xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision bf30e09abe1667ae2769aa367cde39c550bcac00)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/keyring.h"
18 #include "spdk/likely.h"
19 #include "spdk/nvme.h"
20 #include "spdk/nvme_ocssd.h"
21 #include "spdk/nvme_zns.h"
22 #include "spdk/opal.h"
23 #include "spdk/thread.h"
24 #include "spdk/trace.h"
25 #include "spdk/string.h"
26 #include "spdk/util.h"
27 #include "spdk/uuid.h"
28 
29 #include "spdk/bdev_module.h"
30 #include "spdk/log.h"
31 
32 #include "spdk_internal/usdt.h"
33 #include "spdk_internal/trace_defs.h"
34 
35 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
36 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
37 
38 #define NSID_STR_LEN 10
39 
40 #define SPDK_CONTROLLER_NAME_MAX 512
41 
42 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
43 
44 struct nvme_bdev_io {
45 	/** array of iovecs to transfer. */
46 	struct iovec *iovs;
47 
48 	/** Number of iovecs in iovs array. */
49 	int iovcnt;
50 
51 	/** Current iovec position. */
52 	int iovpos;
53 
54 	/** Offset in current iovec. */
55 	uint32_t iov_offset;
56 
57 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
58 	 *  being reset in a reset I/O.
59 	 */
60 	struct nvme_io_path *io_path;
61 
62 	/** array of iovecs to transfer. */
63 	struct iovec *fused_iovs;
64 
65 	/** Number of iovecs in iovs array. */
66 	int fused_iovcnt;
67 
68 	/** Current iovec position. */
69 	int fused_iovpos;
70 
71 	/** Offset in current iovec. */
72 	uint32_t fused_iov_offset;
73 
74 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
75 	struct spdk_nvme_cpl cpl;
76 
77 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
78 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
79 
80 	/** Keeps track if first of fused commands was submitted */
81 	bool first_fused_submitted;
82 
83 	/** Keeps track if first of fused commands was completed */
84 	bool first_fused_completed;
85 
86 	/** Temporary pointer to zone report buffer */
87 	struct spdk_nvme_zns_zone_report *zone_report_buf;
88 
89 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
90 	uint64_t handled_zones;
91 
92 	/** Expiration value in ticks to retry the current I/O. */
93 	uint64_t retry_ticks;
94 
95 	/* How many times the current I/O was retried. */
96 	int32_t retry_count;
97 
98 	/* Current tsc at submit time. */
99 	uint64_t submit_tsc;
100 
101 	/* Used to put nvme_bdev_io into the list */
102 	TAILQ_ENTRY(nvme_bdev_io) retry_link;
103 };
104 
105 struct nvme_probe_skip_entry {
106 	struct spdk_nvme_transport_id		trid;
107 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
108 };
109 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
110 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
111 			g_skipped_nvme_ctrlrs);
112 
113 #define BDEV_NVME_DEFAULT_DIGESTS (SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) | \
114 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) | \
115 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512))
116 
117 #define BDEV_NVME_DEFAULT_DHGROUPS (SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) | \
118 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) | \
119 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) | \
120 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) | \
121 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) | \
122 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192))
123 
124 static struct spdk_bdev_nvme_opts g_opts = {
125 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
126 	.timeout_us = 0,
127 	.timeout_admin_us = 0,
128 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
129 	.transport_retry_count = 4,
130 	.arbitration_burst = 0,
131 	.low_priority_weight = 0,
132 	.medium_priority_weight = 0,
133 	.high_priority_weight = 0,
134 	.nvme_adminq_poll_period_us = 10000ULL,
135 	.nvme_ioq_poll_period_us = 0,
136 	.io_queue_requests = 0,
137 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
138 	.bdev_retry_count = 3,
139 	.transport_ack_timeout = 0,
140 	.ctrlr_loss_timeout_sec = 0,
141 	.reconnect_delay_sec = 0,
142 	.fast_io_fail_timeout_sec = 0,
143 	.disable_auto_failback = false,
144 	.generate_uuids = false,
145 	.transport_tos = 0,
146 	.nvme_error_stat = false,
147 	.io_path_stat = false,
148 	.allow_accel_sequence = false,
149 	.dhchap_digests = BDEV_NVME_DEFAULT_DIGESTS,
150 	.dhchap_dhgroups = BDEV_NVME_DEFAULT_DHGROUPS,
151 };
152 
153 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
154 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
155 
156 static int g_hot_insert_nvme_controller_index = 0;
157 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
158 static bool g_nvme_hotplug_enabled = false;
159 struct spdk_thread *g_bdev_nvme_init_thread;
160 static struct spdk_poller *g_hotplug_poller;
161 static struct spdk_poller *g_hotplug_probe_poller;
162 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
163 
164 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
165 		struct nvme_async_probe_ctx *ctx);
166 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
167 		struct nvme_async_probe_ctx *ctx);
168 static int bdev_nvme_library_init(void);
169 static void bdev_nvme_library_fini(void);
170 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
171 				      struct spdk_bdev_io *bdev_io);
172 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
173 				     struct spdk_bdev_io *bdev_io);
174 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
175 			   void *md, uint64_t lba_count, uint64_t lba,
176 			   uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
177 			   struct spdk_accel_sequence *seq);
178 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
179 				 void *md, uint64_t lba_count, uint64_t lba);
180 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
181 			    void *md, uint64_t lba_count, uint64_t lba,
182 			    uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
183 			    struct spdk_accel_sequence *seq,
184 			    union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13);
185 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
186 				  void *md, uint64_t lba_count,
187 				  uint64_t zslba, uint32_t flags);
188 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
189 			      void *md, uint64_t lba_count, uint64_t lba,
190 			      uint32_t flags);
191 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
192 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
193 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
194 		uint32_t flags);
195 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
196 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
197 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
198 				     enum spdk_bdev_zone_action action);
199 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
200 				     struct nvme_bdev_io *bio,
201 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
202 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
203 				 void *buf, size_t nbytes);
204 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
205 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
206 static int bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
207 				     struct iovec *iov, int iovcnt, size_t nbytes,
208 				     void *md_buf, size_t md_len);
209 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
210 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
211 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
212 static int bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
213 static int bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
214 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
215 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
216 
217 static struct nvme_ns *nvme_ns_alloc(void);
218 static void nvme_ns_free(struct nvme_ns *ns);
219 
220 static int
221 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
222 {
223 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
224 }
225 
226 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
227 
228 struct spdk_nvme_qpair *
229 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
230 {
231 	struct nvme_ctrlr_channel *ctrlr_ch;
232 
233 	assert(ctrlr_io_ch != NULL);
234 
235 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
236 
237 	return ctrlr_ch->qpair->qpair;
238 }
239 
240 static int
241 bdev_nvme_get_ctx_size(void)
242 {
243 	return sizeof(struct nvme_bdev_io);
244 }
245 
246 static struct spdk_bdev_module nvme_if = {
247 	.name = "nvme",
248 	.async_fini = true,
249 	.module_init = bdev_nvme_library_init,
250 	.module_fini = bdev_nvme_library_fini,
251 	.config_json = bdev_nvme_config_json,
252 	.get_ctx_size = bdev_nvme_get_ctx_size,
253 
254 };
255 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
256 
257 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
258 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
259 bool g_bdev_nvme_module_finish;
260 
261 struct nvme_bdev_ctrlr *
262 nvme_bdev_ctrlr_get_by_name(const char *name)
263 {
264 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
265 
266 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
267 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
268 			break;
269 		}
270 	}
271 
272 	return nbdev_ctrlr;
273 }
274 
275 static struct nvme_ctrlr *
276 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
277 			  const struct spdk_nvme_transport_id *trid, const char *hostnqn)
278 {
279 	const struct spdk_nvme_ctrlr_opts *opts;
280 	struct nvme_ctrlr *nvme_ctrlr;
281 
282 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
283 		opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
284 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0 &&
285 		    strcmp(hostnqn, opts->hostnqn) == 0) {
286 			break;
287 		}
288 	}
289 
290 	return nvme_ctrlr;
291 }
292 
293 struct nvme_ctrlr *
294 nvme_bdev_ctrlr_get_ctrlr_by_id(struct nvme_bdev_ctrlr *nbdev_ctrlr,
295 				uint16_t cntlid)
296 {
297 	struct nvme_ctrlr *nvme_ctrlr;
298 	const struct spdk_nvme_ctrlr_data *cdata;
299 
300 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
301 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
302 		if (cdata->cntlid == cntlid) {
303 			break;
304 		}
305 	}
306 
307 	return nvme_ctrlr;
308 }
309 
310 static struct nvme_bdev *
311 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
312 {
313 	struct nvme_bdev *bdev;
314 
315 	pthread_mutex_lock(&g_bdev_nvme_mutex);
316 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
317 		if (bdev->nsid == nsid) {
318 			break;
319 		}
320 	}
321 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
322 
323 	return bdev;
324 }
325 
326 struct nvme_ns *
327 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
328 {
329 	struct nvme_ns ns;
330 
331 	assert(nsid > 0);
332 
333 	ns.id = nsid;
334 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
335 }
336 
337 struct nvme_ns *
338 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
339 {
340 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
341 }
342 
343 struct nvme_ns *
344 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
345 {
346 	if (ns == NULL) {
347 		return NULL;
348 	}
349 
350 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
351 }
352 
353 static struct nvme_ctrlr *
354 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid, const char *hostnqn)
355 {
356 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
357 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
358 
359 	pthread_mutex_lock(&g_bdev_nvme_mutex);
360 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
361 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid, hostnqn);
362 		if (nvme_ctrlr != NULL) {
363 			break;
364 		}
365 	}
366 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
367 
368 	return nvme_ctrlr;
369 }
370 
371 struct nvme_ctrlr *
372 nvme_ctrlr_get_by_name(const char *name)
373 {
374 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
375 	struct nvme_ctrlr *nvme_ctrlr = NULL;
376 
377 	if (name == NULL) {
378 		return NULL;
379 	}
380 
381 	pthread_mutex_lock(&g_bdev_nvme_mutex);
382 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
383 	if (nbdev_ctrlr != NULL) {
384 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
385 	}
386 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
387 
388 	return nvme_ctrlr;
389 }
390 
391 void
392 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
393 {
394 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
395 
396 	pthread_mutex_lock(&g_bdev_nvme_mutex);
397 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
398 		fn(nbdev_ctrlr, ctx);
399 	}
400 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
401 }
402 
403 void
404 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
405 {
406 	const char *trtype_str;
407 	const char *adrfam_str;
408 
409 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
410 	if (trtype_str) {
411 		spdk_json_write_named_string(w, "trtype", trtype_str);
412 	}
413 
414 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
415 	if (adrfam_str) {
416 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
417 	}
418 
419 	if (trid->traddr[0] != '\0') {
420 		spdk_json_write_named_string(w, "traddr", trid->traddr);
421 	}
422 
423 	if (trid->trsvcid[0] != '\0') {
424 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
425 	}
426 
427 	if (trid->subnqn[0] != '\0') {
428 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
429 	}
430 }
431 
432 static void
433 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
434 		       struct nvme_ctrlr *nvme_ctrlr)
435 {
436 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
437 	pthread_mutex_lock(&g_bdev_nvme_mutex);
438 
439 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
440 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
441 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
442 
443 		return;
444 	}
445 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
446 
447 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
448 
449 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
450 
451 	free(nbdev_ctrlr->name);
452 	free(nbdev_ctrlr);
453 }
454 
455 static void
456 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
457 {
458 	struct nvme_path_id *path_id, *tmp_path;
459 	struct nvme_ns *ns, *tmp_ns;
460 
461 	free(nvme_ctrlr->copied_ana_desc);
462 	spdk_free(nvme_ctrlr->ana_log_page);
463 
464 	if (nvme_ctrlr->opal_dev) {
465 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
466 		nvme_ctrlr->opal_dev = NULL;
467 	}
468 
469 	if (nvme_ctrlr->nbdev_ctrlr) {
470 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
471 	}
472 
473 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
474 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
475 		nvme_ns_free(ns);
476 	}
477 
478 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
479 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
480 		free(path_id);
481 	}
482 
483 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
484 	spdk_keyring_put_key(nvme_ctrlr->psk);
485 	spdk_keyring_put_key(nvme_ctrlr->dhchap_key);
486 	spdk_keyring_put_key(nvme_ctrlr->dhchap_ctrlr_key);
487 	free(nvme_ctrlr);
488 
489 	pthread_mutex_lock(&g_bdev_nvme_mutex);
490 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
491 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
492 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
493 		spdk_bdev_module_fini_done();
494 		return;
495 	}
496 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
497 }
498 
499 static int
500 nvme_detach_poller(void *arg)
501 {
502 	struct nvme_ctrlr *nvme_ctrlr = arg;
503 	int rc;
504 
505 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
506 	if (rc != -EAGAIN) {
507 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
508 		_nvme_ctrlr_delete(nvme_ctrlr);
509 	}
510 
511 	return SPDK_POLLER_BUSY;
512 }
513 
514 static void
515 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
516 {
517 	int rc;
518 
519 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
520 
521 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
522 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
523 
524 	/* If we got here, the reset/detach poller cannot be active */
525 	assert(nvme_ctrlr->reset_detach_poller == NULL);
526 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
527 					  nvme_ctrlr, 1000);
528 	if (nvme_ctrlr->reset_detach_poller == NULL) {
529 		SPDK_ERRLOG("Failed to register detach poller\n");
530 		goto error;
531 	}
532 
533 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
534 	if (rc != 0) {
535 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
536 		goto error;
537 	}
538 
539 	return;
540 error:
541 	/* We don't have a good way to handle errors here, so just do what we can and delete the
542 	 * controller without detaching the underlying NVMe device.
543 	 */
544 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
545 	_nvme_ctrlr_delete(nvme_ctrlr);
546 }
547 
548 static void
549 nvme_ctrlr_unregister_cb(void *io_device)
550 {
551 	struct nvme_ctrlr *nvme_ctrlr = io_device;
552 
553 	nvme_ctrlr_delete(nvme_ctrlr);
554 }
555 
556 static void
557 nvme_ctrlr_unregister(void *ctx)
558 {
559 	struct nvme_ctrlr *nvme_ctrlr = ctx;
560 
561 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
562 }
563 
564 static bool
565 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
566 {
567 	if (!nvme_ctrlr->destruct) {
568 		return false;
569 	}
570 
571 	if (nvme_ctrlr->ref > 0) {
572 		return false;
573 	}
574 
575 	if (nvme_ctrlr->resetting) {
576 		return false;
577 	}
578 
579 	if (nvme_ctrlr->ana_log_page_updating) {
580 		return false;
581 	}
582 
583 	if (nvme_ctrlr->io_path_cache_clearing) {
584 		return false;
585 	}
586 
587 	return true;
588 }
589 
590 static void
591 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
592 {
593 	pthread_mutex_lock(&nvme_ctrlr->mutex);
594 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
595 
596 	assert(nvme_ctrlr->ref > 0);
597 	nvme_ctrlr->ref--;
598 
599 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
600 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
601 		return;
602 	}
603 
604 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
605 
606 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
607 }
608 
609 static void
610 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch)
611 {
612 	nbdev_ch->current_io_path = NULL;
613 	nbdev_ch->rr_counter = 0;
614 }
615 
616 static struct nvme_io_path *
617 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
618 {
619 	struct nvme_io_path *io_path;
620 
621 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
622 		if (io_path->nvme_ns == nvme_ns) {
623 			break;
624 		}
625 	}
626 
627 	return io_path;
628 }
629 
630 static struct nvme_io_path *
631 nvme_io_path_alloc(void)
632 {
633 	struct nvme_io_path *io_path;
634 
635 	io_path = calloc(1, sizeof(*io_path));
636 	if (io_path == NULL) {
637 		SPDK_ERRLOG("Failed to alloc io_path.\n");
638 		return NULL;
639 	}
640 
641 	if (g_opts.io_path_stat) {
642 		io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
643 		if (io_path->stat == NULL) {
644 			free(io_path);
645 			SPDK_ERRLOG("Failed to alloc io_path stat.\n");
646 			return NULL;
647 		}
648 		spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
649 	}
650 
651 	return io_path;
652 }
653 
654 static void
655 nvme_io_path_free(struct nvme_io_path *io_path)
656 {
657 	free(io_path->stat);
658 	free(io_path);
659 }
660 
661 static int
662 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
663 {
664 	struct nvme_io_path *io_path;
665 	struct spdk_io_channel *ch;
666 	struct nvme_ctrlr_channel *ctrlr_ch;
667 	struct nvme_qpair *nvme_qpair;
668 
669 	io_path = nvme_io_path_alloc();
670 	if (io_path == NULL) {
671 		return -ENOMEM;
672 	}
673 
674 	io_path->nvme_ns = nvme_ns;
675 
676 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
677 	if (ch == NULL) {
678 		nvme_io_path_free(io_path);
679 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
680 		return -ENOMEM;
681 	}
682 
683 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
684 
685 	nvme_qpair = ctrlr_ch->qpair;
686 	assert(nvme_qpair != NULL);
687 
688 	io_path->qpair = nvme_qpair;
689 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
690 
691 	io_path->nbdev_ch = nbdev_ch;
692 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
693 
694 	bdev_nvme_clear_current_io_path(nbdev_ch);
695 
696 	return 0;
697 }
698 
699 static void
700 bdev_nvme_clear_retry_io_path(struct nvme_bdev_channel *nbdev_ch,
701 			      struct nvme_io_path *io_path)
702 {
703 	struct nvme_bdev_io *bio;
704 
705 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
706 		if (bio->io_path == io_path) {
707 			bio->io_path = NULL;
708 		}
709 	}
710 }
711 
712 static void
713 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
714 {
715 	struct spdk_io_channel *ch;
716 	struct nvme_qpair *nvme_qpair;
717 	struct nvme_ctrlr_channel *ctrlr_ch;
718 	struct nvme_bdev *nbdev;
719 
720 	nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch));
721 
722 	/* Add the statistics to nvme_ns before this path is destroyed. */
723 	pthread_mutex_lock(&nbdev->mutex);
724 	if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) {
725 		spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat);
726 	}
727 	pthread_mutex_unlock(&nbdev->mutex);
728 
729 	bdev_nvme_clear_current_io_path(nbdev_ch);
730 	bdev_nvme_clear_retry_io_path(nbdev_ch, io_path);
731 
732 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
733 	io_path->nbdev_ch = NULL;
734 
735 	nvme_qpair = io_path->qpair;
736 	assert(nvme_qpair != NULL);
737 
738 	ctrlr_ch = nvme_qpair->ctrlr_ch;
739 	assert(ctrlr_ch != NULL);
740 
741 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
742 	spdk_put_io_channel(ch);
743 
744 	/* After an io_path is removed, I/Os submitted to it may complete and update statistics
745 	 * of the io_path. To avoid heap-use-after-free error from this case, do not free the
746 	 * io_path here but free the io_path when the associated qpair is freed. It is ensured
747 	 * that all I/Os submitted to the io_path are completed when the associated qpair is freed.
748 	 */
749 }
750 
751 static void
752 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
753 {
754 	struct nvme_io_path *io_path, *tmp_io_path;
755 
756 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
757 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
758 	}
759 }
760 
761 static int
762 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
763 {
764 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
765 	struct nvme_bdev *nbdev = io_device;
766 	struct nvme_ns *nvme_ns;
767 	int rc;
768 
769 	STAILQ_INIT(&nbdev_ch->io_path_list);
770 	TAILQ_INIT(&nbdev_ch->retry_io_list);
771 
772 	pthread_mutex_lock(&nbdev->mutex);
773 
774 	nbdev_ch->mp_policy = nbdev->mp_policy;
775 	nbdev_ch->mp_selector = nbdev->mp_selector;
776 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
777 
778 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
779 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
780 		if (rc != 0) {
781 			pthread_mutex_unlock(&nbdev->mutex);
782 
783 			_bdev_nvme_delete_io_paths(nbdev_ch);
784 			return rc;
785 		}
786 	}
787 	pthread_mutex_unlock(&nbdev->mutex);
788 
789 	return 0;
790 }
791 
792 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
793  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
794  */
795 static inline void
796 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
797 			const struct spdk_nvme_cpl *cpl)
798 {
799 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
800 			  (uintptr_t)bdev_io);
801 	if (cpl) {
802 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
803 	} else {
804 		spdk_bdev_io_complete(bdev_io, status);
805 	}
806 }
807 
808 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
809 
810 static void
811 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
812 {
813 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
814 
815 	bdev_nvme_abort_retry_ios(nbdev_ch);
816 	_bdev_nvme_delete_io_paths(nbdev_ch);
817 }
818 
819 static inline bool
820 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
821 {
822 	switch (io_type) {
823 	case SPDK_BDEV_IO_TYPE_RESET:
824 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
825 	case SPDK_BDEV_IO_TYPE_ABORT:
826 		return true;
827 	default:
828 		break;
829 	}
830 
831 	return false;
832 }
833 
834 static inline bool
835 nvme_ns_is_active(struct nvme_ns *nvme_ns)
836 {
837 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
838 		return false;
839 	}
840 
841 	if (spdk_unlikely(nvme_ns->ns == NULL)) {
842 		return false;
843 	}
844 
845 	return true;
846 }
847 
848 static inline bool
849 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
850 {
851 	if (spdk_unlikely(!nvme_ns_is_active(nvme_ns))) {
852 		return false;
853 	}
854 
855 	switch (nvme_ns->ana_state) {
856 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
857 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
858 		return true;
859 	default:
860 		break;
861 	}
862 
863 	return false;
864 }
865 
866 static inline bool
867 nvme_qpair_is_connected(struct nvme_qpair *nvme_qpair)
868 {
869 	if (spdk_unlikely(nvme_qpair->qpair == NULL)) {
870 		return false;
871 	}
872 
873 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
874 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
875 		return false;
876 	}
877 
878 	if (spdk_unlikely(nvme_qpair->ctrlr_ch->reset_iter != NULL)) {
879 		return false;
880 	}
881 
882 	return true;
883 }
884 
885 static inline bool
886 nvme_io_path_is_available(struct nvme_io_path *io_path)
887 {
888 	if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
889 		return false;
890 	}
891 
892 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
893 		return false;
894 	}
895 
896 	return true;
897 }
898 
899 static inline bool
900 nvme_ctrlr_is_failed(struct nvme_ctrlr *nvme_ctrlr)
901 {
902 	if (nvme_ctrlr->destruct) {
903 		return true;
904 	}
905 
906 	if (nvme_ctrlr->fast_io_fail_timedout) {
907 		return true;
908 	}
909 
910 	if (nvme_ctrlr->resetting) {
911 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
912 			return false;
913 		} else {
914 			return true;
915 		}
916 	}
917 
918 	if (nvme_ctrlr->reconnect_is_delayed) {
919 		return false;
920 	}
921 
922 	if (nvme_ctrlr->disabled) {
923 		return true;
924 	}
925 
926 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
927 		return true;
928 	} else {
929 		return false;
930 	}
931 }
932 
933 static bool
934 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
935 {
936 	if (nvme_ctrlr->destruct) {
937 		return false;
938 	}
939 
940 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
941 		return false;
942 	}
943 
944 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
945 		return false;
946 	}
947 
948 	if (nvme_ctrlr->disabled) {
949 		return false;
950 	}
951 
952 	return true;
953 }
954 
955 /* Simulate circular linked list. */
956 static inline struct nvme_io_path *
957 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
958 {
959 	struct nvme_io_path *next_path;
960 
961 	if (prev_path != NULL) {
962 		next_path = STAILQ_NEXT(prev_path, stailq);
963 		if (next_path != NULL) {
964 			return next_path;
965 		}
966 	}
967 
968 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
969 }
970 
971 static struct nvme_io_path *
972 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
973 {
974 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
975 
976 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
977 
978 	io_path = start;
979 	do {
980 		if (spdk_likely(nvme_io_path_is_available(io_path))) {
981 			switch (io_path->nvme_ns->ana_state) {
982 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
983 				nbdev_ch->current_io_path = io_path;
984 				return io_path;
985 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
986 				if (non_optimized == NULL) {
987 					non_optimized = io_path;
988 				}
989 				break;
990 			default:
991 				assert(false);
992 				break;
993 			}
994 		}
995 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
996 	} while (io_path != start);
997 
998 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
999 		/* We come here only if there is no optimized path. Cache even non_optimized
1000 		 * path for load balance across multiple non_optimized paths.
1001 		 */
1002 		nbdev_ch->current_io_path = non_optimized;
1003 	}
1004 
1005 	return non_optimized;
1006 }
1007 
1008 static struct nvme_io_path *
1009 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch)
1010 {
1011 	struct nvme_io_path *io_path;
1012 	struct nvme_io_path *optimized = NULL, *non_optimized = NULL;
1013 	uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX;
1014 	uint32_t num_outstanding_reqs;
1015 
1016 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1017 		if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
1018 			/* The device is currently resetting. */
1019 			continue;
1020 		}
1021 
1022 		if (spdk_unlikely(!nvme_ns_is_active(io_path->nvme_ns))) {
1023 			continue;
1024 		}
1025 
1026 		num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair);
1027 		switch (io_path->nvme_ns->ana_state) {
1028 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
1029 			if (num_outstanding_reqs < opt_min_qd) {
1030 				opt_min_qd = num_outstanding_reqs;
1031 				optimized = io_path;
1032 			}
1033 			break;
1034 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1035 			if (num_outstanding_reqs < non_opt_min_qd) {
1036 				non_opt_min_qd = num_outstanding_reqs;
1037 				non_optimized = io_path;
1038 			}
1039 			break;
1040 		default:
1041 			break;
1042 		}
1043 	}
1044 
1045 	/* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */
1046 	if (optimized != NULL) {
1047 		return optimized;
1048 	}
1049 
1050 	return non_optimized;
1051 }
1052 
1053 static inline struct nvme_io_path *
1054 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1055 {
1056 	if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
1057 		if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) {
1058 			return nbdev_ch->current_io_path;
1059 		} else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1060 			if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) {
1061 				return nbdev_ch->current_io_path;
1062 			}
1063 			nbdev_ch->rr_counter = 0;
1064 		}
1065 	}
1066 
1067 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE ||
1068 	    nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1069 		return _bdev_nvme_find_io_path(nbdev_ch);
1070 	} else {
1071 		return _bdev_nvme_find_io_path_min_qd(nbdev_ch);
1072 	}
1073 }
1074 
1075 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
1076  * or false otherwise.
1077  *
1078  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
1079  * is likely to be non-accessible now but may become accessible.
