xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision ab762622184031f37e1b5d4ffbb84b1e97c628fb)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/keyring.h"
18 #include "spdk/likely.h"
19 #include "spdk/nvme.h"
20 #include "spdk/nvme_ocssd.h"
21 #include "spdk/nvme_zns.h"
22 #include "spdk/opal.h"
23 #include "spdk/thread.h"
24 #include "spdk/trace.h"
25 #include "spdk/string.h"
26 #include "spdk/util.h"
27 #include "spdk/uuid.h"
28 
29 #include "spdk/bdev_module.h"
30 #include "spdk/log.h"
31 
32 #include "spdk_internal/usdt.h"
33 #include "spdk_internal/trace_defs.h"
34 
35 #define CTRLR_STRING(nvme_ctrlr) \
36 	(spdk_nvme_trtype_is_fabrics(nvme_ctrlr->active_path_id->trid.trtype) ? \
37 	nvme_ctrlr->active_path_id->trid.subnqn : nvme_ctrlr->active_path_id->trid.traddr)
38 
39 #define CTRLR_ID(nvme_ctrlr)	(spdk_nvme_ctrlr_get_id(nvme_ctrlr->ctrlr))
40 
41 #define NVME_CTRLR_ERRLOG(ctrlr, format, ...) \
42 	SPDK_ERRLOG("[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
43 
44 #define NVME_CTRLR_WARNLOG(ctrlr, format, ...) \
45 	SPDK_WARNLOG("[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
46 
47 #define NVME_CTRLR_NOTICELOG(ctrlr, format, ...) \
48 	SPDK_NOTICELOG("[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
49 
50 #define NVME_CTRLR_INFOLOG(ctrlr, format, ...) \
51 	SPDK_INFOLOG(bdev_nvme, "[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
52 
53 #ifdef DEBUG
54 #define NVME_CTRLR_DEBUGLOG(ctrlr, format, ...) \
55 	SPDK_DEBUGLOG(bdev_nvme, "[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
56 #else
57 #define NVME_CTRLR_DEBUGLOG(ctrlr, ...) do { } while (0)
58 #endif
59 
60 #define BDEV_STRING(nbdev) (nbdev->disk.name)
61 
62 #define NVME_BDEV_ERRLOG(nbdev, format, ...) \
63 	SPDK_ERRLOG("[%s] " format, BDEV_STRING(nbdev), ##__VA_ARGS__);
64 
65 #define NVME_BDEV_WARNLOG(nbdev, format, ...) \
66 	SPDK_WARNLOG("[%s] " format, BDEV_STRING(nbdev), ##__VA_ARGS__);
67 
68 #define NVME_BDEV_NOTICELOG(nbdev, format, ...) \
69 	SPDK_NOTICELOG("[%s] " format, BDEV_STRING(nbdev), ##__VA_ARGS__);
70 
71 #define NVME_BDEV_INFOLOG(nbdev, format, ...) \
72 	SPDK_INFOLOG(bdev_nvme, "[%s] " format, BDEV_STRING(nbdev), ##__VA_ARGS__);
73 
74 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
75 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
76 
77 #define NSID_STR_LEN 10
78 
79 #define SPDK_CONTROLLER_NAME_MAX 512
80 
81 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
82 
83 struct nvme_bdev_io {
84 	/** array of iovecs to transfer. */
85 	struct iovec *iovs;
86 
87 	/** Number of iovecs in iovs array. */
88 	int iovcnt;
89 
90 	/** Current iovec position. */
91 	int iovpos;
92 
93 	/** Offset in current iovec. */
94 	uint32_t iov_offset;
95 
96 	/** Offset in current iovec. */
97 	uint32_t fused_iov_offset;
98 
99 	/** array of iovecs to transfer. */
100 	struct iovec *fused_iovs;
101 
102 	/** Number of iovecs in iovs array. */
103 	int fused_iovcnt;
104 
105 	/** Current iovec position. */
106 	int fused_iovpos;
107 
108 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
109 	 *  being reset in a reset I/O.
110 	 */
111 	struct nvme_io_path *io_path;
112 
113 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
114 	struct spdk_nvme_cpl cpl;
115 
116 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
117 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
118 
119 	/** Keeps track if first of fused commands was submitted */
120 	bool first_fused_submitted;
121 
122 	/** Keeps track if first of fused commands was completed */
123 	bool first_fused_completed;
124 
125 	/* How many times the current I/O was retried. */
126 	int32_t retry_count;
127 
128 	/** Expiration value in ticks to retry the current I/O. */
129 	uint64_t retry_ticks;
130 
131 	/** Temporary pointer to zone report buffer */
132 	struct spdk_nvme_zns_zone_report *zone_report_buf;
133 
134 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
135 	uint64_t handled_zones;
136 
137 	/* Current tsc at submit time. */
138 	uint64_t submit_tsc;
139 
140 	/* Used to put nvme_bdev_io into the list */
141 	TAILQ_ENTRY(nvme_bdev_io) retry_link;
142 };
143 
144 struct nvme_probe_skip_entry {
145 	struct spdk_nvme_transport_id		trid;
146 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
147 };
148 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
149 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
150 			g_skipped_nvme_ctrlrs);
151 
152 #define BDEV_NVME_DEFAULT_DIGESTS (SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) | \
153 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) | \
154 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512))
155 
156 #define BDEV_NVME_DEFAULT_DHGROUPS (SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) | \
157 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) | \
158 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) | \
159 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) | \
160 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) | \
161 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192))
162 
163 static struct spdk_bdev_nvme_opts g_opts = {
164 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
165 	.timeout_us = 0,
166 	.timeout_admin_us = 0,
167 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
168 	.transport_retry_count = 4,
169 	.arbitration_burst = 0,
170 	.low_priority_weight = 0,
171 	.medium_priority_weight = 0,
172 	.high_priority_weight = 0,
173 	.nvme_adminq_poll_period_us = 10000ULL,
174 	.nvme_ioq_poll_period_us = 0,
175 	.io_queue_requests = 0,
176 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
177 	.bdev_retry_count = 3,
178 	.transport_ack_timeout = 0,
179 	.ctrlr_loss_timeout_sec = 0,
180 	.reconnect_delay_sec = 0,
181 	.fast_io_fail_timeout_sec = 0,
182 	.disable_auto_failback = false,
183 	.generate_uuids = false,
184 	.transport_tos = 0,
185 	.nvme_error_stat = false,
186 	.io_path_stat = false,
187 	.allow_accel_sequence = false,
188 	.dhchap_digests = BDEV_NVME_DEFAULT_DIGESTS,
189 	.dhchap_dhgroups = BDEV_NVME_DEFAULT_DHGROUPS,
190 };
191 
192 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
193 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
194 
195 static int g_hot_insert_nvme_controller_index = 0;
196 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
197 static bool g_nvme_hotplug_enabled = false;
198 struct spdk_thread *g_bdev_nvme_init_thread;
199 static struct spdk_poller *g_hotplug_poller;
200 static struct spdk_poller *g_hotplug_probe_poller;
201 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
202 
203 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
204 		struct nvme_async_probe_ctx *ctx);
205 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
206 		struct nvme_async_probe_ctx *ctx);
207 static int bdev_nvme_library_init(void);
208 static void bdev_nvme_library_fini(void);
209 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
210 				      struct spdk_bdev_io *bdev_io);
211 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
212 				     struct spdk_bdev_io *bdev_io);
213 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
214 			   void *md, uint64_t lba_count, uint64_t lba,
215 			   uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
216 			   struct spdk_accel_sequence *seq);
217 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
218 				 void *md, uint64_t lba_count, uint64_t lba);
219 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
220 			    void *md, uint64_t lba_count, uint64_t lba,
221 			    uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
222 			    struct spdk_accel_sequence *seq,
223 			    union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13);
224 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
225 				  void *md, uint64_t lba_count,
226 				  uint64_t zslba, uint32_t flags);
227 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
228 			      void *md, uint64_t lba_count, uint64_t lba,
229 			      uint32_t flags);
230 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
231 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
232 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
233 		uint32_t flags);
234 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
235 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
236 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
237 				     enum spdk_bdev_zone_action action);
238 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
239 				     struct nvme_bdev_io *bio,
240 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
241 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
242 				 void *buf, size_t nbytes);
243 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
244 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
245 static int bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
246 				     struct iovec *iov, int iovcnt, size_t nbytes,
247 				     void *md_buf, size_t md_len);
248 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
249 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
250 static void bdev_nvme_reset_io(struct nvme_bdev *nbdev, struct nvme_bdev_io *bio);
251 static int bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
252 static int bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
253 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
254 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
255 
256 static struct nvme_ns *nvme_ns_alloc(void);
257 static void nvme_ns_free(struct nvme_ns *ns);
258 
259 static int
260 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
261 {
262 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
263 }
264 
265 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
266 
267 struct spdk_nvme_qpair *
268 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
269 {
270 	struct nvme_ctrlr_channel *ctrlr_ch;
271 
272 	assert(ctrlr_io_ch != NULL);
273 
274 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
275 
276 	return ctrlr_ch->qpair->qpair;
277 }
278 
279 static int
280 bdev_nvme_get_ctx_size(void)
281 {
282 	return sizeof(struct nvme_bdev_io);
283 }
284 
285 static struct spdk_bdev_module nvme_if = {
286 	.name = "nvme",
287 	.async_fini = true,
288 	.module_init = bdev_nvme_library_init,
289 	.module_fini = bdev_nvme_library_fini,
290 	.config_json = bdev_nvme_config_json,
291 	.get_ctx_size = bdev_nvme_get_ctx_size,
292 
293 };
294 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
295 
296 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
297 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
298 bool g_bdev_nvme_module_finish;
299 
300 struct nvme_bdev_ctrlr *
301 nvme_bdev_ctrlr_get_by_name(const char *name)
302 {
303 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
304 
305 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
306 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
307 			break;
308 		}
309 	}
310 
311 	return nbdev_ctrlr;
312 }
313 
314 static struct nvme_ctrlr *
315 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
316 			  const struct spdk_nvme_transport_id *trid, const char *hostnqn)
317 {
318 	const struct spdk_nvme_ctrlr_opts *opts;
319 	struct nvme_ctrlr *nvme_ctrlr;
320 
321 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
322 		opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
323 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0 &&
324 		    strcmp(hostnqn, opts->hostnqn) == 0) {
325 			break;
326 		}
327 	}
328 
329 	return nvme_ctrlr;
330 }
331 
332 struct nvme_ctrlr *
333 nvme_bdev_ctrlr_get_ctrlr_by_id(struct nvme_bdev_ctrlr *nbdev_ctrlr,
334 				uint16_t cntlid)
335 {
336 	struct nvme_ctrlr *nvme_ctrlr;
337 	const struct spdk_nvme_ctrlr_data *cdata;
338 
339 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
340 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
341 		if (cdata->cntlid == cntlid) {
342 			break;
343 		}
344 	}
345 
346 	return nvme_ctrlr;
347 }
348 
349 static struct nvme_bdev *
350 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
351 {
352 	struct nvme_bdev *bdev;
353 
354 	pthread_mutex_lock(&g_bdev_nvme_mutex);
355 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
356 		if (bdev->nsid == nsid) {
357 			break;
358 		}
359 	}
360 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
361 
362 	return bdev;
363 }
364 
365 struct nvme_ns *
366 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
367 {
368 	struct nvme_ns ns;
369 
370 	assert(nsid > 0);
371 
372 	ns.id = nsid;
373 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
374 }
375 
376 struct nvme_ns *
377 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
378 {
379 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
380 }
381 
382 struct nvme_ns *
383 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
384 {
385 	if (ns == NULL) {
386 		return NULL;
387 	}
388 
389 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
390 }
391 
392 static struct nvme_ctrlr *
393 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid, const char *hostnqn)
394 {
395 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
396 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
397 
398 	pthread_mutex_lock(&g_bdev_nvme_mutex);
399 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
400 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid, hostnqn);
401 		if (nvme_ctrlr != NULL) {
402 			break;
403 		}
404 	}
405 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
406 
407 	return nvme_ctrlr;
408 }
409 
410 struct nvme_ctrlr *
411 nvme_ctrlr_get_by_name(const char *name)
412 {
413 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
414 	struct nvme_ctrlr *nvme_ctrlr = NULL;
415 
416 	if (name == NULL) {
417 		return NULL;
418 	}
419 
420 	pthread_mutex_lock(&g_bdev_nvme_mutex);
421 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
422 	if (nbdev_ctrlr != NULL) {
423 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
424 	}
425 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
426 
427 	return nvme_ctrlr;
428 }
429 
430 void
431 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
432 {
433 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
434 
435 	pthread_mutex_lock(&g_bdev_nvme_mutex);
436 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
437 		fn(nbdev_ctrlr, ctx);
438 	}
439 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
440 }
441 
442 struct nvme_ctrlr_channel_iter {
443 	nvme_ctrlr_for_each_channel_msg fn;
444 	nvme_ctrlr_for_each_channel_done cpl;
445 	struct spdk_io_channel_iter *i;
446 	void *ctx;
447 };
448 
449 void
450 nvme_ctrlr_for_each_channel_continue(struct nvme_ctrlr_channel_iter *iter, int status)
451 {
452 	spdk_for_each_channel_continue(iter->i, status);
453 }
454 
455 static void
456 nvme_ctrlr_each_channel_msg(struct spdk_io_channel_iter *i)
457 {
458 	struct nvme_ctrlr_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
459 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
460 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
461 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
462 
463 	iter->i = i;
464 	iter->fn(iter, nvme_ctrlr, ctrlr_ch, iter->ctx);
465 }
466 
467 static void
468 nvme_ctrlr_each_channel_cpl(struct spdk_io_channel_iter *i, int status)
469 {
470 	struct nvme_ctrlr_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
471 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
472 
473 	iter->i = i;
474 	iter->cpl(nvme_ctrlr, iter->ctx, status);
475 
476 	free(iter);
477 }
478 
479 void
480 nvme_ctrlr_for_each_channel(struct nvme_ctrlr *nvme_ctrlr,
481 			    nvme_ctrlr_for_each_channel_msg fn, void *ctx,
482 			    nvme_ctrlr_for_each_channel_done cpl)
483 {
484 	struct nvme_ctrlr_channel_iter *iter;
485 
486 	assert(nvme_ctrlr != NULL && fn != NULL);
487 
488 	iter = calloc(1, sizeof(struct nvme_ctrlr_channel_iter));
489 	if (iter == NULL) {
490 		SPDK_ERRLOG("Unable to allocate iterator\n");
491 		assert(false);
492 		return;
493 	}
494 
495 	iter->fn = fn;
496 	iter->cpl = cpl;
497 	iter->ctx = ctx;
498 
499 	spdk_for_each_channel(nvme_ctrlr, nvme_ctrlr_each_channel_msg,
500 			      iter, nvme_ctrlr_each_channel_cpl);
501 }
502 
503 struct nvme_bdev_channel_iter {
504 	nvme_bdev_for_each_channel_msg fn;
505 	nvme_bdev_for_each_channel_done cpl;
506 	struct spdk_io_channel_iter *i;
507 	void *ctx;
508 };
509 
510 void
511 nvme_bdev_for_each_channel_continue(struct nvme_bdev_channel_iter *iter, int status)
512 {
513 	spdk_for_each_channel_continue(iter->i, status);
514 }
515 
516 static void
517 nvme_bdev_each_channel_msg(struct spdk_io_channel_iter *i)
518 {
519 	struct nvme_bdev_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
520 	struct nvme_bdev *nbdev = spdk_io_channel_iter_get_io_device(i);
521 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
522 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
523 
524 	iter->i = i;
525 	iter->fn(iter, nbdev, nbdev_ch, iter->ctx);
526 }
527 
528 static void
529 nvme_bdev_each_channel_cpl(struct spdk_io_channel_iter *i, int status)
530 {
531 	struct nvme_bdev_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
532 	struct nvme_bdev *nbdev = spdk_io_channel_iter_get_io_device(i);
533 
534 	iter->i = i;
535 	iter->cpl(nbdev, iter->ctx, status);
536 
537 	free(iter);
538 }
539 
540 void
541 nvme_bdev_for_each_channel(struct nvme_bdev *nbdev,
542 			   nvme_bdev_for_each_channel_msg fn, void *ctx,
543 			   nvme_bdev_for_each_channel_done cpl)
544 {
545 	struct nvme_bdev_channel_iter *iter;
546 
547 	assert(nbdev != NULL && fn != NULL);
548 
549 	iter = calloc(1, sizeof(struct nvme_bdev_channel_iter));
550 	if (iter == NULL) {
551 		SPDK_ERRLOG("Unable to allocate iterator\n");
552 		assert(false);
553 		return;
554 	}
555 
556 	iter->fn = fn;
557 	iter->cpl = cpl;
558 	iter->ctx = ctx;
559 
560 	spdk_for_each_channel(nbdev, nvme_bdev_each_channel_msg, iter,
561 			      nvme_bdev_each_channel_cpl);
562 }
563 
564 void
565 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
566 {
567 	const char *trtype_str;
568 	const char *adrfam_str;
569 
570 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
571 	if (trtype_str) {
572 		spdk_json_write_named_string(w, "trtype", trtype_str);
573 	}
574 
575 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
576 	if (adrfam_str) {
577 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
578 	}
579 
580 	if (trid->traddr[0] != '\0') {
581 		spdk_json_write_named_string(w, "traddr", trid->traddr);
582 	}
583 
584 	if (trid->trsvcid[0] != '\0') {
585 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
586 	}
587 
588 	if (trid->subnqn[0] != '\0') {
589 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
590 	}
591 }
592 
593 static void
594 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
595 		       struct nvme_ctrlr *nvme_ctrlr)
596 {
597 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
598 	pthread_mutex_lock(&g_bdev_nvme_mutex);
599 
600 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
601 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
602 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
603 
604 		return;
605 	}
606 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
607 
608 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
609 
610 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
611 
612 	free(nbdev_ctrlr->name);
613 	free(nbdev_ctrlr);
614 }
615 
616 static void
617 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
618 {
619 	struct nvme_path_id *path_id, *tmp_path;
620 	struct nvme_ns *ns, *tmp_ns;
621 
622 	free(nvme_ctrlr->copied_ana_desc);
623 	spdk_free(nvme_ctrlr->ana_log_page);
624 
625 	if (nvme_ctrlr->opal_dev) {
626 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
627 		nvme_ctrlr->opal_dev = NULL;
628 	}
629 
630 	if (nvme_ctrlr->nbdev_ctrlr) {
631 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
632 	}
633 
634 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
635 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
636 		nvme_ns_free(ns);
637 	}
638 
639 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
640 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
641 		free(path_id);
642 	}
643 
644 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
645 	spdk_keyring_put_key(nvme_ctrlr->psk);
646 	spdk_keyring_put_key(nvme_ctrlr->dhchap_key);
647 	spdk_keyring_put_key(nvme_ctrlr->dhchap_ctrlr_key);
648 	free(nvme_ctrlr);
649 
650 	pthread_mutex_lock(&g_bdev_nvme_mutex);
651 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
652 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
653 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
654 		spdk_bdev_module_fini_done();
655 		return;
656 	}
657 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
658 }
659 
660 static int
661 nvme_detach_poller(void *arg)
662 {
663 	struct nvme_ctrlr *nvme_ctrlr = arg;
664 	int rc;
665 
666 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
667 	if (rc != -EAGAIN) {
668 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
669 		_nvme_ctrlr_delete(nvme_ctrlr);
670 	}
671 
672 	return SPDK_POLLER_BUSY;
673 }
674 
675 static void
676 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
677 {
678 	int rc;
679 
680 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
681 
682 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
683 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
684 
685 	/* If we got here, the reset/detach poller cannot be active */
686 	assert(nvme_ctrlr->reset_detach_poller == NULL);
687 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
688 					  nvme_ctrlr, 1000);
689 	if (nvme_ctrlr->reset_detach_poller == NULL) {
690 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to register detach poller\n");
691 		goto error;
692 	}
693 
694 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
695 	if (rc != 0) {
696 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to detach the NVMe controller\n");
697 		goto error;
698 	}
699 
700 	return;
701 error:
702 	/* We don't have a good way to handle errors here, so just do what we can and delete the
703 	 * controller without detaching the underlying NVMe device.
704 	 */
705 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
706 	_nvme_ctrlr_delete(nvme_ctrlr);
707 }
708 
709 static void
710 nvme_ctrlr_unregister_cb(void *io_device)
711 {
712 	struct nvme_ctrlr *nvme_ctrlr = io_device;
713 
714 	nvme_ctrlr_delete(nvme_ctrlr);
715 }
716 
717 static void
718 nvme_ctrlr_unregister(void *ctx)
719 {
720 	struct nvme_ctrlr *nvme_ctrlr = ctx;
721 
722 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
723 }
724 
725 static bool
726 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
727 {
728 	if (!nvme_ctrlr->destruct) {
729 		return false;
730 	}
731 
732 	if (nvme_ctrlr->ref > 0) {
733 		return false;
734 	}
735 
736 	if (nvme_ctrlr->resetting) {
737 		return false;
738 	}
739 
740 	if (nvme_ctrlr->ana_log_page_updating) {
741 		return false;
742 	}
743 
744 	if (nvme_ctrlr->io_path_cache_clearing) {
745 		return false;
746 	}
747 
748 	return true;
749 }
750 
751 static void
752 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
753 {
754 	pthread_mutex_lock(&nvme_ctrlr->mutex);
755 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
756 
757 	assert(nvme_ctrlr->ref > 0);
758 	nvme_ctrlr->ref--;
759 
760 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
761 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
762 		return;
763 	}
764 
765 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
766 
767 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
768 }
769 
770 static void
771 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch)
772 {
773 	nbdev_ch->current_io_path = NULL;
774 	nbdev_ch->rr_counter = 0;
775 }
776 
777 static struct nvme_io_path *
778 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
779 {
780 	struct nvme_io_path *io_path;
781 
782 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
783 		if (io_path->nvme_ns == nvme_ns) {
784 			break;
785 		}
786 	}
787 
788 	return io_path;
789 }
790 
791 static struct nvme_io_path *
792 nvme_io_path_alloc(void)
793 {
794 	struct nvme_io_path *io_path;
795 
796 	io_path = calloc(1, sizeof(*io_path));
797 	if (io_path == NULL) {
798 		SPDK_ERRLOG("Failed to alloc io_path.\n");
799 		return NULL;
800 	}
801 
802 	if (g_opts.io_path_stat) {
803 		io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
804 		if (io_path->stat == NULL) {
805 			free(io_path);
806 			SPDK_ERRLOG("Failed to alloc io_path stat.\n");
807 			return NULL;
808 		}
809 		spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
810 	}
811 
812 	return io_path;
813 }
814 
815 static void
816 nvme_io_path_free(struct nvme_io_path *io_path)
817 {
818 	free(io_path->stat);
819 	free(io_path);
820 }
821 
822 static int
823 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
824 {
825 	struct nvme_io_path *io_path;
826 	struct spdk_io_channel *ch;
827 	struct nvme_ctrlr_channel *ctrlr_ch;
828 	struct nvme_qpair *nvme_qpair;
829 
830 	io_path = nvme_io_path_alloc();
831 	if (io_path == NULL) {
832 		return -ENOMEM;
833 	}
834 
835 	io_path->nvme_ns = nvme_ns;
836 
837 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
838 	if (ch == NULL) {
839 		nvme_io_path_free(io_path);
840 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
841 		return -ENOMEM;
842 	}
843 
844 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
845 
846 	nvme_qpair = ctrlr_ch->qpair;
847 	assert(nvme_qpair != NULL);
848 
849 	io_path->qpair = nvme_qpair;
850 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
851 
852 	io_path->nbdev_ch = nbdev_ch;
853 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
854 
855 	bdev_nvme_clear_current_io_path(nbdev_ch);
856 
857 	return 0;
858 }
859 
860 static void
861 bdev_nvme_clear_retry_io_path(struct nvme_bdev_channel *nbdev_ch,
862 			      struct nvme_io_path *io_path)
863 {
864 	struct nvme_bdev_io *bio;
865 
866 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
867 		if (bio->io_path == io_path) {
868 			bio->io_path = NULL;
869 		}
870 	}
871 }
872 
873 static void
874 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
875 {
876 	struct spdk_io_channel *ch;
877 	struct nvme_qpair *nvme_qpair;
878 	struct nvme_ctrlr_channel *ctrlr_ch;
879 	struct nvme_bdev *nbdev;
880 
881 	nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch));
882 
883 	/* Add the statistics to nvme_ns before this path is destroyed. */
884 	pthread_mutex_lock(&nbdev->mutex);
885 	if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) {
886 		spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat);
887 	}
888 	pthread_mutex_unlock(&nbdev->mutex);
889 
890 	bdev_nvme_clear_current_io_path(nbdev_ch);
891 	bdev_nvme_clear_retry_io_path(nbdev_ch, io_path);
892 
893 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
894 	io_path->nbdev_ch = NULL;
895 
896 	nvme_qpair = io_path->qpair;
897 	assert(nvme_qpair != NULL);
898 
899 	ctrlr_ch = nvme_qpair->ctrlr_ch;
900 	assert(ctrlr_ch != NULL);
901 
902 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
903 	spdk_put_io_channel(ch);
904 
905 	/* After an io_path is removed, I/Os submitted to it may complete and update statistics
906 	 * of the io_path. To avoid heap-use-after-free error from this case, do not free the
907 	 * io_path here but free the io_path when the associated qpair is freed. It is ensured
908 	 * that all I/Os submitted to the io_path are completed when the associated qpair is freed.
909 	 */
910 }
911 
912 static void
913 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
914 {
915 	struct nvme_io_path *io_path, *tmp_io_path;
916 
917 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
918 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
919 	}
920 }
921 
922 static int
923 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
924 {
925 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
926 	struct nvme_bdev *nbdev = io_device;
927 	struct nvme_ns *nvme_ns;
928 	int rc;
929 
930 	STAILQ_INIT(&nbdev_ch->io_path_list);
931 	TAILQ_INIT(&nbdev_ch->retry_io_list);
932 
933 	pthread_mutex_lock(&nbdev->mutex);
934 
935 	nbdev_ch->mp_policy = nbdev->mp_policy;
936 	nbdev_ch->mp_selector = nbdev->mp_selector;
937 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
938 
939 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
940 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
941 		if (rc != 0) {
942 			pthread_mutex_unlock(&nbdev->mutex);
943 
944 			_bdev_nvme_delete_io_paths(nbdev_ch);
945 			return rc;
946 		}
947 	}
948 	pthread_mutex_unlock(&nbdev->mutex);
949 
950 	return 0;
951 }
952 
953 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
954  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
955  */
956 static inline void
957 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
958 			const struct spdk_nvme_cpl *cpl)
959 {
960 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
961 			  (uintptr_t)bdev_io);
962 	if (cpl) {
963 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
964 	} else {
965 		spdk_bdev_io_complete(bdev_io, status);
966 	}
967 }
968 
969 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
970 
971 static void
972 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
973 {
974 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
975 
976 	bdev_nvme_abort_retry_ios(nbdev_ch);
977 	_bdev_nvme_delete_io_paths(nbdev_ch);
978 }
979 
980 static inline bool
981 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
982 {
983 	switch (io_type) {
984 	case SPDK_BDEV_IO_TYPE_RESET:
985 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
986 	case SPDK_BDEV_IO_TYPE_ABORT:
987 		return true;
988 	default:
989 		break;
990 	}
991 
992 	return false;
993 }
994 
995 static inline bool
996 nvme_ns_is_active(struct nvme_ns *nvme_ns)
997 {
998 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
999 		return false;
1000 	}
1001 
1002 	if (spdk_unlikely(nvme_ns->ns == NULL)) {
1003 		return false;
1004 	}
1005 
1006 	return true;
1007 }
1008 
1009 static inline bool
1010 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
1011 {
1012 	if (spdk_unlikely(!nvme_ns_is_active(nvme_ns))) {
1013 		return false;
1014 	}
1015 
1016 	switch (nvme_ns->ana_state) {
1017 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
1018 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1019 		return true;
1020 	default:
1021 		break;
1022 	}
1023 
1024 	return false;
1025 }
1026 
1027 static inline bool
1028 nvme_qpair_is_connected(struct nvme_qpair *nvme_qpair)
1029 {
1030 	if (spdk_unlikely(nvme_qpair->qpair == NULL)) {
1031 		return false;
1032 	}
1033 
1034 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1035 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
1036 		return false;
1037 	}
1038 
1039 	if (spdk_unlikely(nvme_qpair->ctrlr_ch->reset_iter != NULL)) {
1040 		return false;
1041 	}
1042 
1043 	return true;
1044 }
1045 
1046 static inline bool
1047 nvme_io_path_is_available(struct nvme_io_path *io_path)
1048 {
1049 	if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
1050 		return false;
1051 	}
1052 
1053 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
1054 		return false;
1055 	}
1056 
1057 	return true;
1058 }
1059 
1060 static inline bool
1061 nvme_ctrlr_is_failed(struct nvme_ctrlr *nvme_ctrlr)
1062 {
1063 	if (nvme_ctrlr->destruct) {
1064 		return true;
1065 	}
1066 
1067 	if (nvme_ctrlr->fast_io_fail_timedout) {
1068 		return true;
1069 	}
1070 
1071 	if (nvme_ctrlr->resetting) {
1072 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
1073 			return false;
1074 		} else {
1075 			return true;
1076 		}
1077 	}
1078 
1079 	if (nvme_ctrlr->reconnect_is_delayed) {
1080 		return false;
1081 	}
1082 
1083 	if (nvme_ctrlr->disabled) {
1084 		return true;
1085 	}
1086 
1087 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
1088 		return true;
1089 	} else {
1090 		return false;
1091 	}
1092 }
1093 
1094 static bool
1095 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
1096 {
1097 	if (nvme_ctrlr->destruct) {
1098 		return false;
1099 	}
1100 
1101 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
1102 		return false;
1103 	}
1104 
1105 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
1106 		return false;
1107 	}
1108 
1109 	if (nvme_ctrlr->disabled) {
1110 		return false;
1111 	}
1112 
1113 	return true;
1114 }
1115 
1116 /* Simulate circular linked list. */
1117 static inline struct nvme_io_path *
1118 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
1119 {
1120 	struct nvme_io_path *next_path;
1121 
1122 	if (prev_path != NULL) {
1123 		next_path = STAILQ_NEXT(prev_path, stailq);
1124 		if (next_path != NULL) {
1125 			return next_path;
1126 		}
1127 	}
1128 
1129 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
1130 }
1131 
1132 static struct nvme_io_path *
1133 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1134 {
1135 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
1136 
1137 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
1138 
1139 	io_path = start;
1140 	do {
1141 		if (spdk_likely(nvme_io_path_is_available(io_path))) {
1142 			switch (io_path->nvme_ns->ana_state) {
1143 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
1144 				nbdev_ch->current_io_path = io_path;
1145 				return io_path;
1146 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1147 				if (non_optimized == NULL) {
1148 					non_optimized = io_path;
1149 				}
1150 				break;
1151 			default:
1152 				assert(false);
1153 				break;
1154 			}
1155 		}
1156 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
1157 	} while (io_path != start);
1158 
1159 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
1160 		/* We come here only if there is no optimized path. Cache even non_optimized
1161 		 * path for load balance across multiple non_optimized paths.
1162 		 */
1163 		nbdev_ch->current_io_path = non_optimized;
1164 	}
1165 
1166 	return non_optimized;
1167 }
1168 
1169 static struct nvme_io_path *
1170 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch)
1171 {
1172 	struct nvme_io_path *io_path;
1173 	struct nvme_io_path *optimized = NULL, *non_optimized = NULL;
1174 	uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX;
1175 	uint32_t num_outstanding_reqs;
1176 
1177 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1178 		if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
1179 			/* The device is currently resetting. */
1180 			continue;
1181 		}
1182 
1183 		if (spdk_unlikely(!nvme_ns_is_active(io_path->nvme_ns))) {
1184 			continue;
1185 		}
1186 
1187 		num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair);
1188 		switch (io_path->nvme_ns->ana_state) {
1189 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
1190 			if (num_outstanding_reqs < opt_min_qd) {
1191 				opt_min_qd = num_outstanding_reqs;
1192 				optimized = io_path;
1193 			}
1194 			break;
1195 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1196 			if (num_outstanding_reqs < non_opt_min_qd) {
1197 				non_opt_min_qd = num_outstanding_reqs;
1198 				non_optimized = io_path;
1199 			}
1200 			break;
1201 		default:
1202 			break;
1203 		}
1204 	}
1205 
1206 	/* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */
1207 	if (optimized != NULL) {
1208 		return optimized;
1209 	}
1210 
1211 	return non_optimized;
1212 }
1213 
1214 static inline struct nvme_io_path *
1215 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1216 {
1217 	if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
1218 		if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) {
1219 			return nbdev_ch->current_io_path;
1220 		} else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1221 			if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) {
1222 				return nbdev_ch->current_io_path;
1223 			}
1224 			nbdev_ch->rr_counter = 0;
1225 		}
1226 	}
1227 
1228 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE ||
1229 	    nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1230 		return _bdev_nvme_find_io_path(nbdev_ch);
1231 	} else {
1232 		return _bdev_nvme_find_io_path_min_qd(nbdev_ch);
1233 	}
1234 }
1235 
1236 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
1237  * or false otherwise.
1238  *
1239  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
1240  * is likely to be non-accessible now but may become accessible.
