xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision 9b8579e4af16f0826736c09db858e0737f7556c5)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/keyring.h"
18 #include "spdk/likely.h"
19 #include "spdk/nvme.h"
20 #include "spdk/nvme_ocssd.h"
21 #include "spdk/nvme_zns.h"
22 #include "spdk/opal.h"
23 #include "spdk/thread.h"
24 #include "spdk/trace.h"
25 #include "spdk/string.h"
26 #include "spdk/util.h"
27 #include "spdk/uuid.h"
28 
29 #include "spdk/bdev_module.h"
30 #include "spdk/log.h"
31 
32 #include "spdk_internal/usdt.h"
33 #include "spdk_internal/trace_defs.h"
34 
35 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
36 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
37 
38 #define NSID_STR_LEN 10
39 
40 #define SPDK_CONTROLLER_NAME_MAX 512
41 
42 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
43 
44 struct nvme_bdev_io {
45 	/** array of iovecs to transfer. */
46 	struct iovec *iovs;
47 
48 	/** Number of iovecs in iovs array. */
49 	int iovcnt;
50 
51 	/** Current iovec position. */
52 	int iovpos;
53 
54 	/** Offset in current iovec. */
55 	uint32_t iov_offset;
56 
57 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
58 	 *  being reset in a reset I/O.
59 	 */
60 	struct nvme_io_path *io_path;
61 
62 	/** array of iovecs to transfer. */
63 	struct iovec *fused_iovs;
64 
65 	/** Number of iovecs in iovs array. */
66 	int fused_iovcnt;
67 
68 	/** Current iovec position. */
69 	int fused_iovpos;
70 
71 	/** Offset in current iovec. */
72 	uint32_t fused_iov_offset;
73 
74 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
75 	struct spdk_nvme_cpl cpl;
76 
77 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
78 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
79 
80 	/** Keeps track if first of fused commands was submitted */
81 	bool first_fused_submitted;
82 
83 	/** Keeps track if first of fused commands was completed */
84 	bool first_fused_completed;
85 
86 	/** Temporary pointer to zone report buffer */
87 	struct spdk_nvme_zns_zone_report *zone_report_buf;
88 
89 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
90 	uint64_t handled_zones;
91 
92 	/** Expiration value in ticks to retry the current I/O. */
93 	uint64_t retry_ticks;
94 
95 	/* How many times the current I/O was retried. */
96 	int32_t retry_count;
97 
98 	/* Current tsc at submit time. */
99 	uint64_t submit_tsc;
100 
101 	/* Used to put nvme_bdev_io into the list */
102 	TAILQ_ENTRY(nvme_bdev_io) retry_link;
103 };
104 
105 struct nvme_probe_skip_entry {
106 	struct spdk_nvme_transport_id		trid;
107 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
108 };
109 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
110 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
111 			g_skipped_nvme_ctrlrs);
112 
113 #define BDEV_NVME_DEFAULT_DIGESTS (SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) | \
114 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) | \
115 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512))
116 
117 #define BDEV_NVME_DEFAULT_DHGROUPS (SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) | \
118 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) | \
119 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) | \
120 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) | \
121 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) | \
122 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192))
123 
124 static struct spdk_bdev_nvme_opts g_opts = {
125 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
126 	.timeout_us = 0,
127 	.timeout_admin_us = 0,
128 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
129 	.transport_retry_count = 4,
130 	.arbitration_burst = 0,
131 	.low_priority_weight = 0,
132 	.medium_priority_weight = 0,
133 	.high_priority_weight = 0,
134 	.nvme_adminq_poll_period_us = 10000ULL,
135 	.nvme_ioq_poll_period_us = 0,
136 	.io_queue_requests = 0,
137 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
138 	.bdev_retry_count = 3,
139 	.transport_ack_timeout = 0,
140 	.ctrlr_loss_timeout_sec = 0,
141 	.reconnect_delay_sec = 0,
142 	.fast_io_fail_timeout_sec = 0,
143 	.disable_auto_failback = false,
144 	.generate_uuids = false,
145 	.transport_tos = 0,
146 	.nvme_error_stat = false,
147 	.io_path_stat = false,
148 	.allow_accel_sequence = false,
149 	.dhchap_digests = BDEV_NVME_DEFAULT_DIGESTS,
150 	.dhchap_dhgroups = BDEV_NVME_DEFAULT_DHGROUPS,
151 };
152 
153 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
154 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
155 
156 static int g_hot_insert_nvme_controller_index = 0;
157 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
158 static bool g_nvme_hotplug_enabled = false;
159 struct spdk_thread *g_bdev_nvme_init_thread;
160 static struct spdk_poller *g_hotplug_poller;
161 static struct spdk_poller *g_hotplug_probe_poller;
162 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
163 
164 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
165 		struct nvme_async_probe_ctx *ctx);
166 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
167 		struct nvme_async_probe_ctx *ctx);
168 static int bdev_nvme_library_init(void);
169 static void bdev_nvme_library_fini(void);
170 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
171 				      struct spdk_bdev_io *bdev_io);
172 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
173 				     struct spdk_bdev_io *bdev_io);
174 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
175 			   void *md, uint64_t lba_count, uint64_t lba,
176 			   uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
177 			   struct spdk_accel_sequence *seq);
178 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
179 				 void *md, uint64_t lba_count, uint64_t lba);
180 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
181 			    void *md, uint64_t lba_count, uint64_t lba,
182 			    uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
183 			    struct spdk_accel_sequence *seq,
184 			    union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13);
185 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
186 				  void *md, uint64_t lba_count,
187 				  uint64_t zslba, uint32_t flags);
188 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
189 			      void *md, uint64_t lba_count, uint64_t lba,
190 			      uint32_t flags);
191 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
192 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
193 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
194 		uint32_t flags);
195 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
196 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
197 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
198 				     enum spdk_bdev_zone_action action);
199 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
200 				     struct nvme_bdev_io *bio,
201 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
202 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
203 				 void *buf, size_t nbytes);
204 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
205 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
206 static int bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
207 				     struct iovec *iov, int iovcnt, size_t nbytes,
208 				     void *md_buf, size_t md_len);
209 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
210 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
211 static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
212 static int bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
213 static int bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
214 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
215 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
216 
217 static struct nvme_ns *nvme_ns_alloc(void);
218 static void nvme_ns_free(struct nvme_ns *ns);
219 
220 static int
221 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
222 {
223 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
224 }
225 
226 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
227 
228 struct spdk_nvme_qpair *
229 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
230 {
231 	struct nvme_ctrlr_channel *ctrlr_ch;
232 
233 	assert(ctrlr_io_ch != NULL);
234 
235 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
236 
237 	return ctrlr_ch->qpair->qpair;
238 }
239 
240 static int
241 bdev_nvme_get_ctx_size(void)
242 {
243 	return sizeof(struct nvme_bdev_io);
244 }
245 
246 static struct spdk_bdev_module nvme_if = {
247 	.name = "nvme",
248 	.async_fini = true,
249 	.module_init = bdev_nvme_library_init,
250 	.module_fini = bdev_nvme_library_fini,
251 	.config_json = bdev_nvme_config_json,
252 	.get_ctx_size = bdev_nvme_get_ctx_size,
253 
254 };
255 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
256 
257 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
258 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
259 bool g_bdev_nvme_module_finish;
260 
261 struct nvme_bdev_ctrlr *
262 nvme_bdev_ctrlr_get_by_name(const char *name)
263 {
264 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
265 
266 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
267 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
268 			break;
269 		}
270 	}
271 
272 	return nbdev_ctrlr;
273 }
274 
275 static struct nvme_ctrlr *
276 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
277 			  const struct spdk_nvme_transport_id *trid)
278 {
279 	struct nvme_ctrlr *nvme_ctrlr;
280 
281 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
282 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0) {
283 			break;
284 		}
285 	}
286 
287 	return nvme_ctrlr;
288 }
289 
290 struct nvme_ctrlr *
291 nvme_bdev_ctrlr_get_ctrlr_by_id(struct nvme_bdev_ctrlr *nbdev_ctrlr,
292 				uint16_t cntlid)
293 {
294 	struct nvme_ctrlr *nvme_ctrlr;
295 	const struct spdk_nvme_ctrlr_data *cdata;
296 
297 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
298 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
299 		if (cdata->cntlid == cntlid) {
300 			break;
301 		}
302 	}
303 
304 	return nvme_ctrlr;
305 }
306 
307 static struct nvme_bdev *
308 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
309 {
310 	struct nvme_bdev *bdev;
311 
312 	pthread_mutex_lock(&g_bdev_nvme_mutex);
313 	TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
314 		if (bdev->nsid == nsid) {
315 			break;
316 		}
317 	}
318 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
319 
320 	return bdev;
321 }
322 
323 struct nvme_ns *
324 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
325 {
326 	struct nvme_ns ns;
327 
328 	assert(nsid > 0);
329 
330 	ns.id = nsid;
331 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
332 }
333 
334 struct nvme_ns *
335 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
336 {
337 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
338 }
339 
340 struct nvme_ns *
341 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
342 {
343 	if (ns == NULL) {
344 		return NULL;
345 	}
346 
347 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
348 }
349 
350 static struct nvme_ctrlr *
351 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid)
352 {
353 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
354 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
355 
356 	pthread_mutex_lock(&g_bdev_nvme_mutex);
357 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
358 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid);
359 		if (nvme_ctrlr != NULL) {
360 			break;
361 		}
362 	}
363 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
364 
365 	return nvme_ctrlr;
366 }
367 
368 struct nvme_ctrlr *
369 nvme_ctrlr_get_by_name(const char *name)
370 {
371 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
372 	struct nvme_ctrlr *nvme_ctrlr = NULL;
373 
374 	if (name == NULL) {
375 		return NULL;
376 	}
377 
378 	pthread_mutex_lock(&g_bdev_nvme_mutex);
379 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
380 	if (nbdev_ctrlr != NULL) {
381 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
382 	}
383 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
384 
385 	return nvme_ctrlr;
386 }
387 
388 void
389 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
390 {
391 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
392 
393 	pthread_mutex_lock(&g_bdev_nvme_mutex);
394 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
395 		fn(nbdev_ctrlr, ctx);
396 	}
397 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
398 }
399 
400 void
401 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
402 {
403 	const char *trtype_str;
404 	const char *adrfam_str;
405 
406 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
407 	if (trtype_str) {
408 		spdk_json_write_named_string(w, "trtype", trtype_str);
409 	}
410 
411 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
412 	if (adrfam_str) {
413 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
414 	}
415 
416 	if (trid->traddr[0] != '\0') {
417 		spdk_json_write_named_string(w, "traddr", trid->traddr);
418 	}
419 
420 	if (trid->trsvcid[0] != '\0') {
421 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
422 	}
423 
424 	if (trid->subnqn[0] != '\0') {
425 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
426 	}
427 }
428 
429 static void
430 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
431 		       struct nvme_ctrlr *nvme_ctrlr)
432 {
433 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
434 	pthread_mutex_lock(&g_bdev_nvme_mutex);
435 
436 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
437 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
438 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
439 
440 		return;
441 	}
442 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
443 
444 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
445 
446 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
447 
448 	free(nbdev_ctrlr->name);
449 	free(nbdev_ctrlr);
450 }
451 
452 static void
453 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
454 {
455 	struct nvme_path_id *path_id, *tmp_path;
456 	struct nvme_ns *ns, *tmp_ns;
457 
458 	free(nvme_ctrlr->copied_ana_desc);
459 	spdk_free(nvme_ctrlr->ana_log_page);
460 
461 	if (nvme_ctrlr->opal_dev) {
462 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
463 		nvme_ctrlr->opal_dev = NULL;
464 	}
465 
466 	if (nvme_ctrlr->nbdev_ctrlr) {
467 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
468 	}
469 
470 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
471 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
472 		nvme_ns_free(ns);
473 	}
474 
475 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
476 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
477 		free(path_id);
478 	}
479 
480 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
481 	spdk_keyring_put_key(nvme_ctrlr->psk);
482 	spdk_keyring_put_key(nvme_ctrlr->dhchap_key);
483 	spdk_keyring_put_key(nvme_ctrlr->dhchap_ctrlr_key);
484 	free(nvme_ctrlr);
485 
486 	pthread_mutex_lock(&g_bdev_nvme_mutex);
487 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
488 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
489 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
490 		spdk_bdev_module_fini_done();
491 		return;
492 	}
493 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
494 }
495 
496 static int
497 nvme_detach_poller(void *arg)
498 {
499 	struct nvme_ctrlr *nvme_ctrlr = arg;
500 	int rc;
501 
502 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
503 	if (rc != -EAGAIN) {
504 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
505 		_nvme_ctrlr_delete(nvme_ctrlr);
506 	}
507 
508 	return SPDK_POLLER_BUSY;
509 }
510 
511 static void
512 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
513 {
514 	int rc;
515 
516 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
517 
518 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
519 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
520 
521 	/* If we got here, the reset/detach poller cannot be active */
522 	assert(nvme_ctrlr->reset_detach_poller == NULL);
523 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
524 					  nvme_ctrlr, 1000);
525 	if (nvme_ctrlr->reset_detach_poller == NULL) {
526 		SPDK_ERRLOG("Failed to register detach poller\n");
527 		goto error;
528 	}
529 
530 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
531 	if (rc != 0) {
532 		SPDK_ERRLOG("Failed to detach the NVMe controller\n");
533 		goto error;
534 	}
535 
536 	return;
537 error:
538 	/* We don't have a good way to handle errors here, so just do what we can and delete the
539 	 * controller without detaching the underlying NVMe device.
540 	 */
541 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
542 	_nvme_ctrlr_delete(nvme_ctrlr);
543 }
544 
545 static void
546 nvme_ctrlr_unregister_cb(void *io_device)
547 {
548 	struct nvme_ctrlr *nvme_ctrlr = io_device;
549 
550 	nvme_ctrlr_delete(nvme_ctrlr);
551 }
552 
553 static void
554 nvme_ctrlr_unregister(void *ctx)
555 {
556 	struct nvme_ctrlr *nvme_ctrlr = ctx;
557 
558 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
559 }
560 
561 static bool
562 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
563 {
564 	if (!nvme_ctrlr->destruct) {
565 		return false;
566 	}
567 
568 	if (nvme_ctrlr->ref > 0) {
569 		return false;
570 	}
571 
572 	if (nvme_ctrlr->resetting) {
573 		return false;
574 	}
575 
576 	if (nvme_ctrlr->ana_log_page_updating) {
577 		return false;
578 	}
579 
580 	if (nvme_ctrlr->io_path_cache_clearing) {
581 		return false;
582 	}
583 
584 	return true;
585 }
586 
587 static void
588 nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
589 {
590 	pthread_mutex_lock(&nvme_ctrlr->mutex);
591 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
592 
593 	assert(nvme_ctrlr->ref > 0);
594 	nvme_ctrlr->ref--;
595 
596 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
597 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
598 		return;
599 	}
600 
601 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
602 
603 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
604 }
605 
606 static void
607 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch)
608 {
609 	nbdev_ch->current_io_path = NULL;
610 	nbdev_ch->rr_counter = 0;
611 }
612 
613 static struct nvme_io_path *
614 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
615 {
616 	struct nvme_io_path *io_path;
617 
618 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
619 		if (io_path->nvme_ns == nvme_ns) {
620 			break;
621 		}
622 	}
623 
624 	return io_path;
625 }
626 
627 static struct nvme_io_path *
628 nvme_io_path_alloc(void)
629 {
630 	struct nvme_io_path *io_path;
631 
632 	io_path = calloc(1, sizeof(*io_path));
633 	if (io_path == NULL) {
634 		SPDK_ERRLOG("Failed to alloc io_path.\n");
635 		return NULL;
636 	}
637 
638 	if (g_opts.io_path_stat) {
639 		io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
640 		if (io_path->stat == NULL) {
641 			free(io_path);
642 			SPDK_ERRLOG("Failed to alloc io_path stat.\n");
643 			return NULL;
644 		}
645 		spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
646 	}
647 
648 	return io_path;
649 }
650 
651 static void
652 nvme_io_path_free(struct nvme_io_path *io_path)
653 {
654 	free(io_path->stat);
655 	free(io_path);
656 }
657 
658 static int
659 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
660 {
661 	struct nvme_io_path *io_path;
662 	struct spdk_io_channel *ch;
663 	struct nvme_ctrlr_channel *ctrlr_ch;
664 	struct nvme_qpair *nvme_qpair;
665 
666 	io_path = nvme_io_path_alloc();
667 	if (io_path == NULL) {
668 		return -ENOMEM;
669 	}
670 
671 	io_path->nvme_ns = nvme_ns;
672 
673 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
674 	if (ch == NULL) {
675 		nvme_io_path_free(io_path);
676 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
677 		return -ENOMEM;
678 	}
679 
680 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
681 
682 	nvme_qpair = ctrlr_ch->qpair;
683 	assert(nvme_qpair != NULL);
684 
685 	io_path->qpair = nvme_qpair;
686 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
687 
688 	io_path->nbdev_ch = nbdev_ch;
689 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
690 
691 	bdev_nvme_clear_current_io_path(nbdev_ch);
692 
693 	return 0;
694 }
695 
696 static void
697 bdev_nvme_clear_retry_io_path(struct nvme_bdev_channel *nbdev_ch,
698 			      struct nvme_io_path *io_path)
699 {
700 	struct nvme_bdev_io *bio;
701 
702 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
703 		if (bio->io_path == io_path) {
704 			bio->io_path = NULL;
705 		}
706 	}
707 }
708 
709 static void
710 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
711 {
712 	struct spdk_io_channel *ch;
713 	struct nvme_qpair *nvme_qpair;
714 	struct nvme_ctrlr_channel *ctrlr_ch;
715 	struct nvme_bdev *nbdev;
716 
717 	nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch));
718 
719 	/* Add the statistics to nvme_ns before this path is destroyed. */
720 	pthread_mutex_lock(&nbdev->mutex);
721 	if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) {
722 		spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat);
723 	}
724 	pthread_mutex_unlock(&nbdev->mutex);
725 
726 	bdev_nvme_clear_current_io_path(nbdev_ch);
727 	bdev_nvme_clear_retry_io_path(nbdev_ch, io_path);
728 
729 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
730 	io_path->nbdev_ch = NULL;
731 
732 	nvme_qpair = io_path->qpair;
733 	assert(nvme_qpair != NULL);
734 
735 	ctrlr_ch = nvme_qpair->ctrlr_ch;
736 	assert(ctrlr_ch != NULL);
737 
738 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
739 	spdk_put_io_channel(ch);
740 
741 	/* After an io_path is removed, I/Os submitted to it may complete and update statistics
742 	 * of the io_path. To avoid heap-use-after-free error from this case, do not free the
743 	 * io_path here but free the io_path when the associated qpair is freed. It is ensured
744 	 * that all I/Os submitted to the io_path are completed when the associated qpair is freed.
745 	 */
746 }
747 
748 static void
749 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
750 {
751 	struct nvme_io_path *io_path, *tmp_io_path;
752 
753 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
754 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
755 	}
756 }
757 
758 static int
759 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
760 {
761 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
762 	struct nvme_bdev *nbdev = io_device;
763 	struct nvme_ns *nvme_ns;
764 	int rc;
765 
766 	STAILQ_INIT(&nbdev_ch->io_path_list);
767 	TAILQ_INIT(&nbdev_ch->retry_io_list);
768 
769 	pthread_mutex_lock(&nbdev->mutex);
770 
771 	nbdev_ch->mp_policy = nbdev->mp_policy;
772 	nbdev_ch->mp_selector = nbdev->mp_selector;
773 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
774 
775 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
776 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
777 		if (rc != 0) {
778 			pthread_mutex_unlock(&nbdev->mutex);
779 
780 			_bdev_nvme_delete_io_paths(nbdev_ch);
781 			return rc;
782 		}
783 	}
784 	pthread_mutex_unlock(&nbdev->mutex);
785 
786 	return 0;
787 }
788 
789 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
790  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
791  */
792 static inline void
793 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
794 			const struct spdk_nvme_cpl *cpl)
795 {
796 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
797 			  (uintptr_t)bdev_io);
798 	if (cpl) {
799 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
800 	} else {
801 		spdk_bdev_io_complete(bdev_io, status);
802 	}
803 }
804 
805 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
806 
807 static void
808 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
809 {
810 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
811 
812 	bdev_nvme_abort_retry_ios(nbdev_ch);
813 	_bdev_nvme_delete_io_paths(nbdev_ch);
814 }
815 
816 static inline bool
817 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
818 {
819 	switch (io_type) {
820 	case SPDK_BDEV_IO_TYPE_RESET:
821 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
822 	case SPDK_BDEV_IO_TYPE_ABORT:
823 		return true;
824 	default:
825 		break;
826 	}
827 
828 	return false;
829 }
830 
831 static inline bool
832 nvme_ns_is_active(struct nvme_ns *nvme_ns)
833 {
834 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
835 		return false;
836 	}
837 
838 	if (spdk_unlikely(nvme_ns->ns == NULL)) {
839 		return false;
840 	}
841 
842 	return true;
843 }
844 
845 static inline bool
846 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
847 {
848 	if (spdk_unlikely(!nvme_ns_is_active(nvme_ns))) {
849 		return false;
850 	}
851 
852 	switch (nvme_ns->ana_state) {
853 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
854 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
855 		return true;
856 	default:
857 		break;
858 	}
859 
860 	return false;
861 }
862 
863 static inline bool
864 nvme_qpair_is_connected(struct nvme_qpair *nvme_qpair)
865 {
866 	if (spdk_unlikely(nvme_qpair->qpair == NULL)) {
867 		return false;
868 	}
869 
870 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
871 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
872 		return false;
873 	}
874 
875 	if (spdk_unlikely(nvme_qpair->ctrlr_ch->reset_iter != NULL)) {
876 		return false;
877 	}
878 
879 	return true;
880 }
881 
882 static inline bool
883 nvme_io_path_is_available(struct nvme_io_path *io_path)
884 {
885 	if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
886 		return false;
887 	}
888 
889 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
890 		return false;
891 	}
892 
893 	return true;
894 }
895 
896 static inline bool
897 nvme_ctrlr_is_failed(struct nvme_ctrlr *nvme_ctrlr)
898 {
899 	if (nvme_ctrlr->destruct) {
900 		return true;
901 	}
902 
903 	if (nvme_ctrlr->fast_io_fail_timedout) {
904 		return true;
905 	}
906 
907 	if (nvme_ctrlr->resetting) {
908 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
909 			return false;
910 		} else {
911 			return true;
912 		}
913 	}
914 
915 	if (nvme_ctrlr->reconnect_is_delayed) {
916 		return false;
917 	}
918 
919 	if (nvme_ctrlr->disabled) {
920 		return true;
921 	}
922 
923 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
924 		return true;
925 	} else {
926 		return false;
927 	}
928 }
929 
930 static bool
931 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
932 {
933 	if (nvme_ctrlr->destruct) {
934 		return false;
935 	}
936 
937 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
938 		return false;
939 	}
940 
941 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
942 		return false;
943 	}
944 
945 	if (nvme_ctrlr->disabled) {
946 		return false;
947 	}
948 
949 	return true;
950 }
951 
952 /* Simulate circular linked list. */
953 static inline struct nvme_io_path *
954 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
955 {
956 	struct nvme_io_path *next_path;
957 
958 	if (prev_path != NULL) {
959 		next_path = STAILQ_NEXT(prev_path, stailq);
960 		if (next_path != NULL) {
961 			return next_path;
962 		}
963 	}
964 
965 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
966 }
967 
968 static struct nvme_io_path *
969 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
970 {
971 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
972 
973 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
974 
975 	io_path = start;
976 	do {
977 		if (spdk_likely(nvme_io_path_is_available(io_path))) {
978 			switch (io_path->nvme_ns->ana_state) {
979 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
980 				nbdev_ch->current_io_path = io_path;
981 				return io_path;
982 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
983 				if (non_optimized == NULL) {
984 					non_optimized = io_path;
985 				}
986 				break;
987 			default:
988 				assert(false);
989 				break;
990 			}
991 		}
992 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
993 	} while (io_path != start);
994 
995 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
996 		/* We come here only if there is no optimized path. Cache even non_optimized
997 		 * path for load balance across multiple non_optimized paths.
998 		 */
999 		nbdev_ch->current_io_path = non_optimized;
1000 	}
1001 
1002 	return non_optimized;
1003 }
1004 
1005 static struct nvme_io_path *
1006 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch)
1007 {
1008 	struct nvme_io_path *io_path;
1009 	struct nvme_io_path *optimized = NULL, *non_optimized = NULL;
1010 	uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX;
1011 	uint32_t num_outstanding_reqs;
1012 
1013 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1014 		if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
1015 			/* The device is currently resetting. */
1016 			continue;
1017 		}
1018 
1019 		if (spdk_unlikely(!nvme_ns_is_active(io_path->nvme_ns))) {
1020 			continue;
1021 		}
1022 
1023 		num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair);
1024 		switch (io_path->nvme_ns->ana_state) {
1025 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
1026 			if (num_outstanding_reqs < opt_min_qd) {
1027 				opt_min_qd = num_outstanding_reqs;
1028 				optimized = io_path;
1029 			}
1030 			break;
1031 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1032 			if (num_outstanding_reqs < non_opt_min_qd) {
1033 				non_opt_min_qd = num_outstanding_reqs;
1034 				non_optimized = io_path;
1035 			}
1036 			break;
1037 		default:
1038 			break;
1039 		}
1040 	}
1041 
1042 	/* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */
1043 	if (optimized != NULL) {
1044 		return optimized;
1045 	}
1046 
1047 	return non_optimized;
1048 }
1049 
1050 static inline struct nvme_io_path *
1051 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1052 {
1053 	if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
1054 		if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) {
1055 			return nbdev_ch->current_io_path;
1056 		} else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1057 			if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) {
1058 				return nbdev_ch->current_io_path;
1059 			}
1060 			nbdev_ch->rr_counter = 0;
1061 		}
1062 	}
1063 
1064 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE ||
1065 	    nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1066 		return _bdev_nvme_find_io_path(nbdev_ch);
1067 	} else {
1068 		return _bdev_nvme_find_io_path_min_qd(nbdev_ch);
1069 	}
1070 }
1071 
1072 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
1073  * or false otherwise.
1074  *
1075  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
1076  * is likely to be non-accessible now but may become accessible.
