xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision a6dbe3721eb3b5990707fc3e378c95e505dd8ab5)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "bdev_nvme.h"
10 
11 #include "spdk/accel.h"
12 #include "spdk/config.h"
13 #include "spdk/endian.h"
14 #include "spdk/bdev.h"
15 #include "spdk/json.h"
16 #include "spdk/likely.h"
17 #include "spdk/nvme.h"
18 #include "spdk/nvme_ocssd.h"
19 #include "spdk/nvme_zns.h"
20 #include "spdk/opal.h"
21 #include "spdk/thread.h"
22 #include "spdk/trace.h"
23 #include "spdk/string.h"
24 #include "spdk/util.h"
25 
26 #include "spdk/bdev_module.h"
27 #include "spdk/log.h"
28 
29 #include "spdk_internal/usdt.h"
30 #include "spdk_internal/trace_defs.h"
31 
32 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
33 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
34 
35 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
36 
37 struct nvme_bdev_io {
38 	/** array of iovecs to transfer. */
39 	struct iovec *iovs;
40 
41 	/** Number of iovecs in iovs array. */
42 	int iovcnt;
43 
44 	/** Current iovec position. */
45 	int iovpos;
46 
47 	/** Offset in current iovec. */
48 	uint32_t iov_offset;
49 
50 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
51 	 *  being reset in a reset I/O.
52 	 */
53 	struct nvme_io_path *io_path;
54 
55 	/** array of iovecs to transfer. */
56 	struct iovec *fused_iovs;
57 
58 	/** Number of iovecs in iovs array. */
59 	int fused_iovcnt;
60 
61 	/** Current iovec position. */
62 	int fused_iovpos;
63 
64 	/** Offset in current iovec. */
65 	uint32_t fused_iov_offset;
66 
67 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
68 	struct spdk_nvme_cpl cpl;
69 
70 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
71 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
72 
73 	/** Originating thread */
74 	struct spdk_thread *orig_thread;
75 
76 	/** Keeps track if first of fused commands was submitted */
77 	bool first_fused_submitted;
78 
79 	/** Keeps track if first of fused commands was completed */
80 	bool first_fused_completed;
81 
82 	/** Temporary pointer to zone report buffer */
83 	struct spdk_nvme_zns_zone_report *zone_report_buf;
84 
85 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
86 	uint64_t handled_zones;
87 
88 	/** Expiration value in ticks to retry the current I/O. */
89 	uint64_t retry_ticks;
90 
91 	/* How many times the current I/O was retried. */
92 	int32_t retry_count;
93 };
94 
95 struct nvme_probe_skip_entry {
96 	struct spdk_nvme_transport_id		trid;
97 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
98 };
99 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
100 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
101 			g_skipped_nvme_ctrlrs);
102 
103 static struct spdk_bdev_nvme_opts g_opts = {
104 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
105 	.timeout_us = 0,
106 	.timeout_admin_us = 0,
107 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
108 	.transport_retry_count = 4,
109 	.arbitration_burst = 0,
110 	.low_priority_weight = 0,
111 	.medium_priority_weight = 0,
112 	.high_priority_weight = 0,
113 	.nvme_adminq_poll_period_us = 10000ULL,
114 	.nvme_ioq_poll_period_us = 0,
115 	.io_queue_requests = 0,
116 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
117 	.bdev_retry_count = 3,
118 	.transport_ack_timeout = 0,
119 	.ctrlr_loss_timeout_sec = 0,
120 	.reconnect_delay_sec = 0,
121 	.fast_io_fail_timeout_sec = 0,
122 	.disable_auto_failback = false,
123 };
124 
125 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
126 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
127 
128 static int g_hot_insert_nvme_controller_index = 0;
129 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
130 static bool g_nvme_hotplug_enabled = false;
131 static struct spdk_thread *g_bdev_nvme_init_thread;
132 static struct spdk_poller *g_hotplug_poller;
133 static struct spdk_poller *g_hotplug_probe_poller;
134 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
135 
136 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
137 		struct nvme_async_probe_ctx *ctx);
138 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
139 		struct nvme_async_probe_ctx *ctx);
140 static int bdev_nvme_library_init(void);
141 static void bdev_nvme_library_fini(void);
142 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
143 				     struct spdk_bdev_io *bdev_io);
144 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
145 			   void *md, uint64_t lba_count, uint64_t lba,
146 			   uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts);
147 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
148 				 void *md, uint64_t lba_count, uint64_t lba);
149 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
150 			    void *md, uint64_t lba_count, uint64_t lba,
151 			    uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts);
152 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
153 				  void *md, uint64_t lba_count,
154 				  uint64_t zslba, uint32_t flags);
155 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
156 			      void *md, uint64_t lba_count, uint64_t lba,
157 			      uint32_t flags);
158 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
159 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
160 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
161 		uint32_t flags);
162 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
163 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
164 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
165 				     enum spdk_bdev_zone_action action);
166 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
167 				     struct nvme_bdev_io *bio,
168 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
169 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
170 				 void *buf, size_t nbytes);
171 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
172 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
173 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
174 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
175 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
176 static int bdev_nvme_reset(struct nvme_ctrlr *nvme_ctrlr);
177 static int bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove);
178 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
179 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
180 
181 static int
182 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
183 {
184 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
185 }
186 
187 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
188 
189 struct spdk_nvme_qpair *
190 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
191 {
192 	struct nvme_ctrlr_channel *ctrlr_ch;
193 
194 	assert(ctrlr_io_ch != NULL);
195 
196 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
197 
198 	return ctrlr_ch->qpair->qpair;
199 }
200 
201 static int
202 bdev_nvme_get_ctx_size(void)
203 {
204 	return sizeof(struct nvme_bdev_io);
205 }
206 
207 static struct spdk_bdev_module nvme_if = {
208 	.name = "nvme",
209 	.async_fini = true,
210 	.module_init = bdev_nvme_library_init,
211 	.module_fini = bdev_nvme_library_fini,
212 	.config_json = bdev_nvme_config_json,
213 	.get_ctx_size = bdev_nvme_get_ctx_size,
214 
215 };
216 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
217 
218 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
219 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
220 bool g_bdev_nvme_module_finish;
221 
222 struct nvme_bdev_ctrlr *
223 nvme_bdev_ctrlr_get_by_name(const char *name)
224 {
225 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
226 
227 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
228 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
229 			break;
230 		}
231 	}
232 
233 	return nbdev_ctrlr;
234 }
235 
236 static struct nvme_ctrlr *
237 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
238 			  const struct spdk_nvme_transport_id *trid)
239 {
240 	struct nvme_ctrlr *nvme_ctrlr;
241 
242 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
243 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0) {
244 			break;
245 		}
246 	}
247 
248 	return nvme_ctrlr;
249 }
250 
251 static struct nvme_bdev *
252 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
253 {
254 	struct nvme_bdev *bdev;
255 
256 	pthread_mutex_lock(&g_bdev_nvme_mutex);
257 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
258 		if (bdev->nsid == nsid) {
259 			break;
260 		}
261 	}
262 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
263 
264 	return bdev;
265 }
266 
267 struct nvme_ns *
268 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
269 {
270 	struct nvme_ns ns;
271 
272 	assert(nsid > 0);
273 
274 	ns.id = nsid;
275 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
276 }
277 
278 struct nvme_ns *
279 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
280 {
281 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
282 }
283 
284 struct nvme_ns *
285 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
286 {
287 	if (ns == NULL) {
288 		return NULL;
289 	}
290 
291 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
292 }
293 
294 static struct nvme_ctrlr *
295 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid)
296 {
297 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
298 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
299 
300 	pthread_mutex_lock(&g_bdev_nvme_mutex);
301 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
302 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid);
303 		if (nvme_ctrlr != NULL) {
304 			break;
305 		}
306 	}
307 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
308 
309 	return nvme_ctrlr;
310 }
311 
312 struct nvme_ctrlr *
313 nvme_ctrlr_get_by_name(const char *name)
314 {
315 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
316 	struct nvme_ctrlr *nvme_ctrlr = NULL;
317 
318 	if (name == NULL) {
319 		return NULL;
320 	}
321 
322 	pthread_mutex_lock(&g_bdev_nvme_mutex);
323 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
324 	if (nbdev_ctrlr != NULL) {
325 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
326 	}
327 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
328 
329 	return nvme_ctrlr;
330 }
331 
332 void
333 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
334 {
335 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
336 
337 	pthread_mutex_lock(&g_bdev_nvme_mutex);
338 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
339 		fn(nbdev_ctrlr, ctx);
340 	}
341 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
342 }
343 
344 void
345 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
346 {
347 	const char *trtype_str;
348 	const char *adrfam_str;
349 
350 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
351 	if (trtype_str) {
352 		spdk_json_write_named_string(w, "trtype", trtype_str);
353 	}
354 
355 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
356 	if (adrfam_str) {
357 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
358 	}
359 
360 	if (trid->traddr[0] != '\0') {
361 		spdk_json_write_named_string(w, "traddr", trid->traddr);
362 	}
363 
364 	if (trid->trsvcid[0] != '\0') {
365 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
366 	}
367 
368 	if (trid->subnqn[0] != '\0') {
369 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
370 	}
371 }
372 
373 static void
374 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
375 		       struct nvme_ctrlr *nvme_ctrlr)
376 {
377 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
378 	pthread_mutex_lock(&g_bdev_nvme_mutex);
379 
380 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
381 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
382 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
383 
384 		return;
385 	}
386 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
387 
388 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
389 
390 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
391 
392 	free(nbdev_ctrlr->name);
393 	free(nbdev_ctrlr);
394 }
395 
396 static void
397 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
398 {
399 	struct nvme_path_id *path_id, *tmp_path;
400 	struct nvme_ns *ns, *tmp_ns;
401 
402 	free(nvme_ctrlr->copied_ana_desc);
403 	spdk_free(nvme_ctrlr->ana_log_page);
404 
405 	if (nvme_ctrlr->opal_dev) {
406 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
407 		nvme_ctrlr->opal_dev = NULL;
408 	}
409 
410 	if (nvme_ctrlr->nbdev_ctrlr) {
411 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
412 	}
413 
414 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
415 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
416 		free(ns);
417 	}
418 
419 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
420 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
421 		free(path_id);
422 	}
423 
424 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
425 
426 	free(nvme_ctrlr);
427 
428 	pthread_mutex_lock(&g_bdev_nvme_mutex);
429 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
430 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
431 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
432 		spdk_bdev_module_fini_done();
433 		return;
434 	}
435 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
436 }
437 
438 static int
439 nvme_detach_poller(void *arg)
440 {
441 	struct nvme_ctrlr *nvme_ctrlr = arg;
442 	int rc;
443 
444 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
445 	if (rc != -EAGAIN) {
446 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
447 		_nvme_ctrlr_delete(nvme_ctrlr);
448 	}
449 
450 	return SPDK_POLLER_BUSY;
451 }
452 
453 static void
454 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
455 {
456 	int rc;
457 
458 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
459 
460 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
461 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
462 
463 	/* If we got here, the reset/detach poller cannot be active */
464 	assert(nvme_ctrlr->reset_detach_poller == NULL);
465 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
466 					  nvme_ctrlr, 1000);
467 	if (nvme_ctrlr->reset_detach_poller == NULL) {
468 		SPDK_ERRLOG("Failed to register detach poller\n");
469 		goto error;
470 	}
471 
472 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
473 	if (rc != 0) {
474 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
475 		goto error;
476 	}
477 
478 	return;
479 error:
480 	/* We don't have a good way to handle errors here, so just do what we can and delete the
481 	 * controller without detaching the underlying NVMe device.
482 	 */
483 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
484 	_nvme_ctrlr_delete(nvme_ctrlr);
485 }
486 
487 static void
488 nvme_ctrlr_unregister_cb(void *io_device)
489 {
490 	struct nvme_ctrlr *nvme_ctrlr = io_device;
491 
492 	nvme_ctrlr_delete(nvme_ctrlr);
493 }
494 
495 static void
496 nvme_ctrlr_unregister(void *ctx)
497 {
498 	struct nvme_ctrlr *nvme_ctrlr = ctx;
499 
500 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
501 }
502 
503 static bool
504 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
505 {
506 	if (!nvme_ctrlr->destruct) {
507 		return false;
508 	}
509 
510 	if (nvme_ctrlr->ref > 0) {
511 		return false;
512 	}
513 
514 	if (nvme_ctrlr->resetting) {
515 		return false;
516 	}
517 
518 	if (nvme_ctrlr->ana_log_page_updating) {
519 		return false;
520 	}
521 
522 	if (nvme_ctrlr->io_path_cache_clearing) {
523 		return false;
524 	}
525 
526 	return true;
527 }
528 
529 static void
530 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
531 {
532 	pthread_mutex_lock(&nvme_ctrlr->mutex);
533 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
534 
535 	assert(nvme_ctrlr->ref > 0);
536 	nvme_ctrlr->ref--;
537 
538 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
539 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
540 		return;
541 	}
542 
543 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
544 
545 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
546 }
547 
548 static struct nvme_io_path *
549 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
550 {
551 	struct nvme_io_path *io_path;
552 
553 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
554 		if (io_path->nvme_ns == nvme_ns) {
555 			break;
556 		}
557 	}
558 
559 	return io_path;
560 }
561 
562 static int
563 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
564 {
565 	struct nvme_io_path *io_path;
566 	struct spdk_io_channel *ch;
567 	struct nvme_ctrlr_channel *ctrlr_ch;
568 	struct nvme_qpair *nvme_qpair;
569 
570 	io_path = calloc(1, sizeof(*io_path));
571 	if (io_path == NULL) {
572 		SPDK_ERRLOG("Failed to alloc io_path.\n");
573 		return -ENOMEM;
574 	}
575 
576 	io_path->nvme_ns = nvme_ns;
577 
578 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
579 	if (ch == NULL) {
580 		free(io_path);
581 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
582 		return -ENOMEM;
583 	}
584 
585 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
586 
587 	nvme_qpair = ctrlr_ch->qpair;
588 	assert(nvme_qpair != NULL);
589 
590 	io_path->qpair = nvme_qpair;
591 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
592 
593 	io_path->nbdev_ch = nbdev_ch;
594 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
595 
596 	nbdev_ch->current_io_path = NULL;
597 
598 	return 0;
599 }
600 
601 static void
602 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
603 {
604 	struct spdk_io_channel *ch;
605 	struct nvme_qpair *nvme_qpair;
606 	struct nvme_ctrlr_channel *ctrlr_ch;
607 
608 	nbdev_ch->current_io_path = NULL;
609 
610 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
611 
612 	nvme_qpair = io_path->qpair;
613 	assert(nvme_qpair != NULL);
614 
615 	TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
616 
617 	ctrlr_ch = nvme_qpair->ctrlr_ch;
618 	assert(ctrlr_ch != NULL);
619 
620 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
621 	spdk_put_io_channel(ch);
622 
623 	free(io_path);
624 }
625 
626 static void
627 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
628 {
629 	struct nvme_io_path *io_path, *tmp_io_path;
630 
631 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
632 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
633 	}
634 }
635 
636 static int
637 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
638 {
639 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
640 	struct nvme_bdev *nbdev = io_device;
641 	struct nvme_ns *nvme_ns;
642 	int rc;
643 
644 	STAILQ_INIT(&nbdev_ch->io_path_list);
645 	TAILQ_INIT(&nbdev_ch->retry_io_list);
646 
647 	pthread_mutex_lock(&nbdev->mutex);
648 
649 	nbdev_ch->mp_policy = nbdev->mp_policy;
650 
651 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
652 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
653 		if (rc != 0) {
654 			pthread_mutex_unlock(&nbdev->mutex);
655 
656 			_bdev_nvme_delete_io_paths(nbdev_ch);
657 			return rc;
658 		}
659 	}
660 	pthread_mutex_unlock(&nbdev->mutex);
661 
662 	return 0;
663 }
664 
665 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
666  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
667  */
668 static inline void
669 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
670 			const struct spdk_nvme_cpl *cpl)
671 {
672 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
673 			  (uintptr_t)bdev_io);
674 	if (cpl) {
675 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
676 	} else {
677 		spdk_bdev_io_complete(bdev_io, status);
678 	}
679 }
680 
681 static void
682 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
683 {
684 	struct spdk_bdev_io *bdev_io, *tmp_io;
685 
686 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_io) {
687 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
688 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
689 	}
690 
691 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
692 }
693 
694 static void
695 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
696 {
697 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
698 
699 	bdev_nvme_abort_retry_ios(nbdev_ch);
700 	_bdev_nvme_delete_io_paths(nbdev_ch);
701 }
702 
703 static inline bool
704 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
705 {
706 	switch (io_type) {
707 	case SPDK_BDEV_IO_TYPE_RESET:
708 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
709 	case SPDK_BDEV_IO_TYPE_ABORT:
710 		return true;
711 	default:
712 		break;
713 	}
714 
715 	return false;
716 }
717 
718 static inline bool
719 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
720 {
721 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
722 		return false;
723 	}
724 
725 	switch (nvme_ns->ana_state) {
726 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
727 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
728 		return true;
729 	default:
730 		break;
731 	}
732 
733 	return false;
734 }
735 
736 static inline bool
737 nvme_io_path_is_connected(struct nvme_io_path *io_path)
738 {
739 	if (spdk_unlikely(io_path->qpair->qpair == NULL)) {
740 		return false;
741 	}
742 
743 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(io_path->qpair->qpair) !=
744 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
745 		return false;
746 	}
747 
748 	if (spdk_unlikely(io_path->qpair->ctrlr_ch->reset_iter != NULL)) {
749 		return false;
750 	}
751 
752 	if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(io_path->qpair->ctrlr->ctrlr) !=
753 	    SPDK_NVME_QPAIR_FAILURE_NONE) {
754 		return false;
755 	}
756 
757 	return true;
758 }
759 
760 static inline bool
761 nvme_io_path_is_available(struct nvme_io_path *io_path)
762 {
763 	if (spdk_unlikely(!nvme_io_path_is_connected(io_path))) {
764 		return false;
765 	}
766 
767 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
768 		return false;
769 	}
770 
771 	return true;
772 }
773 
774 static inline bool
775 nvme_io_path_is_failed(struct nvme_io_path *io_path)
776 {
777 	struct nvme_ctrlr *nvme_ctrlr;
778 
779 	nvme_ctrlr = io_path->qpair->ctrlr;
780 
781 	if (nvme_ctrlr->destruct) {
782 		return true;
783 	}
784 
785 	if (nvme_ctrlr->fast_io_fail_timedout) {
786 		return true;
787 	}
788 
789 	if (nvme_ctrlr->resetting) {
790 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
791 			return false;
792 		} else {
793 			return true;
794 		}
795 	}
796 
797 	if (nvme_ctrlr->reconnect_is_delayed) {
798 		return false;
799 	}
800 
801 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
802 		return true;
803 	} else {
804 		return false;
805 	}
806 }
807 
808 static bool
809 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
810 {
811 	if (nvme_ctrlr->destruct) {
812 		return false;
813 	}
814 
815 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
816 		return false;
817 	}
818 
819 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
820 		return false;
821 	}
822 
823 	return true;
824 }
825 
826 /* Simulate circular linked list. */
827 static inline struct nvme_io_path *
828 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
829 {
830 	struct nvme_io_path *next_path;
831 
832 	next_path = STAILQ_NEXT(prev_path, stailq);
833 	if (next_path != NULL) {
834 		return next_path;
835 	} else {
836 		return STAILQ_FIRST(&nbdev_ch->io_path_list);
837 	}
838 }
839 
840 static struct nvme_io_path *
841 bdev_nvme_find_next_io_path(struct nvme_bdev_channel *nbdev_ch,
842 			    struct nvme_io_path *prev)
843 {
844 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
845 
846 	start = nvme_io_path_get_next(nbdev_ch, prev);
847 
848 	io_path = start;
849 	do {
850 		if (spdk_likely(nvme_io_path_is_connected(io_path) &&
851 				!io_path->nvme_ns->ana_state_updating)) {
852 			switch (io_path->nvme_ns->ana_state) {
853 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
854 				nbdev_ch->current_io_path = io_path;
855 				return io_path;
856 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
857 				if (non_optimized == NULL) {
858 					non_optimized = io_path;
859 				}
860 				break;
861 			default:
862 				break;
863 			}
864 		}
865 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
866 	} while (io_path != start);
867 
868 	/* We come here only if there is no optimized path. Cache even non_optimized
869 	 * path for load balance across multiple non_optimized paths.
870 	 */
871 	nbdev_ch->current_io_path = non_optimized;
872 	return non_optimized;
873 }
874 
875 static struct nvme_io_path *
876 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
877 {
878 	struct nvme_io_path *io_path, *non_optimized = NULL;
879 
880 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
881 		if (spdk_unlikely(!nvme_io_path_is_connected(io_path))) {
882 			/* The device is currently resetting. */
883 			continue;
884 		}
885 
886 		if (spdk_unlikely(io_path->nvme_ns->ana_state_updating)) {
887 			continue;
888 		}
889 
890 		switch (io_path->nvme_ns->ana_state) {
891 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
892 			nbdev_ch->current_io_path = io_path;
893 			return io_path;
894 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
895 			if (non_optimized == NULL) {
896 				non_optimized = io_path;
897 			}
898 			break;
899 		default:
900 			break;
901 		}
902 	}
903 
904 	return non_optimized;
905 }
906 
907 static inline struct nvme_io_path *
908 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
909 {
910 	if (spdk_unlikely(nbdev_ch->current_io_path == NULL)) {
911 		return _bdev_nvme_find_io_path(nbdev_ch);
912 	}
913 
914 	if (spdk_likely(nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE)) {
915 		return nbdev_ch->current_io_path;
916 	} else {
917 		return bdev_nvme_find_next_io_path(nbdev_ch, nbdev_ch->current_io_path);
918 	}
919 }
920 
921 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
922  * or false otherwise.
923  *
924  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
925  * is likely to be non-accessible now but may become accessible.
