xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision b3bec07939ebe2ea2e0c43931705d32aa9e06719)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/likely.h"
18 #include "spdk/nvme.h"
19 #include "spdk/nvme_ocssd.h"
20 #include "spdk/nvme_zns.h"
21 #include "spdk/opal.h"
22 #include "spdk/thread.h"
23 #include "spdk/trace.h"
24 #include "spdk/string.h"
25 #include "spdk/util.h"
26 #include "spdk/uuid.h"
27 
28 #include "spdk/bdev_module.h"
29 #include "spdk/log.h"
30 
31 #include "spdk_internal/usdt.h"
32 #include "spdk_internal/trace_defs.h"
33 
34 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
35 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
36 
37 #define NSID_STR_LEN 10
38 
39 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
40 
41 struct nvme_bdev_io {
42 	/** array of iovecs to transfer. */
43 	struct iovec *iovs;
44 
45 	/** Number of iovecs in iovs array. */
46 	int iovcnt;
47 
48 	/** Current iovec position. */
49 	int iovpos;
50 
51 	/** Offset in current iovec. */
52 	uint32_t iov_offset;
53 
54 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
55 	 *  being reset in a reset I/O.
56 	 */
57 	struct nvme_io_path *io_path;
58 
59 	/** array of iovecs to transfer. */
60 	struct iovec *fused_iovs;
61 
62 	/** Number of iovecs in iovs array. */
63 	int fused_iovcnt;
64 
65 	/** Current iovec position. */
66 	int fused_iovpos;
67 
68 	/** Offset in current iovec. */
69 	uint32_t fused_iov_offset;
70 
71 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
72 	struct spdk_nvme_cpl cpl;
73 
74 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
75 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
76 
77 	/** Keeps track if first of fused commands was submitted */
78 	bool first_fused_submitted;
79 
80 	/** Keeps track if first of fused commands was completed */
81 	bool first_fused_completed;
82 
83 	/** Temporary pointer to zone report buffer */
84 	struct spdk_nvme_zns_zone_report *zone_report_buf;
85 
86 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
87 	uint64_t handled_zones;
88 
89 	/** Expiration value in ticks to retry the current I/O. */
90 	uint64_t retry_ticks;
91 
92 	/* How many times the current I/O was retried. */
93 	int32_t retry_count;
94 
95 	/* Current tsc at submit time. */
96 	uint64_t submit_tsc;
97 };
98 
99 struct nvme_probe_skip_entry {
100 	struct spdk_nvme_transport_id		trid;
101 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
102 };
103 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
104 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
105 			g_skipped_nvme_ctrlrs);
106 
107 static struct spdk_bdev_nvme_opts g_opts = {
108 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
109 	.timeout_us = 0,
110 	.timeout_admin_us = 0,
111 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
112 	.transport_retry_count = 4,
113 	.arbitration_burst = 0,
114 	.low_priority_weight = 0,
115 	.medium_priority_weight = 0,
116 	.high_priority_weight = 0,
117 	.nvme_adminq_poll_period_us = 10000ULL,
118 	.nvme_ioq_poll_period_us = 0,
119 	.io_queue_requests = 0,
120 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
121 	.bdev_retry_count = 3,
122 	.transport_ack_timeout = 0,
123 	.ctrlr_loss_timeout_sec = 0,
124 	.reconnect_delay_sec = 0,
125 	.fast_io_fail_timeout_sec = 0,
126 	.disable_auto_failback = false,
127 	.generate_uuids = false,
128 	.transport_tos = 0,
129 	.nvme_error_stat = false,
130 	.io_path_stat = false,
131 };
132 
133 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
134 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
135 
136 static int g_hot_insert_nvme_controller_index = 0;
137 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
138 static bool g_nvme_hotplug_enabled = false;
139 struct spdk_thread *g_bdev_nvme_init_thread;
140 static struct spdk_poller *g_hotplug_poller;
141 static struct spdk_poller *g_hotplug_probe_poller;
142 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
143 
144 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
145 		struct nvme_async_probe_ctx *ctx);
146 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
147 		struct nvme_async_probe_ctx *ctx);
148 static int bdev_nvme_library_init(void);
149 static void bdev_nvme_library_fini(void);
150 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
151 				      struct spdk_bdev_io *bdev_io);
152 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
153 				     struct spdk_bdev_io *bdev_io);
154 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
155 			   void *md, uint64_t lba_count, uint64_t lba,
156 			   uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx);
157 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
158 				 void *md, uint64_t lba_count, uint64_t lba);
159 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
160 			    void *md, uint64_t lba_count, uint64_t lba,
161 			    uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx);
162 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
163 				  void *md, uint64_t lba_count,
164 				  uint64_t zslba, uint32_t flags);
165 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
166 			      void *md, uint64_t lba_count, uint64_t lba,
167 			      uint32_t flags);
168 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
169 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
170 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
171 		uint32_t flags);
172 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
173 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
174 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
175 				     enum spdk_bdev_zone_action action);
176 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
177 				     struct nvme_bdev_io *bio,
178 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
179 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
180 				 void *buf, size_t nbytes);
181 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
182 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
183 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
184 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
185 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
186 static int bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
187 static int bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool remove);
188 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
189 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
190 
191 static struct nvme_ns *nvme_ns_alloc(void);
192 static void nvme_ns_free(struct nvme_ns *ns);
193 
194 static int
195 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
196 {
197 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
198 }
199 
200 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
201 
202 struct spdk_nvme_qpair *
203 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
204 {
205 	struct nvme_ctrlr_channel *ctrlr_ch;
206 
207 	assert(ctrlr_io_ch != NULL);
208 
209 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
210 
211 	return ctrlr_ch->qpair->qpair;
212 }
213 
214 static int
215 bdev_nvme_get_ctx_size(void)
216 {
217 	return sizeof(struct nvme_bdev_io);
218 }
219 
220 static struct spdk_bdev_module nvme_if = {
221 	.name = "nvme",
222 	.async_fini = true,
223 	.module_init = bdev_nvme_library_init,
224 	.module_fini = bdev_nvme_library_fini,
225 	.config_json = bdev_nvme_config_json,
226 	.get_ctx_size = bdev_nvme_get_ctx_size,
227 
228 };
229 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
230 
231 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
232 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
233 bool g_bdev_nvme_module_finish;
234 
235 struct nvme_bdev_ctrlr *
236 nvme_bdev_ctrlr_get_by_name(const char *name)
237 {
238 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
239 
240 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
241 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
242 			break;
243 		}
244 	}
245 
246 	return nbdev_ctrlr;
247 }
248 
249 static struct nvme_ctrlr *
250 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
251 			  const struct spdk_nvme_transport_id *trid)
252 {
253 	struct nvme_ctrlr *nvme_ctrlr;
254 
255 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
256 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0) {
257 			break;
258 		}
259 	}
260 
261 	return nvme_ctrlr;
262 }
263 
264 struct nvme_ctrlr *
265 nvme_bdev_ctrlr_get_ctrlr_by_id(struct nvme_bdev_ctrlr *nbdev_ctrlr,
266 				uint16_t cntlid)
267 {
268 	struct nvme_ctrlr *nvme_ctrlr;
269 	const struct spdk_nvme_ctrlr_data *cdata;
270 
271 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
272 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
273 		if (cdata->cntlid == cntlid) {
274 			break;
275 		}
276 	}
277 
278 	return nvme_ctrlr;
279 }
280 
281 static struct nvme_bdev *
282 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
283 {
284 	struct nvme_bdev *bdev;
285 
286 	pthread_mutex_lock(&g_bdev_nvme_mutex);
287 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
288 		if (bdev->nsid == nsid) {
289 			break;
290 		}
291 	}
292 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
293 
294 	return bdev;
295 }
296 
297 struct nvme_ns *
298 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
299 {
300 	struct nvme_ns ns;
301 
302 	assert(nsid > 0);
303 
304 	ns.id = nsid;
305 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
306 }
307 
308 struct nvme_ns *
309 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
310 {
311 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
312 }
313 
314 struct nvme_ns *
315 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
316 {
317 	if (ns == NULL) {
318 		return NULL;
319 	}
320 
321 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
322 }
323 
324 static struct nvme_ctrlr *
325 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid)
326 {
327 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
328 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
329 
330 	pthread_mutex_lock(&g_bdev_nvme_mutex);
331 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
332 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid);
333 		if (nvme_ctrlr != NULL) {
334 			break;
335 		}
336 	}
337 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
338 
339 	return nvme_ctrlr;
340 }
341 
342 struct nvme_ctrlr *
343 nvme_ctrlr_get_by_name(const char *name)
344 {
345 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
346 	struct nvme_ctrlr *nvme_ctrlr = NULL;
347 
348 	if (name == NULL) {
349 		return NULL;
350 	}
351 
352 	pthread_mutex_lock(&g_bdev_nvme_mutex);
353 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
354 	if (nbdev_ctrlr != NULL) {
355 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
356 	}
357 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
358 
359 	return nvme_ctrlr;
360 }
361 
362 void
363 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
364 {
365 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
366 
367 	pthread_mutex_lock(&g_bdev_nvme_mutex);
368 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
369 		fn(nbdev_ctrlr, ctx);
370 	}
371 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
372 }
373 
374 void
375 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
376 {
377 	const char *trtype_str;
378 	const char *adrfam_str;
379 
380 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
381 	if (trtype_str) {
382 		spdk_json_write_named_string(w, "trtype", trtype_str);
383 	}
384 
385 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
386 	if (adrfam_str) {
387 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
388 	}
389 
390 	if (trid->traddr[0] != '\0') {
391 		spdk_json_write_named_string(w, "traddr", trid->traddr);
392 	}
393 
394 	if (trid->trsvcid[0] != '\0') {
395 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
396 	}
397 
398 	if (trid->subnqn[0] != '\0') {
399 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
400 	}
401 }
402 
403 static void
404 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
405 		       struct nvme_ctrlr *nvme_ctrlr)
406 {
407 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
408 	pthread_mutex_lock(&g_bdev_nvme_mutex);
409 
410 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
411 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
412 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
413 
414 		return;
415 	}
416 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
417 
418 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
419 
420 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
421 
422 	free(nbdev_ctrlr->name);
423 	free(nbdev_ctrlr);
424 }
425 
426 static void
427 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
428 {
429 	struct nvme_path_id *path_id, *tmp_path;
430 	struct nvme_ns *ns, *tmp_ns;
431 
432 	free(nvme_ctrlr->copied_ana_desc);
433 	spdk_free(nvme_ctrlr->ana_log_page);
434 
435 	if (nvme_ctrlr->opal_dev) {
436 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
437 		nvme_ctrlr->opal_dev = NULL;
438 	}
439 
440 	if (nvme_ctrlr->nbdev_ctrlr) {
441 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
442 	}
443 
444 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
445 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
446 		nvme_ns_free(ns);
447 	}
448 
449 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
450 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
451 		free(path_id);
452 	}
453 
454 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
455 
456 	free(nvme_ctrlr);
457 
458 	pthread_mutex_lock(&g_bdev_nvme_mutex);
459 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
460 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
461 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
462 		spdk_bdev_module_fini_done();
463 		return;
464 	}
465 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
466 }
467 
468 static int
469 nvme_detach_poller(void *arg)
470 {
471 	struct nvme_ctrlr *nvme_ctrlr = arg;
472 	int rc;
473 
474 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
475 	if (rc != -EAGAIN) {
476 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
477 		_nvme_ctrlr_delete(nvme_ctrlr);
478 	}
479 
480 	return SPDK_POLLER_BUSY;
481 }
482 
483 static void
484 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
485 {
486 	int rc;
487 
488 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
489 
490 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
491 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
492 
493 	/* If we got here, the reset/detach poller cannot be active */
494 	assert(nvme_ctrlr->reset_detach_poller == NULL);
495 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
496 					  nvme_ctrlr, 1000);
497 	if (nvme_ctrlr->reset_detach_poller == NULL) {
498 		SPDK_ERRLOG("Failed to register detach poller\n");
499 		goto error;
500 	}
501 
502 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
503 	if (rc != 0) {
504 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
505 		goto error;
506 	}
507 
508 	return;
509 error:
510 	/* We don't have a good way to handle errors here, so just do what we can and delete the
511 	 * controller without detaching the underlying NVMe device.
512 	 */
513 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
514 	_nvme_ctrlr_delete(nvme_ctrlr);
515 }
516 
517 static void
518 nvme_ctrlr_unregister_cb(void *io_device)
519 {
520 	struct nvme_ctrlr *nvme_ctrlr = io_device;
521 
522 	nvme_ctrlr_delete(nvme_ctrlr);
523 }
524 
525 static void
526 nvme_ctrlr_unregister(void *ctx)
527 {
528 	struct nvme_ctrlr *nvme_ctrlr = ctx;
529 
530 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
531 }
532 
533 static bool
534 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
535 {
536 	if (!nvme_ctrlr->destruct) {
537 		return false;
538 	}
539 
540 	if (nvme_ctrlr->ref > 0) {
541 		return false;
542 	}
543 
544 	if (nvme_ctrlr->resetting) {
545 		return false;
546 	}
547 
548 	if (nvme_ctrlr->ana_log_page_updating) {
549 		return false;
550 	}
551 
552 	if (nvme_ctrlr->io_path_cache_clearing) {
553 		return false;
554 	}
555 
556 	return true;
557 }
558 
559 static void
560 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
561 {
562 	pthread_mutex_lock(&nvme_ctrlr->mutex);
563 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
564 
565 	assert(nvme_ctrlr->ref > 0);
566 	nvme_ctrlr->ref--;
567 
568 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
569 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
570 		return;
571 	}
572 
573 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
574 
575 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
576 }
577 
578 static void
579 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch)
580 {
581 	nbdev_ch->current_io_path = NULL;
582 	nbdev_ch->rr_counter = 0;
583 }
584 
585 static struct nvme_io_path *
586 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
587 {
588 	struct nvme_io_path *io_path;
589 
590 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
591 		if (io_path->nvme_ns == nvme_ns) {
592 			break;
593 		}
594 	}
595 
596 	return io_path;
597 }
598 
599 static struct nvme_io_path *
600 nvme_io_path_alloc(void)
601 {
602 	struct nvme_io_path *io_path;
603 
604 	io_path = calloc(1, sizeof(*io_path));
605 	if (io_path == NULL) {
606 		SPDK_ERRLOG("Failed to alloc io_path.\n");
607 		return NULL;
608 	}
609 
610 	if (g_opts.io_path_stat) {
611 		io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
612 		if (io_path->stat == NULL) {
613 			free(io_path);
614 			SPDK_ERRLOG("Failed to alloc io_path stat.\n");
615 			return NULL;
616 		}
617 		spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
618 	}
619 
620 	return io_path;
621 }
622 
623 static void
624 nvme_io_path_free(struct nvme_io_path *io_path)
625 {
626 	free(io_path->stat);
627 	free(io_path);
628 }
629 
630 static int
631 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
632 {
633 	struct nvme_io_path *io_path;
634 	struct spdk_io_channel *ch;
635 	struct nvme_ctrlr_channel *ctrlr_ch;
636 	struct nvme_qpair *nvme_qpair;
637 
638 	io_path = nvme_io_path_alloc();
639 	if (io_path == NULL) {
640 		return -ENOMEM;
641 	}
642 
643 	io_path->nvme_ns = nvme_ns;
644 
645 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
646 	if (ch == NULL) {
647 		nvme_io_path_free(io_path);
648 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
649 		return -ENOMEM;
650 	}
651 
652 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
653 
654 	nvme_qpair = ctrlr_ch->qpair;
655 	assert(nvme_qpair != NULL);
656 
657 	io_path->qpair = nvme_qpair;
658 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
659 
660 	io_path->nbdev_ch = nbdev_ch;
661 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
662 
663 	bdev_nvme_clear_current_io_path(nbdev_ch);
664 
665 	return 0;
666 }
667 
668 static void
669 bdev_nvme_clear_retry_io_path(struct nvme_bdev_channel *nbdev_ch,
670 			      struct nvme_io_path *io_path)
671 {
672 	struct spdk_bdev_io *bdev_io;
673 	struct nvme_bdev_io *bio;
674 
675 	TAILQ_FOREACH(bdev_io, &nbdev_ch->retry_io_list, module_link) {
676 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
677 		if (bio->io_path == io_path) {
678 			bio->io_path = NULL;
679 		}
680 	}
681 }
682 
683 static void
684 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
685 {
686 	struct spdk_io_channel *ch;
687 	struct nvme_qpair *nvme_qpair;
688 	struct nvme_ctrlr_channel *ctrlr_ch;
689 	struct nvme_bdev *nbdev;
690 
691 	nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch));
692 
693 	/* Add the statistics to nvme_ns before this path is destroyed. */
694 	pthread_mutex_lock(&nbdev->mutex);
695 	if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) {
696 		spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat);
697 	}
698 	pthread_mutex_unlock(&nbdev->mutex);
699 
700 	bdev_nvme_clear_current_io_path(nbdev_ch);
701 	bdev_nvme_clear_retry_io_path(nbdev_ch, io_path);
702 
703 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
704 	io_path->nbdev_ch = NULL;
705 
706 	nvme_qpair = io_path->qpair;
707 	assert(nvme_qpair != NULL);
708 
709 	ctrlr_ch = nvme_qpair->ctrlr_ch;
710 	assert(ctrlr_ch != NULL);
711 
712 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
713 	spdk_put_io_channel(ch);
714 
715 	/* After an io_path is removed, I/Os submitted to it may complete and update statistics
716 	 * of the io_path. To avoid heap-use-after-free error from this case, do not free the
717 	 * io_path here but free the io_path when the associated qpair is freed. It is ensured
718 	 * that all I/Os submitted to the io_path are completed when the associated qpair is freed.
719 	 */
720 }
721 
722 static void
723 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
724 {
725 	struct nvme_io_path *io_path, *tmp_io_path;
726 
727 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
728 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
729 	}
730 }
731 
732 static int
733 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
734 {
735 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
736 	struct nvme_bdev *nbdev = io_device;
737 	struct nvme_ns *nvme_ns;
738 	int rc;
739 
740 	STAILQ_INIT(&nbdev_ch->io_path_list);
741 	TAILQ_INIT(&nbdev_ch->retry_io_list);
742 
743 	pthread_mutex_lock(&nbdev->mutex);
744 
745 	nbdev_ch->mp_policy = nbdev->mp_policy;
746 	nbdev_ch->mp_selector = nbdev->mp_selector;
747 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
748 
749 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
750 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
751 		if (rc != 0) {
752 			pthread_mutex_unlock(&nbdev->mutex);
753 
754 			_bdev_nvme_delete_io_paths(nbdev_ch);
755 			return rc;
756 		}
757 	}
758 	pthread_mutex_unlock(&nbdev->mutex);
759 
760 	return 0;
761 }
762 
763 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
764  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
765  */
766 static inline void
767 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
768 			const struct spdk_nvme_cpl *cpl)
769 {
770 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
771 			  (uintptr_t)bdev_io);
772 	if (cpl) {
773 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
774 	} else {
775 		spdk_bdev_io_complete(bdev_io, status);
776 	}
777 }
778 
779 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
780 
781 static void
782 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
783 {
784 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
785 
786 	bdev_nvme_abort_retry_ios(nbdev_ch);
787 	_bdev_nvme_delete_io_paths(nbdev_ch);
788 }
789 
790 static inline bool
791 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
792 {
793 	switch (io_type) {
794 	case SPDK_BDEV_IO_TYPE_RESET:
795 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
796 	case SPDK_BDEV_IO_TYPE_ABORT:
797 		return true;
798 	default:
799 		break;
800 	}
801 
802 	return false;
803 }
804 
805 static inline bool
806 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
807 {
808 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
809 		return false;
810 	}
811 
812 	switch (nvme_ns->ana_state) {
813 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
814 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
815 		return true;
816 	default:
817 		break;
818 	}
819 
820 	return false;
821 }
822 
823 static inline bool
824 nvme_qpair_is_connected(struct nvme_qpair *nvme_qpair)
825 {
826 	if (spdk_unlikely(nvme_qpair->qpair == NULL)) {
827 		return false;
828 	}
829 
830 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
831 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
832 		return false;
833 	}
834 
835 	if (spdk_unlikely(nvme_qpair->ctrlr_ch->reset_iter != NULL)) {
836 		return false;
837 	}
838 
839 	if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_qpair->ctrlr->ctrlr) !=
840 	    SPDK_NVME_QPAIR_FAILURE_NONE) {
841 		return false;
842 	}
843 
844 	return true;
845 }
846 
847 static inline bool
848 nvme_io_path_is_available(struct nvme_io_path *io_path)
849 {
850 	if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
851 		return false;
852 	}
853 
854 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
855 		return false;
856 	}
857 
858 	return true;
859 }
860 
861 static inline bool
862 nvme_ctrlr_is_failed(struct nvme_ctrlr *nvme_ctrlr)
863 {
864 	if (nvme_ctrlr->destruct) {
865 		return true;
866 	}
867 
868 	if (nvme_ctrlr->fast_io_fail_timedout) {
869 		return true;
870 	}
871 
872 	if (nvme_ctrlr->resetting) {
873 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
874 			return false;
875 		} else {
876 			return true;
877 		}
878 	}
879 
880 	if (nvme_ctrlr->reconnect_is_delayed) {
881 		return false;
882 	}
883 
884 	if (nvme_ctrlr->disabled) {
885 		return true;
886 	}
887 
888 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
889 		return true;
890 	} else {
891 		return false;
892 	}
893 }
894 
895 static bool
896 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
897 {
898 	if (nvme_ctrlr->destruct) {
899 		return false;
900 	}
901 
902 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
903 		return false;
904 	}
905 
906 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
907 		return false;
908 	}
909 
910 	if (nvme_ctrlr->disabled) {
911 		return false;
912 	}
913 
914 	return true;
915 }
916 
917 /* Simulate circular linked list. */
918 static inline struct nvme_io_path *
919 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
920 {
921 	struct nvme_io_path *next_path;
922 
923 	if (prev_path != NULL) {
924 		next_path = STAILQ_NEXT(prev_path, stailq);
925 		if (next_path != NULL) {
926 			return next_path;
927 		}
928 	}
929 
930 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
931 }
932 
933 static struct nvme_io_path *
934 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
935 {
936 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
937 
938 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
939 
940 	io_path = start;
941 	do {
942 		if (spdk_likely(nvme_qpair_is_connected(io_path->qpair) &&
943 				!io_path->nvme_ns->ana_state_updating)) {
944 			switch (io_path->nvme_ns->ana_state) {
945 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
946 				nbdev_ch->current_io_path = io_path;
947 				return io_path;
948 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
949 				if (non_optimized == NULL) {
950 					non_optimized = io_path;
951 				}
952 				break;
953 			default:
954 				break;
955 			}
956 		}
957 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
958 	} while (io_path != start);
959 
960 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
961 		/* We come here only if there is no optimized path. Cache even non_optimized
962 		 * path for load balance across multiple non_optimized paths.
963 		 */
964 		nbdev_ch->current_io_path = non_optimized;
965 	}
966 
967 	return non_optimized;
968 }
969 
970 static struct nvme_io_path *
971 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch)
972 {
973 	struct nvme_io_path *io_path;
974 	struct nvme_io_path *optimized = NULL, *non_optimized = NULL;
975 	uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX;
976 	uint32_t num_outstanding_reqs;
977 
978 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
979 		if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
980 			/* The device is currently resetting. */
981 			continue;
982 		}
983 
984 		if (spdk_unlikely(io_path->nvme_ns->ana_state_updating)) {
985 			continue;
986 		}
987 
988 		num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair);
989 		switch (io_path->nvme_ns->ana_state) {
990 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
991 			if (num_outstanding_reqs < opt_min_qd) {
992 				opt_min_qd = num_outstanding_reqs;
993 				optimized = io_path;
994 			}
995 			break;
996 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
997 			if (num_outstanding_reqs < non_opt_min_qd) {
998 				non_opt_min_qd = num_outstanding_reqs;
999 				non_optimized = io_path;
1000 			}
1001 			break;
1002 		default:
1003 			break;
1004 		}
1005 	}
1006 
1007 	/* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */
1008 	if (optimized != NULL) {
1009 		return optimized;
1010 	}
1011 
1012 	return non_optimized;
1013 }
1014 
1015 static inline struct nvme_io_path *
1016 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1017 {
1018 	if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
1019 		if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) {
1020 			return nbdev_ch->current_io_path;
1021 		} else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1022 			if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) {
1023 				return nbdev_ch->current_io_path;
1024 			}
1025 			nbdev_ch->rr_counter = 0;
1026 		}
1027 	}
1028 
1029 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE ||
1030 	    nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1031 		return _bdev_nvme_find_io_path(nbdev_ch);
1032 	} else {
1033 		return _bdev_nvme_find_io_path_min_qd(nbdev_ch);
1034 	}
1035 }
1036 
1037 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
1038  * or false otherwise.
1039  *
1040  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
1041  * is likely to be non-accessible now but may become accessible.
