xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision afdec00e1724f79bc502355ac0ab5bdff6ad1504)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/keyring.h"
18 #include "spdk/likely.h"
19 #include "spdk/nvme.h"
20 #include "spdk/nvme_ocssd.h"
21 #include "spdk/nvme_zns.h"
22 #include "spdk/opal.h"
23 #include "spdk/thread.h"
24 #include "spdk/trace.h"
25 #include "spdk/string.h"
26 #include "spdk/util.h"
27 #include "spdk/uuid.h"
28 
29 #include "spdk/bdev_module.h"
30 #include "spdk/log.h"
31 
32 #include "spdk_internal/usdt.h"
33 #include "spdk_internal/trace_defs.h"
34 
35 #define CTRLR_STRING(nvme_ctrlr) \
36 	(spdk_nvme_trtype_is_fabrics(nvme_ctrlr->active_path_id->trid.trtype) ? \
37 	nvme_ctrlr->active_path_id->trid.subnqn : nvme_ctrlr->active_path_id->trid.traddr)
38 
39 #define CTRLR_ID(nvme_ctrlr)	(spdk_nvme_ctrlr_get_id(nvme_ctrlr->ctrlr))
40 
41 #define NVME_CTRLR_ERRLOG(ctrlr, format, ...) \
42 	SPDK_ERRLOG("[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
43 
44 #define NVME_CTRLR_WARNLOG(ctrlr, format, ...) \
45 	SPDK_WARNLOG("[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
46 
47 #define NVME_CTRLR_NOTICELOG(ctrlr, format, ...) \
48 	SPDK_NOTICELOG("[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
49 
50 #define NVME_CTRLR_INFOLOG(ctrlr, format, ...) \
51 	SPDK_INFOLOG(bdev_nvme, "[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
52 
53 #ifdef DEBUG
54 #define NVME_CTRLR_DEBUGLOG(ctrlr, format, ...) \
55 	SPDK_DEBUGLOG(bdev_nvme, "[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
56 #else
57 #define NVME_CTRLR_DEBUGLOG(ctrlr, ...) do { } while (0)
58 #endif
59 
60 #define BDEV_STRING(nbdev) (nbdev->disk.name)
61 
62 #define NVME_BDEV_ERRLOG(nbdev, format, ...) \
63 	SPDK_ERRLOG("[%s] " format, BDEV_STRING(nbdev), ##__VA_ARGS__);
64 
65 #define NVME_BDEV_WARNLOG(nbdev, format, ...) \
66 	SPDK_WARNLOG("[%s] " format, BDEV_STRING(nbdev), ##__VA_ARGS__);
67 
68 #define NVME_BDEV_NOTICELOG(nbdev, format, ...) \
69 	SPDK_NOTICELOG("[%s] " format, BDEV_STRING(nbdev), ##__VA_ARGS__);
70 
71 #define NVME_BDEV_INFOLOG(nbdev, format, ...) \
72 	SPDK_INFOLOG(bdev_nvme, "[%s] " format, BDEV_STRING(nbdev), ##__VA_ARGS__);
73 
74 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
75 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
76 
77 #define NSID_STR_LEN 10
78 
79 #define SPDK_CONTROLLER_NAME_MAX 512
80 
81 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
82 
83 struct nvme_bdev_io {
84 	/** array of iovecs to transfer. */
85 	struct iovec *iovs;
86 
87 	/** Number of iovecs in iovs array. */
88 	int iovcnt;
89 
90 	/** Current iovec position. */
91 	int iovpos;
92 
93 	/** Offset in current iovec. */
94 	uint32_t iov_offset;
95 
96 	/** Offset in current iovec. */
97 	uint32_t fused_iov_offset;
98 
99 	/** array of iovecs to transfer. */
100 	struct iovec *fused_iovs;
101 
102 	/** Number of iovecs in iovs array. */
103 	int fused_iovcnt;
104 
105 	/** Current iovec position. */
106 	int fused_iovpos;
107 
108 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
109 	 *  being reset in a reset I/O.
110 	 */
111 	struct nvme_io_path *io_path;
112 
113 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
114 	struct spdk_nvme_cpl cpl;
115 
116 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
117 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
118 
119 	/** Keeps track if first of fused commands was submitted */
120 	bool first_fused_submitted;
121 
122 	/** Keeps track if first of fused commands was completed */
123 	bool first_fused_completed;
124 
125 	/* How many times the current I/O was retried. */
126 	int32_t retry_count;
127 
128 	/** Expiration value in ticks to retry the current I/O. */
129 	uint64_t retry_ticks;
130 
131 	/** Temporary pointer to zone report buffer */
132 	struct spdk_nvme_zns_zone_report *zone_report_buf;
133 
134 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
135 	uint64_t handled_zones;
136 
137 	/* Current tsc at submit time. */
138 	uint64_t submit_tsc;
139 
140 	/* Used to put nvme_bdev_io into the list */
141 	TAILQ_ENTRY(nvme_bdev_io) retry_link;
142 };
143 
144 struct nvme_probe_skip_entry {
145 	struct spdk_nvme_transport_id		trid;
146 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
147 };
148 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
149 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
150 			g_skipped_nvme_ctrlrs);
151 
152 #define BDEV_NVME_DEFAULT_DIGESTS (SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) | \
153 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) | \
154 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512))
155 
156 #define BDEV_NVME_DEFAULT_DHGROUPS (SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) | \
157 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) | \
158 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) | \
159 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) | \
160 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) | \
161 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192))
162 
163 static struct spdk_bdev_nvme_opts g_opts = {
164 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
165 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
166 	.timeout_us = 0,
167 	.timeout_admin_us = 0,
168 	.transport_retry_count = 4,
169 	.arbitration_burst = 0,
170 	.low_priority_weight = 0,
171 	.medium_priority_weight = 0,
172 	.high_priority_weight = 0,
173 	.io_queue_requests = 0,
174 	.nvme_adminq_poll_period_us = 10000ULL,
175 	.nvme_ioq_poll_period_us = 0,
176 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
177 	.bdev_retry_count = 3,
178 	.ctrlr_loss_timeout_sec = 0,
179 	.reconnect_delay_sec = 0,
180 	.fast_io_fail_timeout_sec = 0,
181 	.transport_ack_timeout = 0,
182 	.disable_auto_failback = false,
183 	.generate_uuids = false,
184 	.transport_tos = 0,
185 	.nvme_error_stat = false,
186 	.io_path_stat = false,
187 	.allow_accel_sequence = false,
188 	.dhchap_digests = BDEV_NVME_DEFAULT_DIGESTS,
189 	.dhchap_dhgroups = BDEV_NVME_DEFAULT_DHGROUPS,
190 };
191 
192 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
193 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
194 
195 static int g_hot_insert_nvme_controller_index = 0;
196 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
197 static bool g_nvme_hotplug_enabled = false;
198 struct spdk_thread *g_bdev_nvme_init_thread;
199 static struct spdk_poller *g_hotplug_poller;
200 static struct spdk_poller *g_hotplug_probe_poller;
201 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
202 
203 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
204 		struct nvme_async_probe_ctx *ctx);
205 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
206 		struct nvme_async_probe_ctx *ctx);
207 static int bdev_nvme_library_init(void);
208 static void bdev_nvme_library_fini(void);
209 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
210 				      struct spdk_bdev_io *bdev_io);
211 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
212 				     struct spdk_bdev_io *bdev_io);
213 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
214 			   void *md, uint64_t lba_count, uint64_t lba,
215 			   uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
216 			   struct spdk_accel_sequence *seq);
217 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
218 				 void *md, uint64_t lba_count, uint64_t lba);
219 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
220 			    void *md, uint64_t lba_count, uint64_t lba,
221 			    uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
222 			    struct spdk_accel_sequence *seq,
223 			    union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13);
224 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
225 				  void *md, uint64_t lba_count,
226 				  uint64_t zslba, uint32_t flags);
227 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
228 			      void *md, uint64_t lba_count, uint64_t lba,
229 			      uint32_t flags);
230 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
231 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
232 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
233 		uint32_t flags);
234 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
235 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
236 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
237 				     enum spdk_bdev_zone_action action);
238 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
239 				     struct nvme_bdev_io *bio,
240 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
241 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
242 				 void *buf, size_t nbytes);
243 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
244 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
245 static int bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
246 				     struct iovec *iov, int iovcnt, size_t nbytes,
247 				     void *md_buf, size_t md_len);
248 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
249 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
250 static void bdev_nvme_reset_io(struct nvme_bdev *nbdev, struct nvme_bdev_io *bio);
251 static int bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
252 static int bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
253 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
254 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
255 
256 static struct nvme_ns *nvme_ns_alloc(void);
257 static void nvme_ns_free(struct nvme_ns *ns);
258 
259 static int
260 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
261 {
262 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
263 }
264 
265 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
266 
267 struct spdk_nvme_qpair *
268 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
269 {
270 	struct nvme_ctrlr_channel *ctrlr_ch;
271 
272 	assert(ctrlr_io_ch != NULL);
273 
274 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
275 
276 	return ctrlr_ch->qpair->qpair;
277 }
278 
279 static int
280 bdev_nvme_get_ctx_size(void)
281 {
282 	return sizeof(struct nvme_bdev_io);
283 }
284 
285 static struct spdk_bdev_module nvme_if = {
286 	.name = "nvme",
287 	.async_fini = true,
288 	.module_init = bdev_nvme_library_init,
289 	.module_fini = bdev_nvme_library_fini,
290 	.config_json = bdev_nvme_config_json,
291 	.get_ctx_size = bdev_nvme_get_ctx_size,
292 
293 };
294 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
295 
296 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
297 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
298 bool g_bdev_nvme_module_finish;
299 
300 struct nvme_bdev_ctrlr *
301 nvme_bdev_ctrlr_get_by_name(const char *name)
302 {
303 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
304 
305 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
306 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
307 			break;
308 		}
309 	}
310 
311 	return nbdev_ctrlr;
312 }
313 
314 static struct nvme_ctrlr *
315 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
316 			  const struct spdk_nvme_transport_id *trid, const char *hostnqn)
317 {
318 	const struct spdk_nvme_ctrlr_opts *opts;
319 	struct nvme_ctrlr *nvme_ctrlr;
320 
321 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
322 		opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
323 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0 &&
324 		    strcmp(hostnqn, opts->hostnqn) == 0) {
325 			break;
326 		}
327 	}
328 
329 	return nvme_ctrlr;
330 }
331 
332 struct nvme_ctrlr *
333 nvme_bdev_ctrlr_get_ctrlr_by_id(struct nvme_bdev_ctrlr *nbdev_ctrlr,
334 				uint16_t cntlid)
335 {
336 	struct nvme_ctrlr *nvme_ctrlr;
337 	const struct spdk_nvme_ctrlr_data *cdata;
338 
339 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
340 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
341 		if (cdata->cntlid == cntlid) {
342 			break;
343 		}
344 	}
345 
346 	return nvme_ctrlr;
347 }
348 
349 static struct nvme_bdev *
350 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
351 {
352 	struct nvme_bdev *bdev;
353 
354 	pthread_mutex_lock(&g_bdev_nvme_mutex);
355 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
356 		if (bdev->nsid == nsid) {
357 			break;
358 		}
359 	}
360 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
361 
362 	return bdev;
363 }
364 
365 struct nvme_ns *
366 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
367 {
368 	struct nvme_ns ns;
369 
370 	assert(nsid > 0);
371 
372 	ns.id = nsid;
373 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
374 }
375 
376 struct nvme_ns *
377 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
378 {
379 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
380 }
381 
382 struct nvme_ns *
383 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
384 {
385 	if (ns == NULL) {
386 		return NULL;
387 	}
388 
389 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
390 }
391 
392 static struct nvme_ctrlr *
393 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid, const char *hostnqn)
394 {
395 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
396 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
397 
398 	pthread_mutex_lock(&g_bdev_nvme_mutex);
399 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
400 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid, hostnqn);
401 		if (nvme_ctrlr != NULL) {
402 			break;
403 		}
404 	}
405 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
406 
407 	return nvme_ctrlr;
408 }
409 
410 struct nvme_ctrlr *
411 nvme_ctrlr_get_by_name(const char *name)
412 {
413 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
414 	struct nvme_ctrlr *nvme_ctrlr = NULL;
415 
416 	if (name == NULL) {
417 		return NULL;
418 	}
419 
420 	pthread_mutex_lock(&g_bdev_nvme_mutex);
421 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
422 	if (nbdev_ctrlr != NULL) {
423 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
424 	}
425 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
426 
427 	return nvme_ctrlr;
428 }
429 
430 void
431 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
432 {
433 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
434 
435 	pthread_mutex_lock(&g_bdev_nvme_mutex);
436 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
437 		fn(nbdev_ctrlr, ctx);
438 	}
439 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
440 }
441 
442 struct nvme_ctrlr_channel_iter {
443 	nvme_ctrlr_for_each_channel_msg fn;
444 	nvme_ctrlr_for_each_channel_done cpl;
445 	struct spdk_io_channel_iter *i;
446 	void *ctx;
447 };
448 
449 void
450 nvme_ctrlr_for_each_channel_continue(struct nvme_ctrlr_channel_iter *iter, int status)
451 {
452 	spdk_for_each_channel_continue(iter->i, status);
453 }
454 
455 static void
456 nvme_ctrlr_each_channel_msg(struct spdk_io_channel_iter *i)
457 {
458 	struct nvme_ctrlr_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
459 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
460 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
461 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
462 
463 	iter->i = i;
464 	iter->fn(iter, nvme_ctrlr, ctrlr_ch, iter->ctx);
465 }
466 
467 static void
468 nvme_ctrlr_each_channel_cpl(struct spdk_io_channel_iter *i, int status)
469 {
470 	struct nvme_ctrlr_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
471 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
472 
473 	iter->i = i;
474 	iter->cpl(nvme_ctrlr, iter->ctx, status);
475 
476 	free(iter);
477 }
478 
479 void
480 nvme_ctrlr_for_each_channel(struct nvme_ctrlr *nvme_ctrlr,
481 			    nvme_ctrlr_for_each_channel_msg fn, void *ctx,
482 			    nvme_ctrlr_for_each_channel_done cpl)
483 {
484 	struct nvme_ctrlr_channel_iter *iter;
485 
486 	assert(nvme_ctrlr != NULL && fn != NULL);
487 
488 	iter = calloc(1, sizeof(struct nvme_ctrlr_channel_iter));
489 	if (iter == NULL) {
490 		SPDK_ERRLOG("Unable to allocate iterator\n");
491 		assert(false);
492 		return;
493 	}
494 
495 	iter->fn = fn;
496 	iter->cpl = cpl;
497 	iter->ctx = ctx;
498 
499 	spdk_for_each_channel(nvme_ctrlr, nvme_ctrlr_each_channel_msg,
500 			      iter, nvme_ctrlr_each_channel_cpl);
501 }
502 
503 struct nvme_bdev_channel_iter {
504 	nvme_bdev_for_each_channel_msg fn;
505 	nvme_bdev_for_each_channel_done cpl;
506 	struct spdk_io_channel_iter *i;
507 	void *ctx;
508 };
509 
510 void
511 nvme_bdev_for_each_channel_continue(struct nvme_bdev_channel_iter *iter, int status)
512 {
513 	spdk_for_each_channel_continue(iter->i, status);
514 }
515 
516 static void
517 nvme_bdev_each_channel_msg(struct spdk_io_channel_iter *i)
518 {
519 	struct nvme_bdev_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
520 	struct nvme_bdev *nbdev = spdk_io_channel_iter_get_io_device(i);
521 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
522 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
523 
524 	iter->i = i;
525 	iter->fn(iter, nbdev, nbdev_ch, iter->ctx);
526 }
527 
528 static void
529 nvme_bdev_each_channel_cpl(struct spdk_io_channel_iter *i, int status)
530 {
531 	struct nvme_bdev_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
532 	struct nvme_bdev *nbdev = spdk_io_channel_iter_get_io_device(i);
533 
534 	iter->i = i;
535 	iter->cpl(nbdev, iter->ctx, status);
536 
537 	free(iter);
538 }
539 
540 void
541 nvme_bdev_for_each_channel(struct nvme_bdev *nbdev,
542 			   nvme_bdev_for_each_channel_msg fn, void *ctx,
543 			   nvme_bdev_for_each_channel_done cpl)
544 {
545 	struct nvme_bdev_channel_iter *iter;
546 
547 	assert(nbdev != NULL && fn != NULL);
548 
549 	iter = calloc(1, sizeof(struct nvme_bdev_channel_iter));
550 	if (iter == NULL) {
551 		SPDK_ERRLOG("Unable to allocate iterator\n");
552 		assert(false);
553 		return;
554 	}
555 
556 	iter->fn = fn;
557 	iter->cpl = cpl;
558 	iter->ctx = ctx;
559 
560 	spdk_for_each_channel(nbdev, nvme_bdev_each_channel_msg, iter,
561 			      nvme_bdev_each_channel_cpl);
562 }
563 
564 void
565 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
566 {
567 	const char *trtype_str;
568 	const char *adrfam_str;
569 
570 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
571 	if (trtype_str) {
572 		spdk_json_write_named_string(w, "trtype", trtype_str);
573 	}
574 
575 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
576 	if (adrfam_str) {
577 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
578 	}
579 
580 	if (trid->traddr[0] != '\0') {
581 		spdk_json_write_named_string(w, "traddr", trid->traddr);
582 	}
583 
584 	if (trid->trsvcid[0] != '\0') {
585 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
586 	}
587 
588 	if (trid->subnqn[0] != '\0') {
589 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
590 	}
591 }
592 
593 static void
594 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
595 		       struct nvme_ctrlr *nvme_ctrlr)
596 {
597 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
598 	pthread_mutex_lock(&g_bdev_nvme_mutex);
599 
600 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
601 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
602 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
603 
604 		return;
605 	}
606 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
607 
608 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
609 
610 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
611 
612 	free(nbdev_ctrlr->name);
613 	free(nbdev_ctrlr);
614 }
615 
616 static void
617 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
618 {
619 	struct nvme_path_id *path_id, *tmp_path;
620 	struct nvme_ns *ns, *tmp_ns;
621 
622 	free(nvme_ctrlr->copied_ana_desc);
623 	spdk_free(nvme_ctrlr->ana_log_page);
624 
625 	if (nvme_ctrlr->opal_dev) {
626 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
627 		nvme_ctrlr->opal_dev = NULL;
628 	}
629 
630 	if (nvme_ctrlr->nbdev_ctrlr) {
631 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
632 	}
633 
634 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
635 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
636 		nvme_ns_free(ns);
637 	}
638 
639 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
640 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
641 		free(path_id);
642 	}
643 
644 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
645 	spdk_keyring_put_key(nvme_ctrlr->psk);
646 	spdk_keyring_put_key(nvme_ctrlr->dhchap_key);
647 	spdk_keyring_put_key(nvme_ctrlr->dhchap_ctrlr_key);
648 	free(nvme_ctrlr);
649 
650 	pthread_mutex_lock(&g_bdev_nvme_mutex);
651 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
652 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
653 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
654 		spdk_bdev_module_fini_done();
655 		return;
656 	}
657 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
658 }
659 
660 static int
661 nvme_detach_poller(void *arg)
662 {
663 	struct nvme_ctrlr *nvme_ctrlr = arg;
664 	int rc;
665 
666 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
667 	if (rc != -EAGAIN) {
668 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
669 		_nvme_ctrlr_delete(nvme_ctrlr);
670 	}
671 
672 	return SPDK_POLLER_BUSY;
673 }
674 
675 static void
676 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
677 {
678 	int rc;
679 
680 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
681 
682 	if (spdk_interrupt_mode_is_enabled()) {
683 		spdk_interrupt_unregister(&nvme_ctrlr->intr);
684 	}
685 
686 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
687 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
688 
689 	/* If we got here, the reset/detach poller cannot be active */
690 	assert(nvme_ctrlr->reset_detach_poller == NULL);
691 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
692 					  nvme_ctrlr, 1000);
693 	if (nvme_ctrlr->reset_detach_poller == NULL) {
694 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to register detach poller\n");
695 		goto error;
696 	}
697 
698 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
699 	if (rc != 0) {
700 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to detach the NVMe controller\n");
701 		goto error;
702 	}
703 
704 	return;
705 error:
706 	/* We don't have a good way to handle errors here, so just do what we can and delete the
707 	 * controller without detaching the underlying NVMe device.
708 	 */
709 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
710 	_nvme_ctrlr_delete(nvme_ctrlr);
711 }
712 
713 static void
714 nvme_ctrlr_unregister_cb(void *io_device)
715 {
716 	struct nvme_ctrlr *nvme_ctrlr = io_device;
717 
718 	nvme_ctrlr_delete(nvme_ctrlr);
719 }
720 
721 static void
722 nvme_ctrlr_unregister(void *ctx)
723 {
724 	struct nvme_ctrlr *nvme_ctrlr = ctx;
725 
726 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
727 }
728 
729 static bool
730 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
731 {
732 	if (!nvme_ctrlr->destruct) {
733 		return false;
734 	}
735 
736 	if (nvme_ctrlr->ref > 0) {
737 		return false;
738 	}
739 
740 	if (nvme_ctrlr->resetting) {
741 		return false;
742 	}
743 
744 	if (nvme_ctrlr->ana_log_page_updating) {
745 		return false;
746 	}
747 
748 	if (nvme_ctrlr->io_path_cache_clearing) {
749 		return false;
750 	}
751 
752 	return true;
753 }
754 
755 static void
756 nvme_ctrlr_put_ref(struct nvme_ctrlr *nvme_ctrlr)
757 {
758 	pthread_mutex_lock(&nvme_ctrlr->mutex);
759 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
760 
761 	assert(nvme_ctrlr->ref > 0);
762 	nvme_ctrlr->ref--;
763 
764 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
765 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
766 		return;
767 	}
768 
769 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
770 
771 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
772 }
773 
774 static void
775 nvme_ctrlr_get_ref(struct nvme_ctrlr *nvme_ctrlr)
776 {
777 	pthread_mutex_lock(&nvme_ctrlr->mutex);
778 	nvme_ctrlr->ref++;
779 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
780 }
781 
782 static void
783 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch)
784 {
785 	nbdev_ch->current_io_path = NULL;
786 	nbdev_ch->rr_counter = 0;
787 }
788 
789 static struct nvme_io_path *
790 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
791 {
792 	struct nvme_io_path *io_path;
793 
794 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
795 		if (io_path->nvme_ns == nvme_ns) {
796 			break;
797 		}
798 	}
799 
800 	return io_path;
801 }
802 
803 static struct nvme_io_path *
804 nvme_io_path_alloc(void)
805 {
806 	struct nvme_io_path *io_path;
807 
808 	io_path = calloc(1, sizeof(*io_path));
809 	if (io_path == NULL) {
810 		SPDK_ERRLOG("Failed to alloc io_path.\n");
811 		return NULL;
812 	}
813 
814 	if (g_opts.io_path_stat) {
815 		io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
816 		if (io_path->stat == NULL) {
817 			free(io_path);
818 			SPDK_ERRLOG("Failed to alloc io_path stat.\n");
819 			return NULL;
820 		}
821 		spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
822 	}
823 
824 	return io_path;
825 }
826 
827 static void
828 nvme_io_path_free(struct nvme_io_path *io_path)
829 {
830 	free(io_path->stat);
831 	free(io_path);
832 }
833 
834 static int
835 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
836 {
837 	struct nvme_io_path *io_path;
838 	struct spdk_io_channel *ch;
839 	struct nvme_ctrlr_channel *ctrlr_ch;
840 	struct nvme_qpair *nvme_qpair;
841 
842 	io_path = nvme_io_path_alloc();
843 	if (io_path == NULL) {
844 		return -ENOMEM;
845 	}
846 
847 	io_path->nvme_ns = nvme_ns;
848 
849 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
850 	if (ch == NULL) {
851 		nvme_io_path_free(io_path);
852 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
853 		return -ENOMEM;
854 	}
855 
856 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
857 
858 	nvme_qpair = ctrlr_ch->qpair;
859 	assert(nvme_qpair != NULL);
860 
861 	io_path->qpair = nvme_qpair;
862 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
863 
864 	io_path->nbdev_ch = nbdev_ch;
865 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
866 
867 	bdev_nvme_clear_current_io_path(nbdev_ch);
868 
869 	return 0;
870 }
871 
872 static void
873 bdev_nvme_clear_retry_io_path(struct nvme_bdev_channel *nbdev_ch,
874 			      struct nvme_io_path *io_path)
875 {
876 	struct nvme_bdev_io *bio;
877 
878 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
879 		if (bio->io_path == io_path) {
880 			bio->io_path = NULL;
881 		}
882 	}
883 }
884 
885 static void
886 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
887 {
888 	struct spdk_io_channel *ch;
889 	struct nvme_qpair *nvme_qpair;
890 	struct nvme_ctrlr_channel *ctrlr_ch;
891 	struct nvme_bdev *nbdev;
892 
893 	nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch));
894 
895 	/* Add the statistics to nvme_ns before this path is destroyed. */
896 	pthread_mutex_lock(&nbdev->mutex);
897 	if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) {
898 		spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat);
899 	}
900 	pthread_mutex_unlock(&nbdev->mutex);
901 
902 	bdev_nvme_clear_current_io_path(nbdev_ch);
903 	bdev_nvme_clear_retry_io_path(nbdev_ch, io_path);
904 
905 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
906 	io_path->nbdev_ch = NULL;
907 
908 	nvme_qpair = io_path->qpair;
909 	assert(nvme_qpair != NULL);
910 
911 	ctrlr_ch = nvme_qpair->ctrlr_ch;
912 	assert(ctrlr_ch != NULL);
913 
914 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
915 	spdk_put_io_channel(ch);
916 
917 	/* After an io_path is removed, I/Os submitted to it may complete and update statistics
918 	 * of the io_path. To avoid heap-use-after-free error from this case, do not free the
919 	 * io_path here but free the io_path when the associated qpair is freed. It is ensured
920 	 * that all I/Os submitted to the io_path are completed when the associated qpair is freed.
921 	 */
922 }
923 
924 static void
925 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
926 {
927 	struct nvme_io_path *io_path, *tmp_io_path;
928 
929 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
930 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
931 	}
932 }
933 
934 static int
935 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
936 {
937 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
938 	struct nvme_bdev *nbdev = io_device;
939 	struct nvme_ns *nvme_ns;
940 	int rc;
941 
942 	STAILQ_INIT(&nbdev_ch->io_path_list);
943 	TAILQ_INIT(&nbdev_ch->retry_io_list);
944 
945 	pthread_mutex_lock(&nbdev->mutex);
946 
947 	nbdev_ch->mp_policy = nbdev->mp_policy;
948 	nbdev_ch->mp_selector = nbdev->mp_selector;
949 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
950 
951 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
952 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
953 		if (rc != 0) {
954 			pthread_mutex_unlock(&nbdev->mutex);
955 
956 			_bdev_nvme_delete_io_paths(nbdev_ch);
957 			return rc;
958 		}
959 	}
960 	pthread_mutex_unlock(&nbdev->mutex);
961 
962 	return 0;
963 }
964 
965 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
966  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
967  */
968 static inline void
969 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
970 			const struct spdk_nvme_cpl *cpl)
971 {
972 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
973 			  (uintptr_t)bdev_io);
974 	if (cpl) {
975 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
976 	} else {
977 		spdk_bdev_io_complete(bdev_io, status);
978 	}
979 }
980 
981 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
982 
983 static void
984 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
985 {
986 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
987 
988 	bdev_nvme_abort_retry_ios(nbdev_ch);
989 	_bdev_nvme_delete_io_paths(nbdev_ch);
990 }
991 
992 static inline bool
993 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
994 {
995 	switch (io_type) {
996 	case SPDK_BDEV_IO_TYPE_RESET:
997 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
998 	case SPDK_BDEV_IO_TYPE_ABORT:
999 		return true;
1000 	default:
1001 		break;
1002 	}
1003 
1004 	return false;
1005 }
1006 
1007 static inline bool
1008 nvme_ns_is_active(struct nvme_ns *nvme_ns)
1009 {
1010 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
1011 		return false;
1012 	}
1013 
1014 	if (spdk_unlikely(nvme_ns->ns == NULL)) {
1015 		return false;
1016 	}
1017 
1018 	return true;
1019 }
1020 
1021 static inline bool
1022 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
1023 {
1024 	if (spdk_unlikely(!nvme_ns_is_active(nvme_ns))) {
1025 		return false;
1026 	}
1027 
1028 	switch (nvme_ns->ana_state) {
1029 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
1030 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1031 		return true;
1032 	default:
1033 		break;
1034 	}
1035 
1036 	return false;
1037 }
1038 
1039 static inline bool
1040 nvme_qpair_is_connected(struct nvme_qpair *nvme_qpair)
1041 {
1042 	if (spdk_unlikely(nvme_qpair->qpair == NULL)) {
1043 		return false;
1044 	}
1045 
1046 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1047 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
1048 		return false;
1049 	}
1050 
1051 	if (spdk_unlikely(nvme_qpair->ctrlr_ch->reset_iter != NULL)) {
1052 		return false;
1053 	}
1054 
1055 	return true;
1056 }
1057 
1058 static inline bool
1059 nvme_io_path_is_available(struct nvme_io_path *io_path)
1060 {
1061 	if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
1062 		return false;
1063 	}
1064 
1065 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
1066 		return false;
1067 	}
1068 
1069 	return true;
1070 }
1071 
1072 static inline bool
1073 nvme_ctrlr_is_failed(struct nvme_ctrlr *nvme_ctrlr)
1074 {
1075 	if (nvme_ctrlr->destruct) {
1076 		return true;
1077 	}
1078 
1079 	if (nvme_ctrlr->fast_io_fail_timedout) {
1080 		return true;
1081 	}
1082 
1083 	if (nvme_ctrlr->resetting) {
1084 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
1085 			return false;
1086 		} else {
1087 			return true;
1088 		}
1089 	}
1090 
1091 	if (nvme_ctrlr->reconnect_is_delayed) {
1092 		return false;
1093 	}
1094 
1095 	if (nvme_ctrlr->disabled) {
1096 		return true;
1097 	}
1098 
1099 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
1100 		return true;
1101 	} else {
1102 		return false;
1103 	}
1104 }
1105 
1106 static bool
1107 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
1108 {
1109 	if (nvme_ctrlr->destruct) {
1110 		return false;
1111 	}
1112 
1113 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
1114 		return false;
1115 	}
1116 
1117 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
1118 		return false;
1119 	}
1120 
1121 	if (nvme_ctrlr->disabled) {
1122 		return false;
1123 	}
1124 
1125 	return true;
1126 }
1127 
1128 /* Simulate circular linked list. */
1129 static inline struct nvme_io_path *
1130 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
1131 {
1132 	struct nvme_io_path *next_path;
1133 
1134 	if (prev_path != NULL) {
1135 		next_path = STAILQ_NEXT(prev_path, stailq);
1136 		if (next_path != NULL) {
1137 			return next_path;
1138 		}
1139 	}
1140 
1141 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
1142 }
1143 
1144 static struct nvme_io_path *
1145 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1146 {
1147 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
1148 
1149 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
1150 
1151 	io_path = start;
1152 	do {
1153 		if (spdk_likely(nvme_io_path_is_available(io_path))) {
1154 			switch (io_path->nvme_ns->ana_state) {
1155 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
1156 				nbdev_ch->current_io_path = io_path;
1157 				return io_path;
1158 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1159 				if (non_optimized == NULL) {
1160 					non_optimized = io_path;
1161 				}
1162 				break;
1163 			default:
1164 				assert(false);
1165 				break;
1166 			}
1167 		}
1168 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
1169 	} while (io_path != start);
1170 
1171 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
1172 		/* We come here only if there is no optimized path. Cache even non_optimized
1173 		 * path for load balance across multiple non_optimized paths.
1174 		 */
1175 		nbdev_ch->current_io_path = non_optimized;
1176 	}
1177 
1178 	return non_optimized;
1179 }
1180 
1181 static struct nvme_io_path *
1182 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch)
1183 {
1184 	struct nvme_io_path *io_path;
1185 	struct nvme_io_path *optimized = NULL, *non_optimized = NULL;
1186 	uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX;
1187 	uint32_t num_outstanding_reqs;
1188 
1189 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1190 		if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
1191 			/* The device is currently resetting. */
1192 			continue;
1193 		}
1194 
1195 		if (spdk_unlikely(!nvme_ns_is_active(io_path->nvme_ns))) {
1196 			continue;
1197 		}
1198 
1199 		num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair);
1200 		switch (io_path->nvme_ns->ana_state) {
1201 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
1202 			if (num_outstanding_reqs < opt_min_qd) {
1203 				opt_min_qd = num_outstanding_reqs;
1204 				optimized = io_path;
1205 			}
1206 			break;
1207 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1208 			if (num_outstanding_reqs < non_opt_min_qd) {
1209 				non_opt_min_qd = num_outstanding_reqs;
1210 				non_optimized = io_path;
1211 			}
1212 			break;
1213 		default:
1214 			break;
1215 		}
1216 	}
1217 
1218 	/* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */
1219 	if (optimized != NULL) {
1220 		return optimized;
1221 	}
1222 
1223 	return non_optimized;
1224 }
1225 
1226 static inline struct nvme_io_path *
1227 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1228 {
1229 	if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
1230 		if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) {
1231 			return nbdev_ch->current_io_path;
1232 		} else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1233 			if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) {
1234 				return nbdev_ch->current_io_path;
1235 			}
1236 			nbdev_ch->rr_counter = 0;
1237 		}
1238 	}
1239 
1240 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE ||
1241 	    nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1242 		return _bdev_nvme_find_io_path(nbdev_ch);
1243 	} else {
1244 		return _bdev_nvme_find_io_path_min_qd(nbdev_ch);
1245 	}
1246 }
1247 
1248 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
1249  * or false otherwise.
1250  *
1251  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
1252  * is likely to be non-accessible now but may become accessible.