926  *
927  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
928  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
929  * when starting to reset it but it is set to failed when the reset failed. Hence, if
930  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
931  */
932 static bool
933 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
934 {
935 	struct nvme_io_path *io_path;
936 
937 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
938 		if (io_path->nvme_ns->ana_transition_timedout) {
939 			continue;
940 		}
941 
942 		if (nvme_io_path_is_connected(io_path) ||
943 		    !nvme_io_path_is_failed(io_path)) {
944 			return true;
945 		}
946 	}
947 
948 	return false;
949 }
950 
951 static int
952 bdev_nvme_retry_ios(void *arg)
953 {
954 	struct nvme_bdev_channel *nbdev_ch = arg;
955 	struct spdk_io_channel *ch = spdk_io_channel_from_ctx(nbdev_ch);
956 	struct spdk_bdev_io *bdev_io, *tmp_bdev_io;
957 	struct nvme_bdev_io *bio;
958 	uint64_t now, delay_us;
959 
960 	now = spdk_get_ticks();
961 
962 	TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_bdev_io) {
963 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
964 		if (bio->retry_ticks > now) {
965 			break;
966 		}
967 
968 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
969 
970 		bdev_nvme_submit_request(ch, bdev_io);
971 	}
972 
973 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
974 
975 	bdev_io = TAILQ_FIRST(&nbdev_ch->retry_io_list);
976 	if (bdev_io != NULL) {
977 		bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
978 
979 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
980 
981 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
982 					    delay_us);
983 	}
984 
985 	return SPDK_POLLER_BUSY;
986 }
987 
988 static void
989 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
990 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
991 {
992 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
993 	struct spdk_bdev_io *tmp_bdev_io;
994 	struct nvme_bdev_io *tmp_bio;
995 
996 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
997 
998 	TAILQ_FOREACH_REVERSE(tmp_bdev_io, &nbdev_ch->retry_io_list, retry_io_head, module_link) {
999 		tmp_bio = (struct nvme_bdev_io *)tmp_bdev_io->driver_ctx;
1000 
1001 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1002 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bdev_io, bdev_io,
1003 					   module_link);
1004 			return;
1005 		}
1006 	}
1007 
1008 	/* No earlier I/Os were found. This I/O must be the new head. */
1009 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bdev_io, module_link);
1010 
1011 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1012 
1013 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1014 				    delay_ms * 1000ULL);
1015 }
1016 
1017 static inline void
1018 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1019 				  const struct spdk_nvme_cpl *cpl)
1020 {
1021 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1022 	struct nvme_bdev_channel *nbdev_ch;
1023 	struct nvme_ctrlr *nvme_ctrlr;
1024 	const struct spdk_nvme_ctrlr_data *cdata;
1025 	uint64_t delay_ms;
1026 
1027 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1028 
1029 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1030 		goto complete;
1031 	}
1032 
1033 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1034 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1035 		goto complete;
1036 	}
1037 
1038 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1039 
1040 	assert(bio->io_path != NULL);
1041 	nvme_ctrlr = bio->io_path->qpair->ctrlr;
1042 
1043 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1044 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1045 	    !nvme_io_path_is_available(bio->io_path) ||
1046 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1047 		nbdev_ch->current_io_path = NULL;
1048 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1049 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1050 				bio->io_path->nvme_ns->ana_state_updating = true;
1051 			}
1052 		}
1053 		delay_ms = 0;
1054 	} else {
1055 		bio->retry_count++;
1056 
1057 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1058 
1059 		if (cpl->status.crd != 0) {
1060 			delay_ms = cdata->crdt[cpl->status.crd] * 100;
1061 		} else {
1062 			delay_ms = 0;
1063 		}
1064 	}
1065 
1066 	if (any_io_path_may_become_available(nbdev_ch)) {
1067 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1068 		return;
1069 	}
1070 
1071 complete:
1072 	bio->retry_count = 0;
1073 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1074 }
1075 
1076 static inline void
1077 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1078 {
1079 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1080 	struct nvme_bdev_channel *nbdev_ch;
1081 	enum spdk_bdev_io_status io_status;
1082 
1083 	switch (rc) {
1084 	case 0:
1085 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1086 		break;
1087 	case -ENOMEM:
1088 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1089 		break;
1090 	case -ENXIO:
1091 		nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1092 
1093 		nbdev_ch->current_io_path = NULL;
1094 
1095 		if (any_io_path_may_become_available(nbdev_ch)) {
1096 			bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1097 			return;
1098 		}
1099 
1100 	/* fallthrough */
1101 	default:
1102 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1103 		break;
1104 	}
1105 
1106 	bio->retry_count = 0;
1107 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1108 }
1109 
1110 static inline void
1111 bdev_nvme_admin_passthru_complete(struct nvme_bdev_io *bio, int rc)
1112 {
1113 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1114 	enum spdk_bdev_io_status io_status;
1115 
1116 	switch (rc) {
1117 	case 0:
1118 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1119 		break;
1120 	case -ENOMEM:
1121 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1122 		break;
1123 	case -ENXIO:
1124 	/* fallthrough */
1125 	default:
1126 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1127 		break;
1128 	}
1129 
1130 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1131 }
1132 
1133 static void
1134 bdev_nvme_clear_io_path_caches_done(struct spdk_io_channel_iter *i, int status)
1135 {
1136 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1137 
1138 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1139 
1140 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1141 	nvme_ctrlr->io_path_cache_clearing = false;
1142 
1143 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1144 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1145 		return;
1146 	}
1147 
1148 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1149 
1150 	nvme_ctrlr_unregister(nvme_ctrlr);
1151 }
1152 
1153 static void
1154 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1155 {
1156 	struct nvme_io_path *io_path;
1157 
1158 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1159 		io_path->nbdev_ch->current_io_path = NULL;
1160 	}
1161 }
1162 
1163 static void
1164 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
1165 {
1166 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1167 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1168 
1169 	assert(ctrlr_ch->qpair != NULL);
1170 
1171 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1172 
1173 	spdk_for_each_channel_continue(i, 0);
1174 }
1175 
1176 static void
1177 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1178 {
1179 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1180 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1181 	    nvme_ctrlr->io_path_cache_clearing) {
1182 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1183 		return;
1184 	}
1185 
1186 	nvme_ctrlr->io_path_cache_clearing = true;
1187 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1188 
1189 	spdk_for_each_channel(nvme_ctrlr,
1190 			      bdev_nvme_clear_io_path_cache,
1191 			      NULL,
1192 			      bdev_nvme_clear_io_path_caches_done);
1193 }
1194 
1195 static struct nvme_qpair *
1196 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1197 {
1198 	struct nvme_qpair *nvme_qpair;
1199 
1200 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1201 		if (nvme_qpair->qpair == qpair) {
1202 			break;
1203 		}
1204 	}
1205 
1206 	return nvme_qpair;
1207 }
1208 
1209 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1210 
1211 static void
1212 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1213 {
1214 	struct nvme_poll_group *group = poll_group_ctx;
1215 	struct nvme_qpair *nvme_qpair;
1216 	struct nvme_ctrlr_channel *ctrlr_ch;
1217 
1218 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1219 	if (nvme_qpair == NULL) {
1220 		return;
1221 	}
1222 
1223 	if (nvme_qpair->qpair != NULL) {
1224 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1225 		nvme_qpair->qpair = NULL;
1226 	}
1227 
1228 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1229 
1230 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1231 
1232 	if (ctrlr_ch != NULL) {
1233 		if (ctrlr_ch->reset_iter != NULL) {
1234 			/* If we are already in a full reset sequence, we do not have
1235 			 * to restart it. Just move to the next ctrlr_channel.
1236 			 */
1237 			SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1238 				      qpair);
1239 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
1240 			ctrlr_ch->reset_iter = NULL;
1241 		} else {
1242 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1243 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1244 			bdev_nvme_failover(nvme_qpair->ctrlr, false);
1245 		}
1246 	} else {
1247 		/* In this case, ctrlr_channel is already deleted. */
1248 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1249 		nvme_qpair_delete(nvme_qpair);
1250 	}
1251 }
1252 
1253 static void
1254 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1255 {
1256 	struct nvme_qpair *nvme_qpair;
1257 
1258 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1259 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1260 			continue;
1261 		}
1262 
1263 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1264 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1265 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1266 		}
1267 	}
1268 }
1269 
1270 static int
1271 bdev_nvme_poll(void *arg)
1272 {
1273 	struct nvme_poll_group *group = arg;
1274 	int64_t num_completions;
1275 
1276 	if (group->collect_spin_stat && group->start_ticks == 0) {
1277 		group->start_ticks = spdk_get_ticks();
1278 	}
1279 
1280 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1281 			  bdev_nvme_disconnected_qpair_cb);
1282 	if (group->collect_spin_stat) {
1283 		if (num_completions > 0) {
1284 			if (group->end_ticks != 0) {
1285 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1286 				group->end_ticks = 0;
1287 			}
1288 			group->start_ticks = 0;
1289 		} else {
1290 			group->end_ticks = spdk_get_ticks();
1291 		}
1292 	}
1293 
1294 	if (spdk_unlikely(num_completions < 0)) {
1295 		bdev_nvme_check_io_qpairs(group);
1296 	}
1297 
1298 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1299 }
1300 
1301 static int bdev_nvme_poll_adminq(void *arg);
1302 
1303 static void
1304 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1305 {
1306 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1307 
1308 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1309 					  nvme_ctrlr, new_period_us);
1310 }
1311 
1312 static int
1313 bdev_nvme_poll_adminq(void *arg)
1314 {
1315 	int32_t rc;
1316 	struct nvme_ctrlr *nvme_ctrlr = arg;
1317 	nvme_ctrlr_disconnected_cb disconnected_cb;
1318 
1319 	assert(nvme_ctrlr != NULL);
1320 
1321 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1322 	if (rc < 0) {
1323 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1324 		nvme_ctrlr->disconnected_cb = NULL;
1325 
1326 		if (rc == -ENXIO && disconnected_cb != NULL) {
1327 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1328 							    g_opts.nvme_adminq_poll_period_us);
1329 			disconnected_cb(nvme_ctrlr);
1330 		} else {
1331 			bdev_nvme_failover(nvme_ctrlr, false);
1332 		}
1333 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1334 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1335 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1336 	}
1337 
1338 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1339 }
1340 
1341 static void
1342 _bdev_nvme_unregister_dev_cb(void *io_device)
1343 {
1344 	struct nvme_bdev *nvme_disk = io_device;
1345 
1346 	free(nvme_disk->disk.name);
1347 	free(nvme_disk);
1348 }
1349 
1350 static int
1351 bdev_nvme_destruct(void *ctx)
1352 {
1353 	struct nvme_bdev *nvme_disk = ctx;
1354 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1355 
1356 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1357 
1358 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1359 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1360 
1361 		nvme_ns->bdev = NULL;
1362 
1363 		assert(nvme_ns->id > 0);
1364 
1365 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1366 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1367 
1368 			nvme_ctrlr_release(nvme_ns->ctrlr);
1369 			free(nvme_ns);
1370 		} else {
1371 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1372 		}
1373 	}
1374 
1375 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1376 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1377 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1378 
1379 	spdk_io_device_unregister(nvme_disk, _bdev_nvme_unregister_dev_cb);
1380 
1381 	return 0;
1382 }
1383 
1384 static int
1385 bdev_nvme_flush(struct nvme_bdev_io *bio, uint64_t offset, uint64_t nbytes)
1386 {
1387 	bdev_nvme_io_complete(bio, 0);
1388 
1389 	return 0;
1390 }
1391 
1392 static int
1393 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1394 {
1395 	struct nvme_ctrlr *nvme_ctrlr;
1396 	struct spdk_nvme_io_qpair_opts opts;
1397 	struct spdk_nvme_qpair *qpair;
1398 	int rc;
1399 
1400 	nvme_ctrlr = nvme_qpair->ctrlr;
1401 
1402 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1403 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1404 	opts.create_only = true;
1405 	opts.async_mode = true;
1406 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1407 	g_opts.io_queue_requests = opts.io_queue_requests;
1408 
1409 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1410 	if (qpair == NULL) {
1411 		return -1;
1412 	}
1413 
1414 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1415 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1416 
1417 	assert(nvme_qpair->group != NULL);
1418 
1419 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1420 	if (rc != 0) {
1421 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1422 		goto err;
1423 	}
1424 
1425 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1426 	if (rc != 0) {
1427 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1428 		goto err;
1429 	}
1430 
1431 	nvme_qpair->qpair = qpair;
1432 
1433 	if (!g_opts.disable_auto_failback) {
1434 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1435 	}
1436 
1437 	return 0;
1438 
1439 err:
1440 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1441 
1442 	return rc;
1443 }
1444 
1445 static void
1446 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
1447 {
1448 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1449 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1450 	enum spdk_bdev_io_status status = SPDK_BDEV_IO_STATUS_SUCCESS;
1451 	struct spdk_bdev_io *bdev_io;
1452 
1453 	if (spdk_io_channel_iter_get_ctx(i) != NULL) {
1454 		status = SPDK_BDEV_IO_STATUS_FAILED;
1455 	}
1456 
1457 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1458 		bdev_io = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1459 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bdev_io, module_link);
1460 		__bdev_nvme_io_complete(bdev_io, status, NULL);
1461 	}
1462 
1463 	spdk_for_each_channel_continue(i, 0);
1464 }
1465 
1466 static void
1467 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove)
1468 {
1469 	struct nvme_path_id *path_id, *next_path;
1470 	int rc __attribute__((unused));
1471 
1472 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1473 	assert(path_id);
1474 	assert(path_id == nvme_ctrlr->active_path_id);
1475 	next_path = TAILQ_NEXT(path_id, link);
1476 
1477 	path_id->is_failed = true;
1478 
1479 	if (next_path) {
1480 		assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1481 
1482 		SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1483 			       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1484 
1485 		spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1486 		nvme_ctrlr->active_path_id = next_path;
1487 		rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1488 		assert(rc == 0);
1489 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1490 		if (!remove) {
1491 			/** Shuffle the old trid to the end of the list and use the new one.
1492 			 * Allows for round robin through multiple connections.
1493 			 */
1494 			TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
1495 		} else {
1496 			free(path_id);
1497 		}
1498 	}
1499 }
1500 
1501 static bool
1502 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
1503 {
1504 	int32_t elapsed;
1505 
1506 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
1507 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
1508 		return false;
1509 	}
1510 
1511 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1512 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
1513 		return true;
1514 	} else {
1515 		return false;
1516 	}
1517 }
1518 
1519 static bool
1520 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
1521 {
1522 	uint32_t elapsed;
1523 
1524 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
1525 		return false;
1526 	}
1527 
1528 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1529 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
1530 		return true;
1531 	} else {
1532 		return false;
1533 	}
1534 }
1535 
1536 static void bdev_nvme_reset_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
1537 
1538 static void
1539 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
1540 {
1541 	int rc;
1542 
1543 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
1544 	if (rc != 0) {
1545 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
1546 		 * fail the reset sequence immediately.
1547 		 */
1548 		bdev_nvme_reset_complete(nvme_ctrlr, false);
1549 		return;
1550 	}
1551 
1552 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
1553 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
1554 	 */
1555 	assert(nvme_ctrlr->disconnected_cb == NULL);
1556 	nvme_ctrlr->disconnected_cb = cb_fn;
1557 
1558 	/* During disconnection, reduce the period to poll adminq more often. */
1559 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
1560 }
1561 
1562 enum bdev_nvme_op_after_reset {
1563 	OP_NONE,
1564 	OP_COMPLETE_PENDING_DESTRUCT,
1565 	OP_DESTRUCT,
1566 	OP_DELAYED_RECONNECT,
1567 };
1568 
1569 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
1570 
1571 static _bdev_nvme_op_after_reset
1572 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
1573 {
1574 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1575 		/* Complete pending destruct after reset completes. */
1576 		return OP_COMPLETE_PENDING_DESTRUCT;
1577 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1578 		nvme_ctrlr->reset_start_tsc = 0;
1579 		return OP_NONE;
1580 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1581 		return OP_DESTRUCT;
1582 	} else {
1583 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
1584 			nvme_ctrlr->fast_io_fail_timedout = true;
1585 		}
1586 		bdev_nvme_failover_trid(nvme_ctrlr, false);
1587 		return OP_DELAYED_RECONNECT;
1588 	}
1589 }
1590 
1591 static int _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
1592 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
1593 
1594 static int
1595 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
1596 {
1597 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1598 
1599 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
1600 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1601 
1602 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
1603 
1604 	assert(nvme_ctrlr->reconnect_is_delayed == true);
1605 	nvme_ctrlr->reconnect_is_delayed = false;
1606 
1607 	if (nvme_ctrlr->destruct) {
1608 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1609 		return SPDK_POLLER_BUSY;
1610 	}
1611 
1612 	assert(nvme_ctrlr->resetting == false);
1613 	nvme_ctrlr->resetting = true;
1614 
1615 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1616 
1617 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
1618 
1619 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
1620 	return SPDK_POLLER_BUSY;
1621 }
1622 
1623 static void
1624 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
1625 {
1626 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
1627 
1628 	assert(nvme_ctrlr->reconnect_is_delayed == false);
1629 	nvme_ctrlr->reconnect_is_delayed = true;
1630 
1631 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
1632 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
1633 					    nvme_ctrlr,
1634 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
1635 }
1636 
1637 static void
1638 _bdev_nvme_reset_complete(struct spdk_io_channel_iter *i, int status)
1639 {
1640 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1641 	bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
1642 	struct nvme_path_id *path_id;
1643 	bdev_nvme_reset_cb reset_cb_fn = nvme_ctrlr->reset_cb_fn;
1644 	void *reset_cb_arg = nvme_ctrlr->reset_cb_arg;
1645 	enum bdev_nvme_op_after_reset op_after_reset;
1646 
1647 	assert(nvme_ctrlr->thread == spdk_get_thread());
1648 
1649 	nvme_ctrlr->reset_cb_fn = NULL;
1650 	nvme_ctrlr->reset_cb_arg = NULL;
1651 
1652 	if (!success) {
1653 		SPDK_ERRLOG("Resetting controller failed.\n");
1654 	} else {
1655 		SPDK_NOTICELOG("Resetting controller successful.\n");
1656 	}
1657 
1658 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1659 	nvme_ctrlr->resetting = false;
1660 
1661 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1662 	assert(path_id != NULL);
1663 	assert(path_id == nvme_ctrlr->active_path_id);
1664 
1665 	path_id->is_failed = !success;
1666 
1667 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
1668 
1669 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1670 
1671 	if (reset_cb_fn) {
1672 		reset_cb_fn(reset_cb_arg, success);
1673 	}
1674 
1675 	switch (op_after_reset) {
1676 	case OP_COMPLETE_PENDING_DESTRUCT:
1677 		nvme_ctrlr_unregister(nvme_ctrlr);
1678 		break;
1679 	case OP_DESTRUCT:
1680 		_bdev_nvme_delete(nvme_ctrlr, false);
1681 		break;
1682 	case OP_DELAYED_RECONNECT:
1683 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
1684 		break;
1685 	default:
1686 		break;
1687 	}
1688 }
1689 
1690 static void
1691 bdev_nvme_reset_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
1692 {
1693 	/* Make sure we clear any pending resets before returning. */
1694 	spdk_for_each_channel(nvme_ctrlr,
1695 			      bdev_nvme_complete_pending_resets,
1696 			      success ? NULL : (void *)0x1,
1697 			      _bdev_nvme_reset_complete);
1698 }
1699 
1700 static void
1701 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
1702 {
1703 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1704 
1705 	bdev_nvme_reset_complete(nvme_ctrlr, false);
1706 }
1707 
1708 static void
1709 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
1710 {
1711 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
1712 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
1713 	struct nvme_qpair *nvme_qpair;
1714 
1715 	nvme_qpair = ctrlr_ch->qpair;
1716 	assert(nvme_qpair != NULL);
1717 
1718 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1719 
1720 	if (nvme_qpair->qpair != NULL) {
1721 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
1722 
1723 		/* The current full reset sequence will move to the next
1724 		 * ctrlr_channel after the qpair is actually disconnected.
1725 		 */
1726 		assert(ctrlr_ch->reset_iter == NULL);
1727 		ctrlr_ch->reset_iter = i;
1728 	} else {
1729 		spdk_for_each_channel_continue(i, 0);
1730 	}
1731 }
1732 
1733 static void
1734 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
1735 {
1736 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1737 
1738 	if (status == 0) {
1739 		bdev_nvme_reset_complete(nvme_ctrlr, true);
1740 	} else {
1741 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
1742 		spdk_for_each_channel(nvme_ctrlr,
1743 				      bdev_nvme_reset_destroy_qpair,
1744 				      NULL,
1745 				      bdev_nvme_reset_create_qpairs_failed);
1746 	}
1747 }
1748 
1749 static void
1750 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
1751 {
1752 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1753 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1754 	int rc;
1755 
1756 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
1757 
1758 	spdk_for_each_channel_continue(i, rc);
1759 }
1760 
1761 static int
1762 bdev_nvme_reconnect_ctrlr_poll(void *arg)
1763 {
1764 	struct nvme_ctrlr *nvme_ctrlr = arg;
1765 	int rc = -ETIMEDOUT;
1766 
1767 	if (!bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1768 		rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
1769 		if (rc == -EAGAIN) {
1770 			return SPDK_POLLER_BUSY;
1771 		}
1772 	}
1773 
1774 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
1775 	if (rc == 0) {
1776 		/* Recreate all of the I/O queue pairs */
1777 		spdk_for_each_channel(nvme_ctrlr,
1778 				      bdev_nvme_reset_create_qpair,
1779 				      NULL,
1780 				      bdev_nvme_reset_create_qpairs_done);
1781 	} else {
1782 		bdev_nvme_reset_complete(nvme_ctrlr, false);
1783 	}
1784 	return SPDK_POLLER_BUSY;
1785 }
1786 
1787 static void
1788 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
1789 {
1790 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
1791 
1792 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
1793 	assert(nvme_ctrlr->reset_detach_poller == NULL);
1794 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
1795 					  nvme_ctrlr, 0);
1796 }
1797 
1798 static void
1799 bdev_nvme_reset_ctrlr(struct spdk_io_channel_iter *i, int status)
1800 {
1801 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1802 
1803 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
1804 	assert(status == 0);
1805 
1806 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
1807 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
1808 	} else {
1809 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
1810 	}
1811 }
1812 
1813 static void
1814 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
1815 {
1816 	spdk_for_each_channel(nvme_ctrlr,
1817 			      bdev_nvme_reset_destroy_qpair,
1818 			      NULL,
1819 			      bdev_nvme_reset_ctrlr);
1820 }
1821 
1822 static void
1823 _bdev_nvme_reset(void *ctx)
1824 {
1825 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1826 
1827 	assert(nvme_ctrlr->resetting == true);
1828 	assert(nvme_ctrlr->thread == spdk_get_thread());
1829 
1830 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
1831 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
1832 	} else {
1833 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
1834 	}
1835 }
1836 
1837 static int
1838 bdev_nvme_reset(struct nvme_ctrlr *nvme_ctrlr)
1839 {
1840 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1841 	if (nvme_ctrlr->destruct) {
1842 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1843 		return -ENXIO;
1844 	}
1845 
1846 	if (nvme_ctrlr->resetting) {
1847 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1848 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
1849 		return -EBUSY;
1850 	}
1851 
1852 	if (nvme_ctrlr->reconnect_is_delayed) {
1853 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1854 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
1855 		return -EBUSY;
1856 	}
1857 
1858 	nvme_ctrlr->resetting = true;
1859 
1860 	assert(nvme_ctrlr->reset_start_tsc == 0);
1861 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
1862 
1863 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1864 
1865 	spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset, nvme_ctrlr);
1866 	return 0;
1867 }
1868 
1869 int
1870 bdev_nvme_reset_rpc(struct nvme_ctrlr *nvme_ctrlr, bdev_nvme_reset_cb cb_fn, void *cb_arg)
1871 {
1872 	int rc;
1873 
1874 	rc = bdev_nvme_reset(nvme_ctrlr);
1875 	if (rc == 0) {
1876 		nvme_ctrlr->reset_cb_fn = cb_fn;
1877 		nvme_ctrlr->reset_cb_arg = cb_arg;
1878 	}
1879 	return rc;
1880 }
1881 
1882 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
1883 
1884 static void
1885 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
1886 {
1887 	enum spdk_bdev_io_status io_status;
1888 
1889 	if (bio->cpl.cdw0 == 0) {
1890 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1891 	} else {
1892 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1893 	}
1894 
1895 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
1896 }
1897 
1898 static void
1899 _bdev_nvme_reset_io_continue(void *ctx)
1900 {
1901 	struct nvme_bdev_io *bio = ctx;
1902 	struct nvme_io_path *prev_io_path, *next_io_path;
1903 	int rc;
1904 
1905 	prev_io_path = bio->io_path;
1906 	bio->io_path = NULL;
1907 
1908 	if (bio->cpl.cdw0 != 0) {
1909 		goto complete;
1910 	}
1911 
1912 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
1913 	if (next_io_path == NULL) {
1914 		goto complete;
1915 	}
1916 
1917 	rc = _bdev_nvme_reset_io(next_io_path, bio);
1918 	if (rc == 0) {
1919 		return;
1920 	}
1921 
1922 	bio->cpl.cdw0 = 1;
1923 
1924 complete:
1925 	bdev_nvme_reset_io_complete(bio);
1926 }
1927 
1928 static void
1929 bdev_nvme_reset_io_continue(void *cb_arg, bool success)
1930 {
1931 	struct nvme_bdev_io *bio = cb_arg;
1932 
1933 	bio->cpl.cdw0 = !success;
1934 
1935 	spdk_thread_send_msg(bio->orig_thread, _bdev_nvme_reset_io_continue, bio);
1936 }
1937 
1938 static int
1939 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
1940 {
1941 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1942 	struct nvme_ctrlr_channel *ctrlr_ch;
1943 	struct spdk_bdev_io *bdev_io;
1944 	int rc;
1945 
1946 	rc = bdev_nvme_reset(nvme_ctrlr);
1947 	if (rc == 0) {
1948 		assert(bio->io_path == NULL);
1949 		bio->io_path = io_path;
1950 
1951 		assert(nvme_ctrlr->reset_cb_fn == NULL);
1952 		assert(nvme_ctrlr->reset_cb_arg == NULL);
1953 		nvme_ctrlr->reset_cb_fn = bdev_nvme_reset_io_continue;
1954 		nvme_ctrlr->reset_cb_arg = bio;
1955 	} else if (rc == -EBUSY) {
1956 		ctrlr_ch = io_path->qpair->ctrlr_ch;
1957 		assert(ctrlr_ch != NULL);
1958 		/*
1959 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
1960 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
1961 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
1962 		 */
1963 		bdev_io = spdk_bdev_io_from_ctx(bio);
1964 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bdev_io, module_link);
1965 	} else {
1966 		return rc;
1967 	}
1968 
1969 	return 0;
1970 }
1971 
1972 static void
1973 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
1974 {
1975 	struct nvme_io_path *io_path;
1976 	int rc;
1977 
1978 	bio->cpl.cdw0 = 0;
1979 	bio->orig_thread = spdk_get_thread();
1980 
1981 	/* Reset only the first nvme_ctrlr in the nvme_bdev_ctrlr for now.
