xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision ad5fc351dd221a287cce269ad0e50b11253cc48b)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/likely.h"
18 #include "spdk/nvme.h"
19 #include "spdk/nvme_ocssd.h"
20 #include "spdk/nvme_zns.h"
21 #include "spdk/opal.h"
22 #include "spdk/thread.h"
23 #include "spdk/trace.h"
24 #include "spdk/string.h"
25 #include "spdk/util.h"
26 #include "spdk/uuid.h"
27 
28 #include "spdk/bdev_module.h"
29 #include "spdk/log.h"
30 
31 #include "spdk_internal/usdt.h"
32 #include "spdk_internal/trace_defs.h"
33 
34 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
35 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
36 
37 #define NSID_STR_LEN 10
38 
39 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
40 
41 struct nvme_bdev_io {
42 	/** array of iovecs to transfer. */
43 	struct iovec *iovs;
44 
45 	/** Number of iovecs in iovs array. */
46 	int iovcnt;
47 
48 	/** Current iovec position. */
49 	int iovpos;
50 
51 	/** Offset in current iovec. */
52 	uint32_t iov_offset;
53 
54 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
55 	 *  being reset in a reset I/O.
56 	 */
57 	struct nvme_io_path *io_path;
58 
59 	/** array of iovecs to transfer. */
60 	struct iovec *fused_iovs;
61 
62 	/** Number of iovecs in iovs array. */
63 	int fused_iovcnt;
64 
65 	/** Current iovec position. */
66 	int fused_iovpos;
67 
68 	/** Offset in current iovec. */
69 	uint32_t fused_iov_offset;
70 
71 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
72 	struct spdk_nvme_cpl cpl;
73 
74 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
75 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
76 
77 	/** Keeps track if first of fused commands was submitted */
78 	bool first_fused_submitted;
79 
80 	/** Keeps track if first of fused commands was completed */
81 	bool first_fused_completed;
82 
83 	/** Temporary pointer to zone report buffer */
84 	struct spdk_nvme_zns_zone_report *zone_report_buf;
85 
86 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
87 	uint64_t handled_zones;
88 
89 	/** Expiration value in ticks to retry the current I/O. */
90 	uint64_t retry_ticks;
91 
92 	/* How many times the current I/O was retried. */
93 	int32_t retry_count;
94 
95 	/* Current tsc at submit time. */
96 	uint64_t submit_tsc;
97 };
98 
99 struct nvme_probe_skip_entry {
100 	struct spdk_nvme_transport_id		trid;
101 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
102 };
103 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
104 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
105 			g_skipped_nvme_ctrlrs);
106 
107 static struct spdk_bdev_nvme_opts g_opts = {
108 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
109 	.timeout_us = 0,
110 	.timeout_admin_us = 0,
111 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
112 	.transport_retry_count = 4,
113 	.arbitration_burst = 0,
114 	.low_priority_weight = 0,
115 	.medium_priority_weight = 0,
116 	.high_priority_weight = 0,
117 	.nvme_adminq_poll_period_us = 10000ULL,
118 	.nvme_ioq_poll_period_us = 0,
119 	.io_queue_requests = 0,
120 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
121 	.bdev_retry_count = 3,
122 	.transport_ack_timeout = 0,
123 	.ctrlr_loss_timeout_sec = 0,
124 	.reconnect_delay_sec = 0,
125 	.fast_io_fail_timeout_sec = 0,
126 	.disable_auto_failback = false,
127 	.generate_uuids = false,
128 	.transport_tos = 0,
129 	.nvme_error_stat = false,
130 	.io_path_stat = false,
131 	.allow_accel_sequence = false,
132 };
133 
134 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
135 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
136 
137 static int g_hot_insert_nvme_controller_index = 0;
138 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
139 static bool g_nvme_hotplug_enabled = false;
140 struct spdk_thread *g_bdev_nvme_init_thread;
141 static struct spdk_poller *g_hotplug_poller;
142 static struct spdk_poller *g_hotplug_probe_poller;
143 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
144 
145 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
146 		struct nvme_async_probe_ctx *ctx);
147 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
148 		struct nvme_async_probe_ctx *ctx);
149 static int bdev_nvme_library_init(void);
150 static void bdev_nvme_library_fini(void);
151 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
152 				      struct spdk_bdev_io *bdev_io);
153 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
154 				     struct spdk_bdev_io *bdev_io);
155 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
156 			   void *md, uint64_t lba_count, uint64_t lba,
157 			   uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
158 			   struct spdk_accel_sequence *seq);
159 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
160 				 void *md, uint64_t lba_count, uint64_t lba);
161 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
162 			    void *md, uint64_t lba_count, uint64_t lba,
163 			    uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
164 			    struct spdk_accel_sequence *seq);
165 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
166 				  void *md, uint64_t lba_count,
167 				  uint64_t zslba, uint32_t flags);
168 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
169 			      void *md, uint64_t lba_count, uint64_t lba,
170 			      uint32_t flags);
171 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
172 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
173 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
174 		uint32_t flags);
175 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
176 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
177 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
178 				     enum spdk_bdev_zone_action action);
179 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
180 				     struct nvme_bdev_io *bio,
181 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
182 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
183 				 void *buf, size_t nbytes);
184 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
185 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
186 static int bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
187 				     struct iovec *iov, int iovcnt, size_t nbytes,
188 				     void *md_buf, size_t md_len);
189 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
190 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
191 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
192 static int bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
193 static int bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool remove);
194 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
195 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
196 
197 static struct nvme_ns *nvme_ns_alloc(void);
198 static void nvme_ns_free(struct nvme_ns *ns);
199 
200 static int
201 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
202 {
203 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
204 }
205 
206 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
207 
208 struct spdk_nvme_qpair *
209 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
210 {
211 	struct nvme_ctrlr_channel *ctrlr_ch;
212 
213 	assert(ctrlr_io_ch != NULL);
214 
215 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
216 
217 	return ctrlr_ch->qpair->qpair;
218 }
219 
220 static int
221 bdev_nvme_get_ctx_size(void)
222 {
223 	return sizeof(struct nvme_bdev_io);
224 }
225 
226 static struct spdk_bdev_module nvme_if = {
227 	.name = "nvme",
228 	.async_fini = true,
229 	.module_init = bdev_nvme_library_init,
230 	.module_fini = bdev_nvme_library_fini,
231 	.config_json = bdev_nvme_config_json,
232 	.get_ctx_size = bdev_nvme_get_ctx_size,
233 
234 };
235 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
236 
237 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
238 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
239 bool g_bdev_nvme_module_finish;
240 
241 struct nvme_bdev_ctrlr *
242 nvme_bdev_ctrlr_get_by_name(const char *name)
243 {
244 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
245 
246 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
247 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
248 			break;
249 		}
250 	}
251 
252 	return nbdev_ctrlr;
253 }
254 
255 static struct nvme_ctrlr *
256 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
257 			  const struct spdk_nvme_transport_id *trid)
258 {
259 	struct nvme_ctrlr *nvme_ctrlr;
260 
261 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
262 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0) {
263 			break;
264 		}
265 	}
266 
267 	return nvme_ctrlr;
268 }
269 
270 struct nvme_ctrlr *
271 nvme_bdev_ctrlr_get_ctrlr_by_id(struct nvme_bdev_ctrlr *nbdev_ctrlr,
272 				uint16_t cntlid)
273 {
274 	struct nvme_ctrlr *nvme_ctrlr;
275 	const struct spdk_nvme_ctrlr_data *cdata;
276 
277 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
278 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
279 		if (cdata->cntlid == cntlid) {
280 			break;
281 		}
282 	}
283 
284 	return nvme_ctrlr;
285 }
286 
287 static struct nvme_bdev *
288 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
289 {
290 	struct nvme_bdev *bdev;
291 
292 	pthread_mutex_lock(&g_bdev_nvme_mutex);
293 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
294 		if (bdev->nsid == nsid) {
295 			break;
296 		}
297 	}
298 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
299 
300 	return bdev;
301 }
302 
303 struct nvme_ns *
304 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
305 {
306 	struct nvme_ns ns;
307 
308 	assert(nsid > 0);
309 
310 	ns.id = nsid;
311 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
312 }
313 
314 struct nvme_ns *
315 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
316 {
317 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
318 }
319 
320 struct nvme_ns *
321 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
322 {
323 	if (ns == NULL) {
324 		return NULL;
325 	}
326 
327 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
328 }
329 
330 static struct nvme_ctrlr *
331 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid)
332 {
333 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
334 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
335 
336 	pthread_mutex_lock(&g_bdev_nvme_mutex);
337 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
338 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid);
339 		if (nvme_ctrlr != NULL) {
340 			break;
341 		}
342 	}
343 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
344 
345 	return nvme_ctrlr;
346 }
347 
348 struct nvme_ctrlr *
349 nvme_ctrlr_get_by_name(const char *name)
350 {
351 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
352 	struct nvme_ctrlr *nvme_ctrlr = NULL;
353 
354 	if (name == NULL) {
355 		return NULL;
356 	}
357 
358 	pthread_mutex_lock(&g_bdev_nvme_mutex);
359 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
360 	if (nbdev_ctrlr != NULL) {
361 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
362 	}
363 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
364 
365 	return nvme_ctrlr;
366 }
367 
368 void
369 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
370 {
371 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
372 
373 	pthread_mutex_lock(&g_bdev_nvme_mutex);
374 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
375 		fn(nbdev_ctrlr, ctx);
376 	}
377 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
378 }
379 
380 void
381 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
382 {
383 	const char *trtype_str;
384 	const char *adrfam_str;
385 
386 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
387 	if (trtype_str) {
388 		spdk_json_write_named_string(w, "trtype", trtype_str);
389 	}
390 
391 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
392 	if (adrfam_str) {
393 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
394 	}
395 
396 	if (trid->traddr[0] != '\0') {
397 		spdk_json_write_named_string(w, "traddr", trid->traddr);
398 	}
399 
400 	if (trid->trsvcid[0] != '\0') {
401 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
402 	}
403 
404 	if (trid->subnqn[0] != '\0') {
405 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
406 	}
407 }
408 
409 static void
410 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
411 		       struct nvme_ctrlr *nvme_ctrlr)
412 {
413 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
414 	pthread_mutex_lock(&g_bdev_nvme_mutex);
415 
416 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
417 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
418 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
419 
420 		return;
421 	}
422 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
423 
424 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
425 
426 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
427 
428 	free(nbdev_ctrlr->name);
429 	free(nbdev_ctrlr);
430 }
431 
432 static void
433 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
434 {
435 	struct nvme_path_id *path_id, *tmp_path;
436 	struct nvme_ns *ns, *tmp_ns;
437 
438 	free(nvme_ctrlr->copied_ana_desc);
439 	spdk_free(nvme_ctrlr->ana_log_page);
440 
441 	if (nvme_ctrlr->opal_dev) {
442 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
443 		nvme_ctrlr->opal_dev = NULL;
444 	}
445 
446 	if (nvme_ctrlr->nbdev_ctrlr) {
447 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
448 	}
449 
450 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
451 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
452 		nvme_ns_free(ns);
453 	}
454 
455 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
456 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
457 		free(path_id);
458 	}
459 
460 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
461 
462 	free(nvme_ctrlr);
463 
464 	pthread_mutex_lock(&g_bdev_nvme_mutex);
465 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
466 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
467 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
468 		spdk_bdev_module_fini_done();
469 		return;
470 	}
471 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
472 }
473 
474 static int
475 nvme_detach_poller(void *arg)
476 {
477 	struct nvme_ctrlr *nvme_ctrlr = arg;
478 	int rc;
479 
480 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
481 	if (rc != -EAGAIN) {
482 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
483 		_nvme_ctrlr_delete(nvme_ctrlr);
484 	}
485 
486 	return SPDK_POLLER_BUSY;
487 }
488 
489 static void
490 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
491 {
492 	int rc;
493 
494 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
495 
496 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
497 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
498 
499 	/* If we got here, the reset/detach poller cannot be active */
500 	assert(nvme_ctrlr->reset_detach_poller == NULL);
501 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
502 					  nvme_ctrlr, 1000);
503 	if (nvme_ctrlr->reset_detach_poller == NULL) {
504 		SPDK_ERRLOG("Failed to register detach poller\n");
505 		goto error;
506 	}
507 
508 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
509 	if (rc != 0) {
510 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
511 		goto error;
512 	}
513 
514 	return;
515 error:
516 	/* We don't have a good way to handle errors here, so just do what we can and delete the
517 	 * controller without detaching the underlying NVMe device.
518 	 */
519 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
520 	_nvme_ctrlr_delete(nvme_ctrlr);
521 }
522 
523 static void
524 nvme_ctrlr_unregister_cb(void *io_device)
525 {
526 	struct nvme_ctrlr *nvme_ctrlr = io_device;
527 
528 	nvme_ctrlr_delete(nvme_ctrlr);
529 }
530 
531 static void
532 nvme_ctrlr_unregister(void *ctx)
533 {
534 	struct nvme_ctrlr *nvme_ctrlr = ctx;
535 
536 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
537 }
538 
539 static bool
540 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
541 {
542 	if (!nvme_ctrlr->destruct) {
543 		return false;
544 	}
545 
546 	if (nvme_ctrlr->ref > 0) {
547 		return false;
548 	}
549 
550 	if (nvme_ctrlr->resetting) {
551 		return false;
552 	}
553 
554 	if (nvme_ctrlr->ana_log_page_updating) {
555 		return false;
556 	}
557 
558 	if (nvme_ctrlr->io_path_cache_clearing) {
559 		return false;
560 	}
561 
562 	return true;
563 }
564 
565 static void
566 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
567 {
568 	pthread_mutex_lock(&nvme_ctrlr->mutex);
569 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
570 
571 	assert(nvme_ctrlr->ref > 0);
572 	nvme_ctrlr->ref--;
573 
574 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
575 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
576 		return;
577 	}
578 
579 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
580 
581 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
582 }
583 
584 static void
585 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch)
586 {
587 	nbdev_ch->current_io_path = NULL;
588 	nbdev_ch->rr_counter = 0;
589 }
590 
591 static struct nvme_io_path *
592 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
593 {
594 	struct nvme_io_path *io_path;
595 
596 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
597 		if (io_path->nvme_ns == nvme_ns) {
598 			break;
599 		}
600 	}
601 
602 	return io_path;
603 }
604 
605 static struct nvme_io_path *
606 nvme_io_path_alloc(void)
607 {
608 	struct nvme_io_path *io_path;
609 
610 	io_path = calloc(1, sizeof(*io_path));
611 	if (io_path == NULL) {
612 		SPDK_ERRLOG("Failed to alloc io_path.\n");
613 		return NULL;
614 	}
615 
616 	if (g_opts.io_path_stat) {
617 		io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
618 		if (io_path->stat == NULL) {
619 			free(io_path);
620 			SPDK_ERRLOG("Failed to alloc io_path stat.\n");
621 			return NULL;
622 		}
623 		spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
624 	}
625 
626 	return io_path;
627 }
628 
629 static void
630 nvme_io_path_free(struct nvme_io_path *io_path)
631 {
632 	free(io_path->stat);
633 	free(io_path);
634 }
635 
636 static int
637 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
638 {
639 	struct nvme_io_path *io_path;
640 	struct spdk_io_channel *ch;
641 	struct nvme_ctrlr_channel *ctrlr_ch;
642 	struct nvme_qpair *nvme_qpair;
643 
644 	io_path = nvme_io_path_alloc();
645 	if (io_path == NULL) {
646 		return -ENOMEM;
647 	}
648 
649 	io_path->nvme_ns = nvme_ns;
650 
651 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
652 	if (ch == NULL) {
653 		nvme_io_path_free(io_path);
654 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
655 		return -ENOMEM;
656 	}
657 
658 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
659 
660 	nvme_qpair = ctrlr_ch->qpair;
661 	assert(nvme_qpair != NULL);
662 
663 	io_path->qpair = nvme_qpair;
664 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
665 
666 	io_path->nbdev_ch = nbdev_ch;
667 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
668 
669 	bdev_nvme_clear_current_io_path(nbdev_ch);
670 
671 	return 0;
672 }
673 
674 static void
675 bdev_nvme_clear_retry_io_path(struct nvme_bdev_channel *nbdev_ch,
676 			      struct nvme_io_path *io_path)
677 {
678 	struct spdk_bdev_io *bdev_io;
679 	struct nvme_bdev_io *bio;
680 
681 	TAILQ_FOREACH(bdev_io, &nbdev_ch->retry_io_list, module_link) {
682 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
683 		if (bio->io_path == io_path) {
684 			bio->io_path = NULL;
685 		}
686 	}
687 }
688 
689 static void
690 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
691 {
692 	struct spdk_io_channel *ch;
693 	struct nvme_qpair *nvme_qpair;
694 	struct nvme_ctrlr_channel *ctrlr_ch;
695 	struct nvme_bdev *nbdev;
696 
697 	nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch));
698 
699 	/* Add the statistics to nvme_ns before this path is destroyed. */
700 	pthread_mutex_lock(&nbdev->mutex);
701 	if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) {
702 		spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat);
703 	}
704 	pthread_mutex_unlock(&nbdev->mutex);
705 
706 	bdev_nvme_clear_current_io_path(nbdev_ch);
707 	bdev_nvme_clear_retry_io_path(nbdev_ch, io_path);
708 
709 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
710 	io_path->nbdev_ch = NULL;
711 
712 	nvme_qpair = io_path->qpair;
713 	assert(nvme_qpair != NULL);
714 
715 	ctrlr_ch = nvme_qpair->ctrlr_ch;
716 	assert(ctrlr_ch != NULL);
717 
718 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
719 	spdk_put_io_channel(ch);
720 
721 	/* After an io_path is removed, I/Os submitted to it may complete and update statistics
722 	 * of the io_path. To avoid heap-use-after-free error from this case, do not free the
723 	 * io_path here but free the io_path when the associated qpair is freed. It is ensured
724 	 * that all I/Os submitted to the io_path are completed when the associated qpair is freed.
725 	 */
726 }
727 
728 static void
729 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
730 {
731 	struct nvme_io_path *io_path, *tmp_io_path;
732 
733 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
734 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
735 	}
736 }
737 
738 static int
739 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
740 {
741 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
742 	struct nvme_bdev *nbdev = io_device;
743 	struct nvme_ns *nvme_ns;
744 	int rc;
745 
746 	STAILQ_INIT(&nbdev_ch->io_path_list);
747 	TAILQ_INIT(&nbdev_ch->retry_io_list);
748 
749 	pthread_mutex_lock(&nbdev->mutex);
750 
751 	nbdev_ch->mp_policy = nbdev->mp_policy;
752 	nbdev_ch->mp_selector = nbdev->mp_selector;
753 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
754 
755 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
756 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
757 		if (rc != 0) {
758 			pthread_mutex_unlock(&nbdev->mutex);
759 
760 			_bdev_nvme_delete_io_paths(nbdev_ch);
761 			return rc;
762 		}
763 	}
764 	pthread_mutex_unlock(&nbdev->mutex);
765 
766 	return 0;
767 }
768 
769 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
770  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
771  */
772 static inline void
773 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
774 			const struct spdk_nvme_cpl *cpl)
775 {
776 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
777 			  (uintptr_t)bdev_io);
778 	if (cpl) {
779 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
780 	} else {
781 		spdk_bdev_io_complete(bdev_io, status);
782 	}
783 }
784 
785 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
786 
787 static void
788 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
789 {
790 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
791 
792 	bdev_nvme_abort_retry_ios(nbdev_ch);
793 	_bdev_nvme_delete_io_paths(nbdev_ch);
794 }
795 
796 static inline bool
797 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
798 {
799 	switch (io_type) {
800 	case SPDK_BDEV_IO_TYPE_RESET:
801 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
802 	case SPDK_BDEV_IO_TYPE_ABORT:
803 		return true;
804 	default:
805 		break;
806 	}
807 
808 	return false;
809 }
810 
811 static inline bool
812 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
813 {
814 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
815 		return false;
816 	}
817 
818 	switch (nvme_ns->ana_state) {
819 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
820 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
821 		return true;
822 	default:
823 		break;
824 	}
825 
826 	return false;
827 }
828 
829 static inline bool
830 nvme_qpair_is_connected(struct nvme_qpair *nvme_qpair)
831 {
832 	if (spdk_unlikely(nvme_qpair->qpair == NULL)) {
833 		return false;
834 	}
835 
836 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
837 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
838 		return false;
839 	}
840 
841 	if (spdk_unlikely(nvme_qpair->ctrlr_ch->reset_iter != NULL)) {
842 		return false;
843 	}
844 
845 	if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_qpair->ctrlr->ctrlr) !=
846 	    SPDK_NVME_QPAIR_FAILURE_NONE) {
847 		return false;
848 	}
849 
850 	return true;
851 }
852 
853 static inline bool
854 nvme_io_path_is_available(struct nvme_io_path *io_path)
855 {
856 	if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
857 		return false;
858 	}
859 
860 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
861 		return false;
862 	}
863 
864 	return true;
865 }
866 
867 static inline bool
868 nvme_ctrlr_is_failed(struct nvme_ctrlr *nvme_ctrlr)
869 {
870 	if (nvme_ctrlr->destruct) {
871 		return true;
872 	}
873 
874 	if (nvme_ctrlr->fast_io_fail_timedout) {
875 		return true;
876 	}
877 
878 	if (nvme_ctrlr->resetting) {
879 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
880 			return false;
881 		} else {
882 			return true;
883 		}
884 	}
885 
886 	if (nvme_ctrlr->reconnect_is_delayed) {
887 		return false;
888 	}
889 
890 	if (nvme_ctrlr->disabled) {
891 		return true;
892 	}
893 
894 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
895 		return true;
896 	} else {
897 		return false;
898 	}
899 }
900 
901 static bool
902 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
903 {
904 	if (nvme_ctrlr->destruct) {
905 		return false;
906 	}
907 
908 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
909 		return false;
910 	}
911 
912 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
913 		return false;
914 	}
915 
916 	if (nvme_ctrlr->disabled) {
917 		return false;
918 	}
919 
920 	return true;
921 }
922 
923 /* Simulate circular linked list. */
924 static inline struct nvme_io_path *
925 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
926 {
927 	struct nvme_io_path *next_path;
928 
929 	if (prev_path != NULL) {
930 		next_path = STAILQ_NEXT(prev_path, stailq);
931 		if (next_path != NULL) {
932 			return next_path;
933 		}
934 	}
935 
936 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
937 }
938 
939 static struct nvme_io_path *
940 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
941 {
942 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
943 
944 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
945 
946 	io_path = start;
947 	do {
948 		if (spdk_likely(nvme_qpair_is_connected(io_path->qpair) &&
949 				!io_path->nvme_ns->ana_state_updating)) {
950 			switch (io_path->nvme_ns->ana_state) {
951 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
952 				nbdev_ch->current_io_path = io_path;
953 				return io_path;
954 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
955 				if (non_optimized == NULL) {
956 					non_optimized = io_path;
957 				}
958 				break;
959 			default:
960 				break;
961 			}
962 		}
963 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
964 	} while (io_path != start);
965 
966 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
967 		/* We come here only if there is no optimized path. Cache even non_optimized
968 		 * path for load balance across multiple non_optimized paths.
969 		 */
970 		nbdev_ch->current_io_path = non_optimized;
971 	}
972 
973 	return non_optimized;
974 }
975 
976 static struct nvme_io_path *
977 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch)
978 {
979 	struct nvme_io_path *io_path;
980 	struct nvme_io_path *optimized = NULL, *non_optimized = NULL;
981 	uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX;
982 	uint32_t num_outstanding_reqs;
983 
984 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
985 		if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
986 			/* The device is currently resetting. */
987 			continue;
988 		}
989 
990 		if (spdk_unlikely(io_path->nvme_ns->ana_state_updating)) {
991 			continue;
992 		}
993 
994 		num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair);
995 		switch (io_path->nvme_ns->ana_state) {
996 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
997 			if (num_outstanding_reqs < opt_min_qd) {
998 				opt_min_qd = num_outstanding_reqs;
999 				optimized = io_path;
1000 			}
1001 			break;
1002 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1003 			if (num_outstanding_reqs < non_opt_min_qd) {
1004 				non_opt_min_qd = num_outstanding_reqs;
1005 				non_optimized = io_path;
1006 			}
1007 			break;
1008 		default:
1009 			break;
1010 		}
1011 	}
1012 
1013 	/* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */
1014 	if (optimized != NULL) {
1015 		return optimized;
1016 	}
1017 
1018 	return non_optimized;
1019 }
1020 
1021 static inline struct nvme_io_path *
1022 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1023 {
1024 	if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
1025 		if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) {
1026 			return nbdev_ch->current_io_path;
1027 		} else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1028 			if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) {
1029 				return nbdev_ch->current_io_path;
1030 			}
1031 			nbdev_ch->rr_counter = 0;
1032 		}
1033 	}
1034 
1035 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE ||
1036 	    nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1037 		return _bdev_nvme_find_io_path(nbdev_ch);
1038 	} else {
1039 		return _bdev_nvme_find_io_path_min_qd(nbdev_ch);
1040 	}
1041 }
1042 
1043 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
1044  * or false otherwise.
1045  *
1046  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
1047  * is likely to be non-accessible now but may become accessible.
