failed. Hence, if
1047  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
1048  */
1049 static bool
1050 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
1051 {
1052 	struct nvme_io_path *io_path;
1053 
1054 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1055 		if (io_path->nvme_ns->ana_transition_timedout) {
1056 			continue;
1057 		}
1058 
1059 		if (nvme_qpair_is_connected(io_path->qpair) ||
1060 		    !nvme_ctrlr_is_failed(io_path->qpair->ctrlr)) {
1061 			return true;
1062 		}
1063 	}
1064 
1065 	return false;
1066 }
1067 
1068 static void
1069 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
1070 {
1071 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1072 	struct spdk_io_channel *ch;
1073 
1074 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
1075 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
1076 	} else {
1077 		ch = spdk_io_channel_from_ctx(nbdev_ch);
1078 		bdev_nvme_submit_request(ch, bdev_io);
1079 	}
1080 }
1081 
1082 static int
1083 bdev_nvme_retry_ios(void *arg)
1084 {
1085 	struct nvme_bdev_channel *nbdev_ch = arg;
1086 	struct spdk_bdev_io *bdev_io, *tmp_bdev_io;
1087 	struct nvme_bdev_io *bio;
1088 	uint64_t now, delay_us;
1089 
1090 	now = spdk_get_ticks();
1091 
1092 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_bdev_io) {
1093 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1094 		if (bio->retry_ticks > now) {
1095 			break;
1096 		}
1097 
1098 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
1099 
1100 		bdev_nvme_retry_io(nbdev_ch, bdev_io);
1101 	}
1102 
1103 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1104 
1105 	bdev_io = TAILQ_FIRST(&nbdev_ch->retry_io_list);
1106 	if (bdev_io != NULL) {
1107 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1108 
1109 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
1110 
1111 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1112 					    delay_us);
1113 	}
1114 
1115 	return SPDK_POLLER_BUSY;
1116 }
1117 
1118 static void
1119 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1120 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1121 {
1122 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1123 	struct spdk_bdev_io *tmp_bdev_io;
1124 	struct nvme_bdev_io *tmp_bio;
1125 
1126 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1127 
1128 	TAILQ_FOREACH_REVERSE(tmp_bdev_io, &nbdev_ch->retry_io_list, retry_io_head, module_link) {
1129 		tmp_bio = (struct nvme_bdev_io *)tmp_bdev_io->driver_ctx;
1130 
1131 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1132 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bdev_io, bdev_io,
1133 					   module_link);
1134 			return;
1135 		}
1136 	}
1137 
1138 	/* No earlier I/Os were found. This I/O must be the new head. */
1139 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bdev_io, module_link);
1140 
1141 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1142 
1143 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1144 				    delay_ms * 1000ULL);
1145 }
1146 
1147 static void
1148 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
1149 {
1150 	struct spdk_bdev_io *bdev_io, *tmp_io;
1151 
1152 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_io) {
1153 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
1154 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1155 	}
1156 
1157 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1158 }
1159 
1160 static int
1161 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1162 			 struct nvme_bdev_io *bio_to_abort)
1163 {
1164 	struct spdk_bdev_io *bdev_io_to_abort;
1165 
1166 	TAILQ_FOREACH(bdev_io_to_abort, &nbdev_ch->retry_io_list, module_link) {
1167 		if ((struct nvme_bdev_io *)bdev_io_to_abort->driver_ctx == bio_to_abort) {
1168 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io_to_abort, module_link);
1169 			__bdev_nvme_io_complete(bdev_io_to_abort, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1170 			return 0;
1171 		}
1172 	}
1173 
1174 	return -ENOENT;
1175 }
1176 
1177 static void
1178 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1179 {
1180 	struct nvme_bdev *nbdev;
1181 	uint16_t sct, sc;
1182 
1183 	assert(spdk_nvme_cpl_is_error(cpl));
1184 
1185 	nbdev = bdev_io->bdev->ctxt;
1186 
1187 	if (nbdev->err_stat == NULL) {
1188 		return;
1189 	}
1190 
1191 	sct = cpl->status.sct;
1192 	sc = cpl->status.sc;
1193 
1194 	pthread_mutex_lock(&nbdev->mutex);
1195 
1196 	nbdev->err_stat->status_type[sct]++;
1197 	switch (sct) {
1198 	case SPDK_NVME_SCT_GENERIC:
1199 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1200 	case SPDK_NVME_SCT_MEDIA_ERROR:
1201 	case SPDK_NVME_SCT_PATH:
1202 		nbdev->err_stat->status[sct][sc]++;
1203 		break;
1204 	default:
1205 		break;
1206 	}
1207 
1208 	pthread_mutex_unlock(&nbdev->mutex);
1209 }
1210 
1211 static inline void
1212 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio)
1213 {
1214 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1215 	uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
1216 	uint32_t blocklen = bdev_io->bdev->blocklen;
1217 	struct spdk_bdev_io_stat *stat;
1218 	uint64_t tsc_diff;
1219 
1220 	if (bio->io_path->stat == NULL) {
1221 		return;
1222 	}
1223 
1224 	tsc_diff = spdk_get_ticks() - bio->submit_tsc;
1225 	stat = bio->io_path->stat;
1226 
1227 	switch (bdev_io->type) {
1228 	case SPDK_BDEV_IO_TYPE_READ:
1229 		stat->bytes_read += num_blocks * blocklen;
1230 		stat->num_read_ops++;
1231 		stat->read_latency_ticks += tsc_diff;
1232 		if (stat->max_read_latency_ticks < tsc_diff) {
1233 			stat->max_read_latency_ticks = tsc_diff;
1234 		}
1235 		if (stat->min_read_latency_ticks > tsc_diff) {
1236 			stat->min_read_latency_ticks = tsc_diff;
1237 		}
1238 		break;
1239 	case SPDK_BDEV_IO_TYPE_WRITE:
1240 		stat->bytes_written += num_blocks * blocklen;
1241 		stat->num_write_ops++;
1242 		stat->write_latency_ticks += tsc_diff;
1243 		if (stat->max_write_latency_ticks < tsc_diff) {
1244 			stat->max_write_latency_ticks = tsc_diff;
1245 		}
1246 		if (stat->min_write_latency_ticks > tsc_diff) {
1247 			stat->min_write_latency_ticks = tsc_diff;
1248 		}
1249 		break;
1250 	case SPDK_BDEV_IO_TYPE_UNMAP:
1251 		stat->bytes_unmapped += num_blocks * blocklen;
1252 		stat->num_unmap_ops++;
1253 		stat->unmap_latency_ticks += tsc_diff;
1254 		if (stat->max_unmap_latency_ticks < tsc_diff) {
1255 			stat->max_unmap_latency_ticks = tsc_diff;
1256 		}
1257 		if (stat->min_unmap_latency_ticks > tsc_diff) {
1258 			stat->min_unmap_latency_ticks = tsc_diff;
1259 		}
1260 		break;
1261 	case SPDK_BDEV_IO_TYPE_ZCOPY:
1262 		/* Track the data in the start phase only */
1263 		if (!bdev_io->u.bdev.zcopy.start) {
1264 			break;
1265 		}
1266 		if (bdev_io->u.bdev.zcopy.populate) {
1267 			stat->bytes_read += num_blocks * blocklen;
1268 			stat->num_read_ops++;
1269 			stat->read_latency_ticks += tsc_diff;
1270 			if (stat->max_read_latency_ticks < tsc_diff) {
1271 				stat->max_read_latency_ticks = tsc_diff;
1272 			}
1273 			if (stat->min_read_latency_ticks > tsc_diff) {
1274 				stat->min_read_latency_ticks = tsc_diff;
1275 			}
1276 		} else {
1277 			stat->bytes_written += num_blocks * blocklen;
1278 			stat->num_write_ops++;
1279 			stat->write_latency_ticks += tsc_diff;
1280 			if (stat->max_write_latency_ticks < tsc_diff) {
1281 				stat->max_write_latency_ticks = tsc_diff;
1282 			}
1283 			if (stat->min_write_latency_ticks > tsc_diff) {
1284 				stat->min_write_latency_ticks = tsc_diff;
1285 			}
1286 		}
1287 		break;
1288 	case SPDK_BDEV_IO_TYPE_COPY:
1289 		stat->bytes_copied += num_blocks * blocklen;
1290 		stat->num_copy_ops++;
1291 		stat->copy_latency_ticks += tsc_diff;
1292 		if (stat->max_copy_latency_ticks < tsc_diff) {
1293 			stat->max_copy_latency_ticks = tsc_diff;
1294 		}
1295 		if (stat->min_copy_latency_ticks > tsc_diff) {
1296 			stat->min_copy_latency_ticks = tsc_diff;
1297 		}
1298 		break;
1299 	default:
1300 		break;
1301 	}
1302 }
1303 
1304 static bool
1305 bdev_nvme_check_retry_io(struct nvme_bdev_io *bio,
1306 			 const struct spdk_nvme_cpl *cpl,
1307 			 struct nvme_bdev_channel *nbdev_ch,
1308 			 uint64_t *_delay_ms)
1309 {
1310 	struct nvme_io_path *io_path = bio->io_path;
1311 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1312 	const struct spdk_nvme_ctrlr_data *cdata;
1313 
1314 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1315 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1316 	    !nvme_io_path_is_available(io_path) ||
1317 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1318 		bdev_nvme_clear_current_io_path(nbdev_ch);
1319 		bio->io_path = NULL;
1320 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1321 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1322 				io_path->nvme_ns->ana_state_updating = true;
1323 			}
1324 		}
1325 		if (!any_io_path_may_become_available(nbdev_ch)) {
1326 			return false;
1327 		}
1328 		*_delay_ms = 0;
1329 	} else {
1330 		bio->retry_count++;
1331 
1332 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1333 
1334 		if (cpl->status.crd != 0) {
1335 			*_delay_ms = cdata->crdt[cpl->status.crd] * 100;
1336 		} else {
1337 			*_delay_ms = 0;
1338 		}
1339 	}
1340 
1341 	return true;
1342 }
1343 
1344 static inline void
1345 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1346 				  const struct spdk_nvme_cpl *cpl)
1347 {
1348 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1349 	struct nvme_bdev_channel *nbdev_ch;
1350 	uint64_t delay_ms;
1351 
1352 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1353 
1354 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1355 		bdev_nvme_update_io_path_stat(bio);
1356 		goto complete;
1357 	}
1358 
1359 	/* Update error counts before deciding if retry is needed.
1360 	 * Hence, error counts may be more than the number of I/O errors.
1361 	 */
1362 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1363 
1364 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1365 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1366 		goto complete;
1367 	}
1368 
1369 	/* At this point we don't know whether the sequence was successfully executed or not, so we
1370 	 * cannot retry the IO */
1371 	if (bdev_io->u.bdev.accel_sequence != NULL) {
1372 		goto complete;
1373 	}
1374 
1375 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1376 
1377 	if (bdev_nvme_check_retry_io(bio, cpl, nbdev_ch, &delay_ms)) {
1378 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1379 		return;
1380 	}
1381 
1382 complete:
1383 	bio->retry_count = 0;
1384 	bio->submit_tsc = 0;
1385 	bdev_io->u.bdev.accel_sequence = NULL;
1386 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1387 }
1388 
1389 static inline void
1390 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1391 {
1392 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1393 	struct nvme_bdev_channel *nbdev_ch;
1394 	enum spdk_bdev_io_status io_status;
1395 
1396 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1397 
1398 	switch (rc) {
1399 	case 0:
1400 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1401 		break;
1402 	case -ENOMEM:
1403 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1404 		break;
1405 	case -ENXIO:
1406 		if (g_opts.bdev_retry_count == -1 || bio->retry_count < g_opts.bdev_retry_count) {
1407 			nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1408 
1409 			bdev_nvme_clear_current_io_path(nbdev_ch);
1410 			bio->io_path = NULL;
1411 
1412 			if (any_io_path_may_become_available(nbdev_ch)) {
1413 				bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1414 				return;
1415 			}
1416 		}
1417 
1418 	/* fallthrough */
1419 	default:
1420 		spdk_accel_sequence_abort(bdev_io->u.bdev.accel_sequence);
1421 		bdev_io->u.bdev.accel_sequence = NULL;
1422 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1423 		break;
1424 	}
1425 
1426 	bio->retry_count = 0;
1427 	bio->submit_tsc = 0;
1428 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1429 }
1430 
1431 static inline void
1432 bdev_nvme_admin_complete(struct nvme_bdev_io *bio, int rc)
1433 {
1434 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1435 	enum spdk_bdev_io_status io_status;
1436 
1437 	switch (rc) {
1438 	case 0:
1439 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1440 		break;
1441 	case -ENOMEM:
1442 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1443 		break;
1444 	case -ENXIO:
1445 	/* fallthrough */
1446 	default:
1447 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1448 		break;
1449 	}
1450 
1451 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1452 }
1453 
1454 static void
1455 bdev_nvme_clear_io_path_caches_done(struct spdk_io_channel_iter *i, int status)
1456 {
1457 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1458 
1459 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1460 
1461 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1462 	nvme_ctrlr->io_path_cache_clearing = false;
1463 
1464 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1465 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1466 		return;
1467 	}
1468 
1469 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1470 
1471 	nvme_ctrlr_unregister(nvme_ctrlr);
1472 }
1473 
1474 static void
1475 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1476 {
1477 	struct nvme_io_path *io_path;
1478 
1479 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1480 		if (io_path->nbdev_ch == NULL) {
1481 			continue;
1482 		}
1483 		bdev_nvme_clear_current_io_path(io_path->nbdev_ch);
1484 	}
1485 }
1486 
1487 static void
1488 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
1489 {
1490 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1491 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1492 
1493 	assert(ctrlr_ch->qpair != NULL);
1494 
1495 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1496 
1497 	spdk_for_each_channel_continue(i, 0);
1498 }
1499 
1500 static void
1501 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1502 {
1503 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1504 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1505 	    nvme_ctrlr->io_path_cache_clearing) {
1506 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1507 		return;
1508 	}
1509 
1510 	nvme_ctrlr->io_path_cache_clearing = true;
1511 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1512 
1513 	spdk_for_each_channel(nvme_ctrlr,
1514 			      bdev_nvme_clear_io_path_cache,
1515 			      NULL,
1516 			      bdev_nvme_clear_io_path_caches_done);
1517 }
1518 
1519 static struct nvme_qpair *
1520 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1521 {
1522 	struct nvme_qpair *nvme_qpair;
1523 
1524 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1525 		if (nvme_qpair->qpair == qpair) {
1526 			break;
1527 		}
1528 	}
1529 
1530 	return nvme_qpair;
1531 }
1532 
1533 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1534 
1535 static void
1536 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1537 {
1538 	struct nvme_poll_group *group = poll_group_ctx;
1539 	struct nvme_qpair *nvme_qpair;
1540 	struct nvme_ctrlr_channel *ctrlr_ch;
1541 	int status;
1542 
1543 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1544 	if (nvme_qpair == NULL) {
1545 		return;
1546 	}
1547 
1548 	if (nvme_qpair->qpair != NULL) {
1549 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1550 		nvme_qpair->qpair = NULL;
1551 	}
1552 
1553 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1554 
1555 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1556 
1557 	if (ctrlr_ch != NULL) {
1558 		if (ctrlr_ch->reset_iter != NULL) {
1559 			/* We are in a full reset sequence. */
1560 			if (ctrlr_ch->connect_poller != NULL) {
1561 				/* qpair was failed to connect. Abort the reset sequence. */
1562 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was failed to connect. abort the reset ctrlr sequence.\n",
1563 					      qpair);
1564 				spdk_poller_unregister(&ctrlr_ch->connect_poller);
1565 				status = -1;
1566 			} else {
1567 				/* qpair was completed to disconnect. Just move to the next ctrlr_channel. */
1568 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1569 					      qpair);
1570 				status = 0;
1571 			}
1572 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, status);
1573 			ctrlr_ch->reset_iter = NULL;
1574 		} else {
1575 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1576 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1577 			bdev_nvme_failover_ctrlr(nvme_qpair->ctrlr);
1578 		}
1579 	} else {
1580 		/* In this case, ctrlr_channel is already deleted. */
1581 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1582 		nvme_qpair_delete(nvme_qpair);
1583 	}
1584 }
1585 
1586 static void
1587 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1588 {
1589 	struct nvme_qpair *nvme_qpair;
1590 
1591 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1592 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1593 			continue;
1594 		}
1595 
1596 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1597 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1598 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1599 		}
1600 	}
1601 }
1602 
1603 static int
1604 bdev_nvme_poll(void *arg)
1605 {
1606 	struct nvme_poll_group *group = arg;
1607 	int64_t num_completions;
1608 
1609 	if (group->collect_spin_stat && group->start_ticks == 0) {
1610 		group->start_ticks = spdk_get_ticks();
1611 	}
1612 
1613 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1614 			  bdev_nvme_disconnected_qpair_cb);
1615 	if (group->collect_spin_stat) {
1616 		if (num_completions > 0) {
1617 			if (group->end_ticks != 0) {
1618 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1619 				group->end_ticks = 0;
1620 			}
1621 			group->start_ticks = 0;
1622 		} else {
1623 			group->end_ticks = spdk_get_ticks();
1624 		}
1625 	}
1626 
1627 	if (spdk_unlikely(num_completions < 0)) {
1628 		bdev_nvme_check_io_qpairs(group);
1629 	}
1630 
1631 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1632 }
1633 
1634 static int bdev_nvme_poll_adminq(void *arg);
1635 
1636 static void
1637 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1638 {
1639 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1640 
1641 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1642 					  nvme_ctrlr, new_period_us);
1643 }
1644 
1645 static int
1646 bdev_nvme_poll_adminq(void *arg)
1647 {
1648 	int32_t rc;
1649 	struct nvme_ctrlr *nvme_ctrlr = arg;
1650 	nvme_ctrlr_disconnected_cb disconnected_cb;
1651 
1652 	assert(nvme_ctrlr != NULL);
1653 
1654 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1655 	if (rc < 0) {
1656 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1657 		nvme_ctrlr->disconnected_cb = NULL;
1658 
1659 		if (disconnected_cb != NULL) {
1660 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1661 							    g_opts.nvme_adminq_poll_period_us);
1662 			disconnected_cb(nvme_ctrlr);
1663 		} else {
1664 			bdev_nvme_failover_ctrlr(nvme_ctrlr);
1665 		}
1666 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1667 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1668 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1669 	}
1670 
1671 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1672 }
1673 
1674 static void
1675 nvme_bdev_free(void *io_device)
1676 {
1677 	struct nvme_bdev *nvme_disk = io_device;
1678 
1679 	pthread_mutex_destroy(&nvme_disk->mutex);
1680 	free(nvme_disk->disk.name);
1681 	free(nvme_disk->err_stat);
1682 	free(nvme_disk);
1683 }
1684 
1685 static int
1686 bdev_nvme_destruct(void *ctx)
1687 {
1688 	struct nvme_bdev *nvme_disk = ctx;
1689 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1690 
1691 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1692 
1693 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1694 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1695 
1696 		nvme_ns->bdev = NULL;
1697 
1698 		assert(nvme_ns->id > 0);
1699 
1700 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1701 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1702 
1703 			nvme_ctrlr_release(nvme_ns->ctrlr);
1704 			nvme_ns_free(nvme_ns);
1705 		} else {
1706 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1707 		}
1708 	}
1709 
1710 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1711 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1712 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1713 
1714 	spdk_io_device_unregister(nvme_disk, nvme_bdev_free);
1715 
1716 	return 0;
1717 }
1718 
1719 static int
1720 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1721 {
1722 	struct nvme_ctrlr *nvme_ctrlr;
1723 	struct spdk_nvme_io_qpair_opts opts;
1724 	struct spdk_nvme_qpair *qpair;
1725 	int rc;
1726 
1727 	nvme_ctrlr = nvme_qpair->ctrlr;
1728 
1729 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1730 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1731 	opts.create_only = true;
1732 	opts.async_mode = true;
1733 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1734 	g_opts.io_queue_requests = opts.io_queue_requests;
1735 
1736 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1737 	if (qpair == NULL) {
1738 		return -1;
1739 	}
1740 
1741 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1742 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1743 
1744 	assert(nvme_qpair->group != NULL);
1745 
1746 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1747 	if (rc != 0) {
1748 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1749 		goto err;
1750 	}
1751 
1752 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1753 	if (rc != 0) {
1754 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1755 		goto err;
1756 	}
1757 
1758 	nvme_qpair->qpair = qpair;
1759 
1760 	if (!g_opts.disable_auto_failback) {
1761 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1762 	}
1763 
1764 	return 0;
1765 
1766 err:
1767 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1768 
1769 	return rc;
1770 }
1771 
1772 static void
1773 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
1774 {
1775 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1776 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1777 	enum spdk_bdev_io_status status = SPDK_BDEV_IO_STATUS_SUCCESS;
1778 	struct spdk_bdev_io *bdev_io;
1779 
1780 	if (spdk_io_channel_iter_get_ctx(i) != NULL) {
1781 		status = SPDK_BDEV_IO_STATUS_FAILED;
1782 	}
1783 
1784 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1785 		bdev_io = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1786 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bdev_io, module_link);
1787 		__bdev_nvme_io_complete(bdev_io, status, NULL);
1788 	}
1789 
1790 	spdk_for_each_channel_continue(i, 0);
1791 }
1792 
1793 /* This function marks the current trid as failed by storing the current ticks
1794  * and then sets the next trid to the active trid within a controller if exists.
1795  *
1796  * The purpose of the boolean return value is to request the caller to disconnect
1797  * the current trid now to try connecting the next trid.
1798  */
1799 static bool
1800 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove, bool start)
1801 {
1802 	struct nvme_path_id *path_id, *next_path;
1803 	int rc __attribute__((unused));
1804 
1805 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1806 	assert(path_id);
1807 	assert(path_id == nvme_ctrlr->active_path_id);
1808 	next_path = TAILQ_NEXT(path_id, link);
1809 
1810 	/* Update the last failed time. It means the trid is failed if its last
1811 	 * failed time is non-zero.
1812 	 */
1813 	path_id->last_failed_tsc = spdk_get_ticks();
1814 
1815 	if (next_path == NULL) {
1816 		/* There is no alternate trid within a controller. */
1817 		return false;
1818 	}
1819 
1820 	if (!start && nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1821 		/* Connect is not retried in a controller reset sequence. Connecting
1822 		 * the next trid will be done by the next bdev_nvme_failover_ctrlr() call.
1823 		 */
1824 		return false;
1825 	}
1826 
1827 	assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1828 
1829 	SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1830 		       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1831 
1832 	spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1833 	nvme_ctrlr->active_path_id = next_path;
1834 	rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1835 	assert(rc == 0);
1836 	TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1837 	if (!remove) {
1838 		/** Shuffle the old trid to the end of the list and use the new one.
1839 		 * Allows for round robin through multiple connections.
1840 		 */
1841 		TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
1842 	} else {
1843 		free(path_id);
1844 	}
1845 
1846 	if (start || next_path->last_failed_tsc == 0) {
1847 		/* bdev_nvme_failover_ctrlr() is just called or the next trid is not failed
1848 		 * or used yet. Try the next trid now.
1849 		 */
1850 		return true;
1851 	}
1852 
1853 	if (spdk_get_ticks() > next_path->last_failed_tsc + spdk_get_ticks_hz() *
1854 	    nvme_ctrlr->opts.reconnect_delay_sec) {
1855 		/* Enough backoff passed since the next trid failed. Try the next trid now. */
1856 		return true;
1857 	}
1858 
1859 	/* The next trid will be tried after reconnect_delay_sec seconds. */
1860 	return false;
1861 }
1862 
1863 static bool
1864 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
1865 {
1866 	int32_t elapsed;
1867 
1868 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
1869 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
1870 		return false;
1871 	}
1872 
1873 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1874 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
1875 		return true;
1876 	} else {
1877 		return false;
1878 	}
1879 }
1880 
1881 static bool
1882 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
1883 {
1884 	uint32_t elapsed;
1885 
1886 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
1887 		return false;
1888 	}
1889 
1890 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1891 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
1892 		return true;
1893 	} else {
1894 		return false;
1895 	}
1896 }
1897 
1898 static void bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
1899 
1900 static void
1901 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
1902 {
1903 	int rc;
1904 
1905 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
1906 	if (rc != 0) {
1907 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
1908 		 * fail the reset sequence immediately.