1982 	 *
1983 	 * TODO: Reset all nvme_ctrlrs in the nvme_bdev_ctrlr sequentially.
1984 	 * This will be done in the following patches.
1985 	 */
1986 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
1987 	assert(io_path != NULL);
1988 
1989 	rc = _bdev_nvme_reset_io(io_path, bio);
1990 	if (rc != 0) {
1991 		bio->cpl.cdw0 = 1;
1992 		bdev_nvme_reset_io_complete(bio);
1993 	}
1994 }
1995 
1996 static int
1997 bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove)
1998 {
1999 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2000 	if (nvme_ctrlr->destruct) {
2001 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2002 		/* Don't bother resetting if the controller is in the process of being destructed. */
2003 		return -ENXIO;
2004 	}
2005 
2006 	if (nvme_ctrlr->resetting) {
2007 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2008 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
2009 		return -EBUSY;
2010 	}
2011 
2012 	bdev_nvme_failover_trid(nvme_ctrlr, remove);
2013 
2014 	if (nvme_ctrlr->reconnect_is_delayed) {
2015 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2016 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
2017 
2018 		/* We rely on the next reconnect for the failover. */
2019 		return 0;
2020 	}
2021 
2022 	nvme_ctrlr->resetting = true;
2023 
2024 	assert(nvme_ctrlr->reset_start_tsc == 0);
2025 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2026 
2027 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2028 
2029 	spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset, nvme_ctrlr);
2030 	return 0;
2031 }
2032 
2033 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2034 			   uint64_t num_blocks);
2035 
2036 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2037 				  uint64_t num_blocks);
2038 
2039 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
2040 			  uint64_t src_offset_blocks,
2041 			  uint64_t num_blocks);
2042 
2043 static void
2044 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
2045 		     bool success)
2046 {
2047 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2048 	struct spdk_bdev *bdev = bdev_io->bdev;
2049 	int ret;
2050 
2051 	if (!success) {
2052 		ret = -EINVAL;
2053 		goto exit;
2054 	}
2055 
2056 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
2057 		ret = -ENXIO;
2058 		goto exit;
2059 	}
2060 
2061 	ret = bdev_nvme_readv(bio,
2062 			      bdev_io->u.bdev.iovs,
2063 			      bdev_io->u.bdev.iovcnt,
2064 			      bdev_io->u.bdev.md_buf,
2065 			      bdev_io->u.bdev.num_blocks,
2066 			      bdev_io->u.bdev.offset_blocks,
2067 			      bdev->dif_check_flags,
2068 			      bdev_io->u.bdev.ext_opts);
2069 
2070 exit:
2071 	if (spdk_unlikely(ret != 0)) {
2072 		bdev_nvme_io_complete(bio, ret);
2073 	}
2074 }
2075 
2076 static void
2077 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
2078 {
2079 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
2080 	struct spdk_bdev *bdev = bdev_io->bdev;
2081 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2082 	struct nvme_bdev_io *nbdev_io_to_abort;
2083 	int rc = 0;
2084 
2085 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
2086 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
2087 	if (spdk_unlikely(!nbdev_io->io_path)) {
2088 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
2089 			rc = -ENXIO;
2090 			goto exit;
2091 		}
2092 
2093 		/* Admin commands do not use the optimal I/O path.
2094 		 * Simply fall through even if it is not found.
2095 		 */
2096 	}
2097 
2098 	switch (bdev_io->type) {
2099 	case SPDK_BDEV_IO_TYPE_READ:
2100 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
2101 			rc = bdev_nvme_readv(nbdev_io,
2102 					     bdev_io->u.bdev.iovs,
2103 					     bdev_io->u.bdev.iovcnt,
2104 					     bdev_io->u.bdev.md_buf,
2105 					     bdev_io->u.bdev.num_blocks,
2106 					     bdev_io->u.bdev.offset_blocks,
2107 					     bdev->dif_check_flags,
2108 					     bdev_io->u.bdev.ext_opts);
2109 		} else {
2110 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
2111 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
2112 			rc = 0;
2113 		}
2114 		break;
2115 	case SPDK_BDEV_IO_TYPE_WRITE:
2116 		rc = bdev_nvme_writev(nbdev_io,
2117 				      bdev_io->u.bdev.iovs,
2118 				      bdev_io->u.bdev.iovcnt,
2119 				      bdev_io->u.bdev.md_buf,
2120 				      bdev_io->u.bdev.num_blocks,
2121 				      bdev_io->u.bdev.offset_blocks,
2122 				      bdev->dif_check_flags,
2123 				      bdev_io->u.bdev.ext_opts);
2124 		break;
2125 	case SPDK_BDEV_IO_TYPE_COMPARE:
2126 		rc = bdev_nvme_comparev(nbdev_io,
2127 					bdev_io->u.bdev.iovs,
2128 					bdev_io->u.bdev.iovcnt,
2129 					bdev_io->u.bdev.md_buf,
2130 					bdev_io->u.bdev.num_blocks,
2131 					bdev_io->u.bdev.offset_blocks,
2132 					bdev->dif_check_flags);
2133 		break;
2134 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
2135 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
2136 						   bdev_io->u.bdev.iovs,
2137 						   bdev_io->u.bdev.iovcnt,
2138 						   bdev_io->u.bdev.fused_iovs,
2139 						   bdev_io->u.bdev.fused_iovcnt,
2140 						   bdev_io->u.bdev.md_buf,
2141 						   bdev_io->u.bdev.num_blocks,
2142 						   bdev_io->u.bdev.offset_blocks,
2143 						   bdev->dif_check_flags);
2144 		break;
2145 	case SPDK_BDEV_IO_TYPE_UNMAP:
2146 		rc = bdev_nvme_unmap(nbdev_io,
2147 				     bdev_io->u.bdev.offset_blocks,
2148 				     bdev_io->u.bdev.num_blocks);
2149 		break;
2150 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
2151 		rc =  bdev_nvme_write_zeroes(nbdev_io,
2152 					     bdev_io->u.bdev.offset_blocks,
2153 					     bdev_io->u.bdev.num_blocks);
2154 		break;
2155 	case SPDK_BDEV_IO_TYPE_RESET:
2156 		nbdev_io->io_path = NULL;
2157 		bdev_nvme_reset_io(nbdev_ch, nbdev_io);
2158 		break;
2159 	case SPDK_BDEV_IO_TYPE_FLUSH:
2160 		rc = bdev_nvme_flush(nbdev_io,
2161 				     bdev_io->u.bdev.offset_blocks,
2162 				     bdev_io->u.bdev.num_blocks);
2163 		break;
2164 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
2165 		rc = bdev_nvme_zone_appendv(nbdev_io,
2166 					    bdev_io->u.bdev.iovs,
2167 					    bdev_io->u.bdev.iovcnt,
2168 					    bdev_io->u.bdev.md_buf,
2169 					    bdev_io->u.bdev.num_blocks,
2170 					    bdev_io->u.bdev.offset_blocks,
2171 					    bdev->dif_check_flags);
2172 		break;
2173 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
2174 		rc = bdev_nvme_get_zone_info(nbdev_io,
2175 					     bdev_io->u.zone_mgmt.zone_id,
2176 					     bdev_io->u.zone_mgmt.num_zones,
2177 					     bdev_io->u.zone_mgmt.buf);
2178 		break;
2179 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
2180 		rc = bdev_nvme_zone_management(nbdev_io,
2181 					       bdev_io->u.zone_mgmt.zone_id,
2182 					       bdev_io->u.zone_mgmt.zone_action);
2183 		break;
2184 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
2185 		nbdev_io->io_path = NULL;
2186 		bdev_nvme_admin_passthru(nbdev_ch,
2187 					 nbdev_io,
2188 					 &bdev_io->u.nvme_passthru.cmd,
2189 					 bdev_io->u.nvme_passthru.buf,
2190 					 bdev_io->u.nvme_passthru.nbytes);
2191 		break;
2192 	case SPDK_BDEV_IO_TYPE_NVME_IO:
2193 		rc = bdev_nvme_io_passthru(nbdev_io,
2194 					   &bdev_io->u.nvme_passthru.cmd,
2195 					   bdev_io->u.nvme_passthru.buf,
2196 					   bdev_io->u.nvme_passthru.nbytes);
2197 		break;
2198 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
2199 		rc = bdev_nvme_io_passthru_md(nbdev_io,
2200 					      &bdev_io->u.nvme_passthru.cmd,
2201 					      bdev_io->u.nvme_passthru.buf,
2202 					      bdev_io->u.nvme_passthru.nbytes,
2203 					      bdev_io->u.nvme_passthru.md_buf,
2204 					      bdev_io->u.nvme_passthru.md_len);
2205 		break;
2206 	case SPDK_BDEV_IO_TYPE_ABORT:
2207 		nbdev_io->io_path = NULL;
2208 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
2209 		bdev_nvme_abort(nbdev_ch,
2210 				nbdev_io,
2211 				nbdev_io_to_abort);
2212 		break;
2213 	case SPDK_BDEV_IO_TYPE_COPY:
2214 		rc = bdev_nvme_copy(nbdev_io,
2215 				    bdev_io->u.bdev.offset_blocks,
2216 				    bdev_io->u.bdev.copy.src_offset_blocks,
2217 				    bdev_io->u.bdev.num_blocks);
2218 		break;
2219 	default:
2220 		rc = -EINVAL;
2221 		break;
2222 	}
2223 
2224 exit:
2225 	if (spdk_unlikely(rc != 0)) {
2226 		bdev_nvme_io_complete(nbdev_io, rc);
2227 	}
2228 }
2229 
2230 static bool
2231 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
2232 {
2233 	struct nvme_bdev *nbdev = ctx;
2234 	struct nvme_ns *nvme_ns;
2235 	struct spdk_nvme_ns *ns;
2236 	struct spdk_nvme_ctrlr *ctrlr;
2237 	const struct spdk_nvme_ctrlr_data *cdata;
2238 
2239 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
2240 	assert(nvme_ns != NULL);
2241 	ns = nvme_ns->ns;
2242 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
2243 
2244 	switch (io_type) {
2245 	case SPDK_BDEV_IO_TYPE_READ:
2246 	case SPDK_BDEV_IO_TYPE_WRITE:
2247 	case SPDK_BDEV_IO_TYPE_RESET:
2248 	case SPDK_BDEV_IO_TYPE_FLUSH:
2249 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
2250 	case SPDK_BDEV_IO_TYPE_NVME_IO:
2251 	case SPDK_BDEV_IO_TYPE_ABORT:
2252 		return true;
2253 
2254 	case SPDK_BDEV_IO_TYPE_COMPARE:
2255 		return spdk_nvme_ns_supports_compare(ns);
2256 
2257 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
2258 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
2259 
2260 	case SPDK_BDEV_IO_TYPE_UNMAP:
2261 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2262 		return cdata->oncs.dsm;
2263 
2264 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
2265 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2266 		return cdata->oncs.write_zeroes;
2267 
2268 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
2269 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
2270 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
2271 			return true;
2272 		}
2273 		return false;
2274 
2275 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
2276 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
2277 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
2278 
2279 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
2280 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
2281 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
2282 
2283 	case SPDK_BDEV_IO_TYPE_COPY:
2284 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2285 		return cdata->oncs.copy;
2286 
2287 	default:
2288 		return false;
2289 	}
2290 }
2291 
2292 static int
2293 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
2294 {
2295 	struct nvme_qpair *nvme_qpair;
2296 	struct spdk_io_channel *pg_ch;
2297 	int rc;
2298 
2299 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
2300 	if (!nvme_qpair) {
2301 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
2302 		return -1;
2303 	}
2304 
2305 	TAILQ_INIT(&nvme_qpair->io_path_list);
2306 
2307 	nvme_qpair->ctrlr = nvme_ctrlr;
2308 	nvme_qpair->ctrlr_ch = ctrlr_ch;
2309 
2310 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
2311 	if (!pg_ch) {
2312 		free(nvme_qpair);
2313 		return -1;
2314 	}
2315 
2316 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
2317 
2318 #ifdef SPDK_CONFIG_VTUNE
2319 	nvme_qpair->group->collect_spin_stat = true;
2320 #else
2321 	nvme_qpair->group->collect_spin_stat = false;
2322 #endif
2323 
2324 	rc = bdev_nvme_create_qpair(nvme_qpair);
2325 	if (rc != 0) {
2326 		/* nvme_ctrlr can't create IO qpair if connection is down.
2327 		 *
2328 		 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
2329 		 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
2330 		 * submitted IO will be queued until IO qpair is successfully created.
2331 		 *
2332 		 * Hence, if both are satisfied, ignore the failure.
2333 		 */
2334 		if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
2335 			spdk_put_io_channel(pg_ch);
2336 			free(nvme_qpair);
2337 			return rc;
2338 		}
2339 	}
2340 
2341 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
2342 
2343 	ctrlr_ch->qpair = nvme_qpair;
2344 
2345 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
2346 	nvme_qpair->ctrlr->ref++;
2347 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
2348 
2349 	return 0;
2350 }
2351 
2352 static int
2353 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
2354 {
2355 	struct nvme_ctrlr *nvme_ctrlr = io_device;
2356 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
2357 
2358 	TAILQ_INIT(&ctrlr_ch->pending_resets);
2359 
2360 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
2361 }
2362 
2363 static void
2364 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
2365 {
2366 	assert(nvme_qpair->group != NULL);
2367 
2368 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
2369 
2370 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
2371 
2372 	nvme_ctrlr_release(nvme_qpair->ctrlr);
2373 
2374 	free(nvme_qpair);
2375 }
2376 
2377 static void
2378 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
2379 {
2380 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
2381 	struct nvme_qpair *nvme_qpair;
2382 
2383 	nvme_qpair = ctrlr_ch->qpair;
2384 	assert(nvme_qpair != NULL);
2385 
2386 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2387 
2388 	if (nvme_qpair->qpair != NULL) {
2389 		if (ctrlr_ch->reset_iter == NULL) {
2390 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2391 		} else {
2392 			/* Skip current ctrlr_channel in a full reset sequence because
2393 			 * it is being deleted now. The qpair is already being disconnected.
2394 			 * We do not have to restart disconnecting it.
2395 			 */
2396 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2397 		}
2398 
2399 		/* We cannot release a reference to the poll group now.
2400 		 * The qpair may be disconnected asynchronously later.
2401 		 * We need to poll it until it is actually disconnected.
2402 		 * Just detach the qpair from the deleting ctrlr_channel.
