xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision c6c1234de9e0015e670dd0b51bf6ce39ee0e07bd)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/keyring.h"
18 #include "spdk/likely.h"
19 #include "spdk/nvme.h"
20 #include "spdk/nvme_ocssd.h"
21 #include "spdk/nvme_zns.h"
22 #include "spdk/opal.h"
23 #include "spdk/thread.h"
24 #include "spdk/trace.h"
25 #include "spdk/string.h"
26 #include "spdk/util.h"
27 #include "spdk/uuid.h"
28 
29 #include "spdk/bdev_module.h"
30 #include "spdk/log.h"
31 
32 #include "spdk_internal/usdt.h"
33 #include "spdk_internal/trace_defs.h"
34 
35 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
36 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
37 
38 #define NSID_STR_LEN 10
39 
40 #define SPDK_CONTROLLER_NAME_MAX 512
41 
42 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
43 
44 struct nvme_bdev_io {
45 	/** array of iovecs to transfer. */
46 	struct iovec *iovs;
47 
48 	/** Number of iovecs in iovs array. */
49 	int iovcnt;
50 
51 	/** Current iovec position. */
52 	int iovpos;
53 
54 	/** Offset in current iovec. */
55 	uint32_t iov_offset;
56 
57 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
58 	 *  being reset in a reset I/O.
59 	 */
60 	struct nvme_io_path *io_path;
61 
62 	/** array of iovecs to transfer. */
63 	struct iovec *fused_iovs;
64 
65 	/** Number of iovecs in iovs array. */
66 	int fused_iovcnt;
67 
68 	/** Current iovec position. */
69 	int fused_iovpos;
70 
71 	/** Offset in current iovec. */
72 	uint32_t fused_iov_offset;
73 
74 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
75 	struct spdk_nvme_cpl cpl;
76 
77 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
78 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
79 
80 	/** Keeps track if first of fused commands was submitted */
81 	bool first_fused_submitted;
82 
83 	/** Keeps track if first of fused commands was completed */
84 	bool first_fused_completed;
85 
86 	/** Temporary pointer to zone report buffer */
87 	struct spdk_nvme_zns_zone_report *zone_report_buf;
88 
89 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
90 	uint64_t handled_zones;
91 
92 	/** Expiration value in ticks to retry the current I/O. */
93 	uint64_t retry_ticks;
94 
95 	/* How many times the current I/O was retried. */
96 	int32_t retry_count;
97 
98 	/* Current tsc at submit time. */
99 	uint64_t submit_tsc;
100 
101 	/* Used to put nvme_bdev_io into the list */
102 	TAILQ_ENTRY(nvme_bdev_io) retry_link;
103 };
104 
105 struct nvme_probe_skip_entry {
106 	struct spdk_nvme_transport_id		trid;
107 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
108 };
109 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
110 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
111 			g_skipped_nvme_ctrlrs);
112 
113 #define BDEV_NVME_DEFAULT_DIGESTS (SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) | \
114 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) | \
115 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512))
116 
117 #define BDEV_NVME_DEFAULT_DHGROUPS (SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) | \
118 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) | \
119 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) | \
120 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) | \
121 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) | \
122 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192))
123 
124 static struct spdk_bdev_nvme_opts g_opts = {
125 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
126 	.timeout_us = 0,
127 	.timeout_admin_us = 0,
128 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
129 	.transport_retry_count = 4,
130 	.arbitration_burst = 0,
131 	.low_priority_weight = 0,
132 	.medium_priority_weight = 0,
133 	.high_priority_weight = 0,
134 	.nvme_adminq_poll_period_us = 10000ULL,
135 	.nvme_ioq_poll_period_us = 0,
136 	.io_queue_requests = 0,
137 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
138 	.bdev_retry_count = 3,
139 	.transport_ack_timeout = 0,
140 	.ctrlr_loss_timeout_sec = 0,
141 	.reconnect_delay_sec = 0,
142 	.fast_io_fail_timeout_sec = 0,
143 	.disable_auto_failback = false,
144 	.generate_uuids = false,
145 	.transport_tos = 0,
146 	.nvme_error_stat = false,
147 	.io_path_stat = false,
148 	.allow_accel_sequence = false,
149 	.dhchap_digests = BDEV_NVME_DEFAULT_DIGESTS,
150 	.dhchap_dhgroups = BDEV_NVME_DEFAULT_DHGROUPS,
151 };
152 
153 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
154 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
155 
156 static int g_hot_insert_nvme_controller_index = 0;
157 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
158 static bool g_nvme_hotplug_enabled = false;
159 struct spdk_thread *g_bdev_nvme_init_thread;
160 static struct spdk_poller *g_hotplug_poller;
161 static struct spdk_poller *g_hotplug_probe_poller;
162 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
163 
164 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
165 		struct nvme_async_probe_ctx *ctx);
166 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
167 		struct nvme_async_probe_ctx *ctx);
168 static int bdev_nvme_library_init(void);
169 static void bdev_nvme_library_fini(void);
170 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
171 				      struct spdk_bdev_io *bdev_io);
172 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
173 				     struct spdk_bdev_io *bdev_io);
174 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
175 			   void *md, uint64_t lba_count, uint64_t lba,
176 			   uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
177 			   struct spdk_accel_sequence *seq);
178 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
179 				 void *md, uint64_t lba_count, uint64_t lba);
180 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
181 			    void *md, uint64_t lba_count, uint64_t lba,
182 			    uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
183 			    struct spdk_accel_sequence *seq,
184 			    union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13);
185 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
186 				  void *md, uint64_t lba_count,
187 				  uint64_t zslba, uint32_t flags);
188 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
189 			      void *md, uint64_t lba_count, uint64_t lba,
190 			      uint32_t flags);
191 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
192 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
193 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
194 		uint32_t flags);
195 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
196 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
197 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
198 				     enum spdk_bdev_zone_action action);
199 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
200 				     struct nvme_bdev_io *bio,
201 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
202 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
203 				 void *buf, size_t nbytes);
204 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
205 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
206 static int bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
207 				     struct iovec *iov, int iovcnt, size_t nbytes,
208 				     void *md_buf, size_t md_len);
209 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
210 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
211 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
212 static int bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
213 static int bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
214 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
215 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
216 
217 static struct nvme_ns *nvme_ns_alloc(void);
218 static void nvme_ns_free(struct nvme_ns *ns);
219 
220 static int
221 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
222 {
223 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
224 }
225 
226 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
227 
228 struct spdk_nvme_qpair *
229 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
230 {
231 	struct nvme_ctrlr_channel *ctrlr_ch;
232 
233 	assert(ctrlr_io_ch != NULL);
234 
235 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
236 
237 	return ctrlr_ch->qpair->qpair;
238 }
239 
240 static int
241 bdev_nvme_get_ctx_size(void)
242 {
243 	return sizeof(struct nvme_bdev_io);
244 }
245 
246 static struct spdk_bdev_module nvme_if = {
247 	.name = "nvme",
248 	.async_fini = true,
249 	.module_init = bdev_nvme_library_init,
250 	.module_fini = bdev_nvme_library_fini,
251 	.config_json = bdev_nvme_config_json,
252 	.get_ctx_size = bdev_nvme_get_ctx_size,
253 
254 };
255 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
256 
257 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
258 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
259 bool g_bdev_nvme_module_finish;
260 
261 struct nvme_bdev_ctrlr *
262 nvme_bdev_ctrlr_get_by_name(const char *name)
263 {
264 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
265 
266 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
267 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
268 			break;
269 		}
270 	}
271 
272 	return nbdev_ctrlr;
273 }
274 
275 static struct nvme_ctrlr *
276 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
277 			  const struct spdk_nvme_transport_id *trid, const char *hostnqn)
278 {
279 	const struct spdk_nvme_ctrlr_opts *opts;
280 	struct nvme_ctrlr *nvme_ctrlr;
281 
282 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
283 		opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
284 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0 &&
285 		    strcmp(hostnqn, opts->hostnqn) == 0) {
286 			break;
287 		}
288 	}
289 
290 	return nvme_ctrlr;
291 }
292 
293 struct nvme_ctrlr *
294 nvme_bdev_ctrlr_get_ctrlr_by_id(struct nvme_bdev_ctrlr *nbdev_ctrlr,
295 				uint16_t cntlid)
296 {
297 	struct nvme_ctrlr *nvme_ctrlr;
298 	const struct spdk_nvme_ctrlr_data *cdata;
299 
300 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
301 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
302 		if (cdata->cntlid == cntlid) {
303 			break;
304 		}
305 	}
306 
307 	return nvme_ctrlr;
308 }
309 
310 static struct nvme_bdev *
311 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
312 {
313 	struct nvme_bdev *bdev;
314 
315 	pthread_mutex_lock(&g_bdev_nvme_mutex);
316 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
317 		if (bdev->nsid == nsid) {
318 			break;
319 		}
320 	}
321 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
322 
323 	return bdev;
324 }
325 
326 struct nvme_ns *
327 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
328 {
329 	struct nvme_ns ns;
330 
331 	assert(nsid > 0);
332 
333 	ns.id = nsid;
334 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
335 }
336 
337 struct nvme_ns *
338 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
339 {
340 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
341 }
342 
343 struct nvme_ns *
344 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
345 {
346 	if (ns == NULL) {
347 		return NULL;
348 	}
349 
350 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
351 }
352 
353 static struct nvme_ctrlr *
354 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid, const char *hostnqn)
355 {
356 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
357 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
358 
359 	pthread_mutex_lock(&g_bdev_nvme_mutex);
360 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
361 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid, hostnqn);
362 		if (nvme_ctrlr != NULL) {
363 			break;
364 		}
365 	}
366 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
367 
368 	return nvme_ctrlr;
369 }
370 
371 struct nvme_ctrlr *
372 nvme_ctrlr_get_by_name(const char *name)
373 {
374 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
375 	struct nvme_ctrlr *nvme_ctrlr = NULL;
376 
377 	if (name == NULL) {
378 		return NULL;
379 	}
380 
381 	pthread_mutex_lock(&g_bdev_nvme_mutex);
382 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
383 	if (nbdev_ctrlr != NULL) {
384 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
385 	}
386 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
387 
388 	return nvme_ctrlr;
389 }
390 
391 void
392 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
393 {
394 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
395 
396 	pthread_mutex_lock(&g_bdev_nvme_mutex);
397 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
398 		fn(nbdev_ctrlr, ctx);
399 	}
400 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
401 }
402 
403 void
404 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
405 {
406 	const char *trtype_str;
407 	const char *adrfam_str;
408 
409 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
410 	if (trtype_str) {
411 		spdk_json_write_named_string(w, "trtype", trtype_str);
412 	}
413 
414 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
415 	if (adrfam_str) {
416 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
417 	}
418 
419 	if (trid->traddr[0] != '\0') {
420 		spdk_json_write_named_string(w, "traddr", trid->traddr);
421 	}
422 
423 	if (trid->trsvcid[0] != '\0') {
424 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
425 	}
426 
427 	if (trid->subnqn[0] != '\0') {
428 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
429 	}
430 }
431 
432 static void
433 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
434 		       struct nvme_ctrlr *nvme_ctrlr)
435 {
436 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
437 	pthread_mutex_lock(&g_bdev_nvme_mutex);
438 
439 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
440 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
441 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
442 
443 		return;
444 	}
445 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
446 
447 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
448 
449 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
450 
451 	free(nbdev_ctrlr->name);
452 	free(nbdev_ctrlr);
453 }
454 
455 static void
456 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
457 {
458 	struct nvme_path_id *path_id, *tmp_path;
459 	struct nvme_ns *ns, *tmp_ns;
460 
461 	free(nvme_ctrlr->copied_ana_desc);
462 	spdk_free(nvme_ctrlr->ana_log_page);
463 
464 	if (nvme_ctrlr->opal_dev) {
465 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
466 		nvme_ctrlr->opal_dev = NULL;
467 	}
468 
469 	if (nvme_ctrlr->nbdev_ctrlr) {
470 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
471 	}
472 
473 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
474 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
475 		nvme_ns_free(ns);
476 	}
477 
478 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
479 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
480 		free(path_id);
481 	}
482 
483 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
484 	spdk_keyring_put_key(nvme_ctrlr->psk);
485 	spdk_keyring_put_key(nvme_ctrlr->dhchap_key);
486 	spdk_keyring_put_key(nvme_ctrlr->dhchap_ctrlr_key);
487 	free(nvme_ctrlr);
488 
489 	pthread_mutex_lock(&g_bdev_nvme_mutex);
490 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
491 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
492 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
493 		spdk_bdev_module_fini_done();
494 		return;
495 	}
496 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
497 }
498 
499 static int
500 nvme_detach_poller(void *arg)
501 {
502 	struct nvme_ctrlr *nvme_ctrlr = arg;
503 	int rc;
504 
505 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
506 	if (rc != -EAGAIN) {
507 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
508 		_nvme_ctrlr_delete(nvme_ctrlr);
509 	}
510 
511 	return SPDK_POLLER_BUSY;
512 }
513 
514 static void
515 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
516 {
517 	int rc;
518 
519 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
520 
521 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
522 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
523 
524 	/* If we got here, the reset/detach poller cannot be active */
525 	assert(nvme_ctrlr->reset_detach_poller == NULL);
526 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
527 					  nvme_ctrlr, 1000);
528 	if (nvme_ctrlr->reset_detach_poller == NULL) {
529 		SPDK_ERRLOG("Failed to register detach poller\n");
530 		goto error;
531 	}
532 
533 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
534 	if (rc != 0) {
535 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
536 		goto error;
537 	}
538 
539 	return;
540 error:
541 	/* We don't have a good way to handle errors here, so just do what we can and delete the
542 	 * controller without detaching the underlying NVMe device.
543 	 */
544 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
545 	_nvme_ctrlr_delete(nvme_ctrlr);
546 }
547 
548 static void
549 nvme_ctrlr_unregister_cb(void *io_device)
550 {
551 	struct nvme_ctrlr *nvme_ctrlr = io_device;
552 
553 	nvme_ctrlr_delete(nvme_ctrlr);
554 }
555 
556 static void
557 nvme_ctrlr_unregister(void *ctx)
558 {
559 	struct nvme_ctrlr *nvme_ctrlr = ctx;
560 
561 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
562 }
563 
564 static bool
565 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
566 {
567 	if (!nvme_ctrlr->destruct) {
568 		return false;
569 	}
570 
571 	if (nvme_ctrlr->ref > 0) {
572 		return false;
573 	}
574 
575 	if (nvme_ctrlr->resetting) {
576 		return false;
577 	}
578 
579 	if (nvme_ctrlr->ana_log_page_updating) {
580 		return false;
581 	}
582 
583 	if (nvme_ctrlr->io_path_cache_clearing) {
584 		return false;
585 	}
586 
587 	return true;
588 }
589 
590 static void
591 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
592 {
593 	pthread_mutex_lock(&nvme_ctrlr->mutex);
594 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
595 
596 	assert(nvme_ctrlr->ref > 0);
597 	nvme_ctrlr->ref--;
598 
599 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
600 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
601 		return;
602 	}
603 
604 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
605 
606 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
607 }
608 
609 static void
610 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch)
611 {
612 	nbdev_ch->current_io_path = NULL;
613 	nbdev_ch->rr_counter = 0;
614 }
615 
616 static struct nvme_io_path *
617 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
618 {
619 	struct nvme_io_path *io_path;
620 
621 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
622 		if (io_path->nvme_ns == nvme_ns) {
623 			break;
624 		}
625 	}
626 
627 	return io_path;
628 }
629 
630 static struct nvme_io_path *
631 nvme_io_path_alloc(void)
632 {
633 	struct nvme_io_path *io_path;
634 
635 	io_path = calloc(1, sizeof(*io_path));
636 	if (io_path == NULL) {
637 		SPDK_ERRLOG("Failed to alloc io_path.\n");
638 		return NULL;
639 	}
640 
641 	if (g_opts.io_path_stat) {
642 		io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
643 		if (io_path->stat == NULL) {
644 			free(io_path);
645 			SPDK_ERRLOG("Failed to alloc io_path stat.\n");
646 			return NULL;
647 		}
648 		spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
649 	}
650 
651 	return io_path;
652 }
653 
654 static void
655 nvme_io_path_free(struct nvme_io_path *io_path)
656 {
657 	free(io_path->stat);
658 	free(io_path);
659 }
660 
661 static int
662 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
663 {
664 	struct nvme_io_path *io_path;
665 	struct spdk_io_channel *ch;
666 	struct nvme_ctrlr_channel *ctrlr_ch;
667 	struct nvme_qpair *nvme_qpair;
668 
669 	io_path = nvme_io_path_alloc();
670 	if (io_path == NULL) {
671 		return -ENOMEM;
672 	}
673 
674 	io_path->nvme_ns = nvme_ns;
675 
676 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
677 	if (ch == NULL) {
678 		nvme_io_path_free(io_path);
679 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
680 		return -ENOMEM;
681 	}
682 
683 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
684 
685 	nvme_qpair = ctrlr_ch->qpair;
686 	assert(nvme_qpair != NULL);
687 
688 	io_path->qpair = nvme_qpair;
689 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
690 
691 	io_path->nbdev_ch = nbdev_ch;
692 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
693 
694 	bdev_nvme_clear_current_io_path(nbdev_ch);
695 
696 	return 0;
697 }
698 
699 static void
700 bdev_nvme_clear_retry_io_path(struct nvme_bdev_channel *nbdev_ch,
701 			      struct nvme_io_path *io_path)
702 {
703 	struct nvme_bdev_io *bio;
704 
705 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
706 		if (bio->io_path == io_path) {
707 			bio->io_path = NULL;
708 		}
709 	}
710 }
711 
712 static void
713 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
714 {
715 	struct spdk_io_channel *ch;
716 	struct nvme_qpair *nvme_qpair;
717 	struct nvme_ctrlr_channel *ctrlr_ch;
718 	struct nvme_bdev *nbdev;
719 
720 	nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch));
721 
722 	/* Add the statistics to nvme_ns before this path is destroyed. */
723 	pthread_mutex_lock(&nbdev->mutex);
724 	if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) {
725 		spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat);
726 	}
727 	pthread_mutex_unlock(&nbdev->mutex);
728 
729 	bdev_nvme_clear_current_io_path(nbdev_ch);
730 	bdev_nvme_clear_retry_io_path(nbdev_ch, io_path);
731 
732 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
733 	io_path->nbdev_ch = NULL;
734 
735 	nvme_qpair = io_path->qpair;
736 	assert(nvme_qpair != NULL);
737 
738 	ctrlr_ch = nvme_qpair->ctrlr_ch;
739 	assert(ctrlr_ch != NULL);
740 
741 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
742 	spdk_put_io_channel(ch);
743 
744 	/* After an io_path is removed, I/Os submitted to it may complete and update statistics
745 	 * of the io_path. To avoid heap-use-after-free error from this case, do not free the
746 	 * io_path here but free the io_path when the associated qpair is freed. It is ensured
747 	 * that all I/Os submitted to the io_path are completed when the associated qpair is freed.
748 	 */
749 }
750 
751 static void
752 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
753 {
754 	struct nvme_io_path *io_path, *tmp_io_path;
755 
756 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
757 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
758 	}
759 }
760 
761 static int
762 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
763 {
764 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
765 	struct nvme_bdev *nbdev = io_device;
766 	struct nvme_ns *nvme_ns;
767 	int rc;
768 
769 	STAILQ_INIT(&nbdev_ch->io_path_list);
770 	TAILQ_INIT(&nbdev_ch->retry_io_list);
771 
772 	pthread_mutex_lock(&nbdev->mutex);
773 
774 	nbdev_ch->mp_policy = nbdev->mp_policy;
775 	nbdev_ch->mp_selector = nbdev->mp_selector;
776 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
777 
778 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
779 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
780 		if (rc != 0) {
781 			pthread_mutex_unlock(&nbdev->mutex);
782 
783 			_bdev_nvme_delete_io_paths(nbdev_ch);
784 			return rc;
785 		}
786 	}
787 	pthread_mutex_unlock(&nbdev->mutex);
788 
789 	return 0;
790 }
791 
792 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
793  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
794  */
795 static inline void
796 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
797 			const struct spdk_nvme_cpl *cpl)
798 {
799 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
800 			  (uintptr_t)bdev_io);
801 	if (cpl) {
802 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
803 	} else {
804 		spdk_bdev_io_complete(bdev_io, status);
805 	}
806 }
807 
808 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
809 
810 static void
811 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
812 {
813 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
814 
815 	bdev_nvme_abort_retry_ios(nbdev_ch);
816 	_bdev_nvme_delete_io_paths(nbdev_ch);
817 }
818 
819 static inline bool
820 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
821 {
822 	switch (io_type) {
823 	case SPDK_BDEV_IO_TYPE_RESET:
824 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
825 	case SPDK_BDEV_IO_TYPE_ABORT:
826 		return true;
827 	default:
828 		break;
829 	}
830 
831 	return false;
832 }
833 
834 static inline bool
835 nvme_ns_is_active(struct nvme_ns *nvme_ns)
836 {
837 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
838 		return false;
839 	}
840 
841 	if (spdk_unlikely(nvme_ns->ns == NULL)) {
842 		return false;
843 	}
844 
845 	return true;
846 }
847 
848 static inline bool
849 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
850 {
851 	if (spdk_unlikely(!nvme_ns_is_active(nvme_ns))) {
852 		return false;
853 	}
854 
855 	switch (nvme_ns->ana_state) {
856 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
857 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
858 		return true;
859 	default:
860 		break;
861 	}
862 
863 	return false;
864 }
865 
866 static inline bool
867 nvme_qpair_is_connected(struct nvme_qpair *nvme_qpair)
868 {
869 	if (spdk_unlikely(nvme_qpair->qpair == NULL)) {
870 		return false;
871 	}
872 
873 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
874 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
875 		return false;
876 	}
877 
878 	if (spdk_unlikely(nvme_qpair->ctrlr_ch->reset_iter != NULL)) {
879 		return false;
880 	}
881 
882 	return true;
883 }
884 
885 static inline bool
886 nvme_io_path_is_available(struct nvme_io_path *io_path)
887 {
888 	if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
889 		return false;
890 	}
891 
892 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
893 		return false;
894 	}
895 
896 	return true;
897 }
898 
899 static inline bool
900 nvme_ctrlr_is_failed(struct nvme_ctrlr *nvme_ctrlr)
901 {
902 	if (nvme_ctrlr->destruct) {
903 		return true;
904 	}
905 
906 	if (nvme_ctrlr->fast_io_fail_timedout) {
907 		return true;
908 	}
909 
910 	if (nvme_ctrlr->resetting) {
911 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
912 			return false;
913 		} else {
914 			return true;
915 		}
916 	}
917 
918 	if (nvme_ctrlr->reconnect_is_delayed) {
919 		return false;
920 	}
921 
922 	if (nvme_ctrlr->disabled) {
923 		return true;
924 	}
925 
926 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
927 		return true;
928 	} else {
929 		return false;
930 	}
931 }
932 
933 static bool
934 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
935 {
936 	if (nvme_ctrlr->destruct) {
937 		return false;
938 	}
939 
940 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
941 		return false;
942 	}
943 
944 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
945 		return false;
946 	}
947 
948 	if (nvme_ctrlr->disabled) {
949 		return false;
950 	}
951 
952 	return true;
953 }
954 
955 /* Simulate circular linked list. */
956 static inline struct nvme_io_path *
957 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
958 {
959 	struct nvme_io_path *next_path;
960 
961 	if (prev_path != NULL) {
962 		next_path = STAILQ_NEXT(prev_path, stailq);
963 		if (next_path != NULL) {
964 			return next_path;
965 		}
966 	}
967 
968 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
969 }
970 
971 static struct nvme_io_path *
972 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
973 {
974 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
975 
976 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
977 
978 	io_path = start;
979 	do {
980 		if (spdk_likely(nvme_io_path_is_available(io_path))) {
981 			switch (io_path->nvme_ns->ana_state) {
982 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
983 				nbdev_ch->current_io_path = io_path;
984 				return io_path;
985 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
986 				if (non_optimized == NULL) {
987 					non_optimized = io_path;
988 				}
989 				break;
990 			default:
991 				assert(false);
992 				break;
993 			}
994 		}
995 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
996 	} while (io_path != start);
997 
998 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
999 		/* We come here only if there is no optimized path. Cache even non_optimized
1000 		 * path for load balance across multiple non_optimized paths.
1001 		 */
1002 		nbdev_ch->current_io_path = non_optimized;
1003 	}
1004 
1005 	return non_optimized;
1006 }
1007 
1008 static struct nvme_io_path *
1009 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch)
1010 {
1011 	struct nvme_io_path *io_path;
1012 	struct nvme_io_path *optimized = NULL, *non_optimized = NULL;
1013 	uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX;
1014 	uint32_t num_outstanding_reqs;
1015 
1016 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1017 		if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
1018 			/* The device is currently resetting. */
1019 			continue;
1020 		}
1021 
1022 		if (spdk_unlikely(!nvme_ns_is_active(io_path->nvme_ns))) {
1023 			continue;
1024 		}
1025 
1026 		num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair);
1027 		switch (io_path->nvme_ns->ana_state) {
1028 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
1029 			if (num_outstanding_reqs < opt_min_qd) {
1030 				opt_min_qd = num_outstanding_reqs;
1031 				optimized = io_path;
1032 			}
1033 			break;
1034 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1035 			if (num_outstanding_reqs < non_opt_min_qd) {
1036 				non_opt_min_qd = num_outstanding_reqs;
1037 				non_optimized = io_path;
1038 			}
1039 			break;
1040 		default:
1041 			break;
1042 		}
1043 	}
1044 
1045 	/* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */
1046 	if (optimized != NULL) {
1047 		return optimized;
1048 	}
1049 
1050 	return non_optimized;
1051 }
1052 
1053 static inline struct nvme_io_path *
1054 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1055 {
1056 	if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
1057 		if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) {
1058 			return nbdev_ch->current_io_path;
1059 		} else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1060 			if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) {
1061 				return nbdev_ch->current_io_path;
1062 			}
1063 			nbdev_ch->rr_counter = 0;
1064 		}
1065 	}
1066 
1067 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE ||
1068 	    nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1069 		return _bdev_nvme_find_io_path(nbdev_ch);
1070 	} else {
1071 		return _bdev_nvme_find_io_path_min_qd(nbdev_ch);
1072 	}
1073 }
1074 
1075 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
1076  * or false otherwise.
1077  *
1078  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
1079  * is likely to be non-accessible now but may become accessible.