1253  *
1254  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
1255  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
1256  * when starting to reset it but it is set to failed when the reset failed. Hence, if
1257  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
1258  */
1259 static bool
1260 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
1261 {
1262 	struct nvme_io_path *io_path;
1263 
1264 	if (nbdev_ch->resetting) {
1265 		return false;
1266 	}
1267 
1268 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1269 		if (io_path->nvme_ns->ana_transition_timedout) {
1270 			continue;
1271 		}
1272 
1273 		if (nvme_qpair_is_connected(io_path->qpair) ||
1274 		    !nvme_ctrlr_is_failed(io_path->qpair->ctrlr)) {
1275 			return true;
1276 		}
1277 	}
1278 
1279 	return false;
1280 }
1281 
1282 static void
1283 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
1284 {
1285 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1286 	struct spdk_io_channel *ch;
1287 
1288 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
1289 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
1290 	} else {
1291 		ch = spdk_io_channel_from_ctx(nbdev_ch);
1292 		bdev_nvme_submit_request(ch, bdev_io);
1293 	}
1294 }
1295 
1296 static int
1297 bdev_nvme_retry_ios(void *arg)
1298 {
1299 	struct nvme_bdev_channel *nbdev_ch = arg;
1300 	struct nvme_bdev_io *bio, *tmp_bio;
1301 	uint64_t now, delay_us;
1302 
1303 	now = spdk_get_ticks();
1304 
1305 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1306 		if (bio->retry_ticks > now) {
1307 			break;
1308 		}
1309 
1310 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1311 
1312 		bdev_nvme_retry_io(nbdev_ch, spdk_bdev_io_from_ctx(bio));
1313 	}
1314 
1315 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1316 
1317 	bio = TAILQ_FIRST(&nbdev_ch->retry_io_list);
1318 	if (bio != NULL) {
1319 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
1320 
1321 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1322 					    delay_us);
1323 	}
1324 
1325 	return SPDK_POLLER_BUSY;
1326 }
1327 
1328 static void
1329 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1330 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1331 {
1332 	struct nvme_bdev_io *tmp_bio;
1333 
1334 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1335 
1336 	TAILQ_FOREACH_REVERSE(tmp_bio, &nbdev_ch->retry_io_list, retry_io_head, retry_link) {
1337 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1338 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bio, bio,
1339 					   retry_link);
1340 			return;
1341 		}
1342 	}
1343 
1344 	/* No earlier I/Os were found. This I/O must be the new head. */
1345 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bio, retry_link);
1346 
1347 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1348 
1349 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1350 				    delay_ms * 1000ULL);
1351 }
1352 
1353 static void
1354 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
1355 {
1356 	struct nvme_bdev_io *bio, *tmp_bio;
1357 
1358 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1359 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1360 		__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1361 	}
1362 
1363 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1364 }
1365 
1366 static int
1367 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1368 			 struct nvme_bdev_io *bio_to_abort)
1369 {
1370 	struct nvme_bdev_io *bio;
1371 
1372 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
1373 		if (bio == bio_to_abort) {
1374 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1375 			__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1376 			return 0;
1377 		}
1378 	}
1379 
1380 	return -ENOENT;
1381 }
1382 
1383 static void
1384 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1385 {
1386 	struct nvme_bdev *nbdev;
1387 	uint16_t sct, sc;
1388 
1389 	assert(spdk_nvme_cpl_is_error(cpl));
1390 
1391 	nbdev = bdev_io->bdev->ctxt;
1392 
1393 	if (nbdev->err_stat == NULL) {
1394 		return;
1395 	}
1396 
1397 	sct = cpl->status.sct;
1398 	sc = cpl->status.sc;
1399 
1400 	pthread_mutex_lock(&nbdev->mutex);
1401 
1402 	nbdev->err_stat->status_type[sct]++;
1403 	switch (sct) {
1404 	case SPDK_NVME_SCT_GENERIC:
1405 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1406 	case SPDK_NVME_SCT_MEDIA_ERROR:
1407 	case SPDK_NVME_SCT_PATH:
1408 		nbdev->err_stat->status[sct][sc]++;
1409 		break;
1410 	default:
1411 		break;
1412 	}
1413 
1414 	pthread_mutex_unlock(&nbdev->mutex);
1415 }
1416 
1417 static inline void
1418 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio)
1419 {
1420 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1421 	uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
1422 	uint32_t blocklen = bdev_io->bdev->blocklen;
1423 	struct spdk_bdev_io_stat *stat;
1424 	uint64_t tsc_diff;
1425 
1426 	if (bio->io_path->stat == NULL) {
1427 		return;
1428 	}
1429 
1430 	tsc_diff = spdk_get_ticks() - bio->submit_tsc;
1431 	stat = bio->io_path->stat;
1432 
1433 	switch (bdev_io->type) {
1434 	case SPDK_BDEV_IO_TYPE_READ:
1435 		stat->bytes_read += num_blocks * blocklen;
1436 		stat->num_read_ops++;
1437 		stat->read_latency_ticks += tsc_diff;
1438 		if (stat->max_read_latency_ticks < tsc_diff) {
1439 			stat->max_read_latency_ticks = tsc_diff;
1440 		}
1441 		if (stat->min_read_latency_ticks > tsc_diff) {
1442 			stat->min_read_latency_ticks = tsc_diff;
1443 		}
1444 		break;
1445 	case SPDK_BDEV_IO_TYPE_WRITE:
1446 		stat->bytes_written += num_blocks * blocklen;
1447 		stat->num_write_ops++;
1448 		stat->write_latency_ticks += tsc_diff;
1449 		if (stat->max_write_latency_ticks < tsc_diff) {
1450 			stat->max_write_latency_ticks = tsc_diff;
1451 		}
1452 		if (stat->min_write_latency_ticks > tsc_diff) {
1453 			stat->min_write_latency_ticks = tsc_diff;
1454 		}
1455 		break;
1456 	case SPDK_BDEV_IO_TYPE_UNMAP:
1457 		stat->bytes_unmapped += num_blocks * blocklen;
1458 		stat->num_unmap_ops++;
1459 		stat->unmap_latency_ticks += tsc_diff;
1460 		if (stat->max_unmap_latency_ticks < tsc_diff) {
1461 			stat->max_unmap_latency_ticks = tsc_diff;
1462 		}
1463 		if (stat->min_unmap_latency_ticks > tsc_diff) {
1464 			stat->min_unmap_latency_ticks = tsc_diff;
1465 		}
1466 		break;
1467 	case SPDK_BDEV_IO_TYPE_ZCOPY:
1468 		/* Track the data in the start phase only */
1469 		if (!bdev_io->u.bdev.zcopy.start) {
1470 			break;
1471 		}
1472 		if (bdev_io->u.bdev.zcopy.populate) {
1473 			stat->bytes_read += num_blocks * blocklen;
1474 			stat->num_read_ops++;
1475 			stat->read_latency_ticks += tsc_diff;
1476 			if (stat->max_read_latency_ticks < tsc_diff) {
1477 				stat->max_read_latency_ticks = tsc_diff;
1478 			}
1479 			if (stat->min_read_latency_ticks > tsc_diff) {
1480 				stat->min_read_latency_ticks = tsc_diff;
1481 			}
1482 		} else {
1483 			stat->bytes_written += num_blocks * blocklen;
1484 			stat->num_write_ops++;
1485 			stat->write_latency_ticks += tsc_diff;
1486 			if (stat->max_write_latency_ticks < tsc_diff) {
1487 				stat->max_write_latency_ticks = tsc_diff;
1488 			}
1489 			if (stat->min_write_latency_ticks > tsc_diff) {
1490 				stat->min_write_latency_ticks = tsc_diff;
1491 			}
1492 		}
1493 		break;
1494 	case SPDK_BDEV_IO_TYPE_COPY:
1495 		stat->bytes_copied += num_blocks * blocklen;
1496 		stat->num_copy_ops++;
1497 		stat->copy_latency_ticks += tsc_diff;
1498 		if (stat->max_copy_latency_ticks < tsc_diff) {
1499 			stat->max_copy_latency_ticks = tsc_diff;
1500 		}
1501 		if (stat->min_copy_latency_ticks > tsc_diff) {
1502 			stat->min_copy_latency_ticks = tsc_diff;
1503 		}
1504 		break;
1505 	default:
1506 		break;
1507 	}
1508 }
1509 
1510 static bool
1511 bdev_nvme_check_retry_io(struct nvme_bdev_io *bio,
1512 			 const struct spdk_nvme_cpl *cpl,
1513 			 struct nvme_bdev_channel *nbdev_ch,
1514 			 uint64_t *_delay_ms)
1515 {
1516 	struct nvme_io_path *io_path = bio->io_path;
1517 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1518 	const struct spdk_nvme_ctrlr_data *cdata;
1519 
1520 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1521 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1522 	    !nvme_io_path_is_available(io_path) ||
1523 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1524 		bdev_nvme_clear_current_io_path(nbdev_ch);
1525 		bio->io_path = NULL;
1526 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1527 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1528 				io_path->nvme_ns->ana_state_updating = true;
1529 			}
1530 		}
1531 		if (!any_io_path_may_become_available(nbdev_ch)) {
1532 			return false;
1533 		}
1534 		*_delay_ms = 0;
1535 	} else {
1536 		bio->retry_count++;
1537 
1538 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1539 
1540 		if (cpl->status.crd != 0) {
1541 			*_delay_ms = cdata->crdt[cpl->status.crd] * 100;
1542 		} else {
1543 			*_delay_ms = 0;
1544 		}
1545 	}
1546 
1547 	return true;
1548 }
1549 
1550 static inline void
1551 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1552 				  const struct spdk_nvme_cpl *cpl)
1553 {
1554 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1555 	struct nvme_bdev_channel *nbdev_ch;
1556 	uint64_t delay_ms;
1557 
1558 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1559 
1560 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1561 		bdev_nvme_update_io_path_stat(bio);
1562 		goto complete;
1563 	}
1564 
1565 	/* Update error counts before deciding if retry is needed.
1566 	 * Hence, error counts may be more than the number of I/O errors.
1567 	 */
1568 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1569 
1570 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1571 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1572 		goto complete;
1573 	}
1574 
1575 	/* At this point we don't know whether the sequence was successfully executed or not, so we
1576 	 * cannot retry the IO */
1577 	if (bdev_io->u.bdev.accel_sequence != NULL) {
1578 		goto complete;
1579 	}
1580 
1581 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1582 
1583 	if (bdev_nvme_check_retry_io(bio, cpl, nbdev_ch, &delay_ms)) {
1584 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1585 		return;
1586 	}
1587 
1588 complete:
1589 	bio->retry_count = 0;
1590 	bio->submit_tsc = 0;
1591 	bdev_io->u.bdev.accel_sequence = NULL;
1592 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1593 }
1594 
1595 static inline void
1596 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1597 {
1598 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1599 	struct nvme_bdev_channel *nbdev_ch;
1600 	enum spdk_bdev_io_status io_status;
1601 
1602 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1603 
1604 	switch (rc) {
1605 	case 0:
1606 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1607 		break;
1608 	case -ENOMEM:
1609 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1610 		break;
1611 	case -ENXIO:
1612 		if (g_opts.bdev_retry_count == -1 || bio->retry_count < g_opts.bdev_retry_count) {
1613 			nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1614 
1615 			bdev_nvme_clear_current_io_path(nbdev_ch);
1616 			bio->io_path = NULL;
1617 
1618 			if (any_io_path_may_become_available(nbdev_ch)) {
1619 				bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1620 				return;
1621 			}
1622 		}
1623 
1624 	/* fallthrough */
1625 	default:
1626 		spdk_accel_sequence_abort(bdev_io->u.bdev.accel_sequence);
1627 		bdev_io->u.bdev.accel_sequence = NULL;
1628 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1629 		break;
1630 	}
1631 
1632 	bio->retry_count = 0;
1633 	bio->submit_tsc = 0;
1634 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1635 }
1636 
1637 static inline void
1638 bdev_nvme_admin_complete(struct nvme_bdev_io *bio, int rc)
1639 {
1640 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1641 	enum spdk_bdev_io_status io_status;
1642 
1643 	switch (rc) {
1644 	case 0:
1645 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1646 		break;
1647 	case -ENOMEM:
1648 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1649 		break;
1650 	case -ENXIO:
1651 	/* fallthrough */
1652 	default:
1653 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1654 		break;
1655 	}
1656 
1657 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1658 }
1659 
1660 static void
1661 bdev_nvme_clear_io_path_caches_done(struct nvme_ctrlr *nvme_ctrlr,
1662 				    void *ctx, int status)
1663 {
1664 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1665 
1666 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1667 	nvme_ctrlr->io_path_cache_clearing = false;
1668 
1669 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1670 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1671 		return;
1672 	}
1673 
1674 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1675 
1676 	nvme_ctrlr_unregister(nvme_ctrlr);
1677 }
1678 
1679 static void
1680 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1681 {
1682 	struct nvme_io_path *io_path;
1683 
1684 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1685 		if (io_path->nbdev_ch == NULL) {
1686 			continue;
1687 		}
1688 		bdev_nvme_clear_current_io_path(io_path->nbdev_ch);
1689 	}
1690 }
1691 
1692 static void
1693 bdev_nvme_clear_io_path_cache(struct nvme_ctrlr_channel_iter *i,
1694 			      struct nvme_ctrlr *nvme_ctrlr,
1695 			      struct nvme_ctrlr_channel *ctrlr_ch,
1696 			      void *ctx)
1697 {
1698 	assert(ctrlr_ch->qpair != NULL);
1699 
1700 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1701 
1702 	nvme_ctrlr_for_each_channel_continue(i, 0);
1703 }
1704 
1705 static void
1706 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1707 {
1708 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1709 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1710 	    nvme_ctrlr->io_path_cache_clearing) {
1711 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1712 		return;
1713 	}
1714 
1715 	nvme_ctrlr->io_path_cache_clearing = true;
1716 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1717 
1718 	nvme_ctrlr_for_each_channel(nvme_ctrlr,
1719 				    bdev_nvme_clear_io_path_cache,
1720 				    NULL,
1721 				    bdev_nvme_clear_io_path_caches_done);
1722 }
1723 
1724 static struct nvme_qpair *
1725 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1726 {
1727 	struct nvme_qpair *nvme_qpair;
1728 
1729 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1730 		if (nvme_qpair->qpair == qpair) {
1731 			break;
1732 		}
1733 	}
1734 
1735 	return nvme_qpair;
1736 }
1737 
1738 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1739 
1740 static void
1741 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1742 {
1743 	struct nvme_poll_group *group = poll_group_ctx;
1744 	struct nvme_qpair *nvme_qpair;
1745 	struct nvme_ctrlr *nvme_ctrlr;
1746 	struct nvme_ctrlr_channel *ctrlr_ch;
1747 	int status;
1748 
1749 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1750 	if (nvme_qpair == NULL) {
1751 		return;
1752 	}
1753 
1754 	if (nvme_qpair->qpair != NULL) {
1755 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1756 		nvme_qpair->qpair = NULL;
1757 	}
1758 
1759 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1760 
1761 	nvme_ctrlr = nvme_qpair->ctrlr;
1762 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1763 
1764 	if (ctrlr_ch != NULL) {
1765 		if (ctrlr_ch->reset_iter != NULL) {
1766 			/* We are in a full reset sequence. */
1767 			if (ctrlr_ch->connect_poller != NULL) {
1768 				/* qpair was failed to connect. Abort the reset sequence. */
1769 				NVME_CTRLR_INFOLOG(nvme_ctrlr,
1770 						   "qpair %p was failed to connect. abort the reset ctrlr sequence.\n",
1771 						   qpair);
1772 				spdk_poller_unregister(&ctrlr_ch->connect_poller);
1773 				status = -1;
1774 			} else {
1775 				/* qpair was completed to disconnect. Just move to the next ctrlr_channel. */
1776 				NVME_CTRLR_INFOLOG(nvme_ctrlr,
1777 						   "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1778 						   qpair);
1779 				status = 0;
1780 			}
1781 			nvme_ctrlr_for_each_channel_continue(ctrlr_ch->reset_iter, status);
1782 			ctrlr_ch->reset_iter = NULL;
1783 		} else {
1784 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1785 			NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpair %p was disconnected and freed. reset controller.\n",
1786 					   qpair);
1787 			bdev_nvme_failover_ctrlr(nvme_ctrlr);
1788 		}
1789 	} else {
1790 		/* In this case, ctrlr_channel is already deleted. */
1791 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpair %p was disconnected and freed. delete nvme_qpair.\n",
1792 				   qpair);
1793 		nvme_qpair_delete(nvme_qpair);
1794 	}
1795 }
1796 
1797 static void
1798 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1799 {
1800 	struct nvme_qpair *nvme_qpair;
1801 
1802 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1803 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1804 			continue;
1805 		}
1806 
1807 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1808 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1809 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1810 		}
1811 	}
1812 }
1813 
1814 static int
1815 bdev_nvme_poll(void *arg)
1816 {
1817 	struct nvme_poll_group *group = arg;
1818 	int64_t num_completions;
1819 
1820 	if (group->collect_spin_stat && group->start_ticks == 0) {
1821 		group->start_ticks = spdk_get_ticks();
1822 	}
1823 
1824 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1825 			  bdev_nvme_disconnected_qpair_cb);
1826 	if (group->collect_spin_stat) {
1827 		if (num_completions > 0) {
1828 			if (group->end_ticks != 0) {
1829 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1830 				group->end_ticks = 0;
1831 			}
1832 			group->start_ticks = 0;
1833 		} else {
1834 			group->end_ticks = spdk_get_ticks();
1835 		}
1836 	}
1837 
1838 	if (spdk_unlikely(num_completions < 0)) {
1839 		bdev_nvme_check_io_qpairs(group);
1840 	}
1841 
1842 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1843 }
1844 
1845 static int bdev_nvme_poll_adminq(void *arg);
1846 
1847 static void
1848 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1849 {
1850 	if (spdk_interrupt_mode_is_enabled()) {
1851 		return;
1852 	}
1853 
1854 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1855 
1856 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1857 					  nvme_ctrlr, new_period_us);
1858 }
1859 
1860 static int
1861 bdev_nvme_poll_adminq(void *arg)
1862 {
1863 	int32_t rc;
1864 	struct nvme_ctrlr *nvme_ctrlr = arg;
1865 	nvme_ctrlr_disconnected_cb disconnected_cb;
1866 
1867 	assert(nvme_ctrlr != NULL);
1868 
1869 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1870 	if (rc < 0) {
1871 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1872 		nvme_ctrlr->disconnected_cb = NULL;
1873 
1874 		if (disconnected_cb != NULL) {
1875 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1876 							    g_opts.nvme_adminq_poll_period_us);
1877 			disconnected_cb(nvme_ctrlr);
1878 		} else {
1879 			bdev_nvme_failover_ctrlr(nvme_ctrlr);
1880 		}
1881 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1882 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1883 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1884 	}
1885 
1886 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1887 }
1888 
1889 static void
1890 nvme_bdev_free(void *io_device)
1891 {
1892 	struct nvme_bdev *nvme_disk = io_device;
1893 
1894 	pthread_mutex_destroy(&nvme_disk->mutex);
1895 	free(nvme_disk->disk.name);
1896 	free(nvme_disk->err_stat);
1897 	free(nvme_disk);
1898 }
1899 
1900 static int
1901 bdev_nvme_destruct(void *ctx)
1902 {
1903 	struct nvme_bdev *nvme_disk = ctx;
1904 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1905 
1906 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1907 
1908 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1909 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1910 
1911 		nvme_ns->bdev = NULL;
1912 
1913 		assert(nvme_ns->id > 0);
1914 
1915 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1916 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1917 
1918 			nvme_ctrlr_put_ref(nvme_ns->ctrlr);
1919 			nvme_ns_free(nvme_ns);
1920 		} else {
1921 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1922 		}
1923 	}
1924 
1925 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1926 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1927 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1928 
1929 	spdk_io_device_unregister(nvme_disk, nvme_bdev_free);
1930 
1931 	return 0;
1932 }
1933 
1934 static int
1935 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1936 {
1937 	struct nvme_ctrlr *nvme_ctrlr;
1938 	struct spdk_nvme_io_qpair_opts opts;
1939 	struct spdk_nvme_qpair *qpair;
1940 	int rc;
1941 
1942 	nvme_ctrlr = nvme_qpair->ctrlr;
1943 
1944 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1945 	opts.create_only = true;
1946 	/* In interrupt mode qpairs must be created in sync mode, else it will never be connected.
1947 	 * delay_cmd_submit must be false as in interrupt mode requests cannot be submitted in
1948 	 * completion context.
1949 	 */
1950 	if (!spdk_interrupt_mode_is_enabled()) {
1951 		opts.async_mode = true;
1952 		opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1953 	}
1954 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1955 	g_opts.io_queue_requests = opts.io_queue_requests;
1956 
1957 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1958 	if (qpair == NULL) {
1959 		return -1;
1960 	}
1961 
1962 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1963 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1964 
1965 	assert(nvme_qpair->group != NULL);
1966 
1967 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1968 	if (rc != 0) {
1969 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Unable to begin polling on NVMe Channel.\n");
1970 		goto err;
1971 	}
1972 
1973 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1974 	if (rc != 0) {
1975 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Unable to connect I/O qpair.\n");
1976 		goto err;
1977 	}
1978 
1979 	nvme_qpair->qpair = qpair;
1980 
1981 	if (!g_opts.disable_auto_failback) {
1982 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1983 	}
1984 
1985 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Connecting qpair %p:%u started.\n",
1986 			   qpair, spdk_nvme_qpair_get_id(qpair));
1987 
1988 	return 0;
1989 
1990 err:
1991 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1992 
1993 	return rc;
1994 }
1995 
1996 static void bdev_nvme_reset_io_continue(void *cb_arg, int rc);
1997 
1998 static void
1999 bdev_nvme_complete_pending_resets(struct nvme_ctrlr *nvme_ctrlr, bool success)
2000 {
2001 	int rc = 0;
2002 	struct nvme_bdev_io *bio;
2003 
2004 	if (!success) {
2005 		rc = -1;
2006 	}
2007 
2008 	while (!TAILQ_EMPTY(&nvme_ctrlr->pending_resets)) {
2009 		bio = TAILQ_FIRST(&nvme_ctrlr->pending_resets);
2010 		TAILQ_REMOVE(&nvme_ctrlr->pending_resets, bio, retry_link);
2011 
2012 		bdev_nvme_reset_io_continue(bio, rc);
2013 	}
2014 }
2015 
2016 /* This function marks the current trid as failed by storing the current ticks
2017  * and then sets the next trid to the active trid within a controller if exists.
2018  *
2019  * The purpose of the boolean return value is to request the caller to disconnect
2020  * the current trid now to try connecting the next trid.
2021  */
2022 static bool
2023 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove, bool start)
2024 {
2025 	struct nvme_path_id *path_id, *next_path;
2026 	int rc __attribute__((unused));
2027 
2028 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
2029 	assert(path_id);
2030 	assert(path_id == nvme_ctrlr->active_path_id);
2031 	next_path = TAILQ_NEXT(path_id, link);
2032 
2033 	/* Update the last failed time. It means the trid is failed if its last
2034 	 * failed time is non-zero.
2035 	 */
2036 	path_id->last_failed_tsc = spdk_get_ticks();
2037 
2038 	if (next_path == NULL) {
2039 		/* There is no alternate trid within a controller. */
2040 		return false;
2041 	}
2042 
2043 	if (!start && nvme_ctrlr->opts.reconnect_delay_sec == 0) {
2044 		/* Connect is not retried in a controller reset sequence. Connecting
2045 		 * the next trid will be done by the next bdev_nvme_failover_ctrlr() call.
2046 		 */
2047 		return false;
2048 	}
2049 
2050 	assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
2051 
2052 	NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Start failover from %s:%s to %s:%s\n",
2053 			     path_id->trid.traddr, path_id->trid.trsvcid,
2054 			     next_path->trid.traddr, next_path->trid.trsvcid);
2055 
2056 	spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
2057 	nvme_ctrlr->active_path_id = next_path;
2058 	rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
2059 	assert(rc == 0);
2060 	TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
2061 	if (!remove) {
2062 		/** Shuffle the old trid to the end of the list and use the new one.
2063 		 * Allows for round robin through multiple connections.
2064 		 */
2065 		TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
2066 	} else {
2067 		free(path_id);
2068 	}
2069 
2070 	if (start || next_path->last_failed_tsc == 0) {
2071 		/* bdev_nvme_failover_ctrlr() is just called or the next trid is not failed
2072 		 * or used yet. Try the next trid now.
2073 		 */
2074 		return true;
2075 	}
2076 
2077 	if (spdk_get_ticks() > next_path->last_failed_tsc + spdk_get_ticks_hz() *
2078 	    nvme_ctrlr->opts.reconnect_delay_sec) {
2079 		/* Enough backoff passed since the next trid failed. Try the next trid now. */
2080 		return true;
2081 	}
2082 
2083 	/* The next trid will be tried after reconnect_delay_sec seconds. */
2084 	return false;
2085 }
2086 
2087 static bool
2088 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
2089 {
2090 	int32_t elapsed;
2091 
2092 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
2093 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
2094 		return false;
2095 	}
2096 
2097 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
2098 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
2099 		return true;
2100 	} else {
2101 		return false;
2102 	}
2103 }
2104 
2105 static bool
2106 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
2107 {
2108 	uint32_t elapsed;
2109 
2110 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
2111 		return false;
2112 	}
2113 
2114 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
2115 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
2116 		return true;
2117 	} else {
2118 		return false;
2119 	}
2120 }
2121 
2122 static void bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
2123 
2124 static void
2125 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
2126 {
2127 	int rc;
2128 
2129 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Start disconnecting ctrlr.\n");
2130 
2131 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
2132 	if (rc != 0) {
2133 		NVME_CTRLR_WARNLOG(nvme_ctrlr, "disconnecting ctrlr failed.\n");
2134 
2135 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
2136 		 * fail the reset sequence immediately.
2137 		 */
2138 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2139 		return;
2140 	}
2141 
2142 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
2143 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
2144 	 */
2145 	assert(nvme_ctrlr->disconnected_cb == NULL);
2146 	nvme_ctrlr->disconnected_cb = cb_fn;
2147 
2148 	/* During disconnection, reduce the period to poll adminq more often. */
2149 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
2150 }
2151 
2152 enum bdev_nvme_op_after_reset {
2153 	OP_NONE,
2154 	OP_COMPLETE_PENDING_DESTRUCT,
2155 	OP_DESTRUCT,
2156 	OP_DELAYED_RECONNECT,
2157 	OP_FAILOVER,
2158 };
2159 
2160 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
2161 
2162 static _bdev_nvme_op_after_reset
2163 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
2164 {
2165 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
2166 		/* Complete pending destruct after reset completes. */
2167 		return OP_COMPLETE_PENDING_DESTRUCT;
2168 	} else if (nvme_ctrlr->pending_failover) {
2169 		nvme_ctrlr->pending_failover = false;
2170 		nvme_ctrlr->reset_start_tsc = 0;
2171 		return OP_FAILOVER;
2172 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
2173 		nvme_ctrlr->reset_start_tsc = 0;
2174 		return OP_NONE;
2175 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2176 		return OP_DESTRUCT;
2177 	} else {
2178 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
2179 			nvme_ctrlr->fast_io_fail_timedout = true;
2180 		}
2181 		return OP_DELAYED_RECONNECT;
2182 	}
2183 }
2184 
2185 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
2186 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
2187 
2188 static int
2189 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
2190 {
2191 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2192 
2193 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
2194 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2195 
2196 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2197 
2198 	if (!nvme_ctrlr->reconnect_is_delayed) {
2199 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2200 		return SPDK_POLLER_BUSY;
2201 	}
2202 
2203 	nvme_ctrlr->reconnect_is_delayed = false;
2204 
2205 	if (nvme_ctrlr->destruct) {
2206 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2207 		return SPDK_POLLER_BUSY;
2208 	}
2209 
2210 	assert(nvme_ctrlr->resetting == false);
2211 	nvme_ctrlr->resetting = true;
2212 
2213 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2214 
2215 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2216 
2217 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2218 	return SPDK_POLLER_BUSY;
2219 }
2220 
2221 static void
2222 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
2223 {
2224 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2225 
2226 	assert(nvme_ctrlr->reconnect_is_delayed == false);
2227 	nvme_ctrlr->reconnect_is_delayed = true;
2228 
2229 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
2230 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
2231 					    nvme_ctrlr,
2232 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
2233 }
2234 
2235 static void remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr);
2236 
2237 static void
2238 bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
2239 {
2240 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2241 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2242 	enum bdev_nvme_op_after_reset op_after_reset;
2243 
2244 	assert(nvme_ctrlr->thread == spdk_get_thread());
2245 
2246 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2247 	if (!success) {
2248 		/* Connecting the active trid failed. Set the next alternate trid to the
2249 		 * active trid if it exists.
2250 		 */
2251 		if (bdev_nvme_failover_trid(nvme_ctrlr, false, false)) {
2252 			/* The next alternate trid exists and is ready to try. Try it now. */
2253 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
2254 
2255 			NVME_CTRLR_INFOLOG(nvme_ctrlr, "Try the next alternate trid %s:%s now.\n",
2256 					   nvme_ctrlr->active_path_id->trid.traddr,
2257 					   nvme_ctrlr->active_path_id->trid.trsvcid);
2258 
2259 			nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2260 			return;
2261 		}
2262 
2263 		/* We came here if there is no alternate trid or if the next trid exists but
2264 		 * is not ready to try. We will try the active trid after reconnect_delay_sec
2265 		 * seconds if it is non-zero or at the next reset call otherwise.
2266 		 */
2267 	} else {
2268 		/* Connecting the active trid succeeded. Clear the last failed time because it
2269 		 * means the trid is failed if its last failed time is non-zero.
2270 		 */
2271 		nvme_ctrlr->active_path_id->last_failed_tsc = 0;
2272 	}
2273 
2274 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Clear pending resets.\n");
2275 
2276 	/* Make sure we clear any pending resets before returning. */
2277 	bdev_nvme_complete_pending_resets(nvme_ctrlr, success);
2278 
2279 	if (!success) {
2280 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Resetting controller failed.\n");
2281 	} else {
2282 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Resetting controller successful.\n");
2283 	}
2284 
2285 	nvme_ctrlr->resetting = false;
2286 	nvme_ctrlr->dont_retry = false;
2287 	nvme_ctrlr->in_failover = false;
2288 
2289 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2290 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2291 
2292 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
2293 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2294 
2295 	/* Delay callbacks when the next operation is a failover. */
2296 	if (ctrlr_op_cb_fn && op_after_reset != OP_FAILOVER) {
2297 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, success ? 0 : -1);
2298 	}
2299 
2300 	switch (op_after_reset) {
2301 	case OP_COMPLETE_PENDING_DESTRUCT:
2302 		nvme_ctrlr_unregister(nvme_ctrlr);
2303 		break;
2304 	case OP_DESTRUCT:
2305 		bdev_nvme_delete_ctrlr(nvme_ctrlr, false);
2306 		remove_discovery_entry(nvme_ctrlr);
2307 		break;
2308 	case OP_DELAYED_RECONNECT:
2309 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
2310 		break;
2311 	case OP_FAILOVER:
2312 		nvme_ctrlr->ctrlr_op_cb_fn = ctrlr_op_cb_fn;
2313 		nvme_ctrlr->ctrlr_op_cb_arg = ctrlr_op_cb_arg;
2314 		bdev_nvme_failover_ctrlr(nvme_ctrlr);
2315 		break;
2316 	default:
2317 		break;
2318 	}
2319 }
2320 
2321 static void
2322 bdev_nvme_reset_create_qpairs_failed(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2323 {
2324 	bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2325 }
2326 
2327 static void
2328 bdev_nvme_reset_destroy_qpair(struct nvme_ctrlr_channel_iter *i,
2329 			      struct nvme_ctrlr *nvme_ctrlr,
2330 			      struct nvme_ctrlr_channel *ctrlr_ch, void *ctx)
2331 {
2332 	struct nvme_qpair *nvme_qpair;
2333 	struct spdk_nvme_qpair *qpair;
2334 
2335 	nvme_qpair = ctrlr_ch->qpair;
2336 	assert(nvme_qpair != NULL);
2337 
2338 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2339 
2340 	qpair = nvme_qpair->qpair;
2341 	if (qpair != NULL) {
2342 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "Start disconnecting qpair %p:%u.\n",
2343 				   qpair, spdk_nvme_qpair_get_id(qpair));
2344 
2345 		if (nvme_qpair->ctrlr->dont_retry) {
2346 			spdk_nvme_qpair_set_abort_dnr(qpair, true);
2347 		}
2348 		spdk_nvme_ctrlr_disconnect_io_qpair(qpair);
2349 
2350 		/* The current full reset sequence will move to the next
2351 		 * ctrlr_channel after the qpair is actually disconnected.
2352 		 */
2353 		assert(ctrlr_ch->reset_iter == NULL);
2354 		ctrlr_ch->reset_iter = i;
2355 	} else {
2356 		nvme_ctrlr_for_each_channel_continue(i, 0);
2357 	}
2358 }
2359 
2360 static void
2361 bdev_nvme_reset_create_qpairs_done(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2362 {
2363 	if (status == 0) {
2364 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpairs were created after ctrlr reset.\n");
2365 
2366 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, true);
2367 	} else {
2368 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpairs were failed to create after ctrlr reset.\n");
2369 
2370 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
2371 		nvme_ctrlr_for_each_channel(nvme_ctrlr,
2372 					    bdev_nvme_reset_destroy_qpair,
2373 					    NULL,
2374 					    bdev_nvme_reset_create_qpairs_failed);
2375 	}
2376 }
2377 
2378 static int
2379 bdev_nvme_reset_check_qpair_connected(void *ctx)
2380 {
2381 	struct nvme_ctrlr_channel *ctrlr_ch = ctx;
2382 	struct nvme_qpair *nvme_qpair = ctrlr_ch->qpair;
2383 	struct spdk_nvme_qpair *qpair;
2384 
2385 	if (ctrlr_ch->reset_iter == NULL) {
2386 		/* qpair was already failed to connect and the reset sequence is being aborted. */
2387 		assert(ctrlr_ch->connect_poller == NULL);
2388 		assert(nvme_qpair->qpair == NULL);
2389 
2390 		NVME_CTRLR_INFOLOG(nvme_qpair->ctrlr,
2391 				   "qpair was already failed to connect. reset is being aborted.\n");
2392 		return SPDK_POLLER_BUSY;
2393 	}
2394 
2395 	qpair = nvme_qpair->qpair;
2396 	assert(qpair != NULL);
2397 
2398 	if (!spdk_nvme_qpair_is_connected(qpair)) {
2399 		return SPDK_POLLER_BUSY;
2400 	}
2401 
2402 	NVME_CTRLR_INFOLOG(nvme_qpair->ctrlr, "qpair %p:%u was connected.\n",
2403 			   qpair, spdk_nvme_qpair_get_id(qpair));
2404 
2405 	spdk_poller_unregister(&ctrlr_ch->connect_poller);
2406 
2407 	/* qpair was completed to connect. Move to the next ctrlr_channel */
2408 	nvme_ctrlr_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2409 	ctrlr_ch->reset_iter = NULL;
2410 
2411 	if (!g_opts.disable_auto_failback) {
2412 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
2413 	}
2414 
2415 	return SPDK_POLLER_BUSY;
2416 }
2417 
2418 static void
2419 bdev_nvme_reset_create_qpair(struct nvme_ctrlr_channel_iter *i,
2420 			     struct nvme_ctrlr *nvme_ctrlr,
2421 			     struct nvme_ctrlr_channel *ctrlr_ch,
2422 			     void *ctx)
2423 {
2424 	struct nvme_qpair *nvme_qpair = ctrlr_ch->qpair;
2425 	struct spdk_nvme_qpair *qpair;
2426 	int rc = 0;
2427 
2428 	if (nvme_qpair->qpair == NULL) {
2429 		rc = bdev_nvme_create_qpair(nvme_qpair);
2430 	}
2431 	if (rc == 0) {
2432 		ctrlr_ch->connect_poller = SPDK_POLLER_REGISTER(bdev_nvme_reset_check_qpair_connected,
2433 					   ctrlr_ch, 0);
2434 
2435 		qpair = nvme_qpair->qpair;
2436 
2437 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "Start checking qpair %p:%u to be connected.\n",
2438 				   qpair, spdk_nvme_qpair_get_id(qpair));
2439 
2440 		/* The current full reset sequence will move to the next
2441 		 * ctrlr_channel after the qpair is actually connected.
2442 		 */
2443 		assert(ctrlr_ch->reset_iter == NULL);
2444 		ctrlr_ch->reset_iter = i;
2445 	} else {
2446 		nvme_ctrlr_for_each_channel_continue(i, rc);
2447 	}
2448 }
2449 
2450 static void
2451 nvme_ctrlr_check_namespaces(struct nvme_ctrlr *nvme_ctrlr)
2452 {
2453 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
2454 	struct nvme_ns *nvme_ns;
2455 
2456 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
2457 	     nvme_ns != NULL;
2458 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
2459 		if (!spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
2460 			SPDK_DEBUGLOG(bdev_nvme, "NSID %u was removed during reset.\n", nvme_ns->id);
2461 			/* NS can be added again. Just nullify nvme_ns->ns. */
2462 			nvme_ns->ns = NULL;
2463 		}
2464 	}
2465 }
2466 
2467 
2468 static int
2469 bdev_nvme_reconnect_ctrlr_poll(void *arg)
2470 {
2471 	struct nvme_ctrlr *nvme_ctrlr = arg;
2472 	struct spdk_nvme_transport_id *trid;
2473 	int rc = -ETIMEDOUT;
2474 
2475 	if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2476 		/* Mark the ctrlr as failed. The next call to
2477 		 * spdk_nvme_ctrlr_reconnect_poll_async() will then
2478 		 * do the necessary cleanup and return failure.