2403 		 */
2404 		nvme_qpair->ctrlr_ch = NULL;
2405 	} else {
2406 		assert(ctrlr_ch->reset_iter == NULL);
2407 
2408 		nvme_qpair_delete(nvme_qpair);
2409 	}
2410 }
2411 
2412 static void
2413 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
2414 			      uint32_t iov_cnt, uint32_t seed,
2415 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
2416 {
2417 	struct nvme_poll_group *group = ctx;
2418 	int rc;
2419 
2420 	assert(group->accel_channel != NULL);
2421 	assert(cb_fn != NULL);
2422 
2423 	rc = spdk_accel_submit_crc32cv(group->accel_channel, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
2424 	if (rc) {
2425 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
2426 		if (rc == -ENOMEM || rc == -EINVAL) {
2427 			cb_fn(cb_arg, rc);
2428 		}
2429 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
2430 	}
2431 }
2432 
2433 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
2434 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
2435 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
2436 };
2437 
2438 static int
2439 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
2440 {
2441 	struct nvme_poll_group *group = ctx_buf;
2442 
2443 	TAILQ_INIT(&group->qpair_list);
2444 
2445 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
2446 	if (group->group == NULL) {
2447 		return -1;
2448 	}
2449 
2450 	group->accel_channel = spdk_accel_get_io_channel();
2451 	if (!group->accel_channel) {
2452 		spdk_nvme_poll_group_destroy(group->group);
2453 		SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
2454 			    group);
2455 		return -1;
2456 	}
2457 
2458 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
2459 
2460 	if (group->poller == NULL) {
2461 		spdk_put_io_channel(group->accel_channel);
2462 		spdk_nvme_poll_group_destroy(group->group);
2463 		return -1;
2464 	}
2465 
2466 	return 0;
2467 }
2468 
2469 static void
2470 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
2471 {
2472 	struct nvme_poll_group *group = ctx_buf;
2473 
2474 	assert(TAILQ_EMPTY(&group->qpair_list));
2475 
2476 	if (group->accel_channel) {
2477 		spdk_put_io_channel(group->accel_channel);
2478 	}
2479 
2480 	spdk_poller_unregister(&group->poller);
2481 	if (spdk_nvme_poll_group_destroy(group->group)) {
2482 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
2483 		assert(false);
2484 	}
2485 }
2486 
2487 static struct spdk_io_channel *
2488 bdev_nvme_get_io_channel(void *ctx)
2489 {
2490 	struct nvme_bdev *nvme_bdev = ctx;
2491 
2492 	return spdk_get_io_channel(nvme_bdev);
2493 }
2494 
2495 static void *
2496 bdev_nvme_get_module_ctx(void *ctx)
2497 {
2498 	struct nvme_bdev *nvme_bdev = ctx;
2499 	struct nvme_ns *nvme_ns;
2500 
2501 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
2502 		return NULL;
2503 	}
2504 
2505 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
2506 	if (!nvme_ns) {
2507 		return NULL;
2508 	}
2509 
2510 	return nvme_ns->ns;
2511 }
2512 
2513 static const char *
2514 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
2515 {
2516 	switch (ana_state) {
2517 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
2518 		return "optimized";
2519 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
2520 		return "non_optimized";
2521 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
2522 		return "inaccessible";
2523 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
2524 		return "persistent_loss";
2525 	case SPDK_NVME_ANA_CHANGE_STATE:
2526 		return "change";
2527 	default:
2528 		return NULL;
2529 	}
2530 }
2531 
2532 static int
2533 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
2534 {
2535 	struct spdk_memory_domain **_domains = NULL;
2536 	struct nvme_bdev *nbdev = ctx;
2537 	struct nvme_ns *nvme_ns;
2538 	int i = 0, _array_size = array_size;
2539 	int rc = 0;
2540 
2541 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
2542 		if (domains && array_size >= i) {
2543 			_domains = &domains[i];
2544 		} else {
2545 			_domains = NULL;
2546 		}
2547 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
2548 		if (rc > 0) {
2549 			i += rc;
2550 			if (_array_size >= rc) {
2551 				_array_size -= rc;
2552 			} else {
2553 				_array_size = 0;
2554 			}
2555 		} else if (rc < 0) {
2556 			return rc;
2557 		}
2558 	}
2559 
2560 	return i;
2561 }
2562 
2563 static const char *
2564 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
2565 {
2566 	if (nvme_ctrlr->destruct) {
2567 		return "deleting";
2568 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
2569 		return "failed";
2570 	} else if (nvme_ctrlr->resetting) {
2571 		return "resetting";
2572 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
2573 		return "reconnect_is_delayed";
2574 	} else {
2575 		return "enabled";
2576 	}
2577 }
2578 
2579 void
2580 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
2581 {
2582 	struct spdk_nvme_transport_id *trid;
2583 	const struct spdk_nvme_ctrlr_opts *opts;
2584 	const struct spdk_nvme_ctrlr_data *cdata;
2585 
2586 	spdk_json_write_object_begin(w);
2587 
2588 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
2589 
2590 #ifdef SPDK_CONFIG_NVME_CUSE
2591 	size_t cuse_name_size = 128;
2592 	char cuse_name[cuse_name_size];
2593 
2594 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
2595 	if (rc == 0) {
2596 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
2597 	}
2598 #endif
2599 	trid = &nvme_ctrlr->active_path_id->trid;
2600 	spdk_json_write_named_object_begin(w, "trid");
2601 	nvme_bdev_dump_trid_json(trid, w);
2602 	spdk_json_write_object_end(w);
2603 
2604 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
2605 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
2606 
2607 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
2608 	spdk_json_write_named_object_begin(w, "host");
2609 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
2610 	spdk_json_write_named_string(w, "addr", opts->src_addr);
2611 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
2612 	spdk_json_write_object_end(w);
2613 
2614 	spdk_json_write_object_end(w);
2615 }
2616 
2617 static void
2618 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
2619 			 struct nvme_ns *nvme_ns)
2620 {
2621 	struct spdk_nvme_ns *ns;
2622 	struct spdk_nvme_ctrlr *ctrlr;
2623 	const struct spdk_nvme_ctrlr_data *cdata;
2624 	const struct spdk_nvme_transport_id *trid;
2625 	union spdk_nvme_vs_register vs;
2626 	const struct spdk_nvme_ns_data *nsdata;
2627 	char buf[128];
2628 
2629 	ns = nvme_ns->ns;
2630 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
2631 
2632 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2633 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
2634 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
2635 
2636 	spdk_json_write_object_begin(w);
2637 
2638 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
2639 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
2640 	}
2641 
2642 	spdk_json_write_named_object_begin(w, "trid");
2643 
2644 	nvme_bdev_dump_trid_json(trid, w);
2645 
2646 	spdk_json_write_object_end(w);
2647 
2648 #ifdef SPDK_CONFIG_NVME_CUSE
2649 	size_t cuse_name_size = 128;
2650 	char cuse_name[cuse_name_size];
2651 
2652 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
2653 					    cuse_name, &cuse_name_size);
2654 	if (rc == 0) {
2655 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
2656 	}
2657 #endif
2658 
2659 	spdk_json_write_named_object_begin(w, "ctrlr_data");
2660 
2661 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
2662 
2663 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
2664 
2665 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
2666 	spdk_str_trim(buf);
2667 	spdk_json_write_named_string(w, "model_number", buf);
2668 
2669 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
2670 	spdk_str_trim(buf);
2671 	spdk_json_write_named_string(w, "serial_number", buf);
2672 
2673 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
2674 	spdk_str_trim(buf);
2675 	spdk_json_write_named_string(w, "firmware_revision", buf);
2676 
2677 	if (cdata->subnqn[0] != '\0') {
2678 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
2679 	}
2680 
2681 	spdk_json_write_named_object_begin(w, "oacs");
2682 
2683 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
2684 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
2685 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
2686 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
2687 
2688 	spdk_json_write_object_end(w);
2689 
2690 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
2691 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
2692 
2693 	spdk_json_write_object_end(w);
2694 
2695 	spdk_json_write_named_object_begin(w, "vs");
2696 
2697 	spdk_json_write_name(w, "nvme_version");
2698 	if (vs.bits.ter) {
2699 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
2700 	} else {
2701 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
2702 	}
2703 
2704 	spdk_json_write_object_end(w);
2705 
2706 	nsdata = spdk_nvme_ns_get_data(ns);
2707 
2708 	spdk_json_write_named_object_begin(w, "ns_data");
2709 
2710 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
2711 
2712 	if (cdata->cmic.ana_reporting) {
2713 		spdk_json_write_named_string(w, "ana_state",
2714 					     _nvme_ana_state_str(nvme_ns->ana_state));
2715 	}
2716 
2717 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
2718 
2719 	spdk_json_write_object_end(w);
2720 
2721 	if (cdata->oacs.security) {
2722 		spdk_json_write_named_object_begin(w, "security");
2723 
2724 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
2725 
2726 		spdk_json_write_object_end(w);
2727 	}
2728 
2729 	spdk_json_write_object_end(w);
2730 }
2731 
2732 static const char *
2733 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
2734 {
2735 	switch (nbdev->mp_policy) {
2736 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
2737 		return "active_passive";
2738 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
2739 		return "active_active";
2740 	default:
2741 		assert(false);
2742 		return "invalid";
2743 	}
2744 }
2745 
2746 static int
2747 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
2748 {
2749 	struct nvme_bdev *nvme_bdev = ctx;
2750 	struct nvme_ns *nvme_ns;
2751 
2752 	pthread_mutex_lock(&nvme_bdev->mutex);
2753 	spdk_json_write_named_array_begin(w, "nvme");
2754 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
2755 		nvme_namespace_info_json(w, nvme_ns);
2756 	}
2757 	spdk_json_write_array_end(w);
2758 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
2759 	pthread_mutex_unlock(&nvme_bdev->mutex);
2760 
2761 	return 0;
2762 }
2763 
2764 static void
2765 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
2766 {
2767 	/* No config per bdev needed */
2768 }
2769 
2770 static uint64_t
2771 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
2772 {
2773 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
2774 	struct nvme_io_path *io_path;
2775 	struct nvme_poll_group *group;
2776 	uint64_t spin_time = 0;
2777 
2778 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
2779 		group = io_path->qpair->group;
2780 
2781 		if (!group || !group->collect_spin_stat) {
2782 			continue;
2783 		}
2784 
2785 		if (group->end_ticks != 0) {
2786 			group->spin_ticks += (group->end_ticks - group->start_ticks);
2787 			group->end_ticks = 0;
2788 		}
2789 
2790 		spin_time += group->spin_ticks;
2791 		group->start_ticks = 0;
2792 		group->spin_ticks = 0;
2793 	}
2794 
2795 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
2796 }
2797 
2798 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
2799 	.destruct		= bdev_nvme_destruct,
2800 	.submit_request		= bdev_nvme_submit_request,
2801 	.io_type_supported	= bdev_nvme_io_type_supported,
2802 	.get_io_channel		= bdev_nvme_get_io_channel,
2803 	.dump_info_json		= bdev_nvme_dump_info_json,
2804 	.write_config_json	= bdev_nvme_write_config_json,
2805 	.get_spin_time		= bdev_nvme_get_spin_time,
2806 	.get_module_ctx		= bdev_nvme_get_module_ctx,
2807 	.get_memory_domains	= bdev_nvme_get_memory_domains,
2808 };
2809 
2810 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
2811 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
2812 
2813 static int
2814 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
2815 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
2816 {
2817 	struct spdk_nvme_ana_group_descriptor *copied_desc;
2818 	uint8_t *orig_desc;
2819 	uint32_t i, desc_size, copy_len;
2820 	int rc = 0;
2821 
2822 	if (nvme_ctrlr->ana_log_page == NULL) {
2823 		return -EINVAL;
2824 	}
2825 
2826 	copied_desc = nvme_ctrlr->copied_ana_desc;
2827 
2828 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
2829 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
2830 
2831 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
2832 		memcpy(copied_desc, orig_desc, copy_len);
2833 
2834 		rc = cb_fn(copied_desc, cb_arg);
2835 		if (rc != 0) {
2836 			break;
2837 		}
2838 
2839 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
2840 			    copied_desc->num_of_nsid * sizeof(uint32_t);
2841 		orig_desc += desc_size;
2842 		copy_len -= desc_size;
2843 	}
2844 
2845 	return rc;
2846 }
2847 
2848 static int
2849 nvme_ns_ana_transition_timedout(void *ctx)
2850 {
2851 	struct nvme_ns *nvme_ns = ctx;
2852 
2853 	spdk_poller_unregister(&nvme_ns->anatt_timer);
2854 	nvme_ns->ana_transition_timedout = true;
2855 
2856 	return SPDK_POLLER_BUSY;
2857 }
2858 
2859 static void
2860 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
2861 		       const struct spdk_nvme_ana_group_descriptor *desc)
2862 {
2863 	const struct spdk_nvme_ctrlr_data *cdata;
2864 
2865 	nvme_ns->ana_group_id = desc->ana_group_id;
2866 	nvme_ns->ana_state = desc->ana_state;
2867 	nvme_ns->ana_state_updating = false;
2868 
2869 	switch (nvme_ns->ana_state) {
2870 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
2871 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
2872 		nvme_ns->ana_transition_timedout = false;
2873 		spdk_poller_unregister(&nvme_ns->anatt_timer);
2874 		break;
2875 
2876 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
2877 	case SPDK_NVME_ANA_CHANGE_STATE:
2878 		if (nvme_ns->anatt_timer != NULL) {
2879 			break;
2880 		}
2881 
2882 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
2883 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
2884 				       nvme_ns,
2885 				       cdata->anatt * SPDK_SEC_TO_USEC);
2886 		break;
2887 	default:
2888 		break;
2889 	}
2890 }
2891 
2892 static int
2893 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
2894 {
2895 	struct nvme_ns *nvme_ns = cb_arg;
2896 	uint32_t i;
2897 
2898 	for (i = 0; i < desc->num_of_nsid; i++) {
2899 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
2900 			continue;
2901 		}
2902 
2903 		_nvme_ns_set_ana_state(nvme_ns, desc);
2904 		return 1;
2905 	}
2906 
2907 	return 0;
2908 }
2909 
2910 static int
2911 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
2912 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
2913 		 uint32_t prchk_flags, void *ctx)
2914 {
2915 	const struct spdk_uuid		*uuid;
2916 	const uint8_t *nguid;
2917 	const struct spdk_nvme_ctrlr_data *cdata;
2918 	const struct spdk_nvme_ns_data	*nsdata;
2919 	const struct spdk_nvme_ctrlr_opts *opts;
2920 	enum spdk_nvme_csi		csi;
2921 	uint32_t atomic_bs, phys_bs, bs;
2922 
2923 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
2924 	csi = spdk_nvme_ns_get_csi(ns);
2925 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
2926 
2927 	switch (csi) {
2928 	case SPDK_NVME_CSI_NVM:
2929 		disk->product_name = "NVMe disk";
2930 		break;
2931 	case SPDK_NVME_CSI_ZNS:
2932 		disk->product_name = "NVMe ZNS disk";
2933 		disk->zoned = true;
2934 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
2935 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
2936 					     spdk_nvme_ns_get_extended_sector_size(ns);
2937 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
2938 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
2939 		break;
2940 	default:
2941 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
2942 		return -ENOTSUP;
2943 	}
2944 
2945 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
2946 	if (!disk->name) {
2947 		return -ENOMEM;
2948 	}
2949 
2950 	disk->write_cache = 0;
2951 	if (cdata->vwc.present) {
2952 		/* Enable if the Volatile Write Cache exists */
2953 		disk->write_cache = 1;
2954 	}
2955 	if (cdata->oncs.write_zeroes) {
2956 		disk->max_write_zeroes = UINT16_MAX + 1;
2957 	}
2958 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
2959 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
2960 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
2961 	/* NVMe driver will split one request into multiple requests
2962 	 * based on MDTS and stripe boundary, the bdev layer will use
2963 	 * max_segment_size and max_num_segments to split one big IO
2964 	 * into multiple requests, then small request can't run out
2965 	 * of NVMe internal requests data structure.
2966 	 */
2967 	if (opts && opts->io_queue_requests) {
2968 		disk->max_num_segments = opts->io_queue_requests / 2;
2969 	}
2970 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
2971 
2972 	nguid = spdk_nvme_ns_get_nguid(ns);
2973 	if (!nguid) {
2974 		uuid = spdk_nvme_ns_get_uuid(ns);
2975 		if (uuid) {
2976 			disk->uuid = *uuid;
2977 		}
2978 	} else {
2979 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
2980 	}
2981 
2982 	nsdata = spdk_nvme_ns_get_data(ns);
2983 	bs = spdk_nvme_ns_get_sector_size(ns);
2984 	atomic_bs = bs;
2985 	phys_bs = bs;
2986 	if (nsdata->nabo == 0) {
2987 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
2988 			atomic_bs = bs * (1 + nsdata->nawupf);
2989 		} else {
2990 			atomic_bs = bs * (1 + cdata->awupf);
2991 		}
2992 	}
2993 	if (nsdata->nsfeat.optperf) {
2994 		phys_bs = bs * (1 + nsdata->npwg);
2995 	}
2996 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
2997 
2998 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
2999 	if (disk->md_len != 0) {
3000 		disk->md_interleave = nsdata->flbas.extended;
3001 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
3002 		if (disk->dif_type != SPDK_DIF_DISABLE) {
3003 			disk->dif_is_head_of_md = nsdata->dps.md_start;
3004 			disk->dif_check_flags = prchk_flags;
3005 		}
3006 	}
3007 
3008 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
3009 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
3010 		disk->acwu = 0;
3011 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
3012 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
3013 	} else {
3014 		disk->acwu = cdata->acwu + 1; /* 0-based */
3015 	}
3016 
3017 	if (cdata->oncs.copy) {
3018 		/* For now bdev interface allows only single segment copy */
3019 		disk->max_copy = nsdata->mssrl;
3020 	}
3021 
3022 	disk->ctxt = ctx;
3023 	disk->fn_table = &nvmelib_fn_table;
3024 	disk->module = &nvme_if;
3025 
3026 	return 0;
3027 }
3028 
3029 static int
3030 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
3031 {
3032 	struct nvme_bdev *bdev;
3033 	int rc;
3034 
3035 	bdev = calloc(1, sizeof(*bdev));
3036 	if (!bdev) {
3037 		SPDK_ERRLOG("bdev calloc() failed\n");
3038 		return -ENOMEM;
3039 	}
3040 
3041 	rc = pthread_mutex_init(&bdev->mutex, NULL);
3042 	if (rc != 0) {
3043 		free(bdev);
3044 		return rc;
3045 	}
3046 
3047 	bdev->ref = 1;
3048 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
3049 	TAILQ_INIT(&bdev->nvme_ns_list);
3050 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
3051 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
3052 
3053 	rc = nvme_disk_create(&bdev->disk, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
3054 			      nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev);
3055 	if (rc != 0) {
3056 		SPDK_ERRLOG("Failed to create NVMe disk\n");
3057 		pthread_mutex_destroy(&bdev->mutex);
3058 		free(bdev);
3059 		return rc;
3060 	}
3061 
3062 	spdk_io_device_register(bdev,
3063 				bdev_nvme_create_bdev_channel_cb,
3064 				bdev_nvme_destroy_bdev_channel_cb,
3065 				sizeof(struct nvme_bdev_channel),
3066 				bdev->disk.name);
3067 
3068 	rc = spdk_bdev_register(&bdev->disk);
3069 	if (rc != 0) {
3070 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
3071 		spdk_io_device_unregister(bdev, NULL);
3072 		pthread_mutex_destroy(&bdev->mutex);
3073 		free(bdev->disk.name);
3074 		free(bdev);
3075 		return rc;
3076 	}
3077 
3078 	nvme_ns->bdev = bdev;
3079 	bdev->nsid = nvme_ns->id;
3080 
3081 	bdev->nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
3082 	TAILQ_INSERT_TAIL(&nvme_ctrlr->nbdev_ctrlr->bdevs, bdev, tailq);
3083 
3084 	return 0;
3085 }
3086 
3087 static bool
3088 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
3089 {
3090 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
3091 	const struct spdk_uuid *uuid1, *uuid2;
3092 
3093 	nsdata1 = spdk_nvme_ns_get_data(ns1);
3094 	nsdata2 = spdk_nvme_ns_get_data(ns2);
3095 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
3096 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
3097 
3098 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
3099 	       nsdata1->eui64 == nsdata2->eui64 &&
3100 	       ((uuid1 == NULL && uuid2 == NULL) ||
3101 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
3102 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
3103 }
3104 
3105 static bool
3106 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
3107 		 struct spdk_nvme_ctrlr_opts *opts)
3108 {
3109 	struct nvme_probe_skip_entry *entry;
3110 
3111 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
3112 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
3113 			return false;
3114 		}
3115 	}
3116 
3117 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
3118 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
3119 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
3120 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
3121 	opts->disable_read_ana_log_page = true;
3122 
3123 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
3124 
3125 	return true;
3126 }
3127 
3128 static void
3129 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
3130 {
3131 	struct nvme_ctrlr *nvme_ctrlr = ctx;
3132 
3133 	if (spdk_nvme_cpl_is_error(cpl)) {
3134 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
3135 			     cpl->status.sct);
3136 		bdev_nvme_reset(nvme_ctrlr);
3137 	} else if (cpl->cdw0 & 0x1) {
3138 		SPDK_WARNLOG("Specified command could not be aborted.\n");
3139 		bdev_nvme_reset(nvme_ctrlr);
3140 	}
3141 }
3142 
3143 static void
3144 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
3145 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
3146 {
3147 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
3148 	union spdk_nvme_csts_register csts;
3149 	int rc;
3150 
3151 	assert(nvme_ctrlr->ctrlr == ctrlr);
3152 
3153 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
3154 
3155 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
3156 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
3157 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
3158 	 * completion recursively.
3159 	 */
3160 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
3161 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
3162 		if (csts.bits.cfs) {
3163 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
3164 			bdev_nvme_reset(nvme_ctrlr);
3165 			return;
3166 		}
3167 	}
3168 
3169 	switch (g_opts.action_on_timeout) {
3170 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
3171 		if (qpair) {
3172 			/* Don't send abort to ctrlr when ctrlr is not available. */
3173 			pthread_mutex_lock(&nvme_ctrlr->mutex);
3174 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
3175 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
3176 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
3177 				return;
3178 			}
3179 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
3180 
3181 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
3182 						       nvme_abort_cpl, nvme_ctrlr);
3183 			if (rc == 0) {
3184 				return;
3185 			}
3186 
3187 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
3188 		}
3189 
3190 	/* FALLTHROUGH */
3191 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
3192 		bdev_nvme_reset(nvme_ctrlr);
3193 		break;
3194 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
3195 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
3196 		break;
3197 	default:
3198 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
3199 		break;
3200 	}
3201 }
3202 
3203 static void
3204 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
3205 {
3206 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
3207 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
3208 
3209 	if (rc == 0) {
3210 		nvme_ns->probe_ctx = NULL;
3211 		pthread_mutex_lock(&nvme_ctrlr->mutex);
3212 		nvme_ctrlr->ref++;
3213 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3214 	} else {
3215 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
3216 		free(nvme_ns);
3217 	}
3218 
3219 	if (ctx) {
3220 		ctx->populates_in_progress--;
3221 		if (ctx->populates_in_progress == 0) {
3222 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
3223 		}
3224 	}
3225 }
3226 
3227 static void
3228 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
3229 {
3230 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3231 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3232 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3233 	int rc;
3234 
3235 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
3236 	if (rc != 0) {
3237 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
3238 	}
3239 
3240 	spdk_for_each_channel_continue(i, rc);
3241 }
3242 
3243 static void
3244 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
3245 {
3246 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3247 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3248 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3249 	struct nvme_io_path *io_path;
3250 
3251 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
3252 	if (io_path != NULL) {
3253 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
3254 	}
3255 
3256 	spdk_for_each_channel_continue(i, 0);
3257 }
3258 
3259 static void
3260 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
3261 {
3262 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3263 
3264 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
3265 }
3266 
3267 static void
3268 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
3269 {
3270 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3271 	struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
3272 
3273 	if (status == 0) {
3274 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
3275 	} else {
3276 		/* Delete the added io_paths and fail populating the namespace. */
3277 		spdk_for_each_channel(bdev,
3278 				      bdev_nvme_delete_io_path,
3279 				      nvme_ns,
3280 				      bdev_nvme_add_io_path_failed);
3281 	}
3282 }
3283 
3284 static int
3285 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
3286 {
3287 	struct nvme_ns *tmp_ns;
3288 	const struct spdk_nvme_ns_data *nsdata;
3289 
3290 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
3291 	if (!nsdata->nmic.can_share) {
3292 		SPDK_ERRLOG("Namespace cannot be shared.\n");
3293 		return -EINVAL;
3294 	}
3295 
3296 	pthread_mutex_lock(&bdev->mutex);
3297 
3298 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
3299 	assert(tmp_ns != NULL);
3300 
3301 	if (!bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
3302 		pthread_mutex_unlock(&bdev->mutex);
3303 		SPDK_ERRLOG("Namespaces are not identical.\n");
3304 		return -EINVAL;
3305 	}
3306 
3307 	bdev->ref++;
3308 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
3309 	nvme_ns->bdev = bdev;
3310 
3311 	pthread_mutex_unlock(&bdev->mutex);
3312 
3313 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
3314 	spdk_for_each_channel(bdev,
3315 			      bdev_nvme_add_io_path,
3316 			      nvme_ns,
3317 			      bdev_nvme_add_io_path_done);
3318 
3319 	return 0;
3320 }
3321 
3322 static void
3323 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
3324 {
3325 	struct spdk_nvme_ns	*ns;
3326 	struct nvme_bdev	*bdev;
3327 	int			rc = 0;
3328 
3329 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
3330 	if (!ns) {
3331 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
3332 		rc = -EINVAL;
3333 		goto done;
3334 	}
3335 
3336 	nvme_ns->ns = ns;
3337 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
3338 
3339 	if (nvme_ctrlr->ana_log_page != NULL) {
3340 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
3341 	}
3342 
3343 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
3344 	if (bdev == NULL) {
3345 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
3346 	} else {
3347 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
3348 		if (rc == 0) {
3349 			return;
3350 		}
3351 	}
3352 done:
3353 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
3354 }
3355 
3356 static void
3357 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
3358 {
3359 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
3360 
3361 	assert(nvme_ctrlr != NULL);
3362 
3363 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3364 
3365 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
3366 
3367 	if (nvme_ns->bdev != NULL) {
3368 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3369 		return;
3370 	}
3371 
3372 	free(nvme_ns);
3373 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3374 
3375 	nvme_ctrlr_release(nvme_ctrlr);
3376 }
3377 
3378 static void
3379 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
3380 {
3381 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
3382 
3383 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
3384 }
3385 
3386 static void
3387 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
3388 {
3389 	struct nvme_bdev *bdev;
3390 
3391 	spdk_poller_unregister(&nvme_ns->anatt_timer);
3392 
3393 	bdev = nvme_ns->bdev;
3394 	if (bdev != NULL) {
3395 		pthread_mutex_lock(&bdev->mutex);
3396 
3397 		assert(bdev->ref > 0);
3398 		bdev->ref--;
3399 		if (bdev->ref == 0) {
3400 			pthread_mutex_unlock(&bdev->mutex);
3401 
3402 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
3403 		} else {
3404 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
3405 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
3406 			 * and clear nvme_ns->bdev here.
3407 			 */
3408 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
3409 			nvme_ns->bdev = NULL;
3410 
3411 			pthread_mutex_unlock(&bdev->mutex);
3412 
3413 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
3414 			 * we call depopulate_namespace_done() to avoid use-after-free.