1080  *
1081  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
1082  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
1083  * when starting to reset it but it is set to failed when the reset failed. Hence, if
1084  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
1085  */
1086 static bool
1087 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
1088 {
1089 	struct nvme_io_path *io_path;
1090 
1091 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1092 		if (io_path->nvme_ns->ana_transition_timedout) {
1093 			continue;
1094 		}
1095 
1096 		if (nvme_qpair_is_connected(io_path->qpair) ||
1097 		    !nvme_ctrlr_is_failed(io_path->qpair->ctrlr)) {
1098 			return true;
1099 		}
1100 	}
1101 
1102 	return false;
1103 }
1104 
1105 static void
1106 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
1107 {
1108 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1109 	struct spdk_io_channel *ch;
1110 
1111 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
1112 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
1113 	} else {
1114 		ch = spdk_io_channel_from_ctx(nbdev_ch);
1115 		bdev_nvme_submit_request(ch, bdev_io);
1116 	}
1117 }
1118 
1119 static int
1120 bdev_nvme_retry_ios(void *arg)
1121 {
1122 	struct nvme_bdev_channel *nbdev_ch = arg;
1123 	struct nvme_bdev_io *bio, *tmp_bio;
1124 	uint64_t now, delay_us;
1125 
1126 	now = spdk_get_ticks();
1127 
1128 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1129 		if (bio->retry_ticks > now) {
1130 			break;
1131 		}
1132 
1133 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1134 
1135 		bdev_nvme_retry_io(nbdev_ch, spdk_bdev_io_from_ctx(bio));
1136 	}
1137 
1138 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1139 
1140 	bio = TAILQ_FIRST(&nbdev_ch->retry_io_list);
1141 	if (bio != NULL) {
1142 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
1143 
1144 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1145 					    delay_us);
1146 	}
1147 
1148 	return SPDK_POLLER_BUSY;
1149 }
1150 
1151 static void
1152 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1153 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1154 {
1155 	struct nvme_bdev_io *tmp_bio;
1156 
1157 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1158 
1159 	TAILQ_FOREACH_REVERSE(tmp_bio, &nbdev_ch->retry_io_list, retry_io_head, retry_link) {
1160 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1161 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bio, bio,
1162 					   retry_link);
1163 			return;
1164 		}
1165 	}
1166 
1167 	/* No earlier I/Os were found. This I/O must be the new head. */
1168 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bio, retry_link);
1169 
1170 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1171 
1172 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1173 				    delay_ms * 1000ULL);
1174 }
1175 
1176 static void
1177 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
1178 {
1179 	struct nvme_bdev_io *bio, *tmp_bio;
1180 
1181 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1182 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1183 		__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1184 	}
1185 
1186 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1187 }
1188 
1189 static int
1190 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1191 			 struct nvme_bdev_io *bio_to_abort)
1192 {
1193 	struct nvme_bdev_io *bio;
1194 
1195 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
1196 		if (bio == bio_to_abort) {
1197 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1198 			__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1199 			return 0;
1200 		}
1201 	}
1202 
1203 	return -ENOENT;
1204 }
1205 
1206 static void
1207 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1208 {
1209 	struct nvme_bdev *nbdev;
1210 	uint16_t sct, sc;
1211 
1212 	assert(spdk_nvme_cpl_is_error(cpl));
1213 
1214 	nbdev = bdev_io->bdev->ctxt;
1215 
1216 	if (nbdev->err_stat == NULL) {
1217 		return;
1218 	}
1219 
1220 	sct = cpl->status.sct;
1221 	sc = cpl->status.sc;
1222 
1223 	pthread_mutex_lock(&nbdev->mutex);
1224 
1225 	nbdev->err_stat->status_type[sct]++;
1226 	switch (sct) {
1227 	case SPDK_NVME_SCT_GENERIC:
1228 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1229 	case SPDK_NVME_SCT_MEDIA_ERROR:
1230 	case SPDK_NVME_SCT_PATH:
1231 		nbdev->err_stat->status[sct][sc]++;
1232 		break;
1233 	default:
1234 		break;
1235 	}
1236 
1237 	pthread_mutex_unlock(&nbdev->mutex);
1238 }
1239 
1240 static inline void
1241 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio)
1242 {
1243 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1244 	uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
1245 	uint32_t blocklen = bdev_io->bdev->blocklen;
1246 	struct spdk_bdev_io_stat *stat;
1247 	uint64_t tsc_diff;
1248 
1249 	if (bio->io_path->stat == NULL) {
1250 		return;
1251 	}
1252 
1253 	tsc_diff = spdk_get_ticks() - bio->submit_tsc;
1254 	stat = bio->io_path->stat;
1255 
1256 	switch (bdev_io->type) {
1257 	case SPDK_BDEV_IO_TYPE_READ:
1258 		stat->bytes_read += num_blocks * blocklen;
1259 		stat->num_read_ops++;
1260 		stat->read_latency_ticks += tsc_diff;
1261 		if (stat->max_read_latency_ticks < tsc_diff) {
1262 			stat->max_read_latency_ticks = tsc_diff;
1263 		}
1264 		if (stat->min_read_latency_ticks > tsc_diff) {
1265 			stat->min_read_latency_ticks = tsc_diff;
1266 		}
1267 		break;
1268 	case SPDK_BDEV_IO_TYPE_WRITE:
1269 		stat->bytes_written += num_blocks * blocklen;
1270 		stat->num_write_ops++;
1271 		stat->write_latency_ticks += tsc_diff;
1272 		if (stat->max_write_latency_ticks < tsc_diff) {
1273 			stat->max_write_latency_ticks = tsc_diff;
1274 		}
1275 		if (stat->min_write_latency_ticks > tsc_diff) {
1276 			stat->min_write_latency_ticks = tsc_diff;
1277 		}
1278 		break;
1279 	case SPDK_BDEV_IO_TYPE_UNMAP:
1280 		stat->bytes_unmapped += num_blocks * blocklen;
1281 		stat->num_unmap_ops++;
1282 		stat->unmap_latency_ticks += tsc_diff;
1283 		if (stat->max_unmap_latency_ticks < tsc_diff) {
1284 			stat->max_unmap_latency_ticks = tsc_diff;
1285 		}
1286 		if (stat->min_unmap_latency_ticks > tsc_diff) {
1287 			stat->min_unmap_latency_ticks = tsc_diff;
1288 		}
1289 		break;
1290 	case SPDK_BDEV_IO_TYPE_ZCOPY:
1291 		/* Track the data in the start phase only */
1292 		if (!bdev_io->u.bdev.zcopy.start) {
1293 			break;
1294 		}
1295 		if (bdev_io->u.bdev.zcopy.populate) {
1296 			stat->bytes_read += num_blocks * blocklen;
1297 			stat->num_read_ops++;
1298 			stat->read_latency_ticks += tsc_diff;
1299 			if (stat->max_read_latency_ticks < tsc_diff) {
1300 				stat->max_read_latency_ticks = tsc_diff;
1301 			}
1302 			if (stat->min_read_latency_ticks > tsc_diff) {
1303 				stat->min_read_latency_ticks = tsc_diff;
1304 			}
1305 		} else {
1306 			stat->bytes_written += num_blocks * blocklen;
1307 			stat->num_write_ops++;
1308 			stat->write_latency_ticks += tsc_diff;
1309 			if (stat->max_write_latency_ticks < tsc_diff) {
1310 				stat->max_write_latency_ticks = tsc_diff;
1311 			}
1312 			if (stat->min_write_latency_ticks > tsc_diff) {
1313 				stat->min_write_latency_ticks = tsc_diff;
1314 			}
1315 		}
1316 		break;
1317 	case SPDK_BDEV_IO_TYPE_COPY:
1318 		stat->bytes_copied += num_blocks * blocklen;
1319 		stat->num_copy_ops++;
1320 		stat->copy_latency_ticks += tsc_diff;
1321 		if (stat->max_copy_latency_ticks < tsc_diff) {
1322 			stat->max_copy_latency_ticks = tsc_diff;
1323 		}
1324 		if (stat->min_copy_latency_ticks > tsc_diff) {
1325 			stat->min_copy_latency_ticks = tsc_diff;
1326 		}
1327 		break;
1328 	default:
1329 		break;
1330 	}
1331 }
1332 
1333 static bool
1334 bdev_nvme_check_retry_io(struct nvme_bdev_io *bio,
1335 			 const struct spdk_nvme_cpl *cpl,
1336 			 struct nvme_bdev_channel *nbdev_ch,
1337 			 uint64_t *_delay_ms)
1338 {
1339 	struct nvme_io_path *io_path = bio->io_path;
1340 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1341 	const struct spdk_nvme_ctrlr_data *cdata;
1342 
1343 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1344 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1345 	    !nvme_io_path_is_available(io_path) ||
1346 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1347 		bdev_nvme_clear_current_io_path(nbdev_ch);
1348 		bio->io_path = NULL;
1349 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1350 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1351 				io_path->nvme_ns->ana_state_updating = true;
1352 			}
1353 		}
1354 		if (!any_io_path_may_become_available(nbdev_ch)) {
1355 			return false;
1356 		}
1357 		*_delay_ms = 0;
1358 	} else {
1359 		bio->retry_count++;
1360 
1361 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1362 
1363 		if (cpl->status.crd != 0) {
1364 			*_delay_ms = cdata->crdt[cpl->status.crd] * 100;
1365 		} else {
1366 			*_delay_ms = 0;
1367 		}
1368 	}
1369 
1370 	return true;
1371 }
1372 
1373 static inline void
1374 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1375 				  const struct spdk_nvme_cpl *cpl)
1376 {
1377 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1378 	struct nvme_bdev_channel *nbdev_ch;
1379 	uint64_t delay_ms;
1380 
1381 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1382 
1383 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1384 		bdev_nvme_update_io_path_stat(bio);
1385 		goto complete;
1386 	}
1387 
1388 	/* Update error counts before deciding if retry is needed.
1389 	 * Hence, error counts may be more than the number of I/O errors.
1390 	 */
1391 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1392 
1393 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1394 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1395 		goto complete;
1396 	}
1397 
1398 	/* At this point we don't know whether the sequence was successfully executed or not, so we
1399 	 * cannot retry the IO */
1400 	if (bdev_io->u.bdev.accel_sequence != NULL) {
1401 		goto complete;
1402 	}
1403 
1404 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1405 
1406 	if (bdev_nvme_check_retry_io(bio, cpl, nbdev_ch, &delay_ms)) {
1407 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1408 		return;
1409 	}
1410 
1411 complete:
1412 	bio->retry_count = 0;
1413 	bio->submit_tsc = 0;
1414 	bdev_io->u.bdev.accel_sequence = NULL;
1415 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1416 }
1417 
1418 static inline void
1419 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1420 {
1421 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1422 	struct nvme_bdev_channel *nbdev_ch;
1423 	enum spdk_bdev_io_status io_status;
1424 
1425 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1426 
1427 	switch (rc) {
1428 	case 0:
1429 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1430 		break;
1431 	case -ENOMEM:
1432 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1433 		break;
1434 	case -ENXIO:
1435 		if (g_opts.bdev_retry_count == -1 || bio->retry_count < g_opts.bdev_retry_count) {
1436 			nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1437 
1438 			bdev_nvme_clear_current_io_path(nbdev_ch);
1439 			bio->io_path = NULL;
1440 
1441 			if (any_io_path_may_become_available(nbdev_ch)) {
1442 				bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1443 				return;
1444 			}
1445 		}
1446 
1447 	/* fallthrough */
1448 	default:
1449 		spdk_accel_sequence_abort(bdev_io->u.bdev.accel_sequence);
1450 		bdev_io->u.bdev.accel_sequence = NULL;
1451 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1452 		break;
1453 	}
1454 
1455 	bio->retry_count = 0;
1456 	bio->submit_tsc = 0;
1457 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1458 }
1459 
1460 static inline void
1461 bdev_nvme_admin_complete(struct nvme_bdev_io *bio, int rc)
1462 {
1463 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1464 	enum spdk_bdev_io_status io_status;
1465 
1466 	switch (rc) {
1467 	case 0:
1468 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1469 		break;
1470 	case -ENOMEM:
1471 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1472 		break;
1473 	case -ENXIO:
1474 	/* fallthrough */
1475 	default:
1476 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1477 		break;
1478 	}
1479 
1480 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1481 }
1482 
1483 static void
1484 bdev_nvme_clear_io_path_caches_done(struct spdk_io_channel_iter *i, int status)
1485 {
1486 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1487 
1488 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1489 
1490 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1491 	nvme_ctrlr->io_path_cache_clearing = false;
1492 
1493 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1494 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1495 		return;
1496 	}
1497 
1498 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1499 
1500 	nvme_ctrlr_unregister(nvme_ctrlr);
1501 }
1502 
1503 static void
1504 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1505 {
1506 	struct nvme_io_path *io_path;
1507 
1508 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1509 		if (io_path->nbdev_ch == NULL) {
1510 			continue;
1511 		}
1512 		bdev_nvme_clear_current_io_path(io_path->nbdev_ch);
1513 	}
1514 }
1515 
1516 static void
1517 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
1518 {
1519 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1520 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1521 
1522 	assert(ctrlr_ch->qpair != NULL);
1523 
1524 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1525 
1526 	spdk_for_each_channel_continue(i, 0);
1527 }
1528 
1529 static void
1530 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1531 {
1532 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1533 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1534 	    nvme_ctrlr->io_path_cache_clearing) {
1535 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1536 		return;
1537 	}
1538 
1539 	nvme_ctrlr->io_path_cache_clearing = true;
1540 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1541 
1542 	spdk_for_each_channel(nvme_ctrlr,
1543 			      bdev_nvme_clear_io_path_cache,
1544 			      NULL,
1545 			      bdev_nvme_clear_io_path_caches_done);
1546 }
1547 
1548 static struct nvme_qpair *
1549 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1550 {
1551 	struct nvme_qpair *nvme_qpair;
1552 
1553 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1554 		if (nvme_qpair->qpair == qpair) {
1555 			break;
1556 		}
1557 	}
1558 
1559 	return nvme_qpair;
1560 }
1561 
1562 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1563 
1564 static void
1565 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1566 {
1567 	struct nvme_poll_group *group = poll_group_ctx;
1568 	struct nvme_qpair *nvme_qpair;
1569 	struct nvme_ctrlr_channel *ctrlr_ch;
1570 	int status;
1571 
1572 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1573 	if (nvme_qpair == NULL) {
1574 		return;
1575 	}
1576 
1577 	if (nvme_qpair->qpair != NULL) {
1578 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1579 		nvme_qpair->qpair = NULL;
1580 	}
1581 
1582 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1583 
1584 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1585 
1586 	if (ctrlr_ch != NULL) {
1587 		if (ctrlr_ch->reset_iter != NULL) {
1588 			/* We are in a full reset sequence. */
1589 			if (ctrlr_ch->connect_poller != NULL) {
1590 				/* qpair was failed to connect. Abort the reset sequence. */
1591 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was failed to connect. abort the reset ctrlr sequence.\n",
1592 					      qpair);
1593 				spdk_poller_unregister(&ctrlr_ch->connect_poller);
1594 				status = -1;
1595 			} else {
1596 				/* qpair was completed to disconnect. Just move to the next ctrlr_channel. */
1597 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1598 					      qpair);
1599 				status = 0;
1600 			}
1601 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, status);
1602 			ctrlr_ch->reset_iter = NULL;
1603 		} else {
1604 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1605 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1606 			bdev_nvme_failover_ctrlr(nvme_qpair->ctrlr);
1607 		}
1608 	} else {
1609 		/* In this case, ctrlr_channel is already deleted. */
1610 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1611 		nvme_qpair_delete(nvme_qpair);
1612 	}
1613 }
1614 
1615 static void
1616 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1617 {
1618 	struct nvme_qpair *nvme_qpair;
1619 
1620 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1621 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1622 			continue;
1623 		}
1624 
1625 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1626 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1627 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1628 		}
1629 	}
1630 }
1631 
1632 static int
1633 bdev_nvme_poll(void *arg)
1634 {
1635 	struct nvme_poll_group *group = arg;
1636 	int64_t num_completions;
1637 
1638 	if (group->collect_spin_stat && group->start_ticks == 0) {
1639 		group->start_ticks = spdk_get_ticks();
1640 	}
1641 
1642 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1643 			  bdev_nvme_disconnected_qpair_cb);
1644 	if (group->collect_spin_stat) {
1645 		if (num_completions > 0) {
1646 			if (group->end_ticks != 0) {
1647 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1648 				group->end_ticks = 0;
1649 			}
1650 			group->start_ticks = 0;
1651 		} else {
1652 			group->end_ticks = spdk_get_ticks();
1653 		}
1654 	}
1655 
1656 	if (spdk_unlikely(num_completions < 0)) {
1657 		bdev_nvme_check_io_qpairs(group);
1658 	}
1659 
1660 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1661 }
1662 
1663 static int bdev_nvme_poll_adminq(void *arg);
1664 
1665 static void
1666 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1667 {
1668 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1669 
1670 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1671 					  nvme_ctrlr, new_period_us);
1672 }
1673 
1674 static int
1675 bdev_nvme_poll_adminq(void *arg)
1676 {
1677 	int32_t rc;
1678 	struct nvme_ctrlr *nvme_ctrlr = arg;
1679 	nvme_ctrlr_disconnected_cb disconnected_cb;
1680 
1681 	assert(nvme_ctrlr != NULL);
1682 
1683 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1684 	if (rc < 0) {
1685 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1686 		nvme_ctrlr->disconnected_cb = NULL;
1687 
1688 		if (disconnected_cb != NULL) {
1689 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1690 							    g_opts.nvme_adminq_poll_period_us);
1691 			disconnected_cb(nvme_ctrlr);
1692 		} else {
1693 			bdev_nvme_failover_ctrlr(nvme_ctrlr);
1694 		}
1695 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1696 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1697 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1698 	}
1699 
1700 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1701 }
1702 
1703 static void
1704 nvme_bdev_free(void *io_device)
1705 {
1706 	struct nvme_bdev *nvme_disk = io_device;
1707 
1708 	pthread_mutex_destroy(&nvme_disk->mutex);
1709 	free(nvme_disk->disk.name);
1710 	free(nvme_disk->err_stat);
1711 	free(nvme_disk);
1712 }
1713 
1714 static int
1715 bdev_nvme_destruct(void *ctx)
1716 {
1717 	struct nvme_bdev *nvme_disk = ctx;
1718 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1719 
1720 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1721 
1722 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1723 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1724 
1725 		nvme_ns->bdev = NULL;
1726 
1727 		assert(nvme_ns->id > 0);
1728 
1729 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1730 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1731 
1732 			nvme_ctrlr_release(nvme_ns->ctrlr);
1733 			nvme_ns_free(nvme_ns);
1734 		} else {
1735 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1736 		}
1737 	}
1738 
1739 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1740 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1741 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1742 
1743 	spdk_io_device_unregister(nvme_disk, nvme_bdev_free);
1744 
1745 	return 0;
1746 }
1747 
1748 static int
1749 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1750 {
1751 	struct nvme_ctrlr *nvme_ctrlr;
1752 	struct spdk_nvme_io_qpair_opts opts;
1753 	struct spdk_nvme_qpair *qpair;
1754 	int rc;
1755 
1756 	nvme_ctrlr = nvme_qpair->ctrlr;
1757 
1758 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1759 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1760 	opts.create_only = true;
1761 	opts.async_mode = true;
1762 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1763 	g_opts.io_queue_requests = opts.io_queue_requests;
1764 
1765 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1766 	if (qpair == NULL) {
1767 		return -1;
1768 	}
1769 
1770 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1771 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1772 
1773 	assert(nvme_qpair->group != NULL);
1774 
1775 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1776 	if (rc != 0) {
1777 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1778 		goto err;
1779 	}
1780 
1781 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1782 	if (rc != 0) {
1783 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1784 		goto err;
1785 	}
1786 
1787 	nvme_qpair->qpair = qpair;
1788 
1789 	if (!g_opts.disable_auto_failback) {
1790 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1791 	}
1792 
1793 	return 0;
1794 
1795 err:
1796 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1797 
1798 	return rc;
1799 }
1800 
1801 static void bdev_nvme_reset_io_continue(void *cb_arg, int rc);
1802 
1803 static void
1804 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
1805 {
1806 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1807 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1808 	int rc = 0;
1809 	struct nvme_bdev_io *bio;
1810 
1811 	if (spdk_io_channel_iter_get_ctx(i) != NULL) {
1812 		rc = -1;
1813 	}
1814 
1815 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1816 		bio = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1817 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bio, retry_link);
1818 
1819 		bdev_nvme_reset_io_continue(bio, rc);
1820 	}
1821 
1822 	spdk_for_each_channel_continue(i, 0);
1823 }
1824 
1825 /* This function marks the current trid as failed by storing the current ticks
1826  * and then sets the next trid to the active trid within a controller if exists.
1827  *
1828  * The purpose of the boolean return value is to request the caller to disconnect
1829  * the current trid now to try connecting the next trid.
1830  */
1831 static bool
1832 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove, bool start)
1833 {
1834 	struct nvme_path_id *path_id, *next_path;
1835 	int rc __attribute__((unused));
1836 
1837 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1838 	assert(path_id);
1839 	assert(path_id == nvme_ctrlr->active_path_id);
1840 	next_path = TAILQ_NEXT(path_id, link);
1841 
1842 	/* Update the last failed time. It means the trid is failed if its last
1843 	 * failed time is non-zero.
1844 	 */
1845 	path_id->last_failed_tsc = spdk_get_ticks();
1846 
1847 	if (next_path == NULL) {
1848 		/* There is no alternate trid within a controller. */
1849 		return false;
1850 	}
1851 
1852 	if (!start && nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1853 		/* Connect is not retried in a controller reset sequence. Connecting
1854 		 * the next trid will be done by the next bdev_nvme_failover_ctrlr() call.
1855 		 */
1856 		return false;
1857 	}
1858 
1859 	assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1860 
1861 	SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1862 		       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1863 
1864 	spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1865 	nvme_ctrlr->active_path_id = next_path;
1866 	rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1867 	assert(rc == 0);
1868 	TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1869 	if (!remove) {
1870 		/** Shuffle the old trid to the end of the list and use the new one.
1871 		 * Allows for round robin through multiple connections.
1872 		 */
1873 		TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
1874 	} else {
1875 		free(path_id);
1876 	}
1877 
1878 	if (start || next_path->last_failed_tsc == 0) {
1879 		/* bdev_nvme_failover_ctrlr() is just called or the next trid is not failed
1880 		 * or used yet. Try the next trid now.
1881 		 */
1882 		return true;
1883 	}
1884 
1885 	if (spdk_get_ticks() > next_path->last_failed_tsc + spdk_get_ticks_hz() *
1886 	    nvme_ctrlr->opts.reconnect_delay_sec) {
1887 		/* Enough backoff passed since the next trid failed. Try the next trid now. */
1888 		return true;
1889 	}
1890 
1891 	/* The next trid will be tried after reconnect_delay_sec seconds. */
1892 	return false;
1893 }
1894 
1895 static bool
1896 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
1897 {
1898 	int32_t elapsed;
1899 
1900 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
1901 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
1902 		return false;
1903 	}
1904 
1905 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1906 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
1907 		return true;
1908 	} else {
1909 		return false;
1910 	}
1911 }
1912 
1913 static bool
1914 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
1915 {
1916 	uint32_t elapsed;
1917 
1918 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
1919 		return false;
1920 	}
1921 
1922 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1923 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
1924 		return true;
1925 	} else {
1926 		return false;
1927 	}
1928 }
1929 
1930 static void bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
1931 
1932 static void
1933 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
1934 {
1935 	int rc;
1936 
1937 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
1938 	if (rc != 0) {
1939 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
1940 		 * fail the reset sequence immediately.
1941 		 */
1942 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
1943 		return;
1944 	}
1945 
1946 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
1947 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
1948 	 */
1949 	assert(nvme_ctrlr->disconnected_cb == NULL);
1950 	nvme_ctrlr->disconnected_cb = cb_fn;
1951 
1952 	/* During disconnection, reduce the period to poll adminq more often. */
1953 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
1954 }
1955 
1956 enum bdev_nvme_op_after_reset {
1957 	OP_NONE,
1958 	OP_COMPLETE_PENDING_DESTRUCT,
1959 	OP_DESTRUCT,
1960 	OP_DELAYED_RECONNECT,
1961 	OP_FAILOVER,
1962 };
1963 
1964 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
1965 
1966 static _bdev_nvme_op_after_reset
1967 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
1968 {
1969 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1970 		/* Complete pending destruct after reset completes. */
1971 		return OP_COMPLETE_PENDING_DESTRUCT;
1972 	} else if (nvme_ctrlr->pending_failover) {
1973 		nvme_ctrlr->pending_failover = false;
1974 		nvme_ctrlr->reset_start_tsc = 0;
1975 		return OP_FAILOVER;
1976 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1977 		nvme_ctrlr->reset_start_tsc = 0;
1978 		return OP_NONE;
1979 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1980 		return OP_DESTRUCT;
1981 	} else {
1982 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
1983 			nvme_ctrlr->fast_io_fail_timedout = true;
1984 		}
1985 		return OP_DELAYED_RECONNECT;
1986 	}
1987 }
1988 
1989 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
1990 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
1991 
1992 static int
1993 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
1994 {
1995 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1996 
1997 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
1998 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1999 
2000 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2001 
2002 	if (!nvme_ctrlr->reconnect_is_delayed) {
2003 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2004 		return SPDK_POLLER_BUSY;
2005 	}
2006 
2007 	nvme_ctrlr->reconnect_is_delayed = false;
2008 
2009 	if (nvme_ctrlr->destruct) {
2010 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2011 		return SPDK_POLLER_BUSY;
2012 	}
2013 
2014 	assert(nvme_ctrlr->resetting == false);
2015 	nvme_ctrlr->resetting = true;
2016 
2017 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2018 
2019 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2020 
2021 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2022 	return SPDK_POLLER_BUSY;
2023 }
2024 
2025 static void
2026 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
2027 {
2028 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2029 
2030 	assert(nvme_ctrlr->reconnect_is_delayed == false);
2031 	nvme_ctrlr->reconnect_is_delayed = true;
2032 
2033 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
2034 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
2035 					    nvme_ctrlr,
2036 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
2037 }
2038 
2039 static void remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr);
2040 
2041 static void
2042 _bdev_nvme_reset_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2043 {
2044 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2045 	bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
2046 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2047 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2048 	enum bdev_nvme_op_after_reset op_after_reset;
2049 
2050 	assert(nvme_ctrlr->thread == spdk_get_thread());
2051 
2052 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2053 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2054 
2055 	if (!success) {
2056 		SPDK_ERRLOG("Resetting controller failed.\n");
2057 	} else {
2058 		SPDK_NOTICELOG("Resetting controller successful.\n");
2059 	}
2060 
2061 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2062 	nvme_ctrlr->resetting = false;
2063 	nvme_ctrlr->dont_retry = false;
2064 	nvme_ctrlr->in_failover = false;
2065 
2066 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
2067 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2068 
2069 	/* Delay callbacks when the next operation is a failover. */
2070 	if (ctrlr_op_cb_fn && op_after_reset != OP_FAILOVER) {
2071 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, success ? 0 : -1);
2072 	}
2073 
2074 	switch (op_after_reset) {
2075 	case OP_COMPLETE_PENDING_DESTRUCT:
2076 		nvme_ctrlr_unregister(nvme_ctrlr);
2077 		break;
2078 	case OP_DESTRUCT:
2079 		bdev_nvme_delete_ctrlr(nvme_ctrlr, false);
2080 		remove_discovery_entry(nvme_ctrlr);
2081 		break;
2082 	case OP_DELAYED_RECONNECT:
2083 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
2084 		break;
2085 	case OP_FAILOVER:
2086 		nvme_ctrlr->ctrlr_op_cb_fn = ctrlr_op_cb_fn;
2087 		nvme_ctrlr->ctrlr_op_cb_arg = ctrlr_op_cb_arg;
2088 		bdev_nvme_failover_ctrlr(nvme_ctrlr);
2089 		break;
2090 	default:
2091 		break;
2092 	}
2093 }
2094 
2095 static void
2096 bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
2097 {
2098 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2099 	if (!success) {
2100 		/* Connecting the active trid failed. Set the next alternate trid to the
2101 		 * active trid if it exists.
2102 		 */
2103 		if (bdev_nvme_failover_trid(nvme_ctrlr, false, false)) {
2104 			/* The next alternate trid exists and is ready to try. Try it now. */
2105 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
2106 
2107 			nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2108 			return;
2109 		}
2110 
2111 		/* We came here if there is no alternate trid or if the next trid exists but
2112 		 * is not ready to try. We will try the active trid after reconnect_delay_sec
2113 		 * seconds if it is non-zero or at the next reset call otherwise.
2114 		 */
2115 	} else {
2116 		/* Connecting the active trid succeeded. Clear the last failed time because it
2117 		 * means the trid is failed if its last failed time is non-zero.
2118 		 */
2119 		nvme_ctrlr->active_path_id->last_failed_tsc = 0;
2120 	}
2121 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2122 
2123 	/* Make sure we clear any pending resets before returning. */
2124 	spdk_for_each_channel(nvme_ctrlr,
2125 			      bdev_nvme_complete_pending_resets,
2126 			      success ? NULL : (void *)0x1,
2127 			      _bdev_nvme_reset_ctrlr_complete);
2128 }
2129 
2130 static void
2131 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
2132 {
2133 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2134 
2135 	bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2136 }
2137 
2138 static void
2139 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
2140 {
2141 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
2142 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
2143 	struct nvme_qpair *nvme_qpair;
2144 
2145 	nvme_qpair = ctrlr_ch->qpair;
2146 	assert(nvme_qpair != NULL);
2147 
2148 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2149 
2150 	if (nvme_qpair->qpair != NULL) {
2151 		if (nvme_qpair->ctrlr->dont_retry) {
2152 			spdk_nvme_qpair_set_abort_dnr(nvme_qpair->qpair, true);
2153 		}
2154 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2155 
2156 		/* The current full reset sequence will move to the next
2157 		 * ctrlr_channel after the qpair is actually disconnected.
2158 		 */
2159 		assert(ctrlr_ch->reset_iter == NULL);
2160 		ctrlr_ch->reset_iter = i;
2161 	} else {
2162 		spdk_for_each_channel_continue(i, 0);
2163 	}
2164 }
2165 
2166 static void
2167 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
2168 {
2169 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2170 
2171 	if (status == 0) {
2172 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, true);
2173 	} else {
2174 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
2175 		spdk_for_each_channel(nvme_ctrlr,
2176 				      bdev_nvme_reset_destroy_qpair,
2177 				      NULL,
2178 				      bdev_nvme_reset_create_qpairs_failed);
2179 	}
2180 }
2181 
2182 static int
2183 bdev_nvme_reset_check_qpair_connected(void *ctx)
2184 {
2185 	struct nvme_ctrlr_channel *ctrlr_ch = ctx;
2186 
2187 	if (ctrlr_ch->reset_iter == NULL) {
2188 		/* qpair was already failed to connect and the reset sequence is being aborted. */
2189 		assert(ctrlr_ch->connect_poller == NULL);
2190 		assert(ctrlr_ch->qpair->qpair == NULL);
2191 		return SPDK_POLLER_BUSY;
2192 	}
2193 
2194 	assert(ctrlr_ch->qpair->qpair != NULL);
2195 
2196 	if (!spdk_nvme_qpair_is_connected(ctrlr_ch->qpair->qpair)) {
2197 		return SPDK_POLLER_BUSY;
2198 	}
2199 
2200 	spdk_poller_unregister(&ctrlr_ch->connect_poller);
2201 
2202 	/* qpair was completed to connect. Move to the next ctrlr_channel */
2203 	spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2204 	ctrlr_ch->reset_iter = NULL;
2205 
2206 	if (!g_opts.disable_auto_failback) {
2207 		_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
2208 	}
2209 
2210 	return SPDK_POLLER_BUSY;
2211 }
2212 
2213 static void
2214 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
2215 {
2216 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2217 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
2218 	int rc;
2219 
2220 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
2221 	if (rc == 0) {
2222 		ctrlr_ch->connect_poller = SPDK_POLLER_REGISTER(bdev_nvme_reset_check_qpair_connected,
2223 					   ctrlr_ch, 0);
2224 
2225 		/* The current full reset sequence will move to the next
2226 		 * ctrlr_channel after the qpair is actually connected.
2227 		 */
2228 		assert(ctrlr_ch->reset_iter == NULL);
2229 		ctrlr_ch->reset_iter = i;
2230 	} else {
2231 		spdk_for_each_channel_continue(i, rc);
2232 	}
2233 }
2234 
2235 static void
2236 nvme_ctrlr_check_namespaces(struct nvme_ctrlr *nvme_ctrlr)
2237 {
2238 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
2239 	struct nvme_ns *nvme_ns;
2240 
2241 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
2242 	     nvme_ns != NULL;
2243 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
2244 		if (!spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
2245 			SPDK_DEBUGLOG(bdev_nvme, "NSID %u was removed during reset.\n", nvme_ns->id);
2246 			/* NS can be added again. Just nullify nvme_ns->ns. */
2247 			nvme_ns->ns = NULL;
2248 		}
2249 	}
2250 }
2251 
2252 
2253 static int
2254 bdev_nvme_reconnect_ctrlr_poll(void *arg)
2255 {
2256 	struct nvme_ctrlr *nvme_ctrlr = arg;
2257 	int rc = -ETIMEDOUT;
2258 
2259 	if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2260 		/* Mark the ctrlr as failed. The next call to
2261 		 * spdk_nvme_ctrlr_reconnect_poll_async() will then
2262 		 * do the necessary cleanup and return failure.