1048  *
1049  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
1050  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
1051  * when starting to reset it but it is set to failed when the reset failed. Hence, if
1052  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
1053  */
1054 static bool
1055 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
1056 {
1057 	struct nvme_io_path *io_path;
1058 
1059 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1060 		if (io_path->nvme_ns->ana_transition_timedout) {
1061 			continue;
1062 		}
1063 
1064 		if (nvme_qpair_is_connected(io_path->qpair) ||
1065 		    !nvme_ctrlr_is_failed(io_path->qpair->ctrlr)) {
1066 			return true;
1067 		}
1068 	}
1069 
1070 	return false;
1071 }
1072 
1073 static void
1074 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
1075 {
1076 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1077 	struct spdk_io_channel *ch;
1078 
1079 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
1080 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
1081 	} else {
1082 		ch = spdk_io_channel_from_ctx(nbdev_ch);
1083 		bdev_nvme_submit_request(ch, bdev_io);
1084 	}
1085 }
1086 
1087 static int
1088 bdev_nvme_retry_ios(void *arg)
1089 {
1090 	struct nvme_bdev_channel *nbdev_ch = arg;
1091 	struct spdk_bdev_io *bdev_io, *tmp_bdev_io;
1092 	struct nvme_bdev_io *bio;
1093 	uint64_t now, delay_us;
1094 
1095 	now = spdk_get_ticks();
1096 
1097 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_bdev_io) {
1098 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1099 		if (bio->retry_ticks > now) {
1100 			break;
1101 		}
1102 
1103 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
1104 
1105 		bdev_nvme_retry_io(nbdev_ch, bdev_io);
1106 	}
1107 
1108 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1109 
1110 	bdev_io = TAILQ_FIRST(&nbdev_ch->retry_io_list);
1111 	if (bdev_io != NULL) {
1112 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1113 
1114 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
1115 
1116 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1117 					    delay_us);
1118 	}
1119 
1120 	return SPDK_POLLER_BUSY;
1121 }
1122 
1123 static void
1124 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1125 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1126 {
1127 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1128 	struct spdk_bdev_io *tmp_bdev_io;
1129 	struct nvme_bdev_io *tmp_bio;
1130 
1131 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1132 
1133 	TAILQ_FOREACH_REVERSE(tmp_bdev_io, &nbdev_ch->retry_io_list, retry_io_head, module_link) {
1134 		tmp_bio = (struct nvme_bdev_io *)tmp_bdev_io->driver_ctx;
1135 
1136 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1137 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bdev_io, bdev_io,
1138 					   module_link);
1139 			return;
1140 		}
1141 	}
1142 
1143 	/* No earlier I/Os were found. This I/O must be the new head. */
1144 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bdev_io, module_link);
1145 
1146 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1147 
1148 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1149 				    delay_ms * 1000ULL);
1150 }
1151 
1152 static void
1153 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
1154 {
1155 	struct spdk_bdev_io *bdev_io, *tmp_io;
1156 
1157 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_io) {
1158 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
1159 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1160 	}
1161 
1162 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1163 }
1164 
1165 static int
1166 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1167 			 struct nvme_bdev_io *bio_to_abort)
1168 {
1169 	struct spdk_bdev_io *bdev_io_to_abort;
1170 
1171 	TAILQ_FOREACH(bdev_io_to_abort, &nbdev_ch->retry_io_list, module_link) {
1172 		if ((struct nvme_bdev_io *)bdev_io_to_abort->driver_ctx == bio_to_abort) {
1173 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io_to_abort, module_link);
1174 			__bdev_nvme_io_complete(bdev_io_to_abort, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1175 			return 0;
1176 		}
1177 	}
1178 
1179 	return -ENOENT;
1180 }
1181 
1182 static void
1183 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1184 {
1185 	struct nvme_bdev *nbdev;
1186 	uint16_t sct, sc;
1187 
1188 	assert(spdk_nvme_cpl_is_error(cpl));
1189 
1190 	nbdev = bdev_io->bdev->ctxt;
1191 
1192 	if (nbdev->err_stat == NULL) {
1193 		return;
1194 	}
1195 
1196 	sct = cpl->status.sct;
1197 	sc = cpl->status.sc;
1198 
1199 	pthread_mutex_lock(&nbdev->mutex);
1200 
1201 	nbdev->err_stat->status_type[sct]++;
1202 	switch (sct) {
1203 	case SPDK_NVME_SCT_GENERIC:
1204 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1205 	case SPDK_NVME_SCT_MEDIA_ERROR:
1206 	case SPDK_NVME_SCT_PATH:
1207 		nbdev->err_stat->status[sct][sc]++;
1208 		break;
1209 	default:
1210 		break;
1211 	}
1212 
1213 	pthread_mutex_unlock(&nbdev->mutex);
1214 }
1215 
1216 static inline void
1217 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio)
1218 {
1219 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1220 	uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
1221 	uint32_t blocklen = bdev_io->bdev->blocklen;
1222 	struct spdk_bdev_io_stat *stat;
1223 	uint64_t tsc_diff;
1224 
1225 	if (bio->io_path->stat == NULL) {
1226 		return;
1227 	}
1228 
1229 	tsc_diff = spdk_get_ticks() - bio->submit_tsc;
1230 	stat = bio->io_path->stat;
1231 
1232 	switch (bdev_io->type) {
1233 	case SPDK_BDEV_IO_TYPE_READ:
1234 		stat->bytes_read += num_blocks * blocklen;
1235 		stat->num_read_ops++;
1236 		stat->read_latency_ticks += tsc_diff;
1237 		if (stat->max_read_latency_ticks < tsc_diff) {
1238 			stat->max_read_latency_ticks = tsc_diff;
1239 		}
1240 		if (stat->min_read_latency_ticks > tsc_diff) {
1241 			stat->min_read_latency_ticks = tsc_diff;
1242 		}
1243 		break;
1244 	case SPDK_BDEV_IO_TYPE_WRITE:
1245 		stat->bytes_written += num_blocks * blocklen;
1246 		stat->num_write_ops++;
1247 		stat->write_latency_ticks += tsc_diff;
1248 		if (stat->max_write_latency_ticks < tsc_diff) {
1249 			stat->max_write_latency_ticks = tsc_diff;
1250 		}
1251 		if (stat->min_write_latency_ticks > tsc_diff) {
1252 			stat->min_write_latency_ticks = tsc_diff;
1253 		}
1254 		break;
1255 	case SPDK_BDEV_IO_TYPE_UNMAP:
1256 		stat->bytes_unmapped += num_blocks * blocklen;
1257 		stat->num_unmap_ops++;
1258 		stat->unmap_latency_ticks += tsc_diff;
1259 		if (stat->max_unmap_latency_ticks < tsc_diff) {
1260 			stat->max_unmap_latency_ticks = tsc_diff;
1261 		}
1262 		if (stat->min_unmap_latency_ticks > tsc_diff) {
1263 			stat->min_unmap_latency_ticks = tsc_diff;
1264 		}
1265 		break;
1266 	case SPDK_BDEV_IO_TYPE_ZCOPY:
1267 		/* Track the data in the start phase only */
1268 		if (!bdev_io->u.bdev.zcopy.start) {
1269 			break;
1270 		}
1271 		if (bdev_io->u.bdev.zcopy.populate) {
1272 			stat->bytes_read += num_blocks * blocklen;
1273 			stat->num_read_ops++;
1274 			stat->read_latency_ticks += tsc_diff;
1275 			if (stat->max_read_latency_ticks < tsc_diff) {
1276 				stat->max_read_latency_ticks = tsc_diff;
1277 			}
1278 			if (stat->min_read_latency_ticks > tsc_diff) {
1279 				stat->min_read_latency_ticks = tsc_diff;
1280 			}
1281 		} else {
1282 			stat->bytes_written += num_blocks * blocklen;
1283 			stat->num_write_ops++;
1284 			stat->write_latency_ticks += tsc_diff;
1285 			if (stat->max_write_latency_ticks < tsc_diff) {
1286 				stat->max_write_latency_ticks = tsc_diff;
1287 			}
1288 			if (stat->min_write_latency_ticks > tsc_diff) {
1289 				stat->min_write_latency_ticks = tsc_diff;
1290 			}
1291 		}
1292 		break;
1293 	case SPDK_BDEV_IO_TYPE_COPY:
1294 		stat->bytes_copied += num_blocks * blocklen;
1295 		stat->num_copy_ops++;
1296 		stat->copy_latency_ticks += tsc_diff;
1297 		if (stat->max_copy_latency_ticks < tsc_diff) {
1298 			stat->max_copy_latency_ticks = tsc_diff;
1299 		}
1300 		if (stat->min_copy_latency_ticks > tsc_diff) {
1301 			stat->min_copy_latency_ticks = tsc_diff;
1302 		}
1303 		break;
1304 	default:
1305 		break;
1306 	}
1307 }
1308 
1309 static bool
1310 bdev_nvme_check_retry_io(struct nvme_bdev_io *bio,
1311 			 const struct spdk_nvme_cpl *cpl,
1312 			 struct nvme_bdev_channel *nbdev_ch,
1313 			 uint64_t *_delay_ms)
1314 {
1315 	struct nvme_io_path *io_path = bio->io_path;
1316 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1317 	const struct spdk_nvme_ctrlr_data *cdata;
1318 
1319 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1320 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1321 	    !nvme_io_path_is_available(io_path) ||
1322 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1323 		bdev_nvme_clear_current_io_path(nbdev_ch);
1324 		bio->io_path = NULL;
1325 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1326 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1327 				io_path->nvme_ns->ana_state_updating = true;
1328 			}
1329 		}
1330 		if (!any_io_path_may_become_available(nbdev_ch)) {
1331 			return false;
1332 		}
1333 		*_delay_ms = 0;
1334 	} else {
1335 		bio->retry_count++;
1336 
1337 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1338 
1339 		if (cpl->status.crd != 0) {
1340 			*_delay_ms = cdata->crdt[cpl->status.crd] * 100;
1341 		} else {
1342 			*_delay_ms = 0;
1343 		}
1344 	}
1345 
1346 	return true;
1347 }
1348 
1349 static inline void
1350 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1351 				  const struct spdk_nvme_cpl *cpl)
1352 {
1353 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1354 	struct nvme_bdev_channel *nbdev_ch;
1355 	uint64_t delay_ms;
1356 
1357 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1358 
1359 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1360 		bdev_nvme_update_io_path_stat(bio);
1361 		goto complete;
1362 	}
1363 
1364 	/* Update error counts before deciding if retry is needed.
1365 	 * Hence, error counts may be more than the number of I/O errors.
1366 	 */
1367 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1368 
1369 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1370 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1371 		goto complete;
1372 	}
1373 
1374 	/* At this point we don't know whether the sequence was successfully executed or not, so we
1375 	 * cannot retry the IO */
1376 	if (bdev_io->u.bdev.accel_sequence != NULL) {
1377 		goto complete;
1378 	}
1379 
1380 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1381 
1382 	if (bdev_nvme_check_retry_io(bio, cpl, nbdev_ch, &delay_ms)) {
1383 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1384 		return;
1385 	}
1386 
1387 complete:
1388 	bio->retry_count = 0;
1389 	bio->submit_tsc = 0;
1390 	bdev_io->u.bdev.accel_sequence = NULL;
1391 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1392 }
1393 
1394 static inline void
1395 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1396 {
1397 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1398 	struct nvme_bdev_channel *nbdev_ch;
1399 	enum spdk_bdev_io_status io_status;
1400 
1401 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1402 
1403 	switch (rc) {
1404 	case 0:
1405 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1406 		break;
1407 	case -ENOMEM:
1408 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1409 		break;
1410 	case -ENXIO:
1411 		nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1412 
1413 		bdev_nvme_clear_current_io_path(nbdev_ch);
1414 		bio->io_path = NULL;
1415 
1416 		if (any_io_path_may_become_available(nbdev_ch)) {
1417 			bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1418 			return;
1419 		}
1420 
1421 	/* fallthrough */
1422 	default:
1423 		spdk_accel_sequence_abort(bdev_io->u.bdev.accel_sequence);
1424 		bdev_io->u.bdev.accel_sequence = NULL;
1425 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1426 		break;
1427 	}
1428 
1429 	bio->retry_count = 0;
1430 	bio->submit_tsc = 0;
1431 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1432 }
1433 
1434 static inline void
1435 bdev_nvme_admin_complete(struct nvme_bdev_io *bio, int rc)
1436 {
1437 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1438 	enum spdk_bdev_io_status io_status;
1439 
1440 	switch (rc) {
1441 	case 0:
1442 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1443 		break;
1444 	case -ENOMEM:
1445 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1446 		break;
1447 	case -ENXIO:
1448 	/* fallthrough */
1449 	default:
1450 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1451 		break;
1452 	}
1453 
1454 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1455 }
1456 
1457 static void
1458 bdev_nvme_clear_io_path_caches_done(struct spdk_io_channel_iter *i, int status)
1459 {
1460 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1461 
1462 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1463 
1464 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1465 	nvme_ctrlr->io_path_cache_clearing = false;
1466 
1467 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1468 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1469 		return;
1470 	}
1471 
1472 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1473 
1474 	nvme_ctrlr_unregister(nvme_ctrlr);
1475 }
1476 
1477 static void
1478 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1479 {
1480 	struct nvme_io_path *io_path;
1481 
1482 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1483 		if (io_path->nbdev_ch == NULL) {
1484 			continue;
1485 		}
1486 		bdev_nvme_clear_current_io_path(io_path->nbdev_ch);
1487 	}
1488 }
1489 
1490 static void
1491 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
1492 {
1493 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1494 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1495 
1496 	assert(ctrlr_ch->qpair != NULL);
1497 
1498 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1499 
1500 	spdk_for_each_channel_continue(i, 0);
1501 }
1502 
1503 static void
1504 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1505 {
1506 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1507 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1508 	    nvme_ctrlr->io_path_cache_clearing) {
1509 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1510 		return;
1511 	}
1512 
1513 	nvme_ctrlr->io_path_cache_clearing = true;
1514 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1515 
1516 	spdk_for_each_channel(nvme_ctrlr,
1517 			      bdev_nvme_clear_io_path_cache,
1518 			      NULL,
1519 			      bdev_nvme_clear_io_path_caches_done);
1520 }
1521 
1522 static struct nvme_qpair *
1523 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1524 {
1525 	struct nvme_qpair *nvme_qpair;
1526 
1527 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1528 		if (nvme_qpair->qpair == qpair) {
1529 			break;
1530 		}
1531 	}
1532 
1533 	return nvme_qpair;
1534 }
1535 
1536 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1537 
1538 static void
1539 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1540 {
1541 	struct nvme_poll_group *group = poll_group_ctx;
1542 	struct nvme_qpair *nvme_qpair;
1543 	struct nvme_ctrlr_channel *ctrlr_ch;
1544 	int status;
1545 
1546 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1547 	if (nvme_qpair == NULL) {
1548 		return;
1549 	}
1550 
1551 	if (nvme_qpair->qpair != NULL) {
1552 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1553 		nvme_qpair->qpair = NULL;
1554 	}
1555 
1556 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1557 
1558 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1559 
1560 	if (ctrlr_ch != NULL) {
1561 		if (ctrlr_ch->reset_iter != NULL) {
1562 			/* We are in a full reset sequence. */
1563 			if (ctrlr_ch->connect_poller != NULL) {
1564 				/* qpair was failed to connect. Abort the reset sequence. */
1565 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was failed to connect. abort the reset ctrlr sequence.\n",
1566 					      qpair);
1567 				spdk_poller_unregister(&ctrlr_ch->connect_poller);
1568 				status = -1;
1569 			} else {
1570 				/* qpair was completed to disconnect. Just move to the next ctrlr_channel. */
1571 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1572 					      qpair);
1573 				status = 0;
1574 			}
1575 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, status);
1576 			ctrlr_ch->reset_iter = NULL;
1577 		} else {
1578 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1579 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1580 			bdev_nvme_failover_ctrlr(nvme_qpair->ctrlr, false);
1581 		}
1582 	} else {
1583 		/* In this case, ctrlr_channel is already deleted. */
1584 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1585 		nvme_qpair_delete(nvme_qpair);
1586 	}
1587 }
1588 
1589 static void
1590 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1591 {
1592 	struct nvme_qpair *nvme_qpair;
1593 
1594 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1595 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1596 			continue;
1597 		}
1598 
1599 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1600 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1601 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1602 		}
1603 	}
1604 }
1605 
1606 static int
1607 bdev_nvme_poll(void *arg)
1608 {
1609 	struct nvme_poll_group *group = arg;
1610 	int64_t num_completions;
1611 
1612 	if (group->collect_spin_stat && group->start_ticks == 0) {
1613 		group->start_ticks = spdk_get_ticks();
1614 	}
1615 
1616 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1617 			  bdev_nvme_disconnected_qpair_cb);
1618 	if (group->collect_spin_stat) {
1619 		if (num_completions > 0) {
1620 			if (group->end_ticks != 0) {
1621 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1622 				group->end_ticks = 0;
1623 			}
1624 			group->start_ticks = 0;
1625 		} else {
1626 			group->end_ticks = spdk_get_ticks();
1627 		}
1628 	}
1629 
1630 	if (spdk_unlikely(num_completions < 0)) {
1631 		bdev_nvme_check_io_qpairs(group);
1632 	}
1633 
1634 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1635 }
1636 
1637 static int bdev_nvme_poll_adminq(void *arg);
1638 
1639 static void
1640 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1641 {
1642 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1643 
1644 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1645 					  nvme_ctrlr, new_period_us);
1646 }
1647 
1648 static int
1649 bdev_nvme_poll_adminq(void *arg)
1650 {
1651 	int32_t rc;
1652 	struct nvme_ctrlr *nvme_ctrlr = arg;
1653 	nvme_ctrlr_disconnected_cb disconnected_cb;
1654 
1655 	assert(nvme_ctrlr != NULL);
1656 
1657 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1658 	if (rc < 0) {
1659 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1660 		nvme_ctrlr->disconnected_cb = NULL;
1661 
1662 		if (disconnected_cb != NULL) {
1663 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1664 							    g_opts.nvme_adminq_poll_period_us);
1665 			disconnected_cb(nvme_ctrlr);
1666 		} else {
1667 			bdev_nvme_failover_ctrlr(nvme_ctrlr, false);
1668 		}
1669 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1670 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1671 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1672 	}
1673 
1674 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1675 }
1676 
1677 static void
1678 nvme_bdev_free(void *io_device)
1679 {
1680 	struct nvme_bdev *nvme_disk = io_device;
1681 
1682 	pthread_mutex_destroy(&nvme_disk->mutex);
1683 	free(nvme_disk->disk.name);
1684 	free(nvme_disk->err_stat);
1685 	free(nvme_disk);
1686 }
1687 
1688 static int
1689 bdev_nvme_destruct(void *ctx)
1690 {
1691 	struct nvme_bdev *nvme_disk = ctx;
1692 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1693 
1694 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1695 
1696 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1697 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1698 
1699 		nvme_ns->bdev = NULL;
1700 
1701 		assert(nvme_ns->id > 0);
1702 
1703 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1704 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1705 
1706 			nvme_ctrlr_release(nvme_ns->ctrlr);
1707 			nvme_ns_free(nvme_ns);
1708 		} else {
1709 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1710 		}
1711 	}
1712 
1713 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1714 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1715 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1716 
1717 	spdk_io_device_unregister(nvme_disk, nvme_bdev_free);
1718 
1719 	return 0;
1720 }
1721 
1722 static int
1723 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1724 {
1725 	struct nvme_ctrlr *nvme_ctrlr;
1726 	struct spdk_nvme_io_qpair_opts opts;
1727 	struct spdk_nvme_qpair *qpair;
1728 	int rc;
1729 
1730 	nvme_ctrlr = nvme_qpair->ctrlr;
1731 
1732 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1733 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1734 	opts.create_only = true;
1735 	opts.async_mode = true;
1736 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1737 	g_opts.io_queue_requests = opts.io_queue_requests;
1738 
1739 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1740 	if (qpair == NULL) {
1741 		return -1;
1742 	}
1743 
1744 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1745 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1746 
1747 	assert(nvme_qpair->group != NULL);
1748 
1749 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1750 	if (rc != 0) {
1751 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1752 		goto err;
1753 	}
1754 
1755 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1756 	if (rc != 0) {
1757 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1758 		goto err;
1759 	}
1760 
1761 	nvme_qpair->qpair = qpair;
1762 
1763 	if (!g_opts.disable_auto_failback) {
1764 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1765 	}
1766 
1767 	return 0;
1768 
1769 err:
1770 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1771 
1772 	return rc;
1773 }
1774 
1775 static void
1776 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
1777 {
1778 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1779 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1780 	enum spdk_bdev_io_status status = SPDK_BDEV_IO_STATUS_SUCCESS;
1781 	struct spdk_bdev_io *bdev_io;
1782 
1783 	if (spdk_io_channel_iter_get_ctx(i) != NULL) {
1784 		status = SPDK_BDEV_IO_STATUS_FAILED;
1785 	}
1786 
1787 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1788 		bdev_io = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1789 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bdev_io, module_link);
1790 		__bdev_nvme_io_complete(bdev_io, status, NULL);
1791 	}
1792 
1793 	spdk_for_each_channel_continue(i, 0);
1794 }
1795 
1796 /* This function marks the current trid as failed by storing the current ticks
1797  * and then sets the next trid to the active trid within a controller if exists.
1798  *
1799  * The purpose of the boolean return value is to request the caller to disconnect
1800  * the current trid now to try connecting the next trid.
1801  */
1802 static bool
1803 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove, bool start)
1804 {
1805 	struct nvme_path_id *path_id, *next_path;
1806 	int rc __attribute__((unused));
1807 
1808 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1809 	assert(path_id);
1810 	assert(path_id == nvme_ctrlr->active_path_id);
1811 	next_path = TAILQ_NEXT(path_id, link);
1812 
1813 	/* Update the last failed time. It means the trid is failed if its last
1814 	 * failed time is non-zero.
1815 	 */
1816 	path_id->last_failed_tsc = spdk_get_ticks();
1817 
1818 	if (next_path == NULL) {
1819 		/* There is no alternate trid within a controller. */
1820 		return false;
1821 	}
1822 
1823 	if (!start && nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1824 		/* Connect is not retried in a controller reset sequence. Connecting
1825 		 * the next trid will be done by the next bdev_nvme_failover_ctrlr() call.
1826 		 */
1827 		return false;
1828 	}
1829 
1830 	assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1831 
1832 	SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1833 		       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1834 
1835 	spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1836 	nvme_ctrlr->active_path_id = next_path;
1837 	rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1838 	assert(rc == 0);
1839 	TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1840 	if (!remove) {
1841 		/** Shuffle the old trid to the end of the list and use the new one.
1842 		 * Allows for round robin through multiple connections.
1843 		 */
1844 		TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
1845 	} else {
1846 		free(path_id);
1847 	}
1848 
1849 	if (start || next_path->last_failed_tsc == 0) {
1850 		/* bdev_nvme_failover_ctrlr() is just called or the next trid is not failed
1851 		 * or used yet. Try the next trid now.
1852 		 */
1853 		return true;
1854 	}
1855 
1856 	if (spdk_get_ticks() > next_path->last_failed_tsc + spdk_get_ticks_hz() *
1857 	    nvme_ctrlr->opts.reconnect_delay_sec) {
1858 		/* Enough backoff passed since the next trid failed. Try the next trid now. */
1859 		return true;
1860 	}
1861 
1862 	/* The next trid will be tried after reconnect_delay_sec seconds. */
1863 	return false;
1864 }
1865 
1866 static bool
1867 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
1868 {
1869 	int32_t elapsed;
1870 
1871 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
1872 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
1873 		return false;
1874 	}
1875 
1876 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1877 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
1878 		return true;
1879 	} else {
1880 		return false;
1881 	}
1882 }
1883 
1884 static bool
1885 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
1886 {
1887 	uint32_t elapsed;
1888 
1889 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
1890 		return false;
1891 	}
1892 
1893 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1894 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
1895 		return true;
1896 	} else {
1897 		return false;
1898 	}
1899 }
1900 
1901 static void bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
1902 
1903 static void
1904 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
1905 {
1906 	int rc;
1907 
1908 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
1909 	if (rc != 0) {
1910 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
1911 		 * fail the reset sequence immediately.
1912 		 */
1913 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
1914 		return;
1915 	}
1916 
1917 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
1918 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
1919 	 */
1920 	assert(nvme_ctrlr->disconnected_cb == NULL);
1921 	nvme_ctrlr->disconnected_cb = cb_fn;
1922 
1923 	/* During disconnection, reduce the period to poll adminq more often. */
1924 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
1925 }
1926 
1927 enum bdev_nvme_op_after_reset {
1928 	OP_NONE,
1929 	OP_COMPLETE_PENDING_DESTRUCT,
1930 	OP_DESTRUCT,
1931 	OP_DELAYED_RECONNECT,
1932 	OP_FAILOVER,
1933 };
1934 
1935 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
1936 
1937 static _bdev_nvme_op_after_reset
1938 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
1939 {
1940 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1941 		/* Complete pending destruct after reset completes. */
1942 		return OP_COMPLETE_PENDING_DESTRUCT;
1943 	} else if (nvme_ctrlr->pending_failover) {
1944 		nvme_ctrlr->pending_failover = false;
1945 		nvme_ctrlr->reset_start_tsc = 0;
1946 		return OP_FAILOVER;
1947 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1948 		nvme_ctrlr->reset_start_tsc = 0;
1949 		return OP_NONE;
1950 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1951 		return OP_DESTRUCT;
1952 	} else {
1953 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
1954 			nvme_ctrlr->fast_io_fail_timedout = true;
1955 		}
1956 		return OP_DELAYED_RECONNECT;
1957 	}
1958 }
1959 
1960 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
1961 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
1962 
1963 static int
1964 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
1965 {
1966 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1967 
1968 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
1969 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1970 
1971 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
1972 
1973 	if (!nvme_ctrlr->reconnect_is_delayed) {
1974 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1975 		return SPDK_POLLER_BUSY;
1976 	}
1977 
1978 	nvme_ctrlr->reconnect_is_delayed = false;
1979 
1980 	if (nvme_ctrlr->destruct) {
1981 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1982 		return SPDK_POLLER_BUSY;
1983 	}
1984 
1985 	assert(nvme_ctrlr->resetting == false);
1986 	nvme_ctrlr->resetting = true;
1987 
1988 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1989 
1990 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
1991 
1992 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
1993 	return SPDK_POLLER_BUSY;
1994 }
1995 
1996 static void
1997 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
1998 {
1999 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2000 
2001 	assert(nvme_ctrlr->reconnect_is_delayed == false);
2002 	nvme_ctrlr->reconnect_is_delayed = true;
2003 
2004 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
2005 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
2006 					    nvme_ctrlr,
2007 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
2008 }
2009 
2010 static void remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr);
2011 
2012 static void
2013 _bdev_nvme_reset_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2014 {
2015 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2016 	bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
2017 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2018 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2019 	enum bdev_nvme_op_after_reset op_after_reset;
2020 
2021 	assert(nvme_ctrlr->thread == spdk_get_thread());
2022 
2023 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2024 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2025 
2026 	if (!success) {
2027 		SPDK_ERRLOG("Resetting controller failed.\n");
2028 	} else {
2029 		SPDK_NOTICELOG("Resetting controller successful.\n");
2030 	}
2031 
2032 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2033 	nvme_ctrlr->resetting = false;
2034 	nvme_ctrlr->dont_retry = false;
2035 	nvme_ctrlr->in_failover = false;
2036 
2037 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
2038 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2039 
2040 	if (ctrlr_op_cb_fn) {
2041 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, success ? 0 : -1);
2042 	}
2043 
2044 	switch (op_after_reset) {
2045 	case OP_COMPLETE_PENDING_DESTRUCT:
2046 		nvme_ctrlr_unregister(nvme_ctrlr);
2047 		break;
2048 	case OP_DESTRUCT:
2049 		bdev_nvme_delete_ctrlr(nvme_ctrlr, false);
2050 		remove_discovery_entry(nvme_ctrlr);
2051 		break;
2052 	case OP_DELAYED_RECONNECT:
2053 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
2054 		break;
2055 	case OP_FAILOVER:
2056 		bdev_nvme_failover_ctrlr(nvme_ctrlr, false);
2057 		break;
2058 	default:
2059 		break;
2060 	}
2061 }
2062 
2063 static void
2064 bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
2065 {
2066 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2067 	if (!success) {
2068 		/* Connecting the active trid failed. Set the next alternate trid to the
2069 		 * active trid if it exists.
2070 		 */
2071 		if (bdev_nvme_failover_trid(nvme_ctrlr, false, false)) {
2072 			/* The next alternate trid exists and is ready to try. Try it now. */
2073 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
2074 
2075 			nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2076 			return;
2077 		}
2078 
2079 		/* We came here if there is no alternate trid or if the next trid exists but
2080 		 * is not ready to try. We will try the active trid after reconnect_delay_sec
2081 		 * seconds if it is non-zero or at the next reset call otherwise.
2082 		 */
2083 	} else {
2084 		/* Connecting the active trid succeeded. Clear the last failed time because it
2085 		 * means the trid is failed if its last failed time is non-zero.
2086 		 */
2087 		nvme_ctrlr->active_path_id->last_failed_tsc = 0;
2088 	}
2089 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2090 
2091 	/* Make sure we clear any pending resets before returning. */
2092 	spdk_for_each_channel(nvme_ctrlr,
2093 			      bdev_nvme_complete_pending_resets,
2094 			      success ? NULL : (void *)0x1,
2095 			      _bdev_nvme_reset_ctrlr_complete);
2096 }
2097 
2098 static void
2099 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
2100 {
2101 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2102 
2103 	bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2104 }
2105 
2106 static void
2107 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
2108 {
2109 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
2110 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
2111 	struct nvme_qpair *nvme_qpair;
2112 
2113 	nvme_qpair = ctrlr_ch->qpair;
2114 	assert(nvme_qpair != NULL);
2115 
2116 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2117 
2118 	if (nvme_qpair->qpair != NULL) {
2119 		if (nvme_qpair->ctrlr->dont_retry) {
2120 			spdk_nvme_qpair_set_abort_dnr(nvme_qpair->qpair, true);
2121 		}
2122 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2123 
2124 		/* The current full reset sequence will move to the next
2125 		 * ctrlr_channel after the qpair is actually disconnected.
2126 		 */
2127 		assert(ctrlr_ch->reset_iter == NULL);
2128 		ctrlr_ch->reset_iter = i;
2129 	} else {
2130 		spdk_for_each_channel_continue(i, 0);
2131 	}
2132 }
2133 
2134 static void
2135 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
2136 {
2137 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2138 
2139 	if (status == 0) {
2140 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, true);
2141 	} else {
2142 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
2143 		spdk_for_each_channel(nvme_ctrlr,
2144 				      bdev_nvme_reset_destroy_qpair,
2145 				      NULL,
2146 				      bdev_nvme_reset_create_qpairs_failed);
2147 	}
2148 }
2149 
2150 static int
2151 bdev_nvme_reset_check_qpair_connected(void *ctx)
2152 {
2153 	struct nvme_ctrlr_channel *ctrlr_ch = ctx;
2154 
2155 	if (ctrlr_ch->reset_iter == NULL) {
2156 		/* qpair was already failed to connect and the reset sequence is being aborted. */
2157 		assert(ctrlr_ch->connect_poller == NULL);
2158 		assert(ctrlr_ch->qpair->qpair == NULL);
2159 		return SPDK_POLLER_BUSY;
2160 	}
2161 
2162 	assert(ctrlr_ch->qpair->qpair != NULL);
2163 
2164 	if (!spdk_nvme_qpair_is_connected(ctrlr_ch->qpair->qpair)) {
2165 		return SPDK_POLLER_BUSY;
2166 	}
2167 
2168 	spdk_poller_unregister(&ctrlr_ch->connect_poller);
2169 
2170 	/* qpair was completed to connect. Move to the next ctrlr_channel */
2171 	spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2172 	ctrlr_ch->reset_iter = NULL;
2173 
2174 	return SPDK_POLLER_BUSY;
2175 }
2176 
2177 static void
2178 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
2179 {
2180 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2181 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
2182 	int rc;
2183 
2184 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
2185 	if (rc == 0) {
2186 		ctrlr_ch->connect_poller = SPDK_POLLER_REGISTER(bdev_nvme_reset_check_qpair_connected,
2187 					   ctrlr_ch, 0);
2188 
2189 		/* The current full reset sequence will move to the next
2190 		 * ctrlr_channel after the qpair is actually connected.