3415 			 */
3416 			spdk_for_each_channel(bdev,
3417 					      bdev_nvme_delete_io_path,
3418 					      nvme_ns,
3419 					      bdev_nvme_delete_io_path_done);
3420 			return;
3421 		}
3422 	}
3423 
3424 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
3425 }
3426 
3427 static void
3428 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
3429 			       struct nvme_async_probe_ctx *ctx)
3430 {
3431 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
3432 	struct nvme_ns	*nvme_ns, *next;
3433 	struct spdk_nvme_ns	*ns;
3434 	struct nvme_bdev	*bdev;
3435 	uint32_t		nsid;
3436 	int			rc;
3437 	uint64_t		num_sectors;
3438 
3439 	if (ctx) {
3440 		/* Initialize this count to 1 to handle the populate functions
3441 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
3442 		 */
3443 		ctx->populates_in_progress = 1;
3444 	}
3445 
3446 	/* First loop over our existing namespaces and see if they have been
3447 	 * removed. */
3448 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
3449 	while (nvme_ns != NULL) {
3450 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
3451 
3452 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
3453 			/* NS is still there but attributes may have changed */
3454 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
3455 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
3456 			bdev = nvme_ns->bdev;
3457 			assert(bdev != NULL);
3458 			if (bdev->disk.blockcnt != num_sectors) {
3459 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
3460 					       nvme_ns->id,
3461 					       bdev->disk.name,
3462 					       bdev->disk.blockcnt,
3463 					       num_sectors);
3464 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
3465 				if (rc != 0) {
3466 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
3467 						    bdev->disk.name, rc);
3468 				}
3469 			}
3470 		} else {
3471 			/* Namespace was removed */
3472 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
3473 		}
3474 
3475 		nvme_ns = next;
3476 	}
3477 
3478 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
3479 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
3480 	while (nsid != 0) {
3481 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
3482 
3483 		if (nvme_ns == NULL) {
3484 			/* Found a new one */
3485 			nvme_ns = calloc(1, sizeof(struct nvme_ns));
3486 			if (nvme_ns == NULL) {
3487 				SPDK_ERRLOG("Failed to allocate namespace\n");
3488 				/* This just fails to attach the namespace. It may work on a future attempt. */
3489 				continue;
3490 			}
3491 
3492 			nvme_ns->id = nsid;
3493 			nvme_ns->ctrlr = nvme_ctrlr;
3494 
3495 			nvme_ns->bdev = NULL;
3496 
3497 			if (ctx) {
3498 				ctx->populates_in_progress++;
3499 			}
3500 			nvme_ns->probe_ctx = ctx;
3501 
3502 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
3503 
3504 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
3505 		}
3506 
3507 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
3508 	}
3509 
3510 	if (ctx) {
3511 		/* Decrement this count now that the loop is over to account
3512 		 * for the one we started with.  If the count is then 0, we
3513 		 * know any populate_namespace functions completed immediately,
3514 		 * so we'll kick the callback here.
3515 		 */
3516 		ctx->populates_in_progress--;
3517 		if (ctx->populates_in_progress == 0) {
3518 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
3519 		}
3520 	}
3521 
3522 }
3523 
3524 static void
3525 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
3526 {
3527 	struct nvme_ns *nvme_ns, *tmp;
3528 
3529 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
3530 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
3531 	}
3532 }
3533 
3534 static uint32_t
3535 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
3536 {
3537 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
3538 	const struct spdk_nvme_ctrlr_data *cdata;
3539 	uint32_t nsid, ns_count = 0;
3540 
3541 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3542 
3543 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
3544 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
3545 		ns_count++;
3546 	}
3547 
3548 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
3549 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
3550 	       sizeof(uint32_t);
3551 }
3552 
3553 static int
3554 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
3555 			  void *cb_arg)
3556 {
3557 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
3558 	struct nvme_ns *nvme_ns;
3559 	uint32_t i, nsid;
3560 
3561 	for (i = 0; i < desc->num_of_nsid; i++) {
3562 		nsid = desc->nsid[i];
3563 		if (nsid == 0) {
3564 			continue;
3565 		}
3566 
3567 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
3568 
3569 		assert(nvme_ns != NULL);
3570 		if (nvme_ns == NULL) {
3571 			/* Target told us that an inactive namespace had an ANA change */
3572 			continue;
3573 		}
3574 
3575 		_nvme_ns_set_ana_state(nvme_ns, desc);
3576 	}
3577 
3578 	return 0;
3579 }
3580 
3581 static void
3582 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
3583 {
3584 	struct nvme_ns *nvme_ns;
3585 
3586 	spdk_free(nvme_ctrlr->ana_log_page);
3587 	nvme_ctrlr->ana_log_page = NULL;
3588 
3589 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
3590 	     nvme_ns != NULL;
3591 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
3592 		nvme_ns->ana_state_updating = false;
3593 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
3594 	}
3595 }
3596 
3597 static void
3598 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
3599 {
3600 	struct nvme_ctrlr *nvme_ctrlr = ctx;
3601 
3602 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
3603 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
3604 					     nvme_ctrlr);
3605 	} else {
3606 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
3607 	}
3608 
3609 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3610 
3611 	assert(nvme_ctrlr->ana_log_page_updating == true);
3612 	nvme_ctrlr->ana_log_page_updating = false;
3613 
3614 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
3615 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3616 
3617 		nvme_ctrlr_unregister(nvme_ctrlr);
3618 	} else {
3619 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3620 
3621 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
3622 	}
3623 }
3624 
3625 static int
3626 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
3627 {
3628 	uint32_t ana_log_page_size;
3629 	int rc;
3630 
3631 	if (nvme_ctrlr->ana_log_page == NULL) {
3632 		return -EINVAL;
3633 	}
3634 
3635 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
3636 
3637 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
3638 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
3639 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
3640 		return -EINVAL;
3641 	}
3642 
3643 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3644 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
3645 	    nvme_ctrlr->ana_log_page_updating) {
3646 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
3647 		return -EBUSY;
3648 	}
3649 
3650 	nvme_ctrlr->ana_log_page_updating = true;
3651 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3652 
3653 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
3654 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
3655 					      SPDK_NVME_GLOBAL_NS_TAG,
3656 					      nvme_ctrlr->ana_log_page,
3657 					      ana_log_page_size, 0,
3658 					      nvme_ctrlr_read_ana_log_page_done,
3659 					      nvme_ctrlr);
3660 	if (rc != 0) {
3661 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
3662 	}
3663 
3664 	return rc;
3665 }
3666 
3667 static void
3668 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
3669 {
3670 }
3671 
3672 struct bdev_nvme_set_preferred_path_ctx {
3673 	struct spdk_bdev_desc *desc;
3674 	struct nvme_ns *nvme_ns;
3675 	bdev_nvme_set_preferred_path_cb cb_fn;
3676 	void *cb_arg;
3677 };
3678 
3679 static void
3680 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
3681 {
3682 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
3683 
3684 	assert(ctx != NULL);
3685 	assert(ctx->desc != NULL);
3686 	assert(ctx->cb_fn != NULL);
3687 
3688 	spdk_bdev_close(ctx->desc);
3689 
3690 	ctx->cb_fn(ctx->cb_arg, status);
3691 
3692 	free(ctx);
3693 }
3694 
3695 static void
3696 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
3697 {
3698 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
3699 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3700 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3701 	struct nvme_io_path *io_path, *prev;
3702 
3703 	prev = NULL;
3704 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3705 		if (io_path->nvme_ns == ctx->nvme_ns) {
3706 			break;
3707 		}
3708 		prev = io_path;
3709 	}
3710 
3711 	if (io_path != NULL) {
3712 		if (prev != NULL) {
3713 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
3714 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
3715 		}
3716 
3717 		/* We can set io_path to nbdev_ch->current_io_path directly here.
3718 		 * However, it needs to be conditional. To simplify the code,
3719 		 * just clear nbdev_ch->current_io_path and let find_io_path()
3720 		 * fill it.
3721 		 *
3722 		 * Automatic failback may be disabled. Hence even if the io_path is
3723 		 * already at the head, clear nbdev_ch->current_io_path.
3724 		 */
3725 		nbdev_ch->current_io_path = NULL;
3726 	}
3727 
3728 	spdk_for_each_channel_continue(i, 0);
3729 }
3730 
3731 static struct nvme_ns *
3732 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
3733 {
3734 	struct nvme_ns *nvme_ns, *prev;
3735 	const struct spdk_nvme_ctrlr_data *cdata;
3736 
3737 	prev = NULL;
3738 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3739 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
3740 
3741 		if (cdata->cntlid == cntlid) {
3742 			break;
3743 		}
3744 		prev = nvme_ns;
3745 	}
3746 
3747 	if (nvme_ns != NULL && prev != NULL) {
3748 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
3749 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
3750 	}
3751 
3752 	return nvme_ns;
3753 }
3754 
3755 /* This function supports only multipath mode. There is only a single I/O path
3756  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
3757  * head of the I/O path list for each NVMe bdev channel.
3758  *
3759  * NVMe bdev channel may be acquired after completing this function. move the
3760  * matched namespace to the head of the namespace list for the NVMe bdev too.
3761  */
3762 void
3763 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
3764 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
3765 {
3766 	struct bdev_nvme_set_preferred_path_ctx *ctx;
3767 	struct spdk_bdev *bdev;
3768 	struct nvme_bdev *nbdev;
3769 	int rc = 0;
3770 
3771 	assert(cb_fn != NULL);
3772 
3773 	ctx = calloc(1, sizeof(*ctx));
3774 	if (ctx == NULL) {
3775 		SPDK_ERRLOG("Failed to alloc context.\n");
3776 		rc = -ENOMEM;
3777 		goto err_alloc;
3778 	}
3779 
3780 	ctx->cb_fn = cb_fn;
3781 	ctx->cb_arg = cb_arg;
3782 
3783 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
3784 	if (rc != 0) {
3785 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
3786 		goto err_open;
3787 	}
3788 
3789 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
3790 
3791 	if (bdev->module != &nvme_if) {
3792 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
3793 		rc = -ENODEV;
3794 		goto err_bdev;
3795 	}
3796 
3797 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
3798 
3799 	pthread_mutex_lock(&nbdev->mutex);
3800 
3801 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
3802 	if (ctx->nvme_ns == NULL) {
3803 		pthread_mutex_unlock(&nbdev->mutex);
3804 
3805 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
3806 		rc = -ENODEV;
3807 		goto err_bdev;
3808 	}
3809 
3810 	pthread_mutex_unlock(&nbdev->mutex);
3811 
3812 	spdk_for_each_channel(nbdev,
3813 			      _bdev_nvme_set_preferred_path,
3814 			      ctx,
3815 			      bdev_nvme_set_preferred_path_done);
3816 	return;
3817 
3818 err_bdev:
3819 	spdk_bdev_close(ctx->desc);
3820 err_open:
3821 	free(ctx);
3822 err_alloc:
3823 	cb_fn(cb_arg, rc);
3824 }
3825 
3826 struct bdev_nvme_set_multipath_policy_ctx {
3827 	struct spdk_bdev_desc *desc;
3828 	bdev_nvme_set_multipath_policy_cb cb_fn;
3829 	void *cb_arg;
3830 };
3831 
3832 static void
3833 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
3834 {
3835 	struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
3836 
3837 	assert(ctx != NULL);
3838 	assert(ctx->desc != NULL);
3839 	assert(ctx->cb_fn != NULL);
3840 
3841 	spdk_bdev_close(ctx->desc);
3842 
3843 	ctx->cb_fn(ctx->cb_arg, status);
3844 
3845 	free(ctx);
3846 }
3847 
3848 static void
3849 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
3850 {
3851 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3852 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
3853 	struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
3854 
3855 	nbdev_ch->mp_policy = nbdev->mp_policy;
3856 	nbdev_ch->current_io_path = NULL;
3857 
3858 	spdk_for_each_channel_continue(i, 0);
3859 }
3860 
3861 void
3862 bdev_nvme_set_multipath_policy(const char *name, enum bdev_nvme_multipath_policy policy,
3863 			       bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
3864 {
3865 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
3866 	struct spdk_bdev *bdev;
3867 	struct nvme_bdev *nbdev;
3868 	int rc;
3869 
3870 	assert(cb_fn != NULL);
3871 
3872 	ctx = calloc(1, sizeof(*ctx));
3873 	if (ctx == NULL) {
3874 		SPDK_ERRLOG("Failed to alloc context.\n");
3875 		rc = -ENOMEM;
3876 		goto err_alloc;
3877 	}
3878 
3879 	ctx->cb_fn = cb_fn;
3880 	ctx->cb_arg = cb_arg;
3881 
3882 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
3883 	if (rc != 0) {
3884 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
3885 		rc = -ENODEV;
3886 		goto err_open;
3887 	}
3888 
3889 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
3890 	if (bdev->module != &nvme_if) {
3891 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
3892 		rc = -ENODEV;
3893 		goto err_module;
3894 	}
3895 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
3896 
3897 	pthread_mutex_lock(&nbdev->mutex);
3898 	nbdev->mp_policy = policy;
3899 	pthread_mutex_unlock(&nbdev->mutex);
3900 
3901 	spdk_for_each_channel(nbdev,
3902 			      _bdev_nvme_set_multipath_policy,
3903 			      ctx,
3904 			      bdev_nvme_set_multipath_policy_done);
3905 	return;
3906 
3907 err_module:
3908 	spdk_bdev_close(ctx->desc);
3909 err_open:
3910 	free(ctx);
3911 err_alloc:
3912 	cb_fn(cb_arg, rc);
3913 }
3914 
3915 static void
3916 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
3917 {
3918 	struct nvme_ctrlr *nvme_ctrlr		= arg;
3919 	union spdk_nvme_async_event_completion	event;
3920 
3921 	if (spdk_nvme_cpl_is_error(cpl)) {
3922 		SPDK_WARNLOG("AER request execute failed\n");
3923 		return;
3924 	}
3925 
3926 	event.raw = cpl->cdw0;
3927 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3928 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
3929 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
3930 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3931 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
3932 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
3933 	}
3934 }
3935 
3936 static void
3937 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, size_t count, int rc)
3938 {
3939 	if (ctx->cb_fn) {
3940 		ctx->cb_fn(ctx->cb_ctx, count, rc);
3941 	}
3942 
3943 	ctx->namespaces_populated = true;
3944 	if (ctx->probe_done) {
3945 		/* The probe was already completed, so we need to free the context
3946 		 * here.  This can happen for cases like OCSSD, where we need to
3947 		 * send additional commands to the SSD after attach.
3948 		 */
3949 		free(ctx);
3950 	}
3951 }
3952 
3953 static void
3954 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
3955 		       struct nvme_async_probe_ctx *ctx)
3956 {
3957 	spdk_io_device_register(nvme_ctrlr,
3958 				bdev_nvme_create_ctrlr_channel_cb,
3959 				bdev_nvme_destroy_ctrlr_channel_cb,
3960 				sizeof(struct nvme_ctrlr_channel),
3961 				nvme_ctrlr->nbdev_ctrlr->name);
3962 
3963 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
3964 }
3965 
3966 static void
3967 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
3968 {
3969 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
3970 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
3971 
3972 	nvme_ctrlr->probe_ctx = NULL;
3973 
3974 	if (spdk_nvme_cpl_is_error(cpl)) {
3975 		nvme_ctrlr_delete(nvme_ctrlr);
3976 
3977 		if (ctx != NULL) {
3978 			populate_namespaces_cb(ctx, 0, -1);
3979 		}
3980 		return;
3981 	}
3982 
3983 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
3984 }
3985 
3986 static int
3987 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
3988 			     struct nvme_async_probe_ctx *ctx)
3989 {
3990 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
3991 	const struct spdk_nvme_ctrlr_data *cdata;
3992 	uint32_t ana_log_page_size;
3993 
3994 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3995 
3996 	/* Set buffer size enough to include maximum number of allowed namespaces. */
3997 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
3998 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
3999 			    sizeof(uint32_t);
4000 
4001 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
4002 						SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
4003 	if (nvme_ctrlr->ana_log_page == NULL) {
4004 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
4005 		return -ENXIO;
4006 	}
4007 
4008 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
4009 	 * Hence copy each descriptor to a temporary area when parsing it.
4010 	 *
4011 	 * Allocate a buffer whose size is as large as ANA log page buffer because
4012 	 * we do not know the size of a descriptor until actually reading it.
4013 	 */
4014 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
4015 	if (nvme_ctrlr->copied_ana_desc == NULL) {
4016 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
4017 		return -ENOMEM;
4018 	}
4019 
4020 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
4021 
4022 	nvme_ctrlr->probe_ctx = ctx;
4023 
4024 	/* Then, set the read size only to include the current active namespaces. */
4025 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
4026 
4027 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
4028 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
4029 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
4030 		return -EINVAL;
4031 	}
4032 
4033 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
4034 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
4035 						SPDK_NVME_GLOBAL_NS_TAG,
4036 						nvme_ctrlr->ana_log_page,
4037 						ana_log_page_size, 0,
4038 						nvme_ctrlr_init_ana_log_page_done,
4039 						nvme_ctrlr);
4040 }
4041 
4042 /* hostnqn and subnqn were already verified before attaching a controller.
4043  * Hence check only the multipath capability and cntlid here.
4044  */
4045 static bool
4046 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
4047 {
4048 	struct nvme_ctrlr *tmp;
4049 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
4050 
4051 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4052 
4053 	if (!cdata->cmic.multi_ctrlr) {
4054 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
4055 		return false;
4056 	}
4057 
4058 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
4059 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
4060 
4061 		if (!tmp_cdata->cmic.multi_ctrlr) {
4062 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
4063 			return false;
4064 		}
4065 		if (cdata->cntlid == tmp_cdata->cntlid) {
4066 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
4067 			return false;
4068 		}
4069 	}
4070 
4071 	return true;
4072 }
4073 
4074 static int
4075 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
4076 {
4077 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
4078 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4079 	int rc = 0;
4080 
4081 	pthread_mutex_lock(&g_bdev_nvme_mutex);
4082 
4083 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
4084 	if (nbdev_ctrlr != NULL) {
4085 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
4086 			rc = -EINVAL;
4087 			goto exit;
4088 		}
4089 	} else {
4090 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
4091 		if (nbdev_ctrlr == NULL) {
4092 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
4093 			rc = -ENOMEM;
4094 			goto exit;
4095 		}
4096 		nbdev_ctrlr->name = strdup(name);
4097 		if (nbdev_ctrlr->name == NULL) {
4098 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
4099 			free(nbdev_ctrlr);
4100 			goto exit;
4101 		}
4102 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
4103 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
4104 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
4105 	}
4106 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
4107 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
4108 exit:
4109 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
4110 	return rc;
4111 }
4112 
4113 static int
4114 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
4115 		  const char *name,
4116 		  const struct spdk_nvme_transport_id *trid,
4117 		  struct nvme_async_probe_ctx *ctx)
4118 {
4119 	struct nvme_ctrlr *nvme_ctrlr;
4120 	struct nvme_path_id *path_id;
4121 	const struct spdk_nvme_ctrlr_data *cdata;
4122 	int rc;
4123 
4124 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
4125 	if (nvme_ctrlr == NULL) {
4126 		SPDK_ERRLOG("Failed to allocate device struct\n");
4127 		return -ENOMEM;
4128 	}
4129 
4130 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
4131 	if (rc != 0) {
4132 		free(nvme_ctrlr);
4133 		return rc;
4134 	}
4135 
4136 	TAILQ_INIT(&nvme_ctrlr->trids);
4137 
4138 	RB_INIT(&nvme_ctrlr->namespaces);
4139 
4140 	path_id = calloc(1, sizeof(*path_id));
4141 	if (path_id == NULL) {
4142 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
4143 		rc = -ENOMEM;
4144 		goto err;
4145 	}
4146 
4147 	path_id->trid = *trid;
4148 	if (ctx != NULL) {
4149 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
4150 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
4151 	}
4152 	nvme_ctrlr->active_path_id = path_id;
4153 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
4154 
4155 	nvme_ctrlr->thread = spdk_get_thread();
4156 	nvme_ctrlr->ctrlr = ctrlr;
4157 	nvme_ctrlr->ref = 1;
4158 
4159 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
4160 		SPDK_ERRLOG("OCSSDs are not supported");
4161 		rc = -ENOTSUP;
4162 		goto err;
4163 	}
4164 
4165 	if (ctx != NULL) {
4166 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
4167 	} else {
4168 		bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
4169 	}
4170 
4171 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
4172 					  g_opts.nvme_adminq_poll_period_us);
4173 
4174 	if (g_opts.timeout_us > 0) {
4175 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
4176 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
4177 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
4178 					  g_opts.timeout_us : g_opts.timeout_admin_us;
4179 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
4180 				adm_timeout_us, timeout_cb, nvme_ctrlr);
4181 	}
4182 
4183 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
4184 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
4185 
4186 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
4187 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
4188 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
4189 	}
4190 
4191 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
4192 	if (rc != 0) {
4193 		goto err;
4194 	}
4195 
4196 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4197 
4198 	if (cdata->cmic.ana_reporting) {
4199 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
4200 		if (rc == 0) {
4201 			return 0;
4202 		}
4203 	} else {
4204 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
4205 		return 0;
4206 	}
4207 
4208 err:
4209 	nvme_ctrlr_delete(nvme_ctrlr);
4210 	return rc;
4211 }
4212 
4213 void
4214 bdev_nvme_get_default_ctrlr_opts(struct nvme_ctrlr_opts *opts)
4215 {
4216 	opts->prchk_flags = 0;
4217 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
4218 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
4219 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
4220 }
4221 
4222 static void
4223 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4224 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
4225 {
4226 	char *name;
4227 
4228 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
4229 	if (!name) {
4230 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
4231 		return;
4232 	}
4233 
4234 	SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
4235 
4236 	nvme_ctrlr_create(ctrlr, name, trid, NULL);
4237 
4238 	free(name);
4239 }
4240 
4241 static void
4242 _nvme_ctrlr_destruct(void *ctx)
4243 {
4244 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4245 
4246 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
4247 	nvme_ctrlr_release(nvme_ctrlr);
4248 }
4249 
4250 static int
4251 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
4252 {
4253 	struct nvme_probe_skip_entry *entry;
4254 
4255 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4256 
4257 	/* The controller's destruction was already started */
4258 	if (nvme_ctrlr->destruct) {
4259 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4260 		return 0;
4261 	}
4262 
4263 	if (!hotplug &&
4264 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
4265 		entry = calloc(1, sizeof(*entry));
4266 		if (!entry) {
4267 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4268 			return -ENOMEM;
4269 		}
4270 		entry->trid = nvme_ctrlr->active_path_id->trid;
4271 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
4272 	}
4273 
4274 	nvme_ctrlr->destruct = true;
4275 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4276 
4277 	_nvme_ctrlr_destruct(nvme_ctrlr);
4278 
4279 	return 0;
4280 }
4281 
4282 static void
4283 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
4284 {
4285 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
4286 
4287 	_bdev_nvme_delete(nvme_ctrlr, true);
4288 }
4289 
4290 static int
4291 bdev_nvme_hotplug_probe(void *arg)
4292 {
4293 	if (g_hotplug_probe_ctx == NULL) {
4294 		spdk_poller_unregister(&g_hotplug_probe_poller);
4295 		return SPDK_POLLER_IDLE;
4296 	}
4297 
4298 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
4299 		g_hotplug_probe_ctx = NULL;
4300 		spdk_poller_unregister(&g_hotplug_probe_poller);
4301 	}
4302 
4303 	return SPDK_POLLER_BUSY;
4304 }
4305 
4306 static int
4307 bdev_nvme_hotplug(void *arg)
4308 {
4309 	struct spdk_nvme_transport_id trid_pcie;
4310 
4311 	if (g_hotplug_probe_ctx) {
4312 		return SPDK_POLLER_BUSY;
4313 	}
4314 
4315 	memset(&trid_pcie, 0, sizeof(trid_pcie));
4316 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
4317 
4318 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
4319 			      hotplug_probe_cb, attach_cb, NULL);
4320 
4321 	if (g_hotplug_probe_ctx) {
4322 		assert(g_hotplug_probe_poller == NULL);
4323 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
4324 	}
4325 
4326 	return SPDK_POLLER_BUSY;
4327 }
4328 
4329 void
4330 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
4331 {
4332 	*opts = g_opts;
4333 }
4334 
4335 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
4336 		uint32_t reconnect_delay_sec,
4337 		uint32_t fast_io_fail_timeout_sec);
4338 
4339 static int
4340 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
4341 {
4342 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
4343 		/* Can't set timeout_admin_us without also setting timeout_us */
4344 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
4345 		return -EINVAL;
4346 	}
4347 
4348 	if (opts->bdev_retry_count < -1) {
4349 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
4350 		return -EINVAL;
4351 	}
4352 
4353 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
4354 			opts->reconnect_delay_sec,
4355 			opts->fast_io_fail_timeout_sec)) {
4356 		return -EINVAL;
4357 	}
4358 
4359 	return 0;
4360 }
4361 
4362 int
4363 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
4364 {
4365 	int ret = bdev_nvme_validate_opts(opts);
4366 	if (ret) {
4367 		SPDK_WARNLOG("Failed to set nvme opts.\n");
4368 		return ret;
4369 	}
4370 
4371 	if (g_bdev_nvme_init_thread != NULL) {
4372 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
4373 			return -EPERM;
4374 		}
4375 	}
4376 
4377 	g_opts = *opts;
4378 
4379 	return 0;
4380 }
4381 
4382 struct set_nvme_hotplug_ctx {
4383 	uint64_t period_us;
4384 	bool enabled;
4385 	spdk_msg_fn fn;
4386 	void *fn_ctx;
4387 };
4388 
4389 static void
4390 set_nvme_hotplug_period_cb(void *_ctx)
4391 {
4392 	struct set_nvme_hotplug_ctx *ctx = _ctx;
4393 
4394 	spdk_poller_unregister(&g_hotplug_poller);
4395 	if (ctx->enabled) {
4396 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
4397 	}
4398 
4399 	g_nvme_hotplug_poll_period_us = ctx->period_us;
4400 	g_nvme_hotplug_enabled = ctx->enabled;
4401 	if (ctx->fn) {
4402 		ctx->fn(ctx->fn_ctx);
4403 	}
4404 
4405 	free(ctx);
4406 }
4407 
4408 int
4409 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
4410 {
4411 	struct set_nvme_hotplug_ctx *ctx;
4412 
4413 	if (enabled == true && !spdk_process_is_primary()) {
4414 		return -EPERM;
4415 	}
4416 
4417 	ctx = calloc(1, sizeof(*ctx));
4418 	if (ctx == NULL) {
4419 		return -ENOMEM;
4420 	}
4421 
4422 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
4423 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
4424 	ctx->enabled = enabled;
4425 	ctx->fn = cb;
4426 	ctx->fn_ctx = cb_ctx;
4427 
4428 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
4429 	return 0;
4430 }
4431 
4432 static void
4433 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
4434 				    struct nvme_async_probe_ctx *ctx)
4435 {
4436 	struct nvme_ns	*nvme_ns;
4437 	struct nvme_bdev	*nvme_bdev;
4438 	size_t			j;
4439 
4440 	assert(nvme_ctrlr != NULL);
4441 
4442 	if (ctx->names == NULL) {
4443 		populate_namespaces_cb(ctx, 0, 0);
4444 		return;
4445 	}
4446 
4447 	/*
4448 	 * Report the new bdevs that were created in this call.