1042  *
1043  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
1044  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
1045  * when starting to reset it but it is set to failed when the reset failed. Hence, if
1046  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
1047  */
1048 static bool
1049 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
1050 {
1051 	struct nvme_io_path *io_path;
1052 
1053 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1054 		if (io_path->nvme_ns->ana_transition_timedout) {
1055 			continue;
1056 		}
1057 
1058 		if (nvme_qpair_is_connected(io_path->qpair) ||
1059 		    !nvme_ctrlr_is_failed(io_path->qpair->ctrlr)) {
1060 			return true;
1061 		}
1062 	}
1063 
1064 	return false;
1065 }
1066 
1067 static void
1068 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
1069 {
1070 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1071 	struct spdk_io_channel *ch;
1072 
1073 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
1074 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
1075 	} else {
1076 		ch = spdk_io_channel_from_ctx(nbdev_ch);
1077 		bdev_nvme_submit_request(ch, bdev_io);
1078 	}
1079 }
1080 
1081 static int
1082 bdev_nvme_retry_ios(void *arg)
1083 {
1084 	struct nvme_bdev_channel *nbdev_ch = arg;
1085 	struct spdk_bdev_io *bdev_io, *tmp_bdev_io;
1086 	struct nvme_bdev_io *bio;
1087 	uint64_t now, delay_us;
1088 
1089 	now = spdk_get_ticks();
1090 
1091 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_bdev_io) {
1092 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1093 		if (bio->retry_ticks > now) {
1094 			break;
1095 		}
1096 
1097 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
1098 
1099 		bdev_nvme_retry_io(nbdev_ch, bdev_io);
1100 	}
1101 
1102 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1103 
1104 	bdev_io = TAILQ_FIRST(&nbdev_ch->retry_io_list);
1105 	if (bdev_io != NULL) {
1106 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1107 
1108 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
1109 
1110 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1111 					    delay_us);
1112 	}
1113 
1114 	return SPDK_POLLER_BUSY;
1115 }
1116 
1117 static void
1118 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1119 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1120 {
1121 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1122 	struct spdk_bdev_io *tmp_bdev_io;
1123 	struct nvme_bdev_io *tmp_bio;
1124 
1125 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1126 
1127 	TAILQ_FOREACH_REVERSE(tmp_bdev_io, &nbdev_ch->retry_io_list, retry_io_head, module_link) {
1128 		tmp_bio = (struct nvme_bdev_io *)tmp_bdev_io->driver_ctx;
1129 
1130 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1131 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bdev_io, bdev_io,
1132 					   module_link);
1133 			return;
1134 		}
1135 	}
1136 
1137 	/* No earlier I/Os were found. This I/O must be the new head. */
1138 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bdev_io, module_link);
1139 
1140 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1141 
1142 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1143 				    delay_ms * 1000ULL);
1144 }
1145 
1146 static void
1147 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
1148 {
1149 	struct spdk_bdev_io *bdev_io, *tmp_io;
1150 
1151 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_io) {
1152 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
1153 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1154 	}
1155 
1156 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1157 }
1158 
1159 static int
1160 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1161 			 struct nvme_bdev_io *bio_to_abort)
1162 {
1163 	struct spdk_bdev_io *bdev_io_to_abort;
1164 
1165 	TAILQ_FOREACH(bdev_io_to_abort, &nbdev_ch->retry_io_list, module_link) {
1166 		if ((struct nvme_bdev_io *)bdev_io_to_abort->driver_ctx == bio_to_abort) {
1167 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io_to_abort, module_link);
1168 			__bdev_nvme_io_complete(bdev_io_to_abort, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1169 			return 0;
1170 		}
1171 	}
1172 
1173 	return -ENOENT;
1174 }
1175 
1176 static void
1177 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1178 {
1179 	struct nvme_bdev *nbdev;
1180 	uint16_t sct, sc;
1181 
1182 	assert(spdk_nvme_cpl_is_error(cpl));
1183 
1184 	nbdev = bdev_io->bdev->ctxt;
1185 
1186 	if (nbdev->err_stat == NULL) {
1187 		return;
1188 	}
1189 
1190 	sct = cpl->status.sct;
1191 	sc = cpl->status.sc;
1192 
1193 	pthread_mutex_lock(&nbdev->mutex);
1194 
1195 	nbdev->err_stat->status_type[sct]++;
1196 	switch (sct) {
1197 	case SPDK_NVME_SCT_GENERIC:
1198 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1199 	case SPDK_NVME_SCT_MEDIA_ERROR:
1200 	case SPDK_NVME_SCT_PATH:
1201 		nbdev->err_stat->status[sct][sc]++;
1202 		break;
1203 	default:
1204 		break;
1205 	}
1206 
1207 	pthread_mutex_unlock(&nbdev->mutex);
1208 }
1209 
1210 static inline void
1211 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio)
1212 {
1213 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1214 	uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
1215 	uint32_t blocklen = bdev_io->bdev->blocklen;
1216 	struct spdk_bdev_io_stat *stat;
1217 	uint64_t tsc_diff;
1218 
1219 	if (bio->io_path->stat == NULL) {
1220 		return;
1221 	}
1222 
1223 	tsc_diff = spdk_get_ticks() - bio->submit_tsc;
1224 	stat = bio->io_path->stat;
1225 
1226 	switch (bdev_io->type) {
1227 	case SPDK_BDEV_IO_TYPE_READ:
1228 		stat->bytes_read += num_blocks * blocklen;
1229 		stat->num_read_ops++;
1230 		stat->read_latency_ticks += tsc_diff;
1231 		if (stat->max_read_latency_ticks < tsc_diff) {
1232 			stat->max_read_latency_ticks = tsc_diff;
1233 		}
1234 		if (stat->min_read_latency_ticks > tsc_diff) {
1235 			stat->min_read_latency_ticks = tsc_diff;
1236 		}
1237 		break;
1238 	case SPDK_BDEV_IO_TYPE_WRITE:
1239 		stat->bytes_written += num_blocks * blocklen;
1240 		stat->num_write_ops++;
1241 		stat->write_latency_ticks += tsc_diff;
1242 		if (stat->max_write_latency_ticks < tsc_diff) {
1243 			stat->max_write_latency_ticks = tsc_diff;
1244 		}
1245 		if (stat->min_write_latency_ticks > tsc_diff) {
1246 			stat->min_write_latency_ticks = tsc_diff;
1247 		}
1248 		break;
1249 	case SPDK_BDEV_IO_TYPE_UNMAP:
1250 		stat->bytes_unmapped += num_blocks * blocklen;
1251 		stat->num_unmap_ops++;
1252 		stat->unmap_latency_ticks += tsc_diff;
1253 		if (stat->max_unmap_latency_ticks < tsc_diff) {
1254 			stat->max_unmap_latency_ticks = tsc_diff;
1255 		}
1256 		if (stat->min_unmap_latency_ticks > tsc_diff) {
1257 			stat->min_unmap_latency_ticks = tsc_diff;
1258 		}
1259 		break;
1260 	case SPDK_BDEV_IO_TYPE_ZCOPY:
1261 		/* Track the data in the start phase only */
1262 		if (!bdev_io->u.bdev.zcopy.start) {
1263 			break;
1264 		}
1265 		if (bdev_io->u.bdev.zcopy.populate) {
1266 			stat->bytes_read += num_blocks * blocklen;
1267 			stat->num_read_ops++;
1268 			stat->read_latency_ticks += tsc_diff;
1269 			if (stat->max_read_latency_ticks < tsc_diff) {
1270 				stat->max_read_latency_ticks = tsc_diff;
1271 			}
1272 			if (stat->min_read_latency_ticks > tsc_diff) {
1273 				stat->min_read_latency_ticks = tsc_diff;
1274 			}
1275 		} else {
1276 			stat->bytes_written += num_blocks * blocklen;
1277 			stat->num_write_ops++;
1278 			stat->write_latency_ticks += tsc_diff;
1279 			if (stat->max_write_latency_ticks < tsc_diff) {
1280 				stat->max_write_latency_ticks = tsc_diff;
1281 			}
1282 			if (stat->min_write_latency_ticks > tsc_diff) {
1283 				stat->min_write_latency_ticks = tsc_diff;
1284 			}
1285 		}
1286 		break;
1287 	case SPDK_BDEV_IO_TYPE_COPY:
1288 		stat->bytes_copied += num_blocks * blocklen;
1289 		stat->num_copy_ops++;
1290 		stat->copy_latency_ticks += tsc_diff;
1291 		if (stat->max_copy_latency_ticks < tsc_diff) {
1292 			stat->max_copy_latency_ticks = tsc_diff;
1293 		}
1294 		if (stat->min_copy_latency_ticks > tsc_diff) {
1295 			stat->min_copy_latency_ticks = tsc_diff;
1296 		}
1297 		break;
1298 	default:
1299 		break;
1300 	}
1301 }
1302 
1303 static bool
1304 bdev_nvme_check_retry_io(struct nvme_bdev_io *bio,
1305 			 const struct spdk_nvme_cpl *cpl,
1306 			 struct nvme_bdev_channel *nbdev_ch,
1307 			 uint64_t *_delay_ms)
1308 {
1309 	struct nvme_io_path *io_path = bio->io_path;
1310 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1311 	const struct spdk_nvme_ctrlr_data *cdata;
1312 
1313 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1314 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1315 	    !nvme_io_path_is_available(io_path) ||
1316 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1317 		bdev_nvme_clear_current_io_path(nbdev_ch);
1318 		bio->io_path = NULL;
1319 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1320 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1321 				io_path->nvme_ns->ana_state_updating = true;
1322 			}
1323 		}
1324 		if (!any_io_path_may_become_available(nbdev_ch)) {
1325 			return false;
1326 		}
1327 		*_delay_ms = 0;
1328 	} else {
1329 		bio->retry_count++;
1330 
1331 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1332 
1333 		if (cpl->status.crd != 0) {
1334 			*_delay_ms = cdata->crdt[cpl->status.crd] * 100;
1335 		} else {
1336 			*_delay_ms = 0;
1337 		}
1338 	}
1339 
1340 	return true;
1341 }
1342 
1343 static inline void
1344 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1345 				  const struct spdk_nvme_cpl *cpl)
1346 {
1347 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1348 	struct nvme_bdev_channel *nbdev_ch;
1349 	uint64_t delay_ms;
1350 
1351 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1352 
1353 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1354 		bdev_nvme_update_io_path_stat(bio);
1355 		goto complete;
1356 	}
1357 
1358 	/* Update error counts before deciding if retry is needed.
1359 	 * Hence, error counts may be more than the number of I/O errors.
1360 	 */
1361 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1362 
1363 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1364 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1365 		goto complete;
1366 	}
1367 
1368 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1369 
1370 	if (bdev_nvme_check_retry_io(bio, cpl, nbdev_ch, &delay_ms)) {
1371 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1372 		return;
1373 	}
1374 
1375 complete:
1376 	bio->retry_count = 0;
1377 	bio->submit_tsc = 0;
1378 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1379 }
1380 
1381 static inline void
1382 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1383 {
1384 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1385 	struct nvme_bdev_channel *nbdev_ch;
1386 	enum spdk_bdev_io_status io_status;
1387 
1388 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1389 
1390 	switch (rc) {
1391 	case 0:
1392 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1393 		break;
1394 	case -ENOMEM:
1395 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1396 		break;
1397 	case -ENXIO:
1398 		nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1399 
1400 		bdev_nvme_clear_current_io_path(nbdev_ch);
1401 		bio->io_path = NULL;
1402 
1403 		if (any_io_path_may_become_available(nbdev_ch)) {
1404 			bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1405 			return;
1406 		}
1407 
1408 	/* fallthrough */
1409 	default:
1410 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1411 		break;
1412 	}
1413 
1414 	bio->retry_count = 0;
1415 	bio->submit_tsc = 0;
1416 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1417 }
1418 
1419 static inline void
1420 bdev_nvme_admin_complete(struct nvme_bdev_io *bio, int rc)
1421 {
1422 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1423 	enum spdk_bdev_io_status io_status;
1424 
1425 	switch (rc) {
1426 	case 0:
1427 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1428 		break;
1429 	case -ENOMEM:
1430 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1431 		break;
1432 	case -ENXIO:
1433 	/* fallthrough */
1434 	default:
1435 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1436 		break;
1437 	}
1438 
1439 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1440 }
1441 
1442 static void
1443 bdev_nvme_clear_io_path_caches_done(struct spdk_io_channel_iter *i, int status)
1444 {
1445 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1446 
1447 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1448 
1449 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1450 	nvme_ctrlr->io_path_cache_clearing = false;
1451 
1452 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1453 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1454 		return;
1455 	}
1456 
1457 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1458 
1459 	nvme_ctrlr_unregister(nvme_ctrlr);
1460 }
1461 
1462 static void
1463 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1464 {
1465 	struct nvme_io_path *io_path;
1466 
1467 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1468 		if (io_path->nbdev_ch == NULL) {
1469 			continue;
1470 		}
1471 		bdev_nvme_clear_current_io_path(io_path->nbdev_ch);
1472 	}
1473 }
1474 
1475 static void
1476 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
1477 {
1478 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1479 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1480 
1481 	assert(ctrlr_ch->qpair != NULL);
1482 
1483 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1484 
1485 	spdk_for_each_channel_continue(i, 0);
1486 }
1487 
1488 static void
1489 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1490 {
1491 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1492 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1493 	    nvme_ctrlr->io_path_cache_clearing) {
1494 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1495 		return;
1496 	}
1497 
1498 	nvme_ctrlr->io_path_cache_clearing = true;
1499 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1500 
1501 	spdk_for_each_channel(nvme_ctrlr,
1502 			      bdev_nvme_clear_io_path_cache,
1503 			      NULL,
1504 			      bdev_nvme_clear_io_path_caches_done);
1505 }
1506 
1507 static struct nvme_qpair *
1508 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1509 {
1510 	struct nvme_qpair *nvme_qpair;
1511 
1512 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1513 		if (nvme_qpair->qpair == qpair) {
1514 			break;
1515 		}
1516 	}
1517 
1518 	return nvme_qpair;
1519 }
1520 
1521 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1522 
1523 static void
1524 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1525 {
1526 	struct nvme_poll_group *group = poll_group_ctx;
1527 	struct nvme_qpair *nvme_qpair;
1528 	struct nvme_ctrlr_channel *ctrlr_ch;
1529 	int status;
1530 
1531 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1532 	if (nvme_qpair == NULL) {
1533 		return;
1534 	}
1535 
1536 	if (nvme_qpair->qpair != NULL) {
1537 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1538 		nvme_qpair->qpair = NULL;
1539 	}
1540 
1541 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1542 
1543 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1544 
1545 	if (ctrlr_ch != NULL) {
1546 		if (ctrlr_ch->reset_iter != NULL) {
1547 			/* We are in a full reset sequence. */
1548 			if (ctrlr_ch->connect_poller != NULL) {
1549 				/* qpair was failed to connect. Abort the reset sequence. */
1550 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was failed to connect. abort the reset ctrlr sequence.\n",
1551 					      qpair);
1552 				spdk_poller_unregister(&ctrlr_ch->connect_poller);
1553 				status = -1;
1554 			} else {
1555 				/* qpair was completed to disconnect. Just move to the next ctrlr_channel. */
1556 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1557 					      qpair);
1558 				status = 0;
1559 			}
1560 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, status);
1561 			ctrlr_ch->reset_iter = NULL;
1562 		} else {
1563 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1564 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1565 			bdev_nvme_failover_ctrlr(nvme_qpair->ctrlr, false);
1566 		}
1567 	} else {
1568 		/* In this case, ctrlr_channel is already deleted. */
1569 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1570 		nvme_qpair_delete(nvme_qpair);
1571 	}
1572 }
1573 
1574 static void
1575 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1576 {
1577 	struct nvme_qpair *nvme_qpair;
1578 
1579 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1580 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1581 			continue;
1582 		}
1583 
1584 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1585 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1586 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1587 		}
1588 	}
1589 }
1590 
1591 static int
1592 bdev_nvme_poll(void *arg)
1593 {
1594 	struct nvme_poll_group *group = arg;
1595 	int64_t num_completions;
1596 
1597 	if (group->collect_spin_stat && group->start_ticks == 0) {
1598 		group->start_ticks = spdk_get_ticks();
1599 	}
1600 
1601 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1602 			  bdev_nvme_disconnected_qpair_cb);
1603 	if (group->collect_spin_stat) {
1604 		if (num_completions > 0) {
1605 			if (group->end_ticks != 0) {
1606 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1607 				group->end_ticks = 0;
1608 			}
1609 			group->start_ticks = 0;
1610 		} else {
1611 			group->end_ticks = spdk_get_ticks();
1612 		}
1613 	}
1614 
1615 	if (spdk_unlikely(num_completions < 0)) {
1616 		bdev_nvme_check_io_qpairs(group);
1617 	}
1618 
1619 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1620 }
1621 
1622 static int bdev_nvme_poll_adminq(void *arg);
1623 
1624 static void
1625 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1626 {
1627 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1628 
1629 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1630 					  nvme_ctrlr, new_period_us);
1631 }
1632 
1633 static int
1634 bdev_nvme_poll_adminq(void *arg)
1635 {
1636 	int32_t rc;
1637 	struct nvme_ctrlr *nvme_ctrlr = arg;
1638 	nvme_ctrlr_disconnected_cb disconnected_cb;
1639 
1640 	assert(nvme_ctrlr != NULL);
1641 
1642 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1643 	if (rc < 0) {
1644 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1645 		nvme_ctrlr->disconnected_cb = NULL;
1646 
1647 		if (disconnected_cb != NULL) {
1648 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1649 							    g_opts.nvme_adminq_poll_period_us);
1650 			disconnected_cb(nvme_ctrlr);
1651 		} else {
1652 			bdev_nvme_failover_ctrlr(nvme_ctrlr, false);
1653 		}
1654 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1655 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1656 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1657 	}
1658 
1659 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1660 }
1661 
1662 static void
1663 nvme_bdev_free(void *io_device)
1664 {
1665 	struct nvme_bdev *nvme_disk = io_device;
1666 
1667 	pthread_mutex_destroy(&nvme_disk->mutex);
1668 	free(nvme_disk->disk.name);
1669 	free(nvme_disk->err_stat);
1670 	free(nvme_disk);
1671 }
1672 
1673 static int
1674 bdev_nvme_destruct(void *ctx)
1675 {
1676 	struct nvme_bdev *nvme_disk = ctx;
1677 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1678 
1679 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1680 
1681 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1682 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1683 
1684 		nvme_ns->bdev = NULL;
1685 
1686 		assert(nvme_ns->id > 0);
1687 
1688 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1689 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1690 
1691 			nvme_ctrlr_release(nvme_ns->ctrlr);
1692 			nvme_ns_free(nvme_ns);
1693 		} else {
1694 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1695 		}
1696 	}
1697 
1698 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1699 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1700 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1701 
1702 	spdk_io_device_unregister(nvme_disk, nvme_bdev_free);
1703 
1704 	return 0;
1705 }
1706 
1707 static int
1708 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1709 {
1710 	struct nvme_ctrlr *nvme_ctrlr;
1711 	struct spdk_nvme_io_qpair_opts opts;
1712 	struct spdk_nvme_qpair *qpair;
1713 	int rc;
1714 
1715 	nvme_ctrlr = nvme_qpair->ctrlr;
1716 
1717 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1718 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1719 	opts.create_only = true;
1720 	opts.async_mode = true;
1721 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1722 	g_opts.io_queue_requests = opts.io_queue_requests;
1723 
1724 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1725 	if (qpair == NULL) {
1726 		return -1;
1727 	}
1728 
1729 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1730 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1731 
1732 	assert(nvme_qpair->group != NULL);
1733 
1734 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1735 	if (rc != 0) {
1736 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1737 		goto err;
1738 	}
1739 
1740 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1741 	if (rc != 0) {
1742 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1743 		goto err;
1744 	}
1745 
1746 	nvme_qpair->qpair = qpair;
1747 
1748 	if (!g_opts.disable_auto_failback) {
1749 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1750 	}
1751 
1752 	return 0;
1753 
1754 err:
1755 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1756 
1757 	return rc;
1758 }
1759 
1760 static void
1761 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
1762 {
1763 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1764 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1765 	enum spdk_bdev_io_status status = SPDK_BDEV_IO_STATUS_SUCCESS;
1766 	struct spdk_bdev_io *bdev_io;
1767 
1768 	if (spdk_io_channel_iter_get_ctx(i) != NULL) {
1769 		status = SPDK_BDEV_IO_STATUS_FAILED;
1770 	}
1771 
1772 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1773 		bdev_io = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1774 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bdev_io, module_link);
1775 		__bdev_nvme_io_complete(bdev_io, status, NULL);
1776 	}
1777 
1778 	spdk_for_each_channel_continue(i, 0);
1779 }
1780 
1781 /* This function marks the current trid as failed by storing the current ticks
1782  * and then sets the next trid to the active trid within a controller if exists.
1783  *
1784  * The purpose of the boolean return value is to request the caller to disconnect
1785  * the current trid now to try connecting the next trid.
1786  */
1787 static bool
1788 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove, bool start)
1789 {
1790 	struct nvme_path_id *path_id, *next_path;
1791 	int rc __attribute__((unused));
1792 
1793 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1794 	assert(path_id);
1795 	assert(path_id == nvme_ctrlr->active_path_id);
1796 	next_path = TAILQ_NEXT(path_id, link);
1797 
1798 	/* Update the last failed time. It means the trid is failed if its last
1799 	 * failed time is non-zero.
1800 	 */
1801 	path_id->last_failed_tsc = spdk_get_ticks();
1802 
1803 	if (next_path == NULL) {
1804 		/* There is no alternate trid within a controller. */
1805 		return false;
1806 	}
1807 
1808 	if (!start && nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1809 		/* Connect is not retried in a controller reset sequence. Connecting
1810 		 * the next trid will be done by the next bdev_nvme_failover_ctrlr() call.
1811 		 */
1812 		return false;
1813 	}
1814 
1815 	assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1816 
1817 	SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1818 		       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1819 
1820 	spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1821 	nvme_ctrlr->active_path_id = next_path;
1822 	rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1823 	assert(rc == 0);
1824 	TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1825 	if (!remove) {
1826 		/** Shuffle the old trid to the end of the list and use the new one.
1827 		 * Allows for round robin through multiple connections.
1828 		 */
1829 		TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
1830 	} else {
1831 		free(path_id);
1832 	}
1833 
1834 	if (start || next_path->last_failed_tsc == 0) {
1835 		/* bdev_nvme_failover_ctrlr() is just called or the next trid is not failed
1836 		 * or used yet. Try the next trid now.
1837 		 */
1838 		return true;
1839 	}
1840 
1841 	if (spdk_get_ticks() > next_path->last_failed_tsc + spdk_get_ticks_hz() *
1842 	    nvme_ctrlr->opts.reconnect_delay_sec) {
1843 		/* Enough backoff passed since the next trid failed. Try the next trid now. */
1844 		return true;
1845 	}
1846 
1847 	/* The next trid will be tried after reconnect_delay_sec seconds. */
1848 	return false;
1849 }
1850 
1851 static bool
1852 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
1853 {
1854 	int32_t elapsed;
1855 
1856 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
1857 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
1858 		return false;
1859 	}
1860 
1861 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1862 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
1863 		return true;
1864 	} else {
1865 		return false;
1866 	}
1867 }
1868 
1869 static bool
1870 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
1871 {
1872 	uint32_t elapsed;
1873 
1874 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
1875 		return false;
1876 	}
1877 
1878 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1879 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
1880 		return true;
1881 	} else {
1882 		return false;
1883 	}
1884 }
1885 
1886 static void bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
1887 
1888 static void
1889 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
1890 {
1891 	int rc;
1892 
1893 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
1894 	if (rc != 0) {
1895 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
1896 		 * fail the reset sequence immediately.
1897 		 */
1898 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
1899 		return;
1900 	}
1901 
1902 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
1903 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
1904 	 */
1905 	assert(nvme_ctrlr->disconnected_cb == NULL);
1906 	nvme_ctrlr->disconnected_cb = cb_fn;
1907 
1908 	/* During disconnection, reduce the period to poll adminq more often. */
1909 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
1910 }
1911 
1912 enum bdev_nvme_op_after_reset {
1913 	OP_NONE,
1914 	OP_COMPLETE_PENDING_DESTRUCT,
1915 	OP_DESTRUCT,
1916 	OP_DELAYED_RECONNECT,
1917 	OP_FAILOVER,
1918 };
1919 
1920 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
1921 
1922 static _bdev_nvme_op_after_reset
1923 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
1924 {
1925 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1926 		/* Complete pending destruct after reset completes. */
1927 		return OP_COMPLETE_PENDING_DESTRUCT;
1928 	} else if (nvme_ctrlr->pending_failover) {
1929 		nvme_ctrlr->pending_failover = false;
1930 		nvme_ctrlr->reset_start_tsc = 0;
1931 		return OP_FAILOVER;
1932 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1933 		nvme_ctrlr->reset_start_tsc = 0;
1934 		return OP_NONE;
1935 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1936 		return OP_DESTRUCT;
1937 	} else {
1938 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
1939 			nvme_ctrlr->fast_io_fail_timedout = true;
1940 		}
1941 		return OP_DELAYED_RECONNECT;
1942 	}
1943 }
1944 
1945 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
1946 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
1947 
1948 static int
1949 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
1950 {
1951 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1952 
1953 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
1954 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1955 
1956 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
1957 
1958 	if (!nvme_ctrlr->reconnect_is_delayed) {
1959 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1960 		return SPDK_POLLER_BUSY;
1961 	}
1962 
1963 	nvme_ctrlr->reconnect_is_delayed = false;
1964 
1965 	if (nvme_ctrlr->destruct) {
1966 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1967 		return SPDK_POLLER_BUSY;
1968 	}
1969 
1970 	assert(nvme_ctrlr->resetting == false);
1971 	nvme_ctrlr->resetting = true;
1972 
1973 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1974 
1975 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
1976 
1977 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
1978 	return SPDK_POLLER_BUSY;
1979 }
1980 
1981 static void
1982 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
1983 {
1984 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
1985 
1986 	assert(nvme_ctrlr->reconnect_is_delayed == false);
1987 	nvme_ctrlr->reconnect_is_delayed = true;
1988 
1989 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
1990 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
1991 					    nvme_ctrlr,
1992 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
1993 }
1994 
1995 static void remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr);
1996 
1997 static void
1998 _bdev_nvme_reset_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
1999 {
2000 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2001 	bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
2002 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2003 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2004 	enum bdev_nvme_op_after_reset op_after_reset;
2005 
2006 	assert(nvme_ctrlr->thread == spdk_get_thread());
2007 
2008 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2009 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2010 
2011 	if (!success) {
2012 		SPDK_ERRLOG("Resetting controller failed.\n");
2013 	} else {
2014 		SPDK_NOTICELOG("Resetting controller successful.\n");
2015 	}
2016 
2017 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2018 	nvme_ctrlr->resetting = false;
2019 	nvme_ctrlr->dont_retry = false;
2020 	nvme_ctrlr->in_failover = false;
2021 
2022 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
2023 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2024 
2025 	if (ctrlr_op_cb_fn) {
2026 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, success ? 0 : -1);
2027 	}
2028 
2029 	switch (op_after_reset) {
2030 	case OP_COMPLETE_PENDING_DESTRUCT:
2031 		nvme_ctrlr_unregister(nvme_ctrlr);
2032 		break;
2033 	case OP_DESTRUCT:
2034 		bdev_nvme_delete_ctrlr(nvme_ctrlr, false);
2035 		remove_discovery_entry(nvme_ctrlr);
2036 		break;
2037 	case OP_DELAYED_RECONNECT:
2038 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
2039 		break;
2040 	case OP_FAILOVER:
2041 		bdev_nvme_failover_ctrlr(nvme_ctrlr, false);
2042 		break;
2043 	default:
2044 		break;
2045 	}
2046 }
2047 
2048 static void
2049 bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
2050 {
2051 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2052 	if (!success) {
2053 		/* Connecting the active trid failed. Set the next alternate trid to the
2054 		 * active trid if it exists.
2055 		 */
2056 		if (bdev_nvme_failover_trid(nvme_ctrlr, false, false)) {
2057 			/* The next alternate trid exists and is ready to try. Try it now. */
2058 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
2059 
2060 			nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2061 			return;
2062 		}
2063 
2064 		/* We came here if there is no alternate trid or if the next trid exists but
2065 		 * is not ready to try. We will try the active trid after reconnect_delay_sec
2066 		 * seconds if it is non-zero or at the next reset call otherwise.
2067 		 */
2068 	} else {
2069 		/* Connecting the active trid succeeded. Clear the last failed time because it
2070 		 * means the trid is failed if its last failed time is non-zero.
2071 		 */
2072 		nvme_ctrlr->active_path_id->last_failed_tsc = 0;
2073 	}
2074 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2075 
2076 	/* Make sure we clear any pending resets before returning. */
2077 	spdk_for_each_channel(nvme_ctrlr,
2078 			      bdev_nvme_complete_pending_resets,
2079 			      success ? NULL : (void *)0x1,
2080 			      _bdev_nvme_reset_ctrlr_complete);
2081 }
2082 
2083 static void
2084 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
2085 {
2086 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2087 
2088 	bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2089 }
2090 
2091 static void
2092 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
2093 {
2094 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
2095 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
2096 	struct nvme_qpair *nvme_qpair;
2097 
2098 	nvme_qpair = ctrlr_ch->qpair;
2099 	assert(nvme_qpair != NULL);
2100 
2101 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2102 
2103 	if (nvme_qpair->qpair != NULL) {
2104 		if (nvme_qpair->ctrlr->dont_retry) {
2105 			spdk_nvme_qpair_set_abort_dnr(nvme_qpair->qpair, true);
2106 		}
2107 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2108 
2109 		/* The current full reset sequence will move to the next
2110 		 * ctrlr_channel after the qpair is actually disconnected.