2191 		 */
2192 		assert(ctrlr_ch->reset_iter == NULL);
2193 		ctrlr_ch->reset_iter = i;
2194 	} else {
2195 		spdk_for_each_channel_continue(i, rc);
2196 	}
2197 }
2198 
2199 static int
2200 bdev_nvme_reconnect_ctrlr_poll(void *arg)
2201 {
2202 	struct nvme_ctrlr *nvme_ctrlr = arg;
2203 	int rc = -ETIMEDOUT;
2204 
2205 	if (!bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2206 		rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
2207 		if (rc == -EAGAIN) {
2208 			return SPDK_POLLER_BUSY;
2209 		}
2210 	}
2211 
2212 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
2213 	if (rc == 0) {
2214 		/* Recreate all of the I/O queue pairs */
2215 		spdk_for_each_channel(nvme_ctrlr,
2216 				      bdev_nvme_reset_create_qpair,
2217 				      NULL,
2218 				      bdev_nvme_reset_create_qpairs_done);
2219 	} else {
2220 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2221 	}
2222 	return SPDK_POLLER_BUSY;
2223 }
2224 
2225 static void
2226 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2227 {
2228 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
2229 
2230 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
2231 	assert(nvme_ctrlr->reset_detach_poller == NULL);
2232 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
2233 					  nvme_ctrlr, 0);
2234 }
2235 
2236 static void
2237 bdev_nvme_reset_destroy_qpair_done(struct spdk_io_channel_iter *i, int status)
2238 {
2239 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2240 
2241 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
2242 	assert(status == 0);
2243 
2244 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2245 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2246 	} else {
2247 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2248 	}
2249 }
2250 
2251 static void
2252 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2253 {
2254 	spdk_for_each_channel(nvme_ctrlr,
2255 			      bdev_nvme_reset_destroy_qpair,
2256 			      NULL,
2257 			      bdev_nvme_reset_destroy_qpair_done);
2258 }
2259 
2260 static void
2261 bdev_nvme_reconnect_ctrlr_now(void *ctx)
2262 {
2263 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2264 
2265 	assert(nvme_ctrlr->resetting == true);
2266 	assert(nvme_ctrlr->thread == spdk_get_thread());
2267 
2268 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2269 
2270 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2271 
2272 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2273 }
2274 
2275 static void
2276 _bdev_nvme_reset_ctrlr(void *ctx)
2277 {
2278 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2279 
2280 	assert(nvme_ctrlr->resetting == true);
2281 	assert(nvme_ctrlr->thread == spdk_get_thread());
2282 
2283 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2284 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
2285 	} else {
2286 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
2287 	}
2288 }
2289 
2290 static int
2291 bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2292 {
2293 	spdk_msg_fn msg_fn;
2294 
2295 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2296 	if (nvme_ctrlr->destruct) {
2297 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2298 		return -ENXIO;
2299 	}
2300 
2301 	if (nvme_ctrlr->resetting) {
2302 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2303 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
2304 		return -EBUSY;
2305 	}
2306 
2307 	if (nvme_ctrlr->disabled) {
2308 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2309 		SPDK_NOTICELOG("Unable to perform reset. Controller is disabled.\n");
2310 		return -EALREADY;
2311 	}
2312 
2313 	nvme_ctrlr->resetting = true;
2314 	nvme_ctrlr->dont_retry = true;
2315 
2316 	if (nvme_ctrlr->reconnect_is_delayed) {
2317 		SPDK_DEBUGLOG(bdev_nvme, "Reconnect is already scheduled.\n");
2318 		msg_fn = bdev_nvme_reconnect_ctrlr_now;
2319 		nvme_ctrlr->reconnect_is_delayed = false;
2320 	} else {
2321 		msg_fn = _bdev_nvme_reset_ctrlr;
2322 		assert(nvme_ctrlr->reset_start_tsc == 0);
2323 	}
2324 
2325 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2326 
2327 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2328 
2329 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2330 	return 0;
2331 }
2332 
2333 static int
2334 bdev_nvme_enable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2335 {
2336 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2337 	if (nvme_ctrlr->destruct) {
2338 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2339 		return -ENXIO;
2340 	}
2341 
2342 	if (nvme_ctrlr->resetting) {
2343 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2344 		return -EBUSY;
2345 	}
2346 
2347 	if (!nvme_ctrlr->disabled) {
2348 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2349 		return -EALREADY;
2350 	}
2351 
2352 	nvme_ctrlr->disabled = false;
2353 	nvme_ctrlr->resetting = true;
2354 
2355 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2356 
2357 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2358 
2359 	spdk_thread_send_msg(nvme_ctrlr->thread, bdev_nvme_reconnect_ctrlr_now, nvme_ctrlr);
2360 	return 0;
2361 }
2362 
2363 static void
2364 _bdev_nvme_disable_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2365 {
2366 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2367 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2368 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2369 	enum bdev_nvme_op_after_reset op_after_disable;
2370 
2371 	assert(nvme_ctrlr->thread == spdk_get_thread());
2372 
2373 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2374 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2375 
2376 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2377 
2378 	nvme_ctrlr->resetting = false;
2379 	nvme_ctrlr->dont_retry = false;
2380 
2381 	op_after_disable = bdev_nvme_check_op_after_reset(nvme_ctrlr, true);
2382 
2383 	nvme_ctrlr->disabled = true;
2384 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2385 
2386 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2387 
2388 	if (ctrlr_op_cb_fn) {
2389 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, 0);
2390 	}
2391 
2392 	switch (op_after_disable) {
2393 	case OP_COMPLETE_PENDING_DESTRUCT:
2394 		nvme_ctrlr_unregister(nvme_ctrlr);
2395 		break;
2396 	default:
2397 		break;
2398 	}
2399 
2400 }
2401 
2402 static void
2403 bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr)
2404 {
2405 	/* Make sure we clear any pending resets before returning. */
2406 	spdk_for_each_channel(nvme_ctrlr,
2407 			      bdev_nvme_complete_pending_resets,
2408 			      NULL,
2409 			      _bdev_nvme_disable_ctrlr_complete);
2410 }
2411 
2412 static void
2413 bdev_nvme_disable_destroy_qpairs_done(struct spdk_io_channel_iter *i, int status)
2414 {
2415 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2416 
2417 	assert(status == 0);
2418 
2419 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2420 		bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2421 	} else {
2422 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_ctrlr_complete);
2423 	}
2424 }
2425 
2426 static void
2427 bdev_nvme_disable_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2428 {
2429 	spdk_for_each_channel(nvme_ctrlr,
2430 			      bdev_nvme_reset_destroy_qpair,
2431 			      NULL,
2432 			      bdev_nvme_disable_destroy_qpairs_done);
2433 }
2434 
2435 static void
2436 _bdev_nvme_cancel_reconnect_and_disable_ctrlr(void *ctx)
2437 {
2438 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2439 
2440 	assert(nvme_ctrlr->resetting == true);
2441 	assert(nvme_ctrlr->thread == spdk_get_thread());
2442 
2443 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2444 
2445 	bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2446 }
2447 
2448 static void
2449 _bdev_nvme_disconnect_and_disable_ctrlr(void *ctx)
2450 {
2451 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2452 
2453 	assert(nvme_ctrlr->resetting == true);
2454 	assert(nvme_ctrlr->thread == spdk_get_thread());
2455 
2456 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2457 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_destroy_qpairs);
2458 	} else {
2459 		bdev_nvme_disable_destroy_qpairs(nvme_ctrlr);
2460 	}
2461 }
2462 
2463 static int
2464 bdev_nvme_disable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2465 {
2466 	spdk_msg_fn msg_fn;
2467 
2468 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2469 	if (nvme_ctrlr->destruct) {
2470 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2471 		return -ENXIO;
2472 	}
2473 
2474 	if (nvme_ctrlr->resetting) {
2475 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2476 		return -EBUSY;
2477 	}
2478 
2479 	if (nvme_ctrlr->disabled) {
2480 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2481 		return -EALREADY;
2482 	}
2483 
2484 	nvme_ctrlr->resetting = true;
2485 	nvme_ctrlr->dont_retry = true;
2486 
2487 	if (nvme_ctrlr->reconnect_is_delayed) {
2488 		msg_fn = _bdev_nvme_cancel_reconnect_and_disable_ctrlr;
2489 		nvme_ctrlr->reconnect_is_delayed = false;
2490 	} else {
2491 		msg_fn = _bdev_nvme_disconnect_and_disable_ctrlr;
2492 	}
2493 
2494 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2495 
2496 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2497 
2498 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2499 	return 0;
2500 }
2501 
2502 static int
2503 nvme_ctrlr_op(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2504 	      bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2505 {
2506 	int rc;
2507 
2508 	switch (op) {
2509 	case NVME_CTRLR_OP_RESET:
2510 		rc = bdev_nvme_reset_ctrlr(nvme_ctrlr);
2511 		break;
2512 	case NVME_CTRLR_OP_ENABLE:
2513 		rc = bdev_nvme_enable_ctrlr(nvme_ctrlr);
2514 		break;
2515 	case NVME_CTRLR_OP_DISABLE:
2516 		rc = bdev_nvme_disable_ctrlr(nvme_ctrlr);
2517 		break;
2518 	default:
2519 		rc = -EINVAL;
2520 		break;
2521 	}
2522 
2523 	if (rc == 0) {
2524 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
2525 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
2526 		nvme_ctrlr->ctrlr_op_cb_fn = cb_fn;
2527 		nvme_ctrlr->ctrlr_op_cb_arg = cb_arg;
2528 	}
2529 	return rc;
2530 }
2531 
2532 struct nvme_ctrlr_op_rpc_ctx {
2533 	struct nvme_ctrlr *nvme_ctrlr;
2534 	struct spdk_thread *orig_thread;
2535 	enum nvme_ctrlr_op op;
2536 	int rc;
2537 	bdev_nvme_ctrlr_op_cb cb_fn;
2538 	void *cb_arg;
2539 };
2540 
2541 static void
2542 _nvme_ctrlr_op_rpc_complete(void *_ctx)
2543 {
2544 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2545 
2546 	assert(ctx != NULL);
2547 	assert(ctx->cb_fn != NULL);
2548 
2549 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2550 
2551 	free(ctx);
2552 }
2553 
2554 static void
2555 nvme_ctrlr_op_rpc_complete(void *cb_arg, int rc)
2556 {
2557 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2558 
2559 	ctx->rc = rc;
2560 
2561 	spdk_thread_send_msg(ctx->orig_thread, _nvme_ctrlr_op_rpc_complete, ctx);
2562 }
2563 
2564 void
2565 nvme_ctrlr_op_rpc(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2566 		  bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2567 {
2568 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2569 	int rc;
2570 
2571 	assert(cb_fn != NULL);
2572 
2573 	ctx = calloc(1, sizeof(*ctx));
2574 	if (ctx == NULL) {
2575 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2576 		cb_fn(cb_arg, -ENOMEM);
2577 		return;
2578 	}
2579 
2580 	ctx->orig_thread = spdk_get_thread();
2581 	ctx->cb_fn = cb_fn;
2582 	ctx->cb_arg = cb_arg;
2583 
2584 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_ctrlr_op_rpc_complete, ctx);
2585 	if (rc == 0) {
2586 		return;
2587 	} else if (rc == -EALREADY) {
2588 		rc = 0;
2589 	}
2590 
2591 	nvme_ctrlr_op_rpc_complete(ctx, rc);
2592 }
2593 
2594 static void nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc);
2595 
2596 static void
2597 _nvme_bdev_ctrlr_op_rpc_continue(void *_ctx)
2598 {
2599 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2600 	struct nvme_ctrlr *prev_nvme_ctrlr, *next_nvme_ctrlr;
2601 	int rc;
2602 
2603 	prev_nvme_ctrlr = ctx->nvme_ctrlr;
2604 	ctx->nvme_ctrlr = NULL;
2605 
2606 	if (ctx->rc != 0) {
2607 		goto complete;
2608 	}
2609 
2610 	next_nvme_ctrlr = TAILQ_NEXT(prev_nvme_ctrlr, tailq);
2611 	if (next_nvme_ctrlr == NULL) {
2612 		goto complete;
2613 	}
2614 
2615 	rc = nvme_ctrlr_op(next_nvme_ctrlr, ctx->op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2616 	if (rc == 0) {
2617 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2618 		return;
2619 	} else if (rc == -EALREADY) {
2620 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2621 		rc = 0;
2622 	}
2623 
2624 	ctx->rc = rc;
2625 
2626 complete:
2627 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2628 	free(ctx);
2629 }
2630 
2631 static void
2632 nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc)
2633 {
2634 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2635 
2636 	ctx->rc = rc;
2637 
2638 	spdk_thread_send_msg(ctx->orig_thread, _nvme_bdev_ctrlr_op_rpc_continue, ctx);
2639 }
2640 
2641 void
2642 nvme_bdev_ctrlr_op_rpc(struct nvme_bdev_ctrlr *nbdev_ctrlr, enum nvme_ctrlr_op op,
2643 		       bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2644 {
2645 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2646 	struct nvme_ctrlr *nvme_ctrlr;
2647 	int rc;
2648 
2649 	assert(cb_fn != NULL);
2650 
2651 	ctx = calloc(1, sizeof(*ctx));
2652 	if (ctx == NULL) {
2653 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2654 		cb_fn(cb_arg, -ENOMEM);
2655 		return;
2656 	}
2657 
2658 	ctx->orig_thread = spdk_get_thread();
2659 	ctx->op = op;
2660 	ctx->cb_fn = cb_fn;
2661 	ctx->cb_arg = cb_arg;
2662 
2663 	nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
2664 	assert(nvme_ctrlr != NULL);
2665 
2666 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2667 	if (rc == 0) {
2668 		ctx->nvme_ctrlr = nvme_ctrlr;
2669 		return;
2670 	} else if (rc == -EALREADY) {
2671 		ctx->nvme_ctrlr = nvme_ctrlr;
2672 		rc = 0;
2673 	}
2674 
2675 	nvme_bdev_ctrlr_op_rpc_continue(ctx, rc);
2676 }
2677 
2678 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
2679 
2680 static void
2681 _bdev_nvme_reset_io_complete(struct spdk_io_channel_iter *i, int status)
2682 {
2683 	struct nvme_bdev_io *bio = spdk_io_channel_iter_get_ctx(i);
2684 	enum spdk_bdev_io_status io_status;
2685 
2686 	if (bio->cpl.cdw0 == 0) {
2687 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2688 	} else {
2689 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
2690 	}
2691 
2692 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
2693 }
2694 
2695 static void
2696 bdev_nvme_abort_bdev_channel(struct spdk_io_channel_iter *i)
2697 {
2698 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2699 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
2700 
2701 	bdev_nvme_abort_retry_ios(nbdev_ch);
2702 
2703 	spdk_for_each_channel_continue(i, 0);
2704 }
2705 
2706 static void
2707 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
2708 {
2709 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2710 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
2711 
2712 	/* Abort all queued I/Os for retry. */
2713 	spdk_for_each_channel(nbdev,
2714 			      bdev_nvme_abort_bdev_channel,
2715 			      bio,
2716 			      _bdev_nvme_reset_io_complete);
2717 }
2718 
2719 static void
2720 _bdev_nvme_reset_io_continue(void *ctx)
2721 {
2722 	struct nvme_bdev_io *bio = ctx;
2723 	struct nvme_io_path *prev_io_path, *next_io_path;
2724 	int rc;
2725 
2726 	prev_io_path = bio->io_path;
2727 	bio->io_path = NULL;
2728 
2729 	if (bio->cpl.cdw0 != 0) {
2730 		goto complete;
2731 	}
2732 
2733 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
2734 	if (next_io_path == NULL) {
2735 		goto complete;
2736 	}
2737 
2738 	rc = _bdev_nvme_reset_io(next_io_path, bio);
2739 	if (rc == 0) {
2740 		return;
2741 	}
2742 
2743 	bio->cpl.cdw0 = 1;
2744 
2745 complete:
2746 	bdev_nvme_reset_io_complete(bio);
2747 }
2748 
2749 static void
2750 bdev_nvme_reset_io_continue(void *cb_arg, int rc)
2751 {
2752 	struct nvme_bdev_io *bio = cb_arg;
2753 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2754 
2755 	bio->cpl.cdw0 = (rc == 0) ? 0 : 1;
2756 
2757 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_nvme_reset_io_continue, bio);
2758 }
2759 
2760 static int
2761 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
2762 {
2763 	struct nvme_ctrlr_channel *ctrlr_ch;
2764 	struct spdk_bdev_io *bdev_io;
2765 	int rc;
2766 
2767 	rc = nvme_ctrlr_op(io_path->qpair->ctrlr, NVME_CTRLR_OP_RESET,
2768 			   bdev_nvme_reset_io_continue, bio);
2769 	if (rc == 0) {
2770 		assert(bio->io_path == NULL);
2771 		bio->io_path = io_path;
2772 	} else if (rc == -EBUSY) {
2773 		ctrlr_ch = io_path->qpair->ctrlr_ch;
2774 		assert(ctrlr_ch != NULL);
2775 		/*
2776 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
2777 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
2778 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
2779 		 */
2780 		bdev_io = spdk_bdev_io_from_ctx(bio);
2781 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bdev_io, module_link);
2782 		rc = 0;
2783 	}
2784 
2785 	return rc;
2786 }
2787 
2788 static void
2789 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
2790 {
2791 	struct nvme_io_path *io_path;
2792 	int rc;
2793 
2794 	bio->cpl.cdw0 = 0;
2795 
2796 	/* Reset all nvme_ctrlrs of a bdev controller sequentially. */
2797 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
2798 	assert(io_path != NULL);
2799 
2800 	rc = _bdev_nvme_reset_io(io_path, bio);
2801 	if (rc != 0) {
2802 		/* If the current nvme_ctrlr is disabled, skip it and move to the next nvme_ctrlr. */
2803 		bdev_nvme_reset_io_continue(bio, rc == -EALREADY);
2804 	}
2805 }
2806 
2807 static int
2808 bdev_nvme_failover_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove)
2809 {
2810 	if (nvme_ctrlr->destruct) {
2811 		/* Don't bother resetting if the controller is in the process of being destructed. */
2812 		return -ENXIO;
2813 	}
2814 
2815 	if (nvme_ctrlr->resetting) {
2816 		if (!nvme_ctrlr->in_failover) {
2817 			SPDK_NOTICELOG("Reset is already in progress. Defer failover until reset completes.\n");
2818 
2819 			/* Defer failover until reset completes. */
2820 			nvme_ctrlr->pending_failover = true;
2821 			return -EINPROGRESS;
2822 		} else {
2823 			SPDK_NOTICELOG("Unable to perform failover, already in progress.\n");
2824 			return -EBUSY;
2825 		}
2826 	}
2827 
2828 	bdev_nvme_failover_trid(nvme_ctrlr, remove, true);
2829 
2830 	if (nvme_ctrlr->reconnect_is_delayed) {
2831 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
2832 
2833 		/* We rely on the next reconnect for the failover. */
2834 		return -EALREADY;
2835 	}
2836 
2837 	if (nvme_ctrlr->disabled) {
2838 		SPDK_NOTICELOG("Controller is disabled.\n");
2839 
2840 		/* We rely on the enablement for the failover. */
2841 		return -EALREADY;
2842 	}
2843 
2844 	nvme_ctrlr->resetting = true;
2845 	nvme_ctrlr->in_failover = true;
2846 
2847 	assert(nvme_ctrlr->reset_start_tsc == 0);
2848 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2849 
2850 	return 0;
2851 }
2852 
2853 static int
2854 bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool remove)
2855 {
2856 	int rc;
2857 
2858 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2859 	rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, remove);
2860 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2861 
2862 	if (rc == 0) {
2863 		spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset_ctrlr, nvme_ctrlr);
2864 	} else if (rc == -EALREADY) {
2865 		rc = 0;
2866 	}
2867 
2868 	return rc;
2869 }
2870 
2871 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2872 			   uint64_t num_blocks);
2873 
2874 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2875 				  uint64_t num_blocks);
2876 
2877 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
2878 			  uint64_t src_offset_blocks,
2879 			  uint64_t num_blocks);
2880 
2881 static void
2882 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
2883 		     bool success)
2884 {
2885 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2886 	struct spdk_bdev *bdev = bdev_io->bdev;
2887 	int ret;
2888 
2889 	if (!success) {
2890 		ret = -EINVAL;
2891 		goto exit;
2892 	}
2893 
2894 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
2895 		ret = -ENXIO;
2896 		goto exit;
2897 	}
2898 
2899 	ret = bdev_nvme_readv(bio,
2900 			      bdev_io->u.bdev.iovs,
2901 			      bdev_io->u.bdev.iovcnt,
2902 			      bdev_io->u.bdev.md_buf,
2903 			      bdev_io->u.bdev.num_blocks,
2904 			      bdev_io->u.bdev.offset_blocks,
2905 			      bdev->dif_check_flags,
2906 			      bdev_io->u.bdev.memory_domain,
2907 			      bdev_io->u.bdev.memory_domain_ctx,
2908 			      bdev_io->u.bdev.accel_sequence);
2909 
2910 exit:
2911 	if (spdk_unlikely(ret != 0)) {
2912 		bdev_nvme_io_complete(bio, ret);
2913 	}
2914 }
2915 
2916 static inline void
2917 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
2918 {
2919 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2920 	struct spdk_bdev *bdev = bdev_io->bdev;
2921 	struct nvme_bdev_io *nbdev_io_to_abort;
2922 	int rc = 0;
2923 
2924 	switch (bdev_io->type) {
2925 	case SPDK_BDEV_IO_TYPE_READ:
2926 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
2927 			rc = bdev_nvme_readv(nbdev_io,
2928 					     bdev_io->u.bdev.iovs,
2929 					     bdev_io->u.bdev.iovcnt,
2930 					     bdev_io->u.bdev.md_buf,
2931 					     bdev_io->u.bdev.num_blocks,
2932 					     bdev_io->u.bdev.offset_blocks,
2933 					     bdev->dif_check_flags,
2934 					     bdev_io->u.bdev.memory_domain,
2935 					     bdev_io->u.bdev.memory_domain_ctx,
2936 					     bdev_io->u.bdev.accel_sequence);
2937 		} else {
2938 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
2939 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
2940 			rc = 0;
2941 		}
2942 		break;
2943 	case SPDK_BDEV_IO_TYPE_WRITE:
2944 		rc = bdev_nvme_writev(nbdev_io,
2945 				      bdev_io->u.bdev.iovs,
2946 				      bdev_io->u.bdev.iovcnt,
2947 				      bdev_io->u.bdev.md_buf,
2948 				      bdev_io->u.bdev.num_blocks,
2949 				      bdev_io->u.bdev.offset_blocks,
2950 				      bdev->dif_check_flags,
2951 				      bdev_io->u.bdev.memory_domain,
2952 				      bdev_io->u.bdev.memory_domain_ctx,
2953 				      bdev_io->u.bdev.accel_sequence);
2954 		break;
2955 	case SPDK_BDEV_IO_TYPE_COMPARE:
2956 		rc = bdev_nvme_comparev(nbdev_io,
2957 					bdev_io->u.bdev.iovs,
2958 					bdev_io->u.bdev.iovcnt,
2959 					bdev_io->u.bdev.md_buf,
2960 					bdev_io->u.bdev.num_blocks,
2961 					bdev_io->u.bdev.offset_blocks,
2962 					bdev->dif_check_flags);
2963 		break;
2964 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
2965 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
2966 						   bdev_io->u.bdev.iovs,
2967 						   bdev_io->u.bdev.iovcnt,
2968 						   bdev_io->u.bdev.fused_iovs,
2969 						   bdev_io->u.bdev.fused_iovcnt,
2970 						   bdev_io->u.bdev.md_buf,
2971 						   bdev_io->u.bdev.num_blocks,
2972 						   bdev_io->u.bdev.offset_blocks,
2973 						   bdev->dif_check_flags);
2974 		break;
2975 	case SPDK_BDEV_IO_TYPE_UNMAP:
2976 		rc = bdev_nvme_unmap(nbdev_io,
2977 				     bdev_io->u.bdev.offset_blocks,
2978 				     bdev_io->u.bdev.num_blocks);
2979 		break;
2980 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
2981 		rc =  bdev_nvme_write_zeroes(nbdev_io,
2982 					     bdev_io->u.bdev.offset_blocks,
2983 					     bdev_io->u.bdev.num_blocks);
2984 		break;
2985 	case SPDK_BDEV_IO_TYPE_RESET:
2986 		nbdev_io->io_path = NULL;
2987 		bdev_nvme_reset_io(nbdev_ch, nbdev_io);
2988 		return;
2989 
2990 	case SPDK_BDEV_IO_TYPE_FLUSH:
2991 		bdev_nvme_io_complete(nbdev_io, 0);
2992 		return;
2993 
2994 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
2995 		rc = bdev_nvme_zone_appendv(nbdev_io,
2996 					    bdev_io->u.bdev.iovs,
2997 					    bdev_io->u.bdev.iovcnt,
2998 					    bdev_io->u.bdev.md_buf,
2999 					    bdev_io->u.bdev.num_blocks,
3000 					    bdev_io->u.bdev.offset_blocks,
3001 					    bdev->dif_check_flags);
3002 		break;
3003 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3004 		rc = bdev_nvme_get_zone_info(nbdev_io,
3005 					     bdev_io->u.zone_mgmt.zone_id,
3006 					     bdev_io->u.zone_mgmt.num_zones,
3007 					     bdev_io->u.zone_mgmt.buf);
3008 		break;
3009 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3010 		rc = bdev_nvme_zone_management(nbdev_io,
3011 					       bdev_io->u.zone_mgmt.zone_id,
3012 					       bdev_io->u.zone_mgmt.zone_action);
3013 		break;
3014 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3015 		nbdev_io->io_path = NULL;
3016 		bdev_nvme_admin_passthru(nbdev_ch,
3017 					 nbdev_io,
3018 					 &bdev_io->u.nvme_passthru.cmd,
3019 					 bdev_io->u.nvme_passthru.buf,
3020 					 bdev_io->u.nvme_passthru.nbytes);
3021 		return;
3022 
3023 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3024 		rc = bdev_nvme_io_passthru(nbdev_io,
3025 					   &bdev_io->u.nvme_passthru.cmd,
3026 					   bdev_io->u.nvme_passthru.buf,
3027 					   bdev_io->u.nvme_passthru.nbytes);
3028 		break;
3029 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3030 		rc = bdev_nvme_io_passthru_md(nbdev_io,
3031 					      &bdev_io->u.nvme_passthru.cmd,
3032 					      bdev_io->u.nvme_passthru.buf,
3033 					      bdev_io->u.nvme_passthru.nbytes,
3034 					      bdev_io->u.nvme_passthru.md_buf,
3035 					      bdev_io->u.nvme_passthru.md_len);
3036 		break;
3037 	case SPDK_BDEV_IO_TYPE_NVME_IOV_MD:
3038 		rc = bdev_nvme_iov_passthru_md(nbdev_io,
3039 					       &bdev_io->u.nvme_passthru.cmd,
3040 					       bdev_io->u.nvme_passthru.iovs,
3041 					       bdev_io->u.nvme_passthru.iovcnt,
3042 					       bdev_io->u.nvme_passthru.nbytes,
3043 					       bdev_io->u.nvme_passthru.md_buf,
3044 					       bdev_io->u.nvme_passthru.md_len);
3045 		break;
3046 	case SPDK_BDEV_IO_TYPE_ABORT:
3047 		nbdev_io->io_path = NULL;
3048 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
3049 		bdev_nvme_abort(nbdev_ch,
3050 				nbdev_io,
3051 				nbdev_io_to_abort);
3052 		return;
3053 
3054 	case SPDK_BDEV_IO_TYPE_COPY:
3055 		rc = bdev_nvme_copy(nbdev_io,
3056 				    bdev_io->u.bdev.offset_blocks,
3057 				    bdev_io->u.bdev.copy.src_offset_blocks,
3058 				    bdev_io->u.bdev.num_blocks);
3059 		break;
3060 	default:
3061 		rc = -EINVAL;
3062 		break;
3063 	}
3064 
3065 	if (spdk_unlikely(rc != 0)) {
3066 		bdev_nvme_io_complete(nbdev_io, rc);
3067 	}
3068 }
3069 
3070 static void
3071 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
3072 {
3073 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3074 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3075 
3076 	if (spdk_likely(nbdev_io->submit_tsc == 0)) {
3077 		nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io);
3078 	} else {
3079 		/* There are cases where submit_tsc != 0, i.e. retry I/O.
3080 		 * We need to update submit_tsc here.
3081 		 */
3082 		nbdev_io->submit_tsc = spdk_get_ticks();
3083 	}
3084 
3085 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
3086 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
3087 	if (spdk_unlikely(!nbdev_io->io_path)) {
3088 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
3089 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
3090 			return;
3091 		}
3092 
3093 		/* Admin commands do not use the optimal I/O path.
3094 		 * Simply fall through even if it is not found.