1241  *
1242  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
1243  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
1244  * when starting to reset it but it is set to failed when the reset failed. Hence, if
1245  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
1246  */
1247 static bool
1248 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
1249 {
1250 	struct nvme_io_path *io_path;
1251 
1252 	if (nbdev_ch->resetting) {
1253 		return false;
1254 	}
1255 
1256 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1257 		if (io_path->nvme_ns->ana_transition_timedout) {
1258 			continue;
1259 		}
1260 
1261 		if (nvme_qpair_is_connected(io_path->qpair) ||
1262 		    !nvme_ctrlr_is_failed(io_path->qpair->ctrlr)) {
1263 			return true;
1264 		}
1265 	}
1266 
1267 	return false;
1268 }
1269 
1270 static void
1271 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
1272 {
1273 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1274 	struct spdk_io_channel *ch;
1275 
1276 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
1277 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
1278 	} else {
1279 		ch = spdk_io_channel_from_ctx(nbdev_ch);
1280 		bdev_nvme_submit_request(ch, bdev_io);
1281 	}
1282 }
1283 
1284 static int
1285 bdev_nvme_retry_ios(void *arg)
1286 {
1287 	struct nvme_bdev_channel *nbdev_ch = arg;
1288 	struct nvme_bdev_io *bio, *tmp_bio;
1289 	uint64_t now, delay_us;
1290 
1291 	now = spdk_get_ticks();
1292 
1293 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1294 		if (bio->retry_ticks > now) {
1295 			break;
1296 		}
1297 
1298 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1299 
1300 		bdev_nvme_retry_io(nbdev_ch, spdk_bdev_io_from_ctx(bio));
1301 	}
1302 
1303 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1304 
1305 	bio = TAILQ_FIRST(&nbdev_ch->retry_io_list);
1306 	if (bio != NULL) {
1307 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
1308 
1309 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1310 					    delay_us);
1311 	}
1312 
1313 	return SPDK_POLLER_BUSY;
1314 }
1315 
1316 static void
1317 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1318 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1319 {
1320 	struct nvme_bdev_io *tmp_bio;
1321 
1322 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1323 
1324 	TAILQ_FOREACH_REVERSE(tmp_bio, &nbdev_ch->retry_io_list, retry_io_head, retry_link) {
1325 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1326 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bio, bio,
1327 					   retry_link);
1328 			return;
1329 		}
1330 	}
1331 
1332 	/* No earlier I/Os were found. This I/O must be the new head. */
1333 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bio, retry_link);
1334 
1335 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1336 
1337 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1338 				    delay_ms * 1000ULL);
1339 }
1340 
1341 static void
1342 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
1343 {
1344 	struct nvme_bdev_io *bio, *tmp_bio;
1345 
1346 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1347 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1348 		__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1349 	}
1350 
1351 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1352 }
1353 
1354 static int
1355 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1356 			 struct nvme_bdev_io *bio_to_abort)
1357 {
1358 	struct nvme_bdev_io *bio;
1359 
1360 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
1361 		if (bio == bio_to_abort) {
1362 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1363 			__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1364 			return 0;
1365 		}
1366 	}
1367 
1368 	return -ENOENT;
1369 }
1370 
1371 static void
1372 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1373 {
1374 	struct nvme_bdev *nbdev;
1375 	uint16_t sct, sc;
1376 
1377 	assert(spdk_nvme_cpl_is_error(cpl));
1378 
1379 	nbdev = bdev_io->bdev->ctxt;
1380 
1381 	if (nbdev->err_stat == NULL) {
1382 		return;
1383 	}
1384 
1385 	sct = cpl->status.sct;
1386 	sc = cpl->status.sc;
1387 
1388 	pthread_mutex_lock(&nbdev->mutex);
1389 
1390 	nbdev->err_stat->status_type[sct]++;
1391 	switch (sct) {
1392 	case SPDK_NVME_SCT_GENERIC:
1393 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1394 	case SPDK_NVME_SCT_MEDIA_ERROR:
1395 	case SPDK_NVME_SCT_PATH:
1396 		nbdev->err_stat->status[sct][sc]++;
1397 		break;
1398 	default:
1399 		break;
1400 	}
1401 
1402 	pthread_mutex_unlock(&nbdev->mutex);
1403 }
1404 
1405 static inline void
1406 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio)
1407 {
1408 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1409 	uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
1410 	uint32_t blocklen = bdev_io->bdev->blocklen;
1411 	struct spdk_bdev_io_stat *stat;
1412 	uint64_t tsc_diff;
1413 
1414 	if (bio->io_path->stat == NULL) {
1415 		return;
1416 	}
1417 
1418 	tsc_diff = spdk_get_ticks() - bio->submit_tsc;
1419 	stat = bio->io_path->stat;
1420 
1421 	switch (bdev_io->type) {
1422 	case SPDK_BDEV_IO_TYPE_READ:
1423 		stat->bytes_read += num_blocks * blocklen;
1424 		stat->num_read_ops++;
1425 		stat->read_latency_ticks += tsc_diff;
1426 		if (stat->max_read_latency_ticks < tsc_diff) {
1427 			stat->max_read_latency_ticks = tsc_diff;
1428 		}
1429 		if (stat->min_read_latency_ticks > tsc_diff) {
1430 			stat->min_read_latency_ticks = tsc_diff;
1431 		}
1432 		break;
1433 	case SPDK_BDEV_IO_TYPE_WRITE:
1434 		stat->bytes_written += num_blocks * blocklen;
1435 		stat->num_write_ops++;
1436 		stat->write_latency_ticks += tsc_diff;
1437 		if (stat->max_write_latency_ticks < tsc_diff) {
1438 			stat->max_write_latency_ticks = tsc_diff;
1439 		}
1440 		if (stat->min_write_latency_ticks > tsc_diff) {
1441 			stat->min_write_latency_ticks = tsc_diff;
1442 		}
1443 		break;
1444 	case SPDK_BDEV_IO_TYPE_UNMAP:
1445 		stat->bytes_unmapped += num_blocks * blocklen;
1446 		stat->num_unmap_ops++;
1447 		stat->unmap_latency_ticks += tsc_diff;
1448 		if (stat->max_unmap_latency_ticks < tsc_diff) {
1449 			stat->max_unmap_latency_ticks = tsc_diff;
1450 		}
1451 		if (stat->min_unmap_latency_ticks > tsc_diff) {
1452 			stat->min_unmap_latency_ticks = tsc_diff;
1453 		}
1454 		break;
1455 	case SPDK_BDEV_IO_TYPE_ZCOPY:
1456 		/* Track the data in the start phase only */
1457 		if (!bdev_io->u.bdev.zcopy.start) {
1458 			break;
1459 		}
1460 		if (bdev_io->u.bdev.zcopy.populate) {
1461 			stat->bytes_read += num_blocks * blocklen;
1462 			stat->num_read_ops++;
1463 			stat->read_latency_ticks += tsc_diff;
1464 			if (stat->max_read_latency_ticks < tsc_diff) {
1465 				stat->max_read_latency_ticks = tsc_diff;
1466 			}
1467 			if (stat->min_read_latency_ticks > tsc_diff) {
1468 				stat->min_read_latency_ticks = tsc_diff;
1469 			}
1470 		} else {
1471 			stat->bytes_written += num_blocks * blocklen;
1472 			stat->num_write_ops++;
1473 			stat->write_latency_ticks += tsc_diff;
1474 			if (stat->max_write_latency_ticks < tsc_diff) {
1475 				stat->max_write_latency_ticks = tsc_diff;
1476 			}
1477 			if (stat->min_write_latency_ticks > tsc_diff) {
1478 				stat->min_write_latency_ticks = tsc_diff;
1479 			}
1480 		}
1481 		break;
1482 	case SPDK_BDEV_IO_TYPE_COPY:
1483 		stat->bytes_copied += num_blocks * blocklen;
1484 		stat->num_copy_ops++;
1485 		stat->copy_latency_ticks += tsc_diff;
1486 		if (stat->max_copy_latency_ticks < tsc_diff) {
1487 			stat->max_copy_latency_ticks = tsc_diff;
1488 		}
1489 		if (stat->min_copy_latency_ticks > tsc_diff) {
1490 			stat->min_copy_latency_ticks = tsc_diff;
1491 		}
1492 		break;
1493 	default:
1494 		break;
1495 	}
1496 }
1497 
1498 static bool
1499 bdev_nvme_check_retry_io(struct nvme_bdev_io *bio,
1500 			 const struct spdk_nvme_cpl *cpl,
1501 			 struct nvme_bdev_channel *nbdev_ch,
1502 			 uint64_t *_delay_ms)
1503 {
1504 	struct nvme_io_path *io_path = bio->io_path;
1505 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1506 	const struct spdk_nvme_ctrlr_data *cdata;
1507 
1508 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1509 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1510 	    !nvme_io_path_is_available(io_path) ||
1511 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1512 		bdev_nvme_clear_current_io_path(nbdev_ch);
1513 		bio->io_path = NULL;
1514 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1515 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1516 				io_path->nvme_ns->ana_state_updating = true;
1517 			}
1518 		}
1519 		if (!any_io_path_may_become_available(nbdev_ch)) {
1520 			return false;
1521 		}
1522 		*_delay_ms = 0;
1523 	} else {
1524 		bio->retry_count++;
1525 
1526 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1527 
1528 		if (cpl->status.crd != 0) {
1529 			*_delay_ms = cdata->crdt[cpl->status.crd] * 100;
1530 		} else {
1531 			*_delay_ms = 0;
1532 		}
1533 	}
1534 
1535 	return true;
1536 }
1537 
1538 static inline void
1539 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1540 				  const struct spdk_nvme_cpl *cpl)
1541 {
1542 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1543 	struct nvme_bdev_channel *nbdev_ch;
1544 	uint64_t delay_ms;
1545 
1546 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1547 
1548 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1549 		bdev_nvme_update_io_path_stat(bio);
1550 		goto complete;
1551 	}
1552 
1553 	/* Update error counts before deciding if retry is needed.
1554 	 * Hence, error counts may be more than the number of I/O errors.
1555 	 */
1556 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1557 
1558 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1559 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1560 		goto complete;
1561 	}
1562 
1563 	/* At this point we don't know whether the sequence was successfully executed or not, so we
1564 	 * cannot retry the IO */
1565 	if (bdev_io->u.bdev.accel_sequence != NULL) {
1566 		goto complete;
1567 	}
1568 
1569 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1570 
1571 	if (bdev_nvme_check_retry_io(bio, cpl, nbdev_ch, &delay_ms)) {
1572 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1573 		return;
1574 	}
1575 
1576 complete:
1577 	bio->retry_count = 0;
1578 	bio->submit_tsc = 0;
1579 	bdev_io->u.bdev.accel_sequence = NULL;
1580 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1581 }
1582 
1583 static inline void
1584 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1585 {
1586 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1587 	struct nvme_bdev_channel *nbdev_ch;
1588 	enum spdk_bdev_io_status io_status;
1589 
1590 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1591 
1592 	switch (rc) {
1593 	case 0:
1594 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1595 		break;
1596 	case -ENOMEM:
1597 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1598 		break;
1599 	case -ENXIO:
1600 		if (g_opts.bdev_retry_count == -1 || bio->retry_count < g_opts.bdev_retry_count) {
1601 			nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1602 
1603 			bdev_nvme_clear_current_io_path(nbdev_ch);
1604 			bio->io_path = NULL;
1605 
1606 			if (any_io_path_may_become_available(nbdev_ch)) {
1607 				bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1608 				return;
1609 			}
1610 		}
1611 
1612 	/* fallthrough */
1613 	default:
1614 		spdk_accel_sequence_abort(bdev_io->u.bdev.accel_sequence);
1615 		bdev_io->u.bdev.accel_sequence = NULL;
1616 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1617 		break;
1618 	}
1619 
1620 	bio->retry_count = 0;
1621 	bio->submit_tsc = 0;
1622 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1623 }
1624 
1625 static inline void
1626 bdev_nvme_admin_complete(struct nvme_bdev_io *bio, int rc)
1627 {
1628 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1629 	enum spdk_bdev_io_status io_status;
1630 
1631 	switch (rc) {
1632 	case 0:
1633 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1634 		break;
1635 	case -ENOMEM:
1636 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1637 		break;
1638 	case -ENXIO:
1639 	/* fallthrough */
1640 	default:
1641 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1642 		break;
1643 	}
1644 
1645 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1646 }
1647 
1648 static void
1649 bdev_nvme_clear_io_path_caches_done(struct nvme_ctrlr *nvme_ctrlr,
1650 				    void *ctx, int status)
1651 {
1652 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1653 
1654 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1655 	nvme_ctrlr->io_path_cache_clearing = false;
1656 
1657 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1658 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1659 		return;
1660 	}
1661 
1662 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1663 
1664 	nvme_ctrlr_unregister(nvme_ctrlr);
1665 }
1666 
1667 static void
1668 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1669 {
1670 	struct nvme_io_path *io_path;
1671 
1672 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1673 		if (io_path->nbdev_ch == NULL) {
1674 			continue;
1675 		}
1676 		bdev_nvme_clear_current_io_path(io_path->nbdev_ch);
1677 	}
1678 }
1679 
1680 static void
1681 bdev_nvme_clear_io_path_cache(struct nvme_ctrlr_channel_iter *i,
1682 			      struct nvme_ctrlr *nvme_ctrlr,
1683 			      struct nvme_ctrlr_channel *ctrlr_ch,
1684 			      void *ctx)
1685 {
1686 	assert(ctrlr_ch->qpair != NULL);
1687 
1688 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1689 
1690 	nvme_ctrlr_for_each_channel_continue(i, 0);
1691 }
1692 
1693 static void
1694 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1695 {
1696 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1697 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1698 	    nvme_ctrlr->io_path_cache_clearing) {
1699 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1700 		return;
1701 	}
1702 
1703 	nvme_ctrlr->io_path_cache_clearing = true;
1704 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1705 
1706 	nvme_ctrlr_for_each_channel(nvme_ctrlr,
1707 				    bdev_nvme_clear_io_path_cache,
1708 				    NULL,
1709 				    bdev_nvme_clear_io_path_caches_done);
1710 }
1711 
1712 static struct nvme_qpair *
1713 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1714 {
1715 	struct nvme_qpair *nvme_qpair;
1716 
1717 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1718 		if (nvme_qpair->qpair == qpair) {
1719 			break;
1720 		}
1721 	}
1722 
1723 	return nvme_qpair;
1724 }
1725 
1726 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1727 
1728 static void
1729 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1730 {
1731 	struct nvme_poll_group *group = poll_group_ctx;
1732 	struct nvme_qpair *nvme_qpair;
1733 	struct nvme_ctrlr *nvme_ctrlr;
1734 	struct nvme_ctrlr_channel *ctrlr_ch;
1735 	int status;
1736 
1737 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1738 	if (nvme_qpair == NULL) {
1739 		return;
1740 	}
1741 
1742 	if (nvme_qpair->qpair != NULL) {
1743 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1744 		nvme_qpair->qpair = NULL;
1745 	}
1746 
1747 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1748 
1749 	nvme_ctrlr = nvme_qpair->ctrlr;
1750 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1751 
1752 	if (ctrlr_ch != NULL) {
1753 		if (ctrlr_ch->reset_iter != NULL) {
1754 			/* We are in a full reset sequence. */
1755 			if (ctrlr_ch->connect_poller != NULL) {
1756 				/* qpair was failed to connect. Abort the reset sequence. */
1757 				NVME_CTRLR_INFOLOG(nvme_ctrlr,
1758 						   "qpair %p was failed to connect. abort the reset ctrlr sequence.\n",
1759 						   qpair);
1760 				spdk_poller_unregister(&ctrlr_ch->connect_poller);
1761 				status = -1;
1762 			} else {
1763 				/* qpair was completed to disconnect. Just move to the next ctrlr_channel. */
1764 				NVME_CTRLR_INFOLOG(nvme_ctrlr,
1765 						   "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1766 						   qpair);
1767 				status = 0;
1768 			}
1769 			nvme_ctrlr_for_each_channel_continue(ctrlr_ch->reset_iter, status);
1770 			ctrlr_ch->reset_iter = NULL;
1771 		} else {
1772 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1773 			NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpair %p was disconnected and freed. reset controller.\n",
1774 					   qpair);
1775 			bdev_nvme_failover_ctrlr(nvme_ctrlr);
1776 		}
1777 	} else {
1778 		/* In this case, ctrlr_channel is already deleted. */
1779 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpair %p was disconnected and freed. delete nvme_qpair.\n",
1780 				   qpair);
1781 		nvme_qpair_delete(nvme_qpair);
1782 	}
1783 }
1784 
1785 static void
1786 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1787 {
1788 	struct nvme_qpair *nvme_qpair;
1789 
1790 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1791 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1792 			continue;
1793 		}
1794 
1795 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1796 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1797 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1798 		}
1799 	}
1800 }
1801 
1802 static int
1803 bdev_nvme_poll(void *arg)
1804 {
1805 	struct nvme_poll_group *group = arg;
1806 	int64_t num_completions;
1807 
1808 	if (group->collect_spin_stat && group->start_ticks == 0) {
1809 		group->start_ticks = spdk_get_ticks();
1810 	}
1811 
1812 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1813 			  bdev_nvme_disconnected_qpair_cb);
1814 	if (group->collect_spin_stat) {
1815 		if (num_completions > 0) {
1816 			if (group->end_ticks != 0) {
1817 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1818 				group->end_ticks = 0;
1819 			}
1820 			group->start_ticks = 0;
1821 		} else {
1822 			group->end_ticks = spdk_get_ticks();
1823 		}
1824 	}
1825 
1826 	if (spdk_unlikely(num_completions < 0)) {
1827 		bdev_nvme_check_io_qpairs(group);
1828 	}
1829 
1830 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1831 }
1832 
1833 static int bdev_nvme_poll_adminq(void *arg);
1834 
1835 static void
1836 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1837 {
1838 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1839 
1840 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1841 					  nvme_ctrlr, new_period_us);
1842 }
1843 
1844 static int
1845 bdev_nvme_poll_adminq(void *arg)
1846 {
1847 	int32_t rc;
1848 	struct nvme_ctrlr *nvme_ctrlr = arg;
1849 	nvme_ctrlr_disconnected_cb disconnected_cb;
1850 
1851 	assert(nvme_ctrlr != NULL);
1852 
1853 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1854 	if (rc < 0) {
1855 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1856 		nvme_ctrlr->disconnected_cb = NULL;
1857 
1858 		if (disconnected_cb != NULL) {
1859 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1860 							    g_opts.nvme_adminq_poll_period_us);
1861 			disconnected_cb(nvme_ctrlr);
1862 		} else {
1863 			bdev_nvme_failover_ctrlr(nvme_ctrlr);
1864 		}
1865 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1866 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1867 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1868 	}
1869 
1870 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1871 }
1872 
1873 static void
1874 nvme_bdev_free(void *io_device)
1875 {
1876 	struct nvme_bdev *nvme_disk = io_device;
1877 
1878 	pthread_mutex_destroy(&nvme_disk->mutex);
1879 	free(nvme_disk->disk.name);
1880 	free(nvme_disk->err_stat);
1881 	free(nvme_disk);
1882 }
1883 
1884 static int
1885 bdev_nvme_destruct(void *ctx)
1886 {
1887 	struct nvme_bdev *nvme_disk = ctx;
1888 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1889 
1890 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1891 
1892 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1893 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1894 
1895 		nvme_ns->bdev = NULL;
1896 
1897 		assert(nvme_ns->id > 0);
1898 
1899 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1900 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1901 
1902 			nvme_ctrlr_release(nvme_ns->ctrlr);
1903 			nvme_ns_free(nvme_ns);
1904 		} else {
1905 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1906 		}
1907 	}
1908 
1909 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1910 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1911 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1912 
1913 	spdk_io_device_unregister(nvme_disk, nvme_bdev_free);
1914 
1915 	return 0;
1916 }
1917 
1918 static int
1919 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1920 {
1921 	struct nvme_ctrlr *nvme_ctrlr;
1922 	struct spdk_nvme_io_qpair_opts opts;
1923 	struct spdk_nvme_qpair *qpair;
1924 	int rc;
1925 
1926 	nvme_ctrlr = nvme_qpair->ctrlr;
1927 
1928 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1929 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1930 	opts.create_only = true;
1931 	opts.async_mode = true;
1932 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1933 	g_opts.io_queue_requests = opts.io_queue_requests;
1934 
1935 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1936 	if (qpair == NULL) {
1937 		return -1;
1938 	}
1939 
1940 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1941 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1942 
1943 	assert(nvme_qpair->group != NULL);
1944 
1945 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1946 	if (rc != 0) {
1947 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Unable to begin polling on NVMe Channel.\n");
1948 		goto err;
1949 	}
1950 
1951 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1952 	if (rc != 0) {
1953 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Unable to connect I/O qpair.\n");
1954 		goto err;
1955 	}
1956 
1957 	nvme_qpair->qpair = qpair;
1958 
1959 	if (!g_opts.disable_auto_failback) {
1960 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1961 	}
1962 
1963 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Connecting qpair %p:%u started.\n",
1964 			   qpair, spdk_nvme_qpair_get_id(qpair));
1965 
1966 	return 0;
1967 
1968 err:
1969 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1970 
1971 	return rc;
1972 }
1973 
1974 static void bdev_nvme_reset_io_continue(void *cb_arg, int rc);
1975 
1976 static void
1977 bdev_nvme_complete_pending_resets(struct nvme_ctrlr_channel_iter *i,
1978 				  struct nvme_ctrlr *nvme_ctrlr,
1979 				  struct nvme_ctrlr_channel *ctrlr_ch,
1980 				  void *ctx)
1981 {
1982 	int rc = 0;
1983 	struct nvme_bdev_io *bio;
1984 
1985 	if (ctx != NULL) {
1986 		rc = -1;
1987 	}
1988 
1989 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1990 		bio = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1991 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bio, retry_link);
1992 
1993 		bdev_nvme_reset_io_continue(bio, rc);
1994 	}
1995 
1996 	nvme_ctrlr_for_each_channel_continue(i, 0);
1997 }
1998 
1999 /* This function marks the current trid as failed by storing the current ticks
2000  * and then sets the next trid to the active trid within a controller if exists.
2001  *
2002  * The purpose of the boolean return value is to request the caller to disconnect
2003  * the current trid now to try connecting the next trid.
2004  */
2005 static bool
2006 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove, bool start)
2007 {
2008 	struct nvme_path_id *path_id, *next_path;
2009 	int rc __attribute__((unused));
2010 
2011 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
2012 	assert(path_id);
2013 	assert(path_id == nvme_ctrlr->active_path_id);
2014 	next_path = TAILQ_NEXT(path_id, link);
2015 
2016 	/* Update the last failed time. It means the trid is failed if its last
2017 	 * failed time is non-zero.
2018 	 */
2019 	path_id->last_failed_tsc = spdk_get_ticks();
2020 
2021 	if (next_path == NULL) {
2022 		/* There is no alternate trid within a controller. */
2023 		return false;
2024 	}
2025 
2026 	if (!start && nvme_ctrlr->opts.reconnect_delay_sec == 0) {
2027 		/* Connect is not retried in a controller reset sequence. Connecting
2028 		 * the next trid will be done by the next bdev_nvme_failover_ctrlr() call.
2029 		 */
2030 		return false;
2031 	}
2032 
2033 	assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
2034 
2035 	NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Start failover from %s:%s to %s:%s\n",
2036 			     path_id->trid.traddr, path_id->trid.trsvcid,
2037 			     next_path->trid.traddr, next_path->trid.trsvcid);
2038 
2039 	spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
2040 	nvme_ctrlr->active_path_id = next_path;
2041 	rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
2042 	assert(rc == 0);
2043 	TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
2044 	if (!remove) {
2045 		/** Shuffle the old trid to the end of the list and use the new one.
2046 		 * Allows for round robin through multiple connections.
2047 		 */
2048 		TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
2049 	} else {
2050 		free(path_id);
2051 	}
2052 
2053 	if (start || next_path->last_failed_tsc == 0) {
2054 		/* bdev_nvme_failover_ctrlr() is just called or the next trid is not failed
2055 		 * or used yet. Try the next trid now.
2056 		 */
2057 		return true;
2058 	}
2059 
2060 	if (spdk_get_ticks() > next_path->last_failed_tsc + spdk_get_ticks_hz() *
2061 	    nvme_ctrlr->opts.reconnect_delay_sec) {
2062 		/* Enough backoff passed since the next trid failed. Try the next trid now. */
2063 		return true;
2064 	}
2065 
2066 	/* The next trid will be tried after reconnect_delay_sec seconds. */
2067 	return false;
2068 }
2069 
2070 static bool
2071 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
2072 {
2073 	int32_t elapsed;
2074 
2075 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
2076 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
2077 		return false;
2078 	}
2079 
2080 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
2081 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
2082 		return true;
2083 	} else {
2084 		return false;
2085 	}
2086 }
2087 
2088 static bool
2089 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
2090 {
2091 	uint32_t elapsed;
2092 
2093 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
2094 		return false;
2095 	}
2096 
2097 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
2098 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
2099 		return true;
2100 	} else {
2101 		return false;
2102 	}
2103 }
2104 
2105 static void bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
2106 
2107 static void
2108 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
2109 {
2110 	int rc;
2111 
2112 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Start disconnecting ctrlr.\n");
2113 
2114 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
2115 	if (rc != 0) {
2116 		NVME_CTRLR_WARNLOG(nvme_ctrlr, "disconnecting ctrlr failed.\n");
2117 
2118 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
2119 		 * fail the reset sequence immediately.
2120 		 */
2121 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2122 		return;
2123 	}
2124 
2125 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
2126 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
2127 	 */
2128 	assert(nvme_ctrlr->disconnected_cb == NULL);
2129 	nvme_ctrlr->disconnected_cb = cb_fn;
2130 
2131 	/* During disconnection, reduce the period to poll adminq more often. */
2132 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
2133 }
2134 
2135 enum bdev_nvme_op_after_reset {
2136 	OP_NONE,
2137 	OP_COMPLETE_PENDING_DESTRUCT,
2138 	OP_DESTRUCT,
2139 	OP_DELAYED_RECONNECT,
2140 	OP_FAILOVER,
2141 };
2142 
2143 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
2144 
2145 static _bdev_nvme_op_after_reset
2146 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
2147 {
2148 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
2149 		/* Complete pending destruct after reset completes. */
2150 		return OP_COMPLETE_PENDING_DESTRUCT;
2151 	} else if (nvme_ctrlr->pending_failover) {
2152 		nvme_ctrlr->pending_failover = false;
2153 		nvme_ctrlr->reset_start_tsc = 0;
2154 		return OP_FAILOVER;
2155 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
2156 		nvme_ctrlr->reset_start_tsc = 0;
2157 		return OP_NONE;
2158 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2159 		return OP_DESTRUCT;
2160 	} else {
2161 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
2162 			nvme_ctrlr->fast_io_fail_timedout = true;
2163 		}
2164 		return OP_DELAYED_RECONNECT;
2165 	}
2166 }
2167 
2168 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
2169 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
2170 
2171 static int
2172 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
2173 {
2174 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2175 
2176 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
2177 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2178 
2179 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2180 
2181 	if (!nvme_ctrlr->reconnect_is_delayed) {
2182 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2183 		return SPDK_POLLER_BUSY;
2184 	}
2185 
2186 	nvme_ctrlr->reconnect_is_delayed = false;
2187 
2188 	if (nvme_ctrlr->destruct) {
2189 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2190 		return SPDK_POLLER_BUSY;
2191 	}
2192 
2193 	assert(nvme_ctrlr->resetting == false);
2194 	nvme_ctrlr->resetting = true;
2195 
2196 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2197 
2198 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2199 
2200 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2201 	return SPDK_POLLER_BUSY;
2202 }
2203 
2204 static void
2205 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
2206 {
2207 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2208 
2209 	assert(nvme_ctrlr->reconnect_is_delayed == false);
2210 	nvme_ctrlr->reconnect_is_delayed = true;
2211 
2212 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
2213 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
2214 					    nvme_ctrlr,
2215 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
2216 }
2217 
2218 static void remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr);
2219 
2220 static void
2221 _bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2222 {
2223 	bool success = (ctx == NULL);
2224 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2225 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2226 	enum bdev_nvme_op_after_reset op_after_reset;
2227 
2228 	assert(nvme_ctrlr->thread == spdk_get_thread());
2229 
2230 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2231 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2232 
2233 	if (!success) {
2234 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Resetting controller failed.\n");
2235 	} else {
2236 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Resetting controller successful.\n");
2237 	}
2238 
2239 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2240 	nvme_ctrlr->resetting = false;
2241 	nvme_ctrlr->dont_retry = false;
2242 	nvme_ctrlr->in_failover = false;
2243 
2244 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
2245 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2246 
2247 	/* Delay callbacks when the next operation is a failover. */
2248 	if (ctrlr_op_cb_fn && op_after_reset != OP_FAILOVER) {
2249 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, success ? 0 : -1);
2250 	}
2251 
2252 	switch (op_after_reset) {
2253 	case OP_COMPLETE_PENDING_DESTRUCT:
2254 		nvme_ctrlr_unregister(nvme_ctrlr);
2255 		break;
2256 	case OP_DESTRUCT:
2257 		bdev_nvme_delete_ctrlr(nvme_ctrlr, false);
2258 		remove_discovery_entry(nvme_ctrlr);
2259 		break;
2260 	case OP_DELAYED_RECONNECT:
2261 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
2262 		break;
2263 	case OP_FAILOVER:
2264 		nvme_ctrlr->ctrlr_op_cb_fn = ctrlr_op_cb_fn;
2265 		nvme_ctrlr->ctrlr_op_cb_arg = ctrlr_op_cb_arg;
2266 		bdev_nvme_failover_ctrlr(nvme_ctrlr);
2267 		break;
2268 	default:
2269 		break;
2270 	}
2271 }
2272 
2273 static void
2274 bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
2275 {
2276 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2277 	if (!success) {
2278 		/* Connecting the active trid failed. Set the next alternate trid to the
2279 		 * active trid if it exists.
2280 		 */
2281 		if (bdev_nvme_failover_trid(nvme_ctrlr, false, false)) {
2282 			/* The next alternate trid exists and is ready to try. Try it now. */
2283 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
2284 
2285 			NVME_CTRLR_INFOLOG(nvme_ctrlr, "Try the next alternate trid %s:%s now.\n",
2286 					   nvme_ctrlr->active_path_id->trid.traddr,
2287 					   nvme_ctrlr->active_path_id->trid.trsvcid);
2288 
2289 			nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2290 			return;
2291 		}
2292 
2293 		/* We came here if there is no alternate trid or if the next trid exists but
2294 		 * is not ready to try. We will try the active trid after reconnect_delay_sec
2295 		 * seconds if it is non-zero or at the next reset call otherwise.
2296 		 */
2297 	} else {
2298 		/* Connecting the active trid succeeded. Clear the last failed time because it
2299 		 * means the trid is failed if its last failed time is non-zero.
2300 		 */
2301 		nvme_ctrlr->active_path_id->last_failed_tsc = 0;
2302 	}
2303 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2304 
2305 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Clear pending resets.\n");
2306 
2307 	/* Make sure we clear any pending resets before returning. */
2308 	nvme_ctrlr_for_each_channel(nvme_ctrlr,
2309 				    bdev_nvme_complete_pending_resets,
2310 				    success ? NULL : (void *)0x1,
2311 				    _bdev_nvme_reset_ctrlr_complete);
2312 }
2313 
2314 static void
2315 bdev_nvme_reset_create_qpairs_failed(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2316 {
2317 	bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2318 }
2319 
2320 static void
2321 bdev_nvme_reset_destroy_qpair(struct nvme_ctrlr_channel_iter *i,
2322 			      struct nvme_ctrlr *nvme_ctrlr,
2323 			      struct nvme_ctrlr_channel *ctrlr_ch, void *ctx)
2324 {
2325 	struct nvme_qpair *nvme_qpair;
2326 	struct spdk_nvme_qpair *qpair;
2327 
2328 	nvme_qpair = ctrlr_ch->qpair;
2329 	assert(nvme_qpair != NULL);
2330 
2331 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2332 
2333 	qpair = nvme_qpair->qpair;
2334 	if (qpair != NULL) {
2335 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "Start disconnecting qpair %p:%u.\n",
2336 				   qpair, spdk_nvme_qpair_get_id(qpair));
2337 
2338 		if (nvme_qpair->ctrlr->dont_retry) {
2339 			spdk_nvme_qpair_set_abort_dnr(qpair, true);
2340 		}
2341 		spdk_nvme_ctrlr_disconnect_io_qpair(qpair);
2342 
2343 		/* The current full reset sequence will move to the next
2344 		 * ctrlr_channel after the qpair is actually disconnected.
2345 		 */
2346 		assert(ctrlr_ch->reset_iter == NULL);
2347 		ctrlr_ch->reset_iter = i;
2348 	} else {
2349 		nvme_ctrlr_for_each_channel_continue(i, 0);
2350 	}
2351 }
2352 
2353 static void
2354 bdev_nvme_reset_create_qpairs_done(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2355 {
2356 	if (status == 0) {
2357 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpairs were created after ctrlr reset.\n");
2358 
2359 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, true);
2360 	} else {
2361 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpairs were failed to create after ctrlr reset.\n");
2362 
2363 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
2364 		nvme_ctrlr_for_each_channel(nvme_ctrlr,
2365 					    bdev_nvme_reset_destroy_qpair,
2366 					    NULL,
2367 					    bdev_nvme_reset_create_qpairs_failed);
2368 	}
2369 }
2370 
2371 static int
2372 bdev_nvme_reset_check_qpair_connected(void *ctx)
2373 {
2374 	struct nvme_ctrlr_channel *ctrlr_ch = ctx;
2375 	struct nvme_qpair *nvme_qpair = ctrlr_ch->qpair;
2376 	struct spdk_nvme_qpair *qpair;
2377 
2378 	if (ctrlr_ch->reset_iter == NULL) {
2379 		/* qpair was already failed to connect and the reset sequence is being aborted. */
2380 		assert(ctrlr_ch->connect_poller == NULL);
2381 		assert(nvme_qpair->qpair == NULL);
2382 
2383 		NVME_CTRLR_INFOLOG(nvme_qpair->ctrlr,
2384 				   "qpair was already failed to connect. reset is being aborted.\n");
2385 		return SPDK_POLLER_BUSY;
2386 	}
2387 
2388 	qpair = nvme_qpair->qpair;
2389 	assert(qpair != NULL);
2390 
2391 	if (!spdk_nvme_qpair_is_connected(qpair)) {
2392 		return SPDK_POLLER_BUSY;
2393 	}
2394 
2395 	NVME_CTRLR_INFOLOG(nvme_qpair->ctrlr, "qpair %p:%u was connected.\n",
2396 			   qpair, spdk_nvme_qpair_get_id(qpair));
2397 
2398 	spdk_poller_unregister(&ctrlr_ch->connect_poller);
2399 
2400 	/* qpair was completed to connect. Move to the next ctrlr_channel */
2401 	nvme_ctrlr_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2402 	ctrlr_ch->reset_iter = NULL;
2403 
2404 	if (!g_opts.disable_auto_failback) {
2405 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
2406 	}
2407 
2408 	return SPDK_POLLER_BUSY;
2409 }
2410 
2411 static void
2412 bdev_nvme_reset_create_qpair(struct nvme_ctrlr_channel_iter *i,
2413 			     struct nvme_ctrlr *nvme_ctrlr,
2414 			     struct nvme_ctrlr_channel *ctrlr_ch,
2415 			     void *ctx)
2416 {
2417 	struct nvme_qpair *nvme_qpair = ctrlr_ch->qpair;
2418 	struct spdk_nvme_qpair *qpair;
2419 	int rc;
2420 
2421 	rc = bdev_nvme_create_qpair(nvme_qpair);
2422 	if (rc == 0) {
2423 		ctrlr_ch->connect_poller = SPDK_POLLER_REGISTER(bdev_nvme_reset_check_qpair_connected,
2424 					   ctrlr_ch, 0);
2425 
2426 		qpair = nvme_qpair->qpair;
2427 
2428 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "Start checking qpair %p:%u to be connected.\n",
2429 				   qpair, spdk_nvme_qpair_get_id(qpair));
2430 
2431 		/* The current full reset sequence will move to the next
2432 		 * ctrlr_channel after the qpair is actually connected.