2479 		 */
2480 		spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
2481 	}
2482 
2483 	rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
2484 	if (rc == -EAGAIN) {
2485 		return SPDK_POLLER_BUSY;
2486 	}
2487 
2488 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
2489 	if (rc == 0) {
2490 		trid = &nvme_ctrlr->active_path_id->trid;
2491 
2492 		if (spdk_nvme_trtype_is_fabrics(trid->trtype)) {
2493 			NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr was connected to %s:%s. Create qpairs.\n",
2494 					   trid->traddr, trid->trsvcid);
2495 		} else {
2496 			NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr was connected. Create qpairs.\n");
2497 		}
2498 
2499 		nvme_ctrlr_check_namespaces(nvme_ctrlr);
2500 
2501 		/* Recreate all of the I/O queue pairs */
2502 		nvme_ctrlr_for_each_channel(nvme_ctrlr,
2503 					    bdev_nvme_reset_create_qpair,
2504 					    NULL,
2505 					    bdev_nvme_reset_create_qpairs_done);
2506 	} else {
2507 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr could not be connected.\n");
2508 
2509 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2510 	}
2511 	return SPDK_POLLER_BUSY;
2512 }
2513 
2514 static void
2515 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2516 {
2517 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Start reconnecting ctrlr.\n");
2518 
2519 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
2520 
2521 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
2522 	assert(nvme_ctrlr->reset_detach_poller == NULL);
2523 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
2524 					  nvme_ctrlr, 0);
2525 }
2526 
2527 static void
2528 bdev_nvme_reset_destroy_qpair_done(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2529 {
2530 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
2531 	assert(status == 0);
2532 
2533 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpairs were deleted.\n");
2534 
2535 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2536 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2537 	} else {
2538 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2539 	}
2540 }
2541 
2542 static void
2543 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2544 {
2545 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Delete qpairs for reset.\n");
2546 
2547 	nvme_ctrlr_for_each_channel(nvme_ctrlr,
2548 				    bdev_nvme_reset_destroy_qpair,
2549 				    NULL,
2550 				    bdev_nvme_reset_destroy_qpair_done);
2551 }
2552 
2553 static void
2554 bdev_nvme_reconnect_ctrlr_now(void *ctx)
2555 {
2556 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2557 
2558 	assert(nvme_ctrlr->resetting == true);
2559 	assert(nvme_ctrlr->thread == spdk_get_thread());
2560 
2561 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2562 
2563 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2564 
2565 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2566 }
2567 
2568 static void
2569 _bdev_nvme_reset_ctrlr(void *ctx)
2570 {
2571 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2572 
2573 	assert(nvme_ctrlr->resetting == true);
2574 	assert(nvme_ctrlr->thread == spdk_get_thread());
2575 
2576 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2577 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
2578 	} else {
2579 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
2580 	}
2581 }
2582 
2583 static int
2584 bdev_nvme_reset_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, spdk_msg_fn *msg_fn)
2585 {
2586 	if (nvme_ctrlr->destruct) {
2587 		return -ENXIO;
2588 	}
2589 
2590 	if (nvme_ctrlr->resetting) {
2591 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Unable to perform reset, already in progress.\n");
2592 		return -EBUSY;
2593 	}
2594 
2595 	if (nvme_ctrlr->disabled) {
2596 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Unable to perform reset. Controller is disabled.\n");
2597 		return -EALREADY;
2598 	}
2599 
2600 	nvme_ctrlr->resetting = true;
2601 	nvme_ctrlr->dont_retry = true;
2602 
2603 	if (nvme_ctrlr->reconnect_is_delayed) {
2604 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "Reconnect is already scheduled.\n");
2605 		*msg_fn = bdev_nvme_reconnect_ctrlr_now;
2606 		nvme_ctrlr->reconnect_is_delayed = false;
2607 	} else {
2608 		*msg_fn = _bdev_nvme_reset_ctrlr;
2609 		assert(nvme_ctrlr->reset_start_tsc == 0);
2610 	}
2611 
2612 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2613 
2614 	return 0;
2615 }
2616 
2617 static int
2618 bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2619 {
2620 	spdk_msg_fn msg_fn;
2621 	int rc;
2622 
2623 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2624 	rc = bdev_nvme_reset_ctrlr_unsafe(nvme_ctrlr, &msg_fn);
2625 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2626 
2627 	if (rc == 0) {
2628 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2629 	}
2630 
2631 	return rc;
2632 }
2633 
2634 static int
2635 bdev_nvme_enable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2636 {
2637 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2638 	if (nvme_ctrlr->destruct) {
2639 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2640 		return -ENXIO;
2641 	}
2642 
2643 	if (nvme_ctrlr->resetting) {
2644 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2645 		return -EBUSY;
2646 	}
2647 
2648 	if (!nvme_ctrlr->disabled) {
2649 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2650 		return -EALREADY;
2651 	}
2652 
2653 	nvme_ctrlr->disabled = false;
2654 	nvme_ctrlr->resetting = true;
2655 
2656 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2657 
2658 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2659 
2660 	spdk_thread_send_msg(nvme_ctrlr->thread, bdev_nvme_reconnect_ctrlr_now, nvme_ctrlr);
2661 	return 0;
2662 }
2663 
2664 static void
2665 bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr)
2666 {
2667 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2668 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2669 	enum bdev_nvme_op_after_reset op_after_disable;
2670 
2671 	assert(nvme_ctrlr->thread == spdk_get_thread());
2672 
2673 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2674 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2675 
2676 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2677 
2678 	nvme_ctrlr->resetting = false;
2679 	nvme_ctrlr->dont_retry = false;
2680 
2681 	op_after_disable = bdev_nvme_check_op_after_reset(nvme_ctrlr, true);
2682 
2683 	nvme_ctrlr->disabled = true;
2684 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2685 
2686 	/* Make sure we clear any pending resets before returning. */
2687 	bdev_nvme_complete_pending_resets(nvme_ctrlr, true);
2688 
2689 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2690 
2691 	if (ctrlr_op_cb_fn) {
2692 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, 0);
2693 	}
2694 
2695 	switch (op_after_disable) {
2696 	case OP_COMPLETE_PENDING_DESTRUCT:
2697 		nvme_ctrlr_unregister(nvme_ctrlr);
2698 		break;
2699 	default:
2700 		break;
2701 	}
2702 }
2703 
2704 static void
2705 bdev_nvme_disable_destroy_qpairs_done(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2706 {
2707 	assert(status == 0);
2708 
2709 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2710 		bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2711 	} else {
2712 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_ctrlr_complete);
2713 	}
2714 }
2715 
2716 static void
2717 bdev_nvme_disable_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2718 {
2719 	nvme_ctrlr_for_each_channel(nvme_ctrlr,
2720 				    bdev_nvme_reset_destroy_qpair,
2721 				    NULL,
2722 				    bdev_nvme_disable_destroy_qpairs_done);
2723 }
2724 
2725 static void
2726 _bdev_nvme_cancel_reconnect_and_disable_ctrlr(void *ctx)
2727 {
2728 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2729 
2730 	assert(nvme_ctrlr->resetting == true);
2731 	assert(nvme_ctrlr->thread == spdk_get_thread());
2732 
2733 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2734 
2735 	bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2736 }
2737 
2738 static void
2739 _bdev_nvme_disconnect_and_disable_ctrlr(void *ctx)
2740 {
2741 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2742 
2743 	assert(nvme_ctrlr->resetting == true);
2744 	assert(nvme_ctrlr->thread == spdk_get_thread());
2745 
2746 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2747 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_destroy_qpairs);
2748 	} else {
2749 		bdev_nvme_disable_destroy_qpairs(nvme_ctrlr);
2750 	}
2751 }
2752 
2753 static int
2754 bdev_nvme_disable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2755 {
2756 	spdk_msg_fn msg_fn;
2757 
2758 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2759 	if (nvme_ctrlr->destruct) {
2760 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2761 		return -ENXIO;
2762 	}
2763 
2764 	if (nvme_ctrlr->resetting) {
2765 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2766 		return -EBUSY;
2767 	}
2768 
2769 	if (nvme_ctrlr->disabled) {
2770 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2771 		return -EALREADY;
2772 	}
2773 
2774 	nvme_ctrlr->resetting = true;
2775 	nvme_ctrlr->dont_retry = true;
2776 
2777 	if (nvme_ctrlr->reconnect_is_delayed) {
2778 		msg_fn = _bdev_nvme_cancel_reconnect_and_disable_ctrlr;
2779 		nvme_ctrlr->reconnect_is_delayed = false;
2780 	} else {
2781 		msg_fn = _bdev_nvme_disconnect_and_disable_ctrlr;
2782 	}
2783 
2784 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2785 
2786 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2787 
2788 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2789 	return 0;
2790 }
2791 
2792 static int
2793 nvme_ctrlr_op(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2794 	      bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2795 {
2796 	int rc;
2797 
2798 	switch (op) {
2799 	case NVME_CTRLR_OP_RESET:
2800 		rc = bdev_nvme_reset_ctrlr(nvme_ctrlr);
2801 		break;
2802 	case NVME_CTRLR_OP_ENABLE:
2803 		rc = bdev_nvme_enable_ctrlr(nvme_ctrlr);
2804 		break;
2805 	case NVME_CTRLR_OP_DISABLE:
2806 		rc = bdev_nvme_disable_ctrlr(nvme_ctrlr);
2807 		break;
2808 	default:
2809 		rc = -EINVAL;
2810 		break;
2811 	}
2812 
2813 	if (rc == 0) {
2814 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
2815 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
2816 		nvme_ctrlr->ctrlr_op_cb_fn = cb_fn;
2817 		nvme_ctrlr->ctrlr_op_cb_arg = cb_arg;
2818 	}
2819 	return rc;
2820 }
2821 
2822 struct nvme_ctrlr_op_rpc_ctx {
2823 	struct nvme_ctrlr *nvme_ctrlr;
2824 	struct spdk_thread *orig_thread;
2825 	enum nvme_ctrlr_op op;
2826 	int rc;
2827 	bdev_nvme_ctrlr_op_cb cb_fn;
2828 	void *cb_arg;
2829 };
2830 
2831 static void
2832 _nvme_ctrlr_op_rpc_complete(void *_ctx)
2833 {
2834 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2835 
2836 	assert(ctx != NULL);
2837 	assert(ctx->cb_fn != NULL);
2838 
2839 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2840 
2841 	free(ctx);
2842 }
2843 
2844 static void
2845 nvme_ctrlr_op_rpc_complete(void *cb_arg, int rc)
2846 {
2847 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2848 
2849 	ctx->rc = rc;
2850 
2851 	spdk_thread_send_msg(ctx->orig_thread, _nvme_ctrlr_op_rpc_complete, ctx);
2852 }
2853 
2854 void
2855 nvme_ctrlr_op_rpc(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2856 		  bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2857 {
2858 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2859 	int rc;
2860 
2861 	assert(cb_fn != NULL);
2862 
2863 	ctx = calloc(1, sizeof(*ctx));
2864 	if (ctx == NULL) {
2865 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2866 		cb_fn(cb_arg, -ENOMEM);
2867 		return;
2868 	}
2869 
2870 	ctx->orig_thread = spdk_get_thread();
2871 	ctx->cb_fn = cb_fn;
2872 	ctx->cb_arg = cb_arg;
2873 
2874 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_ctrlr_op_rpc_complete, ctx);
2875 	if (rc == 0) {
2876 		return;
2877 	} else if (rc == -EALREADY) {
2878 		rc = 0;
2879 	}
2880 
2881 	nvme_ctrlr_op_rpc_complete(ctx, rc);
2882 }
2883 
2884 static void nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc);
2885 
2886 static void
2887 _nvme_bdev_ctrlr_op_rpc_continue(void *_ctx)
2888 {
2889 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2890 	struct nvme_ctrlr *prev_nvme_ctrlr, *next_nvme_ctrlr;
2891 	int rc;
2892 
2893 	prev_nvme_ctrlr = ctx->nvme_ctrlr;
2894 	ctx->nvme_ctrlr = NULL;
2895 
2896 	if (ctx->rc != 0) {
2897 		goto complete;
2898 	}
2899 
2900 	next_nvme_ctrlr = TAILQ_NEXT(prev_nvme_ctrlr, tailq);
2901 	if (next_nvme_ctrlr == NULL) {
2902 		goto complete;
2903 	}
2904 
2905 	rc = nvme_ctrlr_op(next_nvme_ctrlr, ctx->op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2906 	if (rc == 0) {
2907 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2908 		return;
2909 	} else if (rc == -EALREADY) {
2910 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2911 		rc = 0;
2912 	}
2913 
2914 	ctx->rc = rc;
2915 
2916 complete:
2917 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2918 	free(ctx);
2919 }
2920 
2921 static void
2922 nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc)
2923 {
2924 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2925 
2926 	ctx->rc = rc;
2927 
2928 	spdk_thread_send_msg(ctx->orig_thread, _nvme_bdev_ctrlr_op_rpc_continue, ctx);
2929 }
2930 
2931 void
2932 nvme_bdev_ctrlr_op_rpc(struct nvme_bdev_ctrlr *nbdev_ctrlr, enum nvme_ctrlr_op op,
2933 		       bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2934 {
2935 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2936 	struct nvme_ctrlr *nvme_ctrlr;
2937 	int rc;
2938 
2939 	assert(cb_fn != NULL);
2940 
2941 	ctx = calloc(1, sizeof(*ctx));
2942 	if (ctx == NULL) {
2943 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2944 		cb_fn(cb_arg, -ENOMEM);
2945 		return;
2946 	}
2947 
2948 	ctx->orig_thread = spdk_get_thread();
2949 	ctx->op = op;
2950 	ctx->cb_fn = cb_fn;
2951 	ctx->cb_arg = cb_arg;
2952 
2953 	nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
2954 	assert(nvme_ctrlr != NULL);
2955 
2956 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2957 	if (rc == 0) {
2958 		ctx->nvme_ctrlr = nvme_ctrlr;
2959 		return;
2960 	} else if (rc == -EALREADY) {
2961 		ctx->nvme_ctrlr = nvme_ctrlr;
2962 		rc = 0;
2963 	}
2964 
2965 	nvme_bdev_ctrlr_op_rpc_continue(ctx, rc);
2966 }
2967 
2968 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
2969 
2970 static void
2971 bdev_nvme_unfreeze_bdev_channel_done(struct nvme_bdev *nbdev, void *ctx, int status)
2972 {
2973 	struct nvme_bdev_io *bio = ctx;
2974 	enum spdk_bdev_io_status io_status;
2975 
2976 	if (bio->cpl.cdw0 == 0) {
2977 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2978 	} else {
2979 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
2980 	}
2981 
2982 	NVME_BDEV_INFOLOG(nbdev, "reset_io %p completed, status:%d\n", bio, io_status);
2983 
2984 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
2985 }
2986 
2987 static void
2988 bdev_nvme_unfreeze_bdev_channel(struct nvme_bdev_channel_iter *i,
2989 				struct nvme_bdev *nbdev,
2990 				struct nvme_bdev_channel *nbdev_ch, void *ctx)
2991 {
2992 	bdev_nvme_abort_retry_ios(nbdev_ch);
2993 	nbdev_ch->resetting = false;
2994 
2995 	nvme_bdev_for_each_channel_continue(i, 0);
2996 }
2997 
2998 static void
2999 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
3000 {
3001 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
3002 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
3003 
3004 	/* Abort all queued I/Os for retry. */
3005 	nvme_bdev_for_each_channel(nbdev,
3006 				   bdev_nvme_unfreeze_bdev_channel,
3007 				   bio,
3008 				   bdev_nvme_unfreeze_bdev_channel_done);
3009 }
3010 
3011 static void
3012 _bdev_nvme_reset_io_continue(void *ctx)
3013 {
3014 	struct nvme_bdev_io *bio = ctx;
3015 	struct nvme_io_path *prev_io_path, *next_io_path;
3016 	int rc;
3017 
3018 	prev_io_path = bio->io_path;
3019 	bio->io_path = NULL;
3020 
3021 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
3022 	if (next_io_path == NULL) {
3023 		goto complete;
3024 	}
3025 
3026 	rc = _bdev_nvme_reset_io(next_io_path, bio);
3027 	if (rc == 0) {
3028 		return;
3029 	}
3030 
3031 complete:
3032 	bdev_nvme_reset_io_complete(bio);
3033 }
3034 
3035 static void
3036 bdev_nvme_reset_io_continue(void *cb_arg, int rc)
3037 {
3038 	struct nvme_bdev_io *bio = cb_arg;
3039 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
3040 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
3041 
3042 	NVME_BDEV_INFOLOG(nbdev, "continue reset_io %p, rc:%d\n", bio, rc);
3043 
3044 	/* Reset status is initialized as "failed". Set to "success" once we have at least one
3045 	 * successfully reset nvme_ctrlr.
3046 	 */
3047 	if (rc == 0) {
3048 		bio->cpl.cdw0 = 0;
3049 	}
3050 
3051 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_nvme_reset_io_continue, bio);
3052 }
3053 
3054 static int
3055 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
3056 {
3057 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
3058 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
3059 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
3060 	spdk_msg_fn msg_fn;
3061 	int rc;
3062 
3063 	assert(bio->io_path == NULL);
3064 	bio->io_path = io_path;
3065 
3066 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3067 	rc = bdev_nvme_reset_ctrlr_unsafe(nvme_ctrlr, &msg_fn);
3068 	if (rc == -EBUSY) {
3069 		/*
3070 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
3071 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
3072 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
3073 		 */
3074 		TAILQ_INSERT_TAIL(&nvme_ctrlr->pending_resets, bio, retry_link);
3075 	}
3076 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3077 
3078 	if (rc == 0) {
3079 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
3080 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
3081 		nvme_ctrlr->ctrlr_op_cb_fn = bdev_nvme_reset_io_continue;
3082 		nvme_ctrlr->ctrlr_op_cb_arg = bio;
3083 
3084 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
3085 
3086 		NVME_BDEV_INFOLOG(nbdev, "reset_io %p started resetting ctrlr [%s, %u].\n",
3087 				  bio, CTRLR_STRING(nvme_ctrlr), CTRLR_ID(nvme_ctrlr));
3088 	} else if (rc == -EBUSY) {
3089 		rc = 0;
3090 
3091 		NVME_BDEV_INFOLOG(nbdev, "reset_io %p was queued to ctrlr [%s, %u].\n",
3092 				  bio, CTRLR_STRING(nvme_ctrlr), CTRLR_ID(nvme_ctrlr));
3093 	} else {
3094 		NVME_BDEV_INFOLOG(nbdev, "reset_io %p could not reset ctrlr [%s, %u], rc:%d\n",
3095 				  bio, CTRLR_STRING(nvme_ctrlr), CTRLR_ID(nvme_ctrlr), rc);
3096 	}
3097 
3098 	return rc;
3099 }
3100 
3101 static void
3102 bdev_nvme_freeze_bdev_channel_done(struct nvme_bdev *nbdev, void *ctx, int status)
3103 {
3104 	struct nvme_bdev_io *bio = ctx;
3105 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
3106 	struct nvme_bdev_channel *nbdev_ch;
3107 	struct nvme_io_path *io_path;
3108 	int rc;
3109 
3110 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
3111 
3112 	/* Initialize with failed status. With multipath it is enough to have at least one successful
3113 	 * nvme_ctrlr reset. If there is none, reset status will remain failed.
3114 	 */
3115 	bio->cpl.cdw0 = 1;
3116 
3117 	/* Reset all nvme_ctrlrs of a bdev controller sequentially. */
3118 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
3119 	assert(io_path != NULL);
3120 
3121 	rc = _bdev_nvme_reset_io(io_path, bio);
3122 	if (rc != 0) {
3123 		/* If the current nvme_ctrlr is disabled, skip it and move to the next nvme_ctrlr. */
3124 		rc = (rc == -EALREADY) ? 0 : rc;
3125 
3126 		bdev_nvme_reset_io_continue(bio, rc);
3127 	}
3128 }
3129 
3130 static void
3131 bdev_nvme_freeze_bdev_channel(struct nvme_bdev_channel_iter *i,
3132 			      struct nvme_bdev *nbdev,
3133 			      struct nvme_bdev_channel *nbdev_ch, void *ctx)
3134 {
3135 	nbdev_ch->resetting = true;
3136 
3137 	nvme_bdev_for_each_channel_continue(i, 0);
3138 }
3139 
3140 static void
3141 bdev_nvme_reset_io(struct nvme_bdev *nbdev, struct nvme_bdev_io *bio)
3142 {
3143 	NVME_BDEV_INFOLOG(nbdev, "reset_io %p started.\n", bio);
3144 
3145 	nvme_bdev_for_each_channel(nbdev,
3146 				   bdev_nvme_freeze_bdev_channel,
3147 				   bio,
3148 				   bdev_nvme_freeze_bdev_channel_done);
3149 }
3150 
3151 static int
3152 bdev_nvme_failover_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove)
3153 {
3154 	if (nvme_ctrlr->destruct) {
3155 		/* Don't bother resetting if the controller is in the process of being destructed. */
3156 		return -ENXIO;
3157 	}
3158 
3159 	if (nvme_ctrlr->resetting) {
3160 		if (!nvme_ctrlr->in_failover) {
3161 			NVME_CTRLR_NOTICELOG(nvme_ctrlr,
3162 					     "Reset is already in progress. Defer failover until reset completes.\n");
3163 
3164 			/* Defer failover until reset completes. */
3165 			nvme_ctrlr->pending_failover = true;
3166 			return -EINPROGRESS;
3167 		} else {
3168 			NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Unable to perform failover, already in progress.\n");
3169 			return -EBUSY;
3170 		}
3171 	}
3172 
3173 	bdev_nvme_failover_trid(nvme_ctrlr, remove, true);
3174 
3175 	if (nvme_ctrlr->reconnect_is_delayed) {
3176 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Reconnect is already scheduled.\n");
3177 
3178 		/* We rely on the next reconnect for the failover. */
3179 		return -EALREADY;
3180 	}
3181 
3182 	if (nvme_ctrlr->disabled) {
3183 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Controller is disabled.\n");
3184 
3185 		/* We rely on the enablement for the failover. */
3186 		return -EALREADY;
3187 	}
3188 
3189 	nvme_ctrlr->resetting = true;
3190 	nvme_ctrlr->in_failover = true;
3191 
3192 	assert(nvme_ctrlr->reset_start_tsc == 0);
3193 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
3194 
3195 	return 0;
3196 }
3197 
3198 static int
3199 bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
3200 {
3201 	int rc;
3202 
3203 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3204 	rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, false);
3205 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3206 
3207 	if (rc == 0) {
3208 		spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset_ctrlr, nvme_ctrlr);
3209 	} else if (rc == -EALREADY) {
3210 		rc = 0;
3211 	}
3212 
3213 	return rc;
3214 }
3215 
3216 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
3217 			   uint64_t num_blocks);
3218 
3219 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
3220 				  uint64_t num_blocks);
3221 
3222 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
3223 			  uint64_t src_offset_blocks,
3224 			  uint64_t num_blocks);
3225 
3226 static void
3227 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
3228 		     bool success)
3229 {
3230 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3231 	int ret;
3232 
3233 	if (!success) {
3234 		ret = -EINVAL;
3235 		goto exit;
3236 	}
3237 
3238 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
3239 		ret = -ENXIO;
3240 		goto exit;
3241 	}
3242 
3243 	ret = bdev_nvme_readv(bio,
3244 			      bdev_io->u.bdev.iovs,
3245 			      bdev_io->u.bdev.iovcnt,
3246 			      bdev_io->u.bdev.md_buf,
3247 			      bdev_io->u.bdev.num_blocks,
3248 			      bdev_io->u.bdev.offset_blocks,
3249 			      bdev_io->u.bdev.dif_check_flags,
3250 			      bdev_io->u.bdev.memory_domain,
3251 			      bdev_io->u.bdev.memory_domain_ctx,
3252 			      bdev_io->u.bdev.accel_sequence);
3253 
3254 exit:
3255 	if (spdk_unlikely(ret != 0)) {
3256 		bdev_nvme_io_complete(bio, ret);
3257 	}
3258 }
3259 
3260 static inline void
3261 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
3262 {
3263 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3264 	struct spdk_bdev *bdev = bdev_io->bdev;
3265 	struct nvme_bdev_io *nbdev_io_to_abort;
3266 	int rc = 0;
3267 
3268 	switch (bdev_io->type) {
3269 	case SPDK_BDEV_IO_TYPE_READ:
3270 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
3271 
3272 			rc = bdev_nvme_readv(nbdev_io,
3273 					     bdev_io->u.bdev.iovs,
3274 					     bdev_io->u.bdev.iovcnt,
3275 					     bdev_io->u.bdev.md_buf,
3276 					     bdev_io->u.bdev.num_blocks,
3277 					     bdev_io->u.bdev.offset_blocks,
3278 					     bdev_io->u.bdev.dif_check_flags,
3279 					     bdev_io->u.bdev.memory_domain,
3280 					     bdev_io->u.bdev.memory_domain_ctx,
3281 					     bdev_io->u.bdev.accel_sequence);
3282 		} else {
3283 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
3284 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
3285 			rc = 0;
3286 		}
3287 		break;
3288 	case SPDK_BDEV_IO_TYPE_WRITE:
3289 		rc = bdev_nvme_writev(nbdev_io,
3290 				      bdev_io->u.bdev.iovs,
3291 				      bdev_io->u.bdev.iovcnt,
3292 				      bdev_io->u.bdev.md_buf,
3293 				      bdev_io->u.bdev.num_blocks,
3294 				      bdev_io->u.bdev.offset_blocks,
3295 				      bdev_io->u.bdev.dif_check_flags,
3296 				      bdev_io->u.bdev.memory_domain,
3297 				      bdev_io->u.bdev.memory_domain_ctx,
3298 				      bdev_io->u.bdev.accel_sequence,
3299 				      bdev_io->u.bdev.nvme_cdw12,
3300 				      bdev_io->u.bdev.nvme_cdw13);
3301 		break;
3302 	case SPDK_BDEV_IO_TYPE_COMPARE:
3303 		rc = bdev_nvme_comparev(nbdev_io,
3304 					bdev_io->u.bdev.iovs,
3305 					bdev_io->u.bdev.iovcnt,
3306 					bdev_io->u.bdev.md_buf,
3307 					bdev_io->u.bdev.num_blocks,
3308 					bdev_io->u.bdev.offset_blocks,
3309 					bdev_io->u.bdev.dif_check_flags);
3310 		break;
3311 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3312 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
3313 						   bdev_io->u.bdev.iovs,
3314 						   bdev_io->u.bdev.iovcnt,
3315 						   bdev_io->u.bdev.fused_iovs,
3316 						   bdev_io->u.bdev.fused_iovcnt,
3317 						   bdev_io->u.bdev.md_buf,
3318 						   bdev_io->u.bdev.num_blocks,
3319 						   bdev_io->u.bdev.offset_blocks,
3320 						   bdev_io->u.bdev.dif_check_flags);
3321 		break;
3322 	case SPDK_BDEV_IO_TYPE_UNMAP:
3323 		rc = bdev_nvme_unmap(nbdev_io,
3324 				     bdev_io->u.bdev.offset_blocks,
3325 				     bdev_io->u.bdev.num_blocks);
3326 		break;
3327 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3328 		rc =  bdev_nvme_write_zeroes(nbdev_io,
3329 					     bdev_io->u.bdev.offset_blocks,
3330 					     bdev_io->u.bdev.num_blocks);
3331 		break;
3332 	case SPDK_BDEV_IO_TYPE_RESET:
3333 		nbdev_io->io_path = NULL;
3334 		bdev_nvme_reset_io(bdev->ctxt, nbdev_io);
3335 		return;
3336 
3337 	case SPDK_BDEV_IO_TYPE_FLUSH:
3338 		bdev_nvme_io_complete(nbdev_io, 0);
3339 		return;
3340 
3341 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3342 		rc = bdev_nvme_zone_appendv(nbdev_io,
3343 					    bdev_io->u.bdev.iovs,
3344 					    bdev_io->u.bdev.iovcnt,
3345 					    bdev_io->u.bdev.md_buf,
3346 					    bdev_io->u.bdev.num_blocks,
3347 					    bdev_io->u.bdev.offset_blocks,
3348 					    bdev_io->u.bdev.dif_check_flags);
3349 		break;
3350 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3351 		rc = bdev_nvme_get_zone_info(nbdev_io,
3352 					     bdev_io->u.zone_mgmt.zone_id,
3353 					     bdev_io->u.zone_mgmt.num_zones,
3354 					     bdev_io->u.zone_mgmt.buf);
3355 		break;
3356 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3357 		rc = bdev_nvme_zone_management(nbdev_io,
3358 					       bdev_io->u.zone_mgmt.zone_id,
3359 					       bdev_io->u.zone_mgmt.zone_action);
3360 		break;
3361 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3362 		nbdev_io->io_path = NULL;
3363 		bdev_nvme_admin_passthru(nbdev_ch,
3364 					 nbdev_io,
3365 					 &bdev_io->u.nvme_passthru.cmd,
3366 					 bdev_io->u.nvme_passthru.buf,
3367 					 bdev_io->u.nvme_passthru.nbytes);
3368 		return;
3369 
3370 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3371 		rc = bdev_nvme_io_passthru(nbdev_io,
3372 					   &bdev_io->u.nvme_passthru.cmd,
3373 					   bdev_io->u.nvme_passthru.buf,
3374 					   bdev_io->u.nvme_passthru.nbytes);
3375 		break;
3376 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3377 		rc = bdev_nvme_io_passthru_md(nbdev_io,
3378 					      &bdev_io->u.nvme_passthru.cmd,
3379 					      bdev_io->u.nvme_passthru.buf,
3380 					      bdev_io->u.nvme_passthru.nbytes,
3381 					      bdev_io->u.nvme_passthru.md_buf,
3382 					      bdev_io->u.nvme_passthru.md_len);
3383 		break;
3384 	case SPDK_BDEV_IO_TYPE_NVME_IOV_MD:
3385 		rc = bdev_nvme_iov_passthru_md(nbdev_io,
3386 					       &bdev_io->u.nvme_passthru.cmd,
3387 					       bdev_io->u.nvme_passthru.iovs,
3388 					       bdev_io->u.nvme_passthru.iovcnt,
3389 					       bdev_io->u.nvme_passthru.nbytes,
3390 					       bdev_io->u.nvme_passthru.md_buf,
3391 					       bdev_io->u.nvme_passthru.md_len);
3392 		break;
3393 	case SPDK_BDEV_IO_TYPE_ABORT:
3394 		nbdev_io->io_path = NULL;
3395 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
3396 		bdev_nvme_abort(nbdev_ch,
3397 				nbdev_io,
3398 				nbdev_io_to_abort);
3399 		return;
3400 
3401 	case SPDK_BDEV_IO_TYPE_COPY:
3402 		rc = bdev_nvme_copy(nbdev_io,
3403 				    bdev_io->u.bdev.offset_blocks,
3404 				    bdev_io->u.bdev.copy.src_offset_blocks,
3405 				    bdev_io->u.bdev.num_blocks);
3406 		break;
3407 	default:
3408 		rc = -EINVAL;
3409 		break;
3410 	}
3411 
3412 	if (spdk_unlikely(rc != 0)) {
3413 		bdev_nvme_io_complete(nbdev_io, rc);
3414 	}
3415 }
3416 
3417 static void
3418 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
3419 {
3420 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3421 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3422 
3423 	if (spdk_likely(nbdev_io->submit_tsc == 0)) {
3424 		nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io);
3425 	} else {
3426 		/* There are cases where submit_tsc != 0, i.e. retry I/O.
3427 		 * We need to update submit_tsc here.
3428 		 */
3429 		nbdev_io->submit_tsc = spdk_get_ticks();
3430 	}
3431 
3432 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
3433 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
3434 	if (spdk_unlikely(!nbdev_io->io_path)) {
3435 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
3436 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
3437 			return;
3438 		}
3439 
3440 		/* Admin commands do not use the optimal I/O path.
3441 		 * Simply fall through even if it is not found.
3442 		 */
3443 	}
3444 
3445 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
3446 }
3447 
3448 static bool
3449 bdev_nvme_is_supported_csi(enum spdk_nvme_csi csi)
3450 {
3451 	switch (csi) {
3452 	case SPDK_NVME_CSI_NVM:
3453 		return true;
3454 	case SPDK_NVME_CSI_ZNS:
3455 		return true;
3456 	default:
3457 		return false;
3458 	}
3459 }
3460 
3461 static bool
3462 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
3463 {
3464 	struct nvme_bdev *nbdev = ctx;
3465 	struct nvme_ns *nvme_ns;
3466 	struct spdk_nvme_ns *ns;
3467 	struct spdk_nvme_ctrlr *ctrlr;
3468 	const struct spdk_nvme_ctrlr_data *cdata;
3469 
3470 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3471 	assert(nvme_ns != NULL);
3472 	ns = nvme_ns->ns;
3473 	if (ns == NULL) {
3474 		return false;
3475 	}
3476 
3477 	if (!bdev_nvme_is_supported_csi(spdk_nvme_ns_get_csi(ns))) {
3478 		switch (io_type) {
3479 		case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3480 		case SPDK_BDEV_IO_TYPE_NVME_IO:
3481 			return true;
3482 
3483 		case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3484 			return spdk_nvme_ns_get_md_size(ns) ? true : false;
3485 
3486 		default:
3487 			return false;
3488 		}
3489 	}
3490 
3491 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3492 
3493 	switch (io_type) {
3494 	case SPDK_BDEV_IO_TYPE_READ:
3495 	case SPDK_BDEV_IO_TYPE_WRITE:
3496 	case SPDK_BDEV_IO_TYPE_RESET:
3497 	case SPDK_BDEV_IO_TYPE_FLUSH:
3498 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3499 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3500 	case SPDK_BDEV_IO_TYPE_ABORT:
3501 		return true;
3502 
3503 	case SPDK_BDEV_IO_TYPE_COMPARE:
3504 		return spdk_nvme_ns_supports_compare(ns);
3505 
3506 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3507 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
3508 
3509 	case SPDK_BDEV_IO_TYPE_UNMAP:
3510 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3511 		return cdata->oncs.dsm;
3512 
3513 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3514 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3515 		return cdata->oncs.write_zeroes;
3516 
3517 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3518 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
3519 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
3520 			return true;
3521 		}
3522 		return false;
3523 
3524 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3525 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3526 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
3527 
3528 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3529 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
3530 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
3531 
3532 	case SPDK_BDEV_IO_TYPE_COPY:
3533 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3534 		return cdata->oncs.copy;
3535 
3536 	default:
3537 		return false;
3538 	}
3539 }
3540 
3541 static int
3542 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
3543 {
3544 	struct nvme_qpair *nvme_qpair;
3545 	struct spdk_io_channel *pg_ch;
3546 	int rc;
3547 
3548 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
3549 	if (!nvme_qpair) {
3550 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to alloc nvme_qpair.\n");
3551 		return -1;
3552 	}
3553 
3554 	TAILQ_INIT(&nvme_qpair->io_path_list);
3555 
3556 	nvme_qpair->ctrlr = nvme_ctrlr;
3557 	nvme_qpair->ctrlr_ch = ctrlr_ch;
3558 
3559 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
3560 	if (!pg_ch) {
3561 		free(nvme_qpair);
3562 		return -1;
3563 	}
3564 
3565 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
3566 
3567 #ifdef SPDK_CONFIG_VTUNE
3568 	nvme_qpair->group->collect_spin_stat = true;
3569 #else
3570 	nvme_qpair->group->collect_spin_stat = false;
3571 #endif
3572 
3573 	if (!nvme_ctrlr->disabled) {
3574 		/* If a nvme_ctrlr is disabled, don't try to create qpair for it. Qpair will
3575 		 * be created when it's enabled.
3576 		 */
3577 		rc = bdev_nvme_create_qpair(nvme_qpair);
3578 		if (rc != 0) {
3579 			/* nvme_ctrlr can't create IO qpair if connection is down.