1080  *
1081  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
1082  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
1083  * when starting to reset it but it is set to failed when the reset failed. Hence, if
1084  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
1085  */
1086 static bool
1087 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
1088 {
1089 	struct nvme_io_path *io_path;
1090 
1091 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1092 		if (io_path->nvme_ns->ana_transition_timedout) {
1093 			continue;
1094 		}
1095 
1096 		if (nvme_qpair_is_connected(io_path->qpair) ||
1097 		    !nvme_ctrlr_is_failed(io_path->qpair->ctrlr)) {
1098 			return true;
1099 		}
1100 	}
1101 
1102 	return false;
1103 }
1104 
1105 static void
1106 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
1107 {
1108 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1109 	struct spdk_io_channel *ch;
1110 
1111 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
1112 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
1113 	} else {
1114 		ch = spdk_io_channel_from_ctx(nbdev_ch);
1115 		bdev_nvme_submit_request(ch, bdev_io);
1116 	}
1117 }
1118 
1119 static int
1120 bdev_nvme_retry_ios(void *arg)
1121 {
1122 	struct nvme_bdev_channel *nbdev_ch = arg;
1123 	struct nvme_bdev_io *bio, *tmp_bio;
1124 	uint64_t now, delay_us;
1125 
1126 	now = spdk_get_ticks();
1127 
1128 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1129 		if (bio->retry_ticks > now) {
1130 			break;
1131 		}
1132 
1133 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1134 
1135 		bdev_nvme_retry_io(nbdev_ch, spdk_bdev_io_from_ctx(bio));
1136 	}
1137 
1138 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1139 
1140 	bio = TAILQ_FIRST(&nbdev_ch->retry_io_list);
1141 	if (bio != NULL) {
1142 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
1143 
1144 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1145 					    delay_us);
1146 	}
1147 
1148 	return SPDK_POLLER_BUSY;
1149 }
1150 
1151 static void
1152 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1153 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1154 {
1155 	struct nvme_bdev_io *tmp_bio;
1156 
1157 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1158 
1159 	TAILQ_FOREACH_REVERSE(tmp_bio, &nbdev_ch->retry_io_list, retry_io_head, retry_link) {
1160 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1161 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bio, bio,
1162 					   retry_link);
1163 			return;
1164 		}
1165 	}
1166 
1167 	/* No earlier I/Os were found. This I/O must be the new head. */
1168 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bio, retry_link);
1169 
1170 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1171 
1172 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1173 				    delay_ms * 1000ULL);
1174 }
1175 
1176 static void
1177 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
1178 {
1179 	struct nvme_bdev_io *bio, *tmp_bio;
1180 
1181 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1182 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1183 		__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1184 	}
1185 
1186 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1187 }
1188 
1189 static int
1190 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1191 			 struct nvme_bdev_io *bio_to_abort)
1192 {
1193 	struct nvme_bdev_io *bio;
1194 
1195 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
1196 		if (bio == bio_to_abort) {
1197 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1198 			__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1199 			return 0;
1200 		}
1201 	}
1202 
1203 	return -ENOENT;
1204 }
1205 
1206 static void
1207 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1208 {
1209 	struct nvme_bdev *nbdev;
1210 	uint16_t sct, sc;
1211 
1212 	assert(spdk_nvme_cpl_is_error(cpl));
1213 
1214 	nbdev = bdev_io->bdev->ctxt;
1215 
1216 	if (nbdev->err_stat == NULL) {
1217 		return;
1218 	}
1219 
1220 	sct = cpl->status.sct;
1221 	sc = cpl->status.sc;
1222 
1223 	pthread_mutex_lock(&nbdev->mutex);
1224 
1225 	nbdev->err_stat->status_type[sct]++;
1226 	switch (sct) {
1227 	case SPDK_NVME_SCT_GENERIC:
1228 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1229 	case SPDK_NVME_SCT_MEDIA_ERROR:
1230 	case SPDK_NVME_SCT_PATH:
1231 		nbdev->err_stat->status[sct][sc]++;
1232 		break;
1233 	default:
1234 		break;
1235 	}
1236 
1237 	pthread_mutex_unlock(&nbdev->mutex);
1238 }
1239 
1240 static inline void
1241 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio)
1242 {
1243 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1244 	uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
1245 	uint32_t blocklen = bdev_io->bdev->blocklen;
1246 	struct spdk_bdev_io_stat *stat;
1247 	uint64_t tsc_diff;
1248 
1249 	if (bio->io_path->stat == NULL) {
1250 		return;
1251 	}
1252 
1253 	tsc_diff = spdk_get_ticks() - bio->submit_tsc;
1254 	stat = bio->io_path->stat;
1255 
1256 	switch (bdev_io->type) {
1257 	case SPDK_BDEV_IO_TYPE_READ:
1258 		stat->bytes_read += num_blocks * blocklen;
1259 		stat->num_read_ops++;
1260 		stat->read_latency_ticks += tsc_diff;
1261 		if (stat->max_read_latency_ticks < tsc_diff) {
1262 			stat->max_read_latency_ticks = tsc_diff;
1263 		}
1264 		if (stat->min_read_latency_ticks > tsc_diff) {
1265 			stat->min_read_latency_ticks = tsc_diff;
1266 		}
1267 		break;
1268 	case SPDK_BDEV_IO_TYPE_WRITE:
1269 		stat->bytes_written += num_blocks * blocklen;
1270 		stat->num_write_ops++;
1271 		stat->write_latency_ticks += tsc_diff;
1272 		if (stat->max_write_latency_ticks < tsc_diff) {
1273 			stat->max_write_latency_ticks = tsc_diff;
1274 		}
1275 		if (stat->min_write_latency_ticks > tsc_diff) {
1276 			stat->min_write_latency_ticks = tsc_diff;
1277 		}
1278 		break;
1279 	case SPDK_BDEV_IO_TYPE_UNMAP:
1280 		stat->bytes_unmapped += num_blocks * blocklen;
1281 		stat->num_unmap_ops++;
1282 		stat->unmap_latency_ticks += tsc_diff;
1283 		if (stat->max_unmap_latency_ticks < tsc_diff) {
1284 			stat->max_unmap_latency_ticks = tsc_diff;
1285 		}
1286 		if (stat->min_unmap_latency_ticks > tsc_diff) {
1287 			stat->min_unmap_latency_ticks = tsc_diff;
1288 		}
1289 		break;
1290 	case SPDK_BDEV_IO_TYPE_ZCOPY:
1291 		/* Track the data in the start phase only */
1292 		if (!bdev_io->u.bdev.zcopy.start) {
1293 			break;
1294 		}
1295 		if (bdev_io->u.bdev.zcopy.populate) {
1296 			stat->bytes_read += num_blocks * blocklen;
1297 			stat->num_read_ops++;
1298 			stat->read_latency_ticks += tsc_diff;
1299 			if (stat->max_read_latency_ticks < tsc_diff) {
1300 				stat->max_read_latency_ticks = tsc_diff;
1301 			}
1302 			if (stat->min_read_latency_ticks > tsc_diff) {
1303 				stat->min_read_latency_ticks = tsc_diff;
1304 			}
1305 		} else {
1306 			stat->bytes_written += num_blocks * blocklen;
1307 			stat->num_write_ops++;
1308 			stat->write_latency_ticks += tsc_diff;
1309 			if (stat->max_write_latency_ticks < tsc_diff) {
1310 				stat->max_write_latency_ticks = tsc_diff;
1311 			}
1312 			if (stat->min_write_latency_ticks > tsc_diff) {
1313 				stat->min_write_latency_ticks = tsc_diff;
1314 			}
1315 		}
1316 		break;
1317 	case SPDK_BDEV_IO_TYPE_COPY:
1318 		stat->bytes_copied += num_blocks * blocklen;
1319 		stat->num_copy_ops++;
1320 		stat->copy_latency_ticks += tsc_diff;
1321 		if (stat->max_copy_latency_ticks < tsc_diff) {
1322 			stat->max_copy_latency_ticks = tsc_diff;
1323 		}
1324 		if (stat->min_copy_latency_ticks > tsc_diff) {
1325 			stat->min_copy_latency_ticks = tsc_diff;
1326 		}
1327 		break;
1328 	default:
1329 		break;
1330 	}
1331 }
1332 
1333 static bool
1334 bdev_nvme_check_retry_io(struct nvme_bdev_io *bio,
1335 			 const struct spdk_nvme_cpl *cpl,
1336 			 struct nvme_bdev_channel *nbdev_ch,
1337 			 uint64_t *_delay_ms)
1338 {
1339 	struct nvme_io_path *io_path = bio->io_path;
1340 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1341 	const struct spdk_nvme_ctrlr_data *cdata;
1342 
1343 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1344 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1345 	    !nvme_io_path_is_available(io_path) ||
1346 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1347 		bdev_nvme_clear_current_io_path(nbdev_ch);
1348 		bio->io_path = NULL;
1349 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1350 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1351 				io_path->nvme_ns->ana_state_updating = true;
1352 			}
1353 		}
1354 		if (!any_io_path_may_become_available(nbdev_ch)) {
1355 			return false;
1356 		}
1357 		*_delay_ms = 0;
1358 	} else {
1359 		bio->retry_count++;
1360 
1361 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1362 
1363 		if (cpl->status.crd != 0) {
1364 			*_delay_ms = cdata->crdt[cpl->status.crd] * 100;
1365 		} else {
1366 			*_delay_ms = 0;
1367 		}
1368 	}
1369 
1370 	return true;
1371 }
1372 
1373 static inline void
1374 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1375 				  const struct spdk_nvme_cpl *cpl)
1376 {
1377 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1378 	struct nvme_bdev_channel *nbdev_ch;
1379 	uint64_t delay_ms;
1380 
1381 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1382 
1383 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1384 		bdev_nvme_update_io_path_stat(bio);
1385 		goto complete;
1386 	}
1387 
1388 	/* Update error counts before deciding if retry is needed.
1389 	 * Hence, error counts may be more than the number of I/O errors.
1390 	 */
1391 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1392 
1393 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1394 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1395 		goto complete;
1396 	}
1397 
1398 	/* At this point we don't know whether the sequence was successfully executed or not, so we
1399 	 * cannot retry the IO */
1400 	if (bdev_io->u.bdev.accel_sequence != NULL) {
1401 		goto complete;
1402 	}
1403 
1404 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1405 
1406 	if (bdev_nvme_check_retry_io(bio, cpl, nbdev_ch, &delay_ms)) {
1407 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1408 		return;
1409 	}
1410 
1411 complete:
1412 	bio->retry_count = 0;
1413 	bio->submit_tsc = 0;
1414 	bdev_io->u.bdev.accel_sequence = NULL;
1415 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1416 }
1417 
1418 static inline void
1419 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1420 {
1421 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1422 	struct nvme_bdev_channel *nbdev_ch;
1423 	enum spdk_bdev_io_status io_status;
1424 
1425 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1426 
1427 	switch (rc) {
1428 	case 0:
1429 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1430 		break;
1431 	case -ENOMEM:
1432 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1433 		break;
1434 	case -ENXIO:
1435 		if (g_opts.bdev_retry_count == -1 || bio->retry_count < g_opts.bdev_retry_count) {
1436 			nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1437 
1438 			bdev_nvme_clear_current_io_path(nbdev_ch);
1439 			bio->io_path = NULL;
1440 
1441 			if (any_io_path_may_become_available(nbdev_ch)) {
1442 				bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1443 				return;
1444 			}
1445 		}
1446 
1447 	/* fallthrough */
1448 	default:
1449 		spdk_accel_sequence_abort(bdev_io->u.bdev.accel_sequence);
1450 		bdev_io->u.bdev.accel_sequence = NULL;
1451 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1452 		break;
1453 	}
1454 
1455 	bio->retry_count = 0;
1456 	bio->submit_tsc = 0;
1457 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1458 }
1459 
1460 static inline void
1461 bdev_nvme_admin_complete(struct nvme_bdev_io *bio, int rc)
1462 {
1463 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1464 	enum spdk_bdev_io_status io_status;
1465 
1466 	switch (rc) {
1467 	case 0:
1468 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1469 		break;
1470 	case -ENOMEM:
1471 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1472 		break;
1473 	case -ENXIO:
1474 	/* fallthrough */
1475 	default:
1476 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1477 		break;
1478 	}
1479 
1480 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1481 }
1482 
1483 static void
1484 bdev_nvme_clear_io_path_caches_done(struct spdk_io_channel_iter *i, int status)
1485 {
1486 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1487 
1488 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1489 
1490 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1491 	nvme_ctrlr->io_path_cache_clearing = false;
1492 
1493 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1494 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1495 		return;
1496 	}
1497 
1498 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1499 
1500 	nvme_ctrlr_unregister(nvme_ctrlr);
1501 }
1502 
1503 static void
1504 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1505 {
1506 	struct nvme_io_path *io_path;
1507 
1508 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1509 		if (io_path->nbdev_ch == NULL) {
1510 			continue;
1511 		}
1512 		bdev_nvme_clear_current_io_path(io_path->nbdev_ch);
1513 	}
1514 }
1515 
1516 static void
1517 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
1518 {
1519 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1520 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1521 
1522 	assert(ctrlr_ch->qpair != NULL);
1523 
1524 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1525 
1526 	spdk_for_each_channel_continue(i, 0);
1527 }
1528 
1529 static void
1530 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1531 {
1532 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1533 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1534 	    nvme_ctrlr->io_path_cache_clearing) {
1535 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1536 		return;
1537 	}
1538 
1539 	nvme_ctrlr->io_path_cache_clearing = true;
1540 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1541 
1542 	spdk_for_each_channel(nvme_ctrlr,
1543 			      bdev_nvme_clear_io_path_cache,
1544 			      NULL,
1545 			      bdev_nvme_clear_io_path_caches_done);
1546 }
1547 
1548 static struct nvme_qpair *
1549 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1550 {
1551 	struct nvme_qpair *nvme_qpair;
1552 
1553 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1554 		if (nvme_qpair->qpair == qpair) {
1555 			break;
1556 		}
1557 	}
1558 
1559 	return nvme_qpair;
1560 }
1561 
1562 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1563 
1564 static void
1565 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1566 {
1567 	struct nvme_poll_group *group = poll_group_ctx;
1568 	struct nvme_qpair *nvme_qpair;
1569 	struct nvme_ctrlr_channel *ctrlr_ch;
1570 	int status;
1571 
1572 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1573 	if (nvme_qpair == NULL) {
1574 		return;
1575 	}
1576 
1577 	if (nvme_qpair->qpair != NULL) {
1578 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1579 		nvme_qpair->qpair = NULL;
1580 	}
1581 
1582 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1583 
1584 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1585 
1586 	if (ctrlr_ch != NULL) {
1587 		if (ctrlr_ch->reset_iter != NULL) {
1588 			/* We are in a full reset sequence. */
1589 			if (ctrlr_ch->connect_poller != NULL) {
1590 				/* qpair was failed to connect. Abort the reset sequence. */
1591 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was failed to connect. abort the reset ctrlr sequence.\n",
1592 					      qpair);
1593 				spdk_poller_unregister(&ctrlr_ch->connect_poller);
1594 				status = -1;
1595 			} else {
1596 				/* qpair was completed to disconnect. Just move to the next ctrlr_channel. */
1597 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1598 					      qpair);
1599 				status = 0;
1600 			}
1601 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, status);
1602 			ctrlr_ch->reset_iter = NULL;
1603 		} else {
1604 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1605 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1606 			bdev_nvme_failover_ctrlr(nvme_qpair->ctrlr);
1607 		}
1608 	} else {
1609 		/* In this case, ctrlr_channel is already deleted. */
1610 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1611 		nvme_qpair_delete(nvme_qpair);
1612 	}
1613 }
1614 
1615 static void
1616 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1617 {
1618 	struct nvme_qpair *nvme_qpair;
1619 
1620 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1621 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1622 			continue;
1623 		}
1624 
1625 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1626 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1627 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1628 		}
1629 	}
1630 }
1631 
1632 static int
1633 bdev_nvme_poll(void *arg)
1634 {
1635 	struct nvme_poll_group *group = arg;
1636 	int64_t num_completions;
1637 
1638 	if (group->collect_spin_stat && group->start_ticks == 0) {
1639 		group->start_ticks = spdk_get_ticks();
1640 	}
1641 
1642 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1643 			  bdev_nvme_disconnected_qpair_cb);
1644 	if (group->collect_spin_stat) {
1645 		if (num_completions > 0) {
1646 			if (group->end_ticks != 0) {
1647 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1648 				group->end_ticks = 0;
1649 			}
1650 			group->start_ticks = 0;
1651 		} else {
1652 			group->end_ticks = spdk_get_ticks();
1653 		}
1654 	}
1655 
1656 	if (spdk_unlikely(num_completions < 0)) {
1657 		bdev_nvme_check_io_qpairs(group);
1658 	}
1659 
1660 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1661 }
1662 
1663 static int bdev_nvme_poll_adminq(void *arg);
1664 
1665 static void
1666 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1667 {
1668 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1669 
1670 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1671 					  nvme_ctrlr, new_period_us);
1672 }
1673 
1674 static int
1675 bdev_nvme_poll_adminq(void *arg)
1676 {
1677 	int32_t rc;
1678 	struct nvme_ctrlr *nvme_ctrlr = arg;
1679 	nvme_ctrlr_disconnected_cb disconnected_cb;
1680 
1681 	assert(nvme_ctrlr != NULL);
1682 
1683 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1684 	if (rc < 0) {
1685 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1686 		nvme_ctrlr->disconnected_cb = NULL;
1687 
1688 		if (disconnected_cb != NULL) {
1689 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1690 							    g_opts.nvme_adminq_poll_period_us);
1691 			disconnected_cb(nvme_ctrlr);
1692 		} else {
1693 			bdev_nvme_failover_ctrlr(nvme_ctrlr);
1694 		}
1695 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1696 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1697 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1698 	}
1699 
1700 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1701 }
1702 
1703 static void
1704 nvme_bdev_free(void *io_device)
1705 {
1706 	struct nvme_bdev *nvme_disk = io_device;
1707 
1708 	pthread_mutex_destroy(&nvme_disk->mutex);
1709 	free(nvme_disk->disk.name);
1710 	free(nvme_disk->err_stat);
1711 	free(nvme_disk);
1712 }
1713 
1714 static int
1715 bdev_nvme_destruct(void *ctx)
1716 {
1717 	struct nvme_bdev *nvme_disk = ctx;
1718 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1719 
1720 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1721 
1722 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1723 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1724 
1725 		nvme_ns->bdev = NULL;
1726 
1727 		assert(nvme_ns->id > 0);
1728 
1729 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1730 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1731 
1732 			nvme_ctrlr_release(nvme_ns->ctrlr);
1733 			nvme_ns_free(nvme_ns);
1734 		} else {
1735 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1736 		}
1737 	}
1738 
1739 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1740 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1741 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1742 
1743 	spdk_io_device_unregister(nvme_disk, nvme_bdev_free);
1744 
1745 	return 0;
1746 }
1747 
1748 static int
1749 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1750 {
1751 	struct nvme_ctrlr *nvme_ctrlr;
1752 	struct spdk_nvme_io_qpair_opts opts;
1753 	struct spdk_nvme_qpair *qpair;
1754 	int rc;
1755 
1756 	nvme_ctrlr = nvme_qpair->ctrlr;
1757 
1758 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1759 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1760 	opts.create_only = true;
1761 	opts.async_mode = true;
1762 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1763 	g_opts.io_queue_requests = opts.io_queue_requests;
1764 
1765 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1766 	if (qpair == NULL) {
1767 		return -1;
1768 	}
1769 
1770 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1771 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1772 
1773 	assert(nvme_qpair->group != NULL);
1774 
1775 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1776 	if (rc != 0) {
1777 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1778 		goto err;
1779 	}
1780 
1781 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1782 	if (rc != 0) {
1783 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1784 		goto err;
1785 	}
1786 
1787 	nvme_qpair->qpair = qpair;
1788 
1789 	if (!g_opts.disable_auto_failback) {
1790 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1791 	}
1792 
1793 	return 0;
1794 
1795 err:
1796 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1797 
1798 	return rc;
1799 }
1800 
1801 static void bdev_nvme_reset_io_continue(void *cb_arg, int rc);
1802 
1803 static void
1804 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
1805 {
1806 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1807 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1808 	int rc = 0;
1809 	struct nvme_bdev_io *bio;
1810 
1811 	if (spdk_io_channel_iter_get_ctx(i) != NULL) {
1812 		rc = -1;
1813 	}
1814 
1815 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1816 		bio = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1817 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bio, retry_link);
1818 
1819 		bdev_nvme_reset_io_continue(bio, rc);
1820 	}
1821 
1822 	spdk_for_each_channel_continue(i, 0);
1823 }
1824 
1825 /* This function marks the current trid as failed by storing the current ticks
1826  * and then sets the next trid to the active trid within a controller if exists.
1827  *
1828  * The purpose of the boolean return value is to request the caller to disconnect
1829  * the current trid now to try connecting the next trid.
1830  */
1831 static bool
1832 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove, bool start)
1833 {
1834 	struct nvme_path_id *path_id, *next_path;
1835 	int rc __attribute__((unused));
1836 
1837 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1838 	assert(path_id);
1839 	assert(path_id == nvme_ctrlr->active_path_id);
1840 	next_path = TAILQ_NEXT(path_id, link);
1841 
1842 	/* Update the last failed time. It means the trid is failed if its last
1843 	 * failed time is non-zero.
1844 	 */
1845 	path_id->last_failed_tsc = spdk_get_ticks();
1846 
1847 	if (next_path == NULL) {
1848 		/* There is no alternate trid within a controller. */
1849 		return false;
1850 	}
1851 
1852 	if (!start && nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1853 		/* Connect is not retried in a controller reset sequence. Connecting
1854 		 * the next trid will be done by the next bdev_nvme_failover_ctrlr() call.
1855 		 */
1856 		return false;
1857 	}
1858 
1859 	assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1860 
1861 	SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1862 		       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1863 
1864 	spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1865 	nvme_ctrlr->active_path_id = next_path;
1866 	rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1867 	assert(rc == 0);
1868 	TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1869 	if (!remove) {
1870 		/** Shuffle the old trid to the end of the list and use the new one.
1871 		 * Allows for round robin through multiple connections.
1872 		 */
1873 		TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
1874 	} else {
1875 		free(path_id);
1876 	}
1877 
1878 	if (start || next_path->last_failed_tsc == 0) {
1879 		/* bdev_nvme_failover_ctrlr() is just called or the next trid is not failed
1880 		 * or used yet. Try the next trid now.
1881 		 */
1882 		return true;
1883 	}
1884 
1885 	if (spdk_get_ticks() > next_path->last_failed_tsc + spdk_get_ticks_hz() *
1886 	    nvme_ctrlr->opts.reconnect_delay_sec) {
1887 		/* Enough backoff passed since the next trid failed. Try the next trid now. */
1888 		return true;
1889 	}
1890 
1891 	/* The next trid will be tried after reconnect_delay_sec seconds. */
1892 	return false;
1893 }
1894 
1895 static bool
1896 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
1897 {
1898 	int32_t elapsed;
1899 
1900 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
1901 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
1902 		return false;
1903 	}
1904 
1905 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1906 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
1907 		return true;
1908 	} else {
1909 		return false;
1910 	}
1911 }
1912 
1913 static bool
1914 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
1915 {
1916 	uint32_t elapsed;
1917 
1918 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
1919 		return false;
1920 	}
1921 
1922 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1923 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
1924 		return true;
1925 	} else {
1926 		return false;
1927 	}
1928 }
1929 
1930 static void bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
1931 
1932 static void
1933 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
1934 {
1935 	int rc;
1936 
1937 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
1938 	if (rc != 0) {
1939 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
1940 		 * fail the reset sequence immediately.
1941 		 */
1942 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
1943 		return;
1944 	}
1945 
1946 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
1947 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
1948 	 */
1949 	assert(nvme_ctrlr->disconnected_cb == NULL);
1950 	nvme_ctrlr->disconnected_cb = cb_fn;
1951 
1952 	/* During disconnection, reduce the period to poll adminq more often. */
1953 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
1954 }
1955 
1956 enum bdev_nvme_op_after_reset {
1957 	OP_NONE,
1958 	OP_COMPLETE_PENDING_DESTRUCT,
1959 	OP_DESTRUCT,
1960 	OP_DELAYED_RECONNECT,
1961 	OP_FAILOVER,
1962 };
1963 
1964 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
1965 
1966 static _bdev_nvme_op_after_reset
1967 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
1968 {
1969 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1970 		/* Complete pending destruct after reset completes. */
1971 		return OP_COMPLETE_PENDING_DESTRUCT;
1972 	} else if (nvme_ctrlr->pending_failover) {
1973 		nvme_ctrlr->pending_failover = false;
1974 		nvme_ctrlr->reset_start_tsc = 0;
1975 		return OP_FAILOVER;
1976 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1977 		nvme_ctrlr->reset_start_tsc = 0;
1978 		return OP_NONE;
1979 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1980 		return OP_DESTRUCT;
1981 	} else {
1982 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
1983 			nvme_ctrlr->fast_io_fail_timedout = true;
1984 		}
1985 		return OP_DELAYED_RECONNECT;
1986 	}
1987 }
1988 
1989 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
1990 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
1991 
1992 static int
1993 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
1994 {
1995 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1996 
1997 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
1998 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1999 
2000 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2001 
2002 	if (!nvme_ctrlr->reconnect_is_delayed) {
2003 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2004 		return SPDK_POLLER_BUSY;
2005 	}
2006 
2007 	nvme_ctrlr->reconnect_is_delayed = false;
2008 
2009 	if (nvme_ctrlr->destruct) {
2010 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2011 		return SPDK_POLLER_BUSY;
2012 	}
2013 
2014 	assert(nvme_ctrlr->resetting == false);
2015 	nvme_ctrlr->resetting = true;
2016 
2017 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2018 
2019 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2020 
2021 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2022 	return SPDK_POLLER_BUSY;
2023 }
2024 
2025 static void
2026 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
2027 {
2028 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2029 
2030 	assert(nvme_ctrlr->reconnect_is_delayed == false);
2031 	nvme_ctrlr->reconnect_is_delayed = true;
2032 
2033 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
2034 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
2035 					    nvme_ctrlr,
2036 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
2037 }
2038 
2039 static void remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr);
2040 
2041 static void
2042 _bdev_nvme_reset_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2043 {
2044 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2045 	bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
2046 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2047 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2048 	enum bdev_nvme_op_after_reset op_after_reset;
2049 
2050 	assert(nvme_ctrlr->thread == spdk_get_thread());
2051 
2052 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2053 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2054 
2055 	if (!success) {
2056 		SPDK_ERRLOG("Resetting controller failed.\n");
2057 	} else {
2058 		SPDK_NOTICELOG("Resetting controller successful.\n");
2059 	}
2060 
2061 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2062 	nvme_ctrlr->resetting = false;
2063 	nvme_ctrlr->dont_retry = false;
2064 	nvme_ctrlr->in_failover = false;
2065 
2066 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
2067 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2068 
2069 	/* Delay callbacks when the next operation is a failover. */
2070 	if (ctrlr_op_cb_fn && op_after_reset != OP_FAILOVER) {
2071 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, success ? 0 : -1);
2072 	}
2073 
2074 	switch (op_after_reset) {
2075 	case OP_COMPLETE_PENDING_DESTRUCT:
2076 		nvme_ctrlr_unregister(nvme_ctrlr);
2077 		break;
2078 	case OP_DESTRUCT:
2079 		bdev_nvme_delete_ctrlr(nvme_ctrlr, false);
2080 		remove_discovery_entry(nvme_ctrlr);
2081 		break;
2082 	case OP_DELAYED_RECONNECT:
2083 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
2084 		break;
2085 	case OP_FAILOVER:
2086 		nvme_ctrlr->ctrlr_op_cb_fn = ctrlr_op_cb_fn;
2087 		nvme_ctrlr->ctrlr_op_cb_arg = ctrlr_op_cb_arg;
2088 		bdev_nvme_failover_ctrlr(nvme_ctrlr);
2089 		break;
2090 	default:
2091 		break;
2092 	}
2093 }
2094 
2095 static void
2096 bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
2097 {
2098 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2099 	if (!success) {
2100 		/* Connecting the active trid failed. Set the next alternate trid to the
2101 		 * active trid if it exists.
2102 		 */
2103 		if (bdev_nvme_failover_trid(nvme_ctrlr, false, false)) {
2104 			/* The next alternate trid exists and is ready to try. Try it now. */
2105 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
2106 
2107 			nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2108 			return;
2109 		}
2110 
2111 		/* We came here if there is no alternate trid or if the next trid exists but
2112 		 * is not ready to try. We will try the active trid after reconnect_delay_sec
2113 		 * seconds if it is non-zero or at the next reset call otherwise.
2114 		 */
2115 	} else {
2116 		/* Connecting the active trid succeeded. Clear the last failed time because it
2117 		 * means the trid is failed if its last failed time is non-zero.
2118 		 */
2119 		nvme_ctrlr->active_path_id->last_failed_tsc = 0;
2120 	}
2121 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2122 
2123 	/* Make sure we clear any pending resets before returning. */
2124 	spdk_for_each_channel(nvme_ctrlr,
2125 			      bdev_nvme_complete_pending_resets,
2126 			      success ? NULL : (void *)0x1,
2127 			      _bdev_nvme_reset_ctrlr_complete);
2128 }
2129 
2130 static void
2131 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
2132 {
2133 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2134 
2135 	bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2136 }
2137 
2138 static void
2139 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
2140 {
2141 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
2142 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
2143 	struct nvme_qpair *nvme_qpair;
2144 
2145 	nvme_qpair = ctrlr_ch->qpair;
2146 	assert(nvme_qpair != NULL);
2147 
2148 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2149 
2150 	if (nvme_qpair->qpair != NULL) {
2151 		if (nvme_qpair->ctrlr->dont_retry) {
2152 			spdk_nvme_qpair_set_abort_dnr(nvme_qpair->qpair, true);
2153 		}
2154 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2155 
2156 		/* The current full reset sequence will move to the next
2157 		 * ctrlr_channel after the qpair is actually disconnected.
2158 		 */
2159 		assert(ctrlr_ch->reset_iter == NULL);
2160 		ctrlr_ch->reset_iter = i;
2161 	} else {
2162 		spdk_for_each_channel_continue(i, 0);
2163 	}
2164 }
2165 
2166 static void
2167 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
2168 {
2169 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2170 
2171 	if (status == 0) {
2172 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, true);
2173 	} else {
2174 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
2175 		spdk_for_each_channel(nvme_ctrlr,
2176 				      bdev_nvme_reset_destroy_qpair,
2177 				      NULL,
2178 				      bdev_nvme_reset_create_qpairs_failed);
2179 	}
2180 }
2181 
2182 static int
2183 bdev_nvme_reset_check_qpair_connected(void *ctx)
2184 {
2185 	struct nvme_ctrlr_channel *ctrlr_ch = ctx;
2186 
2187 	if (ctrlr_ch->reset_iter == NULL) {
2188 		/* qpair was already failed to connect and the reset sequence is being aborted. */
2189 		assert(ctrlr_ch->connect_poller == NULL);
2190 		assert(ctrlr_ch->qpair->qpair == NULL);
2191 		return SPDK_POLLER_BUSY;
2192 	}
2193 
2194 	assert(ctrlr_ch->qpair->qpair != NULL);
2195 
2196 	if (!spdk_nvme_qpair_is_connected(ctrlr_ch->qpair->qpair)) {
2197 		return SPDK_POLLER_BUSY;
2198 	}
2199 
2200 	spdk_poller_unregister(&ctrlr_ch->connect_poller);
2201 
2202 	/* qpair was completed to connect. Move to the next ctrlr_channel */
2203 	spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2204 	ctrlr_ch->reset_iter = NULL;
2205 
2206 	if (!g_opts.disable_auto_failback) {
2207 		_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
2208 	}
2209 
2210 	return SPDK_POLLER_BUSY;
2211 }
2212 
2213 static void
2214 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
2215 {
2216 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2217 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
2218 	int rc;
2219 
2220 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
2221 	if (rc == 0) {
2222 		ctrlr_ch->connect_poller = SPDK_POLLER_REGISTER(bdev_nvme_reset_check_qpair_connected,
2223 					   ctrlr_ch, 0);
2224 
2225 		/* The current full reset sequence will move to the next
2226 		 * ctrlr_channel after the qpair is actually connected.
2227 		 */
2228 		assert(ctrlr_ch->reset_iter == NULL);
2229 		ctrlr_ch->reset_iter = i;
2230 	} else {
2231 		spdk_for_each_channel_continue(i, rc);
2232 	}
2233 }
2234 
2235 static void
2236 nvme_ctrlr_check_namespaces(struct nvme_ctrlr *nvme_ctrlr)
2237 {
2238 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
2239 	struct nvme_ns *nvme_ns;
2240 
2241 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
2242 	     nvme_ns != NULL;
2243 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
2244 		if (!spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
2245 			SPDK_DEBUGLOG(bdev_nvme, "NSID %u was removed during reset.\n", nvme_ns->id);
2246 			/* NS can be added again. Just nullify nvme_ns->ns. */
2247 			nvme_ns->ns = NULL;
2248 		}
2249 	}
2250 }
2251 
2252 
2253 static int
2254 bdev_nvme_reconnect_ctrlr_poll(void *arg)
2255 {
2256 	struct nvme_ctrlr *nvme_ctrlr = arg;
2257 	int rc = -ETIMEDOUT;
2258 
2259 	if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2260 		/* Mark the ctrlr as failed. The next call to
2261 		 * spdk_nvme_ctrlr_reconnect_poll_async() will then
2262 		 * do the necessary cleanup and return failure.