2111 		 */
2112 		assert(ctrlr_ch->reset_iter == NULL);
2113 		ctrlr_ch->reset_iter = i;
2114 	} else {
2115 		spdk_for_each_channel_continue(i, 0);
2116 	}
2117 }
2118 
2119 static void
2120 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
2121 {
2122 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2123 
2124 	if (status == 0) {
2125 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, true);
2126 	} else {
2127 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
2128 		spdk_for_each_channel(nvme_ctrlr,
2129 				      bdev_nvme_reset_destroy_qpair,
2130 				      NULL,
2131 				      bdev_nvme_reset_create_qpairs_failed);
2132 	}
2133 }
2134 
2135 static int
2136 bdev_nvme_reset_check_qpair_connected(void *ctx)
2137 {
2138 	struct nvme_ctrlr_channel *ctrlr_ch = ctx;
2139 
2140 	if (ctrlr_ch->reset_iter == NULL) {
2141 		/* qpair was already failed to connect and the reset sequence is being aborted. */
2142 		assert(ctrlr_ch->connect_poller == NULL);
2143 		assert(ctrlr_ch->qpair->qpair == NULL);
2144 		return SPDK_POLLER_BUSY;
2145 	}
2146 
2147 	assert(ctrlr_ch->qpair->qpair != NULL);
2148 
2149 	if (!spdk_nvme_qpair_is_connected(ctrlr_ch->qpair->qpair)) {
2150 		return SPDK_POLLER_BUSY;
2151 	}
2152 
2153 	spdk_poller_unregister(&ctrlr_ch->connect_poller);
2154 
2155 	/* qpair was completed to connect. Move to the next ctrlr_channel */
2156 	spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2157 	ctrlr_ch->reset_iter = NULL;
2158 
2159 	return SPDK_POLLER_BUSY;
2160 }
2161 
2162 static void
2163 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
2164 {
2165 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2166 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
2167 	int rc;
2168 
2169 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
2170 	if (rc == 0) {
2171 		ctrlr_ch->connect_poller = SPDK_POLLER_REGISTER(bdev_nvme_reset_check_qpair_connected,
2172 					   ctrlr_ch, 0);
2173 
2174 		/* The current full reset sequence will move to the next
2175 		 * ctrlr_channel after the qpair is actually connected.
2176 		 */
2177 		assert(ctrlr_ch->reset_iter == NULL);
2178 		ctrlr_ch->reset_iter = i;
2179 	} else {
2180 		spdk_for_each_channel_continue(i, rc);
2181 	}
2182 }
2183 
2184 static int
2185 bdev_nvme_reconnect_ctrlr_poll(void *arg)
2186 {
2187 	struct nvme_ctrlr *nvme_ctrlr = arg;
2188 	int rc = -ETIMEDOUT;
2189 
2190 	if (!bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2191 		rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
2192 		if (rc == -EAGAIN) {
2193 			return SPDK_POLLER_BUSY;
2194 		}
2195 	}
2196 
2197 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
2198 	if (rc == 0) {
2199 		/* Recreate all of the I/O queue pairs */
2200 		spdk_for_each_channel(nvme_ctrlr,
2201 				      bdev_nvme_reset_create_qpair,
2202 				      NULL,
2203 				      bdev_nvme_reset_create_qpairs_done);
2204 	} else {
2205 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2206 	}
2207 	return SPDK_POLLER_BUSY;
2208 }
2209 
2210 static void
2211 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2212 {
2213 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
2214 
2215 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
2216 	assert(nvme_ctrlr->reset_detach_poller == NULL);
2217 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
2218 					  nvme_ctrlr, 0);
2219 }
2220 
2221 static void
2222 bdev_nvme_reset_destroy_qpair_done(struct spdk_io_channel_iter *i, int status)
2223 {
2224 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2225 
2226 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
2227 	assert(status == 0);
2228 
2229 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2230 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2231 	} else {
2232 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2233 	}
2234 }
2235 
2236 static void
2237 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2238 {
2239 	spdk_for_each_channel(nvme_ctrlr,
2240 			      bdev_nvme_reset_destroy_qpair,
2241 			      NULL,
2242 			      bdev_nvme_reset_destroy_qpair_done);
2243 }
2244 
2245 static void
2246 bdev_nvme_reconnect_ctrlr_now(void *ctx)
2247 {
2248 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2249 
2250 	assert(nvme_ctrlr->resetting == true);
2251 	assert(nvme_ctrlr->thread == spdk_get_thread());
2252 
2253 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2254 
2255 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2256 
2257 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2258 }
2259 
2260 static void
2261 _bdev_nvme_reset_ctrlr(void *ctx)
2262 {
2263 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2264 
2265 	assert(nvme_ctrlr->resetting == true);
2266 	assert(nvme_ctrlr->thread == spdk_get_thread());
2267 
2268 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2269 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
2270 	} else {
2271 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
2272 	}
2273 }
2274 
2275 static int
2276 bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2277 {
2278 	spdk_msg_fn msg_fn;
2279 
2280 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2281 	if (nvme_ctrlr->destruct) {
2282 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2283 		return -ENXIO;
2284 	}
2285 
2286 	if (nvme_ctrlr->resetting) {
2287 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2288 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
2289 		return -EBUSY;
2290 	}
2291 
2292 	if (nvme_ctrlr->disabled) {
2293 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2294 		SPDK_NOTICELOG("Unable to perform reset. Controller is disabled.\n");
2295 		return -EALREADY;
2296 	}
2297 
2298 	nvme_ctrlr->resetting = true;
2299 	nvme_ctrlr->dont_retry = true;
2300 
2301 	if (nvme_ctrlr->reconnect_is_delayed) {
2302 		SPDK_DEBUGLOG(bdev_nvme, "Reconnect is already scheduled.\n");
2303 		msg_fn = bdev_nvme_reconnect_ctrlr_now;
2304 		nvme_ctrlr->reconnect_is_delayed = false;
2305 	} else {
2306 		msg_fn = _bdev_nvme_reset_ctrlr;
2307 		assert(nvme_ctrlr->reset_start_tsc == 0);
2308 	}
2309 
2310 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2311 
2312 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2313 
2314 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2315 	return 0;
2316 }
2317 
2318 static int
2319 bdev_nvme_enable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2320 {
2321 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2322 	if (nvme_ctrlr->destruct) {
2323 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2324 		return -ENXIO;
2325 	}
2326 
2327 	if (nvme_ctrlr->resetting) {
2328 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2329 		return -EBUSY;
2330 	}
2331 
2332 	if (!nvme_ctrlr->disabled) {
2333 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2334 		return -EALREADY;
2335 	}
2336 
2337 	nvme_ctrlr->disabled = false;
2338 	nvme_ctrlr->resetting = true;
2339 
2340 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2341 
2342 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2343 
2344 	spdk_thread_send_msg(nvme_ctrlr->thread, bdev_nvme_reconnect_ctrlr_now, nvme_ctrlr);
2345 	return 0;
2346 }
2347 
2348 static void
2349 _bdev_nvme_disable_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2350 {
2351 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2352 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2353 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2354 	enum bdev_nvme_op_after_reset op_after_disable;
2355 
2356 	assert(nvme_ctrlr->thread == spdk_get_thread());
2357 
2358 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2359 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2360 
2361 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2362 
2363 	nvme_ctrlr->resetting = false;
2364 	nvme_ctrlr->dont_retry = false;
2365 
2366 	op_after_disable = bdev_nvme_check_op_after_reset(nvme_ctrlr, true);
2367 
2368 	nvme_ctrlr->disabled = true;
2369 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2370 
2371 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2372 
2373 	if (ctrlr_op_cb_fn) {
2374 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, 0);
2375 	}
2376 
2377 	switch (op_after_disable) {
2378 	case OP_COMPLETE_PENDING_DESTRUCT:
2379 		nvme_ctrlr_unregister(nvme_ctrlr);
2380 		break;
2381 	default:
2382 		break;
2383 	}
2384 
2385 }
2386 
2387 static void
2388 bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr)
2389 {
2390 	/* Make sure we clear any pending resets before returning. */
2391 	spdk_for_each_channel(nvme_ctrlr,
2392 			      bdev_nvme_complete_pending_resets,
2393 			      NULL,
2394 			      _bdev_nvme_disable_ctrlr_complete);
2395 }
2396 
2397 static void
2398 bdev_nvme_disable_destroy_qpairs_done(struct spdk_io_channel_iter *i, int status)
2399 {
2400 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2401 
2402 	assert(status == 0);
2403 
2404 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2405 		bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2406 	} else {
2407 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_ctrlr_complete);
2408 	}
2409 }
2410 
2411 static void
2412 bdev_nvme_disable_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2413 {
2414 	spdk_for_each_channel(nvme_ctrlr,
2415 			      bdev_nvme_reset_destroy_qpair,
2416 			      NULL,
2417 			      bdev_nvme_disable_destroy_qpairs_done);
2418 }
2419 
2420 static void
2421 _bdev_nvme_cancel_reconnect_and_disable_ctrlr(void *ctx)
2422 {
2423 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2424 
2425 	assert(nvme_ctrlr->resetting == true);
2426 	assert(nvme_ctrlr->thread == spdk_get_thread());
2427 
2428 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2429 
2430 	bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2431 }
2432 
2433 static void
2434 _bdev_nvme_disconnect_and_disable_ctrlr(void *ctx)
2435 {
2436 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2437 
2438 	assert(nvme_ctrlr->resetting == true);
2439 	assert(nvme_ctrlr->thread == spdk_get_thread());
2440 
2441 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2442 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_destroy_qpairs);
2443 	} else {
2444 		bdev_nvme_disable_destroy_qpairs(nvme_ctrlr);
2445 	}
2446 }
2447 
2448 static int
2449 bdev_nvme_disable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2450 {
2451 	spdk_msg_fn msg_fn;
2452 
2453 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2454 	if (nvme_ctrlr->destruct) {
2455 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2456 		return -ENXIO;
2457 	}
2458 
2459 	if (nvme_ctrlr->resetting) {
2460 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2461 		return -EBUSY;
2462 	}
2463 
2464 	if (nvme_ctrlr->disabled) {
2465 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2466 		return -EALREADY;
2467 	}
2468 
2469 	nvme_ctrlr->resetting = true;
2470 	nvme_ctrlr->dont_retry = true;
2471 
2472 	if (nvme_ctrlr->reconnect_is_delayed) {
2473 		msg_fn = _bdev_nvme_cancel_reconnect_and_disable_ctrlr;
2474 		nvme_ctrlr->reconnect_is_delayed = false;
2475 	} else {
2476 		msg_fn = _bdev_nvme_disconnect_and_disable_ctrlr;
2477 	}
2478 
2479 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2480 
2481 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2482 
2483 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2484 	return 0;
2485 }
2486 
2487 static int
2488 nvme_ctrlr_op(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2489 	      bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2490 {
2491 	int rc;
2492 
2493 	switch (op) {
2494 	case NVME_CTRLR_OP_RESET:
2495 		rc = bdev_nvme_reset_ctrlr(nvme_ctrlr);
2496 		break;
2497 	case NVME_CTRLR_OP_ENABLE:
2498 		rc = bdev_nvme_enable_ctrlr(nvme_ctrlr);
2499 		break;
2500 	case NVME_CTRLR_OP_DISABLE:
2501 		rc = bdev_nvme_disable_ctrlr(nvme_ctrlr);
2502 		break;
2503 	default:
2504 		rc = -EINVAL;
2505 		break;
2506 	}
2507 
2508 	if (rc == 0) {
2509 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
2510 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
2511 		nvme_ctrlr->ctrlr_op_cb_fn = cb_fn;
2512 		nvme_ctrlr->ctrlr_op_cb_arg = cb_arg;
2513 	}
2514 	return rc;
2515 }
2516 
2517 struct nvme_ctrlr_op_rpc_ctx {
2518 	struct nvme_ctrlr *nvme_ctrlr;
2519 	struct spdk_thread *orig_thread;
2520 	enum nvme_ctrlr_op op;
2521 	int rc;
2522 	bdev_nvme_ctrlr_op_cb cb_fn;
2523 	void *cb_arg;
2524 };
2525 
2526 static void
2527 _nvme_ctrlr_op_rpc_complete(void *_ctx)
2528 {
2529 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2530 
2531 	assert(ctx != NULL);
2532 	assert(ctx->cb_fn != NULL);
2533 
2534 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2535 
2536 	free(ctx);
2537 }
2538 
2539 static void
2540 nvme_ctrlr_op_rpc_complete(void *cb_arg, int rc)
2541 {
2542 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2543 
2544 	ctx->rc = rc;
2545 
2546 	spdk_thread_send_msg(ctx->orig_thread, _nvme_ctrlr_op_rpc_complete, ctx);
2547 }
2548 
2549 void
2550 nvme_ctrlr_op_rpc(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2551 		  bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2552 {
2553 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2554 	int rc;
2555 
2556 	assert(cb_fn != NULL);
2557 
2558 	ctx = calloc(1, sizeof(*ctx));
2559 	if (ctx == NULL) {
2560 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2561 		cb_fn(cb_arg, -ENOMEM);
2562 		return;
2563 	}
2564 
2565 	ctx->orig_thread = spdk_get_thread();
2566 	ctx->cb_fn = cb_fn;
2567 	ctx->cb_arg = cb_arg;
2568 
2569 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_ctrlr_op_rpc_complete, ctx);
2570 	if (rc == 0) {
2571 		return;
2572 	} else if (rc == -EALREADY) {
2573 		rc = 0;
2574 	}
2575 
2576 	nvme_ctrlr_op_rpc_complete(ctx, rc);
2577 }
2578 
2579 static void nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc);
2580 
2581 static void
2582 _nvme_bdev_ctrlr_op_rpc_continue(void *_ctx)
2583 {
2584 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2585 	struct nvme_ctrlr *prev_nvme_ctrlr, *next_nvme_ctrlr;
2586 	int rc;
2587 
2588 	prev_nvme_ctrlr = ctx->nvme_ctrlr;
2589 	ctx->nvme_ctrlr = NULL;
2590 
2591 	if (ctx->rc != 0) {
2592 		goto complete;
2593 	}
2594 
2595 	next_nvme_ctrlr = TAILQ_NEXT(prev_nvme_ctrlr, tailq);
2596 	if (next_nvme_ctrlr == NULL) {
2597 		goto complete;
2598 	}
2599 
2600 	rc = nvme_ctrlr_op(next_nvme_ctrlr, ctx->op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2601 	if (rc == 0) {
2602 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2603 		return;
2604 	} else if (rc == -EALREADY) {
2605 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2606 		rc = 0;
2607 	}
2608 
2609 	ctx->rc = rc;
2610 
2611 complete:
2612 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2613 	free(ctx);
2614 }
2615 
2616 static void
2617 nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc)
2618 {
2619 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2620 
2621 	ctx->rc = rc;
2622 
2623 	spdk_thread_send_msg(ctx->orig_thread, _nvme_bdev_ctrlr_op_rpc_continue, ctx);
2624 }
2625 
2626 void
2627 nvme_bdev_ctrlr_op_rpc(struct nvme_bdev_ctrlr *nbdev_ctrlr, enum nvme_ctrlr_op op,
2628 		       bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2629 {
2630 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2631 	struct nvme_ctrlr *nvme_ctrlr;
2632 	int rc;
2633 
2634 	assert(cb_fn != NULL);
2635 
2636 	ctx = calloc(1, sizeof(*ctx));
2637 	if (ctx == NULL) {
2638 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2639 		cb_fn(cb_arg, -ENOMEM);
2640 		return;
2641 	}
2642 
2643 	ctx->orig_thread = spdk_get_thread();
2644 	ctx->op = op;
2645 	ctx->cb_fn = cb_fn;
2646 	ctx->cb_arg = cb_arg;
2647 
2648 	nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
2649 	assert(nvme_ctrlr != NULL);
2650 
2651 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2652 	if (rc == 0) {
2653 		ctx->nvme_ctrlr = nvme_ctrlr;
2654 		return;
2655 	} else if (rc == -EALREADY) {
2656 		ctx->nvme_ctrlr = nvme_ctrlr;
2657 		rc = 0;
2658 	}
2659 
2660 	nvme_bdev_ctrlr_op_rpc_continue(ctx, rc);
2661 }
2662 
2663 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
2664 
2665 static void
2666 _bdev_nvme_reset_io_complete(struct spdk_io_channel_iter *i, int status)
2667 {
2668 	struct nvme_bdev_io *bio = spdk_io_channel_iter_get_ctx(i);
2669 	enum spdk_bdev_io_status io_status;
2670 
2671 	if (bio->cpl.cdw0 == 0) {
2672 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2673 	} else {
2674 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
2675 	}
2676 
2677 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
2678 }
2679 
2680 static void
2681 bdev_nvme_abort_bdev_channel(struct spdk_io_channel_iter *i)
2682 {
2683 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2684 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
2685 
2686 	bdev_nvme_abort_retry_ios(nbdev_ch);
2687 
2688 	spdk_for_each_channel_continue(i, 0);
2689 }
2690 
2691 static void
2692 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
2693 {
2694 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2695 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
2696 
2697 	/* Abort all queued I/Os for retry. */
2698 	spdk_for_each_channel(nbdev,
2699 			      bdev_nvme_abort_bdev_channel,
2700 			      bio,
2701 			      _bdev_nvme_reset_io_complete);
2702 }
2703 
2704 static void
2705 _bdev_nvme_reset_io_continue(void *ctx)
2706 {
2707 	struct nvme_bdev_io *bio = ctx;
2708 	struct nvme_io_path *prev_io_path, *next_io_path;
2709 	int rc;
2710 
2711 	prev_io_path = bio->io_path;
2712 	bio->io_path = NULL;
2713 
2714 	if (bio->cpl.cdw0 != 0) {
2715 		goto complete;
2716 	}
2717 
2718 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
2719 	if (next_io_path == NULL) {
2720 		goto complete;
2721 	}
2722 
2723 	rc = _bdev_nvme_reset_io(next_io_path, bio);
2724 	if (rc == 0) {
2725 		return;
2726 	}
2727 
2728 	bio->cpl.cdw0 = 1;
2729 
2730 complete:
2731 	bdev_nvme_reset_io_complete(bio);
2732 }
2733 
2734 static void
2735 bdev_nvme_reset_io_continue(void *cb_arg, int rc)
2736 {
2737 	struct nvme_bdev_io *bio = cb_arg;
2738 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2739 
2740 	bio->cpl.cdw0 = (rc == 0) ? 0 : 1;
2741 
2742 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_nvme_reset_io_continue, bio);
2743 }
2744 
2745 static int
2746 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
2747 {
2748 	struct nvme_ctrlr_channel *ctrlr_ch;
2749 	struct spdk_bdev_io *bdev_io;
2750 	int rc;
2751 
2752 	rc = nvme_ctrlr_op(io_path->qpair->ctrlr, NVME_CTRLR_OP_RESET,
2753 			   bdev_nvme_reset_io_continue, bio);
2754 	if (rc == 0) {
2755 		assert(bio->io_path == NULL);
2756 		bio->io_path = io_path;
2757 	} else if (rc == -EBUSY) {
2758 		ctrlr_ch = io_path->qpair->ctrlr_ch;
2759 		assert(ctrlr_ch != NULL);
2760 		/*
2761 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
2762 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
2763 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
2764 		 */
2765 		bdev_io = spdk_bdev_io_from_ctx(bio);
2766 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bdev_io, module_link);
2767 		rc = 0;
2768 	}
2769 
2770 	return rc;
2771 }
2772 
2773 static void
2774 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
2775 {
2776 	struct nvme_io_path *io_path;
2777 	int rc;
2778 
2779 	bio->cpl.cdw0 = 0;
2780 
2781 	/* Reset all nvme_ctrlrs of a bdev controller sequentially. */
2782 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
2783 	assert(io_path != NULL);
2784 
2785 	rc = _bdev_nvme_reset_io(io_path, bio);
2786 	if (rc != 0) {
2787 		/* If the current nvme_ctrlr is disabled, skip it and move to the next nvme_ctrlr. */
2788 		bdev_nvme_reset_io_continue(bio, rc == -EALREADY);
2789 	}
2790 }
2791 
2792 static int
2793 bdev_nvme_failover_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove)
2794 {
2795 	if (nvme_ctrlr->destruct) {
2796 		/* Don't bother resetting if the controller is in the process of being destructed. */
2797 		return -ENXIO;
2798 	}
2799 
2800 	if (nvme_ctrlr->resetting) {
2801 		if (!nvme_ctrlr->in_failover) {
2802 			SPDK_NOTICELOG("Reset is already in progress. Defer failover until reset completes.\n");
2803 
2804 			/* Defer failover until reset completes. */
2805 			nvme_ctrlr->pending_failover = true;
2806 			return -EINPROGRESS;
2807 		} else {
2808 			SPDK_NOTICELOG("Unable to perform failover, already in progress.\n");
2809 			return -EBUSY;
2810 		}
2811 	}
2812 
2813 	bdev_nvme_failover_trid(nvme_ctrlr, remove, true);
2814 
2815 	if (nvme_ctrlr->reconnect_is_delayed) {
2816 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
2817 
2818 		/* We rely on the next reconnect for the failover. */
2819 		return -EALREADY;
2820 	}
2821 
2822 	if (nvme_ctrlr->disabled) {
2823 		SPDK_NOTICELOG("Controller is disabled.\n");
2824 
2825 		/* We rely on the enablement for the failover. */
2826 		return -EALREADY;
2827 	}
2828 
2829 	nvme_ctrlr->resetting = true;
2830 	nvme_ctrlr->in_failover = true;
2831 
2832 	assert(nvme_ctrlr->reset_start_tsc == 0);
2833 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2834 
2835 	return 0;
2836 }
2837 
2838 static int
2839 bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool remove)
2840 {
2841 	int rc;
2842 
2843 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2844 	rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, remove);
2845 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2846 
2847 	if (rc == 0) {
2848 		spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset_ctrlr, nvme_ctrlr);
2849 	} else if (rc == -EALREADY) {
2850 		rc = 0;
2851 	}
2852 
2853 	return rc;
2854 }
2855 
2856 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2857 			   uint64_t num_blocks);
2858 
2859 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2860 				  uint64_t num_blocks);
2861 
2862 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
2863 			  uint64_t src_offset_blocks,
2864 			  uint64_t num_blocks);
2865 
2866 static void
2867 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
2868 		     bool success)
2869 {
2870 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2871 	struct spdk_bdev *bdev = bdev_io->bdev;
2872 	int ret;
2873 
2874 	if (!success) {
2875 		ret = -EINVAL;
2876 		goto exit;
2877 	}
2878 
2879 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
2880 		ret = -ENXIO;
2881 		goto exit;
2882 	}
2883 
2884 	ret = bdev_nvme_readv(bio,
2885 			      bdev_io->u.bdev.iovs,
2886 			      bdev_io->u.bdev.iovcnt,
2887 			      bdev_io->u.bdev.md_buf,
2888 			      bdev_io->u.bdev.num_blocks,
2889 			      bdev_io->u.bdev.offset_blocks,
2890 			      bdev->dif_check_flags,
2891 			      bdev_io->u.bdev.memory_domain,
2892 			      bdev_io->u.bdev.memory_domain_ctx);
2893 
2894 exit:
2895 	if (spdk_unlikely(ret != 0)) {
2896 		bdev_nvme_io_complete(bio, ret);
2897 	}
2898 }
2899 
2900 static inline void
2901 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
2902 {
2903 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2904 	struct spdk_bdev *bdev = bdev_io->bdev;
2905 	struct nvme_bdev_io *nbdev_io_to_abort;
2906 	int rc = 0;
2907 
2908 	switch (bdev_io->type) {
2909 	case SPDK_BDEV_IO_TYPE_READ:
2910 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
2911 			rc = bdev_nvme_readv(nbdev_io,
2912 					     bdev_io->u.bdev.iovs,
2913 					     bdev_io->u.bdev.iovcnt,
2914 					     bdev_io->u.bdev.md_buf,
2915 					     bdev_io->u.bdev.num_blocks,
2916 					     bdev_io->u.bdev.offset_blocks,
2917 					     bdev->dif_check_flags,
2918 					     bdev_io->u.bdev.memory_domain,
2919 					     bdev_io->u.bdev.memory_domain_ctx);
2920 		} else {
2921 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
2922 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
2923 			rc = 0;
2924 		}
2925 		break;
2926 	case SPDK_BDEV_IO_TYPE_WRITE:
2927 		rc = bdev_nvme_writev(nbdev_io,
2928 				      bdev_io->u.bdev.iovs,
2929 				      bdev_io->u.bdev.iovcnt,
2930 				      bdev_io->u.bdev.md_buf,
2931 				      bdev_io->u.bdev.num_blocks,
2932 				      bdev_io->u.bdev.offset_blocks,
2933 				      bdev->dif_check_flags,
2934 				      bdev_io->u.bdev.memory_domain,
2935 				      bdev_io->u.bdev.memory_domain_ctx);
2936 		break;
2937 	case SPDK_BDEV_IO_TYPE_COMPARE:
2938 		rc = bdev_nvme_comparev(nbdev_io,
2939 					bdev_io->u.bdev.iovs,
2940 					bdev_io->u.bdev.iovcnt,
2941 					bdev_io->u.bdev.md_buf,
2942 					bdev_io->u.bdev.num_blocks,
2943 					bdev_io->u.bdev.offset_blocks,
2944 					bdev->dif_check_flags);
2945 		break;
2946 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
2947 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
2948 						   bdev_io->u.bdev.iovs,
2949 						   bdev_io->u.bdev.iovcnt,
2950 						   bdev_io->u.bdev.fused_iovs,
2951 						   bdev_io->u.bdev.fused_iovcnt,
2952 						   bdev_io->u.bdev.md_buf,
2953 						   bdev_io->u.bdev.num_blocks,
2954 						   bdev_io->u.bdev.offset_blocks,
2955 						   bdev->dif_check_flags);
2956 		break;
2957 	case SPDK_BDEV_IO_TYPE_UNMAP:
2958 		rc = bdev_nvme_unmap(nbdev_io,
2959 				     bdev_io->u.bdev.offset_blocks,
2960 				     bdev_io->u.bdev.num_blocks);
2961 		break;
2962 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
2963 		rc =  bdev_nvme_write_zeroes(nbdev_io,
2964 					     bdev_io->u.bdev.offset_blocks,
2965 					     bdev_io->u.bdev.num_blocks);
2966 		break;
2967 	case SPDK_BDEV_IO_TYPE_RESET:
2968 		nbdev_io->io_path = NULL;
2969 		bdev_nvme_reset_io(nbdev_ch, nbdev_io);
2970 		return;
2971 
2972 	case SPDK_BDEV_IO_TYPE_FLUSH:
2973 		bdev_nvme_io_complete(nbdev_io, 0);
2974 		return;
2975 
2976 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
2977 		rc = bdev_nvme_zone_appendv(nbdev_io,
2978 					    bdev_io->u.bdev.iovs,
2979 					    bdev_io->u.bdev.iovcnt,
2980 					    bdev_io->u.bdev.md_buf,
2981 					    bdev_io->u.bdev.num_blocks,
2982 					    bdev_io->u.bdev.offset_blocks,
2983 					    bdev->dif_check_flags);
2984 		break;
2985 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
2986 		rc = bdev_nvme_get_zone_info(nbdev_io,
2987 					     bdev_io->u.zone_mgmt.zone_id,
2988 					     bdev_io->u.zone_mgmt.num_zones,
2989 					     bdev_io->u.zone_mgmt.buf);
2990 		break;
2991 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
2992 		rc = bdev_nvme_zone_management(nbdev_io,
2993 					       bdev_io->u.zone_mgmt.zone_id,
2994 					       bdev_io->u.zone_mgmt.zone_action);
2995 		break;
2996 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
2997 		nbdev_io->io_path = NULL;
2998 		bdev_nvme_admin_passthru(nbdev_ch,
2999 					 nbdev_io,
3000 					 &bdev_io->u.nvme_passthru.cmd,
3001 					 bdev_io->u.nvme_passthru.buf,
3002 					 bdev_io->u.nvme_passthru.nbytes);
3003 		return;
3004 
3005 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3006 		rc = bdev_nvme_io_passthru(nbdev_io,
3007 					   &bdev_io->u.nvme_passthru.cmd,
3008 					   bdev_io->u.nvme_passthru.buf,
3009 					   bdev_io->u.nvme_passthru.nbytes);
3010 		break;
3011 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3012 		rc = bdev_nvme_io_passthru_md(nbdev_io,
3013 					      &bdev_io->u.nvme_passthru.cmd,
3014 					      bdev_io->u.nvme_passthru.buf,
3015 					      bdev_io->u.nvme_passthru.nbytes,
3016 					      bdev_io->u.nvme_passthru.md_buf,
3017 					      bdev_io->u.nvme_passthru.md_len);
3018 		break;
3019 	case SPDK_BDEV_IO_TYPE_ABORT:
3020 		nbdev_io->io_path = NULL;
3021 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
3022 		bdev_nvme_abort(nbdev_ch,
3023 				nbdev_io,
3024 				nbdev_io_to_abort);
3025 		return;
3026 
3027 	case SPDK_BDEV_IO_TYPE_COPY:
3028 		rc = bdev_nvme_copy(nbdev_io,
3029 				    bdev_io->u.bdev.offset_blocks,
3030 				    bdev_io->u.bdev.copy.src_offset_blocks,
3031 				    bdev_io->u.bdev.num_blocks);
3032 		break;
3033 	default:
3034 		rc = -EINVAL;
3035 		break;
3036 	}
3037 
3038 	if (spdk_unlikely(rc != 0)) {
3039 		bdev_nvme_io_complete(nbdev_io, rc);
3040 	}
3041 }
3042 
3043 static void
3044 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
3045 {
3046 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3047 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3048 
3049 	if (spdk_likely(nbdev_io->submit_tsc == 0)) {
3050 		nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io);
3051 	} else {
3052 		/* There are cases where submit_tsc != 0, i.e. retry I/O.