4449 	 * There can be more than one bdev per NVMe controller.
4450 	 */
4451 	j = 0;
4452 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4453 	while (nvme_ns != NULL) {
4454 		nvme_bdev = nvme_ns->bdev;
4455 		if (j < ctx->count) {
4456 			ctx->names[j] = nvme_bdev->disk.name;
4457 			j++;
4458 		} else {
4459 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
4460 				    ctx->count);
4461 			populate_namespaces_cb(ctx, 0, -ERANGE);
4462 			return;
4463 		}
4464 
4465 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4466 	}
4467 
4468 	populate_namespaces_cb(ctx, j, 0);
4469 }
4470 
4471 static int
4472 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
4473 			       struct spdk_nvme_ctrlr *new_ctrlr,
4474 			       struct spdk_nvme_transport_id *trid)
4475 {
4476 	struct nvme_path_id *tmp_trid;
4477 
4478 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
4479 		SPDK_ERRLOG("PCIe failover is not supported.\n");
4480 		return -ENOTSUP;
4481 	}
4482 
4483 	/* Currently we only support failover to the same transport type. */
4484 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
4485 		SPDK_WARNLOG("Failover from trtype: %s to a different trtype: %s is not supported currently\n",
4486 			     spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
4487 			     spdk_nvme_transport_id_trtype_str(trid->trtype));
4488 		return -EINVAL;
4489 	}
4490 
4491 
4492 	/* Currently we only support failover to the same NQN. */
4493 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
4494 		SPDK_WARNLOG("Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
4495 			     nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
4496 		return -EINVAL;
4497 	}
4498 
4499 	/* Skip all the other checks if we've already registered this path. */
4500 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
4501 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
4502 			SPDK_WARNLOG("This path (traddr: %s subnqn: %s) is already registered\n", trid->traddr,
4503 				     trid->subnqn);
4504 			return -EEXIST;
4505 		}
4506 	}
4507 
4508 	return 0;
4509 }
4510 
4511 static int
4512 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
4513 				    struct spdk_nvme_ctrlr *new_ctrlr)
4514 {
4515 	struct nvme_ns *nvme_ns;
4516 	struct spdk_nvme_ns *new_ns;
4517 
4518 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4519 	while (nvme_ns != NULL) {
4520 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
4521 		assert(new_ns != NULL);
4522 
4523 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
4524 			return -EINVAL;
4525 		}
4526 
4527 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4528 	}
4529 
4530 	return 0;
4531 }
4532 
4533 static int
4534 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
4535 			      struct spdk_nvme_transport_id *trid)
4536 {
4537 	struct nvme_path_id *new_trid, *tmp_trid;
4538 
4539 	new_trid = calloc(1, sizeof(*new_trid));
4540 	if (new_trid == NULL) {
4541 		return -ENOMEM;
4542 	}
4543 	new_trid->trid = *trid;
4544 	new_trid->is_failed = false;
4545 
4546 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
4547 		if (tmp_trid->is_failed && tmp_trid != nvme_ctrlr->active_path_id) {
4548 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
4549 			return 0;
4550 		}
4551 	}
4552 
4553 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
4554 	return 0;
4555 }
4556 
4557 /* This is the case that a secondary path is added to an existing
4558  * nvme_ctrlr for failover. After checking if it can access the same
4559  * namespaces as the primary path, it is disconnected until failover occurs.
4560  */
4561 static int
4562 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
4563 			     struct spdk_nvme_ctrlr *new_ctrlr,
4564 			     struct spdk_nvme_transport_id *trid)
4565 {
4566 	int rc;
4567 
4568 	assert(nvme_ctrlr != NULL);
4569 
4570 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4571 
4572 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
4573 	if (rc != 0) {
4574 		goto exit;
4575 	}
4576 
4577 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
4578 	if (rc != 0) {
4579 		goto exit;
4580 	}
4581 
4582 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
4583 
4584 exit:
4585 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4586 
4587 	spdk_nvme_detach(new_ctrlr);
4588 
4589 	return rc;
4590 }
4591 
4592 static void
4593 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4594 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
4595 {
4596 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
4597 	struct nvme_async_probe_ctx *ctx;
4598 	int rc;
4599 
4600 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
4601 	ctx->ctrlr_attached = true;
4602 
4603 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
4604 	if (rc != 0) {
4605 		populate_namespaces_cb(ctx, 0, rc);
4606 	}
4607 }
4608 
4609 static void
4610 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4611 			struct spdk_nvme_ctrlr *ctrlr,
4612 			const struct spdk_nvme_ctrlr_opts *opts)
4613 {
4614 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
4615 	struct nvme_ctrlr *nvme_ctrlr;
4616 	struct nvme_async_probe_ctx *ctx;
4617 	int rc;
4618 
4619 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
4620 	ctx->ctrlr_attached = true;
4621 
4622 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
4623 	if (nvme_ctrlr) {
4624 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
4625 	} else {
4626 		rc = -ENODEV;
4627 	}
4628 
4629 	populate_namespaces_cb(ctx, 0, rc);
4630 }
4631 
4632 static int
4633 bdev_nvme_async_poll(void *arg)
4634 {
4635 	struct nvme_async_probe_ctx	*ctx = arg;
4636 	int				rc;
4637 
4638 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
4639 	if (spdk_unlikely(rc != -EAGAIN)) {
4640 		ctx->probe_done = true;
4641 		spdk_poller_unregister(&ctx->poller);
4642 		if (!ctx->ctrlr_attached) {
4643 			/* The probe is done, but no controller was attached.
4644 			 * That means we had a failure, so report -EIO back to
4645 			 * the caller (usually the RPC). populate_namespaces_cb()
4646 			 * will take care of freeing the nvme_async_probe_ctx.
4647 			 */
4648 			populate_namespaces_cb(ctx, 0, -EIO);
4649 		} else if (ctx->namespaces_populated) {
4650 			/* The namespaces for the attached controller were all
4651 			 * populated and the response was already sent to the
4652 			 * caller (usually the RPC).  So free the context here.
4653 			 */
4654 			free(ctx);
4655 		}
4656 	}
4657 
4658 	return SPDK_POLLER_BUSY;
4659 }
4660 
4661 static bool
4662 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
4663 		uint32_t reconnect_delay_sec,
4664 		uint32_t fast_io_fail_timeout_sec)
4665 {
4666 	if (ctrlr_loss_timeout_sec < -1) {
4667 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
4668 		return false;
4669 	} else if (ctrlr_loss_timeout_sec == -1) {
4670 		if (reconnect_delay_sec == 0) {
4671 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
4672 			return false;
4673 		} else if (fast_io_fail_timeout_sec != 0 &&
4674 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
4675 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
4676 			return false;
4677 		}
4678 	} else if (ctrlr_loss_timeout_sec != 0) {
4679 		if (reconnect_delay_sec == 0) {
4680 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
4681 			return false;
4682 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
4683 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
4684 			return false;
4685 		} else if (fast_io_fail_timeout_sec != 0) {
4686 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
4687 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
4688 				return false;
4689 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
4690 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
4691 				return false;
4692 			}
4693 		}
4694 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
4695 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
4696 		return false;
4697 	}
4698 
4699 	return true;
4700 }
4701 
4702 int
4703 bdev_nvme_create(struct spdk_nvme_transport_id *trid,
4704 		 const char *base_name,
4705 		 const char **names,
4706 		 uint32_t count,
4707 		 spdk_bdev_create_nvme_fn cb_fn,
4708 		 void *cb_ctx,
4709 		 struct spdk_nvme_ctrlr_opts *drv_opts,
4710 		 struct nvme_ctrlr_opts *bdev_opts,
4711 		 bool multipath)
4712 {
4713 	struct nvme_probe_skip_entry	*entry, *tmp;
4714 	struct nvme_async_probe_ctx	*ctx;
4715 	spdk_nvme_attach_cb attach_cb;
4716 
4717 	/* TODO expand this check to include both the host and target TRIDs.
4718 	 * Only if both are the same should we fail.
4719 	 */
4720 	if (nvme_ctrlr_get(trid) != NULL) {
4721 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
4722 		return -EEXIST;
4723 	}
4724 
4725 	if (bdev_opts != NULL &&
4726 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
4727 			    bdev_opts->reconnect_delay_sec,
4728 			    bdev_opts->fast_io_fail_timeout_sec)) {
4729 		return -EINVAL;
4730 	}
4731 
4732 	ctx = calloc(1, sizeof(*ctx));
4733 	if (!ctx) {
4734 		return -ENOMEM;
4735 	}
4736 	ctx->base_name = base_name;
4737 	ctx->names = names;
4738 	ctx->count = count;
4739 	ctx->cb_fn = cb_fn;
4740 	ctx->cb_ctx = cb_ctx;
4741 	ctx->trid = *trid;
4742 
4743 	if (bdev_opts) {
4744 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
4745 	} else {
4746 		bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
4747 	}
4748 
4749 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
4750 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
4751 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4752 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
4753 				free(entry);
4754 				break;
4755 			}
4756 		}
4757 	}
4758 
4759 	if (drv_opts) {
4760 		memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
4761 	} else {
4762 		spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->drv_opts, sizeof(ctx->drv_opts));
4763 	}
4764 
4765 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
4766 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
4767 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
4768 	ctx->drv_opts.disable_read_ana_log_page = true;
4769 
4770 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
4771 		attach_cb = connect_attach_cb;
4772 	} else {
4773 		attach_cb = connect_set_failover_cb;
4774 	}
4775 
4776 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
4777 	if (ctx->probe_ctx == NULL) {
4778 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
4779 		free(ctx);
4780 		return -ENODEV;
4781 	}
4782 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
4783 
4784 	return 0;
4785 }
4786 
4787 int
4788 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id)
4789 {
4790 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
4791 	struct nvme_ctrlr	*nvme_ctrlr, *tmp_nvme_ctrlr;
4792 	struct nvme_path_id	*p, *t;
4793 	int			rc = -ENXIO;
4794 
4795 	if (name == NULL || path_id == NULL) {
4796 		return -EINVAL;
4797 	}
4798 
4799 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
4800 	if (nbdev_ctrlr == NULL) {
4801 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
4802 		return -ENODEV;
4803 	}
4804 
4805 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
4806 		TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
4807 			if (path_id->trid.trtype != 0) {
4808 				if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
4809 					if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
4810 						continue;
4811 					}
4812 				} else {
4813 					if (path_id->trid.trtype != p->trid.trtype) {
4814 						continue;
4815 					}
4816 				}
4817 			}
4818 
4819 			if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
4820 				if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
4821 					continue;
4822 				}
4823 			}
4824 
4825 			if (path_id->trid.adrfam != 0) {
4826 				if (path_id->trid.adrfam != p->trid.adrfam) {
4827 					continue;
4828 				}
4829 			}
4830 
4831 			if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
4832 				if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
4833 					continue;
4834 				}
4835 			}
4836 
4837 			if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
4838 				if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
4839 					continue;
4840 				}
4841 			}
4842 
4843 			if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
4844 				if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
4845 					continue;
4846 				}
4847 			}
4848 
4849 			if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
4850 				if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
4851 					continue;
4852 				}
4853 			}
4854 
4855 			/* If we made it here, then this path is a match! Now we need to remove it. */
4856 			if (p == nvme_ctrlr->active_path_id) {
4857 				/* This is the active path in use right now. The active path is always the first in the list. */
4858 
4859 				if (!TAILQ_NEXT(p, link)) {
4860 					/* The current path is the only path. */
4861 					rc = _bdev_nvme_delete(nvme_ctrlr, false);
4862 				} else {
4863 					/* There is an alternative path. */
4864 					rc = bdev_nvme_failover(nvme_ctrlr, true);
4865 				}
4866 			} else {
4867 				/* We are not using the specified path. */
4868 				TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
4869 				free(p);
4870 				rc = 0;
4871 			}
4872 
4873 			if (rc < 0 && rc != -ENXIO) {
4874 				return rc;
4875 			}
4876 
4877 
4878 		}
4879 	}
4880 
4881 	/* All nvme_ctrlrs were deleted or no nvme_ctrlr which had the trid was found. */
4882 	return rc;
4883 }
4884 
4885 #define DISCOVERY_INFOLOG(ctx, format, ...) \
4886 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
4887 
4888 #define DISCOVERY_ERRLOG(ctx, format, ...) \
4889 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
4890 
4891 struct discovery_entry_ctx {
4892 	char						name[128];
4893 	struct spdk_nvme_transport_id			trid;
4894 	struct spdk_nvme_ctrlr_opts			drv_opts;
4895 	struct spdk_nvmf_discovery_log_page_entry	entry;
4896 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
4897 	struct discovery_ctx				*ctx;
4898 };
4899 
4900 struct discovery_ctx {
4901 	char					*name;
4902 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
4903 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
4904 	void					*cb_ctx;
4905 	struct spdk_nvme_probe_ctx		*probe_ctx;
4906 	struct spdk_nvme_detach_ctx		*detach_ctx;
4907 	struct spdk_nvme_ctrlr			*ctrlr;
4908 	struct spdk_nvme_transport_id		trid;
4909 	struct discovery_entry_ctx		*entry_ctx_in_use;
4910 	struct spdk_poller			*poller;
4911 	struct spdk_nvme_ctrlr_opts		drv_opts;
4912 	struct nvme_ctrlr_opts			bdev_opts;
4913 	struct spdk_nvmf_discovery_log_page	*log_page;
4914 	TAILQ_ENTRY(discovery_ctx)		tailq;
4915 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
4916 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
4917 	int					rc;
4918 	bool					wait_for_attach;
4919 	uint64_t				timeout_ticks;
4920 	/* Denotes that the discovery service is being started. We're waiting
4921 	 * for the initial connection to the discovery controller to be
4922 	 * established and attach discovered NVM ctrlrs.
4923 	 */
4924 	bool					initializing;
4925 	/* Denotes if a discovery is currently in progress for this context.
4926 	 * That includes connecting to newly discovered subsystems.  Used to
4927 	 * ensure we do not start a new discovery until an existing one is
4928 	 * complete.
4929 	 */
4930 	bool					in_progress;
4931 
4932 	/* Denotes if another discovery is needed after the one in progress
4933 	 * completes.  Set when we receive an AER completion while a discovery
4934 	 * is already in progress.
4935 	 */
4936 	bool					pending;
4937 
4938 	/* Signal to the discovery context poller that it should stop the
4939 	 * discovery service, including detaching from the current discovery
4940 	 * controller.
4941 	 */
4942 	bool					stop;
4943 
4944 	struct spdk_thread			*calling_thread;
4945 	uint32_t				index;
4946 	uint32_t				attach_in_progress;
4947 	char					*hostnqn;
4948 };
4949 
4950 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
4951 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
4952 
4953 static void get_discovery_log_page(struct discovery_ctx *ctx);
4954 
4955 static void
4956 free_discovery_ctx(struct discovery_ctx *ctx)
4957 {
4958 	free(ctx->log_page);
4959 	free(ctx->hostnqn);
4960 	free(ctx->name);
4961 	free(ctx);
4962 }
4963 
4964 static void
4965 discovery_complete(struct discovery_ctx *ctx)
4966 {
4967 	ctx->initializing = false;
4968 	ctx->in_progress = false;
4969 	if (ctx->pending) {
4970 		ctx->pending = false;
4971 		get_discovery_log_page(ctx);
4972 	}
4973 }
4974 
4975 static void
4976 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
4977 			       struct spdk_nvmf_discovery_log_page_entry *entry)
4978 {
4979 	char *space;
4980 
4981 	trid->trtype = entry->trtype;
4982 	trid->adrfam = entry->adrfam;
4983 	memcpy(trid->traddr, entry->traddr, sizeof(trid->traddr));
4984 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(trid->trsvcid));
4985 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn));
4986 
4987 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
4988 	 * But the log page entries typically pad them with spaces, not zeroes.
4989 	 * So add a NULL terminator to each of these fields at the appropriate
4990 	 * location.