2263 		 */
2264 		spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
2265 	}
2266 
2267 	rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
2268 	if (rc == -EAGAIN) {
2269 		return SPDK_POLLER_BUSY;
2270 	}
2271 
2272 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
2273 	if (rc == 0) {
2274 		nvme_ctrlr_check_namespaces(nvme_ctrlr);
2275 
2276 		/* Recreate all of the I/O queue pairs */
2277 		spdk_for_each_channel(nvme_ctrlr,
2278 				      bdev_nvme_reset_create_qpair,
2279 				      NULL,
2280 				      bdev_nvme_reset_create_qpairs_done);
2281 	} else {
2282 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2283 	}
2284 	return SPDK_POLLER_BUSY;
2285 }
2286 
2287 static void
2288 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2289 {
2290 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
2291 
2292 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
2293 	assert(nvme_ctrlr->reset_detach_poller == NULL);
2294 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
2295 					  nvme_ctrlr, 0);
2296 }
2297 
2298 static void
2299 bdev_nvme_reset_destroy_qpair_done(struct spdk_io_channel_iter *i, int status)
2300 {
2301 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2302 
2303 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
2304 	assert(status == 0);
2305 
2306 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2307 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2308 	} else {
2309 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2310 	}
2311 }
2312 
2313 static void
2314 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2315 {
2316 	spdk_for_each_channel(nvme_ctrlr,
2317 			      bdev_nvme_reset_destroy_qpair,
2318 			      NULL,
2319 			      bdev_nvme_reset_destroy_qpair_done);
2320 }
2321 
2322 static void
2323 bdev_nvme_reconnect_ctrlr_now(void *ctx)
2324 {
2325 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2326 
2327 	assert(nvme_ctrlr->resetting == true);
2328 	assert(nvme_ctrlr->thread == spdk_get_thread());
2329 
2330 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2331 
2332 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2333 
2334 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2335 }
2336 
2337 static void
2338 _bdev_nvme_reset_ctrlr(void *ctx)
2339 {
2340 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2341 
2342 	assert(nvme_ctrlr->resetting == true);
2343 	assert(nvme_ctrlr->thread == spdk_get_thread());
2344 
2345 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2346 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
2347 	} else {
2348 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
2349 	}
2350 }
2351 
2352 static int
2353 bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2354 {
2355 	spdk_msg_fn msg_fn;
2356 
2357 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2358 	if (nvme_ctrlr->destruct) {
2359 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2360 		return -ENXIO;
2361 	}
2362 
2363 	if (nvme_ctrlr->resetting) {
2364 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2365 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
2366 		return -EBUSY;
2367 	}
2368 
2369 	if (nvme_ctrlr->disabled) {
2370 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2371 		SPDK_NOTICELOG("Unable to perform reset. Controller is disabled.\n");
2372 		return -EALREADY;
2373 	}
2374 
2375 	nvme_ctrlr->resetting = true;
2376 	nvme_ctrlr->dont_retry = true;
2377 
2378 	if (nvme_ctrlr->reconnect_is_delayed) {
2379 		SPDK_DEBUGLOG(bdev_nvme, "Reconnect is already scheduled.\n");
2380 		msg_fn = bdev_nvme_reconnect_ctrlr_now;
2381 		nvme_ctrlr->reconnect_is_delayed = false;
2382 	} else {
2383 		msg_fn = _bdev_nvme_reset_ctrlr;
2384 		assert(nvme_ctrlr->reset_start_tsc == 0);
2385 	}
2386 
2387 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2388 
2389 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2390 
2391 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2392 	return 0;
2393 }
2394 
2395 static int
2396 bdev_nvme_enable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2397 {
2398 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2399 	if (nvme_ctrlr->destruct) {
2400 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2401 		return -ENXIO;
2402 	}
2403 
2404 	if (nvme_ctrlr->resetting) {
2405 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2406 		return -EBUSY;
2407 	}
2408 
2409 	if (!nvme_ctrlr->disabled) {
2410 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2411 		return -EALREADY;
2412 	}
2413 
2414 	nvme_ctrlr->disabled = false;
2415 	nvme_ctrlr->resetting = true;
2416 
2417 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2418 
2419 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2420 
2421 	spdk_thread_send_msg(nvme_ctrlr->thread, bdev_nvme_reconnect_ctrlr_now, nvme_ctrlr);
2422 	return 0;
2423 }
2424 
2425 static void
2426 _bdev_nvme_disable_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2427 {
2428 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2429 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2430 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2431 	enum bdev_nvme_op_after_reset op_after_disable;
2432 
2433 	assert(nvme_ctrlr->thread == spdk_get_thread());
2434 
2435 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2436 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2437 
2438 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2439 
2440 	nvme_ctrlr->resetting = false;
2441 	nvme_ctrlr->dont_retry = false;
2442 
2443 	op_after_disable = bdev_nvme_check_op_after_reset(nvme_ctrlr, true);
2444 
2445 	nvme_ctrlr->disabled = true;
2446 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2447 
2448 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2449 
2450 	if (ctrlr_op_cb_fn) {
2451 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, 0);
2452 	}
2453 
2454 	switch (op_after_disable) {
2455 	case OP_COMPLETE_PENDING_DESTRUCT:
2456 		nvme_ctrlr_unregister(nvme_ctrlr);
2457 		break;
2458 	default:
2459 		break;
2460 	}
2461 
2462 }
2463 
2464 static void
2465 bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr)
2466 {
2467 	/* Make sure we clear any pending resets before returning. */
2468 	spdk_for_each_channel(nvme_ctrlr,
2469 			      bdev_nvme_complete_pending_resets,
2470 			      NULL,
2471 			      _bdev_nvme_disable_ctrlr_complete);
2472 }
2473 
2474 static void
2475 bdev_nvme_disable_destroy_qpairs_done(struct spdk_io_channel_iter *i, int status)
2476 {
2477 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2478 
2479 	assert(status == 0);
2480 
2481 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2482 		bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2483 	} else {
2484 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_ctrlr_complete);
2485 	}
2486 }
2487 
2488 static void
2489 bdev_nvme_disable_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2490 {
2491 	spdk_for_each_channel(nvme_ctrlr,
2492 			      bdev_nvme_reset_destroy_qpair,
2493 			      NULL,
2494 			      bdev_nvme_disable_destroy_qpairs_done);
2495 }
2496 
2497 static void
2498 _bdev_nvme_cancel_reconnect_and_disable_ctrlr(void *ctx)
2499 {
2500 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2501 
2502 	assert(nvme_ctrlr->resetting == true);
2503 	assert(nvme_ctrlr->thread == spdk_get_thread());
2504 
2505 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2506 
2507 	bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2508 }
2509 
2510 static void
2511 _bdev_nvme_disconnect_and_disable_ctrlr(void *ctx)
2512 {
2513 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2514 
2515 	assert(nvme_ctrlr->resetting == true);
2516 	assert(nvme_ctrlr->thread == spdk_get_thread());
2517 
2518 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2519 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_destroy_qpairs);
2520 	} else {
2521 		bdev_nvme_disable_destroy_qpairs(nvme_ctrlr);
2522 	}
2523 }
2524 
2525 static int
2526 bdev_nvme_disable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2527 {
2528 	spdk_msg_fn msg_fn;
2529 
2530 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2531 	if (nvme_ctrlr->destruct) {
2532 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2533 		return -ENXIO;
2534 	}
2535 
2536 	if (nvme_ctrlr->resetting) {
2537 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2538 		return -EBUSY;
2539 	}
2540 
2541 	if (nvme_ctrlr->disabled) {
2542 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2543 		return -EALREADY;
2544 	}
2545 
2546 	nvme_ctrlr->resetting = true;
2547 	nvme_ctrlr->dont_retry = true;
2548 
2549 	if (nvme_ctrlr->reconnect_is_delayed) {
2550 		msg_fn = _bdev_nvme_cancel_reconnect_and_disable_ctrlr;
2551 		nvme_ctrlr->reconnect_is_delayed = false;
2552 	} else {
2553 		msg_fn = _bdev_nvme_disconnect_and_disable_ctrlr;
2554 	}
2555 
2556 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2557 
2558 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2559 
2560 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2561 	return 0;
2562 }
2563 
2564 static int
2565 nvme_ctrlr_op(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2566 	      bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2567 {
2568 	int rc;
2569 
2570 	switch (op) {
2571 	case NVME_CTRLR_OP_RESET:
2572 		rc = bdev_nvme_reset_ctrlr(nvme_ctrlr);
2573 		break;
2574 	case NVME_CTRLR_OP_ENABLE:
2575 		rc = bdev_nvme_enable_ctrlr(nvme_ctrlr);
2576 		break;
2577 	case NVME_CTRLR_OP_DISABLE:
2578 		rc = bdev_nvme_disable_ctrlr(nvme_ctrlr);
2579 		break;
2580 	default:
2581 		rc = -EINVAL;
2582 		break;
2583 	}
2584 
2585 	if (rc == 0) {
2586 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
2587 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
2588 		nvme_ctrlr->ctrlr_op_cb_fn = cb_fn;
2589 		nvme_ctrlr->ctrlr_op_cb_arg = cb_arg;
2590 	}
2591 	return rc;
2592 }
2593 
2594 struct nvme_ctrlr_op_rpc_ctx {
2595 	struct nvme_ctrlr *nvme_ctrlr;
2596 	struct spdk_thread *orig_thread;
2597 	enum nvme_ctrlr_op op;
2598 	int rc;
2599 	bdev_nvme_ctrlr_op_cb cb_fn;
2600 	void *cb_arg;
2601 };
2602 
2603 static void
2604 _nvme_ctrlr_op_rpc_complete(void *_ctx)
2605 {
2606 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2607 
2608 	assert(ctx != NULL);
2609 	assert(ctx->cb_fn != NULL);
2610 
2611 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2612 
2613 	free(ctx);
2614 }
2615 
2616 static void
2617 nvme_ctrlr_op_rpc_complete(void *cb_arg, int rc)
2618 {
2619 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2620 
2621 	ctx->rc = rc;
2622 
2623 	spdk_thread_send_msg(ctx->orig_thread, _nvme_ctrlr_op_rpc_complete, ctx);
2624 }
2625 
2626 void
2627 nvme_ctrlr_op_rpc(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2628 		  bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2629 {
2630 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2631 	int rc;
2632 
2633 	assert(cb_fn != NULL);
2634 
2635 	ctx = calloc(1, sizeof(*ctx));
2636 	if (ctx == NULL) {
2637 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2638 		cb_fn(cb_arg, -ENOMEM);
2639 		return;
2640 	}
2641 
2642 	ctx->orig_thread = spdk_get_thread();
2643 	ctx->cb_fn = cb_fn;
2644 	ctx->cb_arg = cb_arg;
2645 
2646 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_ctrlr_op_rpc_complete, ctx);
2647 	if (rc == 0) {
2648 		return;
2649 	} else if (rc == -EALREADY) {
2650 		rc = 0;
2651 	}
2652 
2653 	nvme_ctrlr_op_rpc_complete(ctx, rc);
2654 }
2655 
2656 static void nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc);
2657 
2658 static void
2659 _nvme_bdev_ctrlr_op_rpc_continue(void *_ctx)
2660 {
2661 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2662 	struct nvme_ctrlr *prev_nvme_ctrlr, *next_nvme_ctrlr;
2663 	int rc;
2664 
2665 	prev_nvme_ctrlr = ctx->nvme_ctrlr;
2666 	ctx->nvme_ctrlr = NULL;
2667 
2668 	if (ctx->rc != 0) {
2669 		goto complete;
2670 	}
2671 
2672 	next_nvme_ctrlr = TAILQ_NEXT(prev_nvme_ctrlr, tailq);
2673 	if (next_nvme_ctrlr == NULL) {
2674 		goto complete;
2675 	}
2676 
2677 	rc = nvme_ctrlr_op(next_nvme_ctrlr, ctx->op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2678 	if (rc == 0) {
2679 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2680 		return;
2681 	} else if (rc == -EALREADY) {
2682 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2683 		rc = 0;
2684 	}
2685 
2686 	ctx->rc = rc;
2687 
2688 complete:
2689 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2690 	free(ctx);
2691 }
2692 
2693 static void
2694 nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc)
2695 {
2696 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2697 
2698 	ctx->rc = rc;
2699 
2700 	spdk_thread_send_msg(ctx->orig_thread, _nvme_bdev_ctrlr_op_rpc_continue, ctx);
2701 }
2702 
2703 void
2704 nvme_bdev_ctrlr_op_rpc(struct nvme_bdev_ctrlr *nbdev_ctrlr, enum nvme_ctrlr_op op,
2705 		       bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2706 {
2707 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2708 	struct nvme_ctrlr *nvme_ctrlr;
2709 	int rc;
2710 
2711 	assert(cb_fn != NULL);
2712 
2713 	ctx = calloc(1, sizeof(*ctx));
2714 	if (ctx == NULL) {
2715 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2716 		cb_fn(cb_arg, -ENOMEM);
2717 		return;
2718 	}
2719 
2720 	ctx->orig_thread = spdk_get_thread();
2721 	ctx->op = op;
2722 	ctx->cb_fn = cb_fn;
2723 	ctx->cb_arg = cb_arg;
2724 
2725 	nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
2726 	assert(nvme_ctrlr != NULL);
2727 
2728 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2729 	if (rc == 0) {
2730 		ctx->nvme_ctrlr = nvme_ctrlr;
2731 		return;
2732 	} else if (rc == -EALREADY) {
2733 		ctx->nvme_ctrlr = nvme_ctrlr;
2734 		rc = 0;
2735 	}
2736 
2737 	nvme_bdev_ctrlr_op_rpc_continue(ctx, rc);
2738 }
2739 
2740 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
2741 
2742 static void
2743 _bdev_nvme_reset_io_complete(struct spdk_io_channel_iter *i, int status)
2744 {
2745 	struct nvme_bdev_io *bio = spdk_io_channel_iter_get_ctx(i);
2746 	enum spdk_bdev_io_status io_status;
2747 
2748 	if (bio->cpl.cdw0 == 0) {
2749 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2750 	} else {
2751 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
2752 	}
2753 
2754 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
2755 }
2756 
2757 static void
2758 bdev_nvme_abort_bdev_channel(struct spdk_io_channel_iter *i)
2759 {
2760 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2761 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
2762 
2763 	bdev_nvme_abort_retry_ios(nbdev_ch);
2764 
2765 	spdk_for_each_channel_continue(i, 0);
2766 }
2767 
2768 static void
2769 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
2770 {
2771 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2772 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
2773 
2774 	/* Abort all queued I/Os for retry. */
2775 	spdk_for_each_channel(nbdev,
2776 			      bdev_nvme_abort_bdev_channel,
2777 			      bio,
2778 			      _bdev_nvme_reset_io_complete);
2779 }
2780 
2781 static void
2782 _bdev_nvme_reset_io_continue(void *ctx)
2783 {
2784 	struct nvme_bdev_io *bio = ctx;
2785 	struct nvme_io_path *prev_io_path, *next_io_path;
2786 	int rc;
2787 
2788 	prev_io_path = bio->io_path;
2789 	bio->io_path = NULL;
2790 
2791 	if (bio->cpl.cdw0 != 0) {
2792 		goto complete;
2793 	}
2794 
2795 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
2796 	if (next_io_path == NULL) {
2797 		goto complete;
2798 	}
2799 
2800 	rc = _bdev_nvme_reset_io(next_io_path, bio);
2801 	if (rc == 0) {
2802 		return;
2803 	}
2804 
2805 	bio->cpl.cdw0 = 1;
2806 
2807 complete:
2808 	bdev_nvme_reset_io_complete(bio);
2809 }
2810 
2811 static void
2812 bdev_nvme_reset_io_continue(void *cb_arg, int rc)
2813 {
2814 	struct nvme_bdev_io *bio = cb_arg;
2815 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2816 
2817 	bio->cpl.cdw0 = (rc == 0) ? 0 : 1;
2818 
2819 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_nvme_reset_io_continue, bio);
2820 }
2821 
2822 static int
2823 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
2824 {
2825 	struct nvme_ctrlr_channel *ctrlr_ch;
2826 	int rc;
2827 
2828 	rc = nvme_ctrlr_op(io_path->qpair->ctrlr, NVME_CTRLR_OP_RESET,
2829 			   bdev_nvme_reset_io_continue, bio);
2830 	if (rc != 0 && rc != -EBUSY) {
2831 		return rc;
2832 	}
2833 
2834 	assert(bio->io_path == NULL);
2835 	bio->io_path = io_path;
2836 
2837 	if (rc == -EBUSY) {
2838 		ctrlr_ch = io_path->qpair->ctrlr_ch;
2839 		assert(ctrlr_ch != NULL);
2840 		/*
2841 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
2842 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
2843 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
2844 		 */
2845 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bio, retry_link);
2846 	}
2847 
2848 	return 0;
2849 }
2850 
2851 static void
2852 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
2853 {
2854 	struct nvme_io_path *io_path;
2855 	int rc;
2856 
2857 	bio->cpl.cdw0 = 0;
2858 
2859 	/* Reset all nvme_ctrlrs of a bdev controller sequentially. */
2860 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
2861 	assert(io_path != NULL);
2862 
2863 	rc = _bdev_nvme_reset_io(io_path, bio);
2864 	if (rc != 0) {
2865 		/* If the current nvme_ctrlr is disabled, skip it and move to the next nvme_ctrlr. */
2866 		rc = (rc == -EALREADY) ? 0 : rc;
2867 
2868 		bdev_nvme_reset_io_continue(bio, rc);
2869 	}
2870 }
2871 
2872 static int
2873 bdev_nvme_failover_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove)
2874 {
2875 	if (nvme_ctrlr->destruct) {
2876 		/* Don't bother resetting if the controller is in the process of being destructed. */
2877 		return -ENXIO;
2878 	}
2879 
2880 	if (nvme_ctrlr->resetting) {
2881 		if (!nvme_ctrlr->in_failover) {
2882 			SPDK_NOTICELOG("Reset is already in progress. Defer failover until reset completes.\n");
2883 
2884 			/* Defer failover until reset completes. */
2885 			nvme_ctrlr->pending_failover = true;
2886 			return -EINPROGRESS;
2887 		} else {
2888 			SPDK_NOTICELOG("Unable to perform failover, already in progress.\n");
2889 			return -EBUSY;
2890 		}
2891 	}
2892 
2893 	bdev_nvme_failover_trid(nvme_ctrlr, remove, true);
2894 
2895 	if (nvme_ctrlr->reconnect_is_delayed) {
2896 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
2897 
2898 		/* We rely on the next reconnect for the failover. */
2899 		return -EALREADY;
2900 	}
2901 
2902 	if (nvme_ctrlr->disabled) {
2903 		SPDK_NOTICELOG("Controller is disabled.\n");
2904 
2905 		/* We rely on the enablement for the failover. */
2906 		return -EALREADY;
2907 	}
2908 
2909 	nvme_ctrlr->resetting = true;
2910 	nvme_ctrlr->in_failover = true;
2911 
2912 	assert(nvme_ctrlr->reset_start_tsc == 0);
2913 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2914 
2915 	return 0;
2916 }
2917 
2918 static int
2919 bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2920 {
2921 	int rc;
2922 
2923 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2924 	rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, false);
2925 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2926 
2927 	if (rc == 0) {
2928 		spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset_ctrlr, nvme_ctrlr);
2929 	} else if (rc == -EALREADY) {
2930 		rc = 0;
2931 	}
2932 
2933 	return rc;
2934 }
2935 
2936 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2937 			   uint64_t num_blocks);
2938 
2939 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2940 				  uint64_t num_blocks);
2941 
2942 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
2943 			  uint64_t src_offset_blocks,
2944 			  uint64_t num_blocks);
2945 
2946 static void
2947 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
2948 		     bool success)
2949 {
2950 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2951 	int ret;
2952 
2953 	if (!success) {
2954 		ret = -EINVAL;
2955 		goto exit;
2956 	}
2957 
2958 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
2959 		ret = -ENXIO;
2960 		goto exit;
2961 	}
2962 
2963 	ret = bdev_nvme_readv(bio,
2964 			      bdev_io->u.bdev.iovs,
2965 			      bdev_io->u.bdev.iovcnt,
2966 			      bdev_io->u.bdev.md_buf,
2967 			      bdev_io->u.bdev.num_blocks,
2968 			      bdev_io->u.bdev.offset_blocks,
2969 			      bdev_io->u.bdev.dif_check_flags,
2970 			      bdev_io->u.bdev.memory_domain,
2971 			      bdev_io->u.bdev.memory_domain_ctx,
2972 			      bdev_io->u.bdev.accel_sequence);
2973 
2974 exit:
2975 	if (spdk_unlikely(ret != 0)) {
2976 		bdev_nvme_io_complete(bio, ret);
2977 	}
2978 }
2979 
2980 static inline void
2981 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
2982 {
2983 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2984 	struct spdk_bdev *bdev = bdev_io->bdev;
2985 	struct nvme_bdev_io *nbdev_io_to_abort;
2986 	int rc = 0;
2987 
2988 	switch (bdev_io->type) {
2989 	case SPDK_BDEV_IO_TYPE_READ:
2990 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
2991 
2992 			rc = bdev_nvme_readv(nbdev_io,
2993 					     bdev_io->u.bdev.iovs,
2994 					     bdev_io->u.bdev.iovcnt,
2995 					     bdev_io->u.bdev.md_buf,
2996 					     bdev_io->u.bdev.num_blocks,
2997 					     bdev_io->u.bdev.offset_blocks,
2998 					     bdev_io->u.bdev.dif_check_flags,
2999 					     bdev_io->u.bdev.memory_domain,
3000 					     bdev_io->u.bdev.memory_domain_ctx,
3001 					     bdev_io->u.bdev.accel_sequence);
3002 		} else {
3003 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
3004 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
3005 			rc = 0;
3006 		}
3007 		break;
3008 	case SPDK_BDEV_IO_TYPE_WRITE:
3009 		rc = bdev_nvme_writev(nbdev_io,
3010 				      bdev_io->u.bdev.iovs,
3011 				      bdev_io->u.bdev.iovcnt,
3012 				      bdev_io->u.bdev.md_buf,
3013 				      bdev_io->u.bdev.num_blocks,
3014 				      bdev_io->u.bdev.offset_blocks,
3015 				      bdev_io->u.bdev.dif_check_flags,
3016 				      bdev_io->u.bdev.memory_domain,
3017 				      bdev_io->u.bdev.memory_domain_ctx,
3018 				      bdev_io->u.bdev.accel_sequence,
3019 				      bdev_io->u.bdev.nvme_cdw12,
3020 				      bdev_io->u.bdev.nvme_cdw13);
3021 		break;
3022 	case SPDK_BDEV_IO_TYPE_COMPARE:
3023 		rc = bdev_nvme_comparev(nbdev_io,
3024 					bdev_io->u.bdev.iovs,
3025 					bdev_io->u.bdev.iovcnt,
3026 					bdev_io->u.bdev.md_buf,
3027 					bdev_io->u.bdev.num_blocks,
3028 					bdev_io->u.bdev.offset_blocks,
3029 					bdev_io->u.bdev.dif_check_flags);
3030 		break;
3031 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3032 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
3033 						   bdev_io->u.bdev.iovs,
3034 						   bdev_io->u.bdev.iovcnt,
3035 						   bdev_io->u.bdev.fused_iovs,
3036 						   bdev_io->u.bdev.fused_iovcnt,
3037 						   bdev_io->u.bdev.md_buf,
3038 						   bdev_io->u.bdev.num_blocks,
3039 						   bdev_io->u.bdev.offset_blocks,
3040 						   bdev_io->u.bdev.dif_check_flags);
3041 		break;
3042 	case SPDK_BDEV_IO_TYPE_UNMAP:
3043 		rc = bdev_nvme_unmap(nbdev_io,
3044 				     bdev_io->u.bdev.offset_blocks,
3045 				     bdev_io->u.bdev.num_blocks);
3046 		break;
3047 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3048 		rc =  bdev_nvme_write_zeroes(nbdev_io,
3049 					     bdev_io->u.bdev.offset_blocks,
3050 					     bdev_io->u.bdev.num_blocks);
3051 		break;
3052 	case SPDK_BDEV_IO_TYPE_RESET:
3053 		nbdev_io->io_path = NULL;
3054 		bdev_nvme_reset_io(nbdev_ch, nbdev_io);
3055 		return;
3056 
3057 	case SPDK_BDEV_IO_TYPE_FLUSH:
3058 		bdev_nvme_io_complete(nbdev_io, 0);
3059 		return;
3060 
3061 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3062 		rc = bdev_nvme_zone_appendv(nbdev_io,
3063 					    bdev_io->u.bdev.iovs,
3064 					    bdev_io->u.bdev.iovcnt,
3065 					    bdev_io->u.bdev.md_buf,
3066 					    bdev_io->u.bdev.num_blocks,
3067 					    bdev_io->u.bdev.offset_blocks,
3068 					    bdev_io->u.bdev.dif_check_flags);
3069 		break;
3070 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3071 		rc = bdev_nvme_get_zone_info(nbdev_io,
3072 					     bdev_io->u.zone_mgmt.zone_id,
3073 					     bdev_io->u.zone_mgmt.num_zones,
3074 					     bdev_io->u.zone_mgmt.buf);
3075 		break;
3076 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3077 		rc = bdev_nvme_zone_management(nbdev_io,
3078 					       bdev_io->u.zone_mgmt.zone_id,
3079 					       bdev_io->u.zone_mgmt.zone_action);
3080 		break;
3081 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3082 		nbdev_io->io_path = NULL;
3083 		bdev_nvme_admin_passthru(nbdev_ch,
3084 					 nbdev_io,
3085 					 &bdev_io->u.nvme_passthru.cmd,
3086 					 bdev_io->u.nvme_passthru.buf,
3087 					 bdev_io->u.nvme_passthru.nbytes);
3088 		return;
3089 
3090 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3091 		rc = bdev_nvme_io_passthru(nbdev_io,
3092 					   &bdev_io->u.nvme_passthru.cmd,
3093 					   bdev_io->u.nvme_passthru.buf,
3094 					   bdev_io->u.nvme_passthru.nbytes);
3095 		break;
3096 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3097 		rc = bdev_nvme_io_passthru_md(nbdev_io,
3098 					      &bdev_io->u.nvme_passthru.cmd,
3099 					      bdev_io->u.nvme_passthru.buf,
3100 					      bdev_io->u.nvme_passthru.nbytes,
3101 					      bdev_io->u.nvme_passthru.md_buf,
3102 					      bdev_io->u.nvme_passthru.md_len);
3103 		break;
3104 	case SPDK_BDEV_IO_TYPE_NVME_IOV_MD:
3105 		rc = bdev_nvme_iov_passthru_md(nbdev_io,
3106 					       &bdev_io->u.nvme_passthru.cmd,
3107 					       bdev_io->u.nvme_passthru.iovs,
3108 					       bdev_io->u.nvme_passthru.iovcnt,
3109 					       bdev_io->u.nvme_passthru.nbytes,
3110 					       bdev_io->u.nvme_passthru.md_buf,
3111 					       bdev_io->u.nvme_passthru.md_len);
3112 		break;
3113 	case SPDK_BDEV_IO_TYPE_ABORT:
3114 		nbdev_io->io_path = NULL;
3115 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
3116 		bdev_nvme_abort(nbdev_ch,
3117 				nbdev_io,
3118 				nbdev_io_to_abort);
3119 		return;
3120 
3121 	case SPDK_BDEV_IO_TYPE_COPY:
3122 		rc = bdev_nvme_copy(nbdev_io,
3123 				    bdev_io->u.bdev.offset_blocks,
3124 				    bdev_io->u.bdev.copy.src_offset_blocks,
3125 				    bdev_io->u.bdev.num_blocks);
3126 		break;
3127 	default:
3128 		rc = -EINVAL;
3129 		break;
3130 	}
3131 
3132 	if (spdk_unlikely(rc != 0)) {
3133 		bdev_nvme_io_complete(nbdev_io, rc);
3134 	}
3135 }
3136 
3137 static void
3138 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
3139 {
3140 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3141 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3142 
3143 	if (spdk_likely(nbdev_io->submit_tsc == 0)) {
3144 		nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io);
3145 	} else {
3146 		/* There are cases where submit_tsc != 0, i.e. retry I/O.
3147 		 * We need to update submit_tsc here.
3148 		 */
3149 		nbdev_io->submit_tsc = spdk_get_ticks();
3150 	}
3151 
3152 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
3153 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
3154 	if (spdk_unlikely(!nbdev_io->io_path)) {
3155 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
3156 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
3157 			return;
3158 		}
3159 
3160 		/* Admin commands do not use the optimal I/O path.
3161 		 * Simply fall through even if it is not found.
3162 		 */
3163 	}
3164 
3165 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
3166 }
3167 
3168 static bool
3169 bdev_nvme_is_supported_csi(enum spdk_nvme_csi csi)
3170 {
3171 	switch (csi) {
3172 	case SPDK_NVME_CSI_NVM:
3173 		return true;
3174 	case SPDK_NVME_CSI_ZNS:
3175 		return true;
3176 	default:
3177 		return false;
3178 	}
3179 }
3180 
3181 static bool
3182 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
3183 {
3184 	struct nvme_bdev *nbdev = ctx;
3185 	struct nvme_ns *nvme_ns;
3186 	struct spdk_nvme_ns *ns;
3187 	struct spdk_nvme_ctrlr *ctrlr;
3188 	const struct spdk_nvme_ctrlr_data *cdata;
3189 
3190 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3191 	assert(nvme_ns != NULL);
3192 	ns = nvme_ns->ns;
3193 	if (ns == NULL) {
3194 		return false;
3195 	}
3196 
3197 	if (!bdev_nvme_is_supported_csi(spdk_nvme_ns_get_csi(ns))) {
3198 		switch (io_type) {
3199 		case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3200 		case SPDK_BDEV_IO_TYPE_NVME_IO:
3201 			return true;
3202 
3203 		case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3204 			return spdk_nvme_ns_get_md_size(ns) ? true : false;
3205 
3206 		default:
3207 			return false;
3208 		}
3209 	}
3210 
3211 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3212 
3213 	switch (io_type) {
3214 	case SPDK_BDEV_IO_TYPE_READ:
3215 	case SPDK_BDEV_IO_TYPE_WRITE:
3216 	case SPDK_BDEV_IO_TYPE_RESET:
3217 	case SPDK_BDEV_IO_TYPE_FLUSH:
3218 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3219 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3220 	case SPDK_BDEV_IO_TYPE_ABORT:
3221 		return true;
3222 
3223 	case SPDK_BDEV_IO_TYPE_COMPARE:
3224 		return spdk_nvme_ns_supports_compare(ns);
3225 
3226 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3227 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
3228 
3229 	case SPDK_BDEV_IO_TYPE_UNMAP:
3230 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3231 		return cdata->oncs.dsm;
3232 
3233 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3234 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3235 		return cdata->oncs.write_zeroes;
3236 
3237 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3238 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
3239 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
3240 			return true;
3241 		}
3242 		return false;
3243 
3244 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3245 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3246 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
3247 
3248 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3249 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
3250 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
3251 
3252 	case SPDK_BDEV_IO_TYPE_COPY:
3253 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3254 		return cdata->oncs.copy;
3255 
3256 	default:
3257 		return false;
3258 	}
3259 }
3260 
3261 static int
3262 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
3263 {
3264 	struct nvme_qpair *nvme_qpair;
3265 	struct spdk_io_channel *pg_ch;
3266 	int rc;
3267 
3268 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
3269 	if (!nvme_qpair) {
3270 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
3271 		return -1;
3272 	}
3273 
3274 	TAILQ_INIT(&nvme_qpair->io_path_list);
3275 
3276 	nvme_qpair->ctrlr = nvme_ctrlr;
3277 	nvme_qpair->ctrlr_ch = ctrlr_ch;
3278 
3279 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
3280 	if (!pg_ch) {
3281 		free(nvme_qpair);
3282 		return -1;
3283 	}
3284 
3285 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
3286 
3287 #ifdef SPDK_CONFIG_VTUNE
3288 	nvme_qpair->group->collect_spin_stat = true;
3289 #else
3290 	nvme_qpair->group->collect_spin_stat = false;
3291 #endif
3292 
3293 	if (!nvme_ctrlr->disabled) {
3294 		/* If a nvme_ctrlr is disabled, don't try to create qpair for it. Qpair will
3295 		 * be created when it's enabled.
3296 		 */
3297 		rc = bdev_nvme_create_qpair(nvme_qpair);
3298 		if (rc != 0) {
3299 			/* nvme_ctrlr can't create IO qpair if connection is down.
3300 			 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
3301 			 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
3302 			 * submitted IO will be queued until IO qpair is successfully created.
3303 			 *
3304 			 * Hence, if both are satisfied, ignore the failure.
