xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision a8d21b9b550dde7d3e7ffc0cd1171528a136165f)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/likely.h"
18 #include "spdk/nvme.h"
19 #include "spdk/nvme_ocssd.h"
20 #include "spdk/nvme_zns.h"
21 #include "spdk/opal.h"
22 #include "spdk/thread.h"
23 #include "spdk/trace.h"
24 #include "spdk/string.h"
25 #include "spdk/util.h"
26 
27 #include "spdk/bdev_module.h"
28 #include "spdk/log.h"
29 
30 #include "spdk_internal/usdt.h"
31 #include "spdk_internal/trace_defs.h"
32 
33 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
34 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
35 
36 #define NSID_STR_LEN 10
37 
38 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
39 
40 struct nvme_bdev_io {
41 	/** array of iovecs to transfer. */
42 	struct iovec *iovs;
43 
44 	/** Number of iovecs in iovs array. */
45 	int iovcnt;
46 
47 	/** Current iovec position. */
48 	int iovpos;
49 
50 	/** Offset in current iovec. */
51 	uint32_t iov_offset;
52 
53 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
54 	 *  being reset in a reset I/O.
55 	 */
56 	struct nvme_io_path *io_path;
57 
58 	/** array of iovecs to transfer. */
59 	struct iovec *fused_iovs;
60 
61 	/** Number of iovecs in iovs array. */
62 	int fused_iovcnt;
63 
64 	/** Current iovec position. */
65 	int fused_iovpos;
66 
67 	/** Offset in current iovec. */
68 	uint32_t fused_iov_offset;
69 
70 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
71 	struct spdk_nvme_cpl cpl;
72 
73 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
74 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
75 
76 	/** Originating thread */
77 	struct spdk_thread *orig_thread;
78 
79 	/** Keeps track if first of fused commands was submitted */
80 	bool first_fused_submitted;
81 
82 	/** Keeps track if first of fused commands was completed */
83 	bool first_fused_completed;
84 
85 	/** Temporary pointer to zone report buffer */
86 	struct spdk_nvme_zns_zone_report *zone_report_buf;
87 
88 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
89 	uint64_t handled_zones;
90 
91 	/** Expiration value in ticks to retry the current I/O. */
92 	uint64_t retry_ticks;
93 
94 	/* How many times the current I/O was retried. */
95 	int32_t retry_count;
96 };
97 
98 struct nvme_probe_skip_entry {
99 	struct spdk_nvme_transport_id		trid;
100 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
101 };
102 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
103 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
104 			g_skipped_nvme_ctrlrs);
105 
106 static struct spdk_bdev_nvme_opts g_opts = {
107 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
108 	.timeout_us = 0,
109 	.timeout_admin_us = 0,
110 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
111 	.transport_retry_count = 4,
112 	.arbitration_burst = 0,
113 	.low_priority_weight = 0,
114 	.medium_priority_weight = 0,
115 	.high_priority_weight = 0,
116 	.nvme_adminq_poll_period_us = 10000ULL,
117 	.nvme_ioq_poll_period_us = 0,
118 	.io_queue_requests = 0,
119 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
120 	.bdev_retry_count = 3,
121 	.transport_ack_timeout = 0,
122 	.ctrlr_loss_timeout_sec = 0,
123 	.reconnect_delay_sec = 0,
124 	.fast_io_fail_timeout_sec = 0,
125 	.disable_auto_failback = false,
126 	.generate_uuids = false,
127 	.transport_tos = 0,
128 	.nvme_error_stat = false,
129 };
130 
131 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
132 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
133 
134 static int g_hot_insert_nvme_controller_index = 0;
135 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
136 static bool g_nvme_hotplug_enabled = false;
137 struct spdk_thread *g_bdev_nvme_init_thread;
138 static struct spdk_poller *g_hotplug_poller;
139 static struct spdk_poller *g_hotplug_probe_poller;
140 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
141 
142 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
143 		struct nvme_async_probe_ctx *ctx);
144 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
145 		struct nvme_async_probe_ctx *ctx);
146 static int bdev_nvme_library_init(void);
147 static void bdev_nvme_library_fini(void);
148 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
149 				      struct spdk_bdev_io *bdev_io);
150 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
151 				     struct spdk_bdev_io *bdev_io);
152 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
153 			   void *md, uint64_t lba_count, uint64_t lba,
154 			   uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts);
155 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
156 				 void *md, uint64_t lba_count, uint64_t lba);
157 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
158 			    void *md, uint64_t lba_count, uint64_t lba,
159 			    uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts);
160 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
161 				  void *md, uint64_t lba_count,
162 				  uint64_t zslba, uint32_t flags);
163 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
164 			      void *md, uint64_t lba_count, uint64_t lba,
165 			      uint32_t flags);
166 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
167 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
168 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
169 		uint32_t flags);
170 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
171 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
172 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
173 				     enum spdk_bdev_zone_action action);
174 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
175 				     struct nvme_bdev_io *bio,
176 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
177 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
178 				 void *buf, size_t nbytes);
179 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
180 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
181 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
182 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
183 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
184 static int bdev_nvme_reset(struct nvme_ctrlr *nvme_ctrlr);
185 static int bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove);
186 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
187 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
188 
189 static int
190 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
191 {
192 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
193 }
194 
195 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
196 
197 struct spdk_nvme_qpair *
198 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
199 {
200 	struct nvme_ctrlr_channel *ctrlr_ch;
201 
202 	assert(ctrlr_io_ch != NULL);
203 
204 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
205 
206 	return ctrlr_ch->qpair->qpair;
207 }
208 
209 static int
210 bdev_nvme_get_ctx_size(void)
211 {
212 	return sizeof(struct nvme_bdev_io);
213 }
214 
215 static struct spdk_bdev_module nvme_if = {
216 	.name = "nvme",
217 	.async_fini = true,
218 	.module_init = bdev_nvme_library_init,
219 	.module_fini = bdev_nvme_library_fini,
220 	.config_json = bdev_nvme_config_json,
221 	.get_ctx_size = bdev_nvme_get_ctx_size,
222 
223 };
224 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
225 
226 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
227 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
228 bool g_bdev_nvme_module_finish;
229 
230 struct nvme_bdev_ctrlr *
231 nvme_bdev_ctrlr_get_by_name(const char *name)
232 {
233 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
234 
235 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
236 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
237 			break;
238 		}
239 	}
240 
241 	return nbdev_ctrlr;
242 }
243 
244 static struct nvme_ctrlr *
245 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
246 			  const struct spdk_nvme_transport_id *trid)
247 {
248 	struct nvme_ctrlr *nvme_ctrlr;
249 
250 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
251 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0) {
252 			break;
253 		}
254 	}
255 
256 	return nvme_ctrlr;
257 }
258 
259 static struct nvme_bdev *
260 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
261 {
262 	struct nvme_bdev *bdev;
263 
264 	pthread_mutex_lock(&g_bdev_nvme_mutex);
265 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
266 		if (bdev->nsid == nsid) {
267 			break;
268 		}
269 	}
270 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
271 
272 	return bdev;
273 }
274 
275 struct nvme_ns *
276 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
277 {
278 	struct nvme_ns ns;
279 
280 	assert(nsid > 0);
281 
282 	ns.id = nsid;
283 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
284 }
285 
286 struct nvme_ns *
287 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
288 {
289 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
290 }
291 
292 struct nvme_ns *
293 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
294 {
295 	if (ns == NULL) {
296 		return NULL;
297 	}
298 
299 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
300 }
301 
302 static struct nvme_ctrlr *
303 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid)
304 {
305 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
306 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
307 
308 	pthread_mutex_lock(&g_bdev_nvme_mutex);
309 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
310 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid);
311 		if (nvme_ctrlr != NULL) {
312 			break;
313 		}
314 	}
315 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
316 
317 	return nvme_ctrlr;
318 }
319 
320 struct nvme_ctrlr *
321 nvme_ctrlr_get_by_name(const char *name)
322 {
323 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
324 	struct nvme_ctrlr *nvme_ctrlr = NULL;
325 
326 	if (name == NULL) {
327 		return NULL;
328 	}
329 
330 	pthread_mutex_lock(&g_bdev_nvme_mutex);
331 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
332 	if (nbdev_ctrlr != NULL) {
333 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
334 	}
335 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
336 
337 	return nvme_ctrlr;
338 }
339 
340 void
341 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
342 {
343 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
344 
345 	pthread_mutex_lock(&g_bdev_nvme_mutex);
346 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
347 		fn(nbdev_ctrlr, ctx);
348 	}
349 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
350 }
351 
352 void
353 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
354 {
355 	const char *trtype_str;
356 	const char *adrfam_str;
357 
358 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
359 	if (trtype_str) {
360 		spdk_json_write_named_string(w, "trtype", trtype_str);
361 	}
362 
363 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
364 	if (adrfam_str) {
365 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
366 	}
367 
368 	if (trid->traddr[0] != '\0') {
369 		spdk_json_write_named_string(w, "traddr", trid->traddr);
370 	}
371 
372 	if (trid->trsvcid[0] != '\0') {
373 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
374 	}
375 
376 	if (trid->subnqn[0] != '\0') {
377 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
378 	}
379 }
380 
381 static void
382 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
383 		       struct nvme_ctrlr *nvme_ctrlr)
384 {
385 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
386 	pthread_mutex_lock(&g_bdev_nvme_mutex);
387 
388 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
389 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
390 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
391 
392 		return;
393 	}
394 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
395 
396 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
397 
398 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
399 
400 	free(nbdev_ctrlr->name);
401 	free(nbdev_ctrlr);
402 }
403 
404 static void
405 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
406 {
407 	struct nvme_path_id *path_id, *tmp_path;
408 	struct nvme_ns *ns, *tmp_ns;
409 
410 	free(nvme_ctrlr->copied_ana_desc);
411 	spdk_free(nvme_ctrlr->ana_log_page);
412 
413 	if (nvme_ctrlr->opal_dev) {
414 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
415 		nvme_ctrlr->opal_dev = NULL;
416 	}
417 
418 	if (nvme_ctrlr->nbdev_ctrlr) {
419 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
420 	}
421 
422 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
423 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
424 		free(ns);
425 	}
426 
427 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
428 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
429 		free(path_id);
430 	}
431 
432 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
433 
434 	free(nvme_ctrlr);
435 
436 	pthread_mutex_lock(&g_bdev_nvme_mutex);
437 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
438 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
439 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
440 		spdk_bdev_module_fini_done();
441 		return;
442 	}
443 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
444 }
445 
446 static int
447 nvme_detach_poller(void *arg)
448 {
449 	struct nvme_ctrlr *nvme_ctrlr = arg;
450 	int rc;
451 
452 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
453 	if (rc != -EAGAIN) {
454 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
455 		_nvme_ctrlr_delete(nvme_ctrlr);
456 	}
457 
458 	return SPDK_POLLER_BUSY;
459 }
460 
461 static void
462 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
463 {
464 	int rc;
465 
466 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
467 
468 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
469 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
470 
471 	/* If we got here, the reset/detach poller cannot be active */
472 	assert(nvme_ctrlr->reset_detach_poller == NULL);
473 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
474 					  nvme_ctrlr, 1000);
475 	if (nvme_ctrlr->reset_detach_poller == NULL) {
476 		SPDK_ERRLOG("Failed to register detach poller\n");
477 		goto error;
478 	}
479 
480 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
481 	if (rc != 0) {
482 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
483 		goto error;
484 	}
485 
486 	return;
487 error:
488 	/* We don't have a good way to handle errors here, so just do what we can and delete the
489 	 * controller without detaching the underlying NVMe device.
490 	 */
491 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
492 	_nvme_ctrlr_delete(nvme_ctrlr);
493 }
494 
495 static void
496 nvme_ctrlr_unregister_cb(void *io_device)
497 {
498 	struct nvme_ctrlr *nvme_ctrlr = io_device;
499 
500 	nvme_ctrlr_delete(nvme_ctrlr);
501 }
502 
503 static void
504 nvme_ctrlr_unregister(void *ctx)
505 {
506 	struct nvme_ctrlr *nvme_ctrlr = ctx;
507 
508 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
509 }
510 
511 static bool
512 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
513 {
514 	if (!nvme_ctrlr->destruct) {
515 		return false;
516 	}
517 
518 	if (nvme_ctrlr->ref > 0) {
519 		return false;
520 	}
521 
522 	if (nvme_ctrlr->resetting) {
523 		return false;
524 	}
525 
526 	if (nvme_ctrlr->ana_log_page_updating) {
527 		return false;
528 	}
529 
530 	if (nvme_ctrlr->io_path_cache_clearing) {
531 		return false;
532 	}
533 
534 	return true;
535 }
536 
537 static void
538 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
539 {
540 	pthread_mutex_lock(&nvme_ctrlr->mutex);
541 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
542 
543 	assert(nvme_ctrlr->ref > 0);
544 	nvme_ctrlr->ref--;
545 
546 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
547 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
548 		return;
549 	}
550 
551 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
552 
553 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
554 }
555 
556 static struct nvme_io_path *
557 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
558 {
559 	struct nvme_io_path *io_path;
560 
561 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
562 		if (io_path->nvme_ns == nvme_ns) {
563 			break;
564 		}
565 	}
566 
567 	return io_path;
568 }
569 
570 static int
571 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
572 {
573 	struct nvme_io_path *io_path;
574 	struct spdk_io_channel *ch;
575 	struct nvme_ctrlr_channel *ctrlr_ch;
576 	struct nvme_qpair *nvme_qpair;
577 
578 	io_path = calloc(1, sizeof(*io_path));
579 	if (io_path == NULL) {
580 		SPDK_ERRLOG("Failed to alloc io_path.\n");
581 		return -ENOMEM;
582 	}
583 
584 	io_path->nvme_ns = nvme_ns;
585 
586 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
587 	if (ch == NULL) {
588 		free(io_path);
589 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
590 		return -ENOMEM;
591 	}
592 
593 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
594 
595 	nvme_qpair = ctrlr_ch->qpair;
596 	assert(nvme_qpair != NULL);
597 
598 	io_path->qpair = nvme_qpair;
599 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
600 
601 	io_path->nbdev_ch = nbdev_ch;
602 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
603 
604 	nbdev_ch->current_io_path = NULL;
605 
606 	return 0;
607 }
608 
609 static void
610 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
611 {
612 	struct spdk_io_channel *ch;
613 	struct nvme_qpair *nvme_qpair;
614 	struct nvme_ctrlr_channel *ctrlr_ch;
615 
616 	nbdev_ch->current_io_path = NULL;
617 
618 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
619 
620 	nvme_qpair = io_path->qpair;
621 	assert(nvme_qpair != NULL);
622 
623 	TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
624 
625 	ctrlr_ch = nvme_qpair->ctrlr_ch;
626 	assert(ctrlr_ch != NULL);
627 
628 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
629 	spdk_put_io_channel(ch);
630 
631 	free(io_path);
632 }
633 
634 static void
635 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
636 {
637 	struct nvme_io_path *io_path, *tmp_io_path;
638 
639 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
640 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
641 	}
642 }
643 
644 static int
645 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
646 {
647 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
648 	struct nvme_bdev *nbdev = io_device;
649 	struct nvme_ns *nvme_ns;
650 	int rc;
651 
652 	STAILQ_INIT(&nbdev_ch->io_path_list);
653 	TAILQ_INIT(&nbdev_ch->retry_io_list);
654 
655 	pthread_mutex_lock(&nbdev->mutex);
656 
657 	nbdev_ch->mp_policy = nbdev->mp_policy;
658 
659 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
660 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
661 		if (rc != 0) {
662 			pthread_mutex_unlock(&nbdev->mutex);
663 
664 			_bdev_nvme_delete_io_paths(nbdev_ch);
665 			return rc;
666 		}
667 	}
668 	pthread_mutex_unlock(&nbdev->mutex);
669 
670 	return 0;
671 }
672 
673 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
674  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
675  */
676 static inline void
677 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
678 			const struct spdk_nvme_cpl *cpl)
679 {
680 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
681 			  (uintptr_t)bdev_io);
682 	if (cpl) {
683 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
684 	} else {
685 		spdk_bdev_io_complete(bdev_io, status);
686 	}
687 }
688 
689 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
690 
691 static void
692 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
693 {
694 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
695 
696 	bdev_nvme_abort_retry_ios(nbdev_ch);
697 	_bdev_nvme_delete_io_paths(nbdev_ch);
698 }
699 
700 static inline bool
701 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
702 {
703 	switch (io_type) {
704 	case SPDK_BDEV_IO_TYPE_RESET:
705 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
706 	case SPDK_BDEV_IO_TYPE_ABORT:
707 		return true;
708 	default:
709 		break;
710 	}
711 
712 	return false;
713 }
714 
715 static inline bool
716 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
717 {
718 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
719 		return false;
720 	}
721 
722 	switch (nvme_ns->ana_state) {
723 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
724 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
725 		return true;
726 	default:
727 		break;
728 	}
729 
730 	return false;
731 }
732 
733 static inline bool
734 nvme_io_path_is_connected(struct nvme_io_path *io_path)
735 {
736 	if (spdk_unlikely(io_path->qpair->qpair == NULL)) {
737 		return false;
738 	}
739 
740 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(io_path->qpair->qpair) !=
741 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
742 		return false;
743 	}
744 
745 	if (spdk_unlikely(io_path->qpair->ctrlr_ch->reset_iter != NULL)) {
746 		return false;
747 	}
748 
749 	if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(io_path->qpair->ctrlr->ctrlr) !=
750 	    SPDK_NVME_QPAIR_FAILURE_NONE) {
751 		return false;
752 	}
753 
754 	return true;
755 }
756 
757 static inline bool
758 nvme_io_path_is_available(struct nvme_io_path *io_path)
759 {
760 	if (spdk_unlikely(!nvme_io_path_is_connected(io_path))) {
761 		return false;
762 	}
763 
764 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
765 		return false;
766 	}
767 
768 	return true;
769 }
770 
771 static inline bool
772 nvme_io_path_is_failed(struct nvme_io_path *io_path)
773 {
774 	struct nvme_ctrlr *nvme_ctrlr;
775 
776 	nvme_ctrlr = io_path->qpair->ctrlr;
777 
778 	if (nvme_ctrlr->destruct) {
779 		return true;
780 	}
781 
782 	if (nvme_ctrlr->fast_io_fail_timedout) {
783 		return true;
784 	}
785 
786 	if (nvme_ctrlr->resetting) {
787 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
788 			return false;
789 		} else {
790 			return true;
791 		}
792 	}
793 
794 	if (nvme_ctrlr->reconnect_is_delayed) {
795 		return false;
796 	}
797 
798 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
799 		return true;
800 	} else {
801 		return false;
802 	}
803 }
804 
805 static bool
806 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
807 {
808 	if (nvme_ctrlr->destruct) {
809 		return false;
810 	}
811 
812 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
813 		return false;
814 	}
815 
816 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
817 		return false;
818 	}
819 
820 	return true;
821 }
822 
823 /* Simulate circular linked list. */
824 static inline struct nvme_io_path *
825 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
826 {
827 	struct nvme_io_path *next_path;
828 
829 	if (prev_path != NULL) {
830 		next_path = STAILQ_NEXT(prev_path, stailq);
831 		if (next_path != NULL) {
832 			return next_path;
833 		}
834 	}
835 
836 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
837 }
838 
839 static struct nvme_io_path *
840 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
841 {
842 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
843 
844 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
845 
846 	io_path = start;
847 	do {
848 		if (spdk_likely(nvme_io_path_is_connected(io_path) &&
849 				!io_path->nvme_ns->ana_state_updating)) {
850 			switch (io_path->nvme_ns->ana_state) {
851 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
852 				nbdev_ch->current_io_path = io_path;
853 				return io_path;
854 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
855 				if (non_optimized == NULL) {
856 					non_optimized = io_path;
857 				}
858 				break;
859 			default:
860 				break;
861 			}
862 		}
863 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
864 	} while (io_path != start);
865 
866 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
867 		/* We come here only if there is no optimized path. Cache even non_optimized
868 		 * path for load balance across multiple non_optimized paths.
869 		 */
870 		nbdev_ch->current_io_path = non_optimized;
871 	}
872 
873 	return non_optimized;
874 }
875 
876 static inline struct nvme_io_path *
877 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
878 {
879 	if (spdk_likely(nbdev_ch->current_io_path != NULL &&
880 			nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE)) {
881 		return nbdev_ch->current_io_path;
882 	}
883 
884 	return _bdev_nvme_find_io_path(nbdev_ch);
885 }
886 
887 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
888  * or false otherwise.
889  *
890  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
891  * is likely to be non-accessible now but may become accessible.
892  *
893  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
894  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
895  * when starting to reset it but it is set to failed when the reset failed. Hence, if
896  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
897  */
898 static bool
899 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
900 {
901 	struct nvme_io_path *io_path;
902 
903 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
904 		if (io_path->nvme_ns->ana_transition_timedout) {
905 			continue;
906 		}
907 
908 		if (nvme_io_path_is_connected(io_path) ||
909 		    !nvme_io_path_is_failed(io_path)) {
910 			return true;
911 		}
912 	}
913 
914 	return false;
915 }
916 
917 static void
918 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
919 {
920 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
921 	struct spdk_io_channel *ch;
922 
923 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
924 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
925 	} else {
926 		ch = spdk_io_channel_from_ctx(nbdev_ch);
927 		bdev_nvme_submit_request(ch, bdev_io);
928 	}
929 }
930 
931 static int
932 bdev_nvme_retry_ios(void *arg)
933 {
934 	struct nvme_bdev_channel *nbdev_ch = arg;
935 	struct spdk_bdev_io *bdev_io, *tmp_bdev_io;
936 	struct nvme_bdev_io *bio;
937 	uint64_t now, delay_us;
938 
939 	now = spdk_get_ticks();
940 
941 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_bdev_io) {
942 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
943 		if (bio->retry_ticks > now) {
944 			break;
945 		}
946 
947 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
948 
949 		bdev_nvme_retry_io(nbdev_ch, bdev_io);
950 	}
951 
952 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
953 
954 	bdev_io = TAILQ_FIRST(&nbdev_ch->retry_io_list);
955 	if (bdev_io != NULL) {
956 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
957 
958 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
959 
960 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
961 					    delay_us);
962 	}
963 
964 	return SPDK_POLLER_BUSY;
965 }
966 
967 static void
968 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
969 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
970 {
971 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
972 	struct spdk_bdev_io *tmp_bdev_io;
973 	struct nvme_bdev_io *tmp_bio;
974 
975 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
976 
977 	TAILQ_FOREACH_REVERSE(tmp_bdev_io, &nbdev_ch->retry_io_list, retry_io_head, module_link) {
978 		tmp_bio = (struct nvme_bdev_io *)tmp_bdev_io->driver_ctx;
979 
980 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
981 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bdev_io, bdev_io,
982 					   module_link);
983 			return;
984 		}
985 	}
986 
987 	/* No earlier I/Os were found. This I/O must be the new head. */
988 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bdev_io, module_link);
989 
990 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
991 
992 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
993 				    delay_ms * 1000ULL);
994 }
995 
996 static void
997 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
998 {
999 	struct spdk_bdev_io *bdev_io, *tmp_io;
1000 
1001 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_io) {
1002 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
1003 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1004 	}
1005 
1006 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1007 }
1008 
1009 static int
1010 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1011 			 struct nvme_bdev_io *bio_to_abort)
1012 {
1013 	struct spdk_bdev_io *bdev_io_to_abort;
1014 
1015 	TAILQ_FOREACH(bdev_io_to_abort, &nbdev_ch->retry_io_list, module_link) {
1016 		if ((struct nvme_bdev_io *)bdev_io_to_abort->driver_ctx == bio_to_abort) {
1017 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io_to_abort, module_link);
1018 			__bdev_nvme_io_complete(bdev_io_to_abort, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1019 			return 0;
1020 		}
1021 	}
1022 
1023 	return -ENOENT;
1024 }
1025 
1026 static void
1027 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1028 {
1029 	struct nvme_bdev *nbdev;
1030 	uint16_t sct, sc;
1031 
1032 	assert(spdk_nvme_cpl_is_error(cpl));
1033 
1034 	nbdev = bdev_io->bdev->ctxt;
1035 
1036 	if (nbdev->err_stat == NULL) {
1037 		return;
1038 	}
1039 
1040 	sct = cpl->status.sct;
1041 	sc = cpl->status.sc;
1042 
1043 	pthread_mutex_lock(&nbdev->mutex);
1044 
1045 	nbdev->err_stat->status_type[sct]++;
1046 	switch (sct) {
1047 	case SPDK_NVME_SCT_GENERIC:
1048 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1049 	case SPDK_NVME_SCT_MEDIA_ERROR:
1050 	case SPDK_NVME_SCT_PATH:
1051 		nbdev->err_stat->status[sct][sc]++;
1052 		break;
1053 	default:
1054 		break;
1055 	}
1056 
1057 	pthread_mutex_unlock(&nbdev->mutex);
1058 }
1059 
1060 static inline void
1061 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1062 				  const struct spdk_nvme_cpl *cpl)
1063 {
1064 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1065 	struct nvme_bdev_channel *nbdev_ch;
1066 	struct nvme_io_path *io_path;
1067 	struct nvme_ctrlr *nvme_ctrlr;
1068 	const struct spdk_nvme_ctrlr_data *cdata;
1069 	uint64_t delay_ms;
1070 
1071 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1072 
1073 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1074 		goto complete;
1075 	}
1076 
1077 	/* Update error counts before deciding if retry is needed.