2263 		 */
2264 		spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
2265 	}
2266 
2267 	rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
2268 	if (rc == -EAGAIN) {
2269 		return SPDK_POLLER_BUSY;
2270 	}
2271 
2272 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
2273 	if (rc == 0) {
2274 		nvme_ctrlr_check_namespaces(nvme_ctrlr);
2275 
2276 		/* Recreate all of the I/O queue pairs */
2277 		spdk_for_each_channel(nvme_ctrlr,
2278 				      bdev_nvme_reset_create_qpair,
2279 				      NULL,
2280 				      bdev_nvme_reset_create_qpairs_done);
2281 	} else {
2282 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2283 	}
2284 	return SPDK_POLLER_BUSY;
2285 }
2286 
2287 static void
2288 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2289 {
2290 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
2291 
2292 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
2293 	assert(nvme_ctrlr->reset_detach_poller == NULL);
2294 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
2295 					  nvme_ctrlr, 0);
2296 }
2297 
2298 static void
2299 bdev_nvme_reset_destroy_qpair_done(struct spdk_io_channel_iter *i, int status)
2300 {
2301 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2302 
2303 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
2304 	assert(status == 0);
2305 
2306 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2307 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2308 	} else {
2309 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2310 	}
2311 }
2312 
2313 static void
2314 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2315 {
2316 	spdk_for_each_channel(nvme_ctrlr,
2317 			      bdev_nvme_reset_destroy_qpair,
2318 			      NULL,
2319 			      bdev_nvme_reset_destroy_qpair_done);
2320 }
2321 
2322 static void
2323 bdev_nvme_reconnect_ctrlr_now(void *ctx)
2324 {
2325 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2326 
2327 	assert(nvme_ctrlr->resetting == true);
2328 	assert(nvme_ctrlr->thread == spdk_get_thread());
2329 
2330 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2331 
2332 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2333 
2334 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2335 }
2336 
2337 static void
2338 _bdev_nvme_reset_ctrlr(void *ctx)
2339 {
2340 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2341 
2342 	assert(nvme_ctrlr->resetting == true);
2343 	assert(nvme_ctrlr->thread == spdk_get_thread());
2344 
2345 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2346 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
2347 	} else {
2348 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
2349 	}
2350 }
2351 
2352 static int
2353 bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2354 {
2355 	spdk_msg_fn msg_fn;
2356 
2357 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2358 	if (nvme_ctrlr->destruct) {
2359 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2360 		return -ENXIO;
2361 	}
2362 
2363 	if (nvme_ctrlr->resetting) {
2364 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2365 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
2366 		return -EBUSY;
2367 	}
2368 
2369 	if (nvme_ctrlr->disabled) {
2370 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2371 		SPDK_NOTICELOG("Unable to perform reset. Controller is disabled.\n");
2372 		return -EALREADY;
2373 	}
2374 
2375 	nvme_ctrlr->resetting = true;
2376 	nvme_ctrlr->dont_retry = true;
2377 
2378 	if (nvme_ctrlr->reconnect_is_delayed) {
2379 		SPDK_DEBUGLOG(bdev_nvme, "Reconnect is already scheduled.\n");
2380 		msg_fn = bdev_nvme_reconnect_ctrlr_now;
2381 		nvme_ctrlr->reconnect_is_delayed = false;
2382 	} else {
2383 		msg_fn = _bdev_nvme_reset_ctrlr;
2384 		assert(nvme_ctrlr->reset_start_tsc == 0);
2385 	}
2386 
2387 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2388 
2389 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2390 
2391 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2392 	return 0;
2393 }
2394 
2395 static int
2396 bdev_nvme_enable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2397 {
2398 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2399 	if (nvme_ctrlr->destruct) {
2400 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2401 		return -ENXIO;
2402 	}
2403 
2404 	if (nvme_ctrlr->resetting) {
2405 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2406 		return -EBUSY;
2407 	}
2408 
2409 	if (!nvme_ctrlr->disabled) {
2410 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2411 		return -EALREADY;
2412 	}
2413 
2414 	nvme_ctrlr->disabled = false;
2415 	nvme_ctrlr->resetting = true;
2416 
2417 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2418 
2419 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2420 
2421 	spdk_thread_send_msg(nvme_ctrlr->thread, bdev_nvme_reconnect_ctrlr_now, nvme_ctrlr);
2422 	return 0;
2423 }
2424 
2425 static void
2426 _bdev_nvme_disable_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2427 {
2428 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2429 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2430 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2431 	enum bdev_nvme_op_after_reset op_after_disable;
2432 
2433 	assert(nvme_ctrlr->thread == spdk_get_thread());
2434 
2435 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2436 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2437 
2438 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2439 
2440 	nvme_ctrlr->resetting = false;
2441 	nvme_ctrlr->dont_retry = false;
2442 
2443 	op_after_disable = bdev_nvme_check_op_after_reset(nvme_ctrlr, true);
2444 
2445 	nvme_ctrlr->disabled = true;
2446 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2447 
2448 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2449 
2450 	if (ctrlr_op_cb_fn) {
2451 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, 0);
2452 	}
2453 
2454 	switch (op_after_disable) {
2455 	case OP_COMPLETE_PENDING_DESTRUCT:
2456 		nvme_ctrlr_unregister(nvme_ctrlr);
2457 		break;
2458 	default:
2459 		break;
2460 	}
2461 
2462 }
2463 
2464 static void
2465 bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr)
2466 {
2467 	/* Make sure we clear any pending resets before returning. */
2468 	spdk_for_each_channel(nvme_ctrlr,
2469 			      bdev_nvme_complete_pending_resets,
2470 			      NULL,
2471 			      _bdev_nvme_disable_ctrlr_complete);
2472 }
2473 
2474 static void
2475 bdev_nvme_disable_destroy_qpairs_done(struct spdk_io_channel_iter *i, int status)
2476 {
2477 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2478 
2479 	assert(status == 0);
2480 
2481 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2482 		bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2483 	} else {
2484 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_ctrlr_complete);
2485 	}
2486 }
2487 
2488 static void
2489 bdev_nvme_disable_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2490 {
2491 	spdk_for_each_channel(nvme_ctrlr,
2492 			      bdev_nvme_reset_destroy_qpair,
2493 			      NULL,
2494 			      bdev_nvme_disable_destroy_qpairs_done);
2495 }
2496 
2497 static void
2498 _bdev_nvme_cancel_reconnect_and_disable_ctrlr(void *ctx)
2499 {
2500 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2501 
2502 	assert(nvme_ctrlr->resetting == true);
2503 	assert(nvme_ctrlr->thread == spdk_get_thread());
2504 
2505 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2506 
2507 	bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2508 }
2509 
2510 static void
2511 _bdev_nvme_disconnect_and_disable_ctrlr(void *ctx)
2512 {
2513 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2514 
2515 	assert(nvme_ctrlr->resetting == true);
2516 	assert(nvme_ctrlr->thread == spdk_get_thread());
2517 
2518 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2519 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_destroy_qpairs);
2520 	} else {
2521 		bdev_nvme_disable_destroy_qpairs(nvme_ctrlr);
2522 	}
2523 }
2524 
2525 static int
2526 bdev_nvme_disable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2527 {
2528 	spdk_msg_fn msg_fn;
2529 
2530 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2531 	if (nvme_ctrlr->destruct) {
2532 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2533 		return -ENXIO;
2534 	}
2535 
2536 	if (nvme_ctrlr->resetting) {
2537 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2538 		return -EBUSY;
2539 	}
2540 
2541 	if (nvme_ctrlr->disabled) {
2542 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2543 		return -EALREADY;
2544 	}
2545 
2546 	nvme_ctrlr->resetting = true;
2547 	nvme_ctrlr->dont_retry = true;
2548 
2549 	if (nvme_ctrlr->reconnect_is_delayed) {
2550 		msg_fn = _bdev_nvme_cancel_reconnect_and_disable_ctrlr;
2551 		nvme_ctrlr->reconnect_is_delayed = false;
2552 	} else {
2553 		msg_fn = _bdev_nvme_disconnect_and_disable_ctrlr;
2554 	}
2555 
2556 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2557 
2558 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2559 
2560 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2561 	return 0;
2562 }
2563 
2564 static int
2565 nvme_ctrlr_op(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2566 	      bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2567 {
2568 	int rc;
2569 
2570 	switch (op) {
2571 	case NVME_CTRLR_OP_RESET:
2572 		rc = bdev_nvme_reset_ctrlr(nvme_ctrlr);
2573 		break;
2574 	case NVME_CTRLR_OP_ENABLE:
2575 		rc = bdev_nvme_enable_ctrlr(nvme_ctrlr);
2576 		break;
2577 	case NVME_CTRLR_OP_DISABLE:
2578 		rc = bdev_nvme_disable_ctrlr(nvme_ctrlr);
2579 		break;
2580 	default:
2581 		rc = -EINVAL;
2582 		break;
2583 	}
2584 
2585 	if (rc == 0) {
2586 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
2587 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
2588 		nvme_ctrlr->ctrlr_op_cb_fn = cb_fn;
2589 		nvme_ctrlr->ctrlr_op_cb_arg = cb_arg;
2590 	}
2591 	return rc;
2592 }
2593 
2594 struct nvme_ctrlr_op_rpc_ctx {
2595 	struct nvme_ctrlr *nvme_ctrlr;
2596 	struct spdk_thread *orig_thread;
2597 	enum nvme_ctrlr_op op;
2598 	int rc;
2599 	bdev_nvme_ctrlr_op_cb cb_fn;
2600 	void *cb_arg;
2601 };
2602 
2603 static void
2604 _nvme_ctrlr_op_rpc_complete(void *_ctx)
2605 {
2606 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2607 
2608 	assert(ctx != NULL);
2609 	assert(ctx->cb_fn != NULL);
2610 
2611 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2612 
2613 	free(ctx);
2614 }
2615 
2616 static void
2617 nvme_ctrlr_op_rpc_complete(void *cb_arg, int rc)
2618 {
2619 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2620 
2621 	ctx->rc = rc;
2622 
2623 	spdk_thread_send_msg(ctx->orig_thread, _nvme_ctrlr_op_rpc_complete, ctx);
2624 }
2625 
2626 void
2627 nvme_ctrlr_op_rpc(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2628 		  bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2629 {
2630 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2631 	int rc;
2632 
2633 	assert(cb_fn != NULL);
2634 
2635 	ctx = calloc(1, sizeof(*ctx));
2636 	if (ctx == NULL) {
2637 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2638 		cb_fn(cb_arg, -ENOMEM);
2639 		return;
2640 	}
2641 
2642 	ctx->orig_thread = spdk_get_thread();
2643 	ctx->cb_fn = cb_fn;
2644 	ctx->cb_arg = cb_arg;
2645 
2646 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_ctrlr_op_rpc_complete, ctx);
2647 	if (rc == 0) {
2648 		return;
2649 	} else if (rc == -EALREADY) {
2650 		rc = 0;
2651 	}
2652 
2653 	nvme_ctrlr_op_rpc_complete(ctx, rc);
2654 }
2655 
2656 static void nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc);
2657 
2658 static void
2659 _nvme_bdev_ctrlr_op_rpc_continue(void *_ctx)
2660 {
2661 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2662 	struct nvme_ctrlr *prev_nvme_ctrlr, *next_nvme_ctrlr;
2663 	int rc;
2664 
2665 	prev_nvme_ctrlr = ctx->nvme_ctrlr;
2666 	ctx->nvme_ctrlr = NULL;
2667 
2668 	if (ctx->rc != 0) {
2669 		goto complete;
2670 	}
2671 
2672 	next_nvme_ctrlr = TAILQ_NEXT(prev_nvme_ctrlr, tailq);
2673 	if (next_nvme_ctrlr == NULL) {
2674 		goto complete;
2675 	}
2676 
2677 	rc = nvme_ctrlr_op(next_nvme_ctrlr, ctx->op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2678 	if (rc == 0) {
2679 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2680 		return;
2681 	} else if (rc == -EALREADY) {
2682 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2683 		rc = 0;
2684 	}
2685 
2686 	ctx->rc = rc;
2687 
2688 complete:
2689 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2690 	free(ctx);
2691 }
2692 
2693 static void
2694 nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc)
2695 {
2696 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2697 
2698 	ctx->rc = rc;
2699 
2700 	spdk_thread_send_msg(ctx->orig_thread, _nvme_bdev_ctrlr_op_rpc_continue, ctx);
2701 }
2702 
2703 void
2704 nvme_bdev_ctrlr_op_rpc(struct nvme_bdev_ctrlr *nbdev_ctrlr, enum nvme_ctrlr_op op,
2705 		       bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2706 {
2707 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2708 	struct nvme_ctrlr *nvme_ctrlr;
2709 	int rc;
2710 
2711 	assert(cb_fn != NULL);
2712 
2713 	ctx = calloc(1, sizeof(*ctx));
2714 	if (ctx == NULL) {
2715 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2716 		cb_fn(cb_arg, -ENOMEM);
2717 		return;
2718 	}
2719 
2720 	ctx->orig_thread = spdk_get_thread();
2721 	ctx->op = op;
2722 	ctx->cb_fn = cb_fn;
2723 	ctx->cb_arg = cb_arg;
2724 
2725 	nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
2726 	assert(nvme_ctrlr != NULL);
2727 
2728 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2729 	if (rc == 0) {
2730 		ctx->nvme_ctrlr = nvme_ctrlr;
2731 		return;
2732 	} else if (rc == -EALREADY) {
2733 		ctx->nvme_ctrlr = nvme_ctrlr;
2734 		rc = 0;
2735 	}
2736 
2737 	nvme_bdev_ctrlr_op_rpc_continue(ctx, rc);
2738 }
2739 
2740 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
2741 
2742 static void
2743 _bdev_nvme_reset_io_complete(struct spdk_io_channel_iter *i, int status)
2744 {
2745 	struct nvme_bdev_io *bio = spdk_io_channel_iter_get_ctx(i);
2746 	enum spdk_bdev_io_status io_status;
2747 
2748 	if (bio->cpl.cdw0 == 0) {
2749 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2750 	} else {
2751 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
2752 	}
2753 
2754 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
2755 }
2756 
2757 static void
2758 bdev_nvme_abort_bdev_channel(struct spdk_io_channel_iter *i)
2759 {
2760 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2761 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
2762 
2763 	bdev_nvme_abort_retry_ios(nbdev_ch);
2764 
2765 	spdk_for_each_channel_continue(i, 0);
2766 }
2767 
2768 static void
2769 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
2770 {
2771 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2772 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
2773 
2774 	/* Abort all queued I/Os for retry. */
2775 	spdk_for_each_channel(nbdev,
2776 			      bdev_nvme_abort_bdev_channel,
2777 			      bio,
2778 			      _bdev_nvme_reset_io_complete);
2779 }
2780 
2781 static void
2782 _bdev_nvme_reset_io_continue(void *ctx)
2783 {
2784 	struct nvme_bdev_io *bio = ctx;
2785 	struct nvme_io_path *prev_io_path, *next_io_path;
2786 	int rc;
2787 
2788 	prev_io_path = bio->io_path;
2789 	bio->io_path = NULL;
2790 
2791 	if (bio->cpl.cdw0 != 0) {
2792 		goto complete;
2793 	}
2794 
2795 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
2796 	if (next_io_path == NULL) {
2797 		goto complete;
2798 	}
2799 
2800 	rc = _bdev_nvme_reset_io(next_io_path, bio);
2801 	if (rc == 0) {
2802 		return;
2803 	}
2804 
2805 	bio->cpl.cdw0 = 1;
2806 
2807 complete:
2808 	bdev_nvme_reset_io_complete(bio);
2809 }
2810 
2811 static void
2812 bdev_nvme_reset_io_continue(void *cb_arg, int rc)
2813 {
2814 	struct nvme_bdev_io *bio = cb_arg;
2815 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2816 
2817 	bio->cpl.cdw0 = (rc == 0) ? 0 : 1;
2818 
2819 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_nvme_reset_io_continue, bio);
2820 }
2821 
2822 static int
2823 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
2824 {
2825 	struct nvme_ctrlr_channel *ctrlr_ch;
2826 	int rc;
2827 
2828 	rc = nvme_ctrlr_op(io_path->qpair->ctrlr, NVME_CTRLR_OP_RESET,
2829 			   bdev_nvme_reset_io_continue, bio);
2830 	if (rc != 0 && rc != -EBUSY) {
2831 		return rc;
2832 	}
2833 
2834 	assert(bio->io_path == NULL);
2835 	bio->io_path = io_path;
2836 
2837 	if (rc == -EBUSY) {
2838 		ctrlr_ch = io_path->qpair->ctrlr_ch;
2839 		assert(ctrlr_ch != NULL);
2840 		/*
2841 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
2842 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
2843 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
2844 		 */
2845 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bio, retry_link);
2846 	}
2847 
2848 	return 0;
2849 }
2850 
2851 static void
2852 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
2853 {
2854 	struct nvme_io_path *io_path;
2855 	int rc;
2856 
2857 	bio->cpl.cdw0 = 0;
2858 
2859 	/* Reset all nvme_ctrlrs of a bdev controller sequentially. */
2860 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
2861 	assert(io_path != NULL);
2862 
2863 	rc = _bdev_nvme_reset_io(io_path, bio);
2864 	if (rc != 0) {
2865 		/* If the current nvme_ctrlr is disabled, skip it and move to the next nvme_ctrlr. */
2866 		rc = (rc == -EALREADY) ? 0 : rc;
2867 
2868 		bdev_nvme_reset_io_continue(bio, rc);
2869 	}
2870 }
2871 
2872 static int
2873 bdev_nvme_failover_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove)
2874 {
2875 	if (nvme_ctrlr->destruct) {
2876 		/* Don't bother resetting if the controller is in the process of being destructed. */
2877 		return -ENXIO;
2878 	}
2879 
2880 	if (nvme_ctrlr->resetting) {
2881 		if (!nvme_ctrlr->in_failover) {
2882 			SPDK_NOTICELOG("Reset is already in progress. Defer failover until reset completes.\n");
2883 
2884 			/* Defer failover until reset completes. */
2885 			nvme_ctrlr->pending_failover = true;
2886 			return -EINPROGRESS;
2887 		} else {
2888 			SPDK_NOTICELOG("Unable to perform failover, already in progress.\n");
2889 			return -EBUSY;
2890 		}
2891 	}
2892 
2893 	bdev_nvme_failover_trid(nvme_ctrlr, remove, true);
2894 
2895 	if (nvme_ctrlr->reconnect_is_delayed) {
2896 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
2897 
2898 		/* We rely on the next reconnect for the failover. */
2899 		return -EALREADY;
2900 	}
2901 
2902 	if (nvme_ctrlr->disabled) {
2903 		SPDK_NOTICELOG("Controller is disabled.\n");
2904 
2905 		/* We rely on the enablement for the failover. */
2906 		return -EALREADY;
2907 	}
2908 
2909 	nvme_ctrlr->resetting = true;
2910 	nvme_ctrlr->in_failover = true;
2911 
2912 	assert(nvme_ctrlr->reset_start_tsc == 0);
2913 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2914 
2915 	return 0;
2916 }
2917 
2918 static int
2919 bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2920 {
2921 	int rc;
2922 
2923 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2924 	rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, false);
2925 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2926 
2927 	if (rc == 0) {
2928 		spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset_ctrlr, nvme_ctrlr);
2929 	} else if (rc == -EALREADY) {
2930 		rc = 0;
2931 	}
2932 
2933 	return rc;
2934 }
2935 
2936 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2937 			   uint64_t num_blocks);
2938 
2939 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2940 				  uint64_t num_blocks);
2941 
2942 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
2943 			  uint64_t src_offset_blocks,
2944 			  uint64_t num_blocks);
2945 
2946 static void
2947 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
2948 		     bool success)
2949 {
2950 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2951 	int ret;
2952 
2953 	if (!success) {
2954 		ret = -EINVAL;
2955 		goto exit;
2956 	}
2957 
2958 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
2959 		ret = -ENXIO;
2960 		goto exit;
2961 	}
2962 
2963 	ret = bdev_nvme_readv(bio,
2964 			      bdev_io->u.bdev.iovs,
2965 			      bdev_io->u.bdev.iovcnt,
2966 			      bdev_io->u.bdev.md_buf,
2967 			      bdev_io->u.bdev.num_blocks,
2968 			      bdev_io->u.bdev.offset_blocks,
2969 			      bdev_io->u.bdev.dif_check_flags,
2970 			      bdev_io->u.bdev.memory_domain,
2971 			      bdev_io->u.bdev.memory_domain_ctx,
2972 			      bdev_io->u.bdev.accel_sequence);
2973 
2974 exit:
2975 	if (spdk_unlikely(ret != 0)) {
2976 		bdev_nvme_io_complete(bio, ret);
2977 	}
2978 }
2979 
2980 static inline void
2981 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
2982 {
2983 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2984 	struct spdk_bdev *bdev = bdev_io->bdev;
2985 	struct nvme_bdev_io *nbdev_io_to_abort;
2986 	int rc = 0;
2987 
2988 	switch (bdev_io->type) {
2989 	case SPDK_BDEV_IO_TYPE_READ:
2990 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
2991 
2992 			rc = bdev_nvme_readv(nbdev_io,
2993 					     bdev_io->u.bdev.iovs,
2994 					     bdev_io->u.bdev.iovcnt,
2995 					     bdev_io->u.bdev.md_buf,
2996 					     bdev_io->u.bdev.num_blocks,
2997 					     bdev_io->u.bdev.offset_blocks,
2998 					     bdev_io->u.bdev.dif_check_flags,
2999 					     bdev_io->u.bdev.memory_domain,
3000 					     bdev_io->u.bdev.memory_domain_ctx,
3001 					     bdev_io->u.bdev.accel_sequence);
3002 		} else {
3003 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
3004 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
3005 			rc = 0;
3006 		}
3007 		break;
3008 	case SPDK_BDEV_IO_TYPE_WRITE:
3009 		rc = bdev_nvme_writev(nbdev_io,
3010 				      bdev_io->u.bdev.iovs,
3011 				      bdev_io->u.bdev.iovcnt,
3012 				      bdev_io->u.bdev.md_buf,
3013 				      bdev_io->u.bdev.num_blocks,
3014 				      bdev_io->u.bdev.offset_blocks,
3015 				      bdev_io->u.bdev.dif_check_flags,
3016 				      bdev_io->u.bdev.memory_domain,
3017 				      bdev_io->u.bdev.memory_domain_ctx,
3018 				      bdev_io->u.bdev.accel_sequence,
3019 				      bdev_io->u.bdev.nvme_cdw12,
3020 				      bdev_io->u.bdev.nvme_cdw13);
3021 		break;
3022 	case SPDK_BDEV_IO_TYPE_COMPARE:
3023 		rc = bdev_nvme_comparev(nbdev_io,
3024 					bdev_io->u.bdev.iovs,
3025 					bdev_io->u.bdev.iovcnt,
3026 					bdev_io->u.bdev.md_buf,
3027 					bdev_io->u.bdev.num_blocks,
3028 					bdev_io->u.bdev.offset_blocks,
3029 					bdev_io->u.bdev.dif_check_flags);
3030 		break;
3031 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3032 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
3033 						   bdev_io->u.bdev.iovs,
3034 						   bdev_io->u.bdev.iovcnt,
3035 						   bdev_io->u.bdev.fused_iovs,
3036 						   bdev_io->u.bdev.fused_iovcnt,
3037 						   bdev_io->u.bdev.md_buf,
3038 						   bdev_io->u.bdev.num_blocks,
3039 						   bdev_io->u.bdev.offset_blocks,
3040 						   bdev_io->u.bdev.dif_check_flags);
3041 		break;
3042 	case SPDK_BDEV_IO_TYPE_UNMAP:
3043 		rc = bdev_nvme_unmap(nbdev_io,
3044 				     bdev_io->u.bdev.offset_blocks,
3045 				     bdev_io->u.bdev.num_blocks);
3046 		break;
3047 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3048 		rc =  bdev_nvme_write_zeroes(nbdev_io,
3049 					     bdev_io->u.bdev.offset_blocks,
3050 					     bdev_io->u.bdev.num_blocks);
3051 		break;
3052 	case SPDK_BDEV_IO_TYPE_RESET:
3053 		nbdev_io->io_path = NULL;
3054 		bdev_nvme_reset_io(nbdev_ch, nbdev_io);
3055 		return;
3056 
3057 	case SPDK_BDEV_IO_TYPE_FLUSH:
3058 		bdev_nvme_io_complete(nbdev_io, 0);
3059 		return;
3060 
3061 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3062 		rc = bdev_nvme_zone_appendv(nbdev_io,
3063 					    bdev_io->u.bdev.iovs,
3064 					    bdev_io->u.bdev.iovcnt,
3065 					    bdev_io->u.bdev.md_buf,
3066 					    bdev_io->u.bdev.num_blocks,
3067 					    bdev_io->u.bdev.offset_blocks,
3068 					    bdev_io->u.bdev.dif_check_flags);
3069 		break;
3070 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3071 		rc = bdev_nvme_get_zone_info(nbdev_io,
3072 					     bdev_io->u.zone_mgmt.zone_id,
3073 					     bdev_io->u.zone_mgmt.num_zones,
3074 					     bdev_io->u.zone_mgmt.buf);
3075 		break;
3076 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3077 		rc = bdev_nvme_zone_management(nbdev_io,
3078 					       bdev_io->u.zone_mgmt.zone_id,
3079 					       bdev_io->u.zone_mgmt.zone_action);
3080 		break;
3081 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3082 		nbdev_io->io_path = NULL;
3083 		bdev_nvme_admin_passthru(nbdev_ch,
3084 					 nbdev_io,
3085 					 &bdev_io->u.nvme_passthru.cmd,
3086 					 bdev_io->u.nvme_passthru.buf,
3087 					 bdev_io->u.nvme_passthru.nbytes);
3088 		return;
3089 
3090 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3091 		rc = bdev_nvme_io_passthru(nbdev_io,
3092 					   &bdev_io->u.nvme_passthru.cmd,
3093 					   bdev_io->u.nvme_passthru.buf,
3094 					   bdev_io->u.nvme_passthru.nbytes);
3095 		break;
3096 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3097 		rc = bdev_nvme_io_passthru_md(nbdev_io,
3098 					      &bdev_io->u.nvme_passthru.cmd,
3099 					      bdev_io->u.nvme_passthru.buf,
3100 					      bdev_io->u.nvme_passthru.nbytes,
3101 					      bdev_io->u.nvme_passthru.md_buf,
3102 					      bdev_io->u.nvme_passthru.md_len);
3103 		break;
3104 	case SPDK_BDEV_IO_TYPE_NVME_IOV_MD:
3105 		rc = bdev_nvme_iov_passthru_md(nbdev_io,
3106 					       &bdev_io->u.nvme_passthru.cmd,
3107 					       bdev_io->u.nvme_passthru.iovs,
3108 					       bdev_io->u.nvme_passthru.iovcnt,
3109 					       bdev_io->u.nvme_passthru.nbytes,
3110 					       bdev_io->u.nvme_passthru.md_buf,
3111 					       bdev_io->u.nvme_passthru.md_len);
3112 		break;
3113 	case SPDK_BDEV_IO_TYPE_ABORT:
3114 		nbdev_io->io_path = NULL;
3115 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
3116 		bdev_nvme_abort(nbdev_ch,
3117 				nbdev_io,
3118 				nbdev_io_to_abort);
3119 		return;
3120 
3121 	case SPDK_BDEV_IO_TYPE_COPY:
3122 		rc = bdev_nvme_copy(nbdev_io,
3123 				    bdev_io->u.bdev.offset_blocks,
3124 				    bdev_io->u.bdev.copy.src_offset_blocks,
3125 				    bdev_io->u.bdev.num_blocks);
3126 		break;
3127 	default:
3128 		rc = -EINVAL;
3129 		break;
3130 	}
3131 
3132 	if (spdk_unlikely(rc != 0)) {
3133 		bdev_nvme_io_complete(nbdev_io, rc);
3134 	}
3135 }
3136 
3137 static void
3138 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
3139 {
3140 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3141 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3142 
3143 	if (spdk_likely(nbdev_io->submit_tsc == 0)) {
3144 		nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io);
3145 	} else {
3146 		/* There are cases where submit_tsc != 0, i.e. retry I/O.
3147 		 * We need to update submit_tsc here.
3148 		 */
3149 		nbdev_io->submit_tsc = spdk_get_ticks();
3150 	}
3151 
3152 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
3153 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
3154 	if (spdk_unlikely(!nbdev_io->io_path)) {
3155 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
3156 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
3157 			return;
3158 		}
3159 
3160 		/* Admin commands do not use the optimal I/O path.
3161 		 * Simply fall through even if it is not found.
3162 		 */
3163 	}
3164 
3165 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
3166 }
3167 
3168 static bool
3169 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
3170 {
3171 	struct nvme_bdev *nbdev = ctx;
3172 	struct nvme_ns *nvme_ns;
3173 	struct spdk_nvme_ns *ns;
3174 	struct spdk_nvme_ctrlr *ctrlr;
3175 	const struct spdk_nvme_ctrlr_data *cdata;
3176 
3177 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3178 	assert(nvme_ns != NULL);
3179 	ns = nvme_ns->ns;
3180 	if (ns == NULL) {
3181 		return false;
3182 	}
3183 
3184 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3185 
3186 	switch (io_type) {
3187 	case SPDK_BDEV_IO_TYPE_READ:
3188 	case SPDK_BDEV_IO_TYPE_WRITE:
3189 	case SPDK_BDEV_IO_TYPE_RESET:
3190 	case SPDK_BDEV_IO_TYPE_FLUSH:
3191 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3192 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3193 	case SPDK_BDEV_IO_TYPE_ABORT:
3194 		return true;
3195 
3196 	case SPDK_BDEV_IO_TYPE_COMPARE:
3197 		return spdk_nvme_ns_supports_compare(ns);
3198 
3199 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3200 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
3201 
3202 	case SPDK_BDEV_IO_TYPE_UNMAP:
3203 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3204 		return cdata->oncs.dsm;
3205 
3206 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3207 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3208 		return cdata->oncs.write_zeroes;
3209 
3210 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3211 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
3212 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
3213 			return true;
3214 		}
3215 		return false;
3216 
3217 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3218 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3219 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
3220 
3221 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3222 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
3223 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
3224 
3225 	case SPDK_BDEV_IO_TYPE_COPY:
3226 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3227 		return cdata->oncs.copy;
3228 
3229 	default:
3230 		return false;
3231 	}
3232 }
3233 
3234 static int
3235 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
3236 {
3237 	struct nvme_qpair *nvme_qpair;
3238 	struct spdk_io_channel *pg_ch;
3239 	int rc;
3240 
3241 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
3242 	if (!nvme_qpair) {
3243 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
3244 		return -1;
3245 	}
3246 
3247 	TAILQ_INIT(&nvme_qpair->io_path_list);
3248 
3249 	nvme_qpair->ctrlr = nvme_ctrlr;
3250 	nvme_qpair->ctrlr_ch = ctrlr_ch;
3251 
3252 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
3253 	if (!pg_ch) {
3254 		free(nvme_qpair);
3255 		return -1;
3256 	}
3257 
3258 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
3259 
3260 #ifdef SPDK_CONFIG_VTUNE
3261 	nvme_qpair->group->collect_spin_stat = true;
3262 #else
3263 	nvme_qpair->group->collect_spin_stat = false;
3264 #endif
3265 
3266 	if (!nvme_ctrlr->disabled) {
3267 		/* If a nvme_ctrlr is disabled, don't try to create qpair for it. Qpair will
3268 		 * be created when it's enabled.
3269 		 */
3270 		rc = bdev_nvme_create_qpair(nvme_qpair);
3271 		if (rc != 0) {
3272 			/* nvme_ctrlr can't create IO qpair if connection is down.
3273 			 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
3274 			 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
3275 			 * submitted IO will be queued until IO qpair is successfully created.
3276 			 *
3277 			 * Hence, if both are satisfied, ignore the failure.