3053 		 * We need to update submit_tsc here.
3054 		 */
3055 		nbdev_io->submit_tsc = spdk_get_ticks();
3056 	}
3057 
3058 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
3059 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
3060 	if (spdk_unlikely(!nbdev_io->io_path)) {
3061 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
3062 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
3063 			return;
3064 		}
3065 
3066 		/* Admin commands do not use the optimal I/O path.
3067 		 * Simply fall through even if it is not found.
3068 		 */
3069 	}
3070 
3071 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
3072 }
3073 
3074 static bool
3075 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
3076 {
3077 	struct nvme_bdev *nbdev = ctx;
3078 	struct nvme_ns *nvme_ns;
3079 	struct spdk_nvme_ns *ns;
3080 	struct spdk_nvme_ctrlr *ctrlr;
3081 	const struct spdk_nvme_ctrlr_data *cdata;
3082 
3083 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3084 	assert(nvme_ns != NULL);
3085 	ns = nvme_ns->ns;
3086 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3087 
3088 	switch (io_type) {
3089 	case SPDK_BDEV_IO_TYPE_READ:
3090 	case SPDK_BDEV_IO_TYPE_WRITE:
3091 	case SPDK_BDEV_IO_TYPE_RESET:
3092 	case SPDK_BDEV_IO_TYPE_FLUSH:
3093 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3094 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3095 	case SPDK_BDEV_IO_TYPE_ABORT:
3096 		return true;
3097 
3098 	case SPDK_BDEV_IO_TYPE_COMPARE:
3099 		return spdk_nvme_ns_supports_compare(ns);
3100 
3101 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3102 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
3103 
3104 	case SPDK_BDEV_IO_TYPE_UNMAP:
3105 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3106 		return cdata->oncs.dsm;
3107 
3108 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3109 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3110 		return cdata->oncs.write_zeroes;
3111 
3112 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3113 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
3114 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
3115 			return true;
3116 		}
3117 		return false;
3118 
3119 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3120 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3121 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
3122 
3123 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3124 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
3125 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
3126 
3127 	case SPDK_BDEV_IO_TYPE_COPY:
3128 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3129 		return cdata->oncs.copy;
3130 
3131 	default:
3132 		return false;
3133 	}
3134 }
3135 
3136 static int
3137 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
3138 {
3139 	struct nvme_qpair *nvme_qpair;
3140 	struct spdk_io_channel *pg_ch;
3141 	int rc;
3142 
3143 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
3144 	if (!nvme_qpair) {
3145 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
3146 		return -1;
3147 	}
3148 
3149 	TAILQ_INIT(&nvme_qpair->io_path_list);
3150 
3151 	nvme_qpair->ctrlr = nvme_ctrlr;
3152 	nvme_qpair->ctrlr_ch = ctrlr_ch;
3153 
3154 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
3155 	if (!pg_ch) {
3156 		free(nvme_qpair);
3157 		return -1;
3158 	}
3159 
3160 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
3161 
3162 #ifdef SPDK_CONFIG_VTUNE
3163 	nvme_qpair->group->collect_spin_stat = true;
3164 #else
3165 	nvme_qpair->group->collect_spin_stat = false;
3166 #endif
3167 
3168 	rc = bdev_nvme_create_qpair(nvme_qpair);
3169 	if (rc != 0) {
3170 		/* nvme_ctrlr can't create IO qpair if connection is down.
3171 		 *
3172 		 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
3173 		 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
3174 		 * submitted IO will be queued until IO qpair is successfully created.
3175 		 *
3176 		 * Hence, if both are satisfied, ignore the failure.
3177 		 */
3178 		if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
3179 			spdk_put_io_channel(pg_ch);
3180 			free(nvme_qpair);
3181 			return rc;
3182 		}
3183 	}
3184 
3185 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3186 
3187 	ctrlr_ch->qpair = nvme_qpair;
3188 
3189 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
3190 	nvme_qpair->ctrlr->ref++;
3191 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
3192 
3193 	return 0;
3194 }
3195 
3196 static int
3197 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3198 {
3199 	struct nvme_ctrlr *nvme_ctrlr = io_device;
3200 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3201 
3202 	TAILQ_INIT(&ctrlr_ch->pending_resets);
3203 
3204 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
3205 }
3206 
3207 static void
3208 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
3209 {
3210 	struct nvme_io_path *io_path, *next;
3211 
3212 	assert(nvme_qpair->group != NULL);
3213 
3214 	TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) {
3215 		TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
3216 		nvme_io_path_free(io_path);
3217 	}
3218 
3219 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3220 
3221 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
3222 
3223 	nvme_ctrlr_release(nvme_qpair->ctrlr);
3224 
3225 	free(nvme_qpair);
3226 }
3227 
3228 static void
3229 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3230 {
3231 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3232 	struct nvme_qpair *nvme_qpair;
3233 
3234 	nvme_qpair = ctrlr_ch->qpair;
3235 	assert(nvme_qpair != NULL);
3236 
3237 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
3238 
3239 	if (nvme_qpair->qpair != NULL) {
3240 		if (ctrlr_ch->reset_iter == NULL) {
3241 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
3242 		} else {
3243 			/* Skip current ctrlr_channel in a full reset sequence because
3244 			 * it is being deleted now. The qpair is already being disconnected.
3245 			 * We do not have to restart disconnecting it.
3246 			 */
3247 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
3248 		}
3249 
3250 		/* We cannot release a reference to the poll group now.
3251 		 * The qpair may be disconnected asynchronously later.
3252 		 * We need to poll it until it is actually disconnected.
3253 		 * Just detach the qpair from the deleting ctrlr_channel.
3254 		 */
3255 		nvme_qpair->ctrlr_ch = NULL;
3256 	} else {
3257 		assert(ctrlr_ch->reset_iter == NULL);
3258 
3259 		nvme_qpair_delete(nvme_qpair);
3260 	}
3261 }
3262 
3263 static inline struct spdk_io_channel *
3264 bdev_nvme_get_accel_channel(struct nvme_poll_group *group)
3265 {
3266 	if (spdk_unlikely(!group->accel_channel)) {
3267 		group->accel_channel = spdk_accel_get_io_channel();
3268 		if (!group->accel_channel) {
3269 			SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
3270 				    group);
3271 			return NULL;
3272 		}
3273 	}
3274 
3275 	return group->accel_channel;
3276 }
3277 
3278 static void
3279 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
3280 			      uint32_t iov_cnt, uint32_t seed,
3281 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3282 {
3283 	struct spdk_io_channel *accel_ch;
3284 	struct nvme_poll_group *group = ctx;
3285 	int rc;
3286 
3287 	assert(cb_fn != NULL);
3288 
3289 	accel_ch = bdev_nvme_get_accel_channel(group);
3290 	if (spdk_unlikely(accel_ch == NULL)) {
3291 		cb_fn(cb_arg, -ENOMEM);
3292 		return;
3293 	}
3294 
3295 	rc = spdk_accel_submit_crc32cv(accel_ch, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
3296 	if (rc) {
3297 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
3298 		if (rc == -ENOMEM || rc == -EINVAL) {
3299 			cb_fn(cb_arg, rc);
3300 		}
3301 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
3302 	}
3303 }
3304 
3305 static void
3306 bdev_nvme_finish_sequence(void *seq, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3307 {
3308 	spdk_accel_sequence_finish(seq, cb_fn, cb_arg);
3309 }
3310 
3311 static void
3312 bdev_nvme_abort_sequence(void *seq)
3313 {
3314 	spdk_accel_sequence_abort(seq);
3315 }
3316 
3317 static void
3318 bdev_nvme_reverse_sequence(void *seq)
3319 {
3320 	spdk_accel_sequence_reverse(seq);
3321 }
3322 
3323 static int
3324 bdev_nvme_append_crc32c(void *ctx, void **seq, uint32_t *dst, struct iovec *iovs, uint32_t iovcnt,
3325 			struct spdk_memory_domain *domain, void *domain_ctx, uint32_t seed,
3326 			spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3327 {
3328 	struct spdk_io_channel *ch;
3329 	struct nvme_poll_group *group = ctx;
3330 
3331 	ch = bdev_nvme_get_accel_channel(group);
3332 	if (spdk_unlikely(ch == NULL)) {
3333 		return -ENOMEM;
3334 	}
3335 
3336 	return spdk_accel_append_crc32c((struct spdk_accel_sequence **)seq, ch, dst, iovs, iovcnt,
3337 					domain, domain_ctx, seed, cb_fn, cb_arg);
3338 }
3339 
3340 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
3341 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
3342 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
3343 	.append_crc32c		= bdev_nvme_append_crc32c,
3344 	.finish_sequence	= bdev_nvme_finish_sequence,
3345 	.reverse_sequence	= bdev_nvme_reverse_sequence,
3346 	.abort_sequence		= bdev_nvme_abort_sequence,
3347 };
3348 
3349 static int
3350 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
3351 {
3352 	struct nvme_poll_group *group = ctx_buf;
3353 
3354 	TAILQ_INIT(&group->qpair_list);
3355 
3356 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
3357 	if (group->group == NULL) {
3358 		return -1;
3359 	}
3360 
3361 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
3362 
3363 	if (group->poller == NULL) {
3364 		spdk_nvme_poll_group_destroy(group->group);
3365 		return -1;
3366 	}
3367 
3368 	return 0;
3369 }
3370 
3371 static void
3372 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
3373 {
3374 	struct nvme_poll_group *group = ctx_buf;
3375 
3376 	assert(TAILQ_EMPTY(&group->qpair_list));
3377 
3378 	if (group->accel_channel) {
3379 		spdk_put_io_channel(group->accel_channel);
3380 	}
3381 
3382 	spdk_poller_unregister(&group->poller);
3383 	if (spdk_nvme_poll_group_destroy(group->group)) {
3384 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
3385 		assert(false);
3386 	}
3387 }
3388 
3389 static struct spdk_io_channel *
3390 bdev_nvme_get_io_channel(void *ctx)
3391 {
3392 	struct nvme_bdev *nvme_bdev = ctx;
3393 
3394 	return spdk_get_io_channel(nvme_bdev);
3395 }
3396 
3397 static void *
3398 bdev_nvme_get_module_ctx(void *ctx)
3399 {
3400 	struct nvme_bdev *nvme_bdev = ctx;
3401 	struct nvme_ns *nvme_ns;
3402 
3403 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
3404 		return NULL;
3405 	}
3406 
3407 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
3408 	if (!nvme_ns) {
3409 		return NULL;
3410 	}
3411 
3412 	return nvme_ns->ns;
3413 }
3414 
3415 static const char *
3416 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
3417 {
3418 	switch (ana_state) {
3419 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3420 		return "optimized";
3421 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3422 		return "non_optimized";
3423 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3424 		return "inaccessible";
3425 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
3426 		return "persistent_loss";
3427 	case SPDK_NVME_ANA_CHANGE_STATE:
3428 		return "change";
3429 	default:
3430 		return NULL;
3431 	}
3432 }
3433 
3434 static int
3435 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
3436 {
3437 	struct spdk_memory_domain **_domains = NULL;
3438 	struct nvme_bdev *nbdev = ctx;
3439 	struct nvme_ns *nvme_ns;
3440 	int i = 0, _array_size = array_size;
3441 	int rc = 0;
3442 
3443 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3444 		if (domains && array_size >= i) {
3445 			_domains = &domains[i];
3446 		} else {
3447 			_domains = NULL;
3448 		}
3449 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
3450 		if (rc > 0) {
3451 			i += rc;
3452 			if (_array_size >= rc) {
3453 				_array_size -= rc;
3454 			} else {
3455 				_array_size = 0;
3456 			}
3457 		} else if (rc < 0) {
3458 			return rc;
3459 		}
3460 	}
3461 
3462 	return i;
3463 }
3464 
3465 static const char *
3466 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
3467 {
3468 	if (nvme_ctrlr->destruct) {
3469 		return "deleting";
3470 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
3471 		return "failed";
3472 	} else if (nvme_ctrlr->resetting) {
3473 		return "resetting";
3474 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
3475 		return "reconnect_is_delayed";
3476 	} else if (nvme_ctrlr->disabled) {
3477 		return "disabled";
3478 	} else {
3479 		return "enabled";
3480 	}
3481 }
3482 
3483 void
3484 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
3485 {
3486 	struct spdk_nvme_transport_id *trid;
3487 	const struct spdk_nvme_ctrlr_opts *opts;
3488 	const struct spdk_nvme_ctrlr_data *cdata;
3489 	struct nvme_path_id *path_id;
3490 
3491 	spdk_json_write_object_begin(w);
3492 
3493 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
3494 
3495 #ifdef SPDK_CONFIG_NVME_CUSE
3496 	size_t cuse_name_size = 128;
3497 	char cuse_name[cuse_name_size];
3498 
3499 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
3500 	if (rc == 0) {
3501 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3502 	}
3503 #endif
3504 	trid = &nvme_ctrlr->active_path_id->trid;
3505 	spdk_json_write_named_object_begin(w, "trid");
3506 	nvme_bdev_dump_trid_json(trid, w);
3507 	spdk_json_write_object_end(w);
3508 
3509 	path_id = TAILQ_NEXT(nvme_ctrlr->active_path_id, link);
3510 	if (path_id != NULL) {
3511 		spdk_json_write_named_array_begin(w, "alternate_trids");
3512 		do {
3513 			trid = &path_id->trid;
3514 			spdk_json_write_object_begin(w);
3515 			nvme_bdev_dump_trid_json(trid, w);
3516 			spdk_json_write_object_end(w);
3517 
3518 			path_id = TAILQ_NEXT(path_id, link);
3519 		} while (path_id != NULL);
3520 		spdk_json_write_array_end(w);
3521 	}
3522 
3523 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
3524 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3525 
3526 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
3527 	spdk_json_write_named_object_begin(w, "host");
3528 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
3529 	spdk_json_write_named_string(w, "addr", opts->src_addr);
3530 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
3531 	spdk_json_write_object_end(w);
3532 
3533 	spdk_json_write_object_end(w);
3534 }
3535 
3536 static void
3537 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
3538 			 struct nvme_ns *nvme_ns)
3539 {
3540 	struct spdk_nvme_ns *ns;
3541 	struct spdk_nvme_ctrlr *ctrlr;
3542 	const struct spdk_nvme_ctrlr_data *cdata;
3543 	const struct spdk_nvme_transport_id *trid;
3544 	union spdk_nvme_vs_register vs;
3545 	const struct spdk_nvme_ns_data *nsdata;
3546 	char buf[128];
3547 
3548 	ns = nvme_ns->ns;
3549 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3550 
3551 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3552 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
3553 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
3554 
3555 	spdk_json_write_object_begin(w);
3556 
3557 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
3558 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
3559 	}
3560 
3561 	spdk_json_write_named_object_begin(w, "trid");
3562 
3563 	nvme_bdev_dump_trid_json(trid, w);
3564 
3565 	spdk_json_write_object_end(w);
3566 
3567 #ifdef SPDK_CONFIG_NVME_CUSE
3568 	size_t cuse_name_size = 128;
3569 	char cuse_name[cuse_name_size];
3570 
3571 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
3572 					    cuse_name, &cuse_name_size);
3573 	if (rc == 0) {
3574 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3575 	}
3576 #endif
3577 
3578 	spdk_json_write_named_object_begin(w, "ctrlr_data");
3579 
3580 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3581 
3582 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
3583 
3584 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
3585 	spdk_str_trim(buf);
3586 	spdk_json_write_named_string(w, "model_number", buf);
3587 
3588 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
3589 	spdk_str_trim(buf);
3590 	spdk_json_write_named_string(w, "serial_number", buf);
3591 
3592 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
3593 	spdk_str_trim(buf);
3594 	spdk_json_write_named_string(w, "firmware_revision", buf);
3595 
3596 	if (cdata->subnqn[0] != '\0') {
3597 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
3598 	}
3599 
3600 	spdk_json_write_named_object_begin(w, "oacs");
3601 
3602 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
3603 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
3604 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
3605 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
3606 
3607 	spdk_json_write_object_end(w);
3608 
3609 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
3610 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
3611 
3612 	spdk_json_write_object_end(w);
3613 
3614 	spdk_json_write_named_object_begin(w, "vs");
3615 
3616 	spdk_json_write_name(w, "nvme_version");
3617 	if (vs.bits.ter) {
3618 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
3619 	} else {
3620 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
3621 	}
3622 
3623 	spdk_json_write_object_end(w);
3624 
3625 	nsdata = spdk_nvme_ns_get_data(ns);
3626 
3627 	spdk_json_write_named_object_begin(w, "ns_data");
3628 
3629 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
3630 
3631 	if (cdata->cmic.ana_reporting) {
3632 		spdk_json_write_named_string(w, "ana_state",
3633 					     _nvme_ana_state_str(nvme_ns->ana_state));
3634 	}
3635 
3636 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
3637 
3638 	spdk_json_write_object_end(w);
3639 
3640 	if (cdata->oacs.security) {
3641 		spdk_json_write_named_object_begin(w, "security");
3642 
3643 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
3644 
3645 		spdk_json_write_object_end(w);
3646 	}
3647 
3648 	spdk_json_write_object_end(w);
3649 }
3650 
3651 static const char *
3652 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
3653 {
3654 	switch (nbdev->mp_policy) {
3655 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
3656 		return "active_passive";
3657 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
3658 		return "active_active";
3659 	default:
3660 		assert(false);
3661 		return "invalid";
3662 	}
3663 }
3664 
3665 static int
3666 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
3667 {
3668 	struct nvme_bdev *nvme_bdev = ctx;
3669 	struct nvme_ns *nvme_ns;
3670 
3671 	pthread_mutex_lock(&nvme_bdev->mutex);
3672 	spdk_json_write_named_array_begin(w, "nvme");
3673 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
3674 		nvme_namespace_info_json(w, nvme_ns);
3675 	}
3676 	spdk_json_write_array_end(w);
3677 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
3678 	pthread_mutex_unlock(&nvme_bdev->mutex);
3679 
3680 	return 0;
3681 }
3682 
3683 static void
3684 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
3685 {
3686 	/* No config per bdev needed */
3687 }
3688 
3689 static uint64_t
3690 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
3691 {
3692 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3693 	struct nvme_io_path *io_path;
3694 	struct nvme_poll_group *group;
3695 	uint64_t spin_time = 0;
3696 
3697 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3698 		group = io_path->qpair->group;
3699 
3700 		if (!group || !group->collect_spin_stat) {
3701 			continue;
3702 		}
3703 
3704 		if (group->end_ticks != 0) {
3705 			group->spin_ticks += (group->end_ticks - group->start_ticks);
3706 			group->end_ticks = 0;
3707 		}
3708 
3709 		spin_time += group->spin_ticks;
3710 		group->start_ticks = 0;
3711 		group->spin_ticks = 0;
3712 	}
3713 
3714 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
3715 }
3716 
3717 static void
3718 bdev_nvme_reset_device_stat(void *ctx)
3719 {
3720 	struct nvme_bdev *nbdev = ctx;
3721 
3722 	if (nbdev->err_stat != NULL) {
3723 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
3724 	}
3725 }
3726 
3727 /* JSON string should be lowercases and underscore delimited string. */
3728 static void
3729 bdev_nvme_format_nvme_status(char *dst, const char *src)
3730 {
3731 	char tmp[256];
3732 
3733 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
3734 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
3735 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
3736 	spdk_strlwr(dst);
3737 }
3738 
3739 static void
3740 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
3741 {
3742 	struct nvme_bdev *nbdev = ctx;
3743 	struct spdk_nvme_status status = {};
3744 	uint16_t sct, sc;
3745 	char status_json[256];
3746 	const char *status_str;
3747 
3748 	if (nbdev->err_stat == NULL) {
3749 		return;
3750 	}
3751 
3752 	spdk_json_write_named_object_begin(w, "nvme_error");
3753 
3754 	spdk_json_write_named_object_begin(w, "status_type");
3755 	for (sct = 0; sct < 8; sct++) {
3756 		if (nbdev->err_stat->status_type[sct] == 0) {
3757 			continue;
3758 		}
3759 		status.sct = sct;
3760 
3761 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
3762 		assert(status_str != NULL);
3763 		bdev_nvme_format_nvme_status(status_json, status_str);
3764 
3765 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
3766 	}
3767 	spdk_json_write_object_end(w);
3768 
3769 	spdk_json_write_named_object_begin(w, "status_code");
3770 	for (sct = 0; sct < 4; sct++) {
3771 		status.sct = sct;
3772 		for (sc = 0; sc < 256; sc++) {
3773 			if (nbdev->err_stat->status[sct][sc] == 0) {
3774 				continue;
3775 			}
3776 			status.sc = sc;
3777 
3778 			status_str = spdk_nvme_cpl_get_status_string(&status);
3779 			assert(status_str != NULL);
3780 			bdev_nvme_format_nvme_status(status_json, status_str);
3781 
3782 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
3783 		}
3784 	}
3785 	spdk_json_write_object_end(w);
3786 
3787 	spdk_json_write_object_end(w);
3788 }
3789 
3790 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
3791 	.destruct		= bdev_nvme_destruct,
3792 	.submit_request		= bdev_nvme_submit_request,
3793 	.io_type_supported	= bdev_nvme_io_type_supported,
3794 	.get_io_channel		= bdev_nvme_get_io_channel,
3795 	.dump_info_json		= bdev_nvme_dump_info_json,
3796 	.write_config_json	= bdev_nvme_write_config_json,
3797 	.get_spin_time		= bdev_nvme_get_spin_time,
3798 	.get_module_ctx		= bdev_nvme_get_module_ctx,
3799 	.get_memory_domains	= bdev_nvme_get_memory_domains,
3800 	.reset_device_stat	= bdev_nvme_reset_device_stat,
3801 	.dump_device_stat_json	= bdev_nvme_dump_device_stat_json,
3802 };
3803 
3804 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
3805 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
3806 
3807 static int
3808 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
3809 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
3810 {
3811 	struct spdk_nvme_ana_group_descriptor *copied_desc;
3812 	uint8_t *orig_desc;
3813 	uint32_t i, desc_size, copy_len;
3814 	int rc = 0;
3815 
3816 	if (nvme_ctrlr->ana_log_page == NULL) {
3817 		return -EINVAL;
3818 	}
3819 
3820 	copied_desc = nvme_ctrlr->copied_ana_desc;
3821 
3822 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
3823 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
3824 
3825 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
3826 		memcpy(copied_desc, orig_desc, copy_len);
3827 
3828 		rc = cb_fn(copied_desc, cb_arg);
3829 		if (rc != 0) {
3830 			break;
3831 		}
3832 
3833 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
3834 			    copied_desc->num_of_nsid * sizeof(uint32_t);
3835 		orig_desc += desc_size;
3836 		copy_len -= desc_size;
3837 	}
3838 
3839 	return rc;
3840 }
3841 
3842 static int
3843 nvme_ns_ana_transition_timedout(void *ctx)
3844 {
3845 	struct nvme_ns *nvme_ns = ctx;
3846 
3847 	spdk_poller_unregister(&nvme_ns->anatt_timer);
3848 	nvme_ns->ana_transition_timedout = true;
3849 
3850 	return SPDK_POLLER_BUSY;
3851 }
3852 
3853 static void
3854 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
3855 		       const struct spdk_nvme_ana_group_descriptor *desc)
3856 {
3857 	const struct spdk_nvme_ctrlr_data *cdata;
3858 
3859 	nvme_ns->ana_group_id = desc->ana_group_id;
3860 	nvme_ns->ana_state = desc->ana_state;
3861 	nvme_ns->ana_state_updating = false;
3862 
3863 	switch (nvme_ns->ana_state) {
3864 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3865 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3866 		nvme_ns->ana_transition_timedout = false;
3867 		spdk_poller_unregister(&nvme_ns->anatt_timer);
3868 		break;
3869 
3870 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3871 	case SPDK_NVME_ANA_CHANGE_STATE:
3872 		if (nvme_ns->anatt_timer != NULL) {
3873 			break;
3874 		}
3875 
3876 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
3877 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
3878 				       nvme_ns,
3879 				       cdata->anatt * SPDK_SEC_TO_USEC);
3880 		break;
3881 	default:
3882 		break;
3883 	}
3884 }
3885 
3886 static int
3887 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
3888 {
3889 	struct nvme_ns *nvme_ns = cb_arg;
3890 	uint32_t i;
3891 
3892 	for (i = 0; i < desc->num_of_nsid; i++) {
3893 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
3894 			continue;
3895 		}
3896 
3897 		_nvme_ns_set_ana_state(nvme_ns, desc);
3898 		return 1;
3899 	}
3900 
3901 	return 0;
3902 }
3903 
3904 static struct spdk_uuid
3905 nvme_generate_uuid(const char *sn, uint32_t nsid)
3906 {
3907 	struct spdk_uuid new_uuid, namespace_uuid;
3908 	char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'};
3909 	/* This namespace UUID was generated using uuid_generate() method. */
3910 	const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"};
3911 	int size;
3912 
3913 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
3914 
3915 	spdk_uuid_set_null(&new_uuid);
3916 	spdk_uuid_set_null(&namespace_uuid);
3917 
3918 	size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid);
3919 	assert(size > 0 && (unsigned long)size < sizeof(merged_str));
3920 
3921 	spdk_uuid_parse(&namespace_uuid, namespace_str);
3922 
3923 	spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size);
3924 
3925 	return new_uuid;
3926 }
3927 
3928 static int
3929 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
3930 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
3931 		 uint32_t prchk_flags, void *ctx)
3932 {
3933 	const struct spdk_uuid		*uuid;
3934 	const uint8_t *nguid;
3935 	const struct spdk_nvme_ctrlr_data *cdata;
3936 	const struct spdk_nvme_ns_data	*nsdata;
3937 	const struct spdk_nvme_ctrlr_opts *opts;
3938 	enum spdk_nvme_csi		csi;
3939 	uint32_t atomic_bs, phys_bs, bs;
3940 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
3941 
3942 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3943 	csi = spdk_nvme_ns_get_csi(ns);
3944 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
3945 
3946 	switch (csi) {
3947 	case SPDK_NVME_CSI_NVM:
3948 		disk->product_name = "NVMe disk";
3949 		break;
3950 	case SPDK_NVME_CSI_ZNS:
3951 		disk->product_name = "NVMe ZNS disk";
3952 		disk->zoned = true;
3953 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
3954 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
3955 					     spdk_nvme_ns_get_extended_sector_size(ns);
3956 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
3957 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
3958 		break;
3959 	default:
3960 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
3961 		return -ENOTSUP;
3962 	}
3963 
3964 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
3965 	if (!disk->name) {
3966 		return -ENOMEM;
3967 	}
3968 
3969 	disk->write_cache = 0;
3970 	if (cdata->vwc.present) {
3971 		/* Enable if the Volatile Write Cache exists */
3972 		disk->write_cache = 1;
3973 	}
3974 	if (cdata->oncs.write_zeroes) {
3975 		disk->max_write_zeroes = UINT16_MAX + 1;
3976 	}
3977 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
3978 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
3979 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
3980 	/* NVMe driver will split one request into multiple requests
3981 	 * based on MDTS and stripe boundary, the bdev layer will use
3982 	 * max_segment_size and max_num_segments to split one big IO
3983 	 * into multiple requests, then small request can't run out
3984 	 * of NVMe internal requests data structure.