1077  *
1078  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
1079  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
1080  * when starting to reset it but it is set to failed when the reset failed. Hence, if
1081  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
1082  */
1083 static bool
1084 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
1085 {
1086 	struct nvme_io_path *io_path;
1087 
1088 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1089 		if (io_path->nvme_ns->ana_transition_timedout) {
1090 			continue;
1091 		}
1092 
1093 		if (nvme_qpair_is_connected(io_path->qpair) ||
1094 		    !nvme_ctrlr_is_failed(io_path->qpair->ctrlr)) {
1095 			return true;
1096 		}
1097 	}
1098 
1099 	return false;
1100 }
1101 
1102 static void
1103 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
1104 {
1105 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1106 	struct spdk_io_channel *ch;
1107 
1108 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
1109 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
1110 	} else {
1111 		ch = spdk_io_channel_from_ctx(nbdev_ch);
1112 		bdev_nvme_submit_request(ch, bdev_io);
1113 	}
1114 }
1115 
1116 static int
1117 bdev_nvme_retry_ios(void *arg)
1118 {
1119 	struct nvme_bdev_channel *nbdev_ch = arg;
1120 	struct nvme_bdev_io *bio, *tmp_bio;
1121 	uint64_t now, delay_us;
1122 
1123 	now = spdk_get_ticks();
1124 
1125 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1126 		if (bio->retry_ticks > now) {
1127 			break;
1128 		}
1129 
1130 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1131 
1132 		bdev_nvme_retry_io(nbdev_ch, spdk_bdev_io_from_ctx(bio));
1133 	}
1134 
1135 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1136 
1137 	bio = TAILQ_FIRST(&nbdev_ch->retry_io_list);
1138 	if (bio != NULL) {
1139 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
1140 
1141 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1142 					    delay_us);
1143 	}
1144 
1145 	return SPDK_POLLER_BUSY;
1146 }
1147 
1148 static void
1149 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1150 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1151 {
1152 	struct nvme_bdev_io *tmp_bio;
1153 
1154 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1155 
1156 	TAILQ_FOREACH_REVERSE(tmp_bio, &nbdev_ch->retry_io_list, retry_io_head, retry_link) {
1157 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1158 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bio, bio,
1159 					   retry_link);
1160 			return;
1161 		}
1162 	}
1163 
1164 	/* No earlier I/Os were found. This I/O must be the new head. */
1165 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bio, retry_link);
1166 
1167 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1168 
1169 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1170 				    delay_ms * 1000ULL);
1171 }
1172 
1173 static void
1174 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
1175 {
1176 	struct nvme_bdev_io *bio, *tmp_bio;
1177 
1178 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1179 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1180 		__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1181 	}
1182 
1183 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1184 }
1185 
1186 static int
1187 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1188 			 struct nvme_bdev_io *bio_to_abort)
1189 {
1190 	struct nvme_bdev_io *bio;
1191 
1192 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
1193 		if (bio == bio_to_abort) {
1194 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1195 			__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1196 			return 0;
1197 		}
1198 	}
1199 
1200 	return -ENOENT;
1201 }
1202 
1203 static void
1204 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1205 {
1206 	struct nvme_bdev *nbdev;
1207 	uint16_t sct, sc;
1208 
1209 	assert(spdk_nvme_cpl_is_error(cpl));
1210 
1211 	nbdev = bdev_io->bdev->ctxt;
1212 
1213 	if (nbdev->err_stat == NULL) {
1214 		return;
1215 	}
1216 
1217 	sct = cpl->status.sct;
1218 	sc = cpl->status.sc;
1219 
1220 	pthread_mutex_lock(&nbdev->mutex);
1221 
1222 	nbdev->err_stat->status_type[sct]++;
1223 	switch (sct) {
1224 	case SPDK_NVME_SCT_GENERIC:
1225 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1226 	case SPDK_NVME_SCT_MEDIA_ERROR:
1227 	case SPDK_NVME_SCT_PATH:
1228 		nbdev->err_stat->status[sct][sc]++;
1229 		break;
1230 	default:
1231 		break;
1232 	}
1233 
1234 	pthread_mutex_unlock(&nbdev->mutex);
1235 }
1236 
1237 static inline void
1238 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio)
1239 {
1240 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1241 	uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
1242 	uint32_t blocklen = bdev_io->bdev->blocklen;
1243 	struct spdk_bdev_io_stat *stat;
1244 	uint64_t tsc_diff;
1245 
1246 	if (bio->io_path->stat == NULL) {
1247 		return;
1248 	}
1249 
1250 	tsc_diff = spdk_get_ticks() - bio->submit_tsc;
1251 	stat = bio->io_path->stat;
1252 
1253 	switch (bdev_io->type) {
1254 	case SPDK_BDEV_IO_TYPE_READ:
1255 		stat->bytes_read += num_blocks * blocklen;
1256 		stat->num_read_ops++;
1257 		stat->read_latency_ticks += tsc_diff;
1258 		if (stat->max_read_latency_ticks < tsc_diff) {
1259 			stat->max_read_latency_ticks = tsc_diff;
1260 		}
1261 		if (stat->min_read_latency_ticks > tsc_diff) {
1262 			stat->min_read_latency_ticks = tsc_diff;
1263 		}
1264 		break;
1265 	case SPDK_BDEV_IO_TYPE_WRITE:
1266 		stat->bytes_written += num_blocks * blocklen;
1267 		stat->num_write_ops++;
1268 		stat->write_latency_ticks += tsc_diff;
1269 		if (stat->max_write_latency_ticks < tsc_diff) {
1270 			stat->max_write_latency_ticks = tsc_diff;
1271 		}
1272 		if (stat->min_write_latency_ticks > tsc_diff) {
1273 			stat->min_write_latency_ticks = tsc_diff;
1274 		}
1275 		break;
1276 	case SPDK_BDEV_IO_TYPE_UNMAP:
1277 		stat->bytes_unmapped += num_blocks * blocklen;
1278 		stat->num_unmap_ops++;
1279 		stat->unmap_latency_ticks += tsc_diff;
1280 		if (stat->max_unmap_latency_ticks < tsc_diff) {
1281 			stat->max_unmap_latency_ticks = tsc_diff;
1282 		}
1283 		if (stat->min_unmap_latency_ticks > tsc_diff) {
1284 			stat->min_unmap_latency_ticks = tsc_diff;
1285 		}
1286 		break;
1287 	case SPDK_BDEV_IO_TYPE_ZCOPY:
1288 		/* Track the data in the start phase only */
1289 		if (!bdev_io->u.bdev.zcopy.start) {
1290 			break;
1291 		}
1292 		if (bdev_io->u.bdev.zcopy.populate) {
1293 			stat->bytes_read += num_blocks * blocklen;
1294 			stat->num_read_ops++;
1295 			stat->read_latency_ticks += tsc_diff;
1296 			if (stat->max_read_latency_ticks < tsc_diff) {
1297 				stat->max_read_latency_ticks = tsc_diff;
1298 			}
1299 			if (stat->min_read_latency_ticks > tsc_diff) {
1300 				stat->min_read_latency_ticks = tsc_diff;
1301 			}
1302 		} else {
1303 			stat->bytes_written += num_blocks * blocklen;
1304 			stat->num_write_ops++;
1305 			stat->write_latency_ticks += tsc_diff;
1306 			if (stat->max_write_latency_ticks < tsc_diff) {
1307 				stat->max_write_latency_ticks = tsc_diff;
1308 			}
1309 			if (stat->min_write_latency_ticks > tsc_diff) {
1310 				stat->min_write_latency_ticks = tsc_diff;
1311 			}
1312 		}
1313 		break;
1314 	case SPDK_BDEV_IO_TYPE_COPY:
1315 		stat->bytes_copied += num_blocks * blocklen;
1316 		stat->num_copy_ops++;
1317 		stat->copy_latency_ticks += tsc_diff;
1318 		if (stat->max_copy_latency_ticks < tsc_diff) {
1319 			stat->max_copy_latency_ticks = tsc_diff;
1320 		}
1321 		if (stat->min_copy_latency_ticks > tsc_diff) {
1322 			stat->min_copy_latency_ticks = tsc_diff;
1323 		}
1324 		break;
1325 	default:
1326 		break;
1327 	}
1328 }
1329 
1330 static bool
1331 bdev_nvme_check_retry_io(struct nvme_bdev_io *bio,
1332 			 const struct spdk_nvme_cpl *cpl,
1333 			 struct nvme_bdev_channel *nbdev_ch,
1334 			 uint64_t *_delay_ms)
1335 {
1336 	struct nvme_io_path *io_path = bio->io_path;
1337 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1338 	const struct spdk_nvme_ctrlr_data *cdata;
1339 
1340 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1341 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1342 	    !nvme_io_path_is_available(io_path) ||
1343 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1344 		bdev_nvme_clear_current_io_path(nbdev_ch);
1345 		bio->io_path = NULL;
1346 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1347 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1348 				io_path->nvme_ns->ana_state_updating = true;
1349 			}
1350 		}
1351 		if (!any_io_path_may_become_available(nbdev_ch)) {
1352 			return false;
1353 		}
1354 		*_delay_ms = 0;
1355 	} else {
1356 		bio->retry_count++;
1357 
1358 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1359 
1360 		if (cpl->status.crd != 0) {
1361 			*_delay_ms = cdata->crdt[cpl->status.crd] * 100;
1362 		} else {
1363 			*_delay_ms = 0;
1364 		}
1365 	}
1366 
1367 	return true;
1368 }
1369 
1370 static inline void
1371 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1372 				  const struct spdk_nvme_cpl *cpl)
1373 {
1374 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1375 	struct nvme_bdev_channel *nbdev_ch;
1376 	uint64_t delay_ms;
1377 
1378 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1379 
1380 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1381 		bdev_nvme_update_io_path_stat(bio);
1382 		goto complete;
1383 	}
1384 
1385 	/* Update error counts before deciding if retry is needed.
1386 	 * Hence, error counts may be more than the number of I/O errors.
1387 	 */
1388 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1389 
1390 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1391 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1392 		goto complete;
1393 	}
1394 
1395 	/* At this point we don't know whether the sequence was successfully executed or not, so we
1396 	 * cannot retry the IO */
1397 	if (bdev_io->u.bdev.accel_sequence != NULL) {
1398 		goto complete;
1399 	}
1400 
1401 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1402 
1403 	if (bdev_nvme_check_retry_io(bio, cpl, nbdev_ch, &delay_ms)) {
1404 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1405 		return;
1406 	}
1407 
1408 complete:
1409 	bio->retry_count = 0;
1410 	bio->submit_tsc = 0;
1411 	bdev_io->u.bdev.accel_sequence = NULL;
1412 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1413 }
1414 
1415 static inline void
1416 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1417 {
1418 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1419 	struct nvme_bdev_channel *nbdev_ch;
1420 	enum spdk_bdev_io_status io_status;
1421 
1422 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1423 
1424 	switch (rc) {
1425 	case 0:
1426 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1427 		break;
1428 	case -ENOMEM:
1429 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1430 		break;
1431 	case -ENXIO:
1432 		if (g_opts.bdev_retry_count == -1 || bio->retry_count < g_opts.bdev_retry_count) {
1433 			nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1434 
1435 			bdev_nvme_clear_current_io_path(nbdev_ch);
1436 			bio->io_path = NULL;
1437 
1438 			if (any_io_path_may_become_available(nbdev_ch)) {
1439 				bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1440 				return;
1441 			}
1442 		}
1443 
1444 	/* fallthrough */
1445 	default:
1446 		spdk_accel_sequence_abort(bdev_io->u.bdev.accel_sequence);
1447 		bdev_io->u.bdev.accel_sequence = NULL;
1448 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1449 		break;
1450 	}
1451 
1452 	bio->retry_count = 0;
1453 	bio->submit_tsc = 0;
1454 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1455 }
1456 
1457 static inline void
1458 bdev_nvme_admin_complete(struct nvme_bdev_io *bio, int rc)
1459 {
1460 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1461 	enum spdk_bdev_io_status io_status;
1462 
1463 	switch (rc) {
1464 	case 0:
1465 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1466 		break;
1467 	case -ENOMEM:
1468 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1469 		break;
1470 	case -ENXIO:
1471 	/* fallthrough */
1472 	default:
1473 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1474 		break;
1475 	}
1476 
1477 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1478 }
1479 
1480 static void
1481 bdev_nvme_clear_io_path_caches_done(struct spdk_io_channel_iter *i, int status)
1482 {
1483 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
1484 
1485 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1486 
1487 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1488 	nvme_ctrlr->io_path_cache_clearing = false;
1489 
1490 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1491 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1492 		return;
1493 	}
1494 
1495 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1496 
1497 	nvme_ctrlr_unregister(nvme_ctrlr);
1498 }
1499 
1500 static void
1501 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1502 {
1503 	struct nvme_io_path *io_path;
1504 
1505 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1506 		if (io_path->nbdev_ch == NULL) {
1507 			continue;
1508 		}
1509 		bdev_nvme_clear_current_io_path(io_path->nbdev_ch);
1510 	}
1511 }
1512 
1513 static void
1514 bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
1515 {
1516 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1517 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1518 
1519 	assert(ctrlr_ch->qpair != NULL);
1520 
1521 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1522 
1523 	spdk_for_each_channel_continue(i, 0);
1524 }
1525 
1526 static void
1527 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1528 {
1529 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1530 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1531 	    nvme_ctrlr->io_path_cache_clearing) {
1532 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1533 		return;
1534 	}
1535 
1536 	nvme_ctrlr->io_path_cache_clearing = true;
1537 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1538 
1539 	spdk_for_each_channel(nvme_ctrlr,
1540 			      bdev_nvme_clear_io_path_cache,
1541 			      NULL,
1542 			      bdev_nvme_clear_io_path_caches_done);
1543 }
1544 
1545 static struct nvme_qpair *
1546 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1547 {
1548 	struct nvme_qpair *nvme_qpair;
1549 
1550 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1551 		if (nvme_qpair->qpair == qpair) {
1552 			break;
1553 		}
1554 	}
1555 
1556 	return nvme_qpair;
1557 }
1558 
1559 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1560 
1561 static void
1562 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1563 {
1564 	struct nvme_poll_group *group = poll_group_ctx;
1565 	struct nvme_qpair *nvme_qpair;
1566 	struct nvme_ctrlr_channel *ctrlr_ch;
1567 	int status;
1568 
1569 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1570 	if (nvme_qpair == NULL) {
1571 		return;
1572 	}
1573 
1574 	if (nvme_qpair->qpair != NULL) {
1575 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1576 		nvme_qpair->qpair = NULL;
1577 	}
1578 
1579 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1580 
1581 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1582 
1583 	if (ctrlr_ch != NULL) {
1584 		if (ctrlr_ch->reset_iter != NULL) {
1585 			/* We are in a full reset sequence. */
1586 			if (ctrlr_ch->connect_poller != NULL) {
1587 				/* qpair was failed to connect. Abort the reset sequence. */
1588 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was failed to connect. abort the reset ctrlr sequence.\n",
1589 					      qpair);
1590 				spdk_poller_unregister(&ctrlr_ch->connect_poller);
1591 				status = -1;
1592 			} else {
1593 				/* qpair was completed to disconnect. Just move to the next ctrlr_channel. */
1594 				SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1595 					      qpair);
1596 				status = 0;
1597 			}
1598 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, status);
1599 			ctrlr_ch->reset_iter = NULL;
1600 		} else {
1601 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1602 			SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
1603 			bdev_nvme_failover_ctrlr(nvme_qpair->ctrlr);
1604 		}
1605 	} else {
1606 		/* In this case, ctrlr_channel is already deleted. */
1607 		SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
1608 		nvme_qpair_delete(nvme_qpair);
1609 	}
1610 }
1611 
1612 static void
1613 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1614 {
1615 	struct nvme_qpair *nvme_qpair;
1616 
1617 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1618 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1619 			continue;
1620 		}
1621 
1622 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1623 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1624 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1625 		}
1626 	}
1627 }
1628 
1629 static int
1630 bdev_nvme_poll(void *arg)
1631 {
1632 	struct nvme_poll_group *group = arg;
1633 	int64_t num_completions;
1634 
1635 	if (group->collect_spin_stat && group->start_ticks == 0) {
1636 		group->start_ticks = spdk_get_ticks();
1637 	}
1638 
1639 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1640 			  bdev_nvme_disconnected_qpair_cb);
1641 	if (group->collect_spin_stat) {
1642 		if (num_completions > 0) {
1643 			if (group->end_ticks != 0) {
1644 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1645 				group->end_ticks = 0;
1646 			}
1647 			group->start_ticks = 0;
1648 		} else {
1649 			group->end_ticks = spdk_get_ticks();
1650 		}
1651 	}
1652 
1653 	if (spdk_unlikely(num_completions < 0)) {
1654 		bdev_nvme_check_io_qpairs(group);
1655 	}
1656 
1657 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1658 }
1659 
1660 static int bdev_nvme_poll_adminq(void *arg);
1661 
1662 static void
1663 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1664 {
1665 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1666 
1667 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1668 					  nvme_ctrlr, new_period_us);
1669 }
1670 
1671 static int
1672 bdev_nvme_poll_adminq(void *arg)
1673 {
1674 	int32_t rc;
1675 	struct nvme_ctrlr *nvme_ctrlr = arg;
1676 	nvme_ctrlr_disconnected_cb disconnected_cb;
1677 
1678 	assert(nvme_ctrlr != NULL);
1679 
1680 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1681 	if (rc < 0) {
1682 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1683 		nvme_ctrlr->disconnected_cb = NULL;
1684 
1685 		if (disconnected_cb != NULL) {
1686 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1687 							    g_opts.nvme_adminq_poll_period_us);
1688 			disconnected_cb(nvme_ctrlr);
1689 		} else {
1690 			bdev_nvme_failover_ctrlr(nvme_ctrlr);
1691 		}
1692 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1693 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1694 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1695 	}
1696 
1697 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1698 }
1699 
1700 static void
1701 nvme_bdev_free(void *io_device)
1702 {
1703 	struct nvme_bdev *nvme_disk = io_device;
1704 
1705 	pthread_mutex_destroy(&nvme_disk->mutex);
1706 	free(nvme_disk->disk.name);
1707 	free(nvme_disk->err_stat);
1708 	free(nvme_disk);
1709 }
1710 
1711 static int
1712 bdev_nvme_destruct(void *ctx)
1713 {
1714 	struct nvme_bdev *nvme_disk = ctx;
1715 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1716 
1717 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
1718 
1719 	TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
1720 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1721 
1722 		nvme_ns->bdev = NULL;
1723 
1724 		assert(nvme_ns->id > 0);
1725 
1726 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1727 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1728 
1729 			nvme_ctrlr_release(nvme_ns->ctrlr);
1730 			nvme_ns_free(nvme_ns);
1731 		} else {
1732 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1733 		}
1734 	}
1735 
1736 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1737 	TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
1738 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1739 
1740 	spdk_io_device_unregister(nvme_disk, nvme_bdev_free);
1741 
1742 	return 0;
1743 }
1744 
1745 static int
1746 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1747 {
1748 	struct nvme_ctrlr *nvme_ctrlr;
1749 	struct spdk_nvme_io_qpair_opts opts;
1750 	struct spdk_nvme_qpair *qpair;
1751 	int rc;
1752 
1753 	nvme_ctrlr = nvme_qpair->ctrlr;
1754 
1755 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1756 	opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1757 	opts.create_only = true;
1758 	opts.async_mode = true;
1759 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1760 	g_opts.io_queue_requests = opts.io_queue_requests;
1761 
1762 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1763 	if (qpair == NULL) {
1764 		return -1;
1765 	}
1766 
1767 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1768 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1769 
1770 	assert(nvme_qpair->group != NULL);
1771 
1772 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1773 	if (rc != 0) {
1774 		SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
1775 		goto err;
1776 	}
1777 
1778 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1779 	if (rc != 0) {
1780 		SPDK_ERRLOG("Unable to connect I/O qpair.\n");
1781 		goto err;
1782 	}
1783 
1784 	nvme_qpair->qpair = qpair;
1785 
1786 	if (!g_opts.disable_auto_failback) {
1787 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1788 	}
1789 
1790 	return 0;
1791 
1792 err:
1793 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1794 
1795 	return rc;
1796 }
1797 
1798 static void bdev_nvme_reset_io_continue(void *cb_arg, int rc);
1799 
1800 static void
1801 bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
1802 {
1803 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
1804 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
1805 	int rc = 0;
1806 	struct nvme_bdev_io *bio;
1807 
1808 	if (spdk_io_channel_iter_get_ctx(i) != NULL) {
1809 		rc = -1;
1810 	}
1811 
1812 	while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
1813 		bio = TAILQ_FIRST(&ctrlr_ch->pending_resets);
1814 		TAILQ_REMOVE(&ctrlr_ch->pending_resets, bio, retry_link);
1815 
1816 		bdev_nvme_reset_io_continue(bio, rc);
1817 	}
1818 
1819 	spdk_for_each_channel_continue(i, 0);
1820 }
1821 
1822 /* This function marks the current trid as failed by storing the current ticks
1823  * and then sets the next trid to the active trid within a controller if exists.
1824  *
1825  * The purpose of the boolean return value is to request the caller to disconnect
1826  * the current trid now to try connecting the next trid.
1827  */
1828 static bool
1829 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove, bool start)
1830 {
1831 	struct nvme_path_id *path_id, *next_path;
1832 	int rc __attribute__((unused));
1833 
1834 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
1835 	assert(path_id);
1836 	assert(path_id == nvme_ctrlr->active_path_id);
1837 	next_path = TAILQ_NEXT(path_id, link);
1838 
1839 	/* Update the last failed time. It means the trid is failed if its last
1840 	 * failed time is non-zero.
1841 	 */
1842 	path_id->last_failed_tsc = spdk_get_ticks();
1843 
1844 	if (next_path == NULL) {
1845 		/* There is no alternate trid within a controller. */
1846 		return false;
1847 	}
1848 
1849 	if (!start && nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1850 		/* Connect is not retried in a controller reset sequence. Connecting
1851 		 * the next trid will be done by the next bdev_nvme_failover_ctrlr() call.
1852 		 */
1853 		return false;
1854 	}
1855 
1856 	assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
1857 
1858 	SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
1859 		       path_id->trid.trsvcid,	next_path->trid.traddr, next_path->trid.trsvcid);
1860 
1861 	spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
1862 	nvme_ctrlr->active_path_id = next_path;
1863 	rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
1864 	assert(rc == 0);
1865 	TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
1866 	if (!remove) {
1867 		/** Shuffle the old trid to the end of the list and use the new one.
1868 		 * Allows for round robin through multiple connections.
1869 		 */
1870 		TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
1871 	} else {
1872 		free(path_id);
1873 	}
1874 
1875 	if (start || next_path->last_failed_tsc == 0) {
1876 		/* bdev_nvme_failover_ctrlr() is just called or the next trid is not failed
1877 		 * or used yet. Try the next trid now.
1878 		 */
1879 		return true;
1880 	}
1881 
1882 	if (spdk_get_ticks() > next_path->last_failed_tsc + spdk_get_ticks_hz() *
1883 	    nvme_ctrlr->opts.reconnect_delay_sec) {
1884 		/* Enough backoff passed since the next trid failed. Try the next trid now. */
1885 		return true;
1886 	}
1887 
1888 	/* The next trid will be tried after reconnect_delay_sec seconds. */
1889 	return false;
1890 }
1891 
1892 static bool
1893 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
1894 {
1895 	int32_t elapsed;
1896 
1897 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
1898 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
1899 		return false;
1900 	}
1901 
1902 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1903 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
1904 		return true;
1905 	} else {
1906 		return false;
1907 	}
1908 }
1909 
1910 static bool
1911 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
1912 {
1913 	uint32_t elapsed;
1914 
1915 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
1916 		return false;
1917 	}
1918 
1919 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
1920 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
1921 		return true;
1922 	} else {
1923 		return false;
1924 	}
1925 }
1926 
1927 static void bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
1928 
1929 static void
1930 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
1931 {
1932 	int rc;
1933 
1934 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
1935 	if (rc != 0) {
1936 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
1937 		 * fail the reset sequence immediately.
1938 		 */
1939 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
1940 		return;
1941 	}
1942 
1943 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
1944 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
1945 	 */
1946 	assert(nvme_ctrlr->disconnected_cb == NULL);
1947 	nvme_ctrlr->disconnected_cb = cb_fn;
1948 
1949 	/* During disconnection, reduce the period to poll adminq more often. */
1950 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
1951 }
1952 
1953 enum bdev_nvme_op_after_reset {
1954 	OP_NONE,
1955 	OP_COMPLETE_PENDING_DESTRUCT,
1956 	OP_DESTRUCT,
1957 	OP_DELAYED_RECONNECT,
1958 	OP_FAILOVER,
1959 };
1960 
1961 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
1962 
1963 static _bdev_nvme_op_after_reset
1964 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
1965 {
1966 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1967 		/* Complete pending destruct after reset completes. */
1968 		return OP_COMPLETE_PENDING_DESTRUCT;
1969 	} else if (nvme_ctrlr->pending_failover) {
1970 		nvme_ctrlr->pending_failover = false;
1971 		nvme_ctrlr->reset_start_tsc = 0;
1972 		return OP_FAILOVER;
1973 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
1974 		nvme_ctrlr->reset_start_tsc = 0;
1975 		return OP_NONE;
1976 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
1977 		return OP_DESTRUCT;
1978 	} else {
1979 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
1980 			nvme_ctrlr->fast_io_fail_timedout = true;
1981 		}
1982 		return OP_DELAYED_RECONNECT;
1983 	}
1984 }
1985 
1986 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
1987 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
1988 
1989 static int
1990 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
1991 {
1992 	struct nvme_ctrlr *nvme_ctrlr = ctx;
1993 
1994 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
1995 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1996 
1997 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
1998 
1999 	if (!nvme_ctrlr->reconnect_is_delayed) {
2000 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2001 		return SPDK_POLLER_BUSY;
2002 	}
2003 
2004 	nvme_ctrlr->reconnect_is_delayed = false;
2005 
2006 	if (nvme_ctrlr->destruct) {
2007 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2008 		return SPDK_POLLER_BUSY;
2009 	}
2010 
2011 	assert(nvme_ctrlr->resetting == false);
2012 	nvme_ctrlr->resetting = true;
2013 
2014 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2015 
2016 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2017 
2018 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2019 	return SPDK_POLLER_BUSY;
2020 }
2021 
2022 static void
2023 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
2024 {
2025 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2026 
2027 	assert(nvme_ctrlr->reconnect_is_delayed == false);
2028 	nvme_ctrlr->reconnect_is_delayed = true;
2029 
2030 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
2031 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
2032 					    nvme_ctrlr,
2033 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
2034 }
2035 
2036 static void remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr);
2037 
2038 static void
2039 _bdev_nvme_reset_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2040 {
2041 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2042 	bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
2043 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2044 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2045 	enum bdev_nvme_op_after_reset op_after_reset;
2046 
2047 	assert(nvme_ctrlr->thread == spdk_get_thread());
2048 
2049 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2050 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2051 
2052 	if (!success) {
2053 		SPDK_ERRLOG("Resetting controller failed.\n");
2054 	} else {
2055 		SPDK_NOTICELOG("Resetting controller successful.\n");
2056 	}
2057 
2058 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2059 	nvme_ctrlr->resetting = false;
2060 	nvme_ctrlr->dont_retry = false;
2061 	nvme_ctrlr->in_failover = false;
2062 
2063 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
2064 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2065 
2066 	/* Delay callbacks when the next operation is a failover. */
2067 	if (ctrlr_op_cb_fn && op_after_reset != OP_FAILOVER) {
2068 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, success ? 0 : -1);
2069 	}
2070 
2071 	switch (op_after_reset) {
2072 	case OP_COMPLETE_PENDING_DESTRUCT:
2073 		nvme_ctrlr_unregister(nvme_ctrlr);
2074 		break;
2075 	case OP_DESTRUCT:
2076 		bdev_nvme_delete_ctrlr(nvme_ctrlr, false);
2077 		remove_discovery_entry(nvme_ctrlr);
2078 		break;
2079 	case OP_DELAYED_RECONNECT:
2080 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
2081 		break;
2082 	case OP_FAILOVER:
2083 		nvme_ctrlr->ctrlr_op_cb_fn = ctrlr_op_cb_fn;
2084 		nvme_ctrlr->ctrlr_op_cb_arg = ctrlr_op_cb_arg;
2085 		bdev_nvme_failover_ctrlr(nvme_ctrlr);
2086 		break;
2087 	default:
2088 		break;
2089 	}
2090 }
2091 
2092 static void
2093 bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
2094 {
2095 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2096 	if (!success) {
2097 		/* Connecting the active trid failed. Set the next alternate trid to the
2098 		 * active trid if it exists.
2099 		 */
2100 		if (bdev_nvme_failover_trid(nvme_ctrlr, false, false)) {
2101 			/* The next alternate trid exists and is ready to try. Try it now. */
2102 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
2103 
2104 			nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2105 			return;
2106 		}
2107 
2108 		/* We came here if there is no alternate trid or if the next trid exists but
2109 		 * is not ready to try. We will try the active trid after reconnect_delay_sec
2110 		 * seconds if it is non-zero or at the next reset call otherwise.
2111 		 */
2112 	} else {
2113 		/* Connecting the active trid succeeded. Clear the last failed time because it
2114 		 * means the trid is failed if its last failed time is non-zero.
2115 		 */
2116 		nvme_ctrlr->active_path_id->last_failed_tsc = 0;
2117 	}
2118 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2119 
2120 	/* Make sure we clear any pending resets before returning. */
2121 	spdk_for_each_channel(nvme_ctrlr,
2122 			      bdev_nvme_complete_pending_resets,
2123 			      success ? NULL : (void *)0x1,
2124 			      _bdev_nvme_reset_ctrlr_complete);
2125 }
2126 
2127 static void
2128 bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
2129 {
2130 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2131 
2132 	bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2133 }
2134 
2135 static void
2136 bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
2137 {
2138 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
2139 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
2140 	struct nvme_qpair *nvme_qpair;
2141 
2142 	nvme_qpair = ctrlr_ch->qpair;
2143 	assert(nvme_qpair != NULL);
2144 
2145 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2146 
2147 	if (nvme_qpair->qpair != NULL) {
2148 		if (nvme_qpair->ctrlr->dont_retry) {
2149 			spdk_nvme_qpair_set_abort_dnr(nvme_qpair->qpair, true);
2150 		}
2151 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
2152 
2153 		/* The current full reset sequence will move to the next
2154 		 * ctrlr_channel after the qpair is actually disconnected.
2155 		 */
2156 		assert(ctrlr_ch->reset_iter == NULL);
2157 		ctrlr_ch->reset_iter = i;
2158 	} else {
2159 		spdk_for_each_channel_continue(i, 0);
2160 	}
2161 }
2162 
2163 static void
2164 bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
2165 {
2166 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2167 
2168 	if (status == 0) {
2169 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, true);
2170 	} else {
2171 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
2172 		spdk_for_each_channel(nvme_ctrlr,
2173 				      bdev_nvme_reset_destroy_qpair,
2174 				      NULL,
2175 				      bdev_nvme_reset_create_qpairs_failed);
2176 	}
2177 }
2178 
2179 static int
2180 bdev_nvme_reset_check_qpair_connected(void *ctx)
2181 {
2182 	struct nvme_ctrlr_channel *ctrlr_ch = ctx;
2183 
2184 	if (ctrlr_ch->reset_iter == NULL) {
2185 		/* qpair was already failed to connect and the reset sequence is being aborted. */
2186 		assert(ctrlr_ch->connect_poller == NULL);
2187 		assert(ctrlr_ch->qpair->qpair == NULL);
2188 		return SPDK_POLLER_BUSY;
2189 	}
2190 
2191 	assert(ctrlr_ch->qpair->qpair != NULL);
2192 
2193 	if (!spdk_nvme_qpair_is_connected(ctrlr_ch->qpair->qpair)) {
2194 		return SPDK_POLLER_BUSY;
2195 	}
2196 
2197 	spdk_poller_unregister(&ctrlr_ch->connect_poller);
2198 
2199 	/* qpair was completed to connect. Move to the next ctrlr_channel */
2200 	spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2201 	ctrlr_ch->reset_iter = NULL;
2202 
2203 	if (!g_opts.disable_auto_failback) {
2204 		_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
2205 	}
2206 
2207 	return SPDK_POLLER_BUSY;
2208 }
2209 
2210 static void
2211 bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
2212 {
2213 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2214 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
2215 	int rc;
2216 
2217 	rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
2218 	if (rc == 0) {
2219 		ctrlr_ch->connect_poller = SPDK_POLLER_REGISTER(bdev_nvme_reset_check_qpair_connected,
2220 					   ctrlr_ch, 0);
2221 
2222 		/* The current full reset sequence will move to the next
2223 		 * ctrlr_channel after the qpair is actually connected.