1909 		 */
1910 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
1911 		return;
1912 	}
1913 
1914 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
1915 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
1916 	 */
1917 	assert(nvme_ctrlr->disconnected_cb == NULL);
1918 	nvme_ctrlr->disconnected_cb = cb_fn;
1919 
1920 	/* During disconnection, reduce the period to poll adminq more often. */
1921 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
1922 }
1923 
1924 enum bdev_nvme_op_after_reset {
1925 	OP_NONE,
1926 	OP_COMPLETE_PENDING_DESTRUCT,
1927 	OP_DESTRUCT,
1928 	OP_DELAYED_RECONNECT,
1929 	OP_FAILOVER,
1930 };
1931 
1932 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
1933 
1934 static _bdev_nvme_op_after_reset
1935 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
1936 {
1937 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1938 		/* Complete pending destruct after reset completes. */
1939 		return OP_COMPLETE_PENDING_DESTRUCT;
1940 	} else if (nvme_ctrlr->pending_failover) {
1941 		nvme_ctrlr->pending_failover = false;
1942 		nvme_ctrlr->reset_start_tsc = 0;
1943 		return OP_FAILOVER;
1944 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1945 		nvme_ctrlr->reset_start_tsc = 0;
1946 		return OP_NONE;
1947 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1948 		return OP_DESTRUCT;
1949 	} else {
1950 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
1951 			nvme_ctrlr->fast_io_fail_timedout = true;
1952 		}
1953 		return OP_DELAYED_RECONNECT;
1954 	}
1955 }
1956 
1957 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
1958 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
1959 
1960 static int
1961 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
1962 {
1963 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1964 
1965 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
1966 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1967 
1968 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
1969 
1970 	if (!nvme_ctrlr->reconnect_is_delayed) {
1971 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1972 		return SPDK_POLLER_BUSY;
1973 	}
1974 
1975 	nvme_ctrlr->reconnect_is_delayed = false;
1976 
1977 	if (nvme_ctrlr->destruct) {
1978 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1979 		return SPDK_POLLER_BUSY;
1980 	}
1981 
1982 	assert(nvme_ctrlr->resetting == false);
1983 	nvme_ctrlr->resetting = true;
1984 
1985 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1986 
1987 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
1988 
1989 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
1990 	return SPDK_POLLER_BUSY;
1991 }
1992 
1993 static void
1994 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
1995 {
1996 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
1997 
1998 	assert(nvme_ctrlr->reconnect_is_delayed == false);
1999 	nvme_ctrlr->reconnect_is_delayed = true;
2000 
2001 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
2002 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
2003 					    nvme_ctrlr,
2004 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
2005 }
2006 
2007 static void remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr);
2008 
2009 static void
2010 _bdev_nvme_reset_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2011 {
2012 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2013 	bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
2014 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2015 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2016 	enum bdev_nvme_op_after_reset op_after_reset;
2017 
2018 	assert(nvme_ctrlr->thread == spdk_get_thread());
2019 
2020 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2021 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2022 
2023 	if (!success) {
2024 		SPDK_ERRLOG("Resetting controller failed.\n");
2025 	} else {
2026 		SPDK_NOTICELOG("Resetting controller successful.\n");
2027 	}
2028 
2029 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2030 	nvme_ctrlr->resetting = false;
2031 	nvme_ctrlr->dont_retry = false;
2032 	nvme_ctrlr->in_failover = false;
2033 
2034 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
2035 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2036 
2037 	if (ctrlr_op_cb_fn) {
2038 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, success ? 0 : -1);
2039 	}
2040 
2041 	switch (op_after_reset) {
2042 	case OP_COMPLETE_PENDING_DESTRUCT:
2043 		nvme_ctrlr_unregister(nvme_ctrlr);
2044 		break;
2045 	case OP_DESTRUCT:
2046 		bdev_nvme_delete_ctrlr(nvme_ctrlr, false);
2047 		remove_discovery_entry(nvme_ctrlr);
2048 		break;
2049 	case OP_DELAYED_RECONNECT:
2050 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
2051 		break;
2052 	case OP_FAILOVER:
2053 		bdev_nvme_failover_ctrlr(nvme_ctrlr);
2054 		break;
2055 	default:
2056 		break;
2057 	}
2058 }
2059 
2060 static void
2061 bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
2062 {
2063 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2064 	if (!success) {
2065 		/* Connecting the active trid failed. Set the next alternate trid to the
2066 		 * active trid if it exists.
2067 		 */
2068 		if (bdev_nvme_failover_trid(nvme_ctrlr, false, false)) {
2069 			/* The next alternate trid exists and is ready to try. Try it now. */
2070 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
2071 
2072 			nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2073 			return;
2074 		}
2075 
2076 		/* We came here if there is no alternate trid or if the next trid exists but
2077 		 * is not ready to try. We will try the active trid after reconnect_delay_sec
2078 		 * seconds if it is non-zero or at the next reset call otherwise.
2079 		 */
2080 	} else {
2081 		/* Connecting the active trid succeeded. Clear the last failed time because it
2082 		 * means the trid is failed if its last failed time is non-zero.
2083 		 */
2084 		nvme_ctrlr->active_path_id->last_failed_tsc = 0;
2085 	}
2086 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2087 
2088 	/* Make sure we clear any pending resets before returning. */
2089 	spdk_for_each_channel(nvme_ctrlr,
2090 			      bdev_nvme_complete_pending_resets,
2091 			      success ? NULL : (void *)0x1,
2092 			      _bdev_nvme_reset_ctrlr_complete);
2093 }
2094 
2095 static void
2096 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
2097 {
2098 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2099 
2100 	bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2101 }
2102 
2103 static void
2104 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
2105 {
2106 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
2107 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
2108 	struct nvme_qpair *nvme_qpair;
2109 
2110 	nvme_qpair = ctrlr_ch->qpair;
2111 	assert(nvme_qpair != NULL);
2112 
2113 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2114 
2115 	if (nvme_qpair->qpair != NULL) {
2116 		if (nvme_qpair->ctrlr->dont_retry) {
2117 			spdk_nvme_qpair_set_abort_dnr(nvme_qpair->qpair, true);
2118 		}
2119 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2120 
2121 		/* The current full reset sequence will move to the next
2122 		 * ctrlr_channel after the qpair is actually disconnected.
2123 		 */
2124 		assert(ctrlr_ch->reset_iter == NULL);
2125 		ctrlr_ch->reset_iter = i;
2126 	} else {
2127 		spdk_for_each_channel_continue(i, 0);
2128 	}
2129 }
2130 
2131 static void
2132 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
2133 {
2134 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2135 
2136 	if (status == 0) {
2137 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, true);
2138 	} else {
2139 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
2140 		spdk_for_each_channel(nvme_ctrlr,
2141 				      bdev_nvme_reset_destroy_qpair,
2142 				      NULL,
2143 				      bdev_nvme_reset_create_qpairs_failed);
2144 	}
2145 }
2146 
2147 static int
2148 bdev_nvme_reset_check_qpair_connected(void *ctx)
2149 {
2150 	struct nvme_ctrlr_channel *ctrlr_ch = ctx;
2151 
2152 	if (ctrlr_ch->reset_iter == NULL) {
2153 		/* qpair was already failed to connect and the reset sequence is being aborted. */
2154 		assert(ctrlr_ch->connect_poller == NULL);
2155 		assert(ctrlr_ch->qpair->qpair == NULL);
2156 		return SPDK_POLLER_BUSY;
2157 	}
2158 
2159 	assert(ctrlr_ch->qpair->qpair != NULL);
2160 
2161 	if (!spdk_nvme_qpair_is_connected(ctrlr_ch->qpair->qpair)) {
2162 		return SPDK_POLLER_BUSY;
2163 	}
2164 
2165 	spdk_poller_unregister(&ctrlr_ch->connect_poller);
2166 
2167 	/* qpair was completed to connect. Move to the next ctrlr_channel */
2168 	spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2169 	ctrlr_ch->reset_iter = NULL;
2170 
2171 	if (!g_opts.disable_auto_failback) {
2172 		_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
2173 	}
2174 
2175 	return SPDK_POLLER_BUSY;
2176 }
2177 
2178 static void
2179 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
2180 {
2181 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2182 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
2183 	int rc;
2184 
2185 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
2186 	if (rc == 0) {
2187 		ctrlr_ch->connect_poller = SPDK_POLLER_REGISTER(bdev_nvme_reset_check_qpair_connected,
2188 					   ctrlr_ch, 0);
2189 
2190 		/* The current full reset sequence will move to the next
2191 		 * ctrlr_channel after the qpair is actually connected.
2192 		 */
2193 		assert(ctrlr_ch->reset_iter == NULL);
2194 		ctrlr_ch->reset_iter = i;
2195 	} else {
2196 		spdk_for_each_channel_continue(i, rc);
2197 	}
2198 }
2199 
2200 static int
2201 bdev_nvme_reconnect_ctrlr_poll(void *arg)
2202 {
2203 	struct nvme_ctrlr *nvme_ctrlr = arg;
2204 	int rc = -ETIMEDOUT;
2205 
2206 	if (!bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2207 		rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
2208 		if (rc == -EAGAIN) {
2209 			return SPDK_POLLER_BUSY;
2210 		}
2211 	}
2212 
2213 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
2214 	if (rc == 0) {
2215 		/* Recreate all of the I/O queue pairs */
2216 		spdk_for_each_channel(nvme_ctrlr,
2217 				      bdev_nvme_reset_create_qpair,
2218 				      NULL,
2219 				      bdev_nvme_reset_create_qpairs_done);
2220 	} else {
2221 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2222 	}
2223 	return SPDK_POLLER_BUSY;
2224 }
2225 
2226 static void
2227 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2228 {
2229 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
2230 
2231 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
2232 	assert(nvme_ctrlr->reset_detach_poller == NULL);
2233 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
2234 					  nvme_ctrlr, 0);
2235 }
2236 
2237 static void
2238 bdev_nvme_reset_destroy_qpair_done(struct spdk_io_channel_iter *i, int status)
2239 {
2240 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2241 
2242 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
2243 	assert(status == 0);
2244 
2245 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2246 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2247 	} else {
2248 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2249 	}
2250 }
2251 
2252 static void
2253 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2254 {
2255 	spdk_for_each_channel(nvme_ctrlr,
2256 			      bdev_nvme_reset_destroy_qpair,
2257 			      NULL,
2258 			      bdev_nvme_reset_destroy_qpair_done);
2259 }
2260 
2261 static void
2262 bdev_nvme_reconnect_ctrlr_now(void *ctx)
2263 {
2264 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2265 
2266 	assert(nvme_ctrlr->resetting == true);
2267 	assert(nvme_ctrlr->thread == spdk_get_thread());
2268 
2269 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2270 
2271 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2272 
2273 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2274 }
2275 
2276 static void
2277 _bdev_nvme_reset_ctrlr(void *ctx)
2278 {
2279 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2280 
2281 	assert(nvme_ctrlr->resetting == true);
2282 	assert(nvme_ctrlr->thread == spdk_get_thread());
2283 
2284 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2285 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
2286 	} else {
2287 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
2288 	}
2289 }
2290 
2291 static int
2292 bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2293 {
2294 	spdk_msg_fn msg_fn;
2295 
2296 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2297 	if (nvme_ctrlr->destruct) {
2298 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2299 		return -ENXIO;
2300 	}
2301 
2302 	if (nvme_ctrlr->resetting) {
2303 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2304 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
2305 		return -EBUSY;
2306 	}
2307 
2308 	if (nvme_ctrlr->disabled) {
2309 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2310 		SPDK_NOTICELOG("Unable to perform reset. Controller is disabled.\n");
2311 		return -EALREADY;
2312 	}
2313 
2314 	nvme_ctrlr->resetting = true;
2315 	nvme_ctrlr->dont_retry = true;
2316 
2317 	if (nvme_ctrlr->reconnect_is_delayed) {
2318 		SPDK_DEBUGLOG(bdev_nvme, "Reconnect is already scheduled.\n");
2319 		msg_fn = bdev_nvme_reconnect_ctrlr_now;
2320 		nvme_ctrlr->reconnect_is_delayed = false;
2321 	} else {
2322 		msg_fn = _bdev_nvme_reset_ctrlr;
2323 		assert(nvme_ctrlr->reset_start_tsc == 0);
2324 	}
2325 
2326 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2327 
2328 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2329 
2330 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2331 	return 0;
2332 }
2333 
2334 static int
2335 bdev_nvme_enable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2336 {
2337 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2338 	if (nvme_ctrlr->destruct) {
2339 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2340 		return -ENXIO;
2341 	}
2342 
2343 	if (nvme_ctrlr->resetting) {
2344 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2345 		return -EBUSY;
2346 	}
2347 
2348 	if (!nvme_ctrlr->disabled) {
2349 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2350 		return -EALREADY;
2351 	}
2352 
2353 	nvme_ctrlr->disabled = false;
2354 	nvme_ctrlr->resetting = true;
2355 
2356 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2357 
2358 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2359 
2360 	spdk_thread_send_msg(nvme_ctrlr->thread, bdev_nvme_reconnect_ctrlr_now, nvme_ctrlr);
2361 	return 0;
2362 }
2363 
2364 static void
2365 _bdev_nvme_disable_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2366 {
2367 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2368 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2369 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2370 	enum bdev_nvme_op_after_reset op_after_disable;
2371 
2372 	assert(nvme_ctrlr->thread == spdk_get_thread());
2373 
2374 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2375 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2376 
2377 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2378 
2379 	nvme_ctrlr->resetting = false;
2380 	nvme_ctrlr->dont_retry = false;
2381 
2382 	op_after_disable = bdev_nvme_check_op_after_reset(nvme_ctrlr, true);
2383 
2384 	nvme_ctrlr->disabled = true;
2385 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2386 
2387 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2388 
2389 	if (ctrlr_op_cb_fn) {
2390 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, 0);
2391 	}
2392 
2393 	switch (op_after_disable) {
2394 	case OP_COMPLETE_PENDING_DESTRUCT:
2395 		nvme_ctrlr_unregister(nvme_ctrlr);
2396 		break;
2397 	default:
2398 		break;
2399 	}
2400 
2401 }
2402 
2403 static void
2404 bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr)
2405 {
2406 	/* Make sure we clear any pending resets before returning. */
2407 	spdk_for_each_channel(nvme_ctrlr,
2408 			      bdev_nvme_complete_pending_resets,
2409 			      NULL,
2410 			      _bdev_nvme_disable_ctrlr_complete);
2411 }
2412 
2413 static void
2414 bdev_nvme_disable_destroy_qpairs_done(struct spdk_io_channel_iter *i, int status)
2415 {
2416 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2417 
2418 	assert(status == 0);
2419 
2420 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2421 		bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2422 	} else {
2423 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_ctrlr_complete);
2424 	}
2425 }
2426 
2427 static void
2428 bdev_nvme_disable_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2429 {
2430 	spdk_for_each_channel(nvme_ctrlr,
2431 			      bdev_nvme_reset_destroy_qpair,
2432 			      NULL,
2433 			      bdev_nvme_disable_destroy_qpairs_done);
2434 }
2435 
2436 static void
2437 _bdev_nvme_cancel_reconnect_and_disable_ctrlr(void *ctx)
2438 {
2439 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2440 
2441 	assert(nvme_ctrlr->resetting == true);
2442 	assert(nvme_ctrlr->thread == spdk_get_thread());
2443 
2444 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2445 
2446 	bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2447 }
2448 
2449 static void
2450 _bdev_nvme_disconnect_and_disable_ctrlr(void *ctx)
2451 {
2452 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2453 
2454 	assert(nvme_ctrlr->resetting == true);
2455 	assert(nvme_ctrlr->thread == spdk_get_thread());
2456 
2457 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2458 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_destroy_qpairs);
2459 	} else {
2460 		bdev_nvme_disable_destroy_qpairs(nvme_ctrlr);
2461 	}
2462 }
2463 
2464 static int
2465 bdev_nvme_disable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2466 {
2467 	spdk_msg_fn msg_fn;
2468 
2469 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2470 	if (nvme_ctrlr->destruct) {
2471 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2472 		return -ENXIO;
2473 	}
2474 
2475 	if (nvme_ctrlr->resetting) {
2476 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2477 		return -EBUSY;
2478 	}
2479 
2480 	if (nvme_ctrlr->disabled) {
2481 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2482 		return -EALREADY;
2483 	}
2484 
2485 	nvme_ctrlr->resetting = true;
2486 	nvme_ctrlr->dont_retry = true;
2487 
2488 	if (nvme_ctrlr->reconnect_is_delayed) {
2489 		msg_fn = _bdev_nvme_cancel_reconnect_and_disable_ctrlr;
2490 		nvme_ctrlr->reconnect_is_delayed = false;
2491 	} else {
2492 		msg_fn = _bdev_nvme_disconnect_and_disable_ctrlr;
2493 	}
2494 
2495 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2496 
2497 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2498 
2499 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2500 	return 0;
2501 }
2502 
2503 static int
2504 nvme_ctrlr_op(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2505 	      bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2506 {
2507 	int rc;
2508 
2509 	switch (op) {
2510 	case NVME_CTRLR_OP_RESET:
2511 		rc = bdev_nvme_reset_ctrlr(nvme_ctrlr);
2512 		break;
2513 	case NVME_CTRLR_OP_ENABLE:
2514 		rc = bdev_nvme_enable_ctrlr(nvme_ctrlr);
2515 		break;
2516 	case NVME_CTRLR_OP_DISABLE:
2517 		rc = bdev_nvme_disable_ctrlr(nvme_ctrlr);
2518 		break;
2519 	default:
2520 		rc = -EINVAL;
2521 		break;
2522 	}
2523 
2524 	if (rc == 0) {
2525 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
2526 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
2527 		nvme_ctrlr->ctrlr_op_cb_fn = cb_fn;
2528 		nvme_ctrlr->ctrlr_op_cb_arg = cb_arg;
2529 	}
2530 	return rc;
2531 }
2532 
2533 struct nvme_ctrlr_op_rpc_ctx {
2534 	struct nvme_ctrlr *nvme_ctrlr;
2535 	struct spdk_thread *orig_thread;
2536 	enum nvme_ctrlr_op op;
2537 	int rc;
2538 	bdev_nvme_ctrlr_op_cb cb_fn;
2539 	void *cb_arg;
2540 };
2541 
2542 static void
2543 _nvme_ctrlr_op_rpc_complete(void *_ctx)
2544 {
2545 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2546 
2547 	assert(ctx != NULL);
2548 	assert(ctx->cb_fn != NULL);
2549 
2550 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2551 
2552 	free(ctx);
2553 }
2554 
2555 static void
2556 nvme_ctrlr_op_rpc_complete(void *cb_arg, int rc)
2557 {
2558 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2559 
2560 	ctx->rc = rc;
2561 
2562 	spdk_thread_send_msg(ctx->orig_thread, _nvme_ctrlr_op_rpc_complete, ctx);
2563 }
2564 
2565 void
2566 nvme_ctrlr_op_rpc(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2567 		  bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2568 {
2569 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2570 	int rc;
2571 
2572 	assert(cb_fn != NULL);
2573 
2574 	ctx = calloc(1, sizeof(*ctx));
2575 	if (ctx == NULL) {
2576 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2577 		cb_fn(cb_arg, -ENOMEM);
2578 		return;
2579 	}
2580 
2581 	ctx->orig_thread = spdk_get_thread();
2582 	ctx->cb_fn = cb_fn;
2583 	ctx->cb_arg = cb_arg;
2584 
2585 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_ctrlr_op_rpc_complete, ctx);
2586 	if (rc == 0) {
2587 		return;
2588 	} else if (rc == -EALREADY) {
2589 		rc = 0;
2590 	}
2591 
2592 	nvme_ctrlr_op_rpc_complete(ctx, rc);
2593 }
2594 
2595 static void nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc);
2596 
2597 static void
2598 _nvme_bdev_ctrlr_op_rpc_continue(void *_ctx)
2599 {
2600 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2601 	struct nvme_ctrlr *prev_nvme_ctrlr, *next_nvme_ctrlr;
2602 	int rc;
2603 
2604 	prev_nvme_ctrlr = ctx->nvme_ctrlr;
2605 	ctx->nvme_ctrlr = NULL;
2606 
2607 	if (ctx->rc != 0) {
2608 		goto complete;
2609 	}
2610 
2611 	next_nvme_ctrlr = TAILQ_NEXT(prev_nvme_ctrlr, tailq);
2612 	if (next_nvme_ctrlr == NULL) {
2613 		goto complete;
2614 	}
2615 
2616 	rc = nvme_ctrlr_op(next_nvme_ctrlr, ctx->op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2617 	if (rc == 0) {
2618 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2619 		return;
2620 	} else if (rc == -EALREADY) {
2621 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2622 		rc = 0;
2623 	}
2624 
2625 	ctx->rc = rc;
2626 
2627 complete:
2628 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2629 	free(ctx);
2630 }
2631 
2632 static void
2633 nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc)
2634 {
2635 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2636 
2637 	ctx->rc = rc;
2638 
2639 	spdk_thread_send_msg(ctx->orig_thread, _nvme_bdev_ctrlr_op_rpc_continue, ctx);
2640 }
2641 
2642 void
2643 nvme_bdev_ctrlr_op_rpc(struct nvme_bdev_ctrlr *nbdev_ctrlr, enum nvme_ctrlr_op op,
2644 		       bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2645 {
2646 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2647 	struct nvme_ctrlr *nvme_ctrlr;
2648 	int rc;
2649 
2650 	assert(cb_fn != NULL);
2651 
2652 	ctx = calloc(1, sizeof(*ctx));
2653 	if (ctx == NULL) {
2654 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2655 		cb_fn(cb_arg, -ENOMEM);
2656 		return;
2657 	}
2658 
2659 	ctx->orig_thread = spdk_get_thread();
2660 	ctx->op = op;
2661 	ctx->cb_fn = cb_fn;
2662 	ctx->cb_arg = cb_arg;
2663 
2664 	nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
2665 	assert(nvme_ctrlr != NULL);
2666 
2667 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2668 	if (rc == 0) {
2669 		ctx->nvme_ctrlr = nvme_ctrlr;
2670 		return;
2671 	} else if (rc == -EALREADY) {
2672 		ctx->nvme_ctrlr = nvme_ctrlr;
2673 		rc = 0;
2674 	}
2675 
2676 	nvme_bdev_ctrlr_op_rpc_continue(ctx, rc);
2677 }
2678 
2679 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
2680 
2681 static void
2682 _bdev_nvme_reset_io_complete(struct spdk_io_channel_iter *i, int status)
2683 {
2684 	struct nvme_bdev_io *bio = spdk_io_channel_iter_get_ctx(i);
2685 	enum spdk_bdev_io_status io_status;
2686 
2687 	if (bio->cpl.cdw0 == 0) {
2688 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2689 	} else {
2690 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
2691 	}
2692 
2693 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
2694 }
2695 
2696 static void
2697 bdev_nvme_abort_bdev_channel(struct spdk_io_channel_iter *i)
2698 {
2699 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2700 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
2701 
2702 	bdev_nvme_abort_retry_ios(nbdev_ch);
2703 
2704 	spdk_for_each_channel_continue(i, 0);
2705 }
2706 
2707 static void
2708 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
2709 {
2710 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2711 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
2712 
2713 	/* Abort all queued I/Os for retry. */
2714 	spdk_for_each_channel(nbdev,
2715 			      bdev_nvme_abort_bdev_channel,
2716 			      bio,
2717 			      _bdev_nvme_reset_io_complete);
2718 }
2719 
2720 static void
2721 _bdev_nvme_reset_io_continue(void *ctx)
2722 {
2723 	struct nvme_bdev_io *bio = ctx;
2724 	struct nvme_io_path *prev_io_path, *next_io_path;
2725 	int rc;
2726 
2727 	prev_io_path = bio->io_path;
2728 	bio->io_path = NULL;
2729 
2730 	if (bio->cpl.cdw0 != 0) {
2731 		goto complete;
2732 	}
2733 
2734 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
2735 	if (next_io_path == NULL) {
2736 		goto complete;
2737 	}
2738 
2739 	rc = _bdev_nvme_reset_io(next_io_path, bio);
2740 	if (rc == 0) {
2741 		return;
2742 	}
2743 
2744 	bio->cpl.cdw0 = 1;
2745 
2746 complete:
2747 	bdev_nvme_reset_io_complete(bio);
2748 }
2749 
2750 static void
2751 bdev_nvme_reset_io_continue(void *cb_arg, int rc)
2752 {
2753 	struct nvme_bdev_io *bio = cb_arg;
2754 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2755 
2756 	bio->cpl.cdw0 = (rc == 0) ? 0 : 1;
2757 
2758 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_nvme_reset_io_continue, bio);
2759 }
2760 
2761 static int
2762 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
2763 {
2764 	struct nvme_ctrlr_channel *ctrlr_ch;
2765 	struct spdk_bdev_io *bdev_io;
2766 	int rc;
2767 
2768 	rc = nvme_ctrlr_op(io_path->qpair->ctrlr, NVME_CTRLR_OP_RESET,
2769 			   bdev_nvme_reset_io_continue, bio);
2770 	if (rc == 0) {
2771 		assert(bio->io_path == NULL);
2772 		bio->io_path = io_path;
2773 	} else if (rc == -EBUSY) {
2774 		ctrlr_ch = io_path->qpair->ctrlr_ch;
2775 		assert(ctrlr_ch != NULL);
2776 		/*
2777 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
2778 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
2779 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
2780 		 */
2781 		bdev_io = spdk_bdev_io_from_ctx(bio);
2782 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bdev_io, module_link);
2783 		rc = 0;
2784 	}
2785 
2786 	return rc;
2787 }
2788 
2789 static void
2790 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
2791 {
2792 	struct nvme_io_path *io_path;
2793 	int rc;
2794 
2795 	bio->cpl.cdw0 = 0;
2796 
2797 	/* Reset all nvme_ctrlrs of a bdev controller sequentially. */
2798 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
2799 	assert(io_path != NULL);
2800 
2801 	rc = _bdev_nvme_reset_io(io_path, bio);
2802 	if (rc != 0) {
2803 		/* If the current nvme_ctrlr is disabled, skip it and move to the next nvme_ctrlr. */