3305 			 */
3306 			if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
3307 				spdk_put_io_channel(pg_ch);
3308 				free(nvme_qpair);
3309 				return rc;
3310 			}
3311 		}
3312 	}
3313 
3314 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3315 
3316 	ctrlr_ch->qpair = nvme_qpair;
3317 
3318 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
3319 	nvme_qpair->ctrlr->ref++;
3320 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
3321 
3322 	return 0;
3323 }
3324 
3325 static int
3326 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3327 {
3328 	struct nvme_ctrlr *nvme_ctrlr = io_device;
3329 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3330 
3331 	TAILQ_INIT(&ctrlr_ch->pending_resets);
3332 
3333 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
3334 }
3335 
3336 static void
3337 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
3338 {
3339 	struct nvme_io_path *io_path, *next;
3340 
3341 	assert(nvme_qpair->group != NULL);
3342 
3343 	TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) {
3344 		TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
3345 		nvme_io_path_free(io_path);
3346 	}
3347 
3348 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3349 
3350 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
3351 
3352 	nvme_ctrlr_release(nvme_qpair->ctrlr);
3353 
3354 	free(nvme_qpair);
3355 }
3356 
3357 static void
3358 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3359 {
3360 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3361 	struct nvme_qpair *nvme_qpair;
3362 
3363 	nvme_qpair = ctrlr_ch->qpair;
3364 	assert(nvme_qpair != NULL);
3365 
3366 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
3367 
3368 	if (nvme_qpair->qpair != NULL) {
3369 		if (ctrlr_ch->reset_iter == NULL) {
3370 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
3371 		} else {
3372 			/* Skip current ctrlr_channel in a full reset sequence because
3373 			 * it is being deleted now. The qpair is already being disconnected.
3374 			 * We do not have to restart disconnecting it.
3375 			 */
3376 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
3377 		}
3378 
3379 		/* We cannot release a reference to the poll group now.
3380 		 * The qpair may be disconnected asynchronously later.
3381 		 * We need to poll it until it is actually disconnected.
3382 		 * Just detach the qpair from the deleting ctrlr_channel.
3383 		 */
3384 		nvme_qpair->ctrlr_ch = NULL;
3385 	} else {
3386 		assert(ctrlr_ch->reset_iter == NULL);
3387 
3388 		nvme_qpair_delete(nvme_qpair);
3389 	}
3390 }
3391 
3392 static inline struct spdk_io_channel *
3393 bdev_nvme_get_accel_channel(struct nvme_poll_group *group)
3394 {
3395 	if (spdk_unlikely(!group->accel_channel)) {
3396 		group->accel_channel = spdk_accel_get_io_channel();
3397 		if (!group->accel_channel) {
3398 			SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
3399 				    group);
3400 			return NULL;
3401 		}
3402 	}
3403 
3404 	return group->accel_channel;
3405 }
3406 
3407 static void
3408 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
3409 			      uint32_t iov_cnt, uint32_t seed,
3410 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3411 {
3412 	struct spdk_io_channel *accel_ch;
3413 	struct nvme_poll_group *group = ctx;
3414 	int rc;
3415 
3416 	assert(cb_fn != NULL);
3417 
3418 	accel_ch = bdev_nvme_get_accel_channel(group);
3419 	if (spdk_unlikely(accel_ch == NULL)) {
3420 		cb_fn(cb_arg, -ENOMEM);
3421 		return;
3422 	}
3423 
3424 	rc = spdk_accel_submit_crc32cv(accel_ch, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
3425 	if (rc) {
3426 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
3427 		if (rc == -ENOMEM || rc == -EINVAL) {
3428 			cb_fn(cb_arg, rc);
3429 		}
3430 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
3431 	}
3432 }
3433 
3434 static void
3435 bdev_nvme_finish_sequence(void *seq, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3436 {
3437 	spdk_accel_sequence_finish(seq, cb_fn, cb_arg);
3438 }
3439 
3440 static void
3441 bdev_nvme_abort_sequence(void *seq)
3442 {
3443 	spdk_accel_sequence_abort(seq);
3444 }
3445 
3446 static void
3447 bdev_nvme_reverse_sequence(void *seq)
3448 {
3449 	spdk_accel_sequence_reverse(seq);
3450 }
3451 
3452 static int
3453 bdev_nvme_append_crc32c(void *ctx, void **seq, uint32_t *dst, struct iovec *iovs, uint32_t iovcnt,
3454 			struct spdk_memory_domain *domain, void *domain_ctx, uint32_t seed,
3455 			spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3456 {
3457 	struct spdk_io_channel *ch;
3458 	struct nvme_poll_group *group = ctx;
3459 
3460 	ch = bdev_nvme_get_accel_channel(group);
3461 	if (spdk_unlikely(ch == NULL)) {
3462 		return -ENOMEM;
3463 	}
3464 
3465 	return spdk_accel_append_crc32c((struct spdk_accel_sequence **)seq, ch, dst, iovs, iovcnt,
3466 					domain, domain_ctx, seed, cb_fn, cb_arg);
3467 }
3468 
3469 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
3470 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
3471 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
3472 	.append_crc32c		= bdev_nvme_append_crc32c,
3473 	.finish_sequence	= bdev_nvme_finish_sequence,
3474 	.reverse_sequence	= bdev_nvme_reverse_sequence,
3475 	.abort_sequence		= bdev_nvme_abort_sequence,
3476 };
3477 
3478 static int
3479 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
3480 {
3481 	struct nvme_poll_group *group = ctx_buf;
3482 
3483 	TAILQ_INIT(&group->qpair_list);
3484 
3485 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
3486 	if (group->group == NULL) {
3487 		return -1;
3488 	}
3489 
3490 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
3491 
3492 	if (group->poller == NULL) {
3493 		spdk_nvme_poll_group_destroy(group->group);
3494 		return -1;
3495 	}
3496 
3497 	return 0;
3498 }
3499 
3500 static void
3501 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
3502 {
3503 	struct nvme_poll_group *group = ctx_buf;
3504 
3505 	assert(TAILQ_EMPTY(&group->qpair_list));
3506 
3507 	if (group->accel_channel) {
3508 		spdk_put_io_channel(group->accel_channel);
3509 	}
3510 
3511 	spdk_poller_unregister(&group->poller);
3512 	if (spdk_nvme_poll_group_destroy(group->group)) {
3513 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
3514 		assert(false);
3515 	}
3516 }
3517 
3518 static struct spdk_io_channel *
3519 bdev_nvme_get_io_channel(void *ctx)
3520 {
3521 	struct nvme_bdev *nvme_bdev = ctx;
3522 
3523 	return spdk_get_io_channel(nvme_bdev);
3524 }
3525 
3526 static void *
3527 bdev_nvme_get_module_ctx(void *ctx)
3528 {
3529 	struct nvme_bdev *nvme_bdev = ctx;
3530 	struct nvme_ns *nvme_ns;
3531 
3532 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
3533 		return NULL;
3534 	}
3535 
3536 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
3537 	if (!nvme_ns) {
3538 		return NULL;
3539 	}
3540 
3541 	return nvme_ns->ns;
3542 }
3543 
3544 static const char *
3545 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
3546 {
3547 	switch (ana_state) {
3548 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3549 		return "optimized";
3550 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3551 		return "non_optimized";
3552 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3553 		return "inaccessible";
3554 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
3555 		return "persistent_loss";
3556 	case SPDK_NVME_ANA_CHANGE_STATE:
3557 		return "change";
3558 	default:
3559 		return NULL;
3560 	}
3561 }
3562 
3563 static int
3564 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
3565 {
3566 	struct spdk_memory_domain **_domains = NULL;
3567 	struct nvme_bdev *nbdev = ctx;
3568 	struct nvme_ns *nvme_ns;
3569 	int i = 0, _array_size = array_size;
3570 	int rc = 0;
3571 
3572 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3573 		if (domains && array_size >= i) {
3574 			_domains = &domains[i];
3575 		} else {
3576 			_domains = NULL;
3577 		}
3578 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
3579 		if (rc > 0) {
3580 			i += rc;
3581 			if (_array_size >= rc) {
3582 				_array_size -= rc;
3583 			} else {
3584 				_array_size = 0;
3585 			}
3586 		} else if (rc < 0) {
3587 			return rc;
3588 		}
3589 	}
3590 
3591 	return i;
3592 }
3593 
3594 static const char *
3595 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
3596 {
3597 	if (nvme_ctrlr->destruct) {
3598 		return "deleting";
3599 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
3600 		return "failed";
3601 	} else if (nvme_ctrlr->resetting) {
3602 		return "resetting";
3603 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
3604 		return "reconnect_is_delayed";
3605 	} else if (nvme_ctrlr->disabled) {
3606 		return "disabled";
3607 	} else {
3608 		return "enabled";
3609 	}
3610 }
3611 
3612 void
3613 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
3614 {
3615 	struct spdk_nvme_transport_id *trid;
3616 	const struct spdk_nvme_ctrlr_opts *opts;
3617 	const struct spdk_nvme_ctrlr_data *cdata;
3618 	struct nvme_path_id *path_id;
3619 
3620 	spdk_json_write_object_begin(w);
3621 
3622 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
3623 
3624 #ifdef SPDK_CONFIG_NVME_CUSE
3625 	size_t cuse_name_size = 128;
3626 	char cuse_name[cuse_name_size];
3627 
3628 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
3629 	if (rc == 0) {
3630 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3631 	}
3632 #endif
3633 	trid = &nvme_ctrlr->active_path_id->trid;
3634 	spdk_json_write_named_object_begin(w, "trid");
3635 	nvme_bdev_dump_trid_json(trid, w);
3636 	spdk_json_write_object_end(w);
3637 
3638 	path_id = TAILQ_NEXT(nvme_ctrlr->active_path_id, link);
3639 	if (path_id != NULL) {
3640 		spdk_json_write_named_array_begin(w, "alternate_trids");
3641 		do {
3642 			trid = &path_id->trid;
3643 			spdk_json_write_object_begin(w);
3644 			nvme_bdev_dump_trid_json(trid, w);
3645 			spdk_json_write_object_end(w);
3646 
3647 			path_id = TAILQ_NEXT(path_id, link);
3648 		} while (path_id != NULL);
3649 		spdk_json_write_array_end(w);
3650 	}
3651 
3652 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
3653 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3654 
3655 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
3656 	spdk_json_write_named_object_begin(w, "host");
3657 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
3658 	spdk_json_write_named_string(w, "addr", opts->src_addr);
3659 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
3660 	spdk_json_write_object_end(w);
3661 
3662 	spdk_json_write_object_end(w);
3663 }
3664 
3665 static void
3666 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
3667 			 struct nvme_ns *nvme_ns)
3668 {
3669 	struct spdk_nvme_ns *ns;
3670 	struct spdk_nvme_ctrlr *ctrlr;
3671 	const struct spdk_nvme_ctrlr_data *cdata;
3672 	const struct spdk_nvme_transport_id *trid;
3673 	union spdk_nvme_vs_register vs;
3674 	const struct spdk_nvme_ns_data *nsdata;
3675 	char buf[128];
3676 
3677 	ns = nvme_ns->ns;
3678 	if (ns == NULL) {
3679 		return;
3680 	}
3681 
3682 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3683 
3684 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3685 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
3686 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
3687 
3688 	spdk_json_write_object_begin(w);
3689 
3690 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
3691 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
3692 	}
3693 
3694 	spdk_json_write_named_object_begin(w, "trid");
3695 
3696 	nvme_bdev_dump_trid_json(trid, w);
3697 
3698 	spdk_json_write_object_end(w);
3699 
3700 #ifdef SPDK_CONFIG_NVME_CUSE
3701 	size_t cuse_name_size = 128;
3702 	char cuse_name[cuse_name_size];
3703 
3704 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
3705 					    cuse_name, &cuse_name_size);
3706 	if (rc == 0) {
3707 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3708 	}
3709 #endif
3710 
3711 	spdk_json_write_named_object_begin(w, "ctrlr_data");
3712 
3713 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3714 
3715 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
3716 
3717 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
3718 	spdk_str_trim(buf);
3719 	spdk_json_write_named_string(w, "model_number", buf);
3720 
3721 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
3722 	spdk_str_trim(buf);
3723 	spdk_json_write_named_string(w, "serial_number", buf);
3724 
3725 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
3726 	spdk_str_trim(buf);
3727 	spdk_json_write_named_string(w, "firmware_revision", buf);
3728 
3729 	if (cdata->subnqn[0] != '\0') {
3730 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
3731 	}
3732 
3733 	spdk_json_write_named_object_begin(w, "oacs");
3734 
3735 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
3736 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
3737 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
3738 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
3739 
3740 	spdk_json_write_object_end(w);
3741 
3742 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
3743 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
3744 
3745 	spdk_json_write_object_end(w);
3746 
3747 	spdk_json_write_named_object_begin(w, "vs");
3748 
3749 	spdk_json_write_name(w, "nvme_version");
3750 	if (vs.bits.ter) {
3751 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
3752 	} else {
3753 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
3754 	}
3755 
3756 	spdk_json_write_object_end(w);
3757 
3758 	nsdata = spdk_nvme_ns_get_data(ns);
3759 
3760 	spdk_json_write_named_object_begin(w, "ns_data");
3761 
3762 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
3763 
3764 	if (cdata->cmic.ana_reporting) {
3765 		spdk_json_write_named_string(w, "ana_state",
3766 					     _nvme_ana_state_str(nvme_ns->ana_state));
3767 	}
3768 
3769 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
3770 
3771 	spdk_json_write_object_end(w);
3772 
3773 	if (cdata->oacs.security) {
3774 		spdk_json_write_named_object_begin(w, "security");
3775 
3776 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
3777 
3778 		spdk_json_write_object_end(w);
3779 	}
3780 
3781 	spdk_json_write_object_end(w);
3782 }
3783 
3784 static const char *
3785 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
3786 {
3787 	switch (nbdev->mp_policy) {
3788 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
3789 		return "active_passive";
3790 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
3791 		return "active_active";
3792 	default:
3793 		assert(false);
3794 		return "invalid";
3795 	}
3796 }
3797 
3798 static const char *
3799 nvme_bdev_get_mp_selector_str(struct nvme_bdev *nbdev)
3800 {
3801 	switch (nbdev->mp_selector) {
3802 	case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
3803 		return "round_robin";
3804 	case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
3805 		return "queue_depth";
3806 	default:
3807 		assert(false);
3808 		return "invalid";
3809 	}
3810 }
3811 
3812 static int
3813 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
3814 {
3815 	struct nvme_bdev *nvme_bdev = ctx;
3816 	struct nvme_ns *nvme_ns;
3817 
3818 	pthread_mutex_lock(&nvme_bdev->mutex);
3819 	spdk_json_write_named_array_begin(w, "nvme");
3820 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
3821 		nvme_namespace_info_json(w, nvme_ns);
3822 	}
3823 	spdk_json_write_array_end(w);
3824 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
3825 	if (nvme_bdev->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
3826 		spdk_json_write_named_string(w, "selector", nvme_bdev_get_mp_selector_str(nvme_bdev));
3827 		if (nvme_bdev->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
3828 			spdk_json_write_named_uint32(w, "rr_min_io", nvme_bdev->rr_min_io);
3829 		}
3830 	}
3831 	pthread_mutex_unlock(&nvme_bdev->mutex);
3832 
3833 	return 0;
3834 }
3835 
3836 static void
3837 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
3838 {
3839 	/* No config per bdev needed */
3840 }
3841 
3842 static uint64_t
3843 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
3844 {
3845 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3846 	struct nvme_io_path *io_path;
3847 	struct nvme_poll_group *group;
3848 	uint64_t spin_time = 0;
3849 
3850 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3851 		group = io_path->qpair->group;
3852 
3853 		if (!group || !group->collect_spin_stat) {
3854 			continue;
3855 		}
3856 
3857 		if (group->end_ticks != 0) {
3858 			group->spin_ticks += (group->end_ticks - group->start_ticks);
3859 			group->end_ticks = 0;
3860 		}
3861 
3862 		spin_time += group->spin_ticks;
3863 		group->start_ticks = 0;
3864 		group->spin_ticks = 0;
3865 	}
3866 
3867 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
3868 }
3869 
3870 static void
3871 bdev_nvme_reset_device_stat(void *ctx)
3872 {
3873 	struct nvme_bdev *nbdev = ctx;
3874 
3875 	if (nbdev->err_stat != NULL) {
3876 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
3877 	}
3878 }
3879 
3880 /* JSON string should be lowercases and underscore delimited string. */
3881 static void
3882 bdev_nvme_format_nvme_status(char *dst, const char *src)
3883 {
3884 	char tmp[256];
3885 
3886 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
3887 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
3888 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
3889 	spdk_strlwr(dst);
3890 }
3891 
3892 static void
3893 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
3894 {
3895 	struct nvme_bdev *nbdev = ctx;
3896 	struct spdk_nvme_status status = {};
3897 	uint16_t sct, sc;
3898 	char status_json[256];
3899 	const char *status_str;
3900 
3901 	if (nbdev->err_stat == NULL) {
3902 		return;
3903 	}
3904 
3905 	spdk_json_write_named_object_begin(w, "nvme_error");
3906 
3907 	spdk_json_write_named_object_begin(w, "status_type");
3908 	for (sct = 0; sct < 8; sct++) {
3909 		if (nbdev->err_stat->status_type[sct] == 0) {
3910 			continue;
3911 		}
3912 		status.sct = sct;
3913 
3914 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
3915 		assert(status_str != NULL);
3916 		bdev_nvme_format_nvme_status(status_json, status_str);
3917 
3918 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
3919 	}
3920 	spdk_json_write_object_end(w);
3921 
3922 	spdk_json_write_named_object_begin(w, "status_code");
3923 	for (sct = 0; sct < 4; sct++) {
3924 		status.sct = sct;
3925 		for (sc = 0; sc < 256; sc++) {
3926 			if (nbdev->err_stat->status[sct][sc] == 0) {
3927 				continue;
3928 			}
3929 			status.sc = sc;
3930 
3931 			status_str = spdk_nvme_cpl_get_status_string(&status);
3932 			assert(status_str != NULL);
3933 			bdev_nvme_format_nvme_status(status_json, status_str);
3934 
3935 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
3936 		}
3937 	}
3938 	spdk_json_write_object_end(w);
3939 
3940 	spdk_json_write_object_end(w);
3941 }
3942 
3943 static bool
3944 bdev_nvme_accel_sequence_supported(void *ctx, enum spdk_bdev_io_type type)
3945 {
3946 	struct nvme_bdev *nbdev = ctx;
3947 	struct spdk_nvme_ctrlr *ctrlr;
3948 
3949 	if (!g_opts.allow_accel_sequence) {
3950 		return false;
3951 	}
3952 
3953 	switch (type) {
3954 	case SPDK_BDEV_IO_TYPE_WRITE:
3955 	case SPDK_BDEV_IO_TYPE_READ:
3956 		break;
3957 	default:
3958 		return false;
3959 	}
3960 
3961 	ctrlr = bdev_nvme_get_ctrlr(&nbdev->disk);
3962 	assert(ctrlr != NULL);
3963 
3964 	return spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ACCEL_SEQUENCE_SUPPORTED;
3965 }
3966 
3967 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
3968 	.destruct			= bdev_nvme_destruct,
3969 	.submit_request			= bdev_nvme_submit_request,
3970 	.io_type_supported		= bdev_nvme_io_type_supported,
3971 	.get_io_channel			= bdev_nvme_get_io_channel,
3972 	.dump_info_json			= bdev_nvme_dump_info_json,
3973 	.write_config_json		= bdev_nvme_write_config_json,
3974 	.get_spin_time			= bdev_nvme_get_spin_time,
3975 	.get_module_ctx			= bdev_nvme_get_module_ctx,
3976 	.get_memory_domains		= bdev_nvme_get_memory_domains,
3977 	.accel_sequence_supported	= bdev_nvme_accel_sequence_supported,
3978 	.reset_device_stat		= bdev_nvme_reset_device_stat,
3979 	.dump_device_stat_json		= bdev_nvme_dump_device_stat_json,
3980 };
3981 
3982 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
3983 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
3984 
3985 static int
3986 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
3987 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
3988 {
3989 	struct spdk_nvme_ana_group_descriptor *copied_desc;
3990 	uint8_t *orig_desc;
3991 	uint32_t i, desc_size, copy_len;
3992 	int rc = 0;
3993 
3994 	if (nvme_ctrlr->ana_log_page == NULL) {
3995 		return -EINVAL;
3996 	}
3997 
3998 	copied_desc = nvme_ctrlr->copied_ana_desc;
3999 
4000 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
4001 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
4002 
4003 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
4004 		memcpy(copied_desc, orig_desc, copy_len);
4005 
4006 		rc = cb_fn(copied_desc, cb_arg);
4007 		if (rc != 0) {
4008 			break;
4009 		}
4010 
4011 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
4012 			    copied_desc->num_of_nsid * sizeof(uint32_t);
4013 		orig_desc += desc_size;
4014 		copy_len -= desc_size;
4015 	}
4016 
4017 	return rc;
4018 }
4019 
4020 static int
4021 nvme_ns_ana_transition_timedout(void *ctx)
4022 {
4023 	struct nvme_ns *nvme_ns = ctx;
4024 
4025 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4026 	nvme_ns->ana_transition_timedout = true;
4027 
4028 	return SPDK_POLLER_BUSY;
4029 }
4030 
4031 static void
4032 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
4033 		       const struct spdk_nvme_ana_group_descriptor *desc)
4034 {
4035 	const struct spdk_nvme_ctrlr_data *cdata;
4036 
4037 	nvme_ns->ana_group_id = desc->ana_group_id;
4038 	nvme_ns->ana_state = desc->ana_state;
4039 	nvme_ns->ana_state_updating = false;
4040 
4041 	switch (nvme_ns->ana_state) {
4042 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
4043 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
4044 		nvme_ns->ana_transition_timedout = false;
4045 		spdk_poller_unregister(&nvme_ns->anatt_timer);
4046 		break;
4047 
4048 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
4049 	case SPDK_NVME_ANA_CHANGE_STATE:
4050 		if (nvme_ns->anatt_timer != NULL) {
4051 			break;
4052 		}
4053 
4054 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4055 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
4056 				       nvme_ns,
4057 				       cdata->anatt * SPDK_SEC_TO_USEC);
4058 		break;
4059 	default:
4060 		break;
4061 	}
4062 }
4063 
4064 static int
4065 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
4066 {
4067 	struct nvme_ns *nvme_ns = cb_arg;
4068 	uint32_t i;
4069 
4070 	assert(nvme_ns->ns != NULL);
4071 
4072 	for (i = 0; i < desc->num_of_nsid; i++) {
4073 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
4074 			continue;
4075 		}
4076 
4077 		_nvme_ns_set_ana_state(nvme_ns, desc);
4078 		return 1;
4079 	}
4080 
4081 	return 0;
4082 }
4083 
4084 static int
4085 nvme_generate_uuid(const char *sn, uint32_t nsid, struct spdk_uuid *uuid)
4086 {
4087 	int rc = 0;
4088 	struct spdk_uuid new_uuid, namespace_uuid;
4089 	char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'};
4090 	/* This namespace UUID was generated using uuid_generate() method. */
4091 	const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"};
4092 	int size;
4093 
4094 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
4095 
4096 	spdk_uuid_set_null(&new_uuid);
4097 	spdk_uuid_set_null(&namespace_uuid);
4098 
4099 	size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid);
4100 	if (size <= 0 || (unsigned long)size >= sizeof(merged_str)) {
4101 		return -EINVAL;
4102 	}
4103 
4104 	spdk_uuid_parse(&namespace_uuid, namespace_str);
4105 
4106 	rc = spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size);
4107 	if (rc == 0) {
4108 		memcpy(uuid, &new_uuid, sizeof(struct spdk_uuid));
4109 	}
4110 
4111 	return rc;
4112 }
4113 
4114 static int
4115 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
4116 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
4117 		 struct spdk_bdev_nvme_ctrlr_opts *bdev_opts, void *ctx)
4118 {
4119 	const struct spdk_uuid		*uuid;
4120 	const uint8_t *nguid;
4121 	const struct spdk_nvme_ctrlr_data *cdata;
4122 	const struct spdk_nvme_ns_data	*nsdata;
4123 	const struct spdk_nvme_ctrlr_opts *opts;
4124 	enum spdk_nvme_csi		csi;
4125 	uint32_t atomic_bs, phys_bs, bs;
4126 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
4127 	int rc;
4128 
4129 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4130 	csi = spdk_nvme_ns_get_csi(ns);
4131 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
4132 
4133 	switch (csi) {
4134 	case SPDK_NVME_CSI_NVM:
4135 		disk->product_name = "NVMe disk";
4136 		break;
4137 	case SPDK_NVME_CSI_ZNS:
4138 		disk->product_name = "NVMe ZNS disk";
4139 		disk->zoned = true;
4140 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
4141 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
4142 					     spdk_nvme_ns_get_extended_sector_size(ns);
4143 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
4144 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
4145 		break;
4146 	default:
4147 		if (bdev_opts->allow_unrecognized_csi) {
4148 			disk->product_name = "NVMe Passthrough disk";
4149 			break;
4150 		}
4151 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
4152 		return -ENOTSUP;
4153 	}
4154 
4155 	nguid = spdk_nvme_ns_get_nguid(ns);
4156 	if (!nguid) {
4157 		uuid = spdk_nvme_ns_get_uuid(ns);
4158 		if (uuid) {
4159 			disk->uuid = *uuid;
4160 		} else if (g_opts.generate_uuids) {
4161 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
4162 			rc = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns), &disk->uuid);
4163 			if (rc < 0) {
4164 				SPDK_ERRLOG("UUID generation failed (%s)\n", spdk_strerror(-rc));
4165 				return rc;
4166 			}
4167 		}
4168 	} else {
4169 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
4170 	}
4171 
4172 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
4173 	if (!disk->name) {
4174 		return -ENOMEM;
4175 	}
4176 
4177 	disk->write_cache = 0;
4178 	if (cdata->vwc.present) {
4179 		/* Enable if the Volatile Write Cache exists */
4180 		disk->write_cache = 1;
4181 	}
4182 	if (cdata->oncs.write_zeroes) {
4183 		disk->max_write_zeroes = UINT16_MAX + 1;
4184 	}
4185 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
4186 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
4187 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
4188 	disk->ctratt.raw = cdata->ctratt.raw;
4189 	/* NVMe driver will split one request into multiple requests
4190 	 * based on MDTS and stripe boundary, the bdev layer will use
4191 	 * max_segment_size and max_num_segments to split one big IO
4192 	 * into multiple requests, then small request can't run out
4193 	 * of NVMe internal requests data structure.
4194 	 */
4195 	if (opts && opts->io_queue_requests) {
4196 		disk->max_num_segments = opts->io_queue_requests / 2;
4197 	}
4198 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4199 		/* The nvme driver will try to split I/O that have too many
4200 		 * SGEs, but it doesn't work if that last SGE doesn't end on
4201 		 * an aggregate total that is block aligned. The bdev layer has
4202 		 * a more robust splitting framework, so use that instead for
4203 		 * this case. (See issue #3269.)
4204 		 */
4205 		uint16_t max_sges = spdk_nvme_ctrlr_get_max_sges(ctrlr);
4206 
4207 		if (disk->max_num_segments == 0) {
4208 			disk->max_num_segments = max_sges;
4209 		} else {
4210 			disk->max_num_segments = spdk_min(disk->max_num_segments, max_sges);
4211 		}
4212 	}
4213 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
4214 
4215 	nsdata = spdk_nvme_ns_get_data(ns);
4216 	bs = spdk_nvme_ns_get_sector_size(ns);
4217 	atomic_bs = bs;
4218 	phys_bs = bs;
4219 	if (nsdata->nabo == 0) {
4220 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
4221 			atomic_bs = bs * (1 + nsdata->nawupf);
4222 		} else {
4223 			atomic_bs = bs * (1 + cdata->awupf);
4224 		}
4225 	}
4226 	if (nsdata->nsfeat.optperf) {
4227 		phys_bs = bs * (1 + nsdata->npwg);
4228 	}
4229 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
4230 
4231 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
4232 	if (disk->md_len != 0) {
4233 		disk->md_interleave = nsdata->flbas.extended;
4234 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
4235 		if (disk->dif_type != SPDK_DIF_DISABLE) {
4236 			disk->dif_is_head_of_md = nsdata->dps.md_start;
4237 			disk->dif_check_flags = bdev_opts->prchk_flags;
4238 			disk->dif_pi_format = (enum spdk_dif_pi_format)spdk_nvme_ns_get_pi_format(ns);
4239 		}
4240 	}
4241 
4242 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
4243 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
4244 		disk->acwu = 0;
4245 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
4246 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
4247 	} else {
4248 		disk->acwu = cdata->acwu + 1; /* 0-based */
4249 	}
4250 
4251 	if (cdata->oncs.copy) {
4252 		/* For now bdev interface allows only single segment copy */
4253 		disk->max_copy = nsdata->mssrl;
4254 	}
4255 
4256 	disk->ctxt = ctx;
4257 	disk->fn_table = &nvmelib_fn_table;
4258 	disk->module = &nvme_if;
4259 
4260 	return 0;
4261 }
4262 
4263 static struct nvme_bdev *
4264 nvme_bdev_alloc(void)
4265 {
4266 	struct nvme_bdev *bdev;
4267 	int rc;
4268 
4269 	bdev = calloc(1, sizeof(*bdev));
4270 	if (!bdev) {
4271 		SPDK_ERRLOG("bdev calloc() failed\n");
4272 		return NULL;
4273 	}
4274 
4275 	if (g_opts.nvme_error_stat) {
4276 		bdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
4277 		if (!bdev->err_stat) {
4278 			SPDK_ERRLOG("err_stat calloc() failed\n");
4279 			free(bdev);
4280 			return NULL;
4281 		}
4282 	}
4283 
4284 	rc = pthread_mutex_init(&bdev->mutex, NULL);
4285 	if (rc != 0) {
4286 		free(bdev->err_stat);
4287 		free(bdev);
4288 		return NULL;
4289 	}
4290 
4291 	bdev->ref = 1;
4292 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
4293 	bdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN;
4294 	bdev->rr_min_io = UINT32_MAX;
4295 	TAILQ_INIT(&bdev->nvme_ns_list);
4296 
4297 	return bdev;
4298 }
4299 
4300 static int
4301 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4302 {
4303 	struct nvme_bdev *bdev;
4304 	struct nvme_bdev_ctrlr *nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
4305 	int rc;
4306 
4307 	bdev = nvme_bdev_alloc();
4308 	if (bdev == NULL) {
4309 		SPDK_ERRLOG("Failed to allocate NVMe bdev\n");
4310 		return -ENOMEM;
4311 	}
4312 
4313 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
4314 
4315 	rc = nvme_disk_create(&bdev->disk, nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
4316 			      nvme_ns->ns, &nvme_ctrlr->opts, bdev);
4317 	if (rc != 0) {
4318 		SPDK_ERRLOG("Failed to create NVMe disk\n");
4319 		nvme_bdev_free(bdev);
4320 		return rc;
4321 	}
4322 
4323 	spdk_io_device_register(bdev,
4324 				bdev_nvme_create_bdev_channel_cb,
4325 				bdev_nvme_destroy_bdev_channel_cb,
4326 				sizeof(struct nvme_bdev_channel),
4327 				bdev->disk.name);
4328 
4329 	nvme_ns->bdev = bdev;
4330 	bdev->nsid = nvme_ns->id;
4331 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4332 
4333 	bdev->nbdev_ctrlr = nbdev_ctrlr;
4334 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->bdevs, bdev, tailq);
4335 
4336 	rc = spdk_bdev_register(&bdev->disk);
4337 	if (rc != 0) {
4338 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
4339 		spdk_io_device_unregister(bdev, NULL);
4340 		nvme_ns->bdev = NULL;
4341 		TAILQ_REMOVE(&nbdev_ctrlr->bdevs, bdev, tailq);
4342 		nvme_bdev_free(bdev);
4343 		return rc;
4344 	}
4345 
4346 	return 0;
4347 }
4348 
4349 static bool
4350 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
4351 {
4352 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
4353 	const struct spdk_uuid *uuid1, *uuid2;
4354 
4355 	nsdata1 = spdk_nvme_ns_get_data(ns1);
4356 	nsdata2 = spdk_nvme_ns_get_data(ns2);
4357 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
4358 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
4359 
4360 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
4361 	       nsdata1->eui64 == nsdata2->eui64 &&
4362 	       ((uuid1 == NULL && uuid2 == NULL) ||
4363 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
4364 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
4365 }
4366 
4367 static bool
4368 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4369 		 struct spdk_nvme_ctrlr_opts *opts)
4370 {
4371 	struct nvme_probe_skip_entry *entry;
4372 
4373 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
4374 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4375 			return false;
4376 		}
4377 	}
4378 
4379 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
4380 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
4381 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
4382 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
4383 	opts->disable_read_ana_log_page = true;
4384 
4385 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
4386 
4387 	return true;
4388 }
4389 
4390 static void
4391 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
4392 {
4393 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4394 
4395 	if (spdk_nvme_cpl_is_error(cpl)) {
4396 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
4397 			     cpl->status.sct);
4398 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4399 	} else if (cpl->cdw0 & 0x1) {
4400 		SPDK_WARNLOG("Specified command could not be aborted.\n");
4401 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4402 	}
4403 }
4404 
4405 static void
4406 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
4407 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
4408 {
4409 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4410 	union spdk_nvme_csts_register csts;
4411 	int rc;
4412 
4413 	assert(nvme_ctrlr->ctrlr == ctrlr);
4414 
4415 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
4416 
4417 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
4418 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
4419 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
4420 	 * completion recursively.