1078 	 * Hence, error counts may be more than the number of I/O errors.
1079 	 */
1080 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1081 
1082 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1083 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1084 		goto complete;
1085 	}
1086 
1087 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1088 
1089 	assert(bio->io_path != NULL);
1090 	io_path = bio->io_path;
1091 
1092 	nvme_ctrlr = io_path->qpair->ctrlr;
1093 
1094 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1095 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1096 	    !nvme_io_path_is_available(io_path) ||
1097 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1098 		nbdev_ch->current_io_path = NULL;
1099 		bio->io_path = NULL;
1100 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1101 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1102 				io_path->nvme_ns->ana_state_updating = true;
1103 			}
1104 		}
1105 		if (!any_io_path_may_become_available(nbdev_ch)) {
1106 			goto complete;
1107 		}
1108 		delay_ms = 0;
1109 	} else {
1110 		bio->retry_count++;
1111 
1112 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1113 
1114 		if (cpl->status.crd != 0) {
1115 			delay_ms = cdata->crdt[cpl->status.crd] * 100;
1116 		} else {
1117 			delay_ms = 0;
1118 		}
1119 	}
1120 
1121 	bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1122 	return;
1123 
1124 complete:
1125 	bio->retry_count = 0;
1126 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1127 }
1128 
1129 static inline void
1130 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1131 {
1132 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1133 	struct nvme_bdev_channel *nbdev_ch;
1134 	enum spdk_bdev_io_status io_status;
1135 
1136 	switch (rc) {
1137 	case 0:
1138 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1139 		break;
1140 	case -ENOMEM:
1141 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1142 		break;
1143 	case -ENXIO:
1144 		nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1145 
1146 		nbdev_ch->current_io_path = NULL;
1147 		bio->io_path = NULL;
1148 
1149 		if (any_io_path_may_become_available(nbdev_ch)) {
1150 			bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1151 			return;
1152 		}
1153 
1154 	/* fallthrough */
1155 	default:
1156 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1157 		break;
1158 	}
1159 
1160 	bio->retry_count = 0;
1161 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1162 }
1163 
1164 static inline void
1165 bdev_nvme_admin_passthru_complete(struct nvme_bdev_io *bio, int rc)
1166 {
1167 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1168 	enum spdk_bdev_io_status io_status;
1169 
1170 	switch (rc) {
1171 	case 0:
1172 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1173 		break;
1174 	case -ENOMEM:
1175 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1176 		break;
1177 	case -ENXIO:
1178 	/* fallthrough */
1179 	default:
1180 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1181 		break;
1182 	}
1183 
1184 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1185 }
1186 
1187 static void
1188 bdev_nvme_clear_io_path_caches_done(struct spdk_io_channel_iter *i, int status)
1189 {
1190 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1191 
1192 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1193 
1194 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1195 	nvme_ctrlr->io_path_cache_clearing = false;
1196 
1197 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1198 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1199 		return;
1200 	}
1201 
1202 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1203 
1204 	nvme_ctrlr_unregister(nvme_ctrlr);
1205 }
1206 
1207 static void
1208 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1209 {
1210 	struct nvme_io_path *io_path;
1211 
1212 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1213 		io_path->nbdev_ch->current_io_path = NULL;
1214 	}
1215 }
1216 
1217 static void
1218 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
1219 {
1220 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1221 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1222 
1223 	assert(ctrlr_ch->qpair != NULL);
1224 
1225 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1226 
1227 	spdk_for_each_channel_continue(i, 0);
1228 }
1229 
1230 static void
1231 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1232 {
1233 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1234 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1235 	    nvme_ctrlr->io_path_cache_clearing) {
1236 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1237 		return;
1238 	}
1239 
1240 	nvme_ctrlr->io_path_cache_clearing = true;
1241 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1242 
1243 	spdk_for_each_channel(nvme_ctrlr,
1244 			      bdev_nvme_clear_io_path_cache,
1245 			      NULL,
1246 			      bdev_nvme_clear_io_path_caches_done);
1247 }
1248 
1249 static struct nvme_qpair *
1250 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1251 {
1252 	struct nvme_qpair *nvme_qpair;
1253 
1254 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1255 		if (nvme_qpair->qpair == qpair) {
1256 			break;
1257 		}
1258 	}
1259 
1260 	return nvme_qpair;
1261 }
1262 
1263 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1264 
1265 static void
1266 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1267 {
1268 	struct nvme_poll_group *group = poll_group_ctx;
1269 	struct nvme_qpair *nvme_qpair;
1270 	struct nvme_ctrlr_channel *ctrlr_ch;
1271 
1272 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1273 	if (nvme_qpair == NULL) {
1274 		return;
1275 	}
1276 
1277 	if (nvme_qpair->qpair != NULL) {
1278 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1279 		nvme_qpair->qpair = NULL;
1280 	}
1281 
1282 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1283 
1284 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1285 
1286 	if (ctrlr_ch != NULL) {
1287 		if (ctrlr_ch->reset_iter != NULL) {
1288 			/* If we are already in a full reset sequence, we do not have
1289 			 * to restart it. Just move to the next ctrlr_channel.
1290 			 */
1291 			SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1292 				      qpair);
1293 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
1294 			ctrlr_ch->reset_iter = NULL;
1295 		} else {
1296 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1297 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1298 			bdev_nvme_failover(nvme_qpair->ctrlr, false);
1299 		}
1300 	} else {
1301 		/* In this case, ctrlr_channel is already deleted. */
1302 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1303 		nvme_qpair_delete(nvme_qpair);
1304 	}
1305 }
1306 
1307 static void
1308 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1309 {
1310 	struct nvme_qpair *nvme_qpair;
1311 
1312 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1313 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1314 			continue;
1315 		}
1316 
1317 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1318 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1319 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1320 		}
1321 	}
1322 }
1323 
1324 static int
1325 bdev_nvme_poll(void *arg)
1326 {
1327 	struct nvme_poll_group *group = arg;
1328 	int64_t num_completions;
1329 
1330 	if (group->collect_spin_stat && group->start_ticks == 0) {
1331 		group->start_ticks = spdk_get_ticks();
1332 	}
1333 
1334 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1335 			  bdev_nvme_disconnected_qpair_cb);
1336 	if (group->collect_spin_stat) {
1337 		if (num_completions > 0) {
1338 			if (group->end_ticks != 0) {
1339 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1340 				group->end_ticks = 0;
1341 			}
1342 			group->start_ticks = 0;
1343 		} else {
1344 			group->end_ticks = spdk_get_ticks();
1345 		}
1346 	}
1347 
1348 	if (spdk_unlikely(num_completions < 0)) {
1349 		bdev_nvme_check_io_qpairs(group);
1350 	}
1351 
1352 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1353 }
1354 
1355 static int bdev_nvme_poll_adminq(void *arg);
1356 
1357 static void
1358 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1359 {
1360 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1361 
1362 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1363 					  nvme_ctrlr, new_period_us);
1364 }
1365 
1366 static int
1367 bdev_nvme_poll_adminq(void *arg)
1368 {
1369 	int32_t rc;
1370 	struct nvme_ctrlr *nvme_ctrlr = arg;
1371 	nvme_ctrlr_disconnected_cb disconnected_cb;
1372 
1373 	assert(nvme_ctrlr != NULL);
1374 
1375 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1376 	if (rc < 0) {
1377 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1378 		nvme_ctrlr->disconnected_cb = NULL;
1379 
1380 		if (rc == -ENXIO && disconnected_cb != NULL) {
1381 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1382 							    g_opts.nvme_adminq_poll_period_us);
1383 			disconnected_cb(nvme_ctrlr);
1384 		} else {
1385 			bdev_nvme_failover(nvme_ctrlr, false);
1386 		}
1387 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1388 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1389 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1390 	}
1391 
1392 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1393 }
1394 
1395 static void
1396 _bdev_nvme_unregister_dev_cb(void *io_device)
1397 {
1398 	struct nvme_bdev *nvme_disk = io_device;
1399 
1400 	free(nvme_disk->disk.name);
1401 	free(nvme_disk->err_stat);
1402 	free(nvme_disk);
1403 }
1404 
1405 static int
1406 bdev_nvme_destruct(void *ctx)
1407 {
1408 	struct nvme_bdev *nvme_disk = ctx;
1409 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1410 
1411 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1412 
1413 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1414 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1415 
1416 		nvme_ns->bdev = NULL;
1417 
1418 		assert(nvme_ns->id > 0);
1419 
1420 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1421 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1422 
1423 			nvme_ctrlr_release(nvme_ns->ctrlr);
1424 			free(nvme_ns);
1425 		} else {
1426 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1427 		}
1428 	}
1429 
1430 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1431 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1432 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1433 
1434 	spdk_io_device_unregister(nvme_disk, _bdev_nvme_unregister_dev_cb);
1435 
1436 	return 0;
1437 }
1438 
1439 static int
1440 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1441 {
1442 	struct nvme_ctrlr *nvme_ctrlr;
1443 	struct spdk_nvme_io_qpair_opts opts;
1444 	struct spdk_nvme_qpair *qpair;
1445 	int rc;
1446 
1447 	nvme_ctrlr = nvme_qpair->ctrlr;
1448 
1449 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1450 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1451 	opts.create_only = true;
1452 	opts.async_mode = true;
1453 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1454 	g_opts.io_queue_requests = opts.io_queue_requests;
1455 
1456 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1457 	if (qpair == NULL) {
1458 		return -1;
1459 	}
1460 
1461 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1462 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1463 
1464 	assert(nvme_qpair->group != NULL);
1465 
1466 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1467 	if (rc != 0) {
1468 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1469 		goto err;
1470 	}
1471 
1472 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1473 	if (rc != 0) {
1474 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1475 		goto err;
1476 	}
1477 
1478 	nvme_qpair->qpair = qpair;
1479 
1480 	if (!g_opts.disable_auto_failback) {
1481 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1482 	}
1483 
1484 	return 0;
1485 
1486 err:
1487 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1488 
1489 	return rc;
1490 }
1491 
1492 static void
1493 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
1494 {
1495 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1496 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1497 	enum spdk_bdev_io_status status = SPDK_BDEV_IO_STATUS_SUCCESS;
1498 	struct spdk_bdev_io *bdev_io;
1499 
1500 	if (spdk_io_channel_iter_get_ctx(i) != NULL) {
1501 		status = SPDK_BDEV_IO_STATUS_FAILED;
1502 	}
1503 
1504 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1505 		bdev_io = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1506 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bdev_io, module_link);
1507 		__bdev_nvme_io_complete(bdev_io, status, NULL);
1508 	}
1509 
1510 	spdk_for_each_channel_continue(i, 0);
1511 }
1512 
1513 static void
1514 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove)
1515 {
1516 	struct nvme_path_id *path_id, *next_path;
1517 	int rc __attribute__((unused));
1518 
1519 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1520 	assert(path_id);
1521 	assert(path_id == nvme_ctrlr->active_path_id);
1522 	next_path = TAILQ_NEXT(path_id, link);
1523 
1524 	path_id->is_failed = true;
1525 
1526 	if (next_path) {
1527 		assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1528 
1529 		SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1530 			       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1531 
1532 		spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1533 		nvme_ctrlr->active_path_id = next_path;
1534 		rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1535 		assert(rc == 0);
1536 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1537 		if (!remove) {
1538 			/** Shuffle the old trid to the end of the list and use the new one.
1539 			 * Allows for round robin through multiple connections.
1540 			 */
1541 			TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
1542 		} else {
1543 			free(path_id);
1544 		}
1545 	}
1546 }
1547 
1548 static bool
1549 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
1550 {
1551 	int32_t elapsed;
1552 
1553 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
1554 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
1555 		return false;
1556 	}
1557 
1558 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1559 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
1560 		return true;
1561 	} else {
1562 		return false;
1563 	}
1564 }
1565 
1566 static bool
1567 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
1568 {
1569 	uint32_t elapsed;
1570 
1571 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
1572 		return false;
1573 	}
1574 
1575 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1576 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
1577 		return true;
1578 	} else {
1579 		return false;
1580 	}
1581 }
1582 
1583 static void bdev_nvme_reset_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
1584 
1585 static void
1586 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
1587 {
1588 	int rc;
1589 
1590 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
1591 	if (rc != 0) {
1592 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
1593 		 * fail the reset sequence immediately.
1594 		 */
1595 		bdev_nvme_reset_complete(nvme_ctrlr, false);
1596 		return;
1597 	}
1598 
1599 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
1600 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
1601 	 */
1602 	assert(nvme_ctrlr->disconnected_cb == NULL);
1603 	nvme_ctrlr->disconnected_cb = cb_fn;
1604 
1605 	/* During disconnection, reduce the period to poll adminq more often. */
1606 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
1607 }
1608 
1609 enum bdev_nvme_op_after_reset {
1610 	OP_NONE,
1611 	OP_COMPLETE_PENDING_DESTRUCT,
1612 	OP_DESTRUCT,
1613 	OP_DELAYED_RECONNECT,
1614 };
1615 
1616 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
1617 
1618 static _bdev_nvme_op_after_reset
1619 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
1620 {
1621 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1622 		/* Complete pending destruct after reset completes. */
1623 		return OP_COMPLETE_PENDING_DESTRUCT;
1624 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1625 		nvme_ctrlr->reset_start_tsc = 0;
1626 		return OP_NONE;
1627 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1628 		return OP_DESTRUCT;
1629 	} else {
1630 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
1631 			nvme_ctrlr->fast_io_fail_timedout = true;
1632 		}
1633 		bdev_nvme_failover_trid(nvme_ctrlr, false);
1634 		return OP_DELAYED_RECONNECT;
1635 	}
1636 }
1637 
1638 static int _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
1639 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
1640 
1641 static int
1642 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
1643 {
1644 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1645 
1646 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
1647 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1648 
1649 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
1650 
1651 	assert(nvme_ctrlr->reconnect_is_delayed == true);
1652 	nvme_ctrlr->reconnect_is_delayed = false;
1653 
1654 	if (nvme_ctrlr->destruct) {
1655 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1656 		return SPDK_POLLER_BUSY;
1657 	}
1658 
1659 	assert(nvme_ctrlr->resetting == false);
1660 	nvme_ctrlr->resetting = true;
1661 
1662 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1663 
1664 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
1665 
1666 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
1667 	return SPDK_POLLER_BUSY;
1668 }
1669 
1670 static void
1671 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
1672 {
1673 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
1674 
1675 	assert(nvme_ctrlr->reconnect_is_delayed == false);
1676 	nvme_ctrlr->reconnect_is_delayed = true;
1677 
1678 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
1679 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
1680 					    nvme_ctrlr,
1681 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
1682 }
1683 
1684 static void
1685 _bdev_nvme_reset_complete(struct spdk_io_channel_iter *i, int status)
1686 {
1687 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1688 	bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
1689 	struct nvme_path_id *path_id;
1690 	bdev_nvme_reset_cb reset_cb_fn = nvme_ctrlr->reset_cb_fn;
1691 	void *reset_cb_arg = nvme_ctrlr->reset_cb_arg;
1692 	enum bdev_nvme_op_after_reset op_after_reset;
1693 
1694 	assert(nvme_ctrlr->thread == spdk_get_thread());
1695 
1696 	nvme_ctrlr->reset_cb_fn = NULL;
1697 	nvme_ctrlr->reset_cb_arg = NULL;
1698 
1699 	if (!success) {
1700 		SPDK_ERRLOG("Resetting controller failed.\n");
1701 	} else {
1702 		SPDK_NOTICELOG("Resetting controller successful.\n");
1703 	}
1704 
1705 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1706 	nvme_ctrlr->resetting = false;
1707 
1708 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1709 	assert(path_id != NULL);
1710 	assert(path_id == nvme_ctrlr->active_path_id);
1711 
1712 	path_id->is_failed = !success;
1713 
1714 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
1715 
1716 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1717 
1718 	if (reset_cb_fn) {
1719 		reset_cb_fn(reset_cb_arg, success);
1720 	}
1721 
1722 	switch (op_after_reset) {
1723 	case OP_COMPLETE_PENDING_DESTRUCT:
1724 		nvme_ctrlr_unregister(nvme_ctrlr);
1725 		break;
1726 	case OP_DESTRUCT:
1727 		_bdev_nvme_delete(nvme_ctrlr, false);
1728 		break;
1729 	case OP_DELAYED_RECONNECT:
1730 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
1731 		break;
1732 	default:
1733 		break;
1734 	}
1735 }
1736 
1737 static void
1738 bdev_nvme_reset_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
1739 {
1740 	/* Make sure we clear any pending resets before returning. */
1741 	spdk_for_each_channel(nvme_ctrlr,
1742 			      bdev_nvme_complete_pending_resets,
1743 			      success ? NULL : (void *)0x1,
1744 			      _bdev_nvme_reset_complete);
1745 }
1746 
1747 static void
1748 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
1749 {
1750 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1751 
1752 	bdev_nvme_reset_complete(nvme_ctrlr, false);
1753 }
1754 
1755 static void
1756 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
1757 {
1758 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
1759 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
1760 	struct nvme_qpair *nvme_qpair;
1761 
1762 	nvme_qpair = ctrlr_ch->qpair;
1763 	assert(nvme_qpair != NULL);
1764 
1765 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1766 
1767 	if (nvme_qpair->qpair != NULL) {
1768 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
1769 
1770 		/* The current full reset sequence will move to the next
1771 		 * ctrlr_channel after the qpair is actually disconnected.
1772 		 */
1773 		assert(ctrlr_ch->reset_iter == NULL);
1774 		ctrlr_ch->reset_iter = i;
1775 	} else {
1776 		spdk_for_each_channel_continue(i, 0);
1777 	}
1778 }
1779 
1780 static void
1781 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
1782 {
1783 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1784 
1785 	if (status == 0) {
1786 		bdev_nvme_reset_complete(nvme_ctrlr, true);
1787 	} else {
1788 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
1789 		spdk_for_each_channel(nvme_ctrlr,
1790 				      bdev_nvme_reset_destroy_qpair,
1791 				      NULL,
1792 				      bdev_nvme_reset_create_qpairs_failed);
1793 	}
1794 }
1795 
1796 static void
1797 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
1798 {
1799 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1800 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1801 	int rc;
1802 
1803 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
1804 
1805 	spdk_for_each_channel_continue(i, rc);
1806 }
1807 
1808 static int
1809 bdev_nvme_reconnect_ctrlr_poll(void *arg)
1810 {
1811 	struct nvme_ctrlr *nvme_ctrlr = arg;
1812 	int rc = -ETIMEDOUT;
1813 
1814 	if (!bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1815 		rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
1816 		if (rc == -EAGAIN) {
1817 			return SPDK_POLLER_BUSY;
1818 		}
1819 	}
1820 
1821 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
1822 	if (rc == 0) {
1823 		/* Recreate all of the I/O queue pairs */
1824 		spdk_for_each_channel(nvme_ctrlr,
1825 				      bdev_nvme_reset_create_qpair,
1826 				      NULL,
1827 				      bdev_nvme_reset_create_qpairs_done);
1828 	} else {
1829 		bdev_nvme_reset_complete(nvme_ctrlr, false);
1830 	}
1831 	return SPDK_POLLER_BUSY;
1832 }
1833 
1834 static void
1835 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
1836 {
1837 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
1838 
1839 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
1840 	assert(nvme_ctrlr->reset_detach_poller == NULL);
1841 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
1842 					  nvme_ctrlr, 0);
1843 }
1844 
1845 static void
1846 bdev_nvme_reset_ctrlr(struct spdk_io_channel_iter *i, int status)
1847 {
1848 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1849 
1850 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
1851 	assert(status == 0);
1852 
1853 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
1854 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
1855 	} else {
1856 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
1857 	}
1858 }
1859 
1860 static void
1861 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
1862 {
1863 	spdk_for_each_channel(nvme_ctrlr,
1864 			      bdev_nvme_reset_destroy_qpair,
1865 			      NULL,
1866 			      bdev_nvme_reset_ctrlr);
1867 }
1868 
1869 static void
1870 _bdev_nvme_reset(void *ctx)
1871 {
1872 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1873 
1874 	assert(nvme_ctrlr->resetting == true);
1875 	assert(nvme_ctrlr->thread == spdk_get_thread());
1876 
1877 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
1878 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
1879 	} else {
1880 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
1881 	}
1882 }
1883 
1884 static int
1885 bdev_nvme_reset(struct nvme_ctrlr *nvme_ctrlr)
1886 {
1887 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1888 	if (nvme_ctrlr->destruct) {
1889 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1890 		return -ENXIO;
1891 	}
1892 
1893 	if (nvme_ctrlr->resetting) {
1894 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1895 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
1896 		return -EBUSY;
1897 	}
1898 
1899 	if (nvme_ctrlr->reconnect_is_delayed) {
1900 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1901 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
1902 		return -EBUSY;
1903 	}
1904 
1905 	nvme_ctrlr->resetting = true;
1906 
1907 	assert(nvme_ctrlr->reset_start_tsc == 0);
1908 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
1909 
1910 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1911 
1912 	spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset, nvme_ctrlr);
1913 	return 0;
1914 }
1915 
1916 int
1917 bdev_nvme_reset_rpc(struct nvme_ctrlr *nvme_ctrlr, bdev_nvme_reset_cb cb_fn, void *cb_arg)
1918 {
1919 	int rc;
1920 
1921 	rc = bdev_nvme_reset(nvme_ctrlr);
1922 	if (rc == 0) {
1923 		nvme_ctrlr->reset_cb_fn = cb_fn;
1924 		nvme_ctrlr->reset_cb_arg = cb_arg;
1925 	}
1926 	return rc;
1927 }
1928 
1929 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
1930 
1931 static void
1932 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
1933 {
1934 	enum spdk_bdev_io_status io_status;
1935 
1936 	if (bio->cpl.cdw0 == 0) {
1937 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1938 	} else {
1939 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1940 	}
1941 
1942 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
1943 }
1944 
1945 static void
1946 _bdev_nvme_reset_io_continue(void *ctx)
1947 {
1948 	struct nvme_bdev_io *bio = ctx;
1949 	struct nvme_io_path *prev_io_path, *next_io_path;
1950 	int rc;
1951 
1952 	prev_io_path = bio->io_path;
1953 	bio->io_path = NULL;
1954 
1955 	if (bio->cpl.cdw0 != 0) {
1956 		goto complete;
1957 	}
1958 
1959 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
1960 	if (next_io_path == NULL) {
1961 		goto complete;
1962 	}
1963 
1964 	rc = _bdev_nvme_reset_io(next_io_path, bio);
1965 	if (rc == 0) {
1966 		return;
1967 	}
1968 
1969 	bio->cpl.cdw0 = 1;
1970 
1971 complete:
1972 	bdev_nvme_reset_io_complete(bio);
1973 }
1974 
1975 static void
1976 bdev_nvme_reset_io_continue(void *cb_arg, bool success)
1977 {
1978 	struct nvme_bdev_io *bio = cb_arg;
1979 
1980 	bio->cpl.cdw0 = !success;
1981 
1982 	spdk_thread_send_msg(bio->orig_thread, _bdev_nvme_reset_io_continue, bio);
1983 }
1984 
1985 static int
1986 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
1987 {
1988 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1989 	struct nvme_ctrlr_channel *ctrlr_ch;
1990 	struct spdk_bdev_io *bdev_io;
1991 	int rc;
1992 
1993 	rc = bdev_nvme_reset(nvme_ctrlr);
1994 	if (rc == 0) {
1995 		assert(bio->io_path == NULL);
1996 		bio->io_path = io_path;
1997 
1998 		assert(nvme_ctrlr->reset_cb_fn == NULL);
1999 		assert(nvme_ctrlr->reset_cb_arg == NULL);
2000 		nvme_ctrlr->reset_cb_fn = bdev_nvme_reset_io_continue;
2001 		nvme_ctrlr->reset_cb_arg = bio;
2002 	} else if (rc == -EBUSY) {
2003 		ctrlr_ch = io_path->qpair->ctrlr_ch;
2004 		assert(ctrlr_ch != NULL);
2005 		/*
2006 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
2007 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
2008 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
2009 		 */
2010 		bdev_io = spdk_bdev_io_from_ctx(bio);
2011 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bdev_io, module_link);
2012 	} else {
2013 		return rc;
2014 	}
2015 
2016 	return 0;
2017 }
2018 
2019 static void
2020 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
2021 {
2022 	struct nvme_io_path *io_path;
2023 	int rc;
2024 
2025 	bio->cpl.cdw0 = 0;
2026 	bio->orig_thread = spdk_get_thread();
2027 
2028 	/* Reset only the first nvme_ctrlr in the nvme_bdev_ctrlr for now.