2804 		bdev_nvme_reset_io_continue(bio, rc == -EALREADY);
2805 	}
2806 }
2807 
2808 static int
2809 bdev_nvme_failover_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove)
2810 {
2811 	if (nvme_ctrlr->destruct) {
2812 		/* Don't bother resetting if the controller is in the process of being destructed. */
2813 		return -ENXIO;
2814 	}
2815 
2816 	if (nvme_ctrlr->resetting) {
2817 		if (!nvme_ctrlr->in_failover) {
2818 			SPDK_NOTICELOG("Reset is already in progress. Defer failover until reset completes.\n");
2819 
2820 			/* Defer failover until reset completes. */
2821 			nvme_ctrlr->pending_failover = true;
2822 			return -EINPROGRESS;
2823 		} else {
2824 			SPDK_NOTICELOG("Unable to perform failover, already in progress.\n");
2825 			return -EBUSY;
2826 		}
2827 	}
2828 
2829 	bdev_nvme_failover_trid(nvme_ctrlr, remove, true);
2830 
2831 	if (nvme_ctrlr->reconnect_is_delayed) {
2832 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
2833 
2834 		/* We rely on the next reconnect for the failover. */
2835 		return -EALREADY;
2836 	}
2837 
2838 	if (nvme_ctrlr->disabled) {
2839 		SPDK_NOTICELOG("Controller is disabled.\n");
2840 
2841 		/* We rely on the enablement for the failover. */
2842 		return -EALREADY;
2843 	}
2844 
2845 	nvme_ctrlr->resetting = true;
2846 	nvme_ctrlr->in_failover = true;
2847 
2848 	assert(nvme_ctrlr->reset_start_tsc == 0);
2849 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2850 
2851 	return 0;
2852 }
2853 
2854 static int
2855 bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2856 {
2857 	int rc;
2858 
2859 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2860 	rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, false);
2861 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2862 
2863 	if (rc == 0) {
2864 		spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset_ctrlr, nvme_ctrlr);
2865 	} else if (rc == -EALREADY) {
2866 		rc = 0;
2867 	}
2868 
2869 	return rc;
2870 }
2871 
2872 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2873 			   uint64_t num_blocks);
2874 
2875 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2876 				  uint64_t num_blocks);
2877 
2878 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
2879 			  uint64_t src_offset_blocks,
2880 			  uint64_t num_blocks);
2881 
2882 static void
2883 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
2884 		     bool success)
2885 {
2886 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2887 	struct spdk_bdev *bdev = bdev_io->bdev;
2888 	int ret;
2889 
2890 	if (!success) {
2891 		ret = -EINVAL;
2892 		goto exit;
2893 	}
2894 
2895 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
2896 		ret = -ENXIO;
2897 		goto exit;
2898 	}
2899 
2900 	ret = bdev_nvme_readv(bio,
2901 			      bdev_io->u.bdev.iovs,
2902 			      bdev_io->u.bdev.iovcnt,
2903 			      bdev_io->u.bdev.md_buf,
2904 			      bdev_io->u.bdev.num_blocks,
2905 			      bdev_io->u.bdev.offset_blocks,
2906 			      bdev->dif_check_flags,
2907 			      bdev_io->u.bdev.memory_domain,
2908 			      bdev_io->u.bdev.memory_domain_ctx,
2909 			      bdev_io->u.bdev.accel_sequence);
2910 
2911 exit:
2912 	if (spdk_unlikely(ret != 0)) {
2913 		bdev_nvme_io_complete(bio, ret);
2914 	}
2915 }
2916 
2917 static inline void
2918 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
2919 {
2920 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2921 	struct spdk_bdev *bdev = bdev_io->bdev;
2922 	struct nvme_bdev_io *nbdev_io_to_abort;
2923 	int rc = 0;
2924 
2925 	switch (bdev_io->type) {
2926 	case SPDK_BDEV_IO_TYPE_READ:
2927 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
2928 			rc = bdev_nvme_readv(nbdev_io,
2929 					     bdev_io->u.bdev.iovs,
2930 					     bdev_io->u.bdev.iovcnt,
2931 					     bdev_io->u.bdev.md_buf,
2932 					     bdev_io->u.bdev.num_blocks,
2933 					     bdev_io->u.bdev.offset_blocks,
2934 					     bdev->dif_check_flags,
2935 					     bdev_io->u.bdev.memory_domain,
2936 					     bdev_io->u.bdev.memory_domain_ctx,
2937 					     bdev_io->u.bdev.accel_sequence);
2938 		} else {
2939 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
2940 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
2941 			rc = 0;
2942 		}
2943 		break;
2944 	case SPDK_BDEV_IO_TYPE_WRITE:
2945 		rc = bdev_nvme_writev(nbdev_io,
2946 				      bdev_io->u.bdev.iovs,
2947 				      bdev_io->u.bdev.iovcnt,
2948 				      bdev_io->u.bdev.md_buf,
2949 				      bdev_io->u.bdev.num_blocks,
2950 				      bdev_io->u.bdev.offset_blocks,
2951 				      bdev->dif_check_flags,
2952 				      bdev_io->u.bdev.memory_domain,
2953 				      bdev_io->u.bdev.memory_domain_ctx,
2954 				      bdev_io->u.bdev.accel_sequence);
2955 		break;
2956 	case SPDK_BDEV_IO_TYPE_COMPARE:
2957 		rc = bdev_nvme_comparev(nbdev_io,
2958 					bdev_io->u.bdev.iovs,
2959 					bdev_io->u.bdev.iovcnt,
2960 					bdev_io->u.bdev.md_buf,
2961 					bdev_io->u.bdev.num_blocks,
2962 					bdev_io->u.bdev.offset_blocks,
2963 					bdev->dif_check_flags);
2964 		break;
2965 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
2966 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
2967 						   bdev_io->u.bdev.iovs,
2968 						   bdev_io->u.bdev.iovcnt,
2969 						   bdev_io->u.bdev.fused_iovs,
2970 						   bdev_io->u.bdev.fused_iovcnt,
2971 						   bdev_io->u.bdev.md_buf,
2972 						   bdev_io->u.bdev.num_blocks,
2973 						   bdev_io->u.bdev.offset_blocks,
2974 						   bdev->dif_check_flags);
2975 		break;
2976 	case SPDK_BDEV_IO_TYPE_UNMAP:
2977 		rc = bdev_nvme_unmap(nbdev_io,
2978 				     bdev_io->u.bdev.offset_blocks,
2979 				     bdev_io->u.bdev.num_blocks);
2980 		break;
2981 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
2982 		rc =  bdev_nvme_write_zeroes(nbdev_io,
2983 					     bdev_io->u.bdev.offset_blocks,
2984 					     bdev_io->u.bdev.num_blocks);
2985 		break;
2986 	case SPDK_BDEV_IO_TYPE_RESET:
2987 		nbdev_io->io_path = NULL;
2988 		bdev_nvme_reset_io(nbdev_ch, nbdev_io);
2989 		return;
2990 
2991 	case SPDK_BDEV_IO_TYPE_FLUSH:
2992 		bdev_nvme_io_complete(nbdev_io, 0);
2993 		return;
2994 
2995 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
2996 		rc = bdev_nvme_zone_appendv(nbdev_io,
2997 					    bdev_io->u.bdev.iovs,
2998 					    bdev_io->u.bdev.iovcnt,
2999 					    bdev_io->u.bdev.md_buf,
3000 					    bdev_io->u.bdev.num_blocks,
3001 					    bdev_io->u.bdev.offset_blocks,
3002 					    bdev->dif_check_flags);
3003 		break;
3004 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3005 		rc = bdev_nvme_get_zone_info(nbdev_io,
3006 					     bdev_io->u.zone_mgmt.zone_id,
3007 					     bdev_io->u.zone_mgmt.num_zones,
3008 					     bdev_io->u.zone_mgmt.buf);
3009 		break;
3010 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3011 		rc = bdev_nvme_zone_management(nbdev_io,
3012 					       bdev_io->u.zone_mgmt.zone_id,
3013 					       bdev_io->u.zone_mgmt.zone_action);
3014 		break;
3015 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3016 		nbdev_io->io_path = NULL;
3017 		bdev_nvme_admin_passthru(nbdev_ch,
3018 					 nbdev_io,
3019 					 &bdev_io->u.nvme_passthru.cmd,
3020 					 bdev_io->u.nvme_passthru.buf,
3021 					 bdev_io->u.nvme_passthru.nbytes);
3022 		return;
3023 
3024 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3025 		rc = bdev_nvme_io_passthru(nbdev_io,
3026 					   &bdev_io->u.nvme_passthru.cmd,
3027 					   bdev_io->u.nvme_passthru.buf,
3028 					   bdev_io->u.nvme_passthru.nbytes);
3029 		break;
3030 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3031 		rc = bdev_nvme_io_passthru_md(nbdev_io,
3032 					      &bdev_io->u.nvme_passthru.cmd,
3033 					      bdev_io->u.nvme_passthru.buf,
3034 					      bdev_io->u.nvme_passthru.nbytes,
3035 					      bdev_io->u.nvme_passthru.md_buf,
3036 					      bdev_io->u.nvme_passthru.md_len);
3037 		break;
3038 	case SPDK_BDEV_IO_TYPE_NVME_IOV_MD:
3039 		rc = bdev_nvme_iov_passthru_md(nbdev_io,
3040 					       &bdev_io->u.nvme_passthru.cmd,
3041 					       bdev_io->u.nvme_passthru.iovs,
3042 					       bdev_io->u.nvme_passthru.iovcnt,
3043 					       bdev_io->u.nvme_passthru.nbytes,
3044 					       bdev_io->u.nvme_passthru.md_buf,
3045 					       bdev_io->u.nvme_passthru.md_len);
3046 		break;
3047 	case SPDK_BDEV_IO_TYPE_ABORT:
3048 		nbdev_io->io_path = NULL;
3049 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
3050 		bdev_nvme_abort(nbdev_ch,
3051 				nbdev_io,
3052 				nbdev_io_to_abort);
3053 		return;
3054 
3055 	case SPDK_BDEV_IO_TYPE_COPY:
3056 		rc = bdev_nvme_copy(nbdev_io,
3057 				    bdev_io->u.bdev.offset_blocks,
3058 				    bdev_io->u.bdev.copy.src_offset_blocks,
3059 				    bdev_io->u.bdev.num_blocks);
3060 		break;
3061 	default:
3062 		rc = -EINVAL;
3063 		break;
3064 	}
3065 
3066 	if (spdk_unlikely(rc != 0)) {
3067 		bdev_nvme_io_complete(nbdev_io, rc);
3068 	}
3069 }
3070 
3071 static void
3072 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
3073 {
3074 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3075 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3076 
3077 	if (spdk_likely(nbdev_io->submit_tsc == 0)) {
3078 		nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io);
3079 	} else {
3080 		/* There are cases where submit_tsc != 0, i.e. retry I/O.
3081 		 * We need to update submit_tsc here.
3082 		 */
3083 		nbdev_io->submit_tsc = spdk_get_ticks();
3084 	}
3085 
3086 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
3087 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
3088 	if (spdk_unlikely(!nbdev_io->io_path)) {
3089 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
3090 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
3091 			return;
3092 		}
3093 
3094 		/* Admin commands do not use the optimal I/O path.
3095 		 * Simply fall through even if it is not found.
3096 		 */
3097 	}
3098 
3099 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
3100 }
3101 
3102 static bool
3103 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
3104 {
3105 	struct nvme_bdev *nbdev = ctx;
3106 	struct nvme_ns *nvme_ns;
3107 	struct spdk_nvme_ns *ns;
3108 	struct spdk_nvme_ctrlr *ctrlr;
3109 	const struct spdk_nvme_ctrlr_data *cdata;
3110 
3111 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3112 	assert(nvme_ns != NULL);
3113 	ns = nvme_ns->ns;
3114 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3115 
3116 	switch (io_type) {
3117 	case SPDK_BDEV_IO_TYPE_READ:
3118 	case SPDK_BDEV_IO_TYPE_WRITE:
3119 	case SPDK_BDEV_IO_TYPE_RESET:
3120 	case SPDK_BDEV_IO_TYPE_FLUSH:
3121 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3122 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3123 	case SPDK_BDEV_IO_TYPE_ABORT:
3124 		return true;
3125 
3126 	case SPDK_BDEV_IO_TYPE_COMPARE:
3127 		return spdk_nvme_ns_supports_compare(ns);
3128 
3129 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3130 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
3131 
3132 	case SPDK_BDEV_IO_TYPE_UNMAP:
3133 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3134 		return cdata->oncs.dsm;
3135 
3136 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3137 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3138 		return cdata->oncs.write_zeroes;
3139 
3140 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3141 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
3142 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
3143 			return true;
3144 		}
3145 		return false;
3146 
3147 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3148 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3149 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
3150 
3151 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3152 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
3153 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
3154 
3155 	case SPDK_BDEV_IO_TYPE_COPY:
3156 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3157 		return cdata->oncs.copy;
3158 
3159 	default:
3160 		return false;
3161 	}
3162 }
3163 
3164 static int
3165 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
3166 {
3167 	struct nvme_qpair *nvme_qpair;
3168 	struct spdk_io_channel *pg_ch;
3169 	int rc;
3170 
3171 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
3172 	if (!nvme_qpair) {
3173 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
3174 		return -1;
3175 	}
3176 
3177 	TAILQ_INIT(&nvme_qpair->io_path_list);
3178 
3179 	nvme_qpair->ctrlr = nvme_ctrlr;
3180 	nvme_qpair->ctrlr_ch = ctrlr_ch;
3181 
3182 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
3183 	if (!pg_ch) {
3184 		free(nvme_qpair);
3185 		return -1;
3186 	}
3187 
3188 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
3189 
3190 #ifdef SPDK_CONFIG_VTUNE
3191 	nvme_qpair->group->collect_spin_stat = true;
3192 #else
3193 	nvme_qpair->group->collect_spin_stat = false;
3194 #endif
3195 
3196 	if (!nvme_ctrlr->disabled) {
3197 		/* If a nvme_ctrlr is disabled, don't try to create qpair for it. Qpair will
3198 		 * be created when it's enabled.
3199 		 */
3200 		rc = bdev_nvme_create_qpair(nvme_qpair);
3201 		if (rc != 0) {
3202 			/* nvme_ctrlr can't create IO qpair if connection is down.
3203 			 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
3204 			 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
3205 			 * submitted IO will be queued until IO qpair is successfully created.
3206 			 *
3207 			 * Hence, if both are satisfied, ignore the failure.
3208 			 */
3209 			if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
3210 				spdk_put_io_channel(pg_ch);
3211 				free(nvme_qpair);
3212 				return rc;
3213 			}
3214 		}
3215 	}
3216 
3217 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3218 
3219 	ctrlr_ch->qpair = nvme_qpair;
3220 
3221 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
3222 	nvme_qpair->ctrlr->ref++;
3223 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
3224 
3225 	return 0;
3226 }
3227 
3228 static int
3229 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3230 {
3231 	struct nvme_ctrlr *nvme_ctrlr = io_device;
3232 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3233 
3234 	TAILQ_INIT(&ctrlr_ch->pending_resets);
3235 
3236 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
3237 }
3238 
3239 static void
3240 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
3241 {
3242 	struct nvme_io_path *io_path, *next;
3243 
3244 	assert(nvme_qpair->group != NULL);
3245 
3246 	TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) {
3247 		TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
3248 		nvme_io_path_free(io_path);
3249 	}
3250 
3251 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3252 
3253 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
3254 
3255 	nvme_ctrlr_release(nvme_qpair->ctrlr);
3256 
3257 	free(nvme_qpair);
3258 }
3259 
3260 static void
3261 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3262 {
3263 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3264 	struct nvme_qpair *nvme_qpair;
3265 
3266 	nvme_qpair = ctrlr_ch->qpair;
3267 	assert(nvme_qpair != NULL);
3268 
3269 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
3270 
3271 	if (nvme_qpair->qpair != NULL) {
3272 		if (ctrlr_ch->reset_iter == NULL) {
3273 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
3274 		} else {
3275 			/* Skip current ctrlr_channel in a full reset sequence because
3276 			 * it is being deleted now. The qpair is already being disconnected.
3277 			 * We do not have to restart disconnecting it.
3278 			 */
3279 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
3280 		}
3281 
3282 		/* We cannot release a reference to the poll group now.
3283 		 * The qpair may be disconnected asynchronously later.
3284 		 * We need to poll it until it is actually disconnected.
3285 		 * Just detach the qpair from the deleting ctrlr_channel.
3286 		 */
3287 		nvme_qpair->ctrlr_ch = NULL;
3288 	} else {
3289 		assert(ctrlr_ch->reset_iter == NULL);
3290 
3291 		nvme_qpair_delete(nvme_qpair);
3292 	}
3293 }
3294 
3295 static inline struct spdk_io_channel *
3296 bdev_nvme_get_accel_channel(struct nvme_poll_group *group)
3297 {
3298 	if (spdk_unlikely(!group->accel_channel)) {
3299 		group->accel_channel = spdk_accel_get_io_channel();
3300 		if (!group->accel_channel) {
3301 			SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
3302 				    group);
3303 			return NULL;
3304 		}
3305 	}
3306 
3307 	return group->accel_channel;
3308 }
3309 
3310 static void
3311 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
3312 			      uint32_t iov_cnt, uint32_t seed,
3313 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3314 {
3315 	struct spdk_io_channel *accel_ch;
3316 	struct nvme_poll_group *group = ctx;
3317 	int rc;
3318 
3319 	assert(cb_fn != NULL);
3320 
3321 	accel_ch = bdev_nvme_get_accel_channel(group);
3322 	if (spdk_unlikely(accel_ch == NULL)) {
3323 		cb_fn(cb_arg, -ENOMEM);
3324 		return;
3325 	}
3326 
3327 	rc = spdk_accel_submit_crc32cv(accel_ch, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
3328 	if (rc) {
3329 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
3330 		if (rc == -ENOMEM || rc == -EINVAL) {
3331 			cb_fn(cb_arg, rc);
3332 		}
3333 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
3334 	}
3335 }
3336 
3337 static void
3338 bdev_nvme_finish_sequence(void *seq, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3339 {
3340 	spdk_accel_sequence_finish(seq, cb_fn, cb_arg);
3341 }
3342 
3343 static void
3344 bdev_nvme_abort_sequence(void *seq)
3345 {
3346 	spdk_accel_sequence_abort(seq);
3347 }
3348 
3349 static void
3350 bdev_nvme_reverse_sequence(void *seq)
3351 {
3352 	spdk_accel_sequence_reverse(seq);
3353 }
3354 
3355 static int
3356 bdev_nvme_append_crc32c(void *ctx, void **seq, uint32_t *dst, struct iovec *iovs, uint32_t iovcnt,
3357 			struct spdk_memory_domain *domain, void *domain_ctx, uint32_t seed,
3358 			spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3359 {
3360 	struct spdk_io_channel *ch;
3361 	struct nvme_poll_group *group = ctx;
3362 
3363 	ch = bdev_nvme_get_accel_channel(group);
3364 	if (spdk_unlikely(ch == NULL)) {
3365 		return -ENOMEM;
3366 	}
3367 
3368 	return spdk_accel_append_crc32c((struct spdk_accel_sequence **)seq, ch, dst, iovs, iovcnt,
3369 					domain, domain_ctx, seed, cb_fn, cb_arg);
3370 }
3371 
3372 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
3373 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
3374 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
3375 	.append_crc32c		= bdev_nvme_append_crc32c,
3376 	.finish_sequence	= bdev_nvme_finish_sequence,
3377 	.reverse_sequence	= bdev_nvme_reverse_sequence,
3378 	.abort_sequence		= bdev_nvme_abort_sequence,
3379 };
3380 
3381 static int
3382 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
3383 {
3384 	struct nvme_poll_group *group = ctx_buf;
3385 
3386 	TAILQ_INIT(&group->qpair_list);
3387 
3388 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
3389 	if (group->group == NULL) {
3390 		return -1;
3391 	}
3392 
3393 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
3394 
3395 	if (group->poller == NULL) {
3396 		spdk_nvme_poll_group_destroy(group->group);
3397 		return -1;
3398 	}
3399 
3400 	return 0;
3401 }
3402 
3403 static void
3404 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
3405 {
3406 	struct nvme_poll_group *group = ctx_buf;
3407 
3408 	assert(TAILQ_EMPTY(&group->qpair_list));
3409 
3410 	if (group->accel_channel) {
3411 		spdk_put_io_channel(group->accel_channel);
3412 	}
3413 
3414 	spdk_poller_unregister(&group->poller);
3415 	if (spdk_nvme_poll_group_destroy(group->group)) {
3416 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
3417 		assert(false);
3418 	}
3419 }
3420 
3421 static struct spdk_io_channel *
3422 bdev_nvme_get_io_channel(void *ctx)
3423 {
3424 	struct nvme_bdev *nvme_bdev = ctx;
3425 
3426 	return spdk_get_io_channel(nvme_bdev);
3427 }
3428 
3429 static void *
3430 bdev_nvme_get_module_ctx(void *ctx)
3431 {
3432 	struct nvme_bdev *nvme_bdev = ctx;
3433 	struct nvme_ns *nvme_ns;
3434 
3435 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
3436 		return NULL;
3437 	}
3438 
3439 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
3440 	if (!nvme_ns) {
3441 		return NULL;
3442 	}
3443 
3444 	return nvme_ns->ns;
3445 }
3446 
3447 static const char *
3448 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
3449 {
3450 	switch (ana_state) {
3451 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3452 		return "optimized";
3453 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3454 		return "non_optimized";
3455 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3456 		return "inaccessible";
3457 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
3458 		return "persistent_loss";
3459 	case SPDK_NVME_ANA_CHANGE_STATE:
3460 		return "change";
3461 	default:
3462 		return NULL;
3463 	}
3464 }
3465 
3466 static int
3467 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
3468 {
3469 	struct spdk_memory_domain **_domains = NULL;
3470 	struct nvme_bdev *nbdev = ctx;
3471 	struct nvme_ns *nvme_ns;
3472 	int i = 0, _array_size = array_size;
3473 	int rc = 0;
3474 
3475 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3476 		if (domains && array_size >= i) {
3477 			_domains = &domains[i];
3478 		} else {
3479 			_domains = NULL;
3480 		}
3481 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
3482 		if (rc > 0) {
3483 			i += rc;
3484 			if (_array_size >= rc) {
3485 				_array_size -= rc;
3486 			} else {
3487 				_array_size = 0;
3488 			}
3489 		} else if (rc < 0) {
3490 			return rc;
3491 		}
3492 	}
3493 
3494 	return i;
3495 }
3496 
3497 static const char *
3498 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
3499 {
3500 	if (nvme_ctrlr->destruct) {
3501 		return "deleting";
3502 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
3503 		return "failed";
3504 	} else if (nvme_ctrlr->resetting) {
3505 		return "resetting";
3506 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
3507 		return "reconnect_is_delayed";
3508 	} else if (nvme_ctrlr->disabled) {
3509 		return "disabled";
3510 	} else {
3511 		return "enabled";
3512 	}
3513 }
3514 
3515 void
3516 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
3517 {
3518 	struct spdk_nvme_transport_id *trid;
3519 	const struct spdk_nvme_ctrlr_opts *opts;
3520 	const struct spdk_nvme_ctrlr_data *cdata;
3521 	struct nvme_path_id *path_id;
3522 
3523 	spdk_json_write_object_begin(w);
3524 
3525 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
3526 
3527 #ifdef SPDK_CONFIG_NVME_CUSE
3528 	size_t cuse_name_size = 128;
3529 	char cuse_name[cuse_name_size];
3530 
3531 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
3532 	if (rc == 0) {
3533 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3534 	}
3535 #endif
3536 	trid = &nvme_ctrlr->active_path_id->trid;
3537 	spdk_json_write_named_object_begin(w, "trid");
3538 	nvme_bdev_dump_trid_json(trid, w);
3539 	spdk_json_write_object_end(w);
3540 
3541 	path_id = TAILQ_NEXT(nvme_ctrlr->active_path_id, link);
3542 	if (path_id != NULL) {
3543 		spdk_json_write_named_array_begin(w, "alternate_trids");
3544 		do {
3545 			trid = &path_id->trid;
3546 			spdk_json_write_object_begin(w);
3547 			nvme_bdev_dump_trid_json(trid, w);
3548 			spdk_json_write_object_end(w);
3549 
3550 			path_id = TAILQ_NEXT(path_id, link);
3551 		} while (path_id != NULL);
3552 		spdk_json_write_array_end(w);
3553 	}
3554 
3555 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
3556 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3557 
3558 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
3559 	spdk_json_write_named_object_begin(w, "host");
3560 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
3561 	spdk_json_write_named_string(w, "addr", opts->src_addr);
3562 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
3563 	spdk_json_write_object_end(w);
3564 
3565 	spdk_json_write_object_end(w);
3566 }
3567 
3568 static void
3569 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
3570 			 struct nvme_ns *nvme_ns)
3571 {
3572 	struct spdk_nvme_ns *ns;
3573 	struct spdk_nvme_ctrlr *ctrlr;
3574 	const struct spdk_nvme_ctrlr_data *cdata;
3575 	const struct spdk_nvme_transport_id *trid;
3576 	union spdk_nvme_vs_register vs;
3577 	const struct spdk_nvme_ns_data *nsdata;
3578 	char buf[128];
3579 
3580 	ns = nvme_ns->ns;
3581 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3582 
3583 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3584 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
3585 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
3586 
3587 	spdk_json_write_object_begin(w);
3588 
3589 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
3590 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
3591 	}
3592 
3593 	spdk_json_write_named_object_begin(w, "trid");
3594 
3595 	nvme_bdev_dump_trid_json(trid, w);
3596 
3597 	spdk_json_write_object_end(w);
3598 
3599 #ifdef SPDK_CONFIG_NVME_CUSE
3600 	size_t cuse_name_size = 128;
3601 	char cuse_name[cuse_name_size];
3602 
3603 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
3604 					    cuse_name, &cuse_name_size);
3605 	if (rc == 0) {
3606 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3607 	}
3608 #endif
3609 
3610 	spdk_json_write_named_object_begin(w, "ctrlr_data");
3611 
3612 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3613 
3614 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
3615 
3616 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
3617 	spdk_str_trim(buf);
3618 	spdk_json_write_named_string(w, "model_number", buf);
3619 
3620 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
3621 	spdk_str_trim(buf);
3622 	spdk_json_write_named_string(w, "serial_number", buf);
3623 
3624 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
3625 	spdk_str_trim(buf);
3626 	spdk_json_write_named_string(w, "firmware_revision", buf);
3627 
3628 	if (cdata->subnqn[0] != '\0') {
3629 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
3630 	}
3631 
3632 	spdk_json_write_named_object_begin(w, "oacs");
3633 
3634 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
3635 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
3636 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
3637 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
3638 
3639 	spdk_json_write_object_end(w);
3640 
3641 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
3642 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
3643 
3644 	spdk_json_write_object_end(w);
3645 
3646 	spdk_json_write_named_object_begin(w, "vs");
3647 
3648 	spdk_json_write_name(w, "nvme_version");
3649 	if (vs.bits.ter) {
3650 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
3651 	} else {
3652 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
3653 	}
3654 
3655 	spdk_json_write_object_end(w);
3656 
3657 	nsdata = spdk_nvme_ns_get_data(ns);
3658 
3659 	spdk_json_write_named_object_begin(w, "ns_data");
3660 