2433 		 */
2434 		assert(ctrlr_ch->reset_iter == NULL);
2435 		ctrlr_ch->reset_iter = i;
2436 	} else {
2437 		nvme_ctrlr_for_each_channel_continue(i, rc);
2438 	}
2439 }
2440 
2441 static void
2442 nvme_ctrlr_check_namespaces(struct nvme_ctrlr *nvme_ctrlr)
2443 {
2444 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
2445 	struct nvme_ns *nvme_ns;
2446 
2447 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
2448 	     nvme_ns != NULL;
2449 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
2450 		if (!spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
2451 			SPDK_DEBUGLOG(bdev_nvme, "NSID %u was removed during reset.\n", nvme_ns->id);
2452 			/* NS can be added again. Just nullify nvme_ns->ns. */
2453 			nvme_ns->ns = NULL;
2454 		}
2455 	}
2456 }
2457 
2458 
2459 static int
2460 bdev_nvme_reconnect_ctrlr_poll(void *arg)
2461 {
2462 	struct nvme_ctrlr *nvme_ctrlr = arg;
2463 	struct spdk_nvme_transport_id *trid;
2464 	int rc = -ETIMEDOUT;
2465 
2466 	if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2467 		/* Mark the ctrlr as failed. The next call to
2468 		 * spdk_nvme_ctrlr_reconnect_poll_async() will then
2469 		 * do the necessary cleanup and return failure.
2470 		 */
2471 		spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
2472 	}
2473 
2474 	rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
2475 	if (rc == -EAGAIN) {
2476 		return SPDK_POLLER_BUSY;
2477 	}
2478 
2479 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
2480 	if (rc == 0) {
2481 		trid = &nvme_ctrlr->active_path_id->trid;
2482 
2483 		if (spdk_nvme_trtype_is_fabrics(trid->trtype)) {
2484 			NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr was connected to %s:%s. Create qpairs.\n",
2485 					   trid->traddr, trid->trsvcid);
2486 		} else {
2487 			NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr was connected. Create qpairs.\n");
2488 		}
2489 
2490 		nvme_ctrlr_check_namespaces(nvme_ctrlr);
2491 
2492 		/* Recreate all of the I/O queue pairs */
2493 		nvme_ctrlr_for_each_channel(nvme_ctrlr,
2494 					    bdev_nvme_reset_create_qpair,
2495 					    NULL,
2496 					    bdev_nvme_reset_create_qpairs_done);
2497 	} else {
2498 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr could not be connected.\n");
2499 
2500 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2501 	}
2502 	return SPDK_POLLER_BUSY;
2503 }
2504 
2505 static void
2506 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2507 {
2508 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Start reconnecting ctrlr.\n");
2509 
2510 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
2511 
2512 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
2513 	assert(nvme_ctrlr->reset_detach_poller == NULL);
2514 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
2515 					  nvme_ctrlr, 0);
2516 }
2517 
2518 static void
2519 bdev_nvme_reset_destroy_qpair_done(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2520 {
2521 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
2522 	assert(status == 0);
2523 
2524 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpairs were deleted.\n");
2525 
2526 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2527 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2528 	} else {
2529 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2530 	}
2531 }
2532 
2533 static void
2534 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2535 {
2536 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Delete qpairs for reset.\n");
2537 
2538 	nvme_ctrlr_for_each_channel(nvme_ctrlr,
2539 				    bdev_nvme_reset_destroy_qpair,
2540 				    NULL,
2541 				    bdev_nvme_reset_destroy_qpair_done);
2542 }
2543 
2544 static void
2545 bdev_nvme_reconnect_ctrlr_now(void *ctx)
2546 {
2547 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2548 
2549 	assert(nvme_ctrlr->resetting == true);
2550 	assert(nvme_ctrlr->thread == spdk_get_thread());
2551 
2552 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2553 
2554 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2555 
2556 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2557 }
2558 
2559 static void
2560 _bdev_nvme_reset_ctrlr(void *ctx)
2561 {
2562 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2563 
2564 	assert(nvme_ctrlr->resetting == true);
2565 	assert(nvme_ctrlr->thread == spdk_get_thread());
2566 
2567 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2568 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
2569 	} else {
2570 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
2571 	}
2572 }
2573 
2574 static int
2575 bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2576 {
2577 	spdk_msg_fn msg_fn;
2578 
2579 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2580 	if (nvme_ctrlr->destruct) {
2581 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2582 		return -ENXIO;
2583 	}
2584 
2585 	if (nvme_ctrlr->resetting) {
2586 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2587 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Unable to perform reset, already in progress.\n");
2588 		return -EBUSY;
2589 	}
2590 
2591 	if (nvme_ctrlr->disabled) {
2592 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2593 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Unable to perform reset. Controller is disabled.\n");
2594 		return -EALREADY;
2595 	}
2596 
2597 	nvme_ctrlr->resetting = true;
2598 	nvme_ctrlr->dont_retry = true;
2599 
2600 	if (nvme_ctrlr->reconnect_is_delayed) {
2601 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "Reconnect is already scheduled.\n");
2602 		msg_fn = bdev_nvme_reconnect_ctrlr_now;
2603 		nvme_ctrlr->reconnect_is_delayed = false;
2604 	} else {
2605 		msg_fn = _bdev_nvme_reset_ctrlr;
2606 		assert(nvme_ctrlr->reset_start_tsc == 0);
2607 	}
2608 
2609 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2610 
2611 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2612 
2613 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2614 	return 0;
2615 }
2616 
2617 static int
2618 bdev_nvme_enable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2619 {
2620 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2621 	if (nvme_ctrlr->destruct) {
2622 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2623 		return -ENXIO;
2624 	}
2625 
2626 	if (nvme_ctrlr->resetting) {
2627 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2628 		return -EBUSY;
2629 	}
2630 
2631 	if (!nvme_ctrlr->disabled) {
2632 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2633 		return -EALREADY;
2634 	}
2635 
2636 	nvme_ctrlr->disabled = false;
2637 	nvme_ctrlr->resetting = true;
2638 
2639 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2640 
2641 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2642 
2643 	spdk_thread_send_msg(nvme_ctrlr->thread, bdev_nvme_reconnect_ctrlr_now, nvme_ctrlr);
2644 	return 0;
2645 }
2646 
2647 static void
2648 _bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2649 {
2650 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2651 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2652 	enum bdev_nvme_op_after_reset op_after_disable;
2653 
2654 	assert(nvme_ctrlr->thread == spdk_get_thread());
2655 
2656 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2657 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2658 
2659 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2660 
2661 	nvme_ctrlr->resetting = false;
2662 	nvme_ctrlr->dont_retry = false;
2663 
2664 	op_after_disable = bdev_nvme_check_op_after_reset(nvme_ctrlr, true);
2665 
2666 	nvme_ctrlr->disabled = true;
2667 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2668 
2669 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2670 
2671 	if (ctrlr_op_cb_fn) {
2672 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, 0);
2673 	}
2674 
2675 	switch (op_after_disable) {
2676 	case OP_COMPLETE_PENDING_DESTRUCT:
2677 		nvme_ctrlr_unregister(nvme_ctrlr);
2678 		break;
2679 	default:
2680 		break;
2681 	}
2682 
2683 }
2684 
2685 static void
2686 bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr)
2687 {
2688 	/* Make sure we clear any pending resets before returning. */
2689 	nvme_ctrlr_for_each_channel(nvme_ctrlr,
2690 				    bdev_nvme_complete_pending_resets,
2691 				    NULL,
2692 				    _bdev_nvme_disable_ctrlr_complete);
2693 }
2694 
2695 static void
2696 bdev_nvme_disable_destroy_qpairs_done(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2697 {
2698 	assert(status == 0);
2699 
2700 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2701 		bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2702 	} else {
2703 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_ctrlr_complete);
2704 	}
2705 }
2706 
2707 static void
2708 bdev_nvme_disable_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2709 {
2710 	nvme_ctrlr_for_each_channel(nvme_ctrlr,
2711 				    bdev_nvme_reset_destroy_qpair,
2712 				    NULL,
2713 				    bdev_nvme_disable_destroy_qpairs_done);
2714 }
2715 
2716 static void
2717 _bdev_nvme_cancel_reconnect_and_disable_ctrlr(void *ctx)
2718 {
2719 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2720 
2721 	assert(nvme_ctrlr->resetting == true);
2722 	assert(nvme_ctrlr->thread == spdk_get_thread());
2723 
2724 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2725 
2726 	bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2727 }
2728 
2729 static void
2730 _bdev_nvme_disconnect_and_disable_ctrlr(void *ctx)
2731 {
2732 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2733 
2734 	assert(nvme_ctrlr->resetting == true);
2735 	assert(nvme_ctrlr->thread == spdk_get_thread());
2736 
2737 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2738 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_destroy_qpairs);
2739 	} else {
2740 		bdev_nvme_disable_destroy_qpairs(nvme_ctrlr);
2741 	}
2742 }
2743 
2744 static int
2745 bdev_nvme_disable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2746 {
2747 	spdk_msg_fn msg_fn;
2748 
2749 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2750 	if (nvme_ctrlr->destruct) {
2751 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2752 		return -ENXIO;
2753 	}
2754 
2755 	if (nvme_ctrlr->resetting) {
2756 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2757 		return -EBUSY;
2758 	}
2759 
2760 	if (nvme_ctrlr->disabled) {
2761 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2762 		return -EALREADY;
2763 	}
2764 
2765 	nvme_ctrlr->resetting = true;
2766 	nvme_ctrlr->dont_retry = true;
2767 
2768 	if (nvme_ctrlr->reconnect_is_delayed) {
2769 		msg_fn = _bdev_nvme_cancel_reconnect_and_disable_ctrlr;
2770 		nvme_ctrlr->reconnect_is_delayed = false;
2771 	} else {
2772 		msg_fn = _bdev_nvme_disconnect_and_disable_ctrlr;
2773 	}
2774 
2775 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2776 
2777 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2778 
2779 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2780 	return 0;
2781 }
2782 
2783 static int
2784 nvme_ctrlr_op(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2785 	      bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2786 {
2787 	int rc;
2788 
2789 	switch (op) {
2790 	case NVME_CTRLR_OP_RESET:
2791 		rc = bdev_nvme_reset_ctrlr(nvme_ctrlr);
2792 		break;
2793 	case NVME_CTRLR_OP_ENABLE:
2794 		rc = bdev_nvme_enable_ctrlr(nvme_ctrlr);
2795 		break;
2796 	case NVME_CTRLR_OP_DISABLE:
2797 		rc = bdev_nvme_disable_ctrlr(nvme_ctrlr);
2798 		break;
2799 	default:
2800 		rc = -EINVAL;
2801 		break;
2802 	}
2803 
2804 	if (rc == 0) {
2805 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
2806 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
2807 		nvme_ctrlr->ctrlr_op_cb_fn = cb_fn;
2808 		nvme_ctrlr->ctrlr_op_cb_arg = cb_arg;
2809 	}
2810 	return rc;
2811 }
2812 
2813 struct nvme_ctrlr_op_rpc_ctx {
2814 	struct nvme_ctrlr *nvme_ctrlr;
2815 	struct spdk_thread *orig_thread;
2816 	enum nvme_ctrlr_op op;
2817 	int rc;
2818 	bdev_nvme_ctrlr_op_cb cb_fn;
2819 	void *cb_arg;
2820 };
2821 
2822 static void
2823 _nvme_ctrlr_op_rpc_complete(void *_ctx)
2824 {
2825 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2826 
2827 	assert(ctx != NULL);
2828 	assert(ctx->cb_fn != NULL);
2829 
2830 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2831 
2832 	free(ctx);
2833 }
2834 
2835 static void
2836 nvme_ctrlr_op_rpc_complete(void *cb_arg, int rc)
2837 {
2838 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2839 
2840 	ctx->rc = rc;
2841 
2842 	spdk_thread_send_msg(ctx->orig_thread, _nvme_ctrlr_op_rpc_complete, ctx);
2843 }
2844 
2845 void
2846 nvme_ctrlr_op_rpc(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2847 		  bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2848 {
2849 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2850 	int rc;
2851 
2852 	assert(cb_fn != NULL);
2853 
2854 	ctx = calloc(1, sizeof(*ctx));
2855 	if (ctx == NULL) {
2856 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2857 		cb_fn(cb_arg, -ENOMEM);
2858 		return;
2859 	}
2860 
2861 	ctx->orig_thread = spdk_get_thread();
2862 	ctx->cb_fn = cb_fn;
2863 	ctx->cb_arg = cb_arg;
2864 
2865 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_ctrlr_op_rpc_complete, ctx);
2866 	if (rc == 0) {
2867 		return;
2868 	} else if (rc == -EALREADY) {
2869 		rc = 0;
2870 	}
2871 
2872 	nvme_ctrlr_op_rpc_complete(ctx, rc);
2873 }
2874 
2875 static void nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc);
2876 
2877 static void
2878 _nvme_bdev_ctrlr_op_rpc_continue(void *_ctx)
2879 {
2880 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2881 	struct nvme_ctrlr *prev_nvme_ctrlr, *next_nvme_ctrlr;
2882 	int rc;
2883 
2884 	prev_nvme_ctrlr = ctx->nvme_ctrlr;
2885 	ctx->nvme_ctrlr = NULL;
2886 
2887 	if (ctx->rc != 0) {
2888 		goto complete;
2889 	}
2890 
2891 	next_nvme_ctrlr = TAILQ_NEXT(prev_nvme_ctrlr, tailq);
2892 	if (next_nvme_ctrlr == NULL) {
2893 		goto complete;
2894 	}
2895 
2896 	rc = nvme_ctrlr_op(next_nvme_ctrlr, ctx->op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2897 	if (rc == 0) {
2898 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2899 		return;
2900 	} else if (rc == -EALREADY) {
2901 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2902 		rc = 0;
2903 	}
2904 
2905 	ctx->rc = rc;
2906 
2907 complete:
2908 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2909 	free(ctx);
2910 }
2911 
2912 static void
2913 nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc)
2914 {
2915 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2916 
2917 	ctx->rc = rc;
2918 
2919 	spdk_thread_send_msg(ctx->orig_thread, _nvme_bdev_ctrlr_op_rpc_continue, ctx);
2920 }
2921 
2922 void
2923 nvme_bdev_ctrlr_op_rpc(struct nvme_bdev_ctrlr *nbdev_ctrlr, enum nvme_ctrlr_op op,
2924 		       bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2925 {
2926 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2927 	struct nvme_ctrlr *nvme_ctrlr;
2928 	int rc;
2929 
2930 	assert(cb_fn != NULL);
2931 
2932 	ctx = calloc(1, sizeof(*ctx));
2933 	if (ctx == NULL) {
2934 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2935 		cb_fn(cb_arg, -ENOMEM);
2936 		return;
2937 	}
2938 
2939 	ctx->orig_thread = spdk_get_thread();
2940 	ctx->op = op;
2941 	ctx->cb_fn = cb_fn;
2942 	ctx->cb_arg = cb_arg;
2943 
2944 	nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
2945 	assert(nvme_ctrlr != NULL);
2946 
2947 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2948 	if (rc == 0) {
2949 		ctx->nvme_ctrlr = nvme_ctrlr;
2950 		return;
2951 	} else if (rc == -EALREADY) {
2952 		ctx->nvme_ctrlr = nvme_ctrlr;
2953 		rc = 0;
2954 	}
2955 
2956 	nvme_bdev_ctrlr_op_rpc_continue(ctx, rc);
2957 }
2958 
2959 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
2960 
2961 static void
2962 bdev_nvme_unfreeze_bdev_channel_done(struct nvme_bdev *nbdev, void *ctx, int status)
2963 {
2964 	struct nvme_bdev_io *bio = ctx;
2965 	enum spdk_bdev_io_status io_status;
2966 
2967 	if (bio->cpl.cdw0 == 0) {
2968 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2969 	} else {
2970 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
2971 	}
2972 
2973 	NVME_BDEV_INFOLOG(nbdev, "reset_io %p completed, status:%d\n", bio, io_status);
2974 
2975 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
2976 }
2977 
2978 static void
2979 bdev_nvme_unfreeze_bdev_channel(struct nvme_bdev_channel_iter *i,
2980 				struct nvme_bdev *nbdev,
2981 				struct nvme_bdev_channel *nbdev_ch, void *ctx)
2982 {
2983 	bdev_nvme_abort_retry_ios(nbdev_ch);
2984 	nbdev_ch->resetting = false;
2985 
2986 	nvme_bdev_for_each_channel_continue(i, 0);
2987 }
2988 
2989 static void
2990 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
2991 {
2992 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2993 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
2994 
2995 	/* Abort all queued I/Os for retry. */
2996 	nvme_bdev_for_each_channel(nbdev,
2997 				   bdev_nvme_unfreeze_bdev_channel,
2998 				   bio,
2999 				   bdev_nvme_unfreeze_bdev_channel_done);
3000 }
3001 
3002 static void
3003 _bdev_nvme_reset_io_continue(void *ctx)
3004 {
3005 	struct nvme_bdev_io *bio = ctx;
3006 	struct nvme_io_path *prev_io_path, *next_io_path;
3007 	int rc;
3008 
3009 	prev_io_path = bio->io_path;
3010 	bio->io_path = NULL;
3011 
3012 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
3013 	if (next_io_path == NULL) {
3014 		goto complete;
3015 	}
3016 
3017 	rc = _bdev_nvme_reset_io(next_io_path, bio);
3018 	if (rc == 0) {
3019 		return;
3020 	}
3021 
3022 complete:
3023 	bdev_nvme_reset_io_complete(bio);
3024 }
3025 
3026 static void
3027 bdev_nvme_reset_io_continue(void *cb_arg, int rc)
3028 {
3029 	struct nvme_bdev_io *bio = cb_arg;
3030 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
3031 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
3032 
3033 	NVME_BDEV_INFOLOG(nbdev, "continue reset_io %p, rc:%d\n", bio, rc);
3034 
3035 	/* Reset status is initialized as "failed". Set to "success" once we have at least one
3036 	 * successfully reset nvme_ctrlr.
3037 	 */
3038 	if (rc == 0) {
3039 		bio->cpl.cdw0 = 0;
3040 	}
3041 
3042 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_nvme_reset_io_continue, bio);
3043 }
3044 
3045 static int
3046 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
3047 {
3048 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
3049 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
3050 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
3051 	struct nvme_ctrlr_channel *ctrlr_ch;
3052 	int rc;
3053 
3054 	assert(bio->io_path == NULL);
3055 	bio->io_path = io_path;
3056 
3057 	rc = nvme_ctrlr_op(nvme_ctrlr, NVME_CTRLR_OP_RESET,
3058 			   bdev_nvme_reset_io_continue, bio);
3059 
3060 	if (rc == 0) {
3061 		NVME_BDEV_INFOLOG(nbdev, "reset_io %p started resetting ctrlr [%s, %u].\n",
3062 				  bio, CTRLR_STRING(nvme_ctrlr), CTRLR_ID(nvme_ctrlr));
3063 	} else if (rc == -EBUSY) {
3064 		ctrlr_ch = io_path->qpair->ctrlr_ch;
3065 		assert(ctrlr_ch != NULL);
3066 		/*
3067 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
3068 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
3069 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
3070 		 */
3071 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bio, retry_link);
3072 
3073 		rc = 0;
3074 
3075 		NVME_BDEV_INFOLOG(nbdev, "reset_io %p was queued to ctrlr [%s, %u].\n",
3076 				  bio, CTRLR_STRING(nvme_ctrlr), CTRLR_ID(nvme_ctrlr));
3077 	} else {
3078 		NVME_BDEV_INFOLOG(nbdev, "reset_io %p could not reset ctrlr [%s, %u], rc:%d\n",
3079 				  bio, CTRLR_STRING(nvme_ctrlr), CTRLR_ID(nvme_ctrlr), rc);
3080 	}
3081 
3082 	return rc;
3083 }
3084 
3085 static void
3086 bdev_nvme_freeze_bdev_channel_done(struct nvme_bdev *nbdev, void *ctx, int status)
3087 {
3088 	struct nvme_bdev_io *bio = ctx;
3089 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
3090 	struct nvme_bdev_channel *nbdev_ch;
3091 	struct nvme_io_path *io_path;
3092 	int rc;
3093 
3094 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
3095 
3096 	/* Initialize with failed status. With multipath it is enough to have at least one successful
3097 	 * nvme_ctrlr reset. If there is none, reset status will remain failed.
3098 	 */
3099 	bio->cpl.cdw0 = 1;
3100 
3101 	/* Reset all nvme_ctrlrs of a bdev controller sequentially. */
3102 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
3103 	assert(io_path != NULL);
3104 
3105 	rc = _bdev_nvme_reset_io(io_path, bio);
3106 	if (rc != 0) {
3107 		/* If the current nvme_ctrlr is disabled, skip it and move to the next nvme_ctrlr. */
3108 		rc = (rc == -EALREADY) ? 0 : rc;
3109 
3110 		bdev_nvme_reset_io_continue(bio, rc);
3111 	}
3112 }
3113 
3114 static void
3115 bdev_nvme_freeze_bdev_channel(struct nvme_bdev_channel_iter *i,
3116 			      struct nvme_bdev *nbdev,
3117 			      struct nvme_bdev_channel *nbdev_ch, void *ctx)
3118 {
3119 	nbdev_ch->resetting = true;
3120 
3121 	nvme_bdev_for_each_channel_continue(i, 0);
3122 }
3123 
3124 static void
3125 bdev_nvme_reset_io(struct nvme_bdev *nbdev, struct nvme_bdev_io *bio)
3126 {
3127 	NVME_BDEV_INFOLOG(nbdev, "reset_io %p started.\n", bio);
3128 
3129 	nvme_bdev_for_each_channel(nbdev,
3130 				   bdev_nvme_freeze_bdev_channel,
3131 				   bio,
3132 				   bdev_nvme_freeze_bdev_channel_done);
3133 }
3134 
3135 static int
3136 bdev_nvme_failover_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove)
3137 {
3138 	if (nvme_ctrlr->destruct) {
3139 		/* Don't bother resetting if the controller is in the process of being destructed. */
3140 		return -ENXIO;
3141 	}
3142 
3143 	if (nvme_ctrlr->resetting) {
3144 		if (!nvme_ctrlr->in_failover) {
3145 			NVME_CTRLR_NOTICELOG(nvme_ctrlr,
3146 					     "Reset is already in progress. Defer failover until reset completes.\n");
3147 
3148 			/* Defer failover until reset completes. */
3149 			nvme_ctrlr->pending_failover = true;
3150 			return -EINPROGRESS;
3151 		} else {
3152 			NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Unable to perform failover, already in progress.\n");
3153 			return -EBUSY;
3154 		}
3155 	}
3156 
3157 	bdev_nvme_failover_trid(nvme_ctrlr, remove, true);
3158 
3159 	if (nvme_ctrlr->reconnect_is_delayed) {
3160 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Reconnect is already scheduled.\n");
3161 
3162 		/* We rely on the next reconnect for the failover. */
3163 		return -EALREADY;
3164 	}
3165 
3166 	if (nvme_ctrlr->disabled) {
3167 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Controller is disabled.\n");
3168 
3169 		/* We rely on the enablement for the failover. */
3170 		return -EALREADY;
3171 	}
3172 
3173 	nvme_ctrlr->resetting = true;
3174 	nvme_ctrlr->in_failover = true;
3175 
3176 	assert(nvme_ctrlr->reset_start_tsc == 0);
3177 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
3178 
3179 	return 0;
3180 }
3181 
3182 static int
3183 bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
3184 {
3185 	int rc;
3186 
3187 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3188 	rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, false);
3189 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3190 
3191 	if (rc == 0) {
3192 		spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset_ctrlr, nvme_ctrlr);
3193 	} else if (rc == -EALREADY) {
3194 		rc = 0;
3195 	}
3196 
3197 	return rc;
3198 }
3199 
3200 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
3201 			   uint64_t num_blocks);
3202 
3203 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
3204 				  uint64_t num_blocks);
3205 
3206 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
3207 			  uint64_t src_offset_blocks,
3208 			  uint64_t num_blocks);
3209 
3210 static void
3211 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
3212 		     bool success)
3213 {
3214 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3215 	int ret;
3216 
3217 	if (!success) {
3218 		ret = -EINVAL;
3219 		goto exit;
3220 	}
3221 
3222 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
3223 		ret = -ENXIO;
3224 		goto exit;
3225 	}
3226 
3227 	ret = bdev_nvme_readv(bio,
3228 			      bdev_io->u.bdev.iovs,
3229 			      bdev_io->u.bdev.iovcnt,
3230 			      bdev_io->u.bdev.md_buf,
3231 			      bdev_io->u.bdev.num_blocks,
3232 			      bdev_io->u.bdev.offset_blocks,
3233 			      bdev_io->u.bdev.dif_check_flags,
3234 			      bdev_io->u.bdev.memory_domain,
3235 			      bdev_io->u.bdev.memory_domain_ctx,
3236 			      bdev_io->u.bdev.accel_sequence);
3237 
3238 exit:
3239 	if (spdk_unlikely(ret != 0)) {
3240 		bdev_nvme_io_complete(bio, ret);
3241 	}
3242 }
3243 
3244 static inline void
3245 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
3246 {
3247 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3248 	struct spdk_bdev *bdev = bdev_io->bdev;
3249 	struct nvme_bdev_io *nbdev_io_to_abort;
3250 	int rc = 0;
3251 
3252 	switch (bdev_io->type) {
3253 	case SPDK_BDEV_IO_TYPE_READ:
3254 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
3255 
3256 			rc = bdev_nvme_readv(nbdev_io,
3257 					     bdev_io->u.bdev.iovs,
3258 					     bdev_io->u.bdev.iovcnt,
3259 					     bdev_io->u.bdev.md_buf,
3260 					     bdev_io->u.bdev.num_blocks,
3261 					     bdev_io->u.bdev.offset_blocks,
3262 					     bdev_io->u.bdev.dif_check_flags,
3263 					     bdev_io->u.bdev.memory_domain,
3264 					     bdev_io->u.bdev.memory_domain_ctx,
3265 					     bdev_io->u.bdev.accel_sequence);
3266 		} else {
3267 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
3268 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
3269 			rc = 0;
3270 		}
3271 		break;
3272 	case SPDK_BDEV_IO_TYPE_WRITE:
3273 		rc = bdev_nvme_writev(nbdev_io,
3274 				      bdev_io->u.bdev.iovs,
3275 				      bdev_io->u.bdev.iovcnt,
3276 				      bdev_io->u.bdev.md_buf,
3277 				      bdev_io->u.bdev.num_blocks,
3278 				      bdev_io->u.bdev.offset_blocks,
3279 				      bdev_io->u.bdev.dif_check_flags,
3280 				      bdev_io->u.bdev.memory_domain,
3281 				      bdev_io->u.bdev.memory_domain_ctx,
3282 				      bdev_io->u.bdev.accel_sequence,
3283 				      bdev_io->u.bdev.nvme_cdw12,
3284 				      bdev_io->u.bdev.nvme_cdw13);
3285 		break;
3286 	case SPDK_BDEV_IO_TYPE_COMPARE:
3287 		rc = bdev_nvme_comparev(nbdev_io,
3288 					bdev_io->u.bdev.iovs,
3289 					bdev_io->u.bdev.iovcnt,
3290 					bdev_io->u.bdev.md_buf,
3291 					bdev_io->u.bdev.num_blocks,
3292 					bdev_io->u.bdev.offset_blocks,
3293 					bdev_io->u.bdev.dif_check_flags);
3294 		break;
3295 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3296 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
3297 						   bdev_io->u.bdev.iovs,
3298 						   bdev_io->u.bdev.iovcnt,
3299 						   bdev_io->u.bdev.fused_iovs,
3300 						   bdev_io->u.bdev.fused_iovcnt,
3301 						   bdev_io->u.bdev.md_buf,
3302 						   bdev_io->u.bdev.num_blocks,
3303 						   bdev_io->u.bdev.offset_blocks,
3304 						   bdev_io->u.bdev.dif_check_flags);
3305 		break;
3306 	case SPDK_BDEV_IO_TYPE_UNMAP:
3307 		rc = bdev_nvme_unmap(nbdev_io,
3308 				     bdev_io->u.bdev.offset_blocks,
3309 				     bdev_io->u.bdev.num_blocks);
3310 		break;
3311 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3312 		rc =  bdev_nvme_write_zeroes(nbdev_io,
3313 					     bdev_io->u.bdev.offset_blocks,
3314 					     bdev_io->u.bdev.num_blocks);
3315 		break;
3316 	case SPDK_BDEV_IO_TYPE_RESET:
3317 		nbdev_io->io_path = NULL;
3318 		bdev_nvme_reset_io(bdev->ctxt, nbdev_io);
3319 		return;
3320 
3321 	case SPDK_BDEV_IO_TYPE_FLUSH:
3322 		bdev_nvme_io_complete(nbdev_io, 0);
3323 		return;
3324 
3325 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3326 		rc = bdev_nvme_zone_appendv(nbdev_io,
3327 					    bdev_io->u.bdev.iovs,
3328 					    bdev_io->u.bdev.iovcnt,
3329 					    bdev_io->u.bdev.md_buf,
3330 					    bdev_io->u.bdev.num_blocks,
3331 					    bdev_io->u.bdev.offset_blocks,
3332 					    bdev_io->u.bdev.dif_check_flags);
3333 		break;
3334 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3335 		rc = bdev_nvme_get_zone_info(nbdev_io,
3336 					     bdev_io->u.zone_mgmt.zone_id,
3337 					     bdev_io->u.zone_mgmt.num_zones,
3338 					     bdev_io->u.zone_mgmt.buf);
3339 		break;
3340 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3341 		rc = bdev_nvme_zone_management(nbdev_io,
3342 					       bdev_io->u.zone_mgmt.zone_id,
3343 					       bdev_io->u.zone_mgmt.zone_action);
3344 		break;
3345 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3346 		nbdev_io->io_path = NULL;
3347 		bdev_nvme_admin_passthru(nbdev_ch,
3348 					 nbdev_io,
3349 					 &bdev_io->u.nvme_passthru.cmd,
3350 					 bdev_io->u.nvme_passthru.buf,
3351 					 bdev_io->u.nvme_passthru.nbytes);
3352 		return;
3353 
3354 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3355 		rc = bdev_nvme_io_passthru(nbdev_io,
3356 					   &bdev_io->u.nvme_passthru.cmd,
3357 					   bdev_io->u.nvme_passthru.buf,
3358 					   bdev_io->u.nvme_passthru.nbytes);
3359 		break;
3360 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3361 		rc = bdev_nvme_io_passthru_md(nbdev_io,
3362 					      &bdev_io->u.nvme_passthru.cmd,
3363 					      bdev_io->u.nvme_passthru.buf,
3364 					      bdev_io->u.nvme_passthru.nbytes,
3365 					      bdev_io->u.nvme_passthru.md_buf,
3366 					      bdev_io->u.nvme_passthru.md_len);
3367 		break;
3368 	case SPDK_BDEV_IO_TYPE_NVME_IOV_MD:
3369 		rc = bdev_nvme_iov_passthru_md(nbdev_io,
3370 					       &bdev_io->u.nvme_passthru.cmd,
3371 					       bdev_io->u.nvme_passthru.iovs,
3372 					       bdev_io->u.nvme_passthru.iovcnt,
3373 					       bdev_io->u.nvme_passthru.nbytes,
3374 					       bdev_io->u.nvme_passthru.md_buf,
3375 					       bdev_io->u.nvme_passthru.md_len);
3376 		break;
3377 	case SPDK_BDEV_IO_TYPE_ABORT:
3378 		nbdev_io->io_path = NULL;
3379 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
3380 		bdev_nvme_abort(nbdev_ch,
3381 				nbdev_io,
3382 				nbdev_io_to_abort);
3383 		return;
3384 
3385 	case SPDK_BDEV_IO_TYPE_COPY:
3386 		rc = bdev_nvme_copy(nbdev_io,
3387 				    bdev_io->u.bdev.offset_blocks,
3388 				    bdev_io->u.bdev.copy.src_offset_blocks,
3389 				    bdev_io->u.bdev.num_blocks);
3390 		break;
3391 	default:
3392 		rc = -EINVAL;
3393 		break;
3394 	}
3395 
3396 	if (spdk_unlikely(rc != 0)) {
3397 		bdev_nvme_io_complete(nbdev_io, rc);
3398 	}
3399 }
3400 
3401 static void
3402 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
3403 {
3404 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3405 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3406 
3407 	if (spdk_likely(nbdev_io->submit_tsc == 0)) {
3408 		nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io);
3409 	} else {
3410 		/* There are cases where submit_tsc != 0, i.e. retry I/O.
3411 		 * We need to update submit_tsc here.
3412 		 */
3413 		nbdev_io->submit_tsc = spdk_get_ticks();
3414 	}
3415 
3416 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
3417 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
3418 	if (spdk_unlikely(!nbdev_io->io_path)) {
3419 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
3420 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
3421 			return;
3422 		}
3423 
3424 		/* Admin commands do not use the optimal I/O path.
3425 		 * Simply fall through even if it is not found.