3278 			 */
3279 			if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
3280 				spdk_put_io_channel(pg_ch);
3281 				free(nvme_qpair);
3282 				return rc;
3283 			}
3284 		}
3285 	}
3286 
3287 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3288 
3289 	ctrlr_ch->qpair = nvme_qpair;
3290 
3291 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
3292 	nvme_qpair->ctrlr->ref++;
3293 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
3294 
3295 	return 0;
3296 }
3297 
3298 static int
3299 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3300 {
3301 	struct nvme_ctrlr *nvme_ctrlr = io_device;
3302 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3303 
3304 	TAILQ_INIT(&ctrlr_ch->pending_resets);
3305 
3306 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
3307 }
3308 
3309 static void
3310 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
3311 {
3312 	struct nvme_io_path *io_path, *next;
3313 
3314 	assert(nvme_qpair->group != NULL);
3315 
3316 	TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) {
3317 		TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
3318 		nvme_io_path_free(io_path);
3319 	}
3320 
3321 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3322 
3323 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
3324 
3325 	nvme_ctrlr_release(nvme_qpair->ctrlr);
3326 
3327 	free(nvme_qpair);
3328 }
3329 
3330 static void
3331 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3332 {
3333 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3334 	struct nvme_qpair *nvme_qpair;
3335 
3336 	nvme_qpair = ctrlr_ch->qpair;
3337 	assert(nvme_qpair != NULL);
3338 
3339 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
3340 
3341 	if (nvme_qpair->qpair != NULL) {
3342 		if (ctrlr_ch->reset_iter == NULL) {
3343 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
3344 		} else {
3345 			/* Skip current ctrlr_channel in a full reset sequence because
3346 			 * it is being deleted now. The qpair is already being disconnected.
3347 			 * We do not have to restart disconnecting it.
3348 			 */
3349 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
3350 		}
3351 
3352 		/* We cannot release a reference to the poll group now.
3353 		 * The qpair may be disconnected asynchronously later.
3354 		 * We need to poll it until it is actually disconnected.
3355 		 * Just detach the qpair from the deleting ctrlr_channel.
3356 		 */
3357 		nvme_qpair->ctrlr_ch = NULL;
3358 	} else {
3359 		assert(ctrlr_ch->reset_iter == NULL);
3360 
3361 		nvme_qpair_delete(nvme_qpair);
3362 	}
3363 }
3364 
3365 static inline struct spdk_io_channel *
3366 bdev_nvme_get_accel_channel(struct nvme_poll_group *group)
3367 {
3368 	if (spdk_unlikely(!group->accel_channel)) {
3369 		group->accel_channel = spdk_accel_get_io_channel();
3370 		if (!group->accel_channel) {
3371 			SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
3372 				    group);
3373 			return NULL;
3374 		}
3375 	}
3376 
3377 	return group->accel_channel;
3378 }
3379 
3380 static void
3381 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
3382 			      uint32_t iov_cnt, uint32_t seed,
3383 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3384 {
3385 	struct spdk_io_channel *accel_ch;
3386 	struct nvme_poll_group *group = ctx;
3387 	int rc;
3388 
3389 	assert(cb_fn != NULL);
3390 
3391 	accel_ch = bdev_nvme_get_accel_channel(group);
3392 	if (spdk_unlikely(accel_ch == NULL)) {
3393 		cb_fn(cb_arg, -ENOMEM);
3394 		return;
3395 	}
3396 
3397 	rc = spdk_accel_submit_crc32cv(accel_ch, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
3398 	if (rc) {
3399 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
3400 		if (rc == -ENOMEM || rc == -EINVAL) {
3401 			cb_fn(cb_arg, rc);
3402 		}
3403 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
3404 	}
3405 }
3406 
3407 static void
3408 bdev_nvme_finish_sequence(void *seq, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3409 {
3410 	spdk_accel_sequence_finish(seq, cb_fn, cb_arg);
3411 }
3412 
3413 static void
3414 bdev_nvme_abort_sequence(void *seq)
3415 {
3416 	spdk_accel_sequence_abort(seq);
3417 }
3418 
3419 static void
3420 bdev_nvme_reverse_sequence(void *seq)
3421 {
3422 	spdk_accel_sequence_reverse(seq);
3423 }
3424 
3425 static int
3426 bdev_nvme_append_crc32c(void *ctx, void **seq, uint32_t *dst, struct iovec *iovs, uint32_t iovcnt,
3427 			struct spdk_memory_domain *domain, void *domain_ctx, uint32_t seed,
3428 			spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3429 {
3430 	struct spdk_io_channel *ch;
3431 	struct nvme_poll_group *group = ctx;
3432 
3433 	ch = bdev_nvme_get_accel_channel(group);
3434 	if (spdk_unlikely(ch == NULL)) {
3435 		return -ENOMEM;
3436 	}
3437 
3438 	return spdk_accel_append_crc32c((struct spdk_accel_sequence **)seq, ch, dst, iovs, iovcnt,
3439 					domain, domain_ctx, seed, cb_fn, cb_arg);
3440 }
3441 
3442 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
3443 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
3444 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
3445 	.append_crc32c		= bdev_nvme_append_crc32c,
3446 	.finish_sequence	= bdev_nvme_finish_sequence,
3447 	.reverse_sequence	= bdev_nvme_reverse_sequence,
3448 	.abort_sequence		= bdev_nvme_abort_sequence,
3449 };
3450 
3451 static int
3452 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
3453 {
3454 	struct nvme_poll_group *group = ctx_buf;
3455 
3456 	TAILQ_INIT(&group->qpair_list);
3457 
3458 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
3459 	if (group->group == NULL) {
3460 		return -1;
3461 	}
3462 
3463 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
3464 
3465 	if (group->poller == NULL) {
3466 		spdk_nvme_poll_group_destroy(group->group);
3467 		return -1;
3468 	}
3469 
3470 	return 0;
3471 }
3472 
3473 static void
3474 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
3475 {
3476 	struct nvme_poll_group *group = ctx_buf;
3477 
3478 	assert(TAILQ_EMPTY(&group->qpair_list));
3479 
3480 	if (group->accel_channel) {
3481 		spdk_put_io_channel(group->accel_channel);
3482 	}
3483 
3484 	spdk_poller_unregister(&group->poller);
3485 	if (spdk_nvme_poll_group_destroy(group->group)) {
3486 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
3487 		assert(false);
3488 	}
3489 }
3490 
3491 static struct spdk_io_channel *
3492 bdev_nvme_get_io_channel(void *ctx)
3493 {
3494 	struct nvme_bdev *nvme_bdev = ctx;
3495 
3496 	return spdk_get_io_channel(nvme_bdev);
3497 }
3498 
3499 static void *
3500 bdev_nvme_get_module_ctx(void *ctx)
3501 {
3502 	struct nvme_bdev *nvme_bdev = ctx;
3503 	struct nvme_ns *nvme_ns;
3504 
3505 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
3506 		return NULL;
3507 	}
3508 
3509 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
3510 	if (!nvme_ns) {
3511 		return NULL;
3512 	}
3513 
3514 	return nvme_ns->ns;
3515 }
3516 
3517 static const char *
3518 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
3519 {
3520 	switch (ana_state) {
3521 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3522 		return "optimized";
3523 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3524 		return "non_optimized";
3525 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3526 		return "inaccessible";
3527 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
3528 		return "persistent_loss";
3529 	case SPDK_NVME_ANA_CHANGE_STATE:
3530 		return "change";
3531 	default:
3532 		return NULL;
3533 	}
3534 }
3535 
3536 static int
3537 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
3538 {
3539 	struct spdk_memory_domain **_domains = NULL;
3540 	struct nvme_bdev *nbdev = ctx;
3541 	struct nvme_ns *nvme_ns;
3542 	int i = 0, _array_size = array_size;
3543 	int rc = 0;
3544 
3545 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3546 		if (domains && array_size >= i) {
3547 			_domains = &domains[i];
3548 		} else {
3549 			_domains = NULL;
3550 		}
3551 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
3552 		if (rc > 0) {
3553 			i += rc;
3554 			if (_array_size >= rc) {
3555 				_array_size -= rc;
3556 			} else {
3557 				_array_size = 0;
3558 			}
3559 		} else if (rc < 0) {
3560 			return rc;
3561 		}
3562 	}
3563 
3564 	return i;
3565 }
3566 
3567 static const char *
3568 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
3569 {
3570 	if (nvme_ctrlr->destruct) {
3571 		return "deleting";
3572 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
3573 		return "failed";
3574 	} else if (nvme_ctrlr->resetting) {
3575 		return "resetting";
3576 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
3577 		return "reconnect_is_delayed";
3578 	} else if (nvme_ctrlr->disabled) {
3579 		return "disabled";
3580 	} else {
3581 		return "enabled";
3582 	}
3583 }
3584 
3585 void
3586 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
3587 {
3588 	struct spdk_nvme_transport_id *trid;
3589 	const struct spdk_nvme_ctrlr_opts *opts;
3590 	const struct spdk_nvme_ctrlr_data *cdata;
3591 	struct nvme_path_id *path_id;
3592 
3593 	spdk_json_write_object_begin(w);
3594 
3595 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
3596 
3597 #ifdef SPDK_CONFIG_NVME_CUSE
3598 	size_t cuse_name_size = 128;
3599 	char cuse_name[cuse_name_size];
3600 
3601 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
3602 	if (rc == 0) {
3603 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3604 	}
3605 #endif
3606 	trid = &nvme_ctrlr->active_path_id->trid;
3607 	spdk_json_write_named_object_begin(w, "trid");
3608 	nvme_bdev_dump_trid_json(trid, w);
3609 	spdk_json_write_object_end(w);
3610 
3611 	path_id = TAILQ_NEXT(nvme_ctrlr->active_path_id, link);
3612 	if (path_id != NULL) {
3613 		spdk_json_write_named_array_begin(w, "alternate_trids");
3614 		do {
3615 			trid = &path_id->trid;
3616 			spdk_json_write_object_begin(w);
3617 			nvme_bdev_dump_trid_json(trid, w);
3618 			spdk_json_write_object_end(w);
3619 
3620 			path_id = TAILQ_NEXT(path_id, link);
3621 		} while (path_id != NULL);
3622 		spdk_json_write_array_end(w);
3623 	}
3624 
3625 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
3626 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3627 
3628 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
3629 	spdk_json_write_named_object_begin(w, "host");
3630 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
3631 	spdk_json_write_named_string(w, "addr", opts->src_addr);
3632 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
3633 	spdk_json_write_object_end(w);
3634 
3635 	spdk_json_write_object_end(w);
3636 }
3637 
3638 static void
3639 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
3640 			 struct nvme_ns *nvme_ns)
3641 {
3642 	struct spdk_nvme_ns *ns;
3643 	struct spdk_nvme_ctrlr *ctrlr;
3644 	const struct spdk_nvme_ctrlr_data *cdata;
3645 	const struct spdk_nvme_transport_id *trid;
3646 	union spdk_nvme_vs_register vs;
3647 	const struct spdk_nvme_ns_data *nsdata;
3648 	char buf[128];
3649 
3650 	ns = nvme_ns->ns;
3651 	if (ns == NULL) {
3652 		return;
3653 	}
3654 
3655 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3656 
3657 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3658 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
3659 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
3660 
3661 	spdk_json_write_object_begin(w);
3662 
3663 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
3664 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
3665 	}
3666 
3667 	spdk_json_write_named_object_begin(w, "trid");
3668 
3669 	nvme_bdev_dump_trid_json(trid, w);
3670 
3671 	spdk_json_write_object_end(w);
3672 
3673 #ifdef SPDK_CONFIG_NVME_CUSE
3674 	size_t cuse_name_size = 128;
3675 	char cuse_name[cuse_name_size];
3676 
3677 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
3678 					    cuse_name, &cuse_name_size);
3679 	if (rc == 0) {
3680 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3681 	}
3682 #endif
3683 
3684 	spdk_json_write_named_object_begin(w, "ctrlr_data");
3685 
3686 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3687 
3688 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
3689 
3690 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
3691 	spdk_str_trim(buf);
3692 	spdk_json_write_named_string(w, "model_number", buf);
3693 
3694 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
3695 	spdk_str_trim(buf);
3696 	spdk_json_write_named_string(w, "serial_number", buf);
3697 
3698 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
3699 	spdk_str_trim(buf);
3700 	spdk_json_write_named_string(w, "firmware_revision", buf);
3701 
3702 	if (cdata->subnqn[0] != '\0') {
3703 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
3704 	}
3705 
3706 	spdk_json_write_named_object_begin(w, "oacs");
3707 
3708 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
3709 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
3710 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
3711 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
3712 
3713 	spdk_json_write_object_end(w);
3714 
3715 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
3716 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
3717 
3718 	spdk_json_write_object_end(w);
3719 
3720 	spdk_json_write_named_object_begin(w, "vs");
3721 
3722 	spdk_json_write_name(w, "nvme_version");
3723 	if (vs.bits.ter) {
3724 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
3725 	} else {
3726 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
3727 	}
3728 
3729 	spdk_json_write_object_end(w);
3730 
3731 	nsdata = spdk_nvme_ns_get_data(ns);
3732 
3733 	spdk_json_write_named_object_begin(w, "ns_data");
3734 
3735 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
3736 
3737 	if (cdata->cmic.ana_reporting) {
3738 		spdk_json_write_named_string(w, "ana_state",
3739 					     _nvme_ana_state_str(nvme_ns->ana_state));
3740 	}
3741 
3742 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
3743 
3744 	spdk_json_write_object_end(w);
3745 
3746 	if (cdata->oacs.security) {
3747 		spdk_json_write_named_object_begin(w, "security");
3748 
3749 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
3750 
3751 		spdk_json_write_object_end(w);
3752 	}
3753 
3754 	spdk_json_write_object_end(w);
3755 }
3756 
3757 static const char *
3758 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
3759 {
3760 	switch (nbdev->mp_policy) {
3761 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
3762 		return "active_passive";
3763 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
3764 		return "active_active";
3765 	default:
3766 		assert(false);
3767 		return "invalid";
3768 	}
3769 }
3770 
3771 static const char *
3772 nvme_bdev_get_mp_selector_str(struct nvme_bdev *nbdev)
3773 {
3774 	switch (nbdev->mp_selector) {
3775 	case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
3776 		return "round_robin";
3777 	case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
3778 		return "queue_depth";
3779 	default:
3780 		assert(false);
3781 		return "invalid";
3782 	}
3783 }
3784 
3785 static int
3786 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
3787 {
3788 	struct nvme_bdev *nvme_bdev = ctx;
3789 	struct nvme_ns *nvme_ns;
3790 
3791 	pthread_mutex_lock(&nvme_bdev->mutex);
3792 	spdk_json_write_named_array_begin(w, "nvme");
3793 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
3794 		nvme_namespace_info_json(w, nvme_ns);
3795 	}
3796 	spdk_json_write_array_end(w);
3797 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
3798 	if (nvme_bdev->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
3799 		spdk_json_write_named_string(w, "selector", nvme_bdev_get_mp_selector_str(nvme_bdev));
3800 		if (nvme_bdev->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
3801 			spdk_json_write_named_uint32(w, "rr_min_io", nvme_bdev->rr_min_io);
3802 		}
3803 	}
3804 	pthread_mutex_unlock(&nvme_bdev->mutex);
3805 
3806 	return 0;
3807 }
3808 
3809 static void
3810 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
3811 {
3812 	/* No config per bdev needed */
3813 }
3814 
3815 static uint64_t
3816 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
3817 {
3818 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3819 	struct nvme_io_path *io_path;
3820 	struct nvme_poll_group *group;
3821 	uint64_t spin_time = 0;
3822 
3823 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3824 		group = io_path->qpair->group;
3825 
3826 		if (!group || !group->collect_spin_stat) {
3827 			continue;
3828 		}
3829 
3830 		if (group->end_ticks != 0) {
3831 			group->spin_ticks += (group->end_ticks - group->start_ticks);
3832 			group->end_ticks = 0;
3833 		}
3834 
3835 		spin_time += group->spin_ticks;
3836 		group->start_ticks = 0;
3837 		group->spin_ticks = 0;
3838 	}
3839 
3840 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
3841 }
3842 
3843 static void
3844 bdev_nvme_reset_device_stat(void *ctx)
3845 {
3846 	struct nvme_bdev *nbdev = ctx;
3847 
3848 	if (nbdev->err_stat != NULL) {
3849 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
3850 	}
3851 }
3852 
3853 /* JSON string should be lowercases and underscore delimited string. */
3854 static void
3855 bdev_nvme_format_nvme_status(char *dst, const char *src)
3856 {
3857 	char tmp[256];
3858 
3859 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
3860 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
3861 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
3862 	spdk_strlwr(dst);
3863 }
3864 
3865 static void
3866 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
3867 {
3868 	struct nvme_bdev *nbdev = ctx;
3869 	struct spdk_nvme_status status = {};
3870 	uint16_t sct, sc;
3871 	char status_json[256];
3872 	const char *status_str;
3873 
3874 	if (nbdev->err_stat == NULL) {
3875 		return;
3876 	}
3877 
3878 	spdk_json_write_named_object_begin(w, "nvme_error");
3879 
3880 	spdk_json_write_named_object_begin(w, "status_type");
3881 	for (sct = 0; sct < 8; sct++) {
3882 		if (nbdev->err_stat->status_type[sct] == 0) {
3883 			continue;
3884 		}
3885 		status.sct = sct;
3886 
3887 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
3888 		assert(status_str != NULL);
3889 		bdev_nvme_format_nvme_status(status_json, status_str);
3890 
3891 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
3892 	}
3893 	spdk_json_write_object_end(w);
3894 
3895 	spdk_json_write_named_object_begin(w, "status_code");
3896 	for (sct = 0; sct < 4; sct++) {
3897 		status.sct = sct;
3898 		for (sc = 0; sc < 256; sc++) {
3899 			if (nbdev->err_stat->status[sct][sc] == 0) {
3900 				continue;
3901 			}
3902 			status.sc = sc;
3903 
3904 			status_str = spdk_nvme_cpl_get_status_string(&status);
3905 			assert(status_str != NULL);
3906 			bdev_nvme_format_nvme_status(status_json, status_str);
3907 
3908 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
3909 		}
3910 	}
3911 	spdk_json_write_object_end(w);
3912 
3913 	spdk_json_write_object_end(w);
3914 }
3915 
3916 static bool
3917 bdev_nvme_accel_sequence_supported(void *ctx, enum spdk_bdev_io_type type)
3918 {
3919 	struct nvme_bdev *nbdev = ctx;
3920 	struct spdk_nvme_ctrlr *ctrlr;
3921 
3922 	if (!g_opts.allow_accel_sequence) {
3923 		return false;
3924 	}
3925 
3926 	switch (type) {
3927 	case SPDK_BDEV_IO_TYPE_WRITE:
3928 	case SPDK_BDEV_IO_TYPE_READ:
3929 		break;
3930 	default:
3931 		return false;
3932 	}
3933 
3934 	ctrlr = bdev_nvme_get_ctrlr(&nbdev->disk);
3935 	assert(ctrlr != NULL);
3936 
3937 	return spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ACCEL_SEQUENCE_SUPPORTED;
3938 }
3939 
3940 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
3941 	.destruct			= bdev_nvme_destruct,
3942 	.submit_request			= bdev_nvme_submit_request,
3943 	.io_type_supported		= bdev_nvme_io_type_supported,
3944 	.get_io_channel			= bdev_nvme_get_io_channel,
3945 	.dump_info_json			= bdev_nvme_dump_info_json,
3946 	.write_config_json		= bdev_nvme_write_config_json,
3947 	.get_spin_time			= bdev_nvme_get_spin_time,
3948 	.get_module_ctx			= bdev_nvme_get_module_ctx,
3949 	.get_memory_domains		= bdev_nvme_get_memory_domains,
3950 	.accel_sequence_supported	= bdev_nvme_accel_sequence_supported,
3951 	.reset_device_stat		= bdev_nvme_reset_device_stat,
3952 	.dump_device_stat_json		= bdev_nvme_dump_device_stat_json,
3953 };
3954 
3955 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
3956 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
3957 
3958 static int
3959 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
3960 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
3961 {
3962 	struct spdk_nvme_ana_group_descriptor *copied_desc;
3963 	uint8_t *orig_desc;
3964 	uint32_t i, desc_size, copy_len;
3965 	int rc = 0;
3966 
3967 	if (nvme_ctrlr->ana_log_page == NULL) {
3968 		return -EINVAL;
3969 	}
3970 
3971 	copied_desc = nvme_ctrlr->copied_ana_desc;
3972 
3973 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
3974 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
3975 
3976 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
3977 		memcpy(copied_desc, orig_desc, copy_len);
3978 
3979 		rc = cb_fn(copied_desc, cb_arg);
3980 		if (rc != 0) {
3981 			break;
3982 		}
3983 
3984 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
3985 			    copied_desc->num_of_nsid * sizeof(uint32_t);
3986 		orig_desc += desc_size;
3987 		copy_len -= desc_size;
3988 	}
3989 
3990 	return rc;
3991 }
3992 
3993 static int
3994 nvme_ns_ana_transition_timedout(void *ctx)
3995 {
3996 	struct nvme_ns *nvme_ns = ctx;
3997 
3998 	spdk_poller_unregister(&nvme_ns->anatt_timer);
3999 	nvme_ns->ana_transition_timedout = true;
4000 
4001 	return SPDK_POLLER_BUSY;
4002 }
4003 
4004 static void
4005 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
4006 		       const struct spdk_nvme_ana_group_descriptor *desc)
4007 {
4008 	const struct spdk_nvme_ctrlr_data *cdata;
4009 
4010 	nvme_ns->ana_group_id = desc->ana_group_id;
4011 	nvme_ns->ana_state = desc->ana_state;
4012 	nvme_ns->ana_state_updating = false;
4013 
4014 	switch (nvme_ns->ana_state) {
4015 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
4016 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
4017 		nvme_ns->ana_transition_timedout = false;
4018 		spdk_poller_unregister(&nvme_ns->anatt_timer);
4019 		break;
4020 
4021 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
4022 	case SPDK_NVME_ANA_CHANGE_STATE:
4023 		if (nvme_ns->anatt_timer != NULL) {
4024 			break;
4025 		}
4026 
4027 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4028 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
4029 				       nvme_ns,
4030 				       cdata->anatt * SPDK_SEC_TO_USEC);
4031 		break;
4032 	default:
4033 		break;
4034 	}
4035 }
4036 
4037 static int
4038 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
4039 {
4040 	struct nvme_ns *nvme_ns = cb_arg;
4041 	uint32_t i;
4042 
4043 	assert(nvme_ns->ns != NULL);
4044 
4045 	for (i = 0; i < desc->num_of_nsid; i++) {
4046 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
4047 			continue;
4048 		}
4049 
4050 		_nvme_ns_set_ana_state(nvme_ns, desc);
4051 		return 1;
4052 	}
4053 
4054 	return 0;
4055 }
4056 
4057 static int
4058 nvme_generate_uuid(const char *sn, uint32_t nsid, struct spdk_uuid *uuid)
4059 {
4060 	int rc = 0;
4061 	struct spdk_uuid new_uuid, namespace_uuid;
4062 	char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'};
4063 	/* This namespace UUID was generated using uuid_generate() method. */
4064 	const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"};
4065 	int size;
4066 
4067 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
4068 
4069 	spdk_uuid_set_null(&new_uuid);
4070 	spdk_uuid_set_null(&namespace_uuid);
4071 
4072 	size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid);
4073 	if (size <= 0 || (unsigned long)size >= sizeof(merged_str)) {
4074 		return -EINVAL;
4075 	}
4076 
4077 	spdk_uuid_parse(&namespace_uuid, namespace_str);
4078 
4079 	rc = spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size);
4080 	if (rc == 0) {
4081 		memcpy(uuid, &new_uuid, sizeof(struct spdk_uuid));
4082 	}
4083 
4084 	return rc;
4085 }
4086 
4087 static int
4088 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
4089 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
4090 		 uint32_t prchk_flags, void *ctx)
4091 {
4092 	const struct spdk_uuid		*uuid;
4093 	const uint8_t *nguid;
4094 	const struct spdk_nvme_ctrlr_data *cdata;
4095 	const struct spdk_nvme_ns_data	*nsdata;
4096 	const struct spdk_nvme_ctrlr_opts *opts;
4097 	enum spdk_nvme_csi		csi;
4098 	uint32_t atomic_bs, phys_bs, bs;
4099 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
4100 	int rc;
4101 
4102 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4103 	csi = spdk_nvme_ns_get_csi(ns);
4104 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
4105 
4106 	switch (csi) {
4107 	case SPDK_NVME_CSI_NVM:
4108 		disk->product_name = "NVMe disk";
4109 		break;
4110 	case SPDK_NVME_CSI_ZNS:
4111 		disk->product_name = "NVMe ZNS disk";
4112 		disk->zoned = true;
4113 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
4114 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
4115 					     spdk_nvme_ns_get_extended_sector_size(ns);
4116 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
4117 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
4118 		break;
4119 	default:
4120 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
4121 		return -ENOTSUP;
4122 	}
4123 
4124 	nguid = spdk_nvme_ns_get_nguid(ns);
4125 	if (!nguid) {
4126 		uuid = spdk_nvme_ns_get_uuid(ns);
4127 		if (uuid) {
4128 			disk->uuid = *uuid;
4129 		} else if (g_opts.generate_uuids) {
4130 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
4131 			rc = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns), &disk->uuid);
4132 			if (rc < 0) {
4133 				SPDK_ERRLOG("UUID generation failed (%s)\n", spdk_strerror(-rc));
4134 				return rc;
4135 			}
4136 		}
4137 	} else {
4138 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
4139 	}
4140 
4141 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
4142 	if (!disk->name) {
4143 		return -ENOMEM;
4144 	}
4145 
4146 	disk->write_cache = 0;
4147 	if (cdata->vwc.present) {
4148 		/* Enable if the Volatile Write Cache exists */
4149 		disk->write_cache = 1;
4150 	}
4151 	if (cdata->oncs.write_zeroes) {
4152 		disk->max_write_zeroes = UINT16_MAX + 1;
4153 	}
4154 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
4155 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
4156 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
4157 	disk->ctratt.raw = cdata->ctratt.raw;
4158 	/* NVMe driver will split one request into multiple requests
4159 	 * based on MDTS and stripe boundary, the bdev layer will use
4160 	 * max_segment_size and max_num_segments to split one big IO
4161 	 * into multiple requests, then small request can't run out
4162 	 * of NVMe internal requests data structure.
4163 	 */
4164 	if (opts && opts->io_queue_requests) {
4165 		disk->max_num_segments = opts->io_queue_requests / 2;
4166 	}
4167 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4168 		/* The nvme driver will try to split I/O that have too many
4169 		 * SGEs, but it doesn't work if that last SGE doesn't end on
4170 		 * an aggregate total that is block aligned. The bdev layer has
4171 		 * a more robust splitting framework, so use that instead for
4172 		 * this case. (See issue #3269.)
4173 		 */
4174 		uint16_t max_sges = spdk_nvme_ctrlr_get_max_sges(ctrlr);
4175 
4176 		if (disk->max_num_segments == 0) {
4177 			disk->max_num_segments = max_sges;
4178 		} else {
4179 			disk->max_num_segments = spdk_min(disk->max_num_segments, max_sges);
4180 		}
4181 	}
4182 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
4183 
4184 	nsdata = spdk_nvme_ns_get_data(ns);
4185 	bs = spdk_nvme_ns_get_sector_size(ns);
4186 	atomic_bs = bs;
4187 	phys_bs = bs;
4188 	if (nsdata->nabo == 0) {
4189 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
4190 			atomic_bs = bs * (1 + nsdata->nawupf);
4191 		} else {
4192 			atomic_bs = bs * (1 + cdata->awupf);
4193 		}
4194 	}
4195 	if (nsdata->nsfeat.optperf) {
4196 		phys_bs = bs * (1 + nsdata->npwg);
4197 	}
4198 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
4199 
4200 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
4201 	if (disk->md_len != 0) {
4202 		disk->md_interleave = nsdata->flbas.extended;
4203 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
4204 		if (disk->dif_type != SPDK_DIF_DISABLE) {
4205 			disk->dif_is_head_of_md = nsdata->dps.md_start;
4206 			disk->dif_check_flags = prchk_flags;
4207 			disk->dif_pi_format = (enum spdk_dif_pi_format)spdk_nvme_ns_get_pi_format(ns);
4208 		}
4209 	}
4210 
4211 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
4212 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
4213 		disk->acwu = 0;
4214 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
4215 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
4216 	} else {
4217 		disk->acwu = cdata->acwu + 1; /* 0-based */
4218 	}
4219 
4220 	if (cdata->oncs.copy) {
4221 		/* For now bdev interface allows only single segment copy */
4222 		disk->max_copy = nsdata->mssrl;
4223 	}
4224 
4225 	disk->ctxt = ctx;
4226 	disk->fn_table = &nvmelib_fn_table;
4227 	disk->module = &nvme_if;
4228 
4229 	return 0;
4230 }
4231 
4232 static struct nvme_bdev *
4233 nvme_bdev_alloc(void)
4234 {
4235 	struct nvme_bdev *bdev;
4236 	int rc;
4237 
4238 	bdev = calloc(1, sizeof(*bdev));
4239 	if (!bdev) {
4240 		SPDK_ERRLOG("bdev calloc() failed\n");
4241 		return NULL;
4242 	}
4243 
4244 	if (g_opts.nvme_error_stat) {
4245 		bdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
4246 		if (!bdev->err_stat) {
4247 			SPDK_ERRLOG("err_stat calloc() failed\n");
4248 			free(bdev);
4249 			return NULL;
4250 		}
4251 	}
4252 
4253 	rc = pthread_mutex_init(&bdev->mutex, NULL);
4254 	if (rc != 0) {
4255 		free(bdev->err_stat);
4256 		free(bdev);
4257 		return NULL;
4258 	}
4259 
4260 	bdev->ref = 1;
4261 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
4262 	bdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN;
4263 	bdev->rr_min_io = UINT32_MAX;
4264 	TAILQ_INIT(&bdev->nvme_ns_list);
4265 
4266 	return bdev;
4267 }
4268 
4269 static int
4270 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4271 {
4272 	struct nvme_bdev *bdev;
4273 	struct nvme_bdev_ctrlr *nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
4274 	int rc;
4275 
4276 	bdev = nvme_bdev_alloc();
4277 	if (bdev == NULL) {
4278 		SPDK_ERRLOG("Failed to allocate NVMe bdev\n");
4279 		return -ENOMEM;
4280 	}
4281 
4282 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
4283 
4284 	rc = nvme_disk_create(&bdev->disk, nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
4285 			      nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev);
4286 	if (rc != 0) {
4287 		SPDK_ERRLOG("Failed to create NVMe disk\n");
4288 		nvme_bdev_free(bdev);
4289 		return rc;
4290 	}
4291 
4292 	spdk_io_device_register(bdev,
4293 				bdev_nvme_create_bdev_channel_cb,
4294 				bdev_nvme_destroy_bdev_channel_cb,
4295 				sizeof(struct nvme_bdev_channel),
4296 				bdev->disk.name);
4297 
4298 	nvme_ns->bdev = bdev;
4299 	bdev->nsid = nvme_ns->id;
4300 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4301 
4302 	bdev->nbdev_ctrlr = nbdev_ctrlr;
4303 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->bdevs, bdev, tailq);
4304 
4305 	rc = spdk_bdev_register(&bdev->disk);
4306 	if (rc != 0) {
4307 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
4308 		spdk_io_device_unregister(bdev, NULL);
4309 		nvme_ns->bdev = NULL;
4310 		TAILQ_REMOVE(&nbdev_ctrlr->bdevs, bdev, tailq);
4311 		nvme_bdev_free(bdev);
4312 		return rc;
4313 	}
4314 
4315 	return 0;
4316 }
4317 
4318 static bool
4319 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
4320 {
4321 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
4322 	const struct spdk_uuid *uuid1, *uuid2;
4323 
4324 	nsdata1 = spdk_nvme_ns_get_data(ns1);
4325 	nsdata2 = spdk_nvme_ns_get_data(ns2);
4326 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
4327 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
4328 
4329 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
4330 	       nsdata1->eui64 == nsdata2->eui64 &&
4331 	       ((uuid1 == NULL && uuid2 == NULL) ||
4332 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
4333 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
4334 }
4335 
4336 static bool
4337 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4338 		 struct spdk_nvme_ctrlr_opts *opts)
4339 {
4340 	struct nvme_probe_skip_entry *entry;
4341 
4342 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
4343 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4344 			return false;
4345 		}
4346 	}
4347 
4348 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
4349 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
4350 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
4351 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
4352 	opts->disable_read_ana_log_page = true;
4353 
4354 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
4355 
4356 	return true;
4357 }
4358 
4359 static void
4360 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
4361 {
4362 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4363 
4364 	if (spdk_nvme_cpl_is_error(cpl)) {
4365 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
4366 			     cpl->status.sct);
4367 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4368 	} else if (cpl->cdw0 & 0x1) {
4369 		SPDK_WARNLOG("Specified command could not be aborted.\n");
4370 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4371 	}
4372 }
4373 
4374 static void
4375 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
4376 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
4377 {
4378 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4379 	union spdk_nvme_csts_register csts;
4380 	int rc;
4381 
4382 	assert(nvme_ctrlr->ctrlr == ctrlr);
4383 
4384 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
4385 
4386 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
4387 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
4388 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
4389 	 * completion recursively.