2029 	 *
2030 	 * TODO: Reset all nvme_ctrlrs in the nvme_bdev_ctrlr sequentially.
2031 	 * This will be done in the following patches.
2032 	 */
2033 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
2034 	assert(io_path != NULL);
2035 
2036 	rc = _bdev_nvme_reset_io(io_path, bio);
2037 	if (rc != 0) {
2038 		bio->cpl.cdw0 = 1;
2039 		bdev_nvme_reset_io_complete(bio);
2040 	}
2041 }
2042 
2043 static int
2044 bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove)
2045 {
2046 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2047 	if (nvme_ctrlr->destruct) {
2048 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2049 		/* Don't bother resetting if the controller is in the process of being destructed. */
2050 		return -ENXIO;
2051 	}
2052 
2053 	if (nvme_ctrlr->resetting) {
2054 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2055 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
2056 		return -EBUSY;
2057 	}
2058 
2059 	bdev_nvme_failover_trid(nvme_ctrlr, remove);
2060 
2061 	if (nvme_ctrlr->reconnect_is_delayed) {
2062 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2063 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
2064 
2065 		/* We rely on the next reconnect for the failover. */
2066 		return 0;
2067 	}
2068 
2069 	nvme_ctrlr->resetting = true;
2070 
2071 	assert(nvme_ctrlr->reset_start_tsc == 0);
2072 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2073 
2074 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2075 
2076 	spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset, nvme_ctrlr);
2077 	return 0;
2078 }
2079 
2080 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2081 			   uint64_t num_blocks);
2082 
2083 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2084 				  uint64_t num_blocks);
2085 
2086 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
2087 			  uint64_t src_offset_blocks,
2088 			  uint64_t num_blocks);
2089 
2090 static void
2091 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
2092 		     bool success)
2093 {
2094 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2095 	struct spdk_bdev *bdev = bdev_io->bdev;
2096 	int ret;
2097 
2098 	if (!success) {
2099 		ret = -EINVAL;
2100 		goto exit;
2101 	}
2102 
2103 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
2104 		ret = -ENXIO;
2105 		goto exit;
2106 	}
2107 
2108 	ret = bdev_nvme_readv(bio,
2109 			      bdev_io->u.bdev.iovs,
2110 			      bdev_io->u.bdev.iovcnt,
2111 			      bdev_io->u.bdev.md_buf,
2112 			      bdev_io->u.bdev.num_blocks,
2113 			      bdev_io->u.bdev.offset_blocks,
2114 			      bdev->dif_check_flags,
2115 			      bdev_io->u.bdev.ext_opts);
2116 
2117 exit:
2118 	if (spdk_unlikely(ret != 0)) {
2119 		bdev_nvme_io_complete(bio, ret);
2120 	}
2121 }
2122 
2123 static inline void
2124 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
2125 {
2126 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2127 	struct spdk_bdev *bdev = bdev_io->bdev;
2128 	struct nvme_bdev_io *nbdev_io_to_abort;
2129 	int rc = 0;
2130 
2131 	switch (bdev_io->type) {
2132 	case SPDK_BDEV_IO_TYPE_READ:
2133 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
2134 			rc = bdev_nvme_readv(nbdev_io,
2135 					     bdev_io->u.bdev.iovs,
2136 					     bdev_io->u.bdev.iovcnt,
2137 					     bdev_io->u.bdev.md_buf,
2138 					     bdev_io->u.bdev.num_blocks,
2139 					     bdev_io->u.bdev.offset_blocks,
2140 					     bdev->dif_check_flags,
2141 					     bdev_io->u.bdev.ext_opts);
2142 		} else {
2143 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
2144 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
2145 			rc = 0;
2146 		}
2147 		break;
2148 	case SPDK_BDEV_IO_TYPE_WRITE:
2149 		rc = bdev_nvme_writev(nbdev_io,
2150 				      bdev_io->u.bdev.iovs,
2151 				      bdev_io->u.bdev.iovcnt,
2152 				      bdev_io->u.bdev.md_buf,
2153 				      bdev_io->u.bdev.num_blocks,
2154 				      bdev_io->u.bdev.offset_blocks,
2155 				      bdev->dif_check_flags,
2156 				      bdev_io->u.bdev.ext_opts);
2157 		break;
2158 	case SPDK_BDEV_IO_TYPE_COMPARE:
2159 		rc = bdev_nvme_comparev(nbdev_io,
2160 					bdev_io->u.bdev.iovs,
2161 					bdev_io->u.bdev.iovcnt,
2162 					bdev_io->u.bdev.md_buf,
2163 					bdev_io->u.bdev.num_blocks,
2164 					bdev_io->u.bdev.offset_blocks,
2165 					bdev->dif_check_flags);
2166 		break;
2167 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
2168 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
2169 						   bdev_io->u.bdev.iovs,
2170 						   bdev_io->u.bdev.iovcnt,
2171 						   bdev_io->u.bdev.fused_iovs,
2172 						   bdev_io->u.bdev.fused_iovcnt,
2173 						   bdev_io->u.bdev.md_buf,
2174 						   bdev_io->u.bdev.num_blocks,
2175 						   bdev_io->u.bdev.offset_blocks,
2176 						   bdev->dif_check_flags);
2177 		break;
2178 	case SPDK_BDEV_IO_TYPE_UNMAP:
2179 		rc = bdev_nvme_unmap(nbdev_io,
2180 				     bdev_io->u.bdev.offset_blocks,
2181 				     bdev_io->u.bdev.num_blocks);
2182 		break;
2183 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
2184 		rc =  bdev_nvme_write_zeroes(nbdev_io,
2185 					     bdev_io->u.bdev.offset_blocks,
2186 					     bdev_io->u.bdev.num_blocks);
2187 		break;
2188 	case SPDK_BDEV_IO_TYPE_RESET:
2189 		nbdev_io->io_path = NULL;
2190 		bdev_nvme_reset_io(nbdev_ch, nbdev_io);
2191 		break;
2192 	case SPDK_BDEV_IO_TYPE_FLUSH:
2193 		bdev_nvme_io_complete(nbdev_io, 0);
2194 		break;
2195 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
2196 		rc = bdev_nvme_zone_appendv(nbdev_io,
2197 					    bdev_io->u.bdev.iovs,
2198 					    bdev_io->u.bdev.iovcnt,
2199 					    bdev_io->u.bdev.md_buf,
2200 					    bdev_io->u.bdev.num_blocks,
2201 					    bdev_io->u.bdev.offset_blocks,
2202 					    bdev->dif_check_flags);
2203 		break;
2204 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
2205 		rc = bdev_nvme_get_zone_info(nbdev_io,
2206 					     bdev_io->u.zone_mgmt.zone_id,
2207 					     bdev_io->u.zone_mgmt.num_zones,
2208 					     bdev_io->u.zone_mgmt.buf);
2209 		break;
2210 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
2211 		rc = bdev_nvme_zone_management(nbdev_io,
2212 					       bdev_io->u.zone_mgmt.zone_id,
2213 					       bdev_io->u.zone_mgmt.zone_action);
2214 		break;
2215 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
2216 		nbdev_io->io_path = NULL;
2217 		bdev_nvme_admin_passthru(nbdev_ch,
2218 					 nbdev_io,
2219 					 &bdev_io->u.nvme_passthru.cmd,
2220 					 bdev_io->u.nvme_passthru.buf,
2221 					 bdev_io->u.nvme_passthru.nbytes);
2222 		break;
2223 	case SPDK_BDEV_IO_TYPE_NVME_IO:
2224 		rc = bdev_nvme_io_passthru(nbdev_io,
2225 					   &bdev_io->u.nvme_passthru.cmd,
2226 					   bdev_io->u.nvme_passthru.buf,
2227 					   bdev_io->u.nvme_passthru.nbytes);
2228 		break;
2229 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
2230 		rc = bdev_nvme_io_passthru_md(nbdev_io,
2231 					      &bdev_io->u.nvme_passthru.cmd,
2232 					      bdev_io->u.nvme_passthru.buf,
2233 					      bdev_io->u.nvme_passthru.nbytes,
2234 					      bdev_io->u.nvme_passthru.md_buf,
2235 					      bdev_io->u.nvme_passthru.md_len);
2236 		break;
2237 	case SPDK_BDEV_IO_TYPE_ABORT:
2238 		nbdev_io->io_path = NULL;
2239 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
2240 		bdev_nvme_abort(nbdev_ch,
2241 				nbdev_io,
2242 				nbdev_io_to_abort);
2243 		break;
2244 	case SPDK_BDEV_IO_TYPE_COPY:
2245 		rc = bdev_nvme_copy(nbdev_io,
2246 				    bdev_io->u.bdev.offset_blocks,
2247 				    bdev_io->u.bdev.copy.src_offset_blocks,
2248 				    bdev_io->u.bdev.num_blocks);
2249 		break;
2250 	default:
2251 		rc = -EINVAL;
2252 		break;
2253 	}
2254 
2255 	if (spdk_unlikely(rc != 0)) {
2256 		bdev_nvme_io_complete(nbdev_io, rc);
2257 	}
2258 }
2259 
2260 static void
2261 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
2262 {
2263 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
2264 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2265 
2266 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
2267 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
2268 	if (spdk_unlikely(!nbdev_io->io_path)) {
2269 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
2270 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
2271 			return;
2272 		}
2273 
2274 		/* Admin commands do not use the optimal I/O path.
2275 		 * Simply fall through even if it is not found.
2276 		 */
2277 	}
2278 
2279 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
2280 }
2281 
2282 static bool
2283 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
2284 {
2285 	struct nvme_bdev *nbdev = ctx;
2286 	struct nvme_ns *nvme_ns;
2287 	struct spdk_nvme_ns *ns;
2288 	struct spdk_nvme_ctrlr *ctrlr;
2289 	const struct spdk_nvme_ctrlr_data *cdata;
2290 
2291 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
2292 	assert(nvme_ns != NULL);
2293 	ns = nvme_ns->ns;
2294 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
2295 
2296 	switch (io_type) {
2297 	case SPDK_BDEV_IO_TYPE_READ:
2298 	case SPDK_BDEV_IO_TYPE_WRITE:
2299 	case SPDK_BDEV_IO_TYPE_RESET:
2300 	case SPDK_BDEV_IO_TYPE_FLUSH:
2301 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
2302 	case SPDK_BDEV_IO_TYPE_NVME_IO:
2303 	case SPDK_BDEV_IO_TYPE_ABORT:
2304 		return true;
2305 
2306 	case SPDK_BDEV_IO_TYPE_COMPARE:
2307 		return spdk_nvme_ns_supports_compare(ns);
2308 
2309 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
2310 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
2311 
2312 	case SPDK_BDEV_IO_TYPE_UNMAP:
2313 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2314 		return cdata->oncs.dsm;
2315 
2316 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
2317 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2318 		return cdata->oncs.write_zeroes;
2319 
2320 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
2321 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
2322 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
2323 			return true;
2324 		}
2325 		return false;
2326 
2327 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
2328 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
2329 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
2330 
2331 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
2332 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
2333 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
2334 
2335 	case SPDK_BDEV_IO_TYPE_COPY:
2336 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2337 		return cdata->oncs.copy;
2338 
2339 	default:
2340 		return false;
2341 	}
2342 }
2343 
2344 static int
2345 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
2346 {
2347 	struct nvme_qpair *nvme_qpair;
2348 	struct spdk_io_channel *pg_ch;
2349 	int rc;
2350 
2351 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
2352 	if (!nvme_qpair) {
2353 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
2354 		return -1;
2355 	}
2356 
2357 	TAILQ_INIT(&nvme_qpair->io_path_list);
2358 
2359 	nvme_qpair->ctrlr = nvme_ctrlr;
2360 	nvme_qpair->ctrlr_ch = ctrlr_ch;
2361 
2362 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
2363 	if (!pg_ch) {
2364 		free(nvme_qpair);
2365 		return -1;
2366 	}
2367 
2368 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
2369 
2370 #ifdef SPDK_CONFIG_VTUNE
2371 	nvme_qpair->group->collect_spin_stat = true;
2372 #else
2373 	nvme_qpair->group->collect_spin_stat = false;
2374 #endif
2375 
2376 	rc = bdev_nvme_create_qpair(nvme_qpair);
2377 	if (rc != 0) {
2378 		/* nvme_ctrlr can't create IO qpair if connection is down.
2379 		 *
2380 		 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
2381 		 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
2382 		 * submitted IO will be queued until IO qpair is successfully created.
2383 		 *
2384 		 * Hence, if both are satisfied, ignore the failure.
2385 		 */
2386 		if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
2387 			spdk_put_io_channel(pg_ch);
2388 			free(nvme_qpair);
2389 			return rc;
2390 		}
2391 	}
2392 
2393 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
2394 
2395 	ctrlr_ch->qpair = nvme_qpair;
2396 
2397 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
2398 	nvme_qpair->ctrlr->ref++;
2399 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
2400 
2401 	return 0;
2402 }
2403 
2404 static int
2405 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
2406 {
2407 	struct nvme_ctrlr *nvme_ctrlr = io_device;
2408 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
2409 
2410 	TAILQ_INIT(&ctrlr_ch->pending_resets);
2411 
2412 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
2413 }
2414 
2415 static void
2416 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
2417 {
2418 	assert(nvme_qpair->group != NULL);
2419 
2420 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
2421 
2422 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
2423 
2424 	nvme_ctrlr_release(nvme_qpair->ctrlr);
2425 
2426 	free(nvme_qpair);
2427 }
2428 
2429 static void
2430 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
2431 {
2432 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
2433 	struct nvme_qpair *nvme_qpair;
2434 
2435 	nvme_qpair = ctrlr_ch->qpair;
2436 	assert(nvme_qpair != NULL);
2437 
2438 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2439 
2440 	if (nvme_qpair->qpair != NULL) {
2441 		if (ctrlr_ch->reset_iter == NULL) {
2442 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2443 		} else {
2444 			/* Skip current ctrlr_channel in a full reset sequence because
2445 			 * it is being deleted now. The qpair is already being disconnected.
2446 			 * We do not have to restart disconnecting it.
2447 			 */
2448 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2449 		}
2450 
2451 		/* We cannot release a reference to the poll group now.
2452 		 * The qpair may be disconnected asynchronously later.
2453 		 * We need to poll it until it is actually disconnected.
2454 		 * Just detach the qpair from the deleting ctrlr_channel.
2455 		 */
2456 		nvme_qpair->ctrlr_ch = NULL;
2457 	} else {
2458 		assert(ctrlr_ch->reset_iter == NULL);
2459 
2460 		nvme_qpair_delete(nvme_qpair);
2461 	}
2462 }
2463 
2464 static void
2465 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
2466 			      uint32_t iov_cnt, uint32_t seed,
2467 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
2468 {
2469 	struct nvme_poll_group *group = ctx;
2470 	int rc;
2471 
2472 	assert(group->accel_channel != NULL);
2473 	assert(cb_fn != NULL);
2474 
2475 	rc = spdk_accel_submit_crc32cv(group->accel_channel, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
2476 	if (rc) {
2477 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
2478 		if (rc == -ENOMEM || rc == -EINVAL) {
2479 			cb_fn(cb_arg, rc);
2480 		}
2481 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
2482 	}
2483 }
2484 
2485 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
2486 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
2487 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
2488 };
2489 
2490 static int
2491 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
2492 {
2493 	struct nvme_poll_group *group = ctx_buf;
2494 
2495 	TAILQ_INIT(&group->qpair_list);
2496 
2497 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
2498 	if (group->group == NULL) {
2499 		return -1;
2500 	}
2501 
2502 	group->accel_channel = spdk_accel_get_io_channel();
2503 	if (!group->accel_channel) {
2504 		spdk_nvme_poll_group_destroy(group->group);
2505 		SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
2506 			    group);
2507 		return -1;
2508 	}
2509 
2510 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
2511 
2512 	if (group->poller == NULL) {
2513 		spdk_put_io_channel(group->accel_channel);
2514 		spdk_nvme_poll_group_destroy(group->group);
2515 		return -1;
2516 	}
2517 
2518 	return 0;
2519 }
2520 
2521 static void
2522 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
2523 {
2524 	struct nvme_poll_group *group = ctx_buf;
2525 
2526 	assert(TAILQ_EMPTY(&group->qpair_list));
2527 
2528 	if (group->accel_channel) {
2529 		spdk_put_io_channel(group->accel_channel);
2530 	}
2531 
2532 	spdk_poller_unregister(&group->poller);
2533 	if (spdk_nvme_poll_group_destroy(group->group)) {
2534 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
2535 		assert(false);
2536 	}
2537 }
2538 
2539 static struct spdk_io_channel *
2540 bdev_nvme_get_io_channel(void *ctx)
2541 {
2542 	struct nvme_bdev *nvme_bdev = ctx;
2543 
2544 	return spdk_get_io_channel(nvme_bdev);
2545 }
2546 
2547 static void *
2548 bdev_nvme_get_module_ctx(void *ctx)
2549 {
2550 	struct nvme_bdev *nvme_bdev = ctx;
2551 	struct nvme_ns *nvme_ns;
2552 
2553 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
2554 		return NULL;
2555 	}
2556 
2557 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
2558 	if (!nvme_ns) {
2559 		return NULL;
2560 	}
2561 
2562 	return nvme_ns->ns;
2563 }
2564 
2565 static const char *
2566 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
2567 {
2568 	switch (ana_state) {
2569 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
2570 		return "optimized";
2571 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
2572 		return "non_optimized";
2573 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
2574 		return "inaccessible";
2575 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
2576 		return "persistent_loss";
2577 	case SPDK_NVME_ANA_CHANGE_STATE:
2578 		return "change";
2579 	default:
2580 		return NULL;
2581 	}
2582 }
2583 
2584 static int
2585 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
2586 {
2587 	struct spdk_memory_domain **_domains = NULL;
2588 	struct nvme_bdev *nbdev = ctx;
2589 	struct nvme_ns *nvme_ns;
2590 	int i = 0, _array_size = array_size;
2591 	int rc = 0;
2592 
2593 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
2594 		if (domains && array_size >= i) {
2595 			_domains = &domains[i];
2596 		} else {
2597 			_domains = NULL;
2598 		}
2599 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
2600 		if (rc > 0) {
2601 			i += rc;
2602 			if (_array_size >= rc) {
2603 				_array_size -= rc;
2604 			} else {
2605 				_array_size = 0;
2606 			}
2607 		} else if (rc < 0) {
2608 			return rc;
2609 		}
2610 	}
2611 
2612 	return i;
2613 }
2614 
2615 static const char *
2616 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
2617 {
2618 	if (nvme_ctrlr->destruct) {
2619 		return "deleting";
2620 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
2621 		return "failed";
2622 	} else if (nvme_ctrlr->resetting) {
2623 		return "resetting";
2624 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
2625 		return "reconnect_is_delayed";
2626 	} else {
2627 		return "enabled";
2628 	}
2629 }
2630 
2631 void
2632 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
2633 {
2634 	struct spdk_nvme_transport_id *trid;
2635 	const struct spdk_nvme_ctrlr_opts *opts;
2636 	const struct spdk_nvme_ctrlr_data *cdata;
2637 
2638 	spdk_json_write_object_begin(w);
2639 
2640 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
2641 
2642 #ifdef SPDK_CONFIG_NVME_CUSE
2643 	size_t cuse_name_size = 128;
2644 	char cuse_name[cuse_name_size];
2645 
2646 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
2647 	if (rc == 0) {
2648 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
2649 	}
2650 #endif
2651 	trid = &nvme_ctrlr->active_path_id->trid;
2652 	spdk_json_write_named_object_begin(w, "trid");
2653 	nvme_bdev_dump_trid_json(trid, w);
2654 	spdk_json_write_object_end(w);
2655 
2656 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
2657 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
2658 
2659 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
2660 	spdk_json_write_named_object_begin(w, "host");
2661 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
2662 	spdk_json_write_named_string(w, "addr", opts->src_addr);
2663 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
2664 	spdk_json_write_object_end(w);
2665 
2666 	spdk_json_write_object_end(w);
2667 }
2668 
2669 static void
2670 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
2671 			 struct nvme_ns *nvme_ns)
2672 {
2673 	struct spdk_nvme_ns *ns;
2674 	struct spdk_nvme_ctrlr *ctrlr;
2675 	const struct spdk_nvme_ctrlr_data *cdata;
2676 	const struct spdk_nvme_transport_id *trid;
2677 	union spdk_nvme_vs_register vs;
2678 	const struct spdk_nvme_ns_data *nsdata;
2679 	char buf[128];
2680 
2681 	ns = nvme_ns->ns;
2682 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
2683 
2684 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2685 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
2686 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
2687 
2688 	spdk_json_write_object_begin(w);
2689 
2690 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
2691 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
2692 	}
2693 
2694 	spdk_json_write_named_object_begin(w, "trid");
2695 
2696 	nvme_bdev_dump_trid_json(trid, w);
2697 
2698 	spdk_json_write_object_end(w);
2699 
2700 #ifdef SPDK_CONFIG_NVME_CUSE
2701 	size_t cuse_name_size = 128;
2702 	char cuse_name[cuse_name_size];
2703 
2704 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
2705 					    cuse_name, &cuse_name_size);
2706 	if (rc == 0) {
2707 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
2708 	}
2709 #endif
2710 
2711 	spdk_json_write_named_object_begin(w, "ctrlr_data");
2712 
2713 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
2714 
2715 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
2716 
2717 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
2718 	spdk_str_trim(buf);