3580 			 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
3581 			 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
3582 			 * submitted IO will be queued until IO qpair is successfully created.
3583 			 *
3584 			 * Hence, if both are satisfied, ignore the failure.
3585 			 */
3586 			if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
3587 				spdk_put_io_channel(pg_ch);
3588 				free(nvme_qpair);
3589 				return rc;
3590 			}
3591 		}
3592 	}
3593 
3594 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3595 
3596 	ctrlr_ch->qpair = nvme_qpair;
3597 
3598 	nvme_ctrlr_get_ref(nvme_ctrlr);
3599 
3600 	return 0;
3601 }
3602 
3603 static int
3604 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3605 {
3606 	struct nvme_ctrlr *nvme_ctrlr = io_device;
3607 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3608 
3609 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
3610 }
3611 
3612 static void
3613 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
3614 {
3615 	struct nvme_io_path *io_path, *next;
3616 
3617 	assert(nvme_qpair->group != NULL);
3618 
3619 	TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) {
3620 		TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
3621 		nvme_io_path_free(io_path);
3622 	}
3623 
3624 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3625 
3626 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
3627 
3628 	nvme_ctrlr_put_ref(nvme_qpair->ctrlr);
3629 
3630 	free(nvme_qpair);
3631 }
3632 
3633 static void
3634 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3635 {
3636 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3637 	struct nvme_qpair *nvme_qpair;
3638 
3639 	nvme_qpair = ctrlr_ch->qpair;
3640 	assert(nvme_qpair != NULL);
3641 
3642 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
3643 
3644 	if (nvme_qpair->qpair != NULL) {
3645 		/* Always try to disconnect the qpair, even if a reset is in progress.
3646 		 * The qpair may have been created after the reset process started.
3647 		 */
3648 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
3649 		if (ctrlr_ch->reset_iter) {
3650 			/* Skip current ctrlr_channel in a full reset sequence because
3651 			 * it is being deleted now.
3652 			 */
3653 			nvme_ctrlr_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
3654 		}
3655 
3656 		/* We cannot release a reference to the poll group now.
3657 		 * The qpair may be disconnected asynchronously later.
3658 		 * We need to poll it until it is actually disconnected.
3659 		 * Just detach the qpair from the deleting ctrlr_channel.
3660 		 */
3661 		nvme_qpair->ctrlr_ch = NULL;
3662 	} else {
3663 		assert(ctrlr_ch->reset_iter == NULL);
3664 
3665 		nvme_qpair_delete(nvme_qpair);
3666 	}
3667 }
3668 
3669 static inline struct spdk_io_channel *
3670 bdev_nvme_get_accel_channel(struct nvme_poll_group *group)
3671 {
3672 	if (spdk_unlikely(!group->accel_channel)) {
3673 		group->accel_channel = spdk_accel_get_io_channel();
3674 		if (!group->accel_channel) {
3675 			SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
3676 				    group);
3677 			return NULL;
3678 		}
3679 	}
3680 
3681 	return group->accel_channel;
3682 }
3683 
3684 static void
3685 bdev_nvme_finish_sequence(void *seq, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3686 {
3687 	spdk_accel_sequence_finish(seq, cb_fn, cb_arg);
3688 }
3689 
3690 static void
3691 bdev_nvme_abort_sequence(void *seq)
3692 {
3693 	spdk_accel_sequence_abort(seq);
3694 }
3695 
3696 static void
3697 bdev_nvme_reverse_sequence(void *seq)
3698 {
3699 	spdk_accel_sequence_reverse(seq);
3700 }
3701 
3702 static int
3703 bdev_nvme_append_crc32c(void *ctx, void **seq, uint32_t *dst, struct iovec *iovs, uint32_t iovcnt,
3704 			struct spdk_memory_domain *domain, void *domain_ctx, uint32_t seed,
3705 			spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3706 {
3707 	struct spdk_io_channel *ch;
3708 	struct nvme_poll_group *group = ctx;
3709 
3710 	ch = bdev_nvme_get_accel_channel(group);
3711 	if (spdk_unlikely(ch == NULL)) {
3712 		return -ENOMEM;
3713 	}
3714 
3715 	return spdk_accel_append_crc32c((struct spdk_accel_sequence **)seq, ch, dst, iovs, iovcnt,
3716 					domain, domain_ctx, seed, cb_fn, cb_arg);
3717 }
3718 
3719 static int
3720 bdev_nvme_append_copy(void *ctx, void **seq, struct iovec *dst_iovs, uint32_t dst_iovcnt,
3721 		      struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
3722 		      struct iovec *src_iovs, uint32_t src_iovcnt,
3723 		      struct spdk_memory_domain *src_domain, void *src_domain_ctx,
3724 		      spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3725 {
3726 	struct spdk_io_channel *ch;
3727 	struct nvme_poll_group *group = ctx;
3728 
3729 	ch = bdev_nvme_get_accel_channel(group);
3730 	if (spdk_unlikely(ch == NULL)) {
3731 		return -ENOMEM;
3732 	}
3733 
3734 	return spdk_accel_append_copy((struct spdk_accel_sequence **)seq, ch,
3735 				      dst_iovs, dst_iovcnt, dst_domain, dst_domain_ctx,
3736 				      src_iovs, src_iovcnt, src_domain, src_domain_ctx,
3737 				      cb_fn, cb_arg);
3738 }
3739 
3740 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
3741 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
3742 	.append_crc32c		= bdev_nvme_append_crc32c,
3743 	.append_copy		= bdev_nvme_append_copy,
3744 	.finish_sequence	= bdev_nvme_finish_sequence,
3745 	.reverse_sequence	= bdev_nvme_reverse_sequence,
3746 	.abort_sequence		= bdev_nvme_abort_sequence,
3747 };
3748 
3749 static int
3750 bdev_nvme_interrupt_wrapper(void *ctx)
3751 {
3752 	int num_events;
3753 	struct nvme_poll_group *group = ctx;
3754 
3755 	num_events = spdk_nvme_poll_group_wait(group->group, bdev_nvme_disconnected_qpair_cb);
3756 	if (spdk_unlikely(num_events < 0)) {
3757 		bdev_nvme_check_io_qpairs(group);
3758 	}
3759 
3760 	return num_events;
3761 }
3762 
3763 static int
3764 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
3765 {
3766 	struct nvme_poll_group *group = ctx_buf;
3767 	uint64_t period;
3768 	int fd;
3769 
3770 	TAILQ_INIT(&group->qpair_list);
3771 
3772 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
3773 	if (group->group == NULL) {
3774 		return -1;
3775 	}
3776 
3777 	period = spdk_interrupt_mode_is_enabled() ? 0 : g_opts.nvme_ioq_poll_period_us;
3778 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, period);
3779 
3780 	if (group->poller == NULL) {
3781 		spdk_nvme_poll_group_destroy(group->group);
3782 		return -1;
3783 	}
3784 
3785 	if (spdk_interrupt_mode_is_enabled()) {
3786 		spdk_poller_register_interrupt(group->poller, NULL, NULL);
3787 
3788 		fd = spdk_nvme_poll_group_get_fd(group->group);
3789 		if (fd < 0) {
3790 			spdk_nvme_poll_group_destroy(group->group);
3791 			return -1;
3792 		}
3793 
3794 		group->intr = SPDK_INTERRUPT_REGISTER(fd, bdev_nvme_interrupt_wrapper, group);
3795 		if (!group->intr) {
3796 			spdk_nvme_poll_group_destroy(group->group);
3797 			return -1;
3798 		}
3799 	}
3800 
3801 	return 0;
3802 }
3803 
3804 static void
3805 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
3806 {
3807 	struct nvme_poll_group *group = ctx_buf;
3808 
3809 	assert(TAILQ_EMPTY(&group->qpair_list));
3810 
3811 	if (group->accel_channel) {
3812 		spdk_put_io_channel(group->accel_channel);
3813 	}
3814 
3815 	if (spdk_interrupt_mode_is_enabled()) {
3816 		spdk_interrupt_unregister(&group->intr);
3817 	}
3818 
3819 	spdk_poller_unregister(&group->poller);
3820 	if (spdk_nvme_poll_group_destroy(group->group)) {
3821 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
3822 		assert(false);
3823 	}
3824 }
3825 
3826 static struct spdk_io_channel *
3827 bdev_nvme_get_io_channel(void *ctx)
3828 {
3829 	struct nvme_bdev *nvme_bdev = ctx;
3830 
3831 	return spdk_get_io_channel(nvme_bdev);
3832 }
3833 
3834 static void *
3835 bdev_nvme_get_module_ctx(void *ctx)
3836 {
3837 	struct nvme_bdev *nvme_bdev = ctx;
3838 	struct nvme_ns *nvme_ns;
3839 
3840 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
3841 		return NULL;
3842 	}
3843 
3844 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
3845 	if (!nvme_ns) {
3846 		return NULL;
3847 	}
3848 
3849 	return nvme_ns->ns;
3850 }
3851 
3852 static const char *
3853 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
3854 {
3855 	switch (ana_state) {
3856 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3857 		return "optimized";
3858 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3859 		return "non_optimized";
3860 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3861 		return "inaccessible";
3862 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
3863 		return "persistent_loss";
3864 	case SPDK_NVME_ANA_CHANGE_STATE:
3865 		return "change";
3866 	default:
3867 		return NULL;
3868 	}
3869 }
3870 
3871 static int
3872 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
3873 {
3874 	struct spdk_memory_domain **_domains = NULL;
3875 	struct nvme_bdev *nbdev = ctx;
3876 	struct nvme_ns *nvme_ns;
3877 	int i = 0, _array_size = array_size;
3878 	int rc = 0;
3879 
3880 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3881 		if (domains && array_size >= i) {
3882 			_domains = &domains[i];
3883 		} else {
3884 			_domains = NULL;
3885 		}
3886 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
3887 		if (rc > 0) {
3888 			i += rc;
3889 			if (_array_size >= rc) {
3890 				_array_size -= rc;
3891 			} else {
3892 				_array_size = 0;
3893 			}
3894 		} else if (rc < 0) {
3895 			return rc;
3896 		}
3897 	}
3898 
3899 	return i;
3900 }
3901 
3902 static const char *
3903 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
3904 {
3905 	if (nvme_ctrlr->destruct) {
3906 		return "deleting";
3907 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
3908 		return "failed";
3909 	} else if (nvme_ctrlr->resetting) {
3910 		return "resetting";
3911 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
3912 		return "reconnect_is_delayed";
3913 	} else if (nvme_ctrlr->disabled) {
3914 		return "disabled";
3915 	} else {
3916 		return "enabled";
3917 	}
3918 }
3919 
3920 void
3921 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
3922 {
3923 	struct spdk_nvme_transport_id *trid;
3924 	const struct spdk_nvme_ctrlr_opts *opts;
3925 	const struct spdk_nvme_ctrlr_data *cdata;
3926 	struct nvme_path_id *path_id;
3927 	int32_t numa_id;
3928 
3929 	spdk_json_write_object_begin(w);
3930 
3931 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
3932 
3933 #ifdef SPDK_CONFIG_NVME_CUSE
3934 	size_t cuse_name_size = 128;
3935 	char cuse_name[cuse_name_size];
3936 
3937 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
3938 	if (rc == 0) {
3939 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3940 	}
3941 #endif
3942 	trid = &nvme_ctrlr->active_path_id->trid;
3943 	spdk_json_write_named_object_begin(w, "trid");
3944 	nvme_bdev_dump_trid_json(trid, w);
3945 	spdk_json_write_object_end(w);
3946 
3947 	path_id = TAILQ_NEXT(nvme_ctrlr->active_path_id, link);
3948 	if (path_id != NULL) {
3949 		spdk_json_write_named_array_begin(w, "alternate_trids");
3950 		do {
3951 			trid = &path_id->trid;
3952 			spdk_json_write_object_begin(w);
3953 			nvme_bdev_dump_trid_json(trid, w);
3954 			spdk_json_write_object_end(w);
3955 
3956 			path_id = TAILQ_NEXT(path_id, link);
3957 		} while (path_id != NULL);
3958 		spdk_json_write_array_end(w);
3959 	}
3960 
3961 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
3962 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3963 
3964 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
3965 	spdk_json_write_named_object_begin(w, "host");
3966 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
3967 	spdk_json_write_named_string(w, "addr", opts->src_addr);
3968 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
3969 	spdk_json_write_object_end(w);
3970 
3971 	numa_id = spdk_nvme_ctrlr_get_numa_id(nvme_ctrlr->ctrlr);
3972 	if (numa_id != SPDK_ENV_NUMA_ID_ANY) {
3973 		spdk_json_write_named_uint32(w, "numa_id", numa_id);
3974 	}
3975 	spdk_json_write_object_end(w);
3976 }
3977 
3978 static void
3979 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
3980 			 struct nvme_ns *nvme_ns)
3981 {
3982 	struct spdk_nvme_ns *ns;
3983 	struct spdk_nvme_ctrlr *ctrlr;
3984 	const struct spdk_nvme_ctrlr_data *cdata;
3985 	const struct spdk_nvme_transport_id *trid;
3986 	union spdk_nvme_vs_register vs;
3987 	const struct spdk_nvme_ns_data *nsdata;
3988 	char buf[128];
3989 
3990 	ns = nvme_ns->ns;
3991 	if (ns == NULL) {
3992 		return;
3993 	}
3994 
3995 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3996 
3997 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3998 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
3999 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
4000 
4001 	spdk_json_write_object_begin(w);
4002 
4003 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
4004 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
4005 	}
4006 
4007 	spdk_json_write_named_object_begin(w, "trid");
4008 
4009 	nvme_bdev_dump_trid_json(trid, w);
4010 
4011 	spdk_json_write_object_end(w);
4012 
4013 #ifdef SPDK_CONFIG_NVME_CUSE
4014 	size_t cuse_name_size = 128;
4015 	char cuse_name[cuse_name_size];
4016 
4017 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
4018 					    cuse_name, &cuse_name_size);
4019 	if (rc == 0) {
4020 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
4021 	}
4022 #endif
4023 
4024 	spdk_json_write_named_object_begin(w, "ctrlr_data");
4025 
4026 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
4027 
4028 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
4029 
4030 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
4031 	spdk_str_trim(buf);
4032 	spdk_json_write_named_string(w, "model_number", buf);
4033 
4034 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
4035 	spdk_str_trim(buf);
4036 	spdk_json_write_named_string(w, "serial_number", buf);
4037 
4038 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
4039 	spdk_str_trim(buf);
4040 	spdk_json_write_named_string(w, "firmware_revision", buf);
4041 
4042 	if (cdata->subnqn[0] != '\0') {
4043 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
4044 	}
4045 
4046 	spdk_json_write_named_object_begin(w, "oacs");
4047 
4048 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
4049 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
4050 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
4051 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
4052 
4053 	spdk_json_write_object_end(w);
4054 
4055 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
4056 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
4057 
4058 	spdk_json_write_object_end(w);
4059 
4060 	spdk_json_write_named_object_begin(w, "vs");
4061 
4062 	spdk_json_write_name(w, "nvme_version");
4063 	if (vs.bits.ter) {
4064 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
4065 	} else {
4066 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
4067 	}
4068 
4069 	spdk_json_write_object_end(w);
4070 
4071 	nsdata = spdk_nvme_ns_get_data(ns);
4072 
4073 	spdk_json_write_named_object_begin(w, "ns_data");
4074 
4075 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
4076 
4077 	if (cdata->cmic.ana_reporting) {
4078 		spdk_json_write_named_string(w, "ana_state",
4079 					     _nvme_ana_state_str(nvme_ns->ana_state));
4080 	}
4081 
4082 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
4083 
4084 	spdk_json_write_object_end(w);
4085 
4086 	if (cdata->oacs.security) {
4087 		spdk_json_write_named_object_begin(w, "security");
4088 
4089 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
4090 
4091 		spdk_json_write_object_end(w);
4092 	}
4093 
4094 	spdk_json_write_object_end(w);
4095 }
4096 
4097 static const char *
4098 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
4099 {
4100 	switch (nbdev->mp_policy) {
4101 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
4102 		return "active_passive";
4103 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
4104 		return "active_active";
4105 	default:
4106 		assert(false);
4107 		return "invalid";
4108 	}
4109 }
4110 
4111 static const char *
4112 nvme_bdev_get_mp_selector_str(struct nvme_bdev *nbdev)
4113 {
4114 	switch (nbdev->mp_selector) {
4115 	case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
4116 		return "round_robin";
4117 	case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
4118 		return "queue_depth";
4119 	default:
4120 		assert(false);
4121 		return "invalid";
4122 	}
4123 }
4124 
4125 static int
4126 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
4127 {
4128 	struct nvme_bdev *nvme_bdev = ctx;
4129 	struct nvme_ns *nvme_ns;
4130 
4131 	pthread_mutex_lock(&nvme_bdev->mutex);
4132 	spdk_json_write_named_array_begin(w, "nvme");
4133 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
4134 		nvme_namespace_info_json(w, nvme_ns);
4135 	}
4136 	spdk_json_write_array_end(w);
4137 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
4138 	if (nvme_bdev->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
4139 		spdk_json_write_named_string(w, "selector", nvme_bdev_get_mp_selector_str(nvme_bdev));
4140 		if (nvme_bdev->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
4141 			spdk_json_write_named_uint32(w, "rr_min_io", nvme_bdev->rr_min_io);
4142 		}
4143 	}
4144 	pthread_mutex_unlock(&nvme_bdev->mutex);
4145 
4146 	return 0;
4147 }
4148 
4149 static void
4150 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
4151 {
4152 	/* No config per bdev needed */
4153 }
4154 
4155 static uint64_t
4156 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
4157 {
4158 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
4159 	struct nvme_io_path *io_path;
4160 	struct nvme_poll_group *group;
4161 	uint64_t spin_time = 0;
4162 
4163 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
4164 		group = io_path->qpair->group;
4165 
4166 		if (!group || !group->collect_spin_stat) {
4167 			continue;
4168 		}
4169 
4170 		if (group->end_ticks != 0) {
4171 			group->spin_ticks += (group->end_ticks - group->start_ticks);
4172 			group->end_ticks = 0;
4173 		}
4174 
4175 		spin_time += group->spin_ticks;
4176 		group->start_ticks = 0;
4177 		group->spin_ticks = 0;
4178 	}
4179 
4180 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
4181 }
4182 
4183 static void
4184 bdev_nvme_reset_device_stat(void *ctx)
4185 {
4186 	struct nvme_bdev *nbdev = ctx;
4187 
4188 	if (nbdev->err_stat != NULL) {
4189 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
4190 	}
4191 }
4192 
4193 /* JSON string should be lowercases and underscore delimited string. */
4194 static void
4195 bdev_nvme_format_nvme_status(char *dst, const char *src)
4196 {
4197 	char tmp[256];
4198 
4199 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
4200 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
4201 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
4202 	spdk_strlwr(dst);
4203 }
4204 
4205 static void
4206 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
4207 {
4208 	struct nvme_bdev *nbdev = ctx;
4209 	struct spdk_nvme_status status = {};
4210 	uint16_t sct, sc;
4211 	char status_json[256];
4212 	const char *status_str;
4213 
4214 	if (nbdev->err_stat == NULL) {
4215 		return;
4216 	}
4217 
4218 	spdk_json_write_named_object_begin(w, "nvme_error");
4219 
4220 	spdk_json_write_named_object_begin(w, "status_type");
4221 	for (sct = 0; sct < 8; sct++) {
4222 		if (nbdev->err_stat->status_type[sct] == 0) {
4223 			continue;
4224 		}
4225 		status.sct = sct;
4226 
4227 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
4228 		assert(status_str != NULL);
4229 		bdev_nvme_format_nvme_status(status_json, status_str);
4230 
4231 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
4232 	}
4233 	spdk_json_write_object_end(w);
4234 
4235 	spdk_json_write_named_object_begin(w, "status_code");
4236 	for (sct = 0; sct < 4; sct++) {
4237 		status.sct = sct;
4238 		for (sc = 0; sc < 256; sc++) {
4239 			if (nbdev->err_stat->status[sct][sc] == 0) {
4240 				continue;
4241 			}
4242 			status.sc = sc;
4243 
4244 			status_str = spdk_nvme_cpl_get_status_string(&status);
4245 			assert(status_str != NULL);
4246 			bdev_nvme_format_nvme_status(status_json, status_str);
4247 
4248 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
4249 		}
4250 	}
4251 	spdk_json_write_object_end(w);
4252 
4253 	spdk_json_write_object_end(w);
4254 }
4255 
4256 static bool
4257 bdev_nvme_accel_sequence_supported(void *ctx, enum spdk_bdev_io_type type)
4258 {
4259 	struct nvme_bdev *nbdev = ctx;
4260 	struct nvme_ns *nvme_ns;
4261 	struct spdk_nvme_ctrlr *ctrlr;
4262 
4263 	if (!g_opts.allow_accel_sequence) {
4264 		return false;
4265 	}
4266 
4267 	switch (type) {
4268 	case SPDK_BDEV_IO_TYPE_WRITE:
4269 	case SPDK_BDEV_IO_TYPE_READ:
4270 		break;
4271 	default:
4272 		return false;
4273 	}
4274 
4275 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
4276 	assert(nvme_ns != NULL);
4277 
4278 	ctrlr = nvme_ns->ctrlr->ctrlr;
4279 	assert(ctrlr != NULL);
4280 
4281 	return spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ACCEL_SEQUENCE_SUPPORTED;
4282 }
4283 
4284 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
4285 	.destruct			= bdev_nvme_destruct,
4286 	.submit_request			= bdev_nvme_submit_request,
4287 	.io_type_supported		= bdev_nvme_io_type_supported,
4288 	.get_io_channel			= bdev_nvme_get_io_channel,
4289 	.dump_info_json			= bdev_nvme_dump_info_json,
4290 	.write_config_json		= bdev_nvme_write_config_json,
4291 	.get_spin_time			= bdev_nvme_get_spin_time,
4292 	.get_module_ctx			= bdev_nvme_get_module_ctx,
4293 	.get_memory_domains		= bdev_nvme_get_memory_domains,
4294 	.accel_sequence_supported	= bdev_nvme_accel_sequence_supported,
4295 	.reset_device_stat		= bdev_nvme_reset_device_stat,
4296 	.dump_device_stat_json		= bdev_nvme_dump_device_stat_json,
4297 };
4298 
4299 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
4300 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
4301 
4302 static int
4303 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
4304 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
4305 {
4306 	struct spdk_nvme_ana_group_descriptor *copied_desc;
4307 	uint8_t *orig_desc;
4308 	uint32_t i, desc_size, copy_len;
4309 	int rc = 0;
4310 
4311 	if (nvme_ctrlr->ana_log_page == NULL) {
4312 		return -EINVAL;
4313 	}
4314 
4315 	copied_desc = nvme_ctrlr->copied_ana_desc;
4316 
4317 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
4318 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
4319 
4320 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
4321 		memcpy(copied_desc, orig_desc, copy_len);
4322 
4323 		rc = cb_fn(copied_desc, cb_arg);
4324 		if (rc != 0) {
4325 			break;
4326 		}
4327 
4328 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
4329 			    copied_desc->num_of_nsid * sizeof(uint32_t);
4330 		orig_desc += desc_size;
4331 		copy_len -= desc_size;
4332 	}
4333 
4334 	return rc;
4335 }
4336 
4337 static int
4338 nvme_ns_ana_transition_timedout(void *ctx)
4339 {
4340 	struct nvme_ns *nvme_ns = ctx;
4341 
4342 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4343 	nvme_ns->ana_transition_timedout = true;
4344 
4345 	return SPDK_POLLER_BUSY;
4346 }
4347 
4348 static void
4349 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
4350 		       const struct spdk_nvme_ana_group_descriptor *desc)
4351 {
4352 	const struct spdk_nvme_ctrlr_data *cdata;
4353 
4354 	nvme_ns->ana_group_id = desc->ana_group_id;
4355 	nvme_ns->ana_state = desc->ana_state;
4356 	nvme_ns->ana_state_updating = false;
4357 
4358 	switch (nvme_ns->ana_state) {
4359 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
4360 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
4361 		nvme_ns->ana_transition_timedout = false;
4362 		spdk_poller_unregister(&nvme_ns->anatt_timer);
4363 		break;
4364 
4365 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
4366 	case SPDK_NVME_ANA_CHANGE_STATE:
4367 		if (nvme_ns->anatt_timer != NULL) {
4368 			break;
4369 		}
4370 
4371 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4372 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
4373 				       nvme_ns,
4374 				       cdata->anatt * SPDK_SEC_TO_USEC);
4375 		break;
4376 	default:
4377 		break;
4378 	}
4379 }
4380 
4381 static int
4382 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
4383 {
4384 	struct nvme_ns *nvme_ns = cb_arg;
4385 	uint32_t i;
4386 
4387 	assert(nvme_ns->ns != NULL);
4388 
4389 	for (i = 0; i < desc->num_of_nsid; i++) {
4390 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
4391 			continue;
4392 		}
4393 
4394 		_nvme_ns_set_ana_state(nvme_ns, desc);
4395 		return 1;
4396 	}
4397 
4398 	return 0;
4399 }
4400 
4401 static int
4402 nvme_generate_uuid(const char *sn, uint32_t nsid, struct spdk_uuid *uuid)
4403 {
4404 	int rc = 0;
4405 	struct spdk_uuid new_uuid, namespace_uuid;
4406 	char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'};
4407 	/* This namespace UUID was generated using uuid_generate() method. */
4408 	const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"};
4409 	int size;
4410 
4411 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
4412 
4413 	spdk_uuid_set_null(&new_uuid);
4414 	spdk_uuid_set_null(&namespace_uuid);
4415 
4416 	size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid);
4417 	if (size <= 0 || (unsigned long)size >= sizeof(merged_str)) {
4418 		return -EINVAL;
4419 	}
4420 
4421 	spdk_uuid_parse(&namespace_uuid, namespace_str);
4422 
4423 	rc = spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size);
4424 	if (rc == 0) {
4425 		memcpy(uuid, &new_uuid, sizeof(struct spdk_uuid));
4426 	}
4427 
4428 	return rc;
4429 }
4430 
4431 static int
4432 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
4433 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
4434 		 struct spdk_bdev_nvme_ctrlr_opts *bdev_opts, void *ctx)
4435 {
4436 	const struct spdk_uuid		*uuid;
4437 	const uint8_t *nguid;
4438 	const struct spdk_nvme_ctrlr_data *cdata;
4439 	const struct spdk_nvme_ns_data	*nsdata;
4440 	const struct spdk_nvme_ctrlr_opts *opts;
4441 	enum spdk_nvme_csi		csi;
4442 	uint32_t atomic_bs, phys_bs, bs;
4443 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
4444 	int rc;
4445 
4446 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4447 	csi = spdk_nvme_ns_get_csi(ns);
4448 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
4449 
4450 	switch (csi) {
4451 	case SPDK_NVME_CSI_NVM:
4452 		disk->product_name = "NVMe disk";
4453 		break;
4454 	case SPDK_NVME_CSI_ZNS:
4455 		disk->product_name = "NVMe ZNS disk";
4456 		disk->zoned = true;
4457 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
4458 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
4459 					     spdk_nvme_ns_get_extended_sector_size(ns);
4460 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
4461 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
4462 		break;
4463 	default:
4464 		if (bdev_opts->allow_unrecognized_csi) {
4465 			disk->product_name = "NVMe Passthrough disk";
4466 			break;
4467 		}
4468 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
4469 		return -ENOTSUP;
4470 	}
4471 
4472 	nguid = spdk_nvme_ns_get_nguid(ns);
4473 	if (!nguid) {
4474 		uuid = spdk_nvme_ns_get_uuid(ns);
4475 		if (uuid) {
4476 			disk->uuid = *uuid;
4477 		} else if (g_opts.generate_uuids) {
4478 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
4479 			rc = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns), &disk->uuid);
4480 			if (rc < 0) {
4481 				SPDK_ERRLOG("UUID generation failed (%s)\n", spdk_strerror(-rc));
4482 				return rc;
4483 			}
4484 		}
4485 	} else {
4486 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
4487 	}
4488 
4489 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
4490 	if (!disk->name) {
4491 		return -ENOMEM;
4492 	}
4493 
4494 	disk->write_cache = 0;
4495 	if (cdata->vwc.present) {
4496 		/* Enable if the Volatile Write Cache exists */
4497 		disk->write_cache = 1;
4498 	}
4499 	if (cdata->oncs.write_zeroes) {
4500 		disk->max_write_zeroes = UINT16_MAX + 1;
4501 	}
4502 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
4503 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
4504 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
4505 	disk->ctratt.raw = cdata->ctratt.raw;
4506 	disk->nsid = spdk_nvme_ns_get_id(ns);
4507 	/* NVMe driver will split one request into multiple requests
4508 	 * based on MDTS and stripe boundary, the bdev layer will use
4509 	 * max_segment_size and max_num_segments to split one big IO
4510 	 * into multiple requests, then small request can't run out
4511 	 * of NVMe internal requests data structure.
4512 	 */
4513 	if (opts && opts->io_queue_requests) {
4514 		disk->max_num_segments = opts->io_queue_requests / 2;
4515 	}
4516 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4517 		/* The nvme driver will try to split I/O that have too many
4518 		 * SGEs, but it doesn't work if that last SGE doesn't end on
4519 		 * an aggregate total that is block aligned. The bdev layer has
4520 		 * a more robust splitting framework, so use that instead for
4521 		 * this case. (See issue #3269.)
4522 		 */
4523 		uint16_t max_sges = spdk_nvme_ctrlr_get_max_sges(ctrlr);
4524 
4525 		if (disk->max_num_segments == 0) {
4526 			disk->max_num_segments = max_sges;
4527 		} else {
4528 			disk->max_num_segments = spdk_min(disk->max_num_segments, max_sges);
4529 		}
4530 	}
4531 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
4532 
4533 	nsdata = spdk_nvme_ns_get_data(ns);
4534 	bs = spdk_nvme_ns_get_sector_size(ns);
4535 	atomic_bs = bs;
4536 	phys_bs = bs;
4537 	if (nsdata->nabo == 0) {
4538 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
4539 			atomic_bs = bs * (1 + nsdata->nawupf);
4540 		} else {
4541 			atomic_bs = bs * (1 + cdata->awupf);
4542 		}
4543 	}
4544 	if (nsdata->nsfeat.optperf) {
4545 		phys_bs = bs * (1 + nsdata->npwg);
4546 	}
4547 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
4548 
4549 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
4550 	if (disk->md_len != 0) {
4551 		disk->md_interleave = nsdata->flbas.extended;
4552 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
4553 		if (disk->dif_type != SPDK_DIF_DISABLE) {
4554 			disk->dif_is_head_of_md = nsdata->dps.md_start;
4555 			disk->dif_check_flags = bdev_opts->prchk_flags;
4556 			disk->dif_pi_format = (enum spdk_dif_pi_format)spdk_nvme_ns_get_pi_format(ns);
4557 		}
4558 	}
4559 
4560 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
4561 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
4562 		disk->acwu = 0;
4563 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
4564 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
4565 	} else {
4566 		disk->acwu = cdata->acwu + 1; /* 0-based */
4567 	}
4568 
4569 	if (cdata->oncs.copy) {
4570 		/* For now bdev interface allows only single segment copy */
4571 		disk->max_copy = nsdata->mssrl;
4572 	}
4573 
4574 	disk->ctxt = ctx;
4575 	disk->fn_table = &nvmelib_fn_table;
4576 	disk->module = &nvme_if;
4577 
4578 	disk->numa.id_valid = 1;
4579 	disk->numa.id = spdk_nvme_ctrlr_get_numa_id(ctrlr);
4580 
4581 	return 0;
4582 }
4583 
4584 static struct nvme_bdev *
4585 nvme_bdev_alloc(void)
4586 {
4587 	struct nvme_bdev *bdev;
4588 	int rc;
4589 
4590 	bdev = calloc(1, sizeof(*bdev));
4591 	if (!bdev) {
4592 		SPDK_ERRLOG("bdev calloc() failed\n");
4593 		return NULL;
4594 	}
4595 
4596 	if (g_opts.nvme_error_stat) {
4597 		bdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
4598 		if (!bdev->err_stat) {
4599 			SPDK_ERRLOG("err_stat calloc() failed\n");
4600 			free(bdev);
4601 			return NULL;
4602 		}
4603 	}
4604 
4605 	rc = pthread_mutex_init(&bdev->mutex, NULL);
4606 	if (rc != 0) {
4607 		free(bdev->err_stat);
4608 		free(bdev);
4609 		return NULL;
4610 	}
4611 
4612 	bdev->ref = 1;
4613 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
4614 	bdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN;
4615 	bdev->rr_min_io = UINT32_MAX;
4616 	TAILQ_INIT(&bdev->nvme_ns_list);
4617 
4618 	return bdev;
4619 }
4620 
4621 static int
4622 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4623 {
4624 	struct nvme_bdev *bdev;
4625 	struct nvme_bdev_ctrlr *nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
4626 	int rc;
4627 
4628 	bdev = nvme_bdev_alloc();
4629 	if (bdev == NULL) {
4630 		SPDK_ERRLOG("Failed to allocate NVMe bdev\n");
4631 		return -ENOMEM;
4632 	}
4633 
4634 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
4635 
4636 	rc = nvme_disk_create(&bdev->disk, nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
4637 			      nvme_ns->ns, &nvme_ctrlr->opts, bdev);
4638 	if (rc != 0) {
4639 		SPDK_ERRLOG("Failed to create NVMe disk\n");
4640 		nvme_bdev_free(bdev);
4641 		return rc;
4642 	}
4643 
4644 	spdk_io_device_register(bdev,
4645 				bdev_nvme_create_bdev_channel_cb,
4646 				bdev_nvme_destroy_bdev_channel_cb,
4647 				sizeof(struct nvme_bdev_channel),
4648 				bdev->disk.name);
4649 
4650 	nvme_ns->bdev = bdev;
4651 	bdev->nsid = nvme_ns->id;
4652 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4653 
4654 	bdev->nbdev_ctrlr = nbdev_ctrlr;
4655 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->bdevs, bdev, tailq);
4656 
4657 	rc = spdk_bdev_register(&bdev->disk);
4658 	if (rc != 0) {
4659 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
4660 		spdk_io_device_unregister(bdev, NULL);
4661 		nvme_ns->bdev = NULL;
4662 		TAILQ_REMOVE(&nbdev_ctrlr->bdevs, bdev, tailq);
4663 		nvme_bdev_free(bdev);
4664 		return rc;
4665 	}
4666 
4667 	return 0;
4668 }
4669 
4670 static bool
4671 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
4672 {
4673 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
4674 	const struct spdk_uuid *uuid1, *uuid2;
4675 
4676 	nsdata1 = spdk_nvme_ns_get_data(ns1);
4677 	nsdata2 = spdk_nvme_ns_get_data(ns2);
4678 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
4679 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
4680 
4681 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
4682 	       nsdata1->eui64 == nsdata2->eui64 &&
4683 	       ((uuid1 == NULL && uuid2 == NULL) ||
4684 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
4685 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
4686 }
4687 
4688 static bool
4689 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4690 		 struct spdk_nvme_ctrlr_opts *opts)
4691 {
4692 	struct nvme_probe_skip_entry *entry;
4693 
4694 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
4695 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4696 			return false;
4697 		}
4698 	}
4699 
4700 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
4701 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
4702 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
4703 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
4704 	opts->disable_read_ana_log_page = true;
4705 
4706 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
4707 
4708 	return true;
4709 }
4710 
4711 static void
4712 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
4713 {
4714 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4715 
4716 	if (spdk_nvme_cpl_is_error(cpl)) {
4717 		NVME_CTRLR_WARNLOG(nvme_ctrlr, "Abort failed. Resetting controller. sc is %u, sct is %u.\n",
4718 				   cpl->status.sc, cpl->status.sct);
4719 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4720 	} else if (cpl->cdw0 & 0x1) {
4721 		NVME_CTRLR_WARNLOG(nvme_ctrlr, "Specified command could not be aborted.\n");
4722 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4723 	}
4724 }
4725 
4726 static void
4727 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
4728 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
4729 {
4730 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4731 	union spdk_nvme_csts_register csts;
4732 	int rc;
4733 
4734 	assert(nvme_ctrlr->ctrlr == ctrlr);
4735 
4736 	NVME_CTRLR_WARNLOG(nvme_ctrlr, "Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n",
4737 			   ctrlr, qpair, cid);
4738 
4739 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
4740 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
4741 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
4742 	 * completion recursively.