3095 		 */
3096 	}
3097 
3098 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
3099 }
3100 
3101 static bool
3102 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
3103 {
3104 	struct nvme_bdev *nbdev = ctx;
3105 	struct nvme_ns *nvme_ns;
3106 	struct spdk_nvme_ns *ns;
3107 	struct spdk_nvme_ctrlr *ctrlr;
3108 	const struct spdk_nvme_ctrlr_data *cdata;
3109 
3110 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3111 	assert(nvme_ns != NULL);
3112 	ns = nvme_ns->ns;
3113 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3114 
3115 	switch (io_type) {
3116 	case SPDK_BDEV_IO_TYPE_READ:
3117 	case SPDK_BDEV_IO_TYPE_WRITE:
3118 	case SPDK_BDEV_IO_TYPE_RESET:
3119 	case SPDK_BDEV_IO_TYPE_FLUSH:
3120 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3121 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3122 	case SPDK_BDEV_IO_TYPE_ABORT:
3123 		return true;
3124 
3125 	case SPDK_BDEV_IO_TYPE_COMPARE:
3126 		return spdk_nvme_ns_supports_compare(ns);
3127 
3128 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3129 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
3130 
3131 	case SPDK_BDEV_IO_TYPE_UNMAP:
3132 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3133 		return cdata->oncs.dsm;
3134 
3135 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3136 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3137 		return cdata->oncs.write_zeroes;
3138 
3139 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3140 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
3141 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
3142 			return true;
3143 		}
3144 		return false;
3145 
3146 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3147 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3148 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
3149 
3150 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3151 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
3152 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
3153 
3154 	case SPDK_BDEV_IO_TYPE_COPY:
3155 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3156 		return cdata->oncs.copy;
3157 
3158 	default:
3159 		return false;
3160 	}
3161 }
3162 
3163 static int
3164 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
3165 {
3166 	struct nvme_qpair *nvme_qpair;
3167 	struct spdk_io_channel *pg_ch;
3168 	int rc;
3169 
3170 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
3171 	if (!nvme_qpair) {
3172 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
3173 		return -1;
3174 	}
3175 
3176 	TAILQ_INIT(&nvme_qpair->io_path_list);
3177 
3178 	nvme_qpair->ctrlr = nvme_ctrlr;
3179 	nvme_qpair->ctrlr_ch = ctrlr_ch;
3180 
3181 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
3182 	if (!pg_ch) {
3183 		free(nvme_qpair);
3184 		return -1;
3185 	}
3186 
3187 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
3188 
3189 #ifdef SPDK_CONFIG_VTUNE
3190 	nvme_qpair->group->collect_spin_stat = true;
3191 #else
3192 	nvme_qpair->group->collect_spin_stat = false;
3193 #endif
3194 
3195 	if (!nvme_ctrlr->disabled) {
3196 		/* If a nvme_ctrlr is disabled, don't try to create qpair for it. Qpair will
3197 		 * be created when it's enabled.
3198 		 */
3199 		rc = bdev_nvme_create_qpair(nvme_qpair);
3200 		if (rc != 0) {
3201 			/* nvme_ctrlr can't create IO qpair if connection is down.
3202 			 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
3203 			 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
3204 			 * submitted IO will be queued until IO qpair is successfully created.
3205 			 *
3206 			 * Hence, if both are satisfied, ignore the failure.
3207 			 */
3208 			if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
3209 				spdk_put_io_channel(pg_ch);
3210 				free(nvme_qpair);
3211 				return rc;
3212 			}
3213 		}
3214 	}
3215 
3216 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3217 
3218 	ctrlr_ch->qpair = nvme_qpair;
3219 
3220 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
3221 	nvme_qpair->ctrlr->ref++;
3222 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
3223 
3224 	return 0;
3225 }
3226 
3227 static int
3228 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3229 {
3230 	struct nvme_ctrlr *nvme_ctrlr = io_device;
3231 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3232 
3233 	TAILQ_INIT(&ctrlr_ch->pending_resets);
3234 
3235 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
3236 }
3237 
3238 static void
3239 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
3240 {
3241 	struct nvme_io_path *io_path, *next;
3242 
3243 	assert(nvme_qpair->group != NULL);
3244 
3245 	TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) {
3246 		TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
3247 		nvme_io_path_free(io_path);
3248 	}
3249 
3250 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3251 
3252 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
3253 
3254 	nvme_ctrlr_release(nvme_qpair->ctrlr);
3255 
3256 	free(nvme_qpair);
3257 }
3258 
3259 static void
3260 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3261 {
3262 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3263 	struct nvme_qpair *nvme_qpair;
3264 
3265 	nvme_qpair = ctrlr_ch->qpair;
3266 	assert(nvme_qpair != NULL);
3267 
3268 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
3269 
3270 	if (nvme_qpair->qpair != NULL) {
3271 		if (ctrlr_ch->reset_iter == NULL) {
3272 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
3273 		} else {
3274 			/* Skip current ctrlr_channel in a full reset sequence because
3275 			 * it is being deleted now. The qpair is already being disconnected.
3276 			 * We do not have to restart disconnecting it.
3277 			 */
3278 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
3279 		}
3280 
3281 		/* We cannot release a reference to the poll group now.
3282 		 * The qpair may be disconnected asynchronously later.
3283 		 * We need to poll it until it is actually disconnected.
3284 		 * Just detach the qpair from the deleting ctrlr_channel.
3285 		 */
3286 		nvme_qpair->ctrlr_ch = NULL;
3287 	} else {
3288 		assert(ctrlr_ch->reset_iter == NULL);
3289 
3290 		nvme_qpair_delete(nvme_qpair);
3291 	}
3292 }
3293 
3294 static inline struct spdk_io_channel *
3295 bdev_nvme_get_accel_channel(struct nvme_poll_group *group)
3296 {
3297 	if (spdk_unlikely(!group->accel_channel)) {
3298 		group->accel_channel = spdk_accel_get_io_channel();
3299 		if (!group->accel_channel) {
3300 			SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
3301 				    group);
3302 			return NULL;
3303 		}
3304 	}
3305 
3306 	return group->accel_channel;
3307 }
3308 
3309 static void
3310 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
3311 			      uint32_t iov_cnt, uint32_t seed,
3312 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3313 {
3314 	struct spdk_io_channel *accel_ch;
3315 	struct nvme_poll_group *group = ctx;
3316 	int rc;
3317 
3318 	assert(cb_fn != NULL);
3319 
3320 	accel_ch = bdev_nvme_get_accel_channel(group);
3321 	if (spdk_unlikely(accel_ch == NULL)) {
3322 		cb_fn(cb_arg, -ENOMEM);
3323 		return;
3324 	}
3325 
3326 	rc = spdk_accel_submit_crc32cv(accel_ch, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
3327 	if (rc) {
3328 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
3329 		if (rc == -ENOMEM || rc == -EINVAL) {
3330 			cb_fn(cb_arg, rc);
3331 		}
3332 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
3333 	}
3334 }
3335 
3336 static void
3337 bdev_nvme_finish_sequence(void *seq, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3338 {
3339 	spdk_accel_sequence_finish(seq, cb_fn, cb_arg);
3340 }
3341 
3342 static void
3343 bdev_nvme_abort_sequence(void *seq)
3344 {
3345 	spdk_accel_sequence_abort(seq);
3346 }
3347 
3348 static void
3349 bdev_nvme_reverse_sequence(void *seq)
3350 {
3351 	spdk_accel_sequence_reverse(seq);
3352 }
3353 
3354 static int
3355 bdev_nvme_append_crc32c(void *ctx, void **seq, uint32_t *dst, struct iovec *iovs, uint32_t iovcnt,
3356 			struct spdk_memory_domain *domain, void *domain_ctx, uint32_t seed,
3357 			spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3358 {
3359 	struct spdk_io_channel *ch;
3360 	struct nvme_poll_group *group = ctx;
3361 
3362 	ch = bdev_nvme_get_accel_channel(group);
3363 	if (spdk_unlikely(ch == NULL)) {
3364 		return -ENOMEM;
3365 	}
3366 
3367 	return spdk_accel_append_crc32c((struct spdk_accel_sequence **)seq, ch, dst, iovs, iovcnt,
3368 					domain, domain_ctx, seed, cb_fn, cb_arg);
3369 }
3370 
3371 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
3372 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
3373 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
3374 	.append_crc32c		= bdev_nvme_append_crc32c,
3375 	.finish_sequence	= bdev_nvme_finish_sequence,
3376 	.reverse_sequence	= bdev_nvme_reverse_sequence,
3377 	.abort_sequence		= bdev_nvme_abort_sequence,
3378 };
3379 
3380 static int
3381 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
3382 {
3383 	struct nvme_poll_group *group = ctx_buf;
3384 
3385 	TAILQ_INIT(&group->qpair_list);
3386 
3387 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
3388 	if (group->group == NULL) {
3389 		return -1;
3390 	}
3391 
3392 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
3393 
3394 	if (group->poller == NULL) {
3395 		spdk_nvme_poll_group_destroy(group->group);
3396 		return -1;
3397 	}
3398 
3399 	return 0;
3400 }
3401 
3402 static void
3403 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
3404 {
3405 	struct nvme_poll_group *group = ctx_buf;
3406 
3407 	assert(TAILQ_EMPTY(&group->qpair_list));
3408 
3409 	if (group->accel_channel) {
3410 		spdk_put_io_channel(group->accel_channel);
3411 	}
3412 
3413 	spdk_poller_unregister(&group->poller);
3414 	if (spdk_nvme_poll_group_destroy(group->group)) {
3415 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
3416 		assert(false);
3417 	}
3418 }
3419 
3420 static struct spdk_io_channel *
3421 bdev_nvme_get_io_channel(void *ctx)
3422 {
3423 	struct nvme_bdev *nvme_bdev = ctx;
3424 
3425 	return spdk_get_io_channel(nvme_bdev);
3426 }
3427 
3428 static void *
3429 bdev_nvme_get_module_ctx(void *ctx)
3430 {
3431 	struct nvme_bdev *nvme_bdev = ctx;
3432 	struct nvme_ns *nvme_ns;
3433 
3434 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
3435 		return NULL;
3436 	}
3437 
3438 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
3439 	if (!nvme_ns) {
3440 		return NULL;
3441 	}
3442 
3443 	return nvme_ns->ns;
3444 }
3445 
3446 static const char *
3447 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
3448 {
3449 	switch (ana_state) {
3450 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3451 		return "optimized";
3452 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3453 		return "non_optimized";
3454 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3455 		return "inaccessible";
3456 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
3457 		return "persistent_loss";
3458 	case SPDK_NVME_ANA_CHANGE_STATE:
3459 		return "change";
3460 	default:
3461 		return NULL;
3462 	}
3463 }
3464 
3465 static int
3466 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
3467 {
3468 	struct spdk_memory_domain **_domains = NULL;
3469 	struct nvme_bdev *nbdev = ctx;
3470 	struct nvme_ns *nvme_ns;
3471 	int i = 0, _array_size = array_size;
3472 	int rc = 0;
3473 
3474 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3475 		if (domains && array_size >= i) {
3476 			_domains = &domains[i];
3477 		} else {
3478 			_domains = NULL;
3479 		}
3480 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
3481 		if (rc > 0) {
3482 			i += rc;
3483 			if (_array_size >= rc) {
3484 				_array_size -= rc;
3485 			} else {
3486 				_array_size = 0;
3487 			}
3488 		} else if (rc < 0) {
3489 			return rc;
3490 		}
3491 	}
3492 
3493 	return i;
3494 }
3495 
3496 static const char *
3497 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
3498 {
3499 	if (nvme_ctrlr->destruct) {
3500 		return "deleting";
3501 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
3502 		return "failed";
3503 	} else if (nvme_ctrlr->resetting) {
3504 		return "resetting";
3505 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
3506 		return "reconnect_is_delayed";
3507 	} else if (nvme_ctrlr->disabled) {
3508 		return "disabled";
3509 	} else {
3510 		return "enabled";
3511 	}
3512 }
3513 
3514 void
3515 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
3516 {
3517 	struct spdk_nvme_transport_id *trid;
3518 	const struct spdk_nvme_ctrlr_opts *opts;
3519 	const struct spdk_nvme_ctrlr_data *cdata;
3520 	struct nvme_path_id *path_id;
3521 
3522 	spdk_json_write_object_begin(w);
3523 
3524 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
3525 
3526 #ifdef SPDK_CONFIG_NVME_CUSE
3527 	size_t cuse_name_size = 128;
3528 	char cuse_name[cuse_name_size];
3529 
3530 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
3531 	if (rc == 0) {
3532 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3533 	}
3534 #endif
3535 	trid = &nvme_ctrlr->active_path_id->trid;
3536 	spdk_json_write_named_object_begin(w, "trid");
3537 	nvme_bdev_dump_trid_json(trid, w);
3538 	spdk_json_write_object_end(w);
3539 
3540 	path_id = TAILQ_NEXT(nvme_ctrlr->active_path_id, link);
3541 	if (path_id != NULL) {
3542 		spdk_json_write_named_array_begin(w, "alternate_trids");
3543 		do {
3544 			trid = &path_id->trid;
3545 			spdk_json_write_object_begin(w);
3546 			nvme_bdev_dump_trid_json(trid, w);
3547 			spdk_json_write_object_end(w);
3548 
3549 			path_id = TAILQ_NEXT(path_id, link);
3550 		} while (path_id != NULL);
3551 		spdk_json_write_array_end(w);
3552 	}
3553 
3554 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
3555 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3556 
3557 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
3558 	spdk_json_write_named_object_begin(w, "host");
3559 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
3560 	spdk_json_write_named_string(w, "addr", opts->src_addr);
3561 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
3562 	spdk_json_write_object_end(w);
3563 
3564 	spdk_json_write_object_end(w);
3565 }
3566 
3567 static void
3568 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
3569 			 struct nvme_ns *nvme_ns)
3570 {
3571 	struct spdk_nvme_ns *ns;
3572 	struct spdk_nvme_ctrlr *ctrlr;
3573 	const struct spdk_nvme_ctrlr_data *cdata;
3574 	const struct spdk_nvme_transport_id *trid;
3575 	union spdk_nvme_vs_register vs;
3576 	const struct spdk_nvme_ns_data *nsdata;
3577 	char buf[128];
3578 
3579 	ns = nvme_ns->ns;
3580 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3581 
3582 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3583 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
3584 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
3585 
3586 	spdk_json_write_object_begin(w);
3587 
3588 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
3589 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
3590 	}
3591 
3592 	spdk_json_write_named_object_begin(w, "trid");
3593 
3594 	nvme_bdev_dump_trid_json(trid, w);
3595 
3596 	spdk_json_write_object_end(w);
3597 
3598 #ifdef SPDK_CONFIG_NVME_CUSE
3599 	size_t cuse_name_size = 128;
3600 	char cuse_name[cuse_name_size];
3601 
3602 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
3603 					    cuse_name, &cuse_name_size);
3604 	if (rc == 0) {
3605 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3606 	}
3607 #endif
3608 
3609 	spdk_json_write_named_object_begin(w, "ctrlr_data");
3610 
3611 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3612 
3613 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
3614 
3615 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
3616 	spdk_str_trim(buf);
3617 	spdk_json_write_named_string(w, "model_number", buf);
3618 
3619 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
3620 	spdk_str_trim(buf);
3621 	spdk_json_write_named_string(w, "serial_number", buf);
3622 
3623 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
3624 	spdk_str_trim(buf);
3625 	spdk_json_write_named_string(w, "firmware_revision", buf);
3626 
3627 	if (cdata->subnqn[0] != '\0') {
3628 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
3629 	}
3630 
3631 	spdk_json_write_named_object_begin(w, "oacs");
3632 
3633 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
3634 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
3635 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
3636 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
3637 
3638 	spdk_json_write_object_end(w);
3639 
3640 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
3641 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
3642 
3643 	spdk_json_write_object_end(w);
3644 
3645 	spdk_json_write_named_object_begin(w, "vs");
3646 
3647 	spdk_json_write_name(w, "nvme_version");
3648 	if (vs.bits.ter) {
3649 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
3650 	} else {
3651 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
3652 	}
3653 
3654 	spdk_json_write_object_end(w);
3655 
3656 	nsdata = spdk_nvme_ns_get_data(ns);
3657 
3658 	spdk_json_write_named_object_begin(w, "ns_data");
3659 
3660 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
3661 
3662 	if (cdata->cmic.ana_reporting) {
3663 		spdk_json_write_named_string(w, "ana_state",
3664 					     _nvme_ana_state_str(nvme_ns->ana_state));
3665 	}
3666 
3667 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
3668 
3669 	spdk_json_write_object_end(w);
3670 
3671 	if (cdata->oacs.security) {
3672 		spdk_json_write_named_object_begin(w, "security");
3673 
3674 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
3675 
3676 		spdk_json_write_object_end(w);
3677 	}
3678 
3679 	spdk_json_write_object_end(w);
3680 }
3681 
3682 static const char *
3683 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
3684 {
3685 	switch (nbdev->mp_policy) {
3686 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
3687 		return "active_passive";
3688 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
3689 		return "active_active";
3690 	default:
3691 		assert(false);
3692 		return "invalid";
3693 	}
3694 }
3695 
3696 static int
3697 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
3698 {
3699 	struct nvme_bdev *nvme_bdev = ctx;
3700 	struct nvme_ns *nvme_ns;
3701 
3702 	pthread_mutex_lock(&nvme_bdev->mutex);
3703 	spdk_json_write_named_array_begin(w, "nvme");
3704 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
3705 		nvme_namespace_info_json(w, nvme_ns);
3706 	}
3707 	spdk_json_write_array_end(w);
3708 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
3709 	pthread_mutex_unlock(&nvme_bdev->mutex);
3710 
3711 	return 0;
3712 }
3713 
3714 static void
3715 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
3716 {
3717 	/* No config per bdev needed */
3718 }
3719 
3720 static uint64_t
3721 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
3722 {
3723 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3724 	struct nvme_io_path *io_path;
3725 	struct nvme_poll_group *group;
3726 	uint64_t spin_time = 0;
3727 
3728 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3729 		group = io_path->qpair->group;
3730 
3731 		if (!group || !group->collect_spin_stat) {
3732 			continue;
3733 		}
3734 
3735 		if (group->end_ticks != 0) {
3736 			group->spin_ticks += (group->end_ticks - group->start_ticks);
3737 			group->end_ticks = 0;
3738 		}
3739 
3740 		spin_time += group->spin_ticks;
3741 		group->start_ticks = 0;
3742 		group->spin_ticks = 0;
3743 	}
3744 
3745 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
3746 }
3747 
3748 static void
3749 bdev_nvme_reset_device_stat(void *ctx)
3750 {
3751 	struct nvme_bdev *nbdev = ctx;
3752 
3753 	if (nbdev->err_stat != NULL) {
3754 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
3755 	}
3756 }
3757 
3758 /* JSON string should be lowercases and underscore delimited string. */
3759 static void
3760 bdev_nvme_format_nvme_status(char *dst, const char *src)
3761 {
3762 	char tmp[256];
3763 
3764 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
3765 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
3766 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
3767 	spdk_strlwr(dst);
3768 }
3769 
3770 static void
3771 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
3772 {
3773 	struct nvme_bdev *nbdev = ctx;
3774 	struct spdk_nvme_status status = {};
3775 	uint16_t sct, sc;
3776 	char status_json[256];
3777 	const char *status_str;
3778 
3779 	if (nbdev->err_stat == NULL) {
3780 		return;
3781 	}
3782 
3783 	spdk_json_write_named_object_begin(w, "nvme_error");
3784 
3785 	spdk_json_write_named_object_begin(w, "status_type");
3786 	for (sct = 0; sct < 8; sct++) {
3787 		if (nbdev->err_stat->status_type[sct] == 0) {
3788 			continue;
3789 		}
3790 		status.sct = sct;
3791 
3792 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
3793 		assert(status_str != NULL);
3794 		bdev_nvme_format_nvme_status(status_json, status_str);
3795 
3796 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
3797 	}
3798 	spdk_json_write_object_end(w);
3799 
3800 	spdk_json_write_named_object_begin(w, "status_code");
3801 	for (sct = 0; sct < 4; sct++) {
3802 		status.sct = sct;
3803 		for (sc = 0; sc < 256; sc++) {
3804 			if (nbdev->err_stat->status[sct][sc] == 0) {
3805 				continue;
3806 			}
3807 			status.sc = sc;
3808 
3809 			status_str = spdk_nvme_cpl_get_status_string(&status);
3810 			assert(status_str != NULL);
3811 			bdev_nvme_format_nvme_status(status_json, status_str);
3812 
3813 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
3814 		}
3815 	}
3816 	spdk_json_write_object_end(w);
3817 
3818 	spdk_json_write_object_end(w);
3819 }
3820 
3821 static bool
3822 bdev_nvme_accel_sequence_supported(void *ctx, enum spdk_bdev_io_type type)
3823 {
3824 	struct nvme_bdev *nbdev = ctx;
3825 	struct spdk_nvme_ctrlr *ctrlr;
3826 
3827 	if (!g_opts.allow_accel_sequence) {
3828 		return false;
3829 	}
3830 
3831 	switch (type) {
3832 	case SPDK_BDEV_IO_TYPE_WRITE:
3833 	case SPDK_BDEV_IO_TYPE_READ:
3834 		break;
3835 	default:
3836 		return false;
3837 	}
3838 
3839 	ctrlr = bdev_nvme_get_ctrlr(&nbdev->disk);
3840 	assert(ctrlr != NULL);
3841 
3842 	return spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ACCEL_SEQUENCE_SUPPORTED;
3843 }
3844 
3845 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
3846 	.destruct			= bdev_nvme_destruct,
3847 	.submit_request			= bdev_nvme_submit_request,
3848 	.io_type_supported		= bdev_nvme_io_type_supported,
3849 	.get_io_channel			= bdev_nvme_get_io_channel,
3850 	.dump_info_json			= bdev_nvme_dump_info_json,
3851 	.write_config_json		= bdev_nvme_write_config_json,
3852 	.get_spin_time			= bdev_nvme_get_spin_time,
3853 	.get_module_ctx			= bdev_nvme_get_module_ctx,
3854 	.get_memory_domains		= bdev_nvme_get_memory_domains,
3855 	.accel_sequence_supported	= bdev_nvme_accel_sequence_supported,
3856 	.reset_device_stat		= bdev_nvme_reset_device_stat,
3857 	.dump_device_stat_json		= bdev_nvme_dump_device_stat_json,
3858 };
3859 
3860 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
3861 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
3862 
3863 static int
3864 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
3865 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
3866 {
3867 	struct spdk_nvme_ana_group_descriptor *copied_desc;
3868 	uint8_t *orig_desc;
3869 	uint32_t i, desc_size, copy_len;
3870 	int rc = 0;
3871 
3872 	if (nvme_ctrlr->ana_log_page == NULL) {
3873 		return -EINVAL;
3874 	}
3875 
3876 	copied_desc = nvme_ctrlr->copied_ana_desc;
3877 
3878 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
3879 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
3880 
3881 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
3882 		memcpy(copied_desc, orig_desc, copy_len);
3883 
3884 		rc = cb_fn(copied_desc, cb_arg);
3885 		if (rc != 0) {
3886 			break;
3887 		}
3888 
3889 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
3890 			    copied_desc->num_of_nsid * sizeof(uint32_t);
3891 		orig_desc += desc_size;
3892 		copy_len -= desc_size;
3893 	}
3894 
3895 	return rc;
3896 }
3897 
3898 static int
3899 nvme_ns_ana_transition_timedout(void *ctx)
3900 {
3901 	struct nvme_ns *nvme_ns = ctx;
3902 
3903 	spdk_poller_unregister(&nvme_ns->anatt_timer);
3904 	nvme_ns->ana_transition_timedout = true;
3905 
3906 	return SPDK_POLLER_BUSY;
3907 }
3908 
3909 static void
3910 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
3911 		       const struct spdk_nvme_ana_group_descriptor *desc)
3912 {
3913 	const struct spdk_nvme_ctrlr_data *cdata;
3914 
3915 	nvme_ns->ana_group_id = desc->ana_group_id;
3916 	nvme_ns->ana_state = desc->ana_state;
3917 	nvme_ns->ana_state_updating = false;
3918 
3919 	switch (nvme_ns->ana_state) {
3920 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3921 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3922 		nvme_ns->ana_transition_timedout = false;
3923 		spdk_poller_unregister(&nvme_ns->anatt_timer);
3924 		break;
3925 
3926 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3927 	case SPDK_NVME_ANA_CHANGE_STATE:
3928 		if (nvme_ns->anatt_timer != NULL) {
3929 			break;
3930 		}
3931 
3932 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
3933 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
3934 				       nvme_ns,
3935 				       cdata->anatt * SPDK_SEC_TO_USEC);
3936 		break;
3937 	default:
3938 		break;
3939 	}
3940 }
3941 
3942 static int
3943 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
3944 {
3945 	struct nvme_ns *nvme_ns = cb_arg;
3946 	uint32_t i;
3947 
3948 	for (i = 0; i < desc->num_of_nsid; i++) {
3949 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
3950 			continue;
3951 		}
3952 
3953 		_nvme_ns_set_ana_state(nvme_ns, desc);
3954 		return 1;
3955 	}
3956 
3957 	return 0;
3958 }
3959 
3960 static struct spdk_uuid
3961 nvme_generate_uuid(const char *sn, uint32_t nsid)
3962 {
3963 	struct spdk_uuid new_uuid, namespace_uuid;
3964 	char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'};
3965 	/* This namespace UUID was generated using uuid_generate() method. */
3966 	const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"};
3967 	int size;
3968 
3969 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
3970 
3971 	spdk_uuid_set_null(&new_uuid);
3972 	spdk_uuid_set_null(&namespace_uuid);
3973 
3974 	size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid);
3975 	assert(size > 0 && (unsigned long)size < sizeof(merged_str));
3976 
3977 	spdk_uuid_parse(&namespace_uuid, namespace_str);
3978 
3979 	spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size);
3980 
3981 	return new_uuid;
3982 }
3983 
3984 static int
3985 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
3986 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
3987 		 uint32_t prchk_flags, void *ctx)
3988 {
3989 	const struct spdk_uuid		*uuid;
3990 	const uint8_t *nguid;
3991 	const struct spdk_nvme_ctrlr_data *cdata;
3992 	const struct spdk_nvme_ns_data	*nsdata;
3993 	const struct spdk_nvme_ctrlr_opts *opts;
3994 	enum spdk_nvme_csi		csi;
3995 	uint32_t atomic_bs, phys_bs, bs;
3996 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
3997 
3998 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3999 	csi = spdk_nvme_ns_get_csi(ns);
4000 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
4001 
4002 	switch (csi) {
4003 	case SPDK_NVME_CSI_NVM:
4004 		disk->product_name = "NVMe disk";
4005 		break;
4006 	case SPDK_NVME_CSI_ZNS:
4007 		disk->product_name = "NVMe ZNS disk";
4008 		disk->zoned = true;
4009 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
4010 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
4011 					     spdk_nvme_ns_get_extended_sector_size(ns);
4012 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
4013 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
4014 		break;
4015 	default:
4016 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
4017 		return -ENOTSUP;
4018 	}
4019 
4020 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
4021 	if (!disk->name) {
4022 		return -ENOMEM;
4023 	}
4024 
4025 	disk->write_cache = 0;
4026 	if (cdata->vwc.present) {
4027 		/* Enable if the Volatile Write Cache exists */
4028 		disk->write_cache = 1;
4029 	}
4030 	if (cdata->oncs.write_zeroes) {
4031 		disk->max_write_zeroes = UINT16_MAX + 1;
4032 	}
4033 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
4034 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
4035 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
4036 	/* NVMe driver will split one request into multiple requests
4037 	 * based on MDTS and stripe boundary, the bdev layer will use
4038 	 * max_segment_size and max_num_segments to split one big IO
4039 	 * into multiple requests, then small request can't run out
4040 	 * of NVMe internal requests data structure.