4421 	 */
4422 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
4423 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
4424 		if (csts.bits.cfs) {
4425 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
4426 			bdev_nvme_reset_ctrlr(nvme_ctrlr);
4427 			return;
4428 		}
4429 	}
4430 
4431 	switch (g_opts.action_on_timeout) {
4432 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
4433 		if (qpair) {
4434 			/* Don't send abort to ctrlr when ctrlr is not available. */
4435 			pthread_mutex_lock(&nvme_ctrlr->mutex);
4436 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
4437 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
4438 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
4439 				return;
4440 			}
4441 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4442 
4443 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
4444 						       nvme_abort_cpl, nvme_ctrlr);
4445 			if (rc == 0) {
4446 				return;
4447 			}
4448 
4449 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
4450 		}
4451 
4452 	/* FALLTHROUGH */
4453 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
4454 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4455 		break;
4456 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
4457 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
4458 		break;
4459 	default:
4460 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
4461 		break;
4462 	}
4463 }
4464 
4465 static struct nvme_ns *
4466 nvme_ns_alloc(void)
4467 {
4468 	struct nvme_ns *nvme_ns;
4469 
4470 	nvme_ns = calloc(1, sizeof(struct nvme_ns));
4471 	if (nvme_ns == NULL) {
4472 		return NULL;
4473 	}
4474 
4475 	if (g_opts.io_path_stat) {
4476 		nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
4477 		if (nvme_ns->stat == NULL) {
4478 			free(nvme_ns);
4479 			return NULL;
4480 		}
4481 		spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
4482 	}
4483 
4484 	return nvme_ns;
4485 }
4486 
4487 static void
4488 nvme_ns_free(struct nvme_ns *nvme_ns)
4489 {
4490 	free(nvme_ns->stat);
4491 	free(nvme_ns);
4492 }
4493 
4494 static void
4495 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
4496 {
4497 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4498 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
4499 
4500 	if (rc == 0) {
4501 		nvme_ns->probe_ctx = NULL;
4502 		pthread_mutex_lock(&nvme_ctrlr->mutex);
4503 		nvme_ctrlr->ref++;
4504 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4505 	} else {
4506 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4507 		nvme_ns_free(nvme_ns);
4508 	}
4509 
4510 	if (ctx) {
4511 		ctx->populates_in_progress--;
4512 		if (ctx->populates_in_progress == 0) {
4513 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4514 		}
4515 	}
4516 }
4517 
4518 static void
4519 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
4520 {
4521 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4522 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4523 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4524 	int rc;
4525 
4526 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
4527 	if (rc != 0) {
4528 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
4529 	}
4530 
4531 	spdk_for_each_channel_continue(i, rc);
4532 }
4533 
4534 static void
4535 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
4536 {
4537 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4538 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4539 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4540 	struct nvme_io_path *io_path;
4541 
4542 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
4543 	if (io_path != NULL) {
4544 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
4545 	}
4546 
4547 	spdk_for_each_channel_continue(i, 0);
4548 }
4549 
4550 static void
4551 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
4552 {
4553 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4554 
4555 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
4556 }
4557 
4558 static void
4559 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
4560 {
4561 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4562 	struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
4563 
4564 	if (status == 0) {
4565 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
4566 	} else {
4567 		/* Delete the added io_paths and fail populating the namespace. */
4568 		spdk_for_each_channel(bdev,
4569 				      bdev_nvme_delete_io_path,
4570 				      nvme_ns,
4571 				      bdev_nvme_add_io_path_failed);
4572 	}
4573 }
4574 
4575 static int
4576 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
4577 {
4578 	struct nvme_ns *tmp_ns;
4579 	const struct spdk_nvme_ns_data *nsdata;
4580 
4581 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
4582 	if (!nsdata->nmic.can_share) {
4583 		SPDK_ERRLOG("Namespace cannot be shared.\n");
4584 		return -EINVAL;
4585 	}
4586 
4587 	pthread_mutex_lock(&bdev->mutex);
4588 
4589 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
4590 	assert(tmp_ns != NULL);
4591 
4592 	if (tmp_ns->ns != NULL && !bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
4593 		pthread_mutex_unlock(&bdev->mutex);
4594 		SPDK_ERRLOG("Namespaces are not identical.\n");
4595 		return -EINVAL;
4596 	}
4597 
4598 	bdev->ref++;
4599 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4600 	nvme_ns->bdev = bdev;
4601 
4602 	pthread_mutex_unlock(&bdev->mutex);
4603 
4604 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
4605 	spdk_for_each_channel(bdev,
4606 			      bdev_nvme_add_io_path,
4607 			      nvme_ns,
4608 			      bdev_nvme_add_io_path_done);
4609 
4610 	return 0;
4611 }
4612 
4613 static void
4614 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4615 {
4616 	struct spdk_nvme_ns	*ns;
4617 	struct nvme_bdev	*bdev;
4618 	int			rc = 0;
4619 
4620 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
4621 	if (!ns) {
4622 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
4623 		rc = -EINVAL;
4624 		goto done;
4625 	}
4626 
4627 	nvme_ns->ns = ns;
4628 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4629 
4630 	if (nvme_ctrlr->ana_log_page != NULL) {
4631 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
4632 	}
4633 
4634 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
4635 	if (bdev == NULL) {
4636 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
4637 	} else {
4638 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
4639 		if (rc == 0) {
4640 			return;
4641 		}
4642 	}
4643 done:
4644 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
4645 }
4646 
4647 static void
4648 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
4649 {
4650 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4651 
4652 	assert(nvme_ctrlr != NULL);
4653 
4654 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4655 
4656 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4657 
4658 	if (nvme_ns->bdev != NULL) {
4659 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4660 		return;
4661 	}
4662 
4663 	nvme_ns_free(nvme_ns);
4664 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4665 
4666 	nvme_ctrlr_release(nvme_ctrlr);
4667 }
4668 
4669 static void
4670 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
4671 {
4672 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4673 
4674 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4675 }
4676 
4677 static void
4678 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4679 {
4680 	struct nvme_bdev *bdev;
4681 
4682 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4683 
4684 	bdev = nvme_ns->bdev;
4685 	if (bdev != NULL) {
4686 		pthread_mutex_lock(&bdev->mutex);
4687 
4688 		assert(bdev->ref > 0);
4689 		bdev->ref--;
4690 		if (bdev->ref == 0) {
4691 			pthread_mutex_unlock(&bdev->mutex);
4692 
4693 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
4694 		} else {
4695 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
4696 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
4697 			 * and clear nvme_ns->bdev here.
4698 			 */
4699 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
4700 			nvme_ns->bdev = NULL;
4701 
4702 			pthread_mutex_unlock(&bdev->mutex);
4703 
4704 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
4705 			 * we call depopulate_namespace_done() to avoid use-after-free.
4706 			 */
4707 			spdk_for_each_channel(bdev,
4708 					      bdev_nvme_delete_io_path,
4709 					      nvme_ns,
4710 					      bdev_nvme_delete_io_path_done);
4711 			return;
4712 		}
4713 	}
4714 
4715 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4716 }
4717 
4718 static void
4719 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
4720 			       struct nvme_async_probe_ctx *ctx)
4721 {
4722 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
4723 	struct nvme_ns	*nvme_ns, *next;
4724 	struct spdk_nvme_ns	*ns;
4725 	struct nvme_bdev	*bdev;
4726 	uint32_t		nsid;
4727 	int			rc;
4728 	uint64_t		num_sectors;
4729 
4730 	if (ctx) {
4731 		/* Initialize this count to 1 to handle the populate functions
4732 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
4733 		 */
4734 		ctx->populates_in_progress = 1;
4735 	}
4736 
4737 	/* First loop over our existing namespaces and see if they have been
4738 	 * removed. */
4739 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4740 	while (nvme_ns != NULL) {
4741 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4742 
4743 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
4744 			/* NS is still there or added again. Its attributes may have changed. */
4745 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
4746 			if (nvme_ns->ns != ns) {
4747 				assert(nvme_ns->ns == NULL);
4748 				nvme_ns->ns = ns;
4749 				SPDK_DEBUGLOG(bdev_nvme, "NSID %u was added\n", nvme_ns->id);
4750 			}
4751 
4752 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
4753 			bdev = nvme_ns->bdev;
4754 			assert(bdev != NULL);
4755 			if (bdev->disk.blockcnt != num_sectors) {
4756 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
4757 					       nvme_ns->id,
4758 					       bdev->disk.name,
4759 					       bdev->disk.blockcnt,
4760 					       num_sectors);
4761 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
4762 				if (rc != 0) {
4763 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
4764 						    bdev->disk.name, rc);
4765 				}
4766 			}
4767 		} else {
4768 			/* Namespace was removed */
4769 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4770 		}
4771 
4772 		nvme_ns = next;
4773 	}
4774 
4775 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
4776 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4777 	while (nsid != 0) {
4778 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4779 
4780 		if (nvme_ns == NULL) {
4781 			/* Found a new one */
4782 			nvme_ns = nvme_ns_alloc();
4783 			if (nvme_ns == NULL) {
4784 				SPDK_ERRLOG("Failed to allocate namespace\n");
4785 				/* This just fails to attach the namespace. It may work on a future attempt. */
4786 				continue;
4787 			}
4788 
4789 			nvme_ns->id = nsid;
4790 			nvme_ns->ctrlr = nvme_ctrlr;
4791 
4792 			nvme_ns->bdev = NULL;
4793 
4794 			if (ctx) {
4795 				ctx->populates_in_progress++;
4796 			}
4797 			nvme_ns->probe_ctx = ctx;
4798 
4799 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4800 
4801 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
4802 		}
4803 
4804 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
4805 	}
4806 
4807 	if (ctx) {
4808 		/* Decrement this count now that the loop is over to account
4809 		 * for the one we started with.  If the count is then 0, we
4810 		 * know any populate_namespace functions completed immediately,
4811 		 * so we'll kick the callback here.
4812 		 */
4813 		ctx->populates_in_progress--;
4814 		if (ctx->populates_in_progress == 0) {
4815 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4816 		}
4817 	}
4818 
4819 }
4820 
4821 static void
4822 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
4823 {
4824 	struct nvme_ns *nvme_ns, *tmp;
4825 
4826 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
4827 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4828 	}
4829 }
4830 
4831 static uint32_t
4832 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
4833 {
4834 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4835 	const struct spdk_nvme_ctrlr_data *cdata;
4836 	uint32_t nsid, ns_count = 0;
4837 
4838 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4839 
4840 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4841 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
4842 		ns_count++;
4843 	}
4844 
4845 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
4846 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
4847 	       sizeof(uint32_t);
4848 }
4849 
4850 static int
4851 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
4852 			  void *cb_arg)
4853 {
4854 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4855 	struct nvme_ns *nvme_ns;
4856 	uint32_t i, nsid;
4857 
4858 	for (i = 0; i < desc->num_of_nsid; i++) {
4859 		nsid = desc->nsid[i];
4860 		if (nsid == 0) {
4861 			continue;
4862 		}
4863 
4864 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4865 
4866 		if (nvme_ns == NULL) {
4867 			/* Target told us that an inactive namespace had an ANA change */
4868 			continue;
4869 		}
4870 
4871 		_nvme_ns_set_ana_state(nvme_ns, desc);
4872 	}
4873 
4874 	return 0;
4875 }
4876 
4877 static void
4878 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4879 {
4880 	struct nvme_ns *nvme_ns;
4881 
4882 	spdk_free(nvme_ctrlr->ana_log_page);
4883 	nvme_ctrlr->ana_log_page = NULL;
4884 
4885 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4886 	     nvme_ns != NULL;
4887 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
4888 		nvme_ns->ana_state_updating = false;
4889 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4890 	}
4891 }
4892 
4893 static void
4894 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
4895 {
4896 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4897 
4898 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
4899 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
4900 					     nvme_ctrlr);
4901 	} else {
4902 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
4903 	}
4904 
4905 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4906 
4907 	assert(nvme_ctrlr->ana_log_page_updating == true);
4908 	nvme_ctrlr->ana_log_page_updating = false;
4909 
4910 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
4911 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4912 
4913 		nvme_ctrlr_unregister(nvme_ctrlr);
4914 	} else {
4915 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4916 
4917 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
4918 	}
4919 }
4920 
4921 static int
4922 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4923 {
4924 	uint32_t ana_log_page_size;
4925 	int rc;
4926 
4927 	if (nvme_ctrlr->ana_log_page == NULL) {
4928 		return -EINVAL;
4929 	}
4930 
4931 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
4932 
4933 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
4934 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
4935 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
4936 		return -EINVAL;
4937 	}
4938 
4939 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4940 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
4941 	    nvme_ctrlr->ana_log_page_updating) {
4942 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4943 		return -EBUSY;
4944 	}
4945 
4946 	nvme_ctrlr->ana_log_page_updating = true;
4947 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4948 
4949 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
4950 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
4951 					      SPDK_NVME_GLOBAL_NS_TAG,
4952 					      nvme_ctrlr->ana_log_page,
4953 					      ana_log_page_size, 0,
4954 					      nvme_ctrlr_read_ana_log_page_done,
4955 					      nvme_ctrlr);
4956 	if (rc != 0) {
4957 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
4958 	}
4959 
4960 	return rc;
4961 }
4962 
4963 static void
4964 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
4965 {
4966 }
4967 
4968 struct bdev_nvme_set_preferred_path_ctx {
4969 	struct spdk_bdev_desc *desc;
4970 	struct nvme_ns *nvme_ns;
4971 	bdev_nvme_set_preferred_path_cb cb_fn;
4972 	void *cb_arg;
4973 };
4974 
4975 static void
4976 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
4977 {
4978 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4979 
4980 	assert(ctx != NULL);
4981 	assert(ctx->desc != NULL);
4982 	assert(ctx->cb_fn != NULL);
4983 
4984 	spdk_bdev_close(ctx->desc);
4985 
4986 	ctx->cb_fn(ctx->cb_arg, status);
4987 
4988 	free(ctx);
4989 }
4990 
4991 static void
4992 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
4993 {
4994 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4995 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4996 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4997 	struct nvme_io_path *io_path, *prev;
4998 
4999 	prev = NULL;
5000 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
5001 		if (io_path->nvme_ns == ctx->nvme_ns) {
5002 			break;
5003 		}
5004 		prev = io_path;
5005 	}
5006 
5007 	if (io_path != NULL) {
5008 		if (prev != NULL) {
5009 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
5010 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
5011 		}
5012 
5013 		/* We can set io_path to nbdev_ch->current_io_path directly here.
5014 		 * However, it needs to be conditional. To simplify the code,
5015 		 * just clear nbdev_ch->current_io_path and let find_io_path()
5016 		 * fill it.
5017 		 *
5018 		 * Automatic failback may be disabled. Hence even if the io_path is
5019 		 * already at the head, clear nbdev_ch->current_io_path.
5020 		 */
5021 		bdev_nvme_clear_current_io_path(nbdev_ch);
5022 	}
5023 
5024 	spdk_for_each_channel_continue(i, 0);
5025 }
5026 
5027 static struct nvme_ns *
5028 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
5029 {
5030 	struct nvme_ns *nvme_ns, *prev;
5031 	const struct spdk_nvme_ctrlr_data *cdata;
5032 
5033 	prev = NULL;
5034 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
5035 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
5036 
5037 		if (cdata->cntlid == cntlid) {
5038 			break;
5039 		}
5040 		prev = nvme_ns;
5041 	}
5042 
5043 	if (nvme_ns != NULL && prev != NULL) {
5044 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
5045 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
5046 	}
5047 
5048 	return nvme_ns;
5049 }
5050 
5051 /* This function supports only multipath mode. There is only a single I/O path
5052  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
5053  * head of the I/O path list for each NVMe bdev channel.
5054  *
5055  * NVMe bdev channel may be acquired after completing this function. move the
5056  * matched namespace to the head of the namespace list for the NVMe bdev too.
5057  */
5058 void
5059 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
5060 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
5061 {
5062 	struct bdev_nvme_set_preferred_path_ctx *ctx;
5063 	struct spdk_bdev *bdev;
5064 	struct nvme_bdev *nbdev;
5065 	int rc = 0;
5066 
5067 	assert(cb_fn != NULL);
5068 
5069 	ctx = calloc(1, sizeof(*ctx));
5070 	if (ctx == NULL) {
5071 		SPDK_ERRLOG("Failed to alloc context.\n");
5072 		rc = -ENOMEM;
5073 		goto err_alloc;
5074 	}
5075 
5076 	ctx->cb_fn = cb_fn;
5077 	ctx->cb_arg = cb_arg;
5078 
5079 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5080 	if (rc != 0) {
5081 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5082 		goto err_open;
5083 	}
5084 
5085 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5086 
5087 	if (bdev->module != &nvme_if) {
5088 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5089 		rc = -ENODEV;
5090 		goto err_bdev;
5091 	}
5092 
5093 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5094 
5095 	pthread_mutex_lock(&nbdev->mutex);
5096 
5097 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
5098 	if (ctx->nvme_ns == NULL) {
5099 		pthread_mutex_unlock(&nbdev->mutex);
5100 
5101 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
5102 		rc = -ENODEV;
5103 		goto err_bdev;
5104 	}
5105 
5106 	pthread_mutex_unlock(&nbdev->mutex);
5107 
5108 	spdk_for_each_channel(nbdev,
5109 			      _bdev_nvme_set_preferred_path,
5110 			      ctx,
5111 			      bdev_nvme_set_preferred_path_done);
5112 	return;
5113 
5114 err_bdev:
5115 	spdk_bdev_close(ctx->desc);
5116 err_open:
5117 	free(ctx);
5118 err_alloc:
5119 	cb_fn(cb_arg, rc);
5120 }
5121 
5122 struct bdev_nvme_set_multipath_policy_ctx {
5123 	struct spdk_bdev_desc *desc;
5124 	spdk_bdev_nvme_set_multipath_policy_cb cb_fn;
5125 	void *cb_arg;
5126 };
5127 
5128 static void
5129 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
5130 {
5131 	struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
5132 
5133 	assert(ctx != NULL);
5134 	assert(ctx->desc != NULL);
5135 	assert(ctx->cb_fn != NULL);
5136 
5137 	spdk_bdev_close(ctx->desc);
5138 
5139 	ctx->cb_fn(ctx->cb_arg, status);
5140 
5141 	free(ctx);
5142 }
5143 
5144 static void
5145 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
5146 {
5147 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
5148 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
5149 	struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
5150 
5151 	nbdev_ch->mp_policy = nbdev->mp_policy;
5152 	nbdev_ch->mp_selector = nbdev->mp_selector;
5153 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
5154 	bdev_nvme_clear_current_io_path(nbdev_ch);
5155 
5156 	spdk_for_each_channel_continue(i, 0);
5157 }
5158 
5159 void
5160 spdk_bdev_nvme_set_multipath_policy(const char *name, enum spdk_bdev_nvme_multipath_policy policy,
5161 				    enum spdk_bdev_nvme_multipath_selector selector, uint32_t rr_min_io,
5162 				    spdk_bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
5163 {
5164 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
5165 	struct spdk_bdev *bdev;
5166 	struct nvme_bdev *nbdev;
5167 	int rc;
5168 
5169 	assert(cb_fn != NULL);
5170 
5171 	switch (policy) {
5172 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
5173 		break;
5174 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
5175 		switch (selector) {
5176 		case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
5177 			if (rr_min_io == UINT32_MAX) {
5178 				rr_min_io = 1;
5179 			} else if (rr_min_io == 0) {
5180 				rc = -EINVAL;
5181 				goto exit;
5182 			}
5183 			break;
5184 		case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
5185 			break;
5186 		default:
5187 			rc = -EINVAL;
5188 			goto exit;
5189 		}
5190 		break;
5191 	default:
5192 		rc = -EINVAL;
5193 		goto exit;
5194 	}
5195 
5196 	ctx = calloc(1, sizeof(*ctx));
5197 	if (ctx == NULL) {
5198 		SPDK_ERRLOG("Failed to alloc context.\n");
5199 		rc = -ENOMEM;
5200 		goto exit;
5201 	}
5202 
5203 	ctx->cb_fn = cb_fn;
5204 	ctx->cb_arg = cb_arg;
5205 
5206 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5207 	if (rc != 0) {
5208 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5209 		rc = -ENODEV;
5210 		goto err_open;
5211 	}
5212 
5213 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5214 	if (bdev->module != &nvme_if) {
5215 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5216 		rc = -ENODEV;
5217 		goto err_module;
5218 	}
5219 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5220 
5221 	pthread_mutex_lock(&nbdev->mutex);
5222 	nbdev->mp_policy = policy;
5223 	nbdev->mp_selector = selector;
5224 	nbdev->rr_min_io = rr_min_io;
5225 	pthread_mutex_unlock(&nbdev->mutex);
5226 
5227 	spdk_for_each_channel(nbdev,
5228 			      _bdev_nvme_set_multipath_policy,
5229 			      ctx,
5230 			      bdev_nvme_set_multipath_policy_done);
5231 	return;
5232 
5233 err_module:
5234 	spdk_bdev_close(ctx->desc);
5235 err_open:
5236 	free(ctx);
5237 exit:
5238 	cb_fn(cb_arg, rc);
5239 }
5240 
5241 static void
5242 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5243 {
5244 	struct nvme_ctrlr *nvme_ctrlr		= arg;
5245 	union spdk_nvme_async_event_completion	event;
5246 
5247 	if (spdk_nvme_cpl_is_error(cpl)) {
5248 		SPDK_WARNLOG("AER request execute failed\n");
5249 		return;
5250 	}
5251 
5252 	event.raw = cpl->cdw0;
5253 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5254 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
5255 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
5256 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5257 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
5258 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
5259 	}
5260 }
5261 
5262 static void
5263 free_nvme_async_probe_ctx(struct nvme_async_probe_ctx *ctx)
5264 {
5265 	spdk_keyring_put_key(ctx->drv_opts.tls_psk);
5266 	spdk_keyring_put_key(ctx->drv_opts.dhchap_key);
5267 	spdk_keyring_put_key(ctx->drv_opts.dhchap_ctrlr_key);
5268 	free(ctx);
5269 }
5270 
5271 static void
5272 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, int rc)
5273 {
5274 	if (ctx->cb_fn) {
5275 		ctx->cb_fn(ctx->cb_ctx, ctx->reported_bdevs, rc);
5276 	}
5277 
5278 	ctx->namespaces_populated = true;
5279 	if (ctx->probe_done) {
5280 		/* The probe was already completed, so we need to free the context
5281 		 * here.  This can happen for cases like OCSSD, where we need to
5282 		 * send additional commands to the SSD after attach.
5283 		 */
5284 		free_nvme_async_probe_ctx(ctx);
5285 	}
5286 }
5287 
5288 static int
5289 bdev_nvme_remove_poller(void *ctx)
5290 {
5291 	struct spdk_nvme_transport_id trid_pcie;
5292 
5293 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5294 		spdk_poller_unregister(&g_hotplug_poller);
5295 		return SPDK_POLLER_IDLE;
5296 	}
5297 
5298 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5299 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5300 
5301 	if (spdk_nvme_scan_attached(&trid_pcie)) {
5302 		SPDK_ERRLOG_RATELIMIT("spdk_nvme_scan_attached() failed\n");
5303 	}
5304 
5305 	return SPDK_POLLER_BUSY;
5306 }
5307 
5308 static void
5309 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
5310 		       struct nvme_async_probe_ctx *ctx)
5311 {
5312 	spdk_io_device_register(nvme_ctrlr,
5313 				bdev_nvme_create_ctrlr_channel_cb,
5314 				bdev_nvme_destroy_ctrlr_channel_cb,
5315 				sizeof(struct nvme_ctrlr_channel),
5316 				nvme_ctrlr->nbdev_ctrlr->name);
5317 
5318 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
5319 
5320 	if (g_hotplug_poller == NULL) {
5321 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_remove_poller, NULL,
5322 							NVME_HOTPLUG_POLL_PERIOD_DEFAULT);
5323 	}
5324 }
5325 
5326 static void
5327 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
5328 {
5329 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
5330 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
5331 
5332 	nvme_ctrlr->probe_ctx = NULL;
5333 
5334 	if (spdk_nvme_cpl_is_error(cpl)) {
5335 		nvme_ctrlr_delete(nvme_ctrlr);
5336 
5337 		if (ctx != NULL) {
5338 			ctx->reported_bdevs = 0;
5339 			populate_namespaces_cb(ctx, -1);
5340 		}
5341 		return;
5342 	}
5343 
5344 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5345 }
5346 
5347 static int
5348 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
5349 			     struct nvme_async_probe_ctx *ctx)
5350 {
5351 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5352 	const struct spdk_nvme_ctrlr_data *cdata;
5353 	uint32_t ana_log_page_size;
5354 
5355 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5356 
5357 	/* Set buffer size enough to include maximum number of allowed namespaces. */
5358 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5359 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
5360 			    sizeof(uint32_t);
5361 
5362 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
5363 						SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
5364 	if (nvme_ctrlr->ana_log_page == NULL) {
5365 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
5366 		return -ENXIO;
5367 	}
5368 
5369 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
5370 	 * Hence copy each descriptor to a temporary area when parsing it.
5371 	 *
5372 	 * Allocate a buffer whose size is as large as ANA log page buffer because
5373 	 * we do not know the size of a descriptor until actually reading it.
5374 	 */
5375 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
5376 	if (nvme_ctrlr->copied_ana_desc == NULL) {
5377 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
5378 		return -ENOMEM;
5379 	}
5380 
5381 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
5382 
5383 	nvme_ctrlr->probe_ctx = ctx;
5384 
5385 	/* Then, set the read size only to include the current active namespaces. */
5386 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5387 
5388 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5389 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5390 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5391 		return -EINVAL;
5392 	}
5393 
5394 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
5395 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5396 						SPDK_NVME_GLOBAL_NS_TAG,
5397 						nvme_ctrlr->ana_log_page,
5398 						ana_log_page_size, 0,
5399 						nvme_ctrlr_init_ana_log_page_done,
5400 						nvme_ctrlr);
5401 }
5402 
5403 /* hostnqn and subnqn were already verified before attaching a controller.
5404  * Hence check only the multipath capability and cntlid here.