3985 	 */
3986 	if (opts && opts->io_queue_requests) {
3987 		disk->max_num_segments = opts->io_queue_requests / 2;
3988 	}
3989 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
3990 
3991 	nguid = spdk_nvme_ns_get_nguid(ns);
3992 	if (!nguid) {
3993 		uuid = spdk_nvme_ns_get_uuid(ns);
3994 		if (uuid) {
3995 			disk->uuid = *uuid;
3996 		} else if (g_opts.generate_uuids) {
3997 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
3998 			disk->uuid = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns));
3999 		}
4000 	} else {
4001 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
4002 	}
4003 
4004 	nsdata = spdk_nvme_ns_get_data(ns);
4005 	bs = spdk_nvme_ns_get_sector_size(ns);
4006 	atomic_bs = bs;
4007 	phys_bs = bs;
4008 	if (nsdata->nabo == 0) {
4009 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
4010 			atomic_bs = bs * (1 + nsdata->nawupf);
4011 		} else {
4012 			atomic_bs = bs * (1 + cdata->awupf);
4013 		}
4014 	}
4015 	if (nsdata->nsfeat.optperf) {
4016 		phys_bs = bs * (1 + nsdata->npwg);
4017 	}
4018 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
4019 
4020 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
4021 	if (disk->md_len != 0) {
4022 		disk->md_interleave = nsdata->flbas.extended;
4023 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
4024 		if (disk->dif_type != SPDK_DIF_DISABLE) {
4025 			disk->dif_is_head_of_md = nsdata->dps.md_start;
4026 			disk->dif_check_flags = prchk_flags;
4027 		}
4028 	}
4029 
4030 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
4031 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
4032 		disk->acwu = 0;
4033 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
4034 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
4035 	} else {
4036 		disk->acwu = cdata->acwu + 1; /* 0-based */
4037 	}
4038 
4039 	if (cdata->oncs.copy) {
4040 		/* For now bdev interface allows only single segment copy */
4041 		disk->max_copy = nsdata->mssrl;
4042 	}
4043 
4044 	disk->ctxt = ctx;
4045 	disk->fn_table = &nvmelib_fn_table;
4046 	disk->module = &nvme_if;
4047 
4048 	return 0;
4049 }
4050 
4051 static struct nvme_bdev *
4052 nvme_bdev_alloc(void)
4053 {
4054 	struct nvme_bdev *bdev;
4055 	int rc;
4056 
4057 	bdev = calloc(1, sizeof(*bdev));
4058 	if (!bdev) {
4059 		SPDK_ERRLOG("bdev calloc() failed\n");
4060 		return NULL;
4061 	}
4062 
4063 	if (g_opts.nvme_error_stat) {
4064 		bdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
4065 		if (!bdev->err_stat) {
4066 			SPDK_ERRLOG("err_stat calloc() failed\n");
4067 			free(bdev);
4068 			return NULL;
4069 		}
4070 	}
4071 
4072 	rc = pthread_mutex_init(&bdev->mutex, NULL);
4073 	if (rc != 0) {
4074 		free(bdev->err_stat);
4075 		free(bdev);
4076 		return NULL;
4077 	}
4078 
4079 	bdev->ref = 1;
4080 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
4081 	bdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN;
4082 	bdev->rr_min_io = UINT32_MAX;
4083 	TAILQ_INIT(&bdev->nvme_ns_list);
4084 
4085 	return bdev;
4086 }
4087 
4088 static int
4089 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4090 {
4091 	struct nvme_bdev *bdev;
4092 	struct nvme_bdev_ctrlr *nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
4093 	int rc;
4094 
4095 	bdev = nvme_bdev_alloc();
4096 	if (bdev == NULL) {
4097 		SPDK_ERRLOG("Failed to allocate NVMe bdev\n");
4098 		return -ENOMEM;
4099 	}
4100 
4101 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
4102 
4103 	rc = nvme_disk_create(&bdev->disk, nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
4104 			      nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev);
4105 	if (rc != 0) {
4106 		SPDK_ERRLOG("Failed to create NVMe disk\n");
4107 		nvme_bdev_free(bdev);
4108 		return rc;
4109 	}
4110 
4111 	spdk_io_device_register(bdev,
4112 				bdev_nvme_create_bdev_channel_cb,
4113 				bdev_nvme_destroy_bdev_channel_cb,
4114 				sizeof(struct nvme_bdev_channel),
4115 				bdev->disk.name);
4116 
4117 	nvme_ns->bdev = bdev;
4118 	bdev->nsid = nvme_ns->id;
4119 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4120 
4121 	bdev->nbdev_ctrlr = nbdev_ctrlr;
4122 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->bdevs, bdev, tailq);
4123 
4124 	rc = spdk_bdev_register(&bdev->disk);
4125 	if (rc != 0) {
4126 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
4127 		spdk_io_device_unregister(bdev, NULL);
4128 		nvme_ns->bdev = NULL;
4129 		TAILQ_REMOVE(&nbdev_ctrlr->bdevs, bdev, tailq);
4130 		nvme_bdev_free(bdev);
4131 		return rc;
4132 	}
4133 
4134 	return 0;
4135 }
4136 
4137 static bool
4138 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
4139 {
4140 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
4141 	const struct spdk_uuid *uuid1, *uuid2;
4142 
4143 	nsdata1 = spdk_nvme_ns_get_data(ns1);
4144 	nsdata2 = spdk_nvme_ns_get_data(ns2);
4145 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
4146 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
4147 
4148 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
4149 	       nsdata1->eui64 == nsdata2->eui64 &&
4150 	       ((uuid1 == NULL && uuid2 == NULL) ||
4151 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
4152 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
4153 }
4154 
4155 static bool
4156 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4157 		 struct spdk_nvme_ctrlr_opts *opts)
4158 {
4159 	struct nvme_probe_skip_entry *entry;
4160 
4161 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
4162 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4163 			return false;
4164 		}
4165 	}
4166 
4167 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
4168 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
4169 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
4170 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
4171 	opts->disable_read_ana_log_page = true;
4172 
4173 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
4174 
4175 	return true;
4176 }
4177 
4178 static void
4179 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
4180 {
4181 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4182 
4183 	if (spdk_nvme_cpl_is_error(cpl)) {
4184 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
4185 			     cpl->status.sct);
4186 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4187 	} else if (cpl->cdw0 & 0x1) {
4188 		SPDK_WARNLOG("Specified command could not be aborted.\n");
4189 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4190 	}
4191 }
4192 
4193 static void
4194 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
4195 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
4196 {
4197 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4198 	union spdk_nvme_csts_register csts;
4199 	int rc;
4200 
4201 	assert(nvme_ctrlr->ctrlr == ctrlr);
4202 
4203 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
4204 
4205 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
4206 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
4207 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
4208 	 * completion recursively.
4209 	 */
4210 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
4211 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
4212 		if (csts.bits.cfs) {
4213 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
4214 			bdev_nvme_reset_ctrlr(nvme_ctrlr);
4215 			return;
4216 		}
4217 	}
4218 
4219 	switch (g_opts.action_on_timeout) {
4220 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
4221 		if (qpair) {
4222 			/* Don't send abort to ctrlr when ctrlr is not available. */
4223 			pthread_mutex_lock(&nvme_ctrlr->mutex);
4224 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
4225 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
4226 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
4227 				return;
4228 			}
4229 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4230 
4231 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
4232 						       nvme_abort_cpl, nvme_ctrlr);
4233 			if (rc == 0) {
4234 				return;
4235 			}
4236 
4237 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
4238 		}
4239 
4240 	/* FALLTHROUGH */
4241 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
4242 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4243 		break;
4244 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
4245 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
4246 		break;
4247 	default:
4248 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
4249 		break;
4250 	}
4251 }
4252 
4253 static struct nvme_ns *
4254 nvme_ns_alloc(void)
4255 {
4256 	struct nvme_ns *nvme_ns;
4257 
4258 	nvme_ns = calloc(1, sizeof(struct nvme_ns));
4259 	if (nvme_ns == NULL) {
4260 		return NULL;
4261 	}
4262 
4263 	if (g_opts.io_path_stat) {
4264 		nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
4265 		if (nvme_ns->stat == NULL) {
4266 			free(nvme_ns);
4267 			return NULL;
4268 		}
4269 		spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
4270 	}
4271 
4272 	return nvme_ns;
4273 }
4274 
4275 static void
4276 nvme_ns_free(struct nvme_ns *nvme_ns)
4277 {
4278 	free(nvme_ns->stat);
4279 	free(nvme_ns);
4280 }
4281 
4282 static void
4283 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
4284 {
4285 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4286 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
4287 
4288 	if (rc == 0) {
4289 		nvme_ns->probe_ctx = NULL;
4290 		pthread_mutex_lock(&nvme_ctrlr->mutex);
4291 		nvme_ctrlr->ref++;
4292 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4293 	} else {
4294 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4295 		nvme_ns_free(nvme_ns);
4296 	}
4297 
4298 	if (ctx) {
4299 		ctx->populates_in_progress--;
4300 		if (ctx->populates_in_progress == 0) {
4301 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4302 		}
4303 	}
4304 }
4305 
4306 static void
4307 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
4308 {
4309 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4310 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4311 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4312 	int rc;
4313 
4314 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
4315 	if (rc != 0) {
4316 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
4317 	}
4318 
4319 	spdk_for_each_channel_continue(i, rc);
4320 }
4321 
4322 static void
4323 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
4324 {
4325 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4326 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4327 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4328 	struct nvme_io_path *io_path;
4329 
4330 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
4331 	if (io_path != NULL) {
4332 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
4333 	}
4334 
4335 	spdk_for_each_channel_continue(i, 0);
4336 }
4337 
4338 static void
4339 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
4340 {
4341 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4342 
4343 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
4344 }
4345 
4346 static void
4347 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
4348 {
4349 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4350 	struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
4351 
4352 	if (status == 0) {
4353 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
4354 	} else {
4355 		/* Delete the added io_paths and fail populating the namespace. */
4356 		spdk_for_each_channel(bdev,
4357 				      bdev_nvme_delete_io_path,
4358 				      nvme_ns,
4359 				      bdev_nvme_add_io_path_failed);
4360 	}
4361 }
4362 
4363 static int
4364 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
4365 {
4366 	struct nvme_ns *tmp_ns;
4367 	const struct spdk_nvme_ns_data *nsdata;
4368 
4369 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
4370 	if (!nsdata->nmic.can_share) {
4371 		SPDK_ERRLOG("Namespace cannot be shared.\n");
4372 		return -EINVAL;
4373 	}
4374 
4375 	pthread_mutex_lock(&bdev->mutex);
4376 
4377 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
4378 	assert(tmp_ns != NULL);
4379 
4380 	if (!bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
4381 		pthread_mutex_unlock(&bdev->mutex);
4382 		SPDK_ERRLOG("Namespaces are not identical.\n");
4383 		return -EINVAL;
4384 	}
4385 
4386 	bdev->ref++;
4387 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4388 	nvme_ns->bdev = bdev;
4389 
4390 	pthread_mutex_unlock(&bdev->mutex);
4391 
4392 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
4393 	spdk_for_each_channel(bdev,
4394 			      bdev_nvme_add_io_path,
4395 			      nvme_ns,
4396 			      bdev_nvme_add_io_path_done);
4397 
4398 	return 0;
4399 }
4400 
4401 static void
4402 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4403 {
4404 	struct spdk_nvme_ns	*ns;
4405 	struct nvme_bdev	*bdev;
4406 	int			rc = 0;
4407 
4408 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
4409 	if (!ns) {
4410 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
4411 		rc = -EINVAL;
4412 		goto done;
4413 	}
4414 
4415 	nvme_ns->ns = ns;
4416 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4417 
4418 	if (nvme_ctrlr->ana_log_page != NULL) {
4419 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
4420 	}
4421 
4422 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
4423 	if (bdev == NULL) {
4424 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
4425 	} else {
4426 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
4427 		if (rc == 0) {
4428 			return;
4429 		}
4430 	}
4431 done:
4432 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
4433 }
4434 
4435 static void
4436 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
4437 {
4438 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4439 
4440 	assert(nvme_ctrlr != NULL);
4441 
4442 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4443 
4444 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4445 
4446 	if (nvme_ns->bdev != NULL) {
4447 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4448 		return;
4449 	}
4450 
4451 	nvme_ns_free(nvme_ns);
4452 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4453 
4454 	nvme_ctrlr_release(nvme_ctrlr);
4455 }
4456 
4457 static void
4458 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
4459 {
4460 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4461 
4462 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4463 }
4464 
4465 static void
4466 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4467 {
4468 	struct nvme_bdev *bdev;
4469 
4470 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4471 
4472 	bdev = nvme_ns->bdev;
4473 	if (bdev != NULL) {
4474 		pthread_mutex_lock(&bdev->mutex);
4475 
4476 		assert(bdev->ref > 0);
4477 		bdev->ref--;
4478 		if (bdev->ref == 0) {
4479 			pthread_mutex_unlock(&bdev->mutex);
4480 
4481 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
4482 		} else {
4483 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
4484 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
4485 			 * and clear nvme_ns->bdev here.
4486 			 */
4487 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
4488 			nvme_ns->bdev = NULL;
4489 
4490 			pthread_mutex_unlock(&bdev->mutex);
4491 
4492 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
4493 			 * we call depopulate_namespace_done() to avoid use-after-free.
4494 			 */
4495 			spdk_for_each_channel(bdev,
4496 					      bdev_nvme_delete_io_path,
4497 					      nvme_ns,
4498 					      bdev_nvme_delete_io_path_done);
4499 			return;
4500 		}
4501 	}
4502 
4503 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4504 }
4505 
4506 static void
4507 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
4508 			       struct nvme_async_probe_ctx *ctx)
4509 {
4510 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
4511 	struct nvme_ns	*nvme_ns, *next;
4512 	struct spdk_nvme_ns	*ns;
4513 	struct nvme_bdev	*bdev;
4514 	uint32_t		nsid;
4515 	int			rc;
4516 	uint64_t		num_sectors;
4517 
4518 	if (ctx) {
4519 		/* Initialize this count to 1 to handle the populate functions
4520 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
4521 		 */
4522 		ctx->populates_in_progress = 1;
4523 	}
4524 
4525 	/* First loop over our existing namespaces and see if they have been
4526 	 * removed. */
4527 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4528 	while (nvme_ns != NULL) {
4529 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4530 
4531 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
4532 			/* NS is still there but attributes may have changed */
4533 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
4534 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
4535 			bdev = nvme_ns->bdev;
4536 			assert(bdev != NULL);
4537 			if (bdev->disk.blockcnt != num_sectors) {
4538 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
4539 					       nvme_ns->id,
4540 					       bdev->disk.name,
4541 					       bdev->disk.blockcnt,
4542 					       num_sectors);
4543 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
4544 				if (rc != 0) {
4545 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
4546 						    bdev->disk.name, rc);
4547 				}
4548 			}
4549 		} else {
4550 			/* Namespace was removed */
4551 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4552 		}
4553 
4554 		nvme_ns = next;
4555 	}
4556 
4557 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
4558 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4559 	while (nsid != 0) {
4560 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4561 
4562 		if (nvme_ns == NULL) {
4563 			/* Found a new one */
4564 			nvme_ns = nvme_ns_alloc();
4565 			if (nvme_ns == NULL) {
4566 				SPDK_ERRLOG("Failed to allocate namespace\n");
4567 				/* This just fails to attach the namespace. It may work on a future attempt. */
4568 				continue;
4569 			}
4570 
4571 			nvme_ns->id = nsid;
4572 			nvme_ns->ctrlr = nvme_ctrlr;
4573 
4574 			nvme_ns->bdev = NULL;
4575 
4576 			if (ctx) {
4577 				ctx->populates_in_progress++;
4578 			}
4579 			nvme_ns->probe_ctx = ctx;
4580 
4581 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4582 
4583 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
4584 		}
4585 
4586 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
4587 	}
4588 
4589 	if (ctx) {
4590 		/* Decrement this count now that the loop is over to account
4591 		 * for the one we started with.  If the count is then 0, we
4592 		 * know any populate_namespace functions completed immediately,
4593 		 * so we'll kick the callback here.
4594 		 */
4595 		ctx->populates_in_progress--;
4596 		if (ctx->populates_in_progress == 0) {
4597 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4598 		}
4599 	}
4600 
4601 }
4602 
4603 static void
4604 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
4605 {
4606 	struct nvme_ns *nvme_ns, *tmp;
4607 
4608 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
4609 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4610 	}
4611 }
4612 
4613 static uint32_t
4614 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
4615 {
4616 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4617 	const struct spdk_nvme_ctrlr_data *cdata;
4618 	uint32_t nsid, ns_count = 0;
4619 
4620 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4621 
4622 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4623 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
4624 		ns_count++;
4625 	}
4626 
4627 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
4628 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
4629 	       sizeof(uint32_t);
4630 }
4631 
4632 static int
4633 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
4634 			  void *cb_arg)
4635 {
4636 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4637 	struct nvme_ns *nvme_ns;
4638 	uint32_t i, nsid;
4639 
4640 	for (i = 0; i < desc->num_of_nsid; i++) {
4641 		nsid = desc->nsid[i];
4642 		if (nsid == 0) {
4643 			continue;
4644 		}
4645 
4646 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4647 
4648 		assert(nvme_ns != NULL);
4649 		if (nvme_ns == NULL) {
4650 			/* Target told us that an inactive namespace had an ANA change */
4651 			continue;
4652 		}
4653 
4654 		_nvme_ns_set_ana_state(nvme_ns, desc);
4655 	}
4656 
4657 	return 0;
4658 }
4659 
4660 static void
4661 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4662 {
4663 	struct nvme_ns *nvme_ns;
4664 
4665 	spdk_free(nvme_ctrlr->ana_log_page);
4666 	nvme_ctrlr->ana_log_page = NULL;
4667 
4668 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4669 	     nvme_ns != NULL;
4670 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
4671 		nvme_ns->ana_state_updating = false;
4672 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4673 	}
4674 }
4675 
4676 static void
4677 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
4678 {
4679 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4680 
4681 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
4682 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
4683 					     nvme_ctrlr);
4684 	} else {
4685 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
4686 	}
4687 
4688 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4689 
4690 	assert(nvme_ctrlr->ana_log_page_updating == true);
4691 	nvme_ctrlr->ana_log_page_updating = false;
4692 
4693 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
4694 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4695 
4696 		nvme_ctrlr_unregister(nvme_ctrlr);
4697 	} else {
4698 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4699 
4700 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
4701 	}
4702 }
4703 
4704 static int
4705 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4706 {
4707 	uint32_t ana_log_page_size;
4708 	int rc;
4709 
4710 	if (nvme_ctrlr->ana_log_page == NULL) {
4711 		return -EINVAL;
4712 	}
4713 
4714 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
4715 
4716 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
4717 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
4718 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
4719 		return -EINVAL;
4720 	}
4721 
4722 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4723 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
4724 	    nvme_ctrlr->ana_log_page_updating) {
4725 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4726 		return -EBUSY;
4727 	}
4728 
4729 	nvme_ctrlr->ana_log_page_updating = true;
4730 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4731 
4732 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
4733 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
4734 					      SPDK_NVME_GLOBAL_NS_TAG,
4735 					      nvme_ctrlr->ana_log_page,
4736 					      ana_log_page_size, 0,
4737 					      nvme_ctrlr_read_ana_log_page_done,
4738 					      nvme_ctrlr);
4739 	if (rc != 0) {
4740 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
4741 	}
4742 
4743 	return rc;
4744 }
4745 
4746 static void
4747 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
4748 {
4749 }
4750 
4751 struct bdev_nvme_set_preferred_path_ctx {
4752 	struct spdk_bdev_desc *desc;
4753 	struct nvme_ns *nvme_ns;
4754 	bdev_nvme_set_preferred_path_cb cb_fn;
4755 	void *cb_arg;
4756 };
4757 
4758 static void
4759 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
4760 {
4761 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4762 
4763 	assert(ctx != NULL);
4764 	assert(ctx->desc != NULL);
4765 	assert(ctx->cb_fn != NULL);
4766 
4767 	spdk_bdev_close(ctx->desc);
4768 
4769 	ctx->cb_fn(ctx->cb_arg, status);
4770 
4771 	free(ctx);
4772 }
4773 
4774 static void
4775 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
4776 {
4777 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4778 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4779 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4780 	struct nvme_io_path *io_path, *prev;
4781 
4782 	prev = NULL;
4783 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
4784 		if (io_path->nvme_ns == ctx->nvme_ns) {
4785 			break;
4786 		}
4787 		prev = io_path;
4788 	}
4789 
4790 	if (io_path != NULL) {
4791 		if (prev != NULL) {
4792 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
4793 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
4794 		}
4795 
4796 		/* We can set io_path to nbdev_ch->current_io_path directly here.
4797 		 * However, it needs to be conditional. To simplify the code,
4798 		 * just clear nbdev_ch->current_io_path and let find_io_path()
4799 		 * fill it.
4800 		 *
4801 		 * Automatic failback may be disabled. Hence even if the io_path is
4802 		 * already at the head, clear nbdev_ch->current_io_path.
4803 		 */
4804 		bdev_nvme_clear_current_io_path(nbdev_ch);
4805 	}
4806 
4807 	spdk_for_each_channel_continue(i, 0);
4808 }
4809 
4810 static struct nvme_ns *
4811 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
4812 {
4813 	struct nvme_ns *nvme_ns, *prev;
4814 	const struct spdk_nvme_ctrlr_data *cdata;
4815 
4816 	prev = NULL;
4817 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
4818 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4819 
4820 		if (cdata->cntlid == cntlid) {
4821 			break;
4822 		}
4823 		prev = nvme_ns;
4824 	}
4825 
4826 	if (nvme_ns != NULL && prev != NULL) {
4827 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
4828 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
4829 	}
4830 
4831 	return nvme_ns;
4832 }
4833 
4834 /* This function supports only multipath mode. There is only a single I/O path
4835  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
4836  * head of the I/O path list for each NVMe bdev channel.
4837  *
4838  * NVMe bdev channel may be acquired after completing this function. move the
4839  * matched namespace to the head of the namespace list for the NVMe bdev too.
4840  */
4841 void
4842 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
4843 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
4844 {
4845 	struct bdev_nvme_set_preferred_path_ctx *ctx;
4846 	struct spdk_bdev *bdev;
4847 	struct nvme_bdev *nbdev;
4848 	int rc = 0;
4849 
4850 	assert(cb_fn != NULL);
4851 
4852 	ctx = calloc(1, sizeof(*ctx));
4853 	if (ctx == NULL) {
4854 		SPDK_ERRLOG("Failed to alloc context.\n");
4855 		rc = -ENOMEM;
4856 		goto err_alloc;
4857 	}
4858 
4859 	ctx->cb_fn = cb_fn;
4860 	ctx->cb_arg = cb_arg;
4861 
4862 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
4863 	if (rc != 0) {
4864 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
4865 		goto err_open;
4866 	}
4867 
4868 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
4869 
4870 	if (bdev->module != &nvme_if) {
4871 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
4872 		rc = -ENODEV;
4873 		goto err_bdev;
4874 	}
4875 
4876 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
4877 
4878 	pthread_mutex_lock(&nbdev->mutex);
4879 
4880 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
4881 	if (ctx->nvme_ns == NULL) {
4882 		pthread_mutex_unlock(&nbdev->mutex);
4883 
4884 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
4885 		rc = -ENODEV;
4886 		goto err_bdev;
4887 	}
4888 
4889 	pthread_mutex_unlock(&nbdev->mutex);
4890 
4891 	spdk_for_each_channel(nbdev,
4892 			      _bdev_nvme_set_preferred_path,
4893 			      ctx,
4894 			      bdev_nvme_set_preferred_path_done);
4895 	return;
4896 
4897 err_bdev:
4898 	spdk_bdev_close(ctx->desc);
4899 err_open:
4900 	free(ctx);
4901 err_alloc:
4902 	cb_fn(cb_arg, rc);
4903 }
4904 
4905 struct bdev_nvme_set_multipath_policy_ctx {
4906 	struct spdk_bdev_desc *desc;
4907 	bdev_nvme_set_multipath_policy_cb cb_fn;
4908 	void *cb_arg;
4909 };
4910 
4911 static void
4912 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
4913 {
4914 	struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4915 
4916 	assert(ctx != NULL);
4917 	assert(ctx->desc != NULL);
4918 	assert(ctx->cb_fn != NULL);
4919 
4920 	spdk_bdev_close(ctx->desc);
4921 
4922 	ctx->cb_fn(ctx->cb_arg, status);
4923 
4924 	free(ctx);
4925 }
4926 
4927 static void
4928 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
4929 {
4930 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4931 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4932 	struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
4933 
4934 	nbdev_ch->mp_policy = nbdev->mp_policy;
4935 	nbdev_ch->mp_selector = nbdev->mp_selector;
4936 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
4937 	bdev_nvme_clear_current_io_path(nbdev_ch);
4938 
4939 	spdk_for_each_channel_continue(i, 0);
4940 }
4941 
4942 void
4943 bdev_nvme_set_multipath_policy(const char *name, enum bdev_nvme_multipath_policy policy,
4944 			       enum bdev_nvme_multipath_selector selector, uint32_t rr_min_io,
4945 			       bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
4946 {
4947 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
4948 	struct spdk_bdev *bdev;
4949 	struct nvme_bdev *nbdev;
4950 	int rc;
4951 
4952 	assert(cb_fn != NULL);
4953 
4954 	if (policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE && selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
4955 		if (rr_min_io == UINT32_MAX) {
4956 			rr_min_io = 1;
4957 		} else if (rr_min_io == 0) {
4958 			rc = -EINVAL;
4959 			goto exit;
4960 		}
4961 	} else if (rr_min_io != UINT32_MAX) {
4962 		rc = -EINVAL;
4963 		goto exit;
4964 	}
4965 
4966 	ctx = calloc(1, sizeof(*ctx));
4967 	if (ctx == NULL) {
4968 		SPDK_ERRLOG("Failed to alloc context.\n");
4969 		rc = -ENOMEM;
4970 		goto exit;
4971 	}
4972 
4973 	ctx->cb_fn = cb_fn;
4974 	ctx->cb_arg = cb_arg;
4975 
4976 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
4977 	if (rc != 0) {
4978 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
4979 		rc = -ENODEV;
4980 		goto err_open;
4981 	}
4982 
4983 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
4984 	if (bdev->module != &nvme_if) {
4985 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
4986 		rc = -ENODEV;
4987 		goto err_module;
4988 	}
4989 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
4990 
4991 	pthread_mutex_lock(&nbdev->mutex);
4992 	nbdev->mp_policy = policy;
4993 	nbdev->mp_selector = selector;
4994 	nbdev->rr_min_io = rr_min_io;
4995 	pthread_mutex_unlock(&nbdev->mutex);
4996 
4997 	spdk_for_each_channel(nbdev,
4998 			      _bdev_nvme_set_multipath_policy,
4999 			      ctx,
5000 			      bdev_nvme_set_multipath_policy_done);
5001 	return;
5002 
5003 err_module:
5004 	spdk_bdev_close(ctx->desc);
5005 err_open:
5006 	free(ctx);
5007 exit:
5008 	cb_fn(cb_arg, rc);
5009 }
5010 
5011 static void
5012 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5013 {
5014 	struct nvme_ctrlr *nvme_ctrlr		= arg;
5015 	union spdk_nvme_async_event_completion	event;
5016 
5017 	if (spdk_nvme_cpl_is_error(cpl)) {
5018 		SPDK_WARNLOG("AER request execute failed\n");
5019 		return;
5020 	}
5021 
5022 	event.raw = cpl->cdw0;
5023 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5024 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
5025 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
5026 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5027 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
5028 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
5029 	}
5030 }
5031 
5032 static void
5033 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, size_t count, int rc)
5034 {
5035 	if (ctx->cb_fn) {
5036 		ctx->cb_fn(ctx->cb_ctx, count, rc);
5037 	}
5038 
5039 	ctx->namespaces_populated = true;
5040 	if (ctx->probe_done) {
5041 		/* The probe was already completed, so we need to free the context
5042 		 * here.  This can happen for cases like OCSSD, where we need to
5043 		 * send additional commands to the SSD after attach.