3661 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
3662 
3663 	if (cdata->cmic.ana_reporting) {
3664 		spdk_json_write_named_string(w, "ana_state",
3665 					     _nvme_ana_state_str(nvme_ns->ana_state));
3666 	}
3667 
3668 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
3669 
3670 	spdk_json_write_object_end(w);
3671 
3672 	if (cdata->oacs.security) {
3673 		spdk_json_write_named_object_begin(w, "security");
3674 
3675 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
3676 
3677 		spdk_json_write_object_end(w);
3678 	}
3679 
3680 	spdk_json_write_object_end(w);
3681 }
3682 
3683 static const char *
3684 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
3685 {
3686 	switch (nbdev->mp_policy) {
3687 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
3688 		return "active_passive";
3689 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
3690 		return "active_active";
3691 	default:
3692 		assert(false);
3693 		return "invalid";
3694 	}
3695 }
3696 
3697 static int
3698 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
3699 {
3700 	struct nvme_bdev *nvme_bdev = ctx;
3701 	struct nvme_ns *nvme_ns;
3702 
3703 	pthread_mutex_lock(&nvme_bdev->mutex);
3704 	spdk_json_write_named_array_begin(w, "nvme");
3705 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
3706 		nvme_namespace_info_json(w, nvme_ns);
3707 	}
3708 	spdk_json_write_array_end(w);
3709 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
3710 	pthread_mutex_unlock(&nvme_bdev->mutex);
3711 
3712 	return 0;
3713 }
3714 
3715 static void
3716 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
3717 {
3718 	/* No config per bdev needed */
3719 }
3720 
3721 static uint64_t
3722 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
3723 {
3724 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3725 	struct nvme_io_path *io_path;
3726 	struct nvme_poll_group *group;
3727 	uint64_t spin_time = 0;
3728 
3729 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3730 		group = io_path->qpair->group;
3731 
3732 		if (!group || !group->collect_spin_stat) {
3733 			continue;
3734 		}
3735 
3736 		if (group->end_ticks != 0) {
3737 			group->spin_ticks += (group->end_ticks - group->start_ticks);
3738 			group->end_ticks = 0;
3739 		}
3740 
3741 		spin_time += group->spin_ticks;
3742 		group->start_ticks = 0;
3743 		group->spin_ticks = 0;
3744 	}
3745 
3746 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
3747 }
3748 
3749 static void
3750 bdev_nvme_reset_device_stat(void *ctx)
3751 {
3752 	struct nvme_bdev *nbdev = ctx;
3753 
3754 	if (nbdev->err_stat != NULL) {
3755 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
3756 	}
3757 }
3758 
3759 /* JSON string should be lowercases and underscore delimited string. */
3760 static void
3761 bdev_nvme_format_nvme_status(char *dst, const char *src)
3762 {
3763 	char tmp[256];
3764 
3765 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
3766 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
3767 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
3768 	spdk_strlwr(dst);
3769 }
3770 
3771 static void
3772 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
3773 {
3774 	struct nvme_bdev *nbdev = ctx;
3775 	struct spdk_nvme_status status = {};
3776 	uint16_t sct, sc;
3777 	char status_json[256];
3778 	const char *status_str;
3779 
3780 	if (nbdev->err_stat == NULL) {
3781 		return;
3782 	}
3783 
3784 	spdk_json_write_named_object_begin(w, "nvme_error");
3785 
3786 	spdk_json_write_named_object_begin(w, "status_type");
3787 	for (sct = 0; sct < 8; sct++) {
3788 		if (nbdev->err_stat->status_type[sct] == 0) {
3789 			continue;
3790 		}
3791 		status.sct = sct;
3792 
3793 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
3794 		assert(status_str != NULL);
3795 		bdev_nvme_format_nvme_status(status_json, status_str);
3796 
3797 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
3798 	}
3799 	spdk_json_write_object_end(w);
3800 
3801 	spdk_json_write_named_object_begin(w, "status_code");
3802 	for (sct = 0; sct < 4; sct++) {
3803 		status.sct = sct;
3804 		for (sc = 0; sc < 256; sc++) {
3805 			if (nbdev->err_stat->status[sct][sc] == 0) {
3806 				continue;
3807 			}
3808 			status.sc = sc;
3809 
3810 			status_str = spdk_nvme_cpl_get_status_string(&status);
3811 			assert(status_str != NULL);
3812 			bdev_nvme_format_nvme_status(status_json, status_str);
3813 
3814 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
3815 		}
3816 	}
3817 	spdk_json_write_object_end(w);
3818 
3819 	spdk_json_write_object_end(w);
3820 }
3821 
3822 static bool
3823 bdev_nvme_accel_sequence_supported(void *ctx, enum spdk_bdev_io_type type)
3824 {
3825 	struct nvme_bdev *nbdev = ctx;
3826 	struct spdk_nvme_ctrlr *ctrlr;
3827 
3828 	if (!g_opts.allow_accel_sequence) {
3829 		return false;
3830 	}
3831 
3832 	switch (type) {
3833 	case SPDK_BDEV_IO_TYPE_WRITE:
3834 	case SPDK_BDEV_IO_TYPE_READ:
3835 		break;
3836 	default:
3837 		return false;
3838 	}
3839 
3840 	ctrlr = bdev_nvme_get_ctrlr(&nbdev->disk);
3841 	assert(ctrlr != NULL);
3842 
3843 	return spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ACCEL_SEQUENCE_SUPPORTED;
3844 }
3845 
3846 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
3847 	.destruct			= bdev_nvme_destruct,
3848 	.submit_request			= bdev_nvme_submit_request,
3849 	.io_type_supported		= bdev_nvme_io_type_supported,
3850 	.get_io_channel			= bdev_nvme_get_io_channel,
3851 	.dump_info_json			= bdev_nvme_dump_info_json,
3852 	.write_config_json		= bdev_nvme_write_config_json,
3853 	.get_spin_time			= bdev_nvme_get_spin_time,
3854 	.get_module_ctx			= bdev_nvme_get_module_ctx,
3855 	.get_memory_domains		= bdev_nvme_get_memory_domains,
3856 	.accel_sequence_supported	= bdev_nvme_accel_sequence_supported,
3857 	.reset_device_stat		= bdev_nvme_reset_device_stat,
3858 	.dump_device_stat_json		= bdev_nvme_dump_device_stat_json,
3859 };
3860 
3861 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
3862 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
3863 
3864 static int
3865 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
3866 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
3867 {
3868 	struct spdk_nvme_ana_group_descriptor *copied_desc;
3869 	uint8_t *orig_desc;
3870 	uint32_t i, desc_size, copy_len;
3871 	int rc = 0;
3872 
3873 	if (nvme_ctrlr->ana_log_page == NULL) {
3874 		return -EINVAL;
3875 	}
3876 
3877 	copied_desc = nvme_ctrlr->copied_ana_desc;
3878 
3879 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
3880 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
3881 
3882 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
3883 		memcpy(copied_desc, orig_desc, copy_len);
3884 
3885 		rc = cb_fn(copied_desc, cb_arg);
3886 		if (rc != 0) {
3887 			break;
3888 		}
3889 
3890 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
3891 			    copied_desc->num_of_nsid * sizeof(uint32_t);
3892 		orig_desc += desc_size;
3893 		copy_len -= desc_size;
3894 	}
3895 
3896 	return rc;
3897 }
3898 
3899 static int
3900 nvme_ns_ana_transition_timedout(void *ctx)
3901 {
3902 	struct nvme_ns *nvme_ns = ctx;
3903 
3904 	spdk_poller_unregister(&nvme_ns->anatt_timer);
3905 	nvme_ns->ana_transition_timedout = true;
3906 
3907 	return SPDK_POLLER_BUSY;
3908 }
3909 
3910 static void
3911 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
3912 		       const struct spdk_nvme_ana_group_descriptor *desc)
3913 {
3914 	const struct spdk_nvme_ctrlr_data *cdata;
3915 
3916 	nvme_ns->ana_group_id = desc->ana_group_id;
3917 	nvme_ns->ana_state = desc->ana_state;
3918 	nvme_ns->ana_state_updating = false;
3919 
3920 	switch (nvme_ns->ana_state) {
3921 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3922 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3923 		nvme_ns->ana_transition_timedout = false;
3924 		spdk_poller_unregister(&nvme_ns->anatt_timer);
3925 		break;
3926 
3927 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3928 	case SPDK_NVME_ANA_CHANGE_STATE:
3929 		if (nvme_ns->anatt_timer != NULL) {
3930 			break;
3931 		}
3932 
3933 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
3934 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
3935 				       nvme_ns,
3936 				       cdata->anatt * SPDK_SEC_TO_USEC);
3937 		break;
3938 	default:
3939 		break;
3940 	}
3941 }
3942 
3943 static int
3944 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
3945 {
3946 	struct nvme_ns *nvme_ns = cb_arg;
3947 	uint32_t i;
3948 
3949 	for (i = 0; i < desc->num_of_nsid; i++) {
3950 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
3951 			continue;
3952 		}
3953 
3954 		_nvme_ns_set_ana_state(nvme_ns, desc);
3955 		return 1;
3956 	}
3957 
3958 	return 0;
3959 }
3960 
3961 static struct spdk_uuid
3962 nvme_generate_uuid(const char *sn, uint32_t nsid)
3963 {
3964 	struct spdk_uuid new_uuid, namespace_uuid;
3965 	char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'};
3966 	/* This namespace UUID was generated using uuid_generate() method. */
3967 	const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"};
3968 	int size;
3969 
3970 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
3971 
3972 	spdk_uuid_set_null(&new_uuid);
3973 	spdk_uuid_set_null(&namespace_uuid);
3974 
3975 	size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid);
3976 	assert(size > 0 && (unsigned long)size < sizeof(merged_str));
3977 
3978 	spdk_uuid_parse(&namespace_uuid, namespace_str);
3979 
3980 	spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size);
3981 
3982 	return new_uuid;
3983 }
3984 
3985 static int
3986 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
3987 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
3988 		 uint32_t prchk_flags, void *ctx)
3989 {
3990 	const struct spdk_uuid		*uuid;
3991 	const uint8_t *nguid;
3992 	const struct spdk_nvme_ctrlr_data *cdata;
3993 	const struct spdk_nvme_ns_data	*nsdata;
3994 	const struct spdk_nvme_ctrlr_opts *opts;
3995 	enum spdk_nvme_csi		csi;
3996 	uint32_t atomic_bs, phys_bs, bs;
3997 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
3998 
3999 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4000 	csi = spdk_nvme_ns_get_csi(ns);
4001 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
4002 
4003 	switch (csi) {
4004 	case SPDK_NVME_CSI_NVM:
4005 		disk->product_name = "NVMe disk";
4006 		break;
4007 	case SPDK_NVME_CSI_ZNS:
4008 		disk->product_name = "NVMe ZNS disk";
4009 		disk->zoned = true;
4010 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
4011 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
4012 					     spdk_nvme_ns_get_extended_sector_size(ns);
4013 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
4014 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
4015 		break;
4016 	default:
4017 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
4018 		return -ENOTSUP;
4019 	}
4020 
4021 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
4022 	if (!disk->name) {
4023 		return -ENOMEM;
4024 	}
4025 
4026 	disk->write_cache = 0;
4027 	if (cdata->vwc.present) {
4028 		/* Enable if the Volatile Write Cache exists */
4029 		disk->write_cache = 1;
4030 	}
4031 	if (cdata->oncs.write_zeroes) {
4032 		disk->max_write_zeroes = UINT16_MAX + 1;
4033 	}
4034 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
4035 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
4036 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
4037 	/* NVMe driver will split one request into multiple requests
4038 	 * based on MDTS and stripe boundary, the bdev layer will use
4039 	 * max_segment_size and max_num_segments to split one big IO
4040 	 * into multiple requests, then small request can't run out
4041 	 * of NVMe internal requests data structure.
4042 	 */
4043 	if (opts && opts->io_queue_requests) {
4044 		disk->max_num_segments = opts->io_queue_requests / 2;
4045 	}
4046 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
4047 
4048 	nguid = spdk_nvme_ns_get_nguid(ns);
4049 	if (!nguid) {
4050 		uuid = spdk_nvme_ns_get_uuid(ns);
4051 		if (uuid) {
4052 			disk->uuid = *uuid;
4053 		} else if (g_opts.generate_uuids) {
4054 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
4055 			disk->uuid = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns));
4056 		}
4057 	} else {
4058 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
4059 	}
4060 
4061 	nsdata = spdk_nvme_ns_get_data(ns);
4062 	bs = spdk_nvme_ns_get_sector_size(ns);
4063 	atomic_bs = bs;
4064 	phys_bs = bs;
4065 	if (nsdata->nabo == 0) {
4066 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
4067 			atomic_bs = bs * (1 + nsdata->nawupf);
4068 		} else {
4069 			atomic_bs = bs * (1 + cdata->awupf);
4070 		}
4071 	}
4072 	if (nsdata->nsfeat.optperf) {
4073 		phys_bs = bs * (1 + nsdata->npwg);
4074 	}
4075 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
4076 
4077 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
4078 	if (disk->md_len != 0) {
4079 		disk->md_interleave = nsdata->flbas.extended;
4080 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
4081 		if (disk->dif_type != SPDK_DIF_DISABLE) {
4082 			disk->dif_is_head_of_md = nsdata->dps.md_start;
4083 			disk->dif_check_flags = prchk_flags;
4084 		}
4085 	}
4086 
4087 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
4088 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
4089 		disk->acwu = 0;
4090 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
4091 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
4092 	} else {
4093 		disk->acwu = cdata->acwu + 1; /* 0-based */
4094 	}
4095 
4096 	if (cdata->oncs.copy) {
4097 		/* For now bdev interface allows only single segment copy */
4098 		disk->max_copy = nsdata->mssrl;
4099 	}
4100 
4101 	disk->ctxt = ctx;
4102 	disk->fn_table = &nvmelib_fn_table;
4103 	disk->module = &nvme_if;
4104 
4105 	return 0;
4106 }
4107 
4108 static struct nvme_bdev *
4109 nvme_bdev_alloc(void)
4110 {
4111 	struct nvme_bdev *bdev;
4112 	int rc;
4113 
4114 	bdev = calloc(1, sizeof(*bdev));
4115 	if (!bdev) {
4116 		SPDK_ERRLOG("bdev calloc() failed\n");
4117 		return NULL;
4118 	}
4119 
4120 	if (g_opts.nvme_error_stat) {
4121 		bdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
4122 		if (!bdev->err_stat) {
4123 			SPDK_ERRLOG("err_stat calloc() failed\n");
4124 			free(bdev);
4125 			return NULL;
4126 		}
4127 	}
4128 
4129 	rc = pthread_mutex_init(&bdev->mutex, NULL);
4130 	if (rc != 0) {
4131 		free(bdev->err_stat);
4132 		free(bdev);
4133 		return NULL;
4134 	}
4135 
4136 	bdev->ref = 1;
4137 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
4138 	bdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN;
4139 	bdev->rr_min_io = UINT32_MAX;
4140 	TAILQ_INIT(&bdev->nvme_ns_list);
4141 
4142 	return bdev;
4143 }
4144 
4145 static int
4146 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4147 {
4148 	struct nvme_bdev *bdev;
4149 	struct nvme_bdev_ctrlr *nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
4150 	int rc;
4151 
4152 	bdev = nvme_bdev_alloc();
4153 	if (bdev == NULL) {
4154 		SPDK_ERRLOG("Failed to allocate NVMe bdev\n");
4155 		return -ENOMEM;
4156 	}
4157 
4158 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
4159 
4160 	rc = nvme_disk_create(&bdev->disk, nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
4161 			      nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev);
4162 	if (rc != 0) {
4163 		SPDK_ERRLOG("Failed to create NVMe disk\n");
4164 		nvme_bdev_free(bdev);
4165 		return rc;
4166 	}
4167 
4168 	spdk_io_device_register(bdev,
4169 				bdev_nvme_create_bdev_channel_cb,
4170 				bdev_nvme_destroy_bdev_channel_cb,
4171 				sizeof(struct nvme_bdev_channel),
4172 				bdev->disk.name);
4173 
4174 	nvme_ns->bdev = bdev;
4175 	bdev->nsid = nvme_ns->id;
4176 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4177 
4178 	bdev->nbdev_ctrlr = nbdev_ctrlr;
4179 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->bdevs, bdev, tailq);
4180 
4181 	rc = spdk_bdev_register(&bdev->disk);
4182 	if (rc != 0) {
4183 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
4184 		spdk_io_device_unregister(bdev, NULL);
4185 		nvme_ns->bdev = NULL;
4186 		TAILQ_REMOVE(&nbdev_ctrlr->bdevs, bdev, tailq);
4187 		nvme_bdev_free(bdev);
4188 		return rc;
4189 	}
4190 
4191 	return 0;
4192 }
4193 
4194 static bool
4195 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
4196 {
4197 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
4198 	const struct spdk_uuid *uuid1, *uuid2;
4199 
4200 	nsdata1 = spdk_nvme_ns_get_data(ns1);
4201 	nsdata2 = spdk_nvme_ns_get_data(ns2);
4202 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
4203 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
4204 
4205 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
4206 	       nsdata1->eui64 == nsdata2->eui64 &&
4207 	       ((uuid1 == NULL && uuid2 == NULL) ||
4208 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
4209 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
4210 }
4211 
4212 static bool
4213 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4214 		 struct spdk_nvme_ctrlr_opts *opts)
4215 {
4216 	struct nvme_probe_skip_entry *entry;
4217 
4218 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
4219 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4220 			return false;
4221 		}
4222 	}
4223 
4224 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
4225 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
4226 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
4227 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
4228 	opts->disable_read_ana_log_page = true;
4229 
4230 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
4231 
4232 	return true;
4233 }
4234 
4235 static void
4236 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
4237 {
4238 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4239 
4240 	if (spdk_nvme_cpl_is_error(cpl)) {
4241 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
4242 			     cpl->status.sct);
4243 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4244 	} else if (cpl->cdw0 & 0x1) {
4245 		SPDK_WARNLOG("Specified command could not be aborted.\n");
4246 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4247 	}
4248 }
4249 
4250 static void
4251 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
4252 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
4253 {
4254 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4255 	union spdk_nvme_csts_register csts;
4256 	int rc;
4257 
4258 	assert(nvme_ctrlr->ctrlr == ctrlr);
4259 
4260 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
4261 
4262 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
4263 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
4264 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
4265 	 * completion recursively.
4266 	 */
4267 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
4268 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
4269 		if (csts.bits.cfs) {
4270 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
4271 			bdev_nvme_reset_ctrlr(nvme_ctrlr);
4272 			return;
4273 		}
4274 	}
4275 
4276 	switch (g_opts.action_on_timeout) {
4277 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
4278 		if (qpair) {
4279 			/* Don't send abort to ctrlr when ctrlr is not available. */
4280 			pthread_mutex_lock(&nvme_ctrlr->mutex);
4281 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
4282 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
4283 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
4284 				return;
4285 			}
4286 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4287 
4288 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
4289 						       nvme_abort_cpl, nvme_ctrlr);
4290 			if (rc == 0) {
4291 				return;
4292 			}
4293 
4294 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
4295 		}
4296 
4297 	/* FALLTHROUGH */
4298 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
4299 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4300 		break;
4301 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
4302 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
4303 		break;
4304 	default:
4305 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
4306 		break;
4307 	}
4308 }
4309 
4310 static struct nvme_ns *
4311 nvme_ns_alloc(void)
4312 {
4313 	struct nvme_ns *nvme_ns;
4314 
4315 	nvme_ns = calloc(1, sizeof(struct nvme_ns));
4316 	if (nvme_ns == NULL) {
4317 		return NULL;
4318 	}
4319 
4320 	if (g_opts.io_path_stat) {
4321 		nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
4322 		if (nvme_ns->stat == NULL) {
4323 			free(nvme_ns);
4324 			return NULL;
4325 		}
4326 		spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
4327 	}
4328 
4329 	return nvme_ns;
4330 }
4331 
4332 static void
4333 nvme_ns_free(struct nvme_ns *nvme_ns)
4334 {
4335 	free(nvme_ns->stat);
4336 	free(nvme_ns);
4337 }
4338 
4339 static void
4340 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
4341 {
4342 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4343 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
4344 
4345 	if (rc == 0) {
4346 		nvme_ns->probe_ctx = NULL;
4347 		pthread_mutex_lock(&nvme_ctrlr->mutex);
4348 		nvme_ctrlr->ref++;
4349 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4350 	} else {
4351 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4352 		nvme_ns_free(nvme_ns);
4353 	}
4354 
4355 	if (ctx) {
4356 		ctx->populates_in_progress--;
4357 		if (ctx->populates_in_progress == 0) {
4358 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4359 		}
4360 	}
4361 }
4362 
4363 static void
4364 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
4365 {
4366 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4367 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4368 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4369 	int rc;
4370 
4371 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
4372 	if (rc != 0) {
4373 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
4374 	}
4375 
4376 	spdk_for_each_channel_continue(i, rc);
4377 }
4378 
4379 static void
4380 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
4381 {
4382 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4383 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4384 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4385 	struct nvme_io_path *io_path;
4386 
4387 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
4388 	if (io_path != NULL) {
4389 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
4390 	}
4391 
4392 	spdk_for_each_channel_continue(i, 0);
4393 }
4394 
4395 static void
4396 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
4397 {
4398 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4399 
4400 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
4401 }
4402 
4403 static void
4404 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
4405 {
4406 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4407 	struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
4408 
4409 	if (status == 0) {
4410 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
4411 	} else {
4412 		/* Delete the added io_paths and fail populating the namespace. */
4413 		spdk_for_each_channel(bdev,
4414 				      bdev_nvme_delete_io_path,
4415 				      nvme_ns,
4416 				      bdev_nvme_add_io_path_failed);
4417 	}
4418 }
4419 
4420 static int
4421 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
4422 {
4423 	struct nvme_ns *tmp_ns;
4424 	const struct spdk_nvme_ns_data *nsdata;
4425 
4426 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
4427 	if (!nsdata->nmic.can_share) {
4428 		SPDK_ERRLOG("Namespace cannot be shared.\n");
4429 		return -EINVAL;
4430 	}
4431 
4432 	pthread_mutex_lock(&bdev->mutex);
4433 
4434 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
4435 	assert(tmp_ns != NULL);
4436 
4437 	if (!bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
4438 		pthread_mutex_unlock(&bdev->mutex);
4439 		SPDK_ERRLOG("Namespaces are not identical.\n");
4440 		return -EINVAL;
4441 	}
4442 
4443 	bdev->ref++;
4444 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4445 	nvme_ns->bdev = bdev;
4446 
4447 	pthread_mutex_unlock(&bdev->mutex);
4448 
4449 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
4450 	spdk_for_each_channel(bdev,
4451 			      bdev_nvme_add_io_path,
4452 			      nvme_ns,
4453 			      bdev_nvme_add_io_path_done);
4454 
4455 	return 0;
4456 }
4457 
4458 static void
4459 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4460 {
4461 	struct spdk_nvme_ns	*ns;
4462 	struct nvme_bdev	*bdev;
4463 	int			rc = 0;
4464 
4465 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
4466 	if (!ns) {
4467 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
4468 		rc = -EINVAL;
4469 		goto done;
4470 	}
4471 
4472 	nvme_ns->ns = ns;
4473 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4474 
4475 	if (nvme_ctrlr->ana_log_page != NULL) {
4476 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
4477 	}
4478 
4479 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
4480 	if (bdev == NULL) {
4481 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
4482 	} else {
4483 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
4484 		if (rc == 0) {
4485 			return;
4486 		}
4487 	}
4488 done:
4489 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
4490 }
4491 
4492 static void
4493 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
4494 {
4495 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4496 
4497 	assert(nvme_ctrlr != NULL);
4498 
4499 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4500 
4501 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4502 
4503 	if (nvme_ns->bdev != NULL) {
4504 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4505 		return;
4506 	}
4507 
4508 	nvme_ns_free(nvme_ns);
4509 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4510 
4511 	nvme_ctrlr_release(nvme_ctrlr);
4512 }
4513 
4514 static void
4515 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
4516 {
4517 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4518 
4519 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4520 }
4521 
4522 static void
4523 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4524 {
4525 	struct nvme_bdev *bdev;
4526 
4527 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4528 
4529 	bdev = nvme_ns->bdev;
4530 	if (bdev != NULL) {
4531 		pthread_mutex_lock(&bdev->mutex);
4532 
4533 		assert(bdev->ref > 0);
4534 		bdev->ref--;
4535 		if (bdev->ref == 0) {
4536 			pthread_mutex_unlock(&bdev->mutex);
4537 
4538 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
4539 		} else {
4540 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
4541 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
4542 			 * and clear nvme_ns->bdev here.
4543 			 */
4544 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
4545 			nvme_ns->bdev = NULL;
4546 
4547 			pthread_mutex_unlock(&bdev->mutex);
4548 
4549 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
4550 			 * we call depopulate_namespace_done() to avoid use-after-free.