2224 		 */
2225 		assert(ctrlr_ch->reset_iter == NULL);
2226 		ctrlr_ch->reset_iter = i;
2227 	} else {
2228 		spdk_for_each_channel_continue(i, rc);
2229 	}
2230 }
2231 
2232 static void
2233 nvme_ctrlr_check_namespaces(struct nvme_ctrlr *nvme_ctrlr)
2234 {
2235 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
2236 	struct nvme_ns *nvme_ns;
2237 
2238 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
2239 	     nvme_ns != NULL;
2240 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
2241 		if (!spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
2242 			SPDK_DEBUGLOG(bdev_nvme, "NSID %u was removed during reset.\n", nvme_ns->id);
2243 			/* NS can be added again. Just nullify nvme_ns->ns. */
2244 			nvme_ns->ns = NULL;
2245 		}
2246 	}
2247 }
2248 
2249 
2250 static int
2251 bdev_nvme_reconnect_ctrlr_poll(void *arg)
2252 {
2253 	struct nvme_ctrlr *nvme_ctrlr = arg;
2254 	int rc = -ETIMEDOUT;
2255 
2256 	if (!bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2257 		rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
2258 		if (rc == -EAGAIN) {
2259 			return SPDK_POLLER_BUSY;
2260 		}
2261 	}
2262 
2263 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
2264 	if (rc == 0) {
2265 		nvme_ctrlr_check_namespaces(nvme_ctrlr);
2266 
2267 		/* Recreate all of the I/O queue pairs */
2268 		spdk_for_each_channel(nvme_ctrlr,
2269 				      bdev_nvme_reset_create_qpair,
2270 				      NULL,
2271 				      bdev_nvme_reset_create_qpairs_done);
2272 	} else {
2273 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2274 	}
2275 	return SPDK_POLLER_BUSY;
2276 }
2277 
2278 static void
2279 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2280 {
2281 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
2282 
2283 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
2284 	assert(nvme_ctrlr->reset_detach_poller == NULL);
2285 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
2286 					  nvme_ctrlr, 0);
2287 }
2288 
2289 static void
2290 bdev_nvme_reset_destroy_qpair_done(struct spdk_io_channel_iter *i, int status)
2291 {
2292 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2293 
2294 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
2295 	assert(status == 0);
2296 
2297 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2298 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2299 	} else {
2300 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2301 	}
2302 }
2303 
2304 static void
2305 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2306 {
2307 	spdk_for_each_channel(nvme_ctrlr,
2308 			      bdev_nvme_reset_destroy_qpair,
2309 			      NULL,
2310 			      bdev_nvme_reset_destroy_qpair_done);
2311 }
2312 
2313 static void
2314 bdev_nvme_reconnect_ctrlr_now(void *ctx)
2315 {
2316 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2317 
2318 	assert(nvme_ctrlr->resetting == true);
2319 	assert(nvme_ctrlr->thread == spdk_get_thread());
2320 
2321 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2322 
2323 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2324 
2325 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2326 }
2327 
2328 static void
2329 _bdev_nvme_reset_ctrlr(void *ctx)
2330 {
2331 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2332 
2333 	assert(nvme_ctrlr->resetting == true);
2334 	assert(nvme_ctrlr->thread == spdk_get_thread());
2335 
2336 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2337 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
2338 	} else {
2339 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
2340 	}
2341 }
2342 
2343 static int
2344 bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2345 {
2346 	spdk_msg_fn msg_fn;
2347 
2348 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2349 	if (nvme_ctrlr->destruct) {
2350 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2351 		return -ENXIO;
2352 	}
2353 
2354 	if (nvme_ctrlr->resetting) {
2355 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2356 		SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
2357 		return -EBUSY;
2358 	}
2359 
2360 	if (nvme_ctrlr->disabled) {
2361 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2362 		SPDK_NOTICELOG("Unable to perform reset. Controller is disabled.\n");
2363 		return -EALREADY;
2364 	}
2365 
2366 	nvme_ctrlr->resetting = true;
2367 	nvme_ctrlr->dont_retry = true;
2368 
2369 	if (nvme_ctrlr->reconnect_is_delayed) {
2370 		SPDK_DEBUGLOG(bdev_nvme, "Reconnect is already scheduled.\n");
2371 		msg_fn = bdev_nvme_reconnect_ctrlr_now;
2372 		nvme_ctrlr->reconnect_is_delayed = false;
2373 	} else {
2374 		msg_fn = _bdev_nvme_reset_ctrlr;
2375 		assert(nvme_ctrlr->reset_start_tsc == 0);
2376 	}
2377 
2378 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2379 
2380 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2381 
2382 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2383 	return 0;
2384 }
2385 
2386 static int
2387 bdev_nvme_enable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2388 {
2389 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2390 	if (nvme_ctrlr->destruct) {
2391 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2392 		return -ENXIO;
2393 	}
2394 
2395 	if (nvme_ctrlr->resetting) {
2396 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2397 		return -EBUSY;
2398 	}
2399 
2400 	if (!nvme_ctrlr->disabled) {
2401 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2402 		return -EALREADY;
2403 	}
2404 
2405 	nvme_ctrlr->disabled = false;
2406 	nvme_ctrlr->resetting = true;
2407 
2408 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2409 
2410 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2411 
2412 	spdk_thread_send_msg(nvme_ctrlr->thread, bdev_nvme_reconnect_ctrlr_now, nvme_ctrlr);
2413 	return 0;
2414 }
2415 
2416 static void
2417 _bdev_nvme_disable_ctrlr_complete(struct spdk_io_channel_iter *i, int status)
2418 {
2419 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2420 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2421 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2422 	enum bdev_nvme_op_after_reset op_after_disable;
2423 
2424 	assert(nvme_ctrlr->thread == spdk_get_thread());
2425 
2426 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2427 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2428 
2429 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2430 
2431 	nvme_ctrlr->resetting = false;
2432 	nvme_ctrlr->dont_retry = false;
2433 
2434 	op_after_disable = bdev_nvme_check_op_after_reset(nvme_ctrlr, true);
2435 
2436 	nvme_ctrlr->disabled = true;
2437 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2438 
2439 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2440 
2441 	if (ctrlr_op_cb_fn) {
2442 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, 0);
2443 	}
2444 
2445 	switch (op_after_disable) {
2446 	case OP_COMPLETE_PENDING_DESTRUCT:
2447 		nvme_ctrlr_unregister(nvme_ctrlr);
2448 		break;
2449 	default:
2450 		break;
2451 	}
2452 
2453 }
2454 
2455 static void
2456 bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr)
2457 {
2458 	/* Make sure we clear any pending resets before returning. */
2459 	spdk_for_each_channel(nvme_ctrlr,
2460 			      bdev_nvme_complete_pending_resets,
2461 			      NULL,
2462 			      _bdev_nvme_disable_ctrlr_complete);
2463 }
2464 
2465 static void
2466 bdev_nvme_disable_destroy_qpairs_done(struct spdk_io_channel_iter *i, int status)
2467 {
2468 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
2469 
2470 	assert(status == 0);
2471 
2472 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2473 		bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2474 	} else {
2475 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_ctrlr_complete);
2476 	}
2477 }
2478 
2479 static void
2480 bdev_nvme_disable_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2481 {
2482 	spdk_for_each_channel(nvme_ctrlr,
2483 			      bdev_nvme_reset_destroy_qpair,
2484 			      NULL,
2485 			      bdev_nvme_disable_destroy_qpairs_done);
2486 }
2487 
2488 static void
2489 _bdev_nvme_cancel_reconnect_and_disable_ctrlr(void *ctx)
2490 {
2491 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2492 
2493 	assert(nvme_ctrlr->resetting == true);
2494 	assert(nvme_ctrlr->thread == spdk_get_thread());
2495 
2496 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2497 
2498 	bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2499 }
2500 
2501 static void
2502 _bdev_nvme_disconnect_and_disable_ctrlr(void *ctx)
2503 {
2504 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2505 
2506 	assert(nvme_ctrlr->resetting == true);
2507 	assert(nvme_ctrlr->thread == spdk_get_thread());
2508 
2509 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2510 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_destroy_qpairs);
2511 	} else {
2512 		bdev_nvme_disable_destroy_qpairs(nvme_ctrlr);
2513 	}
2514 }
2515 
2516 static int
2517 bdev_nvme_disable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2518 {
2519 	spdk_msg_fn msg_fn;
2520 
2521 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2522 	if (nvme_ctrlr->destruct) {
2523 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2524 		return -ENXIO;
2525 	}
2526 
2527 	if (nvme_ctrlr->resetting) {
2528 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2529 		return -EBUSY;
2530 	}
2531 
2532 	if (nvme_ctrlr->disabled) {
2533 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2534 		return -EALREADY;
2535 	}
2536 
2537 	nvme_ctrlr->resetting = true;
2538 	nvme_ctrlr->dont_retry = true;
2539 
2540 	if (nvme_ctrlr->reconnect_is_delayed) {
2541 		msg_fn = _bdev_nvme_cancel_reconnect_and_disable_ctrlr;
2542 		nvme_ctrlr->reconnect_is_delayed = false;
2543 	} else {
2544 		msg_fn = _bdev_nvme_disconnect_and_disable_ctrlr;
2545 	}
2546 
2547 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2548 
2549 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2550 
2551 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2552 	return 0;
2553 }
2554 
2555 static int
2556 nvme_ctrlr_op(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2557 	      bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2558 {
2559 	int rc;
2560 
2561 	switch (op) {
2562 	case NVME_CTRLR_OP_RESET:
2563 		rc = bdev_nvme_reset_ctrlr(nvme_ctrlr);
2564 		break;
2565 	case NVME_CTRLR_OP_ENABLE:
2566 		rc = bdev_nvme_enable_ctrlr(nvme_ctrlr);
2567 		break;
2568 	case NVME_CTRLR_OP_DISABLE:
2569 		rc = bdev_nvme_disable_ctrlr(nvme_ctrlr);
2570 		break;
2571 	default:
2572 		rc = -EINVAL;
2573 		break;
2574 	}
2575 
2576 	if (rc == 0) {
2577 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
2578 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
2579 		nvme_ctrlr->ctrlr_op_cb_fn = cb_fn;
2580 		nvme_ctrlr->ctrlr_op_cb_arg = cb_arg;
2581 	}
2582 	return rc;
2583 }
2584 
2585 struct nvme_ctrlr_op_rpc_ctx {
2586 	struct nvme_ctrlr *nvme_ctrlr;
2587 	struct spdk_thread *orig_thread;
2588 	enum nvme_ctrlr_op op;
2589 	int rc;
2590 	bdev_nvme_ctrlr_op_cb cb_fn;
2591 	void *cb_arg;
2592 };
2593 
2594 static void
2595 _nvme_ctrlr_op_rpc_complete(void *_ctx)
2596 {
2597 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2598 
2599 	assert(ctx != NULL);
2600 	assert(ctx->cb_fn != NULL);
2601 
2602 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2603 
2604 	free(ctx);
2605 }
2606 
2607 static void
2608 nvme_ctrlr_op_rpc_complete(void *cb_arg, int rc)
2609 {
2610 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2611 
2612 	ctx->rc = rc;
2613 
2614 	spdk_thread_send_msg(ctx->orig_thread, _nvme_ctrlr_op_rpc_complete, ctx);
2615 }
2616 
2617 void
2618 nvme_ctrlr_op_rpc(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2619 		  bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2620 {
2621 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2622 	int rc;
2623 
2624 	assert(cb_fn != NULL);
2625 
2626 	ctx = calloc(1, sizeof(*ctx));
2627 	if (ctx == NULL) {
2628 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2629 		cb_fn(cb_arg, -ENOMEM);
2630 		return;
2631 	}
2632 
2633 	ctx->orig_thread = spdk_get_thread();
2634 	ctx->cb_fn = cb_fn;
2635 	ctx->cb_arg = cb_arg;
2636 
2637 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_ctrlr_op_rpc_complete, ctx);
2638 	if (rc == 0) {
2639 		return;
2640 	} else if (rc == -EALREADY) {
2641 		rc = 0;
2642 	}
2643 
2644 	nvme_ctrlr_op_rpc_complete(ctx, rc);
2645 }
2646 
2647 static void nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc);
2648 
2649 static void
2650 _nvme_bdev_ctrlr_op_rpc_continue(void *_ctx)
2651 {
2652 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2653 	struct nvme_ctrlr *prev_nvme_ctrlr, *next_nvme_ctrlr;
2654 	int rc;
2655 
2656 	prev_nvme_ctrlr = ctx->nvme_ctrlr;
2657 	ctx->nvme_ctrlr = NULL;
2658 
2659 	if (ctx->rc != 0) {
2660 		goto complete;
2661 	}
2662 
2663 	next_nvme_ctrlr = TAILQ_NEXT(prev_nvme_ctrlr, tailq);
2664 	if (next_nvme_ctrlr == NULL) {
2665 		goto complete;
2666 	}
2667 
2668 	rc = nvme_ctrlr_op(next_nvme_ctrlr, ctx->op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2669 	if (rc == 0) {
2670 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2671 		return;
2672 	} else if (rc == -EALREADY) {
2673 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2674 		rc = 0;
2675 	}
2676 
2677 	ctx->rc = rc;
2678 
2679 complete:
2680 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2681 	free(ctx);
2682 }
2683 
2684 static void
2685 nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc)
2686 {
2687 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2688 
2689 	ctx->rc = rc;
2690 
2691 	spdk_thread_send_msg(ctx->orig_thread, _nvme_bdev_ctrlr_op_rpc_continue, ctx);
2692 }
2693 
2694 void
2695 nvme_bdev_ctrlr_op_rpc(struct nvme_bdev_ctrlr *nbdev_ctrlr, enum nvme_ctrlr_op op,
2696 		       bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2697 {
2698 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2699 	struct nvme_ctrlr *nvme_ctrlr;
2700 	int rc;
2701 
2702 	assert(cb_fn != NULL);
2703 
2704 	ctx = calloc(1, sizeof(*ctx));
2705 	if (ctx == NULL) {
2706 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2707 		cb_fn(cb_arg, -ENOMEM);
2708 		return;
2709 	}
2710 
2711 	ctx->orig_thread = spdk_get_thread();
2712 	ctx->op = op;
2713 	ctx->cb_fn = cb_fn;
2714 	ctx->cb_arg = cb_arg;
2715 
2716 	nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
2717 	assert(nvme_ctrlr != NULL);
2718 
2719 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2720 	if (rc == 0) {
2721 		ctx->nvme_ctrlr = nvme_ctrlr;
2722 		return;
2723 	} else if (rc == -EALREADY) {
2724 		ctx->nvme_ctrlr = nvme_ctrlr;
2725 		rc = 0;
2726 	}
2727 
2728 	nvme_bdev_ctrlr_op_rpc_continue(ctx, rc);
2729 }
2730 
2731 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
2732 
2733 static void
2734 _bdev_nvme_reset_io_complete(struct spdk_io_channel_iter *i, int status)
2735 {
2736 	struct nvme_bdev_io *bio = spdk_io_channel_iter_get_ctx(i);
2737 	enum spdk_bdev_io_status io_status;
2738 
2739 	if (bio->cpl.cdw0 == 0) {
2740 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2741 	} else {
2742 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
2743 	}
2744 
2745 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
2746 }
2747 
2748 static void
2749 bdev_nvme_abort_bdev_channel(struct spdk_io_channel_iter *i)
2750 {
2751 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
2752 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
2753 
2754 	bdev_nvme_abort_retry_ios(nbdev_ch);
2755 
2756 	spdk_for_each_channel_continue(i, 0);
2757 }
2758 
2759 static void
2760 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
2761 {
2762 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2763 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
2764 
2765 	/* Abort all queued I/Os for retry. */
2766 	spdk_for_each_channel(nbdev,
2767 			      bdev_nvme_abort_bdev_channel,
2768 			      bio,
2769 			      _bdev_nvme_reset_io_complete);
2770 }
2771 
2772 static void
2773 _bdev_nvme_reset_io_continue(void *ctx)
2774 {
2775 	struct nvme_bdev_io *bio = ctx;
2776 	struct nvme_io_path *prev_io_path, *next_io_path;
2777 	int rc;
2778 
2779 	prev_io_path = bio->io_path;
2780 	bio->io_path = NULL;
2781 
2782 	if (bio->cpl.cdw0 != 0) {
2783 		goto complete;
2784 	}
2785 
2786 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
2787 	if (next_io_path == NULL) {
2788 		goto complete;
2789 	}
2790 
2791 	rc = _bdev_nvme_reset_io(next_io_path, bio);
2792 	if (rc == 0) {
2793 		return;
2794 	}
2795 
2796 	bio->cpl.cdw0 = 1;
2797 
2798 complete:
2799 	bdev_nvme_reset_io_complete(bio);
2800 }
2801 
2802 static void
2803 bdev_nvme_reset_io_continue(void *cb_arg, int rc)
2804 {
2805 	struct nvme_bdev_io *bio = cb_arg;
2806 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
2807 
2808 	bio->cpl.cdw0 = (rc == 0) ? 0 : 1;
2809 
2810 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_nvme_reset_io_continue, bio);
2811 }
2812 
2813 static int
2814 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
2815 {
2816 	struct nvme_ctrlr_channel *ctrlr_ch;
2817 	int rc;
2818 
2819 	rc = nvme_ctrlr_op(io_path->qpair->ctrlr, NVME_CTRLR_OP_RESET,
2820 			   bdev_nvme_reset_io_continue, bio);
2821 	if (rc != 0 && rc != -EBUSY) {
2822 		return rc;
2823 	}
2824 
2825 	assert(bio->io_path == NULL);
2826 	bio->io_path = io_path;
2827 
2828 	if (rc == -EBUSY) {
2829 		ctrlr_ch = io_path->qpair->ctrlr_ch;
2830 		assert(ctrlr_ch != NULL);
2831 		/*
2832 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
2833 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
2834 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
2835 		 */
2836 		TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bio, retry_link);
2837 	}
2838 
2839 	return 0;
2840 }
2841 
2842 static void
2843 bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
2844 {
2845 	struct nvme_io_path *io_path;
2846 	int rc;
2847 
2848 	bio->cpl.cdw0 = 0;
2849 
2850 	/* Reset all nvme_ctrlrs of a bdev controller sequentially. */
2851 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
2852 	assert(io_path != NULL);
2853 
2854 	rc = _bdev_nvme_reset_io(io_path, bio);
2855 	if (rc != 0) {
2856 		/* If the current nvme_ctrlr is disabled, skip it and move to the next nvme_ctrlr. */
2857 		rc = (rc == -EALREADY) ? 0 : rc;
2858 
2859 		bdev_nvme_reset_io_continue(bio, rc);
2860 	}
2861 }
2862 
2863 static int
2864 bdev_nvme_failover_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove)
2865 {
2866 	if (nvme_ctrlr->destruct) {
2867 		/* Don't bother resetting if the controller is in the process of being destructed. */
2868 		return -ENXIO;
2869 	}
2870 
2871 	if (nvme_ctrlr->resetting) {
2872 		if (!nvme_ctrlr->in_failover) {
2873 			SPDK_NOTICELOG("Reset is already in progress. Defer failover until reset completes.\n");
2874 
2875 			/* Defer failover until reset completes. */
2876 			nvme_ctrlr->pending_failover = true;
2877 			return -EINPROGRESS;
2878 		} else {
2879 			SPDK_NOTICELOG("Unable to perform failover, already in progress.\n");
2880 			return -EBUSY;
2881 		}
2882 	}
2883 
2884 	bdev_nvme_failover_trid(nvme_ctrlr, remove, true);
2885 
2886 	if (nvme_ctrlr->reconnect_is_delayed) {
2887 		SPDK_NOTICELOG("Reconnect is already scheduled.\n");
2888 
2889 		/* We rely on the next reconnect for the failover. */
2890 		return -EALREADY;
2891 	}
2892 
2893 	if (nvme_ctrlr->disabled) {
2894 		SPDK_NOTICELOG("Controller is disabled.\n");
2895 
2896 		/* We rely on the enablement for the failover. */
2897 		return -EALREADY;
2898 	}
2899 
2900 	nvme_ctrlr->resetting = true;
2901 	nvme_ctrlr->in_failover = true;
2902 
2903 	assert(nvme_ctrlr->reset_start_tsc == 0);
2904 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2905 
2906 	return 0;
2907 }
2908 
2909 static int
2910 bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2911 {
2912 	int rc;
2913 
2914 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2915 	rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, false);
2916 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2917 
2918 	if (rc == 0) {
2919 		spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset_ctrlr, nvme_ctrlr);
2920 	} else if (rc == -EALREADY) {
2921 		rc = 0;
2922 	}
2923 
2924 	return rc;
2925 }
2926 
2927 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2928 			   uint64_t num_blocks);
2929 
2930 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
2931 				  uint64_t num_blocks);
2932 
2933 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
2934 			  uint64_t src_offset_blocks,
2935 			  uint64_t num_blocks);
2936 
2937 static void
2938 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
2939 		     bool success)
2940 {
2941 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2942 	int ret;
2943 
2944 	if (!success) {
2945 		ret = -EINVAL;
2946 		goto exit;
2947 	}
2948 
2949 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
2950 		ret = -ENXIO;
2951 		goto exit;
2952 	}
2953 
2954 	ret = bdev_nvme_readv(bio,
2955 			      bdev_io->u.bdev.iovs,
2956 			      bdev_io->u.bdev.iovcnt,
2957 			      bdev_io->u.bdev.md_buf,
2958 			      bdev_io->u.bdev.num_blocks,
2959 			      bdev_io->u.bdev.offset_blocks,
2960 			      bdev_io->u.bdev.dif_check_flags,
2961 			      bdev_io->u.bdev.memory_domain,
2962 			      bdev_io->u.bdev.memory_domain_ctx,
2963 			      bdev_io->u.bdev.accel_sequence);
2964 
2965 exit:
2966 	if (spdk_unlikely(ret != 0)) {
2967 		bdev_nvme_io_complete(bio, ret);
2968 	}
2969 }
2970 
2971 static inline void
2972 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
2973 {
2974 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
2975 	struct spdk_bdev *bdev = bdev_io->bdev;
2976 	struct nvme_bdev_io *nbdev_io_to_abort;
2977 	int rc = 0;
2978 
2979 	switch (bdev_io->type) {
2980 	case SPDK_BDEV_IO_TYPE_READ:
2981 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
2982 
2983 			rc = bdev_nvme_readv(nbdev_io,
2984 					     bdev_io->u.bdev.iovs,
2985 					     bdev_io->u.bdev.iovcnt,
2986 					     bdev_io->u.bdev.md_buf,
2987 					     bdev_io->u.bdev.num_blocks,
2988 					     bdev_io->u.bdev.offset_blocks,
2989 					     bdev_io->u.bdev.dif_check_flags,
2990 					     bdev_io->u.bdev.memory_domain,
2991 					     bdev_io->u.bdev.memory_domain_ctx,
2992 					     bdev_io->u.bdev.accel_sequence);
2993 		} else {
2994 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
2995 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
2996 			rc = 0;
2997 		}
2998 		break;
2999 	case SPDK_BDEV_IO_TYPE_WRITE:
3000 		rc = bdev_nvme_writev(nbdev_io,
3001 				      bdev_io->u.bdev.iovs,
3002 				      bdev_io->u.bdev.iovcnt,
3003 				      bdev_io->u.bdev.md_buf,
3004 				      bdev_io->u.bdev.num_blocks,
3005 				      bdev_io->u.bdev.offset_blocks,
3006 				      bdev_io->u.bdev.dif_check_flags,
3007 				      bdev_io->u.bdev.memory_domain,
3008 				      bdev_io->u.bdev.memory_domain_ctx,
3009 				      bdev_io->u.bdev.accel_sequence,
3010 				      bdev_io->u.bdev.nvme_cdw12,
3011 				      bdev_io->u.bdev.nvme_cdw13);
3012 		break;
3013 	case SPDK_BDEV_IO_TYPE_COMPARE:
3014 		rc = bdev_nvme_comparev(nbdev_io,
3015 					bdev_io->u.bdev.iovs,
3016 					bdev_io->u.bdev.iovcnt,
3017 					bdev_io->u.bdev.md_buf,
3018 					bdev_io->u.bdev.num_blocks,
3019 					bdev_io->u.bdev.offset_blocks,
3020 					bdev_io->u.bdev.dif_check_flags);
3021 		break;
3022 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3023 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
3024 						   bdev_io->u.bdev.iovs,
3025 						   bdev_io->u.bdev.iovcnt,
3026 						   bdev_io->u.bdev.fused_iovs,
3027 						   bdev_io->u.bdev.fused_iovcnt,
3028 						   bdev_io->u.bdev.md_buf,
3029 						   bdev_io->u.bdev.num_blocks,
3030 						   bdev_io->u.bdev.offset_blocks,
3031 						   bdev_io->u.bdev.dif_check_flags);
3032 		break;
3033 	case SPDK_BDEV_IO_TYPE_UNMAP:
3034 		rc = bdev_nvme_unmap(nbdev_io,
3035 				     bdev_io->u.bdev.offset_blocks,
3036 				     bdev_io->u.bdev.num_blocks);
3037 		break;
3038 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3039 		rc =  bdev_nvme_write_zeroes(nbdev_io,
3040 					     bdev_io->u.bdev.offset_blocks,
3041 					     bdev_io->u.bdev.num_blocks);
3042 		break;
3043 	case SPDK_BDEV_IO_TYPE_RESET:
3044 		nbdev_io->io_path = NULL;
3045 		bdev_nvme_reset_io(nbdev_ch, nbdev_io);
3046 		return;
3047 
3048 	case SPDK_BDEV_IO_TYPE_FLUSH:
3049 		bdev_nvme_io_complete(nbdev_io, 0);
3050 		return;
3051 
3052 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3053 		rc = bdev_nvme_zone_appendv(nbdev_io,
3054 					    bdev_io->u.bdev.iovs,
3055 					    bdev_io->u.bdev.iovcnt,
3056 					    bdev_io->u.bdev.md_buf,
3057 					    bdev_io->u.bdev.num_blocks,
3058 					    bdev_io->u.bdev.offset_blocks,
3059 					    bdev_io->u.bdev.dif_check_flags);
3060 		break;
3061 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3062 		rc = bdev_nvme_get_zone_info(nbdev_io,
3063 					     bdev_io->u.zone_mgmt.zone_id,
3064 					     bdev_io->u.zone_mgmt.num_zones,
3065 					     bdev_io->u.zone_mgmt.buf);
3066 		break;
3067 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3068 		rc = bdev_nvme_zone_management(nbdev_io,
3069 					       bdev_io->u.zone_mgmt.zone_id,
3070 					       bdev_io->u.zone_mgmt.zone_action);
3071 		break;
3072 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3073 		nbdev_io->io_path = NULL;
3074 		bdev_nvme_admin_passthru(nbdev_ch,
3075 					 nbdev_io,
3076 					 &bdev_io->u.nvme_passthru.cmd,
3077 					 bdev_io->u.nvme_passthru.buf,
3078 					 bdev_io->u.nvme_passthru.nbytes);
3079 		return;
3080 
3081 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3082 		rc = bdev_nvme_io_passthru(nbdev_io,
3083 					   &bdev_io->u.nvme_passthru.cmd,
3084 					   bdev_io->u.nvme_passthru.buf,
3085 					   bdev_io->u.nvme_passthru.nbytes);
3086 		break;
3087 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3088 		rc = bdev_nvme_io_passthru_md(nbdev_io,
3089 					      &bdev_io->u.nvme_passthru.cmd,
3090 					      bdev_io->u.nvme_passthru.buf,
3091 					      bdev_io->u.nvme_passthru.nbytes,
3092 					      bdev_io->u.nvme_passthru.md_buf,
3093 					      bdev_io->u.nvme_passthru.md_len);
3094 		break;
3095 	case SPDK_BDEV_IO_TYPE_NVME_IOV_MD:
3096 		rc = bdev_nvme_iov_passthru_md(nbdev_io,
3097 					       &bdev_io->u.nvme_passthru.cmd,
3098 					       bdev_io->u.nvme_passthru.iovs,
3099 					       bdev_io->u.nvme_passthru.iovcnt,
3100 					       bdev_io->u.nvme_passthru.nbytes,
3101 					       bdev_io->u.nvme_passthru.md_buf,
3102 					       bdev_io->u.nvme_passthru.md_len);
3103 		break;
3104 	case SPDK_BDEV_IO_TYPE_ABORT:
3105 		nbdev_io->io_path = NULL;
3106 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
3107 		bdev_nvme_abort(nbdev_ch,
3108 				nbdev_io,
3109 				nbdev_io_to_abort);
3110 		return;
3111 
3112 	case SPDK_BDEV_IO_TYPE_COPY:
3113 		rc = bdev_nvme_copy(nbdev_io,
3114 				    bdev_io->u.bdev.offset_blocks,
3115 				    bdev_io->u.bdev.copy.src_offset_blocks,
3116 				    bdev_io->u.bdev.num_blocks);
3117 		break;
3118 	default:
3119 		rc = -EINVAL;
3120 		break;
3121 	}
3122 
3123 	if (spdk_unlikely(rc != 0)) {
3124 		bdev_nvme_io_complete(nbdev_io, rc);
3125 	}
3126 }
3127 
3128 static void
3129 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
3130 {
3131 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3132 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3133 
3134 	if (spdk_likely(nbdev_io->submit_tsc == 0)) {
3135 		nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io);
3136 	} else {
3137 		/* There are cases where submit_tsc != 0, i.e. retry I/O.
3138 		 * We need to update submit_tsc here.
3139 		 */
3140 		nbdev_io->submit_tsc = spdk_get_ticks();
3141 	}
3142 
3143 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
3144 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
3145 	if (spdk_unlikely(!nbdev_io->io_path)) {
3146 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
3147 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
3148 			return;
3149 		}
3150 
3151 		/* Admin commands do not use the optimal I/O path.
3152 		 * Simply fall through even if it is not found.
3153 		 */
3154 	}
3155 
3156 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
3157 }
3158 
3159 static bool
3160 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
3161 {
3162 	struct nvme_bdev *nbdev = ctx;
3163 	struct nvme_ns *nvme_ns;
3164 	struct spdk_nvme_ns *ns;
3165 	struct spdk_nvme_ctrlr *ctrlr;
3166 	const struct spdk_nvme_ctrlr_data *cdata;
3167 
3168 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3169 	assert(nvme_ns != NULL);
3170 	ns = nvme_ns->ns;
3171 	if (ns == NULL) {
3172 		return false;
3173 	}
3174 
3175 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3176 
3177 	switch (io_type) {
3178 	case SPDK_BDEV_IO_TYPE_READ:
3179 	case SPDK_BDEV_IO_TYPE_WRITE:
3180 	case SPDK_BDEV_IO_TYPE_RESET:
3181 	case SPDK_BDEV_IO_TYPE_FLUSH:
3182 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3183 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3184 	case SPDK_BDEV_IO_TYPE_ABORT:
3185 		return true;
3186 
3187 	case SPDK_BDEV_IO_TYPE_COMPARE:
3188 		return spdk_nvme_ns_supports_compare(ns);
3189 
3190 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3191 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
3192 
3193 	case SPDK_BDEV_IO_TYPE_UNMAP:
3194 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3195 		return cdata->oncs.dsm;
3196 
3197 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3198 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3199 		return cdata->oncs.write_zeroes;
3200 
3201 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3202 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
3203 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
3204 			return true;
3205 		}
3206 		return false;
3207 
3208 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3209 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3210 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
3211 
3212 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3213 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
3214 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
3215 
3216 	case SPDK_BDEV_IO_TYPE_COPY:
3217 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3218 		return cdata->oncs.copy;
3219 
3220 	default:
3221 		return false;
3222 	}
3223 }
3224 
3225 static int
3226 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
3227 {
3228 	struct nvme_qpair *nvme_qpair;
3229 	struct spdk_io_channel *pg_ch;
3230 	int rc;
3231 
3232 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
3233 	if (!nvme_qpair) {
3234 		SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
3235 		return -1;
3236 	}
3237 
3238 	TAILQ_INIT(&nvme_qpair->io_path_list);
3239 
3240 	nvme_qpair->ctrlr = nvme_ctrlr;
3241 	nvme_qpair->ctrlr_ch = ctrlr_ch;
3242 
3243 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
3244 	if (!pg_ch) {
3245 		free(nvme_qpair);
3246 		return -1;
3247 	}
3248 
3249 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
3250 
3251 #ifdef SPDK_CONFIG_VTUNE
3252 	nvme_qpair->group->collect_spin_stat = true;
3253 #else
3254 	nvme_qpair->group->collect_spin_stat = false;
3255 #endif
3256 
3257 	if (!nvme_ctrlr->disabled) {
3258 		/* If a nvme_ctrlr is disabled, don't try to create qpair for it. Qpair will
3259 		 * be created when it's enabled.
3260 		 */
3261 		rc = bdev_nvme_create_qpair(nvme_qpair);
3262 		if (rc != 0) {
3263 			/* nvme_ctrlr can't create IO qpair if connection is down.
3264 			 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
3265 			 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
3266 			 * submitted IO will be queued until IO qpair is successfully created.
3267 			 *
3268 			 * Hence, if both are satisfied, ignore the failure.