2719 	spdk_json_write_named_string(w, "model_number", buf);
2720 
2721 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
2722 	spdk_str_trim(buf);
2723 	spdk_json_write_named_string(w, "serial_number", buf);
2724 
2725 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
2726 	spdk_str_trim(buf);
2727 	spdk_json_write_named_string(w, "firmware_revision", buf);
2728 
2729 	if (cdata->subnqn[0] != '\0') {
2730 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
2731 	}
2732 
2733 	spdk_json_write_named_object_begin(w, "oacs");
2734 
2735 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
2736 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
2737 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
2738 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
2739 
2740 	spdk_json_write_object_end(w);
2741 
2742 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
2743 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
2744 
2745 	spdk_json_write_object_end(w);
2746 
2747 	spdk_json_write_named_object_begin(w, "vs");
2748 
2749 	spdk_json_write_name(w, "nvme_version");
2750 	if (vs.bits.ter) {
2751 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
2752 	} else {
2753 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
2754 	}
2755 
2756 	spdk_json_write_object_end(w);
2757 
2758 	nsdata = spdk_nvme_ns_get_data(ns);
2759 
2760 	spdk_json_write_named_object_begin(w, "ns_data");
2761 
2762 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
2763 
2764 	if (cdata->cmic.ana_reporting) {
2765 		spdk_json_write_named_string(w, "ana_state",
2766 					     _nvme_ana_state_str(nvme_ns->ana_state));
2767 	}
2768 
2769 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
2770 
2771 	spdk_json_write_object_end(w);
2772 
2773 	if (cdata->oacs.security) {
2774 		spdk_json_write_named_object_begin(w, "security");
2775 
2776 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
2777 
2778 		spdk_json_write_object_end(w);
2779 	}
2780 
2781 	spdk_json_write_object_end(w);
2782 }
2783 
2784 static const char *
2785 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
2786 {
2787 	switch (nbdev->mp_policy) {
2788 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
2789 		return "active_passive";
2790 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
2791 		return "active_active";
2792 	default:
2793 		assert(false);
2794 		return "invalid";
2795 	}
2796 }
2797 
2798 static int
2799 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
2800 {
2801 	struct nvme_bdev *nvme_bdev = ctx;
2802 	struct nvme_ns *nvme_ns;
2803 
2804 	pthread_mutex_lock(&nvme_bdev->mutex);
2805 	spdk_json_write_named_array_begin(w, "nvme");
2806 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
2807 		nvme_namespace_info_json(w, nvme_ns);
2808 	}
2809 	spdk_json_write_array_end(w);
2810 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
2811 	pthread_mutex_unlock(&nvme_bdev->mutex);
2812 
2813 	return 0;
2814 }
2815 
2816 static void
2817 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
2818 {
2819 	/* No config per bdev needed */
2820 }
2821 
2822 static uint64_t
2823 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
2824 {
2825 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
2826 	struct nvme_io_path *io_path;
2827 	struct nvme_poll_group *group;
2828 	uint64_t spin_time = 0;
2829 
2830 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
2831 		group = io_path->qpair->group;
2832 
2833 		if (!group || !group->collect_spin_stat) {
2834 			continue;
2835 		}
2836 
2837 		if (group->end_ticks != 0) {
2838 			group->spin_ticks += (group->end_ticks - group->start_ticks);
2839 			group->end_ticks = 0;
2840 		}
2841 
2842 		spin_time += group->spin_ticks;
2843 		group->start_ticks = 0;
2844 		group->spin_ticks = 0;
2845 	}
2846 
2847 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
2848 }
2849 
2850 static void
2851 bdev_nvme_reset_device_stat(void *ctx)
2852 {
2853 	struct nvme_bdev *nbdev = ctx;
2854 
2855 	if (nbdev->err_stat != NULL) {
2856 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
2857 	}
2858 }
2859 
2860 /* JSON string should be lowercases and underscore delimited string. */
2861 static void
2862 bdev_nvme_format_nvme_status(char *dst, const char *src)
2863 {
2864 	char tmp[256];
2865 
2866 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
2867 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
2868 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
2869 	spdk_strlwr(dst);
2870 }
2871 
2872 static void
2873 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
2874 {
2875 	struct nvme_bdev *nbdev = ctx;
2876 	struct spdk_nvme_status status = {};
2877 	uint16_t sct, sc;
2878 	char status_json[256];
2879 	const char *status_str;
2880 
2881 	if (nbdev->err_stat == NULL) {
2882 		return;
2883 	}
2884 
2885 	spdk_json_write_named_object_begin(w, "nvme_error");
2886 
2887 	spdk_json_write_named_object_begin(w, "status_type");
2888 	for (sct = 0; sct < 8; sct++) {
2889 		if (nbdev->err_stat->status_type[sct] == 0) {
2890 			continue;
2891 		}
2892 		status.sct = sct;
2893 
2894 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
2895 		assert(status_str != NULL);
2896 		bdev_nvme_format_nvme_status(status_json, status_str);
2897 
2898 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
2899 	}
2900 	spdk_json_write_object_end(w);
2901 
2902 	spdk_json_write_named_object_begin(w, "status_code");
2903 	for (sct = 0; sct < 4; sct++) {
2904 		status.sct = sct;
2905 		for (sc = 0; sc < 256; sc++) {
2906 			if (nbdev->err_stat->status[sct][sc] == 0) {
2907 				continue;
2908 			}
2909 			status.sc = sc;
2910 
2911 			status_str = spdk_nvme_cpl_get_status_string(&status);
2912 			assert(status_str != NULL);
2913 			bdev_nvme_format_nvme_status(status_json, status_str);
2914 
2915 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
2916 		}
2917 	}
2918 	spdk_json_write_object_end(w);
2919 
2920 	spdk_json_write_object_end(w);
2921 }
2922 
2923 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
2924 	.destruct		= bdev_nvme_destruct,
2925 	.submit_request		= bdev_nvme_submit_request,
2926 	.io_type_supported	= bdev_nvme_io_type_supported,
2927 	.get_io_channel		= bdev_nvme_get_io_channel,
2928 	.dump_info_json		= bdev_nvme_dump_info_json,
2929 	.write_config_json	= bdev_nvme_write_config_json,
2930 	.get_spin_time		= bdev_nvme_get_spin_time,
2931 	.get_module_ctx		= bdev_nvme_get_module_ctx,
2932 	.get_memory_domains	= bdev_nvme_get_memory_domains,
2933 	.reset_device_stat	= bdev_nvme_reset_device_stat,
2934 	.dump_device_stat_json	= bdev_nvme_dump_device_stat_json,
2935 };
2936 
2937 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
2938 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
2939 
2940 static int
2941 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
2942 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
2943 {
2944 	struct spdk_nvme_ana_group_descriptor *copied_desc;
2945 	uint8_t *orig_desc;
2946 	uint32_t i, desc_size, copy_len;
2947 	int rc = 0;
2948 
2949 	if (nvme_ctrlr->ana_log_page == NULL) {
2950 		return -EINVAL;
2951 	}
2952 
2953 	copied_desc = nvme_ctrlr->copied_ana_desc;
2954 
2955 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
2956 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
2957 
2958 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
2959 		memcpy(copied_desc, orig_desc, copy_len);
2960 
2961 		rc = cb_fn(copied_desc, cb_arg);
2962 		if (rc != 0) {
2963 			break;
2964 		}
2965 
2966 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
2967 			    copied_desc->num_of_nsid * sizeof(uint32_t);
2968 		orig_desc += desc_size;
2969 		copy_len -= desc_size;
2970 	}
2971 
2972 	return rc;
2973 }
2974 
2975 static int
2976 nvme_ns_ana_transition_timedout(void *ctx)
2977 {
2978 	struct nvme_ns *nvme_ns = ctx;
2979 
2980 	spdk_poller_unregister(&nvme_ns->anatt_timer);
2981 	nvme_ns->ana_transition_timedout = true;
2982 
2983 	return SPDK_POLLER_BUSY;
2984 }
2985 
2986 static void
2987 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
2988 		       const struct spdk_nvme_ana_group_descriptor *desc)
2989 {
2990 	const struct spdk_nvme_ctrlr_data *cdata;
2991 
2992 	nvme_ns->ana_group_id = desc->ana_group_id;
2993 	nvme_ns->ana_state = desc->ana_state;
2994 	nvme_ns->ana_state_updating = false;
2995 
2996 	switch (nvme_ns->ana_state) {
2997 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
2998 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
2999 		nvme_ns->ana_transition_timedout = false;
3000 		spdk_poller_unregister(&nvme_ns->anatt_timer);
3001 		break;
3002 
3003 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3004 	case SPDK_NVME_ANA_CHANGE_STATE:
3005 		if (nvme_ns->anatt_timer != NULL) {
3006 			break;
3007 		}
3008 
3009 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
3010 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
3011 				       nvme_ns,
3012 				       cdata->anatt * SPDK_SEC_TO_USEC);
3013 		break;
3014 	default:
3015 		break;
3016 	}
3017 }
3018 
3019 static int
3020 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
3021 {
3022 	struct nvme_ns *nvme_ns = cb_arg;
3023 	uint32_t i;
3024 
3025 	for (i = 0; i < desc->num_of_nsid; i++) {
3026 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
3027 			continue;
3028 		}
3029 
3030 		_nvme_ns_set_ana_state(nvme_ns, desc);
3031 		return 1;
3032 	}
3033 
3034 	return 0;
3035 }
3036 
3037 static void
3038 merge_nsid_sn_strings(const char *sn, char *nsid, int8_t *out)
3039 {
3040 	int i = 0, j = 0;
3041 	int sn_len = strlen(sn), nsid_len = strlen(nsid);
3042 
3043 	for (i = 0; i < nsid_len; i++) {
3044 		out[i] = nsid[i];
3045 	}
3046 
3047 	/* Since last few characters are more likely to be unique,
3048 	 * even among the devices from the same manufacturer,
3049 	 * we use serial number in reverse. We also skip the
3050 	 * terminating character of serial number string. */
3051 	for (j = sn_len - 1; j >= 0; j--) {
3052 		if (i == SPDK_UUID_STRING_LEN - 1) {
3053 			break;
3054 		}
3055 
3056 		/* There may be a lot of spaces in serial number string
3057 		 * and they will generate equally large number of the
3058 		 * same character, so just skip them. */
3059 		if (sn[j] == ' ') {
3060 			continue;
3061 		}
3062 
3063 		out[i] = sn[j];
3064 		i++;
3065 	}
3066 }
3067 
3068 /* Dictionary of characters for UUID generation. */
3069 static char dict[17] = "0123456789abcdef";
3070 
3071 static struct spdk_uuid
3072 nvme_generate_uuid(const char *sn, uint32_t nsid)
3073 {
3074 	struct spdk_uuid new_uuid;
3075 	char buf[SPDK_UUID_STRING_LEN] = {'\0'}, merged_str[SPDK_UUID_STRING_LEN] = {'\0'};
3076 	char nsid_str[NSID_STR_LEN] = {'\0'}, tmp;
3077 	uint64_t i = 0, j = 0, rem, dict_size = strlen(dict);
3078 	int rc;
3079 
3080 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
3081 
3082 	snprintf(nsid_str, NSID_STR_LEN, "%" PRIu32, nsid);
3083 
3084 	merge_nsid_sn_strings(sn, nsid_str, merged_str);
3085 
3086 	while (i < SPDK_UUID_STRING_LEN) {
3087 		/* If 'j' is equal to indexes, where '-' should be placed,
3088 		 * insert this character and continue the loop without
3089 		 * increasing 'i'. */
3090 		if ((j == 8 || j == 13 || j == 18 || j == 23)) {
3091 			buf[j] = '-';
3092 			j++;
3093 
3094 			/* Break, if we ran out of characters in
3095 			 * serial number and namespace ID string. */
3096 			if (j == strlen(merged_str)) {
3097 				break;
3098 			}
3099 			continue;
3100 		}
3101 
3102 		/* Change character in shuffled string to lower case. */
3103 		tmp = tolower(merged_str[i]);
3104 
3105 		if (isxdigit(tmp)) {
3106 			/* If character can be represented by a hex
3107 			 * value as is, copy it to the result buffer. */
3108 			buf[j] = tmp;
3109 		} else {
3110 			/* Otherwise get its code and divide it
3111 			 * by the number of elements in dictionary.
3112 			 * The remainder will be the index of dictionary
3113 			 * character to replace tmp value with. */
3114 			rem = tmp % dict_size;
3115 			buf[j] = dict[rem];
3116 		}
3117 
3118 		i++;
3119 		j++;
3120 
3121 		/* Break, if we ran out of characters in
3122 		 * serial number and namespace ID string. */
3123 		if (j == strlen(merged_str)) {
3124 			break;
3125 		}
3126 	}
3127 
3128 	/* If there are not enough values to fill UUID,
3129 	 * the rest is taken from dictionary characters. */
3130 	i = 0;
3131 	while (j < SPDK_UUID_STRING_LEN - 1) {
3132 		if ((j == 8 || j == 13 || j == 18 || j == 23)) {
3133 			buf[j] = '-';
3134 			j++;
3135 			continue;
3136 		}
3137 		buf[j] = dict[i % dict_size];
3138 		i++;
3139 		j++;
3140 	}
3141 
3142 	rc = spdk_uuid_parse(&new_uuid, buf);
3143 	if (rc != 0) {
3144 		SPDK_ERRLOG("Unexpected spdk_uuid_parse failure on %s.\n", buf);
3145 		assert(false);
3146 	}
3147 
3148 	return new_uuid;
3149 }
3150 
3151 static int
3152 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
3153 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
3154 		 uint32_t prchk_flags, void *ctx)
3155 {
3156 	const struct spdk_uuid		*uuid;
3157 	const uint8_t *nguid;
3158 	const struct spdk_nvme_ctrlr_data *cdata;
3159 	const struct spdk_nvme_ns_data	*nsdata;
3160 	const struct spdk_nvme_ctrlr_opts *opts;
3161 	enum spdk_nvme_csi		csi;
3162 	uint32_t atomic_bs, phys_bs, bs;
3163 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
3164 
3165 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3166 	csi = spdk_nvme_ns_get_csi(ns);
3167 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
3168 
3169 	switch (csi) {
3170 	case SPDK_NVME_CSI_NVM:
3171 		disk->product_name = "NVMe disk";
3172 		break;
3173 	case SPDK_NVME_CSI_ZNS:
3174 		disk->product_name = "NVMe ZNS disk";
3175 		disk->zoned = true;
3176 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
3177 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
3178 					     spdk_nvme_ns_get_extended_sector_size(ns);
3179 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
3180 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
3181 		break;
3182 	default:
3183 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
3184 		return -ENOTSUP;
3185 	}
3186 
3187 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
3188 	if (!disk->name) {
3189 		return -ENOMEM;
3190 	}
3191 
3192 	disk->write_cache = 0;
3193 	if (cdata->vwc.present) {
3194 		/* Enable if the Volatile Write Cache exists */
3195 		disk->write_cache = 1;
3196 	}
3197 	if (cdata->oncs.write_zeroes) {
3198 		disk->max_write_zeroes = UINT16_MAX + 1;
3199 	}
3200 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
3201 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
3202 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
3203 	/* NVMe driver will split one request into multiple requests
3204 	 * based on MDTS and stripe boundary, the bdev layer will use
3205 	 * max_segment_size and max_num_segments to split one big IO
3206 	 * into multiple requests, then small request can't run out
3207 	 * of NVMe internal requests data structure.
3208 	 */
3209 	if (opts && opts->io_queue_requests) {
3210 		disk->max_num_segments = opts->io_queue_requests / 2;
3211 	}
3212 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
3213 
3214 	nguid = spdk_nvme_ns_get_nguid(ns);
3215 	if (!nguid) {
3216 		uuid = spdk_nvme_ns_get_uuid(ns);
3217 		if (uuid) {
3218 			disk->uuid = *uuid;
3219 		} else if (g_opts.generate_uuids) {
3220 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
3221 			disk->uuid = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns));
3222 		}
3223 	} else {
3224 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
3225 	}
3226 
3227 	nsdata = spdk_nvme_ns_get_data(ns);
3228 	bs = spdk_nvme_ns_get_sector_size(ns);
3229 	atomic_bs = bs;
3230 	phys_bs = bs;
3231 	if (nsdata->nabo == 0) {
3232 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
3233 			atomic_bs = bs * (1 + nsdata->nawupf);
3234 		} else {
3235 			atomic_bs = bs * (1 + cdata->awupf);
3236 		}
3237 	}
3238 	if (nsdata->nsfeat.optperf) {
3239 		phys_bs = bs * (1 + nsdata->npwg);
3240 	}
3241 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
3242 
3243 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
3244 	if (disk->md_len != 0) {
3245 		disk->md_interleave = nsdata->flbas.extended;
3246 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
3247 		if (disk->dif_type != SPDK_DIF_DISABLE) {
3248 			disk->dif_is_head_of_md = nsdata->dps.md_start;
3249 			disk->dif_check_flags = prchk_flags;
3250 		}
3251 	}
3252 
3253 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
3254 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
3255 		disk->acwu = 0;
3256 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
3257 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
3258 	} else {
3259 		disk->acwu = cdata->acwu + 1; /* 0-based */
3260 	}
3261 
3262 	if (cdata->oncs.copy) {
3263 		/* For now bdev interface allows only single segment copy */
3264 		disk->max_copy = nsdata->mssrl;
3265 	}
3266 
3267 	disk->ctxt = ctx;
3268 	disk->fn_table = &nvmelib_fn_table;
3269 	disk->module = &nvme_if;
3270 
3271 	return 0;
3272 }
3273 
3274 static int
3275 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
3276 {
3277 	struct nvme_bdev *bdev;
3278 	int rc;
3279 
3280 	bdev = calloc(1, sizeof(*bdev));
3281 	if (!bdev) {
3282 		SPDK_ERRLOG("bdev calloc() failed\n");
3283 		return -ENOMEM;
3284 	}
3285 
3286 	if (g_opts.nvme_error_stat) {
3287 		bdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
3288 		if (!bdev->err_stat) {
3289 			SPDK_ERRLOG("err_stat calloc() failed\n");
3290 			free(bdev);
3291 			return -ENOMEM;
3292 		}
3293 	}
3294 
3295 	rc = pthread_mutex_init(&bdev->mutex, NULL);
3296 	if (rc != 0) {
3297 		free(bdev->err_stat);
3298 		free(bdev);
3299 		return rc;
3300 	}
3301 
3302 	bdev->ref = 1;
3303 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
3304 	TAILQ_INIT(&bdev->nvme_ns_list);
3305 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
3306 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
3307 
3308 	rc = nvme_disk_create(&bdev->disk, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
3309 			      nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev);
3310 	if (rc != 0) {
3311 		SPDK_ERRLOG("Failed to create NVMe disk\n");
3312 		pthread_mutex_destroy(&bdev->mutex);
3313 		free(bdev->err_stat);
3314 		free(bdev);
3315 		return rc;
3316 	}
3317 
3318 	spdk_io_device_register(bdev,
3319 				bdev_nvme_create_bdev_channel_cb,
3320 				bdev_nvme_destroy_bdev_channel_cb,
3321 				sizeof(struct nvme_bdev_channel),
3322 				bdev->disk.name);
3323 
3324 	rc = spdk_bdev_register(&bdev->disk);
3325 	if (rc != 0) {
3326 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
3327 		spdk_io_device_unregister(bdev, NULL);
3328 		pthread_mutex_destroy(&bdev->mutex);
3329 		free(bdev->disk.name);
3330 		free(bdev->err_stat);
3331 		free(bdev);
3332 		return rc;
3333 	}
3334 
3335 	nvme_ns->bdev = bdev;
3336 	bdev->nsid = nvme_ns->id;
3337 
3338 	bdev->nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
3339 	TAILQ_INSERT_TAIL(&nvme_ctrlr->nbdev_ctrlr->bdevs, bdev, tailq);
3340 
3341 	return 0;
3342 }
3343 
3344 static bool
3345 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
3346 {
3347 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
3348 	const struct spdk_uuid *uuid1, *uuid2;
3349 
3350 	nsdata1 = spdk_nvme_ns_get_data(ns1);
3351 	nsdata2 = spdk_nvme_ns_get_data(ns2);
3352 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
3353 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
3354 
3355 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
3356 	       nsdata1->eui64 == nsdata2->eui64 &&
3357 	       ((uuid1 == NULL && uuid2 == NULL) ||
3358 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
3359 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
3360 }
3361 
3362 static bool
3363 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
3364 		 struct spdk_nvme_ctrlr_opts *opts)
3365 {
3366 	struct nvme_probe_skip_entry *entry;
3367 
3368 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
3369 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
3370 			return false;
3371 		}
3372 	}
3373 
3374 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
3375 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
3376 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
3377 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
3378 	opts->disable_read_ana_log_page = true;
3379 
3380 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
3381 
3382 	return true;
3383 }
3384 
3385 static void
3386 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
3387 {
3388 	struct nvme_ctrlr *nvme_ctrlr = ctx;
3389 
3390 	if (spdk_nvme_cpl_is_error(cpl)) {
3391 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
3392 			     cpl->status.sct);
3393 		bdev_nvme_reset(nvme_ctrlr);
3394 	} else if (cpl->cdw0 & 0x1) {
3395 		SPDK_WARNLOG("Specified command could not be aborted.\n");
3396 		bdev_nvme_reset(nvme_ctrlr);
3397 	}
3398 }
3399 
3400 static void
3401 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
3402 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
3403 {
3404 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
3405 	union spdk_nvme_csts_register csts;
3406 	int rc;
3407 
3408 	assert(nvme_ctrlr->ctrlr == ctrlr);
3409 
3410 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
3411 
3412 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
3413 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
3414 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
3415 	 * completion recursively.