4551 			 */
4552 			spdk_for_each_channel(bdev,
4553 					      bdev_nvme_delete_io_path,
4554 					      nvme_ns,
4555 					      bdev_nvme_delete_io_path_done);
4556 			return;
4557 		}
4558 	}
4559 
4560 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4561 }
4562 
4563 static void
4564 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
4565 			       struct nvme_async_probe_ctx *ctx)
4566 {
4567 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
4568 	struct nvme_ns	*nvme_ns, *next;
4569 	struct spdk_nvme_ns	*ns;
4570 	struct nvme_bdev	*bdev;
4571 	uint32_t		nsid;
4572 	int			rc;
4573 	uint64_t		num_sectors;
4574 
4575 	if (ctx) {
4576 		/* Initialize this count to 1 to handle the populate functions
4577 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
4578 		 */
4579 		ctx->populates_in_progress = 1;
4580 	}
4581 
4582 	/* First loop over our existing namespaces and see if they have been
4583 	 * removed. */
4584 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4585 	while (nvme_ns != NULL) {
4586 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4587 
4588 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
4589 			/* NS is still there but attributes may have changed */
4590 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
4591 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
4592 			bdev = nvme_ns->bdev;
4593 			assert(bdev != NULL);
4594 			if (bdev->disk.blockcnt != num_sectors) {
4595 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
4596 					       nvme_ns->id,
4597 					       bdev->disk.name,
4598 					       bdev->disk.blockcnt,
4599 					       num_sectors);
4600 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
4601 				if (rc != 0) {
4602 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
4603 						    bdev->disk.name, rc);
4604 				}
4605 			}
4606 		} else {
4607 			/* Namespace was removed */
4608 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4609 		}
4610 
4611 		nvme_ns = next;
4612 	}
4613 
4614 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
4615 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4616 	while (nsid != 0) {
4617 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4618 
4619 		if (nvme_ns == NULL) {
4620 			/* Found a new one */
4621 			nvme_ns = nvme_ns_alloc();
4622 			if (nvme_ns == NULL) {
4623 				SPDK_ERRLOG("Failed to allocate namespace\n");
4624 				/* This just fails to attach the namespace. It may work on a future attempt. */
4625 				continue;
4626 			}
4627 
4628 			nvme_ns->id = nsid;
4629 			nvme_ns->ctrlr = nvme_ctrlr;
4630 
4631 			nvme_ns->bdev = NULL;
4632 
4633 			if (ctx) {
4634 				ctx->populates_in_progress++;
4635 			}
4636 			nvme_ns->probe_ctx = ctx;
4637 
4638 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4639 
4640 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
4641 		}
4642 
4643 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
4644 	}
4645 
4646 	if (ctx) {
4647 		/* Decrement this count now that the loop is over to account
4648 		 * for the one we started with.  If the count is then 0, we
4649 		 * know any populate_namespace functions completed immediately,
4650 		 * so we'll kick the callback here.
4651 		 */
4652 		ctx->populates_in_progress--;
4653 		if (ctx->populates_in_progress == 0) {
4654 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4655 		}
4656 	}
4657 
4658 }
4659 
4660 static void
4661 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
4662 {
4663 	struct nvme_ns *nvme_ns, *tmp;
4664 
4665 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
4666 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4667 	}
4668 }
4669 
4670 static uint32_t
4671 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
4672 {
4673 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4674 	const struct spdk_nvme_ctrlr_data *cdata;
4675 	uint32_t nsid, ns_count = 0;
4676 
4677 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4678 
4679 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4680 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
4681 		ns_count++;
4682 	}
4683 
4684 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
4685 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
4686 	       sizeof(uint32_t);
4687 }
4688 
4689 static int
4690 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
4691 			  void *cb_arg)
4692 {
4693 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4694 	struct nvme_ns *nvme_ns;
4695 	uint32_t i, nsid;
4696 
4697 	for (i = 0; i < desc->num_of_nsid; i++) {
4698 		nsid = desc->nsid[i];
4699 		if (nsid == 0) {
4700 			continue;
4701 		}
4702 
4703 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4704 
4705 		assert(nvme_ns != NULL);
4706 		if (nvme_ns == NULL) {
4707 			/* Target told us that an inactive namespace had an ANA change */
4708 			continue;
4709 		}
4710 
4711 		_nvme_ns_set_ana_state(nvme_ns, desc);
4712 	}
4713 
4714 	return 0;
4715 }
4716 
4717 static void
4718 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4719 {
4720 	struct nvme_ns *nvme_ns;
4721 
4722 	spdk_free(nvme_ctrlr->ana_log_page);
4723 	nvme_ctrlr->ana_log_page = NULL;
4724 
4725 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4726 	     nvme_ns != NULL;
4727 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
4728 		nvme_ns->ana_state_updating = false;
4729 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4730 	}
4731 }
4732 
4733 static void
4734 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
4735 {
4736 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4737 
4738 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
4739 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
4740 					     nvme_ctrlr);
4741 	} else {
4742 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
4743 	}
4744 
4745 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4746 
4747 	assert(nvme_ctrlr->ana_log_page_updating == true);
4748 	nvme_ctrlr->ana_log_page_updating = false;
4749 
4750 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
4751 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4752 
4753 		nvme_ctrlr_unregister(nvme_ctrlr);
4754 	} else {
4755 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4756 
4757 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
4758 	}
4759 }
4760 
4761 static int
4762 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4763 {
4764 	uint32_t ana_log_page_size;
4765 	int rc;
4766 
4767 	if (nvme_ctrlr->ana_log_page == NULL) {
4768 		return -EINVAL;
4769 	}
4770 
4771 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
4772 
4773 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
4774 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
4775 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
4776 		return -EINVAL;
4777 	}
4778 
4779 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4780 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
4781 	    nvme_ctrlr->ana_log_page_updating) {
4782 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4783 		return -EBUSY;
4784 	}
4785 
4786 	nvme_ctrlr->ana_log_page_updating = true;
4787 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4788 
4789 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
4790 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
4791 					      SPDK_NVME_GLOBAL_NS_TAG,
4792 					      nvme_ctrlr->ana_log_page,
4793 					      ana_log_page_size, 0,
4794 					      nvme_ctrlr_read_ana_log_page_done,
4795 					      nvme_ctrlr);
4796 	if (rc != 0) {
4797 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
4798 	}
4799 
4800 	return rc;
4801 }
4802 
4803 static void
4804 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
4805 {
4806 }
4807 
4808 struct bdev_nvme_set_preferred_path_ctx {
4809 	struct spdk_bdev_desc *desc;
4810 	struct nvme_ns *nvme_ns;
4811 	bdev_nvme_set_preferred_path_cb cb_fn;
4812 	void *cb_arg;
4813 };
4814 
4815 static void
4816 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
4817 {
4818 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4819 
4820 	assert(ctx != NULL);
4821 	assert(ctx->desc != NULL);
4822 	assert(ctx->cb_fn != NULL);
4823 
4824 	spdk_bdev_close(ctx->desc);
4825 
4826 	ctx->cb_fn(ctx->cb_arg, status);
4827 
4828 	free(ctx);
4829 }
4830 
4831 static void
4832 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
4833 {
4834 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4835 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4836 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4837 	struct nvme_io_path *io_path, *prev;
4838 
4839 	prev = NULL;
4840 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
4841 		if (io_path->nvme_ns == ctx->nvme_ns) {
4842 			break;
4843 		}
4844 		prev = io_path;
4845 	}
4846 
4847 	if (io_path != NULL) {
4848 		if (prev != NULL) {
4849 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
4850 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
4851 		}
4852 
4853 		/* We can set io_path to nbdev_ch->current_io_path directly here.
4854 		 * However, it needs to be conditional. To simplify the code,
4855 		 * just clear nbdev_ch->current_io_path and let find_io_path()
4856 		 * fill it.
4857 		 *
4858 		 * Automatic failback may be disabled. Hence even if the io_path is
4859 		 * already at the head, clear nbdev_ch->current_io_path.
4860 		 */
4861 		bdev_nvme_clear_current_io_path(nbdev_ch);
4862 	}
4863 
4864 	spdk_for_each_channel_continue(i, 0);
4865 }
4866 
4867 static struct nvme_ns *
4868 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
4869 {
4870 	struct nvme_ns *nvme_ns, *prev;
4871 	const struct spdk_nvme_ctrlr_data *cdata;
4872 
4873 	prev = NULL;
4874 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
4875 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4876 
4877 		if (cdata->cntlid == cntlid) {
4878 			break;
4879 		}
4880 		prev = nvme_ns;
4881 	}
4882 
4883 	if (nvme_ns != NULL && prev != NULL) {
4884 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
4885 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
4886 	}
4887 
4888 	return nvme_ns;
4889 }
4890 
4891 /* This function supports only multipath mode. There is only a single I/O path
4892  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
4893  * head of the I/O path list for each NVMe bdev channel.
4894  *
4895  * NVMe bdev channel may be acquired after completing this function. move the
4896  * matched namespace to the head of the namespace list for the NVMe bdev too.
4897  */
4898 void
4899 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
4900 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
4901 {
4902 	struct bdev_nvme_set_preferred_path_ctx *ctx;
4903 	struct spdk_bdev *bdev;
4904 	struct nvme_bdev *nbdev;
4905 	int rc = 0;
4906 
4907 	assert(cb_fn != NULL);
4908 
4909 	ctx = calloc(1, sizeof(*ctx));
4910 	if (ctx == NULL) {
4911 		SPDK_ERRLOG("Failed to alloc context.\n");
4912 		rc = -ENOMEM;
4913 		goto err_alloc;
4914 	}
4915 
4916 	ctx->cb_fn = cb_fn;
4917 	ctx->cb_arg = cb_arg;
4918 
4919 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
4920 	if (rc != 0) {
4921 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
4922 		goto err_open;
4923 	}
4924 
4925 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
4926 
4927 	if (bdev->module != &nvme_if) {
4928 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
4929 		rc = -ENODEV;
4930 		goto err_bdev;
4931 	}
4932 
4933 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
4934 
4935 	pthread_mutex_lock(&nbdev->mutex);
4936 
4937 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
4938 	if (ctx->nvme_ns == NULL) {
4939 		pthread_mutex_unlock(&nbdev->mutex);
4940 
4941 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
4942 		rc = -ENODEV;
4943 		goto err_bdev;
4944 	}
4945 
4946 	pthread_mutex_unlock(&nbdev->mutex);
4947 
4948 	spdk_for_each_channel(nbdev,
4949 			      _bdev_nvme_set_preferred_path,
4950 			      ctx,
4951 			      bdev_nvme_set_preferred_path_done);
4952 	return;
4953 
4954 err_bdev:
4955 	spdk_bdev_close(ctx->desc);
4956 err_open:
4957 	free(ctx);
4958 err_alloc:
4959 	cb_fn(cb_arg, rc);
4960 }
4961 
4962 struct bdev_nvme_set_multipath_policy_ctx {
4963 	struct spdk_bdev_desc *desc;
4964 	bdev_nvme_set_multipath_policy_cb cb_fn;
4965 	void *cb_arg;
4966 };
4967 
4968 static void
4969 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
4970 {
4971 	struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4972 
4973 	assert(ctx != NULL);
4974 	assert(ctx->desc != NULL);
4975 	assert(ctx->cb_fn != NULL);
4976 
4977 	spdk_bdev_close(ctx->desc);
4978 
4979 	ctx->cb_fn(ctx->cb_arg, status);
4980 
4981 	free(ctx);
4982 }
4983 
4984 static void
4985 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
4986 {
4987 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4988 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4989 	struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
4990 
4991 	nbdev_ch->mp_policy = nbdev->mp_policy;
4992 	nbdev_ch->mp_selector = nbdev->mp_selector;
4993 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
4994 	bdev_nvme_clear_current_io_path(nbdev_ch);
4995 
4996 	spdk_for_each_channel_continue(i, 0);
4997 }
4998 
4999 void
5000 bdev_nvme_set_multipath_policy(const char *name, enum bdev_nvme_multipath_policy policy,
5001 			       enum bdev_nvme_multipath_selector selector, uint32_t rr_min_io,
5002 			       bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
5003 {
5004 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
5005 	struct spdk_bdev *bdev;
5006 	struct nvme_bdev *nbdev;
5007 	int rc;
5008 
5009 	assert(cb_fn != NULL);
5010 
5011 	if (policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE && selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
5012 		if (rr_min_io == UINT32_MAX) {
5013 			rr_min_io = 1;
5014 		} else if (rr_min_io == 0) {
5015 			rc = -EINVAL;
5016 			goto exit;
5017 		}
5018 	} else if (rr_min_io != UINT32_MAX) {
5019 		rc = -EINVAL;
5020 		goto exit;
5021 	}
5022 
5023 	ctx = calloc(1, sizeof(*ctx));
5024 	if (ctx == NULL) {
5025 		SPDK_ERRLOG("Failed to alloc context.\n");
5026 		rc = -ENOMEM;
5027 		goto exit;
5028 	}
5029 
5030 	ctx->cb_fn = cb_fn;
5031 	ctx->cb_arg = cb_arg;
5032 
5033 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5034 	if (rc != 0) {
5035 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5036 		rc = -ENODEV;
5037 		goto err_open;
5038 	}
5039 
5040 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5041 	if (bdev->module != &nvme_if) {
5042 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5043 		rc = -ENODEV;
5044 		goto err_module;
5045 	}
5046 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5047 
5048 	pthread_mutex_lock(&nbdev->mutex);
5049 	nbdev->mp_policy = policy;
5050 	nbdev->mp_selector = selector;
5051 	nbdev->rr_min_io = rr_min_io;
5052 	pthread_mutex_unlock(&nbdev->mutex);
5053 
5054 	spdk_for_each_channel(nbdev,
5055 			      _bdev_nvme_set_multipath_policy,
5056 			      ctx,
5057 			      bdev_nvme_set_multipath_policy_done);
5058 	return;
5059 
5060 err_module:
5061 	spdk_bdev_close(ctx->desc);
5062 err_open:
5063 	free(ctx);
5064 exit:
5065 	cb_fn(cb_arg, rc);
5066 }
5067 
5068 static void
5069 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5070 {
5071 	struct nvme_ctrlr *nvme_ctrlr		= arg;
5072 	union spdk_nvme_async_event_completion	event;
5073 
5074 	if (spdk_nvme_cpl_is_error(cpl)) {
5075 		SPDK_WARNLOG("AER request execute failed\n");
5076 		return;
5077 	}
5078 
5079 	event.raw = cpl->cdw0;
5080 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5081 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
5082 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
5083 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5084 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
5085 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
5086 	}
5087 }
5088 
5089 static void
5090 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, int rc)
5091 {
5092 	if (ctx->cb_fn) {
5093 		ctx->cb_fn(ctx->cb_ctx, ctx->reported_bdevs, rc);
5094 	}
5095 
5096 	ctx->namespaces_populated = true;
5097 	if (ctx->probe_done) {
5098 		/* The probe was already completed, so we need to free the context
5099 		 * here.  This can happen for cases like OCSSD, where we need to
5100 		 * send additional commands to the SSD after attach.
5101 		 */
5102 		free(ctx);
5103 	}
5104 }
5105 
5106 static void
5107 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
5108 		       struct nvme_async_probe_ctx *ctx)
5109 {
5110 	spdk_io_device_register(nvme_ctrlr,
5111 				bdev_nvme_create_ctrlr_channel_cb,
5112 				bdev_nvme_destroy_ctrlr_channel_cb,
5113 				sizeof(struct nvme_ctrlr_channel),
5114 				nvme_ctrlr->nbdev_ctrlr->name);
5115 
5116 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
5117 }
5118 
5119 static void
5120 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
5121 {
5122 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
5123 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
5124 
5125 	nvme_ctrlr->probe_ctx = NULL;
5126 
5127 	if (spdk_nvme_cpl_is_error(cpl)) {
5128 		nvme_ctrlr_delete(nvme_ctrlr);
5129 
5130 		if (ctx != NULL) {
5131 			ctx->reported_bdevs = 0;
5132 			populate_namespaces_cb(ctx, -1);
5133 		}
5134 		return;
5135 	}
5136 
5137 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5138 }
5139 
5140 static int
5141 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
5142 			     struct nvme_async_probe_ctx *ctx)
5143 {
5144 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5145 	const struct spdk_nvme_ctrlr_data *cdata;
5146 	uint32_t ana_log_page_size;
5147 
5148 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5149 
5150 	/* Set buffer size enough to include maximum number of allowed namespaces. */
5151 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5152 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
5153 			    sizeof(uint32_t);
5154 
5155 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
5156 						SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
5157 	if (nvme_ctrlr->ana_log_page == NULL) {
5158 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
5159 		return -ENXIO;
5160 	}
5161 
5162 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
5163 	 * Hence copy each descriptor to a temporary area when parsing it.
5164 	 *
5165 	 * Allocate a buffer whose size is as large as ANA log page buffer because
5166 	 * we do not know the size of a descriptor until actually reading it.
5167 	 */
5168 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
5169 	if (nvme_ctrlr->copied_ana_desc == NULL) {
5170 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
5171 		return -ENOMEM;
5172 	}
5173 
5174 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
5175 
5176 	nvme_ctrlr->probe_ctx = ctx;
5177 
5178 	/* Then, set the read size only to include the current active namespaces. */
5179 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5180 
5181 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5182 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5183 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5184 		return -EINVAL;
5185 	}
5186 
5187 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
5188 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5189 						SPDK_NVME_GLOBAL_NS_TAG,
5190 						nvme_ctrlr->ana_log_page,
5191 						ana_log_page_size, 0,
5192 						nvme_ctrlr_init_ana_log_page_done,
5193 						nvme_ctrlr);
5194 }
5195 
5196 /* hostnqn and subnqn were already verified before attaching a controller.
5197  * Hence check only the multipath capability and cntlid here.
5198  */
5199 static bool
5200 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
5201 {
5202 	struct nvme_ctrlr *tmp;
5203 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
5204 
5205 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5206 
5207 	if (!cdata->cmic.multi_ctrlr) {
5208 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5209 		return false;
5210 	}
5211 
5212 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
5213 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
5214 
5215 		if (!tmp_cdata->cmic.multi_ctrlr) {
5216 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5217 			return false;
5218 		}
5219 		if (cdata->cntlid == tmp_cdata->cntlid) {
5220 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
5221 			return false;
5222 		}
5223 	}
5224 
5225 	return true;
5226 }
5227 
5228 static int
5229 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
5230 {
5231 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5232 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5233 	int rc = 0;
5234 
5235 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5236 
5237 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5238 	if (nbdev_ctrlr != NULL) {
5239 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
5240 			rc = -EINVAL;
5241 			goto exit;
5242 		}
5243 	} else {
5244 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
5245 		if (nbdev_ctrlr == NULL) {
5246 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
5247 			rc = -ENOMEM;
5248 			goto exit;
5249 		}
5250 		nbdev_ctrlr->name = strdup(name);
5251 		if (nbdev_ctrlr->name == NULL) {
5252 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
5253 			free(nbdev_ctrlr);
5254 			goto exit;
5255 		}
5256 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
5257 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
5258 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
5259 	}
5260 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
5261 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
5262 exit:
5263 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5264 	return rc;
5265 }
5266 
5267 static int
5268 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
5269 		  const char *name,
5270 		  const struct spdk_nvme_transport_id *trid,
5271 		  struct nvme_async_probe_ctx *ctx)
5272 {
5273 	struct nvme_ctrlr *nvme_ctrlr;
5274 	struct nvme_path_id *path_id;
5275 	const struct spdk_nvme_ctrlr_data *cdata;
5276 	int rc;
5277 
5278 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
5279 	if (nvme_ctrlr == NULL) {
5280 		SPDK_ERRLOG("Failed to allocate device struct\n");
5281 		return -ENOMEM;
5282 	}
5283 
5284 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
5285 	if (rc != 0) {
5286 		free(nvme_ctrlr);
5287 		return rc;
5288 	}
5289 
5290 	TAILQ_INIT(&nvme_ctrlr->trids);
5291 
5292 	RB_INIT(&nvme_ctrlr->namespaces);
5293 
5294 	path_id = calloc(1, sizeof(*path_id));
5295 	if (path_id == NULL) {
5296 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
5297 		rc = -ENOMEM;
5298 		goto err;
5299 	}
5300 
5301 	path_id->trid = *trid;
5302 	if (ctx != NULL) {
5303 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
5304 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
5305 	}
5306 	nvme_ctrlr->active_path_id = path_id;
5307 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
5308 
5309 	nvme_ctrlr->thread = spdk_get_thread();
5310 	nvme_ctrlr->ctrlr = ctrlr;
5311 	nvme_ctrlr->ref = 1;
5312 
5313 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
5314 		SPDK_ERRLOG("OCSSDs are not supported");
5315 		rc = -ENOTSUP;
5316 		goto err;
5317 	}
5318 
5319 	if (ctx != NULL) {
5320 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
5321 	} else {
5322 		bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
5323 	}
5324 
5325 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
5326 					  g_opts.nvme_adminq_poll_period_us);
5327 
5328 	if (g_opts.timeout_us > 0) {
5329 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
5330 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
5331 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
5332 					  g_opts.timeout_us : g_opts.timeout_admin_us;
5333 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
5334 				adm_timeout_us, timeout_cb, nvme_ctrlr);
5335 	}
5336 
5337 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
5338 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
5339 
5340 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
5341 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
5342 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
5343 	}
5344 
5345 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
5346 	if (rc != 0) {
5347 		goto err;
5348 	}
5349 
5350 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5351 
5352 	if (cdata->cmic.ana_reporting) {
5353 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
5354 		if (rc == 0) {
5355 			return 0;
5356 		}
5357 	} else {
5358 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5359 		return 0;
5360 	}
5361 
5362 err:
5363 	nvme_ctrlr_delete(nvme_ctrlr);
5364 	return rc;
5365 }
5366 
5367 void
5368 bdev_nvme_get_default_ctrlr_opts(struct nvme_ctrlr_opts *opts)
5369 {
5370 	opts->prchk_flags = 0;
5371 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
5372 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
5373 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
5374 }
5375 
5376 static void
5377 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5378 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
5379 {
5380 	char *name;
5381 
5382 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
5383 	if (!name) {
5384 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
5385 		return;
5386 	}
5387 
5388 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
5389 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
5390 	} else {
5391 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
5392 	}
5393 
5394 	free(name);
5395 }
5396 
5397 static void
5398 _nvme_ctrlr_destruct(void *ctx)
5399 {
5400 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5401 
5402 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
5403 	nvme_ctrlr_release(nvme_ctrlr);
5404 }
5405 
5406 static int
5407 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5408 {
5409 	struct nvme_probe_skip_entry *entry;
5410 
5411 	/* The controller's destruction was already started */
5412 	if (nvme_ctrlr->destruct) {
5413 		return -EALREADY;
5414 	}
5415 
5416 	if (!hotplug &&
5417 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
5418 		entry = calloc(1, sizeof(*entry));
5419 		if (!entry) {
5420 			return -ENOMEM;
5421 		}
5422 		entry->trid = nvme_ctrlr->active_path_id->trid;
5423 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
5424 	}
5425 
5426 	nvme_ctrlr->destruct = true;
5427 	return 0;
5428 }
5429 
5430 static int
5431 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5432 {
5433 	int rc;
5434 
5435 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5436 	rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug);
5437 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5438 
5439 	if (rc == 0) {
5440 		_nvme_ctrlr_destruct(nvme_ctrlr);
5441 	} else if (rc == -EALREADY) {
5442 		rc = 0;
5443 	}
5444 
5445 	return rc;
5446 }
5447 
5448 static void
5449 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
5450 {
5451 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
5452 
5453 	bdev_nvme_delete_ctrlr(nvme_ctrlr, true);
5454 }
5455 
5456 static int
5457 bdev_nvme_hotplug_probe(void *arg)
5458 {
5459 	if (g_hotplug_probe_ctx == NULL) {
5460 		spdk_poller_unregister(&g_hotplug_probe_poller);
5461 		return SPDK_POLLER_IDLE;
5462 	}
5463 
5464 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
5465 		g_hotplug_probe_ctx = NULL;
5466 		spdk_poller_unregister(&g_hotplug_probe_poller);
5467 	}
5468 
5469 	return SPDK_POLLER_BUSY;
5470 }
5471 
5472 static int
5473 bdev_nvme_hotplug(void *arg)
5474 {
5475 	struct spdk_nvme_transport_id trid_pcie;
5476 
5477 	if (g_hotplug_probe_ctx) {
5478 		return SPDK_POLLER_BUSY;
5479 	}
5480 
5481 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5482 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5483 
5484 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
5485 			      hotplug_probe_cb, attach_cb, NULL);
5486 
5487 	if (g_hotplug_probe_ctx) {
5488 		assert(g_hotplug_probe_poller == NULL);
5489 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
5490 	}
5491 
5492 	return SPDK_POLLER_BUSY;
5493 }
5494 
5495 void
5496 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
5497 {
5498 	*opts = g_opts;
5499 }
5500 
5501 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5502 		uint32_t reconnect_delay_sec,
5503 		uint32_t fast_io_fail_timeout_sec);
5504 
5505 static int
5506 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
5507 {
5508 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
5509 		/* Can't set timeout_admin_us without also setting timeout_us */
5510 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
5511 		return -EINVAL;
5512 	}
5513 
5514 	if (opts->bdev_retry_count < -1) {
5515 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
5516 		return -EINVAL;
5517 	}
5518 
5519 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
5520 			opts->reconnect_delay_sec,
5521 			opts->fast_io_fail_timeout_sec)) {
5522 		return -EINVAL;
5523 	}
5524 
5525 	return 0;
5526 }
5527 
5528 int
5529 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
5530 {
5531 	int ret;
5532 
5533 	ret = bdev_nvme_validate_opts(opts);
5534 	if (ret) {
5535 		SPDK_WARNLOG("Failed to set nvme opts.\n");
5536 		return ret;
5537 	}
5538 
5539 	if (g_bdev_nvme_init_thread != NULL) {
5540 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5541 			return -EPERM;
5542 		}
5543 	}
5544 
5545 	if (opts->rdma_srq_size != 0 ||
5546 	    opts->rdma_max_cq_size != 0 ||
5547 	    opts->rdma_cm_event_timeout_ms != 0) {
5548 		struct spdk_nvme_transport_opts drv_opts;
5549 
5550 		spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
5551 		if (opts->rdma_srq_size != 0) {
5552 			drv_opts.rdma_srq_size = opts->rdma_srq_size;
5553 		}
5554 		if (opts->rdma_max_cq_size != 0) {
5555 			drv_opts.rdma_max_cq_size = opts->rdma_max_cq_size;
5556 		}
5557 		if (opts->rdma_cm_event_timeout_ms != 0) {
5558 			drv_opts.rdma_cm_event_timeout_ms = opts->rdma_cm_event_timeout_ms;
5559 		}
5560 
5561 		ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
5562 		if (ret) {
5563 			SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
5564 			return ret;
5565 		}
5566 	}
5567 
5568 	g_opts = *opts;
5569 
5570 	return 0;
5571 }
5572 
5573 struct set_nvme_hotplug_ctx {
5574 	uint64_t period_us;
5575 	bool enabled;
5576 	spdk_msg_fn fn;
5577 	void *fn_ctx;
5578 };
5579 
5580 static void
5581 set_nvme_hotplug_period_cb(void *_ctx)
5582 {
5583 	struct set_nvme_hotplug_ctx *ctx = _ctx;
5584 
5585 	spdk_poller_unregister(&g_hotplug_poller);
5586 	if (ctx->enabled) {
5587 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
5588 	}
5589 
5590 	g_nvme_hotplug_poll_period_us = ctx->period_us;
5591 	g_nvme_hotplug_enabled = ctx->enabled;
5592 	if (ctx->fn) {
5593 		ctx->fn(ctx->fn_ctx);
5594 	}
5595 
5596 	free(ctx);
5597 }
5598 
5599 int
5600 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
5601 {
5602 	struct set_nvme_hotplug_ctx *ctx;
5603 
5604 	if (enabled == true && !spdk_process_is_primary()) {
5605 		return -EPERM;
5606 	}
5607 
5608 	ctx = calloc(1, sizeof(*ctx));
5609 	if (ctx == NULL) {
5610 		return -ENOMEM;
5611 	}
5612 
5613 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
5614 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
5615 	ctx->enabled = enabled;
5616 	ctx->fn = cb;
5617 	ctx->fn_ctx = cb_ctx;
5618 
5619 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
5620 	return 0;
5621 }
5622 
5623 static void
5624 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
5625 				    struct nvme_async_probe_ctx *ctx)
5626 {
5627 	struct nvme_ns	*nvme_ns;
5628 	struct nvme_bdev	*nvme_bdev;
5629 	size_t			j;
5630 
5631 	assert(nvme_ctrlr != NULL);
5632 
5633 	if (ctx->names == NULL) {
5634 		ctx->reported_bdevs = 0;
5635 		populate_namespaces_cb(ctx, 0);
5636 		return;
5637 	}
5638 
5639 	/*
5640 	 * Report the new bdevs that were created in this call.