3269 			 */
3270 			if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
3271 				spdk_put_io_channel(pg_ch);
3272 				free(nvme_qpair);
3273 				return rc;
3274 			}
3275 		}
3276 	}
3277 
3278 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3279 
3280 	ctrlr_ch->qpair = nvme_qpair;
3281 
3282 	pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
3283 	nvme_qpair->ctrlr->ref++;
3284 	pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
3285 
3286 	return 0;
3287 }
3288 
3289 static int
3290 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3291 {
3292 	struct nvme_ctrlr *nvme_ctrlr = io_device;
3293 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3294 
3295 	TAILQ_INIT(&ctrlr_ch->pending_resets);
3296 
3297 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
3298 }
3299 
3300 static void
3301 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
3302 {
3303 	struct nvme_io_path *io_path, *next;
3304 
3305 	assert(nvme_qpair->group != NULL);
3306 
3307 	TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) {
3308 		TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
3309 		nvme_io_path_free(io_path);
3310 	}
3311 
3312 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3313 
3314 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
3315 
3316 	nvme_ctrlr_release(nvme_qpair->ctrlr);
3317 
3318 	free(nvme_qpair);
3319 }
3320 
3321 static void
3322 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3323 {
3324 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3325 	struct nvme_qpair *nvme_qpair;
3326 
3327 	nvme_qpair = ctrlr_ch->qpair;
3328 	assert(nvme_qpair != NULL);
3329 
3330 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
3331 
3332 	if (nvme_qpair->qpair != NULL) {
3333 		if (ctrlr_ch->reset_iter == NULL) {
3334 			spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
3335 		} else {
3336 			/* Skip current ctrlr_channel in a full reset sequence because
3337 			 * it is being deleted now. The qpair is already being disconnected.
3338 			 * We do not have to restart disconnecting it.
3339 			 */
3340 			spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
3341 		}
3342 
3343 		/* We cannot release a reference to the poll group now.
3344 		 * The qpair may be disconnected asynchronously later.
3345 		 * We need to poll it until it is actually disconnected.
3346 		 * Just detach the qpair from the deleting ctrlr_channel.
3347 		 */
3348 		nvme_qpair->ctrlr_ch = NULL;
3349 	} else {
3350 		assert(ctrlr_ch->reset_iter == NULL);
3351 
3352 		nvme_qpair_delete(nvme_qpair);
3353 	}
3354 }
3355 
3356 static inline struct spdk_io_channel *
3357 bdev_nvme_get_accel_channel(struct nvme_poll_group *group)
3358 {
3359 	if (spdk_unlikely(!group->accel_channel)) {
3360 		group->accel_channel = spdk_accel_get_io_channel();
3361 		if (!group->accel_channel) {
3362 			SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
3363 				    group);
3364 			return NULL;
3365 		}
3366 	}
3367 
3368 	return group->accel_channel;
3369 }
3370 
3371 static void
3372 bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
3373 			      uint32_t iov_cnt, uint32_t seed,
3374 			      spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3375 {
3376 	struct spdk_io_channel *accel_ch;
3377 	struct nvme_poll_group *group = ctx;
3378 	int rc;
3379 
3380 	assert(cb_fn != NULL);
3381 
3382 	accel_ch = bdev_nvme_get_accel_channel(group);
3383 	if (spdk_unlikely(accel_ch == NULL)) {
3384 		cb_fn(cb_arg, -ENOMEM);
3385 		return;
3386 	}
3387 
3388 	rc = spdk_accel_submit_crc32cv(accel_ch, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
3389 	if (rc) {
3390 		/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
3391 		if (rc == -ENOMEM || rc == -EINVAL) {
3392 			cb_fn(cb_arg, rc);
3393 		}
3394 		SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
3395 	}
3396 }
3397 
3398 static void
3399 bdev_nvme_finish_sequence(void *seq, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3400 {
3401 	spdk_accel_sequence_finish(seq, cb_fn, cb_arg);
3402 }
3403 
3404 static void
3405 bdev_nvme_abort_sequence(void *seq)
3406 {
3407 	spdk_accel_sequence_abort(seq);
3408 }
3409 
3410 static void
3411 bdev_nvme_reverse_sequence(void *seq)
3412 {
3413 	spdk_accel_sequence_reverse(seq);
3414 }
3415 
3416 static int
3417 bdev_nvme_append_crc32c(void *ctx, void **seq, uint32_t *dst, struct iovec *iovs, uint32_t iovcnt,
3418 			struct spdk_memory_domain *domain, void *domain_ctx, uint32_t seed,
3419 			spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3420 {
3421 	struct spdk_io_channel *ch;
3422 	struct nvme_poll_group *group = ctx;
3423 
3424 	ch = bdev_nvme_get_accel_channel(group);
3425 	if (spdk_unlikely(ch == NULL)) {
3426 		return -ENOMEM;
3427 	}
3428 
3429 	return spdk_accel_append_crc32c((struct spdk_accel_sequence **)seq, ch, dst, iovs, iovcnt,
3430 					domain, domain_ctx, seed, cb_fn, cb_arg);
3431 }
3432 
3433 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
3434 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
3435 	.submit_accel_crc32c	= bdev_nvme_submit_accel_crc32c,
3436 	.append_crc32c		= bdev_nvme_append_crc32c,
3437 	.finish_sequence	= bdev_nvme_finish_sequence,
3438 	.reverse_sequence	= bdev_nvme_reverse_sequence,
3439 	.abort_sequence		= bdev_nvme_abort_sequence,
3440 };
3441 
3442 static int
3443 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
3444 {
3445 	struct nvme_poll_group *group = ctx_buf;
3446 
3447 	TAILQ_INIT(&group->qpair_list);
3448 
3449 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
3450 	if (group->group == NULL) {
3451 		return -1;
3452 	}
3453 
3454 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
3455 
3456 	if (group->poller == NULL) {
3457 		spdk_nvme_poll_group_destroy(group->group);
3458 		return -1;
3459 	}
3460 
3461 	return 0;
3462 }
3463 
3464 static void
3465 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
3466 {
3467 	struct nvme_poll_group *group = ctx_buf;
3468 
3469 	assert(TAILQ_EMPTY(&group->qpair_list));
3470 
3471 	if (group->accel_channel) {
3472 		spdk_put_io_channel(group->accel_channel);
3473 	}
3474 
3475 	spdk_poller_unregister(&group->poller);
3476 	if (spdk_nvme_poll_group_destroy(group->group)) {
3477 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
3478 		assert(false);
3479 	}
3480 }
3481 
3482 static struct spdk_io_channel *
3483 bdev_nvme_get_io_channel(void *ctx)
3484 {
3485 	struct nvme_bdev *nvme_bdev = ctx;
3486 
3487 	return spdk_get_io_channel(nvme_bdev);
3488 }
3489 
3490 static void *
3491 bdev_nvme_get_module_ctx(void *ctx)
3492 {
3493 	struct nvme_bdev *nvme_bdev = ctx;
3494 	struct nvme_ns *nvme_ns;
3495 
3496 	if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
3497 		return NULL;
3498 	}
3499 
3500 	nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
3501 	if (!nvme_ns) {
3502 		return NULL;
3503 	}
3504 
3505 	return nvme_ns->ns;
3506 }
3507 
3508 static const char *
3509 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
3510 {
3511 	switch (ana_state) {
3512 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3513 		return "optimized";
3514 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3515 		return "non_optimized";
3516 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3517 		return "inaccessible";
3518 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
3519 		return "persistent_loss";
3520 	case SPDK_NVME_ANA_CHANGE_STATE:
3521 		return "change";
3522 	default:
3523 		return NULL;
3524 	}
3525 }
3526 
3527 static int
3528 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
3529 {
3530 	struct spdk_memory_domain **_domains = NULL;
3531 	struct nvme_bdev *nbdev = ctx;
3532 	struct nvme_ns *nvme_ns;
3533 	int i = 0, _array_size = array_size;
3534 	int rc = 0;
3535 
3536 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3537 		if (domains && array_size >= i) {
3538 			_domains = &domains[i];
3539 		} else {
3540 			_domains = NULL;
3541 		}
3542 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
3543 		if (rc > 0) {
3544 			i += rc;
3545 			if (_array_size >= rc) {
3546 				_array_size -= rc;
3547 			} else {
3548 				_array_size = 0;
3549 			}
3550 		} else if (rc < 0) {
3551 			return rc;
3552 		}
3553 	}
3554 
3555 	return i;
3556 }
3557 
3558 static const char *
3559 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
3560 {
3561 	if (nvme_ctrlr->destruct) {
3562 		return "deleting";
3563 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
3564 		return "failed";
3565 	} else if (nvme_ctrlr->resetting) {
3566 		return "resetting";
3567 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
3568 		return "reconnect_is_delayed";
3569 	} else if (nvme_ctrlr->disabled) {
3570 		return "disabled";
3571 	} else {
3572 		return "enabled";
3573 	}
3574 }
3575 
3576 void
3577 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
3578 {
3579 	struct spdk_nvme_transport_id *trid;
3580 	const struct spdk_nvme_ctrlr_opts *opts;
3581 	const struct spdk_nvme_ctrlr_data *cdata;
3582 	struct nvme_path_id *path_id;
3583 
3584 	spdk_json_write_object_begin(w);
3585 
3586 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
3587 
3588 #ifdef SPDK_CONFIG_NVME_CUSE
3589 	size_t cuse_name_size = 128;
3590 	char cuse_name[cuse_name_size];
3591 
3592 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
3593 	if (rc == 0) {
3594 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3595 	}
3596 #endif
3597 	trid = &nvme_ctrlr->active_path_id->trid;
3598 	spdk_json_write_named_object_begin(w, "trid");
3599 	nvme_bdev_dump_trid_json(trid, w);
3600 	spdk_json_write_object_end(w);
3601 
3602 	path_id = TAILQ_NEXT(nvme_ctrlr->active_path_id, link);
3603 	if (path_id != NULL) {
3604 		spdk_json_write_named_array_begin(w, "alternate_trids");
3605 		do {
3606 			trid = &path_id->trid;
3607 			spdk_json_write_object_begin(w);
3608 			nvme_bdev_dump_trid_json(trid, w);
3609 			spdk_json_write_object_end(w);
3610 
3611 			path_id = TAILQ_NEXT(path_id, link);
3612 		} while (path_id != NULL);
3613 		spdk_json_write_array_end(w);
3614 	}
3615 
3616 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
3617 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3618 
3619 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
3620 	spdk_json_write_named_object_begin(w, "host");
3621 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
3622 	spdk_json_write_named_string(w, "addr", opts->src_addr);
3623 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
3624 	spdk_json_write_object_end(w);
3625 
3626 	spdk_json_write_object_end(w);
3627 }
3628 
3629 static void
3630 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
3631 			 struct nvme_ns *nvme_ns)
3632 {
3633 	struct spdk_nvme_ns *ns;
3634 	struct spdk_nvme_ctrlr *ctrlr;
3635 	const struct spdk_nvme_ctrlr_data *cdata;
3636 	const struct spdk_nvme_transport_id *trid;
3637 	union spdk_nvme_vs_register vs;
3638 	const struct spdk_nvme_ns_data *nsdata;
3639 	char buf[128];
3640 
3641 	ns = nvme_ns->ns;
3642 	if (ns == NULL) {
3643 		return;
3644 	}
3645 
3646 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3647 
3648 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3649 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
3650 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
3651 
3652 	spdk_json_write_object_begin(w);
3653 
3654 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
3655 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
3656 	}
3657 
3658 	spdk_json_write_named_object_begin(w, "trid");
3659 
3660 	nvme_bdev_dump_trid_json(trid, w);
3661 
3662 	spdk_json_write_object_end(w);
3663 
3664 #ifdef SPDK_CONFIG_NVME_CUSE
3665 	size_t cuse_name_size = 128;
3666 	char cuse_name[cuse_name_size];
3667 
3668 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
3669 					    cuse_name, &cuse_name_size);
3670 	if (rc == 0) {
3671 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3672 	}
3673 #endif
3674 
3675 	spdk_json_write_named_object_begin(w, "ctrlr_data");
3676 
3677 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3678 
3679 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
3680 
3681 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
3682 	spdk_str_trim(buf);
3683 	spdk_json_write_named_string(w, "model_number", buf);
3684 
3685 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
3686 	spdk_str_trim(buf);
3687 	spdk_json_write_named_string(w, "serial_number", buf);
3688 
3689 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
3690 	spdk_str_trim(buf);
3691 	spdk_json_write_named_string(w, "firmware_revision", buf);
3692 
3693 	if (cdata->subnqn[0] != '\0') {
3694 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
3695 	}
3696 
3697 	spdk_json_write_named_object_begin(w, "oacs");
3698 
3699 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
3700 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
3701 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
3702 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
3703 
3704 	spdk_json_write_object_end(w);
3705 
3706 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
3707 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
3708 
3709 	spdk_json_write_object_end(w);
3710 
3711 	spdk_json_write_named_object_begin(w, "vs");
3712 
3713 	spdk_json_write_name(w, "nvme_version");
3714 	if (vs.bits.ter) {
3715 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
3716 	} else {
3717 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
3718 	}
3719 
3720 	spdk_json_write_object_end(w);
3721 
3722 	nsdata = spdk_nvme_ns_get_data(ns);
3723 
3724 	spdk_json_write_named_object_begin(w, "ns_data");
3725 
3726 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
3727 
3728 	if (cdata->cmic.ana_reporting) {
3729 		spdk_json_write_named_string(w, "ana_state",
3730 					     _nvme_ana_state_str(nvme_ns->ana_state));
3731 	}
3732 
3733 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
3734 
3735 	spdk_json_write_object_end(w);
3736 
3737 	if (cdata->oacs.security) {
3738 		spdk_json_write_named_object_begin(w, "security");
3739 
3740 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
3741 
3742 		spdk_json_write_object_end(w);
3743 	}
3744 
3745 	spdk_json_write_object_end(w);
3746 }
3747 
3748 static const char *
3749 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
3750 {
3751 	switch (nbdev->mp_policy) {
3752 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
3753 		return "active_passive";
3754 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
3755 		return "active_active";
3756 	default:
3757 		assert(false);
3758 		return "invalid";
3759 	}
3760 }
3761 
3762 static const char *
3763 nvme_bdev_get_mp_selector_str(struct nvme_bdev *nbdev)
3764 {
3765 	switch (nbdev->mp_selector) {
3766 	case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
3767 		return "round_robin";
3768 	case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
3769 		return "queue_depth";
3770 	default:
3771 		assert(false);
3772 		return "invalid";
3773 	}
3774 }
3775 
3776 static int
3777 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
3778 {
3779 	struct nvme_bdev *nvme_bdev = ctx;
3780 	struct nvme_ns *nvme_ns;
3781 
3782 	pthread_mutex_lock(&nvme_bdev->mutex);
3783 	spdk_json_write_named_array_begin(w, "nvme");
3784 	TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
3785 		nvme_namespace_info_json(w, nvme_ns);
3786 	}
3787 	spdk_json_write_array_end(w);
3788 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
3789 	if (nvme_bdev->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
3790 		spdk_json_write_named_string(w, "selector", nvme_bdev_get_mp_selector_str(nvme_bdev));
3791 		if (nvme_bdev->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
3792 			spdk_json_write_named_uint32(w, "rr_min_io", nvme_bdev->rr_min_io);
3793 		}
3794 	}
3795 	pthread_mutex_unlock(&nvme_bdev->mutex);
3796 
3797 	return 0;
3798 }
3799 
3800 static void
3801 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
3802 {
3803 	/* No config per bdev needed */
3804 }
3805 
3806 static uint64_t
3807 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
3808 {
3809 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3810 	struct nvme_io_path *io_path;
3811 	struct nvme_poll_group *group;
3812 	uint64_t spin_time = 0;
3813 
3814 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
3815 		group = io_path->qpair->group;
3816 
3817 		if (!group || !group->collect_spin_stat) {
3818 			continue;
3819 		}
3820 
3821 		if (group->end_ticks != 0) {
3822 			group->spin_ticks += (group->end_ticks - group->start_ticks);
3823 			group->end_ticks = 0;
3824 		}
3825 
3826 		spin_time += group->spin_ticks;
3827 		group->start_ticks = 0;
3828 		group->spin_ticks = 0;
3829 	}
3830 
3831 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
3832 }
3833 
3834 static void
3835 bdev_nvme_reset_device_stat(void *ctx)
3836 {
3837 	struct nvme_bdev *nbdev = ctx;
3838 
3839 	if (nbdev->err_stat != NULL) {
3840 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
3841 	}
3842 }
3843 
3844 /* JSON string should be lowercases and underscore delimited string. */
3845 static void
3846 bdev_nvme_format_nvme_status(char *dst, const char *src)
3847 {
3848 	char tmp[256];
3849 
3850 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
3851 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
3852 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
3853 	spdk_strlwr(dst);
3854 }
3855 
3856 static void
3857 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
3858 {
3859 	struct nvme_bdev *nbdev = ctx;
3860 	struct spdk_nvme_status status = {};
3861 	uint16_t sct, sc;
3862 	char status_json[256];
3863 	const char *status_str;
3864 
3865 	if (nbdev->err_stat == NULL) {
3866 		return;
3867 	}
3868 
3869 	spdk_json_write_named_object_begin(w, "nvme_error");
3870 
3871 	spdk_json_write_named_object_begin(w, "status_type");
3872 	for (sct = 0; sct < 8; sct++) {
3873 		if (nbdev->err_stat->status_type[sct] == 0) {
3874 			continue;
3875 		}
3876 		status.sct = sct;
3877 
3878 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
3879 		assert(status_str != NULL);
3880 		bdev_nvme_format_nvme_status(status_json, status_str);
3881 
3882 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
3883 	}
3884 	spdk_json_write_object_end(w);
3885 
3886 	spdk_json_write_named_object_begin(w, "status_code");
3887 	for (sct = 0; sct < 4; sct++) {
3888 		status.sct = sct;
3889 		for (sc = 0; sc < 256; sc++) {
3890 			if (nbdev->err_stat->status[sct][sc] == 0) {
3891 				continue;
3892 			}
3893 			status.sc = sc;
3894 
3895 			status_str = spdk_nvme_cpl_get_status_string(&status);
3896 			assert(status_str != NULL);
3897 			bdev_nvme_format_nvme_status(status_json, status_str);
3898 
3899 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
3900 		}
3901 	}
3902 	spdk_json_write_object_end(w);
3903 
3904 	spdk_json_write_object_end(w);
3905 }
3906 
3907 static bool
3908 bdev_nvme_accel_sequence_supported(void *ctx, enum spdk_bdev_io_type type)
3909 {
3910 	struct nvme_bdev *nbdev = ctx;
3911 	struct spdk_nvme_ctrlr *ctrlr;
3912 
3913 	if (!g_opts.allow_accel_sequence) {
3914 		return false;
3915 	}
3916 
3917 	switch (type) {
3918 	case SPDK_BDEV_IO_TYPE_WRITE:
3919 	case SPDK_BDEV_IO_TYPE_READ:
3920 		break;
3921 	default:
3922 		return false;
3923 	}
3924 
3925 	ctrlr = bdev_nvme_get_ctrlr(&nbdev->disk);
3926 	assert(ctrlr != NULL);
3927 
3928 	return spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ACCEL_SEQUENCE_SUPPORTED;
3929 }
3930 
3931 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
3932 	.destruct			= bdev_nvme_destruct,
3933 	.submit_request			= bdev_nvme_submit_request,
3934 	.io_type_supported		= bdev_nvme_io_type_supported,
3935 	.get_io_channel			= bdev_nvme_get_io_channel,
3936 	.dump_info_json			= bdev_nvme_dump_info_json,
3937 	.write_config_json		= bdev_nvme_write_config_json,
3938 	.get_spin_time			= bdev_nvme_get_spin_time,
3939 	.get_module_ctx			= bdev_nvme_get_module_ctx,
3940 	.get_memory_domains		= bdev_nvme_get_memory_domains,
3941 	.accel_sequence_supported	= bdev_nvme_accel_sequence_supported,
3942 	.reset_device_stat		= bdev_nvme_reset_device_stat,
3943 	.dump_device_stat_json		= bdev_nvme_dump_device_stat_json,
3944 };
3945 
3946 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
3947 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
3948 
3949 static int
3950 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
3951 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
3952 {
3953 	struct spdk_nvme_ana_group_descriptor *copied_desc;
3954 	uint8_t *orig_desc;
3955 	uint32_t i, desc_size, copy_len;
3956 	int rc = 0;
3957 
3958 	if (nvme_ctrlr->ana_log_page == NULL) {
3959 		return -EINVAL;
3960 	}
3961 
3962 	copied_desc = nvme_ctrlr->copied_ana_desc;
3963 
3964 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
3965 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
3966 
3967 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
3968 		memcpy(copied_desc, orig_desc, copy_len);
3969 
3970 		rc = cb_fn(copied_desc, cb_arg);
3971 		if (rc != 0) {
3972 			break;
3973 		}
3974 
3975 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
3976 			    copied_desc->num_of_nsid * sizeof(uint32_t);
3977 		orig_desc += desc_size;
3978 		copy_len -= desc_size;
3979 	}
3980 
3981 	return rc;
3982 }
3983 
3984 static int
3985 nvme_ns_ana_transition_timedout(void *ctx)
3986 {
3987 	struct nvme_ns *nvme_ns = ctx;
3988 
3989 	spdk_poller_unregister(&nvme_ns->anatt_timer);
3990 	nvme_ns->ana_transition_timedout = true;
3991 
3992 	return SPDK_POLLER_BUSY;
3993 }
3994 
3995 static void
3996 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
3997 		       const struct spdk_nvme_ana_group_descriptor *desc)
3998 {
3999 	const struct spdk_nvme_ctrlr_data *cdata;
4000 
4001 	nvme_ns->ana_group_id = desc->ana_group_id;
4002 	nvme_ns->ana_state = desc->ana_state;
4003 	nvme_ns->ana_state_updating = false;
4004 
4005 	switch (nvme_ns->ana_state) {
4006 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
4007 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
4008 		nvme_ns->ana_transition_timedout = false;
4009 		spdk_poller_unregister(&nvme_ns->anatt_timer);
4010 		break;
4011 
4012 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
4013 	case SPDK_NVME_ANA_CHANGE_STATE:
4014 		if (nvme_ns->anatt_timer != NULL) {
4015 			break;
4016 		}
4017 
4018 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4019 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
4020 				       nvme_ns,
4021 				       cdata->anatt * SPDK_SEC_TO_USEC);
4022 		break;
4023 	default:
4024 		break;
4025 	}
4026 }
4027 
4028 static int
4029 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
4030 {
4031 	struct nvme_ns *nvme_ns = cb_arg;
4032 	uint32_t i;
4033 
4034 	assert(nvme_ns->ns != NULL);
4035 
4036 	for (i = 0; i < desc->num_of_nsid; i++) {
4037 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
4038 			continue;
4039 		}
4040 
4041 		_nvme_ns_set_ana_state(nvme_ns, desc);
4042 		return 1;
4043 	}
4044 
4045 	return 0;
4046 }
4047 
4048 static int
4049 nvme_generate_uuid(const char *sn, uint32_t nsid, struct spdk_uuid *uuid)
4050 {
4051 	int rc = 0;
4052 	struct spdk_uuid new_uuid, namespace_uuid;
4053 	char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'};
4054 	/* This namespace UUID was generated using uuid_generate() method. */
4055 	const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"};
4056 	int size;
4057 
4058 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
4059 
4060 	spdk_uuid_set_null(&new_uuid);
4061 	spdk_uuid_set_null(&namespace_uuid);
4062 
4063 	size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid);
4064 	if (size <= 0 || (unsigned long)size >= sizeof(merged_str)) {
4065 		return -EINVAL;
4066 	}
4067 
4068 	spdk_uuid_parse(&namespace_uuid, namespace_str);
4069 
4070 	rc = spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size);
4071 	if (rc == 0) {
4072 		memcpy(uuid, &new_uuid, sizeof(struct spdk_uuid));
4073 	}
4074 
4075 	return rc;
4076 }
4077 
4078 static int
4079 nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
4080 		 struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
4081 		 uint32_t prchk_flags, void *ctx)
4082 {
4083 	const struct spdk_uuid		*uuid;
4084 	const uint8_t *nguid;
4085 	const struct spdk_nvme_ctrlr_data *cdata;
4086 	const struct spdk_nvme_ns_data	*nsdata;
4087 	const struct spdk_nvme_ctrlr_opts *opts;
4088 	enum spdk_nvme_csi		csi;
4089 	uint32_t atomic_bs, phys_bs, bs;
4090 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
4091 	int rc;
4092 
4093 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4094 	csi = spdk_nvme_ns_get_csi(ns);
4095 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
4096 
4097 	switch (csi) {
4098 	case SPDK_NVME_CSI_NVM:
4099 		disk->product_name = "NVMe disk";
4100 		break;
4101 	case SPDK_NVME_CSI_ZNS:
4102 		disk->product_name = "NVMe ZNS disk";
4103 		disk->zoned = true;
4104 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
4105 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
4106 					     spdk_nvme_ns_get_extended_sector_size(ns);
4107 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
4108 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
4109 		break;
4110 	default:
4111 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
4112 		return -ENOTSUP;
4113 	}
4114 
4115 	nguid = spdk_nvme_ns_get_nguid(ns);
4116 	if (!nguid) {
4117 		uuid = spdk_nvme_ns_get_uuid(ns);
4118 		if (uuid) {
4119 			disk->uuid = *uuid;
4120 		} else if (g_opts.generate_uuids) {
4121 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
4122 			rc = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns), &disk->uuid);
4123 			if (rc < 0) {
4124 				SPDK_ERRLOG("UUID generation failed (%s)\n", spdk_strerror(-rc));
4125 				return rc;
4126 			}
4127 		}
4128 	} else {
4129 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
4130 	}
4131 
4132 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
4133 	if (!disk->name) {
4134 		return -ENOMEM;
4135 	}
4136 
4137 	disk->write_cache = 0;
4138 	if (cdata->vwc.present) {
4139 		/* Enable if the Volatile Write Cache exists */
4140 		disk->write_cache = 1;
4141 	}
4142 	if (cdata->oncs.write_zeroes) {
4143 		disk->max_write_zeroes = UINT16_MAX + 1;
4144 	}
4145 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
4146 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
4147 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
4148 	disk->ctratt.raw = cdata->ctratt.raw;
4149 	/* NVMe driver will split one request into multiple requests
4150 	 * based on MDTS and stripe boundary, the bdev layer will use
4151 	 * max_segment_size and max_num_segments to split one big IO
4152 	 * into multiple requests, then small request can't run out
4153 	 * of NVMe internal requests data structure.
4154 	 */
4155 	if (opts && opts->io_queue_requests) {
4156 		disk->max_num_segments = opts->io_queue_requests / 2;
4157 	}
4158 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4159 		/* The nvme driver will try to split I/O that have too many
4160 		 * SGEs, but it doesn't work if that last SGE doesn't end on
4161 		 * an aggregate total that is block aligned. The bdev layer has
4162 		 * a more robust splitting framework, so use that instead for
4163 		 * this case. (See issue #3269.)
4164 		 */
4165 		uint16_t max_sges = spdk_nvme_ctrlr_get_max_sges(ctrlr);
4166 
4167 		if (disk->max_num_segments == 0) {
4168 			disk->max_num_segments = max_sges;
4169 		} else {
4170 			disk->max_num_segments = spdk_min(disk->max_num_segments, max_sges);
4171 		}
4172 	}
4173 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
4174 
4175 	nsdata = spdk_nvme_ns_get_data(ns);
4176 	bs = spdk_nvme_ns_get_sector_size(ns);
4177 	atomic_bs = bs;
4178 	phys_bs = bs;
4179 	if (nsdata->nabo == 0) {
4180 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
4181 			atomic_bs = bs * (1 + nsdata->nawupf);
4182 		} else {
4183 			atomic_bs = bs * (1 + cdata->awupf);
4184 		}
4185 	}
4186 	if (nsdata->nsfeat.optperf) {
4187 		phys_bs = bs * (1 + nsdata->npwg);
4188 	}
4189 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
4190 
4191 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
4192 	if (disk->md_len != 0) {
4193 		disk->md_interleave = nsdata->flbas.extended;
4194 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
4195 		if (disk->dif_type != SPDK_DIF_DISABLE) {
4196 			disk->dif_is_head_of_md = nsdata->dps.md_start;
4197 			disk->dif_check_flags = prchk_flags;
4198 		}
4199 	}
4200 
4201 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
4202 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
4203 		disk->acwu = 0;
4204 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
4205 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
4206 	} else {
4207 		disk->acwu = cdata->acwu + 1; /* 0-based */
4208 	}
4209 
4210 	if (cdata->oncs.copy) {
4211 		/* For now bdev interface allows only single segment copy */
4212 		disk->max_copy = nsdata->mssrl;
4213 	}
4214 
4215 	disk->ctxt = ctx;
4216 	disk->fn_table = &nvmelib_fn_table;
4217 	disk->module = &nvme_if;
4218 
4219 	return 0;
4220 }
4221 
4222 static struct nvme_bdev *
4223 nvme_bdev_alloc(void)
4224 {
4225 	struct nvme_bdev *bdev;
4226 	int rc;
4227 
4228 	bdev = calloc(1, sizeof(*bdev));
4229 	if (!bdev) {
4230 		SPDK_ERRLOG("bdev calloc() failed\n");
4231 		return NULL;
4232 	}
4233 
4234 	if (g_opts.nvme_error_stat) {
4235 		bdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
4236 		if (!bdev->err_stat) {
4237 			SPDK_ERRLOG("err_stat calloc() failed\n");
4238 			free(bdev);
4239 			return NULL;
4240 		}
4241 	}
4242 
4243 	rc = pthread_mutex_init(&bdev->mutex, NULL);
4244 	if (rc != 0) {
4245 		free(bdev->err_stat);
4246 		free(bdev);
4247 		return NULL;
4248 	}
4249 
4250 	bdev->ref = 1;
4251 	bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
4252 	bdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN;
4253 	bdev->rr_min_io = UINT32_MAX;
4254 	TAILQ_INIT(&bdev->nvme_ns_list);
4255 
4256 	return bdev;
4257 }
4258 
4259 static int
4260 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4261 {
4262 	struct nvme_bdev *bdev;
4263 	struct nvme_bdev_ctrlr *nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
4264 	int rc;
4265 
4266 	bdev = nvme_bdev_alloc();
4267 	if (bdev == NULL) {
4268 		SPDK_ERRLOG("Failed to allocate NVMe bdev\n");
4269 		return -ENOMEM;
4270 	}
4271 
4272 	bdev->opal = nvme_ctrlr->opal_dev != NULL;
4273 
4274 	rc = nvme_disk_create(&bdev->disk, nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
4275 			      nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev);
4276 	if (rc != 0) {
4277 		SPDK_ERRLOG("Failed to create NVMe disk\n");
4278 		nvme_bdev_free(bdev);
4279 		return rc;
4280 	}
4281 
4282 	spdk_io_device_register(bdev,
4283 				bdev_nvme_create_bdev_channel_cb,
4284 				bdev_nvme_destroy_bdev_channel_cb,
4285 				sizeof(struct nvme_bdev_channel),
4286 				bdev->disk.name);
4287 
4288 	nvme_ns->bdev = bdev;
4289 	bdev->nsid = nvme_ns->id;
4290 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4291 
4292 	bdev->nbdev_ctrlr = nbdev_ctrlr;
4293 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->bdevs, bdev, tailq);
4294 
4295 	rc = spdk_bdev_register(&bdev->disk);
4296 	if (rc != 0) {
4297 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
4298 		spdk_io_device_unregister(bdev, NULL);
4299 		nvme_ns->bdev = NULL;
4300 		TAILQ_REMOVE(&nbdev_ctrlr->bdevs, bdev, tailq);
4301 		nvme_bdev_free(bdev);
4302 		return rc;
4303 	}
4304 
4305 	return 0;
4306 }
4307 
4308 static bool
4309 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
4310 {
4311 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
4312 	const struct spdk_uuid *uuid1, *uuid2;
4313 
4314 	nsdata1 = spdk_nvme_ns_get_data(ns1);
4315 	nsdata2 = spdk_nvme_ns_get_data(ns2);
4316 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
4317 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
4318 
4319 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
4320 	       nsdata1->eui64 == nsdata2->eui64 &&
4321 	       ((uuid1 == NULL && uuid2 == NULL) ||
4322 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
4323 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
4324 }
4325 
4326 static bool
4327 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4328 		 struct spdk_nvme_ctrlr_opts *opts)
4329 {
4330 	struct nvme_probe_skip_entry *entry;
4331 
4332 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
4333 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4334 			return false;
4335 		}
4336 	}
4337 
4338 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
4339 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
4340 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
4341 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
4342 	opts->disable_read_ana_log_page = true;
4343 
4344 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
4345 
4346 	return true;
4347 }
4348 
4349 static void
4350 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
4351 {
4352 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4353 
4354 	if (spdk_nvme_cpl_is_error(cpl)) {
4355 		SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
4356 			     cpl->status.sct);
4357 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4358 	} else if (cpl->cdw0 & 0x1) {
4359 		SPDK_WARNLOG("Specified command could not be aborted.\n");
4360 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4361 	}
4362 }
4363 
4364 static void
4365 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
4366 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
4367 {
4368 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4369 	union spdk_nvme_csts_register csts;
4370 	int rc;
4371 
4372 	assert(nvme_ctrlr->ctrlr == ctrlr);
4373 
4374 	SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
4375 
4376 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
4377 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
4378 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
4379 	 * completion recursively.