4390 	 */
4391 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
4392 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
4393 		if (csts.bits.cfs) {
4394 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
4395 			bdev_nvme_reset_ctrlr(nvme_ctrlr);
4396 			return;
4397 		}
4398 	}
4399 
4400 	switch (g_opts.action_on_timeout) {
4401 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
4402 		if (qpair) {
4403 			/* Don't send abort to ctrlr when ctrlr is not available. */
4404 			pthread_mutex_lock(&nvme_ctrlr->mutex);
4405 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
4406 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
4407 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
4408 				return;
4409 			}
4410 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4411 
4412 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
4413 						       nvme_abort_cpl, nvme_ctrlr);
4414 			if (rc == 0) {
4415 				return;
4416 			}
4417 
4418 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
4419 		}
4420 
4421 	/* FALLTHROUGH */
4422 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
4423 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4424 		break;
4425 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
4426 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
4427 		break;
4428 	default:
4429 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
4430 		break;
4431 	}
4432 }
4433 
4434 static struct nvme_ns *
4435 nvme_ns_alloc(void)
4436 {
4437 	struct nvme_ns *nvme_ns;
4438 
4439 	nvme_ns = calloc(1, sizeof(struct nvme_ns));
4440 	if (nvme_ns == NULL) {
4441 		return NULL;
4442 	}
4443 
4444 	if (g_opts.io_path_stat) {
4445 		nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
4446 		if (nvme_ns->stat == NULL) {
4447 			free(nvme_ns);
4448 			return NULL;
4449 		}
4450 		spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
4451 	}
4452 
4453 	return nvme_ns;
4454 }
4455 
4456 static void
4457 nvme_ns_free(struct nvme_ns *nvme_ns)
4458 {
4459 	free(nvme_ns->stat);
4460 	free(nvme_ns);
4461 }
4462 
4463 static void
4464 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
4465 {
4466 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4467 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
4468 
4469 	if (rc == 0) {
4470 		nvme_ns->probe_ctx = NULL;
4471 		pthread_mutex_lock(&nvme_ctrlr->mutex);
4472 		nvme_ctrlr->ref++;
4473 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4474 	} else {
4475 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4476 		nvme_ns_free(nvme_ns);
4477 	}
4478 
4479 	if (ctx) {
4480 		ctx->populates_in_progress--;
4481 		if (ctx->populates_in_progress == 0) {
4482 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4483 		}
4484 	}
4485 }
4486 
4487 static void
4488 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
4489 {
4490 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4491 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4492 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4493 	int rc;
4494 
4495 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
4496 	if (rc != 0) {
4497 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
4498 	}
4499 
4500 	spdk_for_each_channel_continue(i, rc);
4501 }
4502 
4503 static void
4504 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
4505 {
4506 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4507 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4508 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4509 	struct nvme_io_path *io_path;
4510 
4511 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
4512 	if (io_path != NULL) {
4513 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
4514 	}
4515 
4516 	spdk_for_each_channel_continue(i, 0);
4517 }
4518 
4519 static void
4520 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
4521 {
4522 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4523 
4524 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
4525 }
4526 
4527 static void
4528 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
4529 {
4530 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4531 	struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
4532 
4533 	if (status == 0) {
4534 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
4535 	} else {
4536 		/* Delete the added io_paths and fail populating the namespace. */
4537 		spdk_for_each_channel(bdev,
4538 				      bdev_nvme_delete_io_path,
4539 				      nvme_ns,
4540 				      bdev_nvme_add_io_path_failed);
4541 	}
4542 }
4543 
4544 static int
4545 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
4546 {
4547 	struct nvme_ns *tmp_ns;
4548 	const struct spdk_nvme_ns_data *nsdata;
4549 
4550 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
4551 	if (!nsdata->nmic.can_share) {
4552 		SPDK_ERRLOG("Namespace cannot be shared.\n");
4553 		return -EINVAL;
4554 	}
4555 
4556 	pthread_mutex_lock(&bdev->mutex);
4557 
4558 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
4559 	assert(tmp_ns != NULL);
4560 
4561 	if (tmp_ns->ns != NULL && !bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
4562 		pthread_mutex_unlock(&bdev->mutex);
4563 		SPDK_ERRLOG("Namespaces are not identical.\n");
4564 		return -EINVAL;
4565 	}
4566 
4567 	bdev->ref++;
4568 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4569 	nvme_ns->bdev = bdev;
4570 
4571 	pthread_mutex_unlock(&bdev->mutex);
4572 
4573 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
4574 	spdk_for_each_channel(bdev,
4575 			      bdev_nvme_add_io_path,
4576 			      nvme_ns,
4577 			      bdev_nvme_add_io_path_done);
4578 
4579 	return 0;
4580 }
4581 
4582 static void
4583 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4584 {
4585 	struct spdk_nvme_ns	*ns;
4586 	struct nvme_bdev	*bdev;
4587 	int			rc = 0;
4588 
4589 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
4590 	if (!ns) {
4591 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
4592 		rc = -EINVAL;
4593 		goto done;
4594 	}
4595 
4596 	nvme_ns->ns = ns;
4597 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4598 
4599 	if (nvme_ctrlr->ana_log_page != NULL) {
4600 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
4601 	}
4602 
4603 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
4604 	if (bdev == NULL) {
4605 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
4606 	} else {
4607 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
4608 		if (rc == 0) {
4609 			return;
4610 		}
4611 	}
4612 done:
4613 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
4614 }
4615 
4616 static void
4617 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
4618 {
4619 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4620 
4621 	assert(nvme_ctrlr != NULL);
4622 
4623 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4624 
4625 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4626 
4627 	if (nvme_ns->bdev != NULL) {
4628 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4629 		return;
4630 	}
4631 
4632 	nvme_ns_free(nvme_ns);
4633 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4634 
4635 	nvme_ctrlr_release(nvme_ctrlr);
4636 }
4637 
4638 static void
4639 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
4640 {
4641 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4642 
4643 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4644 }
4645 
4646 static void
4647 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4648 {
4649 	struct nvme_bdev *bdev;
4650 
4651 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4652 
4653 	bdev = nvme_ns->bdev;
4654 	if (bdev != NULL) {
4655 		pthread_mutex_lock(&bdev->mutex);
4656 
4657 		assert(bdev->ref > 0);
4658 		bdev->ref--;
4659 		if (bdev->ref == 0) {
4660 			pthread_mutex_unlock(&bdev->mutex);
4661 
4662 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
4663 		} else {
4664 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
4665 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
4666 			 * and clear nvme_ns->bdev here.
4667 			 */
4668 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
4669 			nvme_ns->bdev = NULL;
4670 
4671 			pthread_mutex_unlock(&bdev->mutex);
4672 
4673 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
4674 			 * we call depopulate_namespace_done() to avoid use-after-free.
4675 			 */
4676 			spdk_for_each_channel(bdev,
4677 					      bdev_nvme_delete_io_path,
4678 					      nvme_ns,
4679 					      bdev_nvme_delete_io_path_done);
4680 			return;
4681 		}
4682 	}
4683 
4684 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4685 }
4686 
4687 static void
4688 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
4689 			       struct nvme_async_probe_ctx *ctx)
4690 {
4691 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
4692 	struct nvme_ns	*nvme_ns, *next;
4693 	struct spdk_nvme_ns	*ns;
4694 	struct nvme_bdev	*bdev;
4695 	uint32_t		nsid;
4696 	int			rc;
4697 	uint64_t		num_sectors;
4698 
4699 	if (ctx) {
4700 		/* Initialize this count to 1 to handle the populate functions
4701 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
4702 		 */
4703 		ctx->populates_in_progress = 1;
4704 	}
4705 
4706 	/* First loop over our existing namespaces and see if they have been
4707 	 * removed. */
4708 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4709 	while (nvme_ns != NULL) {
4710 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4711 
4712 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
4713 			/* NS is still there or added again. Its attributes may have changed. */
4714 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
4715 			if (nvme_ns->ns != ns) {
4716 				assert(nvme_ns->ns == NULL);
4717 				nvme_ns->ns = ns;
4718 				SPDK_DEBUGLOG(bdev_nvme, "NSID %u was added\n", nvme_ns->id);
4719 			}
4720 
4721 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
4722 			bdev = nvme_ns->bdev;
4723 			assert(bdev != NULL);
4724 			if (bdev->disk.blockcnt != num_sectors) {
4725 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
4726 					       nvme_ns->id,
4727 					       bdev->disk.name,
4728 					       bdev->disk.blockcnt,
4729 					       num_sectors);
4730 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
4731 				if (rc != 0) {
4732 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
4733 						    bdev->disk.name, rc);
4734 				}
4735 			}
4736 		} else {
4737 			/* Namespace was removed */
4738 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4739 		}
4740 
4741 		nvme_ns = next;
4742 	}
4743 
4744 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
4745 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4746 	while (nsid != 0) {
4747 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4748 
4749 		if (nvme_ns == NULL) {
4750 			/* Found a new one */
4751 			nvme_ns = nvme_ns_alloc();
4752 			if (nvme_ns == NULL) {
4753 				SPDK_ERRLOG("Failed to allocate namespace\n");
4754 				/* This just fails to attach the namespace. It may work on a future attempt. */
4755 				continue;
4756 			}
4757 
4758 			nvme_ns->id = nsid;
4759 			nvme_ns->ctrlr = nvme_ctrlr;
4760 
4761 			nvme_ns->bdev = NULL;
4762 
4763 			if (ctx) {
4764 				ctx->populates_in_progress++;
4765 			}
4766 			nvme_ns->probe_ctx = ctx;
4767 
4768 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4769 
4770 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
4771 		}
4772 
4773 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
4774 	}
4775 
4776 	if (ctx) {
4777 		/* Decrement this count now that the loop is over to account
4778 		 * for the one we started with.  If the count is then 0, we
4779 		 * know any populate_namespace functions completed immediately,
4780 		 * so we'll kick the callback here.
4781 		 */
4782 		ctx->populates_in_progress--;
4783 		if (ctx->populates_in_progress == 0) {
4784 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4785 		}
4786 	}
4787 
4788 }
4789 
4790 static void
4791 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
4792 {
4793 	struct nvme_ns *nvme_ns, *tmp;
4794 
4795 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
4796 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4797 	}
4798 }
4799 
4800 static uint32_t
4801 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
4802 {
4803 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4804 	const struct spdk_nvme_ctrlr_data *cdata;
4805 	uint32_t nsid, ns_count = 0;
4806 
4807 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4808 
4809 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4810 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
4811 		ns_count++;
4812 	}
4813 
4814 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
4815 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
4816 	       sizeof(uint32_t);
4817 }
4818 
4819 static int
4820 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
4821 			  void *cb_arg)
4822 {
4823 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4824 	struct nvme_ns *nvme_ns;
4825 	uint32_t i, nsid;
4826 
4827 	for (i = 0; i < desc->num_of_nsid; i++) {
4828 		nsid = desc->nsid[i];
4829 		if (nsid == 0) {
4830 			continue;
4831 		}
4832 
4833 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4834 
4835 		if (nvme_ns == NULL) {
4836 			/* Target told us that an inactive namespace had an ANA change */
4837 			continue;
4838 		}
4839 
4840 		_nvme_ns_set_ana_state(nvme_ns, desc);
4841 	}
4842 
4843 	return 0;
4844 }
4845 
4846 static void
4847 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4848 {
4849 	struct nvme_ns *nvme_ns;
4850 
4851 	spdk_free(nvme_ctrlr->ana_log_page);
4852 	nvme_ctrlr->ana_log_page = NULL;
4853 
4854 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4855 	     nvme_ns != NULL;
4856 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
4857 		nvme_ns->ana_state_updating = false;
4858 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4859 	}
4860 }
4861 
4862 static void
4863 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
4864 {
4865 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4866 
4867 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
4868 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
4869 					     nvme_ctrlr);
4870 	} else {
4871 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
4872 	}
4873 
4874 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4875 
4876 	assert(nvme_ctrlr->ana_log_page_updating == true);
4877 	nvme_ctrlr->ana_log_page_updating = false;
4878 
4879 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
4880 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4881 
4882 		nvme_ctrlr_unregister(nvme_ctrlr);
4883 	} else {
4884 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4885 
4886 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
4887 	}
4888 }
4889 
4890 static int
4891 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4892 {
4893 	uint32_t ana_log_page_size;
4894 	int rc;
4895 
4896 	if (nvme_ctrlr->ana_log_page == NULL) {
4897 		return -EINVAL;
4898 	}
4899 
4900 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
4901 
4902 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
4903 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
4904 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
4905 		return -EINVAL;
4906 	}
4907 
4908 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4909 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
4910 	    nvme_ctrlr->ana_log_page_updating) {
4911 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4912 		return -EBUSY;
4913 	}
4914 
4915 	nvme_ctrlr->ana_log_page_updating = true;
4916 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4917 
4918 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
4919 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
4920 					      SPDK_NVME_GLOBAL_NS_TAG,
4921 					      nvme_ctrlr->ana_log_page,
4922 					      ana_log_page_size, 0,
4923 					      nvme_ctrlr_read_ana_log_page_done,
4924 					      nvme_ctrlr);
4925 	if (rc != 0) {
4926 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
4927 	}
4928 
4929 	return rc;
4930 }
4931 
4932 static void
4933 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
4934 {
4935 }
4936 
4937 struct bdev_nvme_set_preferred_path_ctx {
4938 	struct spdk_bdev_desc *desc;
4939 	struct nvme_ns *nvme_ns;
4940 	bdev_nvme_set_preferred_path_cb cb_fn;
4941 	void *cb_arg;
4942 };
4943 
4944 static void
4945 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
4946 {
4947 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4948 
4949 	assert(ctx != NULL);
4950 	assert(ctx->desc != NULL);
4951 	assert(ctx->cb_fn != NULL);
4952 
4953 	spdk_bdev_close(ctx->desc);
4954 
4955 	ctx->cb_fn(ctx->cb_arg, status);
4956 
4957 	free(ctx);
4958 }
4959 
4960 static void
4961 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
4962 {
4963 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4964 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4965 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4966 	struct nvme_io_path *io_path, *prev;
4967 
4968 	prev = NULL;
4969 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
4970 		if (io_path->nvme_ns == ctx->nvme_ns) {
4971 			break;
4972 		}
4973 		prev = io_path;
4974 	}
4975 
4976 	if (io_path != NULL) {
4977 		if (prev != NULL) {
4978 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
4979 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
4980 		}
4981 
4982 		/* We can set io_path to nbdev_ch->current_io_path directly here.
4983 		 * However, it needs to be conditional. To simplify the code,
4984 		 * just clear nbdev_ch->current_io_path and let find_io_path()
4985 		 * fill it.
4986 		 *
4987 		 * Automatic failback may be disabled. Hence even if the io_path is
4988 		 * already at the head, clear nbdev_ch->current_io_path.
4989 		 */
4990 		bdev_nvme_clear_current_io_path(nbdev_ch);
4991 	}
4992 
4993 	spdk_for_each_channel_continue(i, 0);
4994 }
4995 
4996 static struct nvme_ns *
4997 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
4998 {
4999 	struct nvme_ns *nvme_ns, *prev;
5000 	const struct spdk_nvme_ctrlr_data *cdata;
5001 
5002 	prev = NULL;
5003 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
5004 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
5005 
5006 		if (cdata->cntlid == cntlid) {
5007 			break;
5008 		}
5009 		prev = nvme_ns;
5010 	}
5011 
5012 	if (nvme_ns != NULL && prev != NULL) {
5013 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
5014 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
5015 	}
5016 
5017 	return nvme_ns;
5018 }
5019 
5020 /* This function supports only multipath mode. There is only a single I/O path
5021  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
5022  * head of the I/O path list for each NVMe bdev channel.
5023  *
5024  * NVMe bdev channel may be acquired after completing this function. move the
5025  * matched namespace to the head of the namespace list for the NVMe bdev too.
5026  */
5027 void
5028 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
5029 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
5030 {
5031 	struct bdev_nvme_set_preferred_path_ctx *ctx;
5032 	struct spdk_bdev *bdev;
5033 	struct nvme_bdev *nbdev;
5034 	int rc = 0;
5035 
5036 	assert(cb_fn != NULL);
5037 
5038 	ctx = calloc(1, sizeof(*ctx));
5039 	if (ctx == NULL) {
5040 		SPDK_ERRLOG("Failed to alloc context.\n");
5041 		rc = -ENOMEM;
5042 		goto err_alloc;
5043 	}
5044 
5045 	ctx->cb_fn = cb_fn;
5046 	ctx->cb_arg = cb_arg;
5047 
5048 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5049 	if (rc != 0) {
5050 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5051 		goto err_open;
5052 	}
5053 
5054 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5055 
5056 	if (bdev->module != &nvme_if) {
5057 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5058 		rc = -ENODEV;
5059 		goto err_bdev;
5060 	}
5061 
5062 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5063 
5064 	pthread_mutex_lock(&nbdev->mutex);
5065 
5066 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
5067 	if (ctx->nvme_ns == NULL) {
5068 		pthread_mutex_unlock(&nbdev->mutex);
5069 
5070 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
5071 		rc = -ENODEV;
5072 		goto err_bdev;
5073 	}
5074 
5075 	pthread_mutex_unlock(&nbdev->mutex);
5076 
5077 	spdk_for_each_channel(nbdev,
5078 			      _bdev_nvme_set_preferred_path,
5079 			      ctx,
5080 			      bdev_nvme_set_preferred_path_done);
5081 	return;
5082 
5083 err_bdev:
5084 	spdk_bdev_close(ctx->desc);
5085 err_open:
5086 	free(ctx);
5087 err_alloc:
5088 	cb_fn(cb_arg, rc);
5089 }
5090 
5091 struct bdev_nvme_set_multipath_policy_ctx {
5092 	struct spdk_bdev_desc *desc;
5093 	bdev_nvme_set_multipath_policy_cb cb_fn;
5094 	void *cb_arg;
5095 };
5096 
5097 static void
5098 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
5099 {
5100 	struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
5101 
5102 	assert(ctx != NULL);
5103 	assert(ctx->desc != NULL);
5104 	assert(ctx->cb_fn != NULL);
5105 
5106 	spdk_bdev_close(ctx->desc);
5107 
5108 	ctx->cb_fn(ctx->cb_arg, status);
5109 
5110 	free(ctx);
5111 }
5112 
5113 static void
5114 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
5115 {
5116 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
5117 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
5118 	struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
5119 
5120 	nbdev_ch->mp_policy = nbdev->mp_policy;
5121 	nbdev_ch->mp_selector = nbdev->mp_selector;
5122 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
5123 	bdev_nvme_clear_current_io_path(nbdev_ch);
5124 
5125 	spdk_for_each_channel_continue(i, 0);
5126 }
5127 
5128 void
5129 bdev_nvme_set_multipath_policy(const char *name, enum bdev_nvme_multipath_policy policy,
5130 			       enum bdev_nvme_multipath_selector selector, uint32_t rr_min_io,
5131 			       bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
5132 {
5133 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
5134 	struct spdk_bdev *bdev;
5135 	struct nvme_bdev *nbdev;
5136 	int rc;
5137 
5138 	assert(cb_fn != NULL);
5139 
5140 	switch (policy) {
5141 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
5142 		break;
5143 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
5144 		switch (selector) {
5145 		case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
5146 			if (rr_min_io == UINT32_MAX) {
5147 				rr_min_io = 1;
5148 			} else if (rr_min_io == 0) {
5149 				rc = -EINVAL;
5150 				goto exit;
5151 			}
5152 			break;
5153 		case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
5154 			break;
5155 		default:
5156 			rc = -EINVAL;
5157 			goto exit;
5158 		}
5159 		break;
5160 	default:
5161 		rc = -EINVAL;
5162 		goto exit;
5163 	}
5164 
5165 	ctx = calloc(1, sizeof(*ctx));
5166 	if (ctx == NULL) {
5167 		SPDK_ERRLOG("Failed to alloc context.\n");
5168 		rc = -ENOMEM;
5169 		goto exit;
5170 	}
5171 
5172 	ctx->cb_fn = cb_fn;
5173 	ctx->cb_arg = cb_arg;
5174 
5175 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5176 	if (rc != 0) {
5177 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5178 		rc = -ENODEV;
5179 		goto err_open;
5180 	}
5181 
5182 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5183 	if (bdev->module != &nvme_if) {
5184 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5185 		rc = -ENODEV;
5186 		goto err_module;
5187 	}
5188 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5189 
5190 	pthread_mutex_lock(&nbdev->mutex);
5191 	nbdev->mp_policy = policy;
5192 	nbdev->mp_selector = selector;
5193 	nbdev->rr_min_io = rr_min_io;
5194 	pthread_mutex_unlock(&nbdev->mutex);
5195 
5196 	spdk_for_each_channel(nbdev,
5197 			      _bdev_nvme_set_multipath_policy,
5198 			      ctx,
5199 			      bdev_nvme_set_multipath_policy_done);
5200 	return;
5201 
5202 err_module:
5203 	spdk_bdev_close(ctx->desc);
5204 err_open:
5205 	free(ctx);
5206 exit:
5207 	cb_fn(cb_arg, rc);
5208 }
5209 
5210 static void
5211 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5212 {
5213 	struct nvme_ctrlr *nvme_ctrlr		= arg;
5214 	union spdk_nvme_async_event_completion	event;
5215 
5216 	if (spdk_nvme_cpl_is_error(cpl)) {
5217 		SPDK_WARNLOG("AER request execute failed\n");
5218 		return;
5219 	}
5220 
5221 	event.raw = cpl->cdw0;
5222 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5223 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
5224 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
5225 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5226 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
5227 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
5228 	}
5229 }
5230 
5231 static void
5232 free_nvme_async_probe_ctx(struct nvme_async_probe_ctx *ctx)
5233 {
5234 	spdk_keyring_put_key(ctx->drv_opts.tls_psk);
5235 	spdk_keyring_put_key(ctx->drv_opts.dhchap_key);
5236 	spdk_keyring_put_key(ctx->drv_opts.dhchap_ctrlr_key);
5237 	free(ctx);
5238 }
5239 
5240 static void
5241 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, int rc)
5242 {
5243 	if (ctx->cb_fn) {
5244 		ctx->cb_fn(ctx->cb_ctx, ctx->reported_bdevs, rc);
5245 	}
5246 
5247 	ctx->namespaces_populated = true;
5248 	if (ctx->probe_done) {
5249 		/* The probe was already completed, so we need to free the context
5250 		 * here.  This can happen for cases like OCSSD, where we need to
5251 		 * send additional commands to the SSD after attach.
5252 		 */
5253 		free_nvme_async_probe_ctx(ctx);
5254 	}
5255 }
5256 
5257 static int
5258 bdev_nvme_remove_poller(void *ctx)
5259 {
5260 	struct spdk_nvme_transport_id trid_pcie;
5261 
5262 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5263 		spdk_poller_unregister(&g_hotplug_poller);
5264 		return SPDK_POLLER_IDLE;
5265 	}
5266 
5267 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5268 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5269 
5270 	if (spdk_nvme_scan_attached(&trid_pcie)) {
5271 		SPDK_ERRLOG_RATELIMIT("spdk_nvme_scan_attached() failed\n");
5272 	}
5273 
5274 	return SPDK_POLLER_BUSY;
5275 }
5276 
5277 static void
5278 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
5279 		       struct nvme_async_probe_ctx *ctx)
5280 {
5281 	spdk_io_device_register(nvme_ctrlr,
5282 				bdev_nvme_create_ctrlr_channel_cb,
5283 				bdev_nvme_destroy_ctrlr_channel_cb,
5284 				sizeof(struct nvme_ctrlr_channel),
5285 				nvme_ctrlr->nbdev_ctrlr->name);
5286 
5287 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
5288 
5289 	if (g_hotplug_poller == NULL) {
5290 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_remove_poller, NULL,
5291 							NVME_HOTPLUG_POLL_PERIOD_DEFAULT);
5292 	}
5293 }
5294 
5295 static void
5296 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
5297 {
5298 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
5299 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
5300 
5301 	nvme_ctrlr->probe_ctx = NULL;
5302 
5303 	if (spdk_nvme_cpl_is_error(cpl)) {
5304 		nvme_ctrlr_delete(nvme_ctrlr);
5305 
5306 		if (ctx != NULL) {
5307 			ctx->reported_bdevs = 0;
5308 			populate_namespaces_cb(ctx, -1);
5309 		}
5310 		return;
5311 	}
5312 
5313 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5314 }
5315 
5316 static int
5317 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
5318 			     struct nvme_async_probe_ctx *ctx)
5319 {
5320 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5321 	const struct spdk_nvme_ctrlr_data *cdata;
5322 	uint32_t ana_log_page_size;
5323 
5324 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5325 
5326 	/* Set buffer size enough to include maximum number of allowed namespaces. */
5327 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5328 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
5329 			    sizeof(uint32_t);
5330 
5331 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
5332 						SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
5333 	if (nvme_ctrlr->ana_log_page == NULL) {
5334 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
5335 		return -ENXIO;
5336 	}
5337 
5338 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
5339 	 * Hence copy each descriptor to a temporary area when parsing it.
5340 	 *
5341 	 * Allocate a buffer whose size is as large as ANA log page buffer because
5342 	 * we do not know the size of a descriptor until actually reading it.
5343 	 */
5344 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
5345 	if (nvme_ctrlr->copied_ana_desc == NULL) {
5346 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
5347 		return -ENOMEM;
5348 	}
5349 
5350 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
5351 
5352 	nvme_ctrlr->probe_ctx = ctx;
5353 
5354 	/* Then, set the read size only to include the current active namespaces. */
5355 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5356 
5357 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5358 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5359 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5360 		return -EINVAL;
5361 	}
5362 
5363 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
5364 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5365 						SPDK_NVME_GLOBAL_NS_TAG,
5366 						nvme_ctrlr->ana_log_page,
5367 						ana_log_page_size, 0,
5368 						nvme_ctrlr_init_ana_log_page_done,
5369 						nvme_ctrlr);
5370 }
5371 
5372 /* hostnqn and subnqn were already verified before attaching a controller.
5373  * Hence check only the multipath capability and cntlid here.