5641 	 * There can be more than one bdev per NVMe controller.
5642 	 */
5643 	j = 0;
5644 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5645 	while (nvme_ns != NULL) {
5646 		nvme_bdev = nvme_ns->bdev;
5647 		if (j < ctx->max_bdevs) {
5648 			ctx->names[j] = nvme_bdev->disk.name;
5649 			j++;
5650 		} else {
5651 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
5652 				    ctx->max_bdevs);
5653 			ctx->reported_bdevs = 0;
5654 			populate_namespaces_cb(ctx, -ERANGE);
5655 			return;
5656 		}
5657 
5658 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5659 	}
5660 
5661 	ctx->reported_bdevs = j;
5662 	populate_namespaces_cb(ctx, 0);
5663 }
5664 
5665 static int
5666 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5667 			       struct spdk_nvme_ctrlr *new_ctrlr,
5668 			       struct spdk_nvme_transport_id *trid)
5669 {
5670 	struct nvme_path_id *tmp_trid;
5671 
5672 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5673 		SPDK_ERRLOG("PCIe failover is not supported.\n");
5674 		return -ENOTSUP;
5675 	}
5676 
5677 	/* Currently we only support failover to the same transport type. */
5678 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
5679 		SPDK_WARNLOG("Failover from trtype: %s to a different trtype: %s is not supported currently\n",
5680 			     spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
5681 			     spdk_nvme_transport_id_trtype_str(trid->trtype));
5682 		return -EINVAL;
5683 	}
5684 
5685 
5686 	/* Currently we only support failover to the same NQN. */
5687 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
5688 		SPDK_WARNLOG("Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
5689 			     nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
5690 		return -EINVAL;
5691 	}
5692 
5693 	/* Skip all the other checks if we've already registered this path. */
5694 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
5695 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
5696 			SPDK_WARNLOG("This path (traddr: %s subnqn: %s) is already registered\n", trid->traddr,
5697 				     trid->subnqn);
5698 			return -EEXIST;
5699 		}
5700 	}
5701 
5702 	return 0;
5703 }
5704 
5705 static int
5706 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
5707 				    struct spdk_nvme_ctrlr *new_ctrlr)
5708 {
5709 	struct nvme_ns *nvme_ns;
5710 	struct spdk_nvme_ns *new_ns;
5711 
5712 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5713 	while (nvme_ns != NULL) {
5714 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
5715 		assert(new_ns != NULL);
5716 
5717 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
5718 			return -EINVAL;
5719 		}
5720 
5721 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5722 	}
5723 
5724 	return 0;
5725 }
5726 
5727 static int
5728 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5729 			      struct spdk_nvme_transport_id *trid)
5730 {
5731 	struct nvme_path_id *active_id, *new_trid, *tmp_trid;
5732 
5733 	new_trid = calloc(1, sizeof(*new_trid));
5734 	if (new_trid == NULL) {
5735 		return -ENOMEM;
5736 	}
5737 	new_trid->trid = *trid;
5738 
5739 	active_id = nvme_ctrlr->active_path_id;
5740 	assert(active_id != NULL);
5741 	assert(active_id == TAILQ_FIRST(&nvme_ctrlr->trids));
5742 
5743 	/* Skip the active trid not to replace it until it is failed. */
5744 	tmp_trid = TAILQ_NEXT(active_id, link);
5745 	if (tmp_trid == NULL) {
5746 		goto add_tail;
5747 	}
5748 
5749 	/* It means the trid is faled if its last failed time is non-zero.
5750 	 * Insert the new alternate trid before any failed trid.
5751 	 */
5752 	TAILQ_FOREACH_FROM(tmp_trid, &nvme_ctrlr->trids, link) {
5753 		if (tmp_trid->last_failed_tsc != 0) {
5754 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
5755 			return 0;
5756 		}
5757 	}
5758 
5759 add_tail:
5760 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
5761 	return 0;
5762 }
5763 
5764 /* This is the case that a secondary path is added to an existing
5765  * nvme_ctrlr for failover. After checking if it can access the same
5766  * namespaces as the primary path, it is disconnected until failover occurs.
5767  */
5768 static int
5769 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5770 			     struct spdk_nvme_ctrlr *new_ctrlr,
5771 			     struct spdk_nvme_transport_id *trid)
5772 {
5773 	int rc;
5774 
5775 	assert(nvme_ctrlr != NULL);
5776 
5777 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5778 
5779 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
5780 	if (rc != 0) {
5781 		goto exit;
5782 	}
5783 
5784 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
5785 	if (rc != 0) {
5786 		goto exit;
5787 	}
5788 
5789 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
5790 
5791 exit:
5792 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5793 
5794 	spdk_nvme_detach(new_ctrlr);
5795 
5796 	return rc;
5797 }
5798 
5799 static void
5800 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5801 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
5802 {
5803 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5804 	struct nvme_async_probe_ctx *ctx;
5805 	int rc;
5806 
5807 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
5808 	ctx->ctrlr_attached = true;
5809 
5810 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
5811 	if (rc != 0) {
5812 		ctx->reported_bdevs = 0;
5813 		populate_namespaces_cb(ctx, rc);
5814 	}
5815 }
5816 
5817 static void
5818 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5819 			struct spdk_nvme_ctrlr *ctrlr,
5820 			const struct spdk_nvme_ctrlr_opts *opts)
5821 {
5822 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5823 	struct nvme_ctrlr *nvme_ctrlr;
5824 	struct nvme_async_probe_ctx *ctx;
5825 	int rc;
5826 
5827 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
5828 	ctx->ctrlr_attached = true;
5829 
5830 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
5831 	if (nvme_ctrlr) {
5832 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
5833 	} else {
5834 		rc = -ENODEV;
5835 	}
5836 
5837 	ctx->reported_bdevs = 0;
5838 	populate_namespaces_cb(ctx, rc);
5839 }
5840 
5841 static int
5842 bdev_nvme_async_poll(void *arg)
5843 {
5844 	struct nvme_async_probe_ctx	*ctx = arg;
5845 	int				rc;
5846 
5847 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
5848 	if (spdk_unlikely(rc != -EAGAIN)) {
5849 		ctx->probe_done = true;
5850 		spdk_poller_unregister(&ctx->poller);
5851 		if (!ctx->ctrlr_attached) {
5852 			/* The probe is done, but no controller was attached.
5853 			 * That means we had a failure, so report -EIO back to
5854 			 * the caller (usually the RPC). populate_namespaces_cb()
5855 			 * will take care of freeing the nvme_async_probe_ctx.
5856 			 */
5857 			ctx->reported_bdevs = 0;
5858 			populate_namespaces_cb(ctx, -EIO);
5859 		} else if (ctx->namespaces_populated) {
5860 			/* The namespaces for the attached controller were all
5861 			 * populated and the response was already sent to the
5862 			 * caller (usually the RPC).  So free the context here.
5863 			 */
5864 			free(ctx);
5865 		}
5866 	}
5867 
5868 	return SPDK_POLLER_BUSY;
5869 }
5870 
5871 static bool
5872 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5873 		uint32_t reconnect_delay_sec,
5874 		uint32_t fast_io_fail_timeout_sec)
5875 {
5876 	if (ctrlr_loss_timeout_sec < -1) {
5877 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
5878 		return false;
5879 	} else if (ctrlr_loss_timeout_sec == -1) {
5880 		if (reconnect_delay_sec == 0) {
5881 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
5882 			return false;
5883 		} else if (fast_io_fail_timeout_sec != 0 &&
5884 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
5885 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
5886 			return false;
5887 		}
5888 	} else if (ctrlr_loss_timeout_sec != 0) {
5889 		if (reconnect_delay_sec == 0) {
5890 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
5891 			return false;
5892 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
5893 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
5894 			return false;
5895 		} else if (fast_io_fail_timeout_sec != 0) {
5896 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
5897 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
5898 				return false;
5899 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
5900 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
5901 				return false;
5902 			}
5903 		}
5904 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
5905 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
5906 		return false;
5907 	}
5908 
5909 	return true;
5910 }
5911 
5912 int
5913 bdev_nvme_create(struct spdk_nvme_transport_id *trid,
5914 		 const char *base_name,
5915 		 const char **names,
5916 		 uint32_t count,
5917 		 spdk_bdev_create_nvme_fn cb_fn,
5918 		 void *cb_ctx,
5919 		 struct spdk_nvme_ctrlr_opts *drv_opts,
5920 		 struct nvme_ctrlr_opts *bdev_opts,
5921 		 bool multipath)
5922 {
5923 	struct nvme_probe_skip_entry	*entry, *tmp;
5924 	struct nvme_async_probe_ctx	*ctx;
5925 	spdk_nvme_attach_cb attach_cb;
5926 
5927 	/* TODO expand this check to include both the host and target TRIDs.
5928 	 * Only if both are the same should we fail.
5929 	 */
5930 	if (nvme_ctrlr_get(trid) != NULL) {
5931 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
5932 		return -EEXIST;
5933 	}
5934 
5935 	if (bdev_opts != NULL &&
5936 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
5937 			    bdev_opts->reconnect_delay_sec,
5938 			    bdev_opts->fast_io_fail_timeout_sec)) {
5939 		return -EINVAL;
5940 	}
5941 
5942 	ctx = calloc(1, sizeof(*ctx));
5943 	if (!ctx) {
5944 		return -ENOMEM;
5945 	}
5946 	ctx->base_name = base_name;
5947 	ctx->names = names;
5948 	ctx->max_bdevs = count;
5949 	ctx->cb_fn = cb_fn;
5950 	ctx->cb_ctx = cb_ctx;
5951 	ctx->trid = *trid;
5952 
5953 	if (bdev_opts) {
5954 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
5955 	} else {
5956 		bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
5957 	}
5958 
5959 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5960 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
5961 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
5962 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
5963 				free(entry);
5964 				break;
5965 			}
5966 		}
5967 	}
5968 
5969 	if (drv_opts) {
5970 		memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
5971 	} else {
5972 		spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->drv_opts, sizeof(ctx->drv_opts));
5973 	}
5974 
5975 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
5976 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
5977 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
5978 	ctx->drv_opts.disable_read_ana_log_page = true;
5979 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
5980 
5981 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
5982 		attach_cb = connect_attach_cb;
5983 	} else {
5984 		attach_cb = connect_set_failover_cb;
5985 	}
5986 
5987 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
5988 	if (ctx->probe_ctx == NULL) {
5989 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
5990 		free(ctx);
5991 		return -ENODEV;
5992 	}
5993 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
5994 
5995 	return 0;
5996 }
5997 
5998 struct bdev_nvme_delete_ctx {
5999 	char                        *name;
6000 	struct nvme_path_id         path_id;
6001 	bdev_nvme_delete_done_fn    delete_done;
6002 	void                        *delete_done_ctx;
6003 	uint64_t                    timeout_ticks;
6004 	struct spdk_poller          *poller;
6005 };
6006 
6007 static void
6008 free_bdev_nvme_delete_ctx(struct bdev_nvme_delete_ctx *ctx)
6009 {
6010 	if (ctx != NULL) {
6011 		free(ctx->name);
6012 		free(ctx);
6013 	}
6014 }
6015 
6016 static bool
6017 nvme_path_id_compare(struct nvme_path_id *p, const struct nvme_path_id *path_id)
6018 {
6019 	if (path_id->trid.trtype != 0) {
6020 		if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
6021 			if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
6022 				return false;
6023 			}
6024 		} else {
6025 			if (path_id->trid.trtype != p->trid.trtype) {
6026 				return false;
6027 			}
6028 		}
6029 	}
6030 
6031 	if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
6032 		if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
6033 			return false;
6034 		}
6035 	}
6036 
6037 	if (path_id->trid.adrfam != 0) {
6038 		if (path_id->trid.adrfam != p->trid.adrfam) {
6039 			return false;
6040 		}
6041 	}
6042 
6043 	if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
6044 		if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
6045 			return false;
6046 		}
6047 	}
6048 
6049 	if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
6050 		if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
6051 			return false;
6052 		}
6053 	}
6054 
6055 	if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
6056 		if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
6057 			return false;
6058 		}
6059 	}
6060 
6061 	if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
6062 		if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
6063 			return false;
6064 		}
6065 	}
6066 
6067 	return true;
6068 }
6069 
6070 static bool
6071 nvme_path_id_exists(const char *name, const struct nvme_path_id *path_id)
6072 {
6073 	struct nvme_bdev_ctrlr  *nbdev_ctrlr;
6074 	struct nvme_ctrlr       *ctrlr;
6075 	struct nvme_path_id     *p;
6076 
6077 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6078 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6079 	if (!nbdev_ctrlr) {
6080 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6081 		return false;
6082 	}
6083 
6084 	TAILQ_FOREACH(ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6085 		pthread_mutex_lock(&ctrlr->mutex);
6086 		TAILQ_FOREACH(p, &ctrlr->trids, link) {
6087 			if (nvme_path_id_compare(p, path_id)) {
6088 				pthread_mutex_unlock(&ctrlr->mutex);
6089 				pthread_mutex_unlock(&g_bdev_nvme_mutex);
6090 				return true;
6091 			}
6092 		}
6093 		pthread_mutex_unlock(&ctrlr->mutex);
6094 	}
6095 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6096 
6097 	return false;
6098 }
6099 
6100 static int
6101 bdev_nvme_delete_complete_poll(void *arg)
6102 {
6103 	struct bdev_nvme_delete_ctx     *ctx = arg;
6104 	int                             rc = 0;
6105 
6106 	if (nvme_path_id_exists(ctx->name, &ctx->path_id)) {
6107 		if (ctx->timeout_ticks > spdk_get_ticks()) {
6108 			return SPDK_POLLER_BUSY;
6109 		}
6110 
6111 		SPDK_ERRLOG("NVMe path '%s' still exists after delete\n", ctx->name);
6112 		rc = -ETIMEDOUT;
6113 	}
6114 
6115 	spdk_poller_unregister(&ctx->poller);
6116 
6117 	ctx->delete_done(ctx->delete_done_ctx, rc);
6118 	free_bdev_nvme_delete_ctx(ctx);
6119 
6120 	return SPDK_POLLER_BUSY;
6121 }
6122 
6123 static int
6124 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id)
6125 {
6126 	struct nvme_path_id	*p, *t;
6127 	spdk_msg_fn		msg_fn;
6128 	int			rc = -ENXIO;
6129 
6130 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6131 
6132 	TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
6133 		if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) {
6134 			break;
6135 		}
6136 
6137 		if (!nvme_path_id_compare(p, path_id)) {
6138 			continue;
6139 		}
6140 
6141 		/* We are not using the specified path. */
6142 		TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
6143 		free(p);
6144 		rc = 0;
6145 	}
6146 
6147 	if (p == NULL || !nvme_path_id_compare(p, path_id)) {
6148 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
6149 		return rc;
6150 	}
6151 
6152 	/* If we made it here, then this path is a match! Now we need to remove it. */
6153 
6154 	/* This is the active path in use right now. The active path is always the first in the list. */
6155 	assert(p == nvme_ctrlr->active_path_id);
6156 
6157 	if (!TAILQ_NEXT(p, link)) {
6158 		/* The current path is the only path. */
6159 		msg_fn = _nvme_ctrlr_destruct;
6160 		rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false);
6161 	} else {
6162 		/* There is an alternative path. */
6163 		msg_fn = _bdev_nvme_reset_ctrlr;
6164 		rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, true);
6165 	}
6166 
6167 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6168 
6169 	if (rc == 0) {
6170 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
6171 	} else if (rc == -EALREADY) {
6172 		rc = 0;
6173 	}
6174 
6175 	return rc;
6176 }
6177 
6178 int
6179 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id,
6180 		 bdev_nvme_delete_done_fn delete_done, void *delete_done_ctx)
6181 {
6182 	struct nvme_bdev_ctrlr		*nbdev_ctrlr;
6183 	struct nvme_ctrlr		*nvme_ctrlr, *tmp_nvme_ctrlr;
6184 	struct bdev_nvme_delete_ctx     *ctx = NULL;
6185 	int				rc = -ENXIO, _rc;
6186 
6187 	if (name == NULL || path_id == NULL) {
6188 		rc = -EINVAL;
6189 		goto exit;
6190 	}
6191 
6192 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6193 
6194 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6195 	if (nbdev_ctrlr == NULL) {
6196 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6197 
6198 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
6199 		rc = -ENODEV;
6200 		goto exit;
6201 	}
6202 
6203 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
6204 		_rc = _bdev_nvme_delete(nvme_ctrlr, path_id);
6205 		if (_rc < 0 && _rc != -ENXIO) {
6206 			pthread_mutex_unlock(&g_bdev_nvme_mutex);
6207 			rc = _rc;
6208 			goto exit;
6209 		} else if (_rc == 0) {
6210 			/* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr
6211 			 * was deleted successfully. To remember the successful deletion,
6212 			 * overwrite rc only if _rc is zero.
6213 			 */
6214 			rc = 0;
6215 		}
6216 	}
6217 
6218 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6219 
6220 	if (rc != 0 || delete_done == NULL) {
6221 		goto exit;
6222 	}
6223 
6224 	ctx = calloc(1, sizeof(*ctx));
6225 	if (ctx == NULL) {
6226 		SPDK_ERRLOG("Failed to allocate context for bdev_nvme_delete\n");
6227 		rc = -ENOMEM;
6228 		goto exit;
6229 	}
6230 
6231 	ctx->name = strdup(name);
6232 	if (ctx->name == NULL) {
6233 		SPDK_ERRLOG("Failed to copy controller name for deletion\n");
6234 		rc = -ENOMEM;
6235 		goto exit;
6236 	}
6237 
6238 	ctx->delete_done = delete_done;
6239 	ctx->delete_done_ctx = delete_done_ctx;
6240 	ctx->path_id = *path_id;
6241 	ctx->timeout_ticks = spdk_get_ticks() + 10 * spdk_get_ticks_hz();
6242 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_delete_complete_poll, ctx, 1000);
6243 	if (ctx->poller == NULL) {
6244 		SPDK_ERRLOG("Failed to register bdev_nvme_delete poller\n");
6245 		rc = -ENOMEM;
6246 		goto exit;
6247 	}
6248 
6249 exit:
6250 	if (rc != 0) {
6251 		free_bdev_nvme_delete_ctx(ctx);
6252 	}
6253 
6254 	return rc;
6255 }
6256 
6257 #define DISCOVERY_INFOLOG(ctx, format, ...) \
6258 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6259 
6260 #define DISCOVERY_ERRLOG(ctx, format, ...) \
6261 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6262 
6263 struct discovery_entry_ctx {
6264 	char						name[128];
6265 	struct spdk_nvme_transport_id			trid;
6266 	struct spdk_nvme_ctrlr_opts			drv_opts;
6267 	struct spdk_nvmf_discovery_log_page_entry	entry;
6268 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
6269 	struct discovery_ctx				*ctx;
6270 };
6271 
6272 struct discovery_ctx {
6273 	char					*name;
6274 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
6275 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
6276 	void					*cb_ctx;
6277 	struct spdk_nvme_probe_ctx		*probe_ctx;
6278 	struct spdk_nvme_detach_ctx		*detach_ctx;
6279 	struct spdk_nvme_ctrlr			*ctrlr;
6280 	struct spdk_nvme_transport_id		trid;
6281 	struct discovery_entry_ctx		*entry_ctx_in_use;
6282 	struct spdk_poller			*poller;
6283 	struct spdk_nvme_ctrlr_opts		drv_opts;
6284 	struct nvme_ctrlr_opts			bdev_opts;
6285 	struct spdk_nvmf_discovery_log_page	*log_page;
6286 	TAILQ_ENTRY(discovery_ctx)		tailq;
6287 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
6288 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
6289 	int					rc;
6290 	bool					wait_for_attach;
6291 	uint64_t				timeout_ticks;
6292 	/* Denotes that the discovery service is being started. We're waiting
6293 	 * for the initial connection to the discovery controller to be
6294 	 * established and attach discovered NVM ctrlrs.
6295 	 */
6296 	bool					initializing;
6297 	/* Denotes if a discovery is currently in progress for this context.
6298 	 * That includes connecting to newly discovered subsystems.  Used to
6299 	 * ensure we do not start a new discovery until an existing one is
6300 	 * complete.
6301 	 */
6302 	bool					in_progress;
6303 
6304 	/* Denotes if another discovery is needed after the one in progress
6305 	 * completes.  Set when we receive an AER completion while a discovery
6306 	 * is already in progress.
6307 	 */
6308 	bool					pending;
6309 
6310 	/* Signal to the discovery context poller that it should stop the
6311 	 * discovery service, including detaching from the current discovery
6312 	 * controller.
6313 	 */
6314 	bool					stop;
6315 
6316 	struct spdk_thread			*calling_thread;
6317 	uint32_t				index;
6318 	uint32_t				attach_in_progress;
6319 	char					*hostnqn;
6320 
6321 	/* Denotes if the discovery service was started by the mdns discovery.
6322 	 */
6323 	bool					from_mdns_discovery_service;
6324 };
6325 
6326 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
6327 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
6328 
6329 static void get_discovery_log_page(struct discovery_ctx *ctx);
6330 
6331 static void
6332 free_discovery_ctx(struct discovery_ctx *ctx)
6333 {
6334 	free(ctx->log_page);
6335 	free(ctx->hostnqn);
6336 	free(ctx->name);
6337 	free(ctx);
6338 }
6339 
6340 static void
6341 discovery_complete(struct discovery_ctx *ctx)
6342 {
6343 	ctx->initializing = false;
6344 	ctx->in_progress = false;
6345 	if (ctx->pending) {
6346 		ctx->pending = false;
6347 		get_discovery_log_page(ctx);
6348 	}
6349 }
6350 
6351 static void
6352 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
6353 			       struct spdk_nvmf_discovery_log_page_entry *entry)
6354 {
6355 	char *space;
6356 
6357 	trid->trtype = entry->trtype;
6358 	trid->adrfam = entry->adrfam;
6359 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
6360 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
6361 	/* Because the source buffer (entry->subnqn) is longer than trid->subnqn, and
6362 	 * before call to this function trid->subnqn is zeroed out, we need
6363 	 * to copy sizeof(trid->subnqn) minus one byte to make sure the last character
6364 	 * remains 0. Then we can shorten the string (replace ' ' with 0) if required
6365 	 */
6366 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn) - 1);
6367 
6368 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
6369 	 * But the log page entries typically pad them with spaces, not zeroes.
6370 	 * So add a NULL terminator to each of these fields at the appropriate
6371 	 * location.