3416 	 */
3417 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
3418 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
3419 		if (csts.bits.cfs) {
3420 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
3421 			bdev_nvme_reset(nvme_ctrlr);
3422 			return;
3423 		}
3424 	}
3425 
3426 	switch (g_opts.action_on_timeout) {
3427 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
3428 		if (qpair) {
3429 			/* Don't send abort to ctrlr when ctrlr is not available. */
3430 			pthread_mutex_lock(&nvme_ctrlr->mutex);
3431 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
3432 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
3433 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
3434 				return;
3435 			}
3436 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
3437 
3438 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
3439 						       nvme_abort_cpl, nvme_ctrlr);
3440 			if (rc == 0) {
3441 				return;
3442 			}
3443 
3444 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
3445 		}
3446 
3447 	/* FALLTHROUGH */
3448 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
3449 		bdev_nvme_reset(nvme_ctrlr);
3450 		break;
3451 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
3452 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
3453 		break;
3454 	default:
3455 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
3456 		break;
3457 	}
3458 }
3459 
3460 static void
3461 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
3462 {
3463 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
3464 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
3465 
3466 	if (rc == 0) {
3467 		nvme_ns->probe_ctx = NULL;
3468 		pthread_mutex_lock(&nvme_ctrlr->mutex);
3469 		nvme_ctrlr->ref++;
3470 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3471 	} else {
3472 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
3473 		free(nvme_ns);
3474 	}
3475 
3476 	if (ctx) {
3477 		ctx->populates_in_progress--;
3478 		if (ctx->populates_in_progress == 0) {
3479 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
3480 		}
3481 	}
3482 }
3483 
3484 static void
3485 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
3486 {
3487 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3488 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3489 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3490 	int rc;
3491 
3492 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
3493 	if (rc != 0) {
3494 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
3495 	}
3496 
3497 	spdk_for_each_channel_continue(i, rc);
3498 }
3499 
3500 static void
3501 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
3502 {
3503 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3504 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3505 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3506 	struct nvme_io_path *io_path;
3507 
3508 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
3509 	if (io_path != NULL) {
3510 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
3511 	}
3512 
3513 	spdk_for_each_channel_continue(i, 0);
3514 }
3515 
3516 static void
3517 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
3518 {
3519 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3520 
3521 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
3522 }
3523 
3524 static void
3525 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
3526 {
3527 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3528 	struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
3529 
3530 	if (status == 0) {
3531 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
3532 	} else {
3533 		/* Delete the added io_paths and fail populating the namespace. */
3534 		spdk_for_each_channel(bdev,
3535 				      bdev_nvme_delete_io_path,
3536 				      nvme_ns,
3537 				      bdev_nvme_add_io_path_failed);
3538 	}
3539 }
3540 
3541 static int
3542 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
3543 {
3544 	struct nvme_ns *tmp_ns;
3545 	const struct spdk_nvme_ns_data *nsdata;
3546 
3547 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
3548 	if (!nsdata->nmic.can_share) {
3549 		SPDK_ERRLOG("Namespace cannot be shared.\n");
3550 		return -EINVAL;
3551 	}
3552 
3553 	pthread_mutex_lock(&bdev->mutex);
3554 
3555 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
3556 	assert(tmp_ns != NULL);
3557 
3558 	if (!bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
3559 		pthread_mutex_unlock(&bdev->mutex);
3560 		SPDK_ERRLOG("Namespaces are not identical.\n");
3561 		return -EINVAL;
3562 	}
3563 
3564 	bdev->ref++;
3565 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
3566 	nvme_ns->bdev = bdev;
3567 
3568 	pthread_mutex_unlock(&bdev->mutex);
3569 
3570 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
3571 	spdk_for_each_channel(bdev,
3572 			      bdev_nvme_add_io_path,
3573 			      nvme_ns,
3574 			      bdev_nvme_add_io_path_done);
3575 
3576 	return 0;
3577 }
3578 
3579 static void
3580 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
3581 {
3582 	struct spdk_nvme_ns	*ns;
3583 	struct nvme_bdev	*bdev;
3584 	int			rc = 0;
3585 
3586 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
3587 	if (!ns) {
3588 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
3589 		rc = -EINVAL;
3590 		goto done;
3591 	}
3592 
3593 	nvme_ns->ns = ns;
3594 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
3595 
3596 	if (nvme_ctrlr->ana_log_page != NULL) {
3597 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
3598 	}
3599 
3600 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
3601 	if (bdev == NULL) {
3602 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
3603 	} else {
3604 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
3605 		if (rc == 0) {
3606 			return;
3607 		}
3608 	}
3609 done:
3610 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
3611 }
3612 
3613 static void
3614 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
3615 {
3616 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
3617 
3618 	assert(nvme_ctrlr != NULL);
3619 
3620 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3621 
3622 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
3623 
3624 	if (nvme_ns->bdev != NULL) {
3625 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3626 		return;
3627 	}
3628 
3629 	free(nvme_ns);
3630 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3631 
3632 	nvme_ctrlr_release(nvme_ctrlr);
3633 }
3634 
3635 static void
3636 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
3637 {
3638 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3639 
3640 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
3641 }
3642 
3643 static void
3644 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
3645 {
3646 	struct nvme_bdev *bdev;
3647 
3648 	spdk_poller_unregister(&nvme_ns->anatt_timer);
3649 
3650 	bdev = nvme_ns->bdev;
3651 	if (bdev != NULL) {
3652 		pthread_mutex_lock(&bdev->mutex);
3653 
3654 		assert(bdev->ref > 0);
3655 		bdev->ref--;
3656 		if (bdev->ref == 0) {
3657 			pthread_mutex_unlock(&bdev->mutex);
3658 
3659 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
3660 		} else {
3661 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
3662 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
3663 			 * and clear nvme_ns->bdev here.
3664 			 */
3665 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
3666 			nvme_ns->bdev = NULL;
3667 
3668 			pthread_mutex_unlock(&bdev->mutex);
3669 
3670 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
3671 			 * we call depopulate_namespace_done() to avoid use-after-free.
3672 			 */
3673 			spdk_for_each_channel(bdev,
3674 					      bdev_nvme_delete_io_path,
3675 					      nvme_ns,
3676 					      bdev_nvme_delete_io_path_done);
3677 			return;
3678 		}
3679 	}
3680 
3681 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
3682 }
3683 
3684 static void
3685 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
3686 			       struct nvme_async_probe_ctx *ctx)
3687 {
3688 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
3689 	struct nvme_ns	*nvme_ns, *next;
3690 	struct spdk_nvme_ns	*ns;
3691 	struct nvme_bdev	*bdev;
3692 	uint32_t		nsid;
3693 	int			rc;
3694 	uint64_t		num_sectors;
3695 
3696 	if (ctx) {
3697 		/* Initialize this count to 1 to handle the populate functions
3698 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
3699 		 */
3700 		ctx->populates_in_progress = 1;
3701 	}
3702 
3703 	/* First loop over our existing namespaces and see if they have been
3704 	 * removed. */
3705 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
3706 	while (nvme_ns != NULL) {
3707 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
3708 
3709 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
3710 			/* NS is still there but attributes may have changed */
3711 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
3712 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
3713 			bdev = nvme_ns->bdev;
3714 			assert(bdev != NULL);
3715 			if (bdev->disk.blockcnt != num_sectors) {
3716 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
3717 					       nvme_ns->id,
3718 					       bdev->disk.name,
3719 					       bdev->disk.blockcnt,
3720 					       num_sectors);
3721 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
3722 				if (rc != 0) {
3723 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
3724 						    bdev->disk.name, rc);
3725 				}
3726 			}
3727 		} else {
3728 			/* Namespace was removed */
3729 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
3730 		}
3731 
3732 		nvme_ns = next;
3733 	}
3734 
3735 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
3736 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
3737 	while (nsid != 0) {
3738 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
3739 
3740 		if (nvme_ns == NULL) {
3741 			/* Found a new one */
3742 			nvme_ns = calloc(1, sizeof(struct nvme_ns));
3743 			if (nvme_ns == NULL) {
3744 				SPDK_ERRLOG("Failed to allocate namespace\n");
3745 				/* This just fails to attach the namespace. It may work on a future attempt. */
3746 				continue;
3747 			}
3748 
3749 			nvme_ns->id = nsid;
3750 			nvme_ns->ctrlr = nvme_ctrlr;
3751 
3752 			nvme_ns->bdev = NULL;
3753 
3754 			if (ctx) {
3755 				ctx->populates_in_progress++;
3756 			}
3757 			nvme_ns->probe_ctx = ctx;
3758 
3759 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
3760 
3761 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
3762 		}
3763 
3764 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
3765 	}
3766 
3767 	if (ctx) {
3768 		/* Decrement this count now that the loop is over to account
3769 		 * for the one we started with.  If the count is then 0, we
3770 		 * know any populate_namespace functions completed immediately,
3771 		 * so we'll kick the callback here.
3772 		 */
3773 		ctx->populates_in_progress--;
3774 		if (ctx->populates_in_progress == 0) {
3775 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
3776 		}
3777 	}
3778 
3779 }
3780 
3781 static void
3782 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
3783 {
3784 	struct nvme_ns *nvme_ns, *tmp;
3785 
3786 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
3787 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
3788 	}
3789 }
3790 
3791 static uint32_t
3792 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
3793 {
3794 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
3795 	const struct spdk_nvme_ctrlr_data *cdata;
3796 	uint32_t nsid, ns_count = 0;
3797 
3798 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3799 
3800 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
3801 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
3802 		ns_count++;
3803 	}
3804 
3805 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
3806 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
3807 	       sizeof(uint32_t);
3808 }
3809 
3810 static int
3811 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
3812 			  void *cb_arg)
3813 {
3814 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
3815 	struct nvme_ns *nvme_ns;
3816 	uint32_t i, nsid;
3817 
3818 	for (i = 0; i < desc->num_of_nsid; i++) {
3819 		nsid = desc->nsid[i];
3820 		if (nsid == 0) {
3821 			continue;
3822 		}
3823 
3824 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
3825 
3826 		assert(nvme_ns != NULL);
3827 		if (nvme_ns == NULL) {
3828 			/* Target told us that an inactive namespace had an ANA change */
3829 			continue;
3830 		}
3831 
3832 		_nvme_ns_set_ana_state(nvme_ns, desc);
3833 	}
3834 
3835 	return 0;
3836 }
3837 
3838 static void
3839 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
3840 {
3841 	struct nvme_ns *nvme_ns;
3842 
3843 	spdk_free(nvme_ctrlr->ana_log_page);
3844 	nvme_ctrlr->ana_log_page = NULL;
3845 
3846 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
3847 	     nvme_ns != NULL;
3848 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
3849 		nvme_ns->ana_state_updating = false;
3850 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
3851 	}
3852 }
3853 
3854 static void
3855 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
3856 {
3857 	struct nvme_ctrlr *nvme_ctrlr = ctx;
3858 
3859 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
3860 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
3861 					     nvme_ctrlr);
3862 	} else {
3863 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
3864 	}
3865 
3866 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3867 
3868 	assert(nvme_ctrlr->ana_log_page_updating == true);
3869 	nvme_ctrlr->ana_log_page_updating = false;
3870 
3871 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
3872 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3873 
3874 		nvme_ctrlr_unregister(nvme_ctrlr);
3875 	} else {
3876 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3877 
3878 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
3879 	}
3880 }
3881 
3882 static int
3883 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
3884 {
3885 	uint32_t ana_log_page_size;
3886 	int rc;
3887 
3888 	if (nvme_ctrlr->ana_log_page == NULL) {
3889 		return -EINVAL;
3890 	}
3891 
3892 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
3893 
3894 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
3895 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
3896 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
3897 		return -EINVAL;
3898 	}
3899 
3900 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3901 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
3902 	    nvme_ctrlr->ana_log_page_updating) {
3903 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3904 		return -EBUSY;
3905 	}
3906 
3907 	nvme_ctrlr->ana_log_page_updating = true;
3908 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3909 
3910 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
3911 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
3912 					      SPDK_NVME_GLOBAL_NS_TAG,
3913 					      nvme_ctrlr->ana_log_page,
3914 					      ana_log_page_size, 0,
3915 					      nvme_ctrlr_read_ana_log_page_done,
3916 					      nvme_ctrlr);
3917 	if (rc != 0) {
3918 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
3919 	}
3920 
3921 	return rc;
3922 }
3923 
3924 static void
3925 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
3926 {
3927 }
3928 
3929 struct bdev_nvme_set_preferred_path_ctx {
3930 	struct spdk_bdev_desc *desc;
3931 	struct nvme_ns *nvme_ns;
3932 	bdev_nvme_set_preferred_path_cb cb_fn;
3933 	void *cb_arg;
3934 };
3935 
3936 static void
3937 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
3938 {
3939 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
3940 
3941 	assert(ctx != NULL);
3942 	assert(ctx->desc != NULL);
3943 	assert(ctx->cb_fn != NULL);
3944 
3945 	spdk_bdev_close(ctx->desc);
3946 
3947 	ctx->cb_fn(ctx->cb_arg, status);
3948 
3949 	free(ctx);
3950 }
3951 
3952 static void
3953 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
3954 {
3955 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
3956 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3957 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3958 	struct nvme_io_path *io_path, *prev;
3959 
3960 	prev = NULL;
3961 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3962 		if (io_path->nvme_ns == ctx->nvme_ns) {
3963 			break;
3964 		}
3965 		prev = io_path;
3966 	}
3967 
3968 	if (io_path != NULL) {
3969 		if (prev != NULL) {
3970 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
3971 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
3972 		}
3973 
3974 		/* We can set io_path to nbdev_ch->current_io_path directly here.
3975 		 * However, it needs to be conditional. To simplify the code,
3976 		 * just clear nbdev_ch->current_io_path and let find_io_path()
3977 		 * fill it.
3978 		 *
3979 		 * Automatic failback may be disabled. Hence even if the io_path is
3980 		 * already at the head, clear nbdev_ch->current_io_path.
3981 		 */
3982 		nbdev_ch->current_io_path = NULL;
3983 	}
3984 
3985 	spdk_for_each_channel_continue(i, 0);
3986 }
3987 
3988 static struct nvme_ns *
3989 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
3990 {
3991 	struct nvme_ns *nvme_ns, *prev;
3992 	const struct spdk_nvme_ctrlr_data *cdata;
3993 
3994 	prev = NULL;
3995 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3996 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
3997 
3998 		if (cdata->cntlid == cntlid) {
3999 			break;
4000 		}
4001 		prev = nvme_ns;
4002 	}
4003 
4004 	if (nvme_ns != NULL && prev != NULL) {
4005 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
4006 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
4007 	}
4008 
4009 	return nvme_ns;
4010 }
4011 
4012 /* This function supports only multipath mode. There is only a single I/O path
4013  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
4014  * head of the I/O path list for each NVMe bdev channel.
4015  *
4016  * NVMe bdev channel may be acquired after completing this function. move the
4017  * matched namespace to the head of the namespace list for the NVMe bdev too.
4018  */
4019 void
4020 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
4021 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
4022 {
4023 	struct bdev_nvme_set_preferred_path_ctx *ctx;
4024 	struct spdk_bdev *bdev;
4025 	struct nvme_bdev *nbdev;
4026 	int rc = 0;
4027 
4028 	assert(cb_fn != NULL);
4029 
4030 	ctx = calloc(1, sizeof(*ctx));
4031 	if (ctx == NULL) {
4032 		SPDK_ERRLOG("Failed to alloc context.\n");
4033 		rc = -ENOMEM;
4034 		goto err_alloc;
4035 	}
4036 
4037 	ctx->cb_fn = cb_fn;
4038 	ctx->cb_arg = cb_arg;
4039 
4040 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
4041 	if (rc != 0) {
4042 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
4043 		goto err_open;
4044 	}
4045 
4046 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
4047 
4048 	if (bdev->module != &nvme_if) {
4049 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
4050 		rc = -ENODEV;
4051 		goto err_bdev;
4052 	}
4053 
4054 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
4055 
4056 	pthread_mutex_lock(&nbdev->mutex);
4057 
4058 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
4059 	if (ctx->nvme_ns == NULL) {
4060 		pthread_mutex_unlock(&nbdev->mutex);
4061 
4062 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
4063 		rc = -ENODEV;
4064 		goto err_bdev;
4065 	}
4066 
4067 	pthread_mutex_unlock(&nbdev->mutex);
4068 
4069 	spdk_for_each_channel(nbdev,
4070 			      _bdev_nvme_set_preferred_path,
4071 			      ctx,
4072 			      bdev_nvme_set_preferred_path_done);
4073 	return;
4074 
4075 err_bdev:
4076 	spdk_bdev_close(ctx->desc);
4077 err_open:
4078 	free(ctx);
4079 err_alloc:
4080 	cb_fn(cb_arg, rc);
4081 }
4082 
4083 struct bdev_nvme_set_multipath_policy_ctx {
4084 	struct spdk_bdev_desc *desc;
4085 	bdev_nvme_set_multipath_policy_cb cb_fn;
4086 	void *cb_arg;
4087 };
4088 
4089 static void
4090 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
4091 {
4092 	struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4093 
4094 	assert(ctx != NULL);
4095 	assert(ctx->desc != NULL);
4096 	assert(ctx->cb_fn != NULL);
4097 
4098 	spdk_bdev_close(ctx->desc);
4099 
4100 	ctx->cb_fn(ctx->cb_arg, status);
4101 
4102 	free(ctx);
4103 }
4104 
4105 static void
4106 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
4107 {
4108 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4109 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4110 	struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
4111 
4112 	nbdev_ch->mp_policy = nbdev->mp_policy;
4113 	nbdev_ch->current_io_path = NULL;
4114 
4115 	spdk_for_each_channel_continue(i, 0);
4116 }
4117 
4118 void
4119 bdev_nvme_set_multipath_policy(const char *name, enum bdev_nvme_multipath_policy policy,
4120 			       bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
4121 {
4122 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
4123 	struct spdk_bdev *bdev;
4124 	struct nvme_bdev *nbdev;
4125 	int rc;
4126 
4127 	assert(cb_fn != NULL);
4128 
4129 	ctx = calloc(1, sizeof(*ctx));
4130 	if (ctx == NULL) {
4131 		SPDK_ERRLOG("Failed to alloc context.\n");
4132 		rc = -ENOMEM;
4133 		goto err_alloc;
4134 	}
4135 
4136 	ctx->cb_fn = cb_fn;
4137 	ctx->cb_arg = cb_arg;
4138 
4139 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
4140 	if (rc != 0) {
4141 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
4142 		rc = -ENODEV;
4143 		goto err_open;
4144 	}
4145 
4146 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
4147 	if (bdev->module != &nvme_if) {
4148 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
4149 		rc = -ENODEV;
4150 		goto err_module;
4151 	}
4152 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
4153 
4154 	pthread_mutex_lock(&nbdev->mutex);
4155 	nbdev->mp_policy = policy;
4156 	pthread_mutex_unlock(&nbdev->mutex);
4157 
4158 	spdk_for_each_channel(nbdev,
4159 			      _bdev_nvme_set_multipath_policy,
4160 			      ctx,
4161 			      bdev_nvme_set_multipath_policy_done);
4162 	return;
4163 
4164 err_module:
4165 	spdk_bdev_close(ctx->desc);
4166 err_open:
4167 	free(ctx);
4168 err_alloc:
4169 	cb_fn(cb_arg, rc);
4170 }
4171 
4172 static void
4173 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
4174 {
4175 	struct nvme_ctrlr *nvme_ctrlr		= arg;
4176 	union spdk_nvme_async_event_completion	event;
4177 
4178 	if (spdk_nvme_cpl_is_error(cpl)) {
4179 		SPDK_WARNLOG("AER request execute failed\n");
4180 		return;
4181 	}
4182 
4183 	event.raw = cpl->cdw0;
4184 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
4185 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
4186 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
4187 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
4188 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
4189 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
4190 	}
4191 }
4192 
4193 static void
4194 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, size_t count, int rc)
4195 {
4196 	if (ctx->cb_fn) {
4197 		ctx->cb_fn(ctx->cb_ctx, count, rc);
4198 	}
4199 
4200 	ctx->namespaces_populated = true;
4201 	if (ctx->probe_done) {
4202 		/* The probe was already completed, so we need to free the context
4203 		 * here.  This can happen for cases like OCSSD, where we need to
4204 		 * send additional commands to the SSD after attach.
4205 		 */
4206 		free(ctx);
4207 	}
4208 }
4209 
4210 static void
4211 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
4212 		       struct nvme_async_probe_ctx *ctx)
4213 {
4214 	spdk_io_device_register(nvme_ctrlr,
4215 				bdev_nvme_create_ctrlr_channel_cb,
4216 				bdev_nvme_destroy_ctrlr_channel_cb,
4217 				sizeof(struct nvme_ctrlr_channel),
4218 				nvme_ctrlr->nbdev_ctrlr->name);
4219 
4220 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
4221 }
4222 
4223 static void
4224 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
4225 {
4226 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
4227 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
4228 
4229 	nvme_ctrlr->probe_ctx = NULL;
4230 
4231 	if (spdk_nvme_cpl_is_error(cpl)) {
4232 		nvme_ctrlr_delete(nvme_ctrlr);
4233 
4234 		if (ctx != NULL) {
4235 			populate_namespaces_cb(ctx, 0, -1);
4236 		}
4237 		return;
4238 	}
4239 
4240 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
4241 }
4242 
4243 static int
4244 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
4245 			     struct nvme_async_probe_ctx *ctx)
4246 {
4247 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4248 	const struct spdk_nvme_ctrlr_data *cdata;
4249 	uint32_t ana_log_page_size;
4250 
4251 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4252 
4253 	/* Set buffer size enough to include maximum number of allowed namespaces. */
4254 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
4255 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
4256 			    sizeof(uint32_t);
4257 
4258 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
4259 						SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
4260 	if (nvme_ctrlr->ana_log_page == NULL) {
4261 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
4262 		return -ENXIO;
4263 	}
4264 
4265 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
4266 	 * Hence copy each descriptor to a temporary area when parsing it.
4267 	 *
4268 	 * Allocate a buffer whose size is as large as ANA log page buffer because
4269 	 * we do not know the size of a descriptor until actually reading it.
4270 	 */
4271 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
4272 	if (nvme_ctrlr->copied_ana_desc == NULL) {
4273 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
4274 		return -ENOMEM;
4275 	}
4276 
4277 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
4278 
4279 	nvme_ctrlr->probe_ctx = ctx;
4280 
4281 	/* Then, set the read size only to include the current active namespaces. */
4282 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
4283 
4284 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
4285 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
4286 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
4287 		return -EINVAL;
4288 	}
4289 
4290 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
4291 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
4292 						SPDK_NVME_GLOBAL_NS_TAG,
4293 						nvme_ctrlr->ana_log_page,
4294 						ana_log_page_size, 0,
4295 						nvme_ctrlr_init_ana_log_page_done,
4296 						nvme_ctrlr);
4297 }
4298 
4299 /* hostnqn and subnqn were already verified before attaching a controller.
4300  * Hence check only the multipath capability and cntlid here.