4743 	 */
4744 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
4745 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
4746 		if (csts.bits.cfs) {
4747 			NVME_CTRLR_ERRLOG(nvme_ctrlr, "Controller Fatal Status, reset required\n");
4748 			bdev_nvme_reset_ctrlr(nvme_ctrlr);
4749 			return;
4750 		}
4751 	}
4752 
4753 	switch (g_opts.action_on_timeout) {
4754 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
4755 		if (qpair) {
4756 			/* Don't send abort to ctrlr when ctrlr is not available. */
4757 			pthread_mutex_lock(&nvme_ctrlr->mutex);
4758 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
4759 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
4760 				NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Quit abort. Ctrlr is not available.\n");
4761 				return;
4762 			}
4763 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4764 
4765 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
4766 						       nvme_abort_cpl, nvme_ctrlr);
4767 			if (rc == 0) {
4768 				return;
4769 			}
4770 
4771 			NVME_CTRLR_ERRLOG(nvme_ctrlr, "Unable to send abort. Resetting, rc is %d.\n", rc);
4772 		}
4773 
4774 	/* FALLTHROUGH */
4775 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
4776 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4777 		break;
4778 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
4779 		NVME_CTRLR_DEBUGLOG(nvme_ctrlr, "No action for nvme controller timeout.\n");
4780 		break;
4781 	default:
4782 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "An invalid timeout action value is found.\n");
4783 		break;
4784 	}
4785 }
4786 
4787 static struct nvme_ns *
4788 nvme_ns_alloc(void)
4789 {
4790 	struct nvme_ns *nvme_ns;
4791 
4792 	nvme_ns = calloc(1, sizeof(struct nvme_ns));
4793 	if (nvme_ns == NULL) {
4794 		return NULL;
4795 	}
4796 
4797 	if (g_opts.io_path_stat) {
4798 		nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
4799 		if (nvme_ns->stat == NULL) {
4800 			free(nvme_ns);
4801 			return NULL;
4802 		}
4803 		spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
4804 	}
4805 
4806 	return nvme_ns;
4807 }
4808 
4809 static void
4810 nvme_ns_free(struct nvme_ns *nvme_ns)
4811 {
4812 	free(nvme_ns->stat);
4813 	free(nvme_ns);
4814 }
4815 
4816 static void
4817 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
4818 {
4819 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4820 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
4821 
4822 	if (rc == 0) {
4823 		nvme_ns->probe_ctx = NULL;
4824 		nvme_ctrlr_get_ref(nvme_ctrlr);
4825 	} else {
4826 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4827 		nvme_ns_free(nvme_ns);
4828 	}
4829 
4830 	if (ctx) {
4831 		ctx->populates_in_progress--;
4832 		if (ctx->populates_in_progress == 0) {
4833 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4834 		}
4835 	}
4836 }
4837 
4838 static void
4839 bdev_nvme_add_io_path(struct nvme_bdev_channel_iter *i,
4840 		      struct nvme_bdev *nbdev,
4841 		      struct nvme_bdev_channel *nbdev_ch, void *ctx)
4842 {
4843 	struct nvme_ns *nvme_ns = ctx;
4844 	int rc;
4845 
4846 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
4847 	if (rc != 0) {
4848 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
4849 	}
4850 
4851 	nvme_bdev_for_each_channel_continue(i, rc);
4852 }
4853 
4854 static void
4855 bdev_nvme_delete_io_path(struct nvme_bdev_channel_iter *i,
4856 			 struct nvme_bdev *nbdev,
4857 			 struct nvme_bdev_channel *nbdev_ch, void *ctx)
4858 {
4859 	struct nvme_ns *nvme_ns = ctx;
4860 	struct nvme_io_path *io_path;
4861 
4862 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
4863 	if (io_path != NULL) {
4864 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
4865 	}
4866 
4867 	nvme_bdev_for_each_channel_continue(i, 0);
4868 }
4869 
4870 static void
4871 bdev_nvme_add_io_path_failed(struct nvme_bdev *nbdev, void *ctx, int status)
4872 {
4873 	struct nvme_ns *nvme_ns = ctx;
4874 
4875 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
4876 }
4877 
4878 static void
4879 bdev_nvme_add_io_path_done(struct nvme_bdev *nbdev, void *ctx, int status)
4880 {
4881 	struct nvme_ns *nvme_ns = ctx;
4882 
4883 	if (status == 0) {
4884 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
4885 	} else {
4886 		/* Delete the added io_paths and fail populating the namespace. */
4887 		nvme_bdev_for_each_channel(nbdev,
4888 					   bdev_nvme_delete_io_path,
4889 					   nvme_ns,
4890 					   bdev_nvme_add_io_path_failed);
4891 	}
4892 }
4893 
4894 static int
4895 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
4896 {
4897 	struct nvme_ns *tmp_ns;
4898 	const struct spdk_nvme_ns_data *nsdata;
4899 
4900 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
4901 	if (!nsdata->nmic.can_share) {
4902 		SPDK_ERRLOG("Namespace cannot be shared.\n");
4903 		return -EINVAL;
4904 	}
4905 
4906 	pthread_mutex_lock(&bdev->mutex);
4907 
4908 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
4909 	assert(tmp_ns != NULL);
4910 
4911 	if (tmp_ns->ns != NULL && !bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
4912 		pthread_mutex_unlock(&bdev->mutex);
4913 		SPDK_ERRLOG("Namespaces are not identical.\n");
4914 		return -EINVAL;
4915 	}
4916 
4917 	bdev->ref++;
4918 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4919 	nvme_ns->bdev = bdev;
4920 
4921 	pthread_mutex_unlock(&bdev->mutex);
4922 
4923 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
4924 	nvme_bdev_for_each_channel(bdev,
4925 				   bdev_nvme_add_io_path,
4926 				   nvme_ns,
4927 				   bdev_nvme_add_io_path_done);
4928 
4929 	return 0;
4930 }
4931 
4932 static void
4933 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4934 {
4935 	struct spdk_nvme_ns	*ns;
4936 	struct nvme_bdev	*bdev;
4937 	int			rc = 0;
4938 
4939 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
4940 	if (!ns) {
4941 		NVME_CTRLR_DEBUGLOG(nvme_ctrlr, "Invalid NS %d\n", nvme_ns->id);
4942 		rc = -EINVAL;
4943 		goto done;
4944 	}
4945 
4946 	nvme_ns->ns = ns;
4947 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4948 
4949 	if (nvme_ctrlr->ana_log_page != NULL) {
4950 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
4951 	}
4952 
4953 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
4954 	if (bdev == NULL) {
4955 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
4956 	} else {
4957 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
4958 		if (rc == 0) {
4959 			return;
4960 		}
4961 	}
4962 done:
4963 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
4964 }
4965 
4966 static void
4967 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
4968 {
4969 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4970 
4971 	assert(nvme_ctrlr != NULL);
4972 
4973 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4974 
4975 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4976 
4977 	if (nvme_ns->bdev != NULL) {
4978 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4979 		return;
4980 	}
4981 
4982 	nvme_ns_free(nvme_ns);
4983 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4984 
4985 	nvme_ctrlr_put_ref(nvme_ctrlr);
4986 }
4987 
4988 static void
4989 bdev_nvme_delete_io_path_done(struct nvme_bdev *nbdev, void *ctx, int status)
4990 {
4991 	struct nvme_ns *nvme_ns = ctx;
4992 
4993 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4994 }
4995 
4996 static void
4997 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4998 {
4999 	struct nvme_bdev *bdev;
5000 
5001 	spdk_poller_unregister(&nvme_ns->anatt_timer);
5002 
5003 	bdev = nvme_ns->bdev;
5004 	if (bdev != NULL) {
5005 		pthread_mutex_lock(&bdev->mutex);
5006 
5007 		assert(bdev->ref > 0);
5008 		bdev->ref--;
5009 		if (bdev->ref == 0) {
5010 			pthread_mutex_unlock(&bdev->mutex);
5011 
5012 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
5013 		} else {
5014 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
5015 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
5016 			 * and clear nvme_ns->bdev here.
5017 			 */
5018 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
5019 			nvme_ns->bdev = NULL;
5020 
5021 			pthread_mutex_unlock(&bdev->mutex);
5022 
5023 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
5024 			 * we call depopulate_namespace_done() to avoid use-after-free.
5025 			 */
5026 			nvme_bdev_for_each_channel(bdev,
5027 						   bdev_nvme_delete_io_path,
5028 						   nvme_ns,
5029 						   bdev_nvme_delete_io_path_done);
5030 			return;
5031 		}
5032 	}
5033 
5034 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
5035 }
5036 
5037 static void
5038 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
5039 			       struct nvme_async_probe_ctx *ctx)
5040 {
5041 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
5042 	struct nvme_ns	*nvme_ns, *next;
5043 	struct spdk_nvme_ns	*ns;
5044 	struct nvme_bdev	*bdev;
5045 	uint32_t		nsid;
5046 	int			rc;
5047 	uint64_t		num_sectors;
5048 
5049 	if (ctx) {
5050 		/* Initialize this count to 1 to handle the populate functions
5051 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
5052 		 */
5053 		ctx->populates_in_progress = 1;
5054 	}
5055 
5056 	/* First loop over our existing namespaces and see if they have been
5057 	 * removed. */
5058 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5059 	while (nvme_ns != NULL) {
5060 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5061 
5062 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
5063 			/* NS is still there or added again. Its attributes may have changed. */
5064 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
5065 			if (nvme_ns->ns != ns) {
5066 				assert(nvme_ns->ns == NULL);
5067 				nvme_ns->ns = ns;
5068 				NVME_CTRLR_DEBUGLOG(nvme_ctrlr, "NSID %u was added\n", nvme_ns->id);
5069 			}
5070 
5071 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
5072 			bdev = nvme_ns->bdev;
5073 			assert(bdev != NULL);
5074 			if (bdev->disk.blockcnt != num_sectors) {
5075 				NVME_CTRLR_NOTICELOG(nvme_ctrlr,
5076 						     "NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
5077 						     nvme_ns->id,
5078 						     bdev->disk.name,
5079 						     bdev->disk.blockcnt,
5080 						     num_sectors);
5081 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
5082 				if (rc != 0) {
5083 					NVME_CTRLR_ERRLOG(nvme_ctrlr,
5084 							  "Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
5085 							  bdev->disk.name, rc);
5086 				}
5087 			}
5088 		} else {
5089 			/* Namespace was removed */
5090 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
5091 		}
5092 
5093 		nvme_ns = next;
5094 	}
5095 
5096 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
5097 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
5098 	while (nsid != 0) {
5099 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
5100 
5101 		if (nvme_ns == NULL) {
5102 			/* Found a new one */
5103 			nvme_ns = nvme_ns_alloc();
5104 			if (nvme_ns == NULL) {
5105 				NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to allocate namespace\n");
5106 				/* This just fails to attach the namespace. It may work on a future attempt. */
5107 				continue;
5108 			}
5109 
5110 			nvme_ns->id = nsid;
5111 			nvme_ns->ctrlr = nvme_ctrlr;
5112 
5113 			nvme_ns->bdev = NULL;
5114 
5115 			if (ctx) {
5116 				ctx->populates_in_progress++;
5117 			}
5118 			nvme_ns->probe_ctx = ctx;
5119 
5120 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
5121 
5122 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
5123 		}
5124 
5125 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
5126 	}
5127 
5128 	if (ctx) {
5129 		/* Decrement this count now that the loop is over to account
5130 		 * for the one we started with.  If the count is then 0, we
5131 		 * know any populate_namespace functions completed immediately,
5132 		 * so we'll kick the callback here.
5133 		 */
5134 		ctx->populates_in_progress--;
5135 		if (ctx->populates_in_progress == 0) {
5136 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
5137 		}
5138 	}
5139 
5140 }
5141 
5142 static void
5143 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
5144 {
5145 	struct nvme_ns *nvme_ns, *tmp;
5146 
5147 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
5148 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
5149 	}
5150 }
5151 
5152 static uint32_t
5153 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
5154 {
5155 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5156 	const struct spdk_nvme_ctrlr_data *cdata;
5157 	uint32_t nsid, ns_count = 0;
5158 
5159 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5160 
5161 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
5162 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
5163 		ns_count++;
5164 	}
5165 
5166 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5167 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
5168 	       sizeof(uint32_t);
5169 }
5170 
5171 static int
5172 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
5173 			  void *cb_arg)
5174 {
5175 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
5176 	struct nvme_ns *nvme_ns;
5177 	uint32_t i, nsid;
5178 
5179 	for (i = 0; i < desc->num_of_nsid; i++) {
5180 		nsid = desc->nsid[i];
5181 		if (nsid == 0) {
5182 			continue;
5183 		}
5184 
5185 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
5186 
5187 		if (nvme_ns == NULL) {
5188 			/* Target told us that an inactive namespace had an ANA change */
5189 			continue;
5190 		}
5191 
5192 		_nvme_ns_set_ana_state(nvme_ns, desc);
5193 	}
5194 
5195 	return 0;
5196 }
5197 
5198 static void
5199 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
5200 {
5201 	struct nvme_ns *nvme_ns;
5202 
5203 	spdk_free(nvme_ctrlr->ana_log_page);
5204 	nvme_ctrlr->ana_log_page = NULL;
5205 
5206 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5207 	     nvme_ns != NULL;
5208 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
5209 		nvme_ns->ana_state_updating = false;
5210 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
5211 	}
5212 }
5213 
5214 static void
5215 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
5216 {
5217 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5218 
5219 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
5220 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
5221 					     nvme_ctrlr);
5222 	} else {
5223 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
5224 	}
5225 
5226 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5227 
5228 	assert(nvme_ctrlr->ana_log_page_updating == true);
5229 	nvme_ctrlr->ana_log_page_updating = false;
5230 
5231 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
5232 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
5233 
5234 		nvme_ctrlr_unregister(nvme_ctrlr);
5235 	} else {
5236 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
5237 
5238 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
5239 	}
5240 }
5241 
5242 static int
5243 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
5244 {
5245 	uint32_t ana_log_page_size;
5246 	int rc;
5247 
5248 	if (nvme_ctrlr->ana_log_page == NULL) {
5249 		return -EINVAL;
5250 	}
5251 
5252 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5253 
5254 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5255 		NVME_CTRLR_ERRLOG(nvme_ctrlr,
5256 				  "ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5257 				  ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5258 		return -EINVAL;
5259 	}
5260 
5261 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5262 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
5263 	    nvme_ctrlr->ana_log_page_updating) {
5264 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
5265 		return -EBUSY;
5266 	}
5267 
5268 	nvme_ctrlr->ana_log_page_updating = true;
5269 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5270 
5271 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
5272 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5273 					      SPDK_NVME_GLOBAL_NS_TAG,
5274 					      nvme_ctrlr->ana_log_page,
5275 					      ana_log_page_size, 0,
5276 					      nvme_ctrlr_read_ana_log_page_done,
5277 					      nvme_ctrlr);
5278 	if (rc != 0) {
5279 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
5280 	}
5281 
5282 	return rc;
5283 }
5284 
5285 static void
5286 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
5287 {
5288 }
5289 
5290 struct bdev_nvme_set_preferred_path_ctx {
5291 	struct spdk_bdev_desc *desc;
5292 	struct nvme_ns *nvme_ns;
5293 	bdev_nvme_set_preferred_path_cb cb_fn;
5294 	void *cb_arg;
5295 };
5296 
5297 static void
5298 bdev_nvme_set_preferred_path_done(struct nvme_bdev *nbdev, void *_ctx, int status)
5299 {
5300 	struct bdev_nvme_set_preferred_path_ctx *ctx = _ctx;
5301 
5302 	assert(ctx != NULL);
5303 	assert(ctx->desc != NULL);
5304 	assert(ctx->cb_fn != NULL);
5305 
5306 	spdk_bdev_close(ctx->desc);
5307 
5308 	ctx->cb_fn(ctx->cb_arg, status);
5309 
5310 	free(ctx);
5311 }
5312 
5313 static void
5314 _bdev_nvme_set_preferred_path(struct nvme_bdev_channel_iter *i,
5315 			      struct nvme_bdev *nbdev,
5316 			      struct nvme_bdev_channel *nbdev_ch, void *_ctx)
5317 {
5318 	struct bdev_nvme_set_preferred_path_ctx *ctx = _ctx;
5319 	struct nvme_io_path *io_path, *prev;
5320 
5321 	prev = NULL;
5322 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
5323 		if (io_path->nvme_ns == ctx->nvme_ns) {
5324 			break;
5325 		}
5326 		prev = io_path;
5327 	}
5328 
5329 	if (io_path != NULL) {
5330 		if (prev != NULL) {
5331 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
5332 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
5333 		}
5334 
5335 		/* We can set io_path to nbdev_ch->current_io_path directly here.
5336 		 * However, it needs to be conditional. To simplify the code,
5337 		 * just clear nbdev_ch->current_io_path and let find_io_path()
5338 		 * fill it.
5339 		 *
5340 		 * Automatic failback may be disabled. Hence even if the io_path is
5341 		 * already at the head, clear nbdev_ch->current_io_path.
5342 		 */
5343 		bdev_nvme_clear_current_io_path(nbdev_ch);
5344 	}
5345 
5346 	nvme_bdev_for_each_channel_continue(i, 0);
5347 }
5348 
5349 static struct nvme_ns *
5350 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
5351 {
5352 	struct nvme_ns *nvme_ns, *prev;
5353 	const struct spdk_nvme_ctrlr_data *cdata;
5354 
5355 	prev = NULL;
5356 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
5357 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
5358 
5359 		if (cdata->cntlid == cntlid) {
5360 			break;
5361 		}
5362 		prev = nvme_ns;
5363 	}
5364 
5365 	if (nvme_ns != NULL && prev != NULL) {
5366 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
5367 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
5368 	}
5369 
5370 	return nvme_ns;
5371 }
5372 
5373 /* This function supports only multipath mode. There is only a single I/O path
5374  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
5375  * head of the I/O path list for each NVMe bdev channel.
5376  *
5377  * NVMe bdev channel may be acquired after completing this function. move the
5378  * matched namespace to the head of the namespace list for the NVMe bdev too.
5379  */
5380 void
5381 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
5382 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
5383 {
5384 	struct bdev_nvme_set_preferred_path_ctx *ctx;
5385 	struct spdk_bdev *bdev;
5386 	struct nvme_bdev *nbdev;
5387 	int rc = 0;
5388 
5389 	assert(cb_fn != NULL);
5390 
5391 	ctx = calloc(1, sizeof(*ctx));
5392 	if (ctx == NULL) {
5393 		SPDK_ERRLOG("Failed to alloc context.\n");
5394 		rc = -ENOMEM;
5395 		goto err_alloc;
5396 	}
5397 
5398 	ctx->cb_fn = cb_fn;
5399 	ctx->cb_arg = cb_arg;
5400 
5401 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5402 	if (rc != 0) {
5403 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5404 		goto err_open;
5405 	}
5406 
5407 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5408 
5409 	if (bdev->module != &nvme_if) {
5410 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5411 		rc = -ENODEV;
5412 		goto err_bdev;
5413 	}
5414 
5415 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5416 
5417 	pthread_mutex_lock(&nbdev->mutex);
5418 
5419 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
5420 	if (ctx->nvme_ns == NULL) {
5421 		pthread_mutex_unlock(&nbdev->mutex);
5422 
5423 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
5424 		rc = -ENODEV;
5425 		goto err_bdev;
5426 	}
5427 
5428 	pthread_mutex_unlock(&nbdev->mutex);
5429 
5430 	nvme_bdev_for_each_channel(nbdev,
5431 				   _bdev_nvme_set_preferred_path,
5432 				   ctx,
5433 				   bdev_nvme_set_preferred_path_done);
5434 	return;
5435 
5436 err_bdev:
5437 	spdk_bdev_close(ctx->desc);
5438 err_open:
5439 	free(ctx);
5440 err_alloc:
5441 	cb_fn(cb_arg, rc);
5442 }
5443 
5444 struct bdev_nvme_set_multipath_policy_ctx {
5445 	struct spdk_bdev_desc *desc;
5446 	spdk_bdev_nvme_set_multipath_policy_cb cb_fn;
5447 	void *cb_arg;
5448 };
5449 
5450 static void
5451 bdev_nvme_set_multipath_policy_done(struct nvme_bdev *nbdev, void *_ctx, int status)
5452 {
5453 	struct bdev_nvme_set_multipath_policy_ctx *ctx = _ctx;
5454 
5455 	assert(ctx != NULL);
5456 	assert(ctx->desc != NULL);
5457 	assert(ctx->cb_fn != NULL);
5458 
5459 	spdk_bdev_close(ctx->desc);
5460 
5461 	ctx->cb_fn(ctx->cb_arg, status);
5462 
5463 	free(ctx);
5464 }
5465 
5466 static void
5467 _bdev_nvme_set_multipath_policy(struct nvme_bdev_channel_iter *i,
5468 				struct nvme_bdev *nbdev,
5469 				struct nvme_bdev_channel *nbdev_ch, void *ctx)
5470 {
5471 	nbdev_ch->mp_policy = nbdev->mp_policy;
5472 	nbdev_ch->mp_selector = nbdev->mp_selector;
5473 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
5474 	bdev_nvme_clear_current_io_path(nbdev_ch);
5475 
5476 	nvme_bdev_for_each_channel_continue(i, 0);
5477 }
5478 
5479 void
5480 spdk_bdev_nvme_set_multipath_policy(const char *name, enum spdk_bdev_nvme_multipath_policy policy,
5481 				    enum spdk_bdev_nvme_multipath_selector selector, uint32_t rr_min_io,
5482 				    spdk_bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
5483 {
5484 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
5485 	struct spdk_bdev *bdev;
5486 	struct nvme_bdev *nbdev;
5487 	int rc;
5488 
5489 	assert(cb_fn != NULL);
5490 
5491 	switch (policy) {
5492 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
5493 		break;
5494 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
5495 		switch (selector) {
5496 		case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
5497 			if (rr_min_io == UINT32_MAX) {
5498 				rr_min_io = 1;
5499 			} else if (rr_min_io == 0) {
5500 				rc = -EINVAL;
5501 				goto exit;
5502 			}
5503 			break;
5504 		case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
5505 			break;
5506 		default:
5507 			rc = -EINVAL;
5508 			goto exit;
5509 		}
5510 		break;
5511 	default:
5512 		rc = -EINVAL;
5513 		goto exit;
5514 	}
5515 
5516 	ctx = calloc(1, sizeof(*ctx));
5517 	if (ctx == NULL) {
5518 		SPDK_ERRLOG("Failed to alloc context.\n");
5519 		rc = -ENOMEM;
5520 		goto exit;
5521 	}
5522 
5523 	ctx->cb_fn = cb_fn;
5524 	ctx->cb_arg = cb_arg;
5525 
5526 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5527 	if (rc != 0) {
5528 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5529 		rc = -ENODEV;
5530 		goto err_open;
5531 	}
5532 
5533 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5534 	if (bdev->module != &nvme_if) {
5535 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5536 		rc = -ENODEV;
5537 		goto err_module;
5538 	}
5539 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5540 
5541 	pthread_mutex_lock(&nbdev->mutex);
5542 	nbdev->mp_policy = policy;
5543 	nbdev->mp_selector = selector;
5544 	nbdev->rr_min_io = rr_min_io;
5545 	pthread_mutex_unlock(&nbdev->mutex);
5546 
5547 	nvme_bdev_for_each_channel(nbdev,
5548 				   _bdev_nvme_set_multipath_policy,
5549 				   ctx,
5550 				   bdev_nvme_set_multipath_policy_done);
5551 	return;
5552 
5553 err_module:
5554 	spdk_bdev_close(ctx->desc);
5555 err_open:
5556 	free(ctx);
5557 exit:
5558 	cb_fn(cb_arg, rc);
5559 }
5560 
5561 static void
5562 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5563 {
5564 	struct nvme_ctrlr *nvme_ctrlr		= arg;
5565 	union spdk_nvme_async_event_completion	event;
5566 
5567 	if (spdk_nvme_cpl_is_error(cpl)) {
5568 		SPDK_WARNLOG("AER request execute failed\n");
5569 		return;
5570 	}
5571 
5572 	event.raw = cpl->cdw0;
5573 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5574 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
5575 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
5576 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5577 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
5578 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
5579 	}
5580 }
5581 
5582 static void
5583 free_nvme_async_probe_ctx(struct nvme_async_probe_ctx *ctx)
5584 {
5585 	spdk_keyring_put_key(ctx->drv_opts.tls_psk);
5586 	spdk_keyring_put_key(ctx->drv_opts.dhchap_key);
5587 	spdk_keyring_put_key(ctx->drv_opts.dhchap_ctrlr_key);
5588 	free(ctx->base_name);
5589 	free(ctx);
5590 }
5591 
5592 static void
5593 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, int rc)
5594 {
5595 	if (ctx->cb_fn) {
5596 		ctx->cb_fn(ctx->cb_ctx, ctx->reported_bdevs, rc);
5597 	}
5598 
5599 	ctx->namespaces_populated = true;
5600 	if (ctx->probe_done) {
5601 		/* The probe was already completed, so we need to free the context
5602 		 * here.  This can happen for cases like OCSSD, where we need to
5603 		 * send additional commands to the SSD after attach.
5604 		 */
5605 		free_nvme_async_probe_ctx(ctx);
5606 	}
5607 }
5608 
5609 static int
5610 bdev_nvme_remove_poller(void *ctx)
5611 {
5612 	struct spdk_nvme_transport_id trid_pcie;
5613 
5614 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5615 		spdk_poller_unregister(&g_hotplug_poller);
5616 		return SPDK_POLLER_IDLE;
5617 	}
5618 
5619 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5620 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5621 
5622 	if (spdk_nvme_scan_attached(&trid_pcie)) {
5623 		SPDK_ERRLOG_RATELIMIT("spdk_nvme_scan_attached() failed\n");
5624 	}
5625 
5626 	return SPDK_POLLER_BUSY;
5627 }
5628 
5629 static void
5630 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
5631 		       struct nvme_async_probe_ctx *ctx)
5632 {
5633 	struct spdk_nvme_transport_id *trid = &nvme_ctrlr->active_path_id->trid;
5634 
5635 	if (spdk_nvme_trtype_is_fabrics(trid->trtype)) {
5636 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr was created to %s:%s\n",
5637 				   trid->traddr, trid->trsvcid);
5638 	} else {
5639 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr was created\n");
5640 	}
5641 
5642 	spdk_io_device_register(nvme_ctrlr,
5643 				bdev_nvme_create_ctrlr_channel_cb,
5644 				bdev_nvme_destroy_ctrlr_channel_cb,
5645 				sizeof(struct nvme_ctrlr_channel),
5646 				nvme_ctrlr->nbdev_ctrlr->name);
5647 
5648 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
5649 
5650 	if (g_hotplug_poller == NULL) {
5651 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_remove_poller, NULL,
5652 							NVME_HOTPLUG_POLL_PERIOD_DEFAULT);
5653 	}
5654 }
5655 
5656 static void
5657 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
5658 {
5659 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
5660 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
5661 
5662 	nvme_ctrlr->probe_ctx = NULL;
5663 
5664 	if (spdk_nvme_cpl_is_error(cpl)) {
5665 		nvme_ctrlr_delete(nvme_ctrlr);
5666 
5667 		if (ctx != NULL) {
5668 			ctx->reported_bdevs = 0;
5669 			populate_namespaces_cb(ctx, -1);
5670 		}
5671 		return;
5672 	}
5673 
5674 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5675 }
5676 
5677 static int
5678 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
5679 			     struct nvme_async_probe_ctx *ctx)
5680 {
5681 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5682 	const struct spdk_nvme_ctrlr_data *cdata;
5683 	uint32_t ana_log_page_size;
5684 
5685 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5686 
5687 	/* Set buffer size enough to include maximum number of allowed namespaces. */
5688 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5689 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
5690 			    sizeof(uint32_t);
5691 
5692 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
5693 						SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
5694 	if (nvme_ctrlr->ana_log_page == NULL) {
5695 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "could not allocate ANA log page buffer\n");
5696 		return -ENXIO;
5697 	}
5698 
5699 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
5700 	 * Hence copy each descriptor to a temporary area when parsing it.
5701 	 *
5702 	 * Allocate a buffer whose size is as large as ANA log page buffer because
5703 	 * we do not know the size of a descriptor until actually reading it.
5704 	 */
5705 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
5706 	if (nvme_ctrlr->copied_ana_desc == NULL) {
5707 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "could not allocate a buffer to parse ANA descriptor\n");
5708 		return -ENOMEM;
5709 	}
5710 
5711 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
5712 
5713 	nvme_ctrlr->probe_ctx = ctx;
5714 
5715 	/* Then, set the read size only to include the current active namespaces. */
5716 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5717 
5718 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5719 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5720 				  ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5721 		return -EINVAL;
5722 	}
5723 
5724 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
5725 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5726 						SPDK_NVME_GLOBAL_NS_TAG,
5727 						nvme_ctrlr->ana_log_page,
5728 						ana_log_page_size, 0,
5729 						nvme_ctrlr_init_ana_log_page_done,
5730 						nvme_ctrlr);
5731 }
5732 
5733 /* hostnqn and subnqn were already verified before attaching a controller.
5734  * Hence check only the multipath capability and cntlid here.
5735  */
5736 static bool
5737 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
5738 {
5739 	struct nvme_ctrlr *tmp;
5740 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
5741 
5742 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5743 
5744 	if (!cdata->cmic.multi_ctrlr) {
5745 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5746 		return false;
5747 	}
5748 
5749 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
5750 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
5751 
5752 		if (!tmp_cdata->cmic.multi_ctrlr) {
5753 			NVME_CTRLR_ERRLOG(tmp, "Ctrlr%u does not support multipath.\n", cdata->cntlid);
5754 			return false;
5755 		}
5756 		if (cdata->cntlid == tmp_cdata->cntlid) {
5757 			NVME_CTRLR_ERRLOG(tmp, "cntlid %u are duplicated.\n", tmp_cdata->cntlid);
5758 			return false;
5759 		}
5760 	}
5761 
5762 	return true;
5763 }
5764 
5765 
5766 static int
5767 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
5768 {
5769 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5770 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5771 	struct nvme_ctrlr      *nctrlr;
5772 	int rc = 0;
5773 
5774 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5775 
5776 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5777 	if (nbdev_ctrlr != NULL) {
5778 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
5779 			rc = -EINVAL;
5780 			goto exit;
5781 		}
5782 		TAILQ_FOREACH(nctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
5783 			if (nctrlr->opts.multipath != nvme_ctrlr->opts.multipath) {
5784 				/* All controllers with the same name must be configured the same
5785 				 * way, either for multipath or failover. If the configuration doesn't
5786 				 * match - report error.