5044 		 */
5045 		free(ctx);
5046 	}
5047 }
5048 
5049 static void
5050 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
5051 		       struct nvme_async_probe_ctx *ctx)
5052 {
5053 	spdk_io_device_register(nvme_ctrlr,
5054 				bdev_nvme_create_ctrlr_channel_cb,
5055 				bdev_nvme_destroy_ctrlr_channel_cb,
5056 				sizeof(struct nvme_ctrlr_channel),
5057 				nvme_ctrlr->nbdev_ctrlr->name);
5058 
5059 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
5060 }
5061 
5062 static void
5063 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
5064 {
5065 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
5066 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
5067 
5068 	nvme_ctrlr->probe_ctx = NULL;
5069 
5070 	if (spdk_nvme_cpl_is_error(cpl)) {
5071 		nvme_ctrlr_delete(nvme_ctrlr);
5072 
5073 		if (ctx != NULL) {
5074 			populate_namespaces_cb(ctx, 0, -1);
5075 		}
5076 		return;
5077 	}
5078 
5079 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5080 }
5081 
5082 static int
5083 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
5084 			     struct nvme_async_probe_ctx *ctx)
5085 {
5086 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5087 	const struct spdk_nvme_ctrlr_data *cdata;
5088 	uint32_t ana_log_page_size;
5089 
5090 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5091 
5092 	/* Set buffer size enough to include maximum number of allowed namespaces. */
5093 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5094 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
5095 			    sizeof(uint32_t);
5096 
5097 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
5098 						SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
5099 	if (nvme_ctrlr->ana_log_page == NULL) {
5100 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
5101 		return -ENXIO;
5102 	}
5103 
5104 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
5105 	 * Hence copy each descriptor to a temporary area when parsing it.
5106 	 *
5107 	 * Allocate a buffer whose size is as large as ANA log page buffer because
5108 	 * we do not know the size of a descriptor until actually reading it.
5109 	 */
5110 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
5111 	if (nvme_ctrlr->copied_ana_desc == NULL) {
5112 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
5113 		return -ENOMEM;
5114 	}
5115 
5116 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
5117 
5118 	nvme_ctrlr->probe_ctx = ctx;
5119 
5120 	/* Then, set the read size only to include the current active namespaces. */
5121 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5122 
5123 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5124 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5125 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5126 		return -EINVAL;
5127 	}
5128 
5129 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
5130 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5131 						SPDK_NVME_GLOBAL_NS_TAG,
5132 						nvme_ctrlr->ana_log_page,
5133 						ana_log_page_size, 0,
5134 						nvme_ctrlr_init_ana_log_page_done,
5135 						nvme_ctrlr);
5136 }
5137 
5138 /* hostnqn and subnqn were already verified before attaching a controller.
5139  * Hence check only the multipath capability and cntlid here.
5140  */
5141 static bool
5142 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
5143 {
5144 	struct nvme_ctrlr *tmp;
5145 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
5146 
5147 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5148 
5149 	if (!cdata->cmic.multi_ctrlr) {
5150 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5151 		return false;
5152 	}
5153 
5154 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
5155 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
5156 
5157 		if (!tmp_cdata->cmic.multi_ctrlr) {
5158 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5159 			return false;
5160 		}
5161 		if (cdata->cntlid == tmp_cdata->cntlid) {
5162 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
5163 			return false;
5164 		}
5165 	}
5166 
5167 	return true;
5168 }
5169 
5170 static int
5171 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
5172 {
5173 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5174 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5175 	int rc = 0;
5176 
5177 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5178 
5179 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5180 	if (nbdev_ctrlr != NULL) {
5181 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
5182 			rc = -EINVAL;
5183 			goto exit;
5184 		}
5185 	} else {
5186 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
5187 		if (nbdev_ctrlr == NULL) {
5188 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
5189 			rc = -ENOMEM;
5190 			goto exit;
5191 		}
5192 		nbdev_ctrlr->name = strdup(name);
5193 		if (nbdev_ctrlr->name == NULL) {
5194 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
5195 			free(nbdev_ctrlr);
5196 			goto exit;
5197 		}
5198 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
5199 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
5200 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
5201 	}
5202 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
5203 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
5204 exit:
5205 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5206 	return rc;
5207 }
5208 
5209 static int
5210 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
5211 		  const char *name,
5212 		  const struct spdk_nvme_transport_id *trid,
5213 		  struct nvme_async_probe_ctx *ctx)
5214 {
5215 	struct nvme_ctrlr *nvme_ctrlr;
5216 	struct nvme_path_id *path_id;
5217 	const struct spdk_nvme_ctrlr_data *cdata;
5218 	int rc;
5219 
5220 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
5221 	if (nvme_ctrlr == NULL) {
5222 		SPDK_ERRLOG("Failed to allocate device struct\n");
5223 		return -ENOMEM;
5224 	}
5225 
5226 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
5227 	if (rc != 0) {
5228 		free(nvme_ctrlr);
5229 		return rc;
5230 	}
5231 
5232 	TAILQ_INIT(&nvme_ctrlr->trids);
5233 
5234 	RB_INIT(&nvme_ctrlr->namespaces);
5235 
5236 	path_id = calloc(1, sizeof(*path_id));
5237 	if (path_id == NULL) {
5238 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
5239 		rc = -ENOMEM;
5240 		goto err;
5241 	}
5242 
5243 	path_id->trid = *trid;
5244 	if (ctx != NULL) {
5245 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
5246 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
5247 	}
5248 	nvme_ctrlr->active_path_id = path_id;
5249 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
5250 
5251 	nvme_ctrlr->thread = spdk_get_thread();
5252 	nvme_ctrlr->ctrlr = ctrlr;
5253 	nvme_ctrlr->ref = 1;
5254 
5255 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
5256 		SPDK_ERRLOG("OCSSDs are not supported");
5257 		rc = -ENOTSUP;
5258 		goto err;
5259 	}
5260 
5261 	if (ctx != NULL) {
5262 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
5263 	} else {
5264 		bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
5265 	}
5266 
5267 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
5268 					  g_opts.nvme_adminq_poll_period_us);
5269 
5270 	if (g_opts.timeout_us > 0) {
5271 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
5272 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
5273 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
5274 					  g_opts.timeout_us : g_opts.timeout_admin_us;
5275 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
5276 				adm_timeout_us, timeout_cb, nvme_ctrlr);
5277 	}
5278 
5279 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
5280 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
5281 
5282 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
5283 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
5284 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
5285 	}
5286 
5287 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
5288 	if (rc != 0) {
5289 		goto err;
5290 	}
5291 
5292 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5293 
5294 	if (cdata->cmic.ana_reporting) {
5295 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
5296 		if (rc == 0) {
5297 			return 0;
5298 		}
5299 	} else {
5300 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5301 		return 0;
5302 	}
5303 
5304 err:
5305 	nvme_ctrlr_delete(nvme_ctrlr);
5306 	return rc;
5307 }
5308 
5309 void
5310 bdev_nvme_get_default_ctrlr_opts(struct nvme_ctrlr_opts *opts)
5311 {
5312 	opts->prchk_flags = 0;
5313 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
5314 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
5315 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
5316 }
5317 
5318 static void
5319 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5320 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
5321 {
5322 	char *name;
5323 
5324 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
5325 	if (!name) {
5326 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
5327 		return;
5328 	}
5329 
5330 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
5331 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
5332 	} else {
5333 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
5334 	}
5335 
5336 	free(name);
5337 }
5338 
5339 static void
5340 _nvme_ctrlr_destruct(void *ctx)
5341 {
5342 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5343 
5344 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
5345 	nvme_ctrlr_release(nvme_ctrlr);
5346 }
5347 
5348 static int
5349 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5350 {
5351 	struct nvme_probe_skip_entry *entry;
5352 
5353 	/* The controller's destruction was already started */
5354 	if (nvme_ctrlr->destruct) {
5355 		return -EALREADY;
5356 	}
5357 
5358 	if (!hotplug &&
5359 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
5360 		entry = calloc(1, sizeof(*entry));
5361 		if (!entry) {
5362 			return -ENOMEM;
5363 		}
5364 		entry->trid = nvme_ctrlr->active_path_id->trid;
5365 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
5366 	}
5367 
5368 	nvme_ctrlr->destruct = true;
5369 	return 0;
5370 }
5371 
5372 static int
5373 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5374 {
5375 	int rc;
5376 
5377 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5378 	rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug);
5379 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5380 
5381 	if (rc == 0) {
5382 		_nvme_ctrlr_destruct(nvme_ctrlr);
5383 	} else if (rc == -EALREADY) {
5384 		rc = 0;
5385 	}
5386 
5387 	return rc;
5388 }
5389 
5390 static void
5391 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
5392 {
5393 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
5394 
5395 	bdev_nvme_delete_ctrlr(nvme_ctrlr, true);
5396 }
5397 
5398 static int
5399 bdev_nvme_hotplug_probe(void *arg)
5400 {
5401 	if (g_hotplug_probe_ctx == NULL) {
5402 		spdk_poller_unregister(&g_hotplug_probe_poller);
5403 		return SPDK_POLLER_IDLE;
5404 	}
5405 
5406 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
5407 		g_hotplug_probe_ctx = NULL;
5408 		spdk_poller_unregister(&g_hotplug_probe_poller);
5409 	}
5410 
5411 	return SPDK_POLLER_BUSY;
5412 }
5413 
5414 static int
5415 bdev_nvme_hotplug(void *arg)
5416 {
5417 	struct spdk_nvme_transport_id trid_pcie;
5418 
5419 	if (g_hotplug_probe_ctx) {
5420 		return SPDK_POLLER_BUSY;
5421 	}
5422 
5423 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5424 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5425 
5426 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
5427 			      hotplug_probe_cb, attach_cb, NULL);
5428 
5429 	if (g_hotplug_probe_ctx) {
5430 		assert(g_hotplug_probe_poller == NULL);
5431 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
5432 	}
5433 
5434 	return SPDK_POLLER_BUSY;
5435 }
5436 
5437 void
5438 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
5439 {
5440 	*opts = g_opts;
5441 }
5442 
5443 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5444 		uint32_t reconnect_delay_sec,
5445 		uint32_t fast_io_fail_timeout_sec);
5446 
5447 static int
5448 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
5449 {
5450 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
5451 		/* Can't set timeout_admin_us without also setting timeout_us */
5452 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
5453 		return -EINVAL;
5454 	}
5455 
5456 	if (opts->bdev_retry_count < -1) {
5457 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
5458 		return -EINVAL;
5459 	}
5460 
5461 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
5462 			opts->reconnect_delay_sec,
5463 			opts->fast_io_fail_timeout_sec)) {
5464 		return -EINVAL;
5465 	}
5466 
5467 	return 0;
5468 }
5469 
5470 int
5471 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
5472 {
5473 	int ret;
5474 
5475 	ret = bdev_nvme_validate_opts(opts);
5476 	if (ret) {
5477 		SPDK_WARNLOG("Failed to set nvme opts.\n");
5478 		return ret;
5479 	}
5480 
5481 	if (g_bdev_nvme_init_thread != NULL) {
5482 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5483 			return -EPERM;
5484 		}
5485 	}
5486 
5487 	if (opts->rdma_srq_size != 0) {
5488 		struct spdk_nvme_transport_opts drv_opts;
5489 
5490 		spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
5491 		drv_opts.rdma_srq_size = opts->rdma_srq_size;
5492 
5493 		ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
5494 		if (ret) {
5495 			SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
5496 			return ret;
5497 		}
5498 	}
5499 
5500 	g_opts = *opts;
5501 
5502 	return 0;
5503 }
5504 
5505 struct set_nvme_hotplug_ctx {
5506 	uint64_t period_us;
5507 	bool enabled;
5508 	spdk_msg_fn fn;
5509 	void *fn_ctx;
5510 };
5511 
5512 static void
5513 set_nvme_hotplug_period_cb(void *_ctx)
5514 {
5515 	struct set_nvme_hotplug_ctx *ctx = _ctx;
5516 
5517 	spdk_poller_unregister(&g_hotplug_poller);
5518 	if (ctx->enabled) {
5519 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
5520 	}
5521 
5522 	g_nvme_hotplug_poll_period_us = ctx->period_us;
5523 	g_nvme_hotplug_enabled = ctx->enabled;
5524 	if (ctx->fn) {
5525 		ctx->fn(ctx->fn_ctx);
5526 	}
5527 
5528 	free(ctx);
5529 }
5530 
5531 int
5532 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
5533 {
5534 	struct set_nvme_hotplug_ctx *ctx;
5535 
5536 	if (enabled == true && !spdk_process_is_primary()) {
5537 		return -EPERM;
5538 	}
5539 
5540 	ctx = calloc(1, sizeof(*ctx));
5541 	if (ctx == NULL) {
5542 		return -ENOMEM;
5543 	}
5544 
5545 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
5546 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
5547 	ctx->enabled = enabled;
5548 	ctx->fn = cb;
5549 	ctx->fn_ctx = cb_ctx;
5550 
5551 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
5552 	return 0;
5553 }
5554 
5555 static void
5556 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
5557 				    struct nvme_async_probe_ctx *ctx)
5558 {
5559 	struct nvme_ns	*nvme_ns;
5560 	struct nvme_bdev	*nvme_bdev;
5561 	size_t			j;
5562 
5563 	assert(nvme_ctrlr != NULL);
5564 
5565 	if (ctx->names == NULL) {
5566 		populate_namespaces_cb(ctx, 0, 0);
5567 		return;
5568 	}
5569 
5570 	/*
5571 	 * Report the new bdevs that were created in this call.
5572 	 * There can be more than one bdev per NVMe controller.
5573 	 */
5574 	j = 0;
5575 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5576 	while (nvme_ns != NULL) {
5577 		nvme_bdev = nvme_ns->bdev;
5578 		if (j < ctx->count) {
5579 			ctx->names[j] = nvme_bdev->disk.name;
5580 			j++;
5581 		} else {
5582 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
5583 				    ctx->count);
5584 			populate_namespaces_cb(ctx, 0, -ERANGE);
5585 			return;
5586 		}
5587 
5588 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5589 	}
5590 
5591 	populate_namespaces_cb(ctx, j, 0);
5592 }
5593 
5594 static int
5595 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5596 			       struct spdk_nvme_ctrlr *new_ctrlr,
5597 			       struct spdk_nvme_transport_id *trid)
5598 {
5599 	struct nvme_path_id *tmp_trid;
5600 
5601 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5602 		SPDK_ERRLOG("PCIe failover is not supported.\n");
5603 		return -ENOTSUP;
5604 	}
5605 
5606 	/* Currently we only support failover to the same transport type. */
5607 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
5608 		SPDK_WARNLOG("Failover from trtype: %s to a different trtype: %s is not supported currently\n",
5609 			     spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
5610 			     spdk_nvme_transport_id_trtype_str(trid->trtype));
5611 		return -EINVAL;
5612 	}
5613 
5614 
5615 	/* Currently we only support failover to the same NQN. */
5616 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
5617 		SPDK_WARNLOG("Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
5618 			     nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
5619 		return -EINVAL;
5620 	}
5621 
5622 	/* Skip all the other checks if we've already registered this path. */
5623 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
5624 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
5625 			SPDK_WARNLOG("This path (traddr: %s subnqn: %s) is already registered\n", trid->traddr,
5626 				     trid->subnqn);
5627 			return -EEXIST;
5628 		}
5629 	}
5630 
5631 	return 0;
5632 }
5633 
5634 static int
5635 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
5636 				    struct spdk_nvme_ctrlr *new_ctrlr)
5637 {
5638 	struct nvme_ns *nvme_ns;
5639 	struct spdk_nvme_ns *new_ns;
5640 
5641 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5642 	while (nvme_ns != NULL) {
5643 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
5644 		assert(new_ns != NULL);
5645 
5646 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
5647 			return -EINVAL;
5648 		}
5649 
5650 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5651 	}
5652 
5653 	return 0;
5654 }
5655 
5656 static int
5657 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5658 			      struct spdk_nvme_transport_id *trid)
5659 {
5660 	struct nvme_path_id *active_id, *new_trid, *tmp_trid;
5661 
5662 	new_trid = calloc(1, sizeof(*new_trid));
5663 	if (new_trid == NULL) {
5664 		return -ENOMEM;
5665 	}
5666 	new_trid->trid = *trid;
5667 
5668 	active_id = nvme_ctrlr->active_path_id;
5669 	assert(active_id != NULL);
5670 	assert(active_id == TAILQ_FIRST(&nvme_ctrlr->trids));
5671 
5672 	/* Skip the active trid not to replace it until it is failed. */
5673 	tmp_trid = TAILQ_NEXT(active_id, link);
5674 	if (tmp_trid == NULL) {
5675 		goto add_tail;
5676 	}
5677 
5678 	/* It means the trid is faled if its last failed time is non-zero.
5679 	 * Insert the new alternate trid before any failed trid.
5680 	 */
5681 	TAILQ_FOREACH_FROM(tmp_trid, &nvme_ctrlr->trids, link) {
5682 		if (tmp_trid->last_failed_tsc != 0) {
5683 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
5684 			return 0;
5685 		}
5686 	}
5687 
5688 add_tail:
5689 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
5690 	return 0;
5691 }
5692 
5693 /* This is the case that a secondary path is added to an existing
5694  * nvme_ctrlr for failover. After checking if it can access the same
5695  * namespaces as the primary path, it is disconnected until failover occurs.
5696  */
5697 static int
5698 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5699 			     struct spdk_nvme_ctrlr *new_ctrlr,
5700 			     struct spdk_nvme_transport_id *trid)
5701 {
5702 	int rc;
5703 
5704 	assert(nvme_ctrlr != NULL);
5705 
5706 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5707 
5708 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
5709 	if (rc != 0) {
5710 		goto exit;
5711 	}
5712 
5713 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
5714 	if (rc != 0) {
5715 		goto exit;
5716 	}
5717 
5718 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
5719 
5720 exit:
5721 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5722 
5723 	spdk_nvme_detach(new_ctrlr);
5724 
5725 	return rc;
5726 }
5727 
5728 static void
5729 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5730 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
5731 {
5732 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5733 	struct nvme_async_probe_ctx *ctx;
5734 	int rc;
5735 
5736 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
5737 	ctx->ctrlr_attached = true;
5738 
5739 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
5740 	if (rc != 0) {
5741 		populate_namespaces_cb(ctx, 0, rc);
5742 	}
5743 }
5744 
5745 static void
5746 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5747 			struct spdk_nvme_ctrlr *ctrlr,
5748 			const struct spdk_nvme_ctrlr_opts *opts)
5749 {
5750 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5751 	struct nvme_ctrlr *nvme_ctrlr;
5752 	struct nvme_async_probe_ctx *ctx;
5753 	int rc;
5754 
5755 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
5756 	ctx->ctrlr_attached = true;
5757 
5758 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
5759 	if (nvme_ctrlr) {
5760 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
5761 	} else {
5762 		rc = -ENODEV;
5763 	}
5764 
5765 	populate_namespaces_cb(ctx, 0, rc);
5766 }
5767 
5768 static int
5769 bdev_nvme_async_poll(void *arg)
5770 {
5771 	struct nvme_async_probe_ctx	*ctx = arg;
5772 	int				rc;
5773 
5774 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
5775 	if (spdk_unlikely(rc != -EAGAIN)) {
5776 		ctx->probe_done = true;
5777 		spdk_poller_unregister(&ctx->poller);
5778 		if (!ctx->ctrlr_attached) {
5779 			/* The probe is done, but no controller was attached.
5780 			 * That means we had a failure, so report -EIO back to
5781 			 * the caller (usually the RPC). populate_namespaces_cb()
5782 			 * will take care of freeing the nvme_async_probe_ctx.
5783 			 */
5784 			populate_namespaces_cb(ctx, 0, -EIO);
5785 		} else if (ctx->namespaces_populated) {
5786 			/* The namespaces for the attached controller were all
5787 			 * populated and the response was already sent to the
5788 			 * caller (usually the RPC).  So free the context here.
5789 			 */
5790 			free(ctx);
5791 		}
5792 	}
5793 
5794 	return SPDK_POLLER_BUSY;
5795 }
5796 
5797 static bool
5798 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5799 		uint32_t reconnect_delay_sec,
5800 		uint32_t fast_io_fail_timeout_sec)
5801 {
5802 	if (ctrlr_loss_timeout_sec < -1) {
5803 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
5804 		return false;
5805 	} else if (ctrlr_loss_timeout_sec == -1) {
5806 		if (reconnect_delay_sec == 0) {
5807 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
5808 			return false;
5809 		} else if (fast_io_fail_timeout_sec != 0 &&
5810 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
5811 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
5812 			return false;
5813 		}
5814 	} else if (ctrlr_loss_timeout_sec != 0) {
5815 		if (reconnect_delay_sec == 0) {
5816 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
5817 			return false;
5818 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
5819 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
5820 			return false;
5821 		} else if (fast_io_fail_timeout_sec != 0) {
5822 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
5823 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
5824 				return false;
5825 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
5826 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
5827 				return false;
5828 			}
5829 		}
5830 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
5831 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
5832 		return false;
5833 	}
5834 
5835 	return true;
5836 }
5837 
5838 int
5839 bdev_nvme_create(struct spdk_nvme_transport_id *trid,
5840 		 const char *base_name,
5841 		 const char **names,
5842 		 uint32_t count,
5843 		 spdk_bdev_create_nvme_fn cb_fn,
5844 		 void *cb_ctx,
5845 		 struct spdk_nvme_ctrlr_opts *drv_opts,
5846 		 struct nvme_ctrlr_opts *bdev_opts,
5847 		 bool multipath)
5848 {
5849 	struct nvme_probe_skip_entry	*entry, *tmp;
5850 	struct nvme_async_probe_ctx	*ctx;
5851 	spdk_nvme_attach_cb attach_cb;
5852 
5853 	/* TODO expand this check to include both the host and target TRIDs.
5854 	 * Only if both are the same should we fail.
5855 	 */
5856 	if (nvme_ctrlr_get(trid) != NULL) {
5857 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
5858 		return -EEXIST;
5859 	}
5860 
5861 	if (bdev_opts != NULL &&
5862 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
5863 			    bdev_opts->reconnect_delay_sec,
5864 			    bdev_opts->fast_io_fail_timeout_sec)) {
5865 		return -EINVAL;
5866 	}
5867 
5868 	ctx = calloc(1, sizeof(*ctx));
5869 	if (!ctx) {
5870 		return -ENOMEM;
5871 	}
5872 	ctx->base_name = base_name;
5873 	ctx->names = names;
5874 	ctx->count = count;
5875 	ctx->cb_fn = cb_fn;
5876 	ctx->cb_ctx = cb_ctx;
5877 	ctx->trid = *trid;
5878 
5879 	if (bdev_opts) {
5880 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
5881 	} else {
5882 		bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
5883 	}
5884 
5885 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5886 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
5887 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
5888 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
5889 				free(entry);
5890 				break;
5891 			}
5892 		}
5893 	}
5894 
5895 	if (drv_opts) {
5896 		memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
5897 	} else {
5898 		spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->drv_opts, sizeof(ctx->drv_opts));
5899 	}
5900 
5901 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
5902 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
5903 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
5904 	ctx->drv_opts.disable_read_ana_log_page = true;
5905 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
5906 
5907 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
5908 		attach_cb = connect_attach_cb;
5909 	} else {
5910 		attach_cb = connect_set_failover_cb;
5911 	}
5912 
5913 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
5914 	if (ctx->probe_ctx == NULL) {
5915 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
5916 		free(ctx);
5917 		return -ENODEV;
5918 	}
5919 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
5920 
5921 	return 0;
5922 }
5923 
5924 static bool
5925 nvme_path_should_delete(struct nvme_path_id *p, const struct nvme_path_id *path_id)
5926 {
5927 	if (path_id->trid.trtype != 0) {
5928 		if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
5929 			if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
5930 				return false;
5931 			}
5932 		} else {
5933 			if (path_id->trid.trtype != p->trid.trtype) {
5934 				return false;
5935 			}
5936 		}
5937 	}
5938 
5939 	if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
5940 		if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
5941 			return false;
5942 		}
5943 	}
5944 
5945 	if (path_id->trid.adrfam != 0) {
5946 		if (path_id->trid.adrfam != p->trid.adrfam) {
5947 			return false;
5948 		}
5949 	}
5950 
5951 	if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
5952 		if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
5953 			return false;
5954 		}
5955 	}
5956 
5957 	if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
5958 		if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
5959 			return false;
5960 		}
5961 	}
5962 
5963 	if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
5964 		if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
5965 			return false;
5966 		}
5967 	}
5968 
5969 	if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
5970 		if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
5971 			return false;
5972 		}
5973 	}
5974 
5975 	return true;
5976 }
5977 
5978 static int
5979 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id)
5980 {
5981 	struct nvme_path_id	*p, *t;
5982 	spdk_msg_fn		msg_fn;
5983 	int			rc = -ENXIO;
5984 
5985 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5986 
5987 	TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
5988 		if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) {
5989 			break;
5990 		}
5991 
5992 		if (!nvme_path_should_delete(p, path_id)) {
5993 			continue;
5994 		}
5995 
5996 		/* We are not using the specified path. */
5997 		TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
5998 		free(p);
5999 		rc = 0;
6000 	}
6001 
6002 	if (p == NULL || !nvme_path_should_delete(p, path_id)) {
6003 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
6004 		return rc;
6005 	}
6006 
6007 	/* If we made it here, then this path is a match! Now we need to remove it. */
6008 
6009 	/* This is the active path in use right now. The active path is always the first in the list. */
6010 	assert(p == nvme_ctrlr->active_path_id);
6011 
6012 	if (!TAILQ_NEXT(p, link)) {
6013 		/* The current path is the only path. */
6014 		msg_fn = _nvme_ctrlr_destruct;
6015 		rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false);
6016 	} else {
6017 		/* There is an alternative path. */
6018 		msg_fn = _bdev_nvme_reset_ctrlr;
6019 		rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, true);
6020 	}
6021 
6022 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6023 
6024 	if (rc == 0) {
6025 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
6026 	} else if (rc == -EALREADY) {
6027 		rc = 0;
6028 	}
6029 
6030 	return rc;
6031 }
6032 
6033 int
6034 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id)
6035 {
6036 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
6037 	struct nvme_ctrlr	*nvme_ctrlr, *tmp_nvme_ctrlr;
6038 	int			rc = -ENXIO, _rc;
6039 
6040 	if (name == NULL || path_id == NULL) {
6041 		return -EINVAL;
6042 	}
6043 
6044 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6045 
6046 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6047 	if (nbdev_ctrlr == NULL) {
6048 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6049 
6050 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
6051 		return -ENODEV;
6052 	}
6053 
6054 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
6055 		_rc = _bdev_nvme_delete(nvme_ctrlr, path_id);
6056 		if (_rc < 0 && _rc != -ENXIO) {
6057 			pthread_mutex_unlock(&g_bdev_nvme_mutex);
6058 
6059 			return _rc;
6060 		} else if (_rc == 0) {
6061 			/* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr
6062 			 * was deleted successfully. To remember the successful deletion,
6063 			 * overwrite rc only if _rc is zero.