4301  */
4302 static bool
4303 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
4304 {
4305 	struct nvme_ctrlr *tmp;
4306 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
4307 
4308 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4309 
4310 	if (!cdata->cmic.multi_ctrlr) {
4311 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
4312 		return false;
4313 	}
4314 
4315 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
4316 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
4317 
4318 		if (!tmp_cdata->cmic.multi_ctrlr) {
4319 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
4320 			return false;
4321 		}
4322 		if (cdata->cntlid == tmp_cdata->cntlid) {
4323 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
4324 			return false;
4325 		}
4326 	}
4327 
4328 	return true;
4329 }
4330 
4331 static int
4332 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
4333 {
4334 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
4335 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4336 	int rc = 0;
4337 
4338 	pthread_mutex_lock(&g_bdev_nvme_mutex);
4339 
4340 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
4341 	if (nbdev_ctrlr != NULL) {
4342 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
4343 			rc = -EINVAL;
4344 			goto exit;
4345 		}
4346 	} else {
4347 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
4348 		if (nbdev_ctrlr == NULL) {
4349 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
4350 			rc = -ENOMEM;
4351 			goto exit;
4352 		}
4353 		nbdev_ctrlr->name = strdup(name);
4354 		if (nbdev_ctrlr->name == NULL) {
4355 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
4356 			free(nbdev_ctrlr);
4357 			goto exit;
4358 		}
4359 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
4360 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
4361 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
4362 	}
4363 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
4364 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
4365 exit:
4366 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
4367 	return rc;
4368 }
4369 
4370 static int
4371 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
4372 		  const char *name,
4373 		  const struct spdk_nvme_transport_id *trid,
4374 		  struct nvme_async_probe_ctx *ctx)
4375 {
4376 	struct nvme_ctrlr *nvme_ctrlr;
4377 	struct nvme_path_id *path_id;
4378 	const struct spdk_nvme_ctrlr_data *cdata;
4379 	int rc;
4380 
4381 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
4382 	if (nvme_ctrlr == NULL) {
4383 		SPDK_ERRLOG("Failed to allocate device struct\n");
4384 		return -ENOMEM;
4385 	}
4386 
4387 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
4388 	if (rc != 0) {
4389 		free(nvme_ctrlr);
4390 		return rc;
4391 	}
4392 
4393 	TAILQ_INIT(&nvme_ctrlr->trids);
4394 
4395 	RB_INIT(&nvme_ctrlr->namespaces);
4396 
4397 	path_id = calloc(1, sizeof(*path_id));
4398 	if (path_id == NULL) {
4399 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
4400 		rc = -ENOMEM;
4401 		goto err;
4402 	}
4403 
4404 	path_id->trid = *trid;
4405 	if (ctx != NULL) {
4406 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
4407 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
4408 	}
4409 	nvme_ctrlr->active_path_id = path_id;
4410 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
4411 
4412 	nvme_ctrlr->thread = spdk_get_thread();
4413 	nvme_ctrlr->ctrlr = ctrlr;
4414 	nvme_ctrlr->ref = 1;
4415 
4416 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
4417 		SPDK_ERRLOG("OCSSDs are not supported");
4418 		rc = -ENOTSUP;
4419 		goto err;
4420 	}
4421 
4422 	if (ctx != NULL) {
4423 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
4424 	} else {
4425 		bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
4426 	}
4427 
4428 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
4429 					  g_opts.nvme_adminq_poll_period_us);
4430 
4431 	if (g_opts.timeout_us > 0) {
4432 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
4433 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
4434 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
4435 					  g_opts.timeout_us : g_opts.timeout_admin_us;
4436 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
4437 				adm_timeout_us, timeout_cb, nvme_ctrlr);
4438 	}
4439 
4440 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
4441 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
4442 
4443 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
4444 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
4445 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
4446 	}
4447 
4448 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
4449 	if (rc != 0) {
4450 		goto err;
4451 	}
4452 
4453 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4454 
4455 	if (cdata->cmic.ana_reporting) {
4456 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
4457 		if (rc == 0) {
4458 			return 0;
4459 		}
4460 	} else {
4461 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
4462 		return 0;
4463 	}
4464 
4465 err:
4466 	nvme_ctrlr_delete(nvme_ctrlr);
4467 	return rc;
4468 }
4469 
4470 void
4471 bdev_nvme_get_default_ctrlr_opts(struct nvme_ctrlr_opts *opts)
4472 {
4473 	opts->prchk_flags = 0;
4474 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
4475 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
4476 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
4477 }
4478 
4479 static void
4480 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4481 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
4482 {
4483 	char *name;
4484 
4485 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
4486 	if (!name) {
4487 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
4488 		return;
4489 	}
4490 
4491 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
4492 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
4493 	} else {
4494 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
4495 	}
4496 
4497 	free(name);
4498 }
4499 
4500 static void
4501 _nvme_ctrlr_destruct(void *ctx)
4502 {
4503 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4504 
4505 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
4506 	nvme_ctrlr_release(nvme_ctrlr);
4507 }
4508 
4509 static int
4510 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
4511 {
4512 	struct nvme_probe_skip_entry *entry;
4513 
4514 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4515 
4516 	/* The controller's destruction was already started */
4517 	if (nvme_ctrlr->destruct) {
4518 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4519 		return 0;
4520 	}
4521 
4522 	if (!hotplug &&
4523 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
4524 		entry = calloc(1, sizeof(*entry));
4525 		if (!entry) {
4526 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4527 			return -ENOMEM;
4528 		}
4529 		entry->trid = nvme_ctrlr->active_path_id->trid;
4530 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
4531 	}
4532 
4533 	nvme_ctrlr->destruct = true;
4534 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4535 
4536 	_nvme_ctrlr_destruct(nvme_ctrlr);
4537 
4538 	return 0;
4539 }
4540 
4541 static void
4542 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
4543 {
4544 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
4545 
4546 	_bdev_nvme_delete(nvme_ctrlr, true);
4547 }
4548 
4549 static int
4550 bdev_nvme_hotplug_probe(void *arg)
4551 {
4552 	if (g_hotplug_probe_ctx == NULL) {
4553 		spdk_poller_unregister(&g_hotplug_probe_poller);
4554 		return SPDK_POLLER_IDLE;
4555 	}
4556 
4557 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
4558 		g_hotplug_probe_ctx = NULL;
4559 		spdk_poller_unregister(&g_hotplug_probe_poller);
4560 	}
4561 
4562 	return SPDK_POLLER_BUSY;
4563 }
4564 
4565 static int
4566 bdev_nvme_hotplug(void *arg)
4567 {
4568 	struct spdk_nvme_transport_id trid_pcie;
4569 
4570 	if (g_hotplug_probe_ctx) {
4571 		return SPDK_POLLER_BUSY;
4572 	}
4573 
4574 	memset(&trid_pcie, 0, sizeof(trid_pcie));
4575 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
4576 
4577 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
4578 			      hotplug_probe_cb, attach_cb, NULL);
4579 
4580 	if (g_hotplug_probe_ctx) {
4581 		assert(g_hotplug_probe_poller == NULL);
4582 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
4583 	}
4584 
4585 	return SPDK_POLLER_BUSY;
4586 }
4587 
4588 void
4589 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
4590 {
4591 	*opts = g_opts;
4592 }
4593 
4594 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
4595 		uint32_t reconnect_delay_sec,
4596 		uint32_t fast_io_fail_timeout_sec);
4597 
4598 static int
4599 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
4600 {
4601 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
4602 		/* Can't set timeout_admin_us without also setting timeout_us */
4603 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
4604 		return -EINVAL;
4605 	}
4606 
4607 	if (opts->bdev_retry_count < -1) {
4608 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
4609 		return -EINVAL;
4610 	}
4611 
4612 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
4613 			opts->reconnect_delay_sec,
4614 			opts->fast_io_fail_timeout_sec)) {
4615 		return -EINVAL;
4616 	}
4617 
4618 	return 0;
4619 }
4620 
4621 int
4622 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
4623 {
4624 	int ret;
4625 
4626 	ret = bdev_nvme_validate_opts(opts);
4627 	if (ret) {
4628 		SPDK_WARNLOG("Failed to set nvme opts.\n");
4629 		return ret;
4630 	}
4631 
4632 	if (g_bdev_nvme_init_thread != NULL) {
4633 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
4634 			return -EPERM;
4635 		}
4636 	}
4637 
4638 	if (opts->rdma_srq_size != 0) {
4639 		struct spdk_nvme_transport_opts drv_opts;
4640 
4641 		spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
4642 		drv_opts.rdma_srq_size = opts->rdma_srq_size;
4643 
4644 		ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
4645 		if (ret) {
4646 			SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
4647 			return ret;
4648 		}
4649 	}
4650 
4651 	g_opts = *opts;
4652 
4653 	return 0;
4654 }
4655 
4656 struct set_nvme_hotplug_ctx {
4657 	uint64_t period_us;
4658 	bool enabled;
4659 	spdk_msg_fn fn;
4660 	void *fn_ctx;
4661 };
4662 
4663 static void
4664 set_nvme_hotplug_period_cb(void *_ctx)
4665 {
4666 	struct set_nvme_hotplug_ctx *ctx = _ctx;
4667 
4668 	spdk_poller_unregister(&g_hotplug_poller);
4669 	if (ctx->enabled) {
4670 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
4671 	}
4672 
4673 	g_nvme_hotplug_poll_period_us = ctx->period_us;
4674 	g_nvme_hotplug_enabled = ctx->enabled;
4675 	if (ctx->fn) {
4676 		ctx->fn(ctx->fn_ctx);
4677 	}
4678 
4679 	free(ctx);
4680 }
4681 
4682 int
4683 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
4684 {
4685 	struct set_nvme_hotplug_ctx *ctx;
4686 
4687 	if (enabled == true && !spdk_process_is_primary()) {
4688 		return -EPERM;
4689 	}
4690 
4691 	ctx = calloc(1, sizeof(*ctx));
4692 	if (ctx == NULL) {
4693 		return -ENOMEM;
4694 	}
4695 
4696 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
4697 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
4698 	ctx->enabled = enabled;
4699 	ctx->fn = cb;
4700 	ctx->fn_ctx = cb_ctx;
4701 
4702 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
4703 	return 0;
4704 }
4705 
4706 static void
4707 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
4708 				    struct nvme_async_probe_ctx *ctx)
4709 {
4710 	struct nvme_ns	*nvme_ns;
4711 	struct nvme_bdev	*nvme_bdev;
4712 	size_t			j;
4713 
4714 	assert(nvme_ctrlr != NULL);
4715 
4716 	if (ctx->names == NULL) {
4717 		populate_namespaces_cb(ctx, 0, 0);
4718 		return;
4719 	}
4720 
4721 	/*
4722 	 * Report the new bdevs that were created in this call.
4723 	 * There can be more than one bdev per NVMe controller.
4724 	 */
4725 	j = 0;
4726 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4727 	while (nvme_ns != NULL) {
4728 		nvme_bdev = nvme_ns->bdev;
4729 		if (j < ctx->count) {
4730 			ctx->names[j] = nvme_bdev->disk.name;
4731 			j++;
4732 		} else {
4733 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
4734 				    ctx->count);
4735 			populate_namespaces_cb(ctx, 0, -ERANGE);
4736 			return;
4737 		}
4738 
4739 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4740 	}
4741 
4742 	populate_namespaces_cb(ctx, j, 0);
4743 }
4744 
4745 static int
4746 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
4747 			       struct spdk_nvme_ctrlr *new_ctrlr,
4748 			       struct spdk_nvme_transport_id *trid)
4749 {
4750 	struct nvme_path_id *tmp_trid;
4751 
4752 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
4753 		SPDK_ERRLOG("PCIe failover is not supported.\n");
4754 		return -ENOTSUP;
4755 	}
4756 
4757 	/* Currently we only support failover to the same transport type. */
4758 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
4759 		SPDK_WARNLOG("Failover from trtype: %s to a different trtype: %s is not supported currently\n",
4760 			     spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
4761 			     spdk_nvme_transport_id_trtype_str(trid->trtype));
4762 		return -EINVAL;
4763 	}
4764 
4765 
4766 	/* Currently we only support failover to the same NQN. */
4767 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
4768 		SPDK_WARNLOG("Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
4769 			     nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
4770 		return -EINVAL;
4771 	}
4772 
4773 	/* Skip all the other checks if we've already registered this path. */
4774 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
4775 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
4776 			SPDK_WARNLOG("This path (traddr: %s subnqn: %s) is already registered\n", trid->traddr,
4777 				     trid->subnqn);
4778 			return -EEXIST;
4779 		}
4780 	}
4781 
4782 	return 0;
4783 }
4784 
4785 static int
4786 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
4787 				    struct spdk_nvme_ctrlr *new_ctrlr)
4788 {
4789 	struct nvme_ns *nvme_ns;
4790 	struct spdk_nvme_ns *new_ns;
4791 
4792 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4793 	while (nvme_ns != NULL) {
4794 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
4795 		assert(new_ns != NULL);
4796 
4797 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
4798 			return -EINVAL;
4799 		}
4800 
4801 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4802 	}
4803 
4804 	return 0;
4805 }
4806 
4807 static int
4808 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
4809 			      struct spdk_nvme_transport_id *trid)
4810 {
4811 	struct nvme_path_id *new_trid, *tmp_trid;
4812 
4813 	new_trid = calloc(1, sizeof(*new_trid));
4814 	if (new_trid == NULL) {
4815 		return -ENOMEM;
4816 	}
4817 	new_trid->trid = *trid;
4818 	new_trid->is_failed = false;
4819 
4820 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
4821 		if (tmp_trid->is_failed && tmp_trid != nvme_ctrlr->active_path_id) {
4822 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
4823 			return 0;
4824 		}
4825 	}
4826 
4827 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
4828 	return 0;
4829 }
4830 
4831 /* This is the case that a secondary path is added to an existing
4832  * nvme_ctrlr for failover. After checking if it can access the same
4833  * namespaces as the primary path, it is disconnected until failover occurs.
4834  */
4835 static int
4836 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
4837 			     struct spdk_nvme_ctrlr *new_ctrlr,
4838 			     struct spdk_nvme_transport_id *trid)
4839 {
4840 	int rc;
4841 
4842 	assert(nvme_ctrlr != NULL);
4843 
4844 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4845 
4846 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
4847 	if (rc != 0) {
4848 		goto exit;
4849 	}
4850 
4851 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
4852 	if (rc != 0) {
4853 		goto exit;
4854 	}
4855 
4856 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
4857 
4858 exit:
4859 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4860 
4861 	spdk_nvme_detach(new_ctrlr);
4862 
4863 	return rc;
4864 }
4865 
4866 static void
4867 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4868 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
4869 {
4870 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
4871 	struct nvme_async_probe_ctx *ctx;
4872 	int rc;
4873 
4874 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
4875 	ctx->ctrlr_attached = true;
4876 
4877 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
4878 	if (rc != 0) {
4879 		populate_namespaces_cb(ctx, 0, rc);
4880 	}
4881 }
4882 
4883 static void
4884 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4885 			struct spdk_nvme_ctrlr *ctrlr,
4886 			const struct spdk_nvme_ctrlr_opts *opts)
4887 {
4888 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
4889 	struct nvme_ctrlr *nvme_ctrlr;
4890 	struct nvme_async_probe_ctx *ctx;
4891 	int rc;
4892 
4893 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
4894 	ctx->ctrlr_attached = true;
4895 
4896 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
4897 	if (nvme_ctrlr) {
4898 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
4899 	} else {
4900 		rc = -ENODEV;
4901 	}
4902 
4903 	populate_namespaces_cb(ctx, 0, rc);
4904 }
4905 
4906 static int
4907 bdev_nvme_async_poll(void *arg)
4908 {
4909 	struct nvme_async_probe_ctx	*ctx = arg;
4910 	int				rc;
4911 
4912 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
4913 	if (spdk_unlikely(rc != -EAGAIN)) {
4914 		ctx->probe_done = true;
4915 		spdk_poller_unregister(&ctx->poller);
4916 		if (!ctx->ctrlr_attached) {
4917 			/* The probe is done, but no controller was attached.
4918 			 * That means we had a failure, so report -EIO back to
4919 			 * the caller (usually the RPC). populate_namespaces_cb()
4920 			 * will take care of freeing the nvme_async_probe_ctx.
4921 			 */
4922 			populate_namespaces_cb(ctx, 0, -EIO);
4923 		} else if (ctx->namespaces_populated) {
4924 			/* The namespaces for the attached controller were all
4925 			 * populated and the response was already sent to the
4926 			 * caller (usually the RPC).  So free the context here.
4927 			 */
4928 			free(ctx);
4929 		}
4930 	}
4931 
4932 	return SPDK_POLLER_BUSY;
4933 }
4934 
4935 static bool
4936 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
4937 		uint32_t reconnect_delay_sec,
4938 		uint32_t fast_io_fail_timeout_sec)
4939 {
4940 	if (ctrlr_loss_timeout_sec < -1) {
4941 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
4942 		return false;
4943 	} else if (ctrlr_loss_timeout_sec == -1) {
4944 		if (reconnect_delay_sec == 0) {
4945 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
4946 			return false;
4947 		} else if (fast_io_fail_timeout_sec != 0 &&
4948 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
4949 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
4950 			return false;
4951 		}
4952 	} else if (ctrlr_loss_timeout_sec != 0) {
4953 		if (reconnect_delay_sec == 0) {
4954 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
4955 			return false;
4956 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
4957 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
4958 			return false;
4959 		} else if (fast_io_fail_timeout_sec != 0) {
4960 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
4961 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
4962 				return false;
4963 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
4964 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
4965 				return false;
4966 			}
4967 		}
4968 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
4969 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
4970 		return false;
4971 	}
4972 
4973 	return true;
4974 }
4975 
4976 int
4977 bdev_nvme_create(struct spdk_nvme_transport_id *trid,
4978 		 const char *base_name,
4979 		 const char **names,
4980 		 uint32_t count,
4981 		 spdk_bdev_create_nvme_fn cb_fn,
4982 		 void *cb_ctx,
4983 		 struct spdk_nvme_ctrlr_opts *drv_opts,
4984 		 struct nvme_ctrlr_opts *bdev_opts,
4985 		 bool multipath)
4986 {
4987 	struct nvme_probe_skip_entry	*entry, *tmp;
4988 	struct nvme_async_probe_ctx	*ctx;
4989 	spdk_nvme_attach_cb attach_cb;
4990 
4991 	/* TODO expand this check to include both the host and target TRIDs.
4992 	 * Only if both are the same should we fail.
4993 	 */
4994 	if (nvme_ctrlr_get(trid) != NULL) {
4995 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
4996 		return -EEXIST;
4997 	}
4998 
4999 	if (bdev_opts != NULL &&
5000 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
5001 			    bdev_opts->reconnect_delay_sec,
5002 			    bdev_opts->fast_io_fail_timeout_sec)) {
5003 		return -EINVAL;
5004 	}
5005 
5006 	ctx = calloc(1, sizeof(*ctx));
5007 	if (!ctx) {
5008 		return -ENOMEM;
5009 	}
5010 	ctx->base_name = base_name;
5011 	ctx->names = names;
5012 	ctx->count = count;
5013 	ctx->cb_fn = cb_fn;
5014 	ctx->cb_ctx = cb_ctx;
5015 	ctx->trid = *trid;
5016 
5017 	if (bdev_opts) {
5018 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
5019 	} else {
5020 		bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
5021 	}
5022 
5023 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5024 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
5025 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
5026 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
5027 				free(entry);
5028 				break;
5029 			}
5030 		}
5031 	}
5032 
5033 	if (drv_opts) {
5034 		memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
5035 	} else {
5036 		spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->drv_opts, sizeof(ctx->drv_opts));
5037 	}
5038 
5039 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
5040 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
5041 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
5042 	ctx->drv_opts.disable_read_ana_log_page = true;
5043 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
5044 
5045 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
5046 		attach_cb = connect_attach_cb;
5047 	} else {
5048 		attach_cb = connect_set_failover_cb;
5049 	}
5050 
5051 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
5052 	if (ctx->probe_ctx == NULL) {
5053 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
5054 		free(ctx);
5055 		return -ENODEV;
5056 	}
5057 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
5058 
5059 	return 0;
5060 }
5061 
5062 int
5063 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id)
5064 {
5065 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
5066 	struct nvme_ctrlr	*nvme_ctrlr, *tmp_nvme_ctrlr;
5067 	struct nvme_path_id	*p, *t;
5068 	int			rc = -ENXIO;
5069 
5070 	if (name == NULL || path_id == NULL) {
5071 		return -EINVAL;
5072 	}
5073 
5074 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5075 	if (nbdev_ctrlr == NULL) {
5076 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
5077 		return -ENODEV;
5078 	}
5079 
5080 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
5081 		TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
5082 			if (path_id->trid.trtype != 0) {
5083 				if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
5084 					if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
5085 						continue;
5086 					}
5087 				} else {
5088 					if (path_id->trid.trtype != p->trid.trtype) {
5089 						continue;
5090 					}
5091 				}
5092 			}
5093 
5094 			if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
5095 				if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
5096 					continue;
5097 				}
5098 			}
5099 
5100 			if (path_id->trid.adrfam != 0) {
5101 				if (path_id->trid.adrfam != p->trid.adrfam) {
5102 					continue;
5103 				}
5104 			}
5105 
5106 			if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
5107 				if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
5108 					continue;
5109 				}
5110 			}
5111 
5112 			if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
5113 				if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
5114 					continue;
5115 				}
5116 			}
5117 
5118 			if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
5119 				if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
5120 					continue;
5121 				}
5122 			}
5123 
5124 			if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
5125 				if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
5126 					continue;
5127 				}
5128 			}
5129 
5130 			/* If we made it here, then this path is a match! Now we need to remove it. */
5131 			if (p == nvme_ctrlr->active_path_id) {
5132 				/* This is the active path in use right now. The active path is always the first in the list. */
5133 
5134 				if (!TAILQ_NEXT(p, link)) {
5135 					/* The current path is the only path. */
5136 					rc = _bdev_nvme_delete(nvme_ctrlr, false);
5137 				} else {
5138 					/* There is an alternative path. */
5139 					rc = bdev_nvme_failover(nvme_ctrlr, true);
5140 				}
5141 			} else {
5142 				/* We are not using the specified path. */
5143 				TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
5144 				free(p);
5145 				rc = 0;
5146 			}
5147 
5148 			if (rc < 0 && rc != -ENXIO) {
5149 				return rc;
5150 			}
5151 
5152 
5153 		}
5154 	}
5155 
5156 	/* All nvme_ctrlrs were deleted or no nvme_ctrlr which had the trid was found. */
5157 	return rc;
5158 }
5159 
5160 #define DISCOVERY_INFOLOG(ctx, format, ...) \
5161 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
5162 
5163 #define DISCOVERY_ERRLOG(ctx, format, ...) \
5164 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
5165 
5166 struct discovery_entry_ctx {
5167 	char						name[128];
5168 	struct spdk_nvme_transport_id			trid;
5169 	struct spdk_nvme_ctrlr_opts			drv_opts;
5170 	struct spdk_nvmf_discovery_log_page_entry	entry;
5171 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
5172 	struct discovery_ctx				*ctx;
5173 };
5174 
5175 struct discovery_ctx {
5176 	char					*name;
5177 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
5178 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
5179 	void					*cb_ctx;
5180 	struct spdk_nvme_probe_ctx		*probe_ctx;
5181 	struct spdk_nvme_detach_ctx		*detach_ctx;
5182 	struct spdk_nvme_ctrlr			*ctrlr;
5183 	struct spdk_nvme_transport_id		trid;
5184 	struct discovery_entry_ctx		*entry_ctx_in_use;
5185 	struct spdk_poller			*poller;
5186 	struct spdk_nvme_ctrlr_opts		drv_opts;
5187 	struct nvme_ctrlr_opts			bdev_opts;
5188 	struct spdk_nvmf_discovery_log_page	*log_page;
5189 	TAILQ_ENTRY(discovery_ctx)		tailq;
5190 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
5191 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
5192 	int					rc;
5193 	bool					wait_for_attach;
5194 	uint64_t				timeout_ticks;
5195 	/* Denotes that the discovery service is being started. We're waiting
5196 	 * for the initial connection to the discovery controller to be
5197 	 * established and attach discovered NVM ctrlrs.
5198 	 */
5199 	bool					initializing;
5200 	/* Denotes if a discovery is currently in progress for this context.
5201 	 * That includes connecting to newly discovered subsystems.  Used to
5202 	 * ensure we do not start a new discovery until an existing one is
5203 	 * complete.
5204 	 */
5205 	bool					in_progress;
5206 
5207 	/* Denotes if another discovery is needed after the one in progress
5208 	 * completes.  Set when we receive an AER completion while a discovery
5209 	 * is already in progress.
5210 	 */
5211 	bool					pending;
5212 
5213 	/* Signal to the discovery context poller that it should stop the
5214 	 * discovery service, including detaching from the current discovery
5215 	 * controller.
5216 	 */
5217 	bool					stop;
5218 
5219 	struct spdk_thread			*calling_thread;
5220 	uint32_t				index;
5221 	uint32_t				attach_in_progress;
5222 	char					*hostnqn;
5223 
5224 	/* Denotes if the discovery service was started by the mdns discovery.
5225 	 */
5226 	bool					from_mdns_discovery_service;
5227 };
5228 
5229 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
5230 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
5231 
5232 static void get_discovery_log_page(struct discovery_ctx *ctx);
5233 
5234 static void
5235 free_discovery_ctx(struct discovery_ctx *ctx)
5236 {
5237 	free(ctx->log_page);
5238 	free(ctx->hostnqn);
5239 	free(ctx->name);
5240 	free(ctx);
5241 }
5242 
5243 static void
5244 discovery_complete(struct discovery_ctx *ctx)
5245 {
5246 	ctx->initializing = false;
5247 	ctx->in_progress = false;
5248 	if (ctx->pending) {
5249 		ctx->pending = false;
5250 		get_discovery_log_page(ctx);
5251 	}
5252 }
5253 
5254 static void
5255 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
5256 			       struct spdk_nvmf_discovery_log_page_entry *entry)
5257 {
5258 	char *space;
5259 
5260 	trid->trtype = entry->trtype;
5261 	trid->adrfam = entry->adrfam;
5262 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
5263 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
5264 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn));
5265 
5266 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
5267 	 * But the log page entries typically pad them with spaces, not zeroes.
5268 	 * So add a NULL terminator to each of these fields at the appropriate
5269 	 * location.