4041 	 */
4042 	if (opts && opts->io_queue_requests) {
4043 		disk->max_num_segments = opts->io_queue_requests / 2;
4044 	}
4045 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
4046 
4047 	nguid = spdk_nvme_ns_get_nguid(ns);
4048 	if (!nguid) {
4049 		uuid = spdk_nvme_ns_get_uuid(ns);
4050 		if (uuid) {
4051 			disk->uuid = *uuid;
4052 		} else if (g_opts.generate_uuids) {
4053 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
4054 			disk->uuid = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns));
4055 		}
4056 	} else {
4057 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
4058 	}
4059 
4060 	nsdata = spdk_nvme_ns_get_data(ns);
4061 	bs = spdk_nvme_ns_get_sector_size(ns);
4062 	atomic_bs = bs;
4063 	phys_bs = bs;
4064 	if (nsdata->nabo == 0) {
4065 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
4066 			atomic_bs = bs * (1 + nsdata->nawupf);
4067 		} else {
4068 			atomic_bs = bs * (1 + cdata->awupf);
4069 		}
4070 	}
4071 	if (nsdata->nsfeat.optperf) {
4072 		phys_bs = bs * (1 + nsdata->npwg);
4073 	}
4074 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
4075 
4076 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
4077 	if (disk->md_len != 0) {
4078 		disk->md_interleave = nsdata->flbas.extended;
4079 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
4080 		if (disk->dif_type != SPDK_DIF_DISABLE) {
4081 			disk->dif_is_head_of_md = nsdata->dps.md_start;
4082 			disk->dif_check_flags = prchk_flags;
4083 		}
4084 	}
4085 
4086 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
4087 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
4088 		disk->acwu = 0;
4089 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
4090 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
4091 	} else {
4092 		disk->acwu = cdata->acwu + 1; /* 0-based */
4093 	}
4094 
4095 	if (cdata->oncs.copy) {
4096 		/* For now bdev interface allows only single segment copy */
4097 		disk->max_copy = nsdata->mssrl;
4098 	}
4099 
4100 	disk->ctxt = ctx;
4101 	disk->fn_table = &nvmelib_fn_table;
4102 	disk->module = &nvme_if;
4103 
4104 	return 0;
4105 }
4106 
4107 static struct nvme_bdev *
4108 nvme_bdev_alloc(void)
4109 {
4110 	struct nvme_bdev *bdev;
4111 	int rc;
4112 
4113 	bdev = calloc(1, sizeof(*bdev));
4114 	if (!bdev) {
4115 		SPDK_ERRLOG("bdev calloc() failed\n");
4116 		return NULL;
4117 	}
4118 
4119 	if (g_opts.nvme_error_stat) {
4120 		bdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
4121 		if (!bdev->err_stat) {
4122 			SPDK_ERRLOG("err_stat calloc() failed\n");
4123 			free(bdev);
4124 			return NULL;
4125 		}
4126 	}
4127 
4128 	rc = pthread_mutex_init(&bdev->mutex, NULL);
4129 	if (rc != 0) {
4130 		free(bdev->err_stat);
4131 		free(bdev);
4132 		return NULL;
4133 	}
4134 
4135 	bdev->ref = 1;
4136 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
4137 	bdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN;
4138 	bdev->rr_min_io = UINT32_MAX;
4139 	TAILQ_INIT(&bdev->nvme_ns_list);
4140 
4141 	return bdev;
4142 }
4143 
4144 static int
4145 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4146 {
4147 	struct nvme_bdev *bdev;
4148 	struct nvme_bdev_ctrlr *nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
4149 	int rc;
4150 
4151 	bdev = nvme_bdev_alloc();
4152 	if (bdev == NULL) {
4153 		SPDK_ERRLOG("Failed to allocate NVMe bdev\n");
4154 		return -ENOMEM;
4155 	}
4156 
4157 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
4158 
4159 	rc = nvme_disk_create(&bdev->disk, nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
4160 			      nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev);
4161 	if (rc != 0) {
4162 		SPDK_ERRLOG("Failed to create NVMe disk\n");
4163 		nvme_bdev_free(bdev);
4164 		return rc;
4165 	}
4166 
4167 	spdk_io_device_register(bdev,
4168 				bdev_nvme_create_bdev_channel_cb,
4169 				bdev_nvme_destroy_bdev_channel_cb,
4170 				sizeof(struct nvme_bdev_channel),
4171 				bdev->disk.name);
4172 
4173 	nvme_ns->bdev = bdev;
4174 	bdev->nsid = nvme_ns->id;
4175 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4176 
4177 	bdev->nbdev_ctrlr = nbdev_ctrlr;
4178 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->bdevs, bdev, tailq);
4179 
4180 	rc = spdk_bdev_register(&bdev->disk);
4181 	if (rc != 0) {
4182 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
4183 		spdk_io_device_unregister(bdev, NULL);
4184 		nvme_ns->bdev = NULL;
4185 		TAILQ_REMOVE(&nbdev_ctrlr->bdevs, bdev, tailq);
4186 		nvme_bdev_free(bdev);
4187 		return rc;
4188 	}
4189 
4190 	return 0;
4191 }
4192 
4193 static bool
4194 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
4195 {
4196 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
4197 	const struct spdk_uuid *uuid1, *uuid2;
4198 
4199 	nsdata1 = spdk_nvme_ns_get_data(ns1);
4200 	nsdata2 = spdk_nvme_ns_get_data(ns2);
4201 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
4202 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
4203 
4204 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
4205 	       nsdata1->eui64 == nsdata2->eui64 &&
4206 	       ((uuid1 == NULL && uuid2 == NULL) ||
4207 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
4208 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
4209 }
4210 
4211 static bool
4212 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4213 		 struct spdk_nvme_ctrlr_opts *opts)
4214 {
4215 	struct nvme_probe_skip_entry *entry;
4216 
4217 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
4218 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4219 			return false;
4220 		}
4221 	}
4222 
4223 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
4224 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
4225 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
4226 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
4227 	opts->disable_read_ana_log_page = true;
4228 
4229 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
4230 
4231 	return true;
4232 }
4233 
4234 static void
4235 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
4236 {
4237 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4238 
4239 	if (spdk_nvme_cpl_is_error(cpl)) {
4240 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
4241 			     cpl->status.sct);
4242 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4243 	} else if (cpl->cdw0 & 0x1) {
4244 		SPDK_WARNLOG("Specified command could not be aborted.\n");
4245 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4246 	}
4247 }
4248 
4249 static void
4250 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
4251 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
4252 {
4253 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4254 	union spdk_nvme_csts_register csts;
4255 	int rc;
4256 
4257 	assert(nvme_ctrlr->ctrlr == ctrlr);
4258 
4259 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
4260 
4261 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
4262 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
4263 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
4264 	 * completion recursively.
4265 	 */
4266 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
4267 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
4268 		if (csts.bits.cfs) {
4269 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
4270 			bdev_nvme_reset_ctrlr(nvme_ctrlr);
4271 			return;
4272 		}
4273 	}
4274 
4275 	switch (g_opts.action_on_timeout) {
4276 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
4277 		if (qpair) {
4278 			/* Don't send abort to ctrlr when ctrlr is not available. */
4279 			pthread_mutex_lock(&nvme_ctrlr->mutex);
4280 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
4281 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
4282 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
4283 				return;
4284 			}
4285 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4286 
4287 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
4288 						       nvme_abort_cpl, nvme_ctrlr);
4289 			if (rc == 0) {
4290 				return;
4291 			}
4292 
4293 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
4294 		}
4295 
4296 	/* FALLTHROUGH */
4297 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
4298 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4299 		break;
4300 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
4301 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
4302 		break;
4303 	default:
4304 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
4305 		break;
4306 	}
4307 }
4308 
4309 static struct nvme_ns *
4310 nvme_ns_alloc(void)
4311 {
4312 	struct nvme_ns *nvme_ns;
4313 
4314 	nvme_ns = calloc(1, sizeof(struct nvme_ns));
4315 	if (nvme_ns == NULL) {
4316 		return NULL;
4317 	}
4318 
4319 	if (g_opts.io_path_stat) {
4320 		nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
4321 		if (nvme_ns->stat == NULL) {
4322 			free(nvme_ns);
4323 			return NULL;
4324 		}
4325 		spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
4326 	}
4327 
4328 	return nvme_ns;
4329 }
4330 
4331 static void
4332 nvme_ns_free(struct nvme_ns *nvme_ns)
4333 {
4334 	free(nvme_ns->stat);
4335 	free(nvme_ns);
4336 }
4337 
4338 static void
4339 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
4340 {
4341 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4342 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
4343 
4344 	if (rc == 0) {
4345 		nvme_ns->probe_ctx = NULL;
4346 		pthread_mutex_lock(&nvme_ctrlr->mutex);
4347 		nvme_ctrlr->ref++;
4348 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4349 	} else {
4350 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4351 		nvme_ns_free(nvme_ns);
4352 	}
4353 
4354 	if (ctx) {
4355 		ctx->populates_in_progress--;
4356 		if (ctx->populates_in_progress == 0) {
4357 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4358 		}
4359 	}
4360 }
4361 
4362 static void
4363 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
4364 {
4365 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4366 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4367 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4368 	int rc;
4369 
4370 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
4371 	if (rc != 0) {
4372 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
4373 	}
4374 
4375 	spdk_for_each_channel_continue(i, rc);
4376 }
4377 
4378 static void
4379 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
4380 {
4381 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4382 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4383 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4384 	struct nvme_io_path *io_path;
4385 
4386 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
4387 	if (io_path != NULL) {
4388 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
4389 	}
4390 
4391 	spdk_for_each_channel_continue(i, 0);
4392 }
4393 
4394 static void
4395 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
4396 {
4397 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4398 
4399 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
4400 }
4401 
4402 static void
4403 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
4404 {
4405 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4406 	struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
4407 
4408 	if (status == 0) {
4409 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
4410 	} else {
4411 		/* Delete the added io_paths and fail populating the namespace. */
4412 		spdk_for_each_channel(bdev,
4413 				      bdev_nvme_delete_io_path,
4414 				      nvme_ns,
4415 				      bdev_nvme_add_io_path_failed);
4416 	}
4417 }
4418 
4419 static int
4420 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
4421 {
4422 	struct nvme_ns *tmp_ns;
4423 	const struct spdk_nvme_ns_data *nsdata;
4424 
4425 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
4426 	if (!nsdata->nmic.can_share) {
4427 		SPDK_ERRLOG("Namespace cannot be shared.\n");
4428 		return -EINVAL;
4429 	}
4430 
4431 	pthread_mutex_lock(&bdev->mutex);
4432 
4433 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
4434 	assert(tmp_ns != NULL);
4435 
4436 	if (!bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
4437 		pthread_mutex_unlock(&bdev->mutex);
4438 		SPDK_ERRLOG("Namespaces are not identical.\n");
4439 		return -EINVAL;
4440 	}
4441 
4442 	bdev->ref++;
4443 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4444 	nvme_ns->bdev = bdev;
4445 
4446 	pthread_mutex_unlock(&bdev->mutex);
4447 
4448 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
4449 	spdk_for_each_channel(bdev,
4450 			      bdev_nvme_add_io_path,
4451 			      nvme_ns,
4452 			      bdev_nvme_add_io_path_done);
4453 
4454 	return 0;
4455 }
4456 
4457 static void
4458 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4459 {
4460 	struct spdk_nvme_ns	*ns;
4461 	struct nvme_bdev	*bdev;
4462 	int			rc = 0;
4463 
4464 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
4465 	if (!ns) {
4466 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
4467 		rc = -EINVAL;
4468 		goto done;
4469 	}
4470 
4471 	nvme_ns->ns = ns;
4472 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4473 
4474 	if (nvme_ctrlr->ana_log_page != NULL) {
4475 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
4476 	}
4477 
4478 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
4479 	if (bdev == NULL) {
4480 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
4481 	} else {
4482 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
4483 		if (rc == 0) {
4484 			return;
4485 		}
4486 	}
4487 done:
4488 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
4489 }
4490 
4491 static void
4492 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
4493 {
4494 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4495 
4496 	assert(nvme_ctrlr != NULL);
4497 
4498 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4499 
4500 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4501 
4502 	if (nvme_ns->bdev != NULL) {
4503 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4504 		return;
4505 	}
4506 
4507 	nvme_ns_free(nvme_ns);
4508 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4509 
4510 	nvme_ctrlr_release(nvme_ctrlr);
4511 }
4512 
4513 static void
4514 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
4515 {
4516 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4517 
4518 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4519 }
4520 
4521 static void
4522 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4523 {
4524 	struct nvme_bdev *bdev;
4525 
4526 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4527 
4528 	bdev = nvme_ns->bdev;
4529 	if (bdev != NULL) {
4530 		pthread_mutex_lock(&bdev->mutex);
4531 
4532 		assert(bdev->ref > 0);
4533 		bdev->ref--;
4534 		if (bdev->ref == 0) {
4535 			pthread_mutex_unlock(&bdev->mutex);
4536 
4537 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
4538 		} else {
4539 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
4540 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
4541 			 * and clear nvme_ns->bdev here.
4542 			 */
4543 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
4544 			nvme_ns->bdev = NULL;
4545 
4546 			pthread_mutex_unlock(&bdev->mutex);
4547 
4548 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
4549 			 * we call depopulate_namespace_done() to avoid use-after-free.
4550 			 */
4551 			spdk_for_each_channel(bdev,
4552 					      bdev_nvme_delete_io_path,
4553 					      nvme_ns,
4554 					      bdev_nvme_delete_io_path_done);
4555 			return;
4556 		}
4557 	}
4558 
4559 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4560 }
4561 
4562 static void
4563 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
4564 			       struct nvme_async_probe_ctx *ctx)
4565 {
4566 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
4567 	struct nvme_ns	*nvme_ns, *next;
4568 	struct spdk_nvme_ns	*ns;
4569 	struct nvme_bdev	*bdev;
4570 	uint32_t		nsid;
4571 	int			rc;
4572 	uint64_t		num_sectors;
4573 
4574 	if (ctx) {
4575 		/* Initialize this count to 1 to handle the populate functions
4576 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
4577 		 */
4578 		ctx->populates_in_progress = 1;
4579 	}
4580 
4581 	/* First loop over our existing namespaces and see if they have been
4582 	 * removed. */
4583 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4584 	while (nvme_ns != NULL) {
4585 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4586 
4587 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
4588 			/* NS is still there but attributes may have changed */
4589 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
4590 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
4591 			bdev = nvme_ns->bdev;
4592 			assert(bdev != NULL);
4593 			if (bdev->disk.blockcnt != num_sectors) {
4594 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
4595 					       nvme_ns->id,
4596 					       bdev->disk.name,
4597 					       bdev->disk.blockcnt,
4598 					       num_sectors);
4599 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
4600 				if (rc != 0) {
4601 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
4602 						    bdev->disk.name, rc);
4603 				}
4604 			}
4605 		} else {
4606 			/* Namespace was removed */
4607 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4608 		}
4609 
4610 		nvme_ns = next;
4611 	}
4612 
4613 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
4614 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4615 	while (nsid != 0) {
4616 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4617 
4618 		if (nvme_ns == NULL) {
4619 			/* Found a new one */
4620 			nvme_ns = nvme_ns_alloc();
4621 			if (nvme_ns == NULL) {
4622 				SPDK_ERRLOG("Failed to allocate namespace\n");
4623 				/* This just fails to attach the namespace. It may work on a future attempt. */
4624 				continue;
4625 			}
4626 
4627 			nvme_ns->id = nsid;
4628 			nvme_ns->ctrlr = nvme_ctrlr;
4629 
4630 			nvme_ns->bdev = NULL;
4631 
4632 			if (ctx) {
4633 				ctx->populates_in_progress++;
4634 			}
4635 			nvme_ns->probe_ctx = ctx;
4636 
4637 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4638 
4639 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
4640 		}
4641 
4642 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
4643 	}
4644 
4645 	if (ctx) {
4646 		/* Decrement this count now that the loop is over to account
4647 		 * for the one we started with.  If the count is then 0, we
4648 		 * know any populate_namespace functions completed immediately,
4649 		 * so we'll kick the callback here.
4650 		 */
4651 		ctx->populates_in_progress--;
4652 		if (ctx->populates_in_progress == 0) {
4653 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4654 		}
4655 	}
4656 
4657 }
4658 
4659 static void
4660 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
4661 {
4662 	struct nvme_ns *nvme_ns, *tmp;
4663 
4664 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
4665 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4666 	}
4667 }
4668 
4669 static uint32_t
4670 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
4671 {
4672 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4673 	const struct spdk_nvme_ctrlr_data *cdata;
4674 	uint32_t nsid, ns_count = 0;
4675 
4676 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4677 
4678 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4679 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
4680 		ns_count++;
4681 	}
4682 
4683 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
4684 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
4685 	       sizeof(uint32_t);
4686 }
4687 
4688 static int
4689 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
4690 			  void *cb_arg)
4691 {
4692 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4693 	struct nvme_ns *nvme_ns;
4694 	uint32_t i, nsid;
4695 
4696 	for (i = 0; i < desc->num_of_nsid; i++) {
4697 		nsid = desc->nsid[i];
4698 		if (nsid == 0) {
4699 			continue;
4700 		}
4701 
4702 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4703 
4704 		assert(nvme_ns != NULL);
4705 		if (nvme_ns == NULL) {
4706 			/* Target told us that an inactive namespace had an ANA change */
4707 			continue;
4708 		}
4709 
4710 		_nvme_ns_set_ana_state(nvme_ns, desc);
4711 	}
4712 
4713 	return 0;
4714 }
4715 
4716 static void
4717 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4718 {
4719 	struct nvme_ns *nvme_ns;
4720 
4721 	spdk_free(nvme_ctrlr->ana_log_page);
4722 	nvme_ctrlr->ana_log_page = NULL;
4723 
4724 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4725 	     nvme_ns != NULL;
4726 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
4727 		nvme_ns->ana_state_updating = false;
4728 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4729 	}
4730 }
4731 
4732 static void
4733 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
4734 {
4735 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4736 
4737 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
4738 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
4739 					     nvme_ctrlr);
4740 	} else {
4741 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
4742 	}
4743 
4744 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4745 
4746 	assert(nvme_ctrlr->ana_log_page_updating == true);
4747 	nvme_ctrlr->ana_log_page_updating = false;
4748 
4749 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
4750 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4751 
4752 		nvme_ctrlr_unregister(nvme_ctrlr);
4753 	} else {
4754 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4755 
4756 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
4757 	}
4758 }
4759 
4760 static int
4761 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4762 {
4763 	uint32_t ana_log_page_size;
4764 	int rc;
4765 
4766 	if (nvme_ctrlr->ana_log_page == NULL) {
4767 		return -EINVAL;
4768 	}
4769 
4770 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
4771 
4772 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
4773 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
4774 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
4775 		return -EINVAL;
4776 	}
4777 
4778 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4779 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
4780 	    nvme_ctrlr->ana_log_page_updating) {
4781 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4782 		return -EBUSY;
4783 	}
4784 
4785 	nvme_ctrlr->ana_log_page_updating = true;
4786 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4787 
4788 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
4789 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
4790 					      SPDK_NVME_GLOBAL_NS_TAG,
4791 					      nvme_ctrlr->ana_log_page,
4792 					      ana_log_page_size, 0,
4793 					      nvme_ctrlr_read_ana_log_page_done,
4794 					      nvme_ctrlr);
4795 	if (rc != 0) {
4796 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
4797 	}
4798 
4799 	return rc;
4800 }
4801 
4802 static void
4803 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
4804 {
4805 }
4806 
4807 struct bdev_nvme_set_preferred_path_ctx {
4808 	struct spdk_bdev_desc *desc;
4809 	struct nvme_ns *nvme_ns;
4810 	bdev_nvme_set_preferred_path_cb cb_fn;
4811 	void *cb_arg;
4812 };
4813 
4814 static void
4815 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
4816 {
4817 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4818 
4819 	assert(ctx != NULL);
4820 	assert(ctx->desc != NULL);
4821 	assert(ctx->cb_fn != NULL);
4822 
4823 	spdk_bdev_close(ctx->desc);
4824 
4825 	ctx->cb_fn(ctx->cb_arg, status);
4826 
4827 	free(ctx);
4828 }
4829 
4830 static void
4831 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
4832 {
4833 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4834 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4835 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4836 	struct nvme_io_path *io_path, *prev;
4837 
4838 	prev = NULL;
4839 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
4840 		if (io_path->nvme_ns == ctx->nvme_ns) {
4841 			break;
4842 		}
4843 		prev = io_path;
4844 	}
4845 
4846 	if (io_path != NULL) {
4847 		if (prev != NULL) {
4848 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
4849 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
4850 		}
4851 
4852 		/* We can set io_path to nbdev_ch->current_io_path directly here.
4853 		 * However, it needs to be conditional. To simplify the code,
4854 		 * just clear nbdev_ch->current_io_path and let find_io_path()
4855 		 * fill it.
4856 		 *
4857 		 * Automatic failback may be disabled. Hence even if the io_path is
4858 		 * already at the head, clear nbdev_ch->current_io_path.
4859 		 */
4860 		bdev_nvme_clear_current_io_path(nbdev_ch);
4861 	}
4862 
4863 	spdk_for_each_channel_continue(i, 0);
4864 }
4865 
4866 static struct nvme_ns *
4867 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
4868 {
4869 	struct nvme_ns *nvme_ns, *prev;
4870 	const struct spdk_nvme_ctrlr_data *cdata;
4871 
4872 	prev = NULL;
4873 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
4874 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4875 
4876 		if (cdata->cntlid == cntlid) {
4877 			break;
4878 		}
4879 		prev = nvme_ns;
4880 	}
4881 
4882 	if (nvme_ns != NULL && prev != NULL) {
4883 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
4884 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
4885 	}
4886 
4887 	return nvme_ns;
4888 }
4889 
4890 /* This function supports only multipath mode. There is only a single I/O path
4891  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
4892  * head of the I/O path list for each NVMe bdev channel.
4893  *
4894  * NVMe bdev channel may be acquired after completing this function. move the
4895  * matched namespace to the head of the namespace list for the NVMe bdev too.
4896  */
4897 void
4898 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
4899 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
4900 {
4901 	struct bdev_nvme_set_preferred_path_ctx *ctx;
4902 	struct spdk_bdev *bdev;
4903 	struct nvme_bdev *nbdev;
4904 	int rc = 0;
4905 
4906 	assert(cb_fn != NULL);
4907 
4908 	ctx = calloc(1, sizeof(*ctx));
4909 	if (ctx == NULL) {
4910 		SPDK_ERRLOG("Failed to alloc context.\n");
4911 		rc = -ENOMEM;
4912 		goto err_alloc;
4913 	}
4914 
4915 	ctx->cb_fn = cb_fn;
4916 	ctx->cb_arg = cb_arg;
4917 
4918 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
4919 	if (rc != 0) {
4920 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
4921 		goto err_open;
4922 	}
4923 
4924 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
4925 
4926 	if (bdev->module != &nvme_if) {
4927 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
4928 		rc = -ENODEV;
4929 		goto err_bdev;
4930 	}
4931 
4932 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
4933 
4934 	pthread_mutex_lock(&nbdev->mutex);
4935 
4936 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
4937 	if (ctx->nvme_ns == NULL) {
4938 		pthread_mutex_unlock(&nbdev->mutex);
4939 
4940 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
4941 		rc = -ENODEV;
4942 		goto err_bdev;
4943 	}
4944 
4945 	pthread_mutex_unlock(&nbdev->mutex);
4946 
4947 	spdk_for_each_channel(nbdev,
4948 			      _bdev_nvme_set_preferred_path,
4949 			      ctx,
4950 			      bdev_nvme_set_preferred_path_done);
4951 	return;
4952 
4953 err_bdev:
4954 	spdk_bdev_close(ctx->desc);
4955 err_open:
4956 	free(ctx);
4957 err_alloc:
4958 	cb_fn(cb_arg, rc);
4959 }
4960 
4961 struct bdev_nvme_set_multipath_policy_ctx {
4962 	struct spdk_bdev_desc *desc;
4963 	bdev_nvme_set_multipath_policy_cb cb_fn;
4964 	void *cb_arg;
4965 };
4966 
4967 static void
4968 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
4969 {
4970 	struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4971 
4972 	assert(ctx != NULL);
4973 	assert(ctx->desc != NULL);
4974 	assert(ctx->cb_fn != NULL);
4975 
4976 	spdk_bdev_close(ctx->desc);
4977 
4978 	ctx->cb_fn(ctx->cb_arg, status);
4979 
4980 	free(ctx);
4981 }
4982 
4983 static void
4984 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
4985 {
4986 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4987 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4988 	struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
4989 
4990 	nbdev_ch->mp_policy = nbdev->mp_policy;
4991 	nbdev_ch->mp_selector = nbdev->mp_selector;
4992 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
4993 	bdev_nvme_clear_current_io_path(nbdev_ch);
4994 
4995 	spdk_for_each_channel_continue(i, 0);
4996 }
4997 
4998 void
4999 bdev_nvme_set_multipath_policy(const char *name, enum bdev_nvme_multipath_policy policy,
5000 			       enum bdev_nvme_multipath_selector selector, uint32_t rr_min_io,
5001 			       bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
5002 {
5003 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
5004 	struct spdk_bdev *bdev;
5005 	struct nvme_bdev *nbdev;
5006 	int rc;
5007 
5008 	assert(cb_fn != NULL);
5009 
5010 	if (policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE && selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
5011 		if (rr_min_io == UINT32_MAX) {
5012 			rr_min_io = 1;
5013 		} else if (rr_min_io == 0) {
5014 			rc = -EINVAL;
5015 			goto exit;
5016 		}
5017 	} else if (rr_min_io != UINT32_MAX) {
5018 		rc = -EINVAL;
5019 		goto exit;
5020 	}
5021 
5022 	ctx = calloc(1, sizeof(*ctx));
5023 	if (ctx == NULL) {
5024 		SPDK_ERRLOG("Failed to alloc context.\n");
5025 		rc = -ENOMEM;
5026 		goto exit;
5027 	}
5028 
5029 	ctx->cb_fn = cb_fn;
5030 	ctx->cb_arg = cb_arg;
5031 
5032 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5033 	if (rc != 0) {
5034 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5035 		rc = -ENODEV;
5036 		goto err_open;
5037 	}
5038 
5039 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5040 	if (bdev->module != &nvme_if) {
5041 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5042 		rc = -ENODEV;
5043 		goto err_module;
5044 	}
5045 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5046 
5047 	pthread_mutex_lock(&nbdev->mutex);
5048 	nbdev->mp_policy = policy;
5049 	nbdev->mp_selector = selector;
5050 	nbdev->rr_min_io = rr_min_io;
5051 	pthread_mutex_unlock(&nbdev->mutex);
5052 
5053 	spdk_for_each_channel(nbdev,
5054 			      _bdev_nvme_set_multipath_policy,
5055 			      ctx,
5056 			      bdev_nvme_set_multipath_policy_done);
5057 	return;
5058 
5059 err_module:
5060 	spdk_bdev_close(ctx->desc);
5061 err_open:
5062 	free(ctx);
5063 exit:
5064 	cb_fn(cb_arg, rc);
5065 }
5066 
5067 static void
5068 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5069 {
5070 	struct nvme_ctrlr *nvme_ctrlr		= arg;
5071 	union spdk_nvme_async_event_completion	event;
5072 
5073 	if (spdk_nvme_cpl_is_error(cpl)) {
5074 		SPDK_WARNLOG("AER request execute failed\n");
5075 		return;
5076 	}
5077 
5078 	event.raw = cpl->cdw0;
5079 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5080 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
5081 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
5082 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5083 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
5084 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
5085 	}
5086 }
5087 
5088 static void
5089 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, int rc)
5090 {
5091 	if (ctx->cb_fn) {
5092 		ctx->cb_fn(ctx->cb_ctx, ctx->reported_bdevs, rc);
5093 	}
5094 
5095 	ctx->namespaces_populated = true;
5096 	if (ctx->probe_done) {
5097 		/* The probe was already completed, so we need to free the context
5098 		 * here.  This can happen for cases like OCSSD, where we need to
5099 		 * send additional commands to the SSD after attach.
5100 		 */
5101 		free(ctx);
5102 	}
5103 }
5104 
5105 static void
5106 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
5107 		       struct nvme_async_probe_ctx *ctx)
5108 {
5109 	spdk_io_device_register(nvme_ctrlr,
5110 				bdev_nvme_create_ctrlr_channel_cb,
5111 				bdev_nvme_destroy_ctrlr_channel_cb,
5112 				sizeof(struct nvme_ctrlr_channel),
5113 				nvme_ctrlr->nbdev_ctrlr->name);
5114 
5115 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
5116 }
5117 
5118 static void
5119 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
5120 {
5121 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
5122 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
5123 
5124 	nvme_ctrlr->probe_ctx = NULL;
5125 
5126 	if (spdk_nvme_cpl_is_error(cpl)) {
5127 		nvme_ctrlr_delete(nvme_ctrlr);
5128 
5129 		if (ctx != NULL) {
5130 			ctx->reported_bdevs = 0;
5131 			populate_namespaces_cb(ctx, -1);
5132 		}
5133 		return;
5134 	}
5135 
5136 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5137 }
5138 
5139 static int
5140 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
5141 			     struct nvme_async_probe_ctx *ctx)
5142 {
5143 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5144 	const struct spdk_nvme_ctrlr_data *cdata;
5145 	uint32_t ana_log_page_size;
5146 
5147 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5148 
5149 	/* Set buffer size enough to include maximum number of allowed namespaces. */
5150 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5151 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
5152 			    sizeof(uint32_t);
5153 
5154 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
5155 						SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
5156 	if (nvme_ctrlr->ana_log_page == NULL) {
5157 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
5158 		return -ENXIO;
5159 	}
5160 
5161 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
5162 	 * Hence copy each descriptor to a temporary area when parsing it.
5163 	 *
5164 	 * Allocate a buffer whose size is as large as ANA log page buffer because
5165 	 * we do not know the size of a descriptor until actually reading it.
5166 	 */
5167 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
5168 	if (nvme_ctrlr->copied_ana_desc == NULL) {
5169 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
5170 		return -ENOMEM;
5171 	}
5172 
5173 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
5174 
5175 	nvme_ctrlr->probe_ctx = ctx;
5176 
5177 	/* Then, set the read size only to include the current active namespaces. */
5178 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5179 
5180 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5181 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5182 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5183 		return -EINVAL;
5184 	}
5185 
5186 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
5187 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5188 						SPDK_NVME_GLOBAL_NS_TAG,
5189 						nvme_ctrlr->ana_log_page,
5190 						ana_log_page_size, 0,
5191 						nvme_ctrlr_init_ana_log_page_done,
5192 						nvme_ctrlr);
5193 }
5194 
5195 /* hostnqn and subnqn were already verified before attaching a controller.