6372 	 */
6373 	space = strchr(trid->traddr, ' ');
6374 	if (space) {
6375 		*space = 0;
6376 	}
6377 	space = strchr(trid->trsvcid, ' ');
6378 	if (space) {
6379 		*space = 0;
6380 	}
6381 	space = strchr(trid->subnqn, ' ');
6382 	if (space) {
6383 		*space = 0;
6384 	}
6385 }
6386 
6387 static void
6388 _stop_discovery(void *_ctx)
6389 {
6390 	struct discovery_ctx *ctx = _ctx;
6391 
6392 	if (ctx->attach_in_progress > 0) {
6393 		spdk_thread_send_msg(spdk_get_thread(), _stop_discovery, ctx);
6394 		return;
6395 	}
6396 
6397 	ctx->stop = true;
6398 
6399 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
6400 		struct discovery_entry_ctx *entry_ctx;
6401 		struct nvme_path_id path = {};
6402 
6403 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
6404 		path.trid = entry_ctx->trid;
6405 		bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6406 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6407 		free(entry_ctx);
6408 	}
6409 
6410 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
6411 		struct discovery_entry_ctx *entry_ctx;
6412 
6413 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6414 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6415 		free(entry_ctx);
6416 	}
6417 
6418 	free(ctx->entry_ctx_in_use);
6419 	ctx->entry_ctx_in_use = NULL;
6420 }
6421 
6422 static void
6423 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6424 {
6425 	ctx->stop_cb_fn = cb_fn;
6426 	ctx->cb_ctx = cb_ctx;
6427 
6428 	if (ctx->attach_in_progress > 0) {
6429 		DISCOVERY_INFOLOG(ctx, "stopping discovery with attach_in_progress: %"PRIu32"\n",
6430 				  ctx->attach_in_progress);
6431 	}
6432 
6433 	_stop_discovery(ctx);
6434 }
6435 
6436 static void
6437 remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr)
6438 {
6439 	struct discovery_ctx *d_ctx;
6440 	struct nvme_path_id *path_id;
6441 	struct spdk_nvme_transport_id trid = {};
6442 	struct discovery_entry_ctx *entry_ctx, *tmp;
6443 
6444 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
6445 
6446 	TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6447 		TAILQ_FOREACH_SAFE(entry_ctx, &d_ctx->nvm_entry_ctxs, tailq, tmp) {
6448 			build_trid_from_log_page_entry(&trid, &entry_ctx->entry);
6449 			if (spdk_nvme_transport_id_compare(&trid, &path_id->trid) != 0) {
6450 				continue;
6451 			}
6452 
6453 			TAILQ_REMOVE(&d_ctx->nvm_entry_ctxs, entry_ctx, tailq);
6454 			free(entry_ctx);
6455 			DISCOVERY_INFOLOG(d_ctx, "Remove discovery entry: %s:%s:%s\n",
6456 					  trid.subnqn, trid.traddr, trid.trsvcid);
6457 
6458 			/* Fail discovery ctrlr to force reattach attempt */
6459 			spdk_nvme_ctrlr_fail(d_ctx->ctrlr);
6460 		}
6461 	}
6462 }
6463 
6464 static void
6465 discovery_remove_controllers(struct discovery_ctx *ctx)
6466 {
6467 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
6468 	struct discovery_entry_ctx *entry_ctx, *tmp;
6469 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6470 	struct spdk_nvme_transport_id old_trid = {};
6471 	uint64_t numrec, i;
6472 	bool found;
6473 
6474 	numrec = from_le64(&log_page->numrec);
6475 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
6476 		found = false;
6477 		old_entry = &entry_ctx->entry;
6478 		build_trid_from_log_page_entry(&old_trid, old_entry);
6479 		for (i = 0; i < numrec; i++) {
6480 			new_entry = &log_page->entries[i];
6481 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
6482 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
6483 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6484 				found = true;
6485 				break;
6486 			}
6487 		}
6488 		if (!found) {
6489 			struct nvme_path_id path = {};
6490 
6491 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
6492 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6493 
6494 			path.trid = entry_ctx->trid;
6495 			bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6496 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6497 			free(entry_ctx);
6498 		}
6499 	}
6500 	free(log_page);
6501 	ctx->log_page = NULL;
6502 	discovery_complete(ctx);
6503 }
6504 
6505 static void
6506 complete_discovery_start(struct discovery_ctx *ctx, int status)
6507 {
6508 	ctx->timeout_ticks = 0;
6509 	ctx->rc = status;
6510 	if (ctx->start_cb_fn) {
6511 		ctx->start_cb_fn(ctx->cb_ctx, status);
6512 		ctx->start_cb_fn = NULL;
6513 		ctx->cb_ctx = NULL;
6514 	}
6515 }
6516 
6517 static void
6518 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
6519 {
6520 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
6521 	struct discovery_ctx *ctx = entry_ctx->ctx;
6522 
6523 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
6524 	ctx->attach_in_progress--;
6525 	if (ctx->attach_in_progress == 0) {
6526 		complete_discovery_start(ctx, ctx->rc);
6527 		if (ctx->initializing && ctx->rc != 0) {
6528 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
6529 			stop_discovery(ctx, NULL, ctx->cb_ctx);
6530 		} else {
6531 			discovery_remove_controllers(ctx);
6532 		}
6533 	}
6534 }
6535 
6536 static struct discovery_entry_ctx *
6537 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
6538 {
6539 	struct discovery_entry_ctx *new_ctx;
6540 
6541 	new_ctx = calloc(1, sizeof(*new_ctx));
6542 	if (new_ctx == NULL) {
6543 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6544 		return NULL;
6545 	}
6546 
6547 	new_ctx->ctx = ctx;
6548 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
6549 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6550 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6551 	return new_ctx;
6552 }
6553 
6554 static void
6555 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
6556 		      struct spdk_nvmf_discovery_log_page *log_page)
6557 {
6558 	struct discovery_ctx *ctx = cb_arg;
6559 	struct discovery_entry_ctx *entry_ctx, *tmp;
6560 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6561 	uint64_t numrec, i;
6562 	bool found;
6563 
6564 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
6565 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6566 		return;
6567 	}
6568 
6569 	ctx->log_page = log_page;
6570 	assert(ctx->attach_in_progress == 0);
6571 	numrec = from_le64(&log_page->numrec);
6572 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
6573 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6574 		free(entry_ctx);
6575 	}
6576 	for (i = 0; i < numrec; i++) {
6577 		found = false;
6578 		new_entry = &log_page->entries[i];
6579 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY_CURRENT ||
6580 		    new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
6581 			struct discovery_entry_ctx *new_ctx;
6582 			struct spdk_nvme_transport_id trid = {};
6583 
6584 			build_trid_from_log_page_entry(&trid, new_entry);
6585 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
6586 			if (new_ctx == NULL) {
6587 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6588 				break;
6589 			}
6590 
6591 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
6592 			continue;
6593 		}
6594 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
6595 			old_entry = &entry_ctx->entry;
6596 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
6597 				found = true;
6598 				break;
6599 			}
6600 		}
6601 		if (!found) {
6602 			struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx;
6603 			struct discovery_ctx *d_ctx;
6604 
6605 			TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6606 				TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) {
6607 					if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
6608 						    sizeof(new_entry->subnqn))) {
6609 						break;
6610 					}
6611 				}
6612 				if (subnqn_ctx) {
6613 					break;
6614 				}
6615 			}
6616 
6617 			new_ctx = calloc(1, sizeof(*new_ctx));
6618 			if (new_ctx == NULL) {
6619 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6620 				break;
6621 			}
6622 
6623 			new_ctx->ctx = ctx;
6624 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
6625 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
6626 			if (subnqn_ctx) {
6627 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
6628 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
6629 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6630 						  new_ctx->name);
6631 			} else {
6632 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
6633 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
6634 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6635 						  new_ctx->name);
6636 			}
6637 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6638 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6639 			rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
6640 					      discovery_attach_controller_done, new_ctx,
6641 					      &new_ctx->drv_opts, &ctx->bdev_opts, true);
6642 			if (rc == 0) {
6643 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
6644 				ctx->attach_in_progress++;
6645 			} else {
6646 				DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
6647 			}
6648 		}
6649 	}
6650 
6651 	if (ctx->attach_in_progress == 0) {
6652 		discovery_remove_controllers(ctx);
6653 	}
6654 }
6655 
6656 static void
6657 get_discovery_log_page(struct discovery_ctx *ctx)
6658 {
6659 	int rc;
6660 
6661 	assert(ctx->in_progress == false);
6662 	ctx->in_progress = true;
6663 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
6664 	if (rc != 0) {
6665 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6666 	}
6667 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
6668 }
6669 
6670 static void
6671 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
6672 {
6673 	struct discovery_ctx *ctx = arg;
6674 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
6675 
6676 	if (spdk_nvme_cpl_is_error(cpl)) {
6677 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
6678 		return;
6679 	}
6680 
6681 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
6682 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
6683 		return;
6684 	}
6685 
6686 	DISCOVERY_INFOLOG(ctx, "got aer\n");
6687 	if (ctx->in_progress) {
6688 		ctx->pending = true;
6689 		return;
6690 	}
6691 
6692 	get_discovery_log_page(ctx);
6693 }
6694 
6695 static void
6696 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6697 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
6698 {
6699 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6700 	struct discovery_ctx *ctx;
6701 
6702 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
6703 
6704 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
6705 	ctx->probe_ctx = NULL;
6706 	ctx->ctrlr = ctrlr;
6707 
6708 	if (ctx->rc != 0) {
6709 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
6710 				 ctx->rc);
6711 		return;
6712 	}
6713 
6714 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
6715 }
6716 
6717 static int
6718 discovery_poller(void *arg)
6719 {
6720 	struct discovery_ctx *ctx = arg;
6721 	struct spdk_nvme_transport_id *trid;
6722 	int rc;
6723 
6724 	if (ctx->detach_ctx) {
6725 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
6726 		if (rc != -EAGAIN) {
6727 			ctx->detach_ctx = NULL;
6728 			ctx->ctrlr = NULL;
6729 		}
6730 	} else if (ctx->stop) {
6731 		if (ctx->ctrlr != NULL) {
6732 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
6733 			if (rc == 0) {
6734 				return SPDK_POLLER_BUSY;
6735 			}
6736 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
6737 		}
6738 		spdk_poller_unregister(&ctx->poller);
6739 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
6740 		assert(ctx->start_cb_fn == NULL);
6741 		if (ctx->stop_cb_fn != NULL) {
6742 			ctx->stop_cb_fn(ctx->cb_ctx);
6743 		}
6744 		free_discovery_ctx(ctx);
6745 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
6746 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6747 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
6748 			assert(ctx->initializing);
6749 			spdk_poller_unregister(&ctx->poller);
6750 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
6751 			complete_discovery_start(ctx, -ETIMEDOUT);
6752 			stop_discovery(ctx, NULL, NULL);
6753 			free_discovery_ctx(ctx);
6754 			return SPDK_POLLER_BUSY;
6755 		}
6756 
6757 		assert(ctx->entry_ctx_in_use == NULL);
6758 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6759 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6760 		trid = &ctx->entry_ctx_in_use->trid;
6761 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
6762 		if (ctx->probe_ctx) {
6763 			spdk_poller_unregister(&ctx->poller);
6764 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
6765 		} else {
6766 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
6767 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6768 			ctx->entry_ctx_in_use = NULL;
6769 		}
6770 	} else if (ctx->probe_ctx) {
6771 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6772 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
6773 			complete_discovery_start(ctx, -ETIMEDOUT);
6774 			return SPDK_POLLER_BUSY;
6775 		}
6776 
6777 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
6778 		if (rc != -EAGAIN) {
6779 			if (ctx->rc != 0) {
6780 				assert(ctx->initializing);
6781 				stop_discovery(ctx, NULL, ctx->cb_ctx);
6782 			} else {
6783 				assert(rc == 0);
6784 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
6785 				ctx->rc = rc;
6786 				get_discovery_log_page(ctx);
6787 			}
6788 		}
6789 	} else {
6790 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6791 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
6792 			complete_discovery_start(ctx, -ETIMEDOUT);
6793 			/* We need to wait until all NVM ctrlrs are attached before we stop the
6794 			 * discovery service to make sure we don't detach a ctrlr that is still
6795 			 * being attached.
6796 			 */
6797 			if (ctx->attach_in_progress == 0) {
6798 				stop_discovery(ctx, NULL, ctx->cb_ctx);
6799 				return SPDK_POLLER_BUSY;
6800 			}
6801 		}
6802 
6803 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
6804 		if (rc < 0) {
6805 			spdk_poller_unregister(&ctx->poller);
6806 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
6807 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6808 			ctx->entry_ctx_in_use = NULL;
6809 
6810 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
6811 			if (rc != 0) {
6812 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
6813 				ctx->ctrlr = NULL;
6814 			}
6815 		}
6816 	}
6817 
6818 	return SPDK_POLLER_BUSY;
6819 }
6820 
6821 static void
6822 start_discovery_poller(void *arg)
6823 {
6824 	struct discovery_ctx *ctx = arg;
6825 
6826 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
6827 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
6828 }
6829 
6830 int
6831 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
6832 			  const char *base_name,
6833 			  struct spdk_nvme_ctrlr_opts *drv_opts,
6834 			  struct nvme_ctrlr_opts *bdev_opts,
6835 			  uint64_t attach_timeout,
6836 			  bool from_mdns,
6837 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
6838 {
6839 	struct discovery_ctx *ctx;
6840 	struct discovery_entry_ctx *discovery_entry_ctx;
6841 
6842 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
6843 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6844 		if (strcmp(ctx->name, base_name) == 0) {
6845 			return -EEXIST;
6846 		}
6847 
6848 		if (ctx->entry_ctx_in_use != NULL) {
6849 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
6850 				return -EEXIST;
6851 			}
6852 		}
6853 
6854 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
6855 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
6856 				return -EEXIST;
6857 			}
6858 		}
6859 	}
6860 
6861 	ctx = calloc(1, sizeof(*ctx));
6862 	if (ctx == NULL) {
6863 		return -ENOMEM;
6864 	}
6865 
6866 	ctx->name = strdup(base_name);
6867 	if (ctx->name == NULL) {
6868 		free_discovery_ctx(ctx);
6869 		return -ENOMEM;
6870 	}
6871 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6872 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6873 	ctx->from_mdns_discovery_service = from_mdns;
6874 	ctx->bdev_opts.from_discovery_service = true;
6875 	ctx->calling_thread = spdk_get_thread();
6876 	ctx->start_cb_fn = cb_fn;
6877 	ctx->cb_ctx = cb_ctx;
6878 	ctx->initializing = true;
6879 	if (ctx->start_cb_fn) {
6880 		/* We can use this when dumping json to denote if this RPC parameter
6881 		 * was specified or not.
6882 		 */
6883 		ctx->wait_for_attach = true;
6884 	}
6885 	if (attach_timeout != 0) {
6886 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
6887 				     spdk_get_ticks_hz() / 1000ull;
6888 	}
6889 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
6890 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
6891 	memcpy(&ctx->trid, trid, sizeof(*trid));
6892 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
6893 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
6894 	if (ctx->hostnqn == NULL) {
6895 		free_discovery_ctx(ctx);
6896 		return -ENOMEM;
6897 	}
6898 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
6899 	if (discovery_entry_ctx == NULL) {
6900 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6901 		free_discovery_ctx(ctx);
6902 		return -ENOMEM;
6903 	}
6904 
6905 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
6906 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
6907 	return 0;
6908 }
6909 
6910 int
6911 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6912 {
6913 	struct discovery_ctx *ctx;
6914 
6915 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6916 		if (strcmp(name, ctx->name) == 0) {
6917 			if (ctx->stop) {
6918 				return -EALREADY;
6919 			}
6920 			/* If we're still starting the discovery service and ->rc is non-zero, we're
6921 			 * going to stop it as soon as we can
6922 			 */
6923 			if (ctx->initializing && ctx->rc != 0) {
6924 				return -EALREADY;
6925 			}
6926 			stop_discovery(ctx, cb_fn, cb_ctx);
6927 			return 0;
6928 		}
6929 	}
6930 
6931 	return -ENOENT;
6932 }
6933 
6934 static int
6935 bdev_nvme_library_init(void)
6936 {
6937 	g_bdev_nvme_init_thread = spdk_get_thread();
6938 
6939 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
6940 				bdev_nvme_destroy_poll_group_cb,
6941 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
6942 
6943 	return 0;
6944 }
6945 
6946 static void
6947 bdev_nvme_fini_destruct_ctrlrs(void)
6948 {
6949 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
6950 	struct nvme_ctrlr *nvme_ctrlr;
6951 
6952 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6953 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
6954 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6955 			pthread_mutex_lock(&nvme_ctrlr->mutex);
6956 			if (nvme_ctrlr->destruct) {
6957 				/* This controller's destruction was already started
6958 				 * before the application started shutting down
6959 				 */
6960 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
6961 				continue;
6962 			}
6963 			nvme_ctrlr->destruct = true;
6964 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
6965 
6966 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
6967 					     nvme_ctrlr);
6968 		}
6969 	}
6970 
6971 	g_bdev_nvme_module_finish = true;
6972 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
6973 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6974 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
6975 		spdk_bdev_module_fini_done();
6976 		return;
6977 	}
6978 
6979 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6980 }
6981 
6982 static void
6983 check_discovery_fini(void *arg)
6984 {
6985 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
6986 		bdev_nvme_fini_destruct_ctrlrs();
6987 	}
6988 }
6989 
6990 static void
6991 bdev_nvme_library_fini(void)
6992 {
6993 	struct nvme_probe_skip_entry *entry, *entry_tmp;
6994 	struct discovery_ctx *ctx;
6995 
6996 	spdk_poller_unregister(&g_hotplug_poller);
6997 	free(g_hotplug_probe_ctx);
6998 	g_hotplug_probe_ctx = NULL;
6999 
7000 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
7001 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
7002 		free(entry);
7003 	}
7004 
7005 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
7006 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7007 		bdev_nvme_fini_destruct_ctrlrs();
7008 	} else {
7009 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7010 			stop_discovery(ctx, check_discovery_fini, NULL);
7011 		}
7012 	}
7013 }
7014 
7015 static void
7016 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
7017 {
7018 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7019 	struct spdk_bdev *bdev = bdev_io->bdev;
7020 	struct spdk_dif_ctx dif_ctx;
7021 	struct spdk_dif_error err_blk = {};
7022 	int rc;
7023 	struct spdk_dif_ctx_init_ext_opts dif_opts;
7024 
7025 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
7026 	dif_opts.dif_pi_format = SPDK_DIF_PI_FORMAT_16;
7027 	rc = spdk_dif_ctx_init(&dif_ctx,
7028 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
7029 			       bdev->dif_is_head_of_md, bdev->dif_type, bdev->dif_check_flags,
7030 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0, &dif_opts);
7031 	if (rc != 0) {
7032 		SPDK_ERRLOG("Initialization of DIF context failed\n");
7033 		return;
7034 	}
7035 
7036 	if (bdev->md_interleave) {
7037 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7038 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7039 	} else {
7040 		struct iovec md_iov = {
7041 			.iov_base	= bdev_io->u.bdev.md_buf,
7042 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
7043 		};
7044 
7045 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7046 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7047 	}
7048 
7049 	if (rc != 0) {
7050 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
7051 			    err_blk.err_type, err_blk.err_offset);
7052 	} else {
7053 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
7054 	}
7055 }
7056 
7057 static void
7058 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7059 {
7060 	struct nvme_bdev_io *bio = ref;
7061 
7062 	if (spdk_nvme_cpl_is_success(cpl)) {
7063 		/* Run PI verification for read data buffer. */
7064 		bdev_nvme_verify_pi_error(bio);
7065 	}
7066 
7067 	/* Return original completion status */
7068 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7069 }
7070 
7071 static void
7072 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7073 {
7074 	struct nvme_bdev_io *bio = ref;
7075 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7076 	int ret;
7077 
7078 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7079 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
7080 			    cpl->status.sct, cpl->status.sc);
7081 
7082 		/* Save completion status to use after verifying PI error. */
7083 		bio->cpl = *cpl;
7084 
7085 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
7086 			/* Read without PI checking to verify PI error. */
7087 			ret = bdev_nvme_no_pi_readv(bio,
7088 						    bdev_io->u.bdev.iovs,
7089 						    bdev_io->u.bdev.iovcnt,
7090 						    bdev_io->u.bdev.md_buf,
7091 						    bdev_io->u.bdev.num_blocks,
7092 						    bdev_io->u.bdev.offset_blocks);
7093 			if (ret == 0) {
7094 				return;
7095 			}
7096 		}
7097 	}
7098 
7099 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7100 }
7101 
7102 static void
7103 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7104 {
7105 	struct nvme_bdev_io *bio = ref;
7106 
7107 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7108 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
7109 			    cpl->status.sct, cpl->status.sc);
7110 		/* Run PI verification for write data buffer if PI error is detected. */
7111 		bdev_nvme_verify_pi_error(bio);
7112 	}
7113 
7114 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7115 }
7116 
7117 static void
7118 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7119 {
7120 	struct nvme_bdev_io *bio = ref;
7121 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7122 
7123 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
7124 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
7125 	 */
7126 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
7127 
7128 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7129 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
7130 			    cpl->status.sct, cpl->status.sc);
7131 		/* Run PI verification for zone append data buffer if PI error is detected. */
7132 		bdev_nvme_verify_pi_error(bio);
7133 	}
7134 
7135 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7136 }
7137 
7138 static void
7139 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7140 {
7141 	struct nvme_bdev_io *bio = ref;
7142 
7143 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7144 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
7145 			    cpl->status.sct, cpl->status.sc);
7146 		/* Run PI verification for compare data buffer if PI error is detected. */
7147 		bdev_nvme_verify_pi_error(bio);
7148 	}
7149 
7150 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7151 }
7152 
7153 static void
7154 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7155 {
7156 	struct nvme_bdev_io *bio = ref;
7157 
7158 	/* Compare operation completion */
7159 	if (!bio->first_fused_completed) {
7160 		/* Save compare result for write callback */
7161 		bio->cpl = *cpl;
7162 		bio->first_fused_completed = true;
7163 		return;
7164 	}
7165 
7166 	/* Write operation completion */
7167 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
7168 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
7169 		 * complete the IO with the compare operation's status.