5270 	 */
5271 	space = strchr(trid->traddr, ' ');
5272 	if (space) {
5273 		*space = 0;
5274 	}
5275 	space = strchr(trid->trsvcid, ' ');
5276 	if (space) {
5277 		*space = 0;
5278 	}
5279 	space = strchr(trid->subnqn, ' ');
5280 	if (space) {
5281 		*space = 0;
5282 	}
5283 }
5284 
5285 static void
5286 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
5287 {
5288 	ctx->stop = true;
5289 	ctx->stop_cb_fn = cb_fn;
5290 	ctx->cb_ctx = cb_ctx;
5291 
5292 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
5293 		struct discovery_entry_ctx *entry_ctx;
5294 		struct nvme_path_id path = {};
5295 
5296 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
5297 		path.trid = entry_ctx->trid;
5298 		bdev_nvme_delete(entry_ctx->name, &path);
5299 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
5300 		free(entry_ctx);
5301 	}
5302 
5303 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
5304 		struct discovery_entry_ctx *entry_ctx;
5305 
5306 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
5307 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
5308 		free(entry_ctx);
5309 	}
5310 
5311 	free(ctx->entry_ctx_in_use);
5312 	ctx->entry_ctx_in_use = NULL;
5313 }
5314 
5315 static void
5316 discovery_remove_controllers(struct discovery_ctx *ctx)
5317 {
5318 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
5319 	struct discovery_entry_ctx *entry_ctx, *tmp;
5320 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
5321 	struct spdk_nvme_transport_id old_trid;
5322 	uint64_t numrec, i;
5323 	bool found;
5324 
5325 	numrec = from_le64(&log_page->numrec);
5326 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
5327 		found = false;
5328 		old_entry = &entry_ctx->entry;
5329 		build_trid_from_log_page_entry(&old_trid, old_entry);
5330 		for (i = 0; i < numrec; i++) {
5331 			new_entry = &log_page->entries[i];
5332 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
5333 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
5334 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
5335 				found = true;
5336 				break;
5337 			}
5338 		}
5339 		if (!found) {
5340 			struct nvme_path_id path = {};
5341 
5342 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
5343 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
5344 
5345 			path.trid = entry_ctx->trid;
5346 			bdev_nvme_delete(entry_ctx->name, &path);
5347 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
5348 			free(entry_ctx);
5349 		}
5350 	}
5351 	free(log_page);
5352 	ctx->log_page = NULL;
5353 	discovery_complete(ctx);
5354 }
5355 
5356 static void
5357 complete_discovery_start(struct discovery_ctx *ctx, int status)
5358 {
5359 	ctx->timeout_ticks = 0;
5360 	ctx->rc = status;
5361 	if (ctx->start_cb_fn) {
5362 		ctx->start_cb_fn(ctx->cb_ctx, status);
5363 		ctx->start_cb_fn = NULL;
5364 		ctx->cb_ctx = NULL;
5365 	}
5366 }
5367 
5368 static void
5369 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
5370 {
5371 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
5372 	struct discovery_ctx *ctx = entry_ctx->ctx;
5373 
5374 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
5375 	ctx->attach_in_progress--;
5376 	if (ctx->attach_in_progress == 0) {
5377 		complete_discovery_start(ctx, ctx->rc);
5378 		if (ctx->initializing && ctx->rc != 0) {
5379 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
5380 			stop_discovery(ctx, NULL, ctx->cb_ctx);
5381 		} else {
5382 			discovery_remove_controllers(ctx);
5383 		}
5384 	}
5385 }
5386 
5387 static struct discovery_entry_ctx *
5388 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
5389 {
5390 	struct discovery_entry_ctx *new_ctx;
5391 
5392 	new_ctx = calloc(1, sizeof(*new_ctx));
5393 	if (new_ctx == NULL) {
5394 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
5395 		return NULL;
5396 	}
5397 
5398 	new_ctx->ctx = ctx;
5399 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
5400 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
5401 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
5402 	return new_ctx;
5403 }
5404 
5405 static void
5406 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
5407 		      struct spdk_nvmf_discovery_log_page *log_page)
5408 {
5409 	struct discovery_ctx *ctx = cb_arg;
5410 	struct discovery_entry_ctx *entry_ctx, *tmp;
5411 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
5412 	uint64_t numrec, i;
5413 	bool found;
5414 
5415 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
5416 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
5417 		return;
5418 	}
5419 
5420 	ctx->log_page = log_page;
5421 	assert(ctx->attach_in_progress == 0);
5422 	numrec = from_le64(&log_page->numrec);
5423 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
5424 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
5425 		free(entry_ctx);
5426 	}
5427 	for (i = 0; i < numrec; i++) {
5428 		found = false;
5429 		new_entry = &log_page->entries[i];
5430 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
5431 			struct discovery_entry_ctx *new_ctx;
5432 			struct spdk_nvme_transport_id trid = {};
5433 
5434 			build_trid_from_log_page_entry(&trid, new_entry);
5435 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
5436 			if (new_ctx == NULL) {
5437 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
5438 				break;
5439 			}
5440 
5441 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
5442 			continue;
5443 		}
5444 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
5445 			old_entry = &entry_ctx->entry;
5446 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
5447 				found = true;
5448 				break;
5449 			}
5450 		}
5451 		if (!found) {
5452 			struct discovery_entry_ctx *subnqn_ctx, *new_ctx;
5453 
5454 			TAILQ_FOREACH(subnqn_ctx, &ctx->nvm_entry_ctxs, tailq) {
5455 				if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
5456 					    sizeof(new_entry->subnqn))) {
5457 					break;
5458 				}
5459 			}
5460 
5461 			new_ctx = calloc(1, sizeof(*new_ctx));
5462 			if (new_ctx == NULL) {
5463 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
5464 				break;
5465 			}
5466 
5467 			new_ctx->ctx = ctx;
5468 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
5469 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
5470 			if (subnqn_ctx) {
5471 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
5472 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
5473 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
5474 						  new_ctx->name);
5475 			} else {
5476 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
5477 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
5478 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
5479 						  new_ctx->name);
5480 			}
5481 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
5482 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
5483 			rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
5484 					      discovery_attach_controller_done, new_ctx,
5485 					      &new_ctx->drv_opts, &ctx->bdev_opts, true);
5486 			if (rc == 0) {
5487 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
5488 				ctx->attach_in_progress++;
5489 			} else {
5490 				DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
5491 			}
5492 		}
5493 	}
5494 
5495 	if (ctx->attach_in_progress == 0) {
5496 		discovery_remove_controllers(ctx);
5497 	}
5498 }
5499 
5500 static void
5501 get_discovery_log_page(struct discovery_ctx *ctx)
5502 {
5503 	int rc;
5504 
5505 	assert(ctx->in_progress == false);
5506 	ctx->in_progress = true;
5507 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
5508 	if (rc != 0) {
5509 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
5510 	}
5511 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
5512 }
5513 
5514 static void
5515 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5516 {
5517 	struct discovery_ctx *ctx = arg;
5518 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
5519 
5520 	if (spdk_nvme_cpl_is_error(cpl)) {
5521 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
5522 		return;
5523 	}
5524 
5525 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
5526 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
5527 		return;
5528 	}
5529 
5530 	DISCOVERY_INFOLOG(ctx, "got aer\n");
5531 	if (ctx->in_progress) {
5532 		ctx->pending = true;
5533 		return;
5534 	}
5535 
5536 	get_discovery_log_page(ctx);
5537 }
5538 
5539 static void
5540 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5541 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
5542 {
5543 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5544 	struct discovery_ctx *ctx;
5545 
5546 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
5547 
5548 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
5549 	ctx->probe_ctx = NULL;
5550 	ctx->ctrlr = ctrlr;
5551 
5552 	if (ctx->rc != 0) {
5553 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
5554 				 ctx->rc);
5555 		return;
5556 	}
5557 
5558 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
5559 }
5560 
5561 static int
5562 discovery_poller(void *arg)
5563 {
5564 	struct discovery_ctx *ctx = arg;
5565 	struct spdk_nvme_transport_id *trid;
5566 	int rc;
5567 
5568 	if (ctx->detach_ctx) {
5569 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
5570 		if (rc != -EAGAIN) {
5571 			ctx->detach_ctx = NULL;
5572 			ctx->ctrlr = NULL;
5573 		}
5574 	} else if (ctx->stop) {
5575 		if (ctx->ctrlr != NULL) {
5576 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
5577 			if (rc == 0) {
5578 				return SPDK_POLLER_BUSY;
5579 			}
5580 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
5581 		}
5582 		spdk_poller_unregister(&ctx->poller);
5583 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
5584 		assert(ctx->start_cb_fn == NULL);
5585 		if (ctx->stop_cb_fn != NULL) {
5586 			ctx->stop_cb_fn(ctx->cb_ctx);
5587 		}
5588 		free_discovery_ctx(ctx);
5589 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
5590 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
5591 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
5592 			assert(ctx->initializing);
5593 			spdk_poller_unregister(&ctx->poller);
5594 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
5595 			complete_discovery_start(ctx, -ETIMEDOUT);
5596 			stop_discovery(ctx, NULL, NULL);
5597 			free_discovery_ctx(ctx);
5598 			return SPDK_POLLER_BUSY;
5599 		}
5600 
5601 		assert(ctx->entry_ctx_in_use == NULL);
5602 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
5603 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
5604 		trid = &ctx->entry_ctx_in_use->trid;
5605 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
5606 		if (ctx->probe_ctx) {
5607 			spdk_poller_unregister(&ctx->poller);
5608 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
5609 		} else {
5610 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
5611 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
5612 			ctx->entry_ctx_in_use = NULL;
5613 		}
5614 	} else if (ctx->probe_ctx) {
5615 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
5616 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
5617 			complete_discovery_start(ctx, -ETIMEDOUT);
5618 			return SPDK_POLLER_BUSY;
5619 		}
5620 
5621 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
5622 		if (rc != -EAGAIN) {
5623 			if (ctx->rc != 0) {
5624 				assert(ctx->initializing);
5625 				stop_discovery(ctx, NULL, ctx->cb_ctx);
5626 			} else {
5627 				assert(rc == 0);
5628 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
5629 				ctx->rc = rc;
5630 				get_discovery_log_page(ctx);
5631 			}
5632 		}
5633 	} else {
5634 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
5635 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
5636 			complete_discovery_start(ctx, -ETIMEDOUT);
5637 			/* We need to wait until all NVM ctrlrs are attached before we stop the
5638 			 * discovery service to make sure we don't detach a ctrlr that is still
5639 			 * being attached.
5640 			 */
5641 			if (ctx->attach_in_progress == 0) {
5642 				stop_discovery(ctx, NULL, ctx->cb_ctx);
5643 				return SPDK_POLLER_BUSY;
5644 			}
5645 		}
5646 
5647 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
5648 		if (rc < 0) {
5649 			spdk_poller_unregister(&ctx->poller);
5650 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
5651 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
5652 			ctx->entry_ctx_in_use = NULL;
5653 
5654 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
5655 			if (rc != 0) {
5656 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
5657 				ctx->ctrlr = NULL;
5658 			}
5659 		}
5660 	}
5661 
5662 	return SPDK_POLLER_BUSY;
5663 }
5664 
5665 static void
5666 start_discovery_poller(void *arg)
5667 {
5668 	struct discovery_ctx *ctx = arg;
5669 
5670 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
5671 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
5672 }
5673 
5674 int
5675 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
5676 			  const char *base_name,
5677 			  struct spdk_nvme_ctrlr_opts *drv_opts,
5678 			  struct nvme_ctrlr_opts *bdev_opts,
5679 			  uint64_t attach_timeout,
5680 			  bool from_mdns,
5681 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
5682 {
5683 	struct discovery_ctx *ctx;
5684 	struct discovery_entry_ctx *discovery_entry_ctx;
5685 
5686 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
5687 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
5688 		if (strcmp(ctx->name, base_name) == 0) {
5689 			return -EEXIST;
5690 		}
5691 
5692 		if (ctx->entry_ctx_in_use != NULL) {
5693 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
5694 				return -EEXIST;
5695 			}
5696 		}
5697 
5698 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
5699 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
5700 				return -EEXIST;
5701 			}
5702 		}
5703 	}
5704 
5705 	ctx = calloc(1, sizeof(*ctx));
5706 	if (ctx == NULL) {
5707 		return -ENOMEM;
5708 	}
5709 
5710 	ctx->name = strdup(base_name);
5711 	if (ctx->name == NULL) {
5712 		free_discovery_ctx(ctx);
5713 		return -ENOMEM;
5714 	}
5715 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
5716 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
5717 	ctx->from_mdns_discovery_service = from_mdns;
5718 	ctx->bdev_opts.from_discovery_service = true;
5719 	ctx->calling_thread = spdk_get_thread();
5720 	ctx->start_cb_fn = cb_fn;
5721 	ctx->cb_ctx = cb_ctx;
5722 	ctx->initializing = true;
5723 	if (ctx->start_cb_fn) {
5724 		/* We can use this when dumping json to denote if this RPC parameter
5725 		 * was specified or not.
5726 		 */
5727 		ctx->wait_for_attach = true;
5728 	}
5729 	if (attach_timeout != 0) {
5730 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
5731 				     spdk_get_ticks_hz() / 1000ull;
5732 	}
5733 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
5734 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
5735 	memcpy(&ctx->trid, trid, sizeof(*trid));
5736 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
5737 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
5738 	if (ctx->hostnqn == NULL) {
5739 		free_discovery_ctx(ctx);
5740 		return -ENOMEM;
5741 	}
5742 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
5743 	if (discovery_entry_ctx == NULL) {
5744 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
5745 		free_discovery_ctx(ctx);
5746 		return -ENOMEM;
5747 	}
5748 
5749 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
5750 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
5751 	return 0;
5752 }
5753 
5754 int
5755 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
5756 {
5757 	struct discovery_ctx *ctx;
5758 
5759 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
5760 		if (strcmp(name, ctx->name) == 0) {
5761 			if (ctx->stop) {
5762 				return -EALREADY;
5763 			}
5764 			/* If we're still starting the discovery service and ->rc is non-zero, we're
5765 			 * going to stop it as soon as we can
5766 			 */
5767 			if (ctx->initializing && ctx->rc != 0) {
5768 				return -EALREADY;
5769 			}
5770 			stop_discovery(ctx, cb_fn, cb_ctx);
5771 			return 0;
5772 		}
5773 	}
5774 
5775 	return -ENOENT;
5776 }
5777 
5778 static int
5779 bdev_nvme_library_init(void)
5780 {
5781 	g_bdev_nvme_init_thread = spdk_get_thread();
5782 
5783 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
5784 				bdev_nvme_destroy_poll_group_cb,
5785 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
5786 
5787 	return 0;
5788 }
5789 
5790 static void
5791 bdev_nvme_fini_destruct_ctrlrs(void)
5792 {
5793 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5794 	struct nvme_ctrlr *nvme_ctrlr;
5795 
5796 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5797 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
5798 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
5799 			pthread_mutex_lock(&nvme_ctrlr->mutex);
5800 			if (nvme_ctrlr->destruct) {
5801 				/* This controller's destruction was already started
5802 				 * before the application started shutting down
5803 				 */
5804 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
5805 				continue;
5806 			}
5807 			nvme_ctrlr->destruct = true;
5808 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
5809 
5810 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
5811 					     nvme_ctrlr);
5812 		}
5813 	}
5814 
5815 	g_bdev_nvme_module_finish = true;
5816 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5817 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
5818 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
5819 		spdk_bdev_module_fini_done();
5820 		return;
5821 	}
5822 
5823 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5824 }
5825 
5826 static void
5827 check_discovery_fini(void *arg)
5828 {
5829 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
5830 		bdev_nvme_fini_destruct_ctrlrs();
5831 	}
5832 }
5833 
5834 static void
5835 bdev_nvme_library_fini(void)
5836 {
5837 	struct nvme_probe_skip_entry *entry, *entry_tmp;
5838 	struct discovery_ctx *ctx;
5839 
5840 	spdk_poller_unregister(&g_hotplug_poller);
5841 	free(g_hotplug_probe_ctx);
5842 	g_hotplug_probe_ctx = NULL;
5843 
5844 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
5845 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
5846 		free(entry);
5847 	}
5848 
5849 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
5850 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
5851 		bdev_nvme_fini_destruct_ctrlrs();
5852 	} else {
5853 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
5854 			stop_discovery(ctx, check_discovery_fini, NULL);
5855 		}
5856 	}
5857 }
5858 
5859 static void
5860 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
5861 {
5862 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5863 	struct spdk_bdev *bdev = bdev_io->bdev;
5864 	struct spdk_dif_ctx dif_ctx;
5865 	struct spdk_dif_error err_blk = {};
5866 	int rc;
5867 
5868 	rc = spdk_dif_ctx_init(&dif_ctx,
5869 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
5870 			       bdev->dif_is_head_of_md, bdev->dif_type, bdev->dif_check_flags,
5871 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0);
5872 	if (rc != 0) {
5873 		SPDK_ERRLOG("Initialization of DIF context failed\n");
5874 		return;
5875 	}
5876 
5877 	if (bdev->md_interleave) {
5878 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
5879 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
5880 	} else {
5881 		struct iovec md_iov = {
5882 			.iov_base	= bdev_io->u.bdev.md_buf,
5883 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
5884 		};
5885 
5886 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
5887 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
5888 	}
5889 
5890 	if (rc != 0) {
5891 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
5892 			    err_blk.err_type, err_blk.err_offset);
5893 	} else {
5894 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
5895 	}
5896 }
5897 
5898 static void
5899 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
5900 {
5901 	struct nvme_bdev_io *bio = ref;
5902 
5903 	if (spdk_nvme_cpl_is_success(cpl)) {
5904 		/* Run PI verification for read data buffer. */
5905 		bdev_nvme_verify_pi_error(bio);
5906 	}
5907 
5908 	/* Return original completion status */
5909 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
5910 }
5911 
5912 static void
5913 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
5914 {
5915 	struct nvme_bdev_io *bio = ref;
5916 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5917 	int ret;
5918 
5919 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
5920 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
5921 			    cpl->status.sct, cpl->status.sc);
5922 
5923 		/* Save completion status to use after verifying PI error. */
5924 		bio->cpl = *cpl;
5925 
5926 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
5927 			/* Read without PI checking to verify PI error. */
5928 			ret = bdev_nvme_no_pi_readv(bio,
5929 						    bdev_io->u.bdev.iovs,
5930 						    bdev_io->u.bdev.iovcnt,
5931 						    bdev_io->u.bdev.md_buf,
5932 						    bdev_io->u.bdev.num_blocks,
5933 						    bdev_io->u.bdev.offset_blocks);
5934 			if (ret == 0) {
5935 				return;
5936 			}
5937 		}
5938 	}
5939 
5940 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5941 }
5942 
5943 static void
5944 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
5945 {
5946 	struct nvme_bdev_io *bio = ref;
5947 
5948 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
5949 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
5950 			    cpl->status.sct, cpl->status.sc);
5951 		/* Run PI verification for write data buffer if PI error is detected. */
5952 		bdev_nvme_verify_pi_error(bio);
5953 	}
5954 
5955 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5956 }
5957 
5958 static void
5959 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
5960 {
5961 	struct nvme_bdev_io *bio = ref;
5962 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5963 
5964 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
5965 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
5966 	 */
5967 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
5968 
5969 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
5970 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
5971 			    cpl->status.sct, cpl->status.sc);
5972 		/* Run PI verification for zone append data buffer if PI error is detected. */
5973 		bdev_nvme_verify_pi_error(bio);
5974 	}
5975 
5976 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5977 }
5978 
5979 static void
5980 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
5981 {
5982 	struct nvme_bdev_io *bio = ref;
5983 
5984 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
5985 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
5986 			    cpl->status.sct, cpl->status.sc);
5987 		/* Run PI verification for compare data buffer if PI error is detected. */
5988 		bdev_nvme_verify_pi_error(bio);
5989 	}
5990 
5991 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5992 }
5993 
5994 static void
5995 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
5996 {
5997 	struct nvme_bdev_io *bio = ref;
5998 
5999 	/* Compare operation completion */
6000 	if (!bio->first_fused_completed) {
6001 		/* Save compare result for write callback */
6002 		bio->cpl = *cpl;
6003 		bio->first_fused_completed = true;
6004 		return;
6005 	}
6006 
6007 	/* Write operation completion */
6008 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
6009 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
6010 		 * complete the IO with the compare operation's status.