4380 	 */
4381 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
4382 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
4383 		if (csts.bits.cfs) {
4384 			SPDK_ERRLOG("Controller Fatal Status, reset required\n");
4385 			bdev_nvme_reset_ctrlr(nvme_ctrlr);
4386 			return;
4387 		}
4388 	}
4389 
4390 	switch (g_opts.action_on_timeout) {
4391 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
4392 		if (qpair) {
4393 			/* Don't send abort to ctrlr when ctrlr is not available. */
4394 			pthread_mutex_lock(&nvme_ctrlr->mutex);
4395 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
4396 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
4397 				SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
4398 				return;
4399 			}
4400 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4401 
4402 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
4403 						       nvme_abort_cpl, nvme_ctrlr);
4404 			if (rc == 0) {
4405 				return;
4406 			}
4407 
4408 			SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
4409 		}
4410 
4411 	/* FALLTHROUGH */
4412 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
4413 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4414 		break;
4415 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
4416 		SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
4417 		break;
4418 	default:
4419 		SPDK_ERRLOG("An invalid timeout action value is found.\n");
4420 		break;
4421 	}
4422 }
4423 
4424 static struct nvme_ns *
4425 nvme_ns_alloc(void)
4426 {
4427 	struct nvme_ns *nvme_ns;
4428 
4429 	nvme_ns = calloc(1, sizeof(struct nvme_ns));
4430 	if (nvme_ns == NULL) {
4431 		return NULL;
4432 	}
4433 
4434 	if (g_opts.io_path_stat) {
4435 		nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
4436 		if (nvme_ns->stat == NULL) {
4437 			free(nvme_ns);
4438 			return NULL;
4439 		}
4440 		spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
4441 	}
4442 
4443 	return nvme_ns;
4444 }
4445 
4446 static void
4447 nvme_ns_free(struct nvme_ns *nvme_ns)
4448 {
4449 	free(nvme_ns->stat);
4450 	free(nvme_ns);
4451 }
4452 
4453 static void
4454 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
4455 {
4456 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4457 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
4458 
4459 	if (rc == 0) {
4460 		nvme_ns->probe_ctx = NULL;
4461 		pthread_mutex_lock(&nvme_ctrlr->mutex);
4462 		nvme_ctrlr->ref++;
4463 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4464 	} else {
4465 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4466 		nvme_ns_free(nvme_ns);
4467 	}
4468 
4469 	if (ctx) {
4470 		ctx->populates_in_progress--;
4471 		if (ctx->populates_in_progress == 0) {
4472 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4473 		}
4474 	}
4475 }
4476 
4477 static void
4478 bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
4479 {
4480 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4481 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4482 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4483 	int rc;
4484 
4485 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
4486 	if (rc != 0) {
4487 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
4488 	}
4489 
4490 	spdk_for_each_channel_continue(i, rc);
4491 }
4492 
4493 static void
4494 bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
4495 {
4496 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4497 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4498 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4499 	struct nvme_io_path *io_path;
4500 
4501 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
4502 	if (io_path != NULL) {
4503 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
4504 	}
4505 
4506 	spdk_for_each_channel_continue(i, 0);
4507 }
4508 
4509 static void
4510 bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
4511 {
4512 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4513 
4514 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
4515 }
4516 
4517 static void
4518 bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
4519 {
4520 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4521 	struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
4522 
4523 	if (status == 0) {
4524 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
4525 	} else {
4526 		/* Delete the added io_paths and fail populating the namespace. */
4527 		spdk_for_each_channel(bdev,
4528 				      bdev_nvme_delete_io_path,
4529 				      nvme_ns,
4530 				      bdev_nvme_add_io_path_failed);
4531 	}
4532 }
4533 
4534 static int
4535 nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
4536 {
4537 	struct nvme_ns *tmp_ns;
4538 	const struct spdk_nvme_ns_data *nsdata;
4539 
4540 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
4541 	if (!nsdata->nmic.can_share) {
4542 		SPDK_ERRLOG("Namespace cannot be shared.\n");
4543 		return -EINVAL;
4544 	}
4545 
4546 	pthread_mutex_lock(&bdev->mutex);
4547 
4548 	tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
4549 	assert(tmp_ns != NULL);
4550 
4551 	if (tmp_ns->ns != NULL && !bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
4552 		pthread_mutex_unlock(&bdev->mutex);
4553 		SPDK_ERRLOG("Namespaces are not identical.\n");
4554 		return -EINVAL;
4555 	}
4556 
4557 	bdev->ref++;
4558 	TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
4559 	nvme_ns->bdev = bdev;
4560 
4561 	pthread_mutex_unlock(&bdev->mutex);
4562 
4563 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
4564 	spdk_for_each_channel(bdev,
4565 			      bdev_nvme_add_io_path,
4566 			      nvme_ns,
4567 			      bdev_nvme_add_io_path_done);
4568 
4569 	return 0;
4570 }
4571 
4572 static void
4573 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4574 {
4575 	struct spdk_nvme_ns	*ns;
4576 	struct nvme_bdev	*bdev;
4577 	int			rc = 0;
4578 
4579 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
4580 	if (!ns) {
4581 		SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
4582 		rc = -EINVAL;
4583 		goto done;
4584 	}
4585 
4586 	nvme_ns->ns = ns;
4587 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4588 
4589 	if (nvme_ctrlr->ana_log_page != NULL) {
4590 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
4591 	}
4592 
4593 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
4594 	if (bdev == NULL) {
4595 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
4596 	} else {
4597 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
4598 		if (rc == 0) {
4599 			return;
4600 		}
4601 	}
4602 done:
4603 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
4604 }
4605 
4606 static void
4607 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
4608 {
4609 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4610 
4611 	assert(nvme_ctrlr != NULL);
4612 
4613 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4614 
4615 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4616 
4617 	if (nvme_ns->bdev != NULL) {
4618 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4619 		return;
4620 	}
4621 
4622 	nvme_ns_free(nvme_ns);
4623 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4624 
4625 	nvme_ctrlr_release(nvme_ctrlr);
4626 }
4627 
4628 static void
4629 bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
4630 {
4631 	struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
4632 
4633 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4634 }
4635 
4636 static void
4637 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4638 {
4639 	struct nvme_bdev *bdev;
4640 
4641 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4642 
4643 	bdev = nvme_ns->bdev;
4644 	if (bdev != NULL) {
4645 		pthread_mutex_lock(&bdev->mutex);
4646 
4647 		assert(bdev->ref > 0);
4648 		bdev->ref--;
4649 		if (bdev->ref == 0) {
4650 			pthread_mutex_unlock(&bdev->mutex);
4651 
4652 			spdk_bdev_unregister(&bdev->disk, NULL, NULL);
4653 		} else {
4654 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
4655 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
4656 			 * and clear nvme_ns->bdev here.
4657 			 */
4658 			TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
4659 			nvme_ns->bdev = NULL;
4660 
4661 			pthread_mutex_unlock(&bdev->mutex);
4662 
4663 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
4664 			 * we call depopulate_namespace_done() to avoid use-after-free.
4665 			 */
4666 			spdk_for_each_channel(bdev,
4667 					      bdev_nvme_delete_io_path,
4668 					      nvme_ns,
4669 					      bdev_nvme_delete_io_path_done);
4670 			return;
4671 		}
4672 	}
4673 
4674 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
4675 }
4676 
4677 static void
4678 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
4679 			       struct nvme_async_probe_ctx *ctx)
4680 {
4681 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
4682 	struct nvme_ns	*nvme_ns, *next;
4683 	struct spdk_nvme_ns	*ns;
4684 	struct nvme_bdev	*bdev;
4685 	uint32_t		nsid;
4686 	int			rc;
4687 	uint64_t		num_sectors;
4688 
4689 	if (ctx) {
4690 		/* Initialize this count to 1 to handle the populate functions
4691 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
4692 		 */
4693 		ctx->populates_in_progress = 1;
4694 	}
4695 
4696 	/* First loop over our existing namespaces and see if they have been
4697 	 * removed. */
4698 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4699 	while (nvme_ns != NULL) {
4700 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
4701 
4702 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
4703 			/* NS is still there or added again. Its attributes may have changed. */
4704 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
4705 			if (nvme_ns->ns != ns) {
4706 				assert(nvme_ns->ns == NULL);
4707 				nvme_ns->ns = ns;
4708 				SPDK_DEBUGLOG(bdev_nvme, "NSID %u was added\n", nvme_ns->id);
4709 			}
4710 
4711 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
4712 			bdev = nvme_ns->bdev;
4713 			assert(bdev != NULL);
4714 			if (bdev->disk.blockcnt != num_sectors) {
4715 				SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
4716 					       nvme_ns->id,
4717 					       bdev->disk.name,
4718 					       bdev->disk.blockcnt,
4719 					       num_sectors);
4720 				rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
4721 				if (rc != 0) {
4722 					SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
4723 						    bdev->disk.name, rc);
4724 				}
4725 			}
4726 		} else {
4727 			/* Namespace was removed */
4728 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4729 		}
4730 
4731 		nvme_ns = next;
4732 	}
4733 
4734 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
4735 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4736 	while (nsid != 0) {
4737 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4738 
4739 		if (nvme_ns == NULL) {
4740 			/* Found a new one */
4741 			nvme_ns = nvme_ns_alloc();
4742 			if (nvme_ns == NULL) {
4743 				SPDK_ERRLOG("Failed to allocate namespace\n");
4744 				/* This just fails to attach the namespace. It may work on a future attempt. */
4745 				continue;
4746 			}
4747 
4748 			nvme_ns->id = nsid;
4749 			nvme_ns->ctrlr = nvme_ctrlr;
4750 
4751 			nvme_ns->bdev = NULL;
4752 
4753 			if (ctx) {
4754 				ctx->populates_in_progress++;
4755 			}
4756 			nvme_ns->probe_ctx = ctx;
4757 
4758 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4759 
4760 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
4761 		}
4762 
4763 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
4764 	}
4765 
4766 	if (ctx) {
4767 		/* Decrement this count now that the loop is over to account
4768 		 * for the one we started with.  If the count is then 0, we
4769 		 * know any populate_namespace functions completed immediately,
4770 		 * so we'll kick the callback here.
4771 		 */
4772 		ctx->populates_in_progress--;
4773 		if (ctx->populates_in_progress == 0) {
4774 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4775 		}
4776 	}
4777 
4778 }
4779 
4780 static void
4781 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
4782 {
4783 	struct nvme_ns *nvme_ns, *tmp;
4784 
4785 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
4786 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
4787 	}
4788 }
4789 
4790 static uint32_t
4791 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
4792 {
4793 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
4794 	const struct spdk_nvme_ctrlr_data *cdata;
4795 	uint32_t nsid, ns_count = 0;
4796 
4797 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4798 
4799 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
4800 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
4801 		ns_count++;
4802 	}
4803 
4804 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
4805 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
4806 	       sizeof(uint32_t);
4807 }
4808 
4809 static int
4810 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
4811 			  void *cb_arg)
4812 {
4813 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4814 	struct nvme_ns *nvme_ns;
4815 	uint32_t i, nsid;
4816 
4817 	for (i = 0; i < desc->num_of_nsid; i++) {
4818 		nsid = desc->nsid[i];
4819 		if (nsid == 0) {
4820 			continue;
4821 		}
4822 
4823 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
4824 
4825 		assert(nvme_ns != NULL);
4826 		if (nvme_ns == NULL) {
4827 			/* Target told us that an inactive namespace had an ANA change */
4828 			continue;
4829 		}
4830 
4831 		_nvme_ns_set_ana_state(nvme_ns, desc);
4832 	}
4833 
4834 	return 0;
4835 }
4836 
4837 static void
4838 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4839 {
4840 	struct nvme_ns *nvme_ns;
4841 
4842 	spdk_free(nvme_ctrlr->ana_log_page);
4843 	nvme_ctrlr->ana_log_page = NULL;
4844 
4845 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
4846 	     nvme_ns != NULL;
4847 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
4848 		nvme_ns->ana_state_updating = false;
4849 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4850 	}
4851 }
4852 
4853 static void
4854 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
4855 {
4856 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4857 
4858 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
4859 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
4860 					     nvme_ctrlr);
4861 	} else {
4862 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
4863 	}
4864 
4865 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4866 
4867 	assert(nvme_ctrlr->ana_log_page_updating == true);
4868 	nvme_ctrlr->ana_log_page_updating = false;
4869 
4870 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
4871 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4872 
4873 		nvme_ctrlr_unregister(nvme_ctrlr);
4874 	} else {
4875 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4876 
4877 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
4878 	}
4879 }
4880 
4881 static int
4882 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
4883 {
4884 	uint32_t ana_log_page_size;
4885 	int rc;
4886 
4887 	if (nvme_ctrlr->ana_log_page == NULL) {
4888 		return -EINVAL;
4889 	}
4890 
4891 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
4892 
4893 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
4894 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
4895 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
4896 		return -EINVAL;
4897 	}
4898 
4899 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4900 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
4901 	    nvme_ctrlr->ana_log_page_updating) {
4902 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4903 		return -EBUSY;
4904 	}
4905 
4906 	nvme_ctrlr->ana_log_page_updating = true;
4907 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
4908 
4909 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
4910 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
4911 					      SPDK_NVME_GLOBAL_NS_TAG,
4912 					      nvme_ctrlr->ana_log_page,
4913 					      ana_log_page_size, 0,
4914 					      nvme_ctrlr_read_ana_log_page_done,
4915 					      nvme_ctrlr);
4916 	if (rc != 0) {
4917 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
4918 	}
4919 
4920 	return rc;
4921 }
4922 
4923 static void
4924 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
4925 {
4926 }
4927 
4928 struct bdev_nvme_set_preferred_path_ctx {
4929 	struct spdk_bdev_desc *desc;
4930 	struct nvme_ns *nvme_ns;
4931 	bdev_nvme_set_preferred_path_cb cb_fn;
4932 	void *cb_arg;
4933 };
4934 
4935 static void
4936 bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
4937 {
4938 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4939 
4940 	assert(ctx != NULL);
4941 	assert(ctx->desc != NULL);
4942 	assert(ctx->cb_fn != NULL);
4943 
4944 	spdk_bdev_close(ctx->desc);
4945 
4946 	ctx->cb_fn(ctx->cb_arg, status);
4947 
4948 	free(ctx);
4949 }
4950 
4951 static void
4952 _bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
4953 {
4954 	struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4955 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4956 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
4957 	struct nvme_io_path *io_path, *prev;
4958 
4959 	prev = NULL;
4960 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
4961 		if (io_path->nvme_ns == ctx->nvme_ns) {
4962 			break;
4963 		}
4964 		prev = io_path;
4965 	}
4966 
4967 	if (io_path != NULL) {
4968 		if (prev != NULL) {
4969 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
4970 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
4971 		}
4972 
4973 		/* We can set io_path to nbdev_ch->current_io_path directly here.
4974 		 * However, it needs to be conditional. To simplify the code,
4975 		 * just clear nbdev_ch->current_io_path and let find_io_path()
4976 		 * fill it.
4977 		 *
4978 		 * Automatic failback may be disabled. Hence even if the io_path is
4979 		 * already at the head, clear nbdev_ch->current_io_path.
4980 		 */
4981 		bdev_nvme_clear_current_io_path(nbdev_ch);
4982 	}
4983 
4984 	spdk_for_each_channel_continue(i, 0);
4985 }
4986 
4987 static struct nvme_ns *
4988 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
4989 {
4990 	struct nvme_ns *nvme_ns, *prev;
4991 	const struct spdk_nvme_ctrlr_data *cdata;
4992 
4993 	prev = NULL;
4994 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
4995 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4996 
4997 		if (cdata->cntlid == cntlid) {
4998 			break;
4999 		}
5000 		prev = nvme_ns;
5001 	}
5002 
5003 	if (nvme_ns != NULL && prev != NULL) {
5004 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
5005 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
5006 	}
5007 
5008 	return nvme_ns;
5009 }
5010 
5011 /* This function supports only multipath mode. There is only a single I/O path
5012  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
5013  * head of the I/O path list for each NVMe bdev channel.
5014  *
5015  * NVMe bdev channel may be acquired after completing this function. move the
5016  * matched namespace to the head of the namespace list for the NVMe bdev too.
5017  */
5018 void
5019 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
5020 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
5021 {
5022 	struct bdev_nvme_set_preferred_path_ctx *ctx;
5023 	struct spdk_bdev *bdev;
5024 	struct nvme_bdev *nbdev;
5025 	int rc = 0;
5026 
5027 	assert(cb_fn != NULL);
5028 
5029 	ctx = calloc(1, sizeof(*ctx));
5030 	if (ctx == NULL) {
5031 		SPDK_ERRLOG("Failed to alloc context.\n");
5032 		rc = -ENOMEM;
5033 		goto err_alloc;
5034 	}
5035 
5036 	ctx->cb_fn = cb_fn;
5037 	ctx->cb_arg = cb_arg;
5038 
5039 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5040 	if (rc != 0) {
5041 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5042 		goto err_open;
5043 	}
5044 
5045 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5046 
5047 	if (bdev->module != &nvme_if) {
5048 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5049 		rc = -ENODEV;
5050 		goto err_bdev;
5051 	}
5052 
5053 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5054 
5055 	pthread_mutex_lock(&nbdev->mutex);
5056 
5057 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
5058 	if (ctx->nvme_ns == NULL) {
5059 		pthread_mutex_unlock(&nbdev->mutex);
5060 
5061 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
5062 		rc = -ENODEV;
5063 		goto err_bdev;
5064 	}
5065 
5066 	pthread_mutex_unlock(&nbdev->mutex);
5067 
5068 	spdk_for_each_channel(nbdev,
5069 			      _bdev_nvme_set_preferred_path,
5070 			      ctx,
5071 			      bdev_nvme_set_preferred_path_done);
5072 	return;
5073 
5074 err_bdev:
5075 	spdk_bdev_close(ctx->desc);
5076 err_open:
5077 	free(ctx);
5078 err_alloc:
5079 	cb_fn(cb_arg, rc);
5080 }
5081 
5082 struct bdev_nvme_set_multipath_policy_ctx {
5083 	struct spdk_bdev_desc *desc;
5084 	bdev_nvme_set_multipath_policy_cb cb_fn;
5085 	void *cb_arg;
5086 };
5087 
5088 static void
5089 bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
5090 {
5091 	struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
5092 
5093 	assert(ctx != NULL);
5094 	assert(ctx->desc != NULL);
5095 	assert(ctx->cb_fn != NULL);
5096 
5097 	spdk_bdev_close(ctx->desc);
5098 
5099 	ctx->cb_fn(ctx->cb_arg, status);
5100 
5101 	free(ctx);
5102 }
5103 
5104 static void
5105 _bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
5106 {
5107 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
5108 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
5109 	struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
5110 
5111 	nbdev_ch->mp_policy = nbdev->mp_policy;
5112 	nbdev_ch->mp_selector = nbdev->mp_selector;
5113 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
5114 	bdev_nvme_clear_current_io_path(nbdev_ch);
5115 
5116 	spdk_for_each_channel_continue(i, 0);
5117 }
5118 
5119 void
5120 bdev_nvme_set_multipath_policy(const char *name, enum bdev_nvme_multipath_policy policy,
5121 			       enum bdev_nvme_multipath_selector selector, uint32_t rr_min_io,
5122 			       bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
5123 {
5124 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
5125 	struct spdk_bdev *bdev;
5126 	struct nvme_bdev *nbdev;
5127 	int rc;
5128 
5129 	assert(cb_fn != NULL);
5130 
5131 	switch (policy) {
5132 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
5133 		break;
5134 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
5135 		switch (selector) {
5136 		case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
5137 			if (rr_min_io == UINT32_MAX) {
5138 				rr_min_io = 1;
5139 			} else if (rr_min_io == 0) {
5140 				rc = -EINVAL;
5141 				goto exit;
5142 			}
5143 			break;
5144 		case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
5145 			break;
5146 		default:
5147 			rc = -EINVAL;
5148 			goto exit;
5149 		}
5150 		break;
5151 	default:
5152 		rc = -EINVAL;
5153 		goto exit;
5154 	}
5155 
5156 	ctx = calloc(1, sizeof(*ctx));
5157 	if (ctx == NULL) {
5158 		SPDK_ERRLOG("Failed to alloc context.\n");
5159 		rc = -ENOMEM;
5160 		goto exit;
5161 	}
5162 
5163 	ctx->cb_fn = cb_fn;
5164 	ctx->cb_arg = cb_arg;
5165 
5166 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5167 	if (rc != 0) {
5168 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5169 		rc = -ENODEV;
5170 		goto err_open;
5171 	}
5172 
5173 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5174 	if (bdev->module != &nvme_if) {
5175 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5176 		rc = -ENODEV;
5177 		goto err_module;
5178 	}
5179 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5180 
5181 	pthread_mutex_lock(&nbdev->mutex);
5182 	nbdev->mp_policy = policy;
5183 	nbdev->mp_selector = selector;
5184 	nbdev->rr_min_io = rr_min_io;
5185 	pthread_mutex_unlock(&nbdev->mutex);
5186 
5187 	spdk_for_each_channel(nbdev,
5188 			      _bdev_nvme_set_multipath_policy,
5189 			      ctx,
5190 			      bdev_nvme_set_multipath_policy_done);
5191 	return;
5192 
5193 err_module:
5194 	spdk_bdev_close(ctx->desc);
5195 err_open:
5196 	free(ctx);
5197 exit:
5198 	cb_fn(cb_arg, rc);
5199 }
5200 
5201 static void
5202 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5203 {
5204 	struct nvme_ctrlr *nvme_ctrlr		= arg;
5205 	union spdk_nvme_async_event_completion	event;
5206 
5207 	if (spdk_nvme_cpl_is_error(cpl)) {
5208 		SPDK_WARNLOG("AER request execute failed\n");
5209 		return;
5210 	}
5211 
5212 	event.raw = cpl->cdw0;
5213 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5214 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
5215 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
5216 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5217 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
5218 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
5219 	}
5220 }
5221 
5222 static void
5223 free_nvme_async_probe_ctx(struct nvme_async_probe_ctx *ctx)
5224 {
5225 	spdk_keyring_put_key(ctx->drv_opts.tls_psk);
5226 	spdk_keyring_put_key(ctx->drv_opts.dhchap_key);
5227 	spdk_keyring_put_key(ctx->drv_opts.dhchap_ctrlr_key);
5228 	free(ctx);
5229 }
5230 
5231 static void
5232 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, int rc)
5233 {
5234 	if (ctx->cb_fn) {
5235 		ctx->cb_fn(ctx->cb_ctx, ctx->reported_bdevs, rc);
5236 	}
5237 
5238 	ctx->namespaces_populated = true;
5239 	if (ctx->probe_done) {
5240 		/* The probe was already completed, so we need to free the context
5241 		 * here.  This can happen for cases like OCSSD, where we need to
5242 		 * send additional commands to the SSD after attach.
5243 		 */
5244 		free_nvme_async_probe_ctx(ctx);
5245 	}
5246 }
5247 
5248 static void
5249 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
5250 		       struct nvme_async_probe_ctx *ctx)
5251 {
5252 	spdk_io_device_register(nvme_ctrlr,
5253 				bdev_nvme_create_ctrlr_channel_cb,
5254 				bdev_nvme_destroy_ctrlr_channel_cb,
5255 				sizeof(struct nvme_ctrlr_channel),
5256 				nvme_ctrlr->nbdev_ctrlr->name);
5257 
5258 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
5259 }
5260 
5261 static void
5262 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
5263 {
5264 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
5265 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
5266 
5267 	nvme_ctrlr->probe_ctx = NULL;
5268 
5269 	if (spdk_nvme_cpl_is_error(cpl)) {
5270 		nvme_ctrlr_delete(nvme_ctrlr);
5271 
5272 		if (ctx != NULL) {
5273 			ctx->reported_bdevs = 0;
5274 			populate_namespaces_cb(ctx, -1);
5275 		}
5276 		return;
5277 	}
5278 
5279 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5280 }
5281 
5282 static int
5283 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
5284 			     struct nvme_async_probe_ctx *ctx)
5285 {
5286 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5287 	const struct spdk_nvme_ctrlr_data *cdata;
5288 	uint32_t ana_log_page_size;
5289 
5290 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5291 
5292 	/* Set buffer size enough to include maximum number of allowed namespaces. */
5293 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5294 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
5295 			    sizeof(uint32_t);
5296 
5297 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
5298 						SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
5299 	if (nvme_ctrlr->ana_log_page == NULL) {
5300 		SPDK_ERRLOG("could not allocate ANA log page buffer\n");
5301 		return -ENXIO;
5302 	}
5303 
5304 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
5305 	 * Hence copy each descriptor to a temporary area when parsing it.
5306 	 *
5307 	 * Allocate a buffer whose size is as large as ANA log page buffer because
5308 	 * we do not know the size of a descriptor until actually reading it.
5309 	 */
5310 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
5311 	if (nvme_ctrlr->copied_ana_desc == NULL) {
5312 		SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
5313 		return -ENOMEM;
5314 	}
5315 
5316 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
5317 
5318 	nvme_ctrlr->probe_ctx = ctx;
5319 
5320 	/* Then, set the read size only to include the current active namespaces. */
5321 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5322 
5323 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5324 		SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5325 			    ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5326 		return -EINVAL;
5327 	}
5328 
5329 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
5330 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5331 						SPDK_NVME_GLOBAL_NS_TAG,
5332 						nvme_ctrlr->ana_log_page,
5333 						ana_log_page_size, 0,
5334 						nvme_ctrlr_init_ana_log_page_done,
5335 						nvme_ctrlr);
5336 }
5337 
5338 /* hostnqn and subnqn were already verified before attaching a controller.
5339  * Hence check only the multipath capability and cntlid here.