3426 		 */
3427 	}
3428 
3429 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
3430 }
3431 
3432 static bool
3433 bdev_nvme_is_supported_csi(enum spdk_nvme_csi csi)
3434 {
3435 	switch (csi) {
3436 	case SPDK_NVME_CSI_NVM:
3437 		return true;
3438 	case SPDK_NVME_CSI_ZNS:
3439 		return true;
3440 	default:
3441 		return false;
3442 	}
3443 }
3444 
3445 static bool
3446 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
3447 {
3448 	struct nvme_bdev *nbdev = ctx;
3449 	struct nvme_ns *nvme_ns;
3450 	struct spdk_nvme_ns *ns;
3451 	struct spdk_nvme_ctrlr *ctrlr;
3452 	const struct spdk_nvme_ctrlr_data *cdata;
3453 
3454 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3455 	assert(nvme_ns != NULL);
3456 	ns = nvme_ns->ns;
3457 	if (ns == NULL) {
3458 		return false;
3459 	}
3460 
3461 	if (!bdev_nvme_is_supported_csi(spdk_nvme_ns_get_csi(ns))) {
3462 		switch (io_type) {
3463 		case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3464 		case SPDK_BDEV_IO_TYPE_NVME_IO:
3465 			return true;
3466 
3467 		case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3468 			return spdk_nvme_ns_get_md_size(ns) ? true : false;
3469 
3470 		default:
3471 			return false;
3472 		}
3473 	}
3474 
3475 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3476 
3477 	switch (io_type) {
3478 	case SPDK_BDEV_IO_TYPE_READ:
3479 	case SPDK_BDEV_IO_TYPE_WRITE:
3480 	case SPDK_BDEV_IO_TYPE_RESET:
3481 	case SPDK_BDEV_IO_TYPE_FLUSH:
3482 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3483 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3484 	case SPDK_BDEV_IO_TYPE_ABORT:
3485 		return true;
3486 
3487 	case SPDK_BDEV_IO_TYPE_COMPARE:
3488 		return spdk_nvme_ns_supports_compare(ns);
3489 
3490 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3491 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
3492 
3493 	case SPDK_BDEV_IO_TYPE_UNMAP:
3494 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3495 		return cdata->oncs.dsm;
3496 
3497 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3498 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3499 		return cdata->oncs.write_zeroes;
3500 
3501 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3502 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
3503 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
3504 			return true;
3505 		}
3506 		return false;
3507 
3508 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3509 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3510 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
3511 
3512 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3513 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
3514 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
3515 
3516 	case SPDK_BDEV_IO_TYPE_COPY:
3517 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3518 		return cdata->oncs.copy;
3519 
3520 	default:
3521 		return false;
3522 	}
3523 }
3524 
3525 static int
3526 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
3527 {
3528 	struct nvme_qpair *nvme_qpair;
3529 	struct spdk_io_channel *pg_ch;
3530 	int rc;
3531 
3532 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
3533 	if (!nvme_qpair) {
3534 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to alloc nvme_qpair.\n");
3535 		return -1;
3536 	}
3537 
3538 	TAILQ_INIT(&nvme_qpair->io_path_list);
3539 
3540 	nvme_qpair->ctrlr = nvme_ctrlr;
3541 	nvme_qpair->ctrlr_ch = ctrlr_ch;
3542 
3543 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
3544 	if (!pg_ch) {
3545 		free(nvme_qpair);
3546 		return -1;
3547 	}
3548 
3549 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
3550 
3551 #ifdef SPDK_CONFIG_VTUNE
3552 	nvme_qpair->group->collect_spin_stat = true;
3553 #else
3554 	nvme_qpair->group->collect_spin_stat = false;
3555 #endif
3556 
3557 	if (!nvme_ctrlr->disabled) {
3558 		/* If a nvme_ctrlr is disabled, don't try to create qpair for it. Qpair will
3559 		 * be created when it's enabled.
3560 		 */
3561 		rc = bdev_nvme_create_qpair(nvme_qpair);
3562 		if (rc != 0) {
3563 			/* nvme_ctrlr can't create IO qpair if connection is down.
3564 			 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
3565 			 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
3566 			 * submitted IO will be queued until IO qpair is successfully created.
3567 			 *
3568 			 * Hence, if both are satisfied, ignore the failure.
3569 			 */
3570 			if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
3571 				spdk_put_io_channel(pg_ch);
3572 				free(nvme_qpair);
3573 				return rc;
3574 			}
3575 		}
3576 	}
3577 
3578 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3579 
3580 	ctrlr_ch->qpair = nvme_qpair;
3581 
3582 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
3583 	nvme_qpair->ctrlr->ref++;
3584 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
3585 
3586 	return 0;
3587 }
3588 
3589 static int
3590 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3591 {
3592 	struct nvme_ctrlr *nvme_ctrlr = io_device;
3593 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3594 
3595 	TAILQ_INIT(&ctrlr_ch->pending_resets);
3596 
3597 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
3598 }
3599 
3600 static void
3601 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
3602 {
3603 	struct nvme_io_path *io_path, *next;
3604 
3605 	assert(nvme_qpair->group != NULL);
3606 
3607 	TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) {
3608 		TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
3609 		nvme_io_path_free(io_path);
3610 	}
3611 
3612 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3613 
3614 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
3615 
3616 	nvme_ctrlr_release(nvme_qpair->ctrlr);
3617 
3618 	free(nvme_qpair);
3619 }
3620 
3621 static void
3622 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3623 {
3624 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3625 	struct nvme_qpair *nvme_qpair;
3626 
3627 	nvme_qpair = ctrlr_ch->qpair;
3628 	assert(nvme_qpair != NULL);
3629 
3630 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
3631 
3632 	if (nvme_qpair->qpair != NULL) {
3633 		if (ctrlr_ch->reset_iter == NULL) {
3634 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
3635 		} else {
3636 			/* Skip current ctrlr_channel in a full reset sequence because
3637 			 * it is being deleted now. The qpair is already being disconnected.
3638 			 * We do not have to restart disconnecting it.
3639 			 */
3640 			nvme_ctrlr_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
3641 		}
3642 
3643 		/* We cannot release a reference to the poll group now.
3644 		 * The qpair may be disconnected asynchronously later.
3645 		 * We need to poll it until it is actually disconnected.
3646 		 * Just detach the qpair from the deleting ctrlr_channel.
3647 		 */
3648 		nvme_qpair->ctrlr_ch = NULL;
3649 	} else {
3650 		assert(ctrlr_ch->reset_iter == NULL);
3651 
3652 		nvme_qpair_delete(nvme_qpair);
3653 	}
3654 }
3655 
3656 static inline struct spdk_io_channel *
3657 bdev_nvme_get_accel_channel(struct nvme_poll_group *group)
3658 {
3659 	if (spdk_unlikely(!group->accel_channel)) {
3660 		group->accel_channel = spdk_accel_get_io_channel();
3661 		if (!group->accel_channel) {
3662 			SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
3663 				    group);
3664 			return NULL;
3665 		}
3666 	}
3667 
3668 	return group->accel_channel;
3669 }
3670 
3671 static void
3672 bdev_nvme_finish_sequence(void *seq, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3673 {
3674 	spdk_accel_sequence_finish(seq, cb_fn, cb_arg);
3675 }
3676 
3677 static void
3678 bdev_nvme_abort_sequence(void *seq)
3679 {
3680 	spdk_accel_sequence_abort(seq);
3681 }
3682 
3683 static void
3684 bdev_nvme_reverse_sequence(void *seq)
3685 {
3686 	spdk_accel_sequence_reverse(seq);
3687 }
3688 
3689 static int
3690 bdev_nvme_append_crc32c(void *ctx, void **seq, uint32_t *dst, struct iovec *iovs, uint32_t iovcnt,
3691 			struct spdk_memory_domain *domain, void *domain_ctx, uint32_t seed,
3692 			spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3693 {
3694 	struct spdk_io_channel *ch;
3695 	struct nvme_poll_group *group = ctx;
3696 
3697 	ch = bdev_nvme_get_accel_channel(group);
3698 	if (spdk_unlikely(ch == NULL)) {
3699 		return -ENOMEM;
3700 	}
3701 
3702 	return spdk_accel_append_crc32c((struct spdk_accel_sequence **)seq, ch, dst, iovs, iovcnt,
3703 					domain, domain_ctx, seed, cb_fn, cb_arg);
3704 }
3705 
3706 static int
3707 bdev_nvme_append_copy(void *ctx, void **seq, struct iovec *dst_iovs, uint32_t dst_iovcnt,
3708 		      struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
3709 		      struct iovec *src_iovs, uint32_t src_iovcnt,
3710 		      struct spdk_memory_domain *src_domain, void *src_domain_ctx,
3711 		      spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3712 {
3713 	struct spdk_io_channel *ch;
3714 	struct nvme_poll_group *group = ctx;
3715 
3716 	ch = bdev_nvme_get_accel_channel(group);
3717 	if (spdk_unlikely(ch == NULL)) {
3718 		return -ENOMEM;
3719 	}
3720 
3721 	return spdk_accel_append_copy((struct spdk_accel_sequence **)seq, ch,
3722 				      dst_iovs, dst_iovcnt, dst_domain, dst_domain_ctx,
3723 				      src_iovs, src_iovcnt, src_domain, src_domain_ctx,
3724 				      cb_fn, cb_arg);
3725 }
3726 
3727 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
3728 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
3729 	.append_crc32c		= bdev_nvme_append_crc32c,
3730 	.append_copy		= bdev_nvme_append_copy,
3731 	.finish_sequence	= bdev_nvme_finish_sequence,
3732 	.reverse_sequence	= bdev_nvme_reverse_sequence,
3733 	.abort_sequence		= bdev_nvme_abort_sequence,
3734 };
3735 
3736 static int
3737 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
3738 {
3739 	struct nvme_poll_group *group = ctx_buf;
3740 
3741 	TAILQ_INIT(&group->qpair_list);
3742 
3743 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
3744 	if (group->group == NULL) {
3745 		return -1;
3746 	}
3747 
3748 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
3749 
3750 	if (group->poller == NULL) {
3751 		spdk_nvme_poll_group_destroy(group->group);
3752 		return -1;
3753 	}
3754 
3755 	return 0;
3756 }
3757 
3758 static void
3759 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
3760 {
3761 	struct nvme_poll_group *group = ctx_buf;
3762 
3763 	assert(TAILQ_EMPTY(&group->qpair_list));
3764 
3765 	if (group->accel_channel) {
3766 		spdk_put_io_channel(group->accel_channel);
3767 	}
3768 
3769 	spdk_poller_unregister(&group->poller);
3770 	if (spdk_nvme_poll_group_destroy(group->group)) {
3771 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
3772 		assert(false);
3773 	}
3774 }
3775 
3776 static struct spdk_io_channel *
3777 bdev_nvme_get_io_channel(void *ctx)
3778 {
3779 	struct nvme_bdev *nvme_bdev = ctx;
3780 
3781 	return spdk_get_io_channel(nvme_bdev);
3782 }
3783 
3784 static void *
3785 bdev_nvme_get_module_ctx(void *ctx)
3786 {
3787 	struct nvme_bdev *nvme_bdev = ctx;
3788 	struct nvme_ns *nvme_ns;
3789 
3790 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
3791 		return NULL;
3792 	}
3793 
3794 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
3795 	if (!nvme_ns) {
3796 		return NULL;
3797 	}
3798 
3799 	return nvme_ns->ns;
3800 }
3801 
3802 static const char *
3803 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
3804 {
3805 	switch (ana_state) {
3806 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3807 		return "optimized";
3808 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3809 		return "non_optimized";
3810 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3811 		return "inaccessible";
3812 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
3813 		return "persistent_loss";
3814 	case SPDK_NVME_ANA_CHANGE_STATE:
3815 		return "change";
3816 	default:
3817 		return NULL;
3818 	}
3819 }
3820 
3821 static int
3822 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
3823 {
3824 	struct spdk_memory_domain **_domains = NULL;
3825 	struct nvme_bdev *nbdev = ctx;
3826 	struct nvme_ns *nvme_ns;
3827 	int i = 0, _array_size = array_size;
3828 	int rc = 0;
3829 
3830 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3831 		if (domains && array_size >= i) {
3832 			_domains = &domains[i];
3833 		} else {
3834 			_domains = NULL;
3835 		}
3836 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
3837 		if (rc > 0) {
3838 			i += rc;
3839 			if (_array_size >= rc) {
3840 				_array_size -= rc;
3841 			} else {
3842 				_array_size = 0;
3843 			}
3844 		} else if (rc < 0) {
3845 			return rc;
3846 		}
3847 	}
3848 
3849 	return i;
3850 }
3851 
3852 static const char *
3853 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
3854 {
3855 	if (nvme_ctrlr->destruct) {
3856 		return "deleting";
3857 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
3858 		return "failed";
3859 	} else if (nvme_ctrlr->resetting) {
3860 		return "resetting";
3861 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
3862 		return "reconnect_is_delayed";
3863 	} else if (nvme_ctrlr->disabled) {
3864 		return "disabled";
3865 	} else {
3866 		return "enabled";
3867 	}
3868 }
3869 
3870 void
3871 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
3872 {
3873 	struct spdk_nvme_transport_id *trid;
3874 	const struct spdk_nvme_ctrlr_opts *opts;
3875 	const struct spdk_nvme_ctrlr_data *cdata;
3876 	struct nvme_path_id *path_id;
3877 	int32_t numa_id;
3878 
3879 	spdk_json_write_object_begin(w);
3880 
3881 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
3882 
3883 #ifdef SPDK_CONFIG_NVME_CUSE
3884 	size_t cuse_name_size = 128;
3885 	char cuse_name[cuse_name_size];
3886 
3887 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
3888 	if (rc == 0) {
3889 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3890 	}
3891 #endif
3892 	trid = &nvme_ctrlr->active_path_id->trid;
3893 	spdk_json_write_named_object_begin(w, "trid");
3894 	nvme_bdev_dump_trid_json(trid, w);
3895 	spdk_json_write_object_end(w);
3896 
3897 	path_id = TAILQ_NEXT(nvme_ctrlr->active_path_id, link);
3898 	if (path_id != NULL) {
3899 		spdk_json_write_named_array_begin(w, "alternate_trids");
3900 		do {
3901 			trid = &path_id->trid;
3902 			spdk_json_write_object_begin(w);
3903 			nvme_bdev_dump_trid_json(trid, w);
3904 			spdk_json_write_object_end(w);
3905 
3906 			path_id = TAILQ_NEXT(path_id, link);
3907 		} while (path_id != NULL);
3908 		spdk_json_write_array_end(w);
3909 	}
3910 
3911 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
3912 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3913 
3914 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
3915 	spdk_json_write_named_object_begin(w, "host");
3916 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
3917 	spdk_json_write_named_string(w, "addr", opts->src_addr);
3918 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
3919 	spdk_json_write_object_end(w);
3920 
3921 	numa_id = spdk_nvme_ctrlr_get_numa_id(nvme_ctrlr->ctrlr);
3922 	if (numa_id != SPDK_ENV_NUMA_ID_ANY) {
3923 		spdk_json_write_named_uint32(w, "numa_id", numa_id);
3924 	}
3925 	spdk_json_write_object_end(w);
3926 }
3927 
3928 static void
3929 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
3930 			 struct nvme_ns *nvme_ns)
3931 {
3932 	struct spdk_nvme_ns *ns;
3933 	struct spdk_nvme_ctrlr *ctrlr;
3934 	const struct spdk_nvme_ctrlr_data *cdata;
3935 	const struct spdk_nvme_transport_id *trid;
3936 	union spdk_nvme_vs_register vs;
3937 	const struct spdk_nvme_ns_data *nsdata;
3938 	char buf[128];
3939 
3940 	ns = nvme_ns->ns;
3941 	if (ns == NULL) {
3942 		return;
3943 	}
3944 
3945 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3946 
3947 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3948 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
3949 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
3950 
3951 	spdk_json_write_object_begin(w);
3952 
3953 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
3954 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
3955 	}
3956 
3957 	spdk_json_write_named_object_begin(w, "trid");
3958 
3959 	nvme_bdev_dump_trid_json(trid, w);
3960 
3961 	spdk_json_write_object_end(w);
3962 
3963 #ifdef SPDK_CONFIG_NVME_CUSE
3964 	size_t cuse_name_size = 128;
3965 	char cuse_name[cuse_name_size];
3966 
3967 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
3968 					    cuse_name, &cuse_name_size);
3969 	if (rc == 0) {
3970 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3971 	}
3972 #endif
3973 
3974 	spdk_json_write_named_object_begin(w, "ctrlr_data");
3975 
3976 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3977 
3978 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
3979 
3980 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
3981 	spdk_str_trim(buf);
3982 	spdk_json_write_named_string(w, "model_number", buf);
3983 
3984 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
3985 	spdk_str_trim(buf);
3986 	spdk_json_write_named_string(w, "serial_number", buf);
3987 
3988 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
3989 	spdk_str_trim(buf);
3990 	spdk_json_write_named_string(w, "firmware_revision", buf);
3991 
3992 	if (cdata->subnqn[0] != '\0') {
3993 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
3994 	}
3995 
3996 	spdk_json_write_named_object_begin(w, "oacs");
3997 
3998 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
3999 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
4000 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
4001 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
4002 
4003 	spdk_json_write_object_end(w);
4004 
4005 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
4006 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
4007 
4008 	spdk_json_write_object_end(w);
4009 
4010 	spdk_json_write_named_object_begin(w, "vs");
4011 
4012 	spdk_json_write_name(w, "nvme_version");
4013 	if (vs.bits.ter) {
4014 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
4015 	} else {
4016 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
4017 	}
4018 
4019 	spdk_json_write_object_end(w);
4020 
4021 	nsdata = spdk_nvme_ns_get_data(ns);
4022 
4023 	spdk_json_write_named_object_begin(w, "ns_data");
4024 
4025 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
4026 
4027 	if (cdata->cmic.ana_reporting) {
4028 		spdk_json_write_named_string(w, "ana_state",
4029 					     _nvme_ana_state_str(nvme_ns->ana_state));
4030 	}
4031 
4032 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
4033 
4034 	spdk_json_write_object_end(w);
4035 
4036 	if (cdata->oacs.security) {
4037 		spdk_json_write_named_object_begin(w, "security");
4038 
4039 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
4040 
4041 		spdk_json_write_object_end(w);
4042 	}
4043 
4044 	spdk_json_write_object_end(w);
4045 }
4046 
4047 static const char *
4048 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
4049 {
4050 	switch (nbdev->mp_policy) {
4051 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
4052 		return "active_passive";
4053 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
4054 		return "active_active";
4055 	default:
4056 		assert(false);
4057 		return "invalid";
4058 	}
4059 }
4060 
4061 static const char *
4062 nvme_bdev_get_mp_selector_str(struct nvme_bdev *nbdev)
4063 {
4064 	switch (nbdev->mp_selector) {
4065 	case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
4066 		return "round_robin";
4067 	case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
4068 		return "queue_depth";
4069 	default:
4070 		assert(false);
4071 		return "invalid";
4072 	}
4073 }
4074 
4075 static int
4076 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
4077 {
4078 	struct nvme_bdev *nvme_bdev = ctx;
4079 	struct nvme_ns *nvme_ns;
4080 
4081 	pthread_mutex_lock(&nvme_bdev->mutex);
4082 	spdk_json_write_named_array_begin(w, "nvme");
4083 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
4084 		nvme_namespace_info_json(w, nvme_ns);
4085 	}
4086 	spdk_json_write_array_end(w);
4087 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
4088 	if (nvme_bdev->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
4089 		spdk_json_write_named_string(w, "selector", nvme_bdev_get_mp_selector_str(nvme_bdev));
4090 		if (nvme_bdev->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
4091 			spdk_json_write_named_uint32(w, "rr_min_io", nvme_bdev->rr_min_io);
4092 		}
4093 	}
4094 	pthread_mutex_unlock(&nvme_bdev->mutex);
4095 
4096 	return 0;
4097 }
4098 
4099 static void
4100 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
4101 {
4102 	/* No config per bdev needed */
4103 }
4104 
4105 static uint64_t
4106 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
4107 {
4108 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
4109 	struct nvme_io_path *io_path;
4110 	struct nvme_poll_group *group;
4111 	uint64_t spin_time = 0;
4112 
4113 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
4114 		group = io_path->qpair->group;
4115 
4116 		if (!group || !group->collect_spin_stat) {
4117 			continue;
4118 		}
4119 
4120 		if (group->end_ticks != 0) {
4121 			group->spin_ticks += (group->end_ticks - group->start_ticks);
4122 			group->end_ticks = 0;
4123 		}
4124 
4125 		spin_time += group->spin_ticks;
4126 		group->start_ticks = 0;
4127 		group->spin_ticks = 0;
4128 	}
4129 
4130 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
4131 }
4132 
4133 static void
4134 bdev_nvme_reset_device_stat(void *ctx)
4135 {
4136 	struct nvme_bdev *nbdev = ctx;
4137 
4138 	if (nbdev->err_stat != NULL) {
4139 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
4140 	}
4141 }
4142 
4143 /* JSON string should be lowercases and underscore delimited string. */
4144 static void
4145 bdev_nvme_format_nvme_status(char *dst, const char *src)
4146 {
4147 	char tmp[256];
4148 
4149 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
4150 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
4151 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
4152 	spdk_strlwr(dst);
4153 }
4154 
4155 static void
4156 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
4157 {
4158 	struct nvme_bdev *nbdev = ctx;
4159 	struct spdk_nvme_status status = {};
4160 	uint16_t sct, sc;
4161 	char status_json[256];
4162 	const char *status_str;
4163 
4164 	if (nbdev->err_stat == NULL) {
4165 		return;
4166 	}
4167 
4168 	spdk_json_write_named_object_begin(w, "nvme_error");
4169 
4170 	spdk_json_write_named_object_begin(w, "status_type");
4171 	for (sct = 0; sct < 8; sct++) {
4172 		if (nbdev->err_stat->status_type[sct] == 0) {
4173 			continue;
4174 		}
4175 		status.sct = sct;
4176 
4177 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
4178 		assert(status_str != NULL);
4179 		bdev_nvme_format_nvme_status(status_json, status_str);
4180 
4181 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
4182 	}
4183 	spdk_json_write_object_end(w);
4184 
4185 	spdk_json_write_named_object_begin(w, "status_code");
4186 	for (sct = 0; sct < 4; sct++) {
4187 		status.sct = sct;
4188 		for (sc = 0; sc < 256; sc++) {
4189 			if (nbdev->err_stat->status[sct][sc] == 0) {
4190 				continue;
4191 			}
4192 			status.sc = sc;
4193 
4194 			status_str = spdk_nvme_cpl_get_status_string(&status);
4195 			assert(status_str != NULL);
4196 			bdev_nvme_format_nvme_status(status_json, status_str);
4197 
4198 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
4199 		}
4200 	}
4201 	spdk_json_write_object_end(w);
4202 
4203 	spdk_json_write_object_end(w);
4204 }
4205 
4206 static bool
4207 bdev_nvme_accel_sequence_supported(void *ctx, enum spdk_bdev_io_type type)
4208 {
4209 	struct nvme_bdev *nbdev = ctx;
4210 	struct spdk_nvme_ctrlr *ctrlr;
4211 
4212 	if (!g_opts.allow_accel_sequence) {
4213 		return false;
4214 	}
4215 
4216 	switch (type) {
4217 	case SPDK_BDEV_IO_TYPE_WRITE:
4218 	case SPDK_BDEV_IO_TYPE_READ:
4219 		break;
4220 	default:
4221 		return false;
4222 	}
4223 
4224 	ctrlr = bdev_nvme_get_ctrlr(&nbdev->disk);
4225 	assert(ctrlr != NULL);
4226 
4227 	return spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ACCEL_SEQUENCE_SUPPORTED;
4228 }
4229 
4230 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
4231 	.destruct			= bdev_nvme_destruct,
4232 	.submit_request			= bdev_nvme_submit_request,
4233 	.io_type_supported		= bdev_nvme_io_type_supported,
4234 	.get_io_channel			= bdev_nvme_get_io_channel,
4235 	.dump_info_json			= bdev_nvme_dump_info_json,
4236 	.write_config_json		= bdev_nvme_write_config_json,
4237 	.get_spin_time			= bdev_nvme_get_spin_time,
4238 	.get_module_ctx			= bdev_nvme_get_module_ctx,
4239 	.get_memory_domains		= bdev_nvme_get_memory_domains,
4240 	.accel_sequence_supported	= bdev_nvme_accel_sequence_supported,
4241 	.reset_device_stat		= bdev_nvme_reset_device_stat,
4242 	.dump_device_stat_json		= bdev_nvme_dump_device_stat_json,
4243 };
4244 
4245 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
4246 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
4247 
4248 static int
4249 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
4250 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
4251 {
4252 	struct spdk_nvme_ana_group_descriptor *copied_desc;
4253 	uint8_t *orig_desc;
4254 	uint32_t i, desc_size, copy_len;
4255 	int rc = 0;
4256 
4257 	if (nvme_ctrlr->ana_log_page == NULL) {
4258 		return -EINVAL;
4259 	}
4260 
4261 	copied_desc = nvme_ctrlr->copied_ana_desc;
4262 
4263 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
4264 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
4265 
4266 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
4267 		memcpy(copied_desc, orig_desc, copy_len);
4268 
4269 		rc = cb_fn(copied_desc, cb_arg);
4270 		if (rc != 0) {
4271 			break;
4272 		}
4273 
4274 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
4275 			    copied_desc->num_of_nsid * sizeof(uint32_t);
4276 		orig_desc += desc_size;
4277 		copy_len -= desc_size;
4278 	}
4279 
4280 	return rc;
4281 }
4282 
4283 static int
4284 nvme_ns_ana_transition_timedout(void *ctx)
4285 {
4286 	struct nvme_ns *nvme_ns = ctx;
4287 
4288 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4289 	nvme_ns->ana_transition_timedout = true;
4290 
4291 	return SPDK_POLLER_BUSY;
4292 }
4293 
4294 static void
4295 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
4296 		       const struct spdk_nvme_ana_group_descriptor *desc)
4297 {
4298 	const struct spdk_nvme_ctrlr_data *cdata;
4299 
4300 	nvme_ns->ana_group_id = desc->ana_group_id;
4301 	nvme_ns->ana_state = desc->ana_state;
4302 	nvme_ns->ana_state_updating = false;
4303 
4304 	switch (nvme_ns->ana_state) {
4305 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
4306 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
4307 		nvme_ns->ana_transition_timedout = false;
4308 		spdk_poller_unregister(&nvme_ns->anatt_timer);
4309 		break;
4310 
4311 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
4312 	case SPDK_NVME_ANA_CHANGE_STATE:
4313 		if (nvme_ns->anatt_timer != NULL) {
4314 			break;
4315 		}
4316 
4317 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4318 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
4319 				       nvme_ns,
4320 				       cdata->anatt * SPDK_SEC_TO_USEC);
4321 		break;
4322 	default:
4323 		break;
4324 	}
4325 }
4326 
4327 static int
4328 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
4329 {
4330 	struct nvme_ns *nvme_ns = cb_arg;
4331 	uint32_t i;
4332 
4333 	assert(nvme_ns->ns != NULL);
4334 
4335 	for (i = 0; i < desc->num_of_nsid; i++) {
4336 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
4337 			continue;
4338 		}
4339 
4340 		_nvme_ns_set_ana_state(nvme_ns, desc);
4341 		return 1;
4342 	}
4343 
4344 	return 0;
4345 }
4346 
4347 static int
4348 nvme_generate_uuid(const char *sn, uint32_t nsid, struct spdk_uuid *uuid)
4349 {
4350 	int rc = 0;
4351 	struct spdk_uuid new_uuid, namespace_uuid;
4352 	char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'};
4353 	/* This namespace UUID was generated using uuid_generate() method. */
4354 	const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"};
4355 	int size;
4356 
4357 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
4358 
4359 	spdk_uuid_set_null(&new_uuid);
4360 	spdk_uuid_set_null(&namespace_uuid);
4361 
4362 	size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid);
4363 	if (size <= 0 || (unsigned long)size >= sizeof(merged_str)) {
4364 		return -EINVAL;
4365 	}
4366 
4367 	spdk_uuid_parse(&namespace_uuid, namespace_str);
4368 
4369 	rc = spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size);
4370 	if (rc == 0) {
4371 		memcpy(uuid, &new_uuid, sizeof(struct spdk_uuid));
4372 	}
4373 
4374 	return rc;
4375 }
4376 
4377 static int
4378 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
4379 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
4380 		 struct spdk_bdev_nvme_ctrlr_opts *bdev_opts, void *ctx)
4381 {
4382 	const struct spdk_uuid		*uuid;
4383 	const uint8_t *nguid;
4384 	const struct spdk_nvme_ctrlr_data *cdata;
4385 	const struct spdk_nvme_ns_data	*nsdata;
4386 	const struct spdk_nvme_ctrlr_opts *opts;
4387 	enum spdk_nvme_csi		csi;
4388 	uint32_t atomic_bs, phys_bs, bs;
4389 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
4390 	int rc;
4391 
4392 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4393 	csi = spdk_nvme_ns_get_csi(ns);
4394 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
4395 
4396 	switch (csi) {
4397 	case SPDK_NVME_CSI_NVM:
4398 		disk->product_name = "NVMe disk";
4399 		break;
4400 	case SPDK_NVME_CSI_ZNS:
4401 		disk->product_name = "NVMe ZNS disk";
4402 		disk->zoned = true;
4403 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
4404 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
4405 					     spdk_nvme_ns_get_extended_sector_size(ns);
4406 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
4407 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
4408 		break;
4409 	default:
4410 		if (bdev_opts->allow_unrecognized_csi) {
4411 			disk->product_name = "NVMe Passthrough disk";
4412 			break;
4413 		}
4414 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
4415 		return -ENOTSUP;
4416 	}
4417 
4418 	nguid = spdk_nvme_ns_get_nguid(ns);
4419 	if (!nguid) {
4420 		uuid = spdk_nvme_ns_get_uuid(ns);
4421 		if (uuid) {
4422 			disk->uuid = *uuid;
4423 		} else if (g_opts.generate_uuids) {
4424 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
4425 			rc = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns), &disk->uuid);
4426 			if (rc < 0) {
4427 				SPDK_ERRLOG("UUID generation failed (%s)\n", spdk_strerror(-rc));
4428 				return rc;
4429 			}
4430 		}
4431 	} else {
4432 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
4433 	}
4434 
4435 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
4436 	if (!disk->name) {
4437 		return -ENOMEM;
4438 	}
4439 
4440 	disk->write_cache = 0;
4441 	if (cdata->vwc.present) {
4442 		/* Enable if the Volatile Write Cache exists */
4443 		disk->write_cache = 1;
4444 	}
4445 	if (cdata->oncs.write_zeroes) {
4446 		disk->max_write_zeroes = UINT16_MAX + 1;
4447 	}
4448 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
4449 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
4450 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
4451 	disk->ctratt.raw = cdata->ctratt.raw;
4452 	/* NVMe driver will split one request into multiple requests
4453 	 * based on MDTS and stripe boundary, the bdev layer will use
4454 	 * max_segment_size and max_num_segments to split one big IO
4455 	 * into multiple requests, then small request can't run out
4456 	 * of NVMe internal requests data structure.
4457 	 */
4458 	if (opts && opts->io_queue_requests) {
4459 		disk->max_num_segments = opts->io_queue_requests / 2;
4460 	}
4461 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4462 		/* The nvme driver will try to split I/O that have too many
4463 		 * SGEs, but it doesn't work if that last SGE doesn't end on
4464 		 * an aggregate total that is block aligned. The bdev layer has
4465 		 * a more robust splitting framework, so use that instead for
4466 		 * this case. (See issue #3269.)
4467 		 */
4468 		uint16_t max_sges = spdk_nvme_ctrlr_get_max_sges(ctrlr);
4469 
4470 		if (disk->max_num_segments == 0) {
4471 			disk->max_num_segments = max_sges;
4472 		} else {
4473 			disk->max_num_segments = spdk_min(disk->max_num_segments, max_sges);
4474 		}
4475 	}
4476 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
4477 
4478 	nsdata = spdk_nvme_ns_get_data(ns);
4479 	bs = spdk_nvme_ns_get_sector_size(ns);
4480 	atomic_bs = bs;
4481 	phys_bs = bs;
4482 	if (nsdata->nabo == 0) {
4483 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
4484 			atomic_bs = bs * (1 + nsdata->nawupf);
4485 		} else {
4486 			atomic_bs = bs * (1 + cdata->awupf);
4487 		}
4488 	}
4489 	if (nsdata->nsfeat.optperf) {
4490 		phys_bs = bs * (1 + nsdata->npwg);
4491 	}
4492 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
4493 
4494 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
4495 	if (disk->md_len != 0) {
4496 		disk->md_interleave = nsdata->flbas.extended;
4497 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
4498 		if (disk->dif_type != SPDK_DIF_DISABLE) {
4499 			disk->dif_is_head_of_md = nsdata->dps.md_start;
4500 			disk->dif_check_flags = bdev_opts->prchk_flags;
4501 			disk->dif_pi_format = (enum spdk_dif_pi_format)spdk_nvme_ns_get_pi_format(ns);
4502 		}
4503 	}
4504 
4505 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
4506 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
4507 		disk->acwu = 0;
4508 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
4509 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
4510 	} else {
4511 		disk->acwu = cdata->acwu + 1; /* 0-based */
4512 	}
4513 
4514 	if (cdata->oncs.copy) {
4515 		/* For now bdev interface allows only single segment copy */
4516 		disk->max_copy = nsdata->mssrl;
4517 	}
4518 
4519 	disk->ctxt = ctx;
4520 	disk->fn_table = &nvmelib_fn_table;
4521 	disk->module = &nvme_if;
4522 
4523 	disk->numa.id_valid = 1;
4524 	disk->numa.id = spdk_nvme_ctrlr_get_numa_id(ctrlr);
4525 
4526 	return 0;
4527 }
4528 
4529 static struct nvme_bdev *
4530 nvme_bdev_alloc(void)
4531 {
4532 	struct nvme_bdev *bdev;
4533 	int rc;
4534 
4535 	bdev = calloc(1, sizeof(*bdev));
4536 	if (!bdev) {
4537 		SPDK_ERRLOG("bdev calloc() failed\n");
4538 		return NULL;
4539 	}
4540 
4541 	if (g_opts.nvme_error_stat) {
4542 		bdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
4543 		if (!bdev->err_stat) {
4544 			SPDK_ERRLOG("err_stat calloc() failed\n");
4545 			free(bdev);
4546 			return NULL;
4547 		}
4548 	}
4549 
4550 	rc = pthread_mutex_init(&bdev->mutex, NULL);
4551 	if (rc != 0) {
4552 		free(bdev->err_stat);
4553 		free(bdev);
4554 		return NULL;
4555 	}
4556 
4557 	bdev->ref = 1;
4558 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
4559 	bdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN;
4560 	bdev->rr_min_io = UINT32_MAX;
4561 	TAILQ_INIT(&bdev->nvme_ns_list);
4562 
4563 	return bdev;
4564 }
4565 
4566 static int
4567 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4568 {
4569 	struct nvme_bdev *bdev;
4570 	struct nvme_bdev_ctrlr *nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
4571 	int rc;
4572 
4573 	bdev = nvme_bdev_alloc();
4574 	if (bdev == NULL) {
4575 		SPDK_ERRLOG("Failed to allocate NVMe bdev\n");
4576 		return -ENOMEM;
4577 	}
4578 
4579 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
4580 
4581 	rc = nvme_disk_create(&bdev->disk, nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
4582 			      nvme_ns->ns, &nvme_ctrlr->opts, bdev);
4583 	if (rc != 0) {
4584 		SPDK_ERRLOG("Failed to create NVMe disk\n");
4585 		nvme_bdev_free(bdev);
4586 		return rc;
4587 	}
4588 
4589 	spdk_io_device_register(bdev,
4590 				bdev_nvme_create_bdev_channel_cb,
4591 				bdev_nvme_destroy_bdev_channel_cb,
4592 				sizeof(struct nvme_bdev_channel),
4593 				bdev->disk.name);
4594 
4595 	nvme_ns->bdev = bdev;
4596 	bdev->nsid = nvme_ns->id;
4597 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4598 
4599 	bdev->nbdev_ctrlr = nbdev_ctrlr;
4600 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->bdevs, bdev, tailq);
4601 
4602 	rc = spdk_bdev_register(&bdev->disk);
4603 	if (rc != 0) {
4604 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
4605 		spdk_io_device_unregister(bdev, NULL);
4606 		nvme_ns->bdev = NULL;
4607 		TAILQ_REMOVE(&nbdev_ctrlr->bdevs, bdev, tailq);
4608 		nvme_bdev_free(bdev);
4609 		return rc;
4610 	}
4611 
4612 	return 0;
4613 }
4614 
4615 static bool
4616 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
4617 {
4618 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
4619 	const struct spdk_uuid *uuid1, *uuid2;
4620 
4621 	nsdata1 = spdk_nvme_ns_get_data(ns1);
4622 	nsdata2 = spdk_nvme_ns_get_data(ns2);
4623 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
4624 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
4625 
4626 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
4627 	       nsdata1->eui64 == nsdata2->eui64 &&
4628 	       ((uuid1 == NULL && uuid2 == NULL) ||
4629 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
4630 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
4631 }
4632 
4633 static bool
4634 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4635 		 struct spdk_nvme_ctrlr_opts *opts)
4636 {
4637 	struct nvme_probe_skip_entry *entry;
4638 
4639 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
4640 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4641 			return false;
4642 		}
4643 	}
4644 
4645 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
4646 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
4647 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
4648 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
4649 	opts->disable_read_ana_log_page = true;
4650 
4651 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
4652 
4653 	return true;
4654 }
4655 
4656 static void
4657 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
4658 {
4659 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4660 
4661 	if (spdk_nvme_cpl_is_error(cpl)) {
4662 		NVME_CTRLR_WARNLOG(nvme_ctrlr, "Abort failed. Resetting controller. sc is %u, sct is %u.\n",
4663 				   cpl->status.sc, cpl->status.sct);
4664 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4665 	} else if (cpl->cdw0 & 0x1) {
4666 		NVME_CTRLR_WARNLOG(nvme_ctrlr, "Specified command could not be aborted.\n");
4667 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4668 	}
4669 }
4670 
4671 static void
4672 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
4673 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
4674 {
4675 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4676 	union spdk_nvme_csts_register csts;
4677 	int rc;
4678 
4679 	assert(nvme_ctrlr->ctrlr == ctrlr);
4680 
4681 	NVME_CTRLR_WARNLOG(nvme_ctrlr, "Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n",
4682 			   ctrlr, qpair, cid);
4683 
4684 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
4685 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
4686 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
4687 	 * completion recursively.