5787 				 */
5788 				rc = -EINVAL;
5789 				goto exit;
5790 			}
5791 		}
5792 	} else {
5793 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
5794 		if (nbdev_ctrlr == NULL) {
5795 			NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to allocate nvme_bdev_ctrlr.\n");
5796 			rc = -ENOMEM;
5797 			goto exit;
5798 		}
5799 		nbdev_ctrlr->name = strdup(name);
5800 		if (nbdev_ctrlr->name == NULL) {
5801 			NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to allocate name of nvme_bdev_ctrlr.\n");
5802 			free(nbdev_ctrlr);
5803 			goto exit;
5804 		}
5805 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
5806 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
5807 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
5808 	}
5809 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
5810 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
5811 exit:
5812 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5813 	return rc;
5814 }
5815 
5816 static int
5817 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
5818 		  const char *name,
5819 		  const struct spdk_nvme_transport_id *trid,
5820 		  struct nvme_async_probe_ctx *ctx)
5821 {
5822 	struct nvme_ctrlr *nvme_ctrlr;
5823 	struct nvme_path_id *path_id;
5824 	const struct spdk_nvme_ctrlr_data *cdata;
5825 	struct spdk_event_handler_opts opts = {
5826 		.opts_size = SPDK_SIZEOF(&opts, fd_type),
5827 	};
5828 	uint64_t period;
5829 	int fd, rc;
5830 
5831 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
5832 	if (nvme_ctrlr == NULL) {
5833 		SPDK_ERRLOG("Failed to allocate device struct\n");
5834 		return -ENOMEM;
5835 	}
5836 
5837 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
5838 	if (rc != 0) {
5839 		free(nvme_ctrlr);
5840 		return rc;
5841 	}
5842 
5843 	TAILQ_INIT(&nvme_ctrlr->trids);
5844 	TAILQ_INIT(&nvme_ctrlr->pending_resets);
5845 	RB_INIT(&nvme_ctrlr->namespaces);
5846 
5847 	/* Get another reference to the key, so the first one can be released from probe_ctx */
5848 	if (ctx != NULL) {
5849 		if (ctx->drv_opts.tls_psk != NULL) {
5850 			nvme_ctrlr->psk = spdk_keyring_get_key(
5851 						  spdk_key_get_name(ctx->drv_opts.tls_psk));
5852 			if (nvme_ctrlr->psk == NULL) {
5853 				/* Could only happen if the key was removed in the meantime */
5854 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5855 					    spdk_key_get_name(ctx->drv_opts.tls_psk));
5856 				rc = -ENOKEY;
5857 				goto err;
5858 			}
5859 		}
5860 
5861 		if (ctx->drv_opts.dhchap_key != NULL) {
5862 			nvme_ctrlr->dhchap_key = spdk_keyring_get_key(
5863 							 spdk_key_get_name(ctx->drv_opts.dhchap_key));
5864 			if (nvme_ctrlr->dhchap_key == NULL) {
5865 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5866 					    spdk_key_get_name(ctx->drv_opts.dhchap_key));
5867 				rc = -ENOKEY;
5868 				goto err;
5869 			}
5870 		}
5871 
5872 		if (ctx->drv_opts.dhchap_ctrlr_key != NULL) {
5873 			nvme_ctrlr->dhchap_ctrlr_key =
5874 				spdk_keyring_get_key(
5875 					spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5876 			if (nvme_ctrlr->dhchap_ctrlr_key == NULL) {
5877 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5878 					    spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5879 				rc = -ENOKEY;
5880 				goto err;
5881 			}
5882 		}
5883 	}
5884 
5885 	/* Check if we manage to enable interrupts on the controller. */
5886 	if (spdk_interrupt_mode_is_enabled() && ctx != NULL && !ctx->drv_opts.enable_interrupts) {
5887 		SPDK_ERRLOG("Failed to enable interrupts on the controller\n");
5888 		rc = -ENOTSUP;
5889 		goto err;
5890 	}
5891 
5892 	path_id = calloc(1, sizeof(*path_id));
5893 	if (path_id == NULL) {
5894 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
5895 		rc = -ENOMEM;
5896 		goto err;
5897 	}
5898 
5899 	path_id->trid = *trid;
5900 	if (ctx != NULL) {
5901 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
5902 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
5903 	}
5904 	nvme_ctrlr->active_path_id = path_id;
5905 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
5906 
5907 	nvme_ctrlr->thread = spdk_get_thread();
5908 	nvme_ctrlr->ctrlr = ctrlr;
5909 	nvme_ctrlr->ref = 1;
5910 
5911 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
5912 		SPDK_ERRLOG("OCSSDs are not supported");
5913 		rc = -ENOTSUP;
5914 		goto err;
5915 	}
5916 
5917 	if (ctx != NULL) {
5918 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
5919 	} else {
5920 		spdk_bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
5921 	}
5922 
5923 	period = spdk_interrupt_mode_is_enabled() ? 0 : g_opts.nvme_adminq_poll_period_us;
5924 
5925 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
5926 					  period);
5927 
5928 	if (spdk_interrupt_mode_is_enabled()) {
5929 		spdk_poller_register_interrupt(nvme_ctrlr->adminq_timer_poller, NULL, NULL);
5930 
5931 		fd = spdk_nvme_ctrlr_get_admin_qp_fd(nvme_ctrlr->ctrlr, &opts);
5932 		if (fd < 0) {
5933 			rc = fd;
5934 			goto err;
5935 		}
5936 
5937 		nvme_ctrlr->intr = SPDK_INTERRUPT_REGISTER_EXT(fd, bdev_nvme_poll_adminq,
5938 				   nvme_ctrlr, &opts);
5939 		if (!nvme_ctrlr->intr) {
5940 			rc = -EINVAL;
5941 			goto err;
5942 		}
5943 	}
5944 
5945 	if (g_opts.timeout_us > 0) {
5946 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
5947 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
5948 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
5949 					  g_opts.timeout_us : g_opts.timeout_admin_us;
5950 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
5951 				adm_timeout_us, timeout_cb, nvme_ctrlr);
5952 	}
5953 
5954 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
5955 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
5956 
5957 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
5958 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
5959 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
5960 	}
5961 
5962 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
5963 	if (rc != 0) {
5964 		goto err;
5965 	}
5966 
5967 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5968 
5969 	if (cdata->cmic.ana_reporting) {
5970 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
5971 		if (rc == 0) {
5972 			return 0;
5973 		}
5974 	} else {
5975 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5976 		return 0;
5977 	}
5978 
5979 err:
5980 	nvme_ctrlr_delete(nvme_ctrlr);
5981 	return rc;
5982 }
5983 
5984 void
5985 spdk_bdev_nvme_get_default_ctrlr_opts(struct spdk_bdev_nvme_ctrlr_opts *opts)
5986 {
5987 	opts->prchk_flags = 0;
5988 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
5989 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
5990 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
5991 	opts->multipath = true;
5992 }
5993 
5994 static void
5995 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5996 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
5997 {
5998 	char *name;
5999 
6000 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
6001 	if (!name) {
6002 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
6003 		return;
6004 	}
6005 
6006 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
6007 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
6008 	} else {
6009 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
6010 	}
6011 
6012 	free(name);
6013 }
6014 
6015 static void
6016 _nvme_ctrlr_destruct(void *ctx)
6017 {
6018 	struct nvme_ctrlr *nvme_ctrlr = ctx;
6019 
6020 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
6021 	nvme_ctrlr_put_ref(nvme_ctrlr);
6022 }
6023 
6024 static int
6025 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
6026 {
6027 	struct nvme_probe_skip_entry *entry;
6028 
6029 	/* The controller's destruction was already started */
6030 	if (nvme_ctrlr->destruct) {
6031 		return -EALREADY;
6032 	}
6033 
6034 	if (!hotplug &&
6035 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
6036 		entry = calloc(1, sizeof(*entry));
6037 		if (!entry) {
6038 			return -ENOMEM;
6039 		}
6040 		entry->trid = nvme_ctrlr->active_path_id->trid;
6041 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
6042 	}
6043 
6044 	nvme_ctrlr->destruct = true;
6045 	return 0;
6046 }
6047 
6048 static int
6049 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
6050 {
6051 	int rc;
6052 
6053 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6054 	rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug);
6055 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6056 
6057 	if (rc == 0) {
6058 		_nvme_ctrlr_destruct(nvme_ctrlr);
6059 	} else if (rc == -EALREADY) {
6060 		rc = 0;
6061 	}
6062 
6063 	return rc;
6064 }
6065 
6066 static void
6067 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
6068 {
6069 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
6070 
6071 	bdev_nvme_delete_ctrlr(nvme_ctrlr, true);
6072 }
6073 
6074 static int
6075 bdev_nvme_hotplug_probe(void *arg)
6076 {
6077 	if (g_hotplug_probe_ctx == NULL) {
6078 		spdk_poller_unregister(&g_hotplug_probe_poller);
6079 		return SPDK_POLLER_IDLE;
6080 	}
6081 
6082 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
6083 		g_hotplug_probe_ctx = NULL;
6084 		spdk_poller_unregister(&g_hotplug_probe_poller);
6085 	}
6086 
6087 	return SPDK_POLLER_BUSY;
6088 }
6089 
6090 static int
6091 bdev_nvme_hotplug(void *arg)
6092 {
6093 	struct spdk_nvme_transport_id trid_pcie;
6094 
6095 	if (g_hotplug_probe_ctx) {
6096 		return SPDK_POLLER_BUSY;
6097 	}
6098 
6099 	memset(&trid_pcie, 0, sizeof(trid_pcie));
6100 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
6101 
6102 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
6103 			      hotplug_probe_cb, attach_cb, NULL);
6104 
6105 	if (g_hotplug_probe_ctx) {
6106 		assert(g_hotplug_probe_poller == NULL);
6107 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
6108 	}
6109 
6110 	return SPDK_POLLER_BUSY;
6111 }
6112 
6113 void
6114 spdk_bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts, size_t opts_size)
6115 {
6116 	if (!opts) {
6117 		SPDK_ERRLOG("opts should not be NULL\n");
6118 		return;
6119 	}
6120 
6121 	if (!opts_size) {
6122 		SPDK_ERRLOG("opts_size should not be zero value\n");
6123 		return;
6124 	}
6125 
6126 	opts->opts_size = opts_size;
6127 
6128 #define SET_FIELD(field, defval) \
6129 		opts->field = SPDK_GET_FIELD(&g_opts, field, defval, opts_size); \
6130 
6131 	SET_FIELD(action_on_timeout, 0);
6132 	SET_FIELD(keep_alive_timeout_ms, 0);
6133 	SET_FIELD(timeout_us, 0);
6134 	SET_FIELD(timeout_admin_us, 0);
6135 	SET_FIELD(transport_retry_count, 0);
6136 	SET_FIELD(arbitration_burst, 0);
6137 	SET_FIELD(low_priority_weight, 0);
6138 	SET_FIELD(medium_priority_weight, 0);
6139 	SET_FIELD(high_priority_weight, 0);
6140 	SET_FIELD(io_queue_requests, 0);
6141 	SET_FIELD(nvme_adminq_poll_period_us, 0);
6142 	SET_FIELD(nvme_ioq_poll_period_us, 0);
6143 	SET_FIELD(delay_cmd_submit, 0);
6144 	SET_FIELD(bdev_retry_count, 0);
6145 	SET_FIELD(ctrlr_loss_timeout_sec, 0);
6146 	SET_FIELD(reconnect_delay_sec, 0);
6147 	SET_FIELD(fast_io_fail_timeout_sec, 0);
6148 	SET_FIELD(transport_ack_timeout, 0);
6149 	SET_FIELD(disable_auto_failback, false);
6150 	SET_FIELD(generate_uuids, false);
6151 	SET_FIELD(transport_tos, 0);
6152 	SET_FIELD(nvme_error_stat, false);
6153 	SET_FIELD(io_path_stat, false);
6154 	SET_FIELD(allow_accel_sequence, false);
6155 	SET_FIELD(rdma_srq_size, 0);
6156 	SET_FIELD(rdma_max_cq_size, 0);
6157 	SET_FIELD(rdma_cm_event_timeout_ms, 0);
6158 	SET_FIELD(dhchap_digests, 0);
6159 	SET_FIELD(dhchap_dhgroups, 0);
6160 
6161 #undef SET_FIELD
6162 
6163 	/* Do not remove this statement, you should always update this statement when you adding a new field,
6164 	 * and do not forget to add the SET_FIELD statement for your added field. */
6165 	SPDK_STATIC_ASSERT(sizeof(struct spdk_bdev_nvme_opts) == 120, "Incorrect size");
6166 }
6167 
6168 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
6169 		uint32_t reconnect_delay_sec,
6170 		uint32_t fast_io_fail_timeout_sec);
6171 
6172 static int
6173 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
6174 {
6175 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
6176 		/* Can't set timeout_admin_us without also setting timeout_us */
6177 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
6178 		return -EINVAL;
6179 	}
6180 
6181 	if (opts->bdev_retry_count < -1) {
6182 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
6183 		return -EINVAL;
6184 	}
6185 
6186 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
6187 			opts->reconnect_delay_sec,
6188 			opts->fast_io_fail_timeout_sec)) {
6189 		return -EINVAL;
6190 	}
6191 
6192 	return 0;
6193 }
6194 
6195 int
6196 spdk_bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
6197 {
6198 	if (!opts) {
6199 		SPDK_ERRLOG("opts cannot be NULL\n");
6200 		return -1;
6201 	}
6202 
6203 	if (!opts->opts_size) {
6204 		SPDK_ERRLOG("opts_size inside opts cannot be zero value\n");
6205 		return -1;
6206 	}
6207 
6208 	int ret;
6209 
6210 	ret = bdev_nvme_validate_opts(opts);
6211 	if (ret) {
6212 		SPDK_WARNLOG("Failed to set nvme opts.\n");
6213 		return ret;
6214 	}
6215 
6216 	if (g_bdev_nvme_init_thread != NULL) {
6217 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
6218 			return -EPERM;
6219 		}
6220 	}
6221 
6222 	if (opts->rdma_srq_size != 0 ||
6223 	    opts->rdma_max_cq_size != 0 ||
6224 	    opts->rdma_cm_event_timeout_ms != 0) {
6225 		struct spdk_nvme_transport_opts drv_opts;
6226 
6227 		spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
6228 		if (opts->rdma_srq_size != 0) {
6229 			drv_opts.rdma_srq_size = opts->rdma_srq_size;
6230 		}
6231 		if (opts->rdma_max_cq_size != 0) {
6232 			drv_opts.rdma_max_cq_size = opts->rdma_max_cq_size;
6233 		}
6234 		if (opts->rdma_cm_event_timeout_ms != 0) {
6235 			drv_opts.rdma_cm_event_timeout_ms = opts->rdma_cm_event_timeout_ms;
6236 		}
6237 
6238 		ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
6239 		if (ret) {
6240 			SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
6241 			return ret;
6242 		}
6243 	}
6244 
6245 #define SET_FIELD(field, defval) \
6246 		g_opts.field = SPDK_GET_FIELD(opts, field, defval, opts->opts_size); \
6247 
6248 	SET_FIELD(action_on_timeout, 0);
6249 	SET_FIELD(keep_alive_timeout_ms, 0);
6250 	SET_FIELD(timeout_us, 0);
6251 	SET_FIELD(timeout_admin_us, 0);
6252 	SET_FIELD(transport_retry_count, 0);
6253 	SET_FIELD(arbitration_burst, 0);
6254 	SET_FIELD(low_priority_weight, 0);
6255 	SET_FIELD(medium_priority_weight, 0);
6256 	SET_FIELD(high_priority_weight, 0);
6257 	SET_FIELD(io_queue_requests, 0);
6258 	SET_FIELD(nvme_adminq_poll_period_us, 0);
6259 	SET_FIELD(nvme_ioq_poll_period_us, 0);
6260 	SET_FIELD(delay_cmd_submit, 0);
6261 	SET_FIELD(bdev_retry_count, 0);
6262 	SET_FIELD(ctrlr_loss_timeout_sec, 0);
6263 	SET_FIELD(reconnect_delay_sec, 0);
6264 	SET_FIELD(fast_io_fail_timeout_sec, 0);
6265 	SET_FIELD(transport_ack_timeout, 0);
6266 	SET_FIELD(disable_auto_failback, false);
6267 	SET_FIELD(generate_uuids, false);
6268 	SET_FIELD(transport_tos, 0);
6269 	SET_FIELD(nvme_error_stat, false);
6270 	SET_FIELD(io_path_stat, false);
6271 	SET_FIELD(allow_accel_sequence, false);
6272 	SET_FIELD(rdma_srq_size, 0);
6273 	SET_FIELD(rdma_max_cq_size, 0);
6274 	SET_FIELD(rdma_cm_event_timeout_ms, 0);
6275 	SET_FIELD(dhchap_digests, 0);
6276 	SET_FIELD(dhchap_dhgroups, 0);
6277 
6278 	g_opts.opts_size = opts->opts_size;
6279 
6280 #undef SET_FIELD
6281 
6282 	return 0;
6283 }
6284 
6285 struct set_nvme_hotplug_ctx {
6286 	uint64_t period_us;
6287 	bool enabled;
6288 	spdk_msg_fn fn;
6289 	void *fn_ctx;
6290 };
6291 
6292 static void
6293 set_nvme_hotplug_period_cb(void *_ctx)
6294 {
6295 	struct set_nvme_hotplug_ctx *ctx = _ctx;
6296 
6297 	spdk_poller_unregister(&g_hotplug_poller);
6298 	if (ctx->enabled) {
6299 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
6300 	} else {
6301 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_remove_poller, NULL,
6302 							NVME_HOTPLUG_POLL_PERIOD_DEFAULT);
6303 	}
6304 
6305 	g_nvme_hotplug_poll_period_us = ctx->period_us;
6306 	g_nvme_hotplug_enabled = ctx->enabled;
6307 	if (ctx->fn) {
6308 		ctx->fn(ctx->fn_ctx);
6309 	}
6310 
6311 	free(ctx);
6312 }
6313 
6314 int
6315 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
6316 {
6317 	struct set_nvme_hotplug_ctx *ctx;
6318 
6319 	if (enabled == true && !spdk_process_is_primary()) {
6320 		return -EPERM;
6321 	}
6322 
6323 	ctx = calloc(1, sizeof(*ctx));
6324 	if (ctx == NULL) {
6325 		return -ENOMEM;
6326 	}
6327 
6328 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
6329 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
6330 	ctx->enabled = enabled;
6331 	ctx->fn = cb;
6332 	ctx->fn_ctx = cb_ctx;
6333 
6334 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
6335 	return 0;
6336 }
6337 
6338 static void
6339 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
6340 				    struct nvme_async_probe_ctx *ctx)
6341 {
6342 	struct nvme_ns	*nvme_ns;
6343 	struct nvme_bdev	*nvme_bdev;
6344 	size_t			j;
6345 
6346 	assert(nvme_ctrlr != NULL);
6347 
6348 	if (ctx->names == NULL) {
6349 		ctx->reported_bdevs = 0;
6350 		populate_namespaces_cb(ctx, 0);
6351 		return;
6352 	}
6353 
6354 	/*
6355 	 * Report the new bdevs that were created in this call.
6356 	 * There can be more than one bdev per NVMe controller.
6357 	 */
6358 	j = 0;
6359 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
6360 	while (nvme_ns != NULL) {
6361 		nvme_bdev = nvme_ns->bdev;
6362 		if (j < ctx->max_bdevs) {
6363 			ctx->names[j] = nvme_bdev->disk.name;
6364 			j++;
6365 		} else {
6366 			NVME_CTRLR_ERRLOG(nvme_ctrlr,
6367 					  "Maximum number of namespaces supported per NVMe controller is %du. "
6368 					  "Unable to return all names of created bdevs\n",
6369 					  ctx->max_bdevs);
6370 			ctx->reported_bdevs = 0;
6371 			populate_namespaces_cb(ctx, -ERANGE);
6372 			return;
6373 		}
6374 
6375 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
6376 	}
6377 
6378 	ctx->reported_bdevs = j;
6379 	populate_namespaces_cb(ctx, 0);
6380 }
6381 
6382 static int
6383 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
6384 			       struct spdk_nvme_ctrlr *new_ctrlr,
6385 			       struct spdk_nvme_transport_id *trid)
6386 {
6387 	struct nvme_path_id *tmp_trid;
6388 
6389 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6390 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "PCIe failover is not supported.\n");
6391 		return -ENOTSUP;
6392 	}
6393 
6394 	/* Currently we only support failover to the same transport type. */
6395 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
6396 		NVME_CTRLR_WARNLOG(nvme_ctrlr,
6397 				   "Failover from trtype: %s to a different trtype: %s is not supported currently\n",
6398 				   spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
6399 				   spdk_nvme_transport_id_trtype_str(trid->trtype));
6400 		return -EINVAL;
6401 	}
6402 
6403 
6404 	/* Currently we only support failover to the same NQN. */
6405 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
6406 		NVME_CTRLR_WARNLOG(nvme_ctrlr,
6407 				   "Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
6408 				   nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
6409 		return -EINVAL;
6410 	}
6411 
6412 	/* Skip all the other checks if we've already registered this path. */
6413 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
6414 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
6415 			NVME_CTRLR_WARNLOG(nvme_ctrlr, "This path (traddr: %s subnqn: %s) is already registered\n",
6416 					   trid->traddr, trid->subnqn);
6417 			return -EALREADY;
6418 		}
6419 	}
6420 
6421 	return 0;
6422 }
6423 
6424 static int
6425 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
6426 				    struct spdk_nvme_ctrlr *new_ctrlr)
6427 {
6428 	struct nvme_ns *nvme_ns;
6429 	struct spdk_nvme_ns *new_ns;
6430 
6431 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
6432 	while (nvme_ns != NULL) {
6433 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
6434 		assert(new_ns != NULL);
6435 
6436 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
6437 			return -EINVAL;
6438 		}
6439 
6440 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
6441 	}
6442 
6443 	return 0;
6444 }
6445 
6446 static int
6447 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
6448 			      struct spdk_nvme_transport_id *trid)
6449 {
6450 	struct nvme_path_id *active_id, *new_trid, *tmp_trid;
6451 
6452 	new_trid = calloc(1, sizeof(*new_trid));
6453 	if (new_trid == NULL) {
6454 		return -ENOMEM;
6455 	}
6456 	new_trid->trid = *trid;
6457 
6458 	active_id = nvme_ctrlr->active_path_id;
6459 	assert(active_id != NULL);
6460 	assert(active_id == TAILQ_FIRST(&nvme_ctrlr->trids));
6461 
6462 	/* Skip the active trid not to replace it until it is failed. */
6463 	tmp_trid = TAILQ_NEXT(active_id, link);
6464 	if (tmp_trid == NULL) {
6465 		goto add_tail;
6466 	}
6467 
6468 	/* It means the trid is faled if its last failed time is non-zero.
6469 	 * Insert the new alternate trid before any failed trid.
6470 	 */
6471 	TAILQ_FOREACH_FROM(tmp_trid, &nvme_ctrlr->trids, link) {
6472 		if (tmp_trid->last_failed_tsc != 0) {
6473 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
6474 			return 0;
6475 		}
6476 	}
6477 
6478 add_tail:
6479 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
6480 	return 0;
6481 }
6482 
6483 /* This is the case that a secondary path is added to an existing
6484  * nvme_ctrlr for failover. After checking if it can access the same
6485  * namespaces as the primary path, it is disconnected until failover occurs.
6486  */
6487 static int
6488 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
6489 			     struct spdk_nvme_ctrlr *new_ctrlr,
6490 			     struct spdk_nvme_transport_id *trid)
6491 {
6492 	int rc;
6493 
6494 	assert(nvme_ctrlr != NULL);
6495 
6496 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6497 
6498 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
6499 	if (rc != 0) {
6500 		goto exit;
6501 	}
6502 
6503 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
6504 	if (rc != 0) {
6505 		goto exit;
6506 	}
6507 
6508 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
6509 
6510 exit:
6511 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6512 
6513 	spdk_nvme_detach(new_ctrlr);
6514 
6515 	return rc;
6516 }
6517 
6518 static void
6519 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6520 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
6521 {
6522 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6523 	struct nvme_async_probe_ctx *ctx;
6524 	int rc;
6525 
6526 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
6527 	ctx->ctrlr_attached = true;
6528 
6529 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
6530 	if (rc != 0) {
6531 		ctx->reported_bdevs = 0;
6532 		populate_namespaces_cb(ctx, rc);
6533 	}
6534 }
6535 
6536 
6537 static void
6538 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6539 			struct spdk_nvme_ctrlr *ctrlr,
6540 			const struct spdk_nvme_ctrlr_opts *opts)
6541 {
6542 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6543 	struct nvme_ctrlr *nvme_ctrlr;
6544 	struct nvme_async_probe_ctx *ctx;
6545 	int rc;
6546 
6547 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
6548 	ctx->ctrlr_attached = true;
6549 
6550 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
6551 	if (nvme_ctrlr) {
6552 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
6553 	} else {
6554 		rc = -ENODEV;
6555 	}
6556 
6557 	ctx->reported_bdevs = 0;
6558 	populate_namespaces_cb(ctx, rc);
6559 }
6560 
6561 static int
6562 bdev_nvme_async_poll(void *arg)
6563 {
6564 	struct nvme_async_probe_ctx	*ctx = arg;
6565 	int				rc;
6566 
6567 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
6568 	if (spdk_unlikely(rc != -EAGAIN)) {
6569 		ctx->probe_done = true;
6570 		spdk_poller_unregister(&ctx->poller);
6571 		if (!ctx->ctrlr_attached) {
6572 			/* The probe is done, but no controller was attached.
6573 			 * That means we had a failure, so report -EIO back to
6574 			 * the caller (usually the RPC). populate_namespaces_cb()
6575 			 * will take care of freeing the nvme_async_probe_ctx.
6576 			 */
6577 			ctx->reported_bdevs = 0;
6578 			populate_namespaces_cb(ctx, -EIO);
6579 		} else if (ctx->namespaces_populated) {
6580 			/* The namespaces for the attached controller were all
6581 			 * populated and the response was already sent to the
6582 			 * caller (usually the RPC).  So free the context here.
6583 			 */
6584 			free_nvme_async_probe_ctx(ctx);
6585 		}
6586 	}
6587 
6588 	return SPDK_POLLER_BUSY;
6589 }
6590 
6591 static bool
6592 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
6593 		uint32_t reconnect_delay_sec,
6594 		uint32_t fast_io_fail_timeout_sec)
6595 {
6596 	if (ctrlr_loss_timeout_sec < -1) {
6597 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
6598 		return false;
6599 	} else if (ctrlr_loss_timeout_sec == -1) {
6600 		if (reconnect_delay_sec == 0) {
6601 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6602 			return false;
6603 		} else if (fast_io_fail_timeout_sec != 0 &&
6604 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
6605 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
6606 			return false;
6607 		}
6608 	} else if (ctrlr_loss_timeout_sec != 0) {
6609 		if (reconnect_delay_sec == 0) {
6610 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6611 			return false;
6612 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6613 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
6614 			return false;
6615 		} else if (fast_io_fail_timeout_sec != 0) {
6616 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
6617 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
6618 				return false;
6619 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6620 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
6621 				return false;
6622 			}
6623 		}
6624 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
6625 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
6626 		return false;
6627 	}
6628 
6629 	return true;
6630 }
6631 
6632 int
6633 spdk_bdev_nvme_create(struct spdk_nvme_transport_id *trid,
6634 		      const char *base_name,
6635 		      const char **names,
6636 		      uint32_t count,
6637 		      spdk_bdev_nvme_create_cb cb_fn,
6638 		      void *cb_ctx,
6639 		      struct spdk_nvme_ctrlr_opts *drv_opts,
6640 		      struct spdk_bdev_nvme_ctrlr_opts *bdev_opts)
6641 {
6642 	struct nvme_probe_skip_entry *entry, *tmp;
6643 	struct nvme_async_probe_ctx *ctx;
6644 	spdk_nvme_attach_cb attach_cb;
6645 	struct nvme_ctrlr *nvme_ctrlr;
6646 	int len;
6647 
6648 	/* TODO expand this check to include both the host and target TRIDs.
6649 	 * Only if both are the same should we fail.
6650 	 */
6651 	if (nvme_ctrlr_get(trid, drv_opts->hostnqn) != NULL) {
6652 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s, hostnqn: %s) "
6653 			    "already exists.\n", trid->traddr, drv_opts->hostnqn);
6654 		return -EEXIST;
6655 	}
6656 
6657 	len = strnlen(base_name, SPDK_CONTROLLER_NAME_MAX);
6658 
6659 	if (len == 0 || len == SPDK_CONTROLLER_NAME_MAX) {
6660 		SPDK_ERRLOG("controller name must be between 1 and %d characters\n", SPDK_CONTROLLER_NAME_MAX - 1);
6661 		return -EINVAL;
6662 	}
6663 
6664 	if (bdev_opts != NULL &&
6665 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
6666 			    bdev_opts->reconnect_delay_sec,
6667 			    bdev_opts->fast_io_fail_timeout_sec)) {
6668 		return -EINVAL;
6669 	}
6670 
6671 	ctx = calloc(1, sizeof(*ctx));
6672 	if (!ctx) {
6673 		return -ENOMEM;
6674 	}
6675 	ctx->base_name = strdup(base_name);
6676 	if (!ctx->base_name) {
6677 		free(ctx);
6678 		return -ENOMEM;
6679 	}
6680 	ctx->names = names;
6681 	ctx->max_bdevs = count;
6682 	ctx->cb_fn = cb_fn;
6683 	ctx->cb_ctx = cb_ctx;
6684 	ctx->trid = *trid;
6685 
6686 	if (bdev_opts) {
6687 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6688 	} else {
6689 		spdk_bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
6690 	}
6691 
6692 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6693 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
6694 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
6695 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
6696 				free(entry);
6697 				break;
6698 			}
6699 		}
6700 	}
6701 
6702 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6703 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
6704 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
6705 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
6706 	ctx->drv_opts.disable_read_ana_log_page = true;
6707 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
6708 
6709 	if (spdk_interrupt_mode_is_enabled()) {
6710 		if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6711 			ctx->drv_opts.enable_interrupts = true;
6712 		} else {
6713 			SPDK_ERRLOG("Interrupt mode is only supported with PCIe transport\n");
6714 			free_nvme_async_probe_ctx(ctx);
6715 			return -ENOTSUP;
6716 		}
6717 	}
6718 
6719 	if (ctx->bdev_opts.psk != NULL) {
6720 		ctx->drv_opts.tls_psk = spdk_keyring_get_key(ctx->bdev_opts.psk);
6721 		if (ctx->drv_opts.tls_psk == NULL) {
6722 			SPDK_ERRLOG("Could not load PSK: %s\n", ctx->bdev_opts.psk);
6723 			free_nvme_async_probe_ctx(ctx);
6724 			return -ENOKEY;
6725 		}
6726 	}
6727 
6728 	if (ctx->bdev_opts.dhchap_key != NULL) {
6729 		ctx->drv_opts.dhchap_key = spdk_keyring_get_key(ctx->bdev_opts.dhchap_key);
6730 		if (ctx->drv_opts.dhchap_key == NULL) {
6731 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP key: %s\n",
6732 				    ctx->bdev_opts.dhchap_key);
6733 			free_nvme_async_probe_ctx(ctx);
6734 			return -ENOKEY;
6735 		}
6736 
6737 		ctx->drv_opts.dhchap_digests = g_opts.dhchap_digests;
6738 		ctx->drv_opts.dhchap_dhgroups = g_opts.dhchap_dhgroups;
6739 	}
6740 	if (ctx->bdev_opts.dhchap_ctrlr_key != NULL) {
6741 		ctx->drv_opts.dhchap_ctrlr_key =
6742 			spdk_keyring_get_key(ctx->bdev_opts.dhchap_ctrlr_key);
6743 		if (ctx->drv_opts.dhchap_ctrlr_key == NULL) {
6744 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP controller key: %s\n",
6745 				    ctx->bdev_opts.dhchap_ctrlr_key);
6746 			free_nvme_async_probe_ctx(ctx);
6747 			return -ENOKEY;
6748 		}
6749 	}
6750 
6751 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || ctx->bdev_opts.multipath) {
6752 		attach_cb = connect_attach_cb;
6753 	} else {
6754 		attach_cb = connect_set_failover_cb;
6755 	}
6756 
6757 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
6758 	if (nvme_ctrlr  && nvme_ctrlr->opts.multipath != ctx->bdev_opts.multipath) {
6759 		/* All controllers with the same name must be configured the same
6760 		 * way, either for multipath or failover. If the configuration doesn't
6761 		 * match - report error.
6762 		 */
6763 		free_nvme_async_probe_ctx(ctx);
6764 		return -EINVAL;
6765 	}
6766 
6767 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
6768 	if (ctx->probe_ctx == NULL) {
6769 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
6770 		free_nvme_async_probe_ctx(ctx);
6771 		return -ENODEV;
6772 	}
6773 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
6774 
6775 	return 0;
6776 }
6777 
6778 struct bdev_nvme_delete_ctx {
6779 	char                        *name;
6780 	struct nvme_path_id         path_id;
6781 	bdev_nvme_delete_done_fn    delete_done;
6782 	void                        *delete_done_ctx;
6783 	uint64_t                    timeout_ticks;
6784 	struct spdk_poller          *poller;
6785 };
6786 
6787 static void
6788 free_bdev_nvme_delete_ctx(struct bdev_nvme_delete_ctx *ctx)
6789 {
6790 	if (ctx != NULL) {
6791 		free(ctx->name);
6792 		free(ctx);
6793 	}
6794 }
6795 
6796 static bool
6797 nvme_path_id_compare(struct nvme_path_id *p, const struct nvme_path_id *path_id)
6798 {
6799 	if (path_id->trid.trtype != 0) {
6800 		if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
6801 			if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
6802 				return false;
6803 			}
6804 		} else {
6805 			if (path_id->trid.trtype != p->trid.trtype) {
6806 				return false;
6807 			}
6808 		}
6809 	}
6810 
6811 	if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
6812 		if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
6813 			return false;
6814 		}
6815 	}
6816 
6817 	if (path_id->trid.adrfam != 0) {
6818 		if (path_id->trid.adrfam != p->trid.adrfam) {
6819 			return false;
6820 		}
6821 	}
6822 
6823 	if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
6824 		if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
6825 			return false;
6826 		}
6827 	}
6828 
6829 	if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
6830 		if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
6831 			return false;
6832 		}
6833 	}
6834 
6835 	if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
6836 		if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
6837 			return false;
6838 		}
6839 	}
6840 
6841 	if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
6842 		if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
6843 			return false;
6844 		}
6845 	}
6846 
6847 	return true;
6848 }
6849 
6850 static bool
6851 nvme_path_id_exists(const char *name, const struct nvme_path_id *path_id)
6852 {
6853 	struct nvme_bdev_ctrlr  *nbdev_ctrlr;
6854 	struct nvme_ctrlr       *ctrlr;
6855 	struct nvme_path_id     *p;
6856 
6857 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6858 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6859 	if (!nbdev_ctrlr) {
6860 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6861 		return false;
6862 	}
6863 
6864 	TAILQ_FOREACH(ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6865 		pthread_mutex_lock(&ctrlr->mutex);
6866 		TAILQ_FOREACH(p, &ctrlr->trids, link) {
6867 			if (nvme_path_id_compare(p, path_id)) {
6868 				pthread_mutex_unlock(&ctrlr->mutex);
6869 				pthread_mutex_unlock(&g_bdev_nvme_mutex);
6870 				return true;
6871 			}
6872 		}
6873 		pthread_mutex_unlock(&ctrlr->mutex);
6874 	}
6875 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6876 
6877 	return false;
6878 }
6879 
6880 static int
6881 bdev_nvme_delete_complete_poll(void *arg)
6882 {
6883 	struct bdev_nvme_delete_ctx     *ctx = arg;
6884 	int                             rc = 0;
6885 
6886 	if (nvme_path_id_exists(ctx->name, &ctx->path_id)) {
6887 		if (ctx->timeout_ticks > spdk_get_ticks()) {
6888 			return SPDK_POLLER_BUSY;
6889 		}
6890 
6891 		SPDK_ERRLOG("NVMe path '%s' still exists after delete\n", ctx->name);
6892 		rc = -ETIMEDOUT;
6893 	}
6894 
6895 	spdk_poller_unregister(&ctx->poller);
6896 
6897 	ctx->delete_done(ctx->delete_done_ctx, rc);
6898 	free_bdev_nvme_delete_ctx(ctx);
6899 
6900 	return SPDK_POLLER_BUSY;
6901 }
6902 
6903 static int
6904 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id)
6905 {
6906 	struct nvme_path_id	*p, *t;
6907 	spdk_msg_fn		msg_fn;
6908 	int			rc = -ENXIO;
6909 
6910 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6911 
6912 	TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
6913 		if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) {
6914 			break;
6915 		}
6916 
6917 		if (!nvme_path_id_compare(p, path_id)) {
6918 			continue;
6919 		}
6920 
6921 		/* We are not using the specified path. */
6922 		TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
6923 		free(p);
6924 		rc = 0;
6925 	}
6926 
6927 	if (p == NULL || !nvme_path_id_compare(p, path_id)) {
6928 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
6929 		return rc;
6930 	}
6931 
6932 	/* If we made it here, then this path is a match! Now we need to remove it. */
6933 
6934 	/* This is the active path in use right now. The active path is always the first in the list. */
6935 	assert(p == nvme_ctrlr->active_path_id);
6936 
6937 	if (!TAILQ_NEXT(p, link)) {
6938 		/* The current path is the only path. */
6939 		msg_fn = _nvme_ctrlr_destruct;
6940 		rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false);
6941 	} else {
6942 		/* There is an alternative path. */
6943 		msg_fn = _bdev_nvme_reset_ctrlr;
6944 		rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, true);
6945 	}
6946 
6947 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6948 
6949 	if (rc == 0) {
6950 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
6951 	} else if (rc == -EALREADY) {
6952 		rc = 0;
6953 	}
6954 
6955 	return rc;
6956 }
6957 
6958 int
6959 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id,
6960 		 bdev_nvme_delete_done_fn delete_done, void *delete_done_ctx)
6961 {
6962 	struct nvme_bdev_ctrlr		*nbdev_ctrlr;
6963 	struct nvme_ctrlr		*nvme_ctrlr, *tmp_nvme_ctrlr;
6964 	struct bdev_nvme_delete_ctx     *ctx = NULL;
6965 	int				rc = -ENXIO, _rc;
6966 
6967 	if (name == NULL || path_id == NULL) {
6968 		rc = -EINVAL;
6969 		goto exit;
6970 	}
6971 
6972 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6973 
6974 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6975 	if (nbdev_ctrlr == NULL) {
6976 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6977 
6978 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
6979 		rc = -ENODEV;
6980 		goto exit;
6981 	}
6982 
6983 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
6984 		_rc = _bdev_nvme_delete(nvme_ctrlr, path_id);
6985 		if (_rc < 0 && _rc != -ENXIO) {
6986 			pthread_mutex_unlock(&g_bdev_nvme_mutex);
6987 			rc = _rc;
6988 			goto exit;
6989 		} else if (_rc == 0) {
6990 			/* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr
6991 			 * was deleted successfully. To remember the successful deletion,
6992 			 * overwrite rc only if _rc is zero.