5340  */
5341 static bool
5342 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
5343 {
5344 	struct nvme_ctrlr *tmp;
5345 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
5346 
5347 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5348 
5349 	if (!cdata->cmic.multi_ctrlr) {
5350 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5351 		return false;
5352 	}
5353 
5354 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
5355 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
5356 
5357 		if (!tmp_cdata->cmic.multi_ctrlr) {
5358 			SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5359 			return false;
5360 		}
5361 		if (cdata->cntlid == tmp_cdata->cntlid) {
5362 			SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
5363 			return false;
5364 		}
5365 	}
5366 
5367 	return true;
5368 }
5369 
5370 static int
5371 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
5372 {
5373 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5374 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5375 	int rc = 0;
5376 
5377 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5378 
5379 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5380 	if (nbdev_ctrlr != NULL) {
5381 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
5382 			rc = -EINVAL;
5383 			goto exit;
5384 		}
5385 	} else {
5386 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
5387 		if (nbdev_ctrlr == NULL) {
5388 			SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
5389 			rc = -ENOMEM;
5390 			goto exit;
5391 		}
5392 		nbdev_ctrlr->name = strdup(name);
5393 		if (nbdev_ctrlr->name == NULL) {
5394 			SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
5395 			free(nbdev_ctrlr);
5396 			goto exit;
5397 		}
5398 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
5399 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
5400 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
5401 	}
5402 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
5403 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
5404 exit:
5405 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5406 	return rc;
5407 }
5408 
5409 static int
5410 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
5411 		  const char *name,
5412 		  const struct spdk_nvme_transport_id *trid,
5413 		  struct nvme_async_probe_ctx *ctx)
5414 {
5415 	struct nvme_ctrlr *nvme_ctrlr;
5416 	struct nvme_path_id *path_id;
5417 	const struct spdk_nvme_ctrlr_data *cdata;
5418 	int rc;
5419 
5420 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
5421 	if (nvme_ctrlr == NULL) {
5422 		SPDK_ERRLOG("Failed to allocate device struct\n");
5423 		return -ENOMEM;
5424 	}
5425 
5426 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
5427 	if (rc != 0) {
5428 		free(nvme_ctrlr);
5429 		return rc;
5430 	}
5431 
5432 	TAILQ_INIT(&nvme_ctrlr->trids);
5433 	RB_INIT(&nvme_ctrlr->namespaces);
5434 
5435 	/* Get another reference to the key, so the first one can be released from probe_ctx */
5436 	if (ctx != NULL) {
5437 		if (ctx->drv_opts.tls_psk != NULL) {
5438 			nvme_ctrlr->psk = spdk_keyring_get_key(
5439 						  spdk_key_get_name(ctx->drv_opts.tls_psk));
5440 			if (nvme_ctrlr->psk == NULL) {
5441 				/* Could only happen if the key was removed in the meantime */
5442 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5443 					    spdk_key_get_name(ctx->drv_opts.tls_psk));
5444 				rc = -ENOKEY;
5445 				goto err;
5446 			}
5447 		}
5448 
5449 		if (ctx->drv_opts.dhchap_key != NULL) {
5450 			nvme_ctrlr->dhchap_key = spdk_keyring_get_key(
5451 							 spdk_key_get_name(ctx->drv_opts.dhchap_key));
5452 			if (nvme_ctrlr->dhchap_key == NULL) {
5453 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5454 					    spdk_key_get_name(ctx->drv_opts.dhchap_key));
5455 				rc = -ENOKEY;
5456 				goto err;
5457 			}
5458 		}
5459 
5460 		if (ctx->drv_opts.dhchap_ctrlr_key != NULL) {
5461 			nvme_ctrlr->dhchap_ctrlr_key =
5462 				spdk_keyring_get_key(
5463 					spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5464 			if (nvme_ctrlr->dhchap_ctrlr_key == NULL) {
5465 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5466 					    spdk_key_get_name(ctx->drv_opts.tls_psk));
5467 				rc = -ENOKEY;
5468 				goto err;
5469 			}
5470 		}
5471 	}
5472 
5473 	path_id = calloc(1, sizeof(*path_id));
5474 	if (path_id == NULL) {
5475 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
5476 		rc = -ENOMEM;
5477 		goto err;
5478 	}
5479 
5480 	path_id->trid = *trid;
5481 	if (ctx != NULL) {
5482 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
5483 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
5484 	}
5485 	nvme_ctrlr->active_path_id = path_id;
5486 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
5487 
5488 	nvme_ctrlr->thread = spdk_get_thread();
5489 	nvme_ctrlr->ctrlr = ctrlr;
5490 	nvme_ctrlr->ref = 1;
5491 
5492 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
5493 		SPDK_ERRLOG("OCSSDs are not supported");
5494 		rc = -ENOTSUP;
5495 		goto err;
5496 	}
5497 
5498 	if (ctx != NULL) {
5499 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
5500 	} else {
5501 		bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
5502 	}
5503 
5504 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
5505 					  g_opts.nvme_adminq_poll_period_us);
5506 
5507 	if (g_opts.timeout_us > 0) {
5508 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
5509 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
5510 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
5511 					  g_opts.timeout_us : g_opts.timeout_admin_us;
5512 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
5513 				adm_timeout_us, timeout_cb, nvme_ctrlr);
5514 	}
5515 
5516 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
5517 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
5518 
5519 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
5520 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
5521 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
5522 	}
5523 
5524 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
5525 	if (rc != 0) {
5526 		goto err;
5527 	}
5528 
5529 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5530 
5531 	if (cdata->cmic.ana_reporting) {
5532 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
5533 		if (rc == 0) {
5534 			return 0;
5535 		}
5536 	} else {
5537 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5538 		return 0;
5539 	}
5540 
5541 err:
5542 	nvme_ctrlr_delete(nvme_ctrlr);
5543 	return rc;
5544 }
5545 
5546 void
5547 bdev_nvme_get_default_ctrlr_opts(struct nvme_ctrlr_opts *opts)
5548 {
5549 	opts->prchk_flags = 0;
5550 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
5551 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
5552 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
5553 }
5554 
5555 static void
5556 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5557 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
5558 {
5559 	char *name;
5560 
5561 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
5562 	if (!name) {
5563 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
5564 		return;
5565 	}
5566 
5567 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
5568 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
5569 	} else {
5570 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
5571 	}
5572 
5573 	free(name);
5574 }
5575 
5576 static void
5577 _nvme_ctrlr_destruct(void *ctx)
5578 {
5579 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5580 
5581 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
5582 	nvme_ctrlr_release(nvme_ctrlr);
5583 }
5584 
5585 static int
5586 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5587 {
5588 	struct nvme_probe_skip_entry *entry;
5589 
5590 	/* The controller's destruction was already started */
5591 	if (nvme_ctrlr->destruct) {
5592 		return -EALREADY;
5593 	}
5594 
5595 	if (!hotplug &&
5596 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
5597 		entry = calloc(1, sizeof(*entry));
5598 		if (!entry) {
5599 			return -ENOMEM;
5600 		}
5601 		entry->trid = nvme_ctrlr->active_path_id->trid;
5602 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
5603 	}
5604 
5605 	nvme_ctrlr->destruct = true;
5606 	return 0;
5607 }
5608 
5609 static int
5610 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
5611 {
5612 	int rc;
5613 
5614 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5615 	rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug);
5616 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5617 
5618 	if (rc == 0) {
5619 		_nvme_ctrlr_destruct(nvme_ctrlr);
5620 	} else if (rc == -EALREADY) {
5621 		rc = 0;
5622 	}
5623 
5624 	return rc;
5625 }
5626 
5627 static void
5628 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
5629 {
5630 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
5631 
5632 	bdev_nvme_delete_ctrlr(nvme_ctrlr, true);
5633 }
5634 
5635 static int
5636 bdev_nvme_hotplug_probe(void *arg)
5637 {
5638 	if (g_hotplug_probe_ctx == NULL) {
5639 		spdk_poller_unregister(&g_hotplug_probe_poller);
5640 		return SPDK_POLLER_IDLE;
5641 	}
5642 
5643 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
5644 		g_hotplug_probe_ctx = NULL;
5645 		spdk_poller_unregister(&g_hotplug_probe_poller);
5646 	}
5647 
5648 	return SPDK_POLLER_BUSY;
5649 }
5650 
5651 static int
5652 bdev_nvme_hotplug(void *arg)
5653 {
5654 	struct spdk_nvme_transport_id trid_pcie;
5655 
5656 	if (g_hotplug_probe_ctx) {
5657 		return SPDK_POLLER_BUSY;
5658 	}
5659 
5660 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5661 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5662 
5663 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
5664 			      hotplug_probe_cb, attach_cb, NULL);
5665 
5666 	if (g_hotplug_probe_ctx) {
5667 		assert(g_hotplug_probe_poller == NULL);
5668 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
5669 	}
5670 
5671 	return SPDK_POLLER_BUSY;
5672 }
5673 
5674 void
5675 bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
5676 {
5677 	*opts = g_opts;
5678 }
5679 
5680 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
5681 		uint32_t reconnect_delay_sec,
5682 		uint32_t fast_io_fail_timeout_sec);
5683 
5684 static int
5685 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
5686 {
5687 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
5688 		/* Can't set timeout_admin_us without also setting timeout_us */
5689 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
5690 		return -EINVAL;
5691 	}
5692 
5693 	if (opts->bdev_retry_count < -1) {
5694 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
5695 		return -EINVAL;
5696 	}
5697 
5698 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
5699 			opts->reconnect_delay_sec,
5700 			opts->fast_io_fail_timeout_sec)) {
5701 		return -EINVAL;
5702 	}
5703 
5704 	return 0;
5705 }
5706 
5707 int
5708 bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
5709 {
5710 	int ret;
5711 
5712 	ret = bdev_nvme_validate_opts(opts);
5713 	if (ret) {
5714 		SPDK_WARNLOG("Failed to set nvme opts.\n");
5715 		return ret;
5716 	}
5717 
5718 	if (g_bdev_nvme_init_thread != NULL) {
5719 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5720 			return -EPERM;
5721 		}
5722 	}
5723 
5724 	if (opts->rdma_srq_size != 0 ||
5725 	    opts->rdma_max_cq_size != 0 ||
5726 	    opts->rdma_cm_event_timeout_ms != 0) {
5727 		struct spdk_nvme_transport_opts drv_opts;
5728 
5729 		spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
5730 		if (opts->rdma_srq_size != 0) {
5731 			drv_opts.rdma_srq_size = opts->rdma_srq_size;
5732 		}
5733 		if (opts->rdma_max_cq_size != 0) {
5734 			drv_opts.rdma_max_cq_size = opts->rdma_max_cq_size;
5735 		}
5736 		if (opts->rdma_cm_event_timeout_ms != 0) {
5737 			drv_opts.rdma_cm_event_timeout_ms = opts->rdma_cm_event_timeout_ms;
5738 		}
5739 
5740 		ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
5741 		if (ret) {
5742 			SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
5743 			return ret;
5744 		}
5745 	}
5746 
5747 	g_opts = *opts;
5748 
5749 	return 0;
5750 }
5751 
5752 struct set_nvme_hotplug_ctx {
5753 	uint64_t period_us;
5754 	bool enabled;
5755 	spdk_msg_fn fn;
5756 	void *fn_ctx;
5757 };
5758 
5759 static void
5760 set_nvme_hotplug_period_cb(void *_ctx)
5761 {
5762 	struct set_nvme_hotplug_ctx *ctx = _ctx;
5763 
5764 	spdk_poller_unregister(&g_hotplug_poller);
5765 	if (ctx->enabled) {
5766 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
5767 	}
5768 
5769 	g_nvme_hotplug_poll_period_us = ctx->period_us;
5770 	g_nvme_hotplug_enabled = ctx->enabled;
5771 	if (ctx->fn) {
5772 		ctx->fn(ctx->fn_ctx);
5773 	}
5774 
5775 	free(ctx);
5776 }
5777 
5778 int
5779 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
5780 {
5781 	struct set_nvme_hotplug_ctx *ctx;
5782 
5783 	if (enabled == true && !spdk_process_is_primary()) {
5784 		return -EPERM;
5785 	}
5786 
5787 	ctx = calloc(1, sizeof(*ctx));
5788 	if (ctx == NULL) {
5789 		return -ENOMEM;
5790 	}
5791 
5792 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
5793 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
5794 	ctx->enabled = enabled;
5795 	ctx->fn = cb;
5796 	ctx->fn_ctx = cb_ctx;
5797 
5798 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
5799 	return 0;
5800 }
5801 
5802 static void
5803 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
5804 				    struct nvme_async_probe_ctx *ctx)
5805 {
5806 	struct nvme_ns	*nvme_ns;
5807 	struct nvme_bdev	*nvme_bdev;
5808 	size_t			j;
5809 
5810 	assert(nvme_ctrlr != NULL);
5811 
5812 	if (ctx->names == NULL) {
5813 		ctx->reported_bdevs = 0;
5814 		populate_namespaces_cb(ctx, 0);
5815 		return;
5816 	}
5817 
5818 	/*
5819 	 * Report the new bdevs that were created in this call.
5820 	 * There can be more than one bdev per NVMe controller.
5821 	 */
5822 	j = 0;
5823 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5824 	while (nvme_ns != NULL) {
5825 		nvme_bdev = nvme_ns->bdev;
5826 		if (j < ctx->max_bdevs) {
5827 			ctx->names[j] = nvme_bdev->disk.name;
5828 			j++;
5829 		} else {
5830 			SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
5831 				    ctx->max_bdevs);
5832 			ctx->reported_bdevs = 0;
5833 			populate_namespaces_cb(ctx, -ERANGE);
5834 			return;
5835 		}
5836 
5837 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5838 	}
5839 
5840 	ctx->reported_bdevs = j;
5841 	populate_namespaces_cb(ctx, 0);
5842 }
5843 
5844 static int
5845 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5846 			       struct spdk_nvme_ctrlr *new_ctrlr,
5847 			       struct spdk_nvme_transport_id *trid)
5848 {
5849 	struct nvme_path_id *tmp_trid;
5850 
5851 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
5852 		SPDK_ERRLOG("PCIe failover is not supported.\n");
5853 		return -ENOTSUP;
5854 	}
5855 
5856 	/* Currently we only support failover to the same transport type. */
5857 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
5858 		SPDK_WARNLOG("Failover from trtype: %s to a different trtype: %s is not supported currently\n",
5859 			     spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
5860 			     spdk_nvme_transport_id_trtype_str(trid->trtype));
5861 		return -EINVAL;
5862 	}
5863 
5864 
5865 	/* Currently we only support failover to the same NQN. */
5866 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
5867 		SPDK_WARNLOG("Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
5868 			     nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
5869 		return -EINVAL;
5870 	}
5871 
5872 	/* Skip all the other checks if we've already registered this path. */
5873 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
5874 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
5875 			SPDK_WARNLOG("This path (traddr: %s subnqn: %s) is already registered\n", trid->traddr,
5876 				     trid->subnqn);
5877 			return -EEXIST;
5878 		}
5879 	}
5880 
5881 	return 0;
5882 }
5883 
5884 static int
5885 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
5886 				    struct spdk_nvme_ctrlr *new_ctrlr)
5887 {
5888 	struct nvme_ns *nvme_ns;
5889 	struct spdk_nvme_ns *new_ns;
5890 
5891 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5892 	while (nvme_ns != NULL) {
5893 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
5894 		assert(new_ns != NULL);
5895 
5896 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
5897 			return -EINVAL;
5898 		}
5899 
5900 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5901 	}
5902 
5903 	return 0;
5904 }
5905 
5906 static int
5907 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5908 			      struct spdk_nvme_transport_id *trid)
5909 {
5910 	struct nvme_path_id *active_id, *new_trid, *tmp_trid;
5911 
5912 	new_trid = calloc(1, sizeof(*new_trid));
5913 	if (new_trid == NULL) {
5914 		return -ENOMEM;
5915 	}
5916 	new_trid->trid = *trid;
5917 
5918 	active_id = nvme_ctrlr->active_path_id;
5919 	assert(active_id != NULL);
5920 	assert(active_id == TAILQ_FIRST(&nvme_ctrlr->trids));
5921 
5922 	/* Skip the active trid not to replace it until it is failed. */
5923 	tmp_trid = TAILQ_NEXT(active_id, link);
5924 	if (tmp_trid == NULL) {
5925 		goto add_tail;
5926 	}
5927 
5928 	/* It means the trid is faled if its last failed time is non-zero.
5929 	 * Insert the new alternate trid before any failed trid.
5930 	 */
5931 	TAILQ_FOREACH_FROM(tmp_trid, &nvme_ctrlr->trids, link) {
5932 		if (tmp_trid->last_failed_tsc != 0) {
5933 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
5934 			return 0;
5935 		}
5936 	}
5937 
5938 add_tail:
5939 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
5940 	return 0;
5941 }
5942 
5943 /* This is the case that a secondary path is added to an existing
5944  * nvme_ctrlr for failover. After checking if it can access the same
5945  * namespaces as the primary path, it is disconnected until failover occurs.
5946  */
5947 static int
5948 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
5949 			     struct spdk_nvme_ctrlr *new_ctrlr,
5950 			     struct spdk_nvme_transport_id *trid)
5951 {
5952 	int rc;
5953 
5954 	assert(nvme_ctrlr != NULL);
5955 
5956 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5957 
5958 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
5959 	if (rc != 0) {
5960 		goto exit;
5961 	}
5962 
5963 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
5964 	if (rc != 0) {
5965 		goto exit;
5966 	}
5967 
5968 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
5969 
5970 exit:
5971 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5972 
5973 	spdk_nvme_detach(new_ctrlr);
5974 
5975 	return rc;
5976 }
5977 
5978 static void
5979 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5980 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
5981 {
5982 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
5983 	struct nvme_async_probe_ctx *ctx;
5984 	int rc;
5985 
5986 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
5987 	ctx->ctrlr_attached = true;
5988 
5989 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
5990 	if (rc != 0) {
5991 		ctx->reported_bdevs = 0;
5992 		populate_namespaces_cb(ctx, rc);
5993 	}
5994 }
5995 
5996 static void
5997 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
5998 			struct spdk_nvme_ctrlr *ctrlr,
5999 			const struct spdk_nvme_ctrlr_opts *opts)
6000 {
6001 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6002 	struct nvme_ctrlr *nvme_ctrlr;
6003 	struct nvme_async_probe_ctx *ctx;
6004 	int rc;
6005 
6006 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
6007 	ctx->ctrlr_attached = true;
6008 
6009 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
6010 	if (nvme_ctrlr) {
6011 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
6012 	} else {
6013 		rc = -ENODEV;
6014 	}
6015 
6016 	ctx->reported_bdevs = 0;
6017 	populate_namespaces_cb(ctx, rc);
6018 }
6019 
6020 static int
6021 bdev_nvme_async_poll(void *arg)
6022 {
6023 	struct nvme_async_probe_ctx	*ctx = arg;
6024 	int				rc;
6025 
6026 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
6027 	if (spdk_unlikely(rc != -EAGAIN)) {
6028 		ctx->probe_done = true;
6029 		spdk_poller_unregister(&ctx->poller);
6030 		if (!ctx->ctrlr_attached) {
6031 			/* The probe is done, but no controller was attached.
6032 			 * That means we had a failure, so report -EIO back to
6033 			 * the caller (usually the RPC). populate_namespaces_cb()
6034 			 * will take care of freeing the nvme_async_probe_ctx.
6035 			 */
6036 			ctx->reported_bdevs = 0;
6037 			populate_namespaces_cb(ctx, -EIO);
6038 		} else if (ctx->namespaces_populated) {
6039 			/* The namespaces for the attached controller were all
6040 			 * populated and the response was already sent to the
6041 			 * caller (usually the RPC).  So free the context here.
6042 			 */
6043 			free_nvme_async_probe_ctx(ctx);
6044 		}
6045 	}
6046 
6047 	return SPDK_POLLER_BUSY;
6048 }
6049 
6050 static bool
6051 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
6052 		uint32_t reconnect_delay_sec,
6053 		uint32_t fast_io_fail_timeout_sec)
6054 {
6055 	if (ctrlr_loss_timeout_sec < -1) {
6056 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
6057 		return false;
6058 	} else if (ctrlr_loss_timeout_sec == -1) {
6059 		if (reconnect_delay_sec == 0) {
6060 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6061 			return false;
6062 		} else if (fast_io_fail_timeout_sec != 0 &&
6063 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
6064 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
6065 			return false;
6066 		}
6067 	} else if (ctrlr_loss_timeout_sec != 0) {
6068 		if (reconnect_delay_sec == 0) {
6069 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6070 			return false;
6071 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6072 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
6073 			return false;
6074 		} else if (fast_io_fail_timeout_sec != 0) {
6075 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
6076 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
6077 				return false;
6078 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6079 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
6080 				return false;
6081 			}
6082 		}
6083 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
6084 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
6085 		return false;
6086 	}
6087 
6088 	return true;
6089 }
6090 
6091 static int
6092 bdev_nvme_load_psk(const char *fname, char *buf, size_t bufsz)
6093 {
6094 	FILE *psk_file;
6095 	struct stat statbuf;
6096 	int rc;
6097 #define TCP_PSK_INVALID_PERMISSIONS 0177
6098 
6099 	if (stat(fname, &statbuf) != 0) {
6100 		SPDK_ERRLOG("Could not read permissions for PSK file\n");
6101 		return -EACCES;
6102 	}
6103 
6104 	if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) {
6105 		SPDK_ERRLOG("Incorrect permissions for PSK file\n");
6106 		return -EPERM;
6107 	}
6108 	if ((size_t)statbuf.st_size >= bufsz) {
6109 		SPDK_ERRLOG("Invalid PSK: too long\n");
6110 		return -EINVAL;
6111 	}
6112 	psk_file = fopen(fname, "r");
6113 	if (psk_file == NULL) {
6114 		SPDK_ERRLOG("Could not open PSK file\n");
6115 		return -EINVAL;
6116 	}
6117 
6118 	memset(buf, 0, bufsz);
6119 	rc = fread(buf, 1, statbuf.st_size, psk_file);
6120 	if (rc != statbuf.st_size) {
6121 		SPDK_ERRLOG("Failed to read PSK\n");
6122 		fclose(psk_file);
6123 		return -EINVAL;
6124 	}
6125 
6126 	fclose(psk_file);
6127 	return 0;
6128 }
6129 
6130 int
6131 bdev_nvme_create(struct spdk_nvme_transport_id *trid,
6132 		 const char *base_name,
6133 		 const char **names,
6134 		 uint32_t count,
6135 		 spdk_bdev_create_nvme_fn cb_fn,
6136 		 void *cb_ctx,
6137 		 struct spdk_nvme_ctrlr_opts *drv_opts,
6138 		 struct nvme_ctrlr_opts *bdev_opts,
6139 		 bool multipath)
6140 {
6141 	struct nvme_probe_skip_entry *entry, *tmp;
6142 	struct nvme_async_probe_ctx *ctx;
6143 	spdk_nvme_attach_cb attach_cb;
6144 	int rc, len;
6145 
6146 	/* TODO expand this check to include both the host and target TRIDs.
6147 	 * Only if both are the same should we fail.
6148 	 */
6149 	if (nvme_ctrlr_get(trid) != NULL) {
6150 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
6151 		return -EEXIST;
6152 	}
6153 
6154 	len = strnlen(base_name, SPDK_CONTROLLER_NAME_MAX);
6155 
6156 	if (len == 0 || len == SPDK_CONTROLLER_NAME_MAX) {
6157 		SPDK_ERRLOG("controller name must be between 1 and %d characters\n", SPDK_CONTROLLER_NAME_MAX - 1);
6158 		return -EINVAL;
6159 	}
6160 
6161 	if (bdev_opts != NULL &&
6162 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
6163 			    bdev_opts->reconnect_delay_sec,
6164 			    bdev_opts->fast_io_fail_timeout_sec)) {
6165 		return -EINVAL;
6166 	}
6167 
6168 	ctx = calloc(1, sizeof(*ctx));
6169 	if (!ctx) {
6170 		return -ENOMEM;
6171 	}
6172 	ctx->base_name = base_name;
6173 	ctx->names = names;
6174 	ctx->max_bdevs = count;
6175 	ctx->cb_fn = cb_fn;
6176 	ctx->cb_ctx = cb_ctx;
6177 	ctx->trid = *trid;
6178 
6179 	if (bdev_opts) {
6180 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6181 	} else {
6182 		bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
6183 	}
6184 
6185 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6186 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
6187 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
6188 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
6189 				free(entry);
6190 				break;
6191 			}
6192 		}
6193 	}
6194 
6195 	if (drv_opts) {
6196 		memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6197 	} else {
6198 		spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->drv_opts, sizeof(ctx->drv_opts));
6199 	}
6200 
6201 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
6202 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
6203 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
6204 	ctx->drv_opts.disable_read_ana_log_page = true;
6205 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
6206 
6207 	if (ctx->bdev_opts.psk[0] != '\0') {
6208 		/* Try to use the keyring first */
6209 		ctx->drv_opts.tls_psk = spdk_keyring_get_key(ctx->bdev_opts.psk);
6210 		if (ctx->drv_opts.tls_psk == NULL) {
6211 			rc = bdev_nvme_load_psk(ctx->bdev_opts.psk,
6212 						ctx->drv_opts.psk, sizeof(ctx->drv_opts.psk));
6213 			if (rc != 0) {
6214 				SPDK_ERRLOG("Could not load PSK from %s\n", ctx->bdev_opts.psk);
6215 				free_nvme_async_probe_ctx(ctx);
6216 				return rc;
6217 			}
6218 		}
6219 	}
6220 
6221 	if (ctx->bdev_opts.dhchap_key != NULL) {
6222 		ctx->drv_opts.dhchap_key = spdk_keyring_get_key(ctx->bdev_opts.dhchap_key);
6223 		if (ctx->drv_opts.dhchap_key == NULL) {
6224 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP key: %s\n",
6225 				    ctx->bdev_opts.dhchap_key);
6226 			free_nvme_async_probe_ctx(ctx);
6227 			return -ENOKEY;
6228 		}
6229 
6230 		ctx->drv_opts.dhchap_digests = g_opts.dhchap_digests;
6231 		ctx->drv_opts.dhchap_dhgroups = g_opts.dhchap_dhgroups;
6232 	}
6233 	if (ctx->bdev_opts.dhchap_ctrlr_key != NULL) {
6234 		ctx->drv_opts.dhchap_ctrlr_key =
6235 			spdk_keyring_get_key(ctx->bdev_opts.dhchap_ctrlr_key);
6236 		if (ctx->drv_opts.dhchap_ctrlr_key == NULL) {
6237 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP controller key: %s\n",
6238 				    ctx->bdev_opts.dhchap_ctrlr_key);
6239 			free_nvme_async_probe_ctx(ctx);
6240 			return -ENOKEY;
6241 		}
6242 	}
6243 
6244 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
6245 		attach_cb = connect_attach_cb;
6246 	} else {
6247 		attach_cb = connect_set_failover_cb;
6248 	}
6249 
6250 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
6251 	if (ctx->probe_ctx == NULL) {
6252 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
6253 		free_nvme_async_probe_ctx(ctx);
6254 		return -ENODEV;
6255 	}
6256 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
6257 
6258 	return 0;
6259 }
6260 
6261 struct bdev_nvme_delete_ctx {
6262 	char                        *name;
6263 	struct nvme_path_id         path_id;
6264 	bdev_nvme_delete_done_fn    delete_done;
6265 	void                        *delete_done_ctx;
6266 	uint64_t                    timeout_ticks;
6267 	struct spdk_poller          *poller;
6268 };
6269 
6270 static void
6271 free_bdev_nvme_delete_ctx(struct bdev_nvme_delete_ctx *ctx)
6272 {
6273 	if (ctx != NULL) {
6274 		free(ctx->name);
6275 		free(ctx);
6276 	}
6277 }
6278 
6279 static bool
6280 nvme_path_id_compare(struct nvme_path_id *p, const struct nvme_path_id *path_id)
6281 {
6282 	if (path_id->trid.trtype != 0) {
6283 		if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
6284 			if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
6285 				return false;
6286 			}
6287 		} else {
6288 			if (path_id->trid.trtype != p->trid.trtype) {
6289 				return false;
6290 			}
6291 		}
6292 	}
6293 
6294 	if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
6295 		if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
6296 			return false;
6297 		}
6298 	}
6299 
6300 	if (path_id->trid.adrfam != 0) {
6301 		if (path_id->trid.adrfam != p->trid.adrfam) {
6302 			return false;
6303 		}
6304 	}
6305 
6306 	if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
6307 		if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
6308 			return false;
6309 		}
6310 	}
6311 
6312 	if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
6313 		if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
6314 			return false;
6315 		}
6316 	}
6317 
6318 	if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
6319 		if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
6320 			return false;
6321 		}
6322 	}
6323 
6324 	if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
6325 		if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
6326 			return false;
6327 		}
6328 	}
6329 
6330 	return true;
6331 }
6332 
6333 static bool
6334 nvme_path_id_exists(const char *name, const struct nvme_path_id *path_id)
6335 {
6336 	struct nvme_bdev_ctrlr  *nbdev_ctrlr;
6337 	struct nvme_ctrlr       *ctrlr;
6338 	struct nvme_path_id     *p;
6339 
6340 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6341 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6342 	if (!nbdev_ctrlr) {
6343 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6344 		return false;
6345 	}
6346 
6347 	TAILQ_FOREACH(ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6348 		pthread_mutex_lock(&ctrlr->mutex);
6349 		TAILQ_FOREACH(p, &ctrlr->trids, link) {
6350 			if (nvme_path_id_compare(p, path_id)) {
6351 				pthread_mutex_unlock(&ctrlr->mutex);
6352 				pthread_mutex_unlock(&g_bdev_nvme_mutex);
6353 				return true;
6354 			}
6355 		}
6356 		pthread_mutex_unlock(&ctrlr->mutex);
6357 	}
6358 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6359 
6360 	return false;
6361 }
6362 
6363 static int
6364 bdev_nvme_delete_complete_poll(void *arg)
6365 {
6366 	struct bdev_nvme_delete_ctx     *ctx = arg;
6367 	int                             rc = 0;
6368 
6369 	if (nvme_path_id_exists(ctx->name, &ctx->path_id)) {
6370 		if (ctx->timeout_ticks > spdk_get_ticks()) {
6371 			return SPDK_POLLER_BUSY;
6372 		}
6373 
6374 		SPDK_ERRLOG("NVMe path '%s' still exists after delete\n", ctx->name);
6375 		rc = -ETIMEDOUT;
6376 	}
6377 
6378 	spdk_poller_unregister(&ctx->poller);
6379 
6380 	ctx->delete_done(ctx->delete_done_ctx, rc);
6381 	free_bdev_nvme_delete_ctx(ctx);
6382 
6383 	return SPDK_POLLER_BUSY;
6384 }
6385 
6386 static int
6387 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id)
6388 {
6389 	struct nvme_path_id	*p, *t;
6390 	spdk_msg_fn		msg_fn;
6391 	int			rc = -ENXIO;
6392 
6393 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6394 
6395 	TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
6396 		if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) {
6397 			break;
6398 		}
6399 
6400 		if (!nvme_path_id_compare(p, path_id)) {
6401 			continue;
6402 		}
6403 
6404 		/* We are not using the specified path. */
6405 		TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
6406 		free(p);
6407 		rc = 0;
6408 	}
6409 
6410 	if (p == NULL || !nvme_path_id_compare(p, path_id)) {
6411 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
6412 		return rc;
6413 	}
6414 
6415 	/* If we made it here, then this path is a match! Now we need to remove it. */
6416 
6417 	/* This is the active path in use right now. The active path is always the first in the list. */
6418 	assert(p == nvme_ctrlr->active_path_id);
6419 
6420 	if (!TAILQ_NEXT(p, link)) {
6421 		/* The current path is the only path. */
6422 		msg_fn = _nvme_ctrlr_destruct;
6423 		rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false);
6424 	} else {
6425 		/* There is an alternative path. */
6426 		msg_fn = _bdev_nvme_reset_ctrlr;
6427 		rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, true);
6428 	}
6429 
6430 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6431 
6432 	if (rc == 0) {
6433 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
6434 	} else if (rc == -EALREADY) {
6435 		rc = 0;
6436 	}
6437 
6438 	return rc;
6439 }
6440 
6441 int
6442 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id,
6443 		 bdev_nvme_delete_done_fn delete_done, void *delete_done_ctx)
6444 {
6445 	struct nvme_bdev_ctrlr		*nbdev_ctrlr;
6446 	struct nvme_ctrlr		*nvme_ctrlr, *tmp_nvme_ctrlr;
6447 	struct bdev_nvme_delete_ctx     *ctx = NULL;
6448 	int				rc = -ENXIO, _rc;
6449 
6450 	if (name == NULL || path_id == NULL) {
6451 		rc = -EINVAL;
6452 		goto exit;
6453 	}
6454 
6455 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6456 
6457 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6458 	if (nbdev_ctrlr == NULL) {
6459 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6460 
6461 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
6462 		rc = -ENODEV;
6463 		goto exit;
6464 	}
6465 
6466 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
6467 		_rc = _bdev_nvme_delete(nvme_ctrlr, path_id);
6468 		if (_rc < 0 && _rc != -ENXIO) {
6469 			pthread_mutex_unlock(&g_bdev_nvme_mutex);
6470 			rc = _rc;
6471 			goto exit;
6472 		} else if (_rc == 0) {
6473 			/* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr
6474 			 * was deleted successfully. To remember the successful deletion,
6475 			 * overwrite rc only if _rc is zero.