4991 	 */
4992 	space = strchr(trid->traddr, ' ');
4993 	if (space) {
4994 		*space = 0;
4995 	}
4996 	space = strchr(trid->trsvcid, ' ');
4997 	if (space) {
4998 		*space = 0;
4999 	}
5000 	space = strchr(trid->subnqn, ' ');
5001 	if (space) {
5002 		*space = 0;
5003 	}
5004 }
5005 
5006 static void
5007 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
5008 {
5009 	ctx->stop = true;
5010 	ctx->stop_cb_fn = cb_fn;
5011 	ctx->cb_ctx = cb_ctx;
5012 
5013 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
5014 		struct discovery_entry_ctx *entry_ctx;
5015 		struct nvme_path_id path = {};
5016 
5017 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
5018 		path.trid = entry_ctx->trid;
5019 		bdev_nvme_delete(entry_ctx->name, &path);
5020 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
5021 		free(entry_ctx);
5022 	}
5023 
5024 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
5025 		struct discovery_entry_ctx *entry_ctx;
5026 
5027 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
5028 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
5029 		free(entry_ctx);
5030 	}
5031 
5032 	free(ctx->entry_ctx_in_use);
5033 	ctx->entry_ctx_in_use = NULL;
5034 }
5035 
5036 static void
5037 discovery_remove_controllers(struct discovery_ctx *ctx)
5038 {
5039 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
5040 	struct discovery_entry_ctx *entry_ctx, *tmp;
5041 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
5042 	struct spdk_nvme_transport_id old_trid;
5043 	uint64_t numrec, i;
5044 	bool found;
5045 
5046 	numrec = from_le64(&log_page->numrec);
5047 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
5048 		found = false;
5049 		old_entry = &entry_ctx->entry;
5050 		build_trid_from_log_page_entry(&old_trid, old_entry);
5051 		for (i = 0; i < numrec; i++) {
5052 			new_entry = &log_page->entries[i];
5053 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
5054 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
5055 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
5056 				found = true;
5057 				break;
5058 			}
5059 		}
5060 		if (!found) {
5061 			struct nvme_path_id path = {};
5062 
5063 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
5064 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
5065 
5066 			path.trid = entry_ctx->trid;
5067 			bdev_nvme_delete(entry_ctx->name, &path);
5068 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
5069 			free(entry_ctx);
5070 		}
5071 	}
5072 	free(log_page);
5073 	ctx->log_page = NULL;
5074 	discovery_complete(ctx);
5075 }
5076 
5077 static void
5078 complete_discovery_start(struct discovery_ctx *ctx, int status)
5079 {
5080 	ctx->timeout_ticks = 0;
5081 	ctx->rc = status;
5082 	if (ctx->start_cb_fn) {
5083 		ctx->start_cb_fn(ctx->cb_ctx, status);
5084 		ctx->start_cb_fn = NULL;
5085 		ctx->cb_ctx = NULL;
5086 	}
5087 }
5088 
5089 static void
5090 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
5091 {
5092 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
5093 	struct discovery_ctx *ctx = entry_ctx->ctx;
5094 
5095 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
5096 	ctx->attach_in_progress--;
5097 	if (ctx->attach_in_progress == 0) {
5098 		complete_discovery_start(ctx, ctx->rc);
5099 		if (ctx->initializing && ctx->rc != 0) {
5100 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
5101 			stop_discovery(ctx, NULL, ctx->cb_ctx);
5102 		} else {
5103 			discovery_remove_controllers(ctx);
5104 		}
5105 	}
5106 }
5107 
5108 static struct discovery_entry_ctx *
5109 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
5110 {
5111 	struct discovery_entry_ctx *new_ctx;
5112 
5113 	new_ctx = calloc(1, sizeof(*new_ctx));
5114 	if (new_ctx == NULL) {
5115 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
5116 		return NULL;
5117 	}
5118 
5119 	new_ctx->ctx = ctx;
5120 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
5121 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
5122 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
5123 	return new_ctx;
5124 }
5125 
5126 static void
5127 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
5128 		      struct spdk_nvmf_discovery_log_page *log_page)
5129 {
5130 	struct discovery_ctx *ctx = cb_arg;
5131 	struct discovery_entry_ctx *entry_ctx, *tmp;
5132 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
5133 	uint64_t numrec, i;
5134 	bool found;
5135 
5136 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
5137 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
5138 		return;
5139 	}
5140 
5141 	ctx->log_page = log_page;
5142 	assert(ctx->attach_in_progress == 0);
5143 	numrec = from_le64(&log_page->numrec);
5144 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
5145 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
5146 		free(entry_ctx);
5147 	}
5148 	for (i = 0; i < numrec; i++) {
5149 		found = false;
5150 		new_entry = &log_page->entries[i];
5151 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
5152 			struct discovery_entry_ctx *new_ctx;
5153 			struct spdk_nvme_transport_id trid = {};
5154 
5155 			build_trid_from_log_page_entry(&trid, new_entry);
5156 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
5157 			if (new_ctx == NULL) {
5158 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
5159 				break;
5160 			}
5161 
5162 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
5163 			continue;
5164 		}
5165 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
5166 			old_entry = &entry_ctx->entry;
5167 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
5168 				found = true;
5169 				break;
5170 			}
5171 		}
5172 		if (!found) {
5173 			struct discovery_entry_ctx *subnqn_ctx, *new_ctx;
5174 
5175 			TAILQ_FOREACH(subnqn_ctx, &ctx->nvm_entry_ctxs, tailq) {
5176 				if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
5177 					    sizeof(new_entry->subnqn))) {
5178 					break;
5179 				}
5180 			}
5181 
5182 			new_ctx = calloc(1, sizeof(*new_ctx));
5183 			if (new_ctx == NULL) {
5184 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
5185 				break;
5186 			}
5187 
5188 			new_ctx->ctx = ctx;
5189 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
5190 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
5191 			if (subnqn_ctx) {
5192 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
5193 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
5194 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
5195 						  new_ctx->name);
5196 			} else {
5197 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
5198 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
5199 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
5200 						  new_ctx->name);
5201 			}
5202 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
5203 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
5204 			rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
5205 					      discovery_attach_controller_done, new_ctx,
5206 					      &new_ctx->drv_opts, &ctx->bdev_opts, true);
5207 			if (rc == 0) {
5208 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
5209 				ctx->attach_in_progress++;
5210 			} else {
5211 				DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
5212 			}
5213 		}
5214 	}
5215 
5216 	if (ctx->attach_in_progress == 0) {
5217 		discovery_remove_controllers(ctx);
5218 	}
5219 }
5220 
5221 static void
5222 get_discovery_log_page(struct discovery_ctx *ctx)
5223 {
5224 	int rc;
5225 
5226 	assert(ctx->in_progress == false);
5227 	ctx->in_progress = true;
5228 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
5229 	if (rc != 0) {
5230 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
5231 	}
5232 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
5233 }
5234 
5235 static void
5236 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5237 {
5238 	struct discovery_ctx *ctx = arg;
5239 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
5240 
5241 	if (spdk_nvme_cpl_is_error(cpl)) {
5242 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
5243 		return;
5244 	}
5245 
5246 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
5247 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
5248 		return;
5249 	}
5250 
5251 	DISCOVERY_INFOLOG(ctx, "got aer\n");
5252 	if (ctx->in_progress) {
5253 		ctx->pending = true;
5254 		return;
5255 	}
5256 
5257 	get_discovery_log_page(ctx);
5258 }
5259 
5260 static void
5261 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5262 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
5263 {
5264 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5265 	struct discovery_ctx *ctx;
5266 
5267 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
5268 
5269 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
5270 	ctx->probe_ctx = NULL;
5271 	ctx->ctrlr = ctrlr;
5272 
5273 	if (ctx->rc != 0) {
5274 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
5275 				 ctx->rc);
5276 		return;
5277 	}
5278 
5279 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
5280 }
5281 
5282 static int
5283 discovery_poller(void *arg)
5284 {
5285 	struct discovery_ctx *ctx = arg;
5286 	struct spdk_nvme_transport_id *trid;
5287 	int rc;
5288 
5289 	if (ctx->detach_ctx) {
5290 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
5291 		if (rc != -EAGAIN) {
5292 			ctx->detach_ctx = NULL;
5293 			ctx->ctrlr = NULL;
5294 		}
5295 	} else if (ctx->stop) {
5296 		if (ctx->ctrlr != NULL) {
5297 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
5298 			if (rc == 0) {
5299 				return SPDK_POLLER_BUSY;
5300 			}
5301 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
5302 		}
5303 		spdk_poller_unregister(&ctx->poller);
5304 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
5305 		assert(ctx->start_cb_fn == NULL);
5306 		if (ctx->stop_cb_fn != NULL) {
5307 			ctx->stop_cb_fn(ctx->cb_ctx);
5308 		}
5309 		free_discovery_ctx(ctx);
5310 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
5311 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
5312 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
5313 			assert(ctx->initializing);
5314 			spdk_poller_unregister(&ctx->poller);
5315 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
5316 			complete_discovery_start(ctx, -ETIMEDOUT);
5317 			stop_discovery(ctx, NULL, NULL);
5318 			free_discovery_ctx(ctx);
5319 			return SPDK_POLLER_BUSY;
5320 		}
5321 
5322 		assert(ctx->entry_ctx_in_use == NULL);
5323 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
5324 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
5325 		trid = &ctx->entry_ctx_in_use->trid;
5326 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
5327 		if (ctx->probe_ctx) {
5328 			spdk_poller_unregister(&ctx->poller);
5329 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
5330 		} else {
5331 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
5332 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
5333 			ctx->entry_ctx_in_use = NULL;
5334 		}
5335 	} else if (ctx->probe_ctx) {
5336 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
5337 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
5338 			complete_discovery_start(ctx, -ETIMEDOUT);
5339 			return SPDK_POLLER_BUSY;
5340 		}
5341 
5342 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
5343 		if (rc != -EAGAIN) {
5344 			if (ctx->rc != 0) {
5345 				assert(ctx->initializing);
5346 				stop_discovery(ctx, NULL, ctx->cb_ctx);
5347 			} else {
5348 				assert(rc == 0);
5349 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
5350 				ctx->rc = rc;
5351 				get_discovery_log_page(ctx);
5352 			}
5353 		}
5354 	} else {
5355 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
5356 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
5357 			complete_discovery_start(ctx, -ETIMEDOUT);
5358 			/* We need to wait until all NVM ctrlrs are attached before we stop the
5359 			 * discovery service to make sure we don't detach a ctrlr that is still
5360 			 * being attached.
5361 			 */
5362 			if (ctx->attach_in_progress == 0) {
5363 				stop_discovery(ctx, NULL, ctx->cb_ctx);
5364 				return SPDK_POLLER_BUSY;
5365 			}
5366 		}
5367 
5368 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
5369 		if (rc < 0) {
5370 			spdk_poller_unregister(&ctx->poller);
5371 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
5372 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
5373 			ctx->entry_ctx_in_use = NULL;
5374 
5375 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
5376 			if (rc != 0) {
5377 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
5378 				ctx->ctrlr = NULL;
5379 			}
5380 		}
5381 	}
5382 
5383 	return SPDK_POLLER_BUSY;
5384 }
5385 
5386 static void
5387 start_discovery_poller(void *arg)
5388 {
5389 	struct discovery_ctx *ctx = arg;
5390 
5391 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
5392 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
5393 }
5394 
5395 int
5396 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
5397 			  const char *base_name,
5398 			  struct spdk_nvme_ctrlr_opts *drv_opts,
5399 			  struct nvme_ctrlr_opts *bdev_opts,
5400 			  uint64_t attach_timeout,
5401 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
5402 {
5403 	struct discovery_ctx *ctx;
5404 	struct discovery_entry_ctx *discovery_entry_ctx;
5405 
5406 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
5407 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
5408 		if (strcmp(ctx->name, base_name) == 0) {
5409 			return -EEXIST;
5410 		}
5411 
5412 		if (ctx->entry_ctx_in_use != NULL) {
5413 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
5414 				return -EEXIST;
5415 			}
5416 		}
5417 
5418 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
5419 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
5420 				return -EEXIST;
5421 			}
5422 		}
5423 	}
5424 
5425 	ctx = calloc(1, sizeof(*ctx));
5426 	if (ctx == NULL) {
5427 		return -ENOMEM;
5428 	}
5429 
5430 	ctx->name = strdup(base_name);
5431 	if (ctx->name == NULL) {
5432 		free_discovery_ctx(ctx);
5433 		return -ENOMEM;
5434 	}
5435 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
5436 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
5437 	ctx->bdev_opts.from_discovery_service = true;
5438 	ctx->calling_thread = spdk_get_thread();
5439 	ctx->start_cb_fn = cb_fn;
5440 	ctx->cb_ctx = cb_ctx;
5441 	ctx->initializing = true;
5442 	if (ctx->start_cb_fn) {
5443 		/* We can use this when dumping json to denote if this RPC parameter
5444 		 * was specified or not.
5445 		 */
5446 		ctx->wait_for_attach = true;
5447 	}
5448 	if (attach_timeout != 0) {
5449 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
5450 				     spdk_get_ticks_hz() / 1000ull;
5451 	}
5452 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
5453 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
5454 	memcpy(&ctx->trid, trid, sizeof(*trid));
5455 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
5456 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
5457 	if (ctx->hostnqn == NULL) {
5458 		free_discovery_ctx(ctx);
5459 		return -ENOMEM;
5460 	}
5461 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
5462 	if (discovery_entry_ctx == NULL) {
5463 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
5464 		free_discovery_ctx(ctx);
5465 		return -ENOMEM;
5466 	}
5467 
5468 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
5469 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
5470 	return 0;
5471 }
5472 
5473 int
5474 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
5475 {
5476 	struct discovery_ctx *ctx;
5477 
5478 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
5479 		if (strcmp(name, ctx->name) == 0) {
5480 			if (ctx->stop) {
5481 				return -EALREADY;
5482 			}
5483 			/* If we're still starting the discovery service and ->rc is non-zero, we're
5484 			 * going to stop it as soon as we can
5485 			 */
5486 			if (ctx->initializing && ctx->rc != 0) {
5487 				return -EALREADY;
5488 			}
5489 			stop_discovery(ctx, cb_fn, cb_ctx);
5490 			return 0;
5491 		}
5492 	}
5493 
5494 	return -ENOENT;
5495 }
5496 
5497 static int
5498 bdev_nvme_library_init(void)
5499 {
5500 	g_bdev_nvme_init_thread = spdk_get_thread();
5501 
5502 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
5503 				bdev_nvme_destroy_poll_group_cb,
5504 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
5505 
5506 	return 0;
5507 }
5508 
5509 static void
5510 bdev_nvme_fini_destruct_ctrlrs(void)
5511 {
5512 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5513 	struct nvme_ctrlr *nvme_ctrlr;
5514 
5515 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5516 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
5517 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
5518 			pthread_mutex_lock(&nvme_ctrlr->mutex);
5519 			if (nvme_ctrlr->destruct) {
5520 				/* This controller's destruction was already started
5521 				 * before the application started shutting down
5522 				 */
5523 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
5524 				continue;
5525 			}
5526 			nvme_ctrlr->destruct = true;
5527 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
5528 
5529 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
5530 					     nvme_ctrlr);
5531 		}
5532 	}
5533 
5534 	g_bdev_nvme_module_finish = true;
5535 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5536 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
5537 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
5538 		spdk_bdev_module_fini_done();
5539 		return;
5540 	}
5541 
5542 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5543 }
5544 
5545 static void
5546 check_discovery_fini(void *arg)
5547 {
5548 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
5549 		bdev_nvme_fini_destruct_ctrlrs();
5550 	}
5551 }
5552 
5553 static void
5554 bdev_nvme_library_fini(void)
5555 {
5556 	struct nvme_probe_skip_entry *entry, *entry_tmp;
5557 	struct discovery_ctx *ctx;
5558 
5559 	spdk_poller_unregister(&g_hotplug_poller);
5560 	free(g_hotplug_probe_ctx);
5561 	g_hotplug_probe_ctx = NULL;
5562 
5563 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
5564 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
5565 		free(entry);
5566 	}
5567 
5568 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
5569 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
5570 		bdev_nvme_fini_destruct_ctrlrs();
5571 	} else {
5572 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
5573 			stop_discovery(ctx, check_discovery_fini, NULL);
5574 		}
5575 	}
5576 }
5577 
5578 static void
5579 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
5580 {
5581 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5582 	struct spdk_bdev *bdev = bdev_io->bdev;
5583 	struct spdk_dif_ctx dif_ctx;
5584 	struct spdk_dif_error err_blk = {};
5585 	int rc;
5586 
5587 	rc = spdk_dif_ctx_init(&dif_ctx,
5588 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
5589 			       bdev->dif_is_head_of_md, bdev->dif_type, bdev->dif_check_flags,
5590 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0);
5591 	if (rc != 0) {
5592 		SPDK_ERRLOG("Initialization of DIF context failed\n");
5593 		return;
5594 	}
5595 
5596 	if (bdev->md_interleave) {
5597 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
5598 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
5599 	} else {
5600 		struct iovec md_iov = {
5601 			.iov_base	= bdev_io->u.bdev.md_buf,
5602 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
5603 		};
5604 
5605 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
5606 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
5607 	}
5608 
5609 	if (rc != 0) {
5610 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
5611 			    err_blk.err_type, err_blk.err_offset);
5612 	} else {
5613 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
5614 	}
5615 }
5616 
5617 static void
5618 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
5619 {
5620 	struct nvme_bdev_io *bio = ref;
5621 
5622 	if (spdk_nvme_cpl_is_success(cpl)) {
5623 		/* Run PI verification for read data buffer. */
5624 		bdev_nvme_verify_pi_error(bio);
5625 	}
5626 
5627 	/* Return original completion status */
5628 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
5629 }
5630 
5631 static void
5632 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
5633 {
5634 	struct nvme_bdev_io *bio = ref;
5635 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5636 	int ret;
5637 
5638 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
5639 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
5640 			    cpl->status.sct, cpl->status.sc);
5641 
5642 		/* Save completion status to use after verifying PI error. */
5643 		bio->cpl = *cpl;
5644 
5645 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
5646 			/* Read without PI checking to verify PI error. */
5647 			ret = bdev_nvme_no_pi_readv(bio,
5648 						    bdev_io->u.bdev.iovs,
5649 						    bdev_io->u.bdev.iovcnt,
5650 						    bdev_io->u.bdev.md_buf,
5651 						    bdev_io->u.bdev.num_blocks,
5652 						    bdev_io->u.bdev.offset_blocks);
5653 			if (ret == 0) {
5654 				return;
5655 			}
5656 		}
5657 	}
5658 
5659 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5660 }
5661 
5662 static void
5663 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
5664 {
5665 	struct nvme_bdev_io *bio = ref;
5666 
5667 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
5668 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
5669 			    cpl->status.sct, cpl->status.sc);
5670 		/* Run PI verification for write data buffer if PI error is detected. */
5671 		bdev_nvme_verify_pi_error(bio);
5672 	}
5673 
5674 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5675 }
5676 
5677 static void
5678 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
5679 {
5680 	struct nvme_bdev_io *bio = ref;
5681 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5682 
5683 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
5684 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
5685 	 */
5686 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
5687 
5688 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
5689 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
5690 			    cpl->status.sct, cpl->status.sc);
5691 		/* Run PI verification for zone append data buffer if PI error is detected. */
5692 		bdev_nvme_verify_pi_error(bio);
5693 	}
5694 
5695 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5696 }
5697 
5698 static void
5699 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
5700 {
5701 	struct nvme_bdev_io *bio = ref;
5702 
5703 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
5704 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
5705 			    cpl->status.sct, cpl->status.sc);
5706 		/* Run PI verification for compare data buffer if PI error is detected. */
5707 		bdev_nvme_verify_pi_error(bio);
5708 	}
5709 
5710 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5711 }
5712 
5713 static void
5714 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
5715 {
5716 	struct nvme_bdev_io *bio = ref;
5717 
5718 	/* Compare operation completion */
5719 	if (!bio->first_fused_completed) {
5720 		/* Save compare result for write callback */
5721 		bio->cpl = *cpl;
5722 		bio->first_fused_completed = true;
5723 		return;
5724 	}
5725 
5726 	/* Write operation completion */
5727 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
5728 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
5729 		 * complete the IO with the compare operation's status.