4688 	 */
4689 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
4690 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
4691 		if (csts.bits.cfs) {
4692 			NVME_CTRLR_ERRLOG(nvme_ctrlr, "Controller Fatal Status, reset required\n");
4693 			bdev_nvme_reset_ctrlr(nvme_ctrlr);
4694 			return;
4695 		}
4696 	}
4697 
4698 	switch (g_opts.action_on_timeout) {
4699 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
4700 		if (qpair) {
4701 			/* Don't send abort to ctrlr when ctrlr is not available. */
4702 			pthread_mutex_lock(&nvme_ctrlr->mutex);
4703 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
4704 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
4705 				NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Quit abort. Ctrlr is not available.\n");
4706 				return;
4707 			}
4708 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4709 
4710 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
4711 						       nvme_abort_cpl, nvme_ctrlr);
4712 			if (rc == 0) {
4713 				return;
4714 			}
4715 
4716 			NVME_CTRLR_ERRLOG(nvme_ctrlr, "Unable to send abort. Resetting, rc is %d.\n", rc);
4717 		}
4718 
4719 	/* FALLTHROUGH */
4720 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
4721 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4722 		break;
4723 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
4724 		NVME_CTRLR_DEBUGLOG(nvme_ctrlr, "No action for nvme controller timeout.\n");
4725 		break;
4726 	default:
4727 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "An invalid timeout action value is found.\n");
4728 		break;
4729 	}
4730 }
4731 
4732 static struct nvme_ns *
4733 nvme_ns_alloc(void)
4734 {
4735 	struct nvme_ns *nvme_ns;
4736 
4737 	nvme_ns = calloc(1, sizeof(struct nvme_ns));
4738 	if (nvme_ns == NULL) {
4739 		return NULL;
4740 	}
4741 
4742 	if (g_opts.io_path_stat) {
4743 		nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
4744 		if (nvme_ns->stat == NULL) {
4745 			free(nvme_ns);
4746 			return NULL;
4747 		}
4748 		spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
4749 	}
4750 
4751 	return nvme_ns;
4752 }
4753 
4754 static void
4755 nvme_ns_free(struct nvme_ns *nvme_ns)
4756 {
4757 	free(nvme_ns->stat);
4758 	free(nvme_ns);
4759 }
4760 
4761 static void
4762 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
4763 {
4764 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4765 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
4766 
4767 	if (rc == 0) {
4768 		nvme_ns->probe_ctx = NULL;
4769 		pthread_mutex_lock(&nvme_ctrlr->mutex);
4770 		nvme_ctrlr->ref++;
4771 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4772 	} else {
4773 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4774 		nvme_ns_free(nvme_ns);
4775 	}
4776 
4777 	if (ctx) {
4778 		ctx->populates_in_progress--;
4779 		if (ctx->populates_in_progress == 0) {
4780 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4781 		}
4782 	}
4783 }
4784 
4785 static void
4786 bdev_nvme_add_io_path(struct nvme_bdev_channel_iter *i,
4787 		      struct nvme_bdev *nbdev,
4788 		      struct nvme_bdev_channel *nbdev_ch, void *ctx)
4789 {
4790 	struct nvme_ns *nvme_ns = ctx;
4791 	int rc;
4792 
4793 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
4794 	if (rc != 0) {
4795 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
4796 	}
4797 
4798 	nvme_bdev_for_each_channel_continue(i, rc);
4799 }
4800 
4801 static void
4802 bdev_nvme_delete_io_path(struct nvme_bdev_channel_iter *i,
4803 			 struct nvme_bdev *nbdev,
4804 			 struct nvme_bdev_channel *nbdev_ch, void *ctx)
4805 {
4806 	struct nvme_ns *nvme_ns = ctx;
4807 	struct nvme_io_path *io_path;
4808 
4809 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
4810 	if (io_path != NULL) {
4811 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
4812 	}
4813 
4814 	nvme_bdev_for_each_channel_continue(i, 0);
4815 }
4816 
4817 static void
4818 bdev_nvme_add_io_path_failed(struct nvme_bdev *nbdev, void *ctx, int status)
4819 {
4820 	struct nvme_ns *nvme_ns = ctx;
4821 
4822 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
4823 }
4824 
4825 static void
4826 bdev_nvme_add_io_path_done(struct nvme_bdev *nbdev, void *ctx, int status)
4827 {
4828 	struct nvme_ns *nvme_ns = ctx;
4829 
4830 	if (status == 0) {
4831 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
4832 	} else {
4833 		/* Delete the added io_paths and fail populating the namespace. */
4834 		nvme_bdev_for_each_channel(nbdev,
4835 					   bdev_nvme_delete_io_path,
4836 					   nvme_ns,
4837 					   bdev_nvme_add_io_path_failed);
4838 	}
4839 }
4840 
4841 static int
4842 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
4843 {
4844 	struct nvme_ns *tmp_ns;
4845 	const struct spdk_nvme_ns_data *nsdata;
4846 
4847 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
4848 	if (!nsdata->nmic.can_share) {
4849 		SPDK_ERRLOG("Namespace cannot be shared.\n");
4850 		return -EINVAL;
4851 	}
4852 
4853 	pthread_mutex_lock(&bdev->mutex);
4854 
4855 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
4856 	assert(tmp_ns != NULL);
4857 
4858 	if (tmp_ns->ns != NULL && !bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
4859 		pthread_mutex_unlock(&bdev->mutex);
4860 		SPDK_ERRLOG("Namespaces are not identical.\n");
4861 		return -EINVAL;
4862 	}
4863 
4864 	bdev->ref++;
4865 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4866 	nvme_ns->bdev = bdev;
4867 
4868 	pthread_mutex_unlock(&bdev->mutex);
4869 
4870 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
4871 	nvme_bdev_for_each_channel(bdev,
4872 				   bdev_nvme_add_io_path,
4873 				   nvme_ns,
4874 				   bdev_nvme_add_io_path_done);
4875 
4876 	return 0;
4877 }
4878 
4879 static void
4880 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4881 {
4882 	struct spdk_nvme_ns	*ns;
4883 	struct nvme_bdev	*bdev;
4884 	int			rc = 0;
4885 
4886 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
4887 	if (!ns) {
4888 		NVME_CTRLR_DEBUGLOG(nvme_ctrlr, "Invalid NS %d\n", nvme_ns->id);
4889 		rc = -EINVAL;
4890 		goto done;
4891 	}
4892 
4893 	nvme_ns->ns = ns;
4894 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4895 
4896 	if (nvme_ctrlr->ana_log_page != NULL) {
4897 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
4898 	}
4899 
4900 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
4901 	if (bdev == NULL) {
4902 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
4903 	} else {
4904 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
4905 		if (rc == 0) {
4906 			return;
4907 		}
4908 	}
4909 done:
4910 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
4911 }
4912 
4913 static void
4914 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
4915 {
4916 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4917 
4918 	assert(nvme_ctrlr != NULL);
4919 
4920 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4921 
4922 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4923 
4924 	if (nvme_ns->bdev != NULL) {
4925 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4926 		return;
4927 	}
4928 
4929 	nvme_ns_free(nvme_ns);
4930 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4931 
4932 	nvme_ctrlr_release(nvme_ctrlr);
4933 }
4934 
4935 static void
4936 bdev_nvme_delete_io_path_done(struct nvme_bdev *nbdev, void *ctx, int status)
4937 {
4938 	struct nvme_ns *nvme_ns = ctx;
4939 
4940 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4941 }
4942 
4943 static void
4944 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4945 {
4946 	struct nvme_bdev *bdev;
4947 
4948 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4949 
4950 	bdev = nvme_ns->bdev;
4951 	if (bdev != NULL) {
4952 		pthread_mutex_lock(&bdev->mutex);
4953 
4954 		assert(bdev->ref > 0);
4955 		bdev->ref--;
4956 		if (bdev->ref == 0) {
4957 			pthread_mutex_unlock(&bdev->mutex);
4958 
4959 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
4960 		} else {
4961 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
4962 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
4963 			 * and clear nvme_ns->bdev here.
4964 			 */
4965 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
4966 			nvme_ns->bdev = NULL;
4967 
4968 			pthread_mutex_unlock(&bdev->mutex);
4969 
4970 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
4971 			 * we call depopulate_namespace_done() to avoid use-after-free.
4972 			 */
4973 			nvme_bdev_for_each_channel(bdev,
4974 						   bdev_nvme_delete_io_path,
4975 						   nvme_ns,
4976 						   bdev_nvme_delete_io_path_done);
4977 			return;
4978 		}
4979 	}
4980 
4981 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4982 }
4983 
4984 static void
4985 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
4986 			       struct nvme_async_probe_ctx *ctx)
4987 {
4988 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
4989 	struct nvme_ns	*nvme_ns, *next;
4990 	struct spdk_nvme_ns	*ns;
4991 	struct nvme_bdev	*bdev;
4992 	uint32_t		nsid;
4993 	int			rc;
4994 	uint64_t		num_sectors;
4995 
4996 	if (ctx) {
4997 		/* Initialize this count to 1 to handle the populate functions
4998 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
4999 		 */
5000 		ctx->populates_in_progress = 1;
5001 	}
5002 
5003 	/* First loop over our existing namespaces and see if they have been
5004 	 * removed. */
5005 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5006 	while (nvme_ns != NULL) {
5007 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5008 
5009 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
5010 			/* NS is still there or added again. Its attributes may have changed. */
5011 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
5012 			if (nvme_ns->ns != ns) {
5013 				assert(nvme_ns->ns == NULL);
5014 				nvme_ns->ns = ns;
5015 				NVME_CTRLR_DEBUGLOG(nvme_ctrlr, "NSID %u was added\n", nvme_ns->id);
5016 			}
5017 
5018 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
5019 			bdev = nvme_ns->bdev;
5020 			assert(bdev != NULL);
5021 			if (bdev->disk.blockcnt != num_sectors) {
5022 				NVME_CTRLR_NOTICELOG(nvme_ctrlr,
5023 						     "NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
5024 						     nvme_ns->id,
5025 						     bdev->disk.name,
5026 						     bdev->disk.blockcnt,
5027 						     num_sectors);
5028 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
5029 				if (rc != 0) {
5030 					NVME_CTRLR_ERRLOG(nvme_ctrlr,
5031 							  "Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
5032 							  bdev->disk.name, rc);
5033 				}
5034 			}
5035 		} else {
5036 			/* Namespace was removed */
5037 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
5038 		}
5039 
5040 		nvme_ns = next;
5041 	}
5042 
5043 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
5044 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
5045 	while (nsid != 0) {
5046 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
5047 
5048 		if (nvme_ns == NULL) {
5049 			/* Found a new one */
5050 			nvme_ns = nvme_ns_alloc();
5051 			if (nvme_ns == NULL) {
5052 				NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to allocate namespace\n");
5053 				/* This just fails to attach the namespace. It may work on a future attempt. */
5054 				continue;
5055 			}
5056 
5057 			nvme_ns->id = nsid;
5058 			nvme_ns->ctrlr = nvme_ctrlr;
5059 
5060 			nvme_ns->bdev = NULL;
5061 
5062 			if (ctx) {
5063 				ctx->populates_in_progress++;
5064 			}
5065 			nvme_ns->probe_ctx = ctx;
5066 
5067 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
5068 
5069 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
5070 		}
5071 
5072 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
5073 	}
5074 
5075 	if (ctx) {
5076 		/* Decrement this count now that the loop is over to account
5077 		 * for the one we started with.  If the count is then 0, we
5078 		 * know any populate_namespace functions completed immediately,
5079 		 * so we'll kick the callback here.
5080 		 */
5081 		ctx->populates_in_progress--;
5082 		if (ctx->populates_in_progress == 0) {
5083 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
5084 		}
5085 	}
5086 
5087 }
5088 
5089 static void
5090 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
5091 {
5092 	struct nvme_ns *nvme_ns, *tmp;
5093 
5094 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
5095 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
5096 	}
5097 }
5098 
5099 static uint32_t
5100 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
5101 {
5102 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5103 	const struct spdk_nvme_ctrlr_data *cdata;
5104 	uint32_t nsid, ns_count = 0;
5105 
5106 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5107 
5108 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
5109 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
5110 		ns_count++;
5111 	}
5112 
5113 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5114 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
5115 	       sizeof(uint32_t);
5116 }
5117 
5118 static int
5119 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
5120 			  void *cb_arg)
5121 {
5122 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
5123 	struct nvme_ns *nvme_ns;
5124 	uint32_t i, nsid;
5125 
5126 	for (i = 0; i < desc->num_of_nsid; i++) {
5127 		nsid = desc->nsid[i];
5128 		if (nsid == 0) {
5129 			continue;
5130 		}
5131 
5132 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
5133 
5134 		if (nvme_ns == NULL) {
5135 			/* Target told us that an inactive namespace had an ANA change */
5136 			continue;
5137 		}
5138 
5139 		_nvme_ns_set_ana_state(nvme_ns, desc);
5140 	}
5141 
5142 	return 0;
5143 }
5144 
5145 static void
5146 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
5147 {
5148 	struct nvme_ns *nvme_ns;
5149 
5150 	spdk_free(nvme_ctrlr->ana_log_page);
5151 	nvme_ctrlr->ana_log_page = NULL;
5152 
5153 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5154 	     nvme_ns != NULL;
5155 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
5156 		nvme_ns->ana_state_updating = false;
5157 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
5158 	}
5159 }
5160 
5161 static void
5162 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
5163 {
5164 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5165 
5166 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
5167 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
5168 					     nvme_ctrlr);
5169 	} else {
5170 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
5171 	}
5172 
5173 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5174 
5175 	assert(nvme_ctrlr->ana_log_page_updating == true);
5176 	nvme_ctrlr->ana_log_page_updating = false;
5177 
5178 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
5179 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
5180 
5181 		nvme_ctrlr_unregister(nvme_ctrlr);
5182 	} else {
5183 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
5184 
5185 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
5186 	}
5187 }
5188 
5189 static int
5190 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
5191 {
5192 	uint32_t ana_log_page_size;
5193 	int rc;
5194 
5195 	if (nvme_ctrlr->ana_log_page == NULL) {
5196 		return -EINVAL;
5197 	}
5198 
5199 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5200 
5201 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5202 		NVME_CTRLR_ERRLOG(nvme_ctrlr,
5203 				  "ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5204 				  ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5205 		return -EINVAL;
5206 	}
5207 
5208 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5209 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
5210 	    nvme_ctrlr->ana_log_page_updating) {
5211 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
5212 		return -EBUSY;
5213 	}
5214 
5215 	nvme_ctrlr->ana_log_page_updating = true;
5216 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5217 
5218 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
5219 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5220 					      SPDK_NVME_GLOBAL_NS_TAG,
5221 					      nvme_ctrlr->ana_log_page,
5222 					      ana_log_page_size, 0,
5223 					      nvme_ctrlr_read_ana_log_page_done,
5224 					      nvme_ctrlr);
5225 	if (rc != 0) {
5226 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
5227 	}
5228 
5229 	return rc;
5230 }
5231 
5232 static void
5233 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
5234 {
5235 }
5236 
5237 struct bdev_nvme_set_preferred_path_ctx {
5238 	struct spdk_bdev_desc *desc;
5239 	struct nvme_ns *nvme_ns;
5240 	bdev_nvme_set_preferred_path_cb cb_fn;
5241 	void *cb_arg;
5242 };
5243 
5244 static void
5245 bdev_nvme_set_preferred_path_done(struct nvme_bdev *nbdev, void *_ctx, int status)
5246 {
5247 	struct bdev_nvme_set_preferred_path_ctx *ctx = _ctx;
5248 
5249 	assert(ctx != NULL);
5250 	assert(ctx->desc != NULL);
5251 	assert(ctx->cb_fn != NULL);
5252 
5253 	spdk_bdev_close(ctx->desc);
5254 
5255 	ctx->cb_fn(ctx->cb_arg, status);
5256 
5257 	free(ctx);
5258 }
5259 
5260 static void
5261 _bdev_nvme_set_preferred_path(struct nvme_bdev_channel_iter *i,
5262 			      struct nvme_bdev *nbdev,
5263 			      struct nvme_bdev_channel *nbdev_ch, void *_ctx)
5264 {
5265 	struct bdev_nvme_set_preferred_path_ctx *ctx = _ctx;
5266 	struct nvme_io_path *io_path, *prev;
5267 
5268 	prev = NULL;
5269 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
5270 		if (io_path->nvme_ns == ctx->nvme_ns) {
5271 			break;
5272 		}
5273 		prev = io_path;
5274 	}
5275 
5276 	if (io_path != NULL) {
5277 		if (prev != NULL) {
5278 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
5279 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
5280 		}
5281 
5282 		/* We can set io_path to nbdev_ch->current_io_path directly here.
5283 		 * However, it needs to be conditional. To simplify the code,
5284 		 * just clear nbdev_ch->current_io_path and let find_io_path()
5285 		 * fill it.
5286 		 *
5287 		 * Automatic failback may be disabled. Hence even if the io_path is
5288 		 * already at the head, clear nbdev_ch->current_io_path.
5289 		 */
5290 		bdev_nvme_clear_current_io_path(nbdev_ch);
5291 	}
5292 
5293 	nvme_bdev_for_each_channel_continue(i, 0);
5294 }
5295 
5296 static struct nvme_ns *
5297 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
5298 {
5299 	struct nvme_ns *nvme_ns, *prev;
5300 	const struct spdk_nvme_ctrlr_data *cdata;
5301 
5302 	prev = NULL;
5303 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
5304 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
5305 
5306 		if (cdata->cntlid == cntlid) {
5307 			break;
5308 		}
5309 		prev = nvme_ns;
5310 	}
5311 
5312 	if (nvme_ns != NULL && prev != NULL) {
5313 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
5314 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
5315 	}
5316 
5317 	return nvme_ns;
5318 }
5319 
5320 /* This function supports only multipath mode. There is only a single I/O path
5321  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
5322  * head of the I/O path list for each NVMe bdev channel.
5323  *
5324  * NVMe bdev channel may be acquired after completing this function. move the
5325  * matched namespace to the head of the namespace list for the NVMe bdev too.
5326  */
5327 void
5328 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
5329 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
5330 {
5331 	struct bdev_nvme_set_preferred_path_ctx *ctx;
5332 	struct spdk_bdev *bdev;
5333 	struct nvme_bdev *nbdev;
5334 	int rc = 0;
5335 
5336 	assert(cb_fn != NULL);
5337 
5338 	ctx = calloc(1, sizeof(*ctx));
5339 	if (ctx == NULL) {
5340 		SPDK_ERRLOG("Failed to alloc context.\n");
5341 		rc = -ENOMEM;
5342 		goto err_alloc;
5343 	}
5344 
5345 	ctx->cb_fn = cb_fn;
5346 	ctx->cb_arg = cb_arg;
5347 
5348 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5349 	if (rc != 0) {
5350 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5351 		goto err_open;
5352 	}
5353 
5354 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5355 
5356 	if (bdev->module != &nvme_if) {
5357 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5358 		rc = -ENODEV;
5359 		goto err_bdev;
5360 	}
5361 
5362 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5363 
5364 	pthread_mutex_lock(&nbdev->mutex);
5365 
5366 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
5367 	if (ctx->nvme_ns == NULL) {
5368 		pthread_mutex_unlock(&nbdev->mutex);
5369 
5370 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
5371 		rc = -ENODEV;
5372 		goto err_bdev;
5373 	}
5374 
5375 	pthread_mutex_unlock(&nbdev->mutex);
5376 
5377 	nvme_bdev_for_each_channel(nbdev,
5378 				   _bdev_nvme_set_preferred_path,
5379 				   ctx,
5380 				   bdev_nvme_set_preferred_path_done);
5381 	return;
5382 
5383 err_bdev:
5384 	spdk_bdev_close(ctx->desc);
5385 err_open:
5386 	free(ctx);
5387 err_alloc:
5388 	cb_fn(cb_arg, rc);
5389 }
5390 
5391 struct bdev_nvme_set_multipath_policy_ctx {
5392 	struct spdk_bdev_desc *desc;
5393 	spdk_bdev_nvme_set_multipath_policy_cb cb_fn;
5394 	void *cb_arg;
5395 };
5396 
5397 static void
5398 bdev_nvme_set_multipath_policy_done(struct nvme_bdev *nbdev, void *_ctx, int status)
5399 {
5400 	struct bdev_nvme_set_multipath_policy_ctx *ctx = _ctx;
5401 
5402 	assert(ctx != NULL);
5403 	assert(ctx->desc != NULL);
5404 	assert(ctx->cb_fn != NULL);
5405 
5406 	spdk_bdev_close(ctx->desc);
5407 
5408 	ctx->cb_fn(ctx->cb_arg, status);
5409 
5410 	free(ctx);
5411 }
5412 
5413 static void
5414 _bdev_nvme_set_multipath_policy(struct nvme_bdev_channel_iter *i,
5415 				struct nvme_bdev *nbdev,
5416 				struct nvme_bdev_channel *nbdev_ch, void *ctx)
5417 {
5418 	nbdev_ch->mp_policy = nbdev->mp_policy;
5419 	nbdev_ch->mp_selector = nbdev->mp_selector;
5420 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
5421 	bdev_nvme_clear_current_io_path(nbdev_ch);
5422 
5423 	nvme_bdev_for_each_channel_continue(i, 0);
5424 }
5425 
5426 void
5427 spdk_bdev_nvme_set_multipath_policy(const char *name, enum spdk_bdev_nvme_multipath_policy policy,
5428 				    enum spdk_bdev_nvme_multipath_selector selector, uint32_t rr_min_io,
5429 				    spdk_bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
5430 {
5431 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
5432 	struct spdk_bdev *bdev;
5433 	struct nvme_bdev *nbdev;
5434 	int rc;
5435 
5436 	assert(cb_fn != NULL);
5437 
5438 	switch (policy) {
5439 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
5440 		break;
5441 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
5442 		switch (selector) {
5443 		case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
5444 			if (rr_min_io == UINT32_MAX) {
5445 				rr_min_io = 1;
5446 			} else if (rr_min_io == 0) {
5447 				rc = -EINVAL;
5448 				goto exit;
5449 			}
5450 			break;
5451 		case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
5452 			break;
5453 		default:
5454 			rc = -EINVAL;
5455 			goto exit;
5456 		}
5457 		break;
5458 	default:
5459 		rc = -EINVAL;
5460 		goto exit;
5461 	}
5462 
5463 	ctx = calloc(1, sizeof(*ctx));
5464 	if (ctx == NULL) {
5465 		SPDK_ERRLOG("Failed to alloc context.\n");
5466 		rc = -ENOMEM;
5467 		goto exit;
5468 	}
5469 
5470 	ctx->cb_fn = cb_fn;
5471 	ctx->cb_arg = cb_arg;
5472 
5473 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5474 	if (rc != 0) {
5475 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5476 		rc = -ENODEV;
5477 		goto err_open;
5478 	}
5479 
5480 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5481 	if (bdev->module != &nvme_if) {
5482 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5483 		rc = -ENODEV;
5484 		goto err_module;
5485 	}
5486 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5487 
5488 	pthread_mutex_lock(&nbdev->mutex);
5489 	nbdev->mp_policy = policy;
5490 	nbdev->mp_selector = selector;
5491 	nbdev->rr_min_io = rr_min_io;
5492 	pthread_mutex_unlock(&nbdev->mutex);
5493 
5494 	nvme_bdev_for_each_channel(nbdev,
5495 				   _bdev_nvme_set_multipath_policy,
5496 				   ctx,
5497 				   bdev_nvme_set_multipath_policy_done);
5498 	return;
5499 
5500 err_module:
5501 	spdk_bdev_close(ctx->desc);
5502 err_open:
5503 	free(ctx);
5504 exit:
5505 	cb_fn(cb_arg, rc);
5506 }
5507 
5508 static void
5509 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5510 {
5511 	struct nvme_ctrlr *nvme_ctrlr		= arg;
5512 	union spdk_nvme_async_event_completion	event;
5513 
5514 	if (spdk_nvme_cpl_is_error(cpl)) {
5515 		SPDK_WARNLOG("AER request execute failed\n");
5516 		return;
5517 	}
5518 
5519 	event.raw = cpl->cdw0;
5520 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5521 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
5522 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
5523 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5524 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
5525 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
5526 	}
5527 }
5528 
5529 static void
5530 free_nvme_async_probe_ctx(struct nvme_async_probe_ctx *ctx)
5531 {
5532 	spdk_keyring_put_key(ctx->drv_opts.tls_psk);
5533 	spdk_keyring_put_key(ctx->drv_opts.dhchap_key);
5534 	spdk_keyring_put_key(ctx->drv_opts.dhchap_ctrlr_key);
5535 	free(ctx);
5536 }
5537 
5538 static void
5539 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, int rc)
5540 {
5541 	if (ctx->cb_fn) {
5542 		ctx->cb_fn(ctx->cb_ctx, ctx->reported_bdevs, rc);
5543 	}
5544 
5545 	ctx->namespaces_populated = true;
5546 	if (ctx->probe_done) {
5547 		/* The probe was already completed, so we need to free the context
5548 		 * here.  This can happen for cases like OCSSD, where we need to
5549 		 * send additional commands to the SSD after attach.
5550 		 */
5551 		free_nvme_async_probe_ctx(ctx);
5552 	}
5553 }
5554 
5555 static int
5556 bdev_nvme_remove_poller(void *ctx)
5557 {
5558 	struct spdk_nvme_transport_id trid_pcie;
5559 
5560 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5561 		spdk_poller_unregister(&g_hotplug_poller);
5562 		return SPDK_POLLER_IDLE;
5563 	}
5564 
5565 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5566 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5567 
5568 	if (spdk_nvme_scan_attached(&trid_pcie)) {
5569 		SPDK_ERRLOG_RATELIMIT("spdk_nvme_scan_attached() failed\n");
5570 	}
5571 
5572 	return SPDK_POLLER_BUSY;
5573 }
5574 
5575 static void
5576 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
5577 		       struct nvme_async_probe_ctx *ctx)
5578 {
5579 	struct spdk_nvme_transport_id *trid = &nvme_ctrlr->active_path_id->trid;
5580 
5581 	if (spdk_nvme_trtype_is_fabrics(trid->trtype)) {
5582 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr was created to %s:%s\n",
5583 				   trid->traddr, trid->trsvcid);
5584 	} else {
5585 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr was created\n");
5586 	}
5587 
5588 	spdk_io_device_register(nvme_ctrlr,
5589 				bdev_nvme_create_ctrlr_channel_cb,
5590 				bdev_nvme_destroy_ctrlr_channel_cb,
5591 				sizeof(struct nvme_ctrlr_channel),
5592 				nvme_ctrlr->nbdev_ctrlr->name);
5593 
5594 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
5595 
5596 	if (g_hotplug_poller == NULL) {
5597 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_remove_poller, NULL,
5598 							NVME_HOTPLUG_POLL_PERIOD_DEFAULT);
5599 	}
5600 }
5601 
5602 static void
5603 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
5604 {
5605 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
5606 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
5607 
5608 	nvme_ctrlr->probe_ctx = NULL;
5609 
5610 	if (spdk_nvme_cpl_is_error(cpl)) {
5611 		nvme_ctrlr_delete(nvme_ctrlr);
5612 
5613 		if (ctx != NULL) {
5614 			ctx->reported_bdevs = 0;
5615 			populate_namespaces_cb(ctx, -1);
5616 		}
5617 		return;
5618 	}
5619 
5620 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5621 }
5622 
5623 static int
5624 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
5625 			     struct nvme_async_probe_ctx *ctx)
5626 {
5627 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5628 	const struct spdk_nvme_ctrlr_data *cdata;
5629 	uint32_t ana_log_page_size;
5630 
5631 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5632 
5633 	/* Set buffer size enough to include maximum number of allowed namespaces. */
5634 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5635 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
5636 			    sizeof(uint32_t);
5637 
5638 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
5639 						SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
5640 	if (nvme_ctrlr->ana_log_page == NULL) {
5641 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "could not allocate ANA log page buffer\n");
5642 		return -ENXIO;
5643 	}
5644 
5645 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
5646 	 * Hence copy each descriptor to a temporary area when parsing it.
5647 	 *
5648 	 * Allocate a buffer whose size is as large as ANA log page buffer because
5649 	 * we do not know the size of a descriptor until actually reading it.
5650 	 */
5651 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
5652 	if (nvme_ctrlr->copied_ana_desc == NULL) {
5653 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "could not allocate a buffer to parse ANA descriptor\n");
5654 		return -ENOMEM;
5655 	}
5656 
5657 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
5658 
5659 	nvme_ctrlr->probe_ctx = ctx;
5660 
5661 	/* Then, set the read size only to include the current active namespaces. */
5662 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5663 
5664 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5665 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5666 				  ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5667 		return -EINVAL;
5668 	}
5669 
5670 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
5671 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5672 						SPDK_NVME_GLOBAL_NS_TAG,
5673 						nvme_ctrlr->ana_log_page,
5674 						ana_log_page_size, 0,
5675 						nvme_ctrlr_init_ana_log_page_done,
5676 						nvme_ctrlr);
5677 }
5678 
5679 /* hostnqn and subnqn were already verified before attaching a controller.
5680  * Hence check only the multipath capability and cntlid here.
5681  */
5682 static bool
5683 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
5684 {
5685 	struct nvme_ctrlr *tmp;
5686 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
5687 
5688 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5689 
5690 	if (!cdata->cmic.multi_ctrlr) {
5691 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5692 		return false;
5693 	}
5694 
5695 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
5696 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
5697 
5698 		if (!tmp_cdata->cmic.multi_ctrlr) {
5699 			NVME_CTRLR_ERRLOG(tmp, "Ctrlr%u does not support multipath.\n", cdata->cntlid);
5700 			return false;
5701 		}
5702 		if (cdata->cntlid == tmp_cdata->cntlid) {
5703 			NVME_CTRLR_ERRLOG(tmp, "cntlid %u are duplicated.\n", tmp_cdata->cntlid);
5704 			return false;
5705 		}
5706 	}
5707 
5708 	return true;
5709 }
5710 
5711 
5712 static int
5713 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
5714 {
5715 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5716 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5717 	struct nvme_ctrlr      *nctrlr;
5718 	int rc = 0;
5719 
5720 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5721 
5722 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5723 	if (nbdev_ctrlr != NULL) {
5724 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
5725 			rc = -EINVAL;
5726 			goto exit;
5727 		}
5728 		TAILQ_FOREACH(nctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
5729 			if (nctrlr->opts.multipath != nvme_ctrlr->opts.multipath) {
5730 				/* All controllers with the same name must be configured the same
5731 				 * way, either for multipath or failover. If the configuration doesn't
5732 				 * match - report error.