5405  */
5406 static bool
5407 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
5408 {
5409 	struct nvme_ctrlr *tmp;
5410 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
5411 
5412 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5413 
5414 	if (!cdata->cmic.multi_ctrlr) {
5415 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5416 		return false;
5417 	}
5418 
5419 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
5420 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
5421 
5422 		if (!tmp_cdata->cmic.multi_ctrlr) {
5423 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5424 			return false;
5425 		}
5426 		if (cdata->cntlid == tmp_cdata->cntlid) {
5427 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
5428 			return false;
5429 		}
5430 	}
5431 
5432 	return true;
5433 }
5434 
5435 static int
5436 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
5437 {
5438 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5439 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5440 	int rc = 0;
5441 
5442 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5443 
5444 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5445 	if (nbdev_ctrlr != NULL) {
5446 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
5447 			rc = -EINVAL;
5448 			goto exit;
5449 		}
5450 	} else {
5451 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
5452 		if (nbdev_ctrlr == NULL) {
5453 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
5454 			rc = -ENOMEM;
5455 			goto exit;
5456 		}
5457 		nbdev_ctrlr->name = strdup(name);
5458 		if (nbdev_ctrlr->name == NULL) {
5459 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
5460 			free(nbdev_ctrlr);
5461 			goto exit;
5462 		}
5463 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
5464 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
5465 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
5466 	}
5467 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
5468 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
5469 exit:
5470 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5471 	return rc;
5472 }
5473 
5474 static int
5475 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
5476 		  const char *name,
5477 		  const struct spdk_nvme_transport_id *trid,
5478 		  struct nvme_async_probe_ctx *ctx)
5479 {
5480 	struct nvme_ctrlr *nvme_ctrlr;
5481 	struct nvme_path_id *path_id;
5482 	const struct spdk_nvme_ctrlr_data *cdata;
5483 	int rc;
5484 
5485 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
5486 	if (nvme_ctrlr == NULL) {
5487 		SPDK_ERRLOG("Failed to allocate device struct\n");
5488 		return -ENOMEM;
5489 	}
5490 
5491 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
5492 	if (rc != 0) {
5493 		free(nvme_ctrlr);
5494 		return rc;
5495 	}
5496 
5497 	TAILQ_INIT(&nvme_ctrlr->trids);
5498 	RB_INIT(&nvme_ctrlr->namespaces);
5499 
5500 	/* Get another reference to the key, so the first one can be released from probe_ctx */
5501 	if (ctx != NULL) {
5502 		if (ctx->drv_opts.tls_psk != NULL) {
5503 			nvme_ctrlr->psk = spdk_keyring_get_key(
5504 						  spdk_key_get_name(ctx->drv_opts.tls_psk));
5505 			if (nvme_ctrlr->psk == NULL) {
5506 				/* Could only happen if the key was removed in the meantime */
5507 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5508 					    spdk_key_get_name(ctx->drv_opts.tls_psk));
5509 				rc = -ENOKEY;
5510 				goto err;
5511 			}
5512 		}
5513 
5514 		if (ctx->drv_opts.dhchap_key != NULL) {
5515 			nvme_ctrlr->dhchap_key = spdk_keyring_get_key(
5516 							 spdk_key_get_name(ctx->drv_opts.dhchap_key));
5517 			if (nvme_ctrlr->dhchap_key == NULL) {
5518 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5519 					    spdk_key_get_name(ctx->drv_opts.dhchap_key));
5520 				rc = -ENOKEY;
5521 				goto err;
5522 			}
5523 		}
5524 
5525 		if (ctx->drv_opts.dhchap_ctrlr_key != NULL) {
5526 			nvme_ctrlr->dhchap_ctrlr_key =
5527 				spdk_keyring_get_key(
5528 					spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5529 			if (nvme_ctrlr->dhchap_ctrlr_key == NULL) {
5530 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5531 					    spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5532 				rc = -ENOKEY;
5533 				goto err;
5534 			}
5535 		}
5536 	}
5537 
5538 	path_id = calloc(1, sizeof(*path_id));
5539 	if (path_id == NULL) {
5540 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
5541 		rc = -ENOMEM;
5542 		goto err;
5543 	}
5544 
5545 	path_id->trid = *trid;
5546 	if (ctx != NULL) {
5547 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
5548 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
5549 	}
5550 	nvme_ctrlr->active_path_id = path_id;
5551 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
5552 
5553 	nvme_ctrlr->thread = spdk_get_thread();
5554 	nvme_ctrlr->ctrlr = ctrlr;
5555 	nvme_ctrlr->ref = 1;
5556 
5557 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
5558 		SPDK_ERRLOG("OCSSDs are not supported");
5559 		rc = -ENOTSUP;
5560 		goto err;
5561 	}
5562 
5563 	if (ctx != NULL) {
5564 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
5565 	} else {
5566 		spdk_bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
5567 	}
5568 
5569 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
5570 					  g_opts.nvme_adminq_poll_period_us);
5571 
5572 	if (g_opts.timeout_us > 0) {
5573 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
5574 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
5575 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
5576 					  g_opts.timeout_us : g_opts.timeout_admin_us;
5577 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
5578 				adm_timeout_us, timeout_cb, nvme_ctrlr);
5579 	}
5580 
5581 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
5582 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
5583 
5584 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
5585 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
5586 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
5587 	}
5588 
5589 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
5590 	if (rc != 0) {
5591 		goto err;
5592 	}
5593 
5594 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5595 
5596 	if (cdata->cmic.ana_reporting) {
5597 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
5598 		if (rc == 0) {
5599 			return 0;
5600 		}
5601 	} else {
5602 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5603 		return 0;
5604 	}
5605 
5606 err:
5607 	nvme_ctrlr_delete(nvme_ctrlr);
5608 	return rc;
5609 }
5610 
5611 void
5612 spdk_bdev_nvme_get_default_ctrlr_opts(struct spdk_bdev_nvme_ctrlr_opts *opts)
5613 {
5614 	opts->prchk_flags = 0;
5615 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
5616 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
5617 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
5618 }
5619 
5620 static void
5621 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5622 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
5623 {
5624 	char *name;
5625 
5626 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
5627 	if (!name) {
5628 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
5629 		return;
5630 	}
5631 
5632 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
5633 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
5634 	} else {
5635 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
5636 	}
5637 
5638 	free(name);
5639 }
5640 
5641 static void
5642 _nvme_ctrlr_destruct(void *ctx)
5643 {
5644 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5645 
5646 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
5647 	nvme_ctrlr_release(nvme_ctrlr);
5648 }
5649 
5650 static int
5651 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5652 {
5653 	struct nvme_probe_skip_entry *entry;
5654 
5655 	/* The controller's destruction was already started */
5656 	if (nvme_ctrlr->destruct) {
5657 		return -EALREADY;
5658 	}
5659 
5660 	if (!hotplug &&
5661 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
5662 		entry = calloc(1, sizeof(*entry));
5663 		if (!entry) {
5664 			return -ENOMEM;
5665 		}
5666 		entry->trid = nvme_ctrlr->active_path_id->trid;
5667 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
5668 	}
5669 
5670 	nvme_ctrlr->destruct = true;
5671 	return 0;
5672 }
5673 
5674 static int
5675 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5676 {
5677 	int rc;
5678 
5679 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5680 	rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug);
5681 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5682 
5683 	if (rc == 0) {
5684 		_nvme_ctrlr_destruct(nvme_ctrlr);
5685 	} else if (rc == -EALREADY) {
5686 		rc = 0;
5687 	}
5688 
5689 	return rc;
5690 }
5691 
5692 static void
5693 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
5694 {
5695 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
5696 
5697 	bdev_nvme_delete_ctrlr(nvme_ctrlr, true);
5698 }
5699 
5700 static int
5701 bdev_nvme_hotplug_probe(void *arg)
5702 {
5703 	if (g_hotplug_probe_ctx == NULL) {
5704 		spdk_poller_unregister(&g_hotplug_probe_poller);
5705 		return SPDK_POLLER_IDLE;
5706 	}
5707 
5708 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
5709 		g_hotplug_probe_ctx = NULL;
5710 		spdk_poller_unregister(&g_hotplug_probe_poller);
5711 	}
5712 
5713 	return SPDK_POLLER_BUSY;
5714 }
5715 
5716 static int
5717 bdev_nvme_hotplug(void *arg)
5718 {
5719 	struct spdk_nvme_transport_id trid_pcie;
5720 
5721 	if (g_hotplug_probe_ctx) {
5722 		return SPDK_POLLER_BUSY;
5723 	}
5724 
5725 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5726 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5727 
5728 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
5729 			      hotplug_probe_cb, attach_cb, NULL);
5730 
5731 	if (g_hotplug_probe_ctx) {
5732 		assert(g_hotplug_probe_poller == NULL);
5733 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
5734 	}
5735 
5736 	return SPDK_POLLER_BUSY;
5737 }
5738 
5739 void
5740 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
5741 {
5742 	*opts = g_opts;
5743 }
5744 
5745 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5746 		uint32_t reconnect_delay_sec,
5747 		uint32_t fast_io_fail_timeout_sec);
5748 
5749 static int
5750 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
5751 {
5752 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
5753 		/* Can't set timeout_admin_us without also setting timeout_us */
5754 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
5755 		return -EINVAL;
5756 	}
5757 
5758 	if (opts->bdev_retry_count < -1) {
5759 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
5760 		return -EINVAL;
5761 	}
5762 
5763 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
5764 			opts->reconnect_delay_sec,
5765 			opts->fast_io_fail_timeout_sec)) {
5766 		return -EINVAL;
5767 	}
5768 
5769 	return 0;
5770 }
5771 
5772 int
5773 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
5774 {
5775 	int ret;
5776 
5777 	ret = bdev_nvme_validate_opts(opts);
5778 	if (ret) {
5779 		SPDK_WARNLOG("Failed to set nvme opts.\n");
5780 		return ret;
5781 	}
5782 
5783 	if (g_bdev_nvme_init_thread != NULL) {
5784 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5785 			return -EPERM;
5786 		}
5787 	}
5788 
5789 	if (opts->rdma_srq_size != 0 ||
5790 	    opts->rdma_max_cq_size != 0 ||
5791 	    opts->rdma_cm_event_timeout_ms != 0) {
5792 		struct spdk_nvme_transport_opts drv_opts;
5793 
5794 		spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
5795 		if (opts->rdma_srq_size != 0) {
5796 			drv_opts.rdma_srq_size = opts->rdma_srq_size;
5797 		}
5798 		if (opts->rdma_max_cq_size != 0) {
5799 			drv_opts.rdma_max_cq_size = opts->rdma_max_cq_size;
5800 		}
5801 		if (opts->rdma_cm_event_timeout_ms != 0) {
5802 			drv_opts.rdma_cm_event_timeout_ms = opts->rdma_cm_event_timeout_ms;
5803 		}
5804 
5805 		ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
5806 		if (ret) {
5807 			SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
5808 			return ret;
5809 		}
5810 	}
5811 
5812 	g_opts = *opts;
5813 
5814 	return 0;
5815 }
5816 
5817 struct set_nvme_hotplug_ctx {
5818 	uint64_t period_us;
5819 	bool enabled;
5820 	spdk_msg_fn fn;
5821 	void *fn_ctx;
5822 };
5823 
5824 static void
5825 set_nvme_hotplug_period_cb(void *_ctx)
5826 {
5827 	struct set_nvme_hotplug_ctx *ctx = _ctx;
5828 
5829 	spdk_poller_unregister(&g_hotplug_poller);
5830 	if (ctx->enabled) {
5831 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
5832 	} else {
5833 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_remove_poller, NULL,
5834 							NVME_HOTPLUG_POLL_PERIOD_DEFAULT);
5835 	}
5836 
5837 	g_nvme_hotplug_poll_period_us = ctx->period_us;
5838 	g_nvme_hotplug_enabled = ctx->enabled;
5839 	if (ctx->fn) {
5840 		ctx->fn(ctx->fn_ctx);
5841 	}
5842 
5843 	free(ctx);
5844 }
5845 
5846 int
5847 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
5848 {
5849 	struct set_nvme_hotplug_ctx *ctx;
5850 
5851 	if (enabled == true && !spdk_process_is_primary()) {
5852 		return -EPERM;
5853 	}
5854 
5855 	ctx = calloc(1, sizeof(*ctx));
5856 	if (ctx == NULL) {
5857 		return -ENOMEM;
5858 	}
5859 
5860 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
5861 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
5862 	ctx->enabled = enabled;
5863 	ctx->fn = cb;
5864 	ctx->fn_ctx = cb_ctx;
5865 
5866 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
5867 	return 0;
5868 }
5869 
5870 static void
5871 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
5872 				    struct nvme_async_probe_ctx *ctx)
5873 {
5874 	struct nvme_ns	*nvme_ns;
5875 	struct nvme_bdev	*nvme_bdev;
5876 	size_t			j;
5877 
5878 	assert(nvme_ctrlr != NULL);
5879 
5880 	if (ctx->names == NULL) {
5881 		ctx->reported_bdevs = 0;
5882 		populate_namespaces_cb(ctx, 0);
5883 		return;
5884 	}
5885 
5886 	/*
5887 	 * Report the new bdevs that were created in this call.
5888 	 * There can be more than one bdev per NVMe controller.
5889 	 */
5890 	j = 0;
5891 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5892 	while (nvme_ns != NULL) {
5893 		nvme_bdev = nvme_ns->bdev;
5894 		if (j < ctx->max_bdevs) {
5895 			ctx->names[j] = nvme_bdev->disk.name;
5896 			j++;
5897 		} else {
5898 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
5899 				    ctx->max_bdevs);
5900 			ctx->reported_bdevs = 0;
5901 			populate_namespaces_cb(ctx, -ERANGE);
5902 			return;
5903 		}
5904 
5905 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5906 	}
5907 
5908 	ctx->reported_bdevs = j;
5909 	populate_namespaces_cb(ctx, 0);
5910 }
5911 
5912 static int
5913 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5914 			       struct spdk_nvme_ctrlr *new_ctrlr,
5915 			       struct spdk_nvme_transport_id *trid)
5916 {
5917 	struct nvme_path_id *tmp_trid;
5918 
5919 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5920 		SPDK_ERRLOG("PCIe failover is not supported.\n");
5921 		return -ENOTSUP;
5922 	}
5923 
5924 	/* Currently we only support failover to the same transport type. */
5925 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
5926 		SPDK_WARNLOG("Failover from trtype: %s to a different trtype: %s is not supported currently\n",
5927 			     spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
5928 			     spdk_nvme_transport_id_trtype_str(trid->trtype));
5929 		return -EINVAL;
5930 	}
5931 
5932 
5933 	/* Currently we only support failover to the same NQN. */
5934 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
5935 		SPDK_WARNLOG("Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
5936 			     nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
5937 		return -EINVAL;
5938 	}
5939 
5940 	/* Skip all the other checks if we've already registered this path. */
5941 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
5942 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
5943 			SPDK_WARNLOG("This path (traddr: %s subnqn: %s) is already registered\n", trid->traddr,
5944 				     trid->subnqn);
5945 			return -EALREADY;
5946 		}
5947 	}
5948 
5949 	return 0;
5950 }
5951 
5952 static int
5953 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
5954 				    struct spdk_nvme_ctrlr *new_ctrlr)
5955 {
5956 	struct nvme_ns *nvme_ns;
5957 	struct spdk_nvme_ns *new_ns;
5958 
5959 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5960 	while (nvme_ns != NULL) {
5961 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
5962 		assert(new_ns != NULL);
5963 
5964 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
5965 			return -EINVAL;
5966 		}
5967 
5968 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5969 	}
5970 
5971 	return 0;
5972 }
5973 
5974 static int
5975 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5976 			      struct spdk_nvme_transport_id *trid)
5977 {
5978 	struct nvme_path_id *active_id, *new_trid, *tmp_trid;
5979 
5980 	new_trid = calloc(1, sizeof(*new_trid));
5981 	if (new_trid == NULL) {
5982 		return -ENOMEM;
5983 	}
5984 	new_trid->trid = *trid;
5985 
5986 	active_id = nvme_ctrlr->active_path_id;
5987 	assert(active_id != NULL);
5988 	assert(active_id == TAILQ_FIRST(&nvme_ctrlr->trids));
5989 
5990 	/* Skip the active trid not to replace it until it is failed. */
5991 	tmp_trid = TAILQ_NEXT(active_id, link);
5992 	if (tmp_trid == NULL) {
5993 		goto add_tail;
5994 	}
5995 
5996 	/* It means the trid is faled if its last failed time is non-zero.
5997 	 * Insert the new alternate trid before any failed trid.
5998 	 */
5999 	TAILQ_FOREACH_FROM(tmp_trid, &nvme_ctrlr->trids, link) {
6000 		if (tmp_trid->last_failed_tsc != 0) {
6001 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
6002 			return 0;
6003 		}
6004 	}
6005 
6006 add_tail:
6007 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
6008 	return 0;
6009 }
6010 
6011 /* This is the case that a secondary path is added to an existing
6012  * nvme_ctrlr for failover. After checking if it can access the same
6013  * namespaces as the primary path, it is disconnected until failover occurs.
6014  */
6015 static int
6016 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
6017 			     struct spdk_nvme_ctrlr *new_ctrlr,
6018 			     struct spdk_nvme_transport_id *trid)
6019 {
6020 	int rc;
6021 
6022 	assert(nvme_ctrlr != NULL);
6023 
6024 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6025 
6026 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
6027 	if (rc != 0) {
6028 		goto exit;
6029 	}
6030 
6031 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
6032 	if (rc != 0) {
6033 		goto exit;
6034 	}
6035 
6036 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
6037 
6038 exit:
6039 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6040 
6041 	spdk_nvme_detach(new_ctrlr);
6042 
6043 	return rc;
6044 }
6045 
6046 static void
6047 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6048 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
6049 {
6050 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6051 	struct nvme_async_probe_ctx *ctx;
6052 	int rc;
6053 
6054 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
6055 	ctx->ctrlr_attached = true;
6056 
6057 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
6058 	if (rc != 0) {
6059 		ctx->reported_bdevs = 0;
6060 		populate_namespaces_cb(ctx, rc);
6061 	}
6062 }
6063 
6064 static void
6065 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6066 			struct spdk_nvme_ctrlr *ctrlr,
6067 			const struct spdk_nvme_ctrlr_opts *opts)
6068 {
6069 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6070 	struct nvme_ctrlr *nvme_ctrlr;
6071 	struct nvme_async_probe_ctx *ctx;
6072 	int rc;
6073 
6074 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
6075 	ctx->ctrlr_attached = true;
6076 
6077 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
6078 	if (nvme_ctrlr) {
6079 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
6080 	} else {
6081 		rc = -ENODEV;
6082 	}
6083 
6084 	ctx->reported_bdevs = 0;
6085 	populate_namespaces_cb(ctx, rc);
6086 }
6087 
6088 static int
6089 bdev_nvme_async_poll(void *arg)
6090 {
6091 	struct nvme_async_probe_ctx	*ctx = arg;
6092 	int				rc;
6093 
6094 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
6095 	if (spdk_unlikely(rc != -EAGAIN)) {
6096 		ctx->probe_done = true;
6097 		spdk_poller_unregister(&ctx->poller);
6098 		if (!ctx->ctrlr_attached) {
6099 			/* The probe is done, but no controller was attached.
6100 			 * That means we had a failure, so report -EIO back to
6101 			 * the caller (usually the RPC). populate_namespaces_cb()
6102 			 * will take care of freeing the nvme_async_probe_ctx.
6103 			 */
6104 			ctx->reported_bdevs = 0;
6105 			populate_namespaces_cb(ctx, -EIO);
6106 		} else if (ctx->namespaces_populated) {
6107 			/* The namespaces for the attached controller were all
6108 			 * populated and the response was already sent to the
6109 			 * caller (usually the RPC).  So free the context here.
6110 			 */
6111 			free_nvme_async_probe_ctx(ctx);
6112 		}
6113 	}
6114 
6115 	return SPDK_POLLER_BUSY;
6116 }
6117 
6118 static bool
6119 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
6120 		uint32_t reconnect_delay_sec,
6121 		uint32_t fast_io_fail_timeout_sec)
6122 {
6123 	if (ctrlr_loss_timeout_sec < -1) {
6124 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
6125 		return false;
6126 	} else if (ctrlr_loss_timeout_sec == -1) {
6127 		if (reconnect_delay_sec == 0) {
6128 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6129 			return false;
6130 		} else if (fast_io_fail_timeout_sec != 0 &&
6131 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
6132 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
6133 			return false;
6134 		}
6135 	} else if (ctrlr_loss_timeout_sec != 0) {
6136 		if (reconnect_delay_sec == 0) {
6137 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6138 			return false;
6139 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6140 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
6141 			return false;
6142 		} else if (fast_io_fail_timeout_sec != 0) {
6143 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
6144 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
6145 				return false;
6146 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6147 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
6148 				return false;
6149 			}
6150 		}
6151 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
6152 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
6153 		return false;
6154 	}
6155 
6156 	return true;
6157 }
6158 
6159 static int
6160 bdev_nvme_load_psk(const char *fname, char *buf, size_t bufsz)
6161 {
6162 	FILE *psk_file;
6163 	struct stat statbuf;
6164 	int rc;
6165 #define TCP_PSK_INVALID_PERMISSIONS 0177
6166 
6167 	if (stat(fname, &statbuf) != 0) {
6168 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
6169 		return -EACCES;
6170 	}
6171 
6172 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
6173 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
6174 		return -EPERM;
6175 	}
6176 	if ((size_t)statbuf.st_size >= bufsz) {
6177 		SPDK_ERRLOG("Invalid PSK: too long\n");
6178 		return -EINVAL;
6179 	}
6180 	psk_file = fopen(fname, "r");
6181 	if (psk_file == NULL) {
6182 		SPDK_ERRLOG("Could not open PSK file\n");
6183 		return -EINVAL;
6184 	}
6185 
6186 	memset(buf, 0, bufsz);
6187 	rc = fread(buf, 1, statbuf.st_size, psk_file);
6188 	if (rc != statbuf.st_size) {
6189 		SPDK_ERRLOG("Failed to read PSK\n");
6190 		fclose(psk_file);
6191 		return -EINVAL;
6192 	}
6193 
6194 	fclose(psk_file);
6195 	return 0;
6196 }
6197 
6198 int
6199 spdk_bdev_nvme_create(struct spdk_nvme_transport_id *trid,
6200 		      const char *base_name,
6201 		      const char **names,
6202 		      uint32_t count,
6203 		      spdk_bdev_nvme_create_cb cb_fn,
6204 		      void *cb_ctx,
6205 		      struct spdk_nvme_ctrlr_opts *drv_opts,
6206 		      struct spdk_bdev_nvme_ctrlr_opts *bdev_opts,
6207 		      bool multipath)
6208 {
6209 	struct nvme_probe_skip_entry *entry, *tmp;
6210 	struct nvme_async_probe_ctx *ctx;
6211 	spdk_nvme_attach_cb attach_cb;
6212 	int rc, len;
6213 
6214 	/* TODO expand this check to include both the host and target TRIDs.
6215 	 * Only if both are the same should we fail.
6216 	 */
6217 	if (nvme_ctrlr_get(trid, drv_opts->hostnqn) != NULL) {
6218 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s, hostnqn: %s) "
6219 			    "already exists.\n", trid->traddr, drv_opts->hostnqn);
6220 		return -EEXIST;
6221 	}
6222 
6223 	len = strnlen(base_name, SPDK_CONTROLLER_NAME_MAX);
6224 
6225 	if (len == 0 || len == SPDK_CONTROLLER_NAME_MAX) {
6226 		SPDK_ERRLOG("controller name must be between 1 and %d characters\n", SPDK_CONTROLLER_NAME_MAX - 1);
6227 		return -EINVAL;
6228 	}
6229 
6230 	if (bdev_opts != NULL &&
6231 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
6232 			    bdev_opts->reconnect_delay_sec,
6233 			    bdev_opts->fast_io_fail_timeout_sec)) {
6234 		return -EINVAL;
6235 	}
6236 
6237 	ctx = calloc(1, sizeof(*ctx));
6238 	if (!ctx) {
6239 		return -ENOMEM;
6240 	}
6241 	ctx->base_name = base_name;
6242 	ctx->names = names;
6243 	ctx->max_bdevs = count;
6244 	ctx->cb_fn = cb_fn;
6245 	ctx->cb_ctx = cb_ctx;
6246 	ctx->trid = *trid;
6247 
6248 	if (bdev_opts) {
6249 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6250 	} else {
6251 		spdk_bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
6252 	}
6253 
6254 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6255 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
6256 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
6257 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
6258 				free(entry);
6259 				break;
6260 			}
6261 		}
6262 	}
6263 
6264 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6265 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
6266 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
6267 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
6268 	ctx->drv_opts.disable_read_ana_log_page = true;
6269 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
6270 
6271 	if (ctx->bdev_opts.psk[0] != '\0') {
6272 		/* Try to use the keyring first */
6273 		ctx->drv_opts.tls_psk = spdk_keyring_get_key(ctx->bdev_opts.psk);
6274 		if (ctx->drv_opts.tls_psk == NULL) {
6275 			rc = bdev_nvme_load_psk(ctx->bdev_opts.psk,
6276 						ctx->drv_opts.psk, sizeof(ctx->drv_opts.psk));
6277 			if (rc != 0) {
6278 				SPDK_ERRLOG("Could not load PSK from %s\n", ctx->bdev_opts.psk);
6279 				free_nvme_async_probe_ctx(ctx);
6280 				return rc;
6281 			}
6282 		}
6283 	}
6284 
6285 	if (ctx->bdev_opts.dhchap_key != NULL) {
6286 		ctx->drv_opts.dhchap_key = spdk_keyring_get_key(ctx->bdev_opts.dhchap_key);
6287 		if (ctx->drv_opts.dhchap_key == NULL) {
6288 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP key: %s\n",
6289 				    ctx->bdev_opts.dhchap_key);
6290 			free_nvme_async_probe_ctx(ctx);
6291 			return -ENOKEY;
6292 		}
6293 
6294 		ctx->drv_opts.dhchap_digests = g_opts.dhchap_digests;
6295 		ctx->drv_opts.dhchap_dhgroups = g_opts.dhchap_dhgroups;
6296 	}
6297 	if (ctx->bdev_opts.dhchap_ctrlr_key != NULL) {
6298 		ctx->drv_opts.dhchap_ctrlr_key =
6299 			spdk_keyring_get_key(ctx->bdev_opts.dhchap_ctrlr_key);
6300 		if (ctx->drv_opts.dhchap_ctrlr_key == NULL) {
6301 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP controller key: %s\n",
6302 				    ctx->bdev_opts.dhchap_ctrlr_key);
6303 			free_nvme_async_probe_ctx(ctx);
6304 			return -ENOKEY;
6305 		}
6306 	}
6307 
6308 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
6309 		attach_cb = connect_attach_cb;
6310 	} else {
6311 		attach_cb = connect_set_failover_cb;
6312 	}
6313 
6314 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
6315 	if (ctx->probe_ctx == NULL) {
6316 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
6317 		free_nvme_async_probe_ctx(ctx);
6318 		return -ENODEV;
6319 	}
6320 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
6321 
6322 	return 0;
6323 }
6324 
6325 struct bdev_nvme_delete_ctx {
6326 	char                        *name;
6327 	struct nvme_path_id         path_id;
6328 	bdev_nvme_delete_done_fn    delete_done;
6329 	void                        *delete_done_ctx;
6330 	uint64_t                    timeout_ticks;
6331 	struct spdk_poller          *poller;
6332 };
6333 
6334 static void
6335 free_bdev_nvme_delete_ctx(struct bdev_nvme_delete_ctx *ctx)
6336 {
6337 	if (ctx != NULL) {
6338 		free(ctx->name);
6339 		free(ctx);
6340 	}
6341 }
6342 
6343 static bool
6344 nvme_path_id_compare(struct nvme_path_id *p, const struct nvme_path_id *path_id)
6345 {
6346 	if (path_id->trid.trtype != 0) {
6347 		if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
6348 			if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
6349 				return false;
6350 			}
6351 		} else {
6352 			if (path_id->trid.trtype != p->trid.trtype) {
6353 				return false;
6354 			}
6355 		}
6356 	}
6357 
6358 	if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
6359 		if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
6360 			return false;
6361 		}
6362 	}
6363 
6364 	if (path_id->trid.adrfam != 0) {
6365 		if (path_id->trid.adrfam != p->trid.adrfam) {
6366 			return false;
6367 		}
6368 	}
6369 
6370 	if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
6371 		if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
6372 			return false;
6373 		}
6374 	}
6375 
6376 	if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
6377 		if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
6378 			return false;
6379 		}
6380 	}
6381 
6382 	if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
6383 		if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
6384 			return false;
6385 		}
6386 	}
6387 
6388 	if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
6389 		if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
6390 			return false;
6391 		}
6392 	}
6393 
6394 	return true;
6395 }
6396 
6397 static bool
6398 nvme_path_id_exists(const char *name, const struct nvme_path_id *path_id)
6399 {
6400 	struct nvme_bdev_ctrlr  *nbdev_ctrlr;
6401 	struct nvme_ctrlr       *ctrlr;
6402 	struct nvme_path_id     *p;
6403 
6404 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6405 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6406 	if (!nbdev_ctrlr) {
6407 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6408 		return false;
6409 	}
6410 
6411 	TAILQ_FOREACH(ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6412 		pthread_mutex_lock(&ctrlr->mutex);
6413 		TAILQ_FOREACH(p, &ctrlr->trids, link) {
6414 			if (nvme_path_id_compare(p, path_id)) {
6415 				pthread_mutex_unlock(&ctrlr->mutex);
6416 				pthread_mutex_unlock(&g_bdev_nvme_mutex);
6417 				return true;
6418 			}
6419 		}
6420 		pthread_mutex_unlock(&ctrlr->mutex);
6421 	}
6422 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6423 
6424 	return false;
6425 }
6426 
6427 static int
6428 bdev_nvme_delete_complete_poll(void *arg)
6429 {
6430 	struct bdev_nvme_delete_ctx     *ctx = arg;
6431 	int                             rc = 0;
6432 
6433 	if (nvme_path_id_exists(ctx->name, &ctx->path_id)) {
6434 		if (ctx->timeout_ticks > spdk_get_ticks()) {
6435 			return SPDK_POLLER_BUSY;
6436 		}
6437 
6438 		SPDK_ERRLOG("NVMe path '%s' still exists after delete\n", ctx->name);
6439 		rc = -ETIMEDOUT;
6440 	}
6441 
6442 	spdk_poller_unregister(&ctx->poller);
6443 
6444 	ctx->delete_done(ctx->delete_done_ctx, rc);
6445 	free_bdev_nvme_delete_ctx(ctx);
6446 
6447 	return SPDK_POLLER_BUSY;
6448 }
6449 
6450 static int
6451 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id)
6452 {
6453 	struct nvme_path_id	*p, *t;
6454 	spdk_msg_fn		msg_fn;
6455 	int			rc = -ENXIO;
6456 
6457 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6458 
6459 	TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
6460 		if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) {
6461 			break;
6462 		}
6463 
6464 		if (!nvme_path_id_compare(p, path_id)) {
6465 			continue;
6466 		}
6467 
6468 		/* We are not using the specified path. */
6469 		TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
6470 		free(p);
6471 		rc = 0;
6472 	}
6473 
6474 	if (p == NULL || !nvme_path_id_compare(p, path_id)) {
6475 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
6476 		return rc;
6477 	}
6478 
6479 	/* If we made it here, then this path is a match! Now we need to remove it. */
6480 
6481 	/* This is the active path in use right now. The active path is always the first in the list. */
6482 	assert(p == nvme_ctrlr->active_path_id);
6483 
6484 	if (!TAILQ_NEXT(p, link)) {
6485 		/* The current path is the only path. */
6486 		msg_fn = _nvme_ctrlr_destruct;
6487 		rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false);
6488 	} else {
6489 		/* There is an alternative path. */
6490 		msg_fn = _bdev_nvme_reset_ctrlr;
6491 		rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, true);
6492 	}
6493 
6494 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6495 
6496 	if (rc == 0) {
6497 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
6498 	} else if (rc == -EALREADY) {
6499 		rc = 0;
6500 	}
6501 
6502 	return rc;
6503 }
6504 
6505 int
6506 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id,
6507 		 bdev_nvme_delete_done_fn delete_done, void *delete_done_ctx)
6508 {
6509 	struct nvme_bdev_ctrlr		*nbdev_ctrlr;
6510 	struct nvme_ctrlr		*nvme_ctrlr, *tmp_nvme_ctrlr;
6511 	struct bdev_nvme_delete_ctx     *ctx = NULL;
6512 	int				rc = -ENXIO, _rc;
6513 
6514 	if (name == NULL || path_id == NULL) {
6515 		rc = -EINVAL;
6516 		goto exit;
6517 	}
6518 
6519 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6520 
6521 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6522 	if (nbdev_ctrlr == NULL) {
6523 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6524 
6525 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
6526 		rc = -ENODEV;
6527 		goto exit;
6528 	}
6529 
6530 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
6531 		_rc = _bdev_nvme_delete(nvme_ctrlr, path_id);
6532 		if (_rc < 0 && _rc != -ENXIO) {
6533 			pthread_mutex_unlock(&g_bdev_nvme_mutex);
6534 			rc = _rc;
6535 			goto exit;
6536 		} else if (_rc == 0) {
6537 			/* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr
6538 			 * was deleted successfully. To remember the successful deletion,
6539 			 * overwrite rc only if _rc is zero.