6993 			 */
6994 			rc = 0;
6995 		}
6996 	}
6997 
6998 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6999 
7000 	if (rc != 0 || delete_done == NULL) {
7001 		goto exit;
7002 	}
7003 
7004 	ctx = calloc(1, sizeof(*ctx));
7005 	if (ctx == NULL) {
7006 		SPDK_ERRLOG("Failed to allocate context for bdev_nvme_delete\n");
7007 		rc = -ENOMEM;
7008 		goto exit;
7009 	}
7010 
7011 	ctx->name = strdup(name);
7012 	if (ctx->name == NULL) {
7013 		SPDK_ERRLOG("Failed to copy controller name for deletion\n");
7014 		rc = -ENOMEM;
7015 		goto exit;
7016 	}
7017 
7018 	ctx->delete_done = delete_done;
7019 	ctx->delete_done_ctx = delete_done_ctx;
7020 	ctx->path_id = *path_id;
7021 	ctx->timeout_ticks = spdk_get_ticks() + 10 * spdk_get_ticks_hz();
7022 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_delete_complete_poll, ctx, 1000);
7023 	if (ctx->poller == NULL) {
7024 		SPDK_ERRLOG("Failed to register bdev_nvme_delete poller\n");
7025 		rc = -ENOMEM;
7026 		goto exit;
7027 	}
7028 
7029 exit:
7030 	if (rc != 0) {
7031 		free_bdev_nvme_delete_ctx(ctx);
7032 	}
7033 
7034 	return rc;
7035 }
7036 
7037 #define DISCOVERY_INFOLOG(ctx, format, ...) \
7038 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
7039 
7040 #define DISCOVERY_ERRLOG(ctx, format, ...) \
7041 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
7042 
7043 struct discovery_entry_ctx {
7044 	char						name[128];
7045 	struct spdk_nvme_transport_id			trid;
7046 	struct spdk_nvme_ctrlr_opts			drv_opts;
7047 	struct spdk_nvmf_discovery_log_page_entry	entry;
7048 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
7049 	struct discovery_ctx				*ctx;
7050 };
7051 
7052 struct discovery_ctx {
7053 	char					*name;
7054 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
7055 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
7056 	void					*cb_ctx;
7057 	struct spdk_nvme_probe_ctx		*probe_ctx;
7058 	struct spdk_nvme_detach_ctx		*detach_ctx;
7059 	struct spdk_nvme_ctrlr			*ctrlr;
7060 	struct spdk_nvme_transport_id		trid;
7061 	struct discovery_entry_ctx		*entry_ctx_in_use;
7062 	struct spdk_poller			*poller;
7063 	struct spdk_nvme_ctrlr_opts		drv_opts;
7064 	struct spdk_bdev_nvme_ctrlr_opts	bdev_opts;
7065 	struct spdk_nvmf_discovery_log_page	*log_page;
7066 	TAILQ_ENTRY(discovery_ctx)		tailq;
7067 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
7068 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
7069 	int					rc;
7070 	bool					wait_for_attach;
7071 	uint64_t				timeout_ticks;
7072 	/* Denotes that the discovery service is being started. We're waiting
7073 	 * for the initial connection to the discovery controller to be
7074 	 * established and attach discovered NVM ctrlrs.
7075 	 */
7076 	bool					initializing;
7077 	/* Denotes if a discovery is currently in progress for this context.
7078 	 * That includes connecting to newly discovered subsystems.  Used to
7079 	 * ensure we do not start a new discovery until an existing one is
7080 	 * complete.
7081 	 */
7082 	bool					in_progress;
7083 
7084 	/* Denotes if another discovery is needed after the one in progress
7085 	 * completes.  Set when we receive an AER completion while a discovery
7086 	 * is already in progress.
7087 	 */
7088 	bool					pending;
7089 
7090 	/* Signal to the discovery context poller that it should stop the
7091 	 * discovery service, including detaching from the current discovery
7092 	 * controller.
7093 	 */
7094 	bool					stop;
7095 
7096 	struct spdk_thread			*calling_thread;
7097 	uint32_t				index;
7098 	uint32_t				attach_in_progress;
7099 	char					*hostnqn;
7100 
7101 	/* Denotes if the discovery service was started by the mdns discovery.
7102 	 */
7103 	bool					from_mdns_discovery_service;
7104 };
7105 
7106 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
7107 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
7108 
7109 static void get_discovery_log_page(struct discovery_ctx *ctx);
7110 
7111 static void
7112 free_discovery_ctx(struct discovery_ctx *ctx)
7113 {
7114 	free(ctx->log_page);
7115 	free(ctx->hostnqn);
7116 	free(ctx->name);
7117 	free(ctx);
7118 }
7119 
7120 static void
7121 discovery_complete(struct discovery_ctx *ctx)
7122 {
7123 	ctx->initializing = false;
7124 	ctx->in_progress = false;
7125 	if (ctx->pending) {
7126 		ctx->pending = false;
7127 		get_discovery_log_page(ctx);
7128 	}
7129 }
7130 
7131 static void
7132 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
7133 			       struct spdk_nvmf_discovery_log_page_entry *entry)
7134 {
7135 	char *space;
7136 
7137 	trid->trtype = entry->trtype;
7138 	trid->adrfam = entry->adrfam;
7139 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
7140 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
7141 	/* Because the source buffer (entry->subnqn) is longer than trid->subnqn, and
7142 	 * before call to this function trid->subnqn is zeroed out, we need
7143 	 * to copy sizeof(trid->subnqn) minus one byte to make sure the last character
7144 	 * remains 0. Then we can shorten the string (replace ' ' with 0) if required
7145 	 */
7146 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn) - 1);
7147 
7148 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
7149 	 * But the log page entries typically pad them with spaces, not zeroes.
7150 	 * So add a NULL terminator to each of these fields at the appropriate
7151 	 * location.
7152 	 */
7153 	space = strchr(trid->traddr, ' ');
7154 	if (space) {
7155 		*space = 0;
7156 	}
7157 	space = strchr(trid->trsvcid, ' ');
7158 	if (space) {
7159 		*space = 0;
7160 	}
7161 	space = strchr(trid->subnqn, ' ');
7162 	if (space) {
7163 		*space = 0;
7164 	}
7165 }
7166 
7167 static void
7168 _stop_discovery(void *_ctx)
7169 {
7170 	struct discovery_ctx *ctx = _ctx;
7171 
7172 	if (ctx->attach_in_progress > 0) {
7173 		spdk_thread_send_msg(spdk_get_thread(), _stop_discovery, ctx);
7174 		return;
7175 	}
7176 
7177 	ctx->stop = true;
7178 
7179 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
7180 		struct discovery_entry_ctx *entry_ctx;
7181 		struct nvme_path_id path = {};
7182 
7183 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
7184 		path.trid = entry_ctx->trid;
7185 		bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
7186 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
7187 		free(entry_ctx);
7188 	}
7189 
7190 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
7191 		struct discovery_entry_ctx *entry_ctx;
7192 
7193 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
7194 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
7195 		free(entry_ctx);
7196 	}
7197 
7198 	free(ctx->entry_ctx_in_use);
7199 	ctx->entry_ctx_in_use = NULL;
7200 }
7201 
7202 static void
7203 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
7204 {
7205 	ctx->stop_cb_fn = cb_fn;
7206 	ctx->cb_ctx = cb_ctx;
7207 
7208 	if (ctx->attach_in_progress > 0) {
7209 		DISCOVERY_INFOLOG(ctx, "stopping discovery with attach_in_progress: %"PRIu32"\n",
7210 				  ctx->attach_in_progress);
7211 	}
7212 
7213 	_stop_discovery(ctx);
7214 }
7215 
7216 static void
7217 remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr)
7218 {
7219 	struct discovery_ctx *d_ctx;
7220 	struct nvme_path_id *path_id;
7221 	struct spdk_nvme_transport_id trid = {};
7222 	struct discovery_entry_ctx *entry_ctx, *tmp;
7223 
7224 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
7225 
7226 	TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
7227 		TAILQ_FOREACH_SAFE(entry_ctx, &d_ctx->nvm_entry_ctxs, tailq, tmp) {
7228 			build_trid_from_log_page_entry(&trid, &entry_ctx->entry);
7229 			if (spdk_nvme_transport_id_compare(&trid, &path_id->trid) != 0) {
7230 				continue;
7231 			}
7232 
7233 			TAILQ_REMOVE(&d_ctx->nvm_entry_ctxs, entry_ctx, tailq);
7234 			free(entry_ctx);
7235 			DISCOVERY_INFOLOG(d_ctx, "Remove discovery entry: %s:%s:%s\n",
7236 					  trid.subnqn, trid.traddr, trid.trsvcid);
7237 
7238 			/* Fail discovery ctrlr to force reattach attempt */
7239 			spdk_nvme_ctrlr_fail(d_ctx->ctrlr);
7240 		}
7241 	}
7242 }
7243 
7244 static void
7245 discovery_remove_controllers(struct discovery_ctx *ctx)
7246 {
7247 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
7248 	struct discovery_entry_ctx *entry_ctx, *tmp;
7249 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
7250 	struct spdk_nvme_transport_id old_trid = {};
7251 	uint64_t numrec, i;
7252 	bool found;
7253 
7254 	numrec = from_le64(&log_page->numrec);
7255 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
7256 		found = false;
7257 		old_entry = &entry_ctx->entry;
7258 		build_trid_from_log_page_entry(&old_trid, old_entry);
7259 		for (i = 0; i < numrec; i++) {
7260 			new_entry = &log_page->entries[i];
7261 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
7262 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
7263 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
7264 				found = true;
7265 				break;
7266 			}
7267 		}
7268 		if (!found) {
7269 			struct nvme_path_id path = {};
7270 
7271 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
7272 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
7273 
7274 			path.trid = entry_ctx->trid;
7275 			bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
7276 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
7277 			free(entry_ctx);
7278 		}
7279 	}
7280 	free(log_page);
7281 	ctx->log_page = NULL;
7282 	discovery_complete(ctx);
7283 }
7284 
7285 static void
7286 complete_discovery_start(struct discovery_ctx *ctx, int status)
7287 {
7288 	ctx->timeout_ticks = 0;
7289 	ctx->rc = status;
7290 	if (ctx->start_cb_fn) {
7291 		ctx->start_cb_fn(ctx->cb_ctx, status);
7292 		ctx->start_cb_fn = NULL;
7293 		ctx->cb_ctx = NULL;
7294 	}
7295 }
7296 
7297 static void
7298 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
7299 {
7300 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
7301 	struct discovery_ctx *ctx = entry_ctx->ctx;
7302 
7303 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
7304 	ctx->attach_in_progress--;
7305 	if (ctx->attach_in_progress == 0) {
7306 		complete_discovery_start(ctx, ctx->rc);
7307 		if (ctx->initializing && ctx->rc != 0) {
7308 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
7309 			stop_discovery(ctx, NULL, ctx->cb_ctx);
7310 		} else {
7311 			discovery_remove_controllers(ctx);
7312 		}
7313 	}
7314 }
7315 
7316 static struct discovery_entry_ctx *
7317 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
7318 {
7319 	struct discovery_entry_ctx *new_ctx;
7320 
7321 	new_ctx = calloc(1, sizeof(*new_ctx));
7322 	if (new_ctx == NULL) {
7323 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7324 		return NULL;
7325 	}
7326 
7327 	new_ctx->ctx = ctx;
7328 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
7329 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
7330 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
7331 	return new_ctx;
7332 }
7333 
7334 static void
7335 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
7336 		      struct spdk_nvmf_discovery_log_page *log_page)
7337 {
7338 	struct discovery_ctx *ctx = cb_arg;
7339 	struct discovery_entry_ctx *entry_ctx, *tmp;
7340 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
7341 	uint64_t numrec, i;
7342 	bool found;
7343 
7344 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
7345 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
7346 		return;
7347 	}
7348 
7349 	ctx->log_page = log_page;
7350 	assert(ctx->attach_in_progress == 0);
7351 	numrec = from_le64(&log_page->numrec);
7352 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
7353 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
7354 		free(entry_ctx);
7355 	}
7356 	for (i = 0; i < numrec; i++) {
7357 		found = false;
7358 		new_entry = &log_page->entries[i];
7359 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY_CURRENT ||
7360 		    new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
7361 			struct discovery_entry_ctx *new_ctx;
7362 			struct spdk_nvme_transport_id trid = {};
7363 
7364 			build_trid_from_log_page_entry(&trid, new_entry);
7365 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
7366 			if (new_ctx == NULL) {
7367 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7368 				break;
7369 			}
7370 
7371 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
7372 			continue;
7373 		}
7374 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
7375 			old_entry = &entry_ctx->entry;
7376 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
7377 				found = true;
7378 				break;
7379 			}
7380 		}
7381 		if (!found) {
7382 			struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx;
7383 			struct discovery_ctx *d_ctx;
7384 
7385 			TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
7386 				TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) {
7387 					if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
7388 						    sizeof(new_entry->subnqn))) {
7389 						break;
7390 					}
7391 				}
7392 				if (subnqn_ctx) {
7393 					break;
7394 				}
7395 			}
7396 
7397 			new_ctx = calloc(1, sizeof(*new_ctx));
7398 			if (new_ctx == NULL) {
7399 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7400 				break;
7401 			}
7402 
7403 			new_ctx->ctx = ctx;
7404 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
7405 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
7406 			if (subnqn_ctx) {
7407 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
7408 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
7409 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
7410 						  new_ctx->name);
7411 			} else {
7412 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
7413 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
7414 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
7415 						  new_ctx->name);
7416 			}
7417 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
7418 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
7419 			rc = spdk_bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
7420 						   discovery_attach_controller_done, new_ctx,
7421 						   &new_ctx->drv_opts, &ctx->bdev_opts);
7422 			if (rc == 0) {
7423 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
7424 				ctx->attach_in_progress++;
7425 			} else {
7426 				DISCOVERY_ERRLOG(ctx, "spdk_bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
7427 			}
7428 		}
7429 	}
7430 
7431 	if (ctx->attach_in_progress == 0) {
7432 		discovery_remove_controllers(ctx);
7433 	}
7434 }
7435 
7436 static void
7437 get_discovery_log_page(struct discovery_ctx *ctx)
7438 {
7439 	int rc;
7440 
7441 	assert(ctx->in_progress == false);
7442 	ctx->in_progress = true;
7443 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
7444 	if (rc != 0) {
7445 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
7446 	}
7447 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
7448 }
7449 
7450 static void
7451 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
7452 {
7453 	struct discovery_ctx *ctx = arg;
7454 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
7455 
7456 	if (spdk_nvme_cpl_is_error(cpl)) {
7457 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
7458 		return;
7459 	}
7460 
7461 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
7462 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
7463 		return;
7464 	}
7465 
7466 	DISCOVERY_INFOLOG(ctx, "got aer\n");
7467 	if (ctx->in_progress) {
7468 		ctx->pending = true;
7469 		return;
7470 	}
7471 
7472 	get_discovery_log_page(ctx);
7473 }
7474 
7475 static void
7476 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
7477 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
7478 {
7479 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
7480 	struct discovery_ctx *ctx;
7481 
7482 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
7483 
7484 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
7485 	ctx->probe_ctx = NULL;
7486 	ctx->ctrlr = ctrlr;
7487 
7488 	if (ctx->rc != 0) {
7489 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
7490 				 ctx->rc);
7491 		return;
7492 	}
7493 
7494 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
7495 }
7496 
7497 static int
7498 discovery_poller(void *arg)
7499 {
7500 	struct discovery_ctx *ctx = arg;
7501 	struct spdk_nvme_transport_id *trid;
7502 	int rc;
7503 
7504 	if (ctx->detach_ctx) {
7505 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
7506 		if (rc != -EAGAIN) {
7507 			ctx->detach_ctx = NULL;
7508 			ctx->ctrlr = NULL;
7509 		}
7510 	} else if (ctx->stop) {
7511 		if (ctx->ctrlr != NULL) {
7512 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7513 			if (rc == 0) {
7514 				return SPDK_POLLER_BUSY;
7515 			}
7516 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7517 		}
7518 		spdk_poller_unregister(&ctx->poller);
7519 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7520 		assert(ctx->start_cb_fn == NULL);
7521 		if (ctx->stop_cb_fn != NULL) {
7522 			ctx->stop_cb_fn(ctx->cb_ctx);
7523 		}
7524 		free_discovery_ctx(ctx);
7525 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
7526 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7527 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7528 			assert(ctx->initializing);
7529 			spdk_poller_unregister(&ctx->poller);
7530 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7531 			complete_discovery_start(ctx, -ETIMEDOUT);
7532 			stop_discovery(ctx, NULL, NULL);
7533 			free_discovery_ctx(ctx);
7534 			return SPDK_POLLER_BUSY;
7535 		}
7536 
7537 		assert(ctx->entry_ctx_in_use == NULL);
7538 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
7539 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7540 		trid = &ctx->entry_ctx_in_use->trid;
7541 
7542 		/* All controllers must be configured explicitely either for multipath or failover.
7543 		 * While discovery use multipath mode, we need to set this in bdev options as well.
7544 		 */
7545 		ctx->bdev_opts.multipath = true;
7546 
7547 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
7548 		if (ctx->probe_ctx) {
7549 			spdk_poller_unregister(&ctx->poller);
7550 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
7551 		} else {
7552 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
7553 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7554 			ctx->entry_ctx_in_use = NULL;
7555 		}
7556 	} else if (ctx->probe_ctx) {
7557 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7558 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7559 			complete_discovery_start(ctx, -ETIMEDOUT);
7560 			return SPDK_POLLER_BUSY;
7561 		}
7562 
7563 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
7564 		if (rc != -EAGAIN) {
7565 			if (ctx->rc != 0) {
7566 				assert(ctx->initializing);
7567 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7568 			} else {
7569 				assert(rc == 0);
7570 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
7571 				ctx->rc = rc;
7572 				get_discovery_log_page(ctx);
7573 			}
7574 		}
7575 	} else {
7576 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7577 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
7578 			complete_discovery_start(ctx, -ETIMEDOUT);
7579 			/* We need to wait until all NVM ctrlrs are attached before we stop the
7580 			 * discovery service to make sure we don't detach a ctrlr that is still
7581 			 * being attached.
7582 			 */
7583 			if (ctx->attach_in_progress == 0) {
7584 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7585 				return SPDK_POLLER_BUSY;
7586 			}
7587 		}
7588 
7589 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
7590 		if (rc < 0) {
7591 			spdk_poller_unregister(&ctx->poller);
7592 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7593 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7594 			ctx->entry_ctx_in_use = NULL;
7595 
7596 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7597 			if (rc != 0) {
7598 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7599 				ctx->ctrlr = NULL;
7600 			}
7601 		}
7602 	}
7603 
7604 	return SPDK_POLLER_BUSY;
7605 }
7606 
7607 static void
7608 start_discovery_poller(void *arg)
7609 {
7610 	struct discovery_ctx *ctx = arg;
7611 
7612 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
7613 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7614 }
7615 
7616 int
7617 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
7618 			  const char *base_name,
7619 			  struct spdk_nvme_ctrlr_opts *drv_opts,
7620 			  struct spdk_bdev_nvme_ctrlr_opts *bdev_opts,
7621 			  uint64_t attach_timeout,
7622 			  bool from_mdns,
7623 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
7624 {
7625 	struct discovery_ctx *ctx;
7626 	struct discovery_entry_ctx *discovery_entry_ctx;
7627 
7628 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
7629 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7630 		if (strcmp(ctx->name, base_name) == 0) {
7631 			return -EEXIST;
7632 		}
7633 
7634 		if (ctx->entry_ctx_in_use != NULL) {
7635 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
7636 				return -EEXIST;
7637 			}
7638 		}
7639 
7640 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
7641 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
7642 				return -EEXIST;
7643 			}
7644 		}
7645 	}
7646 
7647 	ctx = calloc(1, sizeof(*ctx));
7648 	if (ctx == NULL) {
7649 		return -ENOMEM;
7650 	}
7651 
7652 	ctx->name = strdup(base_name);
7653 	if (ctx->name == NULL) {
7654 		free_discovery_ctx(ctx);
7655 		return -ENOMEM;
7656 	}
7657 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
7658 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
7659 	ctx->from_mdns_discovery_service = from_mdns;
7660 	ctx->bdev_opts.from_discovery_service = true;
7661 	ctx->calling_thread = spdk_get_thread();
7662 	ctx->start_cb_fn = cb_fn;
7663 	ctx->cb_ctx = cb_ctx;
7664 	ctx->initializing = true;
7665 	if (ctx->start_cb_fn) {
7666 		/* We can use this when dumping json to denote if this RPC parameter
7667 		 * was specified or not.
7668 		 */
7669 		ctx->wait_for_attach = true;
7670 	}
7671 	if (attach_timeout != 0) {
7672 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
7673 				     spdk_get_ticks_hz() / 1000ull;
7674 	}
7675 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
7676 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
7677 	memcpy(&ctx->trid, trid, sizeof(*trid));
7678 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
7679 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
7680 	if (ctx->hostnqn == NULL) {
7681 		free_discovery_ctx(ctx);
7682 		return -ENOMEM;
7683 	}
7684 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
7685 	if (discovery_entry_ctx == NULL) {
7686 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7687 		free_discovery_ctx(ctx);
7688 		return -ENOMEM;
7689 	}
7690 
7691 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
7692 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
7693 	return 0;
7694 }
7695 
7696 int
7697 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
7698 {
7699 	struct discovery_ctx *ctx;
7700 
7701 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7702 		if (strcmp(name, ctx->name) == 0) {
7703 			if (ctx->stop) {
7704 				return -EALREADY;
7705 			}
7706 			/* If we're still starting the discovery service and ->rc is non-zero, we're
7707 			 * going to stop it as soon as we can
7708 			 */
7709 			if (ctx->initializing && ctx->rc != 0) {
7710 				return -EALREADY;
7711 			}
7712 			stop_discovery(ctx, cb_fn, cb_ctx);
7713 			return 0;
7714 		}
7715 	}
7716 
7717 	return -ENOENT;
7718 }
7719 
7720 static int
7721 bdev_nvme_library_init(void)
7722 {
7723 	g_bdev_nvme_init_thread = spdk_get_thread();
7724 
7725 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
7726 				bdev_nvme_destroy_poll_group_cb,
7727 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
7728 
7729 	return 0;
7730 }
7731 
7732 static void
7733 bdev_nvme_fini_destruct_ctrlrs(void)
7734 {
7735 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
7736 	struct nvme_ctrlr *nvme_ctrlr;
7737 
7738 	pthread_mutex_lock(&g_bdev_nvme_mutex);
7739 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
7740 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
7741 			pthread_mutex_lock(&nvme_ctrlr->mutex);
7742 			if (nvme_ctrlr->destruct) {
7743 				/* This controller's destruction was already started
7744 				 * before the application started shutting down
7745 				 */
7746 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
7747 				continue;
7748 			}
7749 			nvme_ctrlr->destruct = true;
7750 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
7751 
7752 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
7753 					     nvme_ctrlr);
7754 		}
7755 	}
7756 
7757 	g_bdev_nvme_module_finish = true;
7758 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
7759 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
7760 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
7761 		spdk_bdev_module_fini_done();
7762 		return;
7763 	}
7764 
7765 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
7766 }
7767 
7768 static void
7769 check_discovery_fini(void *arg)
7770 {
7771 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7772 		bdev_nvme_fini_destruct_ctrlrs();
7773 	}
7774 }
7775 
7776 static void
7777 bdev_nvme_library_fini(void)
7778 {
7779 	struct nvme_probe_skip_entry *entry, *entry_tmp;
7780 	struct discovery_ctx *ctx;
7781 
7782 	spdk_poller_unregister(&g_hotplug_poller);
7783 	free(g_hotplug_probe_ctx);
7784 	g_hotplug_probe_ctx = NULL;
7785 
7786 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
7787 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
7788 		free(entry);
7789 	}
7790 
7791 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
7792 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7793 		bdev_nvme_fini_destruct_ctrlrs();
7794 	} else {
7795 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7796 			stop_discovery(ctx, check_discovery_fini, NULL);
7797 		}
7798 	}
7799 }
7800 
7801 static void
7802 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
7803 {
7804 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7805 	struct spdk_bdev *bdev = bdev_io->bdev;
7806 	struct spdk_dif_ctx dif_ctx;
7807 	struct spdk_dif_error err_blk = {};
7808 	int rc;
7809 	struct spdk_dif_ctx_init_ext_opts dif_opts;
7810 
7811 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
7812 	dif_opts.dif_pi_format = bdev->dif_pi_format;
7813 	rc = spdk_dif_ctx_init(&dif_ctx,
7814 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
7815 			       bdev->dif_is_head_of_md, bdev->dif_type,
7816 			       bdev_io->u.bdev.dif_check_flags,
7817 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0, &dif_opts);
7818 	if (rc != 0) {
7819 		SPDK_ERRLOG("Initialization of DIF context failed\n");
7820 		return;
7821 	}
7822 
7823 	if (bdev->md_interleave) {
7824 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7825 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7826 	} else {
7827 		struct iovec md_iov = {
7828 			.iov_base	= bdev_io->u.bdev.md_buf,
7829 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
7830 		};
7831 
7832 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7833 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7834 	}
7835 
7836 	if (rc != 0) {
7837 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
7838 			    err_blk.err_type, err_blk.err_offset);
7839 	} else {
7840 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
7841 	}
7842 }
7843 
7844 static void
7845 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7846 {
7847 	struct nvme_bdev_io *bio = ref;
7848 
7849 	if (spdk_nvme_cpl_is_success(cpl)) {
7850 		/* Run PI verification for read data buffer. */
7851 		bdev_nvme_verify_pi_error(bio);
7852 	}
7853 
7854 	/* Return original completion status */
7855 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7856 }
7857 
7858 static void
7859 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7860 {
7861 	struct nvme_bdev_io *bio = ref;
7862 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7863 	int ret;
7864 
7865 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7866 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
7867 			    cpl->status.sct, cpl->status.sc);
7868 
7869 		/* Save completion status to use after verifying PI error. */
7870 		bio->cpl = *cpl;
7871 
7872 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
7873 			/* Read without PI checking to verify PI error. */
7874 			ret = bdev_nvme_no_pi_readv(bio,
7875 						    bdev_io->u.bdev.iovs,
7876 						    bdev_io->u.bdev.iovcnt,
7877 						    bdev_io->u.bdev.md_buf,
7878 						    bdev_io->u.bdev.num_blocks,
7879 						    bdev_io->u.bdev.offset_blocks);
7880 			if (ret == 0) {
7881 				return;
7882 			}
7883 		}
7884 	}
7885 
7886 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7887 }
7888 
7889 static void
7890 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7891 {
7892 	struct nvme_bdev_io *bio = ref;
7893 
7894 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7895 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
7896 			    cpl->status.sct, cpl->status.sc);
7897 		/* Run PI verification for write data buffer if PI error is detected. */
7898 		bdev_nvme_verify_pi_error(bio);
7899 	}
7900 
7901 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7902 }
7903 
7904 static void
7905 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7906 {
7907 	struct nvme_bdev_io *bio = ref;
7908 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7909 
7910 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
7911 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
7912 	 */
7913 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
7914 
7915 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7916 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
7917 			    cpl->status.sct, cpl->status.sc);
7918 		/* Run PI verification for zone append data buffer if PI error is detected. */
7919 		bdev_nvme_verify_pi_error(bio);
7920 	}
7921 
7922 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7923 }
7924 
7925 static void
7926 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7927 {
7928 	struct nvme_bdev_io *bio = ref;
7929 
7930 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7931 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
7932 			    cpl->status.sct, cpl->status.sc);
7933 		/* Run PI verification for compare data buffer if PI error is detected. */
7934 		bdev_nvme_verify_pi_error(bio);
7935 	}
7936 
7937 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7938 }
7939 
7940 static void
7941 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7942 {
7943 	struct nvme_bdev_io *bio = ref;
7944 
7945 	/* Compare operation completion */
7946 	if (!bio->first_fused_completed) {
7947 		/* Save compare result for write callback */
7948 		bio->cpl = *cpl;
7949 		bio->first_fused_completed = true;
7950 		return;
7951 	}
7952 
7953 	/* Write operation completion */
7954 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
7955 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
7956 		 * complete the IO with the compare operation's status.