5733 				 */
5734 				rc = -EINVAL;
5735 				goto exit;
5736 			}
5737 		}
5738 	} else {
5739 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
5740 		if (nbdev_ctrlr == NULL) {
5741 			NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to allocate nvme_bdev_ctrlr.\n");
5742 			rc = -ENOMEM;
5743 			goto exit;
5744 		}
5745 		nbdev_ctrlr->name = strdup(name);
5746 		if (nbdev_ctrlr->name == NULL) {
5747 			NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to allocate name of nvme_bdev_ctrlr.\n");
5748 			free(nbdev_ctrlr);
5749 			goto exit;
5750 		}
5751 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
5752 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
5753 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
5754 	}
5755 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
5756 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
5757 exit:
5758 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5759 	return rc;
5760 }
5761 
5762 static int
5763 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
5764 		  const char *name,
5765 		  const struct spdk_nvme_transport_id *trid,
5766 		  struct nvme_async_probe_ctx *ctx)
5767 {
5768 	struct nvme_ctrlr *nvme_ctrlr;
5769 	struct nvme_path_id *path_id;
5770 	const struct spdk_nvme_ctrlr_data *cdata;
5771 	int rc;
5772 
5773 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
5774 	if (nvme_ctrlr == NULL) {
5775 		SPDK_ERRLOG("Failed to allocate device struct\n");
5776 		return -ENOMEM;
5777 	}
5778 
5779 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
5780 	if (rc != 0) {
5781 		free(nvme_ctrlr);
5782 		return rc;
5783 	}
5784 
5785 	TAILQ_INIT(&nvme_ctrlr->trids);
5786 	RB_INIT(&nvme_ctrlr->namespaces);
5787 
5788 	/* Get another reference to the key, so the first one can be released from probe_ctx */
5789 	if (ctx != NULL) {
5790 		if (ctx->drv_opts.tls_psk != NULL) {
5791 			nvme_ctrlr->psk = spdk_keyring_get_key(
5792 						  spdk_key_get_name(ctx->drv_opts.tls_psk));
5793 			if (nvme_ctrlr->psk == NULL) {
5794 				/* Could only happen if the key was removed in the meantime */
5795 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5796 					    spdk_key_get_name(ctx->drv_opts.tls_psk));
5797 				rc = -ENOKEY;
5798 				goto err;
5799 			}
5800 		}
5801 
5802 		if (ctx->drv_opts.dhchap_key != NULL) {
5803 			nvme_ctrlr->dhchap_key = spdk_keyring_get_key(
5804 							 spdk_key_get_name(ctx->drv_opts.dhchap_key));
5805 			if (nvme_ctrlr->dhchap_key == NULL) {
5806 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5807 					    spdk_key_get_name(ctx->drv_opts.dhchap_key));
5808 				rc = -ENOKEY;
5809 				goto err;
5810 			}
5811 		}
5812 
5813 		if (ctx->drv_opts.dhchap_ctrlr_key != NULL) {
5814 			nvme_ctrlr->dhchap_ctrlr_key =
5815 				spdk_keyring_get_key(
5816 					spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5817 			if (nvme_ctrlr->dhchap_ctrlr_key == NULL) {
5818 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5819 					    spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5820 				rc = -ENOKEY;
5821 				goto err;
5822 			}
5823 		}
5824 	}
5825 
5826 	path_id = calloc(1, sizeof(*path_id));
5827 	if (path_id == NULL) {
5828 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
5829 		rc = -ENOMEM;
5830 		goto err;
5831 	}
5832 
5833 	path_id->trid = *trid;
5834 	if (ctx != NULL) {
5835 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
5836 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
5837 	}
5838 	nvme_ctrlr->active_path_id = path_id;
5839 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
5840 
5841 	nvme_ctrlr->thread = spdk_get_thread();
5842 	nvme_ctrlr->ctrlr = ctrlr;
5843 	nvme_ctrlr->ref = 1;
5844 
5845 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
5846 		SPDK_ERRLOG("OCSSDs are not supported");
5847 		rc = -ENOTSUP;
5848 		goto err;
5849 	}
5850 
5851 	if (ctx != NULL) {
5852 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
5853 	} else {
5854 		spdk_bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
5855 	}
5856 
5857 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
5858 					  g_opts.nvme_adminq_poll_period_us);
5859 
5860 	if (g_opts.timeout_us > 0) {
5861 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
5862 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
5863 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
5864 					  g_opts.timeout_us : g_opts.timeout_admin_us;
5865 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
5866 				adm_timeout_us, timeout_cb, nvme_ctrlr);
5867 	}
5868 
5869 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
5870 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
5871 
5872 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
5873 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
5874 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
5875 	}
5876 
5877 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
5878 	if (rc != 0) {
5879 		goto err;
5880 	}
5881 
5882 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5883 
5884 	if (cdata->cmic.ana_reporting) {
5885 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
5886 		if (rc == 0) {
5887 			return 0;
5888 		}
5889 	} else {
5890 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5891 		return 0;
5892 	}
5893 
5894 err:
5895 	nvme_ctrlr_delete(nvme_ctrlr);
5896 	return rc;
5897 }
5898 
5899 void
5900 spdk_bdev_nvme_get_default_ctrlr_opts(struct spdk_bdev_nvme_ctrlr_opts *opts)
5901 {
5902 	opts->prchk_flags = 0;
5903 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
5904 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
5905 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
5906 	opts->multipath = true;
5907 }
5908 
5909 static void
5910 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5911 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
5912 {
5913 	char *name;
5914 
5915 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
5916 	if (!name) {
5917 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
5918 		return;
5919 	}
5920 
5921 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
5922 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
5923 	} else {
5924 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
5925 	}
5926 
5927 	free(name);
5928 }
5929 
5930 static void
5931 _nvme_ctrlr_destruct(void *ctx)
5932 {
5933 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5934 
5935 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
5936 	nvme_ctrlr_release(nvme_ctrlr);
5937 }
5938 
5939 static int
5940 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5941 {
5942 	struct nvme_probe_skip_entry *entry;
5943 
5944 	/* The controller's destruction was already started */
5945 	if (nvme_ctrlr->destruct) {
5946 		return -EALREADY;
5947 	}
5948 
5949 	if (!hotplug &&
5950 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
5951 		entry = calloc(1, sizeof(*entry));
5952 		if (!entry) {
5953 			return -ENOMEM;
5954 		}
5955 		entry->trid = nvme_ctrlr->active_path_id->trid;
5956 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
5957 	}
5958 
5959 	nvme_ctrlr->destruct = true;
5960 	return 0;
5961 }
5962 
5963 static int
5964 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5965 {
5966 	int rc;
5967 
5968 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5969 	rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug);
5970 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5971 
5972 	if (rc == 0) {
5973 		_nvme_ctrlr_destruct(nvme_ctrlr);
5974 	} else if (rc == -EALREADY) {
5975 		rc = 0;
5976 	}
5977 
5978 	return rc;
5979 }
5980 
5981 static void
5982 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
5983 {
5984 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
5985 
5986 	bdev_nvme_delete_ctrlr(nvme_ctrlr, true);
5987 }
5988 
5989 static int
5990 bdev_nvme_hotplug_probe(void *arg)
5991 {
5992 	if (g_hotplug_probe_ctx == NULL) {
5993 		spdk_poller_unregister(&g_hotplug_probe_poller);
5994 		return SPDK_POLLER_IDLE;
5995 	}
5996 
5997 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
5998 		g_hotplug_probe_ctx = NULL;
5999 		spdk_poller_unregister(&g_hotplug_probe_poller);
6000 	}
6001 
6002 	return SPDK_POLLER_BUSY;
6003 }
6004 
6005 static int
6006 bdev_nvme_hotplug(void *arg)
6007 {
6008 	struct spdk_nvme_transport_id trid_pcie;
6009 
6010 	if (g_hotplug_probe_ctx) {
6011 		return SPDK_POLLER_BUSY;
6012 	}
6013 
6014 	memset(&trid_pcie, 0, sizeof(trid_pcie));
6015 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
6016 
6017 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
6018 			      hotplug_probe_cb, attach_cb, NULL);
6019 
6020 	if (g_hotplug_probe_ctx) {
6021 		assert(g_hotplug_probe_poller == NULL);
6022 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
6023 	}
6024 
6025 	return SPDK_POLLER_BUSY;
6026 }
6027 
6028 void
6029 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
6030 {
6031 	*opts = g_opts;
6032 }
6033 
6034 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
6035 		uint32_t reconnect_delay_sec,
6036 		uint32_t fast_io_fail_timeout_sec);
6037 
6038 static int
6039 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
6040 {
6041 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
6042 		/* Can't set timeout_admin_us without also setting timeout_us */
6043 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
6044 		return -EINVAL;
6045 	}
6046 
6047 	if (opts->bdev_retry_count < -1) {
6048 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
6049 		return -EINVAL;
6050 	}
6051 
6052 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
6053 			opts->reconnect_delay_sec,
6054 			opts->fast_io_fail_timeout_sec)) {
6055 		return -EINVAL;
6056 	}
6057 
6058 	return 0;
6059 }
6060 
6061 int
6062 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
6063 {
6064 	int ret;
6065 
6066 	ret = bdev_nvme_validate_opts(opts);
6067 	if (ret) {
6068 		SPDK_WARNLOG("Failed to set nvme opts.\n");
6069 		return ret;
6070 	}
6071 
6072 	if (g_bdev_nvme_init_thread != NULL) {
6073 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
6074 			return -EPERM;
6075 		}
6076 	}
6077 
6078 	if (opts->rdma_srq_size != 0 ||
6079 	    opts->rdma_max_cq_size != 0 ||
6080 	    opts->rdma_cm_event_timeout_ms != 0) {
6081 		struct spdk_nvme_transport_opts drv_opts;
6082 
6083 		spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
6084 		if (opts->rdma_srq_size != 0) {
6085 			drv_opts.rdma_srq_size = opts->rdma_srq_size;
6086 		}
6087 		if (opts->rdma_max_cq_size != 0) {
6088 			drv_opts.rdma_max_cq_size = opts->rdma_max_cq_size;
6089 		}
6090 		if (opts->rdma_cm_event_timeout_ms != 0) {
6091 			drv_opts.rdma_cm_event_timeout_ms = opts->rdma_cm_event_timeout_ms;
6092 		}
6093 
6094 		ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
6095 		if (ret) {
6096 			SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
6097 			return ret;
6098 		}
6099 	}
6100 
6101 	g_opts = *opts;
6102 
6103 	return 0;
6104 }
6105 
6106 struct set_nvme_hotplug_ctx {
6107 	uint64_t period_us;
6108 	bool enabled;
6109 	spdk_msg_fn fn;
6110 	void *fn_ctx;
6111 };
6112 
6113 static void
6114 set_nvme_hotplug_period_cb(void *_ctx)
6115 {
6116 	struct set_nvme_hotplug_ctx *ctx = _ctx;
6117 
6118 	spdk_poller_unregister(&g_hotplug_poller);
6119 	if (ctx->enabled) {
6120 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
6121 	} else {
6122 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_remove_poller, NULL,
6123 							NVME_HOTPLUG_POLL_PERIOD_DEFAULT);
6124 	}
6125 
6126 	g_nvme_hotplug_poll_period_us = ctx->period_us;
6127 	g_nvme_hotplug_enabled = ctx->enabled;
6128 	if (ctx->fn) {
6129 		ctx->fn(ctx->fn_ctx);
6130 	}
6131 
6132 	free(ctx);
6133 }
6134 
6135 int
6136 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
6137 {
6138 	struct set_nvme_hotplug_ctx *ctx;
6139 
6140 	if (enabled == true && !spdk_process_is_primary()) {
6141 		return -EPERM;
6142 	}
6143 
6144 	ctx = calloc(1, sizeof(*ctx));
6145 	if (ctx == NULL) {
6146 		return -ENOMEM;
6147 	}
6148 
6149 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
6150 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
6151 	ctx->enabled = enabled;
6152 	ctx->fn = cb;
6153 	ctx->fn_ctx = cb_ctx;
6154 
6155 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
6156 	return 0;
6157 }
6158 
6159 static void
6160 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
6161 				    struct nvme_async_probe_ctx *ctx)
6162 {
6163 	struct nvme_ns	*nvme_ns;
6164 	struct nvme_bdev	*nvme_bdev;
6165 	size_t			j;
6166 
6167 	assert(nvme_ctrlr != NULL);
6168 
6169 	if (ctx->names == NULL) {
6170 		ctx->reported_bdevs = 0;
6171 		populate_namespaces_cb(ctx, 0);
6172 		return;
6173 	}
6174 
6175 	/*
6176 	 * Report the new bdevs that were created in this call.
6177 	 * There can be more than one bdev per NVMe controller.
6178 	 */
6179 	j = 0;
6180 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
6181 	while (nvme_ns != NULL) {
6182 		nvme_bdev = nvme_ns->bdev;
6183 		if (j < ctx->max_bdevs) {
6184 			ctx->names[j] = nvme_bdev->disk.name;
6185 			j++;
6186 		} else {
6187 			NVME_CTRLR_ERRLOG(nvme_ctrlr,
6188 					  "Maximum number of namespaces supported per NVMe controller is %du. "
6189 					  "Unable to return all names of created bdevs\n",
6190 					  ctx->max_bdevs);
6191 			ctx->reported_bdevs = 0;
6192 			populate_namespaces_cb(ctx, -ERANGE);
6193 			return;
6194 		}
6195 
6196 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
6197 	}
6198 
6199 	ctx->reported_bdevs = j;
6200 	populate_namespaces_cb(ctx, 0);
6201 }
6202 
6203 static int
6204 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
6205 			       struct spdk_nvme_ctrlr *new_ctrlr,
6206 			       struct spdk_nvme_transport_id *trid)
6207 {
6208 	struct nvme_path_id *tmp_trid;
6209 
6210 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6211 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "PCIe failover is not supported.\n");
6212 		return -ENOTSUP;
6213 	}
6214 
6215 	/* Currently we only support failover to the same transport type. */
6216 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
6217 		NVME_CTRLR_WARNLOG(nvme_ctrlr,
6218 				   "Failover from trtype: %s to a different trtype: %s is not supported currently\n",
6219 				   spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
6220 				   spdk_nvme_transport_id_trtype_str(trid->trtype));
6221 		return -EINVAL;
6222 	}
6223 
6224 
6225 	/* Currently we only support failover to the same NQN. */
6226 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
6227 		NVME_CTRLR_WARNLOG(nvme_ctrlr,
6228 				   "Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
6229 				   nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
6230 		return -EINVAL;
6231 	}
6232 
6233 	/* Skip all the other checks if we've already registered this path. */
6234 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
6235 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
6236 			NVME_CTRLR_WARNLOG(nvme_ctrlr, "This path (traddr: %s subnqn: %s) is already registered\n",
6237 					   trid->traddr, trid->subnqn);
6238 			return -EALREADY;
6239 		}
6240 	}
6241 
6242 	return 0;
6243 }
6244 
6245 static int
6246 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
6247 				    struct spdk_nvme_ctrlr *new_ctrlr)
6248 {
6249 	struct nvme_ns *nvme_ns;
6250 	struct spdk_nvme_ns *new_ns;
6251 
6252 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
6253 	while (nvme_ns != NULL) {
6254 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
6255 		assert(new_ns != NULL);
6256 
6257 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
6258 			return -EINVAL;
6259 		}
6260 
6261 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
6262 	}
6263 
6264 	return 0;
6265 }
6266 
6267 static int
6268 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
6269 			      struct spdk_nvme_transport_id *trid)
6270 {
6271 	struct nvme_path_id *active_id, *new_trid, *tmp_trid;
6272 
6273 	new_trid = calloc(1, sizeof(*new_trid));
6274 	if (new_trid == NULL) {
6275 		return -ENOMEM;
6276 	}
6277 	new_trid->trid = *trid;
6278 
6279 	active_id = nvme_ctrlr->active_path_id;
6280 	assert(active_id != NULL);
6281 	assert(active_id == TAILQ_FIRST(&nvme_ctrlr->trids));
6282 
6283 	/* Skip the active trid not to replace it until it is failed. */
6284 	tmp_trid = TAILQ_NEXT(active_id, link);
6285 	if (tmp_trid == NULL) {
6286 		goto add_tail;
6287 	}
6288 
6289 	/* It means the trid is faled if its last failed time is non-zero.
6290 	 * Insert the new alternate trid before any failed trid.
6291 	 */
6292 	TAILQ_FOREACH_FROM(tmp_trid, &nvme_ctrlr->trids, link) {
6293 		if (tmp_trid->last_failed_tsc != 0) {
6294 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
6295 			return 0;
6296 		}
6297 	}
6298 
6299 add_tail:
6300 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
6301 	return 0;
6302 }
6303 
6304 /* This is the case that a secondary path is added to an existing
6305  * nvme_ctrlr for failover. After checking if it can access the same
6306  * namespaces as the primary path, it is disconnected until failover occurs.
6307  */
6308 static int
6309 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
6310 			     struct spdk_nvme_ctrlr *new_ctrlr,
6311 			     struct spdk_nvme_transport_id *trid)
6312 {
6313 	int rc;
6314 
6315 	assert(nvme_ctrlr != NULL);
6316 
6317 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6318 
6319 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
6320 	if (rc != 0) {
6321 		goto exit;
6322 	}
6323 
6324 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
6325 	if (rc != 0) {
6326 		goto exit;
6327 	}
6328 
6329 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
6330 
6331 exit:
6332 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6333 
6334 	spdk_nvme_detach(new_ctrlr);
6335 
6336 	return rc;
6337 }
6338 
6339 static void
6340 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6341 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
6342 {
6343 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6344 	struct nvme_async_probe_ctx *ctx;
6345 	int rc;
6346 
6347 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
6348 	ctx->ctrlr_attached = true;
6349 
6350 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
6351 	if (rc != 0) {
6352 		ctx->reported_bdevs = 0;
6353 		populate_namespaces_cb(ctx, rc);
6354 	}
6355 }
6356 
6357 
6358 static void
6359 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6360 			struct spdk_nvme_ctrlr *ctrlr,
6361 			const struct spdk_nvme_ctrlr_opts *opts)
6362 {
6363 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6364 	struct nvme_ctrlr *nvme_ctrlr;
6365 	struct nvme_async_probe_ctx *ctx;
6366 	int rc;
6367 
6368 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
6369 	ctx->ctrlr_attached = true;
6370 
6371 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
6372 	if (nvme_ctrlr) {
6373 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
6374 	} else {
6375 		rc = -ENODEV;
6376 	}
6377 
6378 	ctx->reported_bdevs = 0;
6379 	populate_namespaces_cb(ctx, rc);
6380 }
6381 
6382 static int
6383 bdev_nvme_async_poll(void *arg)
6384 {
6385 	struct nvme_async_probe_ctx	*ctx = arg;
6386 	int				rc;
6387 
6388 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
6389 	if (spdk_unlikely(rc != -EAGAIN)) {
6390 		ctx->probe_done = true;
6391 		spdk_poller_unregister(&ctx->poller);
6392 		if (!ctx->ctrlr_attached) {
6393 			/* The probe is done, but no controller was attached.
6394 			 * That means we had a failure, so report -EIO back to
6395 			 * the caller (usually the RPC). populate_namespaces_cb()
6396 			 * will take care of freeing the nvme_async_probe_ctx.
6397 			 */
6398 			ctx->reported_bdevs = 0;
6399 			populate_namespaces_cb(ctx, -EIO);
6400 		} else if (ctx->namespaces_populated) {
6401 			/* The namespaces for the attached controller were all
6402 			 * populated and the response was already sent to the
6403 			 * caller (usually the RPC).  So free the context here.
6404 			 */
6405 			free_nvme_async_probe_ctx(ctx);
6406 		}
6407 	}
6408 
6409 	return SPDK_POLLER_BUSY;
6410 }
6411 
6412 static bool
6413 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
6414 		uint32_t reconnect_delay_sec,
6415 		uint32_t fast_io_fail_timeout_sec)
6416 {
6417 	if (ctrlr_loss_timeout_sec < -1) {
6418 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
6419 		return false;
6420 	} else if (ctrlr_loss_timeout_sec == -1) {
6421 		if (reconnect_delay_sec == 0) {
6422 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6423 			return false;
6424 		} else if (fast_io_fail_timeout_sec != 0 &&
6425 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
6426 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
6427 			return false;
6428 		}
6429 	} else if (ctrlr_loss_timeout_sec != 0) {
6430 		if (reconnect_delay_sec == 0) {
6431 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6432 			return false;
6433 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6434 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
6435 			return false;
6436 		} else if (fast_io_fail_timeout_sec != 0) {
6437 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
6438 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
6439 				return false;
6440 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6441 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
6442 				return false;
6443 			}
6444 		}
6445 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
6446 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
6447 		return false;
6448 	}
6449 
6450 	return true;
6451 }
6452 
6453 int
6454 spdk_bdev_nvme_create(struct spdk_nvme_transport_id *trid,
6455 		      const char *base_name,
6456 		      const char **names,
6457 		      uint32_t count,
6458 		      spdk_bdev_nvme_create_cb cb_fn,
6459 		      void *cb_ctx,
6460 		      struct spdk_nvme_ctrlr_opts *drv_opts,
6461 		      struct spdk_bdev_nvme_ctrlr_opts *bdev_opts)
6462 {
6463 	struct nvme_probe_skip_entry *entry, *tmp;
6464 	struct nvme_async_probe_ctx *ctx;
6465 	spdk_nvme_attach_cb attach_cb;
6466 	struct nvme_ctrlr *nvme_ctrlr;
6467 	int len;
6468 
6469 	/* TODO expand this check to include both the host and target TRIDs.
6470 	 * Only if both are the same should we fail.
6471 	 */
6472 	if (nvme_ctrlr_get(trid, drv_opts->hostnqn) != NULL) {
6473 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s, hostnqn: %s) "
6474 			    "already exists.\n", trid->traddr, drv_opts->hostnqn);
6475 		return -EEXIST;
6476 	}
6477 
6478 	len = strnlen(base_name, SPDK_CONTROLLER_NAME_MAX);
6479 
6480 	if (len == 0 || len == SPDK_CONTROLLER_NAME_MAX) {
6481 		SPDK_ERRLOG("controller name must be between 1 and %d characters\n", SPDK_CONTROLLER_NAME_MAX - 1);
6482 		return -EINVAL;
6483 	}
6484 
6485 	if (bdev_opts != NULL &&
6486 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
6487 			    bdev_opts->reconnect_delay_sec,
6488 			    bdev_opts->fast_io_fail_timeout_sec)) {
6489 		return -EINVAL;
6490 	}
6491 
6492 	ctx = calloc(1, sizeof(*ctx));
6493 	if (!ctx) {
6494 		return -ENOMEM;
6495 	}
6496 	ctx->base_name = base_name;
6497 	ctx->names = names;
6498 	ctx->max_bdevs = count;
6499 	ctx->cb_fn = cb_fn;
6500 	ctx->cb_ctx = cb_ctx;
6501 	ctx->trid = *trid;
6502 
6503 	if (bdev_opts) {
6504 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6505 	} else {
6506 		spdk_bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
6507 	}
6508 
6509 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6510 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
6511 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
6512 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
6513 				free(entry);
6514 				break;
6515 			}
6516 		}
6517 	}
6518 
6519 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6520 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
6521 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
6522 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
6523 	ctx->drv_opts.disable_read_ana_log_page = true;
6524 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
6525 
6526 	if (ctx->bdev_opts.psk != NULL) {
6527 		ctx->drv_opts.tls_psk = spdk_keyring_get_key(ctx->bdev_opts.psk);
6528 		if (ctx->drv_opts.tls_psk == NULL) {
6529 			SPDK_ERRLOG("Could not load PSK: %s\n", ctx->bdev_opts.psk);
6530 			free_nvme_async_probe_ctx(ctx);
6531 			return -ENOKEY;
6532 		}
6533 	}
6534 
6535 	if (ctx->bdev_opts.dhchap_key != NULL) {
6536 		ctx->drv_opts.dhchap_key = spdk_keyring_get_key(ctx->bdev_opts.dhchap_key);
6537 		if (ctx->drv_opts.dhchap_key == NULL) {
6538 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP key: %s\n",
6539 				    ctx->bdev_opts.dhchap_key);
6540 			free_nvme_async_probe_ctx(ctx);
6541 			return -ENOKEY;
6542 		}
6543 
6544 		ctx->drv_opts.dhchap_digests = g_opts.dhchap_digests;
6545 		ctx->drv_opts.dhchap_dhgroups = g_opts.dhchap_dhgroups;
6546 	}
6547 	if (ctx->bdev_opts.dhchap_ctrlr_key != NULL) {
6548 		ctx->drv_opts.dhchap_ctrlr_key =
6549 			spdk_keyring_get_key(ctx->bdev_opts.dhchap_ctrlr_key);
6550 		if (ctx->drv_opts.dhchap_ctrlr_key == NULL) {
6551 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP controller key: %s\n",
6552 				    ctx->bdev_opts.dhchap_ctrlr_key);
6553 			free_nvme_async_probe_ctx(ctx);
6554 			return -ENOKEY;
6555 		}
6556 	}
6557 
6558 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || ctx->bdev_opts.multipath) {
6559 		attach_cb = connect_attach_cb;
6560 	} else {
6561 		attach_cb = connect_set_failover_cb;
6562 	}
6563 
6564 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
6565 	if (nvme_ctrlr  && nvme_ctrlr->opts.multipath != ctx->bdev_opts.multipath) {
6566 		/* All controllers with the same name must be configured the same
6567 		 * way, either for multipath or failover. If the configuration doesn't
6568 		 * match - report error.
6569 		 */
6570 		free_nvme_async_probe_ctx(ctx);
6571 		return -EINVAL;
6572 	}
6573 
6574 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
6575 	if (ctx->probe_ctx == NULL) {
6576 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
6577 		free_nvme_async_probe_ctx(ctx);
6578 		return -ENODEV;
6579 	}
6580 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
6581 
6582 	return 0;
6583 }
6584 
6585 struct bdev_nvme_delete_ctx {
6586 	char                        *name;
6587 	struct nvme_path_id         path_id;
6588 	bdev_nvme_delete_done_fn    delete_done;
6589 	void                        *delete_done_ctx;
6590 	uint64_t                    timeout_ticks;
6591 	struct spdk_poller          *poller;
6592 };
6593 
6594 static void
6595 free_bdev_nvme_delete_ctx(struct bdev_nvme_delete_ctx *ctx)
6596 {
6597 	if (ctx != NULL) {
6598 		free(ctx->name);
6599 		free(ctx);
6600 	}
6601 }
6602 
6603 static bool
6604 nvme_path_id_compare(struct nvme_path_id *p, const struct nvme_path_id *path_id)
6605 {
6606 	if (path_id->trid.trtype != 0) {
6607 		if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
6608 			if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
6609 				return false;
6610 			}
6611 		} else {
6612 			if (path_id->trid.trtype != p->trid.trtype) {
6613 				return false;
6614 			}
6615 		}
6616 	}
6617 
6618 	if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
6619 		if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
6620 			return false;
6621 		}
6622 	}
6623 
6624 	if (path_id->trid.adrfam != 0) {
6625 		if (path_id->trid.adrfam != p->trid.adrfam) {
6626 			return false;
6627 		}
6628 	}
6629 
6630 	if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
6631 		if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
6632 			return false;
6633 		}
6634 	}
6635 
6636 	if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
6637 		if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
6638 			return false;
6639 		}
6640 	}
6641 
6642 	if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
6643 		if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
6644 			return false;
6645 		}
6646 	}
6647 
6648 	if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
6649 		if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
6650 			return false;
6651 		}
6652 	}
6653 
6654 	return true;
6655 }
6656 
6657 static bool
6658 nvme_path_id_exists(const char *name, const struct nvme_path_id *path_id)
6659 {
6660 	struct nvme_bdev_ctrlr  *nbdev_ctrlr;
6661 	struct nvme_ctrlr       *ctrlr;
6662 	struct nvme_path_id     *p;
6663 
6664 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6665 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6666 	if (!nbdev_ctrlr) {
6667 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6668 		return false;
6669 	}
6670 
6671 	TAILQ_FOREACH(ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6672 		pthread_mutex_lock(&ctrlr->mutex);
6673 		TAILQ_FOREACH(p, &ctrlr->trids, link) {
6674 			if (nvme_path_id_compare(p, path_id)) {
6675 				pthread_mutex_unlock(&ctrlr->mutex);
6676 				pthread_mutex_unlock(&g_bdev_nvme_mutex);
6677 				return true;
6678 			}
6679 		}
6680 		pthread_mutex_unlock(&ctrlr->mutex);
6681 	}
6682 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6683 
6684 	return false;
6685 }
6686 
6687 static int
6688 bdev_nvme_delete_complete_poll(void *arg)
6689 {
6690 	struct bdev_nvme_delete_ctx     *ctx = arg;
6691 	int                             rc = 0;
6692 
6693 	if (nvme_path_id_exists(ctx->name, &ctx->path_id)) {
6694 		if (ctx->timeout_ticks > spdk_get_ticks()) {
6695 			return SPDK_POLLER_BUSY;
6696 		}
6697 
6698 		SPDK_ERRLOG("NVMe path '%s' still exists after delete\n", ctx->name);
6699 		rc = -ETIMEDOUT;
6700 	}
6701 
6702 	spdk_poller_unregister(&ctx->poller);
6703 
6704 	ctx->delete_done(ctx->delete_done_ctx, rc);
6705 	free_bdev_nvme_delete_ctx(ctx);
6706 
6707 	return SPDK_POLLER_BUSY;
6708 }
6709 
6710 static int
6711 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id)
6712 {
6713 	struct nvme_path_id	*p, *t;
6714 	spdk_msg_fn		msg_fn;
6715 	int			rc = -ENXIO;
6716 
6717 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6718 
6719 	TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
6720 		if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) {
6721 			break;
6722 		}
6723 
6724 		if (!nvme_path_id_compare(p, path_id)) {
6725 			continue;
6726 		}
6727 
6728 		/* We are not using the specified path. */
6729 		TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
6730 		free(p);
6731 		rc = 0;
6732 	}
6733 
6734 	if (p == NULL || !nvme_path_id_compare(p, path_id)) {
6735 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
6736 		return rc;
6737 	}
6738 
6739 	/* If we made it here, then this path is a match! Now we need to remove it. */
6740 
6741 	/* This is the active path in use right now. The active path is always the first in the list. */
6742 	assert(p == nvme_ctrlr->active_path_id);
6743 
6744 	if (!TAILQ_NEXT(p, link)) {
6745 		/* The current path is the only path. */
6746 		msg_fn = _nvme_ctrlr_destruct;
6747 		rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false);
6748 	} else {
6749 		/* There is an alternative path. */
6750 		msg_fn = _bdev_nvme_reset_ctrlr;
6751 		rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, true);
6752 	}
6753 
6754 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6755 
6756 	if (rc == 0) {
6757 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
6758 	} else if (rc == -EALREADY) {
6759 		rc = 0;
6760 	}
6761 
6762 	return rc;
6763 }
6764 
6765 int
6766 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id,
6767 		 bdev_nvme_delete_done_fn delete_done, void *delete_done_ctx)
6768 {
6769 	struct nvme_bdev_ctrlr		*nbdev_ctrlr;
6770 	struct nvme_ctrlr		*nvme_ctrlr, *tmp_nvme_ctrlr;
6771 	struct bdev_nvme_delete_ctx     *ctx = NULL;
6772 	int				rc = -ENXIO, _rc;
6773 
6774 	if (name == NULL || path_id == NULL) {
6775 		rc = -EINVAL;
6776 		goto exit;
6777 	}
6778 
6779 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6780 
6781 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6782 	if (nbdev_ctrlr == NULL) {
6783 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6784 
6785 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
6786 		rc = -ENODEV;
6787 		goto exit;
6788 	}
6789 
6790 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
6791 		_rc = _bdev_nvme_delete(nvme_ctrlr, path_id);
6792 		if (_rc < 0 && _rc != -ENXIO) {
6793 			pthread_mutex_unlock(&g_bdev_nvme_mutex);
6794 			rc = _rc;
6795 			goto exit;
6796 		} else if (_rc == 0) {
6797 			/* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr
6798 			 * was deleted successfully. To remember the successful deletion,
6799 			 * overwrite rc only if _rc is zero.
6800 			 */
6801 			rc = 0;
6802 		}
6803 	}
6804 
6805 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6806 
6807 	if (rc != 0 || delete_done == NULL) {
6808 		goto exit;
6809 	}
6810 
6811 	ctx = calloc(1, sizeof(*ctx));
6812 	if (ctx == NULL) {
6813 		SPDK_ERRLOG("Failed to allocate context for bdev_nvme_delete\n");
6814 		rc = -ENOMEM;
6815 		goto exit;
6816 	}
6817 
6818 	ctx->name = strdup(name);
6819 	if (ctx->name == NULL) {
6820 		SPDK_ERRLOG("Failed to copy controller name for deletion\n");
6821 		rc = -ENOMEM;
6822 		goto exit;
6823 	}
6824 
6825 	ctx->delete_done = delete_done;
6826 	ctx->delete_done_ctx = delete_done_ctx;
6827 	ctx->path_id = *path_id;
6828 	ctx->timeout_ticks = spdk_get_ticks() + 10 * spdk_get_ticks_hz();
6829 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_delete_complete_poll, ctx, 1000);
6830 	if (ctx->poller == NULL) {
6831 		SPDK_ERRLOG("Failed to register bdev_nvme_delete poller\n");
6832 		rc = -ENOMEM;
6833 		goto exit;
6834 	}
6835 
6836 exit:
6837 	if (rc != 0) {
6838 		free_bdev_nvme_delete_ctx(ctx);
6839 	}
6840 
6841 	return rc;
6842 }
6843 
6844 #define DISCOVERY_INFOLOG(ctx, format, ...) \
6845 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6846 
6847 #define DISCOVERY_ERRLOG(ctx, format, ...) \
6848 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6849 
6850 struct discovery_entry_ctx {
6851 	char						name[128];
6852 	struct spdk_nvme_transport_id			trid;
6853 	struct spdk_nvme_ctrlr_opts			drv_opts;
6854 	struct spdk_nvmf_discovery_log_page_entry	entry;
6855 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
6856 	struct discovery_ctx				*ctx;
6857 };
6858 
6859 struct discovery_ctx {
6860 	char					*name;
6861 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
6862 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
6863 	void					*cb_ctx;
6864 	struct spdk_nvme_probe_ctx		*probe_ctx;
6865 	struct spdk_nvme_detach_ctx		*detach_ctx;
6866 	struct spdk_nvme_ctrlr			*ctrlr;
6867 	struct spdk_nvme_transport_id		trid;
6868 	struct discovery_entry_ctx		*entry_ctx_in_use;
6869 	struct spdk_poller			*poller;
6870 	struct spdk_nvme_ctrlr_opts		drv_opts;
6871 	struct spdk_bdev_nvme_ctrlr_opts	bdev_opts;
6872 	struct spdk_nvmf_discovery_log_page	*log_page;
6873 	TAILQ_ENTRY(discovery_ctx)		tailq;
6874 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
6875 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
6876 	int					rc;
6877 	bool					wait_for_attach;
6878 	uint64_t				timeout_ticks;
6879 	/* Denotes that the discovery service is being started. We're waiting
6880 	 * for the initial connection to the discovery controller to be
6881 	 * established and attach discovered NVM ctrlrs.
6882 	 */
6883 	bool					initializing;
6884 	/* Denotes if a discovery is currently in progress for this context.
6885 	 * That includes connecting to newly discovered subsystems.  Used to
6886 	 * ensure we do not start a new discovery until an existing one is
6887 	 * complete.
6888 	 */
6889 	bool					in_progress;
6890 
6891 	/* Denotes if another discovery is needed after the one in progress
6892 	 * completes.  Set when we receive an AER completion while a discovery
6893 	 * is already in progress.