6540 			 */
6541 			rc = 0;
6542 		}
6543 	}
6544 
6545 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6546 
6547 	if (rc != 0 || delete_done == NULL) {
6548 		goto exit;
6549 	}
6550 
6551 	ctx = calloc(1, sizeof(*ctx));
6552 	if (ctx == NULL) {
6553 		SPDK_ERRLOG("Failed to allocate context for bdev_nvme_delete\n");
6554 		rc = -ENOMEM;
6555 		goto exit;
6556 	}
6557 
6558 	ctx->name = strdup(name);
6559 	if (ctx->name == NULL) {
6560 		SPDK_ERRLOG("Failed to copy controller name for deletion\n");
6561 		rc = -ENOMEM;
6562 		goto exit;
6563 	}
6564 
6565 	ctx->delete_done = delete_done;
6566 	ctx->delete_done_ctx = delete_done_ctx;
6567 	ctx->path_id = *path_id;
6568 	ctx->timeout_ticks = spdk_get_ticks() + 10 * spdk_get_ticks_hz();
6569 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_delete_complete_poll, ctx, 1000);
6570 	if (ctx->poller == NULL) {
6571 		SPDK_ERRLOG("Failed to register bdev_nvme_delete poller\n");
6572 		rc = -ENOMEM;
6573 		goto exit;
6574 	}
6575 
6576 exit:
6577 	if (rc != 0) {
6578 		free_bdev_nvme_delete_ctx(ctx);
6579 	}
6580 
6581 	return rc;
6582 }
6583 
6584 #define DISCOVERY_INFOLOG(ctx, format, ...) \
6585 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6586 
6587 #define DISCOVERY_ERRLOG(ctx, format, ...) \
6588 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6589 
6590 struct discovery_entry_ctx {
6591 	char						name[128];
6592 	struct spdk_nvme_transport_id			trid;
6593 	struct spdk_nvme_ctrlr_opts			drv_opts;
6594 	struct spdk_nvmf_discovery_log_page_entry	entry;
6595 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
6596 	struct discovery_ctx				*ctx;
6597 };
6598 
6599 struct discovery_ctx {
6600 	char					*name;
6601 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
6602 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
6603 	void					*cb_ctx;
6604 	struct spdk_nvme_probe_ctx		*probe_ctx;
6605 	struct spdk_nvme_detach_ctx		*detach_ctx;
6606 	struct spdk_nvme_ctrlr			*ctrlr;
6607 	struct spdk_nvme_transport_id		trid;
6608 	struct discovery_entry_ctx		*entry_ctx_in_use;
6609 	struct spdk_poller			*poller;
6610 	struct spdk_nvme_ctrlr_opts		drv_opts;
6611 	struct spdk_bdev_nvme_ctrlr_opts	bdev_opts;
6612 	struct spdk_nvmf_discovery_log_page	*log_page;
6613 	TAILQ_ENTRY(discovery_ctx)		tailq;
6614 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
6615 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
6616 	int					rc;
6617 	bool					wait_for_attach;
6618 	uint64_t				timeout_ticks;
6619 	/* Denotes that the discovery service is being started. We're waiting
6620 	 * for the initial connection to the discovery controller to be
6621 	 * established and attach discovered NVM ctrlrs.
6622 	 */
6623 	bool					initializing;
6624 	/* Denotes if a discovery is currently in progress for this context.
6625 	 * That includes connecting to newly discovered subsystems.  Used to
6626 	 * ensure we do not start a new discovery until an existing one is
6627 	 * complete.
6628 	 */
6629 	bool					in_progress;
6630 
6631 	/* Denotes if another discovery is needed after the one in progress
6632 	 * completes.  Set when we receive an AER completion while a discovery
6633 	 * is already in progress.
6634 	 */
6635 	bool					pending;
6636 
6637 	/* Signal to the discovery context poller that it should stop the
6638 	 * discovery service, including detaching from the current discovery
6639 	 * controller.
6640 	 */
6641 	bool					stop;
6642 
6643 	struct spdk_thread			*calling_thread;
6644 	uint32_t				index;
6645 	uint32_t				attach_in_progress;
6646 	char					*hostnqn;
6647 
6648 	/* Denotes if the discovery service was started by the mdns discovery.
6649 	 */
6650 	bool					from_mdns_discovery_service;
6651 };
6652 
6653 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
6654 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
6655 
6656 static void get_discovery_log_page(struct discovery_ctx *ctx);
6657 
6658 static void
6659 free_discovery_ctx(struct discovery_ctx *ctx)
6660 {
6661 	free(ctx->log_page);
6662 	free(ctx->hostnqn);
6663 	free(ctx->name);
6664 	free(ctx);
6665 }
6666 
6667 static void
6668 discovery_complete(struct discovery_ctx *ctx)
6669 {
6670 	ctx->initializing = false;
6671 	ctx->in_progress = false;
6672 	if (ctx->pending) {
6673 		ctx->pending = false;
6674 		get_discovery_log_page(ctx);
6675 	}
6676 }
6677 
6678 static void
6679 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
6680 			       struct spdk_nvmf_discovery_log_page_entry *entry)
6681 {
6682 	char *space;
6683 
6684 	trid->trtype = entry->trtype;
6685 	trid->adrfam = entry->adrfam;
6686 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
6687 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
6688 	/* Because the source buffer (entry->subnqn) is longer than trid->subnqn, and
6689 	 * before call to this function trid->subnqn is zeroed out, we need
6690 	 * to copy sizeof(trid->subnqn) minus one byte to make sure the last character
6691 	 * remains 0. Then we can shorten the string (replace ' ' with 0) if required
6692 	 */
6693 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn) - 1);
6694 
6695 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
6696 	 * But the log page entries typically pad them with spaces, not zeroes.
6697 	 * So add a NULL terminator to each of these fields at the appropriate
6698 	 * location.
6699 	 */
6700 	space = strchr(trid->traddr, ' ');
6701 	if (space) {
6702 		*space = 0;
6703 	}
6704 	space = strchr(trid->trsvcid, ' ');
6705 	if (space) {
6706 		*space = 0;
6707 	}
6708 	space = strchr(trid->subnqn, ' ');
6709 	if (space) {
6710 		*space = 0;
6711 	}
6712 }
6713 
6714 static void
6715 _stop_discovery(void *_ctx)
6716 {
6717 	struct discovery_ctx *ctx = _ctx;
6718 
6719 	if (ctx->attach_in_progress > 0) {
6720 		spdk_thread_send_msg(spdk_get_thread(), _stop_discovery, ctx);
6721 		return;
6722 	}
6723 
6724 	ctx->stop = true;
6725 
6726 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
6727 		struct discovery_entry_ctx *entry_ctx;
6728 		struct nvme_path_id path = {};
6729 
6730 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
6731 		path.trid = entry_ctx->trid;
6732 		bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6733 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6734 		free(entry_ctx);
6735 	}
6736 
6737 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
6738 		struct discovery_entry_ctx *entry_ctx;
6739 
6740 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6741 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6742 		free(entry_ctx);
6743 	}
6744 
6745 	free(ctx->entry_ctx_in_use);
6746 	ctx->entry_ctx_in_use = NULL;
6747 }
6748 
6749 static void
6750 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6751 {
6752 	ctx->stop_cb_fn = cb_fn;
6753 	ctx->cb_ctx = cb_ctx;
6754 
6755 	if (ctx->attach_in_progress > 0) {
6756 		DISCOVERY_INFOLOG(ctx, "stopping discovery with attach_in_progress: %"PRIu32"\n",
6757 				  ctx->attach_in_progress);
6758 	}
6759 
6760 	_stop_discovery(ctx);
6761 }
6762 
6763 static void
6764 remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr)
6765 {
6766 	struct discovery_ctx *d_ctx;
6767 	struct nvme_path_id *path_id;
6768 	struct spdk_nvme_transport_id trid = {};
6769 	struct discovery_entry_ctx *entry_ctx, *tmp;
6770 
6771 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
6772 
6773 	TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6774 		TAILQ_FOREACH_SAFE(entry_ctx, &d_ctx->nvm_entry_ctxs, tailq, tmp) {
6775 			build_trid_from_log_page_entry(&trid, &entry_ctx->entry);
6776 			if (spdk_nvme_transport_id_compare(&trid, &path_id->trid) != 0) {
6777 				continue;
6778 			}
6779 
6780 			TAILQ_REMOVE(&d_ctx->nvm_entry_ctxs, entry_ctx, tailq);
6781 			free(entry_ctx);
6782 			DISCOVERY_INFOLOG(d_ctx, "Remove discovery entry: %s:%s:%s\n",
6783 					  trid.subnqn, trid.traddr, trid.trsvcid);
6784 
6785 			/* Fail discovery ctrlr to force reattach attempt */
6786 			spdk_nvme_ctrlr_fail(d_ctx->ctrlr);
6787 		}
6788 	}
6789 }
6790 
6791 static void
6792 discovery_remove_controllers(struct discovery_ctx *ctx)
6793 {
6794 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
6795 	struct discovery_entry_ctx *entry_ctx, *tmp;
6796 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6797 	struct spdk_nvme_transport_id old_trid = {};
6798 	uint64_t numrec, i;
6799 	bool found;
6800 
6801 	numrec = from_le64(&log_page->numrec);
6802 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
6803 		found = false;
6804 		old_entry = &entry_ctx->entry;
6805 		build_trid_from_log_page_entry(&old_trid, old_entry);
6806 		for (i = 0; i < numrec; i++) {
6807 			new_entry = &log_page->entries[i];
6808 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
6809 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
6810 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6811 				found = true;
6812 				break;
6813 			}
6814 		}
6815 		if (!found) {
6816 			struct nvme_path_id path = {};
6817 
6818 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
6819 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6820 
6821 			path.trid = entry_ctx->trid;
6822 			bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6823 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6824 			free(entry_ctx);
6825 		}
6826 	}
6827 	free(log_page);
6828 	ctx->log_page = NULL;
6829 	discovery_complete(ctx);
6830 }
6831 
6832 static void
6833 complete_discovery_start(struct discovery_ctx *ctx, int status)
6834 {
6835 	ctx->timeout_ticks = 0;
6836 	ctx->rc = status;
6837 	if (ctx->start_cb_fn) {
6838 		ctx->start_cb_fn(ctx->cb_ctx, status);
6839 		ctx->start_cb_fn = NULL;
6840 		ctx->cb_ctx = NULL;
6841 	}
6842 }
6843 
6844 static void
6845 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
6846 {
6847 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
6848 	struct discovery_ctx *ctx = entry_ctx->ctx;
6849 
6850 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
6851 	ctx->attach_in_progress--;
6852 	if (ctx->attach_in_progress == 0) {
6853 		complete_discovery_start(ctx, ctx->rc);
6854 		if (ctx->initializing && ctx->rc != 0) {
6855 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
6856 			stop_discovery(ctx, NULL, ctx->cb_ctx);
6857 		} else {
6858 			discovery_remove_controllers(ctx);
6859 		}
6860 	}
6861 }
6862 
6863 static struct discovery_entry_ctx *
6864 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
6865 {
6866 	struct discovery_entry_ctx *new_ctx;
6867 
6868 	new_ctx = calloc(1, sizeof(*new_ctx));
6869 	if (new_ctx == NULL) {
6870 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6871 		return NULL;
6872 	}
6873 
6874 	new_ctx->ctx = ctx;
6875 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
6876 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6877 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6878 	return new_ctx;
6879 }
6880 
6881 static void
6882 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
6883 		      struct spdk_nvmf_discovery_log_page *log_page)
6884 {
6885 	struct discovery_ctx *ctx = cb_arg;
6886 	struct discovery_entry_ctx *entry_ctx, *tmp;
6887 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6888 	uint64_t numrec, i;
6889 	bool found;
6890 
6891 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
6892 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6893 		return;
6894 	}
6895 
6896 	ctx->log_page = log_page;
6897 	assert(ctx->attach_in_progress == 0);
6898 	numrec = from_le64(&log_page->numrec);
6899 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
6900 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6901 		free(entry_ctx);
6902 	}
6903 	for (i = 0; i < numrec; i++) {
6904 		found = false;
6905 		new_entry = &log_page->entries[i];
6906 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY_CURRENT ||
6907 		    new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
6908 			struct discovery_entry_ctx *new_ctx;
6909 			struct spdk_nvme_transport_id trid = {};
6910 
6911 			build_trid_from_log_page_entry(&trid, new_entry);
6912 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
6913 			if (new_ctx == NULL) {
6914 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6915 				break;
6916 			}
6917 
6918 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
6919 			continue;
6920 		}
6921 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
6922 			old_entry = &entry_ctx->entry;
6923 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
6924 				found = true;
6925 				break;
6926 			}
6927 		}
6928 		if (!found) {
6929 			struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx;
6930 			struct discovery_ctx *d_ctx;
6931 
6932 			TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6933 				TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) {
6934 					if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
6935 						    sizeof(new_entry->subnqn))) {
6936 						break;
6937 					}
6938 				}
6939 				if (subnqn_ctx) {
6940 					break;
6941 				}
6942 			}
6943 
6944 			new_ctx = calloc(1, sizeof(*new_ctx));
6945 			if (new_ctx == NULL) {
6946 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6947 				break;
6948 			}
6949 
6950 			new_ctx->ctx = ctx;
6951 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
6952 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
6953 			if (subnqn_ctx) {
6954 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
6955 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
6956 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6957 						  new_ctx->name);
6958 			} else {
6959 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
6960 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
6961 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6962 						  new_ctx->name);
6963 			}
6964 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6965 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6966 			rc = spdk_bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
6967 						   discovery_attach_controller_done, new_ctx,
6968 						   &new_ctx->drv_opts, &ctx->bdev_opts, true);
6969 			if (rc == 0) {
6970 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
6971 				ctx->attach_in_progress++;
6972 			} else {
6973 				DISCOVERY_ERRLOG(ctx, "spdk_bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
6974 			}
6975 		}
6976 	}
6977 
6978 	if (ctx->attach_in_progress == 0) {
6979 		discovery_remove_controllers(ctx);
6980 	}
6981 }
6982 
6983 static void
6984 get_discovery_log_page(struct discovery_ctx *ctx)
6985 {
6986 	int rc;
6987 
6988 	assert(ctx->in_progress == false);
6989 	ctx->in_progress = true;
6990 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
6991 	if (rc != 0) {
6992 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6993 	}
6994 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
6995 }
6996 
6997 static void
6998 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
6999 {
7000 	struct discovery_ctx *ctx = arg;
7001 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
7002 
7003 	if (spdk_nvme_cpl_is_error(cpl)) {
7004 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
7005 		return;
7006 	}
7007 
7008 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
7009 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
7010 		return;
7011 	}
7012 
7013 	DISCOVERY_INFOLOG(ctx, "got aer\n");
7014 	if (ctx->in_progress) {
7015 		ctx->pending = true;
7016 		return;
7017 	}
7018 
7019 	get_discovery_log_page(ctx);
7020 }
7021 
7022 static void
7023 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
7024 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
7025 {
7026 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
7027 	struct discovery_ctx *ctx;
7028 
7029 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
7030 
7031 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
7032 	ctx->probe_ctx = NULL;
7033 	ctx->ctrlr = ctrlr;
7034 
7035 	if (ctx->rc != 0) {
7036 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
7037 				 ctx->rc);
7038 		return;
7039 	}
7040 
7041 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
7042 }
7043 
7044 static int
7045 discovery_poller(void *arg)
7046 {
7047 	struct discovery_ctx *ctx = arg;
7048 	struct spdk_nvme_transport_id *trid;
7049 	int rc;
7050 
7051 	if (ctx->detach_ctx) {
7052 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
7053 		if (rc != -EAGAIN) {
7054 			ctx->detach_ctx = NULL;
7055 			ctx->ctrlr = NULL;
7056 		}
7057 	} else if (ctx->stop) {
7058 		if (ctx->ctrlr != NULL) {
7059 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7060 			if (rc == 0) {
7061 				return SPDK_POLLER_BUSY;
7062 			}
7063 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7064 		}
7065 		spdk_poller_unregister(&ctx->poller);
7066 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7067 		assert(ctx->start_cb_fn == NULL);
7068 		if (ctx->stop_cb_fn != NULL) {
7069 			ctx->stop_cb_fn(ctx->cb_ctx);
7070 		}
7071 		free_discovery_ctx(ctx);
7072 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
7073 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7074 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7075 			assert(ctx->initializing);
7076 			spdk_poller_unregister(&ctx->poller);
7077 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7078 			complete_discovery_start(ctx, -ETIMEDOUT);
7079 			stop_discovery(ctx, NULL, NULL);
7080 			free_discovery_ctx(ctx);
7081 			return SPDK_POLLER_BUSY;
7082 		}
7083 
7084 		assert(ctx->entry_ctx_in_use == NULL);
7085 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
7086 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7087 		trid = &ctx->entry_ctx_in_use->trid;
7088 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
7089 		if (ctx->probe_ctx) {
7090 			spdk_poller_unregister(&ctx->poller);
7091 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
7092 		} else {
7093 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
7094 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7095 			ctx->entry_ctx_in_use = NULL;
7096 		}
7097 	} else if (ctx->probe_ctx) {
7098 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7099 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7100 			complete_discovery_start(ctx, -ETIMEDOUT);
7101 			return SPDK_POLLER_BUSY;
7102 		}
7103 
7104 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
7105 		if (rc != -EAGAIN) {
7106 			if (ctx->rc != 0) {
7107 				assert(ctx->initializing);
7108 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7109 			} else {
7110 				assert(rc == 0);
7111 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
7112 				ctx->rc = rc;
7113 				get_discovery_log_page(ctx);
7114 			}
7115 		}
7116 	} else {
7117 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7118 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
7119 			complete_discovery_start(ctx, -ETIMEDOUT);
7120 			/* We need to wait until all NVM ctrlrs are attached before we stop the
7121 			 * discovery service to make sure we don't detach a ctrlr that is still
7122 			 * being attached.
7123 			 */
7124 			if (ctx->attach_in_progress == 0) {
7125 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7126 				return SPDK_POLLER_BUSY;
7127 			}
7128 		}
7129 
7130 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
7131 		if (rc < 0) {
7132 			spdk_poller_unregister(&ctx->poller);
7133 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7134 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7135 			ctx->entry_ctx_in_use = NULL;
7136 
7137 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7138 			if (rc != 0) {
7139 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7140 				ctx->ctrlr = NULL;
7141 			}
7142 		}
7143 	}
7144 
7145 	return SPDK_POLLER_BUSY;
7146 }
7147 
7148 static void
7149 start_discovery_poller(void *arg)
7150 {
7151 	struct discovery_ctx *ctx = arg;
7152 
7153 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
7154 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7155 }
7156 
7157 int
7158 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
7159 			  const char *base_name,
7160 			  struct spdk_nvme_ctrlr_opts *drv_opts,
7161 			  struct spdk_bdev_nvme_ctrlr_opts *bdev_opts,
7162 			  uint64_t attach_timeout,
7163 			  bool from_mdns,
7164 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
7165 {
7166 	struct discovery_ctx *ctx;
7167 	struct discovery_entry_ctx *discovery_entry_ctx;
7168 
7169 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
7170 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7171 		if (strcmp(ctx->name, base_name) == 0) {
7172 			return -EEXIST;
7173 		}
7174 
7175 		if (ctx->entry_ctx_in_use != NULL) {
7176 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
7177 				return -EEXIST;
7178 			}
7179 		}
7180 
7181 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
7182 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
7183 				return -EEXIST;
7184 			}
7185 		}
7186 	}
7187 
7188 	ctx = calloc(1, sizeof(*ctx));
7189 	if (ctx == NULL) {
7190 		return -ENOMEM;
7191 	}
7192 
7193 	ctx->name = strdup(base_name);
7194 	if (ctx->name == NULL) {
7195 		free_discovery_ctx(ctx);
7196 		return -ENOMEM;
7197 	}
7198 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
7199 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
7200 	ctx->from_mdns_discovery_service = from_mdns;
7201 	ctx->bdev_opts.from_discovery_service = true;
7202 	ctx->calling_thread = spdk_get_thread();
7203 	ctx->start_cb_fn = cb_fn;
7204 	ctx->cb_ctx = cb_ctx;
7205 	ctx->initializing = true;
7206 	if (ctx->start_cb_fn) {
7207 		/* We can use this when dumping json to denote if this RPC parameter
7208 		 * was specified or not.
7209 		 */
7210 		ctx->wait_for_attach = true;
7211 	}
7212 	if (attach_timeout != 0) {
7213 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
7214 				     spdk_get_ticks_hz() / 1000ull;
7215 	}
7216 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
7217 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
7218 	memcpy(&ctx->trid, trid, sizeof(*trid));
7219 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
7220 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
7221 	if (ctx->hostnqn == NULL) {
7222 		free_discovery_ctx(ctx);
7223 		return -ENOMEM;
7224 	}
7225 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
7226 	if (discovery_entry_ctx == NULL) {
7227 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7228 		free_discovery_ctx(ctx);
7229 		return -ENOMEM;
7230 	}
7231 
7232 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
7233 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
7234 	return 0;
7235 }
7236 
7237 int
7238 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
7239 {
7240 	struct discovery_ctx *ctx;
7241 
7242 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7243 		if (strcmp(name, ctx->name) == 0) {
7244 			if (ctx->stop) {
7245 				return -EALREADY;
7246 			}
7247 			/* If we're still starting the discovery service and ->rc is non-zero, we're
7248 			 * going to stop it as soon as we can
7249 			 */
7250 			if (ctx->initializing && ctx->rc != 0) {
7251 				return -EALREADY;
7252 			}
7253 			stop_discovery(ctx, cb_fn, cb_ctx);
7254 			return 0;
7255 		}
7256 	}
7257 
7258 	return -ENOENT;
7259 }
7260 
7261 static int
7262 bdev_nvme_library_init(void)
7263 {
7264 	g_bdev_nvme_init_thread = spdk_get_thread();
7265 
7266 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
7267 				bdev_nvme_destroy_poll_group_cb,
7268 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
7269 
7270 	return 0;
7271 }
7272 
7273 static void
7274 bdev_nvme_fini_destruct_ctrlrs(void)
7275 {
7276 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
7277 	struct nvme_ctrlr *nvme_ctrlr;
7278 
7279 	pthread_mutex_lock(&g_bdev_nvme_mutex);
7280 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
7281 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
7282 			pthread_mutex_lock(&nvme_ctrlr->mutex);
7283 			if (nvme_ctrlr->destruct) {
7284 				/* This controller's destruction was already started
7285 				 * before the application started shutting down
7286 				 */
7287 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
7288 				continue;
7289 			}
7290 			nvme_ctrlr->destruct = true;
7291 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
7292 
7293 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
7294 					     nvme_ctrlr);
7295 		}
7296 	}
7297 
7298 	g_bdev_nvme_module_finish = true;
7299 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
7300 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
7301 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
7302 		spdk_bdev_module_fini_done();
7303 		return;
7304 	}
7305 
7306 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
7307 }
7308 
7309 static void
7310 check_discovery_fini(void *arg)
7311 {
7312 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7313 		bdev_nvme_fini_destruct_ctrlrs();
7314 	}
7315 }
7316 
7317 static void
7318 bdev_nvme_library_fini(void)
7319 {
7320 	struct nvme_probe_skip_entry *entry, *entry_tmp;
7321 	struct discovery_ctx *ctx;
7322 
7323 	spdk_poller_unregister(&g_hotplug_poller);
7324 	free(g_hotplug_probe_ctx);
7325 	g_hotplug_probe_ctx = NULL;
7326 
7327 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
7328 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
7329 		free(entry);
7330 	}
7331 
7332 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
7333 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7334 		bdev_nvme_fini_destruct_ctrlrs();
7335 	} else {
7336 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7337 			stop_discovery(ctx, check_discovery_fini, NULL);
7338 		}
7339 	}
7340 }
7341 
7342 static void
7343 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
7344 {
7345 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7346 	struct spdk_bdev *bdev = bdev_io->bdev;
7347 	struct spdk_dif_ctx dif_ctx;
7348 	struct spdk_dif_error err_blk = {};
7349 	int rc;
7350 	struct spdk_dif_ctx_init_ext_opts dif_opts;
7351 
7352 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
7353 	dif_opts.dif_pi_format = bdev->dif_pi_format;
7354 	rc = spdk_dif_ctx_init(&dif_ctx,
7355 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
7356 			       bdev->dif_is_head_of_md, bdev->dif_type,
7357 			       bdev_io->u.bdev.dif_check_flags,
7358 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0, &dif_opts);
7359 	if (rc != 0) {
7360 		SPDK_ERRLOG("Initialization of DIF context failed\n");
7361 		return;
7362 	}
7363 
7364 	if (bdev->md_interleave) {
7365 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7366 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7367 	} else {
7368 		struct iovec md_iov = {
7369 			.iov_base	= bdev_io->u.bdev.md_buf,
7370 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
7371 		};
7372 
7373 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7374 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7375 	}
7376 
7377 	if (rc != 0) {
7378 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
7379 			    err_blk.err_type, err_blk.err_offset);
7380 	} else {
7381 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
7382 	}
7383 }
7384 
7385 static void
7386 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7387 {
7388 	struct nvme_bdev_io *bio = ref;
7389 
7390 	if (spdk_nvme_cpl_is_success(cpl)) {
7391 		/* Run PI verification for read data buffer. */
7392 		bdev_nvme_verify_pi_error(bio);
7393 	}
7394 
7395 	/* Return original completion status */
7396 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7397 }
7398 
7399 static void
7400 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7401 {
7402 	struct nvme_bdev_io *bio = ref;
7403 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7404 	int ret;
7405 
7406 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7407 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
7408 			    cpl->status.sct, cpl->status.sc);
7409 
7410 		/* Save completion status to use after verifying PI error. */
7411 		bio->cpl = *cpl;
7412 
7413 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
7414 			/* Read without PI checking to verify PI error. */
7415 			ret = bdev_nvme_no_pi_readv(bio,
7416 						    bdev_io->u.bdev.iovs,
7417 						    bdev_io->u.bdev.iovcnt,
7418 						    bdev_io->u.bdev.md_buf,
7419 						    bdev_io->u.bdev.num_blocks,
7420 						    bdev_io->u.bdev.offset_blocks);
7421 			if (ret == 0) {
7422 				return;
7423 			}
7424 		}
7425 	}
7426 
7427 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7428 }
7429 
7430 static void
7431 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7432 {
7433 	struct nvme_bdev_io *bio = ref;
7434 
7435 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7436 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
7437 			    cpl->status.sct, cpl->status.sc);
7438 		/* Run PI verification for write data buffer if PI error is detected. */
7439 		bdev_nvme_verify_pi_error(bio);
7440 	}
7441 
7442 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7443 }
7444 
7445 static void
7446 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7447 {
7448 	struct nvme_bdev_io *bio = ref;
7449 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7450 
7451 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
7452 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
7453 	 */
7454 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
7455 
7456 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7457 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
7458 			    cpl->status.sct, cpl->status.sc);
7459 		/* Run PI verification for zone append data buffer if PI error is detected. */
7460 		bdev_nvme_verify_pi_error(bio);
7461 	}
7462 
7463 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7464 }
7465 
7466 static void
7467 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7468 {
7469 	struct nvme_bdev_io *bio = ref;
7470 
7471 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7472 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
7473 			    cpl->status.sct, cpl->status.sc);
7474 		/* Run PI verification for compare data buffer if PI error is detected. */
7475 		bdev_nvme_verify_pi_error(bio);
7476 	}
7477 
7478 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7479 }
7480 
7481 static void
7482 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7483 {
7484 	struct nvme_bdev_io *bio = ref;
7485 
7486 	/* Compare operation completion */
7487 	if (!bio->first_fused_completed) {
7488 		/* Save compare result for write callback */
7489 		bio->cpl = *cpl;
7490 		bio->first_fused_completed = true;
7491 		return;
7492 	}
7493 
7494 	/* Write operation completion */
7495 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
7496 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
7497 		 * complete the IO with the compare operation's status.