6476 			 */
6477 			rc = 0;
6478 		}
6479 	}
6480 
6481 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6482 
6483 	if (rc != 0 || delete_done == NULL) {
6484 		goto exit;
6485 	}
6486 
6487 	ctx = calloc(1, sizeof(*ctx));
6488 	if (ctx == NULL) {
6489 		SPDK_ERRLOG("Failed to allocate context for bdev_nvme_delete\n");
6490 		rc = -ENOMEM;
6491 		goto exit;
6492 	}
6493 
6494 	ctx->name = strdup(name);
6495 	if (ctx->name == NULL) {
6496 		SPDK_ERRLOG("Failed to copy controller name for deletion\n");
6497 		rc = -ENOMEM;
6498 		goto exit;
6499 	}
6500 
6501 	ctx->delete_done = delete_done;
6502 	ctx->delete_done_ctx = delete_done_ctx;
6503 	ctx->path_id = *path_id;
6504 	ctx->timeout_ticks = spdk_get_ticks() + 10 * spdk_get_ticks_hz();
6505 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_delete_complete_poll, ctx, 1000);
6506 	if (ctx->poller == NULL) {
6507 		SPDK_ERRLOG("Failed to register bdev_nvme_delete poller\n");
6508 		rc = -ENOMEM;
6509 		goto exit;
6510 	}
6511 
6512 exit:
6513 	if (rc != 0) {
6514 		free_bdev_nvme_delete_ctx(ctx);
6515 	}
6516 
6517 	return rc;
6518 }
6519 
6520 #define DISCOVERY_INFOLOG(ctx, format, ...) \
6521 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6522 
6523 #define DISCOVERY_ERRLOG(ctx, format, ...) \
6524 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
6525 
6526 struct discovery_entry_ctx {
6527 	char						name[128];
6528 	struct spdk_nvme_transport_id			trid;
6529 	struct spdk_nvme_ctrlr_opts			drv_opts;
6530 	struct spdk_nvmf_discovery_log_page_entry	entry;
6531 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
6532 	struct discovery_ctx				*ctx;
6533 };
6534 
6535 struct discovery_ctx {
6536 	char					*name;
6537 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
6538 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
6539 	void					*cb_ctx;
6540 	struct spdk_nvme_probe_ctx		*probe_ctx;
6541 	struct spdk_nvme_detach_ctx		*detach_ctx;
6542 	struct spdk_nvme_ctrlr			*ctrlr;
6543 	struct spdk_nvme_transport_id		trid;
6544 	struct discovery_entry_ctx		*entry_ctx_in_use;
6545 	struct spdk_poller			*poller;
6546 	struct spdk_nvme_ctrlr_opts		drv_opts;
6547 	struct nvme_ctrlr_opts			bdev_opts;
6548 	struct spdk_nvmf_discovery_log_page	*log_page;
6549 	TAILQ_ENTRY(discovery_ctx)		tailq;
6550 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
6551 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
6552 	int					rc;
6553 	bool					wait_for_attach;
6554 	uint64_t				timeout_ticks;
6555 	/* Denotes that the discovery service is being started. We're waiting
6556 	 * for the initial connection to the discovery controller to be
6557 	 * established and attach discovered NVM ctrlrs.
6558 	 */
6559 	bool					initializing;
6560 	/* Denotes if a discovery is currently in progress for this context.
6561 	 * That includes connecting to newly discovered subsystems.  Used to
6562 	 * ensure we do not start a new discovery until an existing one is
6563 	 * complete.
6564 	 */
6565 	bool					in_progress;
6566 
6567 	/* Denotes if another discovery is needed after the one in progress
6568 	 * completes.  Set when we receive an AER completion while a discovery
6569 	 * is already in progress.
6570 	 */
6571 	bool					pending;
6572 
6573 	/* Signal to the discovery context poller that it should stop the
6574 	 * discovery service, including detaching from the current discovery
6575 	 * controller.
6576 	 */
6577 	bool					stop;
6578 
6579 	struct spdk_thread			*calling_thread;
6580 	uint32_t				index;
6581 	uint32_t				attach_in_progress;
6582 	char					*hostnqn;
6583 
6584 	/* Denotes if the discovery service was started by the mdns discovery.
6585 	 */
6586 	bool					from_mdns_discovery_service;
6587 };
6588 
6589 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
6590 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
6591 
6592 static void get_discovery_log_page(struct discovery_ctx *ctx);
6593 
6594 static void
6595 free_discovery_ctx(struct discovery_ctx *ctx)
6596 {
6597 	free(ctx->log_page);
6598 	free(ctx->hostnqn);
6599 	free(ctx->name);
6600 	free(ctx);
6601 }
6602 
6603 static void
6604 discovery_complete(struct discovery_ctx *ctx)
6605 {
6606 	ctx->initializing = false;
6607 	ctx->in_progress = false;
6608 	if (ctx->pending) {
6609 		ctx->pending = false;
6610 		get_discovery_log_page(ctx);
6611 	}
6612 }
6613 
6614 static void
6615 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
6616 			       struct spdk_nvmf_discovery_log_page_entry *entry)
6617 {
6618 	char *space;
6619 
6620 	trid->trtype = entry->trtype;
6621 	trid->adrfam = entry->adrfam;
6622 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
6623 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
6624 	/* Because the source buffer (entry->subnqn) is longer than trid->subnqn, and
6625 	 * before call to this function trid->subnqn is zeroed out, we need
6626 	 * to copy sizeof(trid->subnqn) minus one byte to make sure the last character
6627 	 * remains 0. Then we can shorten the string (replace ' ' with 0) if required
6628 	 */
6629 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn) - 1);
6630 
6631 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
6632 	 * But the log page entries typically pad them with spaces, not zeroes.
6633 	 * So add a NULL terminator to each of these fields at the appropriate
6634 	 * location.
6635 	 */
6636 	space = strchr(trid->traddr, ' ');
6637 	if (space) {
6638 		*space = 0;
6639 	}
6640 	space = strchr(trid->trsvcid, ' ');
6641 	if (space) {
6642 		*space = 0;
6643 	}
6644 	space = strchr(trid->subnqn, ' ');
6645 	if (space) {
6646 		*space = 0;
6647 	}
6648 }
6649 
6650 static void
6651 _stop_discovery(void *_ctx)
6652 {
6653 	struct discovery_ctx *ctx = _ctx;
6654 
6655 	if (ctx->attach_in_progress > 0) {
6656 		spdk_thread_send_msg(spdk_get_thread(), _stop_discovery, ctx);
6657 		return;
6658 	}
6659 
6660 	ctx->stop = true;
6661 
6662 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
6663 		struct discovery_entry_ctx *entry_ctx;
6664 		struct nvme_path_id path = {};
6665 
6666 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
6667 		path.trid = entry_ctx->trid;
6668 		bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6669 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6670 		free(entry_ctx);
6671 	}
6672 
6673 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
6674 		struct discovery_entry_ctx *entry_ctx;
6675 
6676 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
6677 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6678 		free(entry_ctx);
6679 	}
6680 
6681 	free(ctx->entry_ctx_in_use);
6682 	ctx->entry_ctx_in_use = NULL;
6683 }
6684 
6685 static void
6686 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
6687 {
6688 	ctx->stop_cb_fn = cb_fn;
6689 	ctx->cb_ctx = cb_ctx;
6690 
6691 	if (ctx->attach_in_progress > 0) {
6692 		DISCOVERY_INFOLOG(ctx, "stopping discovery with attach_in_progress: %"PRIu32"\n",
6693 				  ctx->attach_in_progress);
6694 	}
6695 
6696 	_stop_discovery(ctx);
6697 }
6698 
6699 static void
6700 remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr)
6701 {
6702 	struct discovery_ctx *d_ctx;
6703 	struct nvme_path_id *path_id;
6704 	struct spdk_nvme_transport_id trid = {};
6705 	struct discovery_entry_ctx *entry_ctx, *tmp;
6706 
6707 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
6708 
6709 	TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6710 		TAILQ_FOREACH_SAFE(entry_ctx, &d_ctx->nvm_entry_ctxs, tailq, tmp) {
6711 			build_trid_from_log_page_entry(&trid, &entry_ctx->entry);
6712 			if (spdk_nvme_transport_id_compare(&trid, &path_id->trid) != 0) {
6713 				continue;
6714 			}
6715 
6716 			TAILQ_REMOVE(&d_ctx->nvm_entry_ctxs, entry_ctx, tailq);
6717 			free(entry_ctx);
6718 			DISCOVERY_INFOLOG(d_ctx, "Remove discovery entry: %s:%s:%s\n",
6719 					  trid.subnqn, trid.traddr, trid.trsvcid);
6720 
6721 			/* Fail discovery ctrlr to force reattach attempt */
6722 			spdk_nvme_ctrlr_fail(d_ctx->ctrlr);
6723 		}
6724 	}
6725 }
6726 
6727 static void
6728 discovery_remove_controllers(struct discovery_ctx *ctx)
6729 {
6730 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
6731 	struct discovery_entry_ctx *entry_ctx, *tmp;
6732 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6733 	struct spdk_nvme_transport_id old_trid = {};
6734 	uint64_t numrec, i;
6735 	bool found;
6736 
6737 	numrec = from_le64(&log_page->numrec);
6738 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
6739 		found = false;
6740 		old_entry = &entry_ctx->entry;
6741 		build_trid_from_log_page_entry(&old_trid, old_entry);
6742 		for (i = 0; i < numrec; i++) {
6743 			new_entry = &log_page->entries[i];
6744 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
6745 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
6746 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6747 				found = true;
6748 				break;
6749 			}
6750 		}
6751 		if (!found) {
6752 			struct nvme_path_id path = {};
6753 
6754 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
6755 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
6756 
6757 			path.trid = entry_ctx->trid;
6758 			bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
6759 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
6760 			free(entry_ctx);
6761 		}
6762 	}
6763 	free(log_page);
6764 	ctx->log_page = NULL;
6765 	discovery_complete(ctx);
6766 }
6767 
6768 static void
6769 complete_discovery_start(struct discovery_ctx *ctx, int status)
6770 {
6771 	ctx->timeout_ticks = 0;
6772 	ctx->rc = status;
6773 	if (ctx->start_cb_fn) {
6774 		ctx->start_cb_fn(ctx->cb_ctx, status);
6775 		ctx->start_cb_fn = NULL;
6776 		ctx->cb_ctx = NULL;
6777 	}
6778 }
6779 
6780 static void
6781 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
6782 {
6783 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
6784 	struct discovery_ctx *ctx = entry_ctx->ctx;
6785 
6786 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
6787 	ctx->attach_in_progress--;
6788 	if (ctx->attach_in_progress == 0) {
6789 		complete_discovery_start(ctx, ctx->rc);
6790 		if (ctx->initializing && ctx->rc != 0) {
6791 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
6792 			stop_discovery(ctx, NULL, ctx->cb_ctx);
6793 		} else {
6794 			discovery_remove_controllers(ctx);
6795 		}
6796 	}
6797 }
6798 
6799 static struct discovery_entry_ctx *
6800 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
6801 {
6802 	struct discovery_entry_ctx *new_ctx;
6803 
6804 	new_ctx = calloc(1, sizeof(*new_ctx));
6805 	if (new_ctx == NULL) {
6806 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6807 		return NULL;
6808 	}
6809 
6810 	new_ctx->ctx = ctx;
6811 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
6812 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6813 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6814 	return new_ctx;
6815 }
6816 
6817 static void
6818 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
6819 		      struct spdk_nvmf_discovery_log_page *log_page)
6820 {
6821 	struct discovery_ctx *ctx = cb_arg;
6822 	struct discovery_entry_ctx *entry_ctx, *tmp;
6823 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
6824 	uint64_t numrec, i;
6825 	bool found;
6826 
6827 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
6828 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6829 		return;
6830 	}
6831 
6832 	ctx->log_page = log_page;
6833 	assert(ctx->attach_in_progress == 0);
6834 	numrec = from_le64(&log_page->numrec);
6835 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
6836 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
6837 		free(entry_ctx);
6838 	}
6839 	for (i = 0; i < numrec; i++) {
6840 		found = false;
6841 		new_entry = &log_page->entries[i];
6842 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY_CURRENT ||
6843 		    new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
6844 			struct discovery_entry_ctx *new_ctx;
6845 			struct spdk_nvme_transport_id trid = {};
6846 
6847 			build_trid_from_log_page_entry(&trid, new_entry);
6848 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
6849 			if (new_ctx == NULL) {
6850 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6851 				break;
6852 			}
6853 
6854 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
6855 			continue;
6856 		}
6857 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
6858 			old_entry = &entry_ctx->entry;
6859 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
6860 				found = true;
6861 				break;
6862 			}
6863 		}
6864 		if (!found) {
6865 			struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx;
6866 			struct discovery_ctx *d_ctx;
6867 
6868 			TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
6869 				TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) {
6870 					if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
6871 						    sizeof(new_entry->subnqn))) {
6872 						break;
6873 					}
6874 				}
6875 				if (subnqn_ctx) {
6876 					break;
6877 				}
6878 			}
6879 
6880 			new_ctx = calloc(1, sizeof(*new_ctx));
6881 			if (new_ctx == NULL) {
6882 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
6883 				break;
6884 			}
6885 
6886 			new_ctx->ctx = ctx;
6887 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
6888 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
6889 			if (subnqn_ctx) {
6890 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
6891 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
6892 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6893 						  new_ctx->name);
6894 			} else {
6895 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
6896 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
6897 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
6898 						  new_ctx->name);
6899 			}
6900 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
6901 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
6902 			rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
6903 					      discovery_attach_controller_done, new_ctx,
6904 					      &new_ctx->drv_opts, &ctx->bdev_opts, true);
6905 			if (rc == 0) {
6906 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
6907 				ctx->attach_in_progress++;
6908 			} else {
6909 				DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
6910 			}
6911 		}
6912 	}
6913 
6914 	if (ctx->attach_in_progress == 0) {
6915 		discovery_remove_controllers(ctx);
6916 	}
6917 }
6918 
6919 static void
6920 get_discovery_log_page(struct discovery_ctx *ctx)
6921 {
6922 	int rc;
6923 
6924 	assert(ctx->in_progress == false);
6925 	ctx->in_progress = true;
6926 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
6927 	if (rc != 0) {
6928 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
6929 	}
6930 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
6931 }
6932 
6933 static void
6934 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
6935 {
6936 	struct discovery_ctx *ctx = arg;
6937 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
6938 
6939 	if (spdk_nvme_cpl_is_error(cpl)) {
6940 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
6941 		return;
6942 	}
6943 
6944 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
6945 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
6946 		return;
6947 	}
6948 
6949 	DISCOVERY_INFOLOG(ctx, "got aer\n");
6950 	if (ctx->in_progress) {
6951 		ctx->pending = true;
6952 		return;
6953 	}
6954 
6955 	get_discovery_log_page(ctx);
6956 }
6957 
6958 static void
6959 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6960 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
6961 {
6962 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6963 	struct discovery_ctx *ctx;
6964 
6965 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
6966 
6967 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
6968 	ctx->probe_ctx = NULL;
6969 	ctx->ctrlr = ctrlr;
6970 
6971 	if (ctx->rc != 0) {
6972 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
6973 				 ctx->rc);
6974 		return;
6975 	}
6976 
6977 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
6978 }
6979 
6980 static int
6981 discovery_poller(void *arg)
6982 {
6983 	struct discovery_ctx *ctx = arg;
6984 	struct spdk_nvme_transport_id *trid;
6985 	int rc;
6986 
6987 	if (ctx->detach_ctx) {
6988 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
6989 		if (rc != -EAGAIN) {
6990 			ctx->detach_ctx = NULL;
6991 			ctx->ctrlr = NULL;
6992 		}
6993 	} else if (ctx->stop) {
6994 		if (ctx->ctrlr != NULL) {
6995 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
6996 			if (rc == 0) {
6997 				return SPDK_POLLER_BUSY;
6998 			}
6999 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7000 		}
7001 		spdk_poller_unregister(&ctx->poller);
7002 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7003 		assert(ctx->start_cb_fn == NULL);
7004 		if (ctx->stop_cb_fn != NULL) {
7005 			ctx->stop_cb_fn(ctx->cb_ctx);
7006 		}
7007 		free_discovery_ctx(ctx);
7008 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
7009 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7010 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7011 			assert(ctx->initializing);
7012 			spdk_poller_unregister(&ctx->poller);
7013 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7014 			complete_discovery_start(ctx, -ETIMEDOUT);
7015 			stop_discovery(ctx, NULL, NULL);
7016 			free_discovery_ctx(ctx);
7017 			return SPDK_POLLER_BUSY;
7018 		}
7019 
7020 		assert(ctx->entry_ctx_in_use == NULL);
7021 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
7022 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7023 		trid = &ctx->entry_ctx_in_use->trid;
7024 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
7025 		if (ctx->probe_ctx) {
7026 			spdk_poller_unregister(&ctx->poller);
7027 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
7028 		} else {
7029 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
7030 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7031 			ctx->entry_ctx_in_use = NULL;
7032 		}
7033 	} else if (ctx->probe_ctx) {
7034 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7035 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7036 			complete_discovery_start(ctx, -ETIMEDOUT);
7037 			return SPDK_POLLER_BUSY;
7038 		}
7039 
7040 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
7041 		if (rc != -EAGAIN) {
7042 			if (ctx->rc != 0) {
7043 				assert(ctx->initializing);
7044 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7045 			} else {
7046 				assert(rc == 0);
7047 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
7048 				ctx->rc = rc;
7049 				get_discovery_log_page(ctx);
7050 			}
7051 		}
7052 	} else {
7053 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7054 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
7055 			complete_discovery_start(ctx, -ETIMEDOUT);
7056 			/* We need to wait until all NVM ctrlrs are attached before we stop the
7057 			 * discovery service to make sure we don't detach a ctrlr that is still
7058 			 * being attached.
7059 			 */
7060 			if (ctx->attach_in_progress == 0) {
7061 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7062 				return SPDK_POLLER_BUSY;
7063 			}
7064 		}
7065 
7066 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
7067 		if (rc < 0) {
7068 			spdk_poller_unregister(&ctx->poller);
7069 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7070 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7071 			ctx->entry_ctx_in_use = NULL;
7072 
7073 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7074 			if (rc != 0) {
7075 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7076 				ctx->ctrlr = NULL;
7077 			}
7078 		}
7079 	}
7080 
7081 	return SPDK_POLLER_BUSY;
7082 }
7083 
7084 static void
7085 start_discovery_poller(void *arg)
7086 {
7087 	struct discovery_ctx *ctx = arg;
7088 
7089 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
7090 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7091 }
7092 
7093 int
7094 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
7095 			  const char *base_name,
7096 			  struct spdk_nvme_ctrlr_opts *drv_opts,
7097 			  struct nvme_ctrlr_opts *bdev_opts,
7098 			  uint64_t attach_timeout,
7099 			  bool from_mdns,
7100 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
7101 {
7102 	struct discovery_ctx *ctx;
7103 	struct discovery_entry_ctx *discovery_entry_ctx;
7104 
7105 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
7106 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7107 		if (strcmp(ctx->name, base_name) == 0) {
7108 			return -EEXIST;
7109 		}
7110 
7111 		if (ctx->entry_ctx_in_use != NULL) {
7112 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
7113 				return -EEXIST;
7114 			}
7115 		}
7116 
7117 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
7118 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
7119 				return -EEXIST;
7120 			}
7121 		}
7122 	}
7123 
7124 	ctx = calloc(1, sizeof(*ctx));
7125 	if (ctx == NULL) {
7126 		return -ENOMEM;
7127 	}
7128 
7129 	ctx->name = strdup(base_name);
7130 	if (ctx->name == NULL) {
7131 		free_discovery_ctx(ctx);
7132 		return -ENOMEM;
7133 	}
7134 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
7135 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
7136 	ctx->from_mdns_discovery_service = from_mdns;
7137 	ctx->bdev_opts.from_discovery_service = true;
7138 	ctx->calling_thread = spdk_get_thread();
7139 	ctx->start_cb_fn = cb_fn;
7140 	ctx->cb_ctx = cb_ctx;
7141 	ctx->initializing = true;
7142 	if (ctx->start_cb_fn) {
7143 		/* We can use this when dumping json to denote if this RPC parameter
7144 		 * was specified or not.
7145 		 */
7146 		ctx->wait_for_attach = true;
7147 	}
7148 	if (attach_timeout != 0) {
7149 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
7150 				     spdk_get_ticks_hz() / 1000ull;
7151 	}
7152 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
7153 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
7154 	memcpy(&ctx->trid, trid, sizeof(*trid));
7155 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
7156 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
7157 	if (ctx->hostnqn == NULL) {
7158 		free_discovery_ctx(ctx);
7159 		return -ENOMEM;
7160 	}
7161 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
7162 	if (discovery_entry_ctx == NULL) {
7163 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7164 		free_discovery_ctx(ctx);
7165 		return -ENOMEM;
7166 	}
7167 
7168 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
7169 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
7170 	return 0;
7171 }
7172 
7173 int
7174 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
7175 {
7176 	struct discovery_ctx *ctx;
7177 
7178 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7179 		if (strcmp(name, ctx->name) == 0) {
7180 			if (ctx->stop) {
7181 				return -EALREADY;
7182 			}
7183 			/* If we're still starting the discovery service and ->rc is non-zero, we're
7184 			 * going to stop it as soon as we can
7185 			 */
7186 			if (ctx->initializing && ctx->rc != 0) {
7187 				return -EALREADY;
7188 			}
7189 			stop_discovery(ctx, cb_fn, cb_ctx);
7190 			return 0;
7191 		}
7192 	}
7193 
7194 	return -ENOENT;
7195 }
7196 
7197 static int
7198 bdev_nvme_library_init(void)
7199 {
7200 	g_bdev_nvme_init_thread = spdk_get_thread();
7201 
7202 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
7203 				bdev_nvme_destroy_poll_group_cb,
7204 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
7205 
7206 	return 0;
7207 }
7208 
7209 static void
7210 bdev_nvme_fini_destruct_ctrlrs(void)
7211 {
7212 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
7213 	struct nvme_ctrlr *nvme_ctrlr;
7214 
7215 	pthread_mutex_lock(&g_bdev_nvme_mutex);
7216 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
7217 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
7218 			pthread_mutex_lock(&nvme_ctrlr->mutex);
7219 			if (nvme_ctrlr->destruct) {
7220 				/* This controller's destruction was already started
7221 				 * before the application started shutting down
7222 				 */
7223 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
7224 				continue;
7225 			}
7226 			nvme_ctrlr->destruct = true;
7227 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
7228 
7229 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
7230 					     nvme_ctrlr);
7231 		}
7232 	}
7233 
7234 	g_bdev_nvme_module_finish = true;
7235 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
7236 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
7237 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
7238 		spdk_bdev_module_fini_done();
7239 		return;
7240 	}
7241 
7242 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
7243 }
7244 
7245 static void
7246 check_discovery_fini(void *arg)
7247 {
7248 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7249 		bdev_nvme_fini_destruct_ctrlrs();
7250 	}
7251 }
7252 
7253 static void
7254 bdev_nvme_library_fini(void)
7255 {
7256 	struct nvme_probe_skip_entry *entry, *entry_tmp;
7257 	struct discovery_ctx *ctx;
7258 
7259 	spdk_poller_unregister(&g_hotplug_poller);
7260 	free(g_hotplug_probe_ctx);
7261 	g_hotplug_probe_ctx = NULL;
7262 
7263 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
7264 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
7265 		free(entry);
7266 	}
7267 
7268 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
7269 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7270 		bdev_nvme_fini_destruct_ctrlrs();
7271 	} else {
7272 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7273 			stop_discovery(ctx, check_discovery_fini, NULL);
7274 		}
7275 	}
7276 }
7277 
7278 static void
7279 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
7280 {
7281 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7282 	struct spdk_bdev *bdev = bdev_io->bdev;
7283 	struct spdk_dif_ctx dif_ctx;
7284 	struct spdk_dif_error err_blk = {};
7285 	int rc;
7286 	struct spdk_dif_ctx_init_ext_opts dif_opts;
7287 
7288 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
7289 	dif_opts.dif_pi_format = SPDK_DIF_PI_FORMAT_16;
7290 	rc = spdk_dif_ctx_init(&dif_ctx,
7291 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
7292 			       bdev->dif_is_head_of_md, bdev->dif_type,
7293 			       bdev_io->u.bdev.dif_check_flags,
7294 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0, &dif_opts);
7295 	if (rc != 0) {
7296 		SPDK_ERRLOG("Initialization of DIF context failed\n");
7297 		return;
7298 	}
7299 
7300 	if (bdev->md_interleave) {
7301 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7302 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7303 	} else {
7304 		struct iovec md_iov = {
7305 			.iov_base	= bdev_io->u.bdev.md_buf,
7306 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
7307 		};
7308 
7309 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7310 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7311 	}
7312 
7313 	if (rc != 0) {
7314 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
7315 			    err_blk.err_type, err_blk.err_offset);
7316 	} else {
7317 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
7318 	}
7319 }
7320 
7321 static void
7322 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7323 {
7324 	struct nvme_bdev_io *bio = ref;
7325 
7326 	if (spdk_nvme_cpl_is_success(cpl)) {
7327 		/* Run PI verification for read data buffer. */
7328 		bdev_nvme_verify_pi_error(bio);
7329 	}
7330 
7331 	/* Return original completion status */
7332 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7333 }
7334 
7335 static void
7336 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7337 {
7338 	struct nvme_bdev_io *bio = ref;
7339 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7340 	int ret;
7341 
7342 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7343 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
7344 			    cpl->status.sct, cpl->status.sc);
7345 
7346 		/* Save completion status to use after verifying PI error. */
7347 		bio->cpl = *cpl;
7348 
7349 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
7350 			/* Read without PI checking to verify PI error. */
7351 			ret = bdev_nvme_no_pi_readv(bio,
7352 						    bdev_io->u.bdev.iovs,
7353 						    bdev_io->u.bdev.iovcnt,
7354 						    bdev_io->u.bdev.md_buf,
7355 						    bdev_io->u.bdev.num_blocks,
7356 						    bdev_io->u.bdev.offset_blocks);
7357 			if (ret == 0) {
7358 				return;
7359 			}
7360 		}
7361 	}
7362 
7363 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7364 }
7365 
7366 static void
7367 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7368 {
7369 	struct nvme_bdev_io *bio = ref;
7370 
7371 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7372 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
7373 			    cpl->status.sct, cpl->status.sc);
7374 		/* Run PI verification for write data buffer if PI error is detected. */
7375 		bdev_nvme_verify_pi_error(bio);
7376 	}
7377 
7378 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7379 }
7380 
7381 static void
7382 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7383 {
7384 	struct nvme_bdev_io *bio = ref;
7385 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7386 
7387 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
7388 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
7389 	 */
7390 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
7391 
7392 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7393 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
7394 			    cpl->status.sct, cpl->status.sc);
7395 		/* Run PI verification for zone append data buffer if PI error is detected. */
7396 		bdev_nvme_verify_pi_error(bio);
7397 	}
7398 
7399 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7400 }
7401 
7402 static void
7403 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7404 {
7405 	struct nvme_bdev_io *bio = ref;
7406 
7407 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7408 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
7409 			    cpl->status.sct, cpl->status.sc);
7410 		/* Run PI verification for compare data buffer if PI error is detected. */
7411 		bdev_nvme_verify_pi_error(bio);
7412 	}
7413 
7414 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7415 }
7416 
7417 static void
7418 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7419 {
7420 	struct nvme_bdev_io *bio = ref;
7421 
7422 	/* Compare operation completion */
7423 	if (!bio->first_fused_completed) {
7424 		/* Save compare result for write callback */
7425 		bio->cpl = *cpl;
7426 		bio->first_fused_completed = true;
7427 		return;
7428 	}
7429 
7430 	/* Write operation completion */
7431 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
7432 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
7433 		 * complete the IO with the compare operation's status.