6064 			 */
6065 			rc = 0;
6066 		}
6067 	}
6068 
6069 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6070 
6071 	/* All nvme_ctrlrs were deleted or no nvme_ctrlr which had the trid was found. */
6072 	return rc;
6073 }
6074 
6075 #define DISCOVERY_INFOLOG(ctx, format, ...) \
6076 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6077 
6078 #define DISCOVERY_ERRLOG(ctx, format, ...) \
6079 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6080 
6081 struct discovery_entry_ctx {
6082 	char						name[128];
6083 	struct spdk_nvme_transport_id			trid;
6084 	struct spdk_nvme_ctrlr_opts			drv_opts;
6085 	struct spdk_nvmf_discovery_log_page_entry	entry;
6086 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
6087 	struct discovery_ctx				*ctx;
6088 };
6089 
6090 struct discovery_ctx {
6091 	char					*name;
6092 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
6093 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
6094 	void					*cb_ctx;
6095 	struct spdk_nvme_probe_ctx		*probe_ctx;
6096 	struct spdk_nvme_detach_ctx		*detach_ctx;
6097 	struct spdk_nvme_ctrlr			*ctrlr;
6098 	struct spdk_nvme_transport_id		trid;
6099 	struct discovery_entry_ctx		*entry_ctx_in_use;
6100 	struct spdk_poller			*poller;
6101 	struct spdk_nvme_ctrlr_opts		drv_opts;
6102 	struct nvme_ctrlr_opts			bdev_opts;
6103 	struct spdk_nvmf_discovery_log_page	*log_page;
6104 	TAILQ_ENTRY(discovery_ctx)		tailq;
6105 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
6106 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
6107 	int					rc;
6108 	bool					wait_for_attach;
6109 	uint64_t				timeout_ticks;
6110 	/* Denotes that the discovery service is being started. We're waiting
6111 	 * for the initial connection to the discovery controller to be
6112 	 * established and attach discovered NVM ctrlrs.
6113 	 */
6114 	bool					initializing;
6115 	/* Denotes if a discovery is currently in progress for this context.
6116 	 * That includes connecting to newly discovered subsystems.  Used to
6117 	 * ensure we do not start a new discovery until an existing one is
6118 	 * complete.
6119 	 */
6120 	bool					in_progress;
6121 
6122 	/* Denotes if another discovery is needed after the one in progress
6123 	 * completes.  Set when we receive an AER completion while a discovery
6124 	 * is already in progress.
6125 	 */
6126 	bool					pending;
6127 
6128 	/* Signal to the discovery context poller that it should stop the
6129 	 * discovery service, including detaching from the current discovery
6130 	 * controller.
6131 	 */
6132 	bool					stop;
6133 
6134 	struct spdk_thread			*calling_thread;
6135 	uint32_t				index;
6136 	uint32_t				attach_in_progress;
6137 	char					*hostnqn;
6138 
6139 	/* Denotes if the discovery service was started by the mdns discovery.
6140 	 */
6141 	bool					from_mdns_discovery_service;
6142 };
6143 
6144 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
6145 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
6146 
6147 static void get_discovery_log_page(struct discovery_ctx *ctx);
6148 
6149 static void
6150 free_discovery_ctx(struct discovery_ctx *ctx)
6151 {
6152 	free(ctx->log_page);
6153 	free(ctx->hostnqn);
6154 	free(ctx->name);
6155 	free(ctx);
6156 }
6157 
6158 static void
6159 discovery_complete(struct discovery_ctx *ctx)
6160 {
6161 	ctx->initializing = false;
6162 	ctx->in_progress = false;
6163 	if (ctx->pending) {
6164 		ctx->pending = false;
6165 		get_discovery_log_page(ctx);
6166 	}
6167 }
6168 
6169 static void
6170 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
6171 			       struct spdk_nvmf_discovery_log_page_entry *entry)
6172 {
6173 	char *space;
6174 
6175 	trid->trtype = entry->trtype;
6176 	trid->adrfam = entry->adrfam;
6177 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
6178 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
6179 	/* Because the source buffer (entry->subnqn) is longer than trid->subnqn, and
6180 	 * before call to this function trid->subnqn is zeroed out, we need
6181 	 * to copy sizeof(trid->subnqn) minus one byte to make sure the last character
6182 	 * remains 0. Then we can shorten the string (replace ' ' with 0) if required
6183 	 */
6184 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn) - 1);
6185 
6186 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
6187 	 * But the log page entries typically pad them with spaces, not zeroes.
6188 	 * So add a NULL terminator to each of these fields at the appropriate
6189 	 * location.
6190 	 */
6191 	space = strchr(trid->traddr, ' ');
6192 	if (space) {
6193 		*space = 0;
6194 	}
6195 	space = strchr(trid->trsvcid, ' ');
6196 	if (space) {
6197 		*space = 0;
6198 	}
6199 	space = strchr(trid->subnqn, ' ');
6200 	if (space) {
6201 		*space = 0;
6202 	}
6203 }
6204 
6205 static void
6206 _stop_discovery(void *_ctx)
6207 {
6208 	struct discovery_ctx *ctx = _ctx;
6209 
6210 	if (ctx->attach_in_progress > 0) {
6211 		spdk_thread_send_msg(spdk_get_thread(), _stop_discovery, ctx);
6212 		return;
6213 	}
6214 
6215 	ctx->stop = true;
6216 
6217 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
6218 		struct discovery_entry_ctx *entry_ctx;
6219 		struct nvme_path_id path = {};
6220 
6221 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
6222 		path.trid = entry_ctx->trid;
6223 		bdev_nvme_delete(entry_ctx->name, &path);
6224 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6225 		free(entry_ctx);
6226 	}
6227 
6228 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
6229 		struct discovery_entry_ctx *entry_ctx;
6230 
6231 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6232 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6233 		free(entry_ctx);
6234 	}
6235 
6236 	free(ctx->entry_ctx_in_use);
6237 	ctx->entry_ctx_in_use = NULL;
6238 }
6239 
6240 static void
6241 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6242 {
6243 	ctx->stop_cb_fn = cb_fn;
6244 	ctx->cb_ctx = cb_ctx;
6245 
6246 	if (ctx->attach_in_progress > 0) {
6247 		DISCOVERY_INFOLOG(ctx, "stopping discovery with attach_in_progress: %"PRIu32"\n",
6248 				  ctx->attach_in_progress);
6249 	}
6250 
6251 	_stop_discovery(ctx);
6252 }
6253 
6254 static void
6255 remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr)
6256 {
6257 	struct discovery_ctx *d_ctx;
6258 	struct nvme_path_id *path_id;
6259 	struct spdk_nvme_transport_id trid = {};
6260 	struct discovery_entry_ctx *entry_ctx, *tmp;
6261 
6262 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
6263 
6264 	TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6265 		TAILQ_FOREACH_SAFE(entry_ctx, &d_ctx->nvm_entry_ctxs, tailq, tmp) {
6266 			build_trid_from_log_page_entry(&trid, &entry_ctx->entry);
6267 			if (spdk_nvme_transport_id_compare(&trid, &path_id->trid) != 0) {
6268 				continue;
6269 			}
6270 
6271 			TAILQ_REMOVE(&d_ctx->nvm_entry_ctxs, entry_ctx, tailq);
6272 			free(entry_ctx);
6273 			DISCOVERY_INFOLOG(d_ctx, "Remove discovery entry: %s:%s:%s\n",
6274 					  trid.subnqn, trid.traddr, trid.trsvcid);
6275 
6276 			/* Fail discovery ctrlr to force reattach attempt */
6277 			spdk_nvme_ctrlr_fail(d_ctx->ctrlr);
6278 		}
6279 	}
6280 }
6281 
6282 static void
6283 discovery_remove_controllers(struct discovery_ctx *ctx)
6284 {
6285 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
6286 	struct discovery_entry_ctx *entry_ctx, *tmp;
6287 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6288 	struct spdk_nvme_transport_id old_trid = {};
6289 	uint64_t numrec, i;
6290 	bool found;
6291 
6292 	numrec = from_le64(&log_page->numrec);
6293 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
6294 		found = false;
6295 		old_entry = &entry_ctx->entry;
6296 		build_trid_from_log_page_entry(&old_trid, old_entry);
6297 		for (i = 0; i < numrec; i++) {
6298 			new_entry = &log_page->entries[i];
6299 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
6300 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
6301 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6302 				found = true;
6303 				break;
6304 			}
6305 		}
6306 		if (!found) {
6307 			struct nvme_path_id path = {};
6308 
6309 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
6310 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6311 
6312 			path.trid = entry_ctx->trid;
6313 			bdev_nvme_delete(entry_ctx->name, &path);
6314 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6315 			free(entry_ctx);
6316 		}
6317 	}
6318 	free(log_page);
6319 	ctx->log_page = NULL;
6320 	discovery_complete(ctx);
6321 }
6322 
6323 static void
6324 complete_discovery_start(struct discovery_ctx *ctx, int status)
6325 {
6326 	ctx->timeout_ticks = 0;
6327 	ctx->rc = status;
6328 	if (ctx->start_cb_fn) {
6329 		ctx->start_cb_fn(ctx->cb_ctx, status);
6330 		ctx->start_cb_fn = NULL;
6331 		ctx->cb_ctx = NULL;
6332 	}
6333 }
6334 
6335 static void
6336 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
6337 {
6338 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
6339 	struct discovery_ctx *ctx = entry_ctx->ctx;
6340 
6341 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
6342 	ctx->attach_in_progress--;
6343 	if (ctx->attach_in_progress == 0) {
6344 		complete_discovery_start(ctx, ctx->rc);
6345 		if (ctx->initializing && ctx->rc != 0) {
6346 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
6347 			stop_discovery(ctx, NULL, ctx->cb_ctx);
6348 		} else {
6349 			discovery_remove_controllers(ctx);
6350 		}
6351 	}
6352 }
6353 
6354 static struct discovery_entry_ctx *
6355 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
6356 {
6357 	struct discovery_entry_ctx *new_ctx;
6358 
6359 	new_ctx = calloc(1, sizeof(*new_ctx));
6360 	if (new_ctx == NULL) {
6361 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6362 		return NULL;
6363 	}
6364 
6365 	new_ctx->ctx = ctx;
6366 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
6367 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6368 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6369 	return new_ctx;
6370 }
6371 
6372 static void
6373 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
6374 		      struct spdk_nvmf_discovery_log_page *log_page)
6375 {
6376 	struct discovery_ctx *ctx = cb_arg;
6377 	struct discovery_entry_ctx *entry_ctx, *tmp;
6378 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6379 	uint64_t numrec, i;
6380 	bool found;
6381 
6382 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
6383 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6384 		return;
6385 	}
6386 
6387 	ctx->log_page = log_page;
6388 	assert(ctx->attach_in_progress == 0);
6389 	numrec = from_le64(&log_page->numrec);
6390 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
6391 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6392 		free(entry_ctx);
6393 	}
6394 	for (i = 0; i < numrec; i++) {
6395 		found = false;
6396 		new_entry = &log_page->entries[i];
6397 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
6398 			struct discovery_entry_ctx *new_ctx;
6399 			struct spdk_nvme_transport_id trid = {};
6400 
6401 			build_trid_from_log_page_entry(&trid, new_entry);
6402 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
6403 			if (new_ctx == NULL) {
6404 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6405 				break;
6406 			}
6407 
6408 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
6409 			continue;
6410 		}
6411 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
6412 			old_entry = &entry_ctx->entry;
6413 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
6414 				found = true;
6415 				break;
6416 			}
6417 		}
6418 		if (!found) {
6419 			struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx;
6420 			struct discovery_ctx *d_ctx;
6421 
6422 			TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6423 				TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) {
6424 					if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
6425 						    sizeof(new_entry->subnqn))) {
6426 						break;
6427 					}
6428 				}
6429 				if (subnqn_ctx) {
6430 					break;
6431 				}
6432 			}
6433 
6434 			new_ctx = calloc(1, sizeof(*new_ctx));
6435 			if (new_ctx == NULL) {
6436 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6437 				break;
6438 			}
6439 
6440 			new_ctx->ctx = ctx;
6441 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
6442 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
6443 			if (subnqn_ctx) {
6444 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
6445 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
6446 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6447 						  new_ctx->name);
6448 			} else {
6449 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
6450 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
6451 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6452 						  new_ctx->name);
6453 			}
6454 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6455 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6456 			rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
6457 					      discovery_attach_controller_done, new_ctx,
6458 					      &new_ctx->drv_opts, &ctx->bdev_opts, true);
6459 			if (rc == 0) {
6460 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
6461 				ctx->attach_in_progress++;
6462 			} else {
6463 				DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
6464 			}
6465 		}
6466 	}
6467 
6468 	if (ctx->attach_in_progress == 0) {
6469 		discovery_remove_controllers(ctx);
6470 	}
6471 }
6472 
6473 static void
6474 get_discovery_log_page(struct discovery_ctx *ctx)
6475 {
6476 	int rc;
6477 
6478 	assert(ctx->in_progress == false);
6479 	ctx->in_progress = true;
6480 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
6481 	if (rc != 0) {
6482 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6483 	}
6484 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
6485 }
6486 
6487 static void
6488 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
6489 {
6490 	struct discovery_ctx *ctx = arg;
6491 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
6492 
6493 	if (spdk_nvme_cpl_is_error(cpl)) {
6494 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
6495 		return;
6496 	}
6497 
6498 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
6499 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
6500 		return;
6501 	}
6502 
6503 	DISCOVERY_INFOLOG(ctx, "got aer\n");
6504 	if (ctx->in_progress) {
6505 		ctx->pending = true;
6506 		return;
6507 	}
6508 
6509 	get_discovery_log_page(ctx);
6510 }
6511 
6512 static void
6513 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6514 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
6515 {
6516 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6517 	struct discovery_ctx *ctx;
6518 
6519 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
6520 
6521 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
6522 	ctx->probe_ctx = NULL;
6523 	ctx->ctrlr = ctrlr;
6524 
6525 	if (ctx->rc != 0) {
6526 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
6527 				 ctx->rc);
6528 		return;
6529 	}
6530 
6531 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
6532 }
6533 
6534 static int
6535 discovery_poller(void *arg)
6536 {
6537 	struct discovery_ctx *ctx = arg;
6538 	struct spdk_nvme_transport_id *trid;
6539 	int rc;
6540 
6541 	if (ctx->detach_ctx) {
6542 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
6543 		if (rc != -EAGAIN) {
6544 			ctx->detach_ctx = NULL;
6545 			ctx->ctrlr = NULL;
6546 		}
6547 	} else if (ctx->stop) {
6548 		if (ctx->ctrlr != NULL) {
6549 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
6550 			if (rc == 0) {
6551 				return SPDK_POLLER_BUSY;
6552 			}
6553 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
6554 		}
6555 		spdk_poller_unregister(&ctx->poller);
6556 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
6557 		assert(ctx->start_cb_fn == NULL);
6558 		if (ctx->stop_cb_fn != NULL) {
6559 			ctx->stop_cb_fn(ctx->cb_ctx);
6560 		}
6561 		free_discovery_ctx(ctx);
6562 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
6563 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6564 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
6565 			assert(ctx->initializing);
6566 			spdk_poller_unregister(&ctx->poller);
6567 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
6568 			complete_discovery_start(ctx, -ETIMEDOUT);
6569 			stop_discovery(ctx, NULL, NULL);
6570 			free_discovery_ctx(ctx);
6571 			return SPDK_POLLER_BUSY;
6572 		}
6573 
6574 		assert(ctx->entry_ctx_in_use == NULL);
6575 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6576 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6577 		trid = &ctx->entry_ctx_in_use->trid;
6578 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
6579 		if (ctx->probe_ctx) {
6580 			spdk_poller_unregister(&ctx->poller);
6581 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
6582 		} else {
6583 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
6584 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6585 			ctx->entry_ctx_in_use = NULL;
6586 		}
6587 	} else if (ctx->probe_ctx) {
6588 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6589 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
6590 			complete_discovery_start(ctx, -ETIMEDOUT);
6591 			return SPDK_POLLER_BUSY;
6592 		}
6593 
6594 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
6595 		if (rc != -EAGAIN) {
6596 			if (ctx->rc != 0) {
6597 				assert(ctx->initializing);
6598 				stop_discovery(ctx, NULL, ctx->cb_ctx);
6599 			} else {
6600 				assert(rc == 0);
6601 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
6602 				ctx->rc = rc;
6603 				get_discovery_log_page(ctx);
6604 			}
6605 		}
6606 	} else {
6607 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6608 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
6609 			complete_discovery_start(ctx, -ETIMEDOUT);
6610 			/* We need to wait until all NVM ctrlrs are attached before we stop the
6611 			 * discovery service to make sure we don't detach a ctrlr that is still
6612 			 * being attached.
6613 			 */
6614 			if (ctx->attach_in_progress == 0) {
6615 				stop_discovery(ctx, NULL, ctx->cb_ctx);
6616 				return SPDK_POLLER_BUSY;
6617 			}
6618 		}
6619 
6620 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
6621 		if (rc < 0) {
6622 			spdk_poller_unregister(&ctx->poller);
6623 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
6624 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6625 			ctx->entry_ctx_in_use = NULL;
6626 
6627 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
6628 			if (rc != 0) {
6629 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
6630 				ctx->ctrlr = NULL;
6631 			}
6632 		}
6633 	}
6634 
6635 	return SPDK_POLLER_BUSY;
6636 }
6637 
6638 static void
6639 start_discovery_poller(void *arg)
6640 {
6641 	struct discovery_ctx *ctx = arg;
6642 
6643 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
6644 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
6645 }
6646 
6647 int
6648 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
6649 			  const char *base_name,
6650 			  struct spdk_nvme_ctrlr_opts *drv_opts,
6651 			  struct nvme_ctrlr_opts *bdev_opts,
6652 			  uint64_t attach_timeout,
6653 			  bool from_mdns,
6654 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
6655 {
6656 	struct discovery_ctx *ctx;
6657 	struct discovery_entry_ctx *discovery_entry_ctx;
6658 
6659 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
6660 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6661 		if (strcmp(ctx->name, base_name) == 0) {
6662 			return -EEXIST;
6663 		}
6664 
6665 		if (ctx->entry_ctx_in_use != NULL) {
6666 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
6667 				return -EEXIST;
6668 			}
6669 		}
6670 
6671 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
6672 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
6673 				return -EEXIST;
6674 			}
6675 		}
6676 	}
6677 
6678 	ctx = calloc(1, sizeof(*ctx));
6679 	if (ctx == NULL) {
6680 		return -ENOMEM;
6681 	}
6682 
6683 	ctx->name = strdup(base_name);
6684 	if (ctx->name == NULL) {
6685 		free_discovery_ctx(ctx);
6686 		return -ENOMEM;
6687 	}
6688 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6689 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6690 	ctx->from_mdns_discovery_service = from_mdns;
6691 	ctx->bdev_opts.from_discovery_service = true;
6692 	ctx->calling_thread = spdk_get_thread();
6693 	ctx->start_cb_fn = cb_fn;
6694 	ctx->cb_ctx = cb_ctx;
6695 	ctx->initializing = true;
6696 	if (ctx->start_cb_fn) {
6697 		/* We can use this when dumping json to denote if this RPC parameter
6698 		 * was specified or not.
6699 		 */
6700 		ctx->wait_for_attach = true;
6701 	}
6702 	if (attach_timeout != 0) {
6703 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
6704 				     spdk_get_ticks_hz() / 1000ull;
6705 	}
6706 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
6707 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
6708 	memcpy(&ctx->trid, trid, sizeof(*trid));
6709 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
6710 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
6711 	if (ctx->hostnqn == NULL) {
6712 		free_discovery_ctx(ctx);
6713 		return -ENOMEM;
6714 	}
6715 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
6716 	if (discovery_entry_ctx == NULL) {
6717 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6718 		free_discovery_ctx(ctx);
6719 		return -ENOMEM;
6720 	}
6721 
6722 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
6723 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
6724 	return 0;
6725 }
6726 
6727 int
6728 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6729 {
6730 	struct discovery_ctx *ctx;
6731 
6732 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6733 		if (strcmp(name, ctx->name) == 0) {
6734 			if (ctx->stop) {
6735 				return -EALREADY;
6736 			}
6737 			/* If we're still starting the discovery service and ->rc is non-zero, we're
6738 			 * going to stop it as soon as we can
6739 			 */
6740 			if (ctx->initializing && ctx->rc != 0) {
6741 				return -EALREADY;
6742 			}
6743 			stop_discovery(ctx, cb_fn, cb_ctx);
6744 			return 0;
6745 		}
6746 	}
6747 
6748 	return -ENOENT;
6749 }
6750 
6751 static int
6752 bdev_nvme_library_init(void)
6753 {
6754 	g_bdev_nvme_init_thread = spdk_get_thread();
6755 
6756 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
6757 				bdev_nvme_destroy_poll_group_cb,
6758 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
6759 
6760 	return 0;
6761 }
6762 
6763 static void
6764 bdev_nvme_fini_destruct_ctrlrs(void)
6765 {
6766 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
6767 	struct nvme_ctrlr *nvme_ctrlr;
6768 
6769 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6770 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
6771 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6772 			pthread_mutex_lock(&nvme_ctrlr->mutex);
6773 			if (nvme_ctrlr->destruct) {
6774 				/* This controller's destruction was already started
6775 				 * before the application started shutting down
6776 				 */
6777 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
6778 				continue;
6779 			}
6780 			nvme_ctrlr->destruct = true;
6781 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
6782 
6783 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
6784 					     nvme_ctrlr);
6785 		}
6786 	}
6787 
6788 	g_bdev_nvme_module_finish = true;
6789 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
6790 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6791 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
6792 		spdk_bdev_module_fini_done();
6793 		return;
6794 	}
6795 
6796 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6797 }
6798 
6799 static void
6800 check_discovery_fini(void *arg)
6801 {
6802 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
6803 		bdev_nvme_fini_destruct_ctrlrs();
6804 	}
6805 }
6806 
6807 static void
6808 bdev_nvme_library_fini(void)
6809 {
6810 	struct nvme_probe_skip_entry *entry, *entry_tmp;
6811 	struct discovery_ctx *ctx;
6812 
6813 	spdk_poller_unregister(&g_hotplug_poller);
6814 	free(g_hotplug_probe_ctx);
6815 	g_hotplug_probe_ctx = NULL;
6816 
6817 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
6818 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
6819 		free(entry);
6820 	}
6821 
6822 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
6823 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
6824 		bdev_nvme_fini_destruct_ctrlrs();
6825 	} else {
6826 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6827 			stop_discovery(ctx, check_discovery_fini, NULL);
6828 		}
6829 	}
6830 }
6831 
6832 static void
6833 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
6834 {
6835 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6836 	struct spdk_bdev *bdev = bdev_io->bdev;
6837 	struct spdk_dif_ctx dif_ctx;
6838 	struct spdk_dif_error err_blk = {};
6839 	int rc;
6840 	struct spdk_dif_ctx_init_ext_opts dif_opts;
6841 
6842 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
6843 	dif_opts.dif_pi_format = SPDK_DIF_PI_FORMAT_16;
6844 	rc = spdk_dif_ctx_init(&dif_ctx,
6845 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
6846 			       bdev->dif_is_head_of_md, bdev->dif_type, bdev->dif_check_flags,
6847 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0, &dif_opts);
6848 	if (rc != 0) {
6849 		SPDK_ERRLOG("Initialization of DIF context failed\n");
6850 		return;
6851 	}
6852 
6853 	if (bdev->md_interleave) {
6854 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
6855 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
6856 	} else {
6857 		struct iovec md_iov = {
6858 			.iov_base	= bdev_io->u.bdev.md_buf,
6859 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
6860 		};
6861 
6862 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
6863 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
6864 	}
6865 
6866 	if (rc != 0) {
6867 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
6868 			    err_blk.err_type, err_blk.err_offset);
6869 	} else {
6870 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
6871 	}
6872 }
6873 
6874 static void
6875 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
6876 {
6877 	struct nvme_bdev_io *bio = ref;
6878 
6879 	if (spdk_nvme_cpl_is_success(cpl)) {
6880 		/* Run PI verification for read data buffer. */
6881 		bdev_nvme_verify_pi_error(bio);
6882 	}
6883 
6884 	/* Return original completion status */
6885 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
6886 }
6887 
6888 static void
6889 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
6890 {
6891 	struct nvme_bdev_io *bio = ref;
6892 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6893 	int ret;
6894 
6895 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
6896 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
6897 			    cpl->status.sct, cpl->status.sc);
6898 
6899 		/* Save completion status to use after verifying PI error. */
6900 		bio->cpl = *cpl;
6901 
6902 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
6903 			/* Read without PI checking to verify PI error. */
6904 			ret = bdev_nvme_no_pi_readv(bio,
6905 						    bdev_io->u.bdev.iovs,
6906 						    bdev_io->u.bdev.iovcnt,
6907 						    bdev_io->u.bdev.md_buf,
6908 						    bdev_io->u.bdev.num_blocks,
6909 						    bdev_io->u.bdev.offset_blocks);
6910 			if (ret == 0) {
6911 				return;
6912 			}
6913 		}
6914 	}
6915 
6916 	bdev_nvme_io_complete_nvme_status(bio, cpl);
6917 }
6918 
6919 static void
6920 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
6921 {
6922 	struct nvme_bdev_io *bio = ref;
6923 
6924 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
6925 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
6926 			    cpl->status.sct, cpl->status.sc);
6927 		/* Run PI verification for write data buffer if PI error is detected. */
6928 		bdev_nvme_verify_pi_error(bio);
6929 	}
6930 
6931 	bdev_nvme_io_complete_nvme_status(bio, cpl);
6932 }
6933 
6934 static void
6935 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
6936 {
6937 	struct nvme_bdev_io *bio = ref;
6938 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6939 
6940 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
6941 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
6942 	 */
6943 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
6944 
6945 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
6946 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
6947 			    cpl->status.sct, cpl->status.sc);
6948 		/* Run PI verification for zone append data buffer if PI error is detected. */
6949 		bdev_nvme_verify_pi_error(bio);
6950 	}
6951 
6952 	bdev_nvme_io_complete_nvme_status(bio, cpl);
6953 }
6954 
6955 static void
6956 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
6957 {
6958 	struct nvme_bdev_io *bio = ref;
6959 
6960 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
6961 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
6962 			    cpl->status.sct, cpl->status.sc);
6963 		/* Run PI verification for compare data buffer if PI error is detected. */
6964 		bdev_nvme_verify_pi_error(bio);
6965 	}
6966 
6967 	bdev_nvme_io_complete_nvme_status(bio, cpl);
6968 }
6969 
6970 static void
6971 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
6972 {
6973 	struct nvme_bdev_io *bio = ref;
6974 
6975 	/* Compare operation completion */
6976 	if (!bio->first_fused_completed) {
6977 		/* Save compare result for write callback */
6978 		bio->cpl = *cpl;
6979 		bio->first_fused_completed = true;
6980 		return;
6981 	}
6982 
6983 	/* Write operation completion */
6984 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
6985 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
6986 		 * complete the IO with the compare operation's status.