7170 		 */
7171 		if (!spdk_nvme_cpl_is_error(cpl)) {
7172 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
7173 		}
7174 
7175 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7176 	} else {
7177 		bdev_nvme_io_complete_nvme_status(bio, cpl);
7178 	}
7179 }
7180 
7181 static void
7182 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
7183 {
7184 	struct nvme_bdev_io *bio = ref;
7185 
7186 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7187 }
7188 
7189 static int
7190 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
7191 {
7192 	switch (desc->zt) {
7193 	case SPDK_NVME_ZONE_TYPE_SEQWR:
7194 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
7195 		break;
7196 	default:
7197 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
7198 		return -EIO;
7199 	}
7200 
7201 	switch (desc->zs) {
7202 	case SPDK_NVME_ZONE_STATE_EMPTY:
7203 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
7204 		break;
7205 	case SPDK_NVME_ZONE_STATE_IOPEN:
7206 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
7207 		break;
7208 	case SPDK_NVME_ZONE_STATE_EOPEN:
7209 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
7210 		break;
7211 	case SPDK_NVME_ZONE_STATE_CLOSED:
7212 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
7213 		break;
7214 	case SPDK_NVME_ZONE_STATE_RONLY:
7215 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
7216 		break;
7217 	case SPDK_NVME_ZONE_STATE_FULL:
7218 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
7219 		break;
7220 	case SPDK_NVME_ZONE_STATE_OFFLINE:
7221 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
7222 		break;
7223 	default:
7224 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
7225 		return -EIO;
7226 	}
7227 
7228 	info->zone_id = desc->zslba;
7229 	info->write_pointer = desc->wp;
7230 	info->capacity = desc->zcap;
7231 
7232 	return 0;
7233 }
7234 
7235 static void
7236 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
7237 {
7238 	struct nvme_bdev_io *bio = ref;
7239 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7240 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
7241 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
7242 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
7243 	uint64_t max_zones_per_buf, i;
7244 	uint32_t zone_report_bufsize;
7245 	struct spdk_nvme_ns *ns;
7246 	struct spdk_nvme_qpair *qpair;
7247 	int ret;
7248 
7249 	if (spdk_nvme_cpl_is_error(cpl)) {
7250 		goto out_complete_io_nvme_cpl;
7251 	}
7252 
7253 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
7254 		ret = -ENXIO;
7255 		goto out_complete_io_ret;
7256 	}
7257 
7258 	ns = bio->io_path->nvme_ns->ns;
7259 	qpair = bio->io_path->qpair->qpair;
7260 
7261 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7262 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
7263 			    sizeof(bio->zone_report_buf->descs[0]);
7264 
7265 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
7266 		ret = -EINVAL;
7267 		goto out_complete_io_ret;
7268 	}
7269 
7270 	if (!bio->zone_report_buf->nr_zones) {
7271 		ret = -EINVAL;
7272 		goto out_complete_io_ret;
7273 	}
7274 
7275 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
7276 		ret = fill_zone_from_report(&info[bio->handled_zones],
7277 					    &bio->zone_report_buf->descs[i]);
7278 		if (ret) {
7279 			goto out_complete_io_ret;
7280 		}
7281 		bio->handled_zones++;
7282 	}
7283 
7284 	if (bio->handled_zones < zones_to_copy) {
7285 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7286 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
7287 
7288 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
7289 		ret = spdk_nvme_zns_report_zones(ns, qpair,
7290 						 bio->zone_report_buf, zone_report_bufsize,
7291 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
7292 						 bdev_nvme_get_zone_info_done, bio);
7293 		if (!ret) {
7294 			return;
7295 		} else {
7296 			goto out_complete_io_ret;
7297 		}
7298 	}
7299 
7300 out_complete_io_nvme_cpl:
7301 	free(bio->zone_report_buf);
7302 	bio->zone_report_buf = NULL;
7303 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7304 	return;
7305 
7306 out_complete_io_ret:
7307 	free(bio->zone_report_buf);
7308 	bio->zone_report_buf = NULL;
7309 	bdev_nvme_io_complete(bio, ret);
7310 }
7311 
7312 static void
7313 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
7314 {
7315 	struct nvme_bdev_io *bio = ref;
7316 
7317 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7318 }
7319 
7320 static void
7321 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
7322 {
7323 	struct nvme_bdev_io *bio = ctx;
7324 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7325 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
7326 
7327 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
7328 
7329 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
7330 }
7331 
7332 static void
7333 bdev_nvme_abort_complete(void *ctx)
7334 {
7335 	struct nvme_bdev_io *bio = ctx;
7336 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7337 
7338 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
7339 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
7340 	} else {
7341 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
7342 	}
7343 }
7344 
7345 static void
7346 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
7347 {
7348 	struct nvme_bdev_io *bio = ref;
7349 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7350 
7351 	bio->cpl = *cpl;
7352 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_nvme_abort_complete, bio);
7353 }
7354 
7355 static void
7356 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
7357 {
7358 	struct nvme_bdev_io *bio = ref;
7359 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7360 
7361 	bio->cpl = *cpl;
7362 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
7363 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
7364 }
7365 
7366 static void
7367 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
7368 {
7369 	struct nvme_bdev_io *bio = ref;
7370 	struct iovec *iov;
7371 
7372 	bio->iov_offset = sgl_offset;
7373 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
7374 		iov = &bio->iovs[bio->iovpos];
7375 		if (bio->iov_offset < iov->iov_len) {
7376 			break;
7377 		}
7378 
7379 		bio->iov_offset -= iov->iov_len;
7380 	}
7381 }
7382 
7383 static int
7384 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
7385 {
7386 	struct nvme_bdev_io *bio = ref;
7387 	struct iovec *iov;
7388 
7389 	assert(bio->iovpos < bio->iovcnt);
7390 
7391 	iov = &bio->iovs[bio->iovpos];
7392 
7393 	*address = iov->iov_base;
7394 	*length = iov->iov_len;
7395 
7396 	if (bio->iov_offset) {
7397 		assert(bio->iov_offset <= iov->iov_len);
7398 		*address += bio->iov_offset;
7399 		*length -= bio->iov_offset;
7400 	}
7401 
7402 	bio->iov_offset += *length;
7403 	if (bio->iov_offset == iov->iov_len) {
7404 		bio->iovpos++;
7405 		bio->iov_offset = 0;
7406 	}
7407 
7408 	return 0;
7409 }
7410 
7411 static void
7412 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
7413 {
7414 	struct nvme_bdev_io *bio = ref;
7415 	struct iovec *iov;
7416 
7417 	bio->fused_iov_offset = sgl_offset;
7418 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
7419 		iov = &bio->fused_iovs[bio->fused_iovpos];
7420 		if (bio->fused_iov_offset < iov->iov_len) {
7421 			break;
7422 		}
7423 
7424 		bio->fused_iov_offset -= iov->iov_len;
7425 	}
7426 }
7427 
7428 static int
7429 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
7430 {
7431 	struct nvme_bdev_io *bio = ref;
7432 	struct iovec *iov;
7433 
7434 	assert(bio->fused_iovpos < bio->fused_iovcnt);
7435 
7436 	iov = &bio->fused_iovs[bio->fused_iovpos];
7437 
7438 	*address = iov->iov_base;
7439 	*length = iov->iov_len;
7440 
7441 	if (bio->fused_iov_offset) {
7442 		assert(bio->fused_iov_offset <= iov->iov_len);
7443 		*address += bio->fused_iov_offset;
7444 		*length -= bio->fused_iov_offset;
7445 	}
7446 
7447 	bio->fused_iov_offset += *length;
7448 	if (bio->fused_iov_offset == iov->iov_len) {
7449 		bio->fused_iovpos++;
7450 		bio->fused_iov_offset = 0;
7451 	}
7452 
7453 	return 0;
7454 }
7455 
7456 static int
7457 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7458 		      void *md, uint64_t lba_count, uint64_t lba)
7459 {
7460 	int rc;
7461 
7462 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
7463 		      lba_count, lba);
7464 
7465 	bio->iovs = iov;
7466 	bio->iovcnt = iovcnt;
7467 	bio->iovpos = 0;
7468 	bio->iov_offset = 0;
7469 
7470 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
7471 					    bio->io_path->qpair->qpair,
7472 					    lba, lba_count,
7473 					    bdev_nvme_no_pi_readv_done, bio, 0,
7474 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7475 					    md, 0, 0);
7476 
7477 	if (rc != 0 && rc != -ENOMEM) {
7478 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
7479 	}
7480 	return rc;
7481 }
7482 
7483 static int
7484 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7485 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7486 		struct spdk_memory_domain *domain, void *domain_ctx,
7487 		struct spdk_accel_sequence *seq)
7488 {
7489 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7490 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7491 	int rc;
7492 
7493 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7494 		      lba_count, lba);
7495 
7496 	bio->iovs = iov;
7497 	bio->iovcnt = iovcnt;
7498 	bio->iovpos = 0;
7499 	bio->iov_offset = 0;
7500 
7501 	if (domain != NULL || seq != NULL) {
7502 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7503 		bio->ext_opts.memory_domain = domain;
7504 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7505 		bio->ext_opts.io_flags = flags;
7506 		bio->ext_opts.metadata = md;
7507 		bio->ext_opts.accel_sequence = seq;
7508 
7509 		rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
7510 						bdev_nvme_readv_done, bio,
7511 						bdev_nvme_queued_reset_sgl,
7512 						bdev_nvme_queued_next_sge,
7513 						&bio->ext_opts);
7514 	} else if (iovcnt == 1) {
7515 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base,
7516 						   md, lba, lba_count, bdev_nvme_readv_done,
7517 						   bio, flags, 0, 0);
7518 	} else {
7519 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
7520 						    bdev_nvme_readv_done, bio, flags,
7521 						    bdev_nvme_queued_reset_sgl,
7522 						    bdev_nvme_queued_next_sge, md, 0, 0);
7523 	}
7524 
7525 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7526 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
7527 	}
7528 	return rc;
7529 }
7530 
7531 static int
7532 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7533 		 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7534 		 struct spdk_memory_domain *domain, void *domain_ctx,
7535 		 struct spdk_accel_sequence *seq)
7536 {
7537 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7538 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7539 	int rc;
7540 
7541 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7542 		      lba_count, lba);
7543 
7544 	bio->iovs = iov;
7545 	bio->iovcnt = iovcnt;
7546 	bio->iovpos = 0;
7547 	bio->iov_offset = 0;
7548 
7549 	if (domain != NULL || seq != NULL) {
7550 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7551 		bio->ext_opts.memory_domain = domain;
7552 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7553 		bio->ext_opts.io_flags = flags;
7554 		bio->ext_opts.metadata = md;
7555 		bio->ext_opts.accel_sequence = seq;
7556 
7557 		rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
7558 						 bdev_nvme_writev_done, bio,
7559 						 bdev_nvme_queued_reset_sgl,
7560 						 bdev_nvme_queued_next_sge,
7561 						 &bio->ext_opts);
7562 	} else if (iovcnt == 1) {
7563 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base,
7564 						    md, lba, lba_count, bdev_nvme_writev_done,
7565 						    bio, flags, 0, 0);
7566 	} else {
7567 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7568 						     bdev_nvme_writev_done, bio, flags,
7569 						     bdev_nvme_queued_reset_sgl,
7570 						     bdev_nvme_queued_next_sge, md, 0, 0);
7571 	}
7572 
7573 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7574 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
7575 	}
7576 	return rc;
7577 }
7578 
7579 static int
7580 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7581 		       void *md, uint64_t lba_count, uint64_t zslba,
7582 		       uint32_t flags)
7583 {
7584 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7585 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7586 	int rc;
7587 
7588 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
7589 		      lba_count, zslba);
7590 
7591 	bio->iovs = iov;
7592 	bio->iovcnt = iovcnt;
7593 	bio->iovpos = 0;
7594 	bio->iov_offset = 0;
7595 
7596 	if (iovcnt == 1) {
7597 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
7598 						       lba_count,
7599 						       bdev_nvme_zone_appendv_done, bio,
7600 						       flags,
7601 						       0, 0);
7602 	} else {
7603 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
7604 							bdev_nvme_zone_appendv_done, bio, flags,
7605 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7606 							md, 0, 0);
7607 	}
7608 
7609 	if (rc != 0 && rc != -ENOMEM) {
7610 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
7611 	}
7612 	return rc;
7613 }
7614 
7615 static int
7616 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7617 		   void *md, uint64_t lba_count, uint64_t lba,
7618 		   uint32_t flags)
7619 {
7620 	int rc;
7621 
7622 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7623 		      lba_count, lba);
7624 
7625 	bio->iovs = iov;
7626 	bio->iovcnt = iovcnt;
7627 	bio->iovpos = 0;
7628 	bio->iov_offset = 0;
7629 
7630 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
7631 					       bio->io_path->qpair->qpair,
7632 					       lba, lba_count,
7633 					       bdev_nvme_comparev_done, bio, flags,
7634 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7635 					       md, 0, 0);
7636 
7637 	if (rc != 0 && rc != -ENOMEM) {
7638 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
7639 	}
7640 	return rc;
7641 }
7642 
7643 static int
7644 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
7645 			      struct iovec *write_iov, int write_iovcnt,
7646 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
7647 {
7648 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7649 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7650 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7651 	int rc;
7652 
7653 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7654 		      lba_count, lba);
7655 
7656 	bio->iovs = cmp_iov;
7657 	bio->iovcnt = cmp_iovcnt;
7658 	bio->iovpos = 0;
7659 	bio->iov_offset = 0;
7660 	bio->fused_iovs = write_iov;
7661 	bio->fused_iovcnt = write_iovcnt;
7662 	bio->fused_iovpos = 0;
7663 	bio->fused_iov_offset = 0;
7664 
7665 	if (bdev_io->num_retries == 0) {
7666 		bio->first_fused_submitted = false;
7667 		bio->first_fused_completed = false;
7668 	}
7669 
7670 	if (!bio->first_fused_submitted) {
7671 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7672 		memset(&bio->cpl, 0, sizeof(bio->cpl));
7673 
7674 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
7675 						       bdev_nvme_comparev_and_writev_done, bio, flags,
7676 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
7677 		if (rc == 0) {
7678 			bio->first_fused_submitted = true;
7679 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7680 		} else {
7681 			if (rc != -ENOMEM) {
7682 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
7683 			}
7684 			return rc;
7685 		}
7686 	}
7687 
7688 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
7689 
7690 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7691 					     bdev_nvme_comparev_and_writev_done, bio, flags,
7692 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
7693 	if (rc != 0 && rc != -ENOMEM) {
7694 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
7695 		rc = 0;
7696 	}
7697 
7698 	return rc;
7699 }
7700 
7701 static int
7702 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
7703 {
7704 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
7705 	struct spdk_nvme_dsm_range *range;
7706 	uint64_t offset, remaining;
7707 	uint64_t num_ranges_u64;
7708 	uint16_t num_ranges;
7709 	int rc;
7710 
7711 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
7712 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7713 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
7714 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
7715 		return -EINVAL;
7716 	}
7717 	num_ranges = (uint16_t)num_ranges_u64;
7718 
7719 	offset = offset_blocks;
7720 	remaining = num_blocks;
7721 	range = &dsm_ranges[0];
7722 
7723 	/* Fill max-size ranges until the remaining blocks fit into one range */
7724 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
7725 		range->attributes.raw = 0;
7726 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7727 		range->starting_lba = offset;
7728 
7729 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7730 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7731 		range++;
7732 	}
7733 
7734 	/* Final range describes the remaining blocks */
7735 	range->attributes.raw = 0;
7736 	range->length = remaining;
7737 	range->starting_lba = offset;
7738 
7739 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
7740 			bio->io_path->qpair->qpair,
7741 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
7742 			dsm_ranges, num_ranges,
7743 			bdev_nvme_queued_done, bio);
7744 
7745 	return rc;
7746 }
7747 
7748 static int
7749 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
7750 {
7751 	if (num_blocks > UINT16_MAX + 1) {
7752 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
7753 		return -EINVAL;
7754 	}
7755 
7756 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
7757 					     bio->io_path->qpair->qpair,
7758 					     offset_blocks, num_blocks,
7759 					     bdev_nvme_queued_done, bio,
7760 					     0);
7761 }
7762 
7763 static int
7764 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
7765 			struct spdk_bdev_zone_info *info)
7766 {
7767 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7768 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7769 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7770 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7771 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
7772 
7773 	if (zone_id % zone_size != 0) {
7774 		return -EINVAL;
7775 	}
7776 
7777 	if (num_zones > total_zones || !num_zones) {
7778 		return -EINVAL;
7779 	}
7780 
7781 	assert(!bio->zone_report_buf);
7782 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
7783 	if (!bio->zone_report_buf) {
7784 		return -ENOMEM;
7785 	}
7786 
7787 	bio->handled_zones = 0;
7788 
7789 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
7790 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
7791 					  bdev_nvme_get_zone_info_done, bio);
7792 }
7793 
7794 static int
7795 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
7796 			  enum spdk_bdev_zone_action action)
7797 {
7798 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7799 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7800 
7801 	switch (action) {
7802 	case SPDK_BDEV_ZONE_CLOSE:
7803 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
7804 						bdev_nvme_zone_management_done, bio);
7805 	case SPDK_BDEV_ZONE_FINISH:
7806 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
7807 						 bdev_nvme_zone_management_done, bio);
7808 	case SPDK_BDEV_ZONE_OPEN:
7809 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
7810 					       bdev_nvme_zone_management_done, bio);
7811 	case SPDK_BDEV_ZONE_RESET:
7812 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
7813 						bdev_nvme_zone_management_done, bio);
7814 	case SPDK_BDEV_ZONE_OFFLINE:
7815 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
7816 						  bdev_nvme_zone_management_done, bio);
7817 	default:
7818 		return -EINVAL;
7819 	}
7820 }
7821 
7822 static void
7823 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
7824 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
7825 {
7826 	struct nvme_io_path *io_path;
7827 	struct nvme_ctrlr *nvme_ctrlr;
7828 	uint32_t max_xfer_size;
7829 	int rc = -ENXIO;
7830 
7831 	/* Choose the first ctrlr which is not failed. */
7832 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
7833 		nvme_ctrlr = io_path->qpair->ctrlr;
7834 
7835 		/* We should skip any unavailable nvme_ctrlr rather than checking
7836 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
7837 		 */
7838 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
7839 			continue;
7840 		}
7841 
7842 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
7843 
7844 		if (nbytes > max_xfer_size) {
7845 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7846 			rc = -EINVAL;
7847 			goto err;
7848 		}
7849 
7850 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
7851 						   bdev_nvme_admin_passthru_done, bio);
7852 		if (rc == 0) {
7853 			return;
7854 		}
7855 	}
7856 
7857 err:
7858 	bdev_nvme_admin_complete(bio, rc);
7859 }
7860 
7861 static int
7862 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
7863 		      void *buf, size_t nbytes)
7864 {
7865 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7866 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7867 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
7868 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
7869 
7870 	if (nbytes > max_xfer_size) {
7871 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7872 		return -EINVAL;
7873 	}
7874 
7875 	/*
7876 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
7877 	 * so fill it out automatically.
7878 	 */
7879 	cmd->nsid = spdk_nvme_ns_get_id(ns);
7880 
7881 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
7882 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
7883 }
7884 
7885 static int
7886 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
7887 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
7888 {
7889 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7890 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7891 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
7892 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
7893 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
7894 
7895 	if (nbytes > max_xfer_size) {
7896 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7897 		return -EINVAL;
7898 	}
7899 
7900 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
7901 		SPDK_ERRLOG("invalid meta data buffer size\n");
7902 		return -EINVAL;
7903 	}
7904 
7905 	/*
7906 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
7907 	 * so fill it out automatically.
7908 	 */
7909 	cmd->nsid = spdk_nvme_ns_get_id(ns);
7910 
7911 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
7912 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
7913 }
7914 
7915 static int
7916 bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio,
7917 			  struct spdk_nvme_cmd *cmd, struct iovec *iov, int iovcnt,
7918 			  size_t nbytes, void *md_buf, size_t md_len)
7919 {
7920 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7921 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7922 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
7923 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
7924 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
7925 
7926 	bio->iovs = iov;
7927 	bio->iovcnt = iovcnt;
7928 	bio->iovpos = 0;
7929 	bio->iov_offset = 0;
7930 
7931 	if (nbytes > max_xfer_size) {
7932 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7933 		return -EINVAL;
7934 	}
7935 
7936 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
7937 		SPDK_ERRLOG("invalid meta data buffer size\n");
7938 		return -EINVAL;
7939 	}
7940 
7941 	/*
7942 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands
7943 	 * require a nsid, so fill it out automatically.
7944 	 */
7945 	cmd->nsid = spdk_nvme_ns_get_id(ns);
7946 
7947 	return spdk_nvme_ctrlr_cmd_iov_raw_with_md(
7948 		       ctrlr, qpair, cmd, (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio,
7949 		       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge);
7950 }
7951 
7952 static void
7953 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
7954 		struct nvme_bdev_io *bio_to_abort)
7955 {
7956 	struct nvme_io_path *io_path;
7957 	int rc = 0;
7958 
7959 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
7960 	if (rc == 0) {
7961 		bdev_nvme_admin_complete(bio, 0);
7962 		return;
7963 	}
7964 
7965 	io_path = bio_to_abort->io_path;
7966 	if (io_path != NULL) {
7967 		rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
7968 						   io_path->qpair->qpair,
7969 						   bio_to_abort,
7970 						   bdev_nvme_abort_done, bio);
7971 	} else {
7972 		STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
7973 			rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
7974 							   NULL,
7975 							   bio_to_abort,
7976 							   bdev_nvme_abort_done, bio);
7977 
7978 			if (rc != -ENOENT) {
7979 				break;
7980 			}
7981 		}
7982 	}
7983 
7984 	if (rc != 0) {
7985 		/* If no command was found or there was any error, complete the abort
7986 		 * request with failure.
7987 		 */
7988 		bdev_nvme_admin_complete(bio, rc);
7989 	}
7990 }
7991 
7992 static int
7993 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
7994 	       uint64_t num_blocks)
7995 {
7996 	struct spdk_nvme_scc_source_range range = {
7997 		.slba = src_offset_blocks,
7998 		.nlb = num_blocks - 1
7999 	};
8000 
8001 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
8002 				     bio->io_path->qpair->qpair,
8003 				     &range, 1, dst_offset_blocks,
8004 				     bdev_nvme_queued_done, bio);
8005 }
8006 
8007 static void
8008 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
8009 {
8010 	const char	*action;
8011 
8012 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
8013 		action = "reset";
8014 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
8015 		action = "abort";
8016 	} else {
8017 		action = "none";
8018 	}
8019 
8020 	spdk_json_write_object_begin(w);
8021 
8022 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
8023 
8024 	spdk_json_write_named_object_begin(w, "params");
8025 	spdk_json_write_named_string(w, "action_on_timeout", action);
8026 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
8027 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
8028 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
8029 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
8030 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
8031 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
8032 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
8033 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
8034 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
8035 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
8036 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
8037 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
8038 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
8039 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
8040 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
8041 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
8042 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
8043 	spdk_json_write_named_bool(w, "disable_auto_failback", g_opts.disable_auto_failback);
8044 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
8045 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
8046 	spdk_json_write_named_bool(w, "nvme_error_stat", g_opts.nvme_error_stat);
8047 	spdk_json_write_named_uint32(w, "rdma_srq_size", g_opts.rdma_srq_size);
8048 	spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat);
8049 	spdk_json_write_named_bool(w, "allow_accel_sequence", g_opts.allow_accel_sequence);
8050 	spdk_json_write_named_uint32(w, "rdma_max_cq_size", g_opts.rdma_max_cq_size);
8051 	spdk_json_write_named_uint16(w, "rdma_cm_event_timeout_ms", g_opts.rdma_cm_event_timeout_ms);
8052 	spdk_json_write_object_end(w);
8053 
8054 	spdk_json_write_object_end(w);
8055 }
8056 
8057 static void
8058 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
8059 {
8060 	struct spdk_nvme_transport_id trid;
8061 
8062 	spdk_json_write_object_begin(w);
8063 
8064 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
8065 
8066 	spdk_json_write_named_object_begin(w, "params");
8067 	spdk_json_write_named_string(w, "name", ctx->name);
8068 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
8069 
8070 	trid = ctx->trid;
8071 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
8072 	nvme_bdev_dump_trid_json(&trid, w);
8073 
8074 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
8075 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
8076 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
8077 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8078 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
8079 	spdk_json_write_object_end(w);
8080 
8081 	spdk_json_write_object_end(w);
8082 }
8083 
8084 #ifdef SPDK_CONFIG_NVME_CUSE
8085 static void
8086 nvme_ctrlr_cuse_config_json(struct spdk_json_write_ctx *w,
8087 			    struct nvme_ctrlr *nvme_ctrlr)
8088 {
8089 	size_t cuse_name_size = 128;
8090 	char cuse_name[cuse_name_size];
8091 
8092 	if (spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr,
8093 					  cuse_name, &cuse_name_size) != 0) {
8094 		return;
8095 	}
8096 
8097 	spdk_json_write_object_begin(w);
8098 
8099 	spdk_json_write_named_string(w, "method", "bdev_nvme_cuse_register");
8100 
8101 	spdk_json_write_named_object_begin(w, "params");
8102 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8103 	spdk_json_write_object_end(w);
8104 
8105 	spdk_json_write_object_end(w);
8106 }
8107 #endif
8108 
8109 static void
8110 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
8111 		       struct nvme_ctrlr *nvme_ctrlr)
8112 {
8113 	struct spdk_nvme_transport_id	*trid;
8114 	const struct spdk_nvme_ctrlr_opts *opts;
8115 
8116 	if (nvme_ctrlr->opts.from_discovery_service) {
8117 		/* Do not emit an RPC for this - it will be implicitly
8118 		 * covered by a separate bdev_nvme_start_discovery or
8119 		 * bdev_nvme_start_mdns_discovery RPC.
8120 		 */
8121 		return;
8122 	}
8123 
8124 	trid = &nvme_ctrlr->active_path_id->trid;
8125 
8126 	spdk_json_write_object_begin(w);
8127 
8128 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
8129 
8130 	spdk_json_write_named_object_begin(w, "params");
8131 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8132 	nvme_bdev_dump_trid_json(trid, w);
8133 	spdk_json_write_named_bool(w, "prchk_reftag",
8134 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
8135 	spdk_json_write_named_bool(w, "prchk_guard",
8136 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
8137 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
8138 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
8139 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8140 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
8141 	if (nvme_ctrlr->opts.psk_path[0] != '\0') {
8142 		spdk_json_write_named_string(w, "psk", nvme_ctrlr->opts.psk_path);
8143 	}
8144 
8145 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
8146 	spdk_json_write_named_string(w, "hostnqn", opts->hostnqn);
8147 	spdk_json_write_named_bool(w, "hdgst", opts->header_digest);
8148 	spdk_json_write_named_bool(w, "ddgst", opts->data_digest);
8149 	if (opts->src_addr[0] != '\0') {
8150 		spdk_json_write_named_string(w, "hostaddr", opts->src_addr);
8151 	}
8152 	if (opts->src_svcid[0] != '\0') {
8153 		spdk_json_write_named_string(w, "hostsvcid", opts->src_svcid);
8154 	}
8155 
8156 	spdk_json_write_object_end(w);
8157 
8158 	spdk_json_write_object_end(w);
8159 }
8160 
8161 static void
8162 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
8163 {
8164 	spdk_json_write_object_begin(w);
8165 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
8166 
8167 	spdk_json_write_named_object_begin(w, "params");
8168 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
8169 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
8170 	spdk_json_write_object_end(w);
8171 
8172 	spdk_json_write_object_end(w);
8173 }
8174 
8175 static int
8176 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
8177 {
8178 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
8179 	struct nvme_ctrlr	*nvme_ctrlr;
8180 	struct discovery_ctx	*ctx;
8181 
8182 	bdev_nvme_opts_config_json(w);
8183 
8184 	pthread_mutex_lock(&g_bdev_nvme_mutex);
8185 
8186 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
8187 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
8188 			nvme_ctrlr_config_json(w, nvme_ctrlr);
8189 
8190 #ifdef SPDK_CONFIG_NVME_CUSE
8191 			nvme_ctrlr_cuse_config_json(w, nvme_ctrlr);
8192 #endif
8193 		}
8194 	}
8195 
8196 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8197 		if (!ctx->from_mdns_discovery_service) {
8198 			bdev_nvme_discovery_config_json(w, ctx);
8199 		}
8200 	}
8201 
8202 	bdev_nvme_mdns_discovery_config_json(w);
8203 
8204 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
8205 	 * before enabling hotplug poller.
8206 	 */
8207 	bdev_nvme_hotplug_config_json(w);
8208 
8209 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
8210 	return 0;
8211 }
8212 
8213 struct spdk_nvme_ctrlr *
8214 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
8215 {
8216 	struct nvme_bdev *nbdev;
8217 	struct nvme_ns *nvme_ns;
8218 
8219 	if (!bdev || bdev->module != &nvme_if) {
8220 		return NULL;
8221 	}
8222 
8223 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
8224 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
8225 	assert(nvme_ns != NULL);
8226 
8227 	return nvme_ns->ctrlr->ctrlr;
8228 }
8229 
8230 void
8231 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
8232 {
8233 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
8234 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
8235 	const struct spdk_nvme_ctrlr_data *cdata;
8236 	const struct spdk_nvme_transport_id *trid;
8237 	const char *adrfam_str;
8238 
8239 	spdk_json_write_object_begin(w);
8240 
8241 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
8242 
8243 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
8244 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
8245 
8246 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
8247 	spdk_json_write_named_bool(w, "current", io_path->nbdev_ch != NULL &&
8248 				   io_path == io_path->nbdev_ch->current_io_path);
8249 	spdk_json_write_named_bool(w, "connected", nvme_qpair_is_connected(io_path->qpair));
8250 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
8251 
8252 	spdk_json_write_named_object_begin(w, "transport");
8253 	spdk_json_write_named_string(w, "trtype", trid->trstring);
8254 	spdk_json_write_named_string(w, "traddr", trid->traddr);
8255 	if (trid->trsvcid[0] != '\0') {
8256 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
8257 	}
8258 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
8259 	if (adrfam_str) {
8260 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
8261 	}
8262 	spdk_json_write_object_end(w);
8263 
8264 	spdk_json_write_object_end(w);
8265 }
8266 
8267 void
8268 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
8269 {
8270 	struct discovery_ctx *ctx;
8271 	struct discovery_entry_ctx *entry_ctx;
8272 
8273 	spdk_json_write_array_begin(w);
8274 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8275 		spdk_json_write_object_begin(w);
8276 		spdk_json_write_named_string(w, "name", ctx->name);
8277 
8278 		spdk_json_write_named_object_begin(w, "trid");
8279 		nvme_bdev_dump_trid_json(&ctx->trid, w);
8280 		spdk_json_write_object_end(w);
8281 
8282 		spdk_json_write_named_array_begin(w, "referrals");
8283 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
8284 			spdk_json_write_object_begin(w);
8285 			spdk_json_write_named_object_begin(w, "trid");
8286 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
8287 			spdk_json_write_object_end(w);
8288 			spdk_json_write_object_end(w);
8289 		}
8290 		spdk_json_write_array_end(w);
8291 
8292 		spdk_json_write_object_end(w);
8293 	}
8294 	spdk_json_write_array_end(w);
8295 }
8296 
8297 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
8298 
8299 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
8300 {
8301 	struct spdk_trace_tpoint_opts opts[] = {
8302 		{
8303 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
8304 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 1,
8305 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8306 		},
8307 		{
8308 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
8309 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 0,
8310 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8311 		}
8312 	};
8313 
8314 
8315 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
8316 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
8317 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8318 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8319 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8320 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8321 }
8322