6894 	 */
6895 	bool					pending;
6896 
6897 	/* Signal to the discovery context poller that it should stop the
6898 	 * discovery service, including detaching from the current discovery
6899 	 * controller.
6900 	 */
6901 	bool					stop;
6902 
6903 	struct spdk_thread			*calling_thread;
6904 	uint32_t				index;
6905 	uint32_t				attach_in_progress;
6906 	char					*hostnqn;
6907 
6908 	/* Denotes if the discovery service was started by the mdns discovery.
6909 	 */
6910 	bool					from_mdns_discovery_service;
6911 };
6912 
6913 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
6914 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
6915 
6916 static void get_discovery_log_page(struct discovery_ctx *ctx);
6917 
6918 static void
6919 free_discovery_ctx(struct discovery_ctx *ctx)
6920 {
6921 	free(ctx->log_page);
6922 	free(ctx->hostnqn);
6923 	free(ctx->name);
6924 	free(ctx);
6925 }
6926 
6927 static void
6928 discovery_complete(struct discovery_ctx *ctx)
6929 {
6930 	ctx->initializing = false;
6931 	ctx->in_progress = false;
6932 	if (ctx->pending) {
6933 		ctx->pending = false;
6934 		get_discovery_log_page(ctx);
6935 	}
6936 }
6937 
6938 static void
6939 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
6940 			       struct spdk_nvmf_discovery_log_page_entry *entry)
6941 {
6942 	char *space;
6943 
6944 	trid->trtype = entry->trtype;
6945 	trid->adrfam = entry->adrfam;
6946 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
6947 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
6948 	/* Because the source buffer (entry->subnqn) is longer than trid->subnqn, and
6949 	 * before call to this function trid->subnqn is zeroed out, we need
6950 	 * to copy sizeof(trid->subnqn) minus one byte to make sure the last character
6951 	 * remains 0. Then we can shorten the string (replace ' ' with 0) if required
6952 	 */
6953 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn) - 1);
6954 
6955 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
6956 	 * But the log page entries typically pad them with spaces, not zeroes.
6957 	 * So add a NULL terminator to each of these fields at the appropriate
6958 	 * location.
6959 	 */
6960 	space = strchr(trid->traddr, ' ');
6961 	if (space) {
6962 		*space = 0;
6963 	}
6964 	space = strchr(trid->trsvcid, ' ');
6965 	if (space) {
6966 		*space = 0;
6967 	}
6968 	space = strchr(trid->subnqn, ' ');
6969 	if (space) {
6970 		*space = 0;
6971 	}
6972 }
6973 
6974 static void
6975 _stop_discovery(void *_ctx)
6976 {
6977 	struct discovery_ctx *ctx = _ctx;
6978 
6979 	if (ctx->attach_in_progress > 0) {
6980 		spdk_thread_send_msg(spdk_get_thread(), _stop_discovery, ctx);
6981 		return;
6982 	}
6983 
6984 	ctx->stop = true;
6985 
6986 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
6987 		struct discovery_entry_ctx *entry_ctx;
6988 		struct nvme_path_id path = {};
6989 
6990 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
6991 		path.trid = entry_ctx->trid;
6992 		bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6993 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6994 		free(entry_ctx);
6995 	}
6996 
6997 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
6998 		struct discovery_entry_ctx *entry_ctx;
6999 
7000 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
7001 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
7002 		free(entry_ctx);
7003 	}
7004 
7005 	free(ctx->entry_ctx_in_use);
7006 	ctx->entry_ctx_in_use = NULL;
7007 }
7008 
7009 static void
7010 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
7011 {
7012 	ctx->stop_cb_fn = cb_fn;
7013 	ctx->cb_ctx = cb_ctx;
7014 
7015 	if (ctx->attach_in_progress > 0) {
7016 		DISCOVERY_INFOLOG(ctx, "stopping discovery with attach_in_progress: %"PRIu32"\n",
7017 				  ctx->attach_in_progress);
7018 	}
7019 
7020 	_stop_discovery(ctx);
7021 }
7022 
7023 static void
7024 remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr)
7025 {
7026 	struct discovery_ctx *d_ctx;
7027 	struct nvme_path_id *path_id;
7028 	struct spdk_nvme_transport_id trid = {};
7029 	struct discovery_entry_ctx *entry_ctx, *tmp;
7030 
7031 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
7032 
7033 	TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
7034 		TAILQ_FOREACH_SAFE(entry_ctx, &d_ctx->nvm_entry_ctxs, tailq, tmp) {
7035 			build_trid_from_log_page_entry(&trid, &entry_ctx->entry);
7036 			if (spdk_nvme_transport_id_compare(&trid, &path_id->trid) != 0) {
7037 				continue;
7038 			}
7039 
7040 			TAILQ_REMOVE(&d_ctx->nvm_entry_ctxs, entry_ctx, tailq);
7041 			free(entry_ctx);
7042 			DISCOVERY_INFOLOG(d_ctx, "Remove discovery entry: %s:%s:%s\n",
7043 					  trid.subnqn, trid.traddr, trid.trsvcid);
7044 
7045 			/* Fail discovery ctrlr to force reattach attempt */
7046 			spdk_nvme_ctrlr_fail(d_ctx->ctrlr);
7047 		}
7048 	}
7049 }
7050 
7051 static void
7052 discovery_remove_controllers(struct discovery_ctx *ctx)
7053 {
7054 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
7055 	struct discovery_entry_ctx *entry_ctx, *tmp;
7056 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
7057 	struct spdk_nvme_transport_id old_trid = {};
7058 	uint64_t numrec, i;
7059 	bool found;
7060 
7061 	numrec = from_le64(&log_page->numrec);
7062 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
7063 		found = false;
7064 		old_entry = &entry_ctx->entry;
7065 		build_trid_from_log_page_entry(&old_trid, old_entry);
7066 		for (i = 0; i < numrec; i++) {
7067 			new_entry = &log_page->entries[i];
7068 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
7069 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
7070 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
7071 				found = true;
7072 				break;
7073 			}
7074 		}
7075 		if (!found) {
7076 			struct nvme_path_id path = {};
7077 
7078 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
7079 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
7080 
7081 			path.trid = entry_ctx->trid;
7082 			bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
7083 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
7084 			free(entry_ctx);
7085 		}
7086 	}
7087 	free(log_page);
7088 	ctx->log_page = NULL;
7089 	discovery_complete(ctx);
7090 }
7091 
7092 static void
7093 complete_discovery_start(struct discovery_ctx *ctx, int status)
7094 {
7095 	ctx->timeout_ticks = 0;
7096 	ctx->rc = status;
7097 	if (ctx->start_cb_fn) {
7098 		ctx->start_cb_fn(ctx->cb_ctx, status);
7099 		ctx->start_cb_fn = NULL;
7100 		ctx->cb_ctx = NULL;
7101 	}
7102 }
7103 
7104 static void
7105 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
7106 {
7107 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
7108 	struct discovery_ctx *ctx = entry_ctx->ctx;
7109 
7110 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
7111 	ctx->attach_in_progress--;
7112 	if (ctx->attach_in_progress == 0) {
7113 		complete_discovery_start(ctx, ctx->rc);
7114 		if (ctx->initializing && ctx->rc != 0) {
7115 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
7116 			stop_discovery(ctx, NULL, ctx->cb_ctx);
7117 		} else {
7118 			discovery_remove_controllers(ctx);
7119 		}
7120 	}
7121 }
7122 
7123 static struct discovery_entry_ctx *
7124 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
7125 {
7126 	struct discovery_entry_ctx *new_ctx;
7127 
7128 	new_ctx = calloc(1, sizeof(*new_ctx));
7129 	if (new_ctx == NULL) {
7130 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7131 		return NULL;
7132 	}
7133 
7134 	new_ctx->ctx = ctx;
7135 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
7136 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
7137 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
7138 	return new_ctx;
7139 }
7140 
7141 static void
7142 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
7143 		      struct spdk_nvmf_discovery_log_page *log_page)
7144 {
7145 	struct discovery_ctx *ctx = cb_arg;
7146 	struct discovery_entry_ctx *entry_ctx, *tmp;
7147 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
7148 	uint64_t numrec, i;
7149 	bool found;
7150 
7151 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
7152 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
7153 		return;
7154 	}
7155 
7156 	ctx->log_page = log_page;
7157 	assert(ctx->attach_in_progress == 0);
7158 	numrec = from_le64(&log_page->numrec);
7159 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
7160 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
7161 		free(entry_ctx);
7162 	}
7163 	for (i = 0; i < numrec; i++) {
7164 		found = false;
7165 		new_entry = &log_page->entries[i];
7166 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY_CURRENT ||
7167 		    new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
7168 			struct discovery_entry_ctx *new_ctx;
7169 			struct spdk_nvme_transport_id trid = {};
7170 
7171 			build_trid_from_log_page_entry(&trid, new_entry);
7172 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
7173 			if (new_ctx == NULL) {
7174 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7175 				break;
7176 			}
7177 
7178 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
7179 			continue;
7180 		}
7181 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
7182 			old_entry = &entry_ctx->entry;
7183 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
7184 				found = true;
7185 				break;
7186 			}
7187 		}
7188 		if (!found) {
7189 			struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx;
7190 			struct discovery_ctx *d_ctx;
7191 
7192 			TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
7193 				TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) {
7194 					if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
7195 						    sizeof(new_entry->subnqn))) {
7196 						break;
7197 					}
7198 				}
7199 				if (subnqn_ctx) {
7200 					break;
7201 				}
7202 			}
7203 
7204 			new_ctx = calloc(1, sizeof(*new_ctx));
7205 			if (new_ctx == NULL) {
7206 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7207 				break;
7208 			}
7209 
7210 			new_ctx->ctx = ctx;
7211 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
7212 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
7213 			if (subnqn_ctx) {
7214 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
7215 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
7216 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
7217 						  new_ctx->name);
7218 			} else {
7219 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
7220 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
7221 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
7222 						  new_ctx->name);
7223 			}
7224 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
7225 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
7226 			rc = spdk_bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
7227 						   discovery_attach_controller_done, new_ctx,
7228 						   &new_ctx->drv_opts, &ctx->bdev_opts);
7229 			if (rc == 0) {
7230 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
7231 				ctx->attach_in_progress++;
7232 			} else {
7233 				DISCOVERY_ERRLOG(ctx, "spdk_bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
7234 			}
7235 		}
7236 	}
7237 
7238 	if (ctx->attach_in_progress == 0) {
7239 		discovery_remove_controllers(ctx);
7240 	}
7241 }
7242 
7243 static void
7244 get_discovery_log_page(struct discovery_ctx *ctx)
7245 {
7246 	int rc;
7247 
7248 	assert(ctx->in_progress == false);
7249 	ctx->in_progress = true;
7250 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
7251 	if (rc != 0) {
7252 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
7253 	}
7254 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
7255 }
7256 
7257 static void
7258 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
7259 {
7260 	struct discovery_ctx *ctx = arg;
7261 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
7262 
7263 	if (spdk_nvme_cpl_is_error(cpl)) {
7264 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
7265 		return;
7266 	}
7267 
7268 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
7269 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
7270 		return;
7271 	}
7272 
7273 	DISCOVERY_INFOLOG(ctx, "got aer\n");
7274 	if (ctx->in_progress) {
7275 		ctx->pending = true;
7276 		return;
7277 	}
7278 
7279 	get_discovery_log_page(ctx);
7280 }
7281 
7282 static void
7283 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
7284 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
7285 {
7286 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
7287 	struct discovery_ctx *ctx;
7288 
7289 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
7290 
7291 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
7292 	ctx->probe_ctx = NULL;
7293 	ctx->ctrlr = ctrlr;
7294 
7295 	if (ctx->rc != 0) {
7296 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
7297 				 ctx->rc);
7298 		return;
7299 	}
7300 
7301 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
7302 }
7303 
7304 static int
7305 discovery_poller(void *arg)
7306 {
7307 	struct discovery_ctx *ctx = arg;
7308 	struct spdk_nvme_transport_id *trid;
7309 	int rc;
7310 
7311 	if (ctx->detach_ctx) {
7312 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
7313 		if (rc != -EAGAIN) {
7314 			ctx->detach_ctx = NULL;
7315 			ctx->ctrlr = NULL;
7316 		}
7317 	} else if (ctx->stop) {
7318 		if (ctx->ctrlr != NULL) {
7319 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7320 			if (rc == 0) {
7321 				return SPDK_POLLER_BUSY;
7322 			}
7323 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7324 		}
7325 		spdk_poller_unregister(&ctx->poller);
7326 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7327 		assert(ctx->start_cb_fn == NULL);
7328 		if (ctx->stop_cb_fn != NULL) {
7329 			ctx->stop_cb_fn(ctx->cb_ctx);
7330 		}
7331 		free_discovery_ctx(ctx);
7332 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
7333 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7334 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7335 			assert(ctx->initializing);
7336 			spdk_poller_unregister(&ctx->poller);
7337 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7338 			complete_discovery_start(ctx, -ETIMEDOUT);
7339 			stop_discovery(ctx, NULL, NULL);
7340 			free_discovery_ctx(ctx);
7341 			return SPDK_POLLER_BUSY;
7342 		}
7343 
7344 		assert(ctx->entry_ctx_in_use == NULL);
7345 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
7346 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7347 		trid = &ctx->entry_ctx_in_use->trid;
7348 
7349 		/* All controllers must be configured explicitely either for multipath or failover.
7350 		 * While discovery use multipath mode, we need to set this in bdev options as well.
7351 		 */
7352 		ctx->bdev_opts.multipath = true;
7353 
7354 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
7355 		if (ctx->probe_ctx) {
7356 			spdk_poller_unregister(&ctx->poller);
7357 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
7358 		} else {
7359 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
7360 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7361 			ctx->entry_ctx_in_use = NULL;
7362 		}
7363 	} else if (ctx->probe_ctx) {
7364 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7365 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7366 			complete_discovery_start(ctx, -ETIMEDOUT);
7367 			return SPDK_POLLER_BUSY;
7368 		}
7369 
7370 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
7371 		if (rc != -EAGAIN) {
7372 			if (ctx->rc != 0) {
7373 				assert(ctx->initializing);
7374 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7375 			} else {
7376 				assert(rc == 0);
7377 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
7378 				ctx->rc = rc;
7379 				get_discovery_log_page(ctx);
7380 			}
7381 		}
7382 	} else {
7383 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7384 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
7385 			complete_discovery_start(ctx, -ETIMEDOUT);
7386 			/* We need to wait until all NVM ctrlrs are attached before we stop the
7387 			 * discovery service to make sure we don't detach a ctrlr that is still
7388 			 * being attached.
7389 			 */
7390 			if (ctx->attach_in_progress == 0) {
7391 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7392 				return SPDK_POLLER_BUSY;
7393 			}
7394 		}
7395 
7396 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
7397 		if (rc < 0) {
7398 			spdk_poller_unregister(&ctx->poller);
7399 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7400 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7401 			ctx->entry_ctx_in_use = NULL;
7402 
7403 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7404 			if (rc != 0) {
7405 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7406 				ctx->ctrlr = NULL;
7407 			}
7408 		}
7409 	}
7410 
7411 	return SPDK_POLLER_BUSY;
7412 }
7413 
7414 static void
7415 start_discovery_poller(void *arg)
7416 {
7417 	struct discovery_ctx *ctx = arg;
7418 
7419 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
7420 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7421 }
7422 
7423 int
7424 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
7425 			  const char *base_name,
7426 			  struct spdk_nvme_ctrlr_opts *drv_opts,
7427 			  struct spdk_bdev_nvme_ctrlr_opts *bdev_opts,
7428 			  uint64_t attach_timeout,
7429 			  bool from_mdns,
7430 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
7431 {
7432 	struct discovery_ctx *ctx;
7433 	struct discovery_entry_ctx *discovery_entry_ctx;
7434 
7435 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
7436 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7437 		if (strcmp(ctx->name, base_name) == 0) {
7438 			return -EEXIST;
7439 		}
7440 
7441 		if (ctx->entry_ctx_in_use != NULL) {
7442 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
7443 				return -EEXIST;
7444 			}
7445 		}
7446 
7447 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
7448 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
7449 				return -EEXIST;
7450 			}
7451 		}
7452 	}
7453 
7454 	ctx = calloc(1, sizeof(*ctx));
7455 	if (ctx == NULL) {
7456 		return -ENOMEM;
7457 	}
7458 
7459 	ctx->name = strdup(base_name);
7460 	if (ctx->name == NULL) {
7461 		free_discovery_ctx(ctx);
7462 		return -ENOMEM;
7463 	}
7464 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
7465 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
7466 	ctx->from_mdns_discovery_service = from_mdns;
7467 	ctx->bdev_opts.from_discovery_service = true;
7468 	ctx->calling_thread = spdk_get_thread();
7469 	ctx->start_cb_fn = cb_fn;
7470 	ctx->cb_ctx = cb_ctx;
7471 	ctx->initializing = true;
7472 	if (ctx->start_cb_fn) {
7473 		/* We can use this when dumping json to denote if this RPC parameter
7474 		 * was specified or not.
7475 		 */
7476 		ctx->wait_for_attach = true;
7477 	}
7478 	if (attach_timeout != 0) {
7479 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
7480 				     spdk_get_ticks_hz() / 1000ull;
7481 	}
7482 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
7483 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
7484 	memcpy(&ctx->trid, trid, sizeof(*trid));
7485 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
7486 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
7487 	if (ctx->hostnqn == NULL) {
7488 		free_discovery_ctx(ctx);
7489 		return -ENOMEM;
7490 	}
7491 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
7492 	if (discovery_entry_ctx == NULL) {
7493 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7494 		free_discovery_ctx(ctx);
7495 		return -ENOMEM;
7496 	}
7497 
7498 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
7499 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
7500 	return 0;
7501 }
7502 
7503 int
7504 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
7505 {
7506 	struct discovery_ctx *ctx;
7507 
7508 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7509 		if (strcmp(name, ctx->name) == 0) {
7510 			if (ctx->stop) {
7511 				return -EALREADY;
7512 			}
7513 			/* If we're still starting the discovery service and ->rc is non-zero, we're
7514 			 * going to stop it as soon as we can
7515 			 */
7516 			if (ctx->initializing && ctx->rc != 0) {
7517 				return -EALREADY;
7518 			}
7519 			stop_discovery(ctx, cb_fn, cb_ctx);
7520 			return 0;
7521 		}
7522 	}
7523 
7524 	return -ENOENT;
7525 }
7526 
7527 static int
7528 bdev_nvme_library_init(void)
7529 {
7530 	g_bdev_nvme_init_thread = spdk_get_thread();
7531 
7532 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
7533 				bdev_nvme_destroy_poll_group_cb,
7534 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
7535 
7536 	return 0;
7537 }
7538 
7539 static void
7540 bdev_nvme_fini_destruct_ctrlrs(void)
7541 {
7542 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
7543 	struct nvme_ctrlr *nvme_ctrlr;
7544 
7545 	pthread_mutex_lock(&g_bdev_nvme_mutex);
7546 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
7547 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
7548 			pthread_mutex_lock(&nvme_ctrlr->mutex);
7549 			if (nvme_ctrlr->destruct) {
7550 				/* This controller's destruction was already started
7551 				 * before the application started shutting down
7552 				 */
7553 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
7554 				continue;
7555 			}
7556 			nvme_ctrlr->destruct = true;
7557 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
7558 
7559 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
7560 					     nvme_ctrlr);
7561 		}
7562 	}
7563 
7564 	g_bdev_nvme_module_finish = true;
7565 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
7566 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
7567 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
7568 		spdk_bdev_module_fini_done();
7569 		return;
7570 	}
7571 
7572 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
7573 }
7574 
7575 static void
7576 check_discovery_fini(void *arg)
7577 {
7578 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7579 		bdev_nvme_fini_destruct_ctrlrs();
7580 	}
7581 }
7582 
7583 static void
7584 bdev_nvme_library_fini(void)
7585 {
7586 	struct nvme_probe_skip_entry *entry, *entry_tmp;
7587 	struct discovery_ctx *ctx;
7588 
7589 	spdk_poller_unregister(&g_hotplug_poller);
7590 	free(g_hotplug_probe_ctx);
7591 	g_hotplug_probe_ctx = NULL;
7592 
7593 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
7594 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
7595 		free(entry);
7596 	}
7597 
7598 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
7599 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7600 		bdev_nvme_fini_destruct_ctrlrs();
7601 	} else {
7602 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7603 			stop_discovery(ctx, check_discovery_fini, NULL);
7604 		}
7605 	}
7606 }
7607 
7608 static void
7609 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
7610 {
7611 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7612 	struct spdk_bdev *bdev = bdev_io->bdev;
7613 	struct spdk_dif_ctx dif_ctx;
7614 	struct spdk_dif_error err_blk = {};
7615 	int rc;
7616 	struct spdk_dif_ctx_init_ext_opts dif_opts;
7617 
7618 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
7619 	dif_opts.dif_pi_format = bdev->dif_pi_format;
7620 	rc = spdk_dif_ctx_init(&dif_ctx,
7621 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
7622 			       bdev->dif_is_head_of_md, bdev->dif_type,
7623 			       bdev_io->u.bdev.dif_check_flags,
7624 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0, &dif_opts);
7625 	if (rc != 0) {
7626 		SPDK_ERRLOG("Initialization of DIF context failed\n");
7627 		return;
7628 	}
7629 
7630 	if (bdev->md_interleave) {
7631 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7632 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7633 	} else {
7634 		struct iovec md_iov = {
7635 			.iov_base	= bdev_io->u.bdev.md_buf,
7636 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
7637 		};
7638 
7639 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7640 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7641 	}
7642 
7643 	if (rc != 0) {
7644 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
7645 			    err_blk.err_type, err_blk.err_offset);
7646 	} else {
7647 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
7648 	}
7649 }
7650 
7651 static void
7652 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7653 {
7654 	struct nvme_bdev_io *bio = ref;
7655 
7656 	if (spdk_nvme_cpl_is_success(cpl)) {
7657 		/* Run PI verification for read data buffer. */
7658 		bdev_nvme_verify_pi_error(bio);
7659 	}
7660 
7661 	/* Return original completion status */
7662 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7663 }
7664 
7665 static void
7666 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7667 {
7668 	struct nvme_bdev_io *bio = ref;
7669 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7670 	int ret;
7671 
7672 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7673 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
7674 			    cpl->status.sct, cpl->status.sc);
7675 
7676 		/* Save completion status to use after verifying PI error. */
7677 		bio->cpl = *cpl;
7678 
7679 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
7680 			/* Read without PI checking to verify PI error. */
7681 			ret = bdev_nvme_no_pi_readv(bio,
7682 						    bdev_io->u.bdev.iovs,
7683 						    bdev_io->u.bdev.iovcnt,
7684 						    bdev_io->u.bdev.md_buf,
7685 						    bdev_io->u.bdev.num_blocks,
7686 						    bdev_io->u.bdev.offset_blocks);
7687 			if (ret == 0) {
7688 				return;
7689 			}
7690 		}
7691 	}
7692 
7693 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7694 }
7695 
7696 static void
7697 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7698 {
7699 	struct nvme_bdev_io *bio = ref;
7700 
7701 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7702 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
7703 			    cpl->status.sct, cpl->status.sc);
7704 		/* Run PI verification for write data buffer if PI error is detected. */
7705 		bdev_nvme_verify_pi_error(bio);
7706 	}
7707 
7708 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7709 }
7710 
7711 static void
7712 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7713 {
7714 	struct nvme_bdev_io *bio = ref;
7715 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7716 
7717 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
7718 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
7719 	 */
7720 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
7721 
7722 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7723 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
7724 			    cpl->status.sct, cpl->status.sc);
7725 		/* Run PI verification for zone append data buffer if PI error is detected. */
7726 		bdev_nvme_verify_pi_error(bio);
7727 	}
7728 
7729 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7730 }
7731 
7732 static void
7733 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7734 {
7735 	struct nvme_bdev_io *bio = ref;
7736 
7737 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7738 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
7739 			    cpl->status.sct, cpl->status.sc);
7740 		/* Run PI verification for compare data buffer if PI error is detected. */
7741 		bdev_nvme_verify_pi_error(bio);
7742 	}
7743 
7744 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7745 }
7746 
7747 static void
7748 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7749 {
7750 	struct nvme_bdev_io *bio = ref;
7751 
7752 	/* Compare operation completion */
7753 	if (!bio->first_fused_completed) {
7754 		/* Save compare result for write callback */
7755 		bio->cpl = *cpl;
7756 		bio->first_fused_completed = true;
7757 		return;
7758 	}
7759 
7760 	/* Write operation completion */
7761 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
7762 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
7763 		 * complete the IO with the compare operation's status.
7764 		 */
7765 		if (!spdk_nvme_cpl_is_error(cpl)) {
7766 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
7767 		}
7768 
7769 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7770 	} else {
7771 		bdev_nvme_io_complete_nvme_status(bio, cpl);
7772 	}
7773 }
7774 
7775 static void
7776 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
7777 {
7778 	struct nvme_bdev_io *bio = ref;
7779 
7780 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7781 }
7782 
7783 static int
7784 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
7785 {
7786 	switch (desc->zt) {
7787 	case SPDK_NVME_ZONE_TYPE_SEQWR:
7788 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
7789 		break;
7790 	default:
7791 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
7792 		return -EIO;
7793 	}
7794 
7795 	switch (desc->zs) {
7796 	case SPDK_NVME_ZONE_STATE_EMPTY:
7797 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
7798 		break;
7799 	case SPDK_NVME_ZONE_STATE_IOPEN:
7800 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
7801 		break;
7802 	case SPDK_NVME_ZONE_STATE_EOPEN:
7803 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
7804 		break;
7805 	case SPDK_NVME_ZONE_STATE_CLOSED:
7806 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
7807 		break;
7808 	case SPDK_NVME_ZONE_STATE_RONLY:
7809 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
7810 		break;
7811 	case SPDK_NVME_ZONE_STATE_FULL:
7812 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
7813 		break;
7814 	case SPDK_NVME_ZONE_STATE_OFFLINE:
7815 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
7816 		break;
7817 	default:
7818 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
7819 		return -EIO;
7820 	}
7821 
7822 	info->zone_id = desc->zslba;
7823 	info->write_pointer = desc->wp;
7824 	info->capacity = desc->zcap;
7825 
7826 	return 0;
7827 }
7828 
7829 static void
7830 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
7831 {
7832 	struct nvme_bdev_io *bio = ref;
7833 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7834 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
7835 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
7836 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
7837 	uint64_t max_zones_per_buf, i;
7838 	uint32_t zone_report_bufsize;
7839 	struct spdk_nvme_ns *ns;
7840 	struct spdk_nvme_qpair *qpair;
7841 	int ret;
7842 
7843 	if (spdk_nvme_cpl_is_error(cpl)) {
7844 		goto out_complete_io_nvme_cpl;
7845 	}
7846 
7847 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
7848 		ret = -ENXIO;
7849 		goto out_complete_io_ret;
7850 	}
7851 
7852 	ns = bio->io_path->nvme_ns->ns;
7853 	qpair = bio->io_path->qpair->qpair;
7854 
7855 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7856 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
7857 			    sizeof(bio->zone_report_buf->descs[0]);
7858 
7859 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
7860 		ret = -EINVAL;
7861 		goto out_complete_io_ret;
7862 	}
7863 
7864 	if (!bio->zone_report_buf->nr_zones) {
7865 		ret = -EINVAL;
7866 		goto out_complete_io_ret;
7867 	}
7868 
7869 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
7870 		ret = fill_zone_from_report(&info[bio->handled_zones],
7871 					    &bio->zone_report_buf->descs[i]);
7872 		if (ret) {
7873 			goto out_complete_io_ret;
7874 		}
7875 		bio->handled_zones++;
7876 	}
7877 
7878 	if (bio->handled_zones < zones_to_copy) {
7879 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7880 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
7881 
7882 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
7883 		ret = spdk_nvme_zns_report_zones(ns, qpair,
7884 						 bio->zone_report_buf, zone_report_bufsize,
7885 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
7886 						 bdev_nvme_get_zone_info_done, bio);
7887 		if (!ret) {
7888 			return;
7889 		} else {
7890 			goto out_complete_io_ret;
7891 		}
7892 	}
7893 
7894 out_complete_io_nvme_cpl:
7895 	free(bio->zone_report_buf);
7896 	bio->zone_report_buf = NULL;
7897 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7898 	return;
7899 
7900 out_complete_io_ret:
7901 	free(bio->zone_report_buf);
7902 	bio->zone_report_buf = NULL;
7903 	bdev_nvme_io_complete(bio, ret);
7904 }
7905 
7906 static void
7907 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
7908 {
7909 	struct nvme_bdev_io *bio = ref;
7910 
7911 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7912 }
7913 
7914 static void
7915 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
7916 {
7917 	struct nvme_bdev_io *bio = ctx;
7918 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7919 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
7920 
7921 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
7922 
7923 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
7924 }
7925 
7926 static void
7927 bdev_nvme_abort_complete(void *ctx)
7928 {
7929 	struct nvme_bdev_io *bio = ctx;
7930 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7931 
7932 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
7933 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
7934 	} else {
7935 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
7936 	}
7937 }
7938 
7939 static void
7940 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
7941 {
7942 	struct nvme_bdev_io *bio = ref;
7943 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7944 
7945 	bio->cpl = *cpl;
7946 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_nvme_abort_complete, bio);
7947 }
7948 
7949 static void
7950 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
7951 {
7952 	struct nvme_bdev_io *bio = ref;
7953 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7954 
7955 	bio->cpl = *cpl;
7956 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
7957 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
7958 }
7959 
7960 static void
7961 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
7962 {
7963 	struct nvme_bdev_io *bio = ref;
7964 	struct iovec *iov;
7965 
7966 	bio->iov_offset = sgl_offset;
7967 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
7968 		iov = &bio->iovs[bio->iovpos];
7969 		if (bio->iov_offset < iov->iov_len) {
7970 			break;
7971 		}
7972 
7973 		bio->iov_offset -= iov->iov_len;
7974 	}
7975 }
7976 
7977 static int
7978 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
7979 {
7980 	struct nvme_bdev_io *bio = ref;
7981 	struct iovec *iov;
7982 
7983 	assert(bio->iovpos < bio->iovcnt);
7984 
7985 	iov = &bio->iovs[bio->iovpos];
7986 
7987 	*address = iov->iov_base;
7988 	*length = iov->iov_len;
7989 
7990 	if (bio->iov_offset) {
7991 		assert(bio->iov_offset <= iov->iov_len);
7992 		*address += bio->iov_offset;
7993 		*length -= bio->iov_offset;
7994 	}
7995 
7996 	bio->iov_offset += *length;
7997 	if (bio->iov_offset == iov->iov_len) {
7998 		bio->iovpos++;
7999 		bio->iov_offset = 0;
8000 	}
8001 
8002 	return 0;
8003 }
8004 
8005 static void
8006 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
8007 {
8008 	struct nvme_bdev_io *bio = ref;
8009 	struct iovec *iov;
8010 
8011 	bio->fused_iov_offset = sgl_offset;
8012 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
8013 		iov = &bio->fused_iovs[bio->fused_iovpos];
8014 		if (bio->fused_iov_offset < iov->iov_len) {
8015 			break;
8016 		}
8017 
8018 		bio->fused_iov_offset -= iov->iov_len;
8019 	}
8020 }
8021 
8022 static int
8023 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
8024 {
8025 	struct nvme_bdev_io *bio = ref;
8026 	struct iovec *iov;
8027 
8028 	assert(bio->fused_iovpos < bio->fused_iovcnt);
8029 
8030 	iov = &bio->fused_iovs[bio->fused_iovpos];
8031 
8032 	*address = iov->iov_base;
8033 	*length = iov->iov_len;
8034 
8035 	if (bio->fused_iov_offset) {
8036 		assert(bio->fused_iov_offset <= iov->iov_len);
8037 		*address += bio->fused_iov_offset;
8038 		*length -= bio->fused_iov_offset;
8039 	}
8040 
8041 	bio->fused_iov_offset += *length;
8042 	if (bio->fused_iov_offset == iov->iov_len) {
8043 		bio->fused_iovpos++;
8044 		bio->fused_iov_offset = 0;
8045 	}
8046 
8047 	return 0;
8048 }
8049 
8050 static int
8051 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8052 		      void *md, uint64_t lba_count, uint64_t lba)
8053 {
8054 	int rc;
8055 
8056 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
8057 		      lba_count, lba);
8058 
8059 	bio->iovs = iov;
8060 	bio->iovcnt = iovcnt;
8061 	bio->iovpos = 0;
8062 	bio->iov_offset = 0;
8063 
8064 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
8065 					    bio->io_path->qpair->qpair,
8066 					    lba, lba_count,
8067 					    bdev_nvme_no_pi_readv_done, bio, 0,
8068 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
8069 					    md, 0, 0);
8070 
8071 	if (rc != 0 && rc != -ENOMEM) {
8072 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
8073 	}
8074 	return rc;
8075 }
8076 
8077 static int
8078 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8079 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
8080 		struct spdk_memory_domain *domain, void *domain_ctx,
8081 		struct spdk_accel_sequence *seq)
8082 {
8083 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8084 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8085 	int rc;
8086 
8087 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
8088 		      lba_count, lba);
8089 
8090 	bio->iovs = iov;
8091 	bio->iovcnt = iovcnt;
8092 	bio->iovpos = 0;
8093 	bio->iov_offset = 0;
8094 
8095 	if (domain != NULL || seq != NULL) {
8096 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
8097 		bio->ext_opts.memory_domain = domain;
8098 		bio->ext_opts.memory_domain_ctx = domain_ctx;
8099 		bio->ext_opts.io_flags = flags;
8100 		bio->ext_opts.metadata = md;
8101 		bio->ext_opts.accel_sequence = seq;
8102 
8103 		if (iovcnt == 1) {
8104 			rc = spdk_nvme_ns_cmd_read_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_readv_done,
8105 						       bio, &bio->ext_opts);
8106 		} else {
8107 			rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
8108 							bdev_nvme_readv_done, bio,
8109 							bdev_nvme_queued_reset_sgl,
8110 							bdev_nvme_queued_next_sge,
8111 							&bio->ext_opts);
8112 		}
8113 	} else if (iovcnt == 1) {
8114 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base,
8115 						   md, lba, lba_count, bdev_nvme_readv_done,
8116 						   bio, flags, 0, 0);
8117 	} else {
8118 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
8119 						    bdev_nvme_readv_done, bio, flags,
8120 						    bdev_nvme_queued_reset_sgl,
8121 						    bdev_nvme_queued_next_sge, md, 0, 0);
8122 	}
8123 
8124 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
8125 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
8126 	}
8127 	return rc;
8128 }
8129 
8130 static int
8131 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8132 		 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
8133 		 struct spdk_memory_domain *domain, void *domain_ctx,
8134 		 struct spdk_accel_sequence *seq,
8135 		 union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13)
8136 {
8137 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8138 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8139 	int rc;
8140 
8141 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
8142 		      lba_count, lba);
8143 
8144 	bio->iovs = iov;
8145 	bio->iovcnt = iovcnt;
8146 	bio->iovpos = 0;
8147 	bio->iov_offset = 0;
8148 
8149 	if (domain != NULL || seq != NULL) {
8150 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
8151 		bio->ext_opts.memory_domain = domain;
8152 		bio->ext_opts.memory_domain_ctx = domain_ctx;
8153 		bio->ext_opts.io_flags = flags | SPDK_NVME_IO_FLAGS_DIRECTIVE(cdw12.write.dtype);
8154 		bio->ext_opts.cdw13 = cdw13.raw;
8155 		bio->ext_opts.metadata = md;
8156 		bio->ext_opts.accel_sequence = seq;
8157 
8158 		if (iovcnt == 1) {
8159 			rc = spdk_nvme_ns_cmd_write_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_writev_done,
8160 							bio, &bio->ext_opts);
8161 		} else {
8162 			rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
8163 							 bdev_nvme_writev_done, bio,
8164 							 bdev_nvme_queued_reset_sgl,
8165 							 bdev_nvme_queued_next_sge,
8166 							 &bio->ext_opts);
8167 		}
8168 	} else if (iovcnt == 1) {
8169 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base,
8170 						    md, lba, lba_count, bdev_nvme_writev_done,
8171 						    bio, flags, 0, 0);
8172 	} else {
8173 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
8174 						     bdev_nvme_writev_done, bio, flags,
8175 						     bdev_nvme_queued_reset_sgl,
8176 						     bdev_nvme_queued_next_sge, md, 0, 0);
8177 	}
8178 
8179 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
8180 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
8181 	}
8182 	return rc;
8183 }
8184 
8185 static int
8186 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8187 		       void *md, uint64_t lba_count, uint64_t zslba,
8188 		       uint32_t flags)
8189 {
8190 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8191 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8192 	int rc;
8193 
8194 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
8195 		      lba_count, zslba);
8196 
8197 	bio->iovs = iov;
8198 	bio->iovcnt = iovcnt;
8199 	bio->iovpos = 0;
8200 	bio->iov_offset = 0;
8201 
8202 	if (iovcnt == 1) {
8203 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
8204 						       lba_count,
8205 						       bdev_nvme_zone_appendv_done, bio,
8206 						       flags,
8207 						       0, 0);
8208 	} else {
8209 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
8210 							bdev_nvme_zone_appendv_done, bio, flags,
8211 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
8212 							md, 0, 0);
8213 	}
8214 
8215 	if (rc != 0 && rc != -ENOMEM) {
8216 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
8217 	}
8218 	return rc;
8219 }
8220 
8221 static int
8222 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8223 		   void *md, uint64_t lba_count, uint64_t lba,
8224 		   uint32_t flags)
8225 {
8226 	int rc;
8227 
8228 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
8229 		      lba_count, lba);
8230 
8231 	bio->iovs = iov;
8232 	bio->iovcnt = iovcnt;
8233 	bio->iovpos = 0;
8234 	bio->iov_offset = 0;
8235 
8236 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
8237 					       bio->io_path->qpair->qpair,
8238 					       lba, lba_count,
8239 					       bdev_nvme_comparev_done, bio, flags,
8240 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
8241 					       md, 0, 0);
8242 
8243 	if (rc != 0 && rc != -ENOMEM) {
8244 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
8245 	}
8246 	return rc;
8247 }
8248 
8249 static int
8250 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
8251 			      struct iovec *write_iov, int write_iovcnt,
8252 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
8253 {
8254 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8255 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8256 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8257 	int rc;
8258 
8259 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
8260 		      lba_count, lba);
8261 
8262 	bio->iovs = cmp_iov;
8263 	bio->iovcnt = cmp_iovcnt;
8264 	bio->iovpos = 0;
8265 	bio->iov_offset = 0;
8266 	bio->fused_iovs = write_iov;
8267 	bio->fused_iovcnt = write_iovcnt;
8268 	bio->fused_iovpos = 0;
8269 	bio->fused_iov_offset = 0;
8270 
8271 	if (bdev_io->num_retries == 0) {
8272 		bio->first_fused_submitted = false;
8273 		bio->first_fused_completed = false;
8274 	}
8275 
8276 	if (!bio->first_fused_submitted) {
8277 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
8278 		memset(&bio->cpl, 0, sizeof(bio->cpl));
8279 
8280 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
8281 						       bdev_nvme_comparev_and_writev_done, bio, flags,
8282 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
8283 		if (rc == 0) {
8284 			bio->first_fused_submitted = true;
8285 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
8286 		} else {
8287 			if (rc != -ENOMEM) {
8288 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
8289 			}
8290 			return rc;
8291 		}
8292 	}
8293 
8294 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
8295 
8296 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
8297 					     bdev_nvme_comparev_and_writev_done, bio, flags,
8298 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
8299 	if (rc != 0 && rc != -ENOMEM) {
8300 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
8301 		rc = 0;
8302 	}
8303 
8304 	return rc;
8305 }
8306 
8307 static int
8308 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
8309 {
8310 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
8311 	struct spdk_nvme_dsm_range *range;
8312 	uint64_t offset, remaining;
8313 	uint64_t num_ranges_u64;
8314 	uint16_t num_ranges;
8315 	int rc;
8316 
8317 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
8318 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8319 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
8320 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
8321 		return -EINVAL;
8322 	}
8323 	num_ranges = (uint16_t)num_ranges_u64;
8324 
8325 	offset = offset_blocks;
8326 	remaining = num_blocks;
8327 	range = &dsm_ranges[0];
8328 
8329 	/* Fill max-size ranges until the remaining blocks fit into one range */
8330 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
8331 		range->attributes.raw = 0;
8332 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8333 		range->starting_lba = offset;
8334 
8335 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8336 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8337 		range++;
8338 	}
8339 
8340 	/* Final range describes the remaining blocks */
8341 	range->attributes.raw = 0;
8342 	range->length = remaining;
8343 	range->starting_lba = offset;
8344 
8345 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
8346 			bio->io_path->qpair->qpair,
8347 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
8348 			dsm_ranges, num_ranges,
8349 			bdev_nvme_queued_done, bio);
8350 
8351 	return rc;
8352 }
8353 
8354 static int
8355 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
8356 {
8357 	if (num_blocks > UINT16_MAX + 1) {
8358 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
8359 		return -EINVAL;
8360 	}
8361 
8362 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
8363 					     bio->io_path->qpair->qpair,
8364 					     offset_blocks, num_blocks,
8365 					     bdev_nvme_queued_done, bio,
8366 					     0);
8367 }
8368 
8369 static int
8370 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
8371 			struct spdk_bdev_zone_info *info)
8372 {
8373 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8374 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8375 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
8376 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
8377 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
8378 
8379 	if (zone_id % zone_size != 0) {
8380 		return -EINVAL;
8381 	}
8382 
8383 	if (num_zones > total_zones || !num_zones) {
8384 		return -EINVAL;
8385 	}
8386 
8387 	assert(!bio->zone_report_buf);
8388 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
8389 	if (!bio->zone_report_buf) {
8390 		return -ENOMEM;
8391 	}
8392 
8393 	bio->handled_zones = 0;
8394 
8395 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
8396 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
8397 					  bdev_nvme_get_zone_info_done, bio);
8398 }
8399 
8400 static int
8401 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
8402 			  enum spdk_bdev_zone_action action)
8403 {
8404 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8405 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8406 
8407 	switch (action) {
8408 	case SPDK_BDEV_ZONE_CLOSE:
8409 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
8410 						bdev_nvme_zone_management_done, bio);
8411 	case SPDK_BDEV_ZONE_FINISH:
8412 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
8413 						 bdev_nvme_zone_management_done, bio);
8414 	case SPDK_BDEV_ZONE_OPEN:
8415 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
8416 					       bdev_nvme_zone_management_done, bio);
8417 	case SPDK_BDEV_ZONE_RESET:
8418 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
8419 						bdev_nvme_zone_management_done, bio);
8420 	case SPDK_BDEV_ZONE_OFFLINE:
8421 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
8422 						  bdev_nvme_zone_management_done, bio);
8423 	default:
8424 		return -EINVAL;
8425 	}
8426 }
8427 
8428 static void
8429 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8430 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
8431 {
8432 	struct nvme_io_path *io_path;
8433 	struct nvme_ctrlr *nvme_ctrlr;
8434 	uint32_t max_xfer_size;
8435 	int rc = -ENXIO;
8436 
8437 	/* Choose the first ctrlr which is not failed. */
8438 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8439 		nvme_ctrlr = io_path->qpair->ctrlr;
8440 
8441 		/* We should skip any unavailable nvme_ctrlr rather than checking
8442 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
8443 		 */
8444 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
8445 			continue;
8446 		}
8447 
8448 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
8449 
8450 		if (nbytes > max_xfer_size) {
8451 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8452 			rc = -EINVAL;
8453 			goto err;
8454 		}
8455 
8456 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
8457 						   bdev_nvme_admin_passthru_done, bio);
8458 		if (rc == 0) {
8459 			return;
8460 		}
8461 	}
8462 
8463 err:
8464 	bdev_nvme_admin_complete(bio, rc);
8465 }
8466 
8467 static int
8468 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8469 		      void *buf, size_t nbytes)
8470 {
8471 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8472 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8473 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8474 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8475 
8476 	if (nbytes > max_xfer_size) {
8477 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8478 		return -EINVAL;
8479 	}
8480 
8481 	/*
8482 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8483 	 * so fill it out automatically.