5730 		 */
5731 		if (!spdk_nvme_cpl_is_error(cpl)) {
5732 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
5733 		}
5734 
5735 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
5736 	} else {
5737 		bdev_nvme_io_complete_nvme_status(bio, cpl);
5738 	}
5739 }
5740 
5741 static void
5742 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
5743 {
5744 	struct nvme_bdev_io *bio = ref;
5745 
5746 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5747 }
5748 
5749 static int
5750 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
5751 {
5752 	switch (desc->zt) {
5753 	case SPDK_NVME_ZONE_TYPE_SEQWR:
5754 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
5755 		break;
5756 	default:
5757 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
5758 		return -EIO;
5759 	}
5760 
5761 	switch (desc->zs) {
5762 	case SPDK_NVME_ZONE_STATE_EMPTY:
5763 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
5764 		break;
5765 	case SPDK_NVME_ZONE_STATE_IOPEN:
5766 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
5767 		break;
5768 	case SPDK_NVME_ZONE_STATE_EOPEN:
5769 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
5770 		break;
5771 	case SPDK_NVME_ZONE_STATE_CLOSED:
5772 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
5773 		break;
5774 	case SPDK_NVME_ZONE_STATE_RONLY:
5775 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
5776 		break;
5777 	case SPDK_NVME_ZONE_STATE_FULL:
5778 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
5779 		break;
5780 	case SPDK_NVME_ZONE_STATE_OFFLINE:
5781 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
5782 		break;
5783 	default:
5784 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
5785 		return -EIO;
5786 	}
5787 
5788 	info->zone_id = desc->zslba;
5789 	info->write_pointer = desc->wp;
5790 	info->capacity = desc->zcap;
5791 
5792 	return 0;
5793 }
5794 
5795 static void
5796 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
5797 {
5798 	struct nvme_bdev_io *bio = ref;
5799 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5800 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
5801 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
5802 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
5803 	uint64_t max_zones_per_buf, i;
5804 	uint32_t zone_report_bufsize;
5805 	struct spdk_nvme_ns *ns;
5806 	struct spdk_nvme_qpair *qpair;
5807 	int ret;
5808 
5809 	if (spdk_nvme_cpl_is_error(cpl)) {
5810 		goto out_complete_io_nvme_cpl;
5811 	}
5812 
5813 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
5814 		ret = -ENXIO;
5815 		goto out_complete_io_ret;
5816 	}
5817 
5818 	ns = bio->io_path->nvme_ns->ns;
5819 	qpair = bio->io_path->qpair->qpair;
5820 
5821 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
5822 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
5823 			    sizeof(bio->zone_report_buf->descs[0]);
5824 
5825 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
5826 		ret = -EINVAL;
5827 		goto out_complete_io_ret;
5828 	}
5829 
5830 	if (!bio->zone_report_buf->nr_zones) {
5831 		ret = -EINVAL;
5832 		goto out_complete_io_ret;
5833 	}
5834 
5835 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
5836 		ret = fill_zone_from_report(&info[bio->handled_zones],
5837 					    &bio->zone_report_buf->descs[i]);
5838 		if (ret) {
5839 			goto out_complete_io_ret;
5840 		}
5841 		bio->handled_zones++;
5842 	}
5843 
5844 	if (bio->handled_zones < zones_to_copy) {
5845 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
5846 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
5847 
5848 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
5849 		ret = spdk_nvme_zns_report_zones(ns, qpair,
5850 						 bio->zone_report_buf, zone_report_bufsize,
5851 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
5852 						 bdev_nvme_get_zone_info_done, bio);
5853 		if (!ret) {
5854 			return;
5855 		} else {
5856 			goto out_complete_io_ret;
5857 		}
5858 	}
5859 
5860 out_complete_io_nvme_cpl:
5861 	free(bio->zone_report_buf);
5862 	bio->zone_report_buf = NULL;
5863 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5864 	return;
5865 
5866 out_complete_io_ret:
5867 	free(bio->zone_report_buf);
5868 	bio->zone_report_buf = NULL;
5869 	bdev_nvme_io_complete(bio, ret);
5870 }
5871 
5872 static void
5873 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
5874 {
5875 	struct nvme_bdev_io *bio = ref;
5876 
5877 	bdev_nvme_io_complete_nvme_status(bio, cpl);
5878 }
5879 
5880 static void
5881 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
5882 {
5883 	struct nvme_bdev_io *bio = ctx;
5884 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5885 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
5886 
5887 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
5888 
5889 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
5890 }
5891 
5892 static void
5893 bdev_nvme_abort_complete(void *ctx)
5894 {
5895 	struct nvme_bdev_io *bio = ctx;
5896 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
5897 
5898 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
5899 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
5900 	} else {
5901 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
5902 	}
5903 }
5904 
5905 static void
5906 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
5907 {
5908 	struct nvme_bdev_io *bio = ref;
5909 
5910 	bio->cpl = *cpl;
5911 	spdk_thread_send_msg(bio->orig_thread, bdev_nvme_abort_complete, bio);
5912 }
5913 
5914 static void
5915 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
5916 {
5917 	struct nvme_bdev_io *bio = ref;
5918 
5919 	bio->cpl = *cpl;
5920 	spdk_thread_send_msg(bio->orig_thread,
5921 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
5922 }
5923 
5924 static void
5925 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
5926 {
5927 	struct nvme_bdev_io *bio = ref;
5928 	struct iovec *iov;
5929 
5930 	bio->iov_offset = sgl_offset;
5931 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
5932 		iov = &bio->iovs[bio->iovpos];
5933 		if (bio->iov_offset < iov->iov_len) {
5934 			break;
5935 		}
5936 
5937 		bio->iov_offset -= iov->iov_len;
5938 	}
5939 }
5940 
5941 static int
5942 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
5943 {
5944 	struct nvme_bdev_io *bio = ref;
5945 	struct iovec *iov;
5946 
5947 	assert(bio->iovpos < bio->iovcnt);
5948 
5949 	iov = &bio->iovs[bio->iovpos];
5950 
5951 	*address = iov->iov_base;
5952 	*length = iov->iov_len;
5953 
5954 	if (bio->iov_offset) {
5955 		assert(bio->iov_offset <= iov->iov_len);
5956 		*address += bio->iov_offset;
5957 		*length -= bio->iov_offset;
5958 	}
5959 
5960 	bio->iov_offset += *length;
5961 	if (bio->iov_offset == iov->iov_len) {
5962 		bio->iovpos++;
5963 		bio->iov_offset = 0;
5964 	}
5965 
5966 	return 0;
5967 }
5968 
5969 static void
5970 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
5971 {
5972 	struct nvme_bdev_io *bio = ref;
5973 	struct iovec *iov;
5974 
5975 	bio->fused_iov_offset = sgl_offset;
5976 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
5977 		iov = &bio->fused_iovs[bio->fused_iovpos];
5978 		if (bio->fused_iov_offset < iov->iov_len) {
5979 			break;
5980 		}
5981 
5982 		bio->fused_iov_offset -= iov->iov_len;
5983 	}
5984 }
5985 
5986 static int
5987 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
5988 {
5989 	struct nvme_bdev_io *bio = ref;
5990 	struct iovec *iov;
5991 
5992 	assert(bio->fused_iovpos < bio->fused_iovcnt);
5993 
5994 	iov = &bio->fused_iovs[bio->fused_iovpos];
5995 
5996 	*address = iov->iov_base;
5997 	*length = iov->iov_len;
5998 
5999 	if (bio->fused_iov_offset) {
6000 		assert(bio->fused_iov_offset <= iov->iov_len);
6001 		*address += bio->fused_iov_offset;
6002 		*length -= bio->fused_iov_offset;
6003 	}
6004 
6005 	bio->fused_iov_offset += *length;
6006 	if (bio->fused_iov_offset == iov->iov_len) {
6007 		bio->fused_iovpos++;
6008 		bio->fused_iov_offset = 0;
6009 	}
6010 
6011 	return 0;
6012 }
6013 
6014 static int
6015 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6016 		      void *md, uint64_t lba_count, uint64_t lba)
6017 {
6018 	int rc;
6019 
6020 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
6021 		      lba_count, lba);
6022 
6023 	bio->iovs = iov;
6024 	bio->iovcnt = iovcnt;
6025 	bio->iovpos = 0;
6026 	bio->iov_offset = 0;
6027 
6028 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
6029 					    bio->io_path->qpair->qpair,
6030 					    lba, lba_count,
6031 					    bdev_nvme_no_pi_readv_done, bio, 0,
6032 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6033 					    md, 0, 0);
6034 
6035 	if (rc != 0 && rc != -ENOMEM) {
6036 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
6037 	}
6038 	return rc;
6039 }
6040 
6041 static int
6042 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6043 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
6044 		struct spdk_bdev_ext_io_opts *ext_opts)
6045 {
6046 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6047 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6048 	int rc;
6049 
6050 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
6051 		      lba_count, lba);
6052 
6053 	bio->iovs = iov;
6054 	bio->iovcnt = iovcnt;
6055 	bio->iovpos = 0;
6056 	bio->iov_offset = 0;
6057 
6058 	if (ext_opts) {
6059 		bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts);
6060 		bio->ext_opts.memory_domain = ext_opts->memory_domain;
6061 		bio->ext_opts.memory_domain_ctx = ext_opts->memory_domain_ctx;
6062 		bio->ext_opts.io_flags = flags;
6063 		bio->ext_opts.metadata = md;
6064 
6065 		rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
6066 						bdev_nvme_readv_done, bio,
6067 						bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6068 						&bio->ext_opts);
6069 	} else if (iovcnt == 1) {
6070 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base, md, lba,
6071 						   lba_count,
6072 						   bdev_nvme_readv_done, bio,
6073 						   flags,
6074 						   0, 0);
6075 	} else {
6076 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
6077 						    bdev_nvme_readv_done, bio, flags,
6078 						    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6079 						    md, 0, 0);
6080 	}
6081 
6082 	if (rc != 0 && rc != -ENOMEM) {
6083 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
6084 	}
6085 	return rc;
6086 }
6087 
6088 static int
6089 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6090 		 void *md, uint64_t lba_count, uint64_t lba,
6091 		 uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts)
6092 {
6093 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6094 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6095 	int rc;
6096 
6097 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
6098 		      lba_count, lba);
6099 
6100 	bio->iovs = iov;
6101 	bio->iovcnt = iovcnt;
6102 	bio->iovpos = 0;
6103 	bio->iov_offset = 0;
6104 
6105 	if (ext_opts) {
6106 		bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts);
6107 		bio->ext_opts.memory_domain = ext_opts->memory_domain;
6108 		bio->ext_opts.memory_domain_ctx = ext_opts->memory_domain_ctx;
6109 		bio->ext_opts.io_flags = flags;
6110 		bio->ext_opts.metadata = md;
6111 
6112 		rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
6113 						 bdev_nvme_writev_done, bio,
6114 						 bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6115 						 &bio->ext_opts);
6116 	} else if (iovcnt == 1) {
6117 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base, md, lba,
6118 						    lba_count,
6119 						    bdev_nvme_writev_done, bio,
6120 						    flags,
6121 						    0, 0);
6122 	} else {
6123 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
6124 						     bdev_nvme_writev_done, bio, flags,
6125 						     bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6126 						     md, 0, 0);
6127 	}
6128 
6129 	if (rc != 0 && rc != -ENOMEM) {
6130 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
6131 	}
6132 	return rc;
6133 }
6134 
6135 static int
6136 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6137 		       void *md, uint64_t lba_count, uint64_t zslba,
6138 		       uint32_t flags)
6139 {
6140 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6141 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6142 	int rc;
6143 
6144 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
6145 		      lba_count, zslba);
6146 
6147 	bio->iovs = iov;
6148 	bio->iovcnt = iovcnt;
6149 	bio->iovpos = 0;
6150 	bio->iov_offset = 0;
6151 
6152 	if (iovcnt == 1) {
6153 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
6154 						       lba_count,
6155 						       bdev_nvme_zone_appendv_done, bio,
6156 						       flags,
6157 						       0, 0);
6158 	} else {
6159 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
6160 							bdev_nvme_zone_appendv_done, bio, flags,
6161 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6162 							md, 0, 0);
6163 	}
6164 
6165 	if (rc != 0 && rc != -ENOMEM) {
6166 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
6167 	}
6168 	return rc;
6169 }
6170 
6171 static int
6172 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
6173 		   void *md, uint64_t lba_count, uint64_t lba,
6174 		   uint32_t flags)
6175 {
6176 	int rc;
6177 
6178 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
6179 		      lba_count, lba);
6180 
6181 	bio->iovs = iov;
6182 	bio->iovcnt = iovcnt;
6183 	bio->iovpos = 0;
6184 	bio->iov_offset = 0;
6185 
6186 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
6187 					       bio->io_path->qpair->qpair,
6188 					       lba, lba_count,
6189 					       bdev_nvme_comparev_done, bio, flags,
6190 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
6191 					       md, 0, 0);
6192 
6193 	if (rc != 0 && rc != -ENOMEM) {
6194 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
6195 	}
6196 	return rc;
6197 }
6198 
6199 static int
6200 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
6201 			      struct iovec *write_iov, int write_iovcnt,
6202 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
6203 {
6204 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6205 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6206 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6207 	int rc;
6208 
6209 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
6210 		      lba_count, lba);
6211 
6212 	bio->iovs = cmp_iov;
6213 	bio->iovcnt = cmp_iovcnt;
6214 	bio->iovpos = 0;
6215 	bio->iov_offset = 0;
6216 	bio->fused_iovs = write_iov;
6217 	bio->fused_iovcnt = write_iovcnt;
6218 	bio->fused_iovpos = 0;
6219 	bio->fused_iov_offset = 0;
6220 
6221 	if (bdev_io->num_retries == 0) {
6222 		bio->first_fused_submitted = false;
6223 		bio->first_fused_completed = false;
6224 	}
6225 
6226 	if (!bio->first_fused_submitted) {
6227 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
6228 		memset(&bio->cpl, 0, sizeof(bio->cpl));
6229 
6230 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
6231 						       bdev_nvme_comparev_and_writev_done, bio, flags,
6232 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
6233 		if (rc == 0) {
6234 			bio->first_fused_submitted = true;
6235 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
6236 		} else {
6237 			if (rc != -ENOMEM) {
6238 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
6239 			}
6240 			return rc;
6241 		}
6242 	}
6243 
6244 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
6245 
6246 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
6247 					     bdev_nvme_comparev_and_writev_done, bio, flags,
6248 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
6249 	if (rc != 0 && rc != -ENOMEM) {
6250 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
6251 		rc = 0;
6252 	}
6253 
6254 	return rc;
6255 }
6256 
6257 static int
6258 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
6259 {
6260 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
6261 	struct spdk_nvme_dsm_range *range;
6262 	uint64_t offset, remaining;
6263 	uint64_t num_ranges_u64;
6264 	uint16_t num_ranges;
6265 	int rc;
6266 
6267 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
6268 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6269 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
6270 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
6271 		return -EINVAL;
6272 	}
6273 	num_ranges = (uint16_t)num_ranges_u64;
6274 
6275 	offset = offset_blocks;
6276 	remaining = num_blocks;
6277 	range = &dsm_ranges[0];
6278 
6279 	/* Fill max-size ranges until the remaining blocks fit into one range */
6280 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
6281 		range->attributes.raw = 0;
6282 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6283 		range->starting_lba = offset;
6284 
6285 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6286 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
6287 		range++;
6288 	}
6289 
6290 	/* Final range describes the remaining blocks */
6291 	range->attributes.raw = 0;
6292 	range->length = remaining;
6293 	range->starting_lba = offset;
6294 
6295 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
6296 			bio->io_path->qpair->qpair,
6297 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
6298 			dsm_ranges, num_ranges,
6299 			bdev_nvme_queued_done, bio);
6300 
6301 	return rc;
6302 }
6303 
6304 static int
6305 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
6306 {
6307 	if (num_blocks > UINT16_MAX + 1) {
6308 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
6309 		return -EINVAL;
6310 	}
6311 
6312 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
6313 					     bio->io_path->qpair->qpair,
6314 					     offset_blocks, num_blocks,
6315 					     bdev_nvme_queued_done, bio,
6316 					     0);
6317 }
6318 
6319 static int
6320 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
6321 			struct spdk_bdev_zone_info *info)
6322 {
6323 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6324 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6325 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
6326 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
6327 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
6328 
6329 	if (zone_id % zone_size != 0) {
6330 		return -EINVAL;
6331 	}
6332 
6333 	if (num_zones > total_zones || !num_zones) {
6334 		return -EINVAL;
6335 	}
6336 
6337 	assert(!bio->zone_report_buf);
6338 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
6339 	if (!bio->zone_report_buf) {
6340 		return -ENOMEM;
6341 	}
6342 
6343 	bio->handled_zones = 0;
6344 
6345 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
6346 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
6347 					  bdev_nvme_get_zone_info_done, bio);
6348 }
6349 
6350 static int
6351 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
6352 			  enum spdk_bdev_zone_action action)
6353 {
6354 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6355 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6356 
6357 	switch (action) {
6358 	case SPDK_BDEV_ZONE_CLOSE:
6359 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
6360 						bdev_nvme_zone_management_done, bio);
6361 	case SPDK_BDEV_ZONE_FINISH:
6362 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
6363 						 bdev_nvme_zone_management_done, bio);
6364 	case SPDK_BDEV_ZONE_OPEN:
6365 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
6366 					       bdev_nvme_zone_management_done, bio);
6367 	case SPDK_BDEV_ZONE_RESET:
6368 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
6369 						bdev_nvme_zone_management_done, bio);
6370 	case SPDK_BDEV_ZONE_OFFLINE:
6371 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
6372 						  bdev_nvme_zone_management_done, bio);
6373 	default:
6374 		return -EINVAL;
6375 	}
6376 }
6377 
6378 static void
6379 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
6380 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
6381 {
6382 	struct nvme_io_path *io_path;
6383 	struct nvme_ctrlr *nvme_ctrlr;
6384 	uint32_t max_xfer_size;
6385 	int rc = -ENXIO;
6386 
6387 	/* Choose the first ctrlr which is not failed. */
6388 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
6389 		nvme_ctrlr = io_path->qpair->ctrlr;
6390 
6391 		/* We should skip any unavailable nvme_ctrlr rather than checking
6392 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
6393 		 */
6394 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
6395 			continue;
6396 		}
6397 
6398 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
6399 
6400 		if (nbytes > max_xfer_size) {
6401 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
6402 			rc = -EINVAL;
6403 			goto err;
6404 		}
6405 
6406 		bio->io_path = io_path;
6407 		bio->orig_thread = spdk_get_thread();
6408 
6409 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
6410 						   bdev_nvme_admin_passthru_done, bio);
6411 		if (rc == 0) {
6412 			return;
6413 		}
6414 	}
6415 
6416 err:
6417 	bdev_nvme_admin_passthru_complete(bio, rc);
6418 }
6419 
6420 static int
6421 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
6422 		      void *buf, size_t nbytes)
6423 {
6424 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6425 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6426 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
6427 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
6428 
6429 	if (nbytes > max_xfer_size) {
6430 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
6431 		return -EINVAL;
6432 	}
6433 
6434 	/*
6435 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
6436 	 * so fill it out automatically.
6437 	 */
6438 	cmd->nsid = spdk_nvme_ns_get_id(ns);
6439 
6440 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
6441 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
6442 }
6443 
6444 static int
6445 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
6446 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
6447 {
6448 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
6449 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
6450 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
6451 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
6452 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
6453 
6454 	if (nbytes > max_xfer_size) {
6455 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
6456 		return -EINVAL;
6457 	}
6458 
6459 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
6460 		SPDK_ERRLOG("invalid meta data buffer size\n");
6461 		return -EINVAL;
6462 	}
6463 
6464 	/*
6465 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
6466 	 * so fill it out automatically.
6467 	 */
6468 	cmd->nsid = spdk_nvme_ns_get_id(ns);
6469 
6470 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
6471 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
6472 }
6473 
6474 static void
6475 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
6476 		struct nvme_bdev_io *bio_to_abort)
6477 {
6478 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
6479 	struct spdk_bdev_io *bdev_io_to_abort;
6480 	struct nvme_io_path *io_path;
6481 	struct nvme_ctrlr *nvme_ctrlr;
6482 	int rc = 0;
6483 
6484 	bio->orig_thread = spdk_get_thread();
6485 
6486 	/* Traverse the retry_io_list first. */
6487 	TAILQ_FOREACH(bdev_io_to_abort, &nbdev_ch->retry_io_list, module_link) {
6488 		if ((struct nvme_bdev_io *)bdev_io_to_abort->driver_ctx == bio_to_abort) {
6489 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io_to_abort, module_link);
6490 			__bdev_nvme_io_complete(bdev_io_to_abort, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
6491 
6492 			__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
6493 			return;
6494 		}
6495 	}
6496 
6497 	/* Even admin commands, they were submitted to only nvme_ctrlrs which were
6498 	 * on any io_path. So traverse the io_path list for not only I/O commands
6499 	 * but also admin commands.
6500 	 */
6501 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
6502 		nvme_ctrlr = io_path->qpair->ctrlr;
6503 
6504 		rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ctrlr->ctrlr,
6505 						   io_path->qpair->qpair,
6506 						   bio_to_abort,
6507 						   bdev_nvme_abort_done, bio);
6508 		if (rc == -ENOENT) {
6509 			/* If no command was found in I/O qpair, the target command may be
6510 			 * admin command.
6511 			 */
6512 			rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ctrlr->ctrlr,
6513 							   NULL,
6514 							   bio_to_abort,
6515 							   bdev_nvme_abort_done, bio);
6516 		}
6517 
6518 		if (rc != -ENOENT) {
6519 			break;
6520 		}
6521 	}
6522 
6523 	if (rc != 0) {
6524 		/* If no command was found or there was any error, complete the abort
6525 		 * request with failure.
6526 		 */
6527 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
6528 	}
6529 }
6530 
6531 static int
6532 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
6533 	       uint64_t num_blocks)
6534 {
6535 	struct spdk_nvme_scc_source_range range = {
6536 		.slba = src_offset_blocks,
6537 		.nlb = num_blocks - 1
6538 	};
6539 
6540 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
6541 				     bio->io_path->qpair->qpair,
6542 				     &range, 1, dst_offset_blocks,
6543 				     bdev_nvme_queued_done, bio);
6544 }
6545 
6546 static void
6547 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
6548 {
6549 	const char	*action;
6550 
6551 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
6552 		action = "reset";
6553 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
6554 		action = "abort";
6555 	} else {
6556 		action = "none";
6557 	}
6558 
6559 	spdk_json_write_object_begin(w);
6560 
6561 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
6562 
6563 	spdk_json_write_named_object_begin(w, "params");
6564 	spdk_json_write_named_string(w, "action_on_timeout", action);
6565 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
6566 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
6567 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
6568 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
6569 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
6570 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
6571 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
6572 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
6573 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
6574 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
6575 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
6576 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
6577 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
6578 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
6579 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
6580 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
6581 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
6582 	spdk_json_write_object_end(w);
6583 
6584 	spdk_json_write_object_end(w);
6585 }
6586 
6587 static void
6588 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
6589 {
6590 	struct spdk_nvme_transport_id trid;
6591 
6592 	spdk_json_write_object_begin(w);
6593 
6594 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
6595 
6596 	spdk_json_write_named_object_begin(w, "params");
6597 	spdk_json_write_named_string(w, "name", ctx->name);
6598 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
6599 
6600 	trid = ctx->trid;
6601 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
6602 	nvme_bdev_dump_trid_json(&trid, w);
6603 
6604 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
6605 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
6606 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
6607 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
6608 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
6609 	spdk_json_write_object_end(w);
6610 
6611 	spdk_json_write_object_end(w);
6612 }
6613 
6614 static void
6615 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
6616 		       struct nvme_ctrlr *nvme_ctrlr)
6617 {
6618 	struct spdk_nvme_transport_id	*trid;
6619 
6620 	if (nvme_ctrlr->opts.from_discovery_service) {
6621 		/* Do not emit an RPC for this - it will be implicitly
6622 		 * covered by a separate bdev_nvme_start_discovery RPC.
6623 		 */
6624 		return;
6625 	}
6626 
6627 	trid = &nvme_ctrlr->active_path_id->trid;
6628 
6629 	spdk_json_write_object_begin(w);
6630 
6631 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
6632 
6633 	spdk_json_write_named_object_begin(w, "params");
6634 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
6635 	nvme_bdev_dump_trid_json(trid, w);
6636 	spdk_json_write_named_bool(w, "prchk_reftag",
6637 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
6638 	spdk_json_write_named_bool(w, "prchk_guard",
6639 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
6640 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
6641 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
6642 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
6643 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
6644 
6645 	spdk_json_write_object_end(w);
6646 
6647 	spdk_json_write_object_end(w);
6648 }
6649 
6650 static void
6651 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
6652 {
6653 	spdk_json_write_object_begin(w);
6654 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
6655 
6656 	spdk_json_write_named_object_begin(w, "params");
6657 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
6658 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
6659 	spdk_json_write_object_end(w);
6660 
6661 	spdk_json_write_object_end(w);
6662 }
6663 
6664 static int
6665 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
6666 {
6667 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
6668 	struct nvme_ctrlr	*nvme_ctrlr;
6669 	struct discovery_ctx	*ctx;
6670 
6671 	bdev_nvme_opts_config_json(w);
6672 
6673 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6674 
6675 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
6676 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6677 			nvme_ctrlr_config_json(w, nvme_ctrlr);
6678 		}
6679 	}
6680 
6681 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6682 		bdev_nvme_discovery_config_json(w, ctx);
6683 	}
6684 
6685 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
6686 	 * before enabling hotplug poller.
6687 	 */
6688 	bdev_nvme_hotplug_config_json(w);
6689 
6690 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6691 	return 0;
6692 }
6693 
6694 struct spdk_nvme_ctrlr *
6695 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
6696 {
6697 	struct nvme_bdev *nbdev;
6698 	struct nvme_ns *nvme_ns;
6699 
6700 	if (!bdev || bdev->module != &nvme_if) {
6701 		return NULL;
6702 	}
6703 
6704 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
6705 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
6706 	assert(nvme_ns != NULL);
6707 
6708 	return nvme_ns->ctrlr->ctrlr;
6709 }
6710 
6711 void
6712 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
6713 {
6714 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
6715 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
6716 	const struct spdk_nvme_ctrlr_data *cdata;
6717 	const struct spdk_nvme_transport_id *trid;
6718 	const char *adrfam_str;
6719 
6720 	spdk_json_write_object_begin(w);
6721 
6722 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
6723 
6724 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
6725 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
6726 
6727 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
6728 	spdk_json_write_named_bool(w, "current", io_path == io_path->nbdev_ch->current_io_path);
6729 	spdk_json_write_named_bool(w, "connected", nvme_io_path_is_connected(io_path));
6730 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
6731 
6732 	spdk_json_write_named_object_begin(w, "transport");
6733 	spdk_json_write_named_string(w, "trtype", trid->trstring);
6734 	spdk_json_write_named_string(w, "traddr", trid->traddr);
6735 	if (trid->trsvcid[0] != '\0') {
6736 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
6737 	}
6738 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
6739 	if (adrfam_str) {
6740 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
6741 	}
6742 	spdk_json_write_object_end(w);
6743 
6744 	spdk_json_write_object_end(w);
6745 }
6746 
6747 void
6748 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
6749 {
6750 	struct discovery_ctx *ctx;
6751 	struct discovery_entry_ctx *entry_ctx;
6752 
6753 	spdk_json_write_array_begin(w);
6754 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
6755 		spdk_json_write_object_begin(w);
6756 		spdk_json_write_named_string(w, "name", ctx->name);
6757 
6758 		spdk_json_write_named_object_begin(w, "trid");
6759 		nvme_bdev_dump_trid_json(&ctx->trid, w);
6760 		spdk_json_write_object_end(w);
6761 
6762 		spdk_json_write_named_array_begin(w, "referrals");
6763 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
6764 			spdk_json_write_object_begin(w);
6765 			spdk_json_write_named_object_begin(w, "trid");
6766 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
6767 			spdk_json_write_object_end(w);
6768 			spdk_json_write_object_end(w);
6769 		}
6770 		spdk_json_write_array_end(w);
6771 
6772 		spdk_json_write_object_end(w);
6773 	}
6774 	spdk_json_write_array_end(w);
6775 }
6776 
6777 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
6778 
6779 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
6780 {
6781 	struct spdk_trace_tpoint_opts opts[] = {
6782 		{
6783 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
6784 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 1,
6785 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
6786 		},
6787 		{
6788 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
6789 			OWNER_NONE, OBJECT_BDEV_NVME_IO, 0,
6790 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
6791 		}
6792 	};
6793 
6794 
6795 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
6796 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
6797 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
6798 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
6799 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
6800 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
6801 }
6802