6011 		 */
6012 		if (!spdk_nvme_cpl_is_error(cpl)) {
6013 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
6014 		}
6015 
6016 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
6017 	} else {
6018 		bdev_nvme_io_complete_nvme_status(bio, cpl);
6019 	}
6020 }
6021 
6022 static void
6023 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
6024 {
6025 	struct nvme_bdev_io *bio = ref;
6026 
6027 	bdev_nvme_io_complete_nvme_status(bio, cpl);
6028 }
6029 
6030 static int
6031 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
6032 {
6033 	switch (desc->zt) {
6034 	case SPDK_NVME_ZONE_TYPE_SEQWR:
6035 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
6036 		break;
6037 	default:
6038 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
6039 		return -EIO;
6040 	}
6041 
6042 	switch (desc->zs) {
6043 	case SPDK_NVME_ZONE_STATE_EMPTY:
6044 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
6045 		break;
6046 	case SPDK_NVME_ZONE_STATE_IOPEN:
6047 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
6048 		break;
6049 	case SPDK_NVME_ZONE_STATE_EOPEN:
6050 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
6051 		break;
6052 	case SPDK_NVME_ZONE_STATE_CLOSED:
6053 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
6054 		break;
6055 	case SPDK_NVME_ZONE_STATE_RONLY:
6056 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
6057 		break;
6058 	case SPDK_NVME_ZONE_STATE_FULL:
6059 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
6060 		break;
6061 	case SPDK_NVME_ZONE_STATE_OFFLINE:
6062 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
6063 		break;
6064 	default:
6065 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
6066 		return -EIO;
6067 	}
6068 
6069 	info->zone_id = desc->zslba;
6070 	info->write_pointer = desc->wp;
6071 	info->capacity = desc->zcap;
6072 
6073 	return 0;
6074 }
6075 
6076 static void
6077 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
6078 {
6079 	struct nvme_bdev_io *bio = ref;
6080 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6081 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
6082 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
6083 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
6084 	uint64_t max_zones_per_buf, i;
6085 	uint32_t zone_report_bufsize;
6086 	struct spdk_nvme_ns *ns;
6087 	struct spdk_nvme_qpair *qpair;
6088 	int ret;
6089 
6090 	if (spdk_nvme_cpl_is_error(cpl)) {
6091 		goto out_complete_io_nvme_cpl;
6092 	}
6093 
6094 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
6095 		ret = -ENXIO;
6096 		goto out_complete_io_ret;
6097 	}
6098 
6099 	ns = bio->io_path->nvme_ns->ns;
6100 	qpair = bio->io_path->qpair->qpair;
6101 
6102 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
6103 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
6104 			    sizeof(bio->zone_report_buf->descs[0]);
6105 
6106 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
6107 		ret = -EINVAL;
6108 		goto out_complete_io_ret;
6109 	}
6110 
6111 	if (!bio->zone_report_buf->nr_zones) {
6112 		ret = -EINVAL;
6113 		goto out_complete_io_ret;
6114 	}
6115 
6116 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
6117 		ret = fill_zone_from_report(&info[bio->handled_zones],
6118 					    &bio->zone_report_buf->descs[i]);
6119 		if (ret) {
6120 			goto out_complete_io_ret;
6121 		}
6122 		bio->handled_zones++;
6123 	}
6124 
6125 	if (bio->handled_zones < zones_to_copy) {
6126 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
6127 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
6128 
6129 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
6130 		ret = spdk_nvme_zns_report_zones(ns, qpair,
6131 						 bio->zone_report_buf, zone_report_bufsize,
6132 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
6133 						 bdev_nvme_get_zone_info_done, bio);
6134 		if (!ret) {
6135 			return;
6136 		} else {
6137 			goto out_complete_io_ret;
6138 		}
6139 	}
6140 
6141 out_complete_io_nvme_cpl:
6142 	free(bio->zone_report_buf);
6143 	bio->zone_report_buf = NULL;
6144 	bdev_nvme_io_complete_nvme_status(bio, cpl);
6145 	return;
6146 
6147 out_complete_io_ret:
6148 	free(bio->zone_report_buf);
6149 	bio->zone_report_buf = NULL;
6150 	bdev_nvme_io_complete(bio, ret);
6151 }
6152 
6153 static void
6154 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
6155 {
6156 	struct nvme_bdev_io *bio = ref;
6157 
6158 	bdev_nvme_io_complete_nvme_status(bio, cpl);
6159 }
6160 
6161 static void
6162 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
6163 {
6164 	struct nvme_bdev_io *bio = ctx;
6165 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6166 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
6167 
6168 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
6169 
6170 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
6171 }
6172 
6173 static void
6174 bdev_nvme_abort_complete(void *ctx)
6175 {
6176 	struct nvme_bdev_io *bio = ctx;
6177 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6178 
6179 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
6180 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
6181 	} else {
6182 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
6183 	}
6184 }
6185 
6186 static void
6187 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
6188 {
6189 	struct nvme_bdev_io *bio = ref;
6190 
6191 	bio->cpl = *cpl;
6192 	spdk_thread_send_msg(bio->orig_thread, bdev_nvme_abort_complete, bio);
6193 }
6194 
6195 static void
6196 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
6197 {
6198 	struct nvme_bdev_io *bio = ref;
6199 
6200 	bio->cpl = *cpl;
6201 	spdk_thread_send_msg(bio->orig_thread,
6202 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
6203 }
6204 
6205 static void
6206 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
6207 {
6208 	struct nvme_bdev_io *bio = ref;
6209 	struct iovec *iov;
6210 
6211 	bio->iov_offset = sgl_offset;
6212 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
6213 		iov = &bio->iovs[bio->iovpos];
6214 		if (bio->iov_offset < iov->iov_len) {
6215 			break;
6216 		}
6217 
6218 		bio->iov_offset -= iov->iov_len;
6219 	}
6220 }
6221 
6222 static int
6223 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
6224 {
6225 	struct nvme_bdev_io *bio = ref;
6226 	struct iovec *iov;
6227 
6228 	assert(bio->iovpos < bio->iovcnt);
6229 
6230 	iov = &bio->iovs[bio->iovpos];
6231 
6232 	*address = iov->iov_base;
6233 	*length = iov->iov_len;
6234 
6235 	if (bio->iov_offset) {
6236 		assert(bio->iov_offset <= iov->iov_len);
6237 		*address += bio->iov_offset;
6238 		*length -= bio->iov_offset;
6239 	}
6240 
6241 	bio->iov_offset += *length;
6242 	if (bio->iov_offset == iov->iov_len) {
6243 		bio->iovpos++;
6244 		bio->iov_offset = 0;
6245 	}
6246 
6247 	return 0;
6248 }
6249 
6250 static void
6251 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
6252 {
6253 	struct nvme_bdev_io *bio = ref;
6254 	struct iovec *iov;
6255 
6256 	bio->fused_iov_offset = sgl_offset;
6257 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
6258 		iov = &bio->fused_iovs[bio->fused_iovpos];
6259 		if (bio->fused_iov_offset < iov->iov_len) {
6260 			break;
6261 		}
6262 
6263 		bio->fused_iov_offset -= iov->iov_len;
6264 	}
6265 }
6266 
6267 static int
6268 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
6269 {
6270 	struct nvme_bdev_io *bio = ref;
6271 	struct iovec *iov;
6272 
6273 	assert(bio->fused_iovpos < bio->fused_iovcnt);
6274 
6275 	iov = &bio->fused_iovs[bio->fused_iovpos];
6276 
6277 	*address = iov->iov_base;
6278 	*length = iov->iov_len;
6279 
6280 	if (bio->fused_iov_offset) {
6281 		assert(bio->fused_iov_offset <= iov->iov_len);
6282 		*address += bio->fused_iov_offset;
6283 		*length -= bio->fused_iov_offset;
6284 	}
6285 
6286 	bio->fused_iov_offset += *length;
6287 	if (bio->fused_iov_offset == iov->iov_len) {
6288 		bio->fused_iovpos++;
6289 		bio->fused_iov_offset = 0;
6290 	}
6291 
6292 	return 0;
6293 }
6294 
6295 static int
6296 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6297 		      void *md, uint64_t lba_count, uint64_t lba)
6298 {
6299 	int rc;
6300 
6301 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
6302 		      lba_count, lba);
6303 
6304 	bio->iovs = iov;
6305 	bio->iovcnt = iovcnt;
6306 	bio->iovpos = 0;
6307 	bio->iov_offset = 0;
6308 
6309 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
6310 					    bio->io_path->qpair->qpair,
6311 					    lba, lba_count,
6312 					    bdev_nvme_no_pi_readv_done, bio, 0,
6313 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6314 					    md, 0, 0);
6315 
6316 	if (rc != 0 && rc != -ENOMEM) {
6317 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
6318 	}
6319 	return rc;
6320 }
6321 
6322 static int
6323 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6324 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
6325 		struct spdk_bdev_ext_io_opts *ext_opts)
6326 {
6327 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6328 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6329 	int rc;
6330 
6331 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
6332 		      lba_count, lba);
6333 
6334 	bio->iovs = iov;
6335 	bio->iovcnt = iovcnt;
6336 	bio->iovpos = 0;
6337 	bio->iov_offset = 0;
6338 
6339 	if (ext_opts) {
6340 		bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts);
6341 		bio->ext_opts.memory_domain = ext_opts->memory_domain;
6342 		bio->ext_opts.memory_domain_ctx = ext_opts->memory_domain_ctx;
6343 		bio->ext_opts.io_flags = flags;
6344 		bio->ext_opts.metadata = md;
6345 
6346 		rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
6347 						bdev_nvme_readv_done, bio,
6348 						bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6349 						&bio->ext_opts);
6350 	} else if (iovcnt == 1) {
6351 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base, md, lba,
6352 						   lba_count,
6353 						   bdev_nvme_readv_done, bio,
6354 						   flags,
6355 						   0, 0);
6356 	} else {
6357 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
6358 						    bdev_nvme_readv_done, bio, flags,
6359 						    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6360 						    md, 0, 0);
6361 	}
6362 
6363 	if (rc != 0 && rc != -ENOMEM) {
6364 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
6365 	}
6366 	return rc;
6367 }
6368 
6369 static int
6370 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6371 		 void *md, uint64_t lba_count, uint64_t lba,
6372 		 uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts)
6373 {
6374 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6375 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6376 	int rc;
6377 
6378 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
6379 		      lba_count, lba);
6380 
6381 	bio->iovs = iov;
6382 	bio->iovcnt = iovcnt;
6383 	bio->iovpos = 0;
6384 	bio->iov_offset = 0;
6385 
6386 	if (ext_opts) {
6387 		bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts);
6388 		bio->ext_opts.memory_domain = ext_opts->memory_domain;
6389 		bio->ext_opts.memory_domain_ctx = ext_opts->memory_domain_ctx;
6390 		bio->ext_opts.io_flags = flags;
6391 		bio->ext_opts.metadata = md;
6392 
6393 		rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
6394 						 bdev_nvme_writev_done, bio,
6395 						 bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6396 						 &bio->ext_opts);
6397 	} else if (iovcnt == 1) {
6398 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base, md, lba,
6399 						    lba_count,
6400 						    bdev_nvme_writev_done, bio,
6401 						    flags,
6402 						    0, 0);
6403 	} else {
6404 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
6405 						     bdev_nvme_writev_done, bio, flags,
6406 						     bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6407 						     md, 0, 0);
6408 	}
6409 
6410 	if (rc != 0 && rc != -ENOMEM) {
6411 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
6412 	}
6413 	return rc;
6414 }
6415 
6416 static int
6417 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6418 		       void *md, uint64_t lba_count, uint64_t zslba,
6419 		       uint32_t flags)
6420 {
6421 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6422 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6423 	int rc;
6424 
6425 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
6426 		      lba_count, zslba);
6427 
6428 	bio->iovs = iov;
6429 	bio->iovcnt = iovcnt;
6430 	bio->iovpos = 0;
6431 	bio->iov_offset = 0;
6432 
6433 	if (iovcnt == 1) {
6434 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
6435 						       lba_count,
6436 						       bdev_nvme_zone_appendv_done, bio,
6437 						       flags,
6438 						       0, 0);
6439 	} else {
6440 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
6441 							bdev_nvme_zone_appendv_done, bio, flags,
6442 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6443 							md, 0, 0);
6444 	}
6445 
6446 	if (rc != 0 && rc != -ENOMEM) {
6447 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
6448 	}
6449 	return rc;
6450 }
6451 
6452 static int
6453 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6454 		   void *md, uint64_t lba_count, uint64_t lba,
6455 		   uint32_t flags)
6456 {
6457 	int rc;
6458 
6459 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
6460 		      lba_count, lba);
6461 
6462 	bio->iovs = iov;
6463 	bio->iovcnt = iovcnt;
6464 	bio->iovpos = 0;
6465 	bio->iov_offset = 0;
6466 
6467 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
6468 					       bio->io_path->qpair->qpair,
6469 					       lba, lba_count,
6470 					       bdev_nvme_comparev_done, bio, flags,
6471 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6472 					       md, 0, 0);
6473 
6474 	if (rc != 0 && rc != -ENOMEM) {
6475 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
6476 	}
6477 	return rc;
6478 }
6479 
6480 static int
6481 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
6482 			      struct iovec *write_iov, int write_iovcnt,
6483 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
6484 {
6485 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6486 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6487 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6488 	int rc;
6489 
6490 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
6491 		      lba_count, lba);
6492 
6493 	bio->iovs = cmp_iov;
6494 	bio->iovcnt = cmp_iovcnt;
6495 	bio->iovpos = 0;
6496 	bio->iov_offset = 0;
6497 	bio->fused_iovs = write_iov;
6498 	bio->fused_iovcnt = write_iovcnt;
6499 	bio->fused_iovpos = 0;
6500 	bio->fused_iov_offset = 0;
6501 
6502 	if (bdev_io->num_retries == 0) {
6503 		bio->first_fused_submitted = false;
6504 		bio->first_fused_completed = false;
6505 	}
6506 
6507 	if (!bio->first_fused_submitted) {
6508 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
6509 		memset(&bio->cpl, 0, sizeof(bio->cpl));
6510 
6511 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
6512 						       bdev_nvme_comparev_and_writev_done, bio, flags,
6513 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
6514 		if (rc == 0) {
6515 			bio->first_fused_submitted = true;
6516 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
6517 		} else {
6518 			if (rc != -ENOMEM) {
6519 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
6520 			}
6521 			return rc;
6522 		}
6523 	}
6524 
6525 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
6526 
6527 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
6528 					     bdev_nvme_comparev_and_writev_done, bio, flags,
6529 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
6530 	if (rc != 0 && rc != -ENOMEM) {
6531 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
6532 		rc = 0;
6533 	}
6534 
6535 	return rc;
6536 }
6537 
6538 static int
6539 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
6540 {
6541 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
6542 	struct spdk_nvme_dsm_range *range;
6543 	uint64_t offset, remaining;
6544 	uint64_t num_ranges_u64;
6545 	uint16_t num_ranges;
6546 	int rc;
6547 
6548 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
6549 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6550 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
6551 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
6552 		return -EINVAL;
6553 	}
6554 	num_ranges = (uint16_t)num_ranges_u64;
6555 
6556 	offset = offset_blocks;
6557 	remaining = num_blocks;
6558 	range = &dsm_ranges[0];
6559 
6560 	/* Fill max-size ranges until the remaining blocks fit into one range */
6561 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
6562 		range->attributes.raw = 0;
6563 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6564 		range->starting_lba = offset;
6565 
6566 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6567 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6568 		range++;
6569 	}
6570 
6571 	/* Final range describes the remaining blocks */
6572 	range->attributes.raw = 0;
6573 	range->length = remaining;
6574 	range->starting_lba = offset;
6575 
6576 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
6577 			bio->io_path->qpair->qpair,
6578 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
6579 			dsm_ranges, num_ranges,
6580 			bdev_nvme_queued_done, bio);
6581 
6582 	return rc;
6583 }
6584 
6585 static int
6586 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
6587 {
6588 	if (num_blocks > UINT16_MAX + 1) {
6589 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
6590 		return -EINVAL;
6591 	}
6592 
6593 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
6594 					     bio->io_path->qpair->qpair,
6595 					     offset_blocks, num_blocks,
6596 					     bdev_nvme_queued_done, bio,
6597 					     0);
6598 }
6599 
6600 static int
6601 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
6602 			struct spdk_bdev_zone_info *info)
6603 {
6604 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6605 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6606 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
6607 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
6608 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
6609 
6610 	if (zone_id % zone_size != 0) {
6611 		return -EINVAL;
6612 	}
6613 
6614 	if (num_zones > total_zones || !num_zones) {
6615 		return -EINVAL;
6616 	}
6617 
6618 	assert(!bio->zone_report_buf);
6619 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
6620 	if (!bio->zone_report_buf) {
6621 		return -ENOMEM;
6622 	}
6623 
6624 	bio->handled_zones = 0;
6625 
6626 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
6627 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
6628 					  bdev_nvme_get_zone_info_done, bio);
6629 }
6630 
6631 static int
6632 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
6633 			  enum spdk_bdev_zone_action action)
6634 {
6635 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6636 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6637 
6638 	switch (action) {
6639 	case SPDK_BDEV_ZONE_CLOSE:
6640 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
6641 						bdev_nvme_zone_management_done, bio);
6642 	case SPDK_BDEV_ZONE_FINISH:
6643 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
6644 						 bdev_nvme_zone_management_done, bio);
6645 	case SPDK_BDEV_ZONE_OPEN:
6646 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
6647 					       bdev_nvme_zone_management_done, bio);
6648 	case SPDK_BDEV_ZONE_RESET:
6649 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
6650 						bdev_nvme_zone_management_done, bio);
6651 	case SPDK_BDEV_ZONE_OFFLINE:
6652 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
6653 						  bdev_nvme_zone_management_done, bio);
6654 	default:
6655 		return -EINVAL;
6656 	}
6657 }
6658 
6659 static void
6660 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
6661 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
6662 {
6663 	struct nvme_io_path *io_path;
6664 	struct nvme_ctrlr *nvme_ctrlr;
6665 	uint32_t max_xfer_size;
6666 	int rc = -ENXIO;
6667 
6668 	/* Choose the first ctrlr which is not failed. */
6669 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
6670 		nvme_ctrlr = io_path->qpair->ctrlr;
6671 
6672 		/* We should skip any unavailable nvme_ctrlr rather than checking
6673 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
6674 		 */
6675 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
6676 			continue;
6677 		}
6678 
6679 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
6680 
6681 		if (nbytes > max_xfer_size) {
6682 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
6683 			rc = -EINVAL;
6684 			goto err;
6685 		}
6686 
6687 		bio->io_path = io_path;
6688 		bio->orig_thread = spdk_get_thread();
6689 
6690 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
6691 						   bdev_nvme_admin_passthru_done, bio);
6692 		if (rc == 0) {
6693 			return;
6694 		}
6695 	}
6696 
6697 err:
6698 	bdev_nvme_admin_passthru_complete(bio, rc);
6699 }
6700 
6701 static int
6702 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
6703 		      void *buf, size_t nbytes)
6704 {
6705 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6706 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6707 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
6708 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
6709 
6710 	if (nbytes > max_xfer_size) {
6711 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
6712 		return -EINVAL;
6713 	}
6714 
6715 	/*
6716 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
6717 	 * so fill it out automatically.
6718 	 */
6719 	cmd->nsid = spdk_nvme_ns_get_id(ns);
6720 
6721 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
6722 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
6723 }
6724 
6725 static int
6726 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
6727 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
6728 {
6729 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6730 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6731 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
6732 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
6733 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
6734 
6735 	if (nbytes > max_xfer_size) {
6736 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
6737 		return -EINVAL;
6738 	}
6739 
6740 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
6741 		SPDK_ERRLOG("invalid meta data buffer size\n");
6742 		return -EINVAL;
6743 	}
6744 
6745 	/*
6746 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
6747 	 * so fill it out automatically.
6748 	 */
6749 	cmd->nsid = spdk_nvme_ns_get_id(ns);
6750 
6751 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
6752 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
6753 }
6754 
6755 static void
6756 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
6757 		struct nvme_bdev_io *bio_to_abort)
6758 {
6759 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6760 	struct nvme_io_path *io_path;
6761 	struct nvme_ctrlr *nvme_ctrlr;
6762 	int rc = 0;
6763 
6764 	bio->orig_thread = spdk_get_thread();
6765 
6766 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
6767 	if (rc == 0) {
6768 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
6769 		return;
6770 	}
6771 
6772 	rc = 0;
6773 
6774 	/* Even admin commands, they were submitted to only nvme_ctrlrs which were
6775 	 * on any io_path. So traverse the io_path list for not only I/O commands
6776 	 * but also admin commands.
6777 	 */
6778 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
6779 		nvme_ctrlr = io_path->qpair->ctrlr;
6780 
6781 		rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ctrlr->ctrlr,
6782 						   io_path->qpair->qpair,
6783 						   bio_to_abort,
6784 						   bdev_nvme_abort_done, bio);
6785 		if (rc == -ENOENT) {
6786 			/* If no command was found in I/O qpair, the target command may be
6787 			 * admin command.
6788 			 */
6789 			rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ctrlr->ctrlr,
6790 							   NULL,
6791 							   bio_to_abort,
6792 							   bdev_nvme_abort_done, bio);
6793 		}
6794 
6795 		if (rc != -ENOENT) {
6796 			break;
6797 		}
6798 	}
6799 
6800 	if (rc != 0) {
6801 		/* If no command was found or there was any error, complete the abort
6802 		 * request with failure.
6803 		 */
6804 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
6805 	}
6806 }
6807 
6808 static int
6809 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
6810 	       uint64_t num_blocks)
6811 {
6812 	struct spdk_nvme_scc_source_range range = {
6813 		.slba = src_offset_blocks,
6814 		.nlb = num_blocks - 1
6815 	};
6816 
6817 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
6818 				     bio->io_path->qpair->qpair,
6819 				     &range, 1, dst_offset_blocks,
6820 				     bdev_nvme_queued_done, bio);
6821 }
6822 
6823 static void
6824 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
6825 {
6826 	const char	*action;
6827 
6828 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
6829 		action = "reset";
6830 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
6831 		action = "abort";
6832 	} else {
6833 		action = "none";
6834 	}
6835 
6836 	spdk_json_write_object_begin(w);
6837 
6838 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
6839 
6840 	spdk_json_write_named_object_begin(w, "params");
6841 	spdk_json_write_named_string(w, "action_on_timeout", action);
6842 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
6843 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
6844 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
6845 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
6846 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
6847 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
6848 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
6849 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
6850 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
6851 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
6852 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
6853 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
6854 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
6855 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
6856 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
6857 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
6858 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
6859 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
6860 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
6861 	spdk_json_write_object_end(w);
6862 
6863 	spdk_json_write_object_end(w);
6864 }
6865 
6866 static void
6867 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
6868 {
6869 	struct spdk_nvme_transport_id trid;
6870 
6871 	spdk_json_write_object_begin(w);
6872 
6873 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
6874 
6875 	spdk_json_write_named_object_begin(w, "params");
6876 	spdk_json_write_named_string(w, "name", ctx->name);
6877 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
6878 
6879 	trid = ctx->trid;
6880 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
6881 	nvme_bdev_dump_trid_json(&trid, w);
6882 
6883 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
6884 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
6885 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
6886 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
6887 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
6888 	spdk_json_write_object_end(w);
6889 
6890 	spdk_json_write_object_end(w);
6891 }
6892 
6893 static void
6894 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
6895 		       struct nvme_ctrlr *nvme_ctrlr)
6896 {
6897 	struct spdk_nvme_transport_id	*trid;
6898 
6899 	if (nvme_ctrlr->opts.from_discovery_service) {
6900 		/* Do not emit an RPC for this - it will be implicitly
6901 		 * covered by a separate bdev_nvme_start_discovery or
6902 		 * bdev_nvme_start_mdns_discovery RPC.
6903 		 */
6904 		return;
6905 	}
6906 
6907 	trid = &nvme_ctrlr->active_path_id->trid;
6908 
6909 	spdk_json_write_object_begin(w);
6910 
6911 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
6912 
6913 	spdk_json_write_named_object_begin(w, "params");
6914 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
6915 	nvme_bdev_dump_trid_json(trid, w);
6916 	spdk_json_write_named_bool(w, "prchk_reftag",
6917 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
6918 	spdk_json_write_named_bool(w, "prchk_guard",
6919 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
6920 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
6921 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
6922 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
6923 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
6924 
6925 	spdk_json_write_object_end(w);
6926 
6927 	spdk_json_write_object_end(w);
6928 }
6929 
6930 static void
6931 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
6932 {
6933 	spdk_json_write_object_begin(w);
6934 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
6935 
6936 	spdk_json_write_named_object_begin(w, "params");
6937 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
6938 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
6939 	spdk_json_write_object_end(w);
6940 
6941 	spdk_json_write_object_end(w);
6942 }
6943 
6944 static int
6945 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
6946 {
6947 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
6948 	struct nvme_ctrlr	*nvme_ctrlr;
6949 	struct discovery_ctx	*ctx;
6950 
6951 	bdev_nvme_opts_config_json(w);
6952 
6953 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6954 
6955 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
6956 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6957 			nvme_ctrlr_config_json(w, nvme_ctrlr);
6958 		}
6959 	}
6960 
6961 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6962 		if (!ctx->from_mdns_discovery_service) {
6963 			bdev_nvme_discovery_config_json(w, ctx);
6964 		}
6965 	}
6966 
6967 	bdev_nvme_mdns_discovery_config_json(w);
6968 
6969 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
6970 	 * before enabling hotplug poller.
6971 	 */
6972 	bdev_nvme_hotplug_config_json(w);
6973 
6974 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6975 	return 0;
6976 }
6977 
6978 struct spdk_nvme_ctrlr *
6979 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
6980 {
6981 	struct nvme_bdev *nbdev;
6982 	struct nvme_ns *nvme_ns;
6983 
6984 	if (!bdev || bdev->module != &nvme_if) {
6985 		return NULL;
6986 	}
6987 
6988 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
6989 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
6990 	assert(nvme_ns != NULL);
6991 
6992 	return nvme_ns->ctrlr->ctrlr;
6993 }
6994 
6995 void
6996 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
6997 {
6998 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
6999 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
7000 	const struct spdk_nvme_ctrlr_data *cdata;
7001 	const struct spdk_nvme_transport_id *trid;
7002 	const char *adrfam_str;
7003 
7004 	spdk_json_write_object_begin(w);
7005 
7006 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
7007 
7008 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
7009 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
7010 
7011 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
7012 	spdk_json_write_named_bool(w, "current", io_path == io_path->nbdev_ch->current_io_path);
7013 	spdk_json_write_named_bool(w, "connected", nvme_io_path_is_connected(io_path));
7014 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
7015 
7016 	spdk_json_write_named_object_begin(w, "transport");
7017 	spdk_json_write_named_string(w, "trtype", trid->trstring);
7018 	spdk_json_write_named_string(w, "traddr", trid->traddr);
7019 	if (trid->trsvcid[0] != '\0') {
7020 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
7021 	}
7022 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
7023 	if (adrfam_str) {
7024 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
7025 	}
7026 	spdk_json_write_object_end(w);
7027 
7028 	spdk_json_write_object_end(w);
7029 }
7030 
7031 void
7032 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
7033 {
7034 	struct discovery_ctx *ctx;
7035 	struct discovery_entry_ctx *entry_ctx;
7036 
7037 	spdk_json_write_array_begin(w);
7038 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7039 		spdk_json_write_object_begin(w);
7040 		spdk_json_write_named_string(w, "name", ctx->name);
7041 
7042 		spdk_json_write_named_object_begin(w, "trid");
7043 		nvme_bdev_dump_trid_json(&ctx->trid, w);
7044 		spdk_json_write_object_end(w);
7045 
7046 		spdk_json_write_named_array_begin(w, "referrals");
7047 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
7048 			spdk_json_write_object_begin(w);
7049 			spdk_json_write_named_object_begin(w, "trid");
7050 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
7051 			spdk_json_write_object_end(w);
7052 			spdk_json_write_object_end(w);
7053 		}
7054 		spdk_json_write_array_end(w);
7055 
7056 		spdk_json_write_object_end(w);
7057 	}
7058 	spdk_json_write_array_end(w);
7059 }
7060 
7061 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
7062 
7063 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
7064 {
7065 	struct spdk_trace_tpoint_opts opts[] = {
7066 		{
7067 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
7068 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 1,
7069 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
7070 		},
7071 		{
7072 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
7073 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 0,
7074 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
7075 		}
7076 	};
7077 
7078 
7079 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
7080 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
7081 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
7082 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
7083 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
7084 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
7085 }
7086