5374  */
5375 static bool
5376 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
5377 {
5378 	struct nvme_ctrlr *tmp;
5379 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
5380 
5381 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5382 
5383 	if (!cdata->cmic.multi_ctrlr) {
5384 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5385 		return false;
5386 	}
5387 
5388 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
5389 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
5390 
5391 		if (!tmp_cdata->cmic.multi_ctrlr) {
5392 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5393 			return false;
5394 		}
5395 		if (cdata->cntlid == tmp_cdata->cntlid) {
5396 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
5397 			return false;
5398 		}
5399 	}
5400 
5401 	return true;
5402 }
5403 
5404 static int
5405 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
5406 {
5407 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5408 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5409 	int rc = 0;
5410 
5411 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5412 
5413 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5414 	if (nbdev_ctrlr != NULL) {
5415 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
5416 			rc = -EINVAL;
5417 			goto exit;
5418 		}
5419 	} else {
5420 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
5421 		if (nbdev_ctrlr == NULL) {
5422 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
5423 			rc = -ENOMEM;
5424 			goto exit;
5425 		}
5426 		nbdev_ctrlr->name = strdup(name);
5427 		if (nbdev_ctrlr->name == NULL) {
5428 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
5429 			free(nbdev_ctrlr);
5430 			goto exit;
5431 		}
5432 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
5433 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
5434 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
5435 	}
5436 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
5437 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
5438 exit:
5439 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5440 	return rc;
5441 }
5442 
5443 static int
5444 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
5445 		  const char *name,
5446 		  const struct spdk_nvme_transport_id *trid,
5447 		  struct nvme_async_probe_ctx *ctx)
5448 {
5449 	struct nvme_ctrlr *nvme_ctrlr;
5450 	struct nvme_path_id *path_id;
5451 	const struct spdk_nvme_ctrlr_data *cdata;
5452 	int rc;
5453 
5454 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
5455 	if (nvme_ctrlr == NULL) {
5456 		SPDK_ERRLOG("Failed to allocate device struct\n");
5457 		return -ENOMEM;
5458 	}
5459 
5460 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
5461 	if (rc != 0) {
5462 		free(nvme_ctrlr);
5463 		return rc;
5464 	}
5465 
5466 	TAILQ_INIT(&nvme_ctrlr->trids);
5467 	RB_INIT(&nvme_ctrlr->namespaces);
5468 
5469 	/* Get another reference to the key, so the first one can be released from probe_ctx */
5470 	if (ctx != NULL) {
5471 		if (ctx->drv_opts.tls_psk != NULL) {
5472 			nvme_ctrlr->psk = spdk_keyring_get_key(
5473 						  spdk_key_get_name(ctx->drv_opts.tls_psk));
5474 			if (nvme_ctrlr->psk == NULL) {
5475 				/* Could only happen if the key was removed in the meantime */
5476 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5477 					    spdk_key_get_name(ctx->drv_opts.tls_psk));
5478 				rc = -ENOKEY;
5479 				goto err;
5480 			}
5481 		}
5482 
5483 		if (ctx->drv_opts.dhchap_key != NULL) {
5484 			nvme_ctrlr->dhchap_key = spdk_keyring_get_key(
5485 							 spdk_key_get_name(ctx->drv_opts.dhchap_key));
5486 			if (nvme_ctrlr->dhchap_key == NULL) {
5487 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5488 					    spdk_key_get_name(ctx->drv_opts.dhchap_key));
5489 				rc = -ENOKEY;
5490 				goto err;
5491 			}
5492 		}
5493 
5494 		if (ctx->drv_opts.dhchap_ctrlr_key != NULL) {
5495 			nvme_ctrlr->dhchap_ctrlr_key =
5496 				spdk_keyring_get_key(
5497 					spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5498 			if (nvme_ctrlr->dhchap_ctrlr_key == NULL) {
5499 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5500 					    spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5501 				rc = -ENOKEY;
5502 				goto err;
5503 			}
5504 		}
5505 	}
5506 
5507 	path_id = calloc(1, sizeof(*path_id));
5508 	if (path_id == NULL) {
5509 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
5510 		rc = -ENOMEM;
5511 		goto err;
5512 	}
5513 
5514 	path_id->trid = *trid;
5515 	if (ctx != NULL) {
5516 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
5517 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
5518 	}
5519 	nvme_ctrlr->active_path_id = path_id;
5520 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
5521 
5522 	nvme_ctrlr->thread = spdk_get_thread();
5523 	nvme_ctrlr->ctrlr = ctrlr;
5524 	nvme_ctrlr->ref = 1;
5525 
5526 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
5527 		SPDK_ERRLOG("OCSSDs are not supported");
5528 		rc = -ENOTSUP;
5529 		goto err;
5530 	}
5531 
5532 	if (ctx != NULL) {
5533 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
5534 	} else {
5535 		bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
5536 	}
5537 
5538 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
5539 					  g_opts.nvme_adminq_poll_period_us);
5540 
5541 	if (g_opts.timeout_us > 0) {
5542 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
5543 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
5544 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
5545 					  g_opts.timeout_us : g_opts.timeout_admin_us;
5546 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
5547 				adm_timeout_us, timeout_cb, nvme_ctrlr);
5548 	}
5549 
5550 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
5551 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
5552 
5553 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
5554 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
5555 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
5556 	}
5557 
5558 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
5559 	if (rc != 0) {
5560 		goto err;
5561 	}
5562 
5563 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5564 
5565 	if (cdata->cmic.ana_reporting) {
5566 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
5567 		if (rc == 0) {
5568 			return 0;
5569 		}
5570 	} else {
5571 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5572 		return 0;
5573 	}
5574 
5575 err:
5576 	nvme_ctrlr_delete(nvme_ctrlr);
5577 	return rc;
5578 }
5579 
5580 void
5581 bdev_nvme_get_default_ctrlr_opts(struct nvme_ctrlr_opts *opts)
5582 {
5583 	opts->prchk_flags = 0;
5584 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
5585 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
5586 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
5587 }
5588 
5589 static void
5590 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5591 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
5592 {
5593 	char *name;
5594 
5595 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
5596 	if (!name) {
5597 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
5598 		return;
5599 	}
5600 
5601 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
5602 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
5603 	} else {
5604 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
5605 	}
5606 
5607 	free(name);
5608 }
5609 
5610 static void
5611 _nvme_ctrlr_destruct(void *ctx)
5612 {
5613 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5614 
5615 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
5616 	nvme_ctrlr_release(nvme_ctrlr);
5617 }
5618 
5619 static int
5620 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5621 {
5622 	struct nvme_probe_skip_entry *entry;
5623 
5624 	/* The controller's destruction was already started */
5625 	if (nvme_ctrlr->destruct) {
5626 		return -EALREADY;
5627 	}
5628 
5629 	if (!hotplug &&
5630 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
5631 		entry = calloc(1, sizeof(*entry));
5632 		if (!entry) {
5633 			return -ENOMEM;
5634 		}
5635 		entry->trid = nvme_ctrlr->active_path_id->trid;
5636 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
5637 	}
5638 
5639 	nvme_ctrlr->destruct = true;
5640 	return 0;
5641 }
5642 
5643 static int
5644 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5645 {
5646 	int rc;
5647 
5648 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5649 	rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug);
5650 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5651 
5652 	if (rc == 0) {
5653 		_nvme_ctrlr_destruct(nvme_ctrlr);
5654 	} else if (rc == -EALREADY) {
5655 		rc = 0;
5656 	}
5657 
5658 	return rc;
5659 }
5660 
5661 static void
5662 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
5663 {
5664 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
5665 
5666 	bdev_nvme_delete_ctrlr(nvme_ctrlr, true);
5667 }
5668 
5669 static int
5670 bdev_nvme_hotplug_probe(void *arg)
5671 {
5672 	if (g_hotplug_probe_ctx == NULL) {
5673 		spdk_poller_unregister(&g_hotplug_probe_poller);
5674 		return SPDK_POLLER_IDLE;
5675 	}
5676 
5677 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
5678 		g_hotplug_probe_ctx = NULL;
5679 		spdk_poller_unregister(&g_hotplug_probe_poller);
5680 	}
5681 
5682 	return SPDK_POLLER_BUSY;
5683 }
5684 
5685 static int
5686 bdev_nvme_hotplug(void *arg)
5687 {
5688 	struct spdk_nvme_transport_id trid_pcie;
5689 
5690 	if (g_hotplug_probe_ctx) {
5691 		return SPDK_POLLER_BUSY;
5692 	}
5693 
5694 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5695 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5696 
5697 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
5698 			      hotplug_probe_cb, attach_cb, NULL);
5699 
5700 	if (g_hotplug_probe_ctx) {
5701 		assert(g_hotplug_probe_poller == NULL);
5702 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
5703 	}
5704 
5705 	return SPDK_POLLER_BUSY;
5706 }
5707 
5708 void
5709 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
5710 {
5711 	*opts = g_opts;
5712 }
5713 
5714 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5715 		uint32_t reconnect_delay_sec,
5716 		uint32_t fast_io_fail_timeout_sec);
5717 
5718 static int
5719 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
5720 {
5721 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
5722 		/* Can't set timeout_admin_us without also setting timeout_us */
5723 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
5724 		return -EINVAL;
5725 	}
5726 
5727 	if (opts->bdev_retry_count < -1) {
5728 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
5729 		return -EINVAL;
5730 	}
5731 
5732 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
5733 			opts->reconnect_delay_sec,
5734 			opts->fast_io_fail_timeout_sec)) {
5735 		return -EINVAL;
5736 	}
5737 
5738 	return 0;
5739 }
5740 
5741 int
5742 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
5743 {
5744 	int ret;
5745 
5746 	ret = bdev_nvme_validate_opts(opts);
5747 	if (ret) {
5748 		SPDK_WARNLOG("Failed to set nvme opts.\n");
5749 		return ret;
5750 	}
5751 
5752 	if (g_bdev_nvme_init_thread != NULL) {
5753 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5754 			return -EPERM;
5755 		}
5756 	}
5757 
5758 	if (opts->rdma_srq_size != 0 ||
5759 	    opts->rdma_max_cq_size != 0 ||
5760 	    opts->rdma_cm_event_timeout_ms != 0) {
5761 		struct spdk_nvme_transport_opts drv_opts;
5762 
5763 		spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
5764 		if (opts->rdma_srq_size != 0) {
5765 			drv_opts.rdma_srq_size = opts->rdma_srq_size;
5766 		}
5767 		if (opts->rdma_max_cq_size != 0) {
5768 			drv_opts.rdma_max_cq_size = opts->rdma_max_cq_size;
5769 		}
5770 		if (opts->rdma_cm_event_timeout_ms != 0) {
5771 			drv_opts.rdma_cm_event_timeout_ms = opts->rdma_cm_event_timeout_ms;
5772 		}
5773 
5774 		ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
5775 		if (ret) {
5776 			SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
5777 			return ret;
5778 		}
5779 	}
5780 
5781 	g_opts = *opts;
5782 
5783 	return 0;
5784 }
5785 
5786 struct set_nvme_hotplug_ctx {
5787 	uint64_t period_us;
5788 	bool enabled;
5789 	spdk_msg_fn fn;
5790 	void *fn_ctx;
5791 };
5792 
5793 static void
5794 set_nvme_hotplug_period_cb(void *_ctx)
5795 {
5796 	struct set_nvme_hotplug_ctx *ctx = _ctx;
5797 
5798 	spdk_poller_unregister(&g_hotplug_poller);
5799 	if (ctx->enabled) {
5800 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
5801 	} else {
5802 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_remove_poller, NULL,
5803 							NVME_HOTPLUG_POLL_PERIOD_DEFAULT);
5804 	}
5805 
5806 	g_nvme_hotplug_poll_period_us = ctx->period_us;
5807 	g_nvme_hotplug_enabled = ctx->enabled;
5808 	if (ctx->fn) {
5809 		ctx->fn(ctx->fn_ctx);
5810 	}
5811 
5812 	free(ctx);
5813 }
5814 
5815 int
5816 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
5817 {
5818 	struct set_nvme_hotplug_ctx *ctx;
5819 
5820 	if (enabled == true && !spdk_process_is_primary()) {
5821 		return -EPERM;
5822 	}
5823 
5824 	ctx = calloc(1, sizeof(*ctx));
5825 	if (ctx == NULL) {
5826 		return -ENOMEM;
5827 	}
5828 
5829 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
5830 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
5831 	ctx->enabled = enabled;
5832 	ctx->fn = cb;
5833 	ctx->fn_ctx = cb_ctx;
5834 
5835 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
5836 	return 0;
5837 }
5838 
5839 static void
5840 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
5841 				    struct nvme_async_probe_ctx *ctx)
5842 {
5843 	struct nvme_ns	*nvme_ns;
5844 	struct nvme_bdev	*nvme_bdev;
5845 	size_t			j;
5846 
5847 	assert(nvme_ctrlr != NULL);
5848 
5849 	if (ctx->names == NULL) {
5850 		ctx->reported_bdevs = 0;
5851 		populate_namespaces_cb(ctx, 0);
5852 		return;
5853 	}
5854 
5855 	/*
5856 	 * Report the new bdevs that were created in this call.
5857 	 * There can be more than one bdev per NVMe controller.
5858 	 */
5859 	j = 0;
5860 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5861 	while (nvme_ns != NULL) {
5862 		nvme_bdev = nvme_ns->bdev;
5863 		if (j < ctx->max_bdevs) {
5864 			ctx->names[j] = nvme_bdev->disk.name;
5865 			j++;
5866 		} else {
5867 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
5868 				    ctx->max_bdevs);
5869 			ctx->reported_bdevs = 0;
5870 			populate_namespaces_cb(ctx, -ERANGE);
5871 			return;
5872 		}
5873 
5874 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5875 	}
5876 
5877 	ctx->reported_bdevs = j;
5878 	populate_namespaces_cb(ctx, 0);
5879 }
5880 
5881 static int
5882 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5883 			       struct spdk_nvme_ctrlr *new_ctrlr,
5884 			       struct spdk_nvme_transport_id *trid)
5885 {
5886 	struct nvme_path_id *tmp_trid;
5887 
5888 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5889 		SPDK_ERRLOG("PCIe failover is not supported.\n");
5890 		return -ENOTSUP;
5891 	}
5892 
5893 	/* Currently we only support failover to the same transport type. */
5894 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
5895 		SPDK_WARNLOG("Failover from trtype: %s to a different trtype: %s is not supported currently\n",
5896 			     spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
5897 			     spdk_nvme_transport_id_trtype_str(trid->trtype));
5898 		return -EINVAL;
5899 	}
5900 
5901 
5902 	/* Currently we only support failover to the same NQN. */
5903 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
5904 		SPDK_WARNLOG("Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
5905 			     nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
5906 		return -EINVAL;
5907 	}
5908 
5909 	/* Skip all the other checks if we've already registered this path. */
5910 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
5911 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
5912 			SPDK_WARNLOG("This path (traddr: %s subnqn: %s) is already registered\n", trid->traddr,
5913 				     trid->subnqn);
5914 			return -EALREADY;
5915 		}
5916 	}
5917 
5918 	return 0;
5919 }
5920 
5921 static int
5922 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
5923 				    struct spdk_nvme_ctrlr *new_ctrlr)
5924 {
5925 	struct nvme_ns *nvme_ns;
5926 	struct spdk_nvme_ns *new_ns;
5927 
5928 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5929 	while (nvme_ns != NULL) {
5930 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
5931 		assert(new_ns != NULL);
5932 
5933 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
5934 			return -EINVAL;
5935 		}
5936 
5937 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5938 	}
5939 
5940 	return 0;
5941 }
5942 
5943 static int
5944 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5945 			      struct spdk_nvme_transport_id *trid)
5946 {
5947 	struct nvme_path_id *active_id, *new_trid, *tmp_trid;
5948 
5949 	new_trid = calloc(1, sizeof(*new_trid));
5950 	if (new_trid == NULL) {
5951 		return -ENOMEM;
5952 	}
5953 	new_trid->trid = *trid;
5954 
5955 	active_id = nvme_ctrlr->active_path_id;
5956 	assert(active_id != NULL);
5957 	assert(active_id == TAILQ_FIRST(&nvme_ctrlr->trids));
5958 
5959 	/* Skip the active trid not to replace it until it is failed. */
5960 	tmp_trid = TAILQ_NEXT(active_id, link);
5961 	if (tmp_trid == NULL) {
5962 		goto add_tail;
5963 	}
5964 
5965 	/* It means the trid is faled if its last failed time is non-zero.
5966 	 * Insert the new alternate trid before any failed trid.
5967 	 */
5968 	TAILQ_FOREACH_FROM(tmp_trid, &nvme_ctrlr->trids, link) {
5969 		if (tmp_trid->last_failed_tsc != 0) {
5970 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
5971 			return 0;
5972 		}
5973 	}
5974 
5975 add_tail:
5976 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
5977 	return 0;
5978 }
5979 
5980 /* This is the case that a secondary path is added to an existing
5981  * nvme_ctrlr for failover. After checking if it can access the same
5982  * namespaces as the primary path, it is disconnected until failover occurs.
5983  */
5984 static int
5985 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5986 			     struct spdk_nvme_ctrlr *new_ctrlr,
5987 			     struct spdk_nvme_transport_id *trid)
5988 {
5989 	int rc;
5990 
5991 	assert(nvme_ctrlr != NULL);
5992 
5993 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5994 
5995 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
5996 	if (rc != 0) {
5997 		goto exit;
5998 	}
5999 
6000 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
6001 	if (rc != 0) {
6002 		goto exit;
6003 	}
6004 
6005 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
6006 
6007 exit:
6008 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6009 
6010 	spdk_nvme_detach(new_ctrlr);
6011 
6012 	return rc;
6013 }
6014 
6015 static void
6016 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6017 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
6018 {
6019 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6020 	struct nvme_async_probe_ctx *ctx;
6021 	int rc;
6022 
6023 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
6024 	ctx->ctrlr_attached = true;
6025 
6026 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
6027 	if (rc != 0) {
6028 		ctx->reported_bdevs = 0;
6029 		populate_namespaces_cb(ctx, rc);
6030 	}
6031 }
6032 
6033 static void
6034 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6035 			struct spdk_nvme_ctrlr *ctrlr,
6036 			const struct spdk_nvme_ctrlr_opts *opts)
6037 {
6038 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6039 	struct nvme_ctrlr *nvme_ctrlr;
6040 	struct nvme_async_probe_ctx *ctx;
6041 	int rc;
6042 
6043 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
6044 	ctx->ctrlr_attached = true;
6045 
6046 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
6047 	if (nvme_ctrlr) {
6048 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
6049 	} else {
6050 		rc = -ENODEV;
6051 	}
6052 
6053 	ctx->reported_bdevs = 0;
6054 	populate_namespaces_cb(ctx, rc);
6055 }
6056 
6057 static int
6058 bdev_nvme_async_poll(void *arg)
6059 {
6060 	struct nvme_async_probe_ctx	*ctx = arg;
6061 	int				rc;
6062 
6063 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
6064 	if (spdk_unlikely(rc != -EAGAIN)) {
6065 		ctx->probe_done = true;
6066 		spdk_poller_unregister(&ctx->poller);
6067 		if (!ctx->ctrlr_attached) {
6068 			/* The probe is done, but no controller was attached.
6069 			 * That means we had a failure, so report -EIO back to
6070 			 * the caller (usually the RPC). populate_namespaces_cb()
6071 			 * will take care of freeing the nvme_async_probe_ctx.
6072 			 */
6073 			ctx->reported_bdevs = 0;
6074 			populate_namespaces_cb(ctx, -EIO);
6075 		} else if (ctx->namespaces_populated) {
6076 			/* The namespaces for the attached controller were all
6077 			 * populated and the response was already sent to the
6078 			 * caller (usually the RPC).  So free the context here.
6079 			 */
6080 			free_nvme_async_probe_ctx(ctx);
6081 		}
6082 	}
6083 
6084 	return SPDK_POLLER_BUSY;
6085 }
6086 
6087 static bool
6088 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
6089 		uint32_t reconnect_delay_sec,
6090 		uint32_t fast_io_fail_timeout_sec)
6091 {
6092 	if (ctrlr_loss_timeout_sec < -1) {
6093 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
6094 		return false;
6095 	} else if (ctrlr_loss_timeout_sec == -1) {
6096 		if (reconnect_delay_sec == 0) {
6097 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6098 			return false;
6099 		} else if (fast_io_fail_timeout_sec != 0 &&
6100 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
6101 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
6102 			return false;
6103 		}
6104 	} else if (ctrlr_loss_timeout_sec != 0) {
6105 		if (reconnect_delay_sec == 0) {
6106 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6107 			return false;
6108 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6109 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
6110 			return false;
6111 		} else if (fast_io_fail_timeout_sec != 0) {
6112 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
6113 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
6114 				return false;
6115 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6116 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
6117 				return false;
6118 			}
6119 		}
6120 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
6121 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
6122 		return false;
6123 	}
6124 
6125 	return true;
6126 }
6127 
6128 static int
6129 bdev_nvme_load_psk(const char *fname, char *buf, size_t bufsz)
6130 {
6131 	FILE *psk_file;
6132 	struct stat statbuf;
6133 	int rc;
6134 #define TCP_PSK_INVALID_PERMISSIONS 0177
6135 
6136 	if (stat(fname, &statbuf) != 0) {
6137 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
6138 		return -EACCES;
6139 	}
6140 
6141 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
6142 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
6143 		return -EPERM;
6144 	}
6145 	if ((size_t)statbuf.st_size >= bufsz) {
6146 		SPDK_ERRLOG("Invalid PSK: too long\n");
6147 		return -EINVAL;
6148 	}
6149 	psk_file = fopen(fname, "r");
6150 	if (psk_file == NULL) {
6151 		SPDK_ERRLOG("Could not open PSK file\n");
6152 		return -EINVAL;
6153 	}
6154 
6155 	memset(buf, 0, bufsz);
6156 	rc = fread(buf, 1, statbuf.st_size, psk_file);
6157 	if (rc != statbuf.st_size) {
6158 		SPDK_ERRLOG("Failed to read PSK\n");
6159 		fclose(psk_file);
6160 		return -EINVAL;
6161 	}
6162 
6163 	fclose(psk_file);
6164 	return 0;
6165 }
6166 
6167 int
6168 bdev_nvme_create(struct spdk_nvme_transport_id *trid,
6169 		 const char *base_name,
6170 		 const char **names,
6171 		 uint32_t count,
6172 		 spdk_bdev_create_nvme_fn cb_fn,
6173 		 void *cb_ctx,
6174 		 struct spdk_nvme_ctrlr_opts *drv_opts,
6175 		 struct nvme_ctrlr_opts *bdev_opts,
6176 		 bool multipath)
6177 {
6178 	struct nvme_probe_skip_entry *entry, *tmp;
6179 	struct nvme_async_probe_ctx *ctx;
6180 	spdk_nvme_attach_cb attach_cb;
6181 	int rc, len;
6182 
6183 	/* TODO expand this check to include both the host and target TRIDs.
6184 	 * Only if both are the same should we fail.
6185 	 */
6186 	if (nvme_ctrlr_get(trid, drv_opts->hostnqn) != NULL) {
6187 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s, hostnqn: %s) "
6188 			    "already exists.\n", trid->traddr, drv_opts->hostnqn);
6189 		return -EEXIST;
6190 	}
6191 
6192 	len = strnlen(base_name, SPDK_CONTROLLER_NAME_MAX);
6193 
6194 	if (len == 0 || len == SPDK_CONTROLLER_NAME_MAX) {
6195 		SPDK_ERRLOG("controller name must be between 1 and %d characters\n", SPDK_CONTROLLER_NAME_MAX - 1);
6196 		return -EINVAL;
6197 	}
6198 
6199 	if (bdev_opts != NULL &&
6200 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
6201 			    bdev_opts->reconnect_delay_sec,
6202 			    bdev_opts->fast_io_fail_timeout_sec)) {
6203 		return -EINVAL;
6204 	}
6205 
6206 	ctx = calloc(1, sizeof(*ctx));
6207 	if (!ctx) {
6208 		return -ENOMEM;
6209 	}
6210 	ctx->base_name = base_name;
6211 	ctx->names = names;
6212 	ctx->max_bdevs = count;
6213 	ctx->cb_fn = cb_fn;
6214 	ctx->cb_ctx = cb_ctx;
6215 	ctx->trid = *trid;
6216 
6217 	if (bdev_opts) {
6218 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6219 	} else {
6220 		bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
6221 	}
6222 
6223 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6224 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
6225 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
6226 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
6227 				free(entry);
6228 				break;
6229 			}
6230 		}
6231 	}
6232 
6233 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6234 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
6235 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
6236 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
6237 	ctx->drv_opts.disable_read_ana_log_page = true;
6238 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
6239 
6240 	if (ctx->bdev_opts.psk[0] != '\0') {
6241 		/* Try to use the keyring first */
6242 		ctx->drv_opts.tls_psk = spdk_keyring_get_key(ctx->bdev_opts.psk);
6243 		if (ctx->drv_opts.tls_psk == NULL) {
6244 			rc = bdev_nvme_load_psk(ctx->bdev_opts.psk,
6245 						ctx->drv_opts.psk, sizeof(ctx->drv_opts.psk));
6246 			if (rc != 0) {
6247 				SPDK_ERRLOG("Could not load PSK from %s\n", ctx->bdev_opts.psk);
6248 				free_nvme_async_probe_ctx(ctx);
6249 				return rc;
6250 			}
6251 		}
6252 	}
6253 
6254 	if (ctx->bdev_opts.dhchap_key != NULL) {
6255 		ctx->drv_opts.dhchap_key = spdk_keyring_get_key(ctx->bdev_opts.dhchap_key);
6256 		if (ctx->drv_opts.dhchap_key == NULL) {
6257 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP key: %s\n",
6258 				    ctx->bdev_opts.dhchap_key);
6259 			free_nvme_async_probe_ctx(ctx);
6260 			return -ENOKEY;
6261 		}
6262 
6263 		ctx->drv_opts.dhchap_digests = g_opts.dhchap_digests;
6264 		ctx->drv_opts.dhchap_dhgroups = g_opts.dhchap_dhgroups;
6265 	}
6266 	if (ctx->bdev_opts.dhchap_ctrlr_key != NULL) {
6267 		ctx->drv_opts.dhchap_ctrlr_key =
6268 			spdk_keyring_get_key(ctx->bdev_opts.dhchap_ctrlr_key);
6269 		if (ctx->drv_opts.dhchap_ctrlr_key == NULL) {
6270 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP controller key: %s\n",
6271 				    ctx->bdev_opts.dhchap_ctrlr_key);
6272 			free_nvme_async_probe_ctx(ctx);
6273 			return -ENOKEY;
6274 		}
6275 	}
6276 
6277 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
6278 		attach_cb = connect_attach_cb;
6279 	} else {
6280 		attach_cb = connect_set_failover_cb;
6281 	}
6282 
6283 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
6284 	if (ctx->probe_ctx == NULL) {
6285 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
6286 		free_nvme_async_probe_ctx(ctx);
6287 		return -ENODEV;
6288 	}
6289 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
6290 
6291 	return 0;
6292 }
6293 
6294 struct bdev_nvme_delete_ctx {
6295 	char                        *name;
6296 	struct nvme_path_id         path_id;
6297 	bdev_nvme_delete_done_fn    delete_done;
6298 	void                        *delete_done_ctx;
6299 	uint64_t                    timeout_ticks;
6300 	struct spdk_poller          *poller;
6301 };
6302 
6303 static void
6304 free_bdev_nvme_delete_ctx(struct bdev_nvme_delete_ctx *ctx)
6305 {
6306 	if (ctx != NULL) {
6307 		free(ctx->name);
6308 		free(ctx);
6309 	}
6310 }
6311 
6312 static bool
6313 nvme_path_id_compare(struct nvme_path_id *p, const struct nvme_path_id *path_id)
6314 {
6315 	if (path_id->trid.trtype != 0) {
6316 		if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
6317 			if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
6318 				return false;
6319 			}
6320 		} else {
6321 			if (path_id->trid.trtype != p->trid.trtype) {
6322 				return false;
6323 			}
6324 		}
6325 	}
6326 
6327 	if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
6328 		if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
6329 			return false;
6330 		}
6331 	}
6332 
6333 	if (path_id->trid.adrfam != 0) {
6334 		if (path_id->trid.adrfam != p->trid.adrfam) {
6335 			return false;
6336 		}
6337 	}
6338 
6339 	if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
6340 		if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
6341 			return false;
6342 		}
6343 	}
6344 
6345 	if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
6346 		if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
6347 			return false;
6348 		}
6349 	}
6350 
6351 	if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
6352 		if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
6353 			return false;
6354 		}
6355 	}
6356 
6357 	if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
6358 		if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
6359 			return false;
6360 		}
6361 	}
6362 
6363 	return true;
6364 }
6365 
6366 static bool
6367 nvme_path_id_exists(const char *name, const struct nvme_path_id *path_id)
6368 {
6369 	struct nvme_bdev_ctrlr  *nbdev_ctrlr;
6370 	struct nvme_ctrlr       *ctrlr;
6371 	struct nvme_path_id     *p;
6372 
6373 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6374 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6375 	if (!nbdev_ctrlr) {
6376 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6377 		return false;
6378 	}
6379 
6380 	TAILQ_FOREACH(ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6381 		pthread_mutex_lock(&ctrlr->mutex);
6382 		TAILQ_FOREACH(p, &ctrlr->trids, link) {
6383 			if (nvme_path_id_compare(p, path_id)) {
6384 				pthread_mutex_unlock(&ctrlr->mutex);
6385 				pthread_mutex_unlock(&g_bdev_nvme_mutex);
6386 				return true;
6387 			}
6388 		}
6389 		pthread_mutex_unlock(&ctrlr->mutex);
6390 	}
6391 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6392 
6393 	return false;
6394 }
6395 
6396 static int
6397 bdev_nvme_delete_complete_poll(void *arg)
6398 {
6399 	struct bdev_nvme_delete_ctx     *ctx = arg;
6400 	int                             rc = 0;
6401 
6402 	if (nvme_path_id_exists(ctx->name, &ctx->path_id)) {
6403 		if (ctx->timeout_ticks > spdk_get_ticks()) {
6404 			return SPDK_POLLER_BUSY;
6405 		}
6406 
6407 		SPDK_ERRLOG("NVMe path '%s' still exists after delete\n", ctx->name);
6408 		rc = -ETIMEDOUT;
6409 	}
6410 
6411 	spdk_poller_unregister(&ctx->poller);
6412 
6413 	ctx->delete_done(ctx->delete_done_ctx, rc);
6414 	free_bdev_nvme_delete_ctx(ctx);
6415 
6416 	return SPDK_POLLER_BUSY;
6417 }
6418 
6419 static int
6420 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id)
6421 {
6422 	struct nvme_path_id	*p, *t;
6423 	spdk_msg_fn		msg_fn;
6424 	int			rc = -ENXIO;
6425 
6426 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6427 
6428 	TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
6429 		if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) {
6430 			break;
6431 		}
6432 
6433 		if (!nvme_path_id_compare(p, path_id)) {
6434 			continue;
6435 		}
6436 
6437 		/* We are not using the specified path. */
6438 		TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
6439 		free(p);
6440 		rc = 0;
6441 	}
6442 
6443 	if (p == NULL || !nvme_path_id_compare(p, path_id)) {
6444 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
6445 		return rc;
6446 	}
6447 
6448 	/* If we made it here, then this path is a match! Now we need to remove it. */
6449 
6450 	/* This is the active path in use right now. The active path is always the first in the list. */
6451 	assert(p == nvme_ctrlr->active_path_id);
6452 
6453 	if (!TAILQ_NEXT(p, link)) {
6454 		/* The current path is the only path. */
6455 		msg_fn = _nvme_ctrlr_destruct;
6456 		rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false);
6457 	} else {
6458 		/* There is an alternative path. */
6459 		msg_fn = _bdev_nvme_reset_ctrlr;
6460 		rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, true);
6461 	}
6462 
6463 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6464 
6465 	if (rc == 0) {
6466 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
6467 	} else if (rc == -EALREADY) {
6468 		rc = 0;
6469 	}
6470 
6471 	return rc;
6472 }
6473 
6474 int
6475 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id,
6476 		 bdev_nvme_delete_done_fn delete_done, void *delete_done_ctx)
6477 {
6478 	struct nvme_bdev_ctrlr		*nbdev_ctrlr;
6479 	struct nvme_ctrlr		*nvme_ctrlr, *tmp_nvme_ctrlr;
6480 	struct bdev_nvme_delete_ctx     *ctx = NULL;
6481 	int				rc = -ENXIO, _rc;
6482 
6483 	if (name == NULL || path_id == NULL) {
6484 		rc = -EINVAL;
6485 		goto exit;
6486 	}
6487 
6488 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6489 
6490 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6491 	if (nbdev_ctrlr == NULL) {
6492 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6493 
6494 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
6495 		rc = -ENODEV;
6496 		goto exit;
6497 	}
6498 
6499 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
6500 		_rc = _bdev_nvme_delete(nvme_ctrlr, path_id);
6501 		if (_rc < 0 && _rc != -ENXIO) {
6502 			pthread_mutex_unlock(&g_bdev_nvme_mutex);
6503 			rc = _rc;
6504 			goto exit;
6505 		} else if (_rc == 0) {
6506 			/* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr
6507 			 * was deleted successfully. To remember the successful deletion,
6508 			 * overwrite rc only if _rc is zero.