6987 		 */
6988 		if (!spdk_nvme_cpl_is_error(cpl)) {
6989 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
6990 		}
6991 
6992 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
6993 	} else {
6994 		bdev_nvme_io_complete_nvme_status(bio, cpl);
6995 	}
6996 }
6997 
6998 static void
6999 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
7000 {
7001 	struct nvme_bdev_io *bio = ref;
7002 
7003 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7004 }
7005 
7006 static int
7007 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
7008 {
7009 	switch (desc->zt) {
7010 	case SPDK_NVME_ZONE_TYPE_SEQWR:
7011 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
7012 		break;
7013 	default:
7014 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
7015 		return -EIO;
7016 	}
7017 
7018 	switch (desc->zs) {
7019 	case SPDK_NVME_ZONE_STATE_EMPTY:
7020 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
7021 		break;
7022 	case SPDK_NVME_ZONE_STATE_IOPEN:
7023 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
7024 		break;
7025 	case SPDK_NVME_ZONE_STATE_EOPEN:
7026 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
7027 		break;
7028 	case SPDK_NVME_ZONE_STATE_CLOSED:
7029 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
7030 		break;
7031 	case SPDK_NVME_ZONE_STATE_RONLY:
7032 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
7033 		break;
7034 	case SPDK_NVME_ZONE_STATE_FULL:
7035 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
7036 		break;
7037 	case SPDK_NVME_ZONE_STATE_OFFLINE:
7038 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
7039 		break;
7040 	default:
7041 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
7042 		return -EIO;
7043 	}
7044 
7045 	info->zone_id = desc->zslba;
7046 	info->write_pointer = desc->wp;
7047 	info->capacity = desc->zcap;
7048 
7049 	return 0;
7050 }
7051 
7052 static void
7053 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
7054 {
7055 	struct nvme_bdev_io *bio = ref;
7056 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7057 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
7058 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
7059 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
7060 	uint64_t max_zones_per_buf, i;
7061 	uint32_t zone_report_bufsize;
7062 	struct spdk_nvme_ns *ns;
7063 	struct spdk_nvme_qpair *qpair;
7064 	int ret;
7065 
7066 	if (spdk_nvme_cpl_is_error(cpl)) {
7067 		goto out_complete_io_nvme_cpl;
7068 	}
7069 
7070 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
7071 		ret = -ENXIO;
7072 		goto out_complete_io_ret;
7073 	}
7074 
7075 	ns = bio->io_path->nvme_ns->ns;
7076 	qpair = bio->io_path->qpair->qpair;
7077 
7078 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7079 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
7080 			    sizeof(bio->zone_report_buf->descs[0]);
7081 
7082 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
7083 		ret = -EINVAL;
7084 		goto out_complete_io_ret;
7085 	}
7086 
7087 	if (!bio->zone_report_buf->nr_zones) {
7088 		ret = -EINVAL;
7089 		goto out_complete_io_ret;
7090 	}
7091 
7092 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
7093 		ret = fill_zone_from_report(&info[bio->handled_zones],
7094 					    &bio->zone_report_buf->descs[i]);
7095 		if (ret) {
7096 			goto out_complete_io_ret;
7097 		}
7098 		bio->handled_zones++;
7099 	}
7100 
7101 	if (bio->handled_zones < zones_to_copy) {
7102 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7103 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
7104 
7105 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
7106 		ret = spdk_nvme_zns_report_zones(ns, qpair,
7107 						 bio->zone_report_buf, zone_report_bufsize,
7108 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
7109 						 bdev_nvme_get_zone_info_done, bio);
7110 		if (!ret) {
7111 			return;
7112 		} else {
7113 			goto out_complete_io_ret;
7114 		}
7115 	}
7116 
7117 out_complete_io_nvme_cpl:
7118 	free(bio->zone_report_buf);
7119 	bio->zone_report_buf = NULL;
7120 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7121 	return;
7122 
7123 out_complete_io_ret:
7124 	free(bio->zone_report_buf);
7125 	bio->zone_report_buf = NULL;
7126 	bdev_nvme_io_complete(bio, ret);
7127 }
7128 
7129 static void
7130 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
7131 {
7132 	struct nvme_bdev_io *bio = ref;
7133 
7134 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7135 }
7136 
7137 static void
7138 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
7139 {
7140 	struct nvme_bdev_io *bio = ctx;
7141 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7142 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
7143 
7144 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
7145 
7146 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
7147 }
7148 
7149 static void
7150 bdev_nvme_abort_complete(void *ctx)
7151 {
7152 	struct nvme_bdev_io *bio = ctx;
7153 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7154 
7155 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
7156 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
7157 	} else {
7158 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
7159 	}
7160 }
7161 
7162 static void
7163 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
7164 {
7165 	struct nvme_bdev_io *bio = ref;
7166 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7167 
7168 	bio->cpl = *cpl;
7169 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_nvme_abort_complete, bio);
7170 }
7171 
7172 static void
7173 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
7174 {
7175 	struct nvme_bdev_io *bio = ref;
7176 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7177 
7178 	bio->cpl = *cpl;
7179 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
7180 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
7181 }
7182 
7183 static void
7184 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
7185 {
7186 	struct nvme_bdev_io *bio = ref;
7187 	struct iovec *iov;
7188 
7189 	bio->iov_offset = sgl_offset;
7190 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
7191 		iov = &bio->iovs[bio->iovpos];
7192 		if (bio->iov_offset < iov->iov_len) {
7193 			break;
7194 		}
7195 
7196 		bio->iov_offset -= iov->iov_len;
7197 	}
7198 }
7199 
7200 static int
7201 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
7202 {
7203 	struct nvme_bdev_io *bio = ref;
7204 	struct iovec *iov;
7205 
7206 	assert(bio->iovpos < bio->iovcnt);
7207 
7208 	iov = &bio->iovs[bio->iovpos];
7209 
7210 	*address = iov->iov_base;
7211 	*length = iov->iov_len;
7212 
7213 	if (bio->iov_offset) {
7214 		assert(bio->iov_offset <= iov->iov_len);
7215 		*address += bio->iov_offset;
7216 		*length -= bio->iov_offset;
7217 	}
7218 
7219 	bio->iov_offset += *length;
7220 	if (bio->iov_offset == iov->iov_len) {
7221 		bio->iovpos++;
7222 		bio->iov_offset = 0;
7223 	}
7224 
7225 	return 0;
7226 }
7227 
7228 static void
7229 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
7230 {
7231 	struct nvme_bdev_io *bio = ref;
7232 	struct iovec *iov;
7233 
7234 	bio->fused_iov_offset = sgl_offset;
7235 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
7236 		iov = &bio->fused_iovs[bio->fused_iovpos];
7237 		if (bio->fused_iov_offset < iov->iov_len) {
7238 			break;
7239 		}
7240 
7241 		bio->fused_iov_offset -= iov->iov_len;
7242 	}
7243 }
7244 
7245 static int
7246 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
7247 {
7248 	struct nvme_bdev_io *bio = ref;
7249 	struct iovec *iov;
7250 
7251 	assert(bio->fused_iovpos < bio->fused_iovcnt);
7252 
7253 	iov = &bio->fused_iovs[bio->fused_iovpos];
7254 
7255 	*address = iov->iov_base;
7256 	*length = iov->iov_len;
7257 
7258 	if (bio->fused_iov_offset) {
7259 		assert(bio->fused_iov_offset <= iov->iov_len);
7260 		*address += bio->fused_iov_offset;
7261 		*length -= bio->fused_iov_offset;
7262 	}
7263 
7264 	bio->fused_iov_offset += *length;
7265 	if (bio->fused_iov_offset == iov->iov_len) {
7266 		bio->fused_iovpos++;
7267 		bio->fused_iov_offset = 0;
7268 	}
7269 
7270 	return 0;
7271 }
7272 
7273 static int
7274 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7275 		      void *md, uint64_t lba_count, uint64_t lba)
7276 {
7277 	int rc;
7278 
7279 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
7280 		      lba_count, lba);
7281 
7282 	bio->iovs = iov;
7283 	bio->iovcnt = iovcnt;
7284 	bio->iovpos = 0;
7285 	bio->iov_offset = 0;
7286 
7287 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
7288 					    bio->io_path->qpair->qpair,
7289 					    lba, lba_count,
7290 					    bdev_nvme_no_pi_readv_done, bio, 0,
7291 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7292 					    md, 0, 0);
7293 
7294 	if (rc != 0 && rc != -ENOMEM) {
7295 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
7296 	}
7297 	return rc;
7298 }
7299 
7300 static int
7301 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7302 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7303 		struct spdk_memory_domain *domain, void *domain_ctx)
7304 {
7305 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7306 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7307 	int rc;
7308 
7309 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7310 		      lba_count, lba);
7311 
7312 	bio->iovs = iov;
7313 	bio->iovcnt = iovcnt;
7314 	bio->iovpos = 0;
7315 	bio->iov_offset = 0;
7316 
7317 	if (domain != NULL) {
7318 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, cdw13);
7319 		bio->ext_opts.memory_domain = domain;
7320 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7321 		bio->ext_opts.io_flags = flags;
7322 		bio->ext_opts.metadata = md;
7323 
7324 		rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
7325 						bdev_nvme_readv_done, bio,
7326 						bdev_nvme_queued_reset_sgl,
7327 						bdev_nvme_queued_next_sge,
7328 						&bio->ext_opts);
7329 	} else if (iovcnt == 1) {
7330 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base,
7331 						   md, lba, lba_count, bdev_nvme_readv_done,
7332 						   bio, flags, 0, 0);
7333 	} else {
7334 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
7335 						    bdev_nvme_readv_done, bio, flags,
7336 						    bdev_nvme_queued_reset_sgl,
7337 						    bdev_nvme_queued_next_sge, md, 0, 0);
7338 	}
7339 
7340 	if (rc != 0 && rc != -ENOMEM) {
7341 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
7342 	}
7343 	return rc;
7344 }
7345 
7346 static int
7347 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7348 		 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7349 		 struct spdk_memory_domain *domain, void *domain_ctx)
7350 {
7351 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7352 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7353 	int rc;
7354 
7355 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7356 		      lba_count, lba);
7357 
7358 	bio->iovs = iov;
7359 	bio->iovcnt = iovcnt;
7360 	bio->iovpos = 0;
7361 	bio->iov_offset = 0;
7362 
7363 	if (domain != NULL) {
7364 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, cdw13);
7365 		bio->ext_opts.memory_domain = domain;
7366 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7367 		bio->ext_opts.io_flags = flags;
7368 		bio->ext_opts.metadata = md;
7369 
7370 		rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
7371 						 bdev_nvme_writev_done, bio,
7372 						 bdev_nvme_queued_reset_sgl,
7373 						 bdev_nvme_queued_next_sge,
7374 						 &bio->ext_opts);
7375 	} else if (iovcnt == 1) {
7376 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base,
7377 						    md, lba, lba_count, bdev_nvme_writev_done,
7378 						    bio, flags, 0, 0);
7379 	} else {
7380 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7381 						     bdev_nvme_writev_done, bio, flags,
7382 						     bdev_nvme_queued_reset_sgl,
7383 						     bdev_nvme_queued_next_sge, md, 0, 0);
7384 	}
7385 
7386 	if (rc != 0 && rc != -ENOMEM) {
7387 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
7388 	}
7389 	return rc;
7390 }
7391 
7392 static int
7393 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7394 		       void *md, uint64_t lba_count, uint64_t zslba,
7395 		       uint32_t flags)
7396 {
7397 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7398 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7399 	int rc;
7400 
7401 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
7402 		      lba_count, zslba);
7403 
7404 	bio->iovs = iov;
7405 	bio->iovcnt = iovcnt;
7406 	bio->iovpos = 0;
7407 	bio->iov_offset = 0;
7408 
7409 	if (iovcnt == 1) {
7410 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
7411 						       lba_count,
7412 						       bdev_nvme_zone_appendv_done, bio,
7413 						       flags,
7414 						       0, 0);
7415 	} else {
7416 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
7417 							bdev_nvme_zone_appendv_done, bio, flags,
7418 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7419 							md, 0, 0);
7420 	}
7421 
7422 	if (rc != 0 && rc != -ENOMEM) {
7423 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
7424 	}
7425 	return rc;
7426 }
7427 
7428 static int
7429 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7430 		   void *md, uint64_t lba_count, uint64_t lba,
7431 		   uint32_t flags)
7432 {
7433 	int rc;
7434 
7435 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7436 		      lba_count, lba);
7437 
7438 	bio->iovs = iov;
7439 	bio->iovcnt = iovcnt;
7440 	bio->iovpos = 0;
7441 	bio->iov_offset = 0;
7442 
7443 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
7444 					       bio->io_path->qpair->qpair,
7445 					       lba, lba_count,
7446 					       bdev_nvme_comparev_done, bio, flags,
7447 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7448 					       md, 0, 0);
7449 
7450 	if (rc != 0 && rc != -ENOMEM) {
7451 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
7452 	}
7453 	return rc;
7454 }
7455 
7456 static int
7457 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
7458 			      struct iovec *write_iov, int write_iovcnt,
7459 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
7460 {
7461 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7462 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7463 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7464 	int rc;
7465 
7466 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7467 		      lba_count, lba);
7468 
7469 	bio->iovs = cmp_iov;
7470 	bio->iovcnt = cmp_iovcnt;
7471 	bio->iovpos = 0;
7472 	bio->iov_offset = 0;
7473 	bio->fused_iovs = write_iov;
7474 	bio->fused_iovcnt = write_iovcnt;
7475 	bio->fused_iovpos = 0;
7476 	bio->fused_iov_offset = 0;
7477 
7478 	if (bdev_io->num_retries == 0) {
7479 		bio->first_fused_submitted = false;
7480 		bio->first_fused_completed = false;
7481 	}
7482 
7483 	if (!bio->first_fused_submitted) {
7484 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7485 		memset(&bio->cpl, 0, sizeof(bio->cpl));
7486 
7487 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
7488 						       bdev_nvme_comparev_and_writev_done, bio, flags,
7489 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
7490 		if (rc == 0) {
7491 			bio->first_fused_submitted = true;
7492 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7493 		} else {
7494 			if (rc != -ENOMEM) {
7495 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
7496 			}
7497 			return rc;
7498 		}
7499 	}
7500 
7501 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
7502 
7503 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7504 					     bdev_nvme_comparev_and_writev_done, bio, flags,
7505 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
7506 	if (rc != 0 && rc != -ENOMEM) {
7507 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
7508 		rc = 0;
7509 	}
7510 
7511 	return rc;
7512 }
7513 
7514 static int
7515 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
7516 {
7517 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
7518 	struct spdk_nvme_dsm_range *range;
7519 	uint64_t offset, remaining;
7520 	uint64_t num_ranges_u64;
7521 	uint16_t num_ranges;
7522 	int rc;
7523 
7524 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
7525 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7526 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
7527 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
7528 		return -EINVAL;
7529 	}
7530 	num_ranges = (uint16_t)num_ranges_u64;
7531 
7532 	offset = offset_blocks;
7533 	remaining = num_blocks;
7534 	range = &dsm_ranges[0];
7535 
7536 	/* Fill max-size ranges until the remaining blocks fit into one range */
7537 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
7538 		range->attributes.raw = 0;
7539 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7540 		range->starting_lba = offset;
7541 
7542 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7543 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7544 		range++;
7545 	}
7546 
7547 	/* Final range describes the remaining blocks */
7548 	range->attributes.raw = 0;
7549 	range->length = remaining;
7550 	range->starting_lba = offset;
7551 
7552 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
7553 			bio->io_path->qpair->qpair,
7554 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
7555 			dsm_ranges, num_ranges,
7556 			bdev_nvme_queued_done, bio);
7557 
7558 	return rc;
7559 }
7560 
7561 static int
7562 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
7563 {
7564 	if (num_blocks > UINT16_MAX + 1) {
7565 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
7566 		return -EINVAL;
7567 	}
7568 
7569 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
7570 					     bio->io_path->qpair->qpair,
7571 					     offset_blocks, num_blocks,
7572 					     bdev_nvme_queued_done, bio,
7573 					     0);
7574 }
7575 
7576 static int
7577 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
7578 			struct spdk_bdev_zone_info *info)
7579 {
7580 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7581 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7582 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7583 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7584 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
7585 
7586 	if (zone_id % zone_size != 0) {
7587 		return -EINVAL;
7588 	}
7589 
7590 	if (num_zones > total_zones || !num_zones) {
7591 		return -EINVAL;
7592 	}
7593 
7594 	assert(!bio->zone_report_buf);
7595 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
7596 	if (!bio->zone_report_buf) {
7597 		return -ENOMEM;
7598 	}
7599 
7600 	bio->handled_zones = 0;
7601 
7602 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
7603 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
7604 					  bdev_nvme_get_zone_info_done, bio);
7605 }
7606 
7607 static int
7608 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
7609 			  enum spdk_bdev_zone_action action)
7610 {
7611 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7612 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7613 
7614 	switch (action) {
7615 	case SPDK_BDEV_ZONE_CLOSE:
7616 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
7617 						bdev_nvme_zone_management_done, bio);
7618 	case SPDK_BDEV_ZONE_FINISH:
7619 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
7620 						 bdev_nvme_zone_management_done, bio);
7621 	case SPDK_BDEV_ZONE_OPEN:
7622 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
7623 					       bdev_nvme_zone_management_done, bio);
7624 	case SPDK_BDEV_ZONE_RESET:
7625 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
7626 						bdev_nvme_zone_management_done, bio);
7627 	case SPDK_BDEV_ZONE_OFFLINE:
7628 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
7629 						  bdev_nvme_zone_management_done, bio);
7630 	default:
7631 		return -EINVAL;
7632 	}
7633 }
7634 
7635 static void
7636 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
7637 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
7638 {
7639 	struct nvme_io_path *io_path;
7640 	struct nvme_ctrlr *nvme_ctrlr;
7641 	uint32_t max_xfer_size;
7642 	int rc = -ENXIO;
7643 
7644 	/* Choose the first ctrlr which is not failed. */
7645 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
7646 		nvme_ctrlr = io_path->qpair->ctrlr;
7647 
7648 		/* We should skip any unavailable nvme_ctrlr rather than checking
7649 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
7650 		 */
7651 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
7652 			continue;
7653 		}
7654 
7655 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
7656 
7657 		if (nbytes > max_xfer_size) {
7658 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7659 			rc = -EINVAL;
7660 			goto err;
7661 		}
7662 
7663 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
7664 						   bdev_nvme_admin_passthru_done, bio);
7665 		if (rc == 0) {
7666 			return;
7667 		}
7668 	}
7669 
7670 err:
7671 	bdev_nvme_admin_complete(bio, rc);
7672 }
7673 
7674 static int
7675 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
7676 		      void *buf, size_t nbytes)
7677 {
7678 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7679 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7680 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
7681 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
7682 
7683 	if (nbytes > max_xfer_size) {
7684 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7685 		return -EINVAL;
7686 	}
7687 
7688 	/*
7689 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
7690 	 * so fill it out automatically.
7691 	 */
7692 	cmd->nsid = spdk_nvme_ns_get_id(ns);
7693 
7694 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
7695 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
7696 }
7697 
7698 static int
7699 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
7700 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
7701 {
7702 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7703 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7704 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
7705 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
7706 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
7707 
7708 	if (nbytes > max_xfer_size) {
7709 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7710 		return -EINVAL;
7711 	}
7712 
7713 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
7714 		SPDK_ERRLOG("invalid meta data buffer size\n");
7715 		return -EINVAL;
7716 	}
7717 
7718 	/*
7719 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
7720 	 * so fill it out automatically.
7721 	 */
7722 	cmd->nsid = spdk_nvme_ns_get_id(ns);
7723 
7724 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
7725 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
7726 }
7727 
7728 static void
7729 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
7730 		struct nvme_bdev_io *bio_to_abort)
7731 {
7732 	struct nvme_io_path *io_path;
7733 	int rc = 0;
7734 
7735 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
7736 	if (rc == 0) {
7737 		bdev_nvme_admin_complete(bio, 0);
7738 		return;
7739 	}
7740 
7741 	io_path = bio_to_abort->io_path;
7742 	if (io_path != NULL) {
7743 		rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
7744 						   io_path->qpair->qpair,
7745 						   bio_to_abort,
7746 						   bdev_nvme_abort_done, bio);
7747 	} else {
7748 		STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
7749 			rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
7750 							   NULL,
7751 							   bio_to_abort,
7752 							   bdev_nvme_abort_done, bio);
7753 
7754 			if (rc != -ENOENT) {
7755 				break;
7756 			}
7757 		}
7758 	}
7759 
7760 	if (rc != 0) {
7761 		/* If no command was found or there was any error, complete the abort
7762 		 * request with failure.
7763 		 */
7764 		bdev_nvme_admin_complete(bio, rc);
7765 	}
7766 }
7767 
7768 static int
7769 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
7770 	       uint64_t num_blocks)
7771 {
7772 	struct spdk_nvme_scc_source_range range = {
7773 		.slba = src_offset_blocks,
7774 		.nlb = num_blocks - 1
7775 	};
7776 
7777 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
7778 				     bio->io_path->qpair->qpair,
7779 				     &range, 1, dst_offset_blocks,
7780 				     bdev_nvme_queued_done, bio);
7781 }
7782 
7783 static void
7784 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
7785 {
7786 	const char	*action;
7787 
7788 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
7789 		action = "reset";
7790 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
7791 		action = "abort";
7792 	} else {
7793 		action = "none";
7794 	}
7795 
7796 	spdk_json_write_object_begin(w);
7797 
7798 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
7799 
7800 	spdk_json_write_named_object_begin(w, "params");
7801 	spdk_json_write_named_string(w, "action_on_timeout", action);
7802 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
7803 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
7804 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
7805 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
7806 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
7807 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
7808 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
7809 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
7810 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
7811 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
7812 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
7813 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
7814 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
7815 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
7816 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
7817 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
7818 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
7819 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
7820 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
7821 	spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat);
7822 	spdk_json_write_object_end(w);
7823 
7824 	spdk_json_write_object_end(w);
7825 }
7826 
7827 static void
7828 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
7829 {
7830 	struct spdk_nvme_transport_id trid;
7831 
7832 	spdk_json_write_object_begin(w);
7833 
7834 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
7835 
7836 	spdk_json_write_named_object_begin(w, "params");
7837 	spdk_json_write_named_string(w, "name", ctx->name);
7838 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
7839 
7840 	trid = ctx->trid;
7841 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
7842 	nvme_bdev_dump_trid_json(&trid, w);
7843 
7844 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
7845 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
7846 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
7847 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
7848 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
7849 	spdk_json_write_object_end(w);
7850 
7851 	spdk_json_write_object_end(w);
7852 }
7853 
7854 static void
7855 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
7856 		       struct nvme_ctrlr *nvme_ctrlr)
7857 {
7858 	struct spdk_nvme_transport_id	*trid;
7859 	const struct spdk_nvme_ctrlr_opts *opts;
7860 
7861 	if (nvme_ctrlr->opts.from_discovery_service) {
7862 		/* Do not emit an RPC for this - it will be implicitly
7863 		 * covered by a separate bdev_nvme_start_discovery or
7864 		 * bdev_nvme_start_mdns_discovery RPC.
7865 		 */
7866 		return;
7867 	}
7868 
7869 	trid = &nvme_ctrlr->active_path_id->trid;
7870 
7871 	spdk_json_write_object_begin(w);
7872 
7873 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
7874 
7875 	spdk_json_write_named_object_begin(w, "params");
7876 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
7877 	nvme_bdev_dump_trid_json(trid, w);
7878 	spdk_json_write_named_bool(w, "prchk_reftag",
7879 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
7880 	spdk_json_write_named_bool(w, "prchk_guard",
7881 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
7882 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
7883 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
7884 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
7885 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
7886 
7887 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
7888 	spdk_json_write_named_bool(w, "hdgst", opts->header_digest);
7889 	spdk_json_write_named_bool(w, "ddgst", opts->data_digest);
7890 
7891 	spdk_json_write_object_end(w);
7892 
7893 	spdk_json_write_object_end(w);
7894 }
7895 
7896 static void
7897 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
7898 {
7899 	spdk_json_write_object_begin(w);
7900 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
7901 
7902 	spdk_json_write_named_object_begin(w, "params");
7903 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
7904 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
7905 	spdk_json_write_object_end(w);
7906 
7907 	spdk_json_write_object_end(w);
7908 }
7909 
7910 static int
7911 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
7912 {
7913 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
7914 	struct nvme_ctrlr	*nvme_ctrlr;
7915 	struct discovery_ctx	*ctx;
7916 
7917 	bdev_nvme_opts_config_json(w);
7918 
7919 	pthread_mutex_lock(&g_bdev_nvme_mutex);
7920 
7921 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
7922 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
7923 			nvme_ctrlr_config_json(w, nvme_ctrlr);
7924 		}
7925 	}
7926 
7927 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7928 		if (!ctx->from_mdns_discovery_service) {
7929 			bdev_nvme_discovery_config_json(w, ctx);
7930 		}
7931 	}
7932 
7933 	bdev_nvme_mdns_discovery_config_json(w);
7934 
7935 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
7936 	 * before enabling hotplug poller.
7937 	 */
7938 	bdev_nvme_hotplug_config_json(w);
7939 
7940 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
7941 	return 0;
7942 }
7943 
7944 struct spdk_nvme_ctrlr *
7945 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
7946 {
7947 	struct nvme_bdev *nbdev;
7948 	struct nvme_ns *nvme_ns;
7949 
7950 	if (!bdev || bdev->module != &nvme_if) {
7951 		return NULL;
7952 	}
7953 
7954 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
7955 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
7956 	assert(nvme_ns != NULL);
7957 
7958 	return nvme_ns->ctrlr->ctrlr;
7959 }
7960 
7961 void
7962 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
7963 {
7964 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
7965 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
7966 	const struct spdk_nvme_ctrlr_data *cdata;
7967 	const struct spdk_nvme_transport_id *trid;
7968 	const char *adrfam_str;
7969 
7970 	spdk_json_write_object_begin(w);
7971 
7972 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
7973 
7974 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
7975 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
7976 
7977 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
7978 	spdk_json_write_named_bool(w, "current", io_path->nbdev_ch != NULL &&
7979 				   io_path == io_path->nbdev_ch->current_io_path);
7980 	spdk_json_write_named_bool(w, "connected", nvme_qpair_is_connected(io_path->qpair));
7981 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
7982 
7983 	spdk_json_write_named_object_begin(w, "transport");
7984 	spdk_json_write_named_string(w, "trtype", trid->trstring);
7985 	spdk_json_write_named_string(w, "traddr", trid->traddr);
7986 	if (trid->trsvcid[0] != '\0') {
7987 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
7988 	}
7989 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
7990 	if (adrfam_str) {
7991 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
7992 	}
7993 	spdk_json_write_object_end(w);
7994 
7995 	spdk_json_write_object_end(w);
7996 }
7997 
7998 void
7999 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
8000 {
8001 	struct discovery_ctx *ctx;
8002 	struct discovery_entry_ctx *entry_ctx;
8003 
8004 	spdk_json_write_array_begin(w);
8005 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8006 		spdk_json_write_object_begin(w);
8007 		spdk_json_write_named_string(w, "name", ctx->name);
8008 
8009 		spdk_json_write_named_object_begin(w, "trid");
8010 		nvme_bdev_dump_trid_json(&ctx->trid, w);
8011 		spdk_json_write_object_end(w);
8012 
8013 		spdk_json_write_named_array_begin(w, "referrals");
8014 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
8015 			spdk_json_write_object_begin(w);
8016 			spdk_json_write_named_object_begin(w, "trid");
8017 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
8018 			spdk_json_write_object_end(w);
8019 			spdk_json_write_object_end(w);
8020 		}
8021 		spdk_json_write_array_end(w);
8022 
8023 		spdk_json_write_object_end(w);
8024 	}
8025 	spdk_json_write_array_end(w);
8026 }
8027 
8028 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
8029 
8030 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
8031 {
8032 	struct spdk_trace_tpoint_opts opts[] = {
8033 		{
8034 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
8035 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 1,
8036 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8037 		},
8038 		{
8039 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
8040 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 0,
8041 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8042 		}
8043 	};
8044 
8045 
8046 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
8047 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
8048 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8049 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8050 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8051 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8052 }
8053