5196  * Hence check only the multipath capability and cntlid here.
5197  */
5198 static bool
5199 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
5200 {
5201 	struct nvme_ctrlr *tmp;
5202 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
5203 
5204 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5205 
5206 	if (!cdata->cmic.multi_ctrlr) {
5207 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5208 		return false;
5209 	}
5210 
5211 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
5212 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
5213 
5214 		if (!tmp_cdata->cmic.multi_ctrlr) {
5215 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5216 			return false;
5217 		}
5218 		if (cdata->cntlid == tmp_cdata->cntlid) {
5219 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
5220 			return false;
5221 		}
5222 	}
5223 
5224 	return true;
5225 }
5226 
5227 static int
5228 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
5229 {
5230 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5231 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5232 	int rc = 0;
5233 
5234 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5235 
5236 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5237 	if (nbdev_ctrlr != NULL) {
5238 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
5239 			rc = -EINVAL;
5240 			goto exit;
5241 		}
5242 	} else {
5243 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
5244 		if (nbdev_ctrlr == NULL) {
5245 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
5246 			rc = -ENOMEM;
5247 			goto exit;
5248 		}
5249 		nbdev_ctrlr->name = strdup(name);
5250 		if (nbdev_ctrlr->name == NULL) {
5251 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
5252 			free(nbdev_ctrlr);
5253 			goto exit;
5254 		}
5255 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
5256 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
5257 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
5258 	}
5259 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
5260 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
5261 exit:
5262 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5263 	return rc;
5264 }
5265 
5266 static int
5267 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
5268 		  const char *name,
5269 		  const struct spdk_nvme_transport_id *trid,
5270 		  struct nvme_async_probe_ctx *ctx)
5271 {
5272 	struct nvme_ctrlr *nvme_ctrlr;
5273 	struct nvme_path_id *path_id;
5274 	const struct spdk_nvme_ctrlr_data *cdata;
5275 	int rc;
5276 
5277 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
5278 	if (nvme_ctrlr == NULL) {
5279 		SPDK_ERRLOG("Failed to allocate device struct\n");
5280 		return -ENOMEM;
5281 	}
5282 
5283 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
5284 	if (rc != 0) {
5285 		free(nvme_ctrlr);
5286 		return rc;
5287 	}
5288 
5289 	TAILQ_INIT(&nvme_ctrlr->trids);
5290 
5291 	RB_INIT(&nvme_ctrlr->namespaces);
5292 
5293 	path_id = calloc(1, sizeof(*path_id));
5294 	if (path_id == NULL) {
5295 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
5296 		rc = -ENOMEM;
5297 		goto err;
5298 	}
5299 
5300 	path_id->trid = *trid;
5301 	if (ctx != NULL) {
5302 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
5303 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
5304 	}
5305 	nvme_ctrlr->active_path_id = path_id;
5306 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
5307 
5308 	nvme_ctrlr->thread = spdk_get_thread();
5309 	nvme_ctrlr->ctrlr = ctrlr;
5310 	nvme_ctrlr->ref = 1;
5311 
5312 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
5313 		SPDK_ERRLOG("OCSSDs are not supported");
5314 		rc = -ENOTSUP;
5315 		goto err;
5316 	}
5317 
5318 	if (ctx != NULL) {
5319 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
5320 	} else {
5321 		bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
5322 	}
5323 
5324 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
5325 					  g_opts.nvme_adminq_poll_period_us);
5326 
5327 	if (g_opts.timeout_us > 0) {
5328 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
5329 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
5330 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
5331 					  g_opts.timeout_us : g_opts.timeout_admin_us;
5332 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
5333 				adm_timeout_us, timeout_cb, nvme_ctrlr);
5334 	}
5335 
5336 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
5337 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
5338 
5339 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
5340 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
5341 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
5342 	}
5343 
5344 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
5345 	if (rc != 0) {
5346 		goto err;
5347 	}
5348 
5349 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5350 
5351 	if (cdata->cmic.ana_reporting) {
5352 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
5353 		if (rc == 0) {
5354 			return 0;
5355 		}
5356 	} else {
5357 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5358 		return 0;
5359 	}
5360 
5361 err:
5362 	nvme_ctrlr_delete(nvme_ctrlr);
5363 	return rc;
5364 }
5365 
5366 void
5367 bdev_nvme_get_default_ctrlr_opts(struct nvme_ctrlr_opts *opts)
5368 {
5369 	opts->prchk_flags = 0;
5370 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
5371 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
5372 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
5373 }
5374 
5375 static void
5376 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5377 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
5378 {
5379 	char *name;
5380 
5381 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
5382 	if (!name) {
5383 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
5384 		return;
5385 	}
5386 
5387 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
5388 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
5389 	} else {
5390 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
5391 	}
5392 
5393 	free(name);
5394 }
5395 
5396 static void
5397 _nvme_ctrlr_destruct(void *ctx)
5398 {
5399 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5400 
5401 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
5402 	nvme_ctrlr_release(nvme_ctrlr);
5403 }
5404 
5405 static int
5406 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5407 {
5408 	struct nvme_probe_skip_entry *entry;
5409 
5410 	/* The controller's destruction was already started */
5411 	if (nvme_ctrlr->destruct) {
5412 		return -EALREADY;
5413 	}
5414 
5415 	if (!hotplug &&
5416 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
5417 		entry = calloc(1, sizeof(*entry));
5418 		if (!entry) {
5419 			return -ENOMEM;
5420 		}
5421 		entry->trid = nvme_ctrlr->active_path_id->trid;
5422 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
5423 	}
5424 
5425 	nvme_ctrlr->destruct = true;
5426 	return 0;
5427 }
5428 
5429 static int
5430 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5431 {
5432 	int rc;
5433 
5434 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5435 	rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug);
5436 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5437 
5438 	if (rc == 0) {
5439 		_nvme_ctrlr_destruct(nvme_ctrlr);
5440 	} else if (rc == -EALREADY) {
5441 		rc = 0;
5442 	}
5443 
5444 	return rc;
5445 }
5446 
5447 static void
5448 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
5449 {
5450 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
5451 
5452 	bdev_nvme_delete_ctrlr(nvme_ctrlr, true);
5453 }
5454 
5455 static int
5456 bdev_nvme_hotplug_probe(void *arg)
5457 {
5458 	if (g_hotplug_probe_ctx == NULL) {
5459 		spdk_poller_unregister(&g_hotplug_probe_poller);
5460 		return SPDK_POLLER_IDLE;
5461 	}
5462 
5463 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
5464 		g_hotplug_probe_ctx = NULL;
5465 		spdk_poller_unregister(&g_hotplug_probe_poller);
5466 	}
5467 
5468 	return SPDK_POLLER_BUSY;
5469 }
5470 
5471 static int
5472 bdev_nvme_hotplug(void *arg)
5473 {
5474 	struct spdk_nvme_transport_id trid_pcie;
5475 
5476 	if (g_hotplug_probe_ctx) {
5477 		return SPDK_POLLER_BUSY;
5478 	}
5479 
5480 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5481 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5482 
5483 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
5484 			      hotplug_probe_cb, attach_cb, NULL);
5485 
5486 	if (g_hotplug_probe_ctx) {
5487 		assert(g_hotplug_probe_poller == NULL);
5488 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
5489 	}
5490 
5491 	return SPDK_POLLER_BUSY;
5492 }
5493 
5494 void
5495 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
5496 {
5497 	*opts = g_opts;
5498 }
5499 
5500 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5501 		uint32_t reconnect_delay_sec,
5502 		uint32_t fast_io_fail_timeout_sec);
5503 
5504 static int
5505 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
5506 {
5507 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
5508 		/* Can't set timeout_admin_us without also setting timeout_us */
5509 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
5510 		return -EINVAL;
5511 	}
5512 
5513 	if (opts->bdev_retry_count < -1) {
5514 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
5515 		return -EINVAL;
5516 	}
5517 
5518 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
5519 			opts->reconnect_delay_sec,
5520 			opts->fast_io_fail_timeout_sec)) {
5521 		return -EINVAL;
5522 	}
5523 
5524 	return 0;
5525 }
5526 
5527 int
5528 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
5529 {
5530 	int ret;
5531 
5532 	ret = bdev_nvme_validate_opts(opts);
5533 	if (ret) {
5534 		SPDK_WARNLOG("Failed to set nvme opts.\n");
5535 		return ret;
5536 	}
5537 
5538 	if (g_bdev_nvme_init_thread != NULL) {
5539 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5540 			return -EPERM;
5541 		}
5542 	}
5543 
5544 	if (opts->rdma_srq_size != 0 ||
5545 	    opts->rdma_max_cq_size != 0) {
5546 		struct spdk_nvme_transport_opts drv_opts;
5547 
5548 		spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
5549 		if (opts->rdma_srq_size != 0) {
5550 			drv_opts.rdma_srq_size = opts->rdma_srq_size;
5551 		}
5552 		if (opts->rdma_max_cq_size != 0) {
5553 			drv_opts.rdma_max_cq_size = opts->rdma_max_cq_size;
5554 		}
5555 
5556 		ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
5557 		if (ret) {
5558 			SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
5559 			return ret;
5560 		}
5561 	}
5562 
5563 	g_opts = *opts;
5564 
5565 	return 0;
5566 }
5567 
5568 struct set_nvme_hotplug_ctx {
5569 	uint64_t period_us;
5570 	bool enabled;
5571 	spdk_msg_fn fn;
5572 	void *fn_ctx;
5573 };
5574 
5575 static void
5576 set_nvme_hotplug_period_cb(void *_ctx)
5577 {
5578 	struct set_nvme_hotplug_ctx *ctx = _ctx;
5579 
5580 	spdk_poller_unregister(&g_hotplug_poller);
5581 	if (ctx->enabled) {
5582 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
5583 	}
5584 
5585 	g_nvme_hotplug_poll_period_us = ctx->period_us;
5586 	g_nvme_hotplug_enabled = ctx->enabled;
5587 	if (ctx->fn) {
5588 		ctx->fn(ctx->fn_ctx);
5589 	}
5590 
5591 	free(ctx);
5592 }
5593 
5594 int
5595 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
5596 {
5597 	struct set_nvme_hotplug_ctx *ctx;
5598 
5599 	if (enabled == true && !spdk_process_is_primary()) {
5600 		return -EPERM;
5601 	}
5602 
5603 	ctx = calloc(1, sizeof(*ctx));
5604 	if (ctx == NULL) {
5605 		return -ENOMEM;
5606 	}
5607 
5608 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
5609 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
5610 	ctx->enabled = enabled;
5611 	ctx->fn = cb;
5612 	ctx->fn_ctx = cb_ctx;
5613 
5614 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
5615 	return 0;
5616 }
5617 
5618 static void
5619 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
5620 				    struct nvme_async_probe_ctx *ctx)
5621 {
5622 	struct nvme_ns	*nvme_ns;
5623 	struct nvme_bdev	*nvme_bdev;
5624 	size_t			j;
5625 
5626 	assert(nvme_ctrlr != NULL);
5627 
5628 	if (ctx->names == NULL) {
5629 		ctx->reported_bdevs = 0;
5630 		populate_namespaces_cb(ctx, 0);
5631 		return;
5632 	}
5633 
5634 	/*
5635 	 * Report the new bdevs that were created in this call.
5636 	 * There can be more than one bdev per NVMe controller.
5637 	 */
5638 	j = 0;
5639 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5640 	while (nvme_ns != NULL) {
5641 		nvme_bdev = nvme_ns->bdev;
5642 		if (j < ctx->max_bdevs) {
5643 			ctx->names[j] = nvme_bdev->disk.name;
5644 			j++;
5645 		} else {
5646 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
5647 				    ctx->max_bdevs);
5648 			ctx->reported_bdevs = 0;
5649 			populate_namespaces_cb(ctx, -ERANGE);
5650 			return;
5651 		}
5652 
5653 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5654 	}
5655 
5656 	ctx->reported_bdevs = j;
5657 	populate_namespaces_cb(ctx, 0);
5658 }
5659 
5660 static int
5661 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5662 			       struct spdk_nvme_ctrlr *new_ctrlr,
5663 			       struct spdk_nvme_transport_id *trid)
5664 {
5665 	struct nvme_path_id *tmp_trid;
5666 
5667 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5668 		SPDK_ERRLOG("PCIe failover is not supported.\n");
5669 		return -ENOTSUP;
5670 	}
5671 
5672 	/* Currently we only support failover to the same transport type. */
5673 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
5674 		SPDK_WARNLOG("Failover from trtype: %s to a different trtype: %s is not supported currently\n",
5675 			     spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
5676 			     spdk_nvme_transport_id_trtype_str(trid->trtype));
5677 		return -EINVAL;
5678 	}
5679 
5680 
5681 	/* Currently we only support failover to the same NQN. */
5682 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
5683 		SPDK_WARNLOG("Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
5684 			     nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
5685 		return -EINVAL;
5686 	}
5687 
5688 	/* Skip all the other checks if we've already registered this path. */
5689 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
5690 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
5691 			SPDK_WARNLOG("This path (traddr: %s subnqn: %s) is already registered\n", trid->traddr,
5692 				     trid->subnqn);
5693 			return -EEXIST;
5694 		}
5695 	}
5696 
5697 	return 0;
5698 }
5699 
5700 static int
5701 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
5702 				    struct spdk_nvme_ctrlr *new_ctrlr)
5703 {
5704 	struct nvme_ns *nvme_ns;
5705 	struct spdk_nvme_ns *new_ns;
5706 
5707 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5708 	while (nvme_ns != NULL) {
5709 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
5710 		assert(new_ns != NULL);
5711 
5712 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
5713 			return -EINVAL;
5714 		}
5715 
5716 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5717 	}
5718 
5719 	return 0;
5720 }
5721 
5722 static int
5723 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5724 			      struct spdk_nvme_transport_id *trid)
5725 {
5726 	struct nvme_path_id *active_id, *new_trid, *tmp_trid;
5727 
5728 	new_trid = calloc(1, sizeof(*new_trid));
5729 	if (new_trid == NULL) {
5730 		return -ENOMEM;
5731 	}
5732 	new_trid->trid = *trid;
5733 
5734 	active_id = nvme_ctrlr->active_path_id;
5735 	assert(active_id != NULL);
5736 	assert(active_id == TAILQ_FIRST(&nvme_ctrlr->trids));
5737 
5738 	/* Skip the active trid not to replace it until it is failed. */
5739 	tmp_trid = TAILQ_NEXT(active_id, link);
5740 	if (tmp_trid == NULL) {
5741 		goto add_tail;
5742 	}
5743 
5744 	/* It means the trid is faled if its last failed time is non-zero.
5745 	 * Insert the new alternate trid before any failed trid.
5746 	 */
5747 	TAILQ_FOREACH_FROM(tmp_trid, &nvme_ctrlr->trids, link) {
5748 		if (tmp_trid->last_failed_tsc != 0) {
5749 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
5750 			return 0;
5751 		}
5752 	}
5753 
5754 add_tail:
5755 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
5756 	return 0;
5757 }
5758 
5759 /* This is the case that a secondary path is added to an existing
5760  * nvme_ctrlr for failover. After checking if it can access the same
5761  * namespaces as the primary path, it is disconnected until failover occurs.
5762  */
5763 static int
5764 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5765 			     struct spdk_nvme_ctrlr *new_ctrlr,
5766 			     struct spdk_nvme_transport_id *trid)
5767 {
5768 	int rc;
5769 
5770 	assert(nvme_ctrlr != NULL);
5771 
5772 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5773 
5774 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
5775 	if (rc != 0) {
5776 		goto exit;
5777 	}
5778 
5779 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
5780 	if (rc != 0) {
5781 		goto exit;
5782 	}
5783 
5784 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
5785 
5786 exit:
5787 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5788 
5789 	spdk_nvme_detach(new_ctrlr);
5790 
5791 	return rc;
5792 }
5793 
5794 static void
5795 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5796 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
5797 {
5798 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5799 	struct nvme_async_probe_ctx *ctx;
5800 	int rc;
5801 
5802 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
5803 	ctx->ctrlr_attached = true;
5804 
5805 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
5806 	if (rc != 0) {
5807 		ctx->reported_bdevs = 0;
5808 		populate_namespaces_cb(ctx, rc);
5809 	}
5810 }
5811 
5812 static void
5813 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5814 			struct spdk_nvme_ctrlr *ctrlr,
5815 			const struct spdk_nvme_ctrlr_opts *opts)
5816 {
5817 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5818 	struct nvme_ctrlr *nvme_ctrlr;
5819 	struct nvme_async_probe_ctx *ctx;
5820 	int rc;
5821 
5822 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
5823 	ctx->ctrlr_attached = true;
5824 
5825 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
5826 	if (nvme_ctrlr) {
5827 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
5828 	} else {
5829 		rc = -ENODEV;
5830 	}
5831 
5832 	ctx->reported_bdevs = 0;
5833 	populate_namespaces_cb(ctx, rc);
5834 }
5835 
5836 static int
5837 bdev_nvme_async_poll(void *arg)
5838 {
5839 	struct nvme_async_probe_ctx	*ctx = arg;
5840 	int				rc;
5841 
5842 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
5843 	if (spdk_unlikely(rc != -EAGAIN)) {
5844 		ctx->probe_done = true;
5845 		spdk_poller_unregister(&ctx->poller);
5846 		if (!ctx->ctrlr_attached) {
5847 			/* The probe is done, but no controller was attached.
5848 			 * That means we had a failure, so report -EIO back to
5849 			 * the caller (usually the RPC). populate_namespaces_cb()
5850 			 * will take care of freeing the nvme_async_probe_ctx.
5851 			 */
5852 			ctx->reported_bdevs = 0;
5853 			populate_namespaces_cb(ctx, -EIO);
5854 		} else if (ctx->namespaces_populated) {
5855 			/* The namespaces for the attached controller were all
5856 			 * populated and the response was already sent to the
5857 			 * caller (usually the RPC).  So free the context here.
5858 			 */
5859 			free(ctx);
5860 		}
5861 	}
5862 
5863 	return SPDK_POLLER_BUSY;
5864 }
5865 
5866 static bool
5867 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5868 		uint32_t reconnect_delay_sec,
5869 		uint32_t fast_io_fail_timeout_sec)
5870 {
5871 	if (ctrlr_loss_timeout_sec < -1) {
5872 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
5873 		return false;
5874 	} else if (ctrlr_loss_timeout_sec == -1) {
5875 		if (reconnect_delay_sec == 0) {
5876 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
5877 			return false;
5878 		} else if (fast_io_fail_timeout_sec != 0 &&
5879 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
5880 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
5881 			return false;
5882 		}
5883 	} else if (ctrlr_loss_timeout_sec != 0) {
5884 		if (reconnect_delay_sec == 0) {
5885 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
5886 			return false;
5887 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
5888 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
5889 			return false;
5890 		} else if (fast_io_fail_timeout_sec != 0) {
5891 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
5892 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
5893 				return false;
5894 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
5895 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
5896 				return false;
5897 			}
5898 		}
5899 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
5900 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
5901 		return false;
5902 	}
5903 
5904 	return true;
5905 }
5906 
5907 int
5908 bdev_nvme_create(struct spdk_nvme_transport_id *trid,
5909 		 const char *base_name,
5910 		 const char **names,
5911 		 uint32_t count,
5912 		 spdk_bdev_create_nvme_fn cb_fn,
5913 		 void *cb_ctx,
5914 		 struct spdk_nvme_ctrlr_opts *drv_opts,
5915 		 struct nvme_ctrlr_opts *bdev_opts,
5916 		 bool multipath)
5917 {
5918 	struct nvme_probe_skip_entry	*entry, *tmp;
5919 	struct nvme_async_probe_ctx	*ctx;
5920 	spdk_nvme_attach_cb attach_cb;
5921 
5922 	/* TODO expand this check to include both the host and target TRIDs.
5923 	 * Only if both are the same should we fail.
5924 	 */
5925 	if (nvme_ctrlr_get(trid) != NULL) {
5926 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
5927 		return -EEXIST;
5928 	}
5929 
5930 	if (bdev_opts != NULL &&
5931 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
5932 			    bdev_opts->reconnect_delay_sec,
5933 			    bdev_opts->fast_io_fail_timeout_sec)) {
5934 		return -EINVAL;
5935 	}
5936 
5937 	ctx = calloc(1, sizeof(*ctx));
5938 	if (!ctx) {
5939 		return -ENOMEM;
5940 	}
5941 	ctx->base_name = base_name;
5942 	ctx->names = names;
5943 	ctx->max_bdevs = count;
5944 	ctx->cb_fn = cb_fn;
5945 	ctx->cb_ctx = cb_ctx;
5946 	ctx->trid = *trid;
5947 
5948 	if (bdev_opts) {
5949 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
5950 	} else {
5951 		bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
5952 	}
5953 
5954 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5955 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
5956 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
5957 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
5958 				free(entry);
5959 				break;
5960 			}
5961 		}
5962 	}
5963 
5964 	if (drv_opts) {
5965 		memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
5966 	} else {
5967 		spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->drv_opts, sizeof(ctx->drv_opts));
5968 	}
5969 
5970 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
5971 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
5972 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
5973 	ctx->drv_opts.disable_read_ana_log_page = true;
5974 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
5975 
5976 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
5977 		attach_cb = connect_attach_cb;
5978 	} else {
5979 		attach_cb = connect_set_failover_cb;
5980 	}
5981 
5982 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
5983 	if (ctx->probe_ctx == NULL) {
5984 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
5985 		free(ctx);
5986 		return -ENODEV;
5987 	}
5988 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
5989 
5990 	return 0;
5991 }
5992 
5993 struct bdev_nvme_delete_ctx {
5994 	char                        *name;
5995 	struct nvme_path_id         path_id;
5996 	bdev_nvme_delete_done_fn    delete_done;
5997 	void                        *delete_done_ctx;
5998 	uint64_t                    timeout_ticks;
5999 	struct spdk_poller          *poller;
6000 };
6001 
6002 static void
6003 free_bdev_nvme_delete_ctx(struct bdev_nvme_delete_ctx *ctx)
6004 {
6005 	if (ctx != NULL) {
6006 		free(ctx->name);
6007 		free(ctx);
6008 	}
6009 }
6010 
6011 static bool
6012 nvme_path_id_compare(struct nvme_path_id *p, const struct nvme_path_id *path_id)
6013 {
6014 	if (path_id->trid.trtype != 0) {
6015 		if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
6016 			if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
6017 				return false;
6018 			}
6019 		} else {
6020 			if (path_id->trid.trtype != p->trid.trtype) {
6021 				return false;
6022 			}
6023 		}
6024 	}
6025 
6026 	if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
6027 		if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
6028 			return false;
6029 		}
6030 	}
6031 
6032 	if (path_id->trid.adrfam != 0) {
6033 		if (path_id->trid.adrfam != p->trid.adrfam) {
6034 			return false;
6035 		}
6036 	}
6037 
6038 	if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
6039 		if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
6040 			return false;
6041 		}
6042 	}
6043 
6044 	if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
6045 		if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
6046 			return false;
6047 		}
6048 	}
6049 
6050 	if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
6051 		if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
6052 			return false;
6053 		}
6054 	}
6055 
6056 	if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
6057 		if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
6058 			return false;
6059 		}
6060 	}
6061 
6062 	return true;
6063 }
6064 
6065 static bool
6066 nvme_path_id_exists(const char *name, const struct nvme_path_id *path_id)
6067 {
6068 	struct nvme_bdev_ctrlr  *nbdev_ctrlr;
6069 	struct nvme_ctrlr       *ctrlr;
6070 	struct nvme_path_id     *p;
6071 
6072 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6073 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6074 	if (!nbdev_ctrlr) {
6075 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6076 		return false;
6077 	}
6078 
6079 	TAILQ_FOREACH(ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6080 		pthread_mutex_lock(&ctrlr->mutex);
6081 		TAILQ_FOREACH(p, &ctrlr->trids, link) {
6082 			if (nvme_path_id_compare(p, path_id)) {
6083 				pthread_mutex_unlock(&ctrlr->mutex);
6084 				pthread_mutex_unlock(&g_bdev_nvme_mutex);
6085 				return true;
6086 			}
6087 		}
6088 		pthread_mutex_unlock(&ctrlr->mutex);
6089 	}
6090 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6091 
6092 	return false;
6093 }
6094 
6095 static int
6096 bdev_nvme_delete_complete_poll(void *arg)
6097 {
6098 	struct bdev_nvme_delete_ctx     *ctx = arg;
6099 	int                             rc = 0;
6100 
6101 	if (nvme_path_id_exists(ctx->name, &ctx->path_id)) {
6102 		if (ctx->timeout_ticks > spdk_get_ticks()) {
6103 			return SPDK_POLLER_BUSY;
6104 		}
6105 
6106 		SPDK_ERRLOG("NVMe path '%s' still exists after delete\n", ctx->name);
6107 		rc = -ETIMEDOUT;
6108 	}
6109 
6110 	spdk_poller_unregister(&ctx->poller);
6111 
6112 	ctx->delete_done(ctx->delete_done_ctx, rc);
6113 	free_bdev_nvme_delete_ctx(ctx);
6114 
6115 	return SPDK_POLLER_BUSY;
6116 }
6117 
6118 static int
6119 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id)
6120 {
6121 	struct nvme_path_id	*p, *t;
6122 	spdk_msg_fn		msg_fn;
6123 	int			rc = -ENXIO;
6124 
6125 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6126 
6127 	TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
6128 		if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) {
6129 			break;
6130 		}
6131 
6132 		if (!nvme_path_id_compare(p, path_id)) {
6133 			continue;
6134 		}
6135 
6136 		/* We are not using the specified path. */
6137 		TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
6138 		free(p);
6139 		rc = 0;
6140 	}
6141 
6142 	if (p == NULL || !nvme_path_id_compare(p, path_id)) {
6143 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
6144 		return rc;
6145 	}
6146 
6147 	/* If we made it here, then this path is a match! Now we need to remove it. */
6148 
6149 	/* This is the active path in use right now. The active path is always the first in the list. */
6150 	assert(p == nvme_ctrlr->active_path_id);
6151 
6152 	if (!TAILQ_NEXT(p, link)) {
6153 		/* The current path is the only path. */
6154 		msg_fn = _nvme_ctrlr_destruct;
6155 		rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false);
6156 	} else {
6157 		/* There is an alternative path. */
6158 		msg_fn = _bdev_nvme_reset_ctrlr;
6159 		rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, true);
6160 	}
6161 
6162 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6163 
6164 	if (rc == 0) {
6165 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
6166 	} else if (rc == -EALREADY) {
6167 		rc = 0;
6168 	}
6169 
6170 	return rc;
6171 }
6172 
6173 int
6174 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id,
6175 		 bdev_nvme_delete_done_fn delete_done, void *delete_done_ctx)
6176 {
6177 	struct nvme_bdev_ctrlr		*nbdev_ctrlr;
6178 	struct nvme_ctrlr		*nvme_ctrlr, *tmp_nvme_ctrlr;
6179 	struct bdev_nvme_delete_ctx     *ctx = NULL;
6180 	int				rc = -ENXIO, _rc;
6181 
6182 	if (name == NULL || path_id == NULL) {
6183 		rc = -EINVAL;
6184 		goto exit;
6185 	}
6186 
6187 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6188 
6189 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6190 	if (nbdev_ctrlr == NULL) {
6191 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6192 
6193 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
6194 		rc = -ENODEV;
6195 		goto exit;
6196 	}
6197 
6198 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
6199 		_rc = _bdev_nvme_delete(nvme_ctrlr, path_id);
6200 		if (_rc < 0 && _rc != -ENXIO) {
6201 			pthread_mutex_unlock(&g_bdev_nvme_mutex);
6202 			rc = _rc;
6203 			goto exit;
6204 		} else if (_rc == 0) {
6205 			/* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr
6206 			 * was deleted successfully. To remember the successful deletion,
6207 			 * overwrite rc only if _rc is zero.