7434 		 */
7435 		if (!spdk_nvme_cpl_is_error(cpl)) {
7436 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
7437 		}
7438 
7439 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7440 	} else {
7441 		bdev_nvme_io_complete_nvme_status(bio, cpl);
7442 	}
7443 }
7444 
7445 static void
7446 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
7447 {
7448 	struct nvme_bdev_io *bio = ref;
7449 
7450 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7451 }
7452 
7453 static int
7454 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
7455 {
7456 	switch (desc->zt) {
7457 	case SPDK_NVME_ZONE_TYPE_SEQWR:
7458 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
7459 		break;
7460 	default:
7461 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
7462 		return -EIO;
7463 	}
7464 
7465 	switch (desc->zs) {
7466 	case SPDK_NVME_ZONE_STATE_EMPTY:
7467 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
7468 		break;
7469 	case SPDK_NVME_ZONE_STATE_IOPEN:
7470 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
7471 		break;
7472 	case SPDK_NVME_ZONE_STATE_EOPEN:
7473 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
7474 		break;
7475 	case SPDK_NVME_ZONE_STATE_CLOSED:
7476 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
7477 		break;
7478 	case SPDK_NVME_ZONE_STATE_RONLY:
7479 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
7480 		break;
7481 	case SPDK_NVME_ZONE_STATE_FULL:
7482 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
7483 		break;
7484 	case SPDK_NVME_ZONE_STATE_OFFLINE:
7485 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
7486 		break;
7487 	default:
7488 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
7489 		return -EIO;
7490 	}
7491 
7492 	info->zone_id = desc->zslba;
7493 	info->write_pointer = desc->wp;
7494 	info->capacity = desc->zcap;
7495 
7496 	return 0;
7497 }
7498 
7499 static void
7500 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
7501 {
7502 	struct nvme_bdev_io *bio = ref;
7503 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7504 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
7505 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
7506 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
7507 	uint64_t max_zones_per_buf, i;
7508 	uint32_t zone_report_bufsize;
7509 	struct spdk_nvme_ns *ns;
7510 	struct spdk_nvme_qpair *qpair;
7511 	int ret;
7512 
7513 	if (spdk_nvme_cpl_is_error(cpl)) {
7514 		goto out_complete_io_nvme_cpl;
7515 	}
7516 
7517 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
7518 		ret = -ENXIO;
7519 		goto out_complete_io_ret;
7520 	}
7521 
7522 	ns = bio->io_path->nvme_ns->ns;
7523 	qpair = bio->io_path->qpair->qpair;
7524 
7525 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
7526 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
7527 			    sizeof(bio->zone_report_buf->descs[0]);
7528 
7529 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
7530 		ret = -EINVAL;
7531 		goto out_complete_io_ret;
7532 	}
7533 
7534 	if (!bio->zone_report_buf->nr_zones) {
7535 		ret = -EINVAL;
7536 		goto out_complete_io_ret;
7537 	}
7538 
7539 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
7540 		ret = fill_zone_from_report(&info[bio->handled_zones],
7541 					    &bio->zone_report_buf->descs[i]);
7542 		if (ret) {
7543 			goto out_complete_io_ret;
7544 		}
7545 		bio->handled_zones++;
7546 	}
7547 
7548 	if (bio->handled_zones < zones_to_copy) {
7549 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
7550 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
7551 
7552 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
7553 		ret = spdk_nvme_zns_report_zones(ns, qpair,
7554 						 bio->zone_report_buf, zone_report_bufsize,
7555 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
7556 						 bdev_nvme_get_zone_info_done, bio);
7557 		if (!ret) {
7558 			return;
7559 		} else {
7560 			goto out_complete_io_ret;
7561 		}
7562 	}
7563 
7564 out_complete_io_nvme_cpl:
7565 	free(bio->zone_report_buf);
7566 	bio->zone_report_buf = NULL;
7567 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7568 	return;
7569 
7570 out_complete_io_ret:
7571 	free(bio->zone_report_buf);
7572 	bio->zone_report_buf = NULL;
7573 	bdev_nvme_io_complete(bio, ret);
7574 }
7575 
7576 static void
7577 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
7578 {
7579 	struct nvme_bdev_io *bio = ref;
7580 
7581 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7582 }
7583 
7584 static void
7585 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
7586 {
7587 	struct nvme_bdev_io *bio = ctx;
7588 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7589 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
7590 
7591 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
7592 
7593 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
7594 }
7595 
7596 static void
7597 bdev_nvme_abort_complete(void *ctx)
7598 {
7599 	struct nvme_bdev_io *bio = ctx;
7600 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7601 
7602 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
7603 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
7604 	} else {
7605 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
7606 	}
7607 }
7608 
7609 static void
7610 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
7611 {
7612 	struct nvme_bdev_io *bio = ref;
7613 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7614 
7615 	bio->cpl = *cpl;
7616 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_nvme_abort_complete, bio);
7617 }
7618 
7619 static void
7620 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
7621 {
7622 	struct nvme_bdev_io *bio = ref;
7623 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7624 
7625 	bio->cpl = *cpl;
7626 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
7627 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
7628 }
7629 
7630 static void
7631 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
7632 {
7633 	struct nvme_bdev_io *bio = ref;
7634 	struct iovec *iov;
7635 
7636 	bio->iov_offset = sgl_offset;
7637 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
7638 		iov = &bio->iovs[bio->iovpos];
7639 		if (bio->iov_offset < iov->iov_len) {
7640 			break;
7641 		}
7642 
7643 		bio->iov_offset -= iov->iov_len;
7644 	}
7645 }
7646 
7647 static int
7648 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
7649 {
7650 	struct nvme_bdev_io *bio = ref;
7651 	struct iovec *iov;
7652 
7653 	assert(bio->iovpos < bio->iovcnt);
7654 
7655 	iov = &bio->iovs[bio->iovpos];
7656 
7657 	*address = iov->iov_base;
7658 	*length = iov->iov_len;
7659 
7660 	if (bio->iov_offset) {
7661 		assert(bio->iov_offset <= iov->iov_len);
7662 		*address += bio->iov_offset;
7663 		*length -= bio->iov_offset;
7664 	}
7665 
7666 	bio->iov_offset += *length;
7667 	if (bio->iov_offset == iov->iov_len) {
7668 		bio->iovpos++;
7669 		bio->iov_offset = 0;
7670 	}
7671 
7672 	return 0;
7673 }
7674 
7675 static void
7676 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
7677 {
7678 	struct nvme_bdev_io *bio = ref;
7679 	struct iovec *iov;
7680 
7681 	bio->fused_iov_offset = sgl_offset;
7682 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
7683 		iov = &bio->fused_iovs[bio->fused_iovpos];
7684 		if (bio->fused_iov_offset < iov->iov_len) {
7685 			break;
7686 		}
7687 
7688 		bio->fused_iov_offset -= iov->iov_len;
7689 	}
7690 }
7691 
7692 static int
7693 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
7694 {
7695 	struct nvme_bdev_io *bio = ref;
7696 	struct iovec *iov;
7697 
7698 	assert(bio->fused_iovpos < bio->fused_iovcnt);
7699 
7700 	iov = &bio->fused_iovs[bio->fused_iovpos];
7701 
7702 	*address = iov->iov_base;
7703 	*length = iov->iov_len;
7704 
7705 	if (bio->fused_iov_offset) {
7706 		assert(bio->fused_iov_offset <= iov->iov_len);
7707 		*address += bio->fused_iov_offset;
7708 		*length -= bio->fused_iov_offset;
7709 	}
7710 
7711 	bio->fused_iov_offset += *length;
7712 	if (bio->fused_iov_offset == iov->iov_len) {
7713 		bio->fused_iovpos++;
7714 		bio->fused_iov_offset = 0;
7715 	}
7716 
7717 	return 0;
7718 }
7719 
7720 static int
7721 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7722 		      void *md, uint64_t lba_count, uint64_t lba)
7723 {
7724 	int rc;
7725 
7726 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
7727 		      lba_count, lba);
7728 
7729 	bio->iovs = iov;
7730 	bio->iovcnt = iovcnt;
7731 	bio->iovpos = 0;
7732 	bio->iov_offset = 0;
7733 
7734 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
7735 					    bio->io_path->qpair->qpair,
7736 					    lba, lba_count,
7737 					    bdev_nvme_no_pi_readv_done, bio, 0,
7738 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7739 					    md, 0, 0);
7740 
7741 	if (rc != 0 && rc != -ENOMEM) {
7742 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
7743 	}
7744 	return rc;
7745 }
7746 
7747 static int
7748 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7749 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7750 		struct spdk_memory_domain *domain, void *domain_ctx,
7751 		struct spdk_accel_sequence *seq)
7752 {
7753 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7754 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7755 	int rc;
7756 
7757 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7758 		      lba_count, lba);
7759 
7760 	bio->iovs = iov;
7761 	bio->iovcnt = iovcnt;
7762 	bio->iovpos = 0;
7763 	bio->iov_offset = 0;
7764 
7765 	if (domain != NULL || seq != NULL) {
7766 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7767 		bio->ext_opts.memory_domain = domain;
7768 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7769 		bio->ext_opts.io_flags = flags;
7770 		bio->ext_opts.metadata = md;
7771 		bio->ext_opts.accel_sequence = seq;
7772 
7773 		if (iovcnt == 1) {
7774 			rc = spdk_nvme_ns_cmd_read_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_readv_done,
7775 						       bio, &bio->ext_opts);
7776 		} else {
7777 			rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
7778 							bdev_nvme_readv_done, bio,
7779 							bdev_nvme_queued_reset_sgl,
7780 							bdev_nvme_queued_next_sge,
7781 							&bio->ext_opts);
7782 		}
7783 	} else if (iovcnt == 1) {
7784 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base,
7785 						   md, lba, lba_count, bdev_nvme_readv_done,
7786 						   bio, flags, 0, 0);
7787 	} else {
7788 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
7789 						    bdev_nvme_readv_done, bio, flags,
7790 						    bdev_nvme_queued_reset_sgl,
7791 						    bdev_nvme_queued_next_sge, md, 0, 0);
7792 	}
7793 
7794 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7795 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
7796 	}
7797 	return rc;
7798 }
7799 
7800 static int
7801 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7802 		 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
7803 		 struct spdk_memory_domain *domain, void *domain_ctx,
7804 		 struct spdk_accel_sequence *seq,
7805 		 union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13)
7806 {
7807 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7808 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7809 	int rc;
7810 
7811 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7812 		      lba_count, lba);
7813 
7814 	bio->iovs = iov;
7815 	bio->iovcnt = iovcnt;
7816 	bio->iovpos = 0;
7817 	bio->iov_offset = 0;
7818 
7819 	if (domain != NULL || seq != NULL) {
7820 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
7821 		bio->ext_opts.memory_domain = domain;
7822 		bio->ext_opts.memory_domain_ctx = domain_ctx;
7823 		bio->ext_opts.io_flags = flags | SPDK_NVME_IO_FLAGS_DIRECTIVE(cdw12.write.dtype);
7824 		bio->ext_opts.cdw13 = cdw13.raw;
7825 		bio->ext_opts.metadata = md;
7826 		bio->ext_opts.accel_sequence = seq;
7827 
7828 		if (iovcnt == 1) {
7829 			rc = spdk_nvme_ns_cmd_write_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_writev_done,
7830 							bio, &bio->ext_opts);
7831 		} else {
7832 			rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
7833 							 bdev_nvme_writev_done, bio,
7834 							 bdev_nvme_queued_reset_sgl,
7835 							 bdev_nvme_queued_next_sge,
7836 							 &bio->ext_opts);
7837 		}
7838 	} else if (iovcnt == 1) {
7839 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base,
7840 						    md, lba, lba_count, bdev_nvme_writev_done,
7841 						    bio, flags, 0, 0);
7842 	} else {
7843 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7844 						     bdev_nvme_writev_done, bio, flags,
7845 						     bdev_nvme_queued_reset_sgl,
7846 						     bdev_nvme_queued_next_sge, md, 0, 0);
7847 	}
7848 
7849 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
7850 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
7851 	}
7852 	return rc;
7853 }
7854 
7855 static int
7856 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7857 		       void *md, uint64_t lba_count, uint64_t zslba,
7858 		       uint32_t flags)
7859 {
7860 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7861 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7862 	int rc;
7863 
7864 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
7865 		      lba_count, zslba);
7866 
7867 	bio->iovs = iov;
7868 	bio->iovcnt = iovcnt;
7869 	bio->iovpos = 0;
7870 	bio->iov_offset = 0;
7871 
7872 	if (iovcnt == 1) {
7873 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
7874 						       lba_count,
7875 						       bdev_nvme_zone_appendv_done, bio,
7876 						       flags,
7877 						       0, 0);
7878 	} else {
7879 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
7880 							bdev_nvme_zone_appendv_done, bio, flags,
7881 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7882 							md, 0, 0);
7883 	}
7884 
7885 	if (rc != 0 && rc != -ENOMEM) {
7886 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
7887 	}
7888 	return rc;
7889 }
7890 
7891 static int
7892 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
7893 		   void *md, uint64_t lba_count, uint64_t lba,
7894 		   uint32_t flags)
7895 {
7896 	int rc;
7897 
7898 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7899 		      lba_count, lba);
7900 
7901 	bio->iovs = iov;
7902 	bio->iovcnt = iovcnt;
7903 	bio->iovpos = 0;
7904 	bio->iov_offset = 0;
7905 
7906 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
7907 					       bio->io_path->qpair->qpair,
7908 					       lba, lba_count,
7909 					       bdev_nvme_comparev_done, bio, flags,
7910 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
7911 					       md, 0, 0);
7912 
7913 	if (rc != 0 && rc != -ENOMEM) {
7914 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
7915 	}
7916 	return rc;
7917 }
7918 
7919 static int
7920 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
7921 			      struct iovec *write_iov, int write_iovcnt,
7922 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
7923 {
7924 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
7925 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
7926 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7927 	int rc;
7928 
7929 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
7930 		      lba_count, lba);
7931 
7932 	bio->iovs = cmp_iov;
7933 	bio->iovcnt = cmp_iovcnt;
7934 	bio->iovpos = 0;
7935 	bio->iov_offset = 0;
7936 	bio->fused_iovs = write_iov;
7937 	bio->fused_iovcnt = write_iovcnt;
7938 	bio->fused_iovpos = 0;
7939 	bio->fused_iov_offset = 0;
7940 
7941 	if (bdev_io->num_retries == 0) {
7942 		bio->first_fused_submitted = false;
7943 		bio->first_fused_completed = false;
7944 	}
7945 
7946 	if (!bio->first_fused_submitted) {
7947 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7948 		memset(&bio->cpl, 0, sizeof(bio->cpl));
7949 
7950 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
7951 						       bdev_nvme_comparev_and_writev_done, bio, flags,
7952 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
7953 		if (rc == 0) {
7954 			bio->first_fused_submitted = true;
7955 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
7956 		} else {
7957 			if (rc != -ENOMEM) {
7958 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
7959 			}
7960 			return rc;
7961 		}
7962 	}
7963 
7964 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
7965 
7966 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
7967 					     bdev_nvme_comparev_and_writev_done, bio, flags,
7968 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
7969 	if (rc != 0 && rc != -ENOMEM) {
7970 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
7971 		rc = 0;
7972 	}
7973 
7974 	return rc;
7975 }
7976 
7977 static int
7978 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
7979 {
7980 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
7981 	struct spdk_nvme_dsm_range *range;
7982 	uint64_t offset, remaining;
7983 	uint64_t num_ranges_u64;
7984 	uint16_t num_ranges;
7985 	int rc;
7986 
7987 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
7988 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
7989 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
7990 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
7991 		return -EINVAL;
7992 	}
7993 	num_ranges = (uint16_t)num_ranges_u64;
7994 
7995 	offset = offset_blocks;
7996 	remaining = num_blocks;
7997 	range = &dsm_ranges[0];
7998 
7999 	/* Fill max-size ranges until the remaining blocks fit into one range */
8000 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
8001 		range->attributes.raw = 0;
8002 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8003 		range->starting_lba = offset;
8004 
8005 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8006 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8007 		range++;
8008 	}
8009 
8010 	/* Final range describes the remaining blocks */
8011 	range->attributes.raw = 0;
8012 	range->length = remaining;
8013 	range->starting_lba = offset;
8014 
8015 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
8016 			bio->io_path->qpair->qpair,
8017 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
8018 			dsm_ranges, num_ranges,
8019 			bdev_nvme_queued_done, bio);
8020 
8021 	return rc;
8022 }
8023 
8024 static int
8025 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
8026 {
8027 	if (num_blocks > UINT16_MAX + 1) {
8028 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
8029 		return -EINVAL;
8030 	}
8031 
8032 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
8033 					     bio->io_path->qpair->qpair,
8034 					     offset_blocks, num_blocks,
8035 					     bdev_nvme_queued_done, bio,
8036 					     0);
8037 }
8038 
8039 static int
8040 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
8041 			struct spdk_bdev_zone_info *info)
8042 {
8043 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8044 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8045 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
8046 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
8047 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
8048 
8049 	if (zone_id % zone_size != 0) {
8050 		return -EINVAL;
8051 	}
8052 
8053 	if (num_zones > total_zones || !num_zones) {
8054 		return -EINVAL;
8055 	}
8056 
8057 	assert(!bio->zone_report_buf);
8058 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
8059 	if (!bio->zone_report_buf) {
8060 		return -ENOMEM;
8061 	}
8062 
8063 	bio->handled_zones = 0;
8064 
8065 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
8066 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
8067 					  bdev_nvme_get_zone_info_done, bio);
8068 }
8069 
8070 static int
8071 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
8072 			  enum spdk_bdev_zone_action action)
8073 {
8074 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8075 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8076 
8077 	switch (action) {
8078 	case SPDK_BDEV_ZONE_CLOSE:
8079 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
8080 						bdev_nvme_zone_management_done, bio);
8081 	case SPDK_BDEV_ZONE_FINISH:
8082 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
8083 						 bdev_nvme_zone_management_done, bio);
8084 	case SPDK_BDEV_ZONE_OPEN:
8085 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
8086 					       bdev_nvme_zone_management_done, bio);
8087 	case SPDK_BDEV_ZONE_RESET:
8088 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
8089 						bdev_nvme_zone_management_done, bio);
8090 	case SPDK_BDEV_ZONE_OFFLINE:
8091 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
8092 						  bdev_nvme_zone_management_done, bio);
8093 	default:
8094 		return -EINVAL;
8095 	}
8096 }
8097 
8098 static void
8099 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8100 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
8101 {
8102 	struct nvme_io_path *io_path;
8103 	struct nvme_ctrlr *nvme_ctrlr;
8104 	uint32_t max_xfer_size;
8105 	int rc = -ENXIO;
8106 
8107 	/* Choose the first ctrlr which is not failed. */
8108 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8109 		nvme_ctrlr = io_path->qpair->ctrlr;
8110 
8111 		/* We should skip any unavailable nvme_ctrlr rather than checking
8112 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
8113 		 */
8114 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
8115 			continue;
8116 		}
8117 
8118 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
8119 
8120 		if (nbytes > max_xfer_size) {
8121 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8122 			rc = -EINVAL;
8123 			goto err;
8124 		}
8125 
8126 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
8127 						   bdev_nvme_admin_passthru_done, bio);
8128 		if (rc == 0) {
8129 			return;
8130 		}
8131 	}
8132 
8133 err:
8134 	bdev_nvme_admin_complete(bio, rc);
8135 }
8136 
8137 static int
8138 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8139 		      void *buf, size_t nbytes)
8140 {
8141 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8142 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8143 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8144 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8145 
8146 	if (nbytes > max_xfer_size) {
8147 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8148 		return -EINVAL;
8149 	}
8150 
8151 	/*
8152 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8153 	 * so fill it out automatically.
8154 	 */
8155 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8156 
8157 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
8158 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
8159 }
8160 
8161 static int
8162 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8163 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
8164 {
8165 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8166 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8167 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8168 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8169 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8170 
8171 	if (nbytes > max_xfer_size) {
8172 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8173 		return -EINVAL;
8174 	}
8175 
8176 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8177 		SPDK_ERRLOG("invalid meta data buffer size\n");
8178 		return -EINVAL;
8179 	}
8180 
8181 	/*
8182 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8183 	 * so fill it out automatically.
8184 	 */
8185 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8186 
8187 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
8188 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
8189 }
8190 
8191 static int
8192 bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio,
8193 			  struct spdk_nvme_cmd *cmd, struct iovec *iov, int iovcnt,
8194 			  size_t nbytes, void *md_buf, size_t md_len)
8195 {
8196 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8197 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8198 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8199 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8200 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8201 
8202 	bio->iovs = iov;
8203 	bio->iovcnt = iovcnt;
8204 	bio->iovpos = 0;
8205 	bio->iov_offset = 0;
8206 
8207 	if (nbytes > max_xfer_size) {
8208 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8209 		return -EINVAL;
8210 	}
8211 
8212 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8213 		SPDK_ERRLOG("invalid meta data buffer size\n");
8214 		return -EINVAL;
8215 	}
8216 
8217 	/*
8218 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands
8219 	 * require a nsid, so fill it out automatically.
8220 	 */
8221 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8222 
8223 	return spdk_nvme_ctrlr_cmd_iov_raw_with_md(
8224 		       ctrlr, qpair, cmd, (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio,
8225 		       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge);
8226 }
8227 
8228 static void
8229 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8230 		struct nvme_bdev_io *bio_to_abort)
8231 {
8232 	struct nvme_io_path *io_path;
8233 	int rc = 0;
8234 
8235 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
8236 	if (rc == 0) {
8237 		bdev_nvme_admin_complete(bio, 0);
8238 		return;
8239 	}
8240 
8241 	io_path = bio_to_abort->io_path;
8242 	if (io_path != NULL) {
8243 		rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8244 						   io_path->qpair->qpair,
8245 						   bio_to_abort,
8246 						   bdev_nvme_abort_done, bio);
8247 	} else {
8248 		STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8249 			rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8250 							   NULL,
8251 							   bio_to_abort,
8252 							   bdev_nvme_abort_done, bio);
8253 
8254 			if (rc != -ENOENT) {
8255 				break;
8256 			}
8257 		}
8258 	}
8259 
8260 	if (rc != 0) {
8261 		/* If no command was found or there was any error, complete the abort
8262 		 * request with failure.
8263 		 */
8264 		bdev_nvme_admin_complete(bio, rc);
8265 	}
8266 }
8267 
8268 static int
8269 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
8270 	       uint64_t num_blocks)
8271 {
8272 	struct spdk_nvme_scc_source_range range = {
8273 		.slba = src_offset_blocks,
8274 		.nlb = num_blocks - 1
8275 	};
8276 
8277 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
8278 				     bio->io_path->qpair->qpair,
8279 				     &range, 1, dst_offset_blocks,
8280 				     bdev_nvme_queued_done, bio);
8281 }
8282 
8283 static void
8284 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
8285 {
8286 	const char *action;
8287 	uint32_t i;
8288 
8289 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
8290 		action = "reset";
8291 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
8292 		action = "abort";
8293 	} else {
8294 		action = "none";
8295 	}
8296 
8297 	spdk_json_write_object_begin(w);
8298 
8299 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
8300 
8301 	spdk_json_write_named_object_begin(w, "params");
8302 	spdk_json_write_named_string(w, "action_on_timeout", action);
8303 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
8304 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
8305 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
8306 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
8307 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
8308 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
8309 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
8310 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
8311 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
8312 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
8313 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
8314 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
8315 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
8316 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
8317 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
8318 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
8319 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
8320 	spdk_json_write_named_bool(w, "disable_auto_failback", g_opts.disable_auto_failback);
8321 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
8322 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
8323 	spdk_json_write_named_bool(w, "nvme_error_stat", g_opts.nvme_error_stat);
8324 	spdk_json_write_named_uint32(w, "rdma_srq_size", g_opts.rdma_srq_size);
8325 	spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat);
8326 	spdk_json_write_named_bool(w, "allow_accel_sequence", g_opts.allow_accel_sequence);
8327 	spdk_json_write_named_uint32(w, "rdma_max_cq_size", g_opts.rdma_max_cq_size);
8328 	spdk_json_write_named_uint16(w, "rdma_cm_event_timeout_ms", g_opts.rdma_cm_event_timeout_ms);
8329 	spdk_json_write_named_array_begin(w, "dhchap_digests");
8330 	for (i = 0; i < 32; ++i) {
8331 		if (g_opts.dhchap_digests & SPDK_BIT(i)) {
8332 			spdk_json_write_string(w, spdk_nvme_dhchap_get_digest_name(i));
8333 		}
8334 	}
8335 	spdk_json_write_array_end(w);
8336 	spdk_json_write_named_array_begin(w, "dhchap_dhgroups");
8337 	for (i = 0; i < 32; ++i) {
8338 		if (g_opts.dhchap_dhgroups & SPDK_BIT(i)) {
8339 			spdk_json_write_string(w, spdk_nvme_dhchap_get_dhgroup_name(i));
8340 		}
8341 	}
8342 
8343 	spdk_json_write_array_end(w);
8344 	spdk_json_write_object_end(w);
8345 
8346 	spdk_json_write_object_end(w);
8347 }
8348 
8349 static void
8350 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
8351 {
8352 	struct spdk_nvme_transport_id trid;
8353 
8354 	spdk_json_write_object_begin(w);
8355 
8356 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
8357 
8358 	spdk_json_write_named_object_begin(w, "params");
8359 	spdk_json_write_named_string(w, "name", ctx->name);
8360 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
8361 
8362 	trid = ctx->trid;
8363 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
8364 	nvme_bdev_dump_trid_json(&trid, w);
8365 
8366 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
8367 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
8368 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
8369 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8370 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
8371 	spdk_json_write_object_end(w);
8372 
8373 	spdk_json_write_object_end(w);
8374 }
8375 
8376 #ifdef SPDK_CONFIG_NVME_CUSE
8377 static void
8378 nvme_ctrlr_cuse_config_json(struct spdk_json_write_ctx *w,
8379 			    struct nvme_ctrlr *nvme_ctrlr)
8380 {
8381 	size_t cuse_name_size = 128;
8382 	char cuse_name[cuse_name_size];
8383 
8384 	if (spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr,
8385 					  cuse_name, &cuse_name_size) != 0) {
8386 		return;
8387 	}
8388 
8389 	spdk_json_write_object_begin(w);
8390 
8391 	spdk_json_write_named_string(w, "method", "bdev_nvme_cuse_register");
8392 
8393 	spdk_json_write_named_object_begin(w, "params");
8394 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8395 	spdk_json_write_object_end(w);
8396 
8397 	spdk_json_write_object_end(w);
8398 }
8399 #endif
8400 
8401 static void
8402 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
8403 		       struct nvme_ctrlr *nvme_ctrlr)
8404 {
8405 	struct spdk_nvme_transport_id	*trid;
8406 	const struct spdk_nvme_ctrlr_opts *opts;
8407 
8408 	if (nvme_ctrlr->opts.from_discovery_service) {
8409 		/* Do not emit an RPC for this - it will be implicitly
8410 		 * covered by a separate bdev_nvme_start_discovery or
8411 		 * bdev_nvme_start_mdns_discovery RPC.
8412 		 */
8413 		return;
8414 	}
8415 
8416 	trid = &nvme_ctrlr->active_path_id->trid;
8417 
8418 	spdk_json_write_object_begin(w);
8419 
8420 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
8421 
8422 	spdk_json_write_named_object_begin(w, "params");
8423 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8424 	nvme_bdev_dump_trid_json(trid, w);
8425 	spdk_json_write_named_bool(w, "prchk_reftag",
8426 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
8427 	spdk_json_write_named_bool(w, "prchk_guard",
8428 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
8429 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
8430 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
8431 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8432 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
8433 	if (nvme_ctrlr->psk != NULL) {
8434 		spdk_json_write_named_string(w, "psk", spdk_key_get_name(nvme_ctrlr->psk));
8435 	} else if (nvme_ctrlr->opts.psk[0] != '\0') {
8436 		spdk_json_write_named_string(w, "psk", nvme_ctrlr->opts.psk);
8437 	}
8438 
8439 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
8440 	spdk_json_write_named_string(w, "hostnqn", opts->hostnqn);
8441 	spdk_json_write_named_bool(w, "hdgst", opts->header_digest);
8442 	spdk_json_write_named_bool(w, "ddgst", opts->data_digest);
8443 	if (opts->src_addr[0] != '\0') {
8444 		spdk_json_write_named_string(w, "hostaddr", opts->src_addr);
8445 	}
8446 	if (opts->src_svcid[0] != '\0') {
8447 		spdk_json_write_named_string(w, "hostsvcid", opts->src_svcid);
8448 	}
8449 
8450 	spdk_json_write_object_end(w);
8451 
8452 	spdk_json_write_object_end(w);
8453 }
8454 
8455 static void
8456 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
8457 {
8458 	spdk_json_write_object_begin(w);
8459 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
8460 
8461 	spdk_json_write_named_object_begin(w, "params");
8462 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
8463 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
8464 	spdk_json_write_object_end(w);
8465 
8466 	spdk_json_write_object_end(w);
8467 }
8468 
8469 static int
8470 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
8471 {
8472 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
8473 	struct nvme_ctrlr	*nvme_ctrlr;
8474 	struct discovery_ctx	*ctx;
8475 
8476 	bdev_nvme_opts_config_json(w);
8477 
8478 	pthread_mutex_lock(&g_bdev_nvme_mutex);
8479 
8480 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
8481 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
8482 			nvme_ctrlr_config_json(w, nvme_ctrlr);
8483 
8484 #ifdef SPDK_CONFIG_NVME_CUSE
8485 			nvme_ctrlr_cuse_config_json(w, nvme_ctrlr);
8486 #endif
8487 		}
8488 	}
8489 
8490 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8491 		if (!ctx->from_mdns_discovery_service) {
8492 			bdev_nvme_discovery_config_json(w, ctx);
8493 		}
8494 	}
8495 
8496 	bdev_nvme_mdns_discovery_config_json(w);
8497 
8498 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
8499 	 * before enabling hotplug poller.
8500 	 */
8501 	bdev_nvme_hotplug_config_json(w);
8502 
8503 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
8504 	return 0;
8505 }
8506 
8507 struct spdk_nvme_ctrlr *
8508 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
8509 {
8510 	struct nvme_bdev *nbdev;
8511 	struct nvme_ns *nvme_ns;
8512 
8513 	if (!bdev || bdev->module != &nvme_if) {
8514 		return NULL;
8515 	}
8516 
8517 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
8518 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
8519 	assert(nvme_ns != NULL);
8520 
8521 	return nvme_ns->ctrlr->ctrlr;
8522 }
8523 
8524 void
8525 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
8526 {
8527 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
8528 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
8529 	const struct spdk_nvme_ctrlr_data *cdata;
8530 	const struct spdk_nvme_transport_id *trid;
8531 	const struct nvme_bdev_channel *nbdev_ch;
8532 	const char *adrfam_str;
8533 	bool current;
8534 
8535 	spdk_json_write_object_begin(w);
8536 
8537 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
8538 
8539 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
8540 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
8541 
8542 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
8543 	nbdev_ch = io_path->nbdev_ch;
8544 	if (nbdev_ch == NULL) {
8545 		current = false;
8546 	} else if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
8547 		struct nvme_io_path *optimized_io_path = NULL;
8548 
8549 		STAILQ_FOREACH(optimized_io_path, &nbdev_ch->io_path_list, stailq) {
8550 			if (optimized_io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) {
8551 				break;
8552 			}
8553 		}
8554 
8555 		current = nvme_io_path_is_available(io_path);
8556 		if (io_path->nvme_ns->ana_state == SPDK_NVME_ANA_NON_OPTIMIZED_STATE) {
8557 			/* A non-optimized path is only current if there are no optimized paths. */
8558 			current = current && (optimized_io_path == NULL);
8559 		}
8560 	} else {
8561 		current = (io_path == nbdev_ch->current_io_path);
8562 	}
8563 	spdk_json_write_named_bool(w, "current", current);
8564 	spdk_json_write_named_bool(w, "connected", nvme_qpair_is_connected(io_path->qpair));
8565 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
8566 
8567 	spdk_json_write_named_object_begin(w, "transport");
8568 	spdk_json_write_named_string(w, "trtype", trid->trstring);
8569 	spdk_json_write_named_string(w, "traddr", trid->traddr);
8570 	if (trid->trsvcid[0] != '\0') {
8571 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
8572 	}
8573 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
8574 	if (adrfam_str) {
8575 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
8576 	}
8577 	spdk_json_write_object_end(w);
8578 
8579 	spdk_json_write_object_end(w);
8580 }
8581 
8582 void
8583 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
8584 {
8585 	struct discovery_ctx *ctx;
8586 	struct discovery_entry_ctx *entry_ctx;
8587 
8588 	spdk_json_write_array_begin(w);
8589 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
8590 		spdk_json_write_object_begin(w);
8591 		spdk_json_write_named_string(w, "name", ctx->name);
8592 
8593 		spdk_json_write_named_object_begin(w, "trid");
8594 		nvme_bdev_dump_trid_json(&ctx->trid, w);
8595 		spdk_json_write_object_end(w);
8596 
8597 		spdk_json_write_named_array_begin(w, "referrals");
8598 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
8599 			spdk_json_write_object_begin(w);
8600 			spdk_json_write_named_object_begin(w, "trid");
8601 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
8602 			spdk_json_write_object_end(w);
8603 			spdk_json_write_object_end(w);
8604 		}
8605 		spdk_json_write_array_end(w);
8606 
8607 		spdk_json_write_object_end(w);
8608 	}
8609 	spdk_json_write_array_end(w);
8610 }
8611 
8612 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
8613 
8614 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
8615 {
8616 	struct spdk_trace_tpoint_opts opts[] = {
8617 		{
8618 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
8619 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 1,
8620 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8621 		},
8622 		{
8623 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
8624 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 0,
8625 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
8626 		}
8627 	};
8628 
8629 
8630 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
8631 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
8632 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8633 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
8634 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8635 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
8636 }
8637