7957 		 */
7958 		if (!spdk_nvme_cpl_is_error(cpl)) {
7959 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
7960 		}
7961 
7962 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7963 	} else {
7964 		bdev_nvme_io_complete_nvme_status(bio, cpl);
7965 	}
7966 }
7967 
7968 static void
7969 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
7970 {
7971 	struct nvme_bdev_io *bio = ref;
7972 
7973 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7974 }
7975 
7976 static int
7977 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
7978 {
7979 	switch (desc->zt) {
7980 	case SPDK_NVME_ZONE_TYPE_SEQWR:
7981 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
7982 		break;
7983 	default:
7984 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
7985 		return -EIO;
7986 	}
7987 
7988 	switch (desc->zs) {
7989 	case SPDK_NVME_ZONE_STATE_EMPTY:
7990 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
7991 		break;
7992 	case SPDK_NVME_ZONE_STATE_IOPEN:
7993 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
7994 		break;
7995 	case SPDK_NVME_ZONE_STATE_EOPEN:
7996 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
7997 		break;
7998 	case SPDK_NVME_ZONE_STATE_CLOSED:
7999 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
8000 		break;
8001 	case SPDK_NVME_ZONE_STATE_RONLY:
8002 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
8003 		break;
8004 	case SPDK_NVME_ZONE_STATE_FULL:
8005 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
8006 		break;
8007 	case SPDK_NVME_ZONE_STATE_OFFLINE:
8008 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
8009 		break;
8010 	default:
8011 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
8012 		return -EIO;
8013 	}
8014 
8015 	info->zone_id = desc->zslba;
8016 	info->write_pointer = desc->wp;
8017 	info->capacity = desc->zcap;
8018 
8019 	return 0;
8020 }
8021 
8022 static void
8023 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
8024 {
8025 	struct nvme_bdev_io *bio = ref;
8026 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8027 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
8028 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
8029 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
8030 	uint64_t max_zones_per_buf, i;
8031 	uint32_t zone_report_bufsize;
8032 	struct spdk_nvme_ns *ns;
8033 	struct spdk_nvme_qpair *qpair;
8034 	int ret;
8035 
8036 	if (spdk_nvme_cpl_is_error(cpl)) {
8037 		goto out_complete_io_nvme_cpl;
8038 	}
8039 
8040 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
8041 		ret = -ENXIO;
8042 		goto out_complete_io_ret;
8043 	}
8044 
8045 	ns = bio->io_path->nvme_ns->ns;
8046 	qpair = bio->io_path->qpair->qpair;
8047 
8048 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
8049 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
8050 			    sizeof(bio->zone_report_buf->descs[0]);
8051 
8052 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
8053 		ret = -EINVAL;
8054 		goto out_complete_io_ret;
8055 	}
8056 
8057 	if (!bio->zone_report_buf->nr_zones) {
8058 		ret = -EINVAL;
8059 		goto out_complete_io_ret;
8060 	}
8061 
8062 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
8063 		ret = fill_zone_from_report(&info[bio->handled_zones],
8064 					    &bio->zone_report_buf->descs[i]);
8065 		if (ret) {
8066 			goto out_complete_io_ret;
8067 		}
8068 		bio->handled_zones++;
8069 	}
8070 
8071 	if (bio->handled_zones < zones_to_copy) {
8072 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
8073 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
8074 
8075 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
8076 		ret = spdk_nvme_zns_report_zones(ns, qpair,
8077 						 bio->zone_report_buf, zone_report_bufsize,
8078 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
8079 						 bdev_nvme_get_zone_info_done, bio);
8080 		if (!ret) {
8081 			return;
8082 		} else {
8083 			goto out_complete_io_ret;
8084 		}
8085 	}
8086 
8087 out_complete_io_nvme_cpl:
8088 	free(bio->zone_report_buf);
8089 	bio->zone_report_buf = NULL;
8090 	bdev_nvme_io_complete_nvme_status(bio, cpl);
8091 	return;
8092 
8093 out_complete_io_ret:
8094 	free(bio->zone_report_buf);
8095 	bio->zone_report_buf = NULL;
8096 	bdev_nvme_io_complete(bio, ret);
8097 }
8098 
8099 static void
8100 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
8101 {
8102 	struct nvme_bdev_io *bio = ref;
8103 
8104 	bdev_nvme_io_complete_nvme_status(bio, cpl);
8105 }
8106 
8107 static void
8108 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
8109 {
8110 	struct nvme_bdev_io *bio = ctx;
8111 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8112 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
8113 
8114 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
8115 
8116 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
8117 }
8118 
8119 static void
8120 bdev_nvme_abort_complete(void *ctx)
8121 {
8122 	struct nvme_bdev_io *bio = ctx;
8123 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8124 
8125 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
8126 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
8127 	} else {
8128 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
8129 	}
8130 }
8131 
8132 static void
8133 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
8134 {
8135 	struct nvme_bdev_io *bio = ref;
8136 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8137 
8138 	bio->cpl = *cpl;
8139 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_nvme_abort_complete, bio);
8140 }
8141 
8142 static void
8143 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
8144 {
8145 	struct nvme_bdev_io *bio = ref;
8146 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8147 
8148 	bio->cpl = *cpl;
8149 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
8150 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
8151 }
8152 
8153 static void
8154 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
8155 {
8156 	struct nvme_bdev_io *bio = ref;
8157 	struct iovec *iov;
8158 
8159 	bio->iov_offset = sgl_offset;
8160 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
8161 		iov = &bio->iovs[bio->iovpos];
8162 		if (bio->iov_offset < iov->iov_len) {
8163 			break;
8164 		}
8165 
8166 		bio->iov_offset -= iov->iov_len;
8167 	}
8168 }
8169 
8170 static int
8171 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
8172 {
8173 	struct nvme_bdev_io *bio = ref;
8174 	struct iovec *iov;
8175 
8176 	assert(bio->iovpos < bio->iovcnt);
8177 
8178 	iov = &bio->iovs[bio->iovpos];
8179 
8180 	*address = iov->iov_base;
8181 	*length = iov->iov_len;
8182 
8183 	if (bio->iov_offset) {
8184 		assert(bio->iov_offset <= iov->iov_len);
8185 		*address += bio->iov_offset;
8186 		*length -= bio->iov_offset;
8187 	}
8188 
8189 	bio->iov_offset += *length;
8190 	if (bio->iov_offset == iov->iov_len) {
8191 		bio->iovpos++;
8192 		bio->iov_offset = 0;
8193 	}
8194 
8195 	return 0;
8196 }
8197 
8198 static void
8199 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
8200 {
8201 	struct nvme_bdev_io *bio = ref;
8202 	struct iovec *iov;
8203 
8204 	bio->fused_iov_offset = sgl_offset;
8205 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
8206 		iov = &bio->fused_iovs[bio->fused_iovpos];
8207 		if (bio->fused_iov_offset < iov->iov_len) {
8208 			break;
8209 		}
8210 
8211 		bio->fused_iov_offset -= iov->iov_len;
8212 	}
8213 }
8214 
8215 static int
8216 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
8217 {
8218 	struct nvme_bdev_io *bio = ref;
8219 	struct iovec *iov;
8220 
8221 	assert(bio->fused_iovpos < bio->fused_iovcnt);
8222 
8223 	iov = &bio->fused_iovs[bio->fused_iovpos];
8224 
8225 	*address = iov->iov_base;
8226 	*length = iov->iov_len;
8227 
8228 	if (bio->fused_iov_offset) {
8229 		assert(bio->fused_iov_offset <= iov->iov_len);
8230 		*address += bio->fused_iov_offset;
8231 		*length -= bio->fused_iov_offset;
8232 	}
8233 
8234 	bio->fused_iov_offset += *length;
8235 	if (bio->fused_iov_offset == iov->iov_len) {
8236 		bio->fused_iovpos++;
8237 		bio->fused_iov_offset = 0;
8238 	}
8239 
8240 	return 0;
8241 }
8242 
8243 static int
8244 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8245 		      void *md, uint64_t lba_count, uint64_t lba)
8246 {
8247 	int rc;
8248 
8249 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
8250 		      lba_count, lba);
8251 
8252 	bio->iovs = iov;
8253 	bio->iovcnt = iovcnt;
8254 	bio->iovpos = 0;
8255 	bio->iov_offset = 0;
8256 
8257 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
8258 					    bio->io_path->qpair->qpair,
8259 					    lba, lba_count,
8260 					    bdev_nvme_no_pi_readv_done, bio, 0,
8261 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
8262 					    md, 0, 0);
8263 
8264 	if (rc != 0 && rc != -ENOMEM) {
8265 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
8266 	}
8267 	return rc;
8268 }
8269 
8270 static int
8271 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8272 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
8273 		struct spdk_memory_domain *domain, void *domain_ctx,
8274 		struct spdk_accel_sequence *seq)
8275 {
8276 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8277 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8278 	int rc;
8279 
8280 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
8281 		      lba_count, lba);
8282 
8283 	bio->iovs = iov;
8284 	bio->iovcnt = iovcnt;
8285 	bio->iovpos = 0;
8286 	bio->iov_offset = 0;
8287 
8288 	if (domain != NULL || seq != NULL) {
8289 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
8290 		bio->ext_opts.memory_domain = domain;
8291 		bio->ext_opts.memory_domain_ctx = domain_ctx;
8292 		bio->ext_opts.io_flags = flags;
8293 		bio->ext_opts.metadata = md;
8294 		bio->ext_opts.accel_sequence = seq;
8295 
8296 		if (iovcnt == 1) {
8297 			rc = spdk_nvme_ns_cmd_read_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_readv_done,
8298 						       bio, &bio->ext_opts);
8299 		} else {
8300 			rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
8301 							bdev_nvme_readv_done, bio,
8302 							bdev_nvme_queued_reset_sgl,
8303 							bdev_nvme_queued_next_sge,
8304 							&bio->ext_opts);
8305 		}
8306 	} else if (iovcnt == 1) {
8307 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base,
8308 						   md, lba, lba_count, bdev_nvme_readv_done,
8309 						   bio, flags, 0, 0);
8310 	} else {
8311 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
8312 						    bdev_nvme_readv_done, bio, flags,
8313 						    bdev_nvme_queued_reset_sgl,
8314 						    bdev_nvme_queued_next_sge, md, 0, 0);
8315 	}
8316 
8317 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
8318 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
8319 	}
8320 	return rc;
8321 }
8322 
8323 static int
8324 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8325 		 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
8326 		 struct spdk_memory_domain *domain, void *domain_ctx,
8327 		 struct spdk_accel_sequence *seq,
8328 		 union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13)
8329 {
8330 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8331 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8332 	int rc;
8333 
8334 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
8335 		      lba_count, lba);
8336 
8337 	bio->iovs = iov;
8338 	bio->iovcnt = iovcnt;
8339 	bio->iovpos = 0;
8340 	bio->iov_offset = 0;
8341 
8342 	if (domain != NULL || seq != NULL) {
8343 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
8344 		bio->ext_opts.memory_domain = domain;
8345 		bio->ext_opts.memory_domain_ctx = domain_ctx;
8346 		bio->ext_opts.io_flags = flags | SPDK_NVME_IO_FLAGS_DIRECTIVE(cdw12.write.dtype);
8347 		bio->ext_opts.cdw13 = cdw13.raw;
8348 		bio->ext_opts.metadata = md;
8349 		bio->ext_opts.accel_sequence = seq;
8350 
8351 		if (iovcnt == 1) {
8352 			rc = spdk_nvme_ns_cmd_write_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_writev_done,
8353 							bio, &bio->ext_opts);
8354 		} else {
8355 			rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
8356 							 bdev_nvme_writev_done, bio,
8357 							 bdev_nvme_queued_reset_sgl,
8358 							 bdev_nvme_queued_next_sge,
8359 							 &bio->ext_opts);
8360 		}
8361 	} else if (iovcnt == 1) {
8362 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base,
8363 						    md, lba, lba_count, bdev_nvme_writev_done,
8364 						    bio, flags, 0, 0);
8365 	} else {
8366 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
8367 						     bdev_nvme_writev_done, bio, flags,
8368 						     bdev_nvme_queued_reset_sgl,
8369 						     bdev_nvme_queued_next_sge, md, 0, 0);
8370 	}
8371 
8372 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
8373 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
8374 	}
8375 	return rc;
8376 }
8377 
8378 static int
8379 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8380 		       void *md, uint64_t lba_count, uint64_t zslba,
8381 		       uint32_t flags)
8382 {
8383 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8384 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8385 	int rc;
8386 
8387 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
8388 		      lba_count, zslba);
8389 
8390 	bio->iovs = iov;
8391 	bio->iovcnt = iovcnt;
8392 	bio->iovpos = 0;
8393 	bio->iov_offset = 0;
8394 
8395 	if (iovcnt == 1) {
8396 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
8397 						       lba_count,
8398 						       bdev_nvme_zone_appendv_done, bio,
8399 						       flags,
8400 						       0, 0);
8401 	} else {
8402 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
8403 							bdev_nvme_zone_appendv_done, bio, flags,
8404 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
8405 							md, 0, 0);
8406 	}
8407 
8408 	if (rc != 0 && rc != -ENOMEM) {
8409 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
8410 	}
8411 	return rc;
8412 }
8413 
8414 static int
8415 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8416 		   void *md, uint64_t lba_count, uint64_t lba,
8417 		   uint32_t flags)
8418 {
8419 	int rc;
8420 
8421 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
8422 		      lba_count, lba);
8423 
8424 	bio->iovs = iov;
8425 	bio->iovcnt = iovcnt;
8426 	bio->iovpos = 0;
8427 	bio->iov_offset = 0;
8428 
8429 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
8430 					       bio->io_path->qpair->qpair,
8431 					       lba, lba_count,
8432 					       bdev_nvme_comparev_done, bio, flags,
8433 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
8434 					       md, 0, 0);
8435 
8436 	if (rc != 0 && rc != -ENOMEM) {
8437 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
8438 	}
8439 	return rc;
8440 }
8441 
8442 static int
8443 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
8444 			      struct iovec *write_iov, int write_iovcnt,
8445 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
8446 {
8447 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8448 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8449 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8450 	int rc;
8451 
8452 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
8453 		      lba_count, lba);
8454 
8455 	bio->iovs = cmp_iov;
8456 	bio->iovcnt = cmp_iovcnt;
8457 	bio->iovpos = 0;
8458 	bio->iov_offset = 0;
8459 	bio->fused_iovs = write_iov;
8460 	bio->fused_iovcnt = write_iovcnt;
8461 	bio->fused_iovpos = 0;
8462 	bio->fused_iov_offset = 0;
8463 
8464 	if (bdev_io->num_retries == 0) {
8465 		bio->first_fused_submitted = false;
8466 		bio->first_fused_completed = false;
8467 	}
8468 
8469 	if (!bio->first_fused_submitted) {
8470 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
8471 		memset(&bio->cpl, 0, sizeof(bio->cpl));
8472 
8473 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
8474 						       bdev_nvme_comparev_and_writev_done, bio, flags,
8475 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
8476 		if (rc == 0) {
8477 			bio->first_fused_submitted = true;
8478 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
8479 		} else {
8480 			if (rc != -ENOMEM) {
8481 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
8482 			}
8483 			return rc;
8484 		}
8485 	}
8486 
8487 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
8488 
8489 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
8490 					     bdev_nvme_comparev_and_writev_done, bio, flags,
8491 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
8492 	if (rc != 0 && rc != -ENOMEM) {
8493 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
8494 		rc = 0;
8495 	}
8496 
8497 	return rc;
8498 }
8499 
8500 static int
8501 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
8502 {
8503 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
8504 	struct spdk_nvme_dsm_range *range;
8505 	uint64_t offset, remaining;
8506 	uint64_t num_ranges_u64;
8507 	uint16_t num_ranges;
8508 	int rc;
8509 
8510 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
8511 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8512 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
8513 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
8514 		return -EINVAL;
8515 	}
8516 	num_ranges = (uint16_t)num_ranges_u64;
8517 
8518 	offset = offset_blocks;
8519 	remaining = num_blocks;
8520 	range = &dsm_ranges[0];
8521 
8522 	/* Fill max-size ranges until the remaining blocks fit into one range */
8523 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
8524 		range->attributes.raw = 0;
8525 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8526 		range->starting_lba = offset;
8527 
8528 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8529 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8530 		range++;
8531 	}
8532 
8533 	/* Final range describes the remaining blocks */
8534 	range->attributes.raw = 0;
8535 	range->length = remaining;
8536 	range->starting_lba = offset;
8537 
8538 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
8539 			bio->io_path->qpair->qpair,
8540 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
8541 			dsm_ranges, num_ranges,
8542 			bdev_nvme_queued_done, bio);
8543 
8544 	return rc;
8545 }
8546 
8547 static int
8548 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
8549 {
8550 	if (num_blocks > UINT16_MAX + 1) {
8551 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
8552 		return -EINVAL;
8553 	}
8554 
8555 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
8556 					     bio->io_path->qpair->qpair,
8557 					     offset_blocks, num_blocks,
8558 					     bdev_nvme_queued_done, bio,
8559 					     0);
8560 }
8561 
8562 static int
8563 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
8564 			struct spdk_bdev_zone_info *info)
8565 {
8566 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8567 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8568 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
8569 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
8570 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
8571 
8572 	if (zone_id % zone_size != 0) {
8573 		return -EINVAL;
8574 	}
8575 
8576 	if (num_zones > total_zones || !num_zones) {
8577 		return -EINVAL;
8578 	}
8579 
8580 	assert(!bio->zone_report_buf);
8581 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
8582 	if (!bio->zone_report_buf) {
8583 		return -ENOMEM;
8584 	}
8585 
8586 	bio->handled_zones = 0;
8587 
8588 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
8589 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
8590 					  bdev_nvme_get_zone_info_done, bio);
8591 }
8592 
8593 static int
8594 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
8595 			  enum spdk_bdev_zone_action action)
8596 {
8597 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8598 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8599 
8600 	switch (action) {
8601 	case SPDK_BDEV_ZONE_CLOSE:
8602 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
8603 						bdev_nvme_zone_management_done, bio);
8604 	case SPDK_BDEV_ZONE_FINISH:
8605 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
8606 						 bdev_nvme_zone_management_done, bio);
8607 	case SPDK_BDEV_ZONE_OPEN:
8608 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
8609 					       bdev_nvme_zone_management_done, bio);
8610 	case SPDK_BDEV_ZONE_RESET:
8611 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
8612 						bdev_nvme_zone_management_done, bio);
8613 	case SPDK_BDEV_ZONE_OFFLINE:
8614 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
8615 						  bdev_nvme_zone_management_done, bio);
8616 	default:
8617 		return -EINVAL;
8618 	}
8619 }
8620 
8621 static void
8622 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8623 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
8624 {
8625 	struct nvme_io_path *io_path;
8626 	struct nvme_ctrlr *nvme_ctrlr;
8627 	uint32_t max_xfer_size;
8628 	int rc = -ENXIO;
8629 
8630 	/* Choose the first ctrlr which is not failed. */
8631 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8632 		nvme_ctrlr = io_path->qpair->ctrlr;
8633 
8634 		/* We should skip any unavailable nvme_ctrlr rather than checking
8635 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
8636 		 */
8637 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
8638 			continue;
8639 		}
8640 
8641 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
8642 
8643 		if (nbytes > max_xfer_size) {
8644 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8645 			rc = -EINVAL;
8646 			goto err;
8647 		}
8648 
8649 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
8650 						   bdev_nvme_admin_passthru_done, bio);
8651 		if (rc == 0) {
8652 			return;
8653 		}
8654 	}
8655 
8656 err:
8657 	bdev_nvme_admin_complete(bio, rc);
8658 }
8659 
8660 static int
8661 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8662 		      void *buf, size_t nbytes)
8663 {
8664 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8665 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8666 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8667 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8668 
8669 	if (nbytes > max_xfer_size) {
8670 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8671 		return -EINVAL;
8672 	}
8673 
8674 	/*
8675 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8676 	 * so fill it out automatically.
8677 	 */
8678 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8679 
8680 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
8681 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
8682 }
8683 
8684 static int
8685 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8686 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
8687 {
8688 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8689 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8690 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8691 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8692 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8693 
8694 	if (nbytes > max_xfer_size) {
8695 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8696 		return -EINVAL;
8697 	}
8698 
8699 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8700 		SPDK_ERRLOG("invalid meta data buffer size\n");
8701 		return -EINVAL;
8702 	}
8703 
8704 	/*
8705 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8706 	 * so fill it out automatically.
8707 	 */
8708 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8709 
8710 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
8711 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
8712 }
8713 
8714 static int
8715 bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio,
8716 			  struct spdk_nvme_cmd *cmd, struct iovec *iov, int iovcnt,
8717 			  size_t nbytes, void *md_buf, size_t md_len)
8718 {
8719 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8720 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8721 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8722 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8723 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8724 
8725 	bio->iovs = iov;
8726 	bio->iovcnt = iovcnt;
8727 	bio->iovpos = 0;
8728 	bio->iov_offset = 0;
8729 
8730 	if (nbytes > max_xfer_size) {
8731 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8732 		return -EINVAL;
8733 	}
8734 
8735 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8736 		SPDK_ERRLOG("invalid meta data buffer size\n");
8737 		return -EINVAL;
8738 	}
8739 
8740 	/*
8741 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands
8742 	 * require a nsid, so fill it out automatically.
8743 	 */
8744 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8745 
8746 	return spdk_nvme_ctrlr_cmd_iov_raw_with_md(
8747 		       ctrlr, qpair, cmd, (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio,
8748 		       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge);
8749 }
8750 
8751 static void
8752 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8753 		struct nvme_bdev_io *bio_to_abort)
8754 {
8755 	struct nvme_io_path *io_path;
8756 	int rc = 0;
8757 
8758 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
8759 	if (rc == 0) {
8760 		bdev_nvme_admin_complete(bio, 0);
8761 		return;
8762 	}
8763 
8764 	io_path = bio_to_abort->io_path;
8765 	if (io_path != NULL) {
8766 		rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8767 						   io_path->qpair->qpair,
8768 						   bio_to_abort,
8769 						   bdev_nvme_abort_done, bio);
8770 	} else {
8771 		STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8772 			rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8773 							   NULL,
8774 							   bio_to_abort,
8775 							   bdev_nvme_abort_done, bio);
8776 
8777 			if (rc != -ENOENT) {
8778 				break;
8779 			}
8780 		}
8781 	}
8782 
8783 	if (rc != 0) {
8784 		/* If no command was found or there was any error, complete the abort
8785 		 * request with failure.
8786 		 */
8787 		bdev_nvme_admin_complete(bio, rc);
8788 	}
8789 }
8790 
8791 static int
8792 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
8793 	       uint64_t num_blocks)
8794 {
8795 	struct spdk_nvme_scc_source_range range = {
8796 		.slba = src_offset_blocks,
8797 		.nlb = num_blocks - 1
8798 	};
8799 
8800 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
8801 				     bio->io_path->qpair->qpair,
8802 				     &range, 1, dst_offset_blocks,
8803 				     bdev_nvme_queued_done, bio);
8804 }
8805 
8806 static void
8807 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
8808 {
8809 	const char *action;
8810 	uint32_t i;
8811 
8812 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
8813 		action = "reset";
8814 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
8815 		action = "abort";
8816 	} else {
8817 		action = "none";
8818 	}
8819 
8820 	spdk_json_write_object_begin(w);
8821 
8822 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
8823 
8824 	spdk_json_write_named_object_begin(w, "params");
8825 	spdk_json_write_named_string(w, "action_on_timeout", action);
8826 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
8827 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
8828 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
8829 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
8830 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
8831 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
8832 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
8833 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
8834 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
8835 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
8836 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
8837 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
8838 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
8839 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
8840 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
8841 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
8842 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
8843 	spdk_json_write_named_bool(w, "disable_auto_failback", g_opts.disable_auto_failback);
8844 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
8845 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
8846 	spdk_json_write_named_bool(w, "nvme_error_stat", g_opts.nvme_error_stat);
8847 	spdk_json_write_named_uint32(w, "rdma_srq_size", g_opts.rdma_srq_size);
8848 	spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat);
8849 	spdk_json_write_named_bool(w, "allow_accel_sequence", g_opts.allow_accel_sequence);
8850 	spdk_json_write_named_uint32(w, "rdma_max_cq_size", g_opts.rdma_max_cq_size);
8851 	spdk_json_write_named_uint16(w, "rdma_cm_event_timeout_ms", g_opts.rdma_cm_event_timeout_ms);
8852 	spdk_json_write_named_array_begin(w, "dhchap_digests");
8853 	for (i = 0; i < 32; ++i) {
8854 		if (g_opts.dhchap_digests & SPDK_BIT(i)) {
8855 			spdk_json_write_string(w, spdk_nvme_dhchap_get_digest_name(i));
8856 		}
8857 	}
8858 	spdk_json_write_array_end(w);
8859 	spdk_json_write_named_array_begin(w, "dhchap_dhgroups");
8860 	for (i = 0; i < 32; ++i) {
8861 		if (g_opts.dhchap_dhgroups & SPDK_BIT(i)) {
8862 			spdk_json_write_string(w, spdk_nvme_dhchap_get_dhgroup_name(i));
8863 		}
8864 	}
8865 
8866 	spdk_json_write_array_end(w);
8867 	spdk_json_write_object_end(w);
8868 
8869 	spdk_json_write_object_end(w);
8870 }
8871 
8872 static void
8873 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
8874 {
8875 	struct spdk_nvme_transport_id trid;
8876 
8877 	spdk_json_write_object_begin(w);
8878 
8879 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
8880 
8881 	spdk_json_write_named_object_begin(w, "params");
8882 	spdk_json_write_named_string(w, "name", ctx->name);
8883 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
8884 
8885 	trid = ctx->trid;
8886 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
8887 	nvme_bdev_dump_trid_json(&trid, w);
8888 
8889 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
8890 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
8891 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
8892 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8893 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
8894 	spdk_json_write_object_end(w);
8895 
8896 	spdk_json_write_object_end(w);
8897 }
8898 
8899 #ifdef SPDK_CONFIG_NVME_CUSE
8900 static void
8901 nvme_ctrlr_cuse_config_json(struct spdk_json_write_ctx *w,
8902 			    struct nvme_ctrlr *nvme_ctrlr)
8903 {
8904 	size_t cuse_name_size = 128;
8905 	char cuse_name[cuse_name_size];
8906 
8907 	if (spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr,
8908 					  cuse_name, &cuse_name_size) != 0) {
8909 		return;
8910 	}
8911 
8912 	spdk_json_write_object_begin(w);
8913 
8914 	spdk_json_write_named_string(w, "method", "bdev_nvme_cuse_register");
8915 
8916 	spdk_json_write_named_object_begin(w, "params");
8917 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8918 	spdk_json_write_object_end(w);
8919 
8920 	spdk_json_write_object_end(w);
8921 }
8922 #endif
8923 
8924 static void
8925 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
8926 		       struct nvme_ctrlr *nvme_ctrlr,
8927 		       struct nvme_path_id *path_id)
8928 {
8929 	struct spdk_nvme_transport_id	*trid;
8930 	const struct spdk_nvme_ctrlr_opts *opts;
8931 
8932 	if (nvme_ctrlr->opts.from_discovery_service) {
8933 		/* Do not emit an RPC for this - it will be implicitly
8934 		 * covered by a separate bdev_nvme_start_discovery or
8935 		 * bdev_nvme_start_mdns_discovery RPC.
8936 		 */
8937 		return;
8938 	}
8939 
8940 	trid = &path_id->trid;
8941 
8942 	spdk_json_write_object_begin(w);
8943 
8944 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
8945 
8946 	spdk_json_write_named_object_begin(w, "params");
8947 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8948 	nvme_bdev_dump_trid_json(trid, w);
8949 	spdk_json_write_named_bool(w, "prchk_reftag",
8950 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
8951 	spdk_json_write_named_bool(w, "prchk_guard",
8952 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
8953 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
8954 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
8955 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8956 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
8957 	if (nvme_ctrlr->psk != NULL) {
8958 		spdk_json_write_named_string(w, "psk", spdk_key_get_name(nvme_ctrlr->psk));
8959 	}
8960 	if (nvme_ctrlr->dhchap_key != NULL) {
8961 		spdk_json_write_named_string(w, "dhchap_key",
8962 					     spdk_key_get_name(nvme_ctrlr->dhchap_key));
8963 	}
8964 	if (nvme_ctrlr->dhchap_ctrlr_key != NULL) {
8965 		spdk_json_write_named_string(w, "dhchap_ctrlr_key",
8966 					     spdk_key_get_name(nvme_ctrlr->dhchap_ctrlr_key));
8967 	}
8968 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
8969 	spdk_json_write_named_string(w, "hostnqn", opts->hostnqn);
8970 	spdk_json_write_named_bool(w, "hdgst", opts->header_digest);
8971 	spdk_json_write_named_bool(w, "ddgst", opts->data_digest);
8972 	if (opts->src_addr[0] != '\0') {
8973 		spdk_json_write_named_string(w, "hostaddr", opts->src_addr);
8974 	}
8975 	if (opts->src_svcid[0] != '\0') {
8976 		spdk_json_write_named_string(w, "hostsvcid", opts->src_svcid);
8977 	}
8978 
8979 	if (nvme_ctrlr->opts.multipath) {
8980 		spdk_json_write_named_string(w, "multipath", "multipath");
8981 	}
8982 	spdk_json_write_object_end(w);
8983 
8984 	spdk_json_write_object_end(w);
8985 }
8986 
8987 static void
8988 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
8989 {
8990 	spdk_json_write_object_begin(w);
8991 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
8992 
8993 	spdk_json_write_named_object_begin(w, "params");
8994 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
8995 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
8996 	spdk_json_write_object_end(w);
8997 
8998 	spdk_json_write_object_end(w);
8999 }
9000 
9001 static int
9002 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
9003 {
9004 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
9005 	struct nvme_ctrlr	*nvme_ctrlr;
9006 	struct discovery_ctx	*ctx;
9007 	struct nvme_path_id	*path_id;
9008 
9009 	bdev_nvme_opts_config_json(w);
9010 
9011 	pthread_mutex_lock(&g_bdev_nvme_mutex);
9012 
9013 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
9014 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
9015 			path_id = nvme_ctrlr->active_path_id;
9016 			assert(path_id == TAILQ_FIRST(&nvme_ctrlr->trids));
9017 			nvme_ctrlr_config_json(w, nvme_ctrlr, path_id);
9018 
9019 			path_id = TAILQ_NEXT(path_id, link);
9020 			while (path_id != NULL) {
9021 				nvme_ctrlr_config_json(w, nvme_ctrlr, path_id);
9022 				path_id = TAILQ_NEXT(path_id, link);
9023 			}
9024 
9025 #ifdef SPDK_CONFIG_NVME_CUSE
9026 			nvme_ctrlr_cuse_config_json(w, nvme_ctrlr);
9027 #endif
9028 		}
9029 	}
9030 
9031 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
9032 		if (!ctx->from_mdns_discovery_service) {
9033 			bdev_nvme_discovery_config_json(w, ctx);
9034 		}
9035 	}
9036 
9037 	bdev_nvme_mdns_discovery_config_json(w);
9038 
9039 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
9040 	 * before enabling hotplug poller.
9041 	 */
9042 	bdev_nvme_hotplug_config_json(w);
9043 
9044 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
9045 	return 0;
9046 }
9047 
9048 struct spdk_nvme_ctrlr *
9049 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
9050 {
9051 	struct nvme_bdev *nbdev;
9052 	struct nvme_ns *nvme_ns;
9053 
9054 	if (!bdev || bdev->module != &nvme_if) {
9055 		return NULL;
9056 	}
9057 
9058 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
9059 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
9060 	assert(nvme_ns != NULL);
9061 
9062 	return nvme_ns->ctrlr->ctrlr;
9063 }
9064 
9065 static bool
9066 nvme_io_path_is_current(struct nvme_io_path *io_path)
9067 {
9068 	const struct nvme_bdev_channel *nbdev_ch;
9069 	bool current;
9070 
9071 	if (!nvme_io_path_is_available(io_path)) {
9072 		return false;
9073 	}
9074 
9075 	nbdev_ch = io_path->nbdev_ch;
9076 	if (nbdev_ch == NULL) {
9077 		current = false;
9078 	} else if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
9079 		struct nvme_io_path *optimized_io_path = NULL;
9080 
9081 		STAILQ_FOREACH(optimized_io_path, &nbdev_ch->io_path_list, stailq) {
9082 			if (optimized_io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) {
9083 				break;
9084 			}
9085 		}
9086 
9087 		/* A non-optimized path is only current if there are no optimized paths. */
9088 		current = (io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) ||
9089 			  (optimized_io_path == NULL);
9090 	} else {
9091 		if (nbdev_ch->current_io_path) {
9092 			current = (io_path == nbdev_ch->current_io_path);
9093 		} else {
9094 			struct nvme_io_path *first_path;
9095 
9096 			/* We arrived here as there are no optimized paths for active-passive
9097 			 * mode. Check if this io_path is the first one available on the list.
9098 			 */
9099 			current = false;
9100 			STAILQ_FOREACH(first_path, &nbdev_ch->io_path_list, stailq) {
9101 				if (nvme_io_path_is_available(first_path)) {
9102 					current = (io_path == first_path);
9103 					break;
9104 				}
9105 			}
9106 		}
9107 	}
9108 
9109 	return current;
9110 }
9111 
9112 static struct nvme_ctrlr *
9113 bdev_nvme_next_ctrlr_unsafe(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct nvme_ctrlr *prev)
9114 {
9115 	struct nvme_ctrlr *next;
9116 
9117 	/* Must be called under g_bdev_nvme_mutex */
9118 	next = prev != NULL ? TAILQ_NEXT(prev, tailq) : TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
9119 	while (next != NULL) {
9120 		/* ref can be 0 when the ctrlr was released, but hasn't been detached yet */
9121 		pthread_mutex_lock(&next->mutex);
9122 		if (next->ref > 0) {
9123 			next->ref++;
9124 			pthread_mutex_unlock(&next->mutex);
9125 			return next;
9126 		}
9127 
9128 		pthread_mutex_unlock(&next->mutex);
9129 		next = TAILQ_NEXT(next, tailq);
9130 	}
9131 
9132 	return NULL;
9133 }
9134 
9135 struct bdev_nvme_set_keys_ctx {
9136 	struct nvme_ctrlr	*nctrlr;
9137 	struct spdk_key		*dhchap_key;
9138 	struct spdk_key		*dhchap_ctrlr_key;
9139 	struct spdk_thread	*thread;
9140 	bdev_nvme_set_keys_cb	cb_fn;
9141 	void			*cb_ctx;
9142 	int			status;
9143 };
9144 
9145 static void
9146 bdev_nvme_free_set_keys_ctx(struct bdev_nvme_set_keys_ctx *ctx)
9147 {
9148 	if (ctx == NULL) {
9149 		return;
9150 	}
9151 
9152 	spdk_keyring_put_key(ctx->dhchap_key);
9153 	spdk_keyring_put_key(ctx->dhchap_ctrlr_key);
9154 	free(ctx);
9155 }
9156 
9157 static void
9158 _bdev_nvme_set_keys_done(void *_ctx)
9159 {
9160 	struct bdev_nvme_set_keys_ctx *ctx = _ctx;
9161 
9162 	ctx->cb_fn(ctx->cb_ctx, ctx->status);
9163 
9164 	if (ctx->nctrlr != NULL) {
9165 		nvme_ctrlr_put_ref(ctx->nctrlr);
9166 	}
9167 	bdev_nvme_free_set_keys_ctx(ctx);
9168 }
9169 
9170 static void
9171 bdev_nvme_set_keys_done(struct bdev_nvme_set_keys_ctx *ctx, int status)
9172 {
9173 	ctx->status = status;
9174 	spdk_thread_exec_msg(ctx->thread, _bdev_nvme_set_keys_done, ctx);
9175 }
9176 
9177 static void bdev_nvme_authenticate_ctrlr(struct bdev_nvme_set_keys_ctx *ctx);
9178 
9179 static void
9180 bdev_nvme_authenticate_ctrlr_continue(struct bdev_nvme_set_keys_ctx *ctx)
9181 {
9182 	struct nvme_ctrlr *next;
9183 
9184 	pthread_mutex_lock(&g_bdev_nvme_mutex);
9185 	next = bdev_nvme_next_ctrlr_unsafe(NULL, ctx->nctrlr);
9186 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
9187 
9188 	nvme_ctrlr_put_ref(ctx->nctrlr);
9189 	ctx->nctrlr = next;
9190 
9191 	if (next == NULL) {
9192 		bdev_nvme_set_keys_done(ctx, 0);
9193 	} else {
9194 		bdev_nvme_authenticate_ctrlr(ctx);
9195 	}
9196 }
9197 
9198 static void
9199 bdev_nvme_authenticate_qpairs_done(struct spdk_io_channel_iter *i, int status)
9200 {
9201 	struct bdev_nvme_set_keys_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
9202 
9203 	if (status != 0) {
9204 		bdev_nvme_set_keys_done(ctx, status);
9205 		return;
9206 	}
9207 	bdev_nvme_authenticate_ctrlr_continue(ctx);
9208 }
9209 
9210 static void
9211 bdev_nvme_authenticate_qpair_done(void *ctx, int status)
9212 {
9213 	spdk_for_each_channel_continue(ctx, status);
9214 }
9215 
9216 static void
9217 bdev_nvme_authenticate_qpair(struct spdk_io_channel_iter *i)
9218 {
9219 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
9220 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
9221 	struct nvme_qpair *qpair = ctrlr_ch->qpair;
9222 	int rc;
9223 
9224 	if (!nvme_qpair_is_connected(qpair)) {
9225 		spdk_for_each_channel_continue(i, 0);
9226 		return;
9227 	}
9228 
9229 	rc = spdk_nvme_qpair_authenticate(qpair->qpair, bdev_nvme_authenticate_qpair_done, i);
9230 	if (rc != 0) {
9231 		spdk_for_each_channel_continue(i, rc);
9232 	}
9233 }
9234 
9235 static void
9236 bdev_nvme_authenticate_ctrlr_done(void *_ctx, int status)
9237 {
9238 	struct bdev_nvme_set_keys_ctx *ctx = _ctx;
9239 
9240 	if (status != 0) {
9241 		bdev_nvme_set_keys_done(ctx, status);
9242 		return;
9243 	}
9244 
9245 	spdk_for_each_channel(ctx->nctrlr, bdev_nvme_authenticate_qpair, ctx,
9246 			      bdev_nvme_authenticate_qpairs_done);
9247 }
9248 
9249 static void
9250 bdev_nvme_authenticate_ctrlr(struct bdev_nvme_set_keys_ctx *ctx)
9251 {
9252 	struct spdk_nvme_ctrlr_key_opts opts = {};
9253 	struct nvme_ctrlr *nctrlr = ctx->nctrlr;
9254 	int rc;
9255 
9256 	opts.size = SPDK_SIZEOF(&opts, dhchap_ctrlr_key);
9257 	opts.dhchap_key = ctx->dhchap_key;
9258 	opts.dhchap_ctrlr_key = ctx->dhchap_ctrlr_key;
9259 	rc = spdk_nvme_ctrlr_set_keys(nctrlr->ctrlr, &opts);
9260 	if (rc != 0) {
9261 		bdev_nvme_set_keys_done(ctx, rc);
9262 		return;
9263 	}
9264 
9265 	if (ctx->dhchap_key != NULL) {
9266 		rc = spdk_nvme_ctrlr_authenticate(nctrlr->ctrlr,
9267 						  bdev_nvme_authenticate_ctrlr_done, ctx);
9268 		if (rc != 0) {
9269 			bdev_nvme_set_keys_done(ctx, rc);
9270 		}
9271 	} else {
9272 		bdev_nvme_authenticate_ctrlr_continue(ctx);
9273 	}
9274 }
9275 
9276 int
9277 bdev_nvme_set_keys(const char *name, const char *dhchap_key, const char *dhchap_ctrlr_key,
9278 		   bdev_nvme_set_keys_cb cb_fn, void *cb_ctx)
9279 {
9280 	struct bdev_nvme_set_keys_ctx *ctx;
9281 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
9282 	struct nvme_ctrlr *nctrlr;
9283 
9284 	ctx = calloc(1, sizeof(*ctx));
9285 	if (ctx == NULL) {
9286 		return -ENOMEM;
9287 	}
9288 
9289 	if (dhchap_key != NULL) {
9290 		ctx->dhchap_key = spdk_keyring_get_key(dhchap_key);
9291 		if (ctx->dhchap_key == NULL) {
9292 			SPDK_ERRLOG("Could not find key %s for bdev %s\n", dhchap_key, name);
9293 			bdev_nvme_free_set_keys_ctx(ctx);
9294 			return -ENOKEY;
9295 		}
9296 	}
9297 	if (dhchap_ctrlr_key != NULL) {
9298 		ctx->dhchap_ctrlr_key = spdk_keyring_get_key(dhchap_ctrlr_key);
9299 		if (ctx->dhchap_ctrlr_key == NULL) {
9300 			SPDK_ERRLOG("Could not find key %s for bdev %s\n", dhchap_ctrlr_key, name);
9301 			bdev_nvme_free_set_keys_ctx(ctx);
9302 			return -ENOKEY;
9303 		}
9304 	}
9305 
9306 	pthread_mutex_lock(&g_bdev_nvme_mutex);
9307 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
9308 	if (nbdev_ctrlr == NULL) {
9309 		SPDK_ERRLOG("Could not find bdev_ctrlr %s\n", name);
9310 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
9311 		bdev_nvme_free_set_keys_ctx(ctx);
9312 		return -ENODEV;
9313 	}
9314 	nctrlr = bdev_nvme_next_ctrlr_unsafe(nbdev_ctrlr, NULL);
9315 	if (nctrlr == NULL) {
9316 		SPDK_ERRLOG("Could not find any nvme_ctrlrs on bdev_ctrlr %s\n", name);
9317 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
9318 		bdev_nvme_free_set_keys_ctx(ctx);
9319 		return -ENODEV;
9320 	}
9321 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
9322 
9323 	ctx->nctrlr = nctrlr;
9324 	ctx->cb_fn = cb_fn;
9325 	ctx->cb_ctx = cb_ctx;
9326 	ctx->thread = spdk_get_thread();
9327 
9328 	bdev_nvme_authenticate_ctrlr(ctx);
9329 
9330 	return 0;
9331 }
9332 
9333 void
9334 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
9335 {
9336 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
9337 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
9338 	const struct spdk_nvme_ctrlr_data *cdata;
9339 	const struct spdk_nvme_transport_id *trid;
9340 	const char *adrfam_str;
9341 
9342 	spdk_json_write_object_begin(w);
9343 
9344 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
9345 
9346 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
9347 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
9348 
9349 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
9350 	spdk_json_write_named_bool(w, "current", nvme_io_path_is_current(io_path));
9351 	spdk_json_write_named_bool(w, "connected", nvme_qpair_is_connected(io_path->qpair));
9352 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
9353 
9354 	spdk_json_write_named_object_begin(w, "transport");
9355 	spdk_json_write_named_string(w, "trtype", trid->trstring);
9356 	spdk_json_write_named_string(w, "traddr", trid->traddr);
9357 	if (trid->trsvcid[0] != '\0') {
9358 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
9359 	}
9360 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
9361 	if (adrfam_str) {
9362 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
9363 	}
9364 	spdk_json_write_object_end(w);
9365 
9366 	spdk_json_write_object_end(w);
9367 }
9368 
9369 void
9370 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
9371 {
9372 	struct discovery_ctx *ctx;
9373 	struct discovery_entry_ctx *entry_ctx;
9374 
9375 	spdk_json_write_array_begin(w);
9376 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
9377 		spdk_json_write_object_begin(w);
9378 		spdk_json_write_named_string(w, "name", ctx->name);
9379 
9380 		spdk_json_write_named_object_begin(w, "trid");
9381 		nvme_bdev_dump_trid_json(&ctx->trid, w);
9382 		spdk_json_write_object_end(w);
9383 
9384 		spdk_json_write_named_array_begin(w, "referrals");
9385 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
9386 			spdk_json_write_object_begin(w);
9387 			spdk_json_write_named_object_begin(w, "trid");
9388 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
9389 			spdk_json_write_object_end(w);
9390 			spdk_json_write_object_end(w);
9391 		}
9392 		spdk_json_write_array_end(w);
9393 
9394 		spdk_json_write_object_end(w);
9395 	}
9396 	spdk_json_write_array_end(w);
9397 }
9398 
9399 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
9400 
9401 static void
9402 bdev_nvme_trace(void)
9403 {
9404 	struct spdk_trace_tpoint_opts opts[] = {
9405 		{
9406 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
9407 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 1,
9408 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
9409 		},
9410 		{
9411 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
9412 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 0,
9413 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
9414 		}
9415 	};
9416 
9417 
9418 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
9419 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
9420 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
9421 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
9422 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
9423 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
9424 }
9425 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
9426