7498 		 */
7499 		if (!spdk_nvme_cpl_is_error(cpl)) {
7500 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
7501 		}
7502 
7503 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7504 	} else {
7505 		bdev_nvme_io_complete_nvme_status(bio, cpl);
7506 	}
7507 }
7508 
7509 static void
7510 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
7511 {
7512 	struct nvme_bdev_io *bio = ref;
7513 
7514 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7515 }
7516 
7517 static int
7518 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
7519 {
7520 	switch (desc->zt) {
7521 	case SPDK_NVME_ZONE_TYPE_SEQWR:
7522 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
7523 		break;
7524 	default:
7525 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
7526 		return -EIO;
7527 	}
7528 
7529 	switch (desc->zs) {
7530 	case SPDK_NVME_ZONE_STATE_EMPTY:
7531 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
7532 		break;
7533 	case SPDK_NVME_ZONE_STATE_IOPEN:
7534 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
7535 		break;
7536 	case SPDK_NVME_ZONE_STATE_EOPEN:
7537 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
7538 		break;
7539 	case SPDK_NVME_ZONE_STATE_CLOSED:
7540 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
7541 		break;
7542 	case SPDK_NVME_ZONE_STATE_RONLY:
7543 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
7544 		break;
7545 	case SPDK_NVME_ZONE_STATE_FULL:
7546 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
7547 		break;
7548 	case SPDK_NVME_ZONE_STATE_OFFLINE:
7549 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
7550 		break;
7551 	default:
7552 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
7553 		return -EIO;
7554 	}
7555 
7556 	info->zone_id = desc->zslba;
7557 	info->write_pointer = desc->wp;
7558 	info->capacity = desc->zcap;
7559 
7560 	return 0;
7561 }
7562 
7563 static void
7564 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
7565 {
7566 	struct nvme_bdev_io *bio = ref;
7567 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7568 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
7569 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
7570 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
7571 	uint64_t max_zones_per_buf, i;
7572 	uint32_t zone_report_bufsize;
7573 	struct spdk_nvme_ns *ns;
7574 	struct spdk_nvme_qpair *qpair;
7575 	int ret;
7576 
7577 	if (spdk_nvme_cpl_is_error(cpl)) {
7578 		goto out_complete_io_nvme_cpl;
7579 	}
7580 
7581 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
7582 		ret = -ENXIO;
7583 		goto out_complete_io_ret;
7584 	}
7585 
7586 	ns = bio->io_path->nvme_ns->ns;
7587 	qpair = bio->io_path->qpair->qpair;
7588 
7589 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7590 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
7591 			    sizeof(bio->zone_report_buf->descs[0]);
7592 
7593 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
7594 		ret = -EINVAL;
7595 		goto out_complete_io_ret;
7596 	}
7597 
7598 	if (!bio->zone_report_buf->nr_zones) {
7599 		ret = -EINVAL;
7600 		goto out_complete_io_ret;
7601 	}
7602 
7603 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
7604 		ret = fill_zone_from_report(&info[bio->handled_zones],
7605 					    &bio->zone_report_buf->descs[i]);
7606 		if (ret) {
7607 			goto out_complete_io_ret;
7608 		}
7609 		bio->handled_zones++;
7610 	}
7611 
7612 	if (bio->handled_zones < zones_to_copy) {
7613 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7614 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
7615 
7616 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
7617 		ret = spdk_nvme_zns_report_zones(ns, qpair,
7618 						 bio->zone_report_buf, zone_report_bufsize,
7619 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
7620 						 bdev_nvme_get_zone_info_done, bio);
7621 		if (!ret) {
7622 			return;
7623 		} else {
7624 			goto out_complete_io_ret;
7625 		}
7626 	}
7627 
7628 out_complete_io_nvme_cpl:
7629 	free(bio->zone_report_buf);
7630 	bio->zone_report_buf = NULL;
7631 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7632 	return;
7633 
7634 out_complete_io_ret:
7635 	free(bio->zone_report_buf);
7636 	bio->zone_report_buf = NULL;
7637 	bdev_nvme_io_complete(bio, ret);
7638 }
7639 
7640 static void
7641 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
7642 {
7643 	struct nvme_bdev_io *bio = ref;
7644 
7645 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7646 }
7647 
7648 static void
7649 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
7650 {
7651 	struct nvme_bdev_io *bio = ctx;
7652 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7653 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
7654 
7655 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
7656 
7657 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
7658 }
7659 
7660 static void
7661 bdev_nvme_abort_complete(void *ctx)
7662 {
7663 	struct nvme_bdev_io *bio = ctx;
7664 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7665 
7666 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
7667 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
7668 	} else {
7669 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
7670 	}
7671 }
7672 
7673 static void
7674 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
7675 {
7676 	struct nvme_bdev_io *bio = ref;
7677 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7678 
7679 	bio->cpl = *cpl;
7680 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_nvme_abort_complete, bio);
7681 }
7682 
7683 static void
7684 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
7685 {
7686 	struct nvme_bdev_io *bio = ref;
7687 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7688 
7689 	bio->cpl = *cpl;
7690 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
7691 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
7692 }
7693 
7694 static void
7695 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
7696 {
7697 	struct nvme_bdev_io *bio = ref;
7698 	struct iovec *iov;
7699 
7700 	bio->iov_offset = sgl_offset;
7701 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
7702 		iov = &bio->iovs[bio->iovpos];
7703 		if (bio->iov_offset < iov->iov_len) {
7704 			break;
7705 		}
7706 
7707 		bio->iov_offset -= iov->iov_len;
7708 	}
7709 }
7710 
7711 static int
7712 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
7713 {
7714 	struct nvme_bdev_io *bio = ref;
7715 	struct iovec *iov;
7716 
7717 	assert(bio->iovpos < bio->iovcnt);
7718 
7719 	iov = &bio->iovs[bio->iovpos];
7720 
7721 	*address = iov->iov_base;
7722 	*length = iov->iov_len;
7723 
7724 	if (bio->iov_offset) {
7725 		assert(bio->iov_offset <= iov->iov_len);
7726 		*address += bio->iov_offset;
7727 		*length -= bio->iov_offset;
7728 	}
7729 
7730 	bio->iov_offset += *length;
7731 	if (bio->iov_offset == iov->iov_len) {
7732 		bio->iovpos++;
7733 		bio->iov_offset = 0;
7734 	}
7735 
7736 	return 0;
7737 }
7738 
7739 static void
7740 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
7741 {
7742 	struct nvme_bdev_io *bio = ref;
7743 	struct iovec *iov;
7744 
7745 	bio->fused_iov_offset = sgl_offset;
7746 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
7747 		iov = &bio->fused_iovs[bio->fused_iovpos];
7748 		if (bio->fused_iov_offset < iov->iov_len) {
7749 			break;
7750 		}
7751 
7752 		bio->fused_iov_offset -= iov->iov_len;
7753 	}
7754 }
7755 
7756 static int
7757 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
7758 {
7759 	struct nvme_bdev_io *bio = ref;
7760 	struct iovec *iov;
7761 
7762 	assert(bio->fused_iovpos < bio->fused_iovcnt);
7763 
7764 	iov = &bio->fused_iovs[bio->fused_iovpos];
7765 
7766 	*address = iov->iov_base;
7767 	*length = iov->iov_len;
7768 
7769 	if (bio->fused_iov_offset) {
7770 		assert(bio->fused_iov_offset <= iov->iov_len);
7771 		*address += bio->fused_iov_offset;
7772 		*length -= bio->fused_iov_offset;
7773 	}
7774 
7775 	bio->fused_iov_offset += *length;
7776 	if (bio->fused_iov_offset == iov->iov_len) {
7777 		bio->fused_iovpos++;
7778 		bio->fused_iov_offset = 0;
7779 	}
7780 
7781 	return 0;
7782 }
7783 
7784 static int
7785 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7786 		      void *md, uint64_t lba_count, uint64_t lba)
7787 {
7788 	int rc;
7789 
7790 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
7791 		      lba_count, lba);
7792 
7793 	bio->iovs = iov;
7794 	bio->iovcnt = iovcnt;
7795 	bio->iovpos = 0;
7796 	bio->iov_offset = 0;
7797 
7798 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
7799 					    bio->io_path->qpair->qpair,
7800 					    lba, lba_count,
7801 					    bdev_nvme_no_pi_readv_done, bio, 0,
7802 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7803 					    md, 0, 0);
7804 
7805 	if (rc != 0 && rc != -ENOMEM) {
7806 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
7807 	}
7808 	return rc;
7809 }
7810 
7811 static int
7812 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7813 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7814 		struct spdk_memory_domain *domain, void *domain_ctx,
7815 		struct spdk_accel_sequence *seq)
7816 {
7817 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7818 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7819 	int rc;
7820 
7821 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7822 		      lba_count, lba);
7823 
7824 	bio->iovs = iov;
7825 	bio->iovcnt = iovcnt;
7826 	bio->iovpos = 0;
7827 	bio->iov_offset = 0;
7828 
7829 	if (domain != NULL || seq != NULL) {
7830 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7831 		bio->ext_opts.memory_domain = domain;
7832 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7833 		bio->ext_opts.io_flags = flags;
7834 		bio->ext_opts.metadata = md;
7835 		bio->ext_opts.accel_sequence = seq;
7836 
7837 		if (iovcnt == 1) {
7838 			rc = spdk_nvme_ns_cmd_read_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_readv_done,
7839 						       bio, &bio->ext_opts);
7840 		} else {
7841 			rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
7842 							bdev_nvme_readv_done, bio,
7843 							bdev_nvme_queued_reset_sgl,
7844 							bdev_nvme_queued_next_sge,
7845 							&bio->ext_opts);
7846 		}
7847 	} else if (iovcnt == 1) {
7848 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base,
7849 						   md, lba, lba_count, bdev_nvme_readv_done,
7850 						   bio, flags, 0, 0);
7851 	} else {
7852 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
7853 						    bdev_nvme_readv_done, bio, flags,
7854 						    bdev_nvme_queued_reset_sgl,
7855 						    bdev_nvme_queued_next_sge, md, 0, 0);
7856 	}
7857 
7858 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7859 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
7860 	}
7861 	return rc;
7862 }
7863 
7864 static int
7865 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7866 		 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7867 		 struct spdk_memory_domain *domain, void *domain_ctx,
7868 		 struct spdk_accel_sequence *seq,
7869 		 union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13)
7870 {
7871 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7872 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7873 	int rc;
7874 
7875 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7876 		      lba_count, lba);
7877 
7878 	bio->iovs = iov;
7879 	bio->iovcnt = iovcnt;
7880 	bio->iovpos = 0;
7881 	bio->iov_offset = 0;
7882 
7883 	if (domain != NULL || seq != NULL) {
7884 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7885 		bio->ext_opts.memory_domain = domain;
7886 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7887 		bio->ext_opts.io_flags = flags | SPDK_NVME_IO_FLAGS_DIRECTIVE(cdw12.write.dtype);
7888 		bio->ext_opts.cdw13 = cdw13.raw;
7889 		bio->ext_opts.metadata = md;
7890 		bio->ext_opts.accel_sequence = seq;
7891 
7892 		if (iovcnt == 1) {
7893 			rc = spdk_nvme_ns_cmd_write_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_writev_done,
7894 							bio, &bio->ext_opts);
7895 		} else {
7896 			rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
7897 							 bdev_nvme_writev_done, bio,
7898 							 bdev_nvme_queued_reset_sgl,
7899 							 bdev_nvme_queued_next_sge,
7900 							 &bio->ext_opts);
7901 		}
7902 	} else if (iovcnt == 1) {
7903 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base,
7904 						    md, lba, lba_count, bdev_nvme_writev_done,
7905 						    bio, flags, 0, 0);
7906 	} else {
7907 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7908 						     bdev_nvme_writev_done, bio, flags,
7909 						     bdev_nvme_queued_reset_sgl,
7910 						     bdev_nvme_queued_next_sge, md, 0, 0);
7911 	}
7912 
7913 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7914 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
7915 	}
7916 	return rc;
7917 }
7918 
7919 static int
7920 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7921 		       void *md, uint64_t lba_count, uint64_t zslba,
7922 		       uint32_t flags)
7923 {
7924 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7925 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7926 	int rc;
7927 
7928 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
7929 		      lba_count, zslba);
7930 
7931 	bio->iovs = iov;
7932 	bio->iovcnt = iovcnt;
7933 	bio->iovpos = 0;
7934 	bio->iov_offset = 0;
7935 
7936 	if (iovcnt == 1) {
7937 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
7938 						       lba_count,
7939 						       bdev_nvme_zone_appendv_done, bio,
7940 						       flags,
7941 						       0, 0);
7942 	} else {
7943 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
7944 							bdev_nvme_zone_appendv_done, bio, flags,
7945 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7946 							md, 0, 0);
7947 	}
7948 
7949 	if (rc != 0 && rc != -ENOMEM) {
7950 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
7951 	}
7952 	return rc;
7953 }
7954 
7955 static int
7956 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7957 		   void *md, uint64_t lba_count, uint64_t lba,
7958 		   uint32_t flags)
7959 {
7960 	int rc;
7961 
7962 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7963 		      lba_count, lba);
7964 
7965 	bio->iovs = iov;
7966 	bio->iovcnt = iovcnt;
7967 	bio->iovpos = 0;
7968 	bio->iov_offset = 0;
7969 
7970 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
7971 					       bio->io_path->qpair->qpair,
7972 					       lba, lba_count,
7973 					       bdev_nvme_comparev_done, bio, flags,
7974 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7975 					       md, 0, 0);
7976 
7977 	if (rc != 0 && rc != -ENOMEM) {
7978 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
7979 	}
7980 	return rc;
7981 }
7982 
7983 static int
7984 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
7985 			      struct iovec *write_iov, int write_iovcnt,
7986 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
7987 {
7988 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7989 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7990 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7991 	int rc;
7992 
7993 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7994 		      lba_count, lba);
7995 
7996 	bio->iovs = cmp_iov;
7997 	bio->iovcnt = cmp_iovcnt;
7998 	bio->iovpos = 0;
7999 	bio->iov_offset = 0;
8000 	bio->fused_iovs = write_iov;
8001 	bio->fused_iovcnt = write_iovcnt;
8002 	bio->fused_iovpos = 0;
8003 	bio->fused_iov_offset = 0;
8004 
8005 	if (bdev_io->num_retries == 0) {
8006 		bio->first_fused_submitted = false;
8007 		bio->first_fused_completed = false;
8008 	}
8009 
8010 	if (!bio->first_fused_submitted) {
8011 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
8012 		memset(&bio->cpl, 0, sizeof(bio->cpl));
8013 
8014 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
8015 						       bdev_nvme_comparev_and_writev_done, bio, flags,
8016 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
8017 		if (rc == 0) {
8018 			bio->first_fused_submitted = true;
8019 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
8020 		} else {
8021 			if (rc != -ENOMEM) {
8022 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
8023 			}
8024 			return rc;
8025 		}
8026 	}
8027 
8028 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
8029 
8030 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
8031 					     bdev_nvme_comparev_and_writev_done, bio, flags,
8032 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
8033 	if (rc != 0 && rc != -ENOMEM) {
8034 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
8035 		rc = 0;
8036 	}
8037 
8038 	return rc;
8039 }
8040 
8041 static int
8042 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
8043 {
8044 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
8045 	struct spdk_nvme_dsm_range *range;
8046 	uint64_t offset, remaining;
8047 	uint64_t num_ranges_u64;
8048 	uint16_t num_ranges;
8049 	int rc;
8050 
8051 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
8052 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8053 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
8054 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
8055 		return -EINVAL;
8056 	}
8057 	num_ranges = (uint16_t)num_ranges_u64;
8058 
8059 	offset = offset_blocks;
8060 	remaining = num_blocks;
8061 	range = &dsm_ranges[0];
8062 
8063 	/* Fill max-size ranges until the remaining blocks fit into one range */
8064 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
8065 		range->attributes.raw = 0;
8066 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8067 		range->starting_lba = offset;
8068 
8069 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8070 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8071 		range++;
8072 	}
8073 
8074 	/* Final range describes the remaining blocks */
8075 	range->attributes.raw = 0;
8076 	range->length = remaining;
8077 	range->starting_lba = offset;
8078 
8079 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
8080 			bio->io_path->qpair->qpair,
8081 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
8082 			dsm_ranges, num_ranges,
8083 			bdev_nvme_queued_done, bio);
8084 
8085 	return rc;
8086 }
8087 
8088 static int
8089 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
8090 {
8091 	if (num_blocks > UINT16_MAX + 1) {
8092 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
8093 		return -EINVAL;
8094 	}
8095 
8096 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
8097 					     bio->io_path->qpair->qpair,
8098 					     offset_blocks, num_blocks,
8099 					     bdev_nvme_queued_done, bio,
8100 					     0);
8101 }
8102 
8103 static int
8104 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
8105 			struct spdk_bdev_zone_info *info)
8106 {
8107 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8108 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8109 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
8110 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
8111 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
8112 
8113 	if (zone_id % zone_size != 0) {
8114 		return -EINVAL;
8115 	}
8116 
8117 	if (num_zones > total_zones || !num_zones) {
8118 		return -EINVAL;
8119 	}
8120 
8121 	assert(!bio->zone_report_buf);
8122 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
8123 	if (!bio->zone_report_buf) {
8124 		return -ENOMEM;
8125 	}
8126 
8127 	bio->handled_zones = 0;
8128 
8129 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
8130 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
8131 					  bdev_nvme_get_zone_info_done, bio);
8132 }
8133 
8134 static int
8135 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
8136 			  enum spdk_bdev_zone_action action)
8137 {
8138 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8139 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8140 
8141 	switch (action) {
8142 	case SPDK_BDEV_ZONE_CLOSE:
8143 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
8144 						bdev_nvme_zone_management_done, bio);
8145 	case SPDK_BDEV_ZONE_FINISH:
8146 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
8147 						 bdev_nvme_zone_management_done, bio);
8148 	case SPDK_BDEV_ZONE_OPEN:
8149 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
8150 					       bdev_nvme_zone_management_done, bio);
8151 	case SPDK_BDEV_ZONE_RESET:
8152 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
8153 						bdev_nvme_zone_management_done, bio);
8154 	case SPDK_BDEV_ZONE_OFFLINE:
8155 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
8156 						  bdev_nvme_zone_management_done, bio);
8157 	default:
8158 		return -EINVAL;
8159 	}
8160 }
8161 
8162 static void
8163 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8164 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
8165 {
8166 	struct nvme_io_path *io_path;
8167 	struct nvme_ctrlr *nvme_ctrlr;
8168 	uint32_t max_xfer_size;
8169 	int rc = -ENXIO;
8170 
8171 	/* Choose the first ctrlr which is not failed. */
8172 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8173 		nvme_ctrlr = io_path->qpair->ctrlr;
8174 
8175 		/* We should skip any unavailable nvme_ctrlr rather than checking
8176 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
8177 		 */
8178 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
8179 			continue;
8180 		}
8181 
8182 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
8183 
8184 		if (nbytes > max_xfer_size) {
8185 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8186 			rc = -EINVAL;
8187 			goto err;
8188 		}
8189 
8190 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
8191 						   bdev_nvme_admin_passthru_done, bio);
8192 		if (rc == 0) {
8193 			return;
8194 		}
8195 	}
8196 
8197 err:
8198 	bdev_nvme_admin_complete(bio, rc);
8199 }
8200 
8201 static int
8202 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8203 		      void *buf, size_t nbytes)
8204 {
8205 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8206 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8207 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8208 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8209 
8210 	if (nbytes > max_xfer_size) {
8211 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8212 		return -EINVAL;
8213 	}
8214 
8215 	/*
8216 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8217 	 * so fill it out automatically.
8218 	 */
8219 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8220 
8221 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
8222 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
8223 }
8224 
8225 static int
8226 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8227 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
8228 {
8229 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8230 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8231 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8232 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8233 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8234 
8235 	if (nbytes > max_xfer_size) {
8236 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8237 		return -EINVAL;
8238 	}
8239 
8240 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8241 		SPDK_ERRLOG("invalid meta data buffer size\n");
8242 		return -EINVAL;
8243 	}
8244 
8245 	/*
8246 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8247 	 * so fill it out automatically.
8248 	 */
8249 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8250 
8251 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
8252 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
8253 }
8254 
8255 static int
8256 bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio,
8257 			  struct spdk_nvme_cmd *cmd, struct iovec *iov, int iovcnt,
8258 			  size_t nbytes, void *md_buf, size_t md_len)
8259 {
8260 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8261 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8262 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8263 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8264 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8265 
8266 	bio->iovs = iov;
8267 	bio->iovcnt = iovcnt;
8268 	bio->iovpos = 0;
8269 	bio->iov_offset = 0;
8270 
8271 	if (nbytes > max_xfer_size) {
8272 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8273 		return -EINVAL;
8274 	}
8275 
8276 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8277 		SPDK_ERRLOG("invalid meta data buffer size\n");
8278 		return -EINVAL;
8279 	}
8280 
8281 	/*
8282 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands
8283 	 * require a nsid, so fill it out automatically.
8284 	 */
8285 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8286 
8287 	return spdk_nvme_ctrlr_cmd_iov_raw_with_md(
8288 		       ctrlr, qpair, cmd, (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio,
8289 		       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge);
8290 }
8291 
8292 static void
8293 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8294 		struct nvme_bdev_io *bio_to_abort)
8295 {
8296 	struct nvme_io_path *io_path;
8297 	int rc = 0;
8298 
8299 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
8300 	if (rc == 0) {
8301 		bdev_nvme_admin_complete(bio, 0);
8302 		return;
8303 	}
8304 
8305 	io_path = bio_to_abort->io_path;
8306 	if (io_path != NULL) {
8307 		rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8308 						   io_path->qpair->qpair,
8309 						   bio_to_abort,
8310 						   bdev_nvme_abort_done, bio);
8311 	} else {
8312 		STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8313 			rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8314 							   NULL,
8315 							   bio_to_abort,
8316 							   bdev_nvme_abort_done, bio);
8317 
8318 			if (rc != -ENOENT) {
8319 				break;
8320 			}
8321 		}
8322 	}
8323 
8324 	if (rc != 0) {
8325 		/* If no command was found or there was any error, complete the abort
8326 		 * request with failure.
8327 		 */
8328 		bdev_nvme_admin_complete(bio, rc);
8329 	}
8330 }
8331 
8332 static int
8333 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
8334 	       uint64_t num_blocks)
8335 {
8336 	struct spdk_nvme_scc_source_range range = {
8337 		.slba = src_offset_blocks,
8338 		.nlb = num_blocks - 1
8339 	};
8340 
8341 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
8342 				     bio->io_path->qpair->qpair,
8343 				     &range, 1, dst_offset_blocks,
8344 				     bdev_nvme_queued_done, bio);
8345 }
8346 
8347 static void
8348 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
8349 {
8350 	const char *action;
8351 	uint32_t i;
8352 
8353 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
8354 		action = "reset";
8355 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
8356 		action = "abort";
8357 	} else {
8358 		action = "none";
8359 	}
8360 
8361 	spdk_json_write_object_begin(w);
8362 
8363 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
8364 
8365 	spdk_json_write_named_object_begin(w, "params");
8366 	spdk_json_write_named_string(w, "action_on_timeout", action);
8367 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
8368 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
8369 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
8370 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
8371 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
8372 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
8373 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
8374 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
8375 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
8376 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
8377 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
8378 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
8379 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
8380 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
8381 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
8382 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
8383 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
8384 	spdk_json_write_named_bool(w, "disable_auto_failback", g_opts.disable_auto_failback);
8385 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
8386 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
8387 	spdk_json_write_named_bool(w, "nvme_error_stat", g_opts.nvme_error_stat);
8388 	spdk_json_write_named_uint32(w, "rdma_srq_size", g_opts.rdma_srq_size);
8389 	spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat);
8390 	spdk_json_write_named_bool(w, "allow_accel_sequence", g_opts.allow_accel_sequence);
8391 	spdk_json_write_named_uint32(w, "rdma_max_cq_size", g_opts.rdma_max_cq_size);
8392 	spdk_json_write_named_uint16(w, "rdma_cm_event_timeout_ms", g_opts.rdma_cm_event_timeout_ms);
8393 	spdk_json_write_named_array_begin(w, "dhchap_digests");
8394 	for (i = 0; i < 32; ++i) {
8395 		if (g_opts.dhchap_digests & SPDK_BIT(i)) {
8396 			spdk_json_write_string(w, spdk_nvme_dhchap_get_digest_name(i));
8397 		}
8398 	}
8399 	spdk_json_write_array_end(w);
8400 	spdk_json_write_named_array_begin(w, "dhchap_dhgroups");
8401 	for (i = 0; i < 32; ++i) {
8402 		if (g_opts.dhchap_dhgroups & SPDK_BIT(i)) {
8403 			spdk_json_write_string(w, spdk_nvme_dhchap_get_dhgroup_name(i));
8404 		}
8405 	}
8406 
8407 	spdk_json_write_array_end(w);
8408 	spdk_json_write_object_end(w);
8409 
8410 	spdk_json_write_object_end(w);
8411 }
8412 
8413 static void
8414 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
8415 {
8416 	struct spdk_nvme_transport_id trid;
8417 
8418 	spdk_json_write_object_begin(w);
8419 
8420 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
8421 
8422 	spdk_json_write_named_object_begin(w, "params");
8423 	spdk_json_write_named_string(w, "name", ctx->name);
8424 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
8425 
8426 	trid = ctx->trid;
8427 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
8428 	nvme_bdev_dump_trid_json(&trid, w);
8429 
8430 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
8431 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
8432 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
8433 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8434 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
8435 	spdk_json_write_object_end(w);
8436 
8437 	spdk_json_write_object_end(w);
8438 }
8439 
8440 #ifdef SPDK_CONFIG_NVME_CUSE
8441 static void
8442 nvme_ctrlr_cuse_config_json(struct spdk_json_write_ctx *w,
8443 			    struct nvme_ctrlr *nvme_ctrlr)
8444 {
8445 	size_t cuse_name_size = 128;
8446 	char cuse_name[cuse_name_size];
8447 
8448 	if (spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr,
8449 					  cuse_name, &cuse_name_size) != 0) {
8450 		return;
8451 	}
8452 
8453 	spdk_json_write_object_begin(w);
8454 
8455 	spdk_json_write_named_string(w, "method", "bdev_nvme_cuse_register");
8456 
8457 	spdk_json_write_named_object_begin(w, "params");
8458 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8459 	spdk_json_write_object_end(w);
8460 
8461 	spdk_json_write_object_end(w);
8462 }
8463 #endif
8464 
8465 static void
8466 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
8467 		       struct nvme_ctrlr *nvme_ctrlr)
8468 {
8469 	struct spdk_nvme_transport_id	*trid;
8470 	const struct spdk_nvme_ctrlr_opts *opts;
8471 
8472 	if (nvme_ctrlr->opts.from_discovery_service) {
8473 		/* Do not emit an RPC for this - it will be implicitly
8474 		 * covered by a separate bdev_nvme_start_discovery or
8475 		 * bdev_nvme_start_mdns_discovery RPC.
8476 		 */
8477 		return;
8478 	}
8479 
8480 	trid = &nvme_ctrlr->active_path_id->trid;
8481 
8482 	spdk_json_write_object_begin(w);
8483 
8484 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
8485 
8486 	spdk_json_write_named_object_begin(w, "params");
8487 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8488 	nvme_bdev_dump_trid_json(trid, w);
8489 	spdk_json_write_named_bool(w, "prchk_reftag",
8490 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
8491 	spdk_json_write_named_bool(w, "prchk_guard",
8492 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
8493 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
8494 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
8495 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8496 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
8497 	if (nvme_ctrlr->psk != NULL) {
8498 		spdk_json_write_named_string(w, "psk", spdk_key_get_name(nvme_ctrlr->psk));
8499 	} else if (nvme_ctrlr->opts.psk[0] != '\0') {
8500 		spdk_json_write_named_string(w, "psk", nvme_ctrlr->opts.psk);
8501 	}
8502 
8503 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
8504 	spdk_json_write_named_string(w, "hostnqn", opts->hostnqn);
8505 	spdk_json_write_named_bool(w, "hdgst", opts->header_digest);
8506 	spdk_json_write_named_bool(w, "ddgst", opts->data_digest);
8507 	if (opts->src_addr[0] != '\0') {
8508 		spdk_json_write_named_string(w, "hostaddr", opts->src_addr);
8509 	}
8510 	if (opts->src_svcid[0] != '\0') {
8511 		spdk_json_write_named_string(w, "hostsvcid", opts->src_svcid);
8512 	}
8513 
8514 	spdk_json_write_object_end(w);
8515 
8516 	spdk_json_write_object_end(w);
8517 }
8518 
8519 static void
8520 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
8521 {
8522 	spdk_json_write_object_begin(w);
8523 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
8524 
8525 	spdk_json_write_named_object_begin(w, "params");
8526 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
8527 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
8528 	spdk_json_write_object_end(w);
8529 
8530 	spdk_json_write_object_end(w);
8531 }
8532 
8533 static int
8534 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
8535 {
8536 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
8537 	struct nvme_ctrlr	*nvme_ctrlr;
8538 	struct discovery_ctx	*ctx;
8539 
8540 	bdev_nvme_opts_config_json(w);
8541 
8542 	pthread_mutex_lock(&g_bdev_nvme_mutex);
8543 
8544 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
8545 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
8546 			nvme_ctrlr_config_json(w, nvme_ctrlr);
8547 
8548 #ifdef SPDK_CONFIG_NVME_CUSE
8549 			nvme_ctrlr_cuse_config_json(w, nvme_ctrlr);
8550 #endif
8551 		}
8552 	}
8553 
8554 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8555 		if (!ctx->from_mdns_discovery_service) {
8556 			bdev_nvme_discovery_config_json(w, ctx);
8557 		}
8558 	}
8559 
8560 	bdev_nvme_mdns_discovery_config_json(w);
8561 
8562 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
8563 	 * before enabling hotplug poller.
8564 	 */
8565 	bdev_nvme_hotplug_config_json(w);
8566 
8567 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
8568 	return 0;
8569 }
8570 
8571 struct spdk_nvme_ctrlr *
8572 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
8573 {
8574 	struct nvme_bdev *nbdev;
8575 	struct nvme_ns *nvme_ns;
8576 
8577 	if (!bdev || bdev->module != &nvme_if) {
8578 		return NULL;
8579 	}
8580 
8581 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
8582 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
8583 	assert(nvme_ns != NULL);
8584 
8585 	return nvme_ns->ctrlr->ctrlr;
8586 }
8587 
8588 static bool
8589 nvme_io_path_is_current(struct nvme_io_path *io_path)
8590 {
8591 	const struct nvme_bdev_channel *nbdev_ch;
8592 	bool current;
8593 
8594 	if (!nvme_io_path_is_available(io_path)) {
8595 		return false;
8596 	}
8597 
8598 	nbdev_ch = io_path->nbdev_ch;
8599 	if (nbdev_ch == NULL) {
8600 		current = false;
8601 	} else if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
8602 		struct nvme_io_path *optimized_io_path = NULL;
8603 
8604 		STAILQ_FOREACH(optimized_io_path, &nbdev_ch->io_path_list, stailq) {
8605 			if (optimized_io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) {
8606 				break;
8607 			}
8608 		}
8609 
8610 		/* A non-optimized path is only current if there are no optimized paths. */
8611 		current = (io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) ||
8612 			  (optimized_io_path == NULL);
8613 	} else {
8614 		if (nbdev_ch->current_io_path) {
8615 			current = (io_path == nbdev_ch->current_io_path);
8616 		} else {
8617 			struct nvme_io_path *first_path;
8618 
8619 			/* We arrived here as there are no optimized paths for active-passive
8620 			 * mode. Check if this io_path is the first one available on the list.
8621 			 */
8622 			current = false;
8623 			STAILQ_FOREACH(first_path, &nbdev_ch->io_path_list, stailq) {
8624 				if (nvme_io_path_is_available(first_path)) {
8625 					current = (io_path == first_path);
8626 					break;
8627 				}
8628 			}
8629 		}
8630 	}
8631 
8632 	return current;
8633 }
8634 
8635 void
8636 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
8637 {
8638 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
8639 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
8640 	const struct spdk_nvme_ctrlr_data *cdata;
8641 	const struct spdk_nvme_transport_id *trid;
8642 	const char *adrfam_str;
8643 
8644 	spdk_json_write_object_begin(w);
8645 
8646 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
8647 
8648 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
8649 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
8650 
8651 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
8652 	spdk_json_write_named_bool(w, "current", nvme_io_path_is_current(io_path));
8653 	spdk_json_write_named_bool(w, "connected", nvme_qpair_is_connected(io_path->qpair));
8654 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
8655 
8656 	spdk_json_write_named_object_begin(w, "transport");
8657 	spdk_json_write_named_string(w, "trtype", trid->trstring);
8658 	spdk_json_write_named_string(w, "traddr", trid->traddr);
8659 	if (trid->trsvcid[0] != '\0') {
8660 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
8661 	}
8662 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
8663 	if (adrfam_str) {
8664 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
8665 	}
8666 	spdk_json_write_object_end(w);
8667 
8668 	spdk_json_write_object_end(w);
8669 }
8670 
8671 void
8672 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
8673 {
8674 	struct discovery_ctx *ctx;
8675 	struct discovery_entry_ctx *entry_ctx;
8676 
8677 	spdk_json_write_array_begin(w);
8678 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8679 		spdk_json_write_object_begin(w);
8680 		spdk_json_write_named_string(w, "name", ctx->name);
8681 
8682 		spdk_json_write_named_object_begin(w, "trid");
8683 		nvme_bdev_dump_trid_json(&ctx->trid, w);
8684 		spdk_json_write_object_end(w);
8685 
8686 		spdk_json_write_named_array_begin(w, "referrals");
8687 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
8688 			spdk_json_write_object_begin(w);
8689 			spdk_json_write_named_object_begin(w, "trid");
8690 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
8691 			spdk_json_write_object_end(w);
8692 			spdk_json_write_object_end(w);
8693 		}
8694 		spdk_json_write_array_end(w);
8695 
8696 		spdk_json_write_object_end(w);
8697 	}
8698 	spdk_json_write_array_end(w);
8699 }
8700 
8701 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
8702 
8703 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
8704 {
8705 	struct spdk_trace_tpoint_opts opts[] = {
8706 		{
8707 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
8708 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 1,
8709 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8710 		},
8711 		{
8712 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
8713 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 0,
8714 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8715 		}
8716 	};
8717 
8718 
8719 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
8720 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
8721 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8722 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8723 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8724 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8725 }
8726