6509 			 */
6510 			rc = 0;
6511 		}
6512 	}
6513 
6514 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6515 
6516 	if (rc != 0 || delete_done == NULL) {
6517 		goto exit;
6518 	}
6519 
6520 	ctx = calloc(1, sizeof(*ctx));
6521 	if (ctx == NULL) {
6522 		SPDK_ERRLOG("Failed to allocate context for bdev_nvme_delete\n");
6523 		rc = -ENOMEM;
6524 		goto exit;
6525 	}
6526 
6527 	ctx->name = strdup(name);
6528 	if (ctx->name == NULL) {
6529 		SPDK_ERRLOG("Failed to copy controller name for deletion\n");
6530 		rc = -ENOMEM;
6531 		goto exit;
6532 	}
6533 
6534 	ctx->delete_done = delete_done;
6535 	ctx->delete_done_ctx = delete_done_ctx;
6536 	ctx->path_id = *path_id;
6537 	ctx->timeout_ticks = spdk_get_ticks() + 10 * spdk_get_ticks_hz();
6538 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_delete_complete_poll, ctx, 1000);
6539 	if (ctx->poller == NULL) {
6540 		SPDK_ERRLOG("Failed to register bdev_nvme_delete poller\n");
6541 		rc = -ENOMEM;
6542 		goto exit;
6543 	}
6544 
6545 exit:
6546 	if (rc != 0) {
6547 		free_bdev_nvme_delete_ctx(ctx);
6548 	}
6549 
6550 	return rc;
6551 }
6552 
6553 #define DISCOVERY_INFOLOG(ctx, format, ...) \
6554 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6555 
6556 #define DISCOVERY_ERRLOG(ctx, format, ...) \
6557 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6558 
6559 struct discovery_entry_ctx {
6560 	char						name[128];
6561 	struct spdk_nvme_transport_id			trid;
6562 	struct spdk_nvme_ctrlr_opts			drv_opts;
6563 	struct spdk_nvmf_discovery_log_page_entry	entry;
6564 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
6565 	struct discovery_ctx				*ctx;
6566 };
6567 
6568 struct discovery_ctx {
6569 	char					*name;
6570 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
6571 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
6572 	void					*cb_ctx;
6573 	struct spdk_nvme_probe_ctx		*probe_ctx;
6574 	struct spdk_nvme_detach_ctx		*detach_ctx;
6575 	struct spdk_nvme_ctrlr			*ctrlr;
6576 	struct spdk_nvme_transport_id		trid;
6577 	struct discovery_entry_ctx		*entry_ctx_in_use;
6578 	struct spdk_poller			*poller;
6579 	struct spdk_nvme_ctrlr_opts		drv_opts;
6580 	struct nvme_ctrlr_opts			bdev_opts;
6581 	struct spdk_nvmf_discovery_log_page	*log_page;
6582 	TAILQ_ENTRY(discovery_ctx)		tailq;
6583 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
6584 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
6585 	int					rc;
6586 	bool					wait_for_attach;
6587 	uint64_t				timeout_ticks;
6588 	/* Denotes that the discovery service is being started. We're waiting
6589 	 * for the initial connection to the discovery controller to be
6590 	 * established and attach discovered NVM ctrlrs.
6591 	 */
6592 	bool					initializing;
6593 	/* Denotes if a discovery is currently in progress for this context.
6594 	 * That includes connecting to newly discovered subsystems.  Used to
6595 	 * ensure we do not start a new discovery until an existing one is
6596 	 * complete.
6597 	 */
6598 	bool					in_progress;
6599 
6600 	/* Denotes if another discovery is needed after the one in progress
6601 	 * completes.  Set when we receive an AER completion while a discovery
6602 	 * is already in progress.
6603 	 */
6604 	bool					pending;
6605 
6606 	/* Signal to the discovery context poller that it should stop the
6607 	 * discovery service, including detaching from the current discovery
6608 	 * controller.
6609 	 */
6610 	bool					stop;
6611 
6612 	struct spdk_thread			*calling_thread;
6613 	uint32_t				index;
6614 	uint32_t				attach_in_progress;
6615 	char					*hostnqn;
6616 
6617 	/* Denotes if the discovery service was started by the mdns discovery.
6618 	 */
6619 	bool					from_mdns_discovery_service;
6620 };
6621 
6622 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
6623 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
6624 
6625 static void get_discovery_log_page(struct discovery_ctx *ctx);
6626 
6627 static void
6628 free_discovery_ctx(struct discovery_ctx *ctx)
6629 {
6630 	free(ctx->log_page);
6631 	free(ctx->hostnqn);
6632 	free(ctx->name);
6633 	free(ctx);
6634 }
6635 
6636 static void
6637 discovery_complete(struct discovery_ctx *ctx)
6638 {
6639 	ctx->initializing = false;
6640 	ctx->in_progress = false;
6641 	if (ctx->pending) {
6642 		ctx->pending = false;
6643 		get_discovery_log_page(ctx);
6644 	}
6645 }
6646 
6647 static void
6648 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
6649 			       struct spdk_nvmf_discovery_log_page_entry *entry)
6650 {
6651 	char *space;
6652 
6653 	trid->trtype = entry->trtype;
6654 	trid->adrfam = entry->adrfam;
6655 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
6656 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
6657 	/* Because the source buffer (entry->subnqn) is longer than trid->subnqn, and
6658 	 * before call to this function trid->subnqn is zeroed out, we need
6659 	 * to copy sizeof(trid->subnqn) minus one byte to make sure the last character
6660 	 * remains 0. Then we can shorten the string (replace ' ' with 0) if required
6661 	 */
6662 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn) - 1);
6663 
6664 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
6665 	 * But the log page entries typically pad them with spaces, not zeroes.
6666 	 * So add a NULL terminator to each of these fields at the appropriate
6667 	 * location.
6668 	 */
6669 	space = strchr(trid->traddr, ' ');
6670 	if (space) {
6671 		*space = 0;
6672 	}
6673 	space = strchr(trid->trsvcid, ' ');
6674 	if (space) {
6675 		*space = 0;
6676 	}
6677 	space = strchr(trid->subnqn, ' ');
6678 	if (space) {
6679 		*space = 0;
6680 	}
6681 }
6682 
6683 static void
6684 _stop_discovery(void *_ctx)
6685 {
6686 	struct discovery_ctx *ctx = _ctx;
6687 
6688 	if (ctx->attach_in_progress > 0) {
6689 		spdk_thread_send_msg(spdk_get_thread(), _stop_discovery, ctx);
6690 		return;
6691 	}
6692 
6693 	ctx->stop = true;
6694 
6695 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
6696 		struct discovery_entry_ctx *entry_ctx;
6697 		struct nvme_path_id path = {};
6698 
6699 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
6700 		path.trid = entry_ctx->trid;
6701 		bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6702 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6703 		free(entry_ctx);
6704 	}
6705 
6706 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
6707 		struct discovery_entry_ctx *entry_ctx;
6708 
6709 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6710 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6711 		free(entry_ctx);
6712 	}
6713 
6714 	free(ctx->entry_ctx_in_use);
6715 	ctx->entry_ctx_in_use = NULL;
6716 }
6717 
6718 static void
6719 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6720 {
6721 	ctx->stop_cb_fn = cb_fn;
6722 	ctx->cb_ctx = cb_ctx;
6723 
6724 	if (ctx->attach_in_progress > 0) {
6725 		DISCOVERY_INFOLOG(ctx, "stopping discovery with attach_in_progress: %"PRIu32"\n",
6726 				  ctx->attach_in_progress);
6727 	}
6728 
6729 	_stop_discovery(ctx);
6730 }
6731 
6732 static void
6733 remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr)
6734 {
6735 	struct discovery_ctx *d_ctx;
6736 	struct nvme_path_id *path_id;
6737 	struct spdk_nvme_transport_id trid = {};
6738 	struct discovery_entry_ctx *entry_ctx, *tmp;
6739 
6740 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
6741 
6742 	TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6743 		TAILQ_FOREACH_SAFE(entry_ctx, &d_ctx->nvm_entry_ctxs, tailq, tmp) {
6744 			build_trid_from_log_page_entry(&trid, &entry_ctx->entry);
6745 			if (spdk_nvme_transport_id_compare(&trid, &path_id->trid) != 0) {
6746 				continue;
6747 			}
6748 
6749 			TAILQ_REMOVE(&d_ctx->nvm_entry_ctxs, entry_ctx, tailq);
6750 			free(entry_ctx);
6751 			DISCOVERY_INFOLOG(d_ctx, "Remove discovery entry: %s:%s:%s\n",
6752 					  trid.subnqn, trid.traddr, trid.trsvcid);
6753 
6754 			/* Fail discovery ctrlr to force reattach attempt */
6755 			spdk_nvme_ctrlr_fail(d_ctx->ctrlr);
6756 		}
6757 	}
6758 }
6759 
6760 static void
6761 discovery_remove_controllers(struct discovery_ctx *ctx)
6762 {
6763 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
6764 	struct discovery_entry_ctx *entry_ctx, *tmp;
6765 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6766 	struct spdk_nvme_transport_id old_trid = {};
6767 	uint64_t numrec, i;
6768 	bool found;
6769 
6770 	numrec = from_le64(&log_page->numrec);
6771 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
6772 		found = false;
6773 		old_entry = &entry_ctx->entry;
6774 		build_trid_from_log_page_entry(&old_trid, old_entry);
6775 		for (i = 0; i < numrec; i++) {
6776 			new_entry = &log_page->entries[i];
6777 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
6778 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
6779 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6780 				found = true;
6781 				break;
6782 			}
6783 		}
6784 		if (!found) {
6785 			struct nvme_path_id path = {};
6786 
6787 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
6788 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6789 
6790 			path.trid = entry_ctx->trid;
6791 			bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6792 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6793 			free(entry_ctx);
6794 		}
6795 	}
6796 	free(log_page);
6797 	ctx->log_page = NULL;
6798 	discovery_complete(ctx);
6799 }
6800 
6801 static void
6802 complete_discovery_start(struct discovery_ctx *ctx, int status)
6803 {
6804 	ctx->timeout_ticks = 0;
6805 	ctx->rc = status;
6806 	if (ctx->start_cb_fn) {
6807 		ctx->start_cb_fn(ctx->cb_ctx, status);
6808 		ctx->start_cb_fn = NULL;
6809 		ctx->cb_ctx = NULL;
6810 	}
6811 }
6812 
6813 static void
6814 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
6815 {
6816 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
6817 	struct discovery_ctx *ctx = entry_ctx->ctx;
6818 
6819 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
6820 	ctx->attach_in_progress--;
6821 	if (ctx->attach_in_progress == 0) {
6822 		complete_discovery_start(ctx, ctx->rc);
6823 		if (ctx->initializing && ctx->rc != 0) {
6824 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
6825 			stop_discovery(ctx, NULL, ctx->cb_ctx);
6826 		} else {
6827 			discovery_remove_controllers(ctx);
6828 		}
6829 	}
6830 }
6831 
6832 static struct discovery_entry_ctx *
6833 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
6834 {
6835 	struct discovery_entry_ctx *new_ctx;
6836 
6837 	new_ctx = calloc(1, sizeof(*new_ctx));
6838 	if (new_ctx == NULL) {
6839 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6840 		return NULL;
6841 	}
6842 
6843 	new_ctx->ctx = ctx;
6844 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
6845 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6846 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6847 	return new_ctx;
6848 }
6849 
6850 static void
6851 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
6852 		      struct spdk_nvmf_discovery_log_page *log_page)
6853 {
6854 	struct discovery_ctx *ctx = cb_arg;
6855 	struct discovery_entry_ctx *entry_ctx, *tmp;
6856 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6857 	uint64_t numrec, i;
6858 	bool found;
6859 
6860 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
6861 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6862 		return;
6863 	}
6864 
6865 	ctx->log_page = log_page;
6866 	assert(ctx->attach_in_progress == 0);
6867 	numrec = from_le64(&log_page->numrec);
6868 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
6869 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6870 		free(entry_ctx);
6871 	}
6872 	for (i = 0; i < numrec; i++) {
6873 		found = false;
6874 		new_entry = &log_page->entries[i];
6875 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY_CURRENT ||
6876 		    new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
6877 			struct discovery_entry_ctx *new_ctx;
6878 			struct spdk_nvme_transport_id trid = {};
6879 
6880 			build_trid_from_log_page_entry(&trid, new_entry);
6881 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
6882 			if (new_ctx == NULL) {
6883 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6884 				break;
6885 			}
6886 
6887 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
6888 			continue;
6889 		}
6890 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
6891 			old_entry = &entry_ctx->entry;
6892 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
6893 				found = true;
6894 				break;
6895 			}
6896 		}
6897 		if (!found) {
6898 			struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx;
6899 			struct discovery_ctx *d_ctx;
6900 
6901 			TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6902 				TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) {
6903 					if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
6904 						    sizeof(new_entry->subnqn))) {
6905 						break;
6906 					}
6907 				}
6908 				if (subnqn_ctx) {
6909 					break;
6910 				}
6911 			}
6912 
6913 			new_ctx = calloc(1, sizeof(*new_ctx));
6914 			if (new_ctx == NULL) {
6915 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6916 				break;
6917 			}
6918 
6919 			new_ctx->ctx = ctx;
6920 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
6921 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
6922 			if (subnqn_ctx) {
6923 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
6924 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
6925 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6926 						  new_ctx->name);
6927 			} else {
6928 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
6929 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
6930 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6931 						  new_ctx->name);
6932 			}
6933 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6934 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6935 			rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
6936 					      discovery_attach_controller_done, new_ctx,
6937 					      &new_ctx->drv_opts, &ctx->bdev_opts, true);
6938 			if (rc == 0) {
6939 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
6940 				ctx->attach_in_progress++;
6941 			} else {
6942 				DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
6943 			}
6944 		}
6945 	}
6946 
6947 	if (ctx->attach_in_progress == 0) {
6948 		discovery_remove_controllers(ctx);
6949 	}
6950 }
6951 
6952 static void
6953 get_discovery_log_page(struct discovery_ctx *ctx)
6954 {
6955 	int rc;
6956 
6957 	assert(ctx->in_progress == false);
6958 	ctx->in_progress = true;
6959 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
6960 	if (rc != 0) {
6961 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6962 	}
6963 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
6964 }
6965 
6966 static void
6967 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
6968 {
6969 	struct discovery_ctx *ctx = arg;
6970 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
6971 
6972 	if (spdk_nvme_cpl_is_error(cpl)) {
6973 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
6974 		return;
6975 	}
6976 
6977 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
6978 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
6979 		return;
6980 	}
6981 
6982 	DISCOVERY_INFOLOG(ctx, "got aer\n");
6983 	if (ctx->in_progress) {
6984 		ctx->pending = true;
6985 		return;
6986 	}
6987 
6988 	get_discovery_log_page(ctx);
6989 }
6990 
6991 static void
6992 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6993 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
6994 {
6995 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6996 	struct discovery_ctx *ctx;
6997 
6998 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
6999 
7000 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
7001 	ctx->probe_ctx = NULL;
7002 	ctx->ctrlr = ctrlr;
7003 
7004 	if (ctx->rc != 0) {
7005 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
7006 				 ctx->rc);
7007 		return;
7008 	}
7009 
7010 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
7011 }
7012 
7013 static int
7014 discovery_poller(void *arg)
7015 {
7016 	struct discovery_ctx *ctx = arg;
7017 	struct spdk_nvme_transport_id *trid;
7018 	int rc;
7019 
7020 	if (ctx->detach_ctx) {
7021 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
7022 		if (rc != -EAGAIN) {
7023 			ctx->detach_ctx = NULL;
7024 			ctx->ctrlr = NULL;
7025 		}
7026 	} else if (ctx->stop) {
7027 		if (ctx->ctrlr != NULL) {
7028 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7029 			if (rc == 0) {
7030 				return SPDK_POLLER_BUSY;
7031 			}
7032 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7033 		}
7034 		spdk_poller_unregister(&ctx->poller);
7035 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7036 		assert(ctx->start_cb_fn == NULL);
7037 		if (ctx->stop_cb_fn != NULL) {
7038 			ctx->stop_cb_fn(ctx->cb_ctx);
7039 		}
7040 		free_discovery_ctx(ctx);
7041 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
7042 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7043 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7044 			assert(ctx->initializing);
7045 			spdk_poller_unregister(&ctx->poller);
7046 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7047 			complete_discovery_start(ctx, -ETIMEDOUT);
7048 			stop_discovery(ctx, NULL, NULL);
7049 			free_discovery_ctx(ctx);
7050 			return SPDK_POLLER_BUSY;
7051 		}
7052 
7053 		assert(ctx->entry_ctx_in_use == NULL);
7054 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
7055 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7056 		trid = &ctx->entry_ctx_in_use->trid;
7057 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
7058 		if (ctx->probe_ctx) {
7059 			spdk_poller_unregister(&ctx->poller);
7060 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
7061 		} else {
7062 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
7063 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7064 			ctx->entry_ctx_in_use = NULL;
7065 		}
7066 	} else if (ctx->probe_ctx) {
7067 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7068 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7069 			complete_discovery_start(ctx, -ETIMEDOUT);
7070 			return SPDK_POLLER_BUSY;
7071 		}
7072 
7073 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
7074 		if (rc != -EAGAIN) {
7075 			if (ctx->rc != 0) {
7076 				assert(ctx->initializing);
7077 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7078 			} else {
7079 				assert(rc == 0);
7080 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
7081 				ctx->rc = rc;
7082 				get_discovery_log_page(ctx);
7083 			}
7084 		}
7085 	} else {
7086 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7087 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
7088 			complete_discovery_start(ctx, -ETIMEDOUT);
7089 			/* We need to wait until all NVM ctrlrs are attached before we stop the
7090 			 * discovery service to make sure we don't detach a ctrlr that is still
7091 			 * being attached.
7092 			 */
7093 			if (ctx->attach_in_progress == 0) {
7094 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7095 				return SPDK_POLLER_BUSY;
7096 			}
7097 		}
7098 
7099 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
7100 		if (rc < 0) {
7101 			spdk_poller_unregister(&ctx->poller);
7102 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7103 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7104 			ctx->entry_ctx_in_use = NULL;
7105 
7106 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7107 			if (rc != 0) {
7108 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7109 				ctx->ctrlr = NULL;
7110 			}
7111 		}
7112 	}
7113 
7114 	return SPDK_POLLER_BUSY;
7115 }
7116 
7117 static void
7118 start_discovery_poller(void *arg)
7119 {
7120 	struct discovery_ctx *ctx = arg;
7121 
7122 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
7123 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7124 }
7125 
7126 int
7127 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
7128 			  const char *base_name,
7129 			  struct spdk_nvme_ctrlr_opts *drv_opts,
7130 			  struct nvme_ctrlr_opts *bdev_opts,
7131 			  uint64_t attach_timeout,
7132 			  bool from_mdns,
7133 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
7134 {
7135 	struct discovery_ctx *ctx;
7136 	struct discovery_entry_ctx *discovery_entry_ctx;
7137 
7138 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
7139 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7140 		if (strcmp(ctx->name, base_name) == 0) {
7141 			return -EEXIST;
7142 		}
7143 
7144 		if (ctx->entry_ctx_in_use != NULL) {
7145 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
7146 				return -EEXIST;
7147 			}
7148 		}
7149 
7150 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
7151 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
7152 				return -EEXIST;
7153 			}
7154 		}
7155 	}
7156 
7157 	ctx = calloc(1, sizeof(*ctx));
7158 	if (ctx == NULL) {
7159 		return -ENOMEM;
7160 	}
7161 
7162 	ctx->name = strdup(base_name);
7163 	if (ctx->name == NULL) {
7164 		free_discovery_ctx(ctx);
7165 		return -ENOMEM;
7166 	}
7167 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
7168 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
7169 	ctx->from_mdns_discovery_service = from_mdns;
7170 	ctx->bdev_opts.from_discovery_service = true;
7171 	ctx->calling_thread = spdk_get_thread();
7172 	ctx->start_cb_fn = cb_fn;
7173 	ctx->cb_ctx = cb_ctx;
7174 	ctx->initializing = true;
7175 	if (ctx->start_cb_fn) {
7176 		/* We can use this when dumping json to denote if this RPC parameter
7177 		 * was specified or not.
7178 		 */
7179 		ctx->wait_for_attach = true;
7180 	}
7181 	if (attach_timeout != 0) {
7182 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
7183 				     spdk_get_ticks_hz() / 1000ull;
7184 	}
7185 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
7186 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
7187 	memcpy(&ctx->trid, trid, sizeof(*trid));
7188 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
7189 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
7190 	if (ctx->hostnqn == NULL) {
7191 		free_discovery_ctx(ctx);
7192 		return -ENOMEM;
7193 	}
7194 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
7195 	if (discovery_entry_ctx == NULL) {
7196 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7197 		free_discovery_ctx(ctx);
7198 		return -ENOMEM;
7199 	}
7200 
7201 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
7202 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
7203 	return 0;
7204 }
7205 
7206 int
7207 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
7208 {
7209 	struct discovery_ctx *ctx;
7210 
7211 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7212 		if (strcmp(name, ctx->name) == 0) {
7213 			if (ctx->stop) {
7214 				return -EALREADY;
7215 			}
7216 			/* If we're still starting the discovery service and ->rc is non-zero, we're
7217 			 * going to stop it as soon as we can
7218 			 */
7219 			if (ctx->initializing && ctx->rc != 0) {
7220 				return -EALREADY;
7221 			}
7222 			stop_discovery(ctx, cb_fn, cb_ctx);
7223 			return 0;
7224 		}
7225 	}
7226 
7227 	return -ENOENT;
7228 }
7229 
7230 static int
7231 bdev_nvme_library_init(void)
7232 {
7233 	g_bdev_nvme_init_thread = spdk_get_thread();
7234 
7235 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
7236 				bdev_nvme_destroy_poll_group_cb,
7237 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
7238 
7239 	return 0;
7240 }
7241 
7242 static void
7243 bdev_nvme_fini_destruct_ctrlrs(void)
7244 {
7245 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
7246 	struct nvme_ctrlr *nvme_ctrlr;
7247 
7248 	pthread_mutex_lock(&g_bdev_nvme_mutex);
7249 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
7250 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
7251 			pthread_mutex_lock(&nvme_ctrlr->mutex);
7252 			if (nvme_ctrlr->destruct) {
7253 				/* This controller's destruction was already started
7254 				 * before the application started shutting down
7255 				 */
7256 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
7257 				continue;
7258 			}
7259 			nvme_ctrlr->destruct = true;
7260 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
7261 
7262 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
7263 					     nvme_ctrlr);
7264 		}
7265 	}
7266 
7267 	g_bdev_nvme_module_finish = true;
7268 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
7269 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
7270 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
7271 		spdk_bdev_module_fini_done();
7272 		return;
7273 	}
7274 
7275 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
7276 }
7277 
7278 static void
7279 check_discovery_fini(void *arg)
7280 {
7281 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7282 		bdev_nvme_fini_destruct_ctrlrs();
7283 	}
7284 }
7285 
7286 static void
7287 bdev_nvme_library_fini(void)
7288 {
7289 	struct nvme_probe_skip_entry *entry, *entry_tmp;
7290 	struct discovery_ctx *ctx;
7291 
7292 	spdk_poller_unregister(&g_hotplug_poller);
7293 	free(g_hotplug_probe_ctx);
7294 	g_hotplug_probe_ctx = NULL;
7295 
7296 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
7297 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
7298 		free(entry);
7299 	}
7300 
7301 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
7302 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7303 		bdev_nvme_fini_destruct_ctrlrs();
7304 	} else {
7305 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7306 			stop_discovery(ctx, check_discovery_fini, NULL);
7307 		}
7308 	}
7309 }
7310 
7311 static void
7312 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
7313 {
7314 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7315 	struct spdk_bdev *bdev = bdev_io->bdev;
7316 	struct spdk_dif_ctx dif_ctx;
7317 	struct spdk_dif_error err_blk = {};
7318 	int rc;
7319 	struct spdk_dif_ctx_init_ext_opts dif_opts;
7320 
7321 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
7322 	dif_opts.dif_pi_format = bdev->dif_pi_format;
7323 	rc = spdk_dif_ctx_init(&dif_ctx,
7324 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
7325 			       bdev->dif_is_head_of_md, bdev->dif_type,
7326 			       bdev_io->u.bdev.dif_check_flags,
7327 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0, &dif_opts);
7328 	if (rc != 0) {
7329 		SPDK_ERRLOG("Initialization of DIF context failed\n");
7330 		return;
7331 	}
7332 
7333 	if (bdev->md_interleave) {
7334 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7335 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7336 	} else {
7337 		struct iovec md_iov = {
7338 			.iov_base	= bdev_io->u.bdev.md_buf,
7339 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
7340 		};
7341 
7342 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7343 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7344 	}
7345 
7346 	if (rc != 0) {
7347 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
7348 			    err_blk.err_type, err_blk.err_offset);
7349 	} else {
7350 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
7351 	}
7352 }
7353 
7354 static void
7355 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7356 {
7357 	struct nvme_bdev_io *bio = ref;
7358 
7359 	if (spdk_nvme_cpl_is_success(cpl)) {
7360 		/* Run PI verification for read data buffer. */
7361 		bdev_nvme_verify_pi_error(bio);
7362 	}
7363 
7364 	/* Return original completion status */
7365 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7366 }
7367 
7368 static void
7369 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7370 {
7371 	struct nvme_bdev_io *bio = ref;
7372 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7373 	int ret;
7374 
7375 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7376 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
7377 			    cpl->status.sct, cpl->status.sc);
7378 
7379 		/* Save completion status to use after verifying PI error. */
7380 		bio->cpl = *cpl;
7381 
7382 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
7383 			/* Read without PI checking to verify PI error. */
7384 			ret = bdev_nvme_no_pi_readv(bio,
7385 						    bdev_io->u.bdev.iovs,
7386 						    bdev_io->u.bdev.iovcnt,
7387 						    bdev_io->u.bdev.md_buf,
7388 						    bdev_io->u.bdev.num_blocks,
7389 						    bdev_io->u.bdev.offset_blocks);
7390 			if (ret == 0) {
7391 				return;
7392 			}
7393 		}
7394 	}
7395 
7396 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7397 }
7398 
7399 static void
7400 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7401 {
7402 	struct nvme_bdev_io *bio = ref;
7403 
7404 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7405 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
7406 			    cpl->status.sct, cpl->status.sc);
7407 		/* Run PI verification for write data buffer if PI error is detected. */
7408 		bdev_nvme_verify_pi_error(bio);
7409 	}
7410 
7411 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7412 }
7413 
7414 static void
7415 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7416 {
7417 	struct nvme_bdev_io *bio = ref;
7418 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7419 
7420 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
7421 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
7422 	 */
7423 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
7424 
7425 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7426 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
7427 			    cpl->status.sct, cpl->status.sc);
7428 		/* Run PI verification for zone append data buffer if PI error is detected. */
7429 		bdev_nvme_verify_pi_error(bio);
7430 	}
7431 
7432 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7433 }
7434 
7435 static void
7436 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7437 {
7438 	struct nvme_bdev_io *bio = ref;
7439 
7440 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7441 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
7442 			    cpl->status.sct, cpl->status.sc);
7443 		/* Run PI verification for compare data buffer if PI error is detected. */
7444 		bdev_nvme_verify_pi_error(bio);
7445 	}
7446 
7447 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7448 }
7449 
7450 static void
7451 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7452 {
7453 	struct nvme_bdev_io *bio = ref;
7454 
7455 	/* Compare operation completion */
7456 	if (!bio->first_fused_completed) {
7457 		/* Save compare result for write callback */
7458 		bio->cpl = *cpl;
7459 		bio->first_fused_completed = true;
7460 		return;
7461 	}
7462 
7463 	/* Write operation completion */
7464 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
7465 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
7466 		 * complete the IO with the compare operation's status.