6208 			 */
6209 			rc = 0;
6210 		}
6211 	}
6212 
6213 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6214 
6215 	if (rc != 0 || delete_done == NULL) {
6216 		goto exit;
6217 	}
6218 
6219 	ctx = calloc(1, sizeof(*ctx));
6220 	if (ctx == NULL) {
6221 		SPDK_ERRLOG("Failed to allocate context for bdev_nvme_delete\n");
6222 		rc = -ENOMEM;
6223 		goto exit;
6224 	}
6225 
6226 	ctx->name = strdup(name);
6227 	if (ctx->name == NULL) {
6228 		SPDK_ERRLOG("Failed to copy controller name for deletion\n");
6229 		rc = -ENOMEM;
6230 		goto exit;
6231 	}
6232 
6233 	ctx->delete_done = delete_done;
6234 	ctx->delete_done_ctx = delete_done_ctx;
6235 	ctx->path_id = *path_id;
6236 	ctx->timeout_ticks = spdk_get_ticks() + 10 * spdk_get_ticks_hz();
6237 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_delete_complete_poll, ctx, 1000);
6238 	if (ctx->poller == NULL) {
6239 		SPDK_ERRLOG("Failed to register bdev_nvme_delete poller\n");
6240 		rc = -ENOMEM;
6241 		goto exit;
6242 	}
6243 
6244 exit:
6245 	if (rc != 0) {
6246 		free_bdev_nvme_delete_ctx(ctx);
6247 	}
6248 
6249 	return rc;
6250 }
6251 
6252 #define DISCOVERY_INFOLOG(ctx, format, ...) \
6253 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6254 
6255 #define DISCOVERY_ERRLOG(ctx, format, ...) \
6256 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6257 
6258 struct discovery_entry_ctx {
6259 	char						name[128];
6260 	struct spdk_nvme_transport_id			trid;
6261 	struct spdk_nvme_ctrlr_opts			drv_opts;
6262 	struct spdk_nvmf_discovery_log_page_entry	entry;
6263 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
6264 	struct discovery_ctx				*ctx;
6265 };
6266 
6267 struct discovery_ctx {
6268 	char					*name;
6269 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
6270 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
6271 	void					*cb_ctx;
6272 	struct spdk_nvme_probe_ctx		*probe_ctx;
6273 	struct spdk_nvme_detach_ctx		*detach_ctx;
6274 	struct spdk_nvme_ctrlr			*ctrlr;
6275 	struct spdk_nvme_transport_id		trid;
6276 	struct discovery_entry_ctx		*entry_ctx_in_use;
6277 	struct spdk_poller			*poller;
6278 	struct spdk_nvme_ctrlr_opts		drv_opts;
6279 	struct nvme_ctrlr_opts			bdev_opts;
6280 	struct spdk_nvmf_discovery_log_page	*log_page;
6281 	TAILQ_ENTRY(discovery_ctx)		tailq;
6282 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
6283 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
6284 	int					rc;
6285 	bool					wait_for_attach;
6286 	uint64_t				timeout_ticks;
6287 	/* Denotes that the discovery service is being started. We're waiting
6288 	 * for the initial connection to the discovery controller to be
6289 	 * established and attach discovered NVM ctrlrs.
6290 	 */
6291 	bool					initializing;
6292 	/* Denotes if a discovery is currently in progress for this context.
6293 	 * That includes connecting to newly discovered subsystems.  Used to
6294 	 * ensure we do not start a new discovery until an existing one is
6295 	 * complete.
6296 	 */
6297 	bool					in_progress;
6298 
6299 	/* Denotes if another discovery is needed after the one in progress
6300 	 * completes.  Set when we receive an AER completion while a discovery
6301 	 * is already in progress.
6302 	 */
6303 	bool					pending;
6304 
6305 	/* Signal to the discovery context poller that it should stop the
6306 	 * discovery service, including detaching from the current discovery
6307 	 * controller.
6308 	 */
6309 	bool					stop;
6310 
6311 	struct spdk_thread			*calling_thread;
6312 	uint32_t				index;
6313 	uint32_t				attach_in_progress;
6314 	char					*hostnqn;
6315 
6316 	/* Denotes if the discovery service was started by the mdns discovery.
6317 	 */
6318 	bool					from_mdns_discovery_service;
6319 };
6320 
6321 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
6322 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
6323 
6324 static void get_discovery_log_page(struct discovery_ctx *ctx);
6325 
6326 static void
6327 free_discovery_ctx(struct discovery_ctx *ctx)
6328 {
6329 	free(ctx->log_page);
6330 	free(ctx->hostnqn);
6331 	free(ctx->name);
6332 	free(ctx);
6333 }
6334 
6335 static void
6336 discovery_complete(struct discovery_ctx *ctx)
6337 {
6338 	ctx->initializing = false;
6339 	ctx->in_progress = false;
6340 	if (ctx->pending) {
6341 		ctx->pending = false;
6342 		get_discovery_log_page(ctx);
6343 	}
6344 }
6345 
6346 static void
6347 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
6348 			       struct spdk_nvmf_discovery_log_page_entry *entry)
6349 {
6350 	char *space;
6351 
6352 	trid->trtype = entry->trtype;
6353 	trid->adrfam = entry->adrfam;
6354 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
6355 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
6356 	/* Because the source buffer (entry->subnqn) is longer than trid->subnqn, and
6357 	 * before call to this function trid->subnqn is zeroed out, we need
6358 	 * to copy sizeof(trid->subnqn) minus one byte to make sure the last character
6359 	 * remains 0. Then we can shorten the string (replace ' ' with 0) if required
6360 	 */
6361 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn) - 1);
6362 
6363 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
6364 	 * But the log page entries typically pad them with spaces, not zeroes.
6365 	 * So add a NULL terminator to each of these fields at the appropriate
6366 	 * location.
6367 	 */
6368 	space = strchr(trid->traddr, ' ');
6369 	if (space) {
6370 		*space = 0;
6371 	}
6372 	space = strchr(trid->trsvcid, ' ');
6373 	if (space) {
6374 		*space = 0;
6375 	}
6376 	space = strchr(trid->subnqn, ' ');
6377 	if (space) {
6378 		*space = 0;
6379 	}
6380 }
6381 
6382 static void
6383 _stop_discovery(void *_ctx)
6384 {
6385 	struct discovery_ctx *ctx = _ctx;
6386 
6387 	if (ctx->attach_in_progress > 0) {
6388 		spdk_thread_send_msg(spdk_get_thread(), _stop_discovery, ctx);
6389 		return;
6390 	}
6391 
6392 	ctx->stop = true;
6393 
6394 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
6395 		struct discovery_entry_ctx *entry_ctx;
6396 		struct nvme_path_id path = {};
6397 
6398 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
6399 		path.trid = entry_ctx->trid;
6400 		bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6401 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6402 		free(entry_ctx);
6403 	}
6404 
6405 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
6406 		struct discovery_entry_ctx *entry_ctx;
6407 
6408 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6409 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6410 		free(entry_ctx);
6411 	}
6412 
6413 	free(ctx->entry_ctx_in_use);
6414 	ctx->entry_ctx_in_use = NULL;
6415 }
6416 
6417 static void
6418 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6419 {
6420 	ctx->stop_cb_fn = cb_fn;
6421 	ctx->cb_ctx = cb_ctx;
6422 
6423 	if (ctx->attach_in_progress > 0) {
6424 		DISCOVERY_INFOLOG(ctx, "stopping discovery with attach_in_progress: %"PRIu32"\n",
6425 				  ctx->attach_in_progress);
6426 	}
6427 
6428 	_stop_discovery(ctx);
6429 }
6430 
6431 static void
6432 remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr)
6433 {
6434 	struct discovery_ctx *d_ctx;
6435 	struct nvme_path_id *path_id;
6436 	struct spdk_nvme_transport_id trid = {};
6437 	struct discovery_entry_ctx *entry_ctx, *tmp;
6438 
6439 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
6440 
6441 	TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6442 		TAILQ_FOREACH_SAFE(entry_ctx, &d_ctx->nvm_entry_ctxs, tailq, tmp) {
6443 			build_trid_from_log_page_entry(&trid, &entry_ctx->entry);
6444 			if (spdk_nvme_transport_id_compare(&trid, &path_id->trid) != 0) {
6445 				continue;
6446 			}
6447 
6448 			TAILQ_REMOVE(&d_ctx->nvm_entry_ctxs, entry_ctx, tailq);
6449 			free(entry_ctx);
6450 			DISCOVERY_INFOLOG(d_ctx, "Remove discovery entry: %s:%s:%s\n",
6451 					  trid.subnqn, trid.traddr, trid.trsvcid);
6452 
6453 			/* Fail discovery ctrlr to force reattach attempt */
6454 			spdk_nvme_ctrlr_fail(d_ctx->ctrlr);
6455 		}
6456 	}
6457 }
6458 
6459 static void
6460 discovery_remove_controllers(struct discovery_ctx *ctx)
6461 {
6462 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
6463 	struct discovery_entry_ctx *entry_ctx, *tmp;
6464 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6465 	struct spdk_nvme_transport_id old_trid = {};
6466 	uint64_t numrec, i;
6467 	bool found;
6468 
6469 	numrec = from_le64(&log_page->numrec);
6470 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
6471 		found = false;
6472 		old_entry = &entry_ctx->entry;
6473 		build_trid_from_log_page_entry(&old_trid, old_entry);
6474 		for (i = 0; i < numrec; i++) {
6475 			new_entry = &log_page->entries[i];
6476 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
6477 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
6478 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6479 				found = true;
6480 				break;
6481 			}
6482 		}
6483 		if (!found) {
6484 			struct nvme_path_id path = {};
6485 
6486 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
6487 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6488 
6489 			path.trid = entry_ctx->trid;
6490 			bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6491 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6492 			free(entry_ctx);
6493 		}
6494 	}
6495 	free(log_page);
6496 	ctx->log_page = NULL;
6497 	discovery_complete(ctx);
6498 }
6499 
6500 static void
6501 complete_discovery_start(struct discovery_ctx *ctx, int status)
6502 {
6503 	ctx->timeout_ticks = 0;
6504 	ctx->rc = status;
6505 	if (ctx->start_cb_fn) {
6506 		ctx->start_cb_fn(ctx->cb_ctx, status);
6507 		ctx->start_cb_fn = NULL;
6508 		ctx->cb_ctx = NULL;
6509 	}
6510 }
6511 
6512 static void
6513 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
6514 {
6515 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
6516 	struct discovery_ctx *ctx = entry_ctx->ctx;
6517 
6518 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
6519 	ctx->attach_in_progress--;
6520 	if (ctx->attach_in_progress == 0) {
6521 		complete_discovery_start(ctx, ctx->rc);
6522 		if (ctx->initializing && ctx->rc != 0) {
6523 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
6524 			stop_discovery(ctx, NULL, ctx->cb_ctx);
6525 		} else {
6526 			discovery_remove_controllers(ctx);
6527 		}
6528 	}
6529 }
6530 
6531 static struct discovery_entry_ctx *
6532 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
6533 {
6534 	struct discovery_entry_ctx *new_ctx;
6535 
6536 	new_ctx = calloc(1, sizeof(*new_ctx));
6537 	if (new_ctx == NULL) {
6538 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6539 		return NULL;
6540 	}
6541 
6542 	new_ctx->ctx = ctx;
6543 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
6544 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6545 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6546 	return new_ctx;
6547 }
6548 
6549 static void
6550 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
6551 		      struct spdk_nvmf_discovery_log_page *log_page)
6552 {
6553 	struct discovery_ctx *ctx = cb_arg;
6554 	struct discovery_entry_ctx *entry_ctx, *tmp;
6555 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6556 	uint64_t numrec, i;
6557 	bool found;
6558 
6559 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
6560 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6561 		return;
6562 	}
6563 
6564 	ctx->log_page = log_page;
6565 	assert(ctx->attach_in_progress == 0);
6566 	numrec = from_le64(&log_page->numrec);
6567 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
6568 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6569 		free(entry_ctx);
6570 	}
6571 	for (i = 0; i < numrec; i++) {
6572 		found = false;
6573 		new_entry = &log_page->entries[i];
6574 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY_CURRENT ||
6575 		    new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
6576 			struct discovery_entry_ctx *new_ctx;
6577 			struct spdk_nvme_transport_id trid = {};
6578 
6579 			build_trid_from_log_page_entry(&trid, new_entry);
6580 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
6581 			if (new_ctx == NULL) {
6582 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6583 				break;
6584 			}
6585 
6586 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
6587 			continue;
6588 		}
6589 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
6590 			old_entry = &entry_ctx->entry;
6591 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
6592 				found = true;
6593 				break;
6594 			}
6595 		}
6596 		if (!found) {
6597 			struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx;
6598 			struct discovery_ctx *d_ctx;
6599 
6600 			TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6601 				TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) {
6602 					if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
6603 						    sizeof(new_entry->subnqn))) {
6604 						break;
6605 					}
6606 				}
6607 				if (subnqn_ctx) {
6608 					break;
6609 				}
6610 			}
6611 
6612 			new_ctx = calloc(1, sizeof(*new_ctx));
6613 			if (new_ctx == NULL) {
6614 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6615 				break;
6616 			}
6617 
6618 			new_ctx->ctx = ctx;
6619 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
6620 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
6621 			if (subnqn_ctx) {
6622 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
6623 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
6624 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6625 						  new_ctx->name);
6626 			} else {
6627 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
6628 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
6629 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6630 						  new_ctx->name);
6631 			}
6632 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6633 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6634 			rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
6635 					      discovery_attach_controller_done, new_ctx,
6636 					      &new_ctx->drv_opts, &ctx->bdev_opts, true);
6637 			if (rc == 0) {
6638 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
6639 				ctx->attach_in_progress++;
6640 			} else {
6641 				DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
6642 			}
6643 		}
6644 	}
6645 
6646 	if (ctx->attach_in_progress == 0) {
6647 		discovery_remove_controllers(ctx);
6648 	}
6649 }
6650 
6651 static void
6652 get_discovery_log_page(struct discovery_ctx *ctx)
6653 {
6654 	int rc;
6655 
6656 	assert(ctx->in_progress == false);
6657 	ctx->in_progress = true;
6658 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
6659 	if (rc != 0) {
6660 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6661 	}
6662 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
6663 }
6664 
6665 static void
6666 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
6667 {
6668 	struct discovery_ctx *ctx = arg;
6669 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
6670 
6671 	if (spdk_nvme_cpl_is_error(cpl)) {
6672 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
6673 		return;
6674 	}
6675 
6676 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
6677 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
6678 		return;
6679 	}
6680 
6681 	DISCOVERY_INFOLOG(ctx, "got aer\n");
6682 	if (ctx->in_progress) {
6683 		ctx->pending = true;
6684 		return;
6685 	}
6686 
6687 	get_discovery_log_page(ctx);
6688 }
6689 
6690 static void
6691 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6692 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
6693 {
6694 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6695 	struct discovery_ctx *ctx;
6696 
6697 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
6698 
6699 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
6700 	ctx->probe_ctx = NULL;
6701 	ctx->ctrlr = ctrlr;
6702 
6703 	if (ctx->rc != 0) {
6704 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
6705 				 ctx->rc);
6706 		return;
6707 	}
6708 
6709 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
6710 }
6711 
6712 static int
6713 discovery_poller(void *arg)
6714 {
6715 	struct discovery_ctx *ctx = arg;
6716 	struct spdk_nvme_transport_id *trid;
6717 	int rc;
6718 
6719 	if (ctx->detach_ctx) {
6720 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
6721 		if (rc != -EAGAIN) {
6722 			ctx->detach_ctx = NULL;
6723 			ctx->ctrlr = NULL;
6724 		}
6725 	} else if (ctx->stop) {
6726 		if (ctx->ctrlr != NULL) {
6727 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
6728 			if (rc == 0) {
6729 				return SPDK_POLLER_BUSY;
6730 			}
6731 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
6732 		}
6733 		spdk_poller_unregister(&ctx->poller);
6734 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
6735 		assert(ctx->start_cb_fn == NULL);
6736 		if (ctx->stop_cb_fn != NULL) {
6737 			ctx->stop_cb_fn(ctx->cb_ctx);
6738 		}
6739 		free_discovery_ctx(ctx);
6740 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
6741 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6742 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
6743 			assert(ctx->initializing);
6744 			spdk_poller_unregister(&ctx->poller);
6745 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
6746 			complete_discovery_start(ctx, -ETIMEDOUT);
6747 			stop_discovery(ctx, NULL, NULL);
6748 			free_discovery_ctx(ctx);
6749 			return SPDK_POLLER_BUSY;
6750 		}
6751 
6752 		assert(ctx->entry_ctx_in_use == NULL);
6753 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6754 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6755 		trid = &ctx->entry_ctx_in_use->trid;
6756 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
6757 		if (ctx->probe_ctx) {
6758 			spdk_poller_unregister(&ctx->poller);
6759 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
6760 		} else {
6761 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
6762 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6763 			ctx->entry_ctx_in_use = NULL;
6764 		}
6765 	} else if (ctx->probe_ctx) {
6766 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6767 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
6768 			complete_discovery_start(ctx, -ETIMEDOUT);
6769 			return SPDK_POLLER_BUSY;
6770 		}
6771 
6772 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
6773 		if (rc != -EAGAIN) {
6774 			if (ctx->rc != 0) {
6775 				assert(ctx->initializing);
6776 				stop_discovery(ctx, NULL, ctx->cb_ctx);
6777 			} else {
6778 				assert(rc == 0);
6779 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
6780 				ctx->rc = rc;
6781 				get_discovery_log_page(ctx);
6782 			}
6783 		}
6784 	} else {
6785 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
6786 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
6787 			complete_discovery_start(ctx, -ETIMEDOUT);
6788 			/* We need to wait until all NVM ctrlrs are attached before we stop the
6789 			 * discovery service to make sure we don't detach a ctrlr that is still
6790 			 * being attached.
6791 			 */
6792 			if (ctx->attach_in_progress == 0) {
6793 				stop_discovery(ctx, NULL, ctx->cb_ctx);
6794 				return SPDK_POLLER_BUSY;
6795 			}
6796 		}
6797 
6798 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
6799 		if (rc < 0) {
6800 			spdk_poller_unregister(&ctx->poller);
6801 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
6802 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
6803 			ctx->entry_ctx_in_use = NULL;
6804 
6805 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
6806 			if (rc != 0) {
6807 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
6808 				ctx->ctrlr = NULL;
6809 			}
6810 		}
6811 	}
6812 
6813 	return SPDK_POLLER_BUSY;
6814 }
6815 
6816 static void
6817 start_discovery_poller(void *arg)
6818 {
6819 	struct discovery_ctx *ctx = arg;
6820 
6821 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
6822 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
6823 }
6824 
6825 int
6826 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
6827 			  const char *base_name,
6828 			  struct spdk_nvme_ctrlr_opts *drv_opts,
6829 			  struct nvme_ctrlr_opts *bdev_opts,
6830 			  uint64_t attach_timeout,
6831 			  bool from_mdns,
6832 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
6833 {
6834 	struct discovery_ctx *ctx;
6835 	struct discovery_entry_ctx *discovery_entry_ctx;
6836 
6837 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
6838 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6839 		if (strcmp(ctx->name, base_name) == 0) {
6840 			return -EEXIST;
6841 		}
6842 
6843 		if (ctx->entry_ctx_in_use != NULL) {
6844 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
6845 				return -EEXIST;
6846 			}
6847 		}
6848 
6849 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
6850 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
6851 				return -EEXIST;
6852 			}
6853 		}
6854 	}
6855 
6856 	ctx = calloc(1, sizeof(*ctx));
6857 	if (ctx == NULL) {
6858 		return -ENOMEM;
6859 	}
6860 
6861 	ctx->name = strdup(base_name);
6862 	if (ctx->name == NULL) {
6863 		free_discovery_ctx(ctx);
6864 		return -ENOMEM;
6865 	}
6866 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6867 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6868 	ctx->from_mdns_discovery_service = from_mdns;
6869 	ctx->bdev_opts.from_discovery_service = true;
6870 	ctx->calling_thread = spdk_get_thread();
6871 	ctx->start_cb_fn = cb_fn;
6872 	ctx->cb_ctx = cb_ctx;
6873 	ctx->initializing = true;
6874 	if (ctx->start_cb_fn) {
6875 		/* We can use this when dumping json to denote if this RPC parameter
6876 		 * was specified or not.
6877 		 */
6878 		ctx->wait_for_attach = true;
6879 	}
6880 	if (attach_timeout != 0) {
6881 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
6882 				     spdk_get_ticks_hz() / 1000ull;
6883 	}
6884 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
6885 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
6886 	memcpy(&ctx->trid, trid, sizeof(*trid));
6887 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
6888 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
6889 	if (ctx->hostnqn == NULL) {
6890 		free_discovery_ctx(ctx);
6891 		return -ENOMEM;
6892 	}
6893 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
6894 	if (discovery_entry_ctx == NULL) {
6895 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6896 		free_discovery_ctx(ctx);
6897 		return -ENOMEM;
6898 	}
6899 
6900 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
6901 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
6902 	return 0;
6903 }
6904 
6905 int
6906 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6907 {
6908 	struct discovery_ctx *ctx;
6909 
6910 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6911 		if (strcmp(name, ctx->name) == 0) {
6912 			if (ctx->stop) {
6913 				return -EALREADY;
6914 			}
6915 			/* If we're still starting the discovery service and ->rc is non-zero, we're
6916 			 * going to stop it as soon as we can
6917 			 */
6918 			if (ctx->initializing && ctx->rc != 0) {
6919 				return -EALREADY;
6920 			}
6921 			stop_discovery(ctx, cb_fn, cb_ctx);
6922 			return 0;
6923 		}
6924 	}
6925 
6926 	return -ENOENT;
6927 }
6928 
6929 static int
6930 bdev_nvme_library_init(void)
6931 {
6932 	g_bdev_nvme_init_thread = spdk_get_thread();
6933 
6934 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
6935 				bdev_nvme_destroy_poll_group_cb,
6936 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
6937 
6938 	return 0;
6939 }
6940 
6941 static void
6942 bdev_nvme_fini_destruct_ctrlrs(void)
6943 {
6944 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
6945 	struct nvme_ctrlr *nvme_ctrlr;
6946 
6947 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6948 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
6949 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6950 			pthread_mutex_lock(&nvme_ctrlr->mutex);
6951 			if (nvme_ctrlr->destruct) {
6952 				/* This controller's destruction was already started
6953 				 * before the application started shutting down
6954 				 */
6955 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
6956 				continue;
6957 			}
6958 			nvme_ctrlr->destruct = true;
6959 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
6960 
6961 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
6962 					     nvme_ctrlr);
6963 		}
6964 	}
6965 
6966 	g_bdev_nvme_module_finish = true;
6967 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
6968 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6969 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
6970 		spdk_bdev_module_fini_done();
6971 		return;
6972 	}
6973 
6974 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6975 }
6976 
6977 static void
6978 check_discovery_fini(void *arg)
6979 {
6980 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
6981 		bdev_nvme_fini_destruct_ctrlrs();
6982 	}
6983 }
6984 
6985 static void
6986 bdev_nvme_library_fini(void)
6987 {
6988 	struct nvme_probe_skip_entry *entry, *entry_tmp;
6989 	struct discovery_ctx *ctx;
6990 
6991 	spdk_poller_unregister(&g_hotplug_poller);
6992 	free(g_hotplug_probe_ctx);
6993 	g_hotplug_probe_ctx = NULL;
6994 
6995 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
6996 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
6997 		free(entry);
6998 	}
6999 
7000 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
7001 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7002 		bdev_nvme_fini_destruct_ctrlrs();
7003 	} else {
7004 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7005 			stop_discovery(ctx, check_discovery_fini, NULL);
7006 		}
7007 	}
7008 }
7009 
7010 static void
7011 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
7012 {
7013 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7014 	struct spdk_bdev *bdev = bdev_io->bdev;
7015 	struct spdk_dif_ctx dif_ctx;
7016 	struct spdk_dif_error err_blk = {};
7017 	int rc;
7018 	struct spdk_dif_ctx_init_ext_opts dif_opts;
7019 
7020 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
7021 	dif_opts.dif_pi_format = SPDK_DIF_PI_FORMAT_16;
7022 	rc = spdk_dif_ctx_init(&dif_ctx,
7023 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
7024 			       bdev->dif_is_head_of_md, bdev->dif_type, bdev->dif_check_flags,
7025 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0, &dif_opts);
7026 	if (rc != 0) {
7027 		SPDK_ERRLOG("Initialization of DIF context failed\n");
7028 		return;
7029 	}
7030 
7031 	if (bdev->md_interleave) {
7032 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7033 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7034 	} else {
7035 		struct iovec md_iov = {
7036 			.iov_base	= bdev_io->u.bdev.md_buf,
7037 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
7038 		};
7039 
7040 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7041 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7042 	}
7043 
7044 	if (rc != 0) {
7045 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
7046 			    err_blk.err_type, err_blk.err_offset);
7047 	} else {
7048 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
7049 	}
7050 }
7051 
7052 static void
7053 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7054 {
7055 	struct nvme_bdev_io *bio = ref;
7056 
7057 	if (spdk_nvme_cpl_is_success(cpl)) {
7058 		/* Run PI verification for read data buffer. */
7059 		bdev_nvme_verify_pi_error(bio);
7060 	}
7061 
7062 	/* Return original completion status */
7063 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7064 }
7065 
7066 static void
7067 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7068 {
7069 	struct nvme_bdev_io *bio = ref;
7070 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7071 	int ret;
7072 
7073 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7074 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
7075 			    cpl->status.sct, cpl->status.sc);
7076 
7077 		/* Save completion status to use after verifying PI error. */
7078 		bio->cpl = *cpl;
7079 
7080 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
7081 			/* Read without PI checking to verify PI error. */
7082 			ret = bdev_nvme_no_pi_readv(bio,
7083 						    bdev_io->u.bdev.iovs,
7084 						    bdev_io->u.bdev.iovcnt,
7085 						    bdev_io->u.bdev.md_buf,
7086 						    bdev_io->u.bdev.num_blocks,
7087 						    bdev_io->u.bdev.offset_blocks);
7088 			if (ret == 0) {
7089 				return;
7090 			}
7091 		}
7092 	}
7093 
7094 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7095 }
7096 
7097 static void
7098 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7099 {
7100 	struct nvme_bdev_io *bio = ref;
7101 
7102 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7103 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
7104 			    cpl->status.sct, cpl->status.sc);
7105 		/* Run PI verification for write data buffer if PI error is detected. */
7106 		bdev_nvme_verify_pi_error(bio);
7107 	}
7108 
7109 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7110 }
7111 
7112 static void
7113 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7114 {
7115 	struct nvme_bdev_io *bio = ref;
7116 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7117 
7118 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
7119 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
7120 	 */
7121 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
7122 
7123 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7124 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
7125 			    cpl->status.sct, cpl->status.sc);
7126 		/* Run PI verification for zone append data buffer if PI error is detected. */
7127 		bdev_nvme_verify_pi_error(bio);
7128 	}
7129 
7130 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7131 }
7132 
7133 static void
7134 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7135 {
7136 	struct nvme_bdev_io *bio = ref;
7137 
7138 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7139 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
7140 			    cpl->status.sct, cpl->status.sc);
7141 		/* Run PI verification for compare data buffer if PI error is detected. */
7142 		bdev_nvme_verify_pi_error(bio);
7143 	}
7144 
7145 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7146 }
7147 
7148 static void
7149 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7150 {
7151 	struct nvme_bdev_io *bio = ref;
7152 
7153 	/* Compare operation completion */
7154 	if (!bio->first_fused_completed) {
7155 		/* Save compare result for write callback */
7156 		bio->cpl = *cpl;
7157 		bio->first_fused_completed = true;
7158 		return;
7159 	}
7160 
7161 	/* Write operation completion */
7162 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
7163 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
7164 		 * complete the IO with the compare operation's status.