8484 	 */
8485 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8486 
8487 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
8488 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
8489 }
8490 
8491 static int
8492 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8493 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
8494 {
8495 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8496 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8497 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8498 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8499 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8500 
8501 	if (nbytes > max_xfer_size) {
8502 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8503 		return -EINVAL;
8504 	}
8505 
8506 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8507 		SPDK_ERRLOG("invalid meta data buffer size\n");
8508 		return -EINVAL;
8509 	}
8510 
8511 	/*
8512 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8513 	 * so fill it out automatically.
8514 	 */
8515 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8516 
8517 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
8518 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
8519 }
8520 
8521 static int
8522 bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio,
8523 			  struct spdk_nvme_cmd *cmd, struct iovec *iov, int iovcnt,
8524 			  size_t nbytes, void *md_buf, size_t md_len)
8525 {
8526 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8527 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8528 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8529 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8530 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8531 
8532 	bio->iovs = iov;
8533 	bio->iovcnt = iovcnt;
8534 	bio->iovpos = 0;
8535 	bio->iov_offset = 0;
8536 
8537 	if (nbytes > max_xfer_size) {
8538 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8539 		return -EINVAL;
8540 	}
8541 
8542 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8543 		SPDK_ERRLOG("invalid meta data buffer size\n");
8544 		return -EINVAL;
8545 	}
8546 
8547 	/*
8548 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands
8549 	 * require a nsid, so fill it out automatically.
8550 	 */
8551 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8552 
8553 	return spdk_nvme_ctrlr_cmd_iov_raw_with_md(
8554 		       ctrlr, qpair, cmd, (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio,
8555 		       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge);
8556 }
8557 
8558 static void
8559 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8560 		struct nvme_bdev_io *bio_to_abort)
8561 {
8562 	struct nvme_io_path *io_path;
8563 	int rc = 0;
8564 
8565 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
8566 	if (rc == 0) {
8567 		bdev_nvme_admin_complete(bio, 0);
8568 		return;
8569 	}
8570 
8571 	io_path = bio_to_abort->io_path;
8572 	if (io_path != NULL) {
8573 		rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8574 						   io_path->qpair->qpair,
8575 						   bio_to_abort,
8576 						   bdev_nvme_abort_done, bio);
8577 	} else {
8578 		STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8579 			rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8580 							   NULL,
8581 							   bio_to_abort,
8582 							   bdev_nvme_abort_done, bio);
8583 
8584 			if (rc != -ENOENT) {
8585 				break;
8586 			}
8587 		}
8588 	}
8589 
8590 	if (rc != 0) {
8591 		/* If no command was found or there was any error, complete the abort
8592 		 * request with failure.
8593 		 */
8594 		bdev_nvme_admin_complete(bio, rc);
8595 	}
8596 }
8597 
8598 static int
8599 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
8600 	       uint64_t num_blocks)
8601 {
8602 	struct spdk_nvme_scc_source_range range = {
8603 		.slba = src_offset_blocks,
8604 		.nlb = num_blocks - 1
8605 	};
8606 
8607 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
8608 				     bio->io_path->qpair->qpair,
8609 				     &range, 1, dst_offset_blocks,
8610 				     bdev_nvme_queued_done, bio);
8611 }
8612 
8613 static void
8614 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
8615 {
8616 	const char *action;
8617 	uint32_t i;
8618 
8619 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
8620 		action = "reset";
8621 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
8622 		action = "abort";
8623 	} else {
8624 		action = "none";
8625 	}
8626 
8627 	spdk_json_write_object_begin(w);
8628 
8629 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
8630 
8631 	spdk_json_write_named_object_begin(w, "params");
8632 	spdk_json_write_named_string(w, "action_on_timeout", action);
8633 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
8634 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
8635 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
8636 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
8637 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
8638 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
8639 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
8640 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
8641 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
8642 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
8643 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
8644 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
8645 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
8646 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
8647 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
8648 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
8649 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
8650 	spdk_json_write_named_bool(w, "disable_auto_failback", g_opts.disable_auto_failback);
8651 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
8652 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
8653 	spdk_json_write_named_bool(w, "nvme_error_stat", g_opts.nvme_error_stat);
8654 	spdk_json_write_named_uint32(w, "rdma_srq_size", g_opts.rdma_srq_size);
8655 	spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat);
8656 	spdk_json_write_named_bool(w, "allow_accel_sequence", g_opts.allow_accel_sequence);
8657 	spdk_json_write_named_uint32(w, "rdma_max_cq_size", g_opts.rdma_max_cq_size);
8658 	spdk_json_write_named_uint16(w, "rdma_cm_event_timeout_ms", g_opts.rdma_cm_event_timeout_ms);
8659 	spdk_json_write_named_array_begin(w, "dhchap_digests");
8660 	for (i = 0; i < 32; ++i) {
8661 		if (g_opts.dhchap_digests & SPDK_BIT(i)) {
8662 			spdk_json_write_string(w, spdk_nvme_dhchap_get_digest_name(i));
8663 		}
8664 	}
8665 	spdk_json_write_array_end(w);
8666 	spdk_json_write_named_array_begin(w, "dhchap_dhgroups");
8667 	for (i = 0; i < 32; ++i) {
8668 		if (g_opts.dhchap_dhgroups & SPDK_BIT(i)) {
8669 			spdk_json_write_string(w, spdk_nvme_dhchap_get_dhgroup_name(i));
8670 		}
8671 	}
8672 
8673 	spdk_json_write_array_end(w);
8674 	spdk_json_write_object_end(w);
8675 
8676 	spdk_json_write_object_end(w);
8677 }
8678 
8679 static void
8680 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
8681 {
8682 	struct spdk_nvme_transport_id trid;
8683 
8684 	spdk_json_write_object_begin(w);
8685 
8686 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
8687 
8688 	spdk_json_write_named_object_begin(w, "params");
8689 	spdk_json_write_named_string(w, "name", ctx->name);
8690 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
8691 
8692 	trid = ctx->trid;
8693 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
8694 	nvme_bdev_dump_trid_json(&trid, w);
8695 
8696 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
8697 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
8698 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
8699 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8700 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
8701 	spdk_json_write_object_end(w);
8702 
8703 	spdk_json_write_object_end(w);
8704 }
8705 
8706 #ifdef SPDK_CONFIG_NVME_CUSE
8707 static void
8708 nvme_ctrlr_cuse_config_json(struct spdk_json_write_ctx *w,
8709 			    struct nvme_ctrlr *nvme_ctrlr)
8710 {
8711 	size_t cuse_name_size = 128;
8712 	char cuse_name[cuse_name_size];
8713 
8714 	if (spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr,
8715 					  cuse_name, &cuse_name_size) != 0) {
8716 		return;
8717 	}
8718 
8719 	spdk_json_write_object_begin(w);
8720 
8721 	spdk_json_write_named_string(w, "method", "bdev_nvme_cuse_register");
8722 
8723 	spdk_json_write_named_object_begin(w, "params");
8724 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8725 	spdk_json_write_object_end(w);
8726 
8727 	spdk_json_write_object_end(w);
8728 }
8729 #endif
8730 
8731 static void
8732 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
8733 		       struct nvme_ctrlr *nvme_ctrlr,
8734 		       struct nvme_path_id *path_id)
8735 {
8736 	struct spdk_nvme_transport_id	*trid;
8737 	const struct spdk_nvme_ctrlr_opts *opts;
8738 
8739 	if (nvme_ctrlr->opts.from_discovery_service) {
8740 		/* Do not emit an RPC for this - it will be implicitly
8741 		 * covered by a separate bdev_nvme_start_discovery or
8742 		 * bdev_nvme_start_mdns_discovery RPC.
8743 		 */
8744 		return;
8745 	}
8746 
8747 	trid = &path_id->trid;
8748 
8749 	spdk_json_write_object_begin(w);
8750 
8751 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
8752 
8753 	spdk_json_write_named_object_begin(w, "params");
8754 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8755 	nvme_bdev_dump_trid_json(trid, w);
8756 	spdk_json_write_named_bool(w, "prchk_reftag",
8757 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
8758 	spdk_json_write_named_bool(w, "prchk_guard",
8759 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
8760 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
8761 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
8762 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8763 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
8764 	if (nvme_ctrlr->psk != NULL) {
8765 		spdk_json_write_named_string(w, "psk", spdk_key_get_name(nvme_ctrlr->psk));
8766 	}
8767 	if (nvme_ctrlr->dhchap_key != NULL) {
8768 		spdk_json_write_named_string(w, "dhchap_key",
8769 					     spdk_key_get_name(nvme_ctrlr->dhchap_key));
8770 	}
8771 	if (nvme_ctrlr->dhchap_ctrlr_key != NULL) {
8772 		spdk_json_write_named_string(w, "dhchap_ctrlr_key",
8773 					     spdk_key_get_name(nvme_ctrlr->dhchap_ctrlr_key));
8774 	}
8775 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
8776 	spdk_json_write_named_string(w, "hostnqn", opts->hostnqn);
8777 	spdk_json_write_named_bool(w, "hdgst", opts->header_digest);
8778 	spdk_json_write_named_bool(w, "ddgst", opts->data_digest);
8779 	if (opts->src_addr[0] != '\0') {
8780 		spdk_json_write_named_string(w, "hostaddr", opts->src_addr);
8781 	}
8782 	if (opts->src_svcid[0] != '\0') {
8783 		spdk_json_write_named_string(w, "hostsvcid", opts->src_svcid);
8784 	}
8785 
8786 	if (nvme_ctrlr->opts.multipath) {
8787 		spdk_json_write_named_string(w, "multipath", "multipath");
8788 	}
8789 	spdk_json_write_object_end(w);
8790 
8791 	spdk_json_write_object_end(w);
8792 }
8793 
8794 static void
8795 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
8796 {
8797 	spdk_json_write_object_begin(w);
8798 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
8799 
8800 	spdk_json_write_named_object_begin(w, "params");
8801 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
8802 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
8803 	spdk_json_write_object_end(w);
8804 
8805 	spdk_json_write_object_end(w);
8806 }
8807 
8808 static int
8809 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
8810 {
8811 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
8812 	struct nvme_ctrlr	*nvme_ctrlr;
8813 	struct discovery_ctx	*ctx;
8814 	struct nvme_path_id	*path_id;
8815 
8816 	bdev_nvme_opts_config_json(w);
8817 
8818 	pthread_mutex_lock(&g_bdev_nvme_mutex);
8819 
8820 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
8821 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
8822 			path_id = nvme_ctrlr->active_path_id;
8823 			assert(path_id == TAILQ_FIRST(&nvme_ctrlr->trids));
8824 			nvme_ctrlr_config_json(w, nvme_ctrlr, path_id);
8825 
8826 			path_id = TAILQ_NEXT(path_id, link);
8827 			while (path_id != NULL) {
8828 				nvme_ctrlr_config_json(w, nvme_ctrlr, path_id);
8829 				path_id = TAILQ_NEXT(path_id, link);
8830 			}
8831 
8832 #ifdef SPDK_CONFIG_NVME_CUSE
8833 			nvme_ctrlr_cuse_config_json(w, nvme_ctrlr);
8834 #endif
8835 		}
8836 	}
8837 
8838 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8839 		if (!ctx->from_mdns_discovery_service) {
8840 			bdev_nvme_discovery_config_json(w, ctx);
8841 		}
8842 	}
8843 
8844 	bdev_nvme_mdns_discovery_config_json(w);
8845 
8846 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
8847 	 * before enabling hotplug poller.
8848 	 */
8849 	bdev_nvme_hotplug_config_json(w);
8850 
8851 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
8852 	return 0;
8853 }
8854 
8855 struct spdk_nvme_ctrlr *
8856 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
8857 {
8858 	struct nvme_bdev *nbdev;
8859 	struct nvme_ns *nvme_ns;
8860 
8861 	if (!bdev || bdev->module != &nvme_if) {
8862 		return NULL;
8863 	}
8864 
8865 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
8866 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
8867 	assert(nvme_ns != NULL);
8868 
8869 	return nvme_ns->ctrlr->ctrlr;
8870 }
8871 
8872 static bool
8873 nvme_io_path_is_current(struct nvme_io_path *io_path)
8874 {
8875 	const struct nvme_bdev_channel *nbdev_ch;
8876 	bool current;
8877 
8878 	if (!nvme_io_path_is_available(io_path)) {
8879 		return false;
8880 	}
8881 
8882 	nbdev_ch = io_path->nbdev_ch;
8883 	if (nbdev_ch == NULL) {
8884 		current = false;
8885 	} else if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
8886 		struct nvme_io_path *optimized_io_path = NULL;
8887 
8888 		STAILQ_FOREACH(optimized_io_path, &nbdev_ch->io_path_list, stailq) {
8889 			if (optimized_io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) {
8890 				break;
8891 			}
8892 		}
8893 
8894 		/* A non-optimized path is only current if there are no optimized paths. */
8895 		current = (io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) ||
8896 			  (optimized_io_path == NULL);
8897 	} else {
8898 		if (nbdev_ch->current_io_path) {
8899 			current = (io_path == nbdev_ch->current_io_path);
8900 		} else {
8901 			struct nvme_io_path *first_path;
8902 
8903 			/* We arrived here as there are no optimized paths for active-passive
8904 			 * mode. Check if this io_path is the first one available on the list.
8905 			 */
8906 			current = false;
8907 			STAILQ_FOREACH(first_path, &nbdev_ch->io_path_list, stailq) {
8908 				if (nvme_io_path_is_available(first_path)) {
8909 					current = (io_path == first_path);
8910 					break;
8911 				}
8912 			}
8913 		}
8914 	}
8915 
8916 	return current;
8917 }
8918 
8919 static struct nvme_ctrlr *
8920 bdev_nvme_next_ctrlr_unsafe(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct nvme_ctrlr *prev)
8921 {
8922 	struct nvme_ctrlr *next;
8923 
8924 	/* Must be called under g_bdev_nvme_mutex */
8925 	next = prev != NULL ? TAILQ_NEXT(prev, tailq) : TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
8926 	while (next != NULL) {
8927 		/* ref can be 0 when the ctrlr was released, but hasn't been detached yet */
8928 		pthread_mutex_lock(&next->mutex);
8929 		if (next->ref > 0) {
8930 			next->ref++;
8931 			pthread_mutex_unlock(&next->mutex);
8932 			return next;
8933 		}
8934 
8935 		pthread_mutex_unlock(&next->mutex);
8936 		next = TAILQ_NEXT(next, tailq);
8937 	}
8938 
8939 	return NULL;
8940 }
8941 
8942 struct bdev_nvme_set_keys_ctx {
8943 	struct nvme_ctrlr	*nctrlr;
8944 	struct spdk_key		*dhchap_key;
8945 	struct spdk_key		*dhchap_ctrlr_key;
8946 	struct spdk_thread	*thread;
8947 	bdev_nvme_set_keys_cb	cb_fn;
8948 	void			*cb_ctx;
8949 	int			status;
8950 };
8951 
8952 static void
8953 bdev_nvme_free_set_keys_ctx(struct bdev_nvme_set_keys_ctx *ctx)
8954 {
8955 	if (ctx == NULL) {
8956 		return;
8957 	}
8958 
8959 	spdk_keyring_put_key(ctx->dhchap_key);
8960 	spdk_keyring_put_key(ctx->dhchap_ctrlr_key);
8961 	free(ctx);
8962 }
8963 
8964 static void
8965 _bdev_nvme_set_keys_done(void *_ctx)
8966 {
8967 	struct bdev_nvme_set_keys_ctx *ctx = _ctx;
8968 
8969 	ctx->cb_fn(ctx->cb_ctx, ctx->status);
8970 
8971 	if (ctx->nctrlr != NULL) {
8972 		nvme_ctrlr_release(ctx->nctrlr);
8973 	}
8974 	bdev_nvme_free_set_keys_ctx(ctx);
8975 }
8976 
8977 static void
8978 bdev_nvme_set_keys_done(struct bdev_nvme_set_keys_ctx *ctx, int status)
8979 {
8980 	ctx->status = status;
8981 	spdk_thread_exec_msg(ctx->thread, _bdev_nvme_set_keys_done, ctx);
8982 }
8983 
8984 static void bdev_nvme_authenticate_ctrlr(struct bdev_nvme_set_keys_ctx *ctx);
8985 
8986 static void
8987 bdev_nvme_authenticate_ctrlr_continue(struct bdev_nvme_set_keys_ctx *ctx)
8988 {
8989 	struct nvme_ctrlr *next;
8990 
8991 	pthread_mutex_lock(&g_bdev_nvme_mutex);
8992 	next = bdev_nvme_next_ctrlr_unsafe(NULL, ctx->nctrlr);
8993 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
8994 
8995 	nvme_ctrlr_release(ctx->nctrlr);
8996 	ctx->nctrlr = next;
8997 
8998 	if (next == NULL) {
8999 		bdev_nvme_set_keys_done(ctx, 0);
9000 	} else {
9001 		bdev_nvme_authenticate_ctrlr(ctx);
9002 	}
9003 }
9004 
9005 static void
9006 bdev_nvme_authenticate_qpairs_done(struct spdk_io_channel_iter *i, int status)
9007 {
9008 	struct bdev_nvme_set_keys_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
9009 
9010 	if (status != 0) {
9011 		bdev_nvme_set_keys_done(ctx, status);
9012 		return;
9013 	}
9014 	bdev_nvme_authenticate_ctrlr_continue(ctx);
9015 }
9016 
9017 static void
9018 bdev_nvme_authenticate_qpair_done(void *ctx, int status)
9019 {
9020 	spdk_for_each_channel_continue(ctx, status);
9021 }
9022 
9023 static void
9024 bdev_nvme_authenticate_qpair(struct spdk_io_channel_iter *i)
9025 {
9026 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
9027 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
9028 	struct nvme_qpair *qpair = ctrlr_ch->qpair;
9029 	int rc;
9030 
9031 	if (!nvme_qpair_is_connected(qpair)) {
9032 		spdk_for_each_channel_continue(i, 0);
9033 		return;
9034 	}
9035 
9036 	rc = spdk_nvme_qpair_authenticate(qpair->qpair, bdev_nvme_authenticate_qpair_done, i);
9037 	if (rc != 0) {
9038 		spdk_for_each_channel_continue(i, rc);
9039 	}
9040 }
9041 
9042 static void
9043 bdev_nvme_authenticate_ctrlr_done(void *_ctx, int status)
9044 {
9045 	struct bdev_nvme_set_keys_ctx *ctx = _ctx;
9046 
9047 	if (status != 0) {
9048 		bdev_nvme_set_keys_done(ctx, status);
9049 		return;
9050 	}
9051 
9052 	spdk_for_each_channel(ctx->nctrlr, bdev_nvme_authenticate_qpair, ctx,
9053 			      bdev_nvme_authenticate_qpairs_done);
9054 }
9055 
9056 static void
9057 bdev_nvme_authenticate_ctrlr(struct bdev_nvme_set_keys_ctx *ctx)
9058 {
9059 	struct spdk_nvme_ctrlr_key_opts opts = {};
9060 	struct nvme_ctrlr *nctrlr = ctx->nctrlr;
9061 	int rc;
9062 
9063 	opts.size = SPDK_SIZEOF(&opts, dhchap_ctrlr_key);
9064 	opts.dhchap_key = ctx->dhchap_key;
9065 	opts.dhchap_ctrlr_key = ctx->dhchap_ctrlr_key;
9066 	rc = spdk_nvme_ctrlr_set_keys(nctrlr->ctrlr, &opts);
9067 	if (rc != 0) {
9068 		bdev_nvme_set_keys_done(ctx, rc);
9069 		return;
9070 	}
9071 
9072 	if (ctx->dhchap_key != NULL) {
9073 		rc = spdk_nvme_ctrlr_authenticate(nctrlr->ctrlr,
9074 						  bdev_nvme_authenticate_ctrlr_done, ctx);
9075 		if (rc != 0) {
9076 			bdev_nvme_set_keys_done(ctx, rc);
9077 		}
9078 	} else {
9079 		bdev_nvme_authenticate_ctrlr_continue(ctx);
9080 	}
9081 }
9082 
9083 int
9084 bdev_nvme_set_keys(const char *name, const char *dhchap_key, const char *dhchap_ctrlr_key,
9085 		   bdev_nvme_set_keys_cb cb_fn, void *cb_ctx)
9086 {
9087 	struct bdev_nvme_set_keys_ctx *ctx;
9088 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
9089 	struct nvme_ctrlr *nctrlr;
9090 
9091 	ctx = calloc(1, sizeof(*ctx));
9092 	if (ctx == NULL) {
9093 		return -ENOMEM;
9094 	}
9095 
9096 	if (dhchap_key != NULL) {
9097 		ctx->dhchap_key = spdk_keyring_get_key(dhchap_key);
9098 		if (ctx->dhchap_key == NULL) {
9099 			SPDK_ERRLOG("Could not find key %s for bdev %s\n", dhchap_key, name);
9100 			bdev_nvme_free_set_keys_ctx(ctx);
9101 			return -ENOKEY;
9102 		}
9103 	}
9104 	if (dhchap_ctrlr_key != NULL) {
9105 		ctx->dhchap_ctrlr_key = spdk_keyring_get_key(dhchap_ctrlr_key);
9106 		if (ctx->dhchap_ctrlr_key == NULL) {
9107 			SPDK_ERRLOG("Could not find key %s for bdev %s\n", dhchap_ctrlr_key, name);
9108 			bdev_nvme_free_set_keys_ctx(ctx);
9109 			return -ENOKEY;
9110 		}
9111 	}
9112 
9113 	pthread_mutex_lock(&g_bdev_nvme_mutex);
9114 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
9115 	if (nbdev_ctrlr == NULL) {
9116 		SPDK_ERRLOG("Could not find bdev_ctrlr %s\n", name);
9117 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
9118 		bdev_nvme_free_set_keys_ctx(ctx);
9119 		return -ENODEV;
9120 	}
9121 	nctrlr = bdev_nvme_next_ctrlr_unsafe(nbdev_ctrlr, NULL);
9122 	if (nctrlr == NULL) {
9123 		SPDK_ERRLOG("Could not find any nvme_ctrlrs on bdev_ctrlr %s\n", name);
9124 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
9125 		bdev_nvme_free_set_keys_ctx(ctx);
9126 		return -ENODEV;
9127 	}
9128 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
9129 
9130 	ctx->nctrlr = nctrlr;
9131 	ctx->cb_fn = cb_fn;
9132 	ctx->cb_ctx = cb_ctx;
9133 	ctx->thread = spdk_get_thread();
9134 
9135 	bdev_nvme_authenticate_ctrlr(ctx);
9136 
9137 	return 0;
9138 }
9139 
9140 void
9141 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
9142 {
9143 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
9144 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
9145 	const struct spdk_nvme_ctrlr_data *cdata;
9146 	const struct spdk_nvme_transport_id *trid;
9147 	const char *adrfam_str;
9148 
9149 	spdk_json_write_object_begin(w);
9150 
9151 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
9152 
9153 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
9154 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
9155 
9156 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
9157 	spdk_json_write_named_bool(w, "current", nvme_io_path_is_current(io_path));
9158 	spdk_json_write_named_bool(w, "connected", nvme_qpair_is_connected(io_path->qpair));
9159 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
9160 
9161 	spdk_json_write_named_object_begin(w, "transport");
9162 	spdk_json_write_named_string(w, "trtype", trid->trstring);
9163 	spdk_json_write_named_string(w, "traddr", trid->traddr);
9164 	if (trid->trsvcid[0] != '\0') {
9165 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
9166 	}
9167 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
9168 	if (adrfam_str) {
9169 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
9170 	}
9171 	spdk_json_write_object_end(w);
9172 
9173 	spdk_json_write_object_end(w);
9174 }
9175 
9176 void
9177 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
9178 {
9179 	struct discovery_ctx *ctx;
9180 	struct discovery_entry_ctx *entry_ctx;
9181 
9182 	spdk_json_write_array_begin(w);
9183 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
9184 		spdk_json_write_object_begin(w);
9185 		spdk_json_write_named_string(w, "name", ctx->name);
9186 
9187 		spdk_json_write_named_object_begin(w, "trid");
9188 		nvme_bdev_dump_trid_json(&ctx->trid, w);
9189 		spdk_json_write_object_end(w);
9190 
9191 		spdk_json_write_named_array_begin(w, "referrals");
9192 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
9193 			spdk_json_write_object_begin(w);
9194 			spdk_json_write_named_object_begin(w, "trid");
9195 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
9196 			spdk_json_write_object_end(w);
9197 			spdk_json_write_object_end(w);
9198 		}
9199 		spdk_json_write_array_end(w);
9200 
9201 		spdk_json_write_object_end(w);
9202 	}
9203 	spdk_json_write_array_end(w);
9204 }
9205 
9206 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
9207 
9208 static void
9209 bdev_nvme_trace(void)
9210 {
9211 	struct spdk_trace_tpoint_opts opts[] = {
9212 		{
9213 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
9214 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 1,
9215 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
9216 		},
9217 		{
9218 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
9219 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 0,
9220 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
9221 		}
9222 	};
9223 
9224 
9225 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
9226 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
9227 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
9228 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
9229 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
9230 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
9231 }
9232 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
9233