7467 		 */
7468 		if (!spdk_nvme_cpl_is_error(cpl)) {
7469 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
7470 		}
7471 
7472 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7473 	} else {
7474 		bdev_nvme_io_complete_nvme_status(bio, cpl);
7475 	}
7476 }
7477 
7478 static void
7479 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
7480 {
7481 	struct nvme_bdev_io *bio = ref;
7482 
7483 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7484 }
7485 
7486 static int
7487 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
7488 {
7489 	switch (desc->zt) {
7490 	case SPDK_NVME_ZONE_TYPE_SEQWR:
7491 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
7492 		break;
7493 	default:
7494 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
7495 		return -EIO;
7496 	}
7497 
7498 	switch (desc->zs) {
7499 	case SPDK_NVME_ZONE_STATE_EMPTY:
7500 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
7501 		break;
7502 	case SPDK_NVME_ZONE_STATE_IOPEN:
7503 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
7504 		break;
7505 	case SPDK_NVME_ZONE_STATE_EOPEN:
7506 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
7507 		break;
7508 	case SPDK_NVME_ZONE_STATE_CLOSED:
7509 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
7510 		break;
7511 	case SPDK_NVME_ZONE_STATE_RONLY:
7512 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
7513 		break;
7514 	case SPDK_NVME_ZONE_STATE_FULL:
7515 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
7516 		break;
7517 	case SPDK_NVME_ZONE_STATE_OFFLINE:
7518 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
7519 		break;
7520 	default:
7521 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
7522 		return -EIO;
7523 	}
7524 
7525 	info->zone_id = desc->zslba;
7526 	info->write_pointer = desc->wp;
7527 	info->capacity = desc->zcap;
7528 
7529 	return 0;
7530 }
7531 
7532 static void
7533 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
7534 {
7535 	struct nvme_bdev_io *bio = ref;
7536 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7537 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
7538 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
7539 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
7540 	uint64_t max_zones_per_buf, i;
7541 	uint32_t zone_report_bufsize;
7542 	struct spdk_nvme_ns *ns;
7543 	struct spdk_nvme_qpair *qpair;
7544 	int ret;
7545 
7546 	if (spdk_nvme_cpl_is_error(cpl)) {
7547 		goto out_complete_io_nvme_cpl;
7548 	}
7549 
7550 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
7551 		ret = -ENXIO;
7552 		goto out_complete_io_ret;
7553 	}
7554 
7555 	ns = bio->io_path->nvme_ns->ns;
7556 	qpair = bio->io_path->qpair->qpair;
7557 
7558 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7559 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
7560 			    sizeof(bio->zone_report_buf->descs[0]);
7561 
7562 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
7563 		ret = -EINVAL;
7564 		goto out_complete_io_ret;
7565 	}
7566 
7567 	if (!bio->zone_report_buf->nr_zones) {
7568 		ret = -EINVAL;
7569 		goto out_complete_io_ret;
7570 	}
7571 
7572 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
7573 		ret = fill_zone_from_report(&info[bio->handled_zones],
7574 					    &bio->zone_report_buf->descs[i]);
7575 		if (ret) {
7576 			goto out_complete_io_ret;
7577 		}
7578 		bio->handled_zones++;
7579 	}
7580 
7581 	if (bio->handled_zones < zones_to_copy) {
7582 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7583 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
7584 
7585 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
7586 		ret = spdk_nvme_zns_report_zones(ns, qpair,
7587 						 bio->zone_report_buf, zone_report_bufsize,
7588 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
7589 						 bdev_nvme_get_zone_info_done, bio);
7590 		if (!ret) {
7591 			return;
7592 		} else {
7593 			goto out_complete_io_ret;
7594 		}
7595 	}
7596 
7597 out_complete_io_nvme_cpl:
7598 	free(bio->zone_report_buf);
7599 	bio->zone_report_buf = NULL;
7600 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7601 	return;
7602 
7603 out_complete_io_ret:
7604 	free(bio->zone_report_buf);
7605 	bio->zone_report_buf = NULL;
7606 	bdev_nvme_io_complete(bio, ret);
7607 }
7608 
7609 static void
7610 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
7611 {
7612 	struct nvme_bdev_io *bio = ref;
7613 
7614 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7615 }
7616 
7617 static void
7618 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
7619 {
7620 	struct nvme_bdev_io *bio = ctx;
7621 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7622 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
7623 
7624 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
7625 
7626 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
7627 }
7628 
7629 static void
7630 bdev_nvme_abort_complete(void *ctx)
7631 {
7632 	struct nvme_bdev_io *bio = ctx;
7633 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7634 
7635 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
7636 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
7637 	} else {
7638 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
7639 	}
7640 }
7641 
7642 static void
7643 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
7644 {
7645 	struct nvme_bdev_io *bio = ref;
7646 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7647 
7648 	bio->cpl = *cpl;
7649 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_nvme_abort_complete, bio);
7650 }
7651 
7652 static void
7653 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
7654 {
7655 	struct nvme_bdev_io *bio = ref;
7656 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7657 
7658 	bio->cpl = *cpl;
7659 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
7660 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
7661 }
7662 
7663 static void
7664 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
7665 {
7666 	struct nvme_bdev_io *bio = ref;
7667 	struct iovec *iov;
7668 
7669 	bio->iov_offset = sgl_offset;
7670 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
7671 		iov = &bio->iovs[bio->iovpos];
7672 		if (bio->iov_offset < iov->iov_len) {
7673 			break;
7674 		}
7675 
7676 		bio->iov_offset -= iov->iov_len;
7677 	}
7678 }
7679 
7680 static int
7681 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
7682 {
7683 	struct nvme_bdev_io *bio = ref;
7684 	struct iovec *iov;
7685 
7686 	assert(bio->iovpos < bio->iovcnt);
7687 
7688 	iov = &bio->iovs[bio->iovpos];
7689 
7690 	*address = iov->iov_base;
7691 	*length = iov->iov_len;
7692 
7693 	if (bio->iov_offset) {
7694 		assert(bio->iov_offset <= iov->iov_len);
7695 		*address += bio->iov_offset;
7696 		*length -= bio->iov_offset;
7697 	}
7698 
7699 	bio->iov_offset += *length;
7700 	if (bio->iov_offset == iov->iov_len) {
7701 		bio->iovpos++;
7702 		bio->iov_offset = 0;
7703 	}
7704 
7705 	return 0;
7706 }
7707 
7708 static void
7709 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
7710 {
7711 	struct nvme_bdev_io *bio = ref;
7712 	struct iovec *iov;
7713 
7714 	bio->fused_iov_offset = sgl_offset;
7715 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
7716 		iov = &bio->fused_iovs[bio->fused_iovpos];
7717 		if (bio->fused_iov_offset < iov->iov_len) {
7718 			break;
7719 		}
7720 
7721 		bio->fused_iov_offset -= iov->iov_len;
7722 	}
7723 }
7724 
7725 static int
7726 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
7727 {
7728 	struct nvme_bdev_io *bio = ref;
7729 	struct iovec *iov;
7730 
7731 	assert(bio->fused_iovpos < bio->fused_iovcnt);
7732 
7733 	iov = &bio->fused_iovs[bio->fused_iovpos];
7734 
7735 	*address = iov->iov_base;
7736 	*length = iov->iov_len;
7737 
7738 	if (bio->fused_iov_offset) {
7739 		assert(bio->fused_iov_offset <= iov->iov_len);
7740 		*address += bio->fused_iov_offset;
7741 		*length -= bio->fused_iov_offset;
7742 	}
7743 
7744 	bio->fused_iov_offset += *length;
7745 	if (bio->fused_iov_offset == iov->iov_len) {
7746 		bio->fused_iovpos++;
7747 		bio->fused_iov_offset = 0;
7748 	}
7749 
7750 	return 0;
7751 }
7752 
7753 static int
7754 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7755 		      void *md, uint64_t lba_count, uint64_t lba)
7756 {
7757 	int rc;
7758 
7759 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
7760 		      lba_count, lba);
7761 
7762 	bio->iovs = iov;
7763 	bio->iovcnt = iovcnt;
7764 	bio->iovpos = 0;
7765 	bio->iov_offset = 0;
7766 
7767 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
7768 					    bio->io_path->qpair->qpair,
7769 					    lba, lba_count,
7770 					    bdev_nvme_no_pi_readv_done, bio, 0,
7771 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7772 					    md, 0, 0);
7773 
7774 	if (rc != 0 && rc != -ENOMEM) {
7775 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
7776 	}
7777 	return rc;
7778 }
7779 
7780 static int
7781 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7782 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7783 		struct spdk_memory_domain *domain, void *domain_ctx,
7784 		struct spdk_accel_sequence *seq)
7785 {
7786 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7787 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7788 	int rc;
7789 
7790 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7791 		      lba_count, lba);
7792 
7793 	bio->iovs = iov;
7794 	bio->iovcnt = iovcnt;
7795 	bio->iovpos = 0;
7796 	bio->iov_offset = 0;
7797 
7798 	if (domain != NULL || seq != NULL) {
7799 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7800 		bio->ext_opts.memory_domain = domain;
7801 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7802 		bio->ext_opts.io_flags = flags;
7803 		bio->ext_opts.metadata = md;
7804 		bio->ext_opts.accel_sequence = seq;
7805 
7806 		if (iovcnt == 1) {
7807 			rc = spdk_nvme_ns_cmd_read_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_readv_done,
7808 						       bio, &bio->ext_opts);
7809 		} else {
7810 			rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
7811 							bdev_nvme_readv_done, bio,
7812 							bdev_nvme_queued_reset_sgl,
7813 							bdev_nvme_queued_next_sge,
7814 							&bio->ext_opts);
7815 		}
7816 	} else if (iovcnt == 1) {
7817 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base,
7818 						   md, lba, lba_count, bdev_nvme_readv_done,
7819 						   bio, flags, 0, 0);
7820 	} else {
7821 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
7822 						    bdev_nvme_readv_done, bio, flags,
7823 						    bdev_nvme_queued_reset_sgl,
7824 						    bdev_nvme_queued_next_sge, md, 0, 0);
7825 	}
7826 
7827 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7828 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
7829 	}
7830 	return rc;
7831 }
7832 
7833 static int
7834 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7835 		 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7836 		 struct spdk_memory_domain *domain, void *domain_ctx,
7837 		 struct spdk_accel_sequence *seq,
7838 		 union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13)
7839 {
7840 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7841 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7842 	int rc;
7843 
7844 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7845 		      lba_count, lba);
7846 
7847 	bio->iovs = iov;
7848 	bio->iovcnt = iovcnt;
7849 	bio->iovpos = 0;
7850 	bio->iov_offset = 0;
7851 
7852 	if (domain != NULL || seq != NULL) {
7853 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7854 		bio->ext_opts.memory_domain = domain;
7855 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7856 		bio->ext_opts.io_flags = flags | SPDK_NVME_IO_FLAGS_DIRECTIVE(cdw12.write.dtype);
7857 		bio->ext_opts.cdw13 = cdw13.raw;
7858 		bio->ext_opts.metadata = md;
7859 		bio->ext_opts.accel_sequence = seq;
7860 
7861 		if (iovcnt == 1) {
7862 			rc = spdk_nvme_ns_cmd_write_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_writev_done,
7863 							bio, &bio->ext_opts);
7864 		} else {
7865 			rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
7866 							 bdev_nvme_writev_done, bio,
7867 							 bdev_nvme_queued_reset_sgl,
7868 							 bdev_nvme_queued_next_sge,
7869 							 &bio->ext_opts);
7870 		}
7871 	} else if (iovcnt == 1) {
7872 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base,
7873 						    md, lba, lba_count, bdev_nvme_writev_done,
7874 						    bio, flags, 0, 0);
7875 	} else {
7876 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7877 						     bdev_nvme_writev_done, bio, flags,
7878 						     bdev_nvme_queued_reset_sgl,
7879 						     bdev_nvme_queued_next_sge, md, 0, 0);
7880 	}
7881 
7882 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7883 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
7884 	}
7885 	return rc;
7886 }
7887 
7888 static int
7889 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7890 		       void *md, uint64_t lba_count, uint64_t zslba,
7891 		       uint32_t flags)
7892 {
7893 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7894 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7895 	int rc;
7896 
7897 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
7898 		      lba_count, zslba);
7899 
7900 	bio->iovs = iov;
7901 	bio->iovcnt = iovcnt;
7902 	bio->iovpos = 0;
7903 	bio->iov_offset = 0;
7904 
7905 	if (iovcnt == 1) {
7906 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
7907 						       lba_count,
7908 						       bdev_nvme_zone_appendv_done, bio,
7909 						       flags,
7910 						       0, 0);
7911 	} else {
7912 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
7913 							bdev_nvme_zone_appendv_done, bio, flags,
7914 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7915 							md, 0, 0);
7916 	}
7917 
7918 	if (rc != 0 && rc != -ENOMEM) {
7919 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
7920 	}
7921 	return rc;
7922 }
7923 
7924 static int
7925 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7926 		   void *md, uint64_t lba_count, uint64_t lba,
7927 		   uint32_t flags)
7928 {
7929 	int rc;
7930 
7931 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7932 		      lba_count, lba);
7933 
7934 	bio->iovs = iov;
7935 	bio->iovcnt = iovcnt;
7936 	bio->iovpos = 0;
7937 	bio->iov_offset = 0;
7938 
7939 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
7940 					       bio->io_path->qpair->qpair,
7941 					       lba, lba_count,
7942 					       bdev_nvme_comparev_done, bio, flags,
7943 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7944 					       md, 0, 0);
7945 
7946 	if (rc != 0 && rc != -ENOMEM) {
7947 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
7948 	}
7949 	return rc;
7950 }
7951 
7952 static int
7953 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
7954 			      struct iovec *write_iov, int write_iovcnt,
7955 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
7956 {
7957 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7958 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7959 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7960 	int rc;
7961 
7962 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7963 		      lba_count, lba);
7964 
7965 	bio->iovs = cmp_iov;
7966 	bio->iovcnt = cmp_iovcnt;
7967 	bio->iovpos = 0;
7968 	bio->iov_offset = 0;
7969 	bio->fused_iovs = write_iov;
7970 	bio->fused_iovcnt = write_iovcnt;
7971 	bio->fused_iovpos = 0;
7972 	bio->fused_iov_offset = 0;
7973 
7974 	if (bdev_io->num_retries == 0) {
7975 		bio->first_fused_submitted = false;
7976 		bio->first_fused_completed = false;
7977 	}
7978 
7979 	if (!bio->first_fused_submitted) {
7980 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7981 		memset(&bio->cpl, 0, sizeof(bio->cpl));
7982 
7983 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
7984 						       bdev_nvme_comparev_and_writev_done, bio, flags,
7985 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
7986 		if (rc == 0) {
7987 			bio->first_fused_submitted = true;
7988 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7989 		} else {
7990 			if (rc != -ENOMEM) {
7991 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
7992 			}
7993 			return rc;
7994 		}
7995 	}
7996 
7997 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
7998 
7999 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
8000 					     bdev_nvme_comparev_and_writev_done, bio, flags,
8001 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
8002 	if (rc != 0 && rc != -ENOMEM) {
8003 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
8004 		rc = 0;
8005 	}
8006 
8007 	return rc;
8008 }
8009 
8010 static int
8011 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
8012 {
8013 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
8014 	struct spdk_nvme_dsm_range *range;
8015 	uint64_t offset, remaining;
8016 	uint64_t num_ranges_u64;
8017 	uint16_t num_ranges;
8018 	int rc;
8019 
8020 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
8021 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8022 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
8023 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
8024 		return -EINVAL;
8025 	}
8026 	num_ranges = (uint16_t)num_ranges_u64;
8027 
8028 	offset = offset_blocks;
8029 	remaining = num_blocks;
8030 	range = &dsm_ranges[0];
8031 
8032 	/* Fill max-size ranges until the remaining blocks fit into one range */
8033 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
8034 		range->attributes.raw = 0;
8035 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8036 		range->starting_lba = offset;
8037 
8038 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8039 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8040 		range++;
8041 	}
8042 
8043 	/* Final range describes the remaining blocks */
8044 	range->attributes.raw = 0;
8045 	range->length = remaining;
8046 	range->starting_lba = offset;
8047 
8048 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
8049 			bio->io_path->qpair->qpair,
8050 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
8051 			dsm_ranges, num_ranges,
8052 			bdev_nvme_queued_done, bio);
8053 
8054 	return rc;
8055 }
8056 
8057 static int
8058 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
8059 {
8060 	if (num_blocks > UINT16_MAX + 1) {
8061 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
8062 		return -EINVAL;
8063 	}
8064 
8065 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
8066 					     bio->io_path->qpair->qpair,
8067 					     offset_blocks, num_blocks,
8068 					     bdev_nvme_queued_done, bio,
8069 					     0);
8070 }
8071 
8072 static int
8073 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
8074 			struct spdk_bdev_zone_info *info)
8075 {
8076 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8077 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8078 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
8079 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
8080 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
8081 
8082 	if (zone_id % zone_size != 0) {
8083 		return -EINVAL;
8084 	}
8085 
8086 	if (num_zones > total_zones || !num_zones) {
8087 		return -EINVAL;
8088 	}
8089 
8090 	assert(!bio->zone_report_buf);
8091 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
8092 	if (!bio->zone_report_buf) {
8093 		return -ENOMEM;
8094 	}
8095 
8096 	bio->handled_zones = 0;
8097 
8098 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
8099 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
8100 					  bdev_nvme_get_zone_info_done, bio);
8101 }
8102 
8103 static int
8104 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
8105 			  enum spdk_bdev_zone_action action)
8106 {
8107 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8108 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8109 
8110 	switch (action) {
8111 	case SPDK_BDEV_ZONE_CLOSE:
8112 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
8113 						bdev_nvme_zone_management_done, bio);
8114 	case SPDK_BDEV_ZONE_FINISH:
8115 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
8116 						 bdev_nvme_zone_management_done, bio);
8117 	case SPDK_BDEV_ZONE_OPEN:
8118 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
8119 					       bdev_nvme_zone_management_done, bio);
8120 	case SPDK_BDEV_ZONE_RESET:
8121 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
8122 						bdev_nvme_zone_management_done, bio);
8123 	case SPDK_BDEV_ZONE_OFFLINE:
8124 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
8125 						  bdev_nvme_zone_management_done, bio);
8126 	default:
8127 		return -EINVAL;
8128 	}
8129 }
8130 
8131 static void
8132 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8133 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
8134 {
8135 	struct nvme_io_path *io_path;
8136 	struct nvme_ctrlr *nvme_ctrlr;
8137 	uint32_t max_xfer_size;
8138 	int rc = -ENXIO;
8139 
8140 	/* Choose the first ctrlr which is not failed. */
8141 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8142 		nvme_ctrlr = io_path->qpair->ctrlr;
8143 
8144 		/* We should skip any unavailable nvme_ctrlr rather than checking
8145 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
8146 		 */
8147 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
8148 			continue;
8149 		}
8150 
8151 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
8152 
8153 		if (nbytes > max_xfer_size) {
8154 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8155 			rc = -EINVAL;
8156 			goto err;
8157 		}
8158 
8159 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
8160 						   bdev_nvme_admin_passthru_done, bio);
8161 		if (rc == 0) {
8162 			return;
8163 		}
8164 	}
8165 
8166 err:
8167 	bdev_nvme_admin_complete(bio, rc);
8168 }
8169 
8170 static int
8171 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8172 		      void *buf, size_t nbytes)
8173 {
8174 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8175 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8176 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8177 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8178 
8179 	if (nbytes > max_xfer_size) {
8180 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8181 		return -EINVAL;
8182 	}
8183 
8184 	/*
8185 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8186 	 * so fill it out automatically.
8187 	 */
8188 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8189 
8190 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
8191 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
8192 }
8193 
8194 static int
8195 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8196 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
8197 {
8198 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8199 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8200 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8201 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8202 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8203 
8204 	if (nbytes > max_xfer_size) {
8205 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8206 		return -EINVAL;
8207 	}
8208 
8209 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8210 		SPDK_ERRLOG("invalid meta data buffer size\n");
8211 		return -EINVAL;
8212 	}
8213 
8214 	/*
8215 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8216 	 * so fill it out automatically.
8217 	 */
8218 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8219 
8220 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
8221 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
8222 }
8223 
8224 static int
8225 bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio,
8226 			  struct spdk_nvme_cmd *cmd, struct iovec *iov, int iovcnt,
8227 			  size_t nbytes, void *md_buf, size_t md_len)
8228 {
8229 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8230 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8231 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8232 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8233 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8234 
8235 	bio->iovs = iov;
8236 	bio->iovcnt = iovcnt;
8237 	bio->iovpos = 0;
8238 	bio->iov_offset = 0;
8239 
8240 	if (nbytes > max_xfer_size) {
8241 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8242 		return -EINVAL;
8243 	}
8244 
8245 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8246 		SPDK_ERRLOG("invalid meta data buffer size\n");
8247 		return -EINVAL;
8248 	}
8249 
8250 	/*
8251 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands
8252 	 * require a nsid, so fill it out automatically.
8253 	 */
8254 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8255 
8256 	return spdk_nvme_ctrlr_cmd_iov_raw_with_md(
8257 		       ctrlr, qpair, cmd, (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio,
8258 		       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge);
8259 }
8260 
8261 static void
8262 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8263 		struct nvme_bdev_io *bio_to_abort)
8264 {
8265 	struct nvme_io_path *io_path;
8266 	int rc = 0;
8267 
8268 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
8269 	if (rc == 0) {
8270 		bdev_nvme_admin_complete(bio, 0);
8271 		return;
8272 	}
8273 
8274 	io_path = bio_to_abort->io_path;
8275 	if (io_path != NULL) {
8276 		rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8277 						   io_path->qpair->qpair,
8278 						   bio_to_abort,
8279 						   bdev_nvme_abort_done, bio);
8280 	} else {
8281 		STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8282 			rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8283 							   NULL,
8284 							   bio_to_abort,
8285 							   bdev_nvme_abort_done, bio);
8286 
8287 			if (rc != -ENOENT) {
8288 				break;
8289 			}
8290 		}
8291 	}
8292 
8293 	if (rc != 0) {
8294 		/* If no command was found or there was any error, complete the abort
8295 		 * request with failure.
8296 		 */
8297 		bdev_nvme_admin_complete(bio, rc);
8298 	}
8299 }
8300 
8301 static int
8302 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
8303 	       uint64_t num_blocks)
8304 {
8305 	struct spdk_nvme_scc_source_range range = {
8306 		.slba = src_offset_blocks,
8307 		.nlb = num_blocks - 1
8308 	};
8309 
8310 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
8311 				     bio->io_path->qpair->qpair,
8312 				     &range, 1, dst_offset_blocks,
8313 				     bdev_nvme_queued_done, bio);
8314 }
8315 
8316 static void
8317 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
8318 {
8319 	const char *action;
8320 	uint32_t i;
8321 
8322 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
8323 		action = "reset";
8324 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
8325 		action = "abort";
8326 	} else {
8327 		action = "none";
8328 	}
8329 
8330 	spdk_json_write_object_begin(w);
8331 
8332 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
8333 
8334 	spdk_json_write_named_object_begin(w, "params");
8335 	spdk_json_write_named_string(w, "action_on_timeout", action);
8336 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
8337 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
8338 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
8339 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
8340 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
8341 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
8342 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
8343 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
8344 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
8345 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
8346 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
8347 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
8348 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
8349 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
8350 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
8351 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
8352 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
8353 	spdk_json_write_named_bool(w, "disable_auto_failback", g_opts.disable_auto_failback);
8354 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
8355 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
8356 	spdk_json_write_named_bool(w, "nvme_error_stat", g_opts.nvme_error_stat);
8357 	spdk_json_write_named_uint32(w, "rdma_srq_size", g_opts.rdma_srq_size);
8358 	spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat);
8359 	spdk_json_write_named_bool(w, "allow_accel_sequence", g_opts.allow_accel_sequence);
8360 	spdk_json_write_named_uint32(w, "rdma_max_cq_size", g_opts.rdma_max_cq_size);
8361 	spdk_json_write_named_uint16(w, "rdma_cm_event_timeout_ms", g_opts.rdma_cm_event_timeout_ms);
8362 	spdk_json_write_named_array_begin(w, "dhchap_digests");
8363 	for (i = 0; i < 32; ++i) {
8364 		if (g_opts.dhchap_digests & SPDK_BIT(i)) {
8365 			spdk_json_write_string(w, spdk_nvme_dhchap_get_digest_name(i));
8366 		}
8367 	}
8368 	spdk_json_write_array_end(w);
8369 	spdk_json_write_named_array_begin(w, "dhchap_dhgroups");
8370 	for (i = 0; i < 32; ++i) {
8371 		if (g_opts.dhchap_dhgroups & SPDK_BIT(i)) {
8372 			spdk_json_write_string(w, spdk_nvme_dhchap_get_dhgroup_name(i));
8373 		}
8374 	}
8375 
8376 	spdk_json_write_array_end(w);
8377 	spdk_json_write_object_end(w);
8378 
8379 	spdk_json_write_object_end(w);
8380 }
8381 
8382 static void
8383 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
8384 {
8385 	struct spdk_nvme_transport_id trid;
8386 
8387 	spdk_json_write_object_begin(w);
8388 
8389 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
8390 
8391 	spdk_json_write_named_object_begin(w, "params");
8392 	spdk_json_write_named_string(w, "name", ctx->name);
8393 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
8394 
8395 	trid = ctx->trid;
8396 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
8397 	nvme_bdev_dump_trid_json(&trid, w);
8398 
8399 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
8400 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
8401 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
8402 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8403 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
8404 	spdk_json_write_object_end(w);
8405 
8406 	spdk_json_write_object_end(w);
8407 }
8408 
8409 #ifdef SPDK_CONFIG_NVME_CUSE
8410 static void
8411 nvme_ctrlr_cuse_config_json(struct spdk_json_write_ctx *w,
8412 			    struct nvme_ctrlr *nvme_ctrlr)
8413 {
8414 	size_t cuse_name_size = 128;
8415 	char cuse_name[cuse_name_size];
8416 
8417 	if (spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr,
8418 					  cuse_name, &cuse_name_size) != 0) {
8419 		return;
8420 	}
8421 
8422 	spdk_json_write_object_begin(w);
8423 
8424 	spdk_json_write_named_string(w, "method", "bdev_nvme_cuse_register");
8425 
8426 	spdk_json_write_named_object_begin(w, "params");
8427 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8428 	spdk_json_write_object_end(w);
8429 
8430 	spdk_json_write_object_end(w);
8431 }
8432 #endif
8433 
8434 static void
8435 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
8436 		       struct nvme_ctrlr *nvme_ctrlr)
8437 {
8438 	struct spdk_nvme_transport_id	*trid;
8439 	const struct spdk_nvme_ctrlr_opts *opts;
8440 
8441 	if (nvme_ctrlr->opts.from_discovery_service) {
8442 		/* Do not emit an RPC for this - it will be implicitly
8443 		 * covered by a separate bdev_nvme_start_discovery or
8444 		 * bdev_nvme_start_mdns_discovery RPC.
8445 		 */
8446 		return;
8447 	}
8448 
8449 	trid = &nvme_ctrlr->active_path_id->trid;
8450 
8451 	spdk_json_write_object_begin(w);
8452 
8453 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
8454 
8455 	spdk_json_write_named_object_begin(w, "params");
8456 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8457 	nvme_bdev_dump_trid_json(trid, w);
8458 	spdk_json_write_named_bool(w, "prchk_reftag",
8459 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
8460 	spdk_json_write_named_bool(w, "prchk_guard",
8461 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
8462 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
8463 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
8464 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8465 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
8466 	if (nvme_ctrlr->psk != NULL) {
8467 		spdk_json_write_named_string(w, "psk", spdk_key_get_name(nvme_ctrlr->psk));
8468 	} else if (nvme_ctrlr->opts.psk[0] != '\0') {
8469 		spdk_json_write_named_string(w, "psk", nvme_ctrlr->opts.psk);
8470 	}
8471 
8472 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
8473 	spdk_json_write_named_string(w, "hostnqn", opts->hostnqn);
8474 	spdk_json_write_named_bool(w, "hdgst", opts->header_digest);
8475 	spdk_json_write_named_bool(w, "ddgst", opts->data_digest);
8476 	if (opts->src_addr[0] != '\0') {
8477 		spdk_json_write_named_string(w, "hostaddr", opts->src_addr);
8478 	}
8479 	if (opts->src_svcid[0] != '\0') {
8480 		spdk_json_write_named_string(w, "hostsvcid", opts->src_svcid);
8481 	}
8482 
8483 	spdk_json_write_object_end(w);
8484 
8485 	spdk_json_write_object_end(w);
8486 }
8487 
8488 static void
8489 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
8490 {
8491 	spdk_json_write_object_begin(w);
8492 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
8493 
8494 	spdk_json_write_named_object_begin(w, "params");
8495 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
8496 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
8497 	spdk_json_write_object_end(w);
8498 
8499 	spdk_json_write_object_end(w);
8500 }
8501 
8502 static int
8503 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
8504 {
8505 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
8506 	struct nvme_ctrlr	*nvme_ctrlr;
8507 	struct discovery_ctx	*ctx;
8508 
8509 	bdev_nvme_opts_config_json(w);
8510 
8511 	pthread_mutex_lock(&g_bdev_nvme_mutex);
8512 
8513 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
8514 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
8515 			nvme_ctrlr_config_json(w, nvme_ctrlr);
8516 
8517 #ifdef SPDK_CONFIG_NVME_CUSE
8518 			nvme_ctrlr_cuse_config_json(w, nvme_ctrlr);
8519 #endif
8520 		}
8521 	}
8522 
8523 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8524 		if (!ctx->from_mdns_discovery_service) {
8525 			bdev_nvme_discovery_config_json(w, ctx);
8526 		}
8527 	}
8528 
8529 	bdev_nvme_mdns_discovery_config_json(w);
8530 
8531 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
8532 	 * before enabling hotplug poller.
8533 	 */
8534 	bdev_nvme_hotplug_config_json(w);
8535 
8536 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
8537 	return 0;
8538 }
8539 
8540 struct spdk_nvme_ctrlr *
8541 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
8542 {
8543 	struct nvme_bdev *nbdev;
8544 	struct nvme_ns *nvme_ns;
8545 
8546 	if (!bdev || bdev->module != &nvme_if) {
8547 		return NULL;
8548 	}
8549 
8550 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
8551 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
8552 	assert(nvme_ns != NULL);
8553 
8554 	return nvme_ns->ctrlr->ctrlr;
8555 }
8556 
8557 static bool
8558 nvme_io_path_is_current(struct nvme_io_path *io_path)
8559 {
8560 	const struct nvme_bdev_channel *nbdev_ch;
8561 	bool current;
8562 
8563 	if (!nvme_io_path_is_available(io_path)) {
8564 		return false;
8565 	}
8566 
8567 	nbdev_ch = io_path->nbdev_ch;
8568 	if (nbdev_ch == NULL) {
8569 		current = false;
8570 	} else if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
8571 		struct nvme_io_path *optimized_io_path = NULL;
8572 
8573 		STAILQ_FOREACH(optimized_io_path, &nbdev_ch->io_path_list, stailq) {
8574 			if (optimized_io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) {
8575 				break;
8576 			}
8577 		}
8578 
8579 		/* A non-optimized path is only current if there are no optimized paths. */
8580 		current = (io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) ||
8581 			  (optimized_io_path == NULL);
8582 	} else {
8583 		if (nbdev_ch->current_io_path) {
8584 			current = (io_path == nbdev_ch->current_io_path);
8585 		} else {
8586 			struct nvme_io_path *first_path;
8587 
8588 			/* We arrived here as there are no optimized paths for active-passive
8589 			 * mode. Check if this io_path is the first one available on the list.
8590 			 */
8591 			current = false;
8592 			STAILQ_FOREACH(first_path, &nbdev_ch->io_path_list, stailq) {
8593 				if (nvme_io_path_is_available(first_path)) {
8594 					current = (io_path == first_path);
8595 					break;
8596 				}
8597 			}
8598 		}
8599 	}
8600 
8601 	return current;
8602 }
8603 
8604 void
8605 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
8606 {
8607 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
8608 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
8609 	const struct spdk_nvme_ctrlr_data *cdata;
8610 	const struct spdk_nvme_transport_id *trid;
8611 	const char *adrfam_str;
8612 
8613 	spdk_json_write_object_begin(w);
8614 
8615 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
8616 
8617 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
8618 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
8619 
8620 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
8621 	spdk_json_write_named_bool(w, "current", nvme_io_path_is_current(io_path));
8622 	spdk_json_write_named_bool(w, "connected", nvme_qpair_is_connected(io_path->qpair));
8623 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
8624 
8625 	spdk_json_write_named_object_begin(w, "transport");
8626 	spdk_json_write_named_string(w, "trtype", trid->trstring);
8627 	spdk_json_write_named_string(w, "traddr", trid->traddr);
8628 	if (trid->trsvcid[0] != '\0') {
8629 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
8630 	}
8631 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
8632 	if (adrfam_str) {
8633 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
8634 	}
8635 	spdk_json_write_object_end(w);
8636 
8637 	spdk_json_write_object_end(w);
8638 }
8639 
8640 void
8641 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
8642 {
8643 	struct discovery_ctx *ctx;
8644 	struct discovery_entry_ctx *entry_ctx;
8645 
8646 	spdk_json_write_array_begin(w);
8647 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8648 		spdk_json_write_object_begin(w);
8649 		spdk_json_write_named_string(w, "name", ctx->name);
8650 
8651 		spdk_json_write_named_object_begin(w, "trid");
8652 		nvme_bdev_dump_trid_json(&ctx->trid, w);
8653 		spdk_json_write_object_end(w);
8654 
8655 		spdk_json_write_named_array_begin(w, "referrals");
8656 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
8657 			spdk_json_write_object_begin(w);
8658 			spdk_json_write_named_object_begin(w, "trid");
8659 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
8660 			spdk_json_write_object_end(w);
8661 			spdk_json_write_object_end(w);
8662 		}
8663 		spdk_json_write_array_end(w);
8664 
8665 		spdk_json_write_object_end(w);
8666 	}
8667 	spdk_json_write_array_end(w);
8668 }
8669 
8670 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
8671 
8672 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
8673 {
8674 	struct spdk_trace_tpoint_opts opts[] = {
8675 		{
8676 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
8677 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 1,
8678 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8679 		},
8680 		{
8681 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
8682 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 0,
8683 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8684 		}
8685 	};
8686 
8687 
8688 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
8689 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
8690 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8691 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8692 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8693 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8694 }
8695