7165 		 */
7166 		if (!spdk_nvme_cpl_is_error(cpl)) {
7167 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
7168 		}
7169 
7170 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7171 	} else {
7172 		bdev_nvme_io_complete_nvme_status(bio, cpl);
7173 	}
7174 }
7175 
7176 static void
7177 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
7178 {
7179 	struct nvme_bdev_io *bio = ref;
7180 
7181 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7182 }
7183 
7184 static int
7185 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
7186 {
7187 	switch (desc->zt) {
7188 	case SPDK_NVME_ZONE_TYPE_SEQWR:
7189 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
7190 		break;
7191 	default:
7192 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
7193 		return -EIO;
7194 	}
7195 
7196 	switch (desc->zs) {
7197 	case SPDK_NVME_ZONE_STATE_EMPTY:
7198 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
7199 		break;
7200 	case SPDK_NVME_ZONE_STATE_IOPEN:
7201 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
7202 		break;
7203 	case SPDK_NVME_ZONE_STATE_EOPEN:
7204 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
7205 		break;
7206 	case SPDK_NVME_ZONE_STATE_CLOSED:
7207 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
7208 		break;
7209 	case SPDK_NVME_ZONE_STATE_RONLY:
7210 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
7211 		break;
7212 	case SPDK_NVME_ZONE_STATE_FULL:
7213 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
7214 		break;
7215 	case SPDK_NVME_ZONE_STATE_OFFLINE:
7216 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
7217 		break;
7218 	default:
7219 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
7220 		return -EIO;
7221 	}
7222 
7223 	info->zone_id = desc->zslba;
7224 	info->write_pointer = desc->wp;
7225 	info->capacity = desc->zcap;
7226 
7227 	return 0;
7228 }
7229 
7230 static void
7231 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
7232 {
7233 	struct nvme_bdev_io *bio = ref;
7234 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7235 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
7236 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
7237 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
7238 	uint64_t max_zones_per_buf, i;
7239 	uint32_t zone_report_bufsize;
7240 	struct spdk_nvme_ns *ns;
7241 	struct spdk_nvme_qpair *qpair;
7242 	int ret;
7243 
7244 	if (spdk_nvme_cpl_is_error(cpl)) {
7245 		goto out_complete_io_nvme_cpl;
7246 	}
7247 
7248 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
7249 		ret = -ENXIO;
7250 		goto out_complete_io_ret;
7251 	}
7252 
7253 	ns = bio->io_path->nvme_ns->ns;
7254 	qpair = bio->io_path->qpair->qpair;
7255 
7256 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7257 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
7258 			    sizeof(bio->zone_report_buf->descs[0]);
7259 
7260 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
7261 		ret = -EINVAL;
7262 		goto out_complete_io_ret;
7263 	}
7264 
7265 	if (!bio->zone_report_buf->nr_zones) {
7266 		ret = -EINVAL;
7267 		goto out_complete_io_ret;
7268 	}
7269 
7270 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
7271 		ret = fill_zone_from_report(&info[bio->handled_zones],
7272 					    &bio->zone_report_buf->descs[i]);
7273 		if (ret) {
7274 			goto out_complete_io_ret;
7275 		}
7276 		bio->handled_zones++;
7277 	}
7278 
7279 	if (bio->handled_zones < zones_to_copy) {
7280 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7281 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
7282 
7283 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
7284 		ret = spdk_nvme_zns_report_zones(ns, qpair,
7285 						 bio->zone_report_buf, zone_report_bufsize,
7286 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
7287 						 bdev_nvme_get_zone_info_done, bio);
7288 		if (!ret) {
7289 			return;
7290 		} else {
7291 			goto out_complete_io_ret;
7292 		}
7293 	}
7294 
7295 out_complete_io_nvme_cpl:
7296 	free(bio->zone_report_buf);
7297 	bio->zone_report_buf = NULL;
7298 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7299 	return;
7300 
7301 out_complete_io_ret:
7302 	free(bio->zone_report_buf);
7303 	bio->zone_report_buf = NULL;
7304 	bdev_nvme_io_complete(bio, ret);
7305 }
7306 
7307 static void
7308 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
7309 {
7310 	struct nvme_bdev_io *bio = ref;
7311 
7312 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7313 }
7314 
7315 static void
7316 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
7317 {
7318 	struct nvme_bdev_io *bio = ctx;
7319 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7320 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
7321 
7322 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
7323 
7324 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
7325 }
7326 
7327 static void
7328 bdev_nvme_abort_complete(void *ctx)
7329 {
7330 	struct nvme_bdev_io *bio = ctx;
7331 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7332 
7333 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
7334 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
7335 	} else {
7336 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
7337 	}
7338 }
7339 
7340 static void
7341 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
7342 {
7343 	struct nvme_bdev_io *bio = ref;
7344 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7345 
7346 	bio->cpl = *cpl;
7347 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_nvme_abort_complete, bio);
7348 }
7349 
7350 static void
7351 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
7352 {
7353 	struct nvme_bdev_io *bio = ref;
7354 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7355 
7356 	bio->cpl = *cpl;
7357 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
7358 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
7359 }
7360 
7361 static void
7362 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
7363 {
7364 	struct nvme_bdev_io *bio = ref;
7365 	struct iovec *iov;
7366 
7367 	bio->iov_offset = sgl_offset;
7368 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
7369 		iov = &bio->iovs[bio->iovpos];
7370 		if (bio->iov_offset < iov->iov_len) {
7371 			break;
7372 		}
7373 
7374 		bio->iov_offset -= iov->iov_len;
7375 	}
7376 }
7377 
7378 static int
7379 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
7380 {
7381 	struct nvme_bdev_io *bio = ref;
7382 	struct iovec *iov;
7383 
7384 	assert(bio->iovpos < bio->iovcnt);
7385 
7386 	iov = &bio->iovs[bio->iovpos];
7387 
7388 	*address = iov->iov_base;
7389 	*length = iov->iov_len;
7390 
7391 	if (bio->iov_offset) {
7392 		assert(bio->iov_offset <= iov->iov_len);
7393 		*address += bio->iov_offset;
7394 		*length -= bio->iov_offset;
7395 	}
7396 
7397 	bio->iov_offset += *length;
7398 	if (bio->iov_offset == iov->iov_len) {
7399 		bio->iovpos++;
7400 		bio->iov_offset = 0;
7401 	}
7402 
7403 	return 0;
7404 }
7405 
7406 static void
7407 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
7408 {
7409 	struct nvme_bdev_io *bio = ref;
7410 	struct iovec *iov;
7411 
7412 	bio->fused_iov_offset = sgl_offset;
7413 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
7414 		iov = &bio->fused_iovs[bio->fused_iovpos];
7415 		if (bio->fused_iov_offset < iov->iov_len) {
7416 			break;
7417 		}
7418 
7419 		bio->fused_iov_offset -= iov->iov_len;
7420 	}
7421 }
7422 
7423 static int
7424 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
7425 {
7426 	struct nvme_bdev_io *bio = ref;
7427 	struct iovec *iov;
7428 
7429 	assert(bio->fused_iovpos < bio->fused_iovcnt);
7430 
7431 	iov = &bio->fused_iovs[bio->fused_iovpos];
7432 
7433 	*address = iov->iov_base;
7434 	*length = iov->iov_len;
7435 
7436 	if (bio->fused_iov_offset) {
7437 		assert(bio->fused_iov_offset <= iov->iov_len);
7438 		*address += bio->fused_iov_offset;
7439 		*length -= bio->fused_iov_offset;
7440 	}
7441 
7442 	bio->fused_iov_offset += *length;
7443 	if (bio->fused_iov_offset == iov->iov_len) {
7444 		bio->fused_iovpos++;
7445 		bio->fused_iov_offset = 0;
7446 	}
7447 
7448 	return 0;
7449 }
7450 
7451 static int
7452 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7453 		      void *md, uint64_t lba_count, uint64_t lba)
7454 {
7455 	int rc;
7456 
7457 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
7458 		      lba_count, lba);
7459 
7460 	bio->iovs = iov;
7461 	bio->iovcnt = iovcnt;
7462 	bio->iovpos = 0;
7463 	bio->iov_offset = 0;
7464 
7465 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
7466 					    bio->io_path->qpair->qpair,
7467 					    lba, lba_count,
7468 					    bdev_nvme_no_pi_readv_done, bio, 0,
7469 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7470 					    md, 0, 0);
7471 
7472 	if (rc != 0 && rc != -ENOMEM) {
7473 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
7474 	}
7475 	return rc;
7476 }
7477 
7478 static int
7479 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7480 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7481 		struct spdk_memory_domain *domain, void *domain_ctx,
7482 		struct spdk_accel_sequence *seq)
7483 {
7484 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7485 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7486 	int rc;
7487 
7488 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7489 		      lba_count, lba);
7490 
7491 	bio->iovs = iov;
7492 	bio->iovcnt = iovcnt;
7493 	bio->iovpos = 0;
7494 	bio->iov_offset = 0;
7495 
7496 	if (domain != NULL || seq != NULL) {
7497 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7498 		bio->ext_opts.memory_domain = domain;
7499 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7500 		bio->ext_opts.io_flags = flags;
7501 		bio->ext_opts.metadata = md;
7502 		bio->ext_opts.accel_sequence = seq;
7503 
7504 		rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
7505 						bdev_nvme_readv_done, bio,
7506 						bdev_nvme_queued_reset_sgl,
7507 						bdev_nvme_queued_next_sge,
7508 						&bio->ext_opts);
7509 	} else if (iovcnt == 1) {
7510 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base,
7511 						   md, lba, lba_count, bdev_nvme_readv_done,
7512 						   bio, flags, 0, 0);
7513 	} else {
7514 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
7515 						    bdev_nvme_readv_done, bio, flags,
7516 						    bdev_nvme_queued_reset_sgl,
7517 						    bdev_nvme_queued_next_sge, md, 0, 0);
7518 	}
7519 
7520 	if (rc != 0 && rc != -ENOMEM) {
7521 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
7522 	}
7523 	return rc;
7524 }
7525 
7526 static int
7527 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7528 		 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7529 		 struct spdk_memory_domain *domain, void *domain_ctx,
7530 		 struct spdk_accel_sequence *seq)
7531 {
7532 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7533 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7534 	int rc;
7535 
7536 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7537 		      lba_count, lba);
7538 
7539 	bio->iovs = iov;
7540 	bio->iovcnt = iovcnt;
7541 	bio->iovpos = 0;
7542 	bio->iov_offset = 0;
7543 
7544 	if (domain != NULL || seq != NULL) {
7545 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7546 		bio->ext_opts.memory_domain = domain;
7547 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7548 		bio->ext_opts.io_flags = flags;
7549 		bio->ext_opts.metadata = md;
7550 		bio->ext_opts.accel_sequence = seq;
7551 
7552 		rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
7553 						 bdev_nvme_writev_done, bio,
7554 						 bdev_nvme_queued_reset_sgl,
7555 						 bdev_nvme_queued_next_sge,
7556 						 &bio->ext_opts);
7557 	} else if (iovcnt == 1) {
7558 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base,
7559 						    md, lba, lba_count, bdev_nvme_writev_done,
7560 						    bio, flags, 0, 0);
7561 	} else {
7562 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7563 						     bdev_nvme_writev_done, bio, flags,
7564 						     bdev_nvme_queued_reset_sgl,
7565 						     bdev_nvme_queued_next_sge, md, 0, 0);
7566 	}
7567 
7568 	if (rc != 0 && rc != -ENOMEM) {
7569 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
7570 	}
7571 	return rc;
7572 }
7573 
7574 static int
7575 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7576 		       void *md, uint64_t lba_count, uint64_t zslba,
7577 		       uint32_t flags)
7578 {
7579 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7580 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7581 	int rc;
7582 
7583 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
7584 		      lba_count, zslba);
7585 
7586 	bio->iovs = iov;
7587 	bio->iovcnt = iovcnt;
7588 	bio->iovpos = 0;
7589 	bio->iov_offset = 0;
7590 
7591 	if (iovcnt == 1) {
7592 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
7593 						       lba_count,
7594 						       bdev_nvme_zone_appendv_done, bio,
7595 						       flags,
7596 						       0, 0);
7597 	} else {
7598 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
7599 							bdev_nvme_zone_appendv_done, bio, flags,
7600 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7601 							md, 0, 0);
7602 	}
7603 
7604 	if (rc != 0 && rc != -ENOMEM) {
7605 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
7606 	}
7607 	return rc;
7608 }
7609 
7610 static int
7611 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7612 		   void *md, uint64_t lba_count, uint64_t lba,
7613 		   uint32_t flags)
7614 {
7615 	int rc;
7616 
7617 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7618 		      lba_count, lba);
7619 
7620 	bio->iovs = iov;
7621 	bio->iovcnt = iovcnt;
7622 	bio->iovpos = 0;
7623 	bio->iov_offset = 0;
7624 
7625 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
7626 					       bio->io_path->qpair->qpair,
7627 					       lba, lba_count,
7628 					       bdev_nvme_comparev_done, bio, flags,
7629 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7630 					       md, 0, 0);
7631 
7632 	if (rc != 0 && rc != -ENOMEM) {
7633 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
7634 	}
7635 	return rc;
7636 }
7637 
7638 static int
7639 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
7640 			      struct iovec *write_iov, int write_iovcnt,
7641 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
7642 {
7643 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7644 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7645 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7646 	int rc;
7647 
7648 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7649 		      lba_count, lba);
7650 
7651 	bio->iovs = cmp_iov;
7652 	bio->iovcnt = cmp_iovcnt;
7653 	bio->iovpos = 0;
7654 	bio->iov_offset = 0;
7655 	bio->fused_iovs = write_iov;
7656 	bio->fused_iovcnt = write_iovcnt;
7657 	bio->fused_iovpos = 0;
7658 	bio->fused_iov_offset = 0;
7659 
7660 	if (bdev_io->num_retries == 0) {
7661 		bio->first_fused_submitted = false;
7662 		bio->first_fused_completed = false;
7663 	}
7664 
7665 	if (!bio->first_fused_submitted) {
7666 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7667 		memset(&bio->cpl, 0, sizeof(bio->cpl));
7668 
7669 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
7670 						       bdev_nvme_comparev_and_writev_done, bio, flags,
7671 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
7672 		if (rc == 0) {
7673 			bio->first_fused_submitted = true;
7674 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7675 		} else {
7676 			if (rc != -ENOMEM) {
7677 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
7678 			}
7679 			return rc;
7680 		}
7681 	}
7682 
7683 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
7684 
7685 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7686 					     bdev_nvme_comparev_and_writev_done, bio, flags,
7687 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
7688 	if (rc != 0 && rc != -ENOMEM) {
7689 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
7690 		rc = 0;
7691 	}
7692 
7693 	return rc;
7694 }
7695 
7696 static int
7697 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
7698 {
7699 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
7700 	struct spdk_nvme_dsm_range *range;
7701 	uint64_t offset, remaining;
7702 	uint64_t num_ranges_u64;
7703 	uint16_t num_ranges;
7704 	int rc;
7705 
7706 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
7707 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7708 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
7709 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
7710 		return -EINVAL;
7711 	}
7712 	num_ranges = (uint16_t)num_ranges_u64;
7713 
7714 	offset = offset_blocks;
7715 	remaining = num_blocks;
7716 	range = &dsm_ranges[0];
7717 
7718 	/* Fill max-size ranges until the remaining blocks fit into one range */
7719 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
7720 		range->attributes.raw = 0;
7721 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7722 		range->starting_lba = offset;
7723 
7724 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7725 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7726 		range++;
7727 	}
7728 
7729 	/* Final range describes the remaining blocks */
7730 	range->attributes.raw = 0;
7731 	range->length = remaining;
7732 	range->starting_lba = offset;
7733 
7734 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
7735 			bio->io_path->qpair->qpair,
7736 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
7737 			dsm_ranges, num_ranges,
7738 			bdev_nvme_queued_done, bio);
7739 
7740 	return rc;
7741 }
7742 
7743 static int
7744 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
7745 {
7746 	if (num_blocks > UINT16_MAX + 1) {
7747 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
7748 		return -EINVAL;
7749 	}
7750 
7751 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
7752 					     bio->io_path->qpair->qpair,
7753 					     offset_blocks, num_blocks,
7754 					     bdev_nvme_queued_done, bio,
7755 					     0);
7756 }
7757 
7758 static int
7759 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
7760 			struct spdk_bdev_zone_info *info)
7761 {
7762 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7763 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7764 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7765 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7766 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
7767 
7768 	if (zone_id % zone_size != 0) {
7769 		return -EINVAL;
7770 	}
7771 
7772 	if (num_zones > total_zones || !num_zones) {
7773 		return -EINVAL;
7774 	}
7775 
7776 	assert(!bio->zone_report_buf);
7777 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
7778 	if (!bio->zone_report_buf) {
7779 		return -ENOMEM;
7780 	}
7781 
7782 	bio->handled_zones = 0;
7783 
7784 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
7785 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
7786 					  bdev_nvme_get_zone_info_done, bio);
7787 }
7788 
7789 static int
7790 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
7791 			  enum spdk_bdev_zone_action action)
7792 {
7793 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7794 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7795 
7796 	switch (action) {
7797 	case SPDK_BDEV_ZONE_CLOSE:
7798 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
7799 						bdev_nvme_zone_management_done, bio);
7800 	case SPDK_BDEV_ZONE_FINISH:
7801 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
7802 						 bdev_nvme_zone_management_done, bio);
7803 	case SPDK_BDEV_ZONE_OPEN:
7804 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
7805 					       bdev_nvme_zone_management_done, bio);
7806 	case SPDK_BDEV_ZONE_RESET:
7807 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
7808 						bdev_nvme_zone_management_done, bio);
7809 	case SPDK_BDEV_ZONE_OFFLINE:
7810 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
7811 						  bdev_nvme_zone_management_done, bio);
7812 	default:
7813 		return -EINVAL;
7814 	}
7815 }
7816 
7817 static void
7818 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
7819 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
7820 {
7821 	struct nvme_io_path *io_path;
7822 	struct nvme_ctrlr *nvme_ctrlr;
7823 	uint32_t max_xfer_size;
7824 	int rc = -ENXIO;
7825 
7826 	/* Choose the first ctrlr which is not failed. */
7827 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
7828 		nvme_ctrlr = io_path->qpair->ctrlr;
7829 
7830 		/* We should skip any unavailable nvme_ctrlr rather than checking
7831 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
7832 		 */
7833 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
7834 			continue;
7835 		}
7836 
7837 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
7838 
7839 		if (nbytes > max_xfer_size) {
7840 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7841 			rc = -EINVAL;
7842 			goto err;
7843 		}
7844 
7845 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
7846 						   bdev_nvme_admin_passthru_done, bio);
7847 		if (rc == 0) {
7848 			return;
7849 		}
7850 	}
7851 
7852 err:
7853 	bdev_nvme_admin_complete(bio, rc);
7854 }
7855 
7856 static int
7857 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
7858 		      void *buf, size_t nbytes)
7859 {
7860 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7861 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7862 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
7863 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
7864 
7865 	if (nbytes > max_xfer_size) {
7866 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7867 		return -EINVAL;
7868 	}
7869 
7870 	/*
7871 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
7872 	 * so fill it out automatically.
7873 	 */
7874 	cmd->nsid = spdk_nvme_ns_get_id(ns);
7875 
7876 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
7877 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
7878 }
7879 
7880 static int
7881 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
7882 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
7883 {
7884 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7885 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7886 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
7887 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
7888 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
7889 
7890 	if (nbytes > max_xfer_size) {
7891 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7892 		return -EINVAL;
7893 	}
7894 
7895 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
7896 		SPDK_ERRLOG("invalid meta data buffer size\n");
7897 		return -EINVAL;
7898 	}
7899 
7900 	/*
7901 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
7902 	 * so fill it out automatically.
7903 	 */
7904 	cmd->nsid = spdk_nvme_ns_get_id(ns);
7905 
7906 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
7907 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
7908 }
7909 
7910 static int
7911 bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio,
7912 			  struct spdk_nvme_cmd *cmd, struct iovec *iov, int iovcnt,
7913 			  size_t nbytes, void *md_buf, size_t md_len)
7914 {
7915 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7916 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7917 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
7918 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
7919 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
7920 
7921 	bio->iovs = iov;
7922 	bio->iovcnt = iovcnt;
7923 	bio->iovpos = 0;
7924 	bio->iov_offset = 0;
7925 
7926 	if (nbytes > max_xfer_size) {
7927 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
7928 		return -EINVAL;
7929 	}
7930 
7931 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
7932 		SPDK_ERRLOG("invalid meta data buffer size\n");
7933 		return -EINVAL;
7934 	}
7935 
7936 	/*
7937 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands
7938 	 * require a nsid, so fill it out automatically.
7939 	 */
7940 	cmd->nsid = spdk_nvme_ns_get_id(ns);
7941 
7942 	return spdk_nvme_ctrlr_cmd_iov_raw_with_md(
7943 		       ctrlr, qpair, cmd, (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio,
7944 		       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge);
7945 }
7946 
7947 static void
7948 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
7949 		struct nvme_bdev_io *bio_to_abort)
7950 {
7951 	struct nvme_io_path *io_path;
7952 	int rc = 0;
7953 
7954 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
7955 	if (rc == 0) {
7956 		bdev_nvme_admin_complete(bio, 0);
7957 		return;
7958 	}
7959 
7960 	io_path = bio_to_abort->io_path;
7961 	if (io_path != NULL) {
7962 		rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
7963 						   io_path->qpair->qpair,
7964 						   bio_to_abort,
7965 						   bdev_nvme_abort_done, bio);
7966 	} else {
7967 		STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
7968 			rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
7969 							   NULL,
7970 							   bio_to_abort,
7971 							   bdev_nvme_abort_done, bio);
7972 
7973 			if (rc != -ENOENT) {
7974 				break;
7975 			}
7976 		}
7977 	}
7978 
7979 	if (rc != 0) {
7980 		/* If no command was found or there was any error, complete the abort
7981 		 * request with failure.
7982 		 */
7983 		bdev_nvme_admin_complete(bio, rc);
7984 	}
7985 }
7986 
7987 static int
7988 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
7989 	       uint64_t num_blocks)
7990 {
7991 	struct spdk_nvme_scc_source_range range = {
7992 		.slba = src_offset_blocks,
7993 		.nlb = num_blocks - 1
7994 	};
7995 
7996 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
7997 				     bio->io_path->qpair->qpair,
7998 				     &range, 1, dst_offset_blocks,
7999 				     bdev_nvme_queued_done, bio);
8000 }
8001 
8002 static void
8003 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
8004 {
8005 	const char	*action;
8006 
8007 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
8008 		action = "reset";
8009 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
8010 		action = "abort";
8011 	} else {
8012 		action = "none";
8013 	}
8014 
8015 	spdk_json_write_object_begin(w);
8016 
8017 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
8018 
8019 	spdk_json_write_named_object_begin(w, "params");
8020 	spdk_json_write_named_string(w, "action_on_timeout", action);
8021 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
8022 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
8023 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
8024 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
8025 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
8026 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
8027 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
8028 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
8029 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
8030 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
8031 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
8032 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
8033 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
8034 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
8035 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
8036 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
8037 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
8038 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
8039 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
8040 	spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat);
8041 	spdk_json_write_named_bool(w, "allow_accel_sequence", g_opts.allow_accel_sequence);
8042 	spdk_json_write_object_end(w);
8043 
8044 	spdk_json_write_object_end(w);
8045 }
8046 
8047 static void
8048 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
8049 {
8050 	struct spdk_nvme_transport_id trid;
8051 
8052 	spdk_json_write_object_begin(w);
8053 
8054 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
8055 
8056 	spdk_json_write_named_object_begin(w, "params");
8057 	spdk_json_write_named_string(w, "name", ctx->name);
8058 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
8059 
8060 	trid = ctx->trid;
8061 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
8062 	nvme_bdev_dump_trid_json(&trid, w);
8063 
8064 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
8065 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
8066 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
8067 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8068 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
8069 	spdk_json_write_object_end(w);
8070 
8071 	spdk_json_write_object_end(w);
8072 }
8073 
8074 #ifdef SPDK_CONFIG_NVME_CUSE
8075 static void
8076 nvme_ctrlr_cuse_config_json(struct spdk_json_write_ctx *w,
8077 			    struct nvme_ctrlr *nvme_ctrlr)
8078 {
8079 	size_t cuse_name_size = 128;
8080 	char cuse_name[cuse_name_size];
8081 
8082 	if (spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr,
8083 					  cuse_name, &cuse_name_size) != 0) {
8084 		return;
8085 	}
8086 
8087 	spdk_json_write_object_begin(w);
8088 
8089 	spdk_json_write_named_string(w, "method", "bdev_nvme_cuse_register");
8090 
8091 	spdk_json_write_named_object_begin(w, "params");
8092 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8093 	spdk_json_write_object_end(w);
8094 
8095 	spdk_json_write_object_end(w);
8096 }
8097 #endif
8098 
8099 static void
8100 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
8101 		       struct nvme_ctrlr *nvme_ctrlr)
8102 {
8103 	struct spdk_nvme_transport_id	*trid;
8104 	const struct spdk_nvme_ctrlr_opts *opts;
8105 
8106 	if (nvme_ctrlr->opts.from_discovery_service) {
8107 		/* Do not emit an RPC for this - it will be implicitly
8108 		 * covered by a separate bdev_nvme_start_discovery or
8109 		 * bdev_nvme_start_mdns_discovery RPC.
8110 		 */
8111 		return;
8112 	}
8113 
8114 	trid = &nvme_ctrlr->active_path_id->trid;
8115 
8116 	spdk_json_write_object_begin(w);
8117 
8118 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
8119 
8120 	spdk_json_write_named_object_begin(w, "params");
8121 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8122 	nvme_bdev_dump_trid_json(trid, w);
8123 	spdk_json_write_named_bool(w, "prchk_reftag",
8124 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
8125 	spdk_json_write_named_bool(w, "prchk_guard",
8126 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
8127 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
8128 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
8129 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8130 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
8131 	if (nvme_ctrlr->opts.psk_path[0] != '\0') {
8132 		spdk_json_write_named_string(w, "psk", nvme_ctrlr->opts.psk_path);
8133 	}
8134 
8135 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
8136 	spdk_json_write_named_string(w, "hostnqn", opts->hostnqn);
8137 	spdk_json_write_named_bool(w, "hdgst", opts->header_digest);
8138 	spdk_json_write_named_bool(w, "ddgst", opts->data_digest);
8139 
8140 	spdk_json_write_object_end(w);
8141 
8142 	spdk_json_write_object_end(w);
8143 }
8144 
8145 static void
8146 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
8147 {
8148 	spdk_json_write_object_begin(w);
8149 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
8150 
8151 	spdk_json_write_named_object_begin(w, "params");
8152 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
8153 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
8154 	spdk_json_write_object_end(w);
8155 
8156 	spdk_json_write_object_end(w);
8157 }
8158 
8159 static int
8160 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
8161 {
8162 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
8163 	struct nvme_ctrlr	*nvme_ctrlr;
8164 	struct discovery_ctx	*ctx;
8165 
8166 	bdev_nvme_opts_config_json(w);
8167 
8168 	pthread_mutex_lock(&g_bdev_nvme_mutex);
8169 
8170 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
8171 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
8172 			nvme_ctrlr_config_json(w, nvme_ctrlr);
8173 
8174 #ifdef SPDK_CONFIG_NVME_CUSE
8175 			nvme_ctrlr_cuse_config_json(w, nvme_ctrlr);
8176 #endif
8177 		}
8178 	}
8179 
8180 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8181 		if (!ctx->from_mdns_discovery_service) {
8182 			bdev_nvme_discovery_config_json(w, ctx);
8183 		}
8184 	}
8185 
8186 	bdev_nvme_mdns_discovery_config_json(w);
8187 
8188 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
8189 	 * before enabling hotplug poller.
8190 	 */
8191 	bdev_nvme_hotplug_config_json(w);
8192 
8193 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
8194 	return 0;
8195 }
8196 
8197 struct spdk_nvme_ctrlr *
8198 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
8199 {
8200 	struct nvme_bdev *nbdev;
8201 	struct nvme_ns *nvme_ns;
8202 
8203 	if (!bdev || bdev->module != &nvme_if) {
8204 		return NULL;
8205 	}
8206 
8207 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
8208 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
8209 	assert(nvme_ns != NULL);
8210 
8211 	return nvme_ns->ctrlr->ctrlr;
8212 }
8213 
8214 void
8215 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
8216 {
8217 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
8218 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
8219 	const struct spdk_nvme_ctrlr_data *cdata;
8220 	const struct spdk_nvme_transport_id *trid;
8221 	const char *adrfam_str;
8222 
8223 	spdk_json_write_object_begin(w);
8224 
8225 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
8226 
8227 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
8228 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
8229 
8230 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
8231 	spdk_json_write_named_bool(w, "current", io_path->nbdev_ch != NULL &&
8232 				   io_path == io_path->nbdev_ch->current_io_path);
8233 	spdk_json_write_named_bool(w, "connected", nvme_qpair_is_connected(io_path->qpair));
8234 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
8235 
8236 	spdk_json_write_named_object_begin(w, "transport");
8237 	spdk_json_write_named_string(w, "trtype", trid->trstring);
8238 	spdk_json_write_named_string(w, "traddr", trid->traddr);
8239 	if (trid->trsvcid[0] != '\0') {
8240 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
8241 	}
8242 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
8243 	if (adrfam_str) {
8244 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
8245 	}
8246 	spdk_json_write_object_end(w);
8247 
8248 	spdk_json_write_object_end(w);
8249 }
8250 
8251 void
8252 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
8253 {
8254 	struct discovery_ctx *ctx;
8255 	struct discovery_entry_ctx *entry_ctx;
8256 
8257 	spdk_json_write_array_begin(w);
8258 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8259 		spdk_json_write_object_begin(w);
8260 		spdk_json_write_named_string(w, "name", ctx->name);
8261 
8262 		spdk_json_write_named_object_begin(w, "trid");
8263 		nvme_bdev_dump_trid_json(&ctx->trid, w);
8264 		spdk_json_write_object_end(w);
8265 
8266 		spdk_json_write_named_array_begin(w, "referrals");
8267 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
8268 			spdk_json_write_object_begin(w);
8269 			spdk_json_write_named_object_begin(w, "trid");
8270 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
8271 			spdk_json_write_object_end(w);
8272 			spdk_json_write_object_end(w);
8273 		}
8274 		spdk_json_write_array_end(w);
8275 
8276 		spdk_json_write_object_end(w);
8277 	}
8278 	spdk_json_write_array_end(w);
8279 }
8280 
8281 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
8282 
8283 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
8284 {
8285 	struct spdk_trace_tpoint_opts opts[] = {
8286 		{
8287 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
8288 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 1,
8289 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8290 		},
8291 		{
8292 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
8293 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 0,
8294 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8295 		}
8296 	};
8297 
8298 
8299 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
8300 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
8301 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8302 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8303 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8304